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Abstract

The goal of the thesis is to investigate the issues related to the temporal link quality variation in large scale WSN environments, to design energy efficient link quality estimators able to distinguish among links with different quality on a short and a long term.

First, we investigate the characteristics of two physical layer metrics: RSSI (Received Signal Strength Indication) and LQI (Link Quality Indication) on SensLAB [START_REF] Senslab | Very large scale open wireless sensor network testbed[END_REF], an indoor large scale wireless sensor network testbed. We observe that RSSI and LQI have distinct values that can discriminate the quality of links.

Second, to obtain an estimator of PRR, we have fitted a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI and RSSI. The function enables us to find PRR for a given level of LQI. We evaluate the estimator by computing PRR over a varying size window of transmissions and comparing with the estimator.

Furthermore, we show using the Gilbert-Elliot two-state Markov model that the correlation of packet losses and successful receptions depend on the link category. The model allows to accurately distinguish among strongly varying intermediate links based on transition probabilities derived from the average and the standard variation of LQI.

Finally, we propose a link quality routing model driven from the F-D fitting functions and the Markov model able to discriminate accurately link categories as well as high variable links. WSN started over a decade ago to become popular mainly due to a wide range of scenarios in which they can be used. More specifically, the idea of embedding in the same device a communication module with sensing and processing capabilities contributed to the increased interest in the WSN.

The current progress of WSN is due to: hardware solutions such as Micro Electro-Mechanical Systems (MEMS), low-power communication hardware, low-power microcontrollers, as well as advanced software optimizations (lightweight communication protocols, real time systems).

A WSN is a set of objects deployed indoor or outdoor aiming at a common goal. The objects contain tiny autonomous sensors that allow monitoring large regions for short or long periods of time. Each sensor node has a limited memory, so it needs to report periodically collected data to a base station. Communication happens over a radio device having a range from several meters up to about 100m. Furthermore, data is usually communicated at a low bit rate of 250 kbps or even lower (60kbps). The main power supply of a sensor node is a AAA battery with a lifetime that can reach at maximum about 5-10 years for low traffic scenarios. In terms of cost, we have sensors with prices down to few $s that render deployments low-cost.

Each deployment targets a long lifetime. Basically, the lifetime is a vital factor for WSN, as sensor nodes dispose of non-renewable energy resources that make them dependent on energy consumption. Among the energy consumption sources we mention transmissions, sensing, signal and data processing, the phases during which the CPU continues to consume energy.

WSN networks need to meet other requirements: they need to be reactive, to act as quickly as possible aiming to respect the imposed deadlines, they need to be robust to adapt to the topology, density, and environmental changes, and moreover, the connectivity with the sink should be guaranteed.

The applications of WSNs spread across multiple domains such as home automation, industrial manufacturing, environmental monitoring, military, habitat or natural Chapter 1. Introduction phenomena surveillance etc. Each particular application may rely on a small or large scale. However, a large scale raises new challenges as the environmental conditions may change unexpectedly.

The research community has already carried out several large scale experiments, for instance, performed in the forests, where sensors monitor the habitat or open fields to track wild animals.

Generally, applications can be classified according to different targets: improve productivity, enhance security, support health care, ensure the maintenance, save energy in smart grids, render buildings intelligent. Another way to classify applications is by the deployment size, cost, topology, or mobility of nodes. Data they generally gather is mostly humidity, temperature, pressure, or lightning.

Table 1.1 presents a brief classification of existent applications. One predominant application is home automation. As it monitors and controls the living conditions, nodes have to be integrated into buildings.

One of the first applications of this type dates from 2002. It was initiated by Intel Research Laboratory from Berkeley University. The experiment consisted of a collection of more than 1 million of data readings from 32 nodes deployed along the Great Duck Island [START_REF] Polastre | Analysis of Wireless Sensor Networks for Habitat Monitoring[END_REF]. The reached lifetime of a sensor node was about 9 months.

Another pioneer application on WSN was the Zebranet project [START_REF] Polastre | Analysis of Wireless Sensor Networks for Habitat Monitoring[END_REF] headed at Mpala Research Center, Kenya. It consisted of tracking zebras using mobile sensors equipped with GPS technology. In medicine, E-health brings new perspectives through distance monitoring. Regarding natural phenomena, an example application was deployed around the Tungurahua volcano in Equator, where infrasonic signals during eruptions were monitored.

Today applications focus more on offering services, for instance, the Smart PARKing (SPARK) System [START_REF] Srikanth | Design and Implementation of a Prototype Smart PARKing (SPARK) System Using Wireless Sensor Networks[END_REF] monitors and delivers information concerning available parking places. BorderSense, a patrol border service [START_REF] Sun | BorderSense: Border Patrol Through Advanced Aireless Aensor Networks[END_REF] is another common surveillance service. Multimedia sensors can detect intruders while mobile nodes are in charge of tracking the intruders.

The mentioned applications helped to better understand the issues that may arise in real deployments. For instance, it is important that communication protocols are designed and tunned fully considering the application scenario requirements, e.g. traffic pattern [START_REF] Raman | Censor Networks: A Critique of Sensor Networks from a Systems Perspective[END_REF].

WSNs have recently evolved into the concept of the Internet of Things (IoT). It aims at interconnecting sensor nodes with the Internet. The communication in IoT relies on unique addresses for each "object". The IoT tends to make use of the existing technologies and infrastructure of the Internet. More specifically, we can define the IoT as a merge between three following visions.

The first one concerns simple objects such as RFID (the pioneers of the IoT) and sensor nodes. Both, RFIDs and sensor nodes, are simple to use allowing to track objects, to read their status, to identify, to monitor.

In the second vision, the IP for Smart Objects (IPSO) Alliance boosts the Internet Protocol (IP) as a key for a worldwide spread of smart objects. They promote the IP protocol stack as a lightweight protocol working on the tiny and constrained devices.

Motivation and Contributions

Home automation

To improve comfort and safety, light monitoring, heating control, remote device control.

Industrial

Manufacturing automation, process control.

Environmental

Monitoring soil, water and air, agriculture.

Traffic

Highway, bridge monitoring.

Biology

Patient monitoring, body sensors, e-health.

Services

Electricity, water, gas sensors to storage the usage statistics, e-money, e-learning, commercial.

Phenomena

Volcano monitoring, habitat sensing and monitoring, natural disastrous detection.

Entertainment

Improving TV, smart phones experience.

Military

Border patrol sensors, battlefield management, area discovery, surveillance, defense.

Table 1.1: WSN applications.

IPSO advises as a solution for IoT connectivity an adaptation of the IP protocol on top of the IEEE 802.15.4 standardization. The last aspect concerns the "semantic vision", in which sensors are queried to get relevant data, organize them, and reason upon.

In this struggle to find feasible solutions, it is important to mention the major constraints that slow down the IoT progress: energy, limited resources, highly unstable radio links, dense topologies in terms of the number of nodes etc.

However, an optimistic view of IoT foresees that in 10 years from now, the real world will join the digital one. Such a widespread adaptation of the IoT raises challenges: how to store all data, how to search for the needed information, how to guarantee privacy. Hence, once the IoT will satisfy all the requirements including (privacy, reliability, scalability), a widespread presence of smart objects will be predictable.

Motivation and Contributions

To benefit from all the potential of WSN, robust and reliable communication should be achieved on low-power, low-cost, tiny, autonomous, secure devices. Therefore, to achieve inter-connected constrained devices, the Internet Engineering Task Force (IETF) [START_REF]The Internet Engineering Task Force (IETF)[END_REF] created working groups that explore different directions: routing (Low Power and Lossy Networks(ROLL) [START_REF] Iftf | Routing Over Low power and Lossy networks[END_REF]), IPv6 over Low power WPAN (6LoWPAN) [START_REF] Shelby | Neighbor Discovery Optimization for Low Power and Lossy Networks (6LoWPAN)[END_REF], or the application layer CoRE [START_REF] Iftf | Constrained RESTful Environments (Active WG)[END_REF]. Researchers address the challenges of interconnecting constrained devices to the Internet in two ways. The first one relies on designing protocols with low energy consumption. The second one consists of designing appropriate hardware systems.

In this thesis, we analyze a large scale WSN testbed to identify the factors that impact signal propagation, the relation and the pattern deviation of the hardware metrics that result in energy waste when communication protocols are used.

We propose a link classification for lossy environments. Based on this classification, we propose two mathematical models (a fit function and a Markov model) able to predict the packet reception rate. Furthermore, we propose a link quality estimator that takes as input hardware and software factors and combine them to reduce the overhead and the collisions introduced by retransmission while gaining in energy and packet delivery ratio. Finally, we conclude our work with future perspectives and needed further studies.

The thesis is organized into six chapters as follows:

Chapter 2 gives an overview of existing studies on the main factors that influence link quality. Furthermore, we discuss the main characteristics of the hardware metrics (RSSI/LQI/SNR). We present the main link characteristic studies as well as the existing link quality estimators based on simple or composed hardware metric combinations. We emphasize the existing efforts that use Markov chain model to achieve link assessment Last, an overview of routing in IPv6-based 6LoWPAN networks is offered. We point out the main aspects of the metrics used by the most popular distance-vector based routing protocols (RPL, LOAD, CTP).

Chapter 3 presents an empirical study of the link quality factors based on the large scale testbed. The aim is to capture temporal fluctuations as well as link asymmetry in a given indoor environment. Furthermore, the investigation allows us to distinguish links based on their channel dynamics, and classify links using CC1101 and CC2420 radio chips based on hardware metrics such as the link quality indicator (LQI) and the received signal strength indicator (RSSI). We report on a study of good link proportion, environmental factors impacting signal propagation, and the bi-directionality of links varying the output power, the inter-packet time interval, and the length of the packet.

Chapter 4 statistically analysis the link quality. To obtain an estimator of the packet reception ratio (PRR), we have fitted a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI. The function enables us to find PRR for a given level of LQI. The estimator leads to better neighborhood management and routing metrics in wireless sensor networks.

Chapter 5 presents a study of the Gilbert two state model to catch the temporal evolution of each link category. To discriminate high variable links, we have found that the GE stationary probabilities derived from avg and std LQI can decide well the lowest variable links. Considering that the neighborhood relies only on high intermediate links, the good stationary probability of the avg LQI is able to distinguish the best one.

At the end of the Chapter, we discuss in details our routing metrics proposal. More specifically, we propose to use our fit function (LQI average and LQI deviation) and the stationary probabilities given by the Markov model to choose among links with high link variation. The idea is to put together the fit functions over average and standard deviation LQI to predict PRR and further use the stationary probabilities computed by the Markov model to discriminate more accurately the high variable intermediate links.

Chapter 6 We conclude the work by summarizing the main contributions. We also address the issues that continue to challenge the community. Moreover, we end up with the perspectives for the future work.

We will mainly concentrate on the link quality estimation approaches regarding the Media Access Control(MAC) and routing protocols (RPL/LOAD). The principal goal is to design a link quality estimator able to construct stable topologies and reduce energy consumption.

First, we present existing empirical studies performed on various radio chips (CC1100/ CC1101/TR1000/CC2420) with respect to several metrics, such as received signal strength (RSSI), link quality indicator (LQI), and packet reception ratio (PRR). Environmental factors that prone to radio signal propagation distortion are discussed.

Second, we briefly overview the existing link assessment mechanisms that make use of RSSI, LQI, PRR, or Markov chain model.

Finally, we point out the main aspects of several distance-vector based routing protocols (RPL, LOAD, CTP).

Introduction

Wireless sensor networks rely on low complexity circuits and very low power radio hardware that enable battery supply nodes to last at most 10-15 years depending on their duty cycle. Therefore, to achieve such a long lifetime any energy waste should be avoided.

Low power links are sensitive to the environment and interferences. In this context, robust MAC protocols and stable routing protocols are difficult to design since the next hop choice may depend on an unreliable link quality estimator.

So, as long as the link quality estimation remains an open issue, much work considered the problem of characterizing wireless link quality [START_REF] Woo | Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks[END_REF][START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF][START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF][START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF][START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF][START_REF] Mottola | Not all Wireless Sensor Networks are created Equal: A Comparative Study on Tunnels[END_REF][START_REF] Woehrle | 868 MHz: A Noiseless Environment, but no Free Lunch for Protocol Design[END_REF]. Moreover, in the link characterization process, the fluctuation of link quality rises continuous challenges due to the great impact on MAC and network layers. Figure 2.1 illustrates the link quality estimation process.

The quality of a link may vary as a function of time or distance. In particular, the temporal fluctuation of the link quality was reported by several studies on various environments such as urban, habitat, university outdoor, offices [START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF][START_REF] Srinivasan | RSSI is Under Appreciated[END_REF][START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF]. Likewise, the spatial variation of the link quality has been shown [START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Zhou | Models and Solutions for Radio Irregularity in Wireless Sensor Networks[END_REF]. A common observation is that the link quality changes depending on the RSSI zone (connected, transitional, disconnected) the link is part of [START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF][START_REF] Ganesan | Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks[END_REF][START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF]. Generally, links in the connected zone are stable, contrary to the transitional and disconnected zones. Furthermore, most of the studies used various platforms. We can cite platforms such as Mica 1, Mica 2 [START_REF] Crossbow | Wireless measurement system[END_REF], Moteiv Tmote Sky [START_REF] Moteiv | Tmote Sky Datasheet[END_REF], TelosB [START_REF] Polastre | Telos: Enabling Ultralow Power Wireless Research[END_REF] equipped with CC1100/CC1101 [START_REF]Low-Power Sub-1GHz RF Transceiver[END_REF], TR1000 [START_REF]low power radio system[END_REF], or CC2420 [START_REF][END_REF] low-power RF transceivers, among which the CC2420 radio is the most widespread.

Thus, the goal of this chapter is to overview the efforts done in characterizing lossy wireless links as well as on routing protocols (RPL, CTP, LOAD).

The chapter is organized as follows: first, we address the link characterization stressing out the impact of the physical layer on the link behavior. Second, we discuss the metrics that rely on online and offline link assessment mechanisms. The metrics are aiming to achieve energy consumption by estimating the stability of the links referring short and long term fluctuation of link quality. Likewise, we emphasize the advantages and the drawbacks of both mechanisms.

Finally, we overview the main features of the RPL, LOAD and CTP routing protocols followed by a brief discussion on their used routing metrics.

Link characterization 2.2.1 WSN context

Communication in WSN relies on low-power and cheap radio chips such as (TR1000/ CC1100/CC1001/CC2420) that present irregular radio patterns and a limited transmission range.

Nevertheless, due to the low power constraints and the fact that they need to act near the noise level while they are equipped with very simple radio circuits, the communication depends on the environment, frequency, the specific modulation scheme, or antenna patterns. As a result, the RF signals in indoor and outdoor environments may be highly variable and prone to bit errors. Still, they have to offer good packet delivery ratio in multi hop scenarios for upper layers (MAC/Routing) whereas targeting few retransmissions and energy high efficiency.

The IEEE 802.15.4 standardization [85] targets low-cost, low-power devices low-data rates. It achieves three targets: low-power, low-data rate, and low-cost for the wireless personal area (WPAN) networks. The standardization was approved back in 2003, but due to the interest it attracted along years various variants of the standardization were proposed.

We bring up below the hardware and the environmental factors that influence IEEE 802.15.4-Compliant (CC2420) and IEEE 802.15.4-non-compliant (CC1101) radio links.

IEEE 802.15.4 standard and devices

We present in this section the most common aspects of the physical characterization of IEEE 802.15.4-compliant radios such as bit stream (CC1101) and packet oriented (CC2420) radios.

IEEE 802.15.4 PHY

The IEEE 802.15.4 PHY layer defines a total of 27 channels among which 16 nonoverlapping channels. Before the transmission starts, every 4-bit symbol is transformed into a 32-chip sequence. At the reception, to decode the chip-sequence, the symbol that gives the higher chip correlation is chosen Figure 2 Each transmission or reception happens on a chosen channel that employs a specific modulation and encoding technique Table 2.1. Lower frequencies have a lower receiver sensitivity that gives a larger transmission range. Moreover, the range depends on the transmission power and the receiver sensitivity.

The IEEE 802.15.4 PHY is responsible of :

❼ Turning on/off the radio transceiver as required by the MAC layer.

❼ Energy detection (ED) within the current channel. This measure helps to detect the state of the channel busy/occupied. In 802.15.4, the ED takes 128µs and serves for the Clear Channel Assessment (CCA) or the channel selection.

❼ Link Quality Indication (LQI). The LQI indicates the quality of the received signal computed either using the ED, the signal to noise ratio, or both. This measure is important at the network layer as the routing metric can benefit from this measure. More specifically, physical layer provides instant information (RSSI/LQI) right after it decodes a packet. Therefore, the information may be employed as a link quality indicator. However, due to the short-term link variation, it is hard to predict the link quality just on a single packet [START_REF] Srinivasan | RSSI is Under Appreciated[END_REF].

RF features

The literature reports on several hardware factors that impact the link quality [START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF][START_REF] Watteyne | Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks[END_REF], such as: frequency, modulation, antenna (gain, orientation), output power, receiver sensitivity, internal noise, and hardware mis-calibrated. Table 2.2 presents the parameters of the most popular transceivers already mention: CC1101 and CC2420.

Frequency: The impact of the oscillation rate of radio waves has been proven on bit stream (CC1101) or packet oriented (CC2420) radio technologies. The bit stream technology relies on older radio transceivers such as the CC1101 that operate on the 868MHz frequency, whereas packet oriented ones refers to newer radios such as CC2420 (IEEE802.15.4 compliant) that operate on 2.4GHz frequency.

In particular, the platforms operating in the 868MHz ISM band are less exposed to external interferences, whereas the ones operating on 2.4GHz are likely exposed to external interferences from WiFi, Bluetooth, or microwaves. The 868MHz frequency has been used in various deployments [START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF][START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Reijers | Link Layer Measurements in Sensor Networks[END_REF][START_REF] Carlo | The Triangle Metric: Fast Link Quality Estimation for Mobile Wireless Sensor Networks[END_REF]. The reason is its larger range as the attenuation of a signal is proportional to the used frequency. Modulation: Moreover, a drawback of the older radios 868MHz-based is related to a less robust modulation. In particular, older radio chips (CC1101/TR1000) use a simpler modulation such as Frequency Shift Key (FSK), Gaussian Shaped Frequency Shift Keying (GFSK), On/Off Key (OOK), Minimum-shift Keying (MSK), Amplitude Shift Keying (ASK) with low bandwidth requirements. Nevertheless, the most popular radio transceiver (CC2420) is a IEEE 802. [START_REF]Low-Power Sub-1GHz RF Transceiver[END_REF] and CC2420 [START_REF][END_REF].

Antenna: Zhou et al. [START_REF] Zhou | Impact of Radio Irregularity on Wireless Sensor Networks[END_REF] identified the sources of radio irregularities as nonisotropic path-loss caused by multi-path effects and hardware calibration. Hardware calibration is explained as a manufacturing problem according to which antenna gain may not be the same for all directions.

Receiver Sensitivity: It refers to the minimum signal strength needed at the input of a receiver in order to guarantee the reception.

RF signal propagation

Signal propagation depends on the type of the environment: indoor (i.e. offices, home), outdoor (i.e. urban, habitat). Distortion of the RF signals is due to various environmental and hardware factors [START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF][START_REF] Watteyne | Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks[END_REF]. For instance, environmental factors include path-loss, fading, and interference.

❼ Path-loss (signal attenuation with distance):

-Free space (no multi-path sources are present) see Equation 2.2.

-Log-distance path loss model (includes multi-path sources) see Equation 2.4.

❼ Fading

-Multi-path ( the radio signals propagate over multiple paths, therefore, receivers retrieve multiple copies of the a signal):

✯ scattering (the deviation of the signal from the straight line) occurs when the signal mets objects (IT equipments, small pieces of furniture). ✯ reflection (the signal bounces off an object) is present when the signal meets large objects or surfaces (wall, ceiling, metal, glass, pieces of furniture).

✯ refraction (bending of RF signal, one part is absorbed the other part is reflected) from obstacles. ✯ diffraction (the signal is obstructed by sharp edges) encountered due to obstacle presence.

-Shadowing (large obstruction of the RF signal):

✯ human presence, walls, doors.

❼ Interference:

-Concurrent transmissions,

-Presence of other transmitters in the same band: Wi-fi, Blue-tooth or Microwaves.

Path-loss models predict the average received strength of a signal at a certain distance from the transmitter. It depends on the distance (line of sight) between the sender and the receiver. In fact, most of the models are based on the Fries free space equation 2.1.

P r (d) = P t G t G r ( λ 4πd ) 2 , (2.1) 
where P r denotes the available power at the input of the receiving antenna, P t denotes the output power of the transmitting antenna, G t and G r are the antenna gains of the transmitter and receiver, d is the distance between transmitting and receiving antenna, and λ is the wavelength. The equation is simple, it provides an estimation of the received signal strength when between the transmitting and receiving antenna is a clear line of sight.

P r (d) = P r (d 0 )( d 0 d ) 2 , (2.2) 
where P r (d 0 ) is the received power in Watts at distance d 0 , and d 0 < d. Therefore, the received power at any distance is referred by Equation 2.2. Moreover, RF signal power deteriorates with the squared inverse distance. Path loss of a channel is measured in dB and is the difference (attenuation of the RF signal) between the transmitted power and receiver power in dB (see Equation 2.3).

P L(dB) = -10log 10 ( λ 2 (4π) 2 d 2 ), (2.3) 
Once we include multipath sources and ground reflection the path loss equation becomes:

P L(dB) = 10nlog 10 ( d d 0 ), (2.4) 
where n (common value ranges from 2 to 6) is the loss exponent that indicates that the rate of the loss increase with respect to the distance. The path loss exponent depends on the environment and takes lower values for indoor (2) and higher for outdoor (6) [START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF]. Ganesan et al. [START_REF] Ganesan | Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks[END_REF] reported that the path loss formula changes with hardware characteristics.

Fading is defined as the deviation of the attenuation of the signal. It depends on frequency, location, and time. It can result in multi-path (fast fading on the order of 10 to 100 ms) or shadowing (slow fading on the order of 1s to 5s).

Multipath fading is the most common factor that affects link fluctuation resulting in a large deviation from the path loss models [START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF]. Especially, multipath it is due to reflection, refraction, diffraction or scattering of RF signals. Indoor, multi-path depends on the placement of nodes and the spatial characterization of the environment (office, halls, home). In particular, reflection is one of the main factors of multi-path presence that may alter the link reliability trough huge drops of the packet reception ratio. It occurs due to the presence of good reflectors such as metal or glass, and leads not just to the multipath effect, but also to the noise increase and interference.

The second fading factor is shadowing, a large scale effect that steers to creation of shadow zones (deep fade) where no radio emission/reception is encountered. However, Watteyne et al. [START_REF] Watteyne | Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks[END_REF] claimed that the fading effects can be avoided by changing the node location or the carrier frequency. Pucinelli et al. [START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF] emphasized that fading has to be considered in the design of wireless channels.

Interference is another important factor harming signal propagation. As a result of interference presence, protocols may become unstable due to packet reception drops, retransmissions, and link instability. It occurs in the presence of concurrent transmissions (internal interface) or from external interfering technologies e.g. IEEE 802.11 (WLAN), 802.15.1 (Bluetooth), and 802.15.4 [START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF].

Furthermore, Polastre et al. [START_REF] Polastre | Versatile Low Power Media Access for Wireless Sensor Networks[END_REF] reported that the IEEE 802.11b interference may result in energy waste as it may wake-up the duty-cycle MAC protocols that use an energy detection threshold to enter in listen mode. For example, to overcome the false wake-ups, Srinivasan et al. [START_REF] Srinivasan | Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks[END_REF] recommended the use of adaptation clear channel assessment mechanism that takes into account the eventual noise from 802.11 networks.

On the other hand, concurrent transmissions lead to constructive or destructive interference that distorts the signal reception by creation of deep fading zones [START_REF] Mottola | Not all Wireless Sensor Networks are created Equal: A Comparative Study on Tunnels[END_REF]. A constructive interference within two waves is defined as a multiple of 2π phase difference, while a destructive interference designates an odd π phase difference.

In this section, we have highlighted that links are lossy due to environmental factors harming signal propagation (path-loss, fading, interferences). The main observations on link dynamics driven from existing empirical studies are presented below.

Link behavior through hardware metrics

Radio transceivers provide two hardware metrics able to estimate the strength (RSSI) and the quality (LQI) of the received packet. For instance, each received packet embeds both hardware metrics (RSSI and LQI). Numerous existing studies explored the temporal fluctuation of RSSI and LQI in order to predict temporal link behavior.

Generally, a stable link guarantees a successful packet reception whereas short signal drops results in unsuccessful reception.

RSSI/LQI Overview

Received Signal Strength Indicator (RSSI) is an estimation of the received signal power in the channel. The obsolete radios such as CC1000/CC1101 are not based on the IEEE 802.15.4 standard, still, they provide the RSSI hardware parameter [START_REF]Low-Power Sub-1GHz RF Transceiver[END_REF]. As the CC1101 transceiver enters in the reception mode, the RSSI is read out in raw from the RSSI register. The reading stops when the sync word is detected. The readout value is converted from 2 complement (hexadecimal) to decimal (RSSI dec), following by a subtraction of -78dBm (offset) for CC1100 and -74dBm for CC1101 at 868MHz and a data rate of 250kbps. Additionally, in case the decimal value is below 128 the value is scaled conform the Equation 2.5. Conversely, for a value above 128, the RSSI estimation becomes Eq. 2.6. The offset depends on the data rate and the used frequency.

RSSI [dBm] = (RSSI dec)/2 -RSSI of f set (2.5) RSSI [dBm] = (RSSI dec -256)/2 -RSSI of f set (2.6)
Figure 2.3 a) presents the CC1101 frame format. In the newer radios such as CC2420 [START_REF][END_REF], the RSSI is an 8-bit integer value. It is read from the RSSI register (in case of the signal absence, the value indicates the noise). RSSI for CC2420 radio chip is computed over the eight symbol period (128µs):

RSSI [dBm] = RSSI V AL + RSSI OF F SET (2.7)
The RSSI VAL is a 12 bit register and the RSSI OFFSET is equal to -45dBm. RSSI ranges from -28dBm to -127dBm. Figure 2.3 b) presents the frame format for the CC2420 radio. Another measure extensively used to quantify link behavior is SNR that denotes the strength of the signal. It is defined as the ratio of the received signal strength and the strength of the background noise. To estimate SNR, the receiver records at first the RSSI of the received packet, then it has to measure the background noise. RSSI of a signal is defined as:

RSSI [dBm] = 10log 10 (P ower received packet + Background noise), (2.8) 
RSSI of the ambient noise is estimated as 10log 10 (Background noise):

SN R [dBm] = RSSI[dBm] -Backgroud noise [dBm] (2.9)
The Link Quality Indicator (LQI) is a metric that estimates the current quality of the received information.

For CC1101, LQI gives an estimate of how easily a received signal can be demodulated by accumulating the magnitude of the error between ideal constellations and the received signal over the 64 symbols immediately following the sync word [START_REF]Low-Power Sub-1GHz RF Transceiver[END_REF] (see Figure 2 For CC2420 [START_REF][END_REF], provides an average correlation value for each incoming packet, based on the 8 first symbols of the received PHY header (length field) and PHY Service Data Unit (PSDU). The LQI software value is computed as in Eq. 2.10 and ranges from 0 to 255. The strength of the signal (RSSI) and the link quality indicator (LQI) metrics are computed over each received packet. Since RSSI and LQI are correlated with the goodness of a signal, they may be used to predict link dynamics.

Generally, the quality of a link is estimated as a proportion of successfully received packets. Hence, the goodness of a link is linear to the proportion of received packets. Thus, a generic observation is that each link may belong to one of the following zones: high link quality, transitional ('gray zones') for intermediate link quality, and low link quality [START_REF] Ganesan | Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks[END_REF][START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF][START_REF] Reijers | Link Layer Measurements in Sensor Networks[END_REF][START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF]. Overall, previous efforts claimed that intermediate links are highly unstable.

In this context, we further present the work that was done to predict the link quality using hardware metrics. We mainly focus on several proposed link classifications according to PRR as well as on the temporal and spatial fluctuation of RSSI and LQI. Moreover, link asymmetry is discussed.

Link Classification based on PRR

Empirical studies carried out on various platforms resulted in a link classification based on the packet reception ratio (PRR). A PRR is defined as the ratio of the successful received packets to the total number of send packets. Generally, three classes of links are commonly mentioned such as good (high PRR), intermediate (intermediate PRR), and bad (low PRR): a common classification defines good links as the ones with a PRR above 90%, intermediate with PRR within 90% and 10%, and bad links for PRR below 10%. For example, Srinivassan et al. [START_REF] Srinivasan | Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks[END_REF] claimed for the CC2420 transceiver that good links with P RR > 85% are above the receiver sensitivity threshold (-87dBm).

Table 2.3 summarizes the most common existing link quality classifications.

Considering the proportion of each link category on a large and small scale, it was reported a higher proportion of intermediate links on large scale platforms [START_REF] Ganesan | Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks[END_REF][START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF]. Likewise, a study of the outdoor and indoor environments claimed a lower proportion of intermediate links in the outdoor with respect to indoor environments [START_REF] Reijers | Link Layer Measurements in Sensor Networks[END_REF]. They conclude that the indoor environments are highly affected by multi-path effects. Moreover, we present below several findings on temporal fluctuation.

Temporal fluctuation

The literature investigated the RSSI/LQI temporal variation aiming to distinguish the fluctuation factors and patterns. Please note that the fluctuation term refers to RSSI Chapter 2. State of the art and LQI value changes over successive readings. Distinct factors such as environment, temperature, humidity, interference, were identified in Section 2.2.

RSSI fluctuation

First, the fluctuation of the RSSI indicator has been intensively analyzed in the literature [START_REF] Srinivasan | RSSI is Under Appreciated[END_REF][START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF][START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Raman | Implications of Link Range and (In)stability on Sensor Network Architecture[END_REF][START_REF] Tang | Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments[END_REF].

Boano et al. [START_REF] Carlo | The Impact of Temperature on Outdoor Industrial WSN Applications[END_REF] reports that RSSI is affected by the temperature change (day/night). The humidity seems to be another factor that generates RSSI variation [START_REF] Lee | An Efficient Transmission Power Control Scheme for Temperature Variation in Wireless Sensor Networks[END_REF]. External interference generates high fluctuation of RSSI [START_REF] Thomas | Identifying Sources of Interference in RSSI Traces of a Single IEEE 802.15.4 Channel[END_REF]. They proposed an interference classifier that distinguishes between the potential interference sources (WLANs, Bluetooth, microwave ovens) that disturb the RSSI readings on the IEEE 802.15.4 channel. In addition, constructive and destructive interferences generated by the concurrent transmissions or environment factors result in high fluctuation of the RSSI [START_REF] Mottola | Not all Wireless Sensor Networks are created Equal: A Comparative Study on Tunnels[END_REF]. Moreover, RSSI may encounter variance due to the antenna alignment (with the following degrees 0, 90, 180, and 270) [START_REF] Zhou | Impact of Radio Irregularity on Wireless Sensor Networks[END_REF]. It proposes a non-circular radio irregularity model (RIM) based on registered degree of the RSSI variation.

Tang et al. [START_REF] Tang | Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments[END_REF] concluded that RSSI fluctuation is due to hardware configuration, in particular, the transmitter and the receiver variability may vary for each radio chip. In addition, the antenna orientation is another important factor due to its non uniform radiation pattern and its magnetic pole position [START_REF] Watteyne | Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks[END_REF].

However, the conclusions of the studies are contradictory as they claim a small variation of the RSSI when above the radio sensitivity -87dBm for CC2420 chip [START_REF] Srinivasan | RSSI is Under Appreciated[END_REF], a large variation [START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Raman | Implications of Link Range and (In)stability on Sensor Network Architecture[END_REF] or even RSSI does not fluctuate in time [START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF]. The large temporal variation of the RSSI can reach 11dBm with a time-scale variation about 0s-20s or few hours [START_REF] Raman | Implications of Link Range and (In)stability on Sensor Network Architecture[END_REF]. However, RSSI is unreliable if the channel is in contention between several interfering motes.

Furthermore, considering SNR, Srinivasan et al. [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF] claimed that its variation is correlated with the fluctuation of RSSI as the noise is quite stable.

LQI fluctuation

In terms of LQI, low variation was claimed for packets coming from nodes placed in zones with good radio connectivity. On the other hand, the variation of LQI becomes large for lower radio connectivity. Therefore, several studies demonstrated that LQI may vary drastically if the node is in the transitional or the disconnected zone [START_REF] Mottola | Not all Wireless Sensor Networks are created Equal: A Comparative Study on Tunnels[END_REF][START_REF] Lin | Towards Stable Network Performance in Wireless Sensor Networks[END_REF][START_REF] Carlo | Poster Abstract: Exploiting the LQI Variance for Rapid Channel Quality Assessment[END_REF]. However, for the link in the connected zone, the LQI is highly stable [START_REF] Srinivasan | RSSI is Under Appreciated[END_REF], which may be a good indicator for link quality.

A generic observation is that LQI variation can determine if a link is very good or extremely bad. However, it is not a good predictor for the transitional links, which are highly unpredictable. For instance, Srinivassan et al. [START_REF] Srinivasan | Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks[END_REF] claimed that LQI varies in a wider range compared to RSSI.

A wide conclusion is that RSSI/LQI/SNR metrics are individually inadequate to evaluate correctly the link quality as they are based only on a single received packet.

Hence, an exponential average with a sliding window over historical data is widely recommended to properly estimate the link quality [START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF][START_REF] M I Xue | A Novel EWMA based Link Quality Evaluation Algorithm for WSN[END_REF].

Spatial fluctuation

It was shown in several research efforts a distance dependence of the RSSI and LQI. For instance, RSSI values decrease due to the path loss while LQI shown a distance correlation for the connected (high RSSI) and disconnected (low RSSI) zone [START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Srinivasan | Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks[END_REF][START_REF] Rondinone | Designing a Reliable and Stable Link Quality Metric for Wireless Sensor Networks[END_REF]. Hence, they argued no correlation of LQI with distance for the transitional (intermediate RSSI) zone affected by anisotropic radio pattern, multipath effect, reflection, and external interference.

On the other hand, Woo et al. [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF] claimed that the temporal variability of packet reception ratio is correlated with the distance. The study proposed a link estimation model, where the quality of a link is associated with a certain distance it is situated. Still, due to various environmental factors and the radio pattern it is hard to predict properly the distance.

Link asymmetry

Another issue of wireless links, is the link asymmetry. The most common factors that lead to link asymmetry are argued to be the hardware or the environmental factors [START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF]4,[START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF][START_REF] Woehrle | 868 MHz: A Noiseless Environment, but no Free Lunch for Protocol Design[END_REF].

The asymmetry of a link can be defined as an absolute difference |P RR senderx->receivery -P RR receivery->senderx |, where x, y are the ids of the nodes whereas the arrow points at the receiver. A link is called asymmetric if the absolute difference is bigger than 1% [START_REF] Woehrle | 868 MHz: A Noiseless Environment, but no Free Lunch for Protocol Design[END_REF].

On the contrary, Srinivasan et al. [START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF] calls a link asymmetric if the absolute difference is above 40%. They claimed the good links (PRR>90%) are likely symmetric over time independently of the output power. The observation was also confirmed by Mottola et al. [START_REF] Mottola | Not all Wireless Sensor Networks are created Equal: A Comparative Study on Tunnels[END_REF].

It was shown that intermediate links present high asymmetry due to multi-path effects and hardware mis-calibration where as bad links are less asymmetric [START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF]4,[START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF][START_REF] Woehrle | 868 MHz: A Noiseless Environment, but no Free Lunch for Protocol Design[END_REF]. Thus, Srinivasan et al. [START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF] shown a non-persist temporal asymmetry for unstable links mainly presented in the transitional zone.

To sum up, RSSI varies much less that LQI for intermediate and bad links. Conversely, LQI seems to be stable for good links whereas, for intermediate and bad links is highly unstable. Thus, the high variation is an interesting approach that have been extensively studied. For instance, numerous authors have combined RSSI, LQI and PRR in their link estimation schemes to discriminate lossy and asymmetric links from the good ones.

Packet loss modeling

First efforts on capturing loss burstiness through the well-known 2-state Gilbert-Elliot model was applied to IP voice flows traces [START_REF] Jiang | Modeling of Packet Loss and Delay and their Effect on Real-Time Multimedia Service Quality[END_REF][START_REF] Sanneck | A Framework Model for Packet Loss Metrics Based on Loss Runlengths[END_REF] and to packet tains in computer network traffic [START_REF] Jain | Packet Trains: Measurements and a New Model for Computer Network Traffic[END_REF].

A pioneer study that models packet losses of wireless links was elaborated by Syed et al. [START_REF] Syed | Markov-based Modeling of Wireless Local Area Networks[END_REF]. They proposed the Markov-based stochastic chains that model the 802.11b links behavior of bit errors and packet losses. To show that higher order Markov chains (i.e. Markov chains of order 9) model more accurately the channel behavior, a comparison for full-state, hidden, and hierarchic Markov chains was performed. However, they claimed that such high order models are far too complex to be integrated into real-time systems.

Sanneck et al. [START_REF] Sanneck | A Framework Model for Packet Loss Metrics Based on Loss Runlengths[END_REF] claimed that to accurately model packet losses, more complex models are required. They have proven this affirmation through a comparison between a two-state and k th order Gilbert model. Moreover, they concluded that the order of the Gilbert model should be chosen conform with the application requirements.

Kamthe et al. [START_REF] Kamthe | Multilevel markov model for wireless link simulations[END_REF] proposed a multilevel approach to model short and long term link behavior, it uses Hidden Markov Models (HMMs) and Mixtures of Multivariate Bernoullis (MMBs). To build the multi-state model training vectors were used. The model has several limitations: having only one transition will lead to a lack of data, a slow dynamics of PRR makes the M&M model to converge to the value of PRR. Moreover, the model is inaccurate when a link encounters too long chains of consecutive successes or losses as data traces are divided into training vectors of predefined size. On the other hand, such M&M model is recommended for long time scale testbeds because the training process requires about 12 hours. Therefore, as link behavior changes with time a M&M model may not be properly trained.

To measure the burstiness of a link, Srinivasan et al. [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF] introduced the β factor. It assesses if packet losses are independent or equally distributed. To do so, the estimator uses the conditional probability delivery function (CPDF). A CPDF function determines the probability that a packet will be successfully received according to previous failures or successes. They found that packet losses are correlated, so that they claimed that second layer has to delay the acknowledgements sending with 500ms, to avoid the short term spans of the links.

Alizai et al. [2] proposed a short term link estimator (STLE) to detect the short term reliable links. STLE sets a threshold of 3 to identify the intermediate links. The threshold choice relies on the hypothesis that any link becomes unreliable after three consecutive packet receptions over the link. Sending data packets at an inter-packet time interval of 250ms, they argued that intermediate links present short term stability over periods above 750ms. Aguayo et al. [START_REF] Aguayo | Link-level Measurements from an 802.11b Mesh Network[END_REF] claimed a short term correlation period above 1s for 802.11b mesh networks. However, in our study, we observed that packet losses correlation differs with the link category.

Heinzer et al. [START_REF] Heinzer | Fast and Accurate Packet Delivery Estimation based on DSSS Chip Errors[END_REF] came up with a link estimator that predicts the packet reception from the relationship between chip (coded bits of information on direct sequence spread spectrum) errors in symbols (4 bits-32 chips) at IEEE 802.15.4 physical layer. The approach is interesting as it aims to estimate PRR over a single packet from the number of consecutive erroneous chips detected in the payload. Moreover, using β factor over chips, they did not attain any relevant estimation of the link quality, instead a geometric linear model performed well. However, by our knowledge, we suspect that a bit rate of 10kbps is not standard compliant, therefore, the estimator requires further investigation at a bit rate of 250kbps. Thus, we consider that one packet is insufficient for an accurate PRR estimation, because good links may miss a single packet at a certain instant of time, which leads to underestimation of the link quality.

Chapter 2. State of the art

Link assessment in WSN

Link assessment is required for a better comprehension of the environments we cope with. More specifically, a good perception on the link behavior helps to design robust link quality estimators (LQEs). In fact, a good LQE for routing has to guarantee low energy consumption, stable topology, a high throughput, a low end-to-end delay, reliable paths when retransmissions are present, and low churn (neighbor changes).

On the other hand, it should be reactive, able to predict short and long term link fluctuations, stable in time, to accurately discriminate link quality, should rely on simple computation (light memory footprint), or to have accurate predefined thresholds to discriminate unreliable neighbors (blacklist mechanism). Please note that a too low or a too high threshold for blacklisting mechanism may contribute to routing instabilities.

To overcome the energy waste, LQEs should properly foresee the quality of the link over few samples. Since a wrong decision leads to packet loss and neighbor changes, which are costly. More exactly, when routing relies on bad links, retransmissions at the MAC layer increase, which causes energy waste.

If the metric fails choosing an unreliable neighbor, interferences through concurrent transmissions are introduced. Interference that affects the quality of neighboring links.

Therefore, the main requirements related to the literature in designing a good link estimator are : ❼ reliability successful data delivery;

❼ accuracy: link quality should be properly predicted;

❼ energy consumption: low data overhead should be guaranteed;

❼ reactivity: the necessity to quickly adapt to network changes; ❼ stability: it has to avoid short term link fluctuations so that the routing does not have to reconsider alternative links, which is energy consuming;

❼ little computation ❼ memory efficient to required low memory.

In the light of fulfilling the main requirements of a good link quality estimator, much research have addressed numerous estimation techniques such as: ❼ average: Packet Reception Ratio (PRR), Required Number of Packets(RNP) [START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF],

The Link Quality Indication Based on Metric (LQIBM) [START_REF] Zhang | Study of Wireless Sensor Networks Routing Metric for High Reliable Transmission[END_REF], Expected Transmission Time (ETX) [START_REF] Douglas | A High-throughput Path Metric for Multi-hop Wireless Routing[END_REF],

❼ maximum: MAX-LQI [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF],

❼ filter: Kalman filer algorithm (KLE) [START_REF] Senel | A Kalman Filter Based Link Quality Estimation Scheme for Wireless Sensor Networks[END_REF], Window Mean with Exponential Weighted Moving Average (WMEWMA) [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF], LQI-based ETX (LETX) [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF], 4Bit [START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF],

❼ standard deviation: σ m metric [START_REF] Meier | Coping with Unreliable Channels: Efficient Link Estimation for Low-Power Wireless Sensor Networks[END_REF],

❼ probability: β factor [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF],

❼ weighted sum: Double Cost Field Hybrid Link (Duchy) [START_REF] Puccinelli | DUCHY: Double Cost Field Hybrid Link Estimation for Low-Power Wireless Sensor Networks[END_REF], Holistic Packet Statistics (HoPS) [START_REF] Renner | Prediction Accuracy of Link-quality Estimators[END_REF],

❼ classification: Link Quality Ranking (LQR) [START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF],

❼ regression: Weighted Regression Algorithm (WRA) [START_REF] Xu | Exploring Spatial Correlation for Link Quality Estimation in Wireless Sensor Networks[END_REF] ❼ fuzzy logic : A Fuzzy Link Quality (F-LQE) [5].

Basically, independently of the used technique, each quality link estimator relies on few stages such as: monitoring the link over a temporal window, recording the needed data, analyzing the data.

Active monitoring is based on broadcasts sent periodically over short periods to estimate the link quality [START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF]. Hence, the reception of packets is not confirmed by layer 2 acknowledgements, neither retransmissions are required. A primary concern is the trade-off between the periodicity of data probes. A too low rate will affect energy consumption as an important overhead will be introduced, and in dense networks it will lead to high congestion. On the other hand, a too large periodicity window renders impossible detection of links with short-term fluctuations.

Passive monitoring is the most common monitoring scheme [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF][START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF][START_REF] Meier | Coping with Unreliable Channels: Efficient Link Estimation for Low-Power Wireless Sensor Networks[END_REF][START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF]. It estimates the quality of links based on received information. It is energy efficient as no additional overhead is introduced. Still, for low traffic communication, the link estimation may be inaccurate due to the lack of information.

Hybrid monitoring includes a broadcast phase for active monitoring followed by a passive phase in which it considers the information from received packets such as layer two acknowledgements. In fact, using passive monitoring and a constrained active monitoring that employs only data traffic yielded a much better link quality estimation in terms of energy consumption [START_REF] Puccinelli | DUCHY: Double Cost Field Hybrid Link Estimation for Low-Power Wireless Sensor Networks[END_REF][START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF]. Once the monitoring mechanism is chosen, the node records the hardware parameters and the statistics about the send/receive data and acknowledgements.

Afterwards, a defined technique such as average, filter, standard deviation, classification, regression are applied to estimate the link quality. An open question 'How many readings are needed for a good link quality estimator?', remains unanswered. However, various studies claimed to attain a reliable estimation over large historical data above 50 packets [START_REF] Raman | Implications of Link Range and (In)stability on Sensor Network Architecture[END_REF][START_REF] Srinivasan | RSSI is Under Appreciated[END_REF][START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF].

Overall, LQEs evaluate the quality of links based on hardware metrics (RSSI, LQI, SNR) or software metrics evaluated on the basis of routing information (i.e. PRR, RNP). Hardware metrics are easy to monitor (no computation is required), even so they are highly hardware and environment dependent. Conversely, software metrics count, average, or approximate packet receptions/retransmissions, which increases the overhead.

The majority of LQEs uses an exponential moving average to smooth readings and reduce the link quality metric to a single value. Thus, a bad choice of parameter setting for the moving average algorithm may lead to bad decisions. Moreover, both hardwarebased and software-based LQEs offer a partial link estimation, because they assess a single link propriety.

Several LQEs that employ statistical methods as regression or classification [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF][START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF] were proposed. Fuzzy logic opened a new perspective in combining different link proprieties in designing better estimators [5]. For instance, it outperformed PRR, WMEWMA, ETX, RNP, and Four-bit, but still, a drawback arose in terms of computation complexity, memory footprint [5]. Again, there is no LQE that offers a holistic link quality characterization. Next, we proceed to offer a short overview into the main LQEs approaches. We classify the existent link quality metrics as link quality metrics (computed over link) and link quality routing metrics (computed over path).

Link quality metrics

Much research has considered the problem of characterizing the quality wireless links to derive metrics for finding the best routes in wireless sensor networks. Several empirical studies provided a better understanding of the complex behavior of low-power links. The transmission quality in terms of the PRR depends on the received signal strength, the level of interference, and the ability of the receiver to correctly decode transmitted information.

RSSI/LQI/PRR

Many studies revealed the importance of RSSI in the evaluation of link quality and analyzed the relation between RSSI and PRR.

One of the recent studies of Srinivasan et al. [START_REF] Srinivasan | RSSI is Under Appreciated[END_REF] showed that RSSI of CC2420 is a promising indicator when its value is above the sensitivity threshold. In particular, it allows to detect a threshold above which links present good PRR. Below the threshold, the PRR values largely vary and one RSSI value may correspond to several values of the PRR. Nevertheless, RSSI has a low variance compared to LQI, indicating that an RSSI value for one packet is a good estimator of an average RSSI value for consecutive packets. The authors also observed that LQI (Link Quality Indicator) presents a better correlation with PRR than RSSI, however, it needs to be averaged over many packets (about 120). Rondinone et al. analyzed the link quality in sensor networks and proposed to use as a link quality indicator the product of the PRR and the normalized average RSSI [START_REF] Rondinone | Designing a Reliable and Stable Link Quality Metric for Wireless Sensor Networks[END_REF].

Similar analysis by Rondinone et al. led to the conclusion that neither RSSI nor LQI do not sufficiently discriminate the level of PRR for a successful link quality indicator [START_REF] Rondinone | Designing a Reliable and Stable Link Quality Metric for Wireless Sensor Networks[END_REF]. They proposed to use as a link quality indicator the product of the PRR and the normalized average RSSI, which presents the advantage of distinguishing links with the same PRR, but with a different average RSSI. The drawback of this approach is that it requires the knowledge of PRR that we actually want to estimate in this thesis based on the RSSI and LQI indicators.

PRR accounts for the ratio between total send packet and the successfully received packets. It is not hardware dependent as RSSI and LQI. Cerpa et al. 2005 [START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF] claimed that PRR overestimates the link quality of intermediate links due to the distribution of losses. Its instability was also shown by Baccour et al. [START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF]. However, its granularity depends on the number of packets received over a temporal window.

In another paper, the authors modeled packet loss with a binomial distribution and concluded that good links are symmetric [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF]. Meier et al. 2008 [53] analyzed measurements of an indoor sensor network with CC2420 exhibiting high link quality variability and considered metrics derived from modeling the loss process as a Bernoulli process, (i.e. ETX that depends on PRR, wide used by RPL [START_REF] Thubert | RPL: IPv6 Routing Protocol for Low power and Lossy Networks[END_REF] and LOAD uses the number of weak links in a path as a metric [START_REF] Clausen | The Lightweight On-demand Ad hoc Distance-vector Routing Protocol -Next Generation (LOADng)[END_REF]).

Window Mean with EWMA (WMEWMA)-2003

Window Mean with EWMA (WMEWMA) estimator [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF] is a simple and memory efficient estimator widely used in WSN. It uses an exponential weighted moving average (EWMA) filter to estimate the link quality based on the current recorded PRR and the historical PRR.

WMEWMA is responsible to filter the transient fluctuation of the PRR. It is computed at the receiver side through passive monitoring, so that additional overhead is not introduced. The algorithm calculates the average of the data reception rate following:

W M EW M A(α, w) = α * W M EW M A + (1 -α) * P RR (2.11)
where α [0..1] decides on the historical data importance, w defines the time window. The current PRR is more important than the historical PRR when α < 0.5.

In a comparison study, WMEWMA outperformed the Time Weighted Moving Average (TWMA) , Moving Average, EWMA, Flip-Flop Packet Loss, and Success Interval with EWMA filters, being more reactive and more stable [START_REF] Woo | Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks[END_REF].

Required number of packets retransmissions (RNP)-2005

RNP [START_REF] Cerpa | Temporal Properties of Low Power Wireless Links: Modeling and Implications on Multi-hop Routing[END_REF] estimates short-time link fluctuation using passive monitoring. More specifically, it periodically broadcasts control packets for a short time, then it averages the number of sent packets (transmitted/re-transmitted) before a successful reception as follows:

RN P (w) =
T otal transmitted/re -transmitted packets T otal acknowledged packets -1 (2.12)

In the context of neighbors with the same packet reception rates, RNP favors links with less retransmissions which offers an advantage over PRR metric. As drawbacks we can mention instability and the energy waste due to additional messaging overhead. Moreover, Baccur et al. reported RNP as unreliable for link estimation because of the asymmetry presence [3].

Kalman filter (KLE)-2007

Kalman filter [START_REF] Senel | A Kalman Filter Based Link Quality Estimation Scheme for Wireless Sensor Networks[END_REF] estimates the link quality using passive monitoring. It predicts PRR using the signal-to-noise ratio (SNR) of the link and a pre-calibrated SNR-PSR curve. The SNR curve is decided offline by plotting the collected average SNR against PRR. Each receiver has to record the SNR using the Kalman Filter algorithm in order to minimize the error estimation. It claimed a fastest adaptation to the channel changes compared to RNP, PRR, or ETX.

The norm(RSSI)-2008

A normalized LQE metric is proposed by combining PRR and RSSI [START_REF] Rondinone | Designing a Reliable and Stable Link Quality Metric for Wireless Sensor Networks[END_REF]. The metric is defined as follows:

LQIndicator = P RR * norm(meanRSSI) (2.13) norm(meanRSSI) = meanRSSI 60 + 100 60 (2.14)
They reported that the metric provides stable and accurate links estimation on the Moteiv's TelosB nodes equipped with the CC2420 radio transceiver. They concluded that sliding windows of 10 packets are appropriate to estimate the link quality. Moreover, PRR and RSSI are logged in neighbor discovery phase.

The beta factor-2008

β factor [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF] measures the link burstiness using conditional probability delivery functions (CPDFs). CPDF was derived from packet delivery traces and determines the probability that a packet will be received after certain consecutive successes or failures. Therefore, a CPDF will call a link ideal bursty if it has a strong packet successes or failures correlation. This means that an ideal bursty link has long bursts of consecutive failures or successes. On the other hand, it calls a link independent, when no correlation of packet successes or failures was detected.

Yet, a β factor close to zero denotes a low correlation of packet successes or failures. It is computed as follows:

β = KW (I) -KW (E) KW (I) (2.15)
where KW() is the Kantorovich-Wasserstein distance (i.e. the KW distance between two vectors denotes the absolute difference of their corresponding elements), KW(E) represents the CPDF of the empirical data recorded over a link, whereas KW(I) is the CPDF of the ideal bursty link. In other words, KW will indicate how close the CPDF of an empirical is from the CPDF of the ideal bursty link. β metric was tested on the Mirage testbed and it is integrated in the CTP routing protocol for which it improves its efficiency up to 15% when it copes with bursts [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF].

(σ m metric)-2008

σ m metric [START_REF] Meier | Coping with Unreliable Channels: Efficient Link Estimation for Low-Power Wireless Sensor Networks[END_REF] detects the degree of the link stability by comparing the standard deviation of the link with the deviation of a (stochastic) Bernoulli Process (σ rand m ). It relies on active monitoring as nodes need to broadcast packets.

They claimed that good links have a reception sequence similar to a Bernoulli process. To prove their observation, they considered the sequence: 1 for a good packet reception and 0 for a lost packet. They found that a perfectly stable link is a Bernoulli process with independent random variables, where each has the probability P r . Furthermore, to map the temporal PRR given an observation window of m packets to a stochastic Bernoulli process, they found a stochastic standard deviation:

σ rand m (P r ) = ( 1 m P r (1 -P r )) (2.16)
where m is the number of aggregated packets (window size), and P r the probability of each independent packet. On the other hand, the standard deviation of the temporal PRR given an observation window of m packets (P RR w ) is:

σ P RRw m = (std(P RR w )).
(2.17)

Last, a link stability factor γ m gives the degree of link stability and is computed as follows:

γ m = σ P RRw m σ rand m (P r ) . (2.18)
They concluded that the estimator distinguishes among stable and unstable links whereas using limited resources.

2.5.1.8 F-LQE: A Fuzzy Link Quality-2010 F-LQE [5] considers four link properties such as packet delivery (PRR), stability of the link (SF), coefficient-of-variation over last 30 packets, asymmetry (ASL-PRR), absolute PRR difference within the uplink and the downlink link between two nodes, and the channel quality (SNR).

More specifically, F-LQE defines a good link as having good packet delivery ratio, low asymmetry, high stability, and high channel quality (high SNR). In addition, the EWMA filter is used to provide the smoothness of the F-LQE values:

F -LQE(α, w) = α * F LQE + (1 -α) * LQ(w) (2.19)
where, α = 0.9, w-estimation window, LQ(w) = 100 * µ(i), µ(i) is defined as:

µ(i) = β * min(P RR (i) , ASL (i) , SF (i) , SN R (i) ) + (1 -β) * mean(P RR (i) , ASL (i) , SF (i) , SN R (i) ) (2.20) 
where 0 < β < 1 gives the smoothness of the fuzzy value, P RR (i) is the average PRR of a link i, ASL (i) measures the asymmetry of link i, SF (i) is the deviation of PRR over last 30 packets for link i, SN R (i) is the average SNR of the link i.

P RR (i) , ASL (i) , SF (i) , SN R (i) are normalized [0..1].
Hence, high values of F -LQE denote good link quality.

F-LQE outperformed PRR, WMEWMA, ETX, RNP, and 4B regarding the stability, reliability, and asymmetry. However, F-LQE considers four link properties which lead to complex computation and large memory footprint. Additionally, an observation window of 30 may be too large because estimators should target estimation of link quality over few packets.

Triangle Metric-2010

The Triangle metric [START_REF] Carlo | The Triangle Metric: Fast Link Quality Estimation for Mobile Wireless Sensor Networks[END_REF] combines PRR, LQI, and SNR to guarantee fast and reliable link quality estimation. It relies on active monitoring as each node broadcasts periodically 10 packets per second. It considers an observation window (w) of size m over which it counts the number of received packets, then, calculates mean LQI, and mean SNR:

LQI w = n k=1 lqi i n (2.21) SN R w = n k=1 snr i n (2.22)
where n is the number of successfully received packets (0<n ≤ m), lqi i and snr i denote the lqi and the snr of the received packet i.

Next, Triangle metric computes the distance between the node location characterized by a point(SN R, LQI) and the origin (0,0).

distance = SN R 2 w + LQI 2 w (2.23)
Hence, based on the computed distance, the link quality between sender and receiver is estimated. A large distance indicates a better link quality. However, an empirical threshold is used to discriminate between link categories. Thus, broadcasting 10 packets each second introduces overhead which enhance the energy depletion.

Holistic Packet Statistics (HoPS)-2011

HoPS [START_REF] Renner | Prediction Accuracy of Link-quality Estimators[END_REF] is measured at the receiver side and uses four link-quality descriptors (LQI, SNR, PRR, ETX), that are periodically updated. A first-order EWMA filter captures the short-term fluctuations of packet successful ratio (h ST τ ). It aims to retrieve the deviation of PRR in the recent past:

h ST τ = α * h ST τ -1 + (1 -α) * q τ (2.24)
where 0 < α < 1 gives the smoothness of the short term fluctuation, q τ is a binary value that denotes whether an expected packet at time τ was received.

A second-order EWMA filter measures long-term fluctuations (h LT τ ):

h LT τ = β * h LT τ -1 + (1 -β) * h ST τ (2.25)
where 0 < β < 1 gives the smoothness of the long term fluctuation, To track short and long term fluctuations, a third filter EWMA filter is applied:

δ + τ = γ * δ + τ -1 + (1 -γ) * φ(h ST τ , h LT τ ) (2.26) δ - τ = γ * δ + τ -1 + (1 -γ) * φ(h LT τ , h ST τ ) (2.27)
where

τ is time, 0 < γ < 1, h ST τ -short term fluctuation. h LT τ
-long term fluctuation, and

φ(x, y) = x -y, x > y 0 else
Next, the absolute deviation estimation gives link stability as follows:

h σ τ = δ + τ + δ - τ .
(2.28)

An expected deviation estimation so called trend estimation is computed as follows:

h θ τ = δ + τ -δ - τ . (2.29)
Finally, HoPS is estimated due to the absolute and the expected deviation estimation:

HoP S τ = h LT τ + |h θ τ | h σ τ (h ST τ -h LT τ ). (2.30)
HoPS argued to outperform RPN, F-LQE, LEEP, ALE in terms of stability and efficiency. Moreover, they claimed a lower memory footprint than F-LQE. Hops is an interesting approach as it uses three EWMA filters to track short and long temporal fluctuations. However, the complexity of computation and the need to store the output of three EWMA filters renders it heavy for usage.

Link Quality Ranking (LQR)-2011

LQR [START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF] metric is designed to identify best links when only unreliable links are present. It is a sender initiated metric: a sender periodically sends a predefined number of probes. Next, as soon as a receiver is reached by a probe, it triggers a timer and sends back to sender its physical metric indicators. Once a sender receives back the hardware information from its neighbors, it proceeds by selecting the best quality link to forward data.

The best link is chosen as a result of the comparison of the triplet (PRR, SNR, LQI) for each single link. For example, assuming that x i , y i , and z i indicate the prr, snr, and lqi of link i, then, the comparison of these metrics for two independent links, i and j is given by as follows:

e =< sgn(x i -x j ), sgn(y i -y j ), sgn(z i -z j ) > (2.31)
where e represents the comparison of the PRR, SNR, LQI metrics for link i, and sgn(x) is the sign function (sgn(x) = {1, 0, -1} depending if x = {> 0, 0, < 0}). LQR is meant for sparse deployments where data are required to be fast transfered to neighbors. Even if it argued to identify best available links, the application to multihop scenarios is limited by the large number of packets that have to be broadcast, i.e. 100.

Link quality routing metrics

ETX -Expected Transmission Count-2003

Expected Transmission Count (ETX) [START_REF] Douglas | A High-throughput Path Metric for Multi-hop Wireless Routing[END_REF] is one of the well-known routing metrics used in WSN. ETX is due to find high throughput path on multihop networks. It offers an estimation of the link quality, channel noise, and asymmetry.

ETX is defined as the estimated average of the number of data and acknowledgements (ACK) frame transmissions necessary to successfully transmit a packet. ETX is an additive metric. The computation of ETX requires that nodes periodically broadcast small probes to compute forward (data frame (d f )) and reverse (acknowledgement frame (d r )) probability. Furthermore, ETX is computed as the product of data frame delivery probability and acknowledgement frame delivery probability:

ET X = 1 (d f * d r )
.

(2.32)

It assumes that the reception of data frames is same as the acknowledgement ones, independently on the packet size.

Equally important is the calculation of the path ETX as a sum of the ETX for each individual link of the path:

ET X(path) = link∈path ET X link (2.33)
To prove the performances of ETX, it was integrated to two routing schemes such as Destination-Sequenced Distance-Vector Routing (DSDV) and Dynamic Source Routing (DSR). The metric outperformed the hop count metric as it has knowledge about delivery ratio over the path and the total number of retransmissions.

Today, ETX metric filtered by WMEWMA is highly used in routing (i.e. CTP, RPL).

LQI-based ETX (LETX)-2006

LETX [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF] metric is a LQI based metric, it relies on a PRR estimation based on LQI. LETX estimates the link cost as the overall transmission tries to achieve successful delivery during neighbor discovery:

LET X(link) = 1 Φ(link) (2.34)
where Φ(link) is a function that estimates PRR from the LQI values of the link. The function is a polynomial order one function that estimates PRR from average LQI.

Being the inverse of the estimated PRR, LETX aims same as ETX, a minimum number of retransmissions over a link. A path is the route along which packets travel from source to destination. The path cost is computed as the sum of the link costs of the path. Moreover, LETX is an additive metric that does not introduce overhead as it is computed online during the route discovery process.

PATH-DR-2006

PATH-DR [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF] was designed to predict the link quality from the LQI value of a single packet reception. It relies on the neighbor discovery during which it reads the LQI values. The goal is to choose the path with the best packer delivery ratio (PDR):

p * = arg max p∈P link∈Lp EST LDR(link) (2.35)
where arg comes from the set of points the function attains the maximum value, ES-TLDR(link) is the estimated hop by hop packet delivery ratio of the LQI values of the messages received during the discovery of neighboring motes. To estimate the PRR, they mapped the average LQI with a linear model.

MAX-LQI-2006

Each receiver selects the path with the highest minimum LQI value, to avoid weak links.

p * = arg max min p∈P,link∈Lp LQI(link) (2.36) where p is the path, P is the set of available paths, L p is the set of path links. The MAX-LQI metric [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF] is computed at the receiver side.

Four-Bit (4Bit)-2007

4Bit [START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF] metric aggregates the information provided by physical, link, and network layers. Is composed of four information bits. The first bit, so called 'white bit' denotes that the quality of the medium is high. The second bit (ack bit) is given by the link layer, and as soon a packet is acknowledged, the bit is set. The third bit (pin bit) is set by the network layer. If on, it designates that the link is part of the routing table entries. Last, the fourth bit (compared bit) tells if a link entry is better that the other one existing in the routing table.

Thus, it is initiated by the sender and makes use of the active and passive monitoring to compute the ETX needed to set the ack bit.

The ETX is computed after previously broadcast packets are sent for a short time, so that ETX from a receiver to sender:

ET X receiver sender(w, α) = 1 W M EW M A(w, α) -1 (2.37)
where, 0 < α < 1, w is the observation window. Furthermore, the sender estimates the ETX as following:

ET X sender receiver(w, α) = α * ET X sender receiver + (1 -α) * RN P (2.38)
Once the ETX is computed from receiver to sender and from sender to receiver, the four-fit expression becomes:

4B(w, α) = α * 4B + (1 -α) * ET X sender receiver(ET X receiver sender) (2.39)
4B provides a third layer neighbor's choice based on information coming from the first layer (LQI) and the second layer (ETX). Finally, it was concluded that 4B outperforms the LQI metric alone. Specifically, it obtained a better link delivery radio than ETX and RNP metrics.

DUCHY: Double Cost Field Hybrid Link-2008

The Duchy metric [START_REF] Puccinelli | DUCHY: Double Cost Field Hybrid Link Estimation for Low-Power Wireless Sensor Networks[END_REF] is a routing metric that aims to choose shortest hops and good link quality. To do so, it uses RSSI information to discriminate good links, uses LQI information to discriminate bad links, and a feedback scheme that relies on linklevel ACKs. It embeds two estimators, one for channel instability (Channel State Information-CSI) and second for the path expected transmission count (ETX).

For instance, CSI relies on active monitoring thorough beacons. CSI considers both RSSI and LQI information measured from each received beacon, information that is normalized and then smoothed using a WMEWMA filter. The second used scheme is RNP that counts the number of layer-2 ACKs.

Duchy constructs an outer cost filed for depth control (RNP) and an inner field for parent selection (CSI). The two cost field information is embedded into each disseminated beacon. The outer field will keep track of the ETX cost, whereas the inner field contains the LQI and RSSI cost.

DUCHY was integrated with Arbutus routing protocol, and claimed to achieve shortest paths with good link qualities compared to the MultiHopLQI metric.

Link quality indication based on metric (LQIBM)-2012

LQIBM metric [START_REF] Zhang | Study of Wireless Sensor Networks Routing Metric for High Reliable Transmission[END_REF] combines mean and deviation LQI to accurately discriminate poor links.

Initially, probes have to be broadcast to estimate the mean and the variance coefficient of LQI. The metric tracks the mean and the deviation of LQI along the entire routing path as follows:

P = α * P cm -(1 -α) * σ µ (2.40)
where 0 < α < 1 gives the smoothness of the historical data, P denotes the selection probability of routing, µ indicates the mean LQI, σ indicates the standard deviation of LQI , and P cm is a quantitative value that indicates the proximity degree of LQI mean with LQI maximum. P cm is given by:

P cm = e -( 100-µ 110-50 ) 2 (2.41)
The metric is supposed to overcome the bottleneck links, congestion and retransmissions. Nevertheless, the LQI variance is unpredictable for intermediate links, so that it may occur that links with low mean LQI have low deviation, moreover, the asymmetry of links is not considered. Also, is not specified the type of the found fitting function or the observation window the mean and deviation LQI are computed.

Discussion

LQEs were designed as a result of extensive analyses carried on various platforms. Thus, the most common are Mirage [START_REF] Chun | Mirage: a Microeconomic Resource Allocation System for Sensornet Testbeds[END_REF] ( Mica2 and Mica2Dot ), MoteLab [START_REF] Werner-Allen | MoteLab: a Wireless Sensor Network Testbed[END_REF] (Mica2 or Telos), TWIST testbed [START_REF] Handziski | TWIST: a Scalable and Reconfigurable Testbed for Wireless Indoor Experiments with Sensor Networks[END_REF][START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF] (Tmote Sky), SCALE [START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF] (Mica 1&2). Except the existing testbeds, other studies were performed on local deployments such as offices, halls, buildings, parks. For example, the Berkeley mote platform was used to assess the EWMA filter performance [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF]. Recently, frameworks such as SWAT [START_REF] Srinivasan | Demo Abstract: SWAT: Know your Network[END_REF] or RadiaLE (TelosB motes) [START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF] were designed to ease the link estimator evaluation.

Empirical studies performed on the above platforms addressed mostly linear topologies [START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Reijers | Link Layer Measurements in Sensor Networks[END_REF][START_REF] Willig | Results of Bit Error Measurements with Sensor Nodes and Casuistic Consequences for Design of Energy-efficient Error Control Schemes[END_REF] (868 MHz), grid [START_REF] Woo | Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks[END_REF] (868 MHz), [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF] (2.4GHz), or random [START_REF] Srinivasan | Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks[END_REF] (2.4GHz). In fact, empirical studies assessed the impact of link estimators by integrating routing protocols such as CTP [START_REF] Lal | Measurement and Characterization of Link Quality Metrics in Energy Constrained Wireless Sensor Networks[END_REF][START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Becker | Experimental Study: Link Quality and Deployment Issues in Wireless Sensor Networks[END_REF][START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF] for MultiHopLQI, 4Bit, β factor [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF], DSDV and DSR for ETX [START_REF] Douglas | A High-throughput Path Metric for Multi-hop Wireless Routing[END_REF], Not-so-Tiny Ad-hoc On-demand Distance Vector (NST-AODV) for LETX [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF], AODV for LQIBM [START_REF] Zhang | Study of Wireless Sensor Networks Routing Metric for High Reliable Transmission[END_REF], Arbutus [START_REF] Puccinelli | Arbutus: Network-Layer Load Balancing for Wireless Sensor Networks[END_REF] for Duchy [START_REF] Puccinelli | DUCHY: Double Cost Field Hybrid Link Estimation for Low-Power Wireless Sensor Networks[END_REF].

Moreover, ETX link estimator is one of the pioneer link estimators. Once it was proposed, it outperformed the classic hop count metric [START_REF] Douglas | A High-throughput Path Metric for Multi-hop Wireless Routing[END_REF].

Each of the link assessment approaches we have discussed were confronted with existing approaches. We highlight the main observations of each performed comparison.

❼ RNP [START_REF] Woo | Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks[END_REF] gives a higher PRR as it keeps track of retransmissions [START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF] while PRR overestimates the link quality for intermediate links.

❼ LETX [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF] outperformed hop count and PATH-DR in terms of packet delivery ratio.

❼ PATH-DR and MAX-LQI [START_REF] Bor Rong Chen | Ad-hoc Multicast Routing on Resource-limited Sensor Nodes[END_REF] outperformed hop count in robustness and overhead.

❼ F-LQE [5] metric is more stable compared with ETX, RNP, 4Bit, PRR. It as able to discriminate very good links (P RR > 99%) and good links (90 < P RR < 99%).

-F-LQE considers three link proprieties such as PRR, stability (avoiding the short term fluctuation) and asymmetry.

-ETX, RNP, 4B do not consider link stability property.

-PRR and SPRR are less sensitive to short term fluctuation, therefore, both are more stable than RNP and 4B.

-ETX is unstable for bad links, it tends to infinity whereas PRR reaches 0.

❼ Duchy [START_REF] Puccinelli | DUCHY: Double Cost Field Hybrid Link Estimation for Low-Power Wireless Sensor Networks[END_REF] outperformed MultiHopLQI metric by achieving shortest paths with good links quality.

❼ HoPS [START_REF] Renner | Prediction Accuracy of Link-quality Estimators[END_REF] metric offered better stability and efficiency than RPN, F-LQE, LEEP, ALE metrics, because it considers short and long term fluctuations.

❼ 4Bit [START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF] attains better PRR than ETX, RNP, LQI metrics.

Several metrics were designed to achieve a specific target, for example βf actor (bursty traffic), LQR (choice of links among unreliable links at a certain instant). Table 2.4 presents the described LQEs.

Several studies use real testbeds to provide evaluation of the proposed link quality estimators in order to find out the best one. We present the conclusions of the most recent studies.

❼ WMEWMA outperforms filter-based LQEs [START_REF] Woo | Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks[END_REF] ❼ Baccour et al. [3] claimed that ETX outperforms PRR, RNP, 4B, WMEWMA estimators with respect to energy efficiency, the number of retransmissions and the path length. They observed that estimators perform better when they consider the link layer retransmissions.

❼ Using the RadiaLE framework [START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF], the authors studied the performance of the following estimators: PRR, ETX, RNP, WMEWMA, and 4Bit. They found that four-bit and RNP underestimate the link quality whereas PRR, WMEWMA, and ETX overestimate the link quality [5]. The underestimation is due to the maximum number of retransmissions, for instance, RNP has to perform a maximum of 4 retransmissions before to drop a packet. A link is classified as bad link since the retransmission threshold of 4 is reached. For example, RadiaLE recorded that when RNP is used 90% of links performed packet transmissions after and average of 4 retransmissions. 4B underestimates less the link quality. Moreover, the underestimation is cause by the fact that the estimators do not know if the packet was transmitted or not after 4 retransmissions as layer 2 ACKs are not used. On the contrary, when retransmissions are avoided and decisions are taken from the successfully received packets, links may be overestimated since a received packet denotes a good link, even if the packet was received after numerous retransmissions. Furthermore, the authors claimed that WMEWMA and PRR are more stable than RNP and 4B, because of EWMA filter that soothes the short-term fluctuations.

We can see in Table 2.4 that among single and composite metrics, the composite metrics such as F-LQE, HoPs, LQIBM achieved a good reactivity, they are less sensitive to short term fluctuation of the links, considered the bi-directionality of links, and are reliable. However, HoPs remains the most interesting approach as it uses three EWMA filters to track short and long temporal fluctuations. Moreover, a drawback of HoPs is its heaviness for usage due to the complexity of the computation and the need to store the output of three EWMA filters. 

Routing in IPv6-based 6LoWPANs

We focus our attention on the most common approach that enabled the Internet of Things. We highlight how to push IPv6 in sensor networks. We review on aspects of the distance-vector based routing protocols such as CTP, LOAD [START_REF] Clausen | The Lightweight On-demand Ad hoc Distance-vector Routing Protocol -Next Generation (LOADng)[END_REF], and RPL [START_REF] Thubert | RPL: IPv6 Routing Protocol for Low power and Lossy Networks[END_REF].

Introduction

Ten years ago, putting a TCP/IP stack in a sensor was hardly possible. Nowadays, several operating systems including optimized IP stacks run on different resource and energy-constrained platforms already tested in real deployments. The standardization efforts are still on their way, but major problems were overcome progressively during the past decade.

Simultaneously, existing IP routing protocols raises several issues in the context of wireless multi-hop low power and lossy networks (LLN). Several routing protocols were proposed: CTP, LOAD, RPL.

Routing is an important feature of the WSN communication that presents various challenges with respect to other wireless networks like mobile ad hoc networks (MANET) or cellular networks. In this context, routing protocols have to ensure the next hop packet forward as well as the path calculation. Most of WSN application scenarios are multi-hop as WSN networks are deployed over large spaces and short radio range coverage. Packets should visit several intermediate nodes to reach a sink destination.

The destination plays the role of a collector that gathers data for further analysis and evaluation. The collector may disseminate information back to nodes so, it also needs to communicate with rest of the nodes.

The Collection Tree Protocol (CTP)

Back in 2005, one of pioneering routing protocols for LLN was the Collection Tree Protocol (CTP) [START_REF] Fonseca | The Collection Tree Protocol (CTP)[END_REF]. CTP is a hierarchical distance vector protocol based on multi-hop communication. It was designed to collect information from sensor nodes and delivered it to a central station (root). CTP constructs anycast route paths from each node to the collection point (root) defined in the network (cf. CTP aims at reactivity (quickly react to changes), efficiency (low energy consumption), and reliability (successful data delivery). It accounts for three mechanisms: link quality estimation, data-path validation, and adaptive beaconing. First, to cope with the lossy links while providing reactivity, it uses the 4Bit [START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF] link quality estimator (cf. Section 2.5.2.5).

Second, data path validation is meant to detect network inconsistencies such as short and long term link breaks, loops, leading to energy waste. Short data packets that embed link layer information (root distance) are generated (active monitoring). When a node needs to forward a packet coming from a lower or equal root distance, it may initiate a local repair by correcting the topology and then forward the packet.

The last mechanism, active beaconing relies on the trickle mechanism [START_REF] Levis | The Trickle Algorithm[END_REF]. Routing control packets generation change dynamically from small time intervals around few milliseconds to large time intervals around dozen of minutes. A small interval gives better reactivity at the price of additional overhead and energy. On the other hand, a larger interval decreases energy waste and the overhead but may be slower to network changes.

CTP was used for clinical monitoring [START_REF] Chipara | Reliable Clinical Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit[END_REF][START_REF] Ko | Empirical Study of a Medical Sensor Application in an Urban Emergency Department[END_REF], environmental monitoring (i.e. tropical forest), Greenorbs with more than 1000 motes [START_REF] Greenorbs | GreenOrbs: A Long-Term Kilo-Scale Wireless Sensor Network[END_REF], or protocol validation as β factor [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF]. Various implementations are available on nesC for TinyOS [START_REF] Levis | TinyOS: An Operating System for Sensor Networks[END_REF], Java for Sun SPOTs motes, C for ContikiOS [START_REF] Dunkels | The Contiki Operating System[END_REF], or C++ for Castilia simulator [START_REF] Pediaditakis | Performance and Scalability Evaluation of the Castalia Wireless Sensor Network Simulator[END_REF].

2.6.3 6LoWPAN Ad-Hoc On-demand Distance Vector (LOAD) LOAD [START_REF] Clausen | The Lightweight On-demand Ad hoc Distance-vector Routing Protocol -Next Generation (LOADng)[END_REF] protocol was proposed as an adaptation of AODV [START_REF] Perkins | Ad hoc On-Demand Distance Vector (AODV) Routing[END_REF] to sensor networks. Its features are to establish and maintain multihop routing paths. It operates on top of the adaptation layer. LOAD uses several mechanisms: route discovery using broadcast, local structure maintenance (routing and route-request tables), local and global repair, and loop avoidance. It relies on point to point (P2P) traffic pattern.

LOAD routes are constructed on demand, so that when a packet has to be sent to a destination, the node checks for the destination in its routing table. In case the entry misses, it initiates route discovery by broadcasting a Route Request (RREQ) message. Each intermediate forwarder of the RREQ will add the originator address in the routing table. In this way, a reverse route from the destination to the source of the RREQ message is created. Once RREQ reaches the destination, to confirm the reception, a route-reply (RREP) message is sent to the originator using the reverseroute already created. Since the reverse route is installed, the bi-directional route is ready for use.

To keep track of connectivity, LOAD uses data link layer information. When a router detects a link breakdown, it may initiate a local repair (using route discovery mechanism in LOAD ) by broadcasting a Route Request (RREQ). The bi-directional route is re-installed with the reception of the unicast reply-request (RREP), however, any packet reception for the destination the link is down, will be buffered for a further forward to the destination.

Whenever a node fails to repair a break link, it sends back to originator a unicast route-error (RERR) message that needs to drop buffered packets. Moreover, during local repair only the originator of a RRQE message is notified about the reachability of a destination, , whereas AODV will notify all the neighbors that have the respective destination as the next hop.

Unlike AODV, LOAD does not allow intermediate routers to reply to a routerequest. Forbidding the intermediate nodes to respond respond with a RREP to a RREQ, LOAD assures loop freedom.

The route cost in LOAD is computed as the accumulated link cost and the hop count from the source to destination. To measure the link cost, it utilizes the Link Quality Indicator (LQI) hardware (cf. Section 2.5.1). LOAD will prefer in its routing decisions a route that contains a smaller number of weak links (links with LQI below a certain threshold value) and less hops from source to destination.

Routing in LLNs (RPL)

RPL [START_REF] Thubert | RPL: IPv6 Routing Protocol for Low power and Lossy Networks[END_REF] is a distance vector protocol for LLNs. It was designed by the Internet Engineering Task Force(IETF) working group, ROLL [START_REF] Thubert | RPL: IPv6 Routing Protocol for Low power and Lossy Networks[END_REF]. In March 2012, it became a standard (RFC 6550).

The principle of RPL relies on a Destination Oriented Directed Acyclic Graph (DODAG) generated based on few RPL signaling messages: DODAG Information Object (DIO), Destination Advertisement Object (DAO), and DODAG Information Solicitation (DIS).

Routing starts with the root (sink) that periodically generates DIO link-local multicast messages using the trickle algorithm [START_REF] Levis | The Trickle Algorithm[END_REF].

The DODAG topology allows a node to have more than one parent at a time, Figure 2.6 shows the DODAG topology. Nodes in RPL can play the role of a edge router, router, or a leaf.

❼ An edge router (LBR) is in charge of the DODAG generation. It is a powered node with high storage capacity, able to store information from inside the DODAG. In addition, it ensures the communication with other DODAGs or the Internet.

❼ A router is responsible of forwarding messages to the next hop towards the destination and to disseminate DIO or DAO messages when needed.

❼ A leaf is an end-device that can only send data traffic. ❼ DODAGID is the identifier of the DODAG, typically it is an IPv6 address given by the DODOAG root. Note that the root can initiate disjoint DODAGs with different objective functions.

❼ DODAG VersionNumber is a counter that gets incremented by the root each time the topology triggers changes. It is a way to track network updates.

The Objective Function plays different roles in RPL: estimates the rank value from a chosen routing metric (hop count, ETX, energy, etc.), decide optimal routing paths, and define constraints on path selection. Recently, two OFs were defined, hop count (OF0 [START_REF] Jp | Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks[END_REF]) and ETX (OF1 [START_REF] Gnawali | The ETX Objective Function for RPL[END_REF]). A node favors a path with a minimal number of hops towards the root (OF0), or a minimal ETX value (OF1). However, manifold metrics associate with nodes or links can be applied [START_REF] Jp | Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks[END_REF]. Node metrics may represent node characteristics such as:

❼ Node state indicating if the node can or not aggregate traffic flows.

❼ Node energy points out the available energy on the node. When the metric is used, a node should prefer the path (towards the root) that alleviates the energy cost.

❼ Hop count announces the number of visited nodes to reach the root.

On the other hand, link metrics represent the link quality towards neighbors. Each application scenario may require information such as:

❼ Latency -the time delay required for a specific data communication.

❼ Throughput -data rate per unit time may be used to discriminate nodes with low data rates.

❼ Reliability -reflects the link quality estimation. The proper algorithm for link estimation remains an open issue. Besides, we have discussed in Section 2.5.1 existing propositions. One link estimator is ETX (OF1), that estimates the number of retransmissions over a link (see Section 2.5.2.1).

❼ Color of the links denotes patterns of bit values predefined by the user. For example, encrypted links can be discriminated trough a flag value.

RPL supports three types of traffic patterns shown in Figure 2.7:

❼ Multi Point to Point (MP2P) or converge-cast for data collection: from nodes to LBR (upward routing).

❼ Point to Multi point (P2MP) for data dissemination: from LBR to a node or a group of nodes (downward routing). P2MP it is extensive use in building and industrial automation [START_REF] Thubert | RPL: IPv6 Routing Protocol for Low power and Lossy Networks[END_REF]. 

Topology generation process

Upward routes facilitate the MP2P communication. The root disseminates DIO messages on the link local multi-cast address to initiate the DODAG construction (upward routes). The LBR (sink) has the rank set to 1. At each received DIO, a node decides to join or not the DODAG topology according to the predefined Objective Function. Once it joins the DODAG, it creates an entry in the candidate neighbor list. Then, it computes its own rank as a sum between the rank in the DIO message and the link metric value (e.g. ETX [START_REF] Douglas | A High-throughput Path Metric for Multi-hop Wireless Routing[END_REF]). A neighbor that proposes a lower rank towards the root is selected in the node's parent set as preferred parent. A default route is installed and inward traffic is forwarded to the preferred parent. The preferred parent should be updated whenever a lower rank is proposed or a new entry is recorded. Once a node has decided the upward default route, it should send DIO messages to announce its rank value. A node can ask for a DIO message through the generation of a DIS message.

To restrict extensive preferred parent changes due to instable links, low-pass filter, thresholds, or hysteresis algorithms are recommended.

To ensure upward routes maintenance, nodes periodically transmit DIOs at a frequency given by the trickle algorithm [START_REF] Levis | The Trickle Algorithm[END_REF]. The mechanism is simple and is intended to detect network instabilities. Each node keeps track of a DIO transmission interval limited by a a minimum interval (I min [ms]) and a maximum interval (I max [minutes]).

The trickle algorithm sets the DIO interval to I min when the network is unstable (lost of preferred parent, loops, updates), and it increases exponentially otherwise.

2.Downward routes installation enables the P2MP and the P2P communication. RPL may employ two types of operation modes to maintain downward routes. First, storing mode when each child has to send to the elected parent or to a multi-cast subgroup a DAO message to announce its prefix. The parent has to store each prefix received in DAO message, and further communicate the reachability to its own parent. An issue of this approach is the storing capacity of parents that have to hold all the routes to the leaves.

Second, in non-storing mode, once an intermediate parent receives an unicast DAO from its child, it cannot store the child prefix. Thus, it needs to forward the DAO packet to its legitimate parent after it appends its address to the DAO packet. Clausen et al. [START_REF] Thomas | Some Considerations on Routing In Particular and Lossy Environments[END_REF] reported that source-routes may result in fragmentation that may lead to packet losses as a packet is dropped if a single fragment is lost.

For downward routes, the periodicity of DAO emission remains open so that each implementation can decide when to send DAO messages, or successively send several DAO messages to ensure the reachability of the parent [START_REF] Clausen | Some Considerations on Routing in Particular and Lossy Environments[END_REF].

RPL properties RPL provides mechanisms to avoid or detect loops, based on rank decision and path validation. Once a node losses all the parent set candidates, it may be tempted to attach to its own sub-DODAG in case it misses DIOs. To avoid this situations, RPL defines several rules: a node may not pick as parent the node having a higher rank than a maximal depth, a node may poison its sub-DODAG. A maximal depth is defined as a minimal accepted rank and a DAGMAXRankIncrease is specified by the user. The poison process assumes that a node out of the parent candidates table due to a lost connection or no more availability has to advertise an infinite rank to its children. Moreover, to prevent loops, nodes check that the forwarding direction is same as the traveling direction (upward/downward).

A lot of work concerns RPL, because of the interest it rises for large topologies such as building automation [START_REF] Dohler | Routing Requirements for Urban Low-Power and Lossy Networks[END_REF], home automation [START_REF] Brandt | Home Automation Routing Requirements in Low-Power and Lossy Networks[END_REF], and smart grids [START_REF] Pister | Industrial Routing Requirements in Low-Power and Lossy Networks[END_REF]. However, Levis et al. [START_REF] Levis | Overview of Existing Routing Protocols for Low Power and Lossy Networks[END_REF] due to detailed analysis of the existent routing protocol features concluded that none of them fulfill wholly the Low Power and Lossy Networks(LNN) requirements. Hence, efforts were directed to design a new protocol in charge to overcome the mentioned issues.

Conclusions

WSN protocols such as media access, routing, localization are highly depended on the efficiency and stability of LQEs. Therefore, much effort resulted in LQE proposals as a combination of hardware or software metrics. Hardware metrics (RSSI/LQI/SNR) are simple and easy to read from the radio device. For example, SNR and RSSI can differentiate between very good links that exhibit a PRR>99% and the other ones with a PRR below 99%. However, in the first section of this chapter, we have seen that they are highly dependent on the hardware and environmental factors. Hence, link estimators only based on hardware metrics are not sufficient to discriminate the quality of links.

On the other hand, software link estimators may consider the number, the average, or approximate packet receptions/retransmissions using techniques such as filters, standard deviation, weighted sum, classification, regression, or fuzzy logic. Anyway, most of the estimators use the exponential moving average (EWMA) filter to smooth metrics.

Up to now, the most promising approaches are the composite metrics, because they aggregate several link properties e.g. 4Bit [START_REF] Fonseca | Four Bit Wireless Link Estimation[END_REF], F-LQE [5], Triangle [START_REF] Carlo | The Triangle Metric: Fast Link Quality Estimation for Mobile Wireless Sensor Networks[END_REF], HoPS [START_REF] Renner | Prediction Accuracy of Link-quality Estimators[END_REF], LQR [START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF], LQIBM [START_REF] Zhang | Study of Wireless Sensor Networks Routing Metric for High Reliable Transmission[END_REF]. Clearly, composite metrics outperform simple metrics such as RSSI, LQI, SNR, PRR not able to track at once all proprieties of links (delivery, stability, asymmetry, reactivity).

LQIBM only models the LQI variance, which is highly unpredictable for intermediate links and does not catch the long term link behavior. HoPS outperforms F-LQE in terms of the memory footprint and short term link behavior. Thus, two main issues have been identified, one that a deeper temporal link behavior is needed to model mathematically the fluctuations of links, and therefore, avoid bad parent choices at the routing level, and second, the collected information (SNR, LQI, sequence number, ETX) are merged into one value, which may underestimate the link quality.

Nonetheless, the widest used metric in WSN is ETX, it presents few limitations, i.e. as it relies on counting packet retransmissions, it does not consider packet losses: considering that after 5 retransmissions, a packet has to be dropped, if a node records a dropped packet (5 retransmissions) and one successful transmission (1 retransmission), while the second node records, two successful transmissions (4 retransmissions), ETX will prefer the first node. Consequently, ETX is unstable and unreliable for dense networks where we may encounter high packet losses.

An ideal link estimator needs to: assure a good delivery rate, be accurate, be reactive (adapt to network changes), consider the link asymmetry, have low overhead, be reliable in dense and noisy networks, be stable (able to ignore small fluctuations of link quality).

An open issue remains the design of a link estimator able to consider all the above mentioned link proprieties and furthermore, to assure a holistic estimation. Moreover, estimators need to perform well in noisy and dense networks by avoiding unreliable links and choosing stable paths for multihop routing.

In this context, at first, we have observed that hardware metrics turn out to provide good information of the link characteristics (delivery, stability, asymmetry, reactivity). Second, composite metrics outperform single metrics. Even so, composite metrics need still further investigation in terms of the required computation time, complexity, memory footprint, behavior in noisy environments and dense networks. To reduce the memory footprint and complex computation of the existing composite metrics, we believe that link estimators should integrate mathematical models able to capture the dynamics of the hardware metrics (average RSSI, std RSSI, average LQI, deviation LQI).

In this thesis, we intend to find an approach able to predict the link behavior from hardware metrics that will require low computation and low memory storage. We report in this chapter on the results of measurements on SensLAB [START_REF] Senslab | Very large scale open wireless sensor network testbed[END_REF], an indoor large scale wireless sensor network testbed equipped with CC1101/CC2420 radio chips. We have done extensive experiments on the SensLab platform and recorded two main hardware metrics: RSSI (Received Signal Strength Indicator) and LQI (Link Quality Indicator). LQI gives "an estimate of how easily a received signal can be demodulated by accumulating the magnitude of the error between ideal constellations and the received signal over the 64 symbols immediately following the sync word" [START_REF]TI. Calculation and Usage of LQI and RSSI[END_REF]. Further, we grouped the links function of their degree of fluctuation as good (80% ≤ P RR ≤ 100%), intermediate (20% < P RR ≤ 80%), and bad (80% < P RR < 20%).

We analyze RSSI and LQI behavior in what it concerns the correlation between link properties, temporal fluctuation and asymmetry aspect, to find the best way of detecting good links in comparison to weak ones. To attain a deep understanding of

Introduction

In the literature, much research has explored the link quality on indoor and outdoor environments. In this chapter, we concentrate on an indoor environment. We focus on two hardware metrics such as RSSI and LQI. Their temporal fluctuation was reported to be the main issue of the link quality variation.

Referring to an indoor or an outdoor environment, signal distortion leads to decrease of RSSI, LQI increase for CC1101 with values between 0 (good)-110 (bad), and LQI decrease for CC2420 with values between 110 (good)-50 (bad). Generally, the distortion of the signal is due to the presence of various factors such as the presence of good reflectors (metal or glass) that lead to multi-path (reflections, fading, diffraction) effects, interference all named in Section 2.2.3. Hardware miss-calibration and antenna position are other two additional factors that may affect signal propagation [START_REF] Cerpa | SCALE: A tool for Simple Connectivity Assessment in Lossy Environments[END_REF][START_REF] Puccinelli | Multipath Fading in Wireless Sensor Networks: Measurements and Interpretation[END_REF][START_REF] Watteyne | Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks[END_REF].

A link by definition refers a two-way interconnecting system between two nodes in the purpose of transmitting or receiving data. Various studies classified links by their quality in three categories: bad links, intermediate, and good links. In particular, Table 2.3 presents an existing link classification. A good link improves the lifetime of a node thanks to the high packet delivery rate reducing energy consumption. On the contrary, intermediate links are highly variable which increase energy consumption.

In order to discriminate links by their quality, efforts analyzed the temporal deviation of RSSI and LQI hardware metrics. They concluded that either observed RSSI does not vary sufficiently, either LQI metric presents unpredictable variation. Therefore, remains a challenge the right methodology to estimate link quality, by merging LQI and RSSI behavior, or by other means.

Consequently, due to the temporal nature of signal propagation, existing studies showed through empirical studies the existence of three zones: good (high link quality), intermediate (intermediate link quality), and bad (bad link quality). Good zones or so known as connected are characterized by stable and mostly symmetric links. Thus, in intermediate or transitional (gray) zones link quality may vary drastically, and more, they are highly asymmetric. The bad or disconnected zones refer to very poor links that should be avoided [START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Baccour | RadiaLE: A Framework for Designing and Assessing Link Quality Estimators in Wireless Sensor Networks[END_REF].

Back in 2003, Zhao et al. used a 60 node testbed to show a high variation in packet reception in intermediate zones [START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF]. Woo et al. observed that distance may discriminate signal zones. They claimed good connectivity of nodes up to 3m and a high variability between 3m and 12m [START_REF] Woo | Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[END_REF].

In this chapter, at first, we aim to understand better the environmental factors that may affect the signal propagation in our large scale testbed (Senslab), equipped with two different radio chips (CC1101 and CC2420). Second, we want to stress out the main characteristics of CC1101, CC2420 links. Last, we provide observations on temporal link behavior in terms of RSSI, LQI, PRR, and asymmetry. We have organized the chapter as follows:

Section 3.3 presents the experimental set up scenarios for CC1101 and CC2420 testbeds. Next, in Section 3.4, we provide a link classification based on the PRR (good, intermediate, bad). For each category, we report on how varying inter-packet time and output power affects the proportion of links.

Section 3.5 discusses the RSSI/LQI characteristics for good/intermediate/bad links. We consider individually each category to observe the main link property correlation, their temporal fluctuation, and their asymmetry.

Finally, we conclude this chapter by listing down the main characteristics of links that we further use for finding a link quality estimator able to accurately predict PRR.

Motivation

In this chapter, our main goal is to exploit the temporal deviation of the hardware metrics, namely, LQI and RSSI, in order to accurately distinguish the quality of links.

Initially, we conduct experiments to better understand the Senslab indoor environment. Once we identify the factors, we aim to elaborate a new approach to identify best the reliable links. Likewise, our findings may be used in the design of more accurate radio models in simulators. Finally, we elaborate recommendations on how a new testbed has to be properly deployed.

Experimental Set Up

We have run experiments on the Strasbourg platform of SensLAB [START_REF] Senslab | Very large scale open wireless sensor network testbed[END_REF] composed of 1024 nodes distributed across 4 sites (Grenoble, Strasbourg, Lille, Rennes). Each individual site comprises 256 WSN430 nodes. Designed to serve as testbed for the Internet of Things scenarios. Our study uses two sites, the SensLAB Strasbourg (CC1101) and SensLab Lille (CC2420).

We observe for CC1101 the quality of transmission of a node that broadcasts a total of 5000 packets of 110 bytes every 0.5s. There is no other ongoing transmission, so there is no interference nor contention between nodes. When one node broadcasts its packet, the other 79 nodes (Strasbourg) are active and ready to receive-they log the values of LQI and RSSI of the received packet. The values are recorded for the correctly received packets with good CRC and also for those with incorrect CRC. As there is one sender at a time, we are able to relate the sender and the receiver of a packet even if the receiver cannot decode a packet.

The receiver nodes do not acknowledge frames and the MAC layer does not retransmit frames in case of failed transmissions. After the experiment, we compute for each link:

❼ the average value of RSSI over all received packets, ❼ the average value of LQI, ❼ the average value of the Packet Reception Ratio (PRR) of each link as the proportion between the number of correctly received packets (correct CRC) to the total number of sent packets.

We assume that all nodes can potentially communicate with each other. We further discuss separately the results obtained for CC1101 and CC2420.

Senslab-Strasbourg (CC1101)

SensLAB Strasbourg is composed of 240 WSN430 fixed nodes distributed across three trays at different heights. Each tray contains 80 nodes arranged in a regular grid (10x8) with a distance between each node of about 1m (cf. the topology of the second tray of the testbed in Fig. 3.1). A node is composed of a MSP430F1611 CPU (48KB ROM, 10KB RAM) and a CC1101 radio operating at 868MHz. Its transmission power ranges between -30dBm and 10dBm, and the reception sensitivity is set to -88dBm. In a single experiment, we use one tray at a time, i.e. 80 nodes. We run the experiments with two levels of the transmission power: 0dBm and -10dBm. The bit rate is 60kb/s and nodes use the Frequency Shift Keying (2-FSK) modulation and channel 30. Table 3.1 summarizes the parameters of the experiments.

We assume that all nodes can potentially communicate with each other, the total number of unidirectional links is 6320 (80 sender nodes times 79 receiver nodes). 

Senslab-Lille (CC2420)

SensLAB Lille [START_REF] Senslab | Very large scale open wireless sensor network testbed[END_REF] composed of 256 WSN430 nodes scattered across two horizontal trays of different heights and one vertical tray. Each of the horizontal tray contains 100 nodes regulate in a grid of (20x5) with a distance of about 0.6m between nodes. A node is composed of a CC2420 radio operating at 2.4GHz. Table 2.2 presents its main parameters.

We use for our study one tray of 100 nodes. Table 3.2 shows the parameters of the experiment. We run experiments with three levels of transmission power: 0dBm, -15dBm, and -25dBm. The bit rate is 250kb/s and nodes use the orthogonal quadrature phase shift keying (OQPSK) modulation. We concentrate on the 0dBm output power on our study.

Thus, either in the case of Lille-Strasbourg (CC2420) the receiver nodes do not acknowledge frames so that the MAC layer does not retransmit frames in case of failed transmissions.

Moreover, we assume same as in Strasbourg platform that all nodes can potentially communicate so that the number of unidirectional links is 9900 ( 

Link categories

We consider three main categories of link quality: good links with a PRR above 80%, intermediate with PRR between 20% and 80%, and bad ones with PRR below 20% (such categories appear in previous studies Table 2.3 where the most common Network threshold is 90%-10%). Please note that the decision of the three categories is due to the temporal deviation values of LQI. For example, a density distribution of the LQI deviation picks around the value of 1 for good links, 2.5 for intermediate links, and 5 for bad links.

We discuss the impact on link proportion for three cases. One when we decrease power down to -10dBm (CC1101) and to -25dBm (CC2420), and last, a short (6bytes) and long packet (110bytes) case.

Link proportion for CC1101

Table 3.3 gives the proportion of links in each category (over all 6320 unidirectional links). Figure 3.2 shows the portion of links in terms of PRR over the whole experiment. We encounter an important percentage of links with PRR>80% and PRR<20% links. P RR = 0% corresponds to the case in which a given node did not receive any packet. The link occurrence ratio for links with a given PRR at 0dBm output power on CC1101. ), bad (0 < P RR < 20%) for each of the three available trays (t1-tray1, t2-tray2, t3-tray3), with transmission power: 0dBm.

We can observe in Table 3.3 that at 0dBm output power and an inter-packet interval of 0.5s there is a large proportion of good links. Besides, the number of intermediate links is fairly low. Table 3.4 shows that the decrease of the transmission power to -10dBm only slightly affects the proportion of good links for the first and second tray.

The third tray decreased significantly the number of good links at -10dBm, which shows that nodes are highly affected by multipath effect as third tray is close to metal fixed supports. We can say that the presence of reflectors at a low power affect more the proportion of good links. ), bad (0 < P RR < 20%) for each of the three available trays (t1-tray1, t2-tray2, t3-tray3), with transmission power:-10dBm.

Parameters

We have also noticed that at an output power of 5dBm or 10dBm, the intermediate and bad links are in-existing, they are below 1%. We observe a proportion of good links of 65% for 5dBm and 83% for 10dbm.

Consequently, when we decrease the output power down to -30dBm, the majority of links are bad. Aside from the power decrease impact on the link proportion, we are interested in how interference and long or short packets impact link proportion.

In Table 3.5 we show the concurrent interference case. We set up node 86 as an interferer that concurrently transmits data packets of 110 bytes each 0.5s. The second tray presents at -10dBm a proportion of good links about 45% whereas in the presence of high interference, the proportion of good links decreases drastically and reached only 7%, a drop of 85% is observed. A similar observation was made by Mottola et al. [START_REF] Mottola | Not all Wireless Sensor Networks are created Equal: A Comparative Study on Tunnels[END_REF]. They reported that concurrent transmissions substantial increase the interference resulting in important packet delivery drop.

Parameters

P RR ≥ 80% 20% ≤ P RR < 80% 0 < P RR < 20% P RR = 0% 110B,0.5s,-10dBm

44% 6 9% 40% 
110B,0.5s,-10dBm,+int.

7% 5% 32% 56%

Table 3.5: Proportion of links for the second tray-Strasbourg with concurrent interference.

Table 3.6 presents that on CC1101 radio, good links increase from 65% at 100ms to 69% at 1s for packets of 110B, and from 87% at 100ms to 89% at 1s. Intermediate links also increase from 2% (100ms) to 5% (1s) for long packets and from 2% (100ms) to 4% (1s) for short packets.

To conclude the link proportion study for CC1101, we can observe that link proportion changes with power decrease as well as with interference presence. Still, while varying the inter-packet interval for 100ms, 200ms, 500ms, 1s, to 30s we observe that it does not affect link proportion. On the other hand, at an inter-packet interval of 30s we encounter a small drop of about 6% of good links and an increase in intermediate links of only 3%. Therefore, we claim that for CC1101 the proportion of good links may be affected by the output power decrease and by large inter-packet intervals, no matter the packet size, long (100B) or short (6B).

Chapter 3. Link quality characterization in an indoor

Link proportion for CC2420

We consider the same three categories of link quality: good, intermediate, and bad. Table 3.7 gives the proportion of links in each category (over all 9900 unidirectional links).

A first observation is that CC2420 (2.4GHz) radio records a percentage of 20% of good links for long data packet (110B) scenarios, while for CC1101 (868MHz) we reached 46%. In terms of intermediate links, we record a proportion of about 70% for CC2420 radio and aprox. 10% for CC1101. These observations agree with previous studies that claimed about 35% to 50% for Mica 1 platform (CC1101) [START_REF] Zhao | Understanding Packet Delivery Performance in Dense Wireless Sensor Networks[END_REF][START_REF] Zuniga | Analyzing the Transitional Region in Low Power Wireless Links[END_REF] and 5% to 60% for TelosB (CC2420) [START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF].

A second observation regards the impact of intermediate link proportion with the decrease of the output power. Choosing a too low output power (-25dBm), the radio range diminishes considerably, so that we may not have enough radio range to reach neighbors, and run properly our experiments. For instance, the good links proportion goes below 1% at -25dBm output power.

Parameters

P RR ≥ 80% 20% ≤ P RR < 80% 0 < P RR < 20% P RR = 0% 110B, 0.5s, 0dBm 24% 71% 1% 4% 110B, 0.5s, -15dBm 4% 38% 7% 51% 110B, 0.5s, -25dBm 0.2% 13% 4% %82.8

Table 3.7: Proportion of links for data packets of 110 bytes, grid of 100 nodes, Lille-CC2420 at 0dBm, -15dBm, and -25dBm output power.

Furthermore, we analyze the impact of the packet size on the proportion of the links. Table 3.8 illustrates that short packets (6 bytes) result in 80% of good links, because of a lower probability of a packet loss. Likewise, for CC1101 radio, the proportion of good links holds around 80%, see Table 3.6.

Moreover, Table 3.8 shows that good links proportion increases from 25% at 100ms to 27% at 1s for 110B packets, and from 81% at 100ms to 91% at 500ms for packets of 6B. The intermediate link proportion increases with 4% from 67% at 100ms to 73% for packets of 110B and with 6% from 4% at 100ms to 10% for 6B packets. Therefore increasing the inter-packet time result in increase of intermediate link proportion for long packets, observation made as well by Srinivasan et al. [START_REF] Srinivasan | The beta-factor: Measuring Wireless Link Burstiness[END_REF]. In following, we study the temporal fluctuation of RSSI and LQI.

Parameters

Temporal fluctuation of link quality

We analyze the temporal deviation of LQI and RSSI. We have observed on CC1101 that RSSI varies between 0dBm-4dBm for good links and slightly increases for the intermediate and bad links, up to 10dBm.

On the other hand, for CC2420, RSSI has a larger variation (std. RSSI that takes values higher than 5) for intermediate and bad links, see Figure 3.9, which corresponds to the literature [START_REF] Zennaro | Experimental Evaluation of Temporal and Energy Characteristics of an Outdoor Sensor Network[END_REF][START_REF] Raman | Implications of Link Range and (In)stability on Sensor Network Architecture[END_REF].

In addition, we confirm the observation that intermediate links drop from high to low PRR over short time spans, similarly to Bas et al. [START_REF] Bas | Spatio-temporal Characteristics of Link Quality in Wireless Sensor Networks[END_REF] who claimed a RSSI variability of 5dBm-6dBm for CC2420.

We have looked at the temporal variation of the RSSI over 24 hours for two links, one with a PRR=100% and the second with a PRR=50%. Figure 3.3 shows that good links have a steady RSSI over the long term whereas for intermediate links, the RSSI variation is more important.

Furthermore, with respect to LQI, a generic observation is that LQI varies little over time for good links while a high variation occurs for intermediate and bad links.

In spite of a LQI variation of 1 encountered for a good link on CC1101 radio, CC2420 has a higher fluctuation about 5. Even though, to discriminate best the intermediate from good and bad links, the fluctuation of LQI may not be sufficient. For this reason, we elaborate a deeper analysis of the standard deviation and the average values of RSSI and LQI.

Referring to the short term link dynamics, a challenge remains of how large the observation should be, or how long the link drops last for individual link categories.

The research claimed an observation sliding window size of 10 [12] or within 40 and 120 [START_REF] Srinivasan | Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks[END_REF]. However, the interval of 120 data packets to make decisions regarding the quality of links is too large for low rate traffic or dense networks.

Furthermore, the average model over historical data was claimed as a solution [START_REF] Srinivasan | An Empirical Study of Low-power Wireless[END_REF][START_REF] M I Xue | A Novel EWMA based Link Quality Evaluation Algorithm for WSN[END_REF]. In the last chapter we provide a deeper insight on the short term link drops correlation through a 2-state Markov model.

RSSI/LQI

In this section, we investigate the quality of a link in terms of RSSI and LQI. Moreover, we study the bi-directionality of links.

RSSI

At first, we consider the RSSI hardware metric at different output power by tracing the probability density function of the averaged and standard deviation of RSSI values corresponding to each link.

A) Probability density function of RSSI Figure 3.4 shows the probability density function of the RSSI averaged and RSSI standard deviation for CC1101. for the third tray has a pick around -72dBm, while the first and the second tray have both a density pick around -66dBm. This is the effect of the multi-path presence on the third tray coming from fixed metal supports holding the RJ45V cables and the light lamps.

In Figure 3.4 b), we see a shift of 13dBm from -65dBm at 0dBm down to -78dBm at -30dBm. Interestingly, Figure 3.4 c) shows that decreasing the output power to -30dBm stirs the RSSI standard deviation from 0.5 to 1. centrate around -75dBm, unlike to CC1101 3.4 b) where values concentrate around -65dBm. This is due to the environment, more specifically, the Strasbourg testbed is less exposed to multipath effects and also the distance between nodes is 1m with respect to Lille testbed that has 0.6m. We have come to the conclusion that neither packet size nor inter-packet interval do not impact the probability density function of the averaged RSSI. However, the probability density function of the standard deviation and average RSSI are affected by the output power decrease. For example, the standard deviation of RSSI picks around 0.9 at 0dBm, 0.5 at -10dBm and -30dBm. Hence, we noticed that good links with a PRR above 99% have a RSSI above -65dBm. Additionally, we have observed that the threshold keeps around -65dBm either at -10dBm with or without concurrent transmissions.

B) Cumulative density function of RSSI

We investigated the cumulative distribution function of average RSSI and deviation RSSI over the entire experiment for each sub-category of links at a step of 10%. First and foremost, we have observed that for CC1101, the average RSSI overlaps for subcategories with a PRR below 99%. Yet, links with PRR above 99% go over -63dBm.

RSSI/LQI

Adversely, regarding std RSSI, the deviation is too little about 1, resulting in an overlap of CDF curves and therefore, may not be used to discriminate link categories.

At the same time for CC2420 (0dBm), Figure 3.6 c) (6 byte packet size) and 3.6 d) (110 byte packet size) show that a value -65dBm can discriminate up to 90% of the RSSI readings for links with PRR above 99%, and 70% for PRR [95%-99%). Figure 3.7 shows that the threshold value depends on the chosen output power for both radio chips CC1101 and CC2420.

On CC2420 radio, Figure 3.8 shows a -70dBm avg RSSI value that can distinguish links with PRR>95%, a proportion of ∼ 50% of links 80% ≤ P RR ≤ 95%, and ∼ 20% of links 70% ≤ P RR ≤ 80%. Contrary to CC1101, the CDF curves of avg RSSI for good and intermediate links do not overlap, therefore, avg RSSI may be used to distinguish good and intermediate links.

Figure 3.9 a) shows that a std RSSI of 4 can distinguish links with a PRR (95% ≤ P RR ≤ 100%). Moreover, Figure 3.9 b) shows that intermediate links ( 20% ≤ P RR ≤ 80%) have a std RSSI within 4 and 10 while links with low PRR (P RR ≤ 20%)) the std RSSI is significantly higher (above 10). Please note that the mentioned std RSSI values of 4 and 10 are observed on the CDF curves. We mainly want to point out that the std RSSI can discriminate link categories.

We observe that avg RSSI and std RSSI can well discriminate links with a high reception ratio (PRR>95%) for CC1101, though for CC2420, they can discriminate all link categories.

More specifically, on CC2420, good links may be discriminated by an avg RSSI higher than -75dBm and a std RSSI below 4; intermediate links have a avg RSSI generally between -75dBm and -90dBm at 0dBm output power, and a std RSSI between 4 and 10; bad links overlap intermediate avg RSSI whereas, the std RSSI higher than 10 distinguishes bad links.

To conclude this subsection, we point out, at first, that the probability density function of the averaged RSSI is not affected neither by packet size nor by the interpacket interval. Second, we observe that links having a PPR above 99% (CC1101) can be discriminated easily with a value of -65dBm, and -75dBm for CC2420 radio.

Third, we point out that the avg RSSI and the std RSSI can discriminate on CC1101 only links with reception ratio (PRR>99%). Moreover, for CC2420, std RSSI and avg RSSI can discriminate better links with a reception ratio below 99%.

Likewise RSSI, we investigate below the features of the LQI measured on our testbed.

LQI

We want to find the correlation between LQI and PRR. We record for each link 5000 (CC1101) / 1000 (CC2420) readings during each experiment. We group links into sub-categories, and we consider the average and standard deviation LQI to understand better the link behavior and further benefit of observations to improve routing performances.

To have a deeper insight on the std LQI, we investigate the level of std LQI (CC1101/CC2420) for each sub-group of links at a step of 10. LQI values for good links are close to 0 for CC1101 radio, whereas for CC2420 the values are close to 110. Figure 3.10 a) shows that avg LQI keeps below 1.5 for good links. Figure 3.10 b) shows that links with a PRR within 40% and 80% reaches an avg LQI of 4. Figure 3.10 c) presents that for bad links with PRR below 10% the avg LQI goes to much higher values. Also, it reveals that average LQI is enough to discriminate links with a P RR ≥ 99 which are stable, observation confirmed by literature [START_REF] Srinivasan | RSSI is Under Appreciated[END_REF][START_REF] Lin | Towards Stable Network Performance in Wireless Sensor Networks[END_REF][START_REF] Carlo | Poster Abstract: Exploiting the LQI Variance for Rapid Channel Quality Assessment[END_REF]. Bad links with P RR ≤ 10 may be also easily discriminated only with the average LQI.

Observing std LQI, Figure 3.11 illustrates that a threshold of 1.5 for std LQI is able to identify links 90%<=PRR<=100% Figure 3.11 a). the threshold from 1.5 to 3, can distinguish almost all links from 90% to 40% of PRR along with 60% of links with a PRR from 40% to 20%. In particular, Figure 3.11 c) presents a high std LQI, typically, more than 4, for links with less that 20% of PRR. Figure 3.12 a) shows for CC2420 that avg LQI is around 105 for links with PRR above 80; avg LQI decreases for intermediate links down to 70, see Figure 3.12 b), whereas for bad links, it continues to decrease to 50, see Figure 3.12 c). The decrease of avg LQI with the link quality shows that LQI can be a good indicator for the quality of links.

On the other hand, Figure 3.13 illustrates that std LQI overlaps for good and intermediate links , showing a range within 5 and 10. However, std LQI helps to discriminate bad links that exceed a deviation of 10.

As we can see, avg LQI helps to discriminate good links, their value is less than 1.5 for CC1101 and between 104-107 for CC2420. Thus, std LQI remains below 2 for CC1101 and is between 5 and 10 for CC2420. Therefore, to discriminate good links of CC2420 radio, we need to combine avg LQI and std LQI.

Then, intermediate and bad links may be discriminated using avg LQI and std LQI for both CC1101 and CC2420 radios.

To conclude, we can draw a first conclusion that, avg LQI and std LQI for good links vary little. On the other hand, intermediate (20%<=PRR<80%) and bad links (PRR less than 20%) have high average LQI and deviation LQI. Therefore, we can use avg LQI and std LQI to discriminate link categories.

It may occur that bad links exhibit low std LQI because of a sequence of bad packet receptions (high number of errors). In this case, avg LQI is important as it will denote a high LQI (CC1101), or low LQI (CC2420).

Second, we believe that avg LQI coupled with std LQI will give a more accurate estimation, avoiding bad discrimination of links with close qualities.

In the next chapter, we show how together LQI and RSSI can accurately discriminate links on long and short term.

Link Asymmetry

Another issue of wireless links is link asymmetry as it may dissolve the assumptions adapted in routing protocols. The reasons may be: receiver sensitivity, hardware miscalibration, radiation patterns (multi-path effects), integrated antenna in the printed circuit board, and low-noise amplifier (LNA) [START_REF] Ho | Low-Voltage Low-Power Low-Noise Amplifier for Wireless Sensor Networks[END_REF].

We compute the asymmetry of a link as the absolute difference |P RR x->y -P RR y->x |, where x, y denote the nodes and the arrow points to the receiver node. Hence, we consider that a link presents asymmetry if the absolute difference is higher than 1%, and at least one packet was exchanged. Moreover, in our study we call an asymmetry as: stable if the absolute difference is less than 20%, average for an absolute difference between 20% and 80%, and strong if the absolute difference is above 80%. Also, we use the term of bi-directional link, for a link that has an absolute difference less than 1 within uplink and downlink. We call unidirectional link, a link that received data packets on the forward and do not record any successful packet reception on the backward link, or reverse.

Figure 3.14 shows that RSSI is symmetric (CC1101) for long (110bytes) and short (6bytes) packets. Instead, when we decrease the output power to -10dBm, and -30dBm, the number of unidirectional links increases. For instance, we see in Figure 3 at -10dBm we have numerous links at -100dBm, which represents the noise, meaning that these links are unidirectional, and that are part of the group with strong asymmetry. We observed that once we decrease the output power, the unidirectional links multiply.

For CC2420 radio, Figure 3.15 shows that the symmetry of RSSI is not affected by the packet size. Once we decrease the output power to -15dBm, or -25dBm we lose on RSSI symmetry, see Figure 3.15 c).

Figure 3.16 illustrates that links with a 100% of reception ratio are symmetric in proportion of 97%. We notice also that the size of packets affects with only ∼ 2% the proportion of links that are asymmetric. Thus, short packets recorded only 1% of the total links as asymmetric, while for long packets we record 3%. However, decreasing the output power to -10dBm results in an increase of asymmetric links from 3% to 5%. Moreover, links with PRR (80% ≤ P RR < 100%) have a stable asymmetry of maximum 20%, while the intermediate links have an average asymmetry from 20% to 80%. Also, the packet size or the power decrease do not affect the symmetry of good and intermediate links.

Still, we observed that at 0dBm 40% of bad links have strong asymmetry, whereas at -10dbm the percentage of bad links with strong asymmetry is 90%.

On the other hand, for CC2420 radio, Figure 3.17 shows that increasing the packet size from 6 bytes to 110 bytes leads to a lost of 5% of perfect symmetric links (same PRR in both directions), along with a asymmetry increase for intermediate and bad links. Again, similarly to CC1101, reducing the output power to -15dBm leads to a slightly asymmetry increase for intermediate and bad links, while the perfect symmetric links are completely lost. Figure 3.18 and 3.19 highlight that unidirectional links exist mostly in zones with low RSSI. Also, bi-directional links are not influenced by packet size, whereas the unidirectional links widen the RSSI range once the packet size increases. However, the RSSI range of unidirectional links narrows with the decrease of power for both radio chips CC1101 and CC2420. Table 3.9 presents the symmetry degree for CC1101 and CC2420 radio chips at different emission power: 0dBm, -10dB, -15dBm and different packet size, 6 bytes, 110 bytes, respectively.

To sum up, as we can see in Table 3.9 that links with PRR=100% are slightly influenced by the packet size. On the contrary, when we decrease the power to -10dBm we observe that we record with 20% links with A=0%. Even so the good links maintain an asymmetry below 20% for CC1101 and CC2420. Moreover, for CC1101, intermediate links (20% ≤ P RR < 80%), are not influenced by the packet size neither. We record a majority of links with average asymmetry for CC1101 and a majority of link with stable asymmetry for CC2420. of 20%<asymme-try<=80% for CC1101 and a majority of 0%<=asymmetry<=20% for CC2420. Overall, decaying the output power results in a decline of the number of strong asymmetric links. Thus, most percentage of bad links have a strong asymmetry for CC1101 and an average asymmetry for CC2420.

Lastly, for CC1101 and CC2420, the power decay leads to an enhance the number of links with average and strong asymmetry while reduces the percentage of links with strong asymmetry.

Discussion

In this chapter, we have analyzed the empirical data from indoors testbed with CC1101 and CC2420 radio chips to better understand the proprieties of links. The study focuses on the link dynamics and the link asymmetry for specific categories of links. We have considered several aspects such as the percentage of formed links, average and standard deviation of RSSI/LQI, and the asymmetry of links. 

Good Link proportion

First, we have presented a link classification as good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) due to temporal fluctuation of hardware metrics. Moreover, we have observed a large proportion of good links. Also, we have noticed that third tray of Strasbourg platform reduces its RSSI of about 5dBm due to multipath presence.

Namely, we have identified on Strasbourg platform the factors affecting the link quality as multipath, shadowing, and interference. Multipath effect refers to scattering from wall, window, ceiling, or floor surfaces, partial/total reflection from glass fiber, wood poles, RJ45V cables, and diffraction from obstacles (poles-wood/cement, light lamps). The shadowing may occur from obstacles: poles on cement/wood. Last, the interference can occur due to the train presence that is equipped with mobile nodes. Moreover, we have observed for CC1101 that an output power of 0dBm results in a majority of good links and a quite low proportion of intermediate links. The proportion of good links is not affected by varying the inter-packet interval (100ms, 200ms, 500ms, 1s, 30s), the packet size, also the power decrease to -10dBm slightly impacts the good links proportion.

However, in presence of the multipath effects and concurrent interference, the power decrease leads to a decay of good links of about 70%. Contrary to CC1101 where we observed a majority of good links (∼65%), CC2420 has a majority of intermediate links Chapter 3. Link quality characterization in an indoor Wireless Sensor Network (∼71%). For CC2420, decreasing the output power to -15dBm and -25dBm leads to a link proportion decrease of good links with 80% and with 46% of intermediate. Similarly to CC1101, the inter-packet interval affects little the proportion of good links. Moreover, in terms of packet size, we observe that the proportion of good links for short packets is close to 90% and only ∼27% for long packets.

RSSI

We have noticed that the packet size and the inter-packet interval do not affect the probability density function of the averaged RSSI that concentrates around -65dBm (CC1101) and -75dBm (CC2420) at 0dBm output power. Besides, the probability density function of the standard deviation of RSSI encounters a low variation from 0.5 to 1.

We have noticed that links with a PRR above 99% are spread above -65dBm (CC1101)/-70dBm (CC2420) value that can be used as a threshold to discriminate good links, independent of the packet size. Howsoever, the threshold value does not depend on the output power neither on CC1101 nor on CC2420 radios.

Moreover, contrary to CC1101, the CDF curves of avg RSSI and std RSSI overlap less, which shows that avg RSSI and std RSSI can distinguish between good and intermediate links.

LQI

We can draw the conclusion that, for CC1101, good links show low variation of avg LQI and std LQI. On the other hand, intermediate (20%<=PRR<80%) and bad links (PRR less than 20%) have high average LQI and deviation LQI. Hence, bad links have higher average LQI and deviation LQI.

Link temporal fluctuation of link quality

The fluctuation of RSSI is about 0dBm to 4dBm for good links and increases for intermediate and bad links up to 10dBm. On the other hand, for CC2420, the RSSI variation is more important as the difference between minimum and maximum RSSI may reach 30dBm for bad links.

LQI has a minor temporal fluctuation while intermediate and bad links have a major temporal fluctuation on both radios (CC1101/CC2420).

Link asymmetry

We have observed that good links are less affected by the packet size or by output power decrease. In our study, intermediate and bad links present a high degree of asymmetry for both CC1101 and CC2420 radio chips. The asymmetry of intermediate links (20% ≤ P RR < 80%) is not influenced by the packet size, whereas the decrease of the output power leads to a decay of links that present stable asymmetry. Contrastively, the packet size and the power decrease highly impact the asymmetry of bad links (0 < P RR < 20%).

For instance, good links have an asymmetry below 20%, majority of intermediate links are characterized by an asymmetry between 20% and 80%. Bad links have a high asymmetry for CC1101 (a majority of strong asymmetry), and between 20% and 80% for CC2420.

Conclusions

Our analysis has shown that the network may benefit from a large proportion of good links on CC1101 and CC2420 (for 6 byte packet size).

The analysis of the CDF and PDF of RSSI (average, standard variance) and LQI (average, standard variance) enable us to observe that RSSI and LQI have distinct values-they can discriminate the quality of links.

However, on CC1101, avg RSSI may help to discriminate links with PRR=100%, since avg RSSI for links below PRR=100% overlap. Also, the deviation of RSSI (CC2420) can be an interesting measure, but not sufficient to discriminate link quality in an accurate manner.

Contrary to CC1101, the CDF curves of avg RSSI and std RSSI overlap less, which enables avg RSSI and std RSSI to distinguish better between good and intermediate links. For instance, RSSI variation is low on CC1101 (max. 10dbm), whereas for CC2420 it may reach about 30dBm.

In what it concerns asymmetry, we have observed that good links present stable asymmetry, while intermediate and bad links present intermediate and strong asymmetry for CC1101 and CC2420 radio chips. Besides, we found that the packet size and the power decrease highly impact the asymmetry of bad links (0 < P RR < 20%).

We use the observations of empirical data of avg/std RSSI and avg/std LQI to find a mathematical model able to capture the link quality.

Chapter 4

Estimating Link Quality in an indoor Wireless Sensor Network In this chapter, we analyze the link quality in a statistical way. Different empirical studies agreed on the fact that very good and very bad links can be discriminated using samples of physical metrics (RSSI, LQI). However, links with PRR<99% present significant temporal fluctuation, and large number of samples are needed to characterize the link quality.

To obtain an estimator of PRR, we have fitted a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI. The function enables us to find PRR for a given level of LQI. We evaluate the estimator by computing PRR over a varying size window of transmissions and comparing with the estimator. The aim of the estimator is to provide a better routing metric in wireless sensor networks.

Introduction

We want to design a metric that estimates PRR. Recent work on routing protocols emphasized the importance of using stable metrics of link quality .

Our observations from Chapter 3 helped to find the relationship between RSSI, LQI, and PRR. Moreover, we use RSSI as an indicator of possible anomalous behavior of sensor nodes. We characterize PRR in function of RSSI and LQI by looking for continuous distributions that fit the best the measured values of the PRR. We notify that RSSI is not a good discriminator of link categories, because the functions overlap for CC1101 and CC2420. The average LQI and the standard variation of LQI better discriminate between the categories. Our analysis confirms the main findings of the previous work and provides new insights on the link quality metrics based on LQI.

Fitting a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI, we have attained the estimation of the PRR. The found function facilitates the prediction of PRR from a given level of the average and standard deviation of LQI. To prove the functionality of the prediction, we compute PRR over variable size windows and compared the value against the estimated PRR, which we obtained from the fitting FD function.

The findings of this Chapter have been validated by the community as they have been accepted in Algotel [START_REF] Bildea | Métriques de Qualité de Lien pour Réseaux de Capteur sans Fil en Intérieur et à Large Échelle[END_REF] , PIMRC [START_REF] Bildea | Link Quality Metrics in Large Scale Indoor Wireless Sensor Networks[END_REF] conferences. 

Analysis of RSSI

We started with the analysis of RSSI and its influence on PRR for the second tray. Figure 4.1 presents the scatter diagram of PRR vs. the average RSSI for all links (each point corresponds to a link with a given average RSSI and the observed PRR). We can observe that some values (red crosses) lie in a region with high PRR and low RSSI values. The values indicate a possible anomalous behavior in the generation of RSSI values or another problem of hardware operation.

Figure 4.2 presents the distribution of the average RSSI measured by all nodes (one curve per node). A node receives packets from all other nodes placed in a regular pattern in the experiment area so that the expected range of RSSI values needs to smoothly vary from the sensitivity threshold to some large values. Cross distributions correspond to two nodes that generated the anomalous group in Figure 4.1. They are different from the distributions of other nodes.

On the contrary, on the CC2420 platform we are not aware of the existence of nodes with anomalous behavior. anomalous nodes eliminated-crosses have disappeared. We believe that the RSSI analysis enables us to detect nodes with hardware anomalies or bad calibration that result in unlikely values of RSSI. In the case of our testbed, there are 2 anomalous nodes out of 80, a small proportion of bad nodes. We thus eliminate the results from the nodes to take away the bias of unlikely RSSI values.

- We have also averaged the values of RSSI for each value of PRR (at the step of 1%) ❼ Generalized Extreme Value is a distribution that models the maxima of the extreme values of a data set. It is parametrized by shape ξ, scale σ, and location µ.

Its CDF is F (x; µ, σ, ξ) = exp -1 + ξ x-µ σ -1/ξ .
❼ Beta distribution is defined on the interval [0, 1] with two positive continuous shape parameters α and β. Its CDF is F (x; α, β) = B(x; α, β)/B(α, β) = I x (α, β), where B(x; α, β) is the incomplete beta function and I x (α, β) is the regularized incomplete beta function. The incomplete beta function is the following:

B(x; a, b) = x 0 t a-1 (1 -t) b-1 dt.
We have used three common statistical tests: Kolmogorov-Smirnov, χ 2 , and Anderson-Darling [START_REF] Peter | Robust Statistics[END_REF] to find the best distributions. First, we account for the Kolmogorov-Smirnov test (K-S) [START_REF] Peter | Robust Statistics[END_REF], a nonparametric test. One-sample K-S test verifies the equality of a sample with a distribution probability reference. Especially, it estimates the vertical distance between the empirical distribution function (ECDF) of the chosen sample and cumulative distribution function (CDF) of the reference distribution, see Eq. 4.1. For two-sample K-S case, it quantifies the distance between the EDF of two data samples. The principle of the test is based on the null hypothesis that data sample is derived from the reference continuous distribution (one-sample K-S), or that both data samples follow the same distribution (two-sample K-S).

The K-S test applies only to continuous distributions, and is characterized by two hypotheses: H 0 , the data follows a specific distribution, H a the data do not follow a specific distribution, and test statistic (D), Eq. 4.1.

D K-S = max 1≤i≤N (F (Y i ) - i -1 n , i n -F (Y i )), (4.1) 
where N is the number of data points, F is the theoretical cumulative distribution of the tested distribution, and Y 1 , Y 2 , ..., Y N , are the data points.

For instance, we use the one-sample K-S where as data sample we consider averaged RSSI, averaged LQI, and standard deviation LQI. As reference continuous distributions, we use the distributions from Table 4.1.

We make use of another test, Chi-Square test [START_REF] Peter | Robust Statistics[END_REF]. The test compares an empirical distribution with another one. Data sample distribution approximate a chi-square distribution if the null hypothesis is true, which means that the observed distribution is close to the expected one. The test relies on Eq. 4.2.

χ 2 = ( (O -E) 2 E ) (4.2)
where O is the observed distribution, E is the expected distribution.

Another test is the Anderson-Darling test (A-D) [START_REF] Peter | Robust Statistics[END_REF]. It evaluates if the data sample set comes from a specific distribution. For example, the test verifies if a sample set (x 1 , ..x k ) comes from a given distribution using the Eq. 4.3.

A 2 = -k - n i=1 (2i -1) n [ln(F (x i )) + ln(1 -F (x k+1-i ))] (4.3)
where N is the number of data samples in the set, F is the cumulative distribution function of the chosen reference distribution. We group into three categories (good, intermediate, and bad). Furthermore, for each link category group, we run fit tests on candidate distributions. To decrease the number of samples to handle, we average the measured values of LQI and RSSI for each link.

Figure 4.6 a)-shows that Johnson SB and Gamma density functions fit best the averaged RSSI. We can observe that average RSSI is not a good discriminator of link categories, because the functions overlap. Even the bad category overlaps the category of good links. Alike on CC1101, Figure 4.6 b) illustrates that on the CC2420 radio chip, RSSI is best fitted by Johnson SB and Gamma functions. Moreover, RSSI is not able to discriminate the quality of the links as the functions overlap. The average LQI better discriminates between the categories, especially it can distinguish between good and bad links on both radios, CC1101 and CC2420. Observing the standard deviation of RSSI, we encountered a low deviation, about 1 for CC1101 that is insufficient to discriminate categories, whereas, for CC2420, the RSSI deviation is higher, about 5 for good and intermediate links, and concentrate about 20 for bad links, Figure 4.10. So, we claim that the deviation of RSSI can discriminate good from bad categories on CC2420. Figure 4.9 brings another view on the variability of LQI. It presents LQI for all packets (correctly decoded and with bad CRC) for choosing links with PRR of 100%, 80%, 20%, and 0.06%. We can observe that the average LQI and its variability increases for lower PRR.

To sum up, using average RSSI metric, bad link category overlaps the category of good links. Therefore, it cannot discriminate the link categories. Thus, the standard deviation of RSSI varies too little on CC1101, instead, on CC2420 radio, it varies more, intermediate links on CC2420 radio. We observe that the deviation of RSSI can easily discriminate good and intermediate from bad links, still, it overlaps for the good and intermediate links. Therefore, analyzing the average and the standard deviation for RSSI and LQI on CC2420, we found out that the ratio between RSSI std./LQI avg. fits well the F-D function, Figure 4.10 c). Hence, it discriminates best good from intermediate and bad links. In fact, we have obtained a goodness of the ratio fit characterized by: SSE: 0.2338, R-square: 0.9711, Adjusted R-square: 0.9708, and a RMSE: 0.0491.

Fitting PRR in Function of RSSI and LQI

We have applied a similar approach to LQI-fitting a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI (we use the logarithmic scale).

For CC1101, Figure . 4.11 a) displays a good fit for average LQI, accordingly LQI can discriminate the link categories. However, on CC2420, Figure . 4.11 b) presents a not so good fit of average LQI, thus, average LQI is insufficient to discriminate link categories.

On the other hand, the F-D function fits very well (with the R-value >0.98 ) the standard deviation of LQI, 4.12 a)-b) present the corresponding result.

Estimating PRR using F-D function

We want to find an estimator of PRR based on the measured values of RSSI and LQI. We have fitted PRR in function of RSSI, so possibly we could derive PRR from a given value of RSSI. However, using RSSI may lead to errors in the evaluation of PRR in the case of real networks-they experience contention between nodes and simultaneous transmissions. Concurrent transmissions may increase RSSI and decrease the probability of correct decoding leading to a lower PRR. In this case, the estimation based on RSSI would result in wrong values of the PRR. So, we have decided to focus on LQI and analyze estimators based on its average value and standard deviation.

First, we try to understand the impact of the window size. Figure 4.14 shows that short window of 5 presents much higher short term fluctuation which leads to link instability. Still, a good link estimator should ensure a good trade between short and long term shifts. Further we concentrate on the windows of 10 and 100 as they present less short fluctuations. Figure 4.13 shows the temporal behavior of PRR computed over a window of 10 transmissions and its estimator derived from the average LQI. We can observe a fairly good fit between the data real PRR computed over a window of 10 and estimated PRR from the obtained Fermi-Dirac fit. The MSE si given by the eq. 4.5.

M SE(model) = 1 n i=1 n(prediction i * true value i ) (4.5)
We can observe that for a short window of 10 the estimation based on LQI results in an error of the order of 18% (RMSE). Considering larger windows reduces the error to 9%. EWMA with α = 0.9 also results in a good precision for a good link.

However, tables 4.5, 4.6, 4.7 illustrate for the totality of good links the estimation triggers a precision of 93% and for a window of 10 and about 95% for a window of 100 (for EWMA with α = 0.9, LQI, and sqrt(LQI 2 + ST D 2 ) ). Oppositely, for intermediate and bad links the estimator triggers a precision of about 80%. 

Conclusion

In this chapter, we have reported on the results of measurements of PRR, RSSI, and LQI on an indoor wireless sensor network testbed. First, we have analyzed RSSI and used it as an indicator of possible anomalous behavior of sensor nodes.

To further characterize PRR in function of RSSI and LQI, we have looked for continuous distributions that fit the best the measured values of the PRR. As RSSI is not a good discriminator of link categories, we have considered the average LQI and its standard variation.

We have found the density functions that fit the observed values for each link category such as Generalized Extreme Value, Johnson SB or Beta.

We have obtained an estimate of PRR by fitting the Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI on both radio chip-set CC1101 and CC2420. The function decides on the level of PRR of a link from the average or standard deviation of LQI. To evaluate the estimator, we have varied the size of the observation window from 1 to 100. We have observed that at the window size of 10, we reach low MSE (0.005-0.02). Good state represents a better quality channel whereas Bad state corresponds to a lower quality channel.

Good

an erroneous symbol. In communication networks, it is used to capture the temporal correlation of packet losses [START_REF] Hasslinger | The Gilbert-Elliott Model for Packet Loss in Real Time Services on the Internet[END_REF]. To study the loss length using the two state Gilbert-Elliot model, we consider the packet reception process as a sequence of bits. Therefore, a value of 1 stands for a successful packet reception whereas a 0 value denotes a lost or corrupted packet. The GE model is shown in Figure 5.1.

It is defined by the transition matrix M between states s t at time t:

M = 1 -p p r 1 -r
where p = P (s t = Bad|s t-1 = Good), and r = P (s t = Good|s t-1 = Bad), 0 < p < 1 and 0 < r < 1 are the transition probabilities between states, respectively. A transition from Good (G) state to Bad (B) state takes place whenever the current packet is lost when the previous one was successful. In the opposite direction, a transition from Bad (B) to Good (G) state takes place whenever the current packet is successfully received, but the previous one was lost. The conditional loss probability of remaining in the good state (probability that a loss arises after a success) is given by p = P (s t = Bad|s t-1 = Good) while the conditional loss probability remaining in the bad state is denoted by 1 -r, where r = P (s t = Good|s t-1 = Bad) (probability that a loss arises after a loss).

The stationary probability of the Good state π G and the Bad state π B are given by:

π G = r p + r , π B = p p + r . (5.1)
Considering the given stationary state probabilities, the loss probability is defined as:

π loss = p * π G + (1 -r) * π B = π B (5.2)
Parameter µ called channel memory is defined as:

µ = 1 -p -r, -1 ≤ µ ≤ 1. (5.3) 
When µ = 0, the probability of getting a good or a bad symbol at any time instance is independent of the last symbol value, that is, the channel behaves as a memory-less channel. µ becomes negative for oscillatory links.

To show how the parameters of the GE model can be obtained from link loss observations, let us consider that the first link has sequence 1 = [011110] (1 denotes a received packet, 0 denotes a lost packet). The second link is characterized by sequence 2 = [101011]. We see that sequence 1 has 4 consecutive successful packet receptions whereas sequence 2 records only 2.

Transition matrices M 1 (p 1 , r 1 ), M 2 (p 2 , r 2 ) for sequence 1 and 2 are the following:

M 1 = 0.75 0.25 1 0 M 2 = 0.33 0.66 1 0
We obtain the following transition probabilities: the first link has p 1 = 0.25 and r 1 = 1, and the second link has p 2 = 0.66 and r 2 = 1. 5.1 summarizes the performance derived from the GE model applied to Link 1 and Link 2 . Moreover, even if both links have a the same P RR = 0.67 (67%), Link 1 would be preferred over Link 2 as it records a higher good stationary probability (π G of about 0.8 compared to 0.6) and a higher negative channel memory (µ = -0.25 indicating that Link 1 is less oscillatory than Link 2 with µ = -0.66).

The aim of the study is to use the stationary probabilities given by the GE model in link quality election and therefore, avoid links that are have faster oscillations between two states.

Experimental results

We call a run length the number of consecutive successful reception of packets and a loss length the number of consecutive lost packets.

Figure 5.2 a) shows that the distribution of packet losses and successful receptions depends on the link category. For instance, 98% of good links have an average 1.6 loss length, meaning that the probability of having consecutive lost packets is low. We have observed large average loss length of about 5.3 for intermediate links and about 56.8 for bad links, which shows that good links have independent losses with respect to intermediate and bad links. Yet, bad links may have bad states that last seconds.

Figure 5.2 b) illustrates that run length also varies in function of link category. Good links stick to good state for long periods, instead bad links have a quite small run length, about 1. This means that after only one successful reception most probably bad links go to bad state.

Figure 5.2 c)-d) show that good and bad stationary probabilities can discriminate quite well link categories.

Studying the performance of µ metric, Srinivasan et al. [84] concluded that µ metrics cannot track the long term channel state. Computing the µ metric for each link, we do not obtain any interesting result as the curves overlap (cf. Figures 5.2 e) and 5.3 e)). We can conclude that µ metric is insufficient to distinguish accurately the quality of links.

Changing the radio to CC2420, we have observed that loss length is below 1.5 for good links and increases linearly with the link quality decrease (see Figure 5.3 a ). Run lengths continue to be low for bad links (about 1) and high for good links (above 5), Figure 5.3 b).

Again, good stationary probability (π G ) discriminates links categories as it takes values within: 0.8-1 (good links), 0.6-0.8 (intermediate links), and 0-0.2 (bad links), Figure 5.3 c). Figure 5.3 d) depicts that bad state stationary probability (π B ) distinguishes also well link categories (0-0.2-good links, 0.2-0.4-intermediate links, 0.8-1-bad links).

Varying inter-packet interval First, we have considered the impact of data dissemination frequency. For this reason, we vary the inter-packet interval within 100ms and 30s.

Figure 5.4 exhibits an increase with 15% of the proportion of loss lengths below 2 for IPTs above 1s. This effect is due to the expansion of the good links proportion for IPT of 1s or 30s as shown in Section 3, cf. Table 3.6.

Table 5.2 reports that run lengths are slightly affected by IPT (i.e., good links have a run length of 74 at 100ms and 88 at 500ms), still, bad links have independent successful reception, having a run length average of 2. Besides, loss lengths for good and bad links do not depend on IPT values. However, loss lengths of intermediate links may decay at larger IPTs.

For a better understanding of Table 5.2, Figure 5.5 a) illustrates that loss lengths for good links have an average less than 1 for each IPT of 100ms, 200ms, and 500ms. Observation that proves that upper layers should consider to adapt their parameters to access the channel based on the quality of the link they rely on.

Figure 5.5 b) shows that intermediate links have losses with low correlation whereas bad links have strong correlated losses (i.e., from 4s to 28s).

The table shows as well that transition probabilities P (Good|Bad) and P (Bad|Good) do not depend on IPT values. For instance, a low P (Good|Bad) (i.e. 0.03) indicates that there are few transitions from Good to Bad state over the link. On the contrary, a low transition probability, P (Bad|Good), demonstrates that links tend to preserve their bad state.

Table 5.3 presents the performance given by the 2-state Markov model in terms of stationary state probabilities π G , π B , loss probability π Loss , and µ metric. We see that a good link has high π G (0.96), low π B (0.03), and low π Loss (∼0.03).

Packet size decrease To study the impact of the packet size over run and loss length, we reduce the packet size from 110B to 6B. Table 5.4 presents that good links continue to have short loss periods, about 1 to 2 for IPTs of 100ms, 200ms, 500ms, and 1s. To observe the long term distribution of packet losses, we set IPT to 30s. We can notice that loss length maintains an average of ∼1, proving that no relation exists between packet losses of good links. This is especially relevant to discriminate short term behavior of reliable links.

Additionally, P (Good|Bad) is low (∼0.03) whereas P (Bad|Good) is high (∼0.9) for good links; they do not depend on IPT set-up values.

Intermediate links show higher transition probability P (Good|Bad) ( ∼0.4) and lower P (Bad|Good) (max. ∼0.7). At the same time, bad links may be out of reception for long periods i.e. P (Good|Bad) ( ∼0.8) and P (Bad|Good) (max. ∼0.07). A P (Bad|Good) about 0.1 means that there is only 10% chance to return from bad to a good state. Considering the CC2420 radio, Table 5.6 highlights that like CC1101, losses are independent for good links with the maximum 1.9 average loss length per link for both 110B and 6B packet sizes. Intermediate links may encounter losses with an average length ranging from 2 to 10 for 110B and 6B packet size. Also, bad links show a loss length above 15, independent of the packet size. Again, transition probabilities are linearly dependent to the link category, exhibiting a P (Good|Bad) of ∼0.10 (good links), ∼0.3 (intermediate links), and ∼0.9 (bad links). On the other hand, P (Bad|Good) probability decreases from ∼0.80 for good links to ∼0.04 for bad links.

According to Table 5.7, on CC2420, good and bad stationary probabilities are independent of the packet length or the IPT. Thus, the probability loss remains a good link quality discriminator (0.13-good links, 0.27-intermediate links, 0.92-bad links).

Power decrease

We next decrease the output power to -10dBm and -30dBm on the CC1101 radio to verify the validity of our assumption. Table 5.8 presents that transition probabilities P (Good|Bad), P (Bad|Good) continue to be linearly dependent on the links category. Moreover, good links keep having large run lengths (may reach 120 consecutive successes) and low loss lengths ( ∼1.2) at -10dBm and -30dBm output power.

The output power decrease does not affect stability of good links, instead, intermediate links decay the stationary good probability from 0.66 at -10dBm to 0.57 at -30dBm (cf. Table 5.9). Additionally, bad links reduce their stationary probability from 0.14 at -10dBm to 0.05 at -30dBm.

On the CC2420 radio, to assess the effect of power decrease, we set up the output power to -15dBm and the -25dBm (lowest bound of CC2420). We observe that we may have at maximum two consecutive losses for good links and maximum 4-5 for intermediate links. Similarly to CC1101, the probability to transit from good to bad state is about 10% for good links at -15dBm and -25dBm.

The output power decrease contributes to the decrease of the intermediate and bad links good stationary probability from 0.62 at -15dBm to 0.56 at -25dBm and from 0.07 at -15dBm to 0.05 at -25dBm (cf. Table 5.11).

It is interesting to investigate how the loss length may discriminate the quality of links. To illustrate this point, we study the correlation between the probability of consecutive successes P(Good|Good) and the real PRR. 

Fitting the GE P (Good|Good) probability

In Figure 5.6, we fit the probability of successful receptions express as 1 -p (probability that a success is followed by a success) with a first order polynomial function, F (x) = p 1 * x + p 2 , where p 1 = 0.9785 and p 2 = 0.01309. The goodness of the fit is given by: a) CC1101 -R 2 : 0.9818, a SSE of 5.495, and a RMSE of 0.0394, b) CC2420 -R 2 : 0.977, a SSE of 2.675, and a RMSE of 0.017974.

Estimating PRR using stationary probabilities

Previously, we have obtained an estimation of PRR through a F-D function applied over avg and std LQI measured values; RSSI is recommended only for the detection of anomalous behavior. Also, we have noticed that stationary probabilities (π G and π B ) are good discriminators of link quality. Therefore, to refine the prediction of PRR using the obtained F-D fitting function, we apply the 2-state Markov model over avg and std LQI measured values for highly variable links.

Parameters

We consider avg and std LQI values of the received packets as a sequence of bits:

f (lqi) = 1, if lqi ≤ LQI threshold . 0, otherwise. (5.4) f (σ lqi ) = 1, if σ lqi ≤ σ LQI threshold . 0, otherwise. (5.5) 
where LQI threshold and σ LQI threshold are the threshold values of avg LQI and std LQI that may be elected with respect to the used hardware or to the environment. More Similarly, for std LQI, we consider a bound (σ LQI threshold ) of 1.5, values below are associated with 1 (good reception) while values above 1.5 are associated with 0 (bad reception) ( cf. Equation 5.5).

Figure 5.8 a) depicts the temporal evolution of avg LQI computed over windows of size 2 whereas Figure 5.8 b) shows the temporal evolution of std LQI. Given the overlapping of avg LQI and std LQI for the link with PRR=50% and PRR=20%, we associate each value of avg and std LQI to a sequence of bits; then, we compute the stationary probability π G for each sequence of five values as in Figure 5.7.

Stationary probability π G computed over avg LQI, Figure 5.8 c), shows that the link with PRR of 80% can be easily distinguish between links with 50% or 20% of PRR. Not only π G of avg LQI, but also π G of std LQI helps to discriminate links with 80%, 50% or 20% of PRR (cf. Figure 5.8 d)).

Considering that a node has in its neighborhood only intermediate links, we explore the effect of estimating PRR of available intermediate links through the FD fit as well as by computing the stationary probability π G of avg and std LQI. As intermediate links, we pick three links such as: 6 → 20 (PRR=64%), 6 → 57 (PRR=54%), 6 → 34 (PRR=34%).

We show the measured PRR over an observation window of 10 in Figure 5.9 a). Figure 5.9 b)-c) present the temporal evolution of avg LQI that ranges within 0.5 and ∼3 and std LQI with values concentrated within 0.5 and 5. Both avg LQI and std LQI have curves that overlaps.

To perform the PRR estimation, we fit the Fermi-Dirac function with the following parameters: (µ = 2.5, σ = 0.6) for avg LQI and (µ = 2.75, σ = 0.65) for std LQI. Figure 5.9 d) shows that using FD for avg LQI, the link 6 → 20 (PRR=64%) overlaps the link 6 → 57 (PRR=54%). On the other hand, when we use FD for std LQI all three links overlaps, see Figure 5.9 e).

To attain a better estimation of such high variable links, we calculate the stationary probability given by 2-state Markov model.

Figure 5.10 a) points out that π G of avg LQI gives a fairly good differentiation between the link of PRR=64%, PRR=54%, and PRR=34% π G of std LQI is also able to determine the best link within links of PRR=64%, PRR=54%, and PRR=34%.

We have also evaluated the relevance and the efficiency of using stationary probabilities to categorize high variable CC2420 links. Like CC1101, we assess the temporal fluctuation of intermediate links with different reception ratio: 174 → 127 (PRR=60%), 99 → 179 (PRR=40%), 188 → 105 (PRR=20%).

At first, we plot the real PRR that clearly identifies the links by their reception ratio (cf. Figure 5.11 a)). Looking at Figure 5.11 b), we observe that the temporal evolution of average LQI for 174 → 127 and 99 → 179 are quite close. Therefore, average LQI is not able to decide which one is better. Additionally, each link varies sporadically in a large range from 0 to 15 deepen the complexity of selecting the most reliable link as shown in Figure 5.11 c) .

Trying to identify the best link, we apply the Fermi-Dirac function over average LQI (µ = 25.4, σ = 4.3) and std LQI (µ = 14.4, σ = 1.8). Figure 5.11 d) illustrates that link 174 → 127 and link 99 → 179 have short spans overlap that may mislead link selection when we use the FD fit of avg LQI. However, link 188 → 105 with 20% can be well identify from the avg LQI FD fit. Moreover, investigating the FD fit of std LQI it is hard to decide best link as we face high overlapping (cf. Figure 5.9 e)).

To cope with easy-going PRR prediction when intermediate links are difficult to be estimated from the FD fit, we compute the stationary probability conforming to Figure Figure 5.12 a) shows that π G of avg LQI can very well distinguish among CC2420 links with PRR=60%, PRR=40%, and PRR=20%. On the contrary, we cannot exploit π G of std LQI due to the inaccurate prediction (cf. Figure 5.12 b)).

Link quality metric approach

To enable energy efficiency and reliable multi-hop communication, link quality estimators (LQE) need to be accurate independently of the network density or the noisy environments. Moreover, LQE needs to predict the quality of a link, the quality that reflects the successful data delivery across it.

To design such accurate link quality, it should be taken into consideration several requirements such as: energy efficiency, assure the stability of the route while data is transferred, avoid high rate dissemination of control packets (low overhead), or low complexity.

To meet these challenges, we propose an agile link estimator able to predict PRR on short term from existent hardware metrics (RSSI, LQI). We have concluded that RSSI manages to single out nodes with anomalous behavior (CC1101), or that low averages and standard deviations usually designate good packet receptions (CC2420). However, LQI demonstrates to characterize better link qualities via its average and standard deviation.

To assess short term link estimation, we use our statistical approach (Fermi-Dirac fitting function-coefficient of correlation up to 0. Considering the RPL routing protocol, we count for the couples (lqi i ,rssi i ) recorded with each reception of packets such as NS/NA, RS/RA (neighbor discovery), DIO/DIS/DAO (routing), and data.

Our approach of PRR estimation is two-folded. First, we consider the Fermi-Dirac model:

f (x) = 1/(1 + exp -(µ -x) σ ), (5.6) 
where f (x) gives the PRR prediction of sample x that may denote the lqi i , the rssi i of a single packet, or lqi i , σ lqi i computed over an observation window of size w; We obtained good performance for w = 10 (µ = 2.5, σ = 0.6) for avg LQI and (µ = 2.75, σ = 0.65) for std LQI. The Fermi-Dirac model has proven to predict PRR by achieving more than 80% accuracy. The significance of the Fermi-Dirac function is pictured by µ (cf. Equation 5.6 ) that gives the inflection point value and σ that indicates the slope of the curve. Both parameters are hardware reliable.

Second, to overcome spare spaces with prevalent poor links that present high variation, we compute additional to F-D, the stationary good state probability (π G ), where a high value of the link demonstrates reliable packet reception across it.

We further plan to integrate the algorithm 1 described above with RPL so that nodes may decide as preferred parent neighbors with good quality.

Algorithm 1 Estimating PRR of link (i,j): LQ ij Require: (lqi i ,rssi i ) for each received packet (DIO/DIS/DAO, data, NS/NA, RS/RA),0 ≥ lqi i > 60 for CC1101, 60 ≥ lqi i > 110 for CC2420 1: n ⇐ size of w (observation window) 2: for all link(i, j) ∈ neighborhood do (lqi l -lqi seq(p) )

6:

P RR lqi ⇐ 1/(1 + exp Choose link with higher π G as preferred parent. 13: else if Good links detected then 14:

Choose link with higher P RR ij as preferred parent. 15: end if

Conclusions

Investigating the correlation of losses, the first aspect to be pointed out is that losses are independent for good links, no matter the packet size. Moreover, on a short period of time, about seconds, we observed that loss length depends on the link quality. Varying the inter-packet time interval, we have noticed, that P (Good|Bad) and P (Bad|Good) probabilities are not impacted. We argue that upper layer may adapt their mechanism to access the channel (decaying retransmissions to 400ms for low IPT and 1s for higher IPT values), this way, they overcome extensive retransmissions due to short term loss correlation. Since the upper layer relies only on intermediate links the timing to delay further packet transmissions may be set up to 1.5s-2s.

We further analyzed the channel memory metric µ together with transitional and stationary probabilities (π G , π B ) of the GE model. We concluded that due to curve overlapping, the channel memory it is not a good link quality predictor neither for CC1101 nor for CC2420. Good and Bad state stationary probabilities measured for packet reception sequences or over sequences derived from avg and std LQI assess good link quality estimation. For example π G may range within 0.8-1 (good links), 0.6-0.8 (intermediate links), 0-0.2 (bad links)).

We have decreased the output power and we concluded that good links are not affected while intermediate and bad links can reduce with 10%, 50%, respectively the good stationary probability when they go from -10dBm to 0.57 -30dBm.
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We have shown that estimating PRR using the F-D fitting function may have short spans overlap that may mislead link prediction when links are high variable (i.e links with PRR=64%, PRR=40%, PRR=20%). Therefore, to overcome this issue, we employ the computation of the stationary probabilities associated to the avg and std LQI.

In order to measure π G and π B of avg LQI, we found that filtering avg LQI with a LQI threshold of 1.7 (CC1101), 72 (CC2420) leads to a fairly good estimation of link quality. However, as links vary sporadically in wide ranges, the π G and π B of std LQI is versatile as curves overlap.

Finally, we propose a PRR estimation algorithm based on hardware metrics by combining the obtained Fermi-Dirac fit with the stationary probability of the 2-state Markov model. The approach aims to discriminate between good, intermediate, and bad links using the F-D fit. Once we rely only on intermediate links we differentiate them by favoring links with the highest good stationary probability π G corresponding to the avg LQI.

Chapter 6

Conclusions and Future Work

Conclusions

The main contribution of this dissertation is to investigate the link quality estimation in large scale dense Wireless Sensor Networks. We focus our attention on a large scale WSN testbed (Senslab) to identify the factors that impact the pattern deviation of the hardware metrics that result in energy waste when communication protocols are used.

In Chapter 2 we give an overview of the main factors that influence link quality whereas we focus our attention on the hardware metrics (RSSI/LQI/SNR). We provide a critical study of existing link assessment mechanisms in terms of RSSI, LQI, PRR that relies on link or a composite link and routing information. Also, we overview the main aspects of several distance-vector based routing protocols (RPL, LOAD, CTP).

We concluded the chapter by several observations:

❼ An ideal link estimator needs to: assure a good delivery, be accurate, be reactive (adapt to network changes), consider the link asymmetry, have low overhead, be reliable in dense and noisy networks, be stable (able to smooth small fluctuations of links).

❼ Hardware metrics provide good information of the link properties (delivery, stability, asymmetry, reactivity).

❼ Composite metrics outperformed single metrics but require further investigation in terms of the required computation time, complexity, memory footprint, and temporal behavior in noisy environments and dense networks.

❼ To reduce the computation complexity and the memory footprint, link estimators should integrate mathematical models able to capture the dynamics of the hardware metrics (average RSSI, std RSSI, average LQI, deviation LQI).

In Chapter 3, we report on the results of measurements on SensLAB [START_REF] Senslab | Very large scale open wireless sensor network testbed[END_REF] testbed equipped with CC1101/CC2420 radio chips. We recorded RSSI (Received Signal Strength Indicator) and LQI (Link Quality Indicator) hardware metrics for which we consider several aspects such as average and standard deviation of RSSI/LQI, asymmetry of links, and percentage of formed links to find the best way of detecting good links in comparison to weak ones. Besides, we investigate various scenarios by varying the output power, the inter-packet time interval, and the length of the packet. We propose a link classification function of link degree of hardware metric fluctuation (LQI, RSSI) as good (80% ≤ P RR ≤ 100%), intermediate (20% < P RR ≤ 80%), and bad (0% < P RR < 20%). Based on the classification, we report on the proportion of link categories.

Our analysis has shown that:

❼ The network may benefit from a large proportion of good links on CC1101 and CC2420 (for 6 byte packets). However, for CC2420 radio, we record for 110 byte packets a majority of intermediate links.

❼ The CDF and PDF of RSSI (average, standard variance) and LQI (average, standard variance) can discriminate the quality of links. For example, on CC1101 the avg RSSI may help to discriminate links with PRR=100%, since avg RSSI for links below PRR=100% overlap. Also, the deviation of RSSI (CC2420) can be interesting but not sufficient to discriminate link quality. On CC2420, because CDF curves of avg RSSI and std RSSI overlap less we can use avg RSSI and std RSSI to distinguish between good and intermediate links. Furthermore, we can conclude that RSSI can fairly well differentiate good and bad links while LQI can help discriminate intermediate links.

❼ Good links present strong asymmetry (in Chapter 4 we called strong asymmetry a link with an asymmetry below 20) whereas intermediate and bad links present a high degree of asymmetry for CC1101 and CC2420 radio chips. Hence, the asymmetry of intermediate links (20% ≤ P RR < 80%) is not influenced by the packet size, even though decreasing the output power we lose links that present strong asymmetry. Moreover, the packet size and the power decrease highly impact bad links (0 < P RR < 20%).

In Chapter 4 we analyze the link quality in a statistical way. We have fitted a Fermi-Dirac function to the scatter diagram of the average and standard variation of RSSI and LQI to obtain an estimator of packet reception ratio (PRR). The function can estimate the level of PRR given the average and standard deviation of LQI and RSSI. To evaluate the estimator, we vary the observation window size over which we compare the obtained PRR to average and deviation of RSSI and LQI.

We concluded that:

❼ Looking for continuous distributions fitting the measured values of RSSI and LQI, we have found that Generalized Extreme Value, Johnson SB or Beta fits best.

❼ RSSI can be used it as an indicator of possible anomalous behavior of sensor nodes on CC1101, whereas on CC2420 its average and standard deviation can be used to discriminate link categories.

❼ The resulting Fermi-Dirac fitting function managed to predict accurately PRR over few samples for CC1101 and CC2420 from a given level of average and standard deviation of LQI.

❼ We have observed that having a window size of 10 we reach low MSE (0.005-0.02).

The work of this chapter has been published in the Algotel conference [START_REF] Bildea | Métriques de Qualité de Lien pour Réseaux de Capteur sans Fil en Intérieur et à Large Échelle[END_REF] and the PIMRC conference [START_REF] Bildea | Link Quality Metrics in Large Scale Indoor Wireless Sensor Networks[END_REF].

In Chapter 5, to detect the short term link dynamics, we study the loss and run length by applying the 2-state Markov model to each link. We next compute the probability of successive packet successes and losses for each link called as stationary probabilities. Probabilities that can offer fine discrimination of high variable links.

Lastly, we discuss on how we can take advantage of our Fermi-Dirac fit together with the two state Markov model metrics by integrating them within a RPL metric.

We concluded the chapter as follows:

❼ Investigating 2-state Markov model, we conclude that packet size and power decrease do not affect the successes and losses correlations. Moreover, packet losses and successful receptions depend on the link category. For example, a good link has no correlation of packet losses which means that losses are independent for good links. The packet loss length increases with the degradation of the quality of the link.

❼ We have observed that for low inter-packet interval time ∼ 200ms the loss correlation for good links reaches 400ms, whereas for intermediate links it may be down to 1.5s-2s.

❼ The channel memory is not a good link quality (µ) as is not able to estimate properly the link quality as curves overlap for each category.

❼ The π G , π B of the Markov model derived from avg and std LQI can accurately distinguish between high variable links; π G ranges within 0.8-1 (good links), 0.6-0.8 (intermediate links), 0-0.2 (bad links)). To convert the avg and std LQI, we recommend a LQI threshold of 1.7 (CC1101), 72 (CC2420), and a σ LQI threshold of 1.5 (CC1101) and 4 (CC2420).

❼ The power decrease from -10dBm to -30dBm leads to a reduction with 10% (intermediate links) and 50% (bad links) of the good stationary probability (π G ).

❼ Our approach of identifying link categories from the obtained Fermi-Dirac fit offers low prediction errors for the measures obtained from Senslab testbed. Also, intermediate links with high variation are well differentiated by good stationary probability π G corresponding to the avg LQI.

Future work

The work presented in this dissertation provides valuable insight on the link quality estimation issues on real testbeds. We highlight what appears to us the most promising research directions:

Integration and testing the approach In Chapter 4 and Chapter 5, we have evaluated the relevance of the received signal strength indication (RSSI) and the link quality indicator (LQI) hardware metrics to predict the PRR using distribution models ( e.g Log-logistic, Johnson, Beta).), Fermi-Dirac function, and 2-state Markov model. The promising way of estimating PRR that looks for stable links of good quality and adapt to slowly changing conditions is important for nodes joining the network and to improve overall network performance.

An interesting aspect that remains to be explored is the integration of the found model with the RPL (hop count, ETX) and LOAD (weak links) metrics.

A step forward is to prove its performance against common routing metrics as ETX, LQI, MinLQI, Hops, Weak links (cf. Chapter 2) by deploying it on Contiki OS and testing it on Senslab testbed.

Channel hopping

It is claimed by the literature that the channel hopping is the best solution to avoid bad links when multipath factors or Wi-Fi interference is present. More specifically, a protocol may perform well on a chosen channel whereas on a different channel the performance may be far different. So, in order to generalize our findings, it is needed to check the applicability of our model on different channels.

Impact of the link estimation model on different hardware platforms Considering the PRR prediction coupled together with ETX estimation, we plan to validate the above mentioned results of the link characterization on different ready-touse large scale testbeds such as Mirage [START_REF] Chun | Mirage: a Microeconomic Resource Allocation System for Sensornet Testbeds[END_REF] ( Mica2 and Mica2Dot), Kansei, TWIST testbed [START_REF] Handziski | TWIST: a Scalable and Reconfigurable Testbed for Wireless Indoor Experiments with Sensor Networks[END_REF][START_REF] Zuniga | Link Quality Ranking: Getting the Best out of Unreliable Links[END_REF] (Tmote Sky), Wisebed (Telos B, iSense) [START_REF] Braun | Wireless Sensor Network Testbeds (Wisebed)[END_REF], Greenorbs (Greenorbs nodes) [START_REF] Greenorbs | GreenOrbs: A Long-Term Kilo-Scale Wireless Sensor Network[END_REF].

Smoothing to a single value Another direction that remains unexplored is the need to check the inefficiency of smoothing the link estimation to a single value. We believe that tracking simultaneously different values such as the average/deviation of the hardware metrics (layer 1), the number of retransmissions (layer 2), and at the same time routing information such as density, delay will lead to more accurate link estimation.

Opportunistic routing Another direction that requires investigation is the opportunistic routing that takes advantage from a set of links at the same time.

It would be quite interesting to be able to choose dynamically the set of links on the basis of the short term quality. The idea is to rely on the observations driven from the FD fit and the GE model to predict the PRR on short terms, and therefore, to be able to guarantee high reception independently of the fluctuation degree.
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 222 Figure 2.2: The IEEE 802.15.4 PHY transmission process.
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 23 Figure 2.3: The frame format for CC1101 and CC2420 radio chips.

  LQI = (CORR -a) * b (2.10) CORR represents the hardware correlation taking values between 50 and 110, a and b are constants whose values are specific to each hardware provider. For this reason, it remains unclear how LQI is computed. Specifically, a high correlation value of LQI gives better links. Figure 2.3 b) illustrates the RSSI and LQI computation for CC2420.

Figure 2 . 4 :

 24 Figure 2.4: Temporal evolution of the main link estimators that use active, passive, or hybrid monitoring.

Figure 2 .
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 1031 Figure 3.1: Topology of the second tray of SensLAB testbed in Strasbourg. An example of the measured PRR for Node 14 (transmission power: 0dBm): an arrow represents a link labeled with the measured PRR.

Figure 3 . 2 :

 32 Figure 3.2: The link occurrence ratio for links with a given PRR at 0dBm output power on CC1101.
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 333 Figure 3.3: The RSSI evolution over 24h for 16 → 23 (PRR=100%) and 16 → 53 (PRR=50%) links for on the CC1101-testbed.

Figure 3 .

 3 4 a) shows that the probability density function 3PDF of avg. RSSI -Strasbourg trays:1,2,3 at 0dBm.

  PDF of avg. RSSI -Strasbourg tray 2 at 0dbm, -10dBm, -30dBm. PDF of std. RSSI -Strasbourg tray 2 at 0dbm, -10dBm, -30dBm.
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 34 Figure 3.4: The Probability Density Function (CC1101) of a) avg. RSSI for Strasbourg trays: 1,2,3 at 0dBm, b) avg. RSSI for Strasbourg tray 2 at 0dbm, -10dBm, -30dBm, c) std. RSSI for Strasbourg tray 2 at 0dbm, -10dBm, -30dBm.
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 33 5 a) shows that at 0dBm output power the RSSI values for CC2420 con-Link quality characterization in an indoor Wireless Sensor Network PDF of std. RSSI
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 35 Figure 3.5: The Probability Density Function for 100 nodes on Lille (CC2420) for a) avg. RSSI at 0dbm, -10dBm, -30dBm output power, b) std. RSSI at 0dbm, -10dBm, -30dBm output power.
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 3 Figure 3.6 shows the RSSI readings for all received packets for the main subcategories of good links at 0dBm. More specifically, Figure 3.6 a) and b) shows that good links may be distinguished on CC1101 by a threshold of -65dBm, independently of the packet size 6 bytes (a) or 110 bytes (b).Hence, we noticed that good links with a PRR above 99% have a RSSI above -65dBm. Additionally, we have observed that the threshold keeps around -65dBm either at -10dBm with or without concurrent transmissions.We investigated the cumulative distribution function of average RSSI and deviation RSSI over the entire experiment for each sub-category of links at a step of 10%. First and foremost, we have observed that for CC1101, the average RSSI overlaps for subcategories with a PRR below 99%. Yet, links with PRR above 99% go over -63dBm.
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  110 byte packets, CC1101.
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 36 Figure 3.6: The cumulative distribution function for good links (PRR>80%) as a function of RSSI at an transmission power set to 0dBm for a) 6 byte packets, CC1101, c) 110 byte packets, CC1101 c) 6 byte packets, CC2420, d) 110 byte packets, CC2420
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 3 11 b) shows that raising 3110 byte packets, CC1101.

  110 byte packets, CC2420.
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 37 Figure 3.7: The cumulative distribution function of RSSI for links with P RR ≥ 99% for various output power: a) CC1101: 0dBm, -10dm and -30dBm; b) CC2420: 0dBm, -15dBm and -25dBm.
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  avg RSSI for links (0%<PRR<40%).
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 38 Figure 3.8: The cumulative distribution function of avg RSSI for sub-groups of links spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%, c) 0%<PRR<40% at an output power of 0dBm, CC2420.

  std RSSI for links (0%<PRR<40%).
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 39 Figure 3.9: The cumulative distribution function of std RSSI for sub-groups of links spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%, c) 0%<PRR<40% at a transmission power set to 0dBm on CC2420.

  avg LQI for links (0%<PRR<40%).
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 310 Figure 3.10: The cumulative distribution function of avg LQI for sub-groups of links spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%, c) 0%<PRR<40% at a transmission power set to 0dBm on CC1101.

  std LQI for links (0%<PRR<40%).
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 311 Figure 3.11: The cumulative distribution function of std LQI for sub-groups of links spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%, c) 0%<PRR<40% at a transmission power set to 0dBm on CC1101.
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  avg LQI for links (0%<PRR<40%).

Figure 3 . 12 :

 312 Figure 3.12: The cumulative distribution function of avg LQI for sub-groups of links spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%, c) 0%<PRR<40% at a transmission power set to 0dBm on CC2420.

  std LQI for links (0%<PRR<40%).
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 313 Figure 3.13: The cumulative distribution function of std LQI for sub-groups of links spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%, c) 0%<PRR<40% at a transmission power set to 0dBm on CC2420.
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 314 Figure 3.14: RSSI of bidirectional links (x → y and y → x) for CC1101: a) 6 bytes, output power of 0dBm, b) 110 bytes, output power of 0dBm, c) 110 bytes, output power of -10dBm.

  >y RSSI[dBm] Link from y->x RSSI[dBm](a) 6 byte packets size at 0dBm.

  >y RSSI[dBm] Link from y->x RSSI[dBm] (b) 110 byte packets size at 0dBm.

  >y RSSI[dBm] Link from y->x RSSI[dBm](c) 110 byte packets size at -15dBm.
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 315 Figure 3.15: RSSI of bidirectional links (x → y and y → x) for CC2420: a) 6 bytes, output power of 0dBm, b) 110 bytes, output power of 0dBm, c) 110 bytes, output power of -15dBm.

  110 byte packets size at 0dBm.

  110 byte packets size at -10dBm.
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 316 Figure 3.16: The RSSI symmetry for perfect (P RR = 100%), good (80% ≤ P RR ≤ 99%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links for CC1101: a) 6 bytes, output power of 0dBm, b) 110 bytes, output power of 0dBm, c) 110 bytes, output power of -10dBm.

  6 byte packets size at 0dBm.

  110 byte packets size at 0dBm.

  110 byte packets size at -10dBm.
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 317 Figure3.17: The RSSI symmetry for perfect (P RR = 100%), good (80% ≤ P RR ≤ 99%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links for CC2420: a) 6 bytes, output power of 0dBm, b) 110 bytes, output power of 0dBm, c) 110 bytes, output power of 0dBm -15dBm.
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 318 Figure 3.18: The cumulative distribution function of unidirectional links (with a PRR>0% in just one direction) and the bidirectional links as a function of RSSI for CC1101 radio: a) 6 bytes, 0dBm, b) 110 bytes, 0dBm, c) 110 bytes, -10dBm.

  6 byte packets size at 0dBm.

  110 byte packets size at 0dBm.

  110 byte packets size at -10dBm.

Figure 3 . 19 :

 319 Figure 3.19: The cumulative distribution function of unidirectional links (with a PRR>0% in just one direction) and the bidirectional links as a function of RSSI for CC2420 radio: a) 6 bytes, 0dBm, b) 110 bytes, 0dBm, c) 110 bytes, -10dBm.

Contents 4 . 1

 41 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 Analysis of RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Fitting the Distributions of RSSI and LQI . . . . . . . . . . . . 91 4.4 Fitting PRR in Function of RSSI and LQI . . . . . . . . . . . . 96 4.5 Estimating PRR using F-D function . . . . . . . . . . . . . . . . 96 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4 . 1 :

 41 Figure 4.1: Scatter diagram of PRR in function of the average RSSI for each link.
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 442 Figure 4.2: CDF of the measured average RSSI for each node (80 distributions in total). The distributions of two nodes are clearly different from other nodes.
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 43 Figure 4.3: Scatter diagram of PRR in function of the average RSSI, two anomalous nodes eliminated.
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 44 Figure 4.4: Fitting of the scatter diagram with a Fermi-Dirac function.

  Figure 4.4 presents the fitting of the scatter diagram with a Fermi-Dirac function of the form f (x) = 1/(1 + exp -(µ-x) σ).
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 45 Figure 4.5: Fitting of the averaged RSSI.

Figure 4 . 6 :

 46 Figure 4.6: Density functions fitting the average RSSI: a) CC1101, b) CC2420.

  Figure 4.7 a)-depicts the best fitted functions for the averaged LQI, such as Generalized Extreme Value as well as Beta, and Johnson SB. Also, shifting to CC2420 radio, Figure 4.7 b) shows that Generalized Extreme Value and Johnson SB fit best the average LQI.
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 4 8 a) depicts that for CC1101, the standard deviation of LQI is also a good 94 Chapter 4. Estimating Link Quality in an indoor Wireless Sensor Network Fit for CC1101.

  Fit for CC2420.
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 47 Figure 4.7: Density functions fitting the average LQI: a) CC1101, b) CC2420.
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 48 Figure 4.8: Density functions fitting the standard deviation of LQI: a) CC1101, b) CC2420.
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 4 Figure 4.10 b) depicts the Fermi-Dirac function fit over the scatter diagram of the standard deviation of RSSI.We observe that the deviation of RSSI can easily discriminate good and intermediate from bad links, still, it overlaps for the good and intermediate links. Therefore, analyzing the average and the standard deviation for RSSI and LQI on CC2420, we found out that the ratio between RSSI std./LQI avg. fits well the F-D function, Figure4.10 c). Hence, it discriminates best good from intermediate and bad links. In fact, we have obtained a goodness of the ratio fit characterized by: SSE: 0.2338, R-square: 0.9711, Adjusted R-square: 0.9708, and a RMSE: 0.0491.We have applied a similar approach to LQI-fitting a Fermi-Dirac function to the scatter diagram of the average and standard variation of LQI (we use the logarithmic scale).For CC1101, Figure.4.11 a) displays a good fit for average LQI, accordingly LQI can discriminate the link categories. However, on CC2420, Figure.4.11 b) presents a not so good fit of average LQI, thus, average LQI is insufficient to discriminate link categories.On the other hand, the F-D function fits very well (with the R-value >0.98 ) the standard deviation of LQI, 4.12 a)-b) present the corresponding result.

  avg. RSSI std./LQI avg. Fit FD(µ=19.4, σ=7.5) (c) FD fit of std RSSI/avg LQI.
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 4105 Figure 4.10: Fitting the density and Fermi-Dirac function of the standard deviation of RSSI on CC2420: a) Fitting the density functions on standard deviation of RSSI, b) Fitting F-D on standard deviation of RSSI, c) Fitting F-D on the radio function, std RSSI/ avg LQI over links.
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 4 σ=4.3) (b) CC2420 radio chip.
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 411 Figure 4.11: Fitting averaged LQI over links.
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 412 Figure 4.12: Fitting the standard deviation of LQI averaged over links: a) CC1101, b) CC2420.
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 413 Figure 4.13: Estimation of the PRR for a link with PRR 80% with w=10. PRR vs. LQI avg.
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 4 Estimating Link Quality in an indoor Wireless Sensor Network PRR of link 23 → 58.

  PRR of link → 19.

  PRR of link 6 → 51.

Figure 4 . 14 :

 414 Figure 4.14: Temporal fluctuation of PRR for links: 23 → with PRR 80%, 69 → 19 with PRR 50%, and 6 → 51 with PRR 20% and with a window w∈{5,10,100}.

Figure 5 . 1 :

 51 Figure 5.1: Transition probabilities of Gilbert-Elliot: 2-state Markov diagram.Good state represents a better quality channel whereas Bad state corresponds to a lower quality channel.

  Packet loss length.

  Bad state stationary probability πB.
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 52 Figure 5.2: Cumulation Distribution Function for each link category: good, intermediate, bad for a) packet loss length, b) packet run length, c) stationary probability in good state π G , d) stationary probability in bad state π B , and e) channel memory µ on CC1101, 110B, 0dBm.

  Bad state stationary probability πB.
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 53 Figure 5.3: Cumulation Distribution Function for each link category: good, intermediate, bad for a) packet loss length, b) packet run length, c) stationary probability in good state π G , d) stationary probability in bad state π B , and e) channel memory µ on CC2420, 110B, 0dBm.
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 54 Figure 5.4: Cumulation Distribution Function of loss length at IPT of 100ms, 200ms, 500ms, 1s, 30s, CC1101, 0dBm.

  CC1101 -PRR vs. GE:(1-p). CC2420 -PRR vs. GE:(1-p).
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 56 Figure 5.6: Fitting of the scatter diagram of PRR in function of P (Good|Good) probability (1 -p) with a linear function.
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 57 Figure 5.7: Computation process of the stationary probabilities from avg and std LQI values.

  πG of avg LQI.

  πG of std LQI.
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 58 Figure 5.8: Stationary probability π G of avg/std LQI derived from avg/std LQI measured values a) avg LQI, b) std LQI, c) avg LQI (threshold of 1.7), and b) std LQI (threshold of 1.5) for link 23 → 58 (PRR=80%), link 69 → 19 (PRR=50%), and link 6 → 51 (PRR=20%), w=10, CC1101, 0dBm.

  Estimated PRR (FD of avg LQI).

  Estimated PRR (FD of std LQI).
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 59 Figure 5.9: Estimating PRR using the Fermi Dirac fitting function for three intermediate links (6 → 20 (PRR=64%), 6 → 57 (PRR=54%), 6 → 34 (PRR=34%)) a) measured PRR, b) avg LQI, c) std LQI, d) FD fit of avg LQI, and e) FD fit of std LQI over an observation window of 10 for CC1101, 0dBm.

  πG of avg LQI.

  πG of std LQI.

Figure 5 . 10 :

 510 Figure 5.10: Stationary probability π G of avg/std LQI derived from avg/std LQI measured values a) avg LQI, b) std LQI, c) avg LQI (threshold of 1.7), and b) std LQI (threshold of 1.5) for link 23 → 58 (PRR=80%), link 69 → 19 (PRR=50%), and link 6 → 51 (PRR=20%), CC1101, 0dBm.

  [START_REF] Xu | Exploring Spatial Correlation for Link Quality Estimation in Wireless Sensor Networks[END_REF] and the 2-state Markov model) driven from the carried out experiments on large scale indoor Senslab testbed (CC1101, 120 Chapter 5. Analysis of Packet Loss with 2-state Gilbert-Elliot Model

  Estimated PRR (FD of avg LQI).

  Estimated PRR (FD of std LQI).

Figure 5 . 11 :

 511 Figure 5.11: Estimating PRR using the Fermi-Dirac fitting function for three intermediate links (174 → 127 (PRR=60%), 99 → 179 (PRR=40%), 188 → 105 (PRR=20%)) a) measured PRR, b) avg LQI, c) std LQI, d) FD fit of avg LQI, and e) FD fit of std LQI over an observation window of 10 for CC2420, 0dBm.

  πG of avg LQI.

  πG of std LQI.

Figure 5 . 12 :

 512 Figure 5.12: Stationary probability π G of avg/std LQI derived from avg/std LQI measured values a) avg LQI, b) std LQI, c) avg LQI (threshold of 70), and b) std LQI (threshold of 3.5) for 174 → 127 (PRR=60%), 99 → 179 (PRR=40%), 188 → 105 (PRR=20%), CC2420, 0dBm.
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  The purpose of CCA is to inspect the medium state if it is busy or idle. A CCA may be performed in three modes. Mode 1 depends on an Energy Detection Threshold whereas mode 2 and 3 are depending on carrier sensing. CCA Mode 1 senses the channel as busy if the detected power in the channel exceeds the chosen threshold (generally -77dBm). CCA Mode 2 is based on carrier sense that considers a channel busy only if a signal with an IEEE 802.15.4 modulation and spreading technique is detected. Then, CCA Mode 3 is a combination of the mode 1 and 2. More specifically, a channel is detected as busy if it detects a IEEE 802.15.4 signal and the energy in the channel overcomes the chosen threshold.❼ Channel Frequency Selection The transceiver can send data over one of the 27 channels available in 802.15.4. Thus, the physical layer is in charge of choosing the channel over which the transceiver sends packets.

	Band[Hz]	Number of channels	Bit rate [kbps]	Modulation	Sensitivity [dBm]
	868M	1	20	BPSK	-92
	915M	10	40	BPSK	-92
	2.4G	16	250	O-QPSK	-85

❼ Received Signal Strength (RSSI). RSSI gives the strength of the received signal.

It is measured over the first 8 symbols following the start delimiter of a frame.

❼ Clear Channel Assessment (CCA).

Table 2 .

 2 

1: IEEE 802.15.4 channel characteristics.

Table 2 . 2

 22 15.4 compliant. It uses Direct Sequence Spread Spectrum (DSSS) and Offset Quadrature Phase-shift Keying (O-QPSK) modulation scheme.

	Radio	CC1100	CC2420
	Data rate(max)	500 kbps	250 kbps
	Frequencies	315/433/915 MHz	2.4 GHz
	Rx Current	14 mA	17.4 mA
	Tx Current	15 mA	19.7 mA
	Output Power	+10dBm:-30dBm	0dBm:-25dBm
	Receiver Sensitivity	-88 dBm	-95 dBm
	Modulation	2-FSK/GFSK/MSK/OOK/ASK O-QPSK/DSSS

: Radio parameters of CC1101

Table 2 . 3 :

 23 Link classification highlighted by various research efforts.

  as it selects shortest paths, still, data collection is not reliable as retransmissions are omitted. ❼ Liu et al. 2009 [51] compared RNP, ETX, and 4Bit metrics in terms of path quality, delivery rate, cost per packet, routing overhead, and neighbor blacklisting (accurate predefined thresholds to discriminate unreliable neighbors). They concluded that RPN choses shorter paths compared with ETX and 4B and obtains a smaller overhead. Moreover, ETX outperforms RPN being more reactive when links encounter short-term drops. Besides, ETX introduces a high overhead compared to RNP and 4B. On the other hand, in dense networks, none of the three metrics guarantee a good path quality. Overall, ETX achieved the best delivery rate.

Table 2 .

 2 

	short-term

4: Link quality estimators classification in terms of their attained reactivity (adapt to network changes) , stability (capacity to ignore small fluctuations of links), bi-directionality (asymmetry of links), reliability (successful data delivery).

  Chapter 3. Link quality characterization in an indoor Wireless SensorNetwork

				good links: PRR ≥ 80%		
				intermediate links: 20 ≤ PRR <80	
				bad links: 0<PRR<20		
		1	2	3	4	5	6	7	8
				95%					
					80%			
	1 2	26 2	29 5	32 8 100%	35 11	38 14	41 17	44 20	47 23
				90%				
		50	53	56	59	62	65	68	71
				10%		20%		
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		146	149 152 155 158 161 164 167
		30%			60%			
		170	173 176 179 182 185 188 191
		194	197 200 203 206 209 211 214
				50%					
		217	220 223 226 229 232 235 238

Table 3 . 1 :

 31 Experiment parameters

	Experiment area	9m x 7m x 2m
	Number of nodes	3 x 80
	Traffic type, inter-packet interval	broadcast, 0.1s/0.2s/0.5s/1s/30s
	Number of sent packets	5000
	Packet size	110 & 6 bytes
	Transmission power	10dbm, 5dbm, 0dBm, -10dBm, -30dBm
	Topology	grid

Table 3 . 2 :

 32 100 sender nodes times 99 receiver nodes). Parameters of the WSN430, CC2420-based testbed.

	Experiment area	11.4m x 2.4m
	Number of nodes	20 x 5
	Environment: testbed	Senslab Lille
	Traffic type, inter-packet interval broadcast, 0.1s/0.2s/0.5s/1s
	Number of sent packets	1000
	Packet size	110 & 6 bytes
	Transmission power	0dBm, -10dBm
	Topology	grid

Table 3 . 3
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: Proportion of links in each category: good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%

Table 3 . 4 :

 34 Proportion of links in each category: good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%

Table 3 . 6 :

 36 Proportion of links for short and long packets, grid of 80 nodes, Strasbourg-CC1101 at 0dBm output power.

Table 3 .
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8: Proportion of links for short/long packet, grid of 100 nodes, Lille-CC2420 at 0dBm output power.

Table 4 . 2 :

 42 Error of estimating PRR for a link (mean PRR of 80%).

	Estimator	M SE, w = 10 M SE, w = 100 RM SE, w = 10 RM SE, w =
	LQI	0.035	0.012	0.187	0.109
	ST D	0.058	0.010	0.240	0.100
	EW M A LQI (α = 0.1)	0.094	0.060	0.306	0.244
	EW M A LQI (α = 0.5)	0.075	0.043	0.264	0.207

Table 4 . 3 :

 43 Error of estimating PRR for a link (mean PRR of 50%).

	Estimator		M SE, w = 10 M SE, w = 100 RM SE, w = 10 RM SE, w =
	LQI		0.081	0.039	0.284	0.197
	ST D		0.157	0.197	0.390	0.443
	sqrt(LQI	2 + ST D	2 )	0.099	0.071	0.301	0.266
	EW M A LQI (α = 0.1)	0.194	0.177	0.440	0.420
	EW M A LQI (α = 0.5)	0.178	0.159	0.421	0.398
	EW M A LQI (α = 0.9)	0.137	0.203	0.370	0.450

Table 4 . 4 :

 44 Error of estimating PRR for a link (mean PRR of 20%).

	Estimator		M SE, w = 10 M SE, w = 100 RM SE, w = 10 RM SE, w =
	LQI		0.03	0.04	0.173	0.200
	ST D		0.076	0.040	0.275	0.200
	sqrt(LQI	2 + ST D	2 )	0.044	0.034	0.209	0.184
	EW M A LQI (α = 0.1)	0.158	0.205	0.397	0.452
	EW M A LQI (α = 0.5)	0.076	0.099	0.275	0.314
	EW M A LQI (α = 0.9)	0.054	0.062	0.232	0.248

Table 4 . 5 :

 45 Error of estimating good links (mean PRR of [80%-100%]).

	Estimator		AE, w = 10 AE, w = 100 M SE, w = 10 M SE, w = 100 RM SE, w = 10 RM SE, w = 100
	LQI		0.063	0.032	0.010	0.002	0.100	0.044
	ST D		0.07	0.037	0.017	0.004	0.130	0.063
	sqrt(LQI	2 + ST D	2 )	0.06	0.028	0.009	0.003	0.094	0.054
	EW M A LQI (α = 0.1)	0.048	0.032	0.025	0.021	0.158	0.144
	EW M A LQI (α = 0.5)	0.037	0.028	0.014	0.007	0.118	0.083
	EW M A LQI (α = 0.9)	0.033	0.021	0.005	0.001	0.071	0.031

Table 4 . 6 :

 46 Error of estimating intermediate links (mean PRR of [20%-80%)).

	Estimator		AE, w = 10 AE, w = 100 M SE, w = 10 M SE, w = 100 RM SE, w = 10 RM SE, w = 100
	LQI		0.211	0.161	0.072	0.039	0.268	0.197
	ST D		0.244	0.181	0.094	0.061	0.306	0.246
	sqrt(LQI	2 + ST D	2 )	0.197	0.144	0.062	0.038	0.248	0.194
	EW M A LQI (α = 0.1)	0.290	0.288	0.159	0.140	0.398	0.374
	EW M A LQI (α = 0.5)	0.255	0.254	0.128	0.110	0.357	0.331
	EW M A LQI (α = 0.9)	0.191	0.207	0.076	0.064	0.275	0.252

Table 4 . 7 :

 47 Error of estimating bad links (mean PRR of (0%-20%)).

	Estimator		AE, w = 10 AE, w = 100 M SE, w = 10 M SE, w = 100 RM SE, w = 10 RM SE, w = 100
	LQI		0.160	0.158	0.047	0.216	0.034	0.464
	ST D		0.225	0.150	0.088	0.291	0.296	0.539
	sqrt(LQI	2 + ST D	2 )	0.166	0.133	0.048	0.215	0.219	0.463
	EW M A LQI (α = 0.1)	0.285	0.280	0.171	0.190	0.410	0.437
	EW M A LQI (α = 0.5)	0.200	0.240	0.118	0.170	0.343	0.412
	EW M A LQI (α = 0.9)	0.190	0.320	0.109	0.290	0.330	0.538

Table 5 . 1 :

 51 Performance for Link 1 and Link 2 .

	Link P RR	p	r π G π B π loss	µ
	1	0.67 0.25 1 0.8 0.2	0.2 -0.25
	2	0.67 0.66 1 0.6 0.39 0.39 -0.66
	Table			

Table 5 . 2
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	Parameters		run length		loss length		GE: p			GE: r	
	IPT	100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms
	110B P RR ≥ 80%	74.2	73.5	88.5	1.6	2	1.7	0.03	0.03	0.02	0.84	0.87	0.89
	110B 20% ≤ P RR < 80% 14.8	7.6	9.4	12.5	7.9	5.3	0.43	0.40	0.41	0.42	0.41	0.38
	110B 0 < P RR < 20%	2.2	1.4	1.5	43.4	41.1	56.8	0.81	0.82	0.82	0.07	0.08	0.05
	Parameters		π G			π B			π Loss			µ	
	IPT	100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms
	110B P RR ≥ 80%	0.96	0.96	0.97	0.03	0.03	0.02	0.03	0.03	0.02	0.13	0.1	0.09
	110B 20% ≤ P RR < 80% 0.49	0.50	0.48	0.50	0.49	0.51	0.50	0.49	0.51	0.15	0.19	0.21
	110B 0 < P RR < 20%	0.07	0.08	0.05	0.92	0.91	0.94	0.92	0.91	0.94	0.12	0.1	0.13

: Average number of consecutive good packet receptions (run length), packet losses (loss length), the GE transition probabilities (p = P (t i = Bad|t i-1 = Good), r = P (t i = Good|t i-1 = Bad) for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links a with 110B packet size, CC1101.

Table 5 . 3 :

 53 Average stationary state probabilities π G , π B , loss probability π Loss , and µ metric for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links a with 110B packet size, CC1101.

Table 5 .

 5 5 shows that π G and π B are independent of IPT for the 6B packet size. Yet, they vary with the link category (0.03-good links, 0.52-intermediate links, 0.90-bad links).

	Parameters		run length					loss length					GE: p				GE: r
	IPT	100ms 200ms 500ms 1s	30s	100ms 200ms 500ms 1s	30s	100ms 200ms 500ms 1s	30s	100ms 200ms 500ms 1s	30s
	6B P RR ≥ 80%	30.2	150	157	141 27	2	1.5	1.3	1	1.4	0.05	0.03	0.02	0.04 0.04 0.81	0.87	0.89	0.93 0.94
	6B 20% ≤ P RR < 80% 8	18.8	24.4	59.6 11.7 9	12	19	2.3	2.5	0.23	0.24	0.23	0.19 0.19 0.42	0.41	0.38	0.25 0.74
	6B 0 < P RR < 20%	5	2.4	3	4	1.3	52	80	107.8	16.3 19.1 0.42	0.38	0.46	0.41 0.79 0.07	0.08	0.10	0.04 0.07

Table 5 . 4
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	Parameters			πG					πB					πLoss	µ
	IPT	100ms 200ms 500ms 1s	30s	100ms 200ms 500ms 1s	30s	100ms 200ms 500ms 1s	30s	100ms 200ms 500ms 1s	30s
	6B P RR ≥ 80%	0.94	0.96	0.97	0.95 0.95 0.05	0.03	0.02	0.04 0.04 0.05	0.02	0.02	0.04 0.04 0.14	0.10	0.09	0.03 0.02
	6B 20% ≤ P RR < 80% 0.64	0.63	0.62	0.56 0.79 0.35	0.36	0.37	0.43 0.20 0.35	0.36	0.37	0.43 0.20 0.35	0.35	0.39	0.56 0.07
	6B 0 < P RR < 20%	0.14	0.17	0.17	0.08 0.08 0.85	0.82	0.82	0.91 0.91 0.85	0.82	0.82	0.91 0.91 0.51	0.54	0.44	0.55 0.14

: Average number of consecutive good packet receptions (run length), packet losses (loss length), the GE transition probabilities (p = P (t i = Bad|t i-1 = Good), r = P (t i = Good|t i-1 = Bad) for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links with a packet size of 6B, CC1101.

Table 5 . 5
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		Parameters		run length			loss length			GE: p			GE: r
		IPT	100ms 200ms 500ms 1s	100ms 200ms 500ms 1s	100ms 200ms 500ms 1s	100ms 200ms 500ms 1s
	110B P RR ≥ 80%	13.1	14.6	17.4	7.6 1.2	1.2	1.4	1.1	0.13	0.12	0.09	0.10 0.84	0.85	0.82	0.87
	110B 20% ≤ P RR < 80% 3.5	3.7	4.2	3.1 1.9	2.4	2.7	2.3	0.29	0.27	0.24	0.32 0.78	0.76	0.65	0.64
	110B 0 < P RR < 20%	1.0	1.0	1.1	1.0 28.0	35.2	26.7	22.6 0.92	0.92	0.85	0.88 0.08	0.08	0.07	0.08
	6B	P RR ≥ 80%	12.1	9.0	10.3	9.8 1.5	1.8	1.9	1.3	0.11	0.09	0.09	0.10 0.89	0.91	0.86	0.93
	6B	20% ≤ P RR < 80% 2.8	3.4	3.8	3.5 2.9	2.14	3	8.3	0.32	0.31	0.24	0.32 0.79	0.63	0.61	0.75
	6B	0 < P RR < 20%	1.1	1.0	1.6	1.0 24.2	30.2	15.7	21.6 0.86	0.94	0.85	0.91 0.04	0.02	0.02	0.04
	Table 5.6: Average number of consecutive good packet receptions (run length),
		packet losses (loss length), the GE transition probabilities (p = P (t i =
		Bad|t i-1 = Good), r = P (t i = Good|t i-1 = Bad) for good (P RR ≥
		80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links
		for short (6B) and long (110B) packets, at 0dBm output power, CC2420.

: Average stationary state probabilities π G , π B , loss probability π Loss , and µ metric for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links with a packet size of 6B, CC1101.

Table 5 . 7 :

 57 Average stationary state probabilities π G , π B , loss probability π Loss , and

	µ metric for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%),
	bad (0 < P RR < 20%) links for short (6B) and long (110B) packet, at
	0dBm output power, CC2420.

Table 5 . 8 :

 58 Average number of consecutive good packet receptions (run length), packet losses (loss length), the GE transition probabilities (p = P (t i = Bad|t i-1 = Good), r = P (t i = Good|t i-1 = Bad) for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links at -10 dbm and -30dBm output power, CC1101.

	Parameters	run length loss length GE: p GE: r
	IPT	500ms	500m	500ms 500ms
	110B, TX=-10dbm P RR ≥ 80%	120	1.2		0.04	0.94
	110B, TX=-10dbm 20% ≤ P RR < 80% 54	3		0.3	0.59
	110B, TX=-10dbm 0 < P RR < 20%	1.3	24		0.7	0.12
	110B, TX=-30dbm P RR ≥ 80%	117	1		0.05	0.94
	110B, TX=-30dbm 20% ≤ P RR < 80% 34	2		0.4	0.55
	110B, TX=-30dbm 0 < P RR < 20%	0.9	63		0.8	0.05
	Parameters		π G	π B	π Loss	µ
	IPT		500ms 500m 500ms 500ms
	110B, TX=-10dbm P RR ≥ 80%		0.95	0.04	0.04	0.02
	110B, TX=-10dbm 20% ≤ P RR < 80% 0.66	0.33	0.33	0.11
	110B, TX=-10dbm 0 < P RR < 20%	0.14	0.85	0.85	0.18
	110B, TX=-30dbm P RR ≥ 80%		0.94	0.05	0.05	0.01
	110B, TX=-30dbm 20% ≤ P RR < 80% 0.57	0.42	0.42	0.05
	110B, TX=-30dbm 0 < P RR < 20%	0.05	0.94	0.94	0.15

Table 5 . 9

 59 

: Average stationary state probabilities π G , π B , loss probability π Loss , and µ metric for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links at -10 dbm and -30dBm output power, CC1101.

Table 5 .

 5 10: Average number of consecutive good packet receptions (run length), packet losses (loss length), the GE transition probabilities (p = P (t i = Bad|t i-1 = Good), r = P (t i = Good|t i-1 = Bad) for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links at -15 dbm and -25dBm output power on CC2420 radio.

		run length loss length GE: p GE: r
	IPT	500ms	500m	500ms 500ms
	110B, TX=-15dbm P RR ≥ 80%	8.5	1.1		0.09	0.90
	110B, TX=-15dbm 20% ≤ P RR < 80% 4.5	1.5		0.32	0.54
	110B, TX=-15dbm 0 < P RR < 20%	1.2	8		0.90	0.07
	110B, TX=-25dbm P RR ≥ 80%	8.2	1.1		0.10	0.88
	110B, TX=-25dbm 20% ≤ P RR < 80% 3.6	2		0.39	0.54
	110B, TX=-25dbm 0 < P RR < 20%	1.1	23		0.94	0.05
	Parameters		π G	π B	π Loss	µ
	IPT		500ms 500m 500ms 500ms
	110B, TX=-15dbm P RR ≥ 80%		0.90	0.09	0.09	0.01
	110B, TX=-15dbm 20% ≤ P RR < 80% 0.62	0.37	0.37	0.14
	110B, TX=-15dbm 0 < P RR < 20%	0.07	0.92	0.92	0.03
	110B, TX=-25dbm P RR ≥ 80%		0.89	0.10	0.10	0.02
	110B, TX=-25dbm 20% ≤ P RR < 80% 0.56	0.43	0.43	0.11
	110B, TX=-25dbm 0 < P RR < 20%	0.05	0.94	0.94	0.01

Table 5 .
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11: Average stationary state probabilities π G , π B , loss probability π Loss , and µ metric for good (P RR ≥ 80%), intermediate (20% ≤ P RR < 80%), bad (0 < P RR < 20%) links at -15 dbm and -25dBm output power on CC2420 radio.

  P RR ij ⇐ 1 2 (P RR lqi + P RR σ lqi ) 9: end for 10: if Only intermediate links then

		-(µ-lqi) σ	)
	7:	P RR σ lqi ⇐ 1/(1 + exp	-(µ-σ lqi ) σ	)
	8:			
	11:	Compute π G		
	12:			

Chapter 5. Analysis of Packet Loss with 2-state Gilbert-Elliot Model

and found the fitting function presented in Figure 4. 5. We can see that the Fermi-Dirac function fits perfectly well PRR especially the values greater than 80%. We can use the function to determine a cutting threshold over which the RSSI results in a PRR of good links. The observation is valid as well for the first and third tray of Strasbourg platform.

Fitting the Distributions of RSSI and LQI

To further characterize PRR in function of RSSI and LQI, we have looked for continuous distributions that fit best the measured values of PRR. The goal is to predict PRR or at least the link category based on the observed values of RSSI and LQI. We have considered as candidate distributions the most common continuous distributions with a bounded, semi-infinite, variable support or unbounded see Table 4.1 We used Matlab as tool to find the best distribution fit for our data set. The distributions that fitted the best are the following: ❼ Log-Logistic distribution is defined by scale α, shape β, and location γ. Its Cumulative Distribution Function (CDF) is

The Log-Logistic models the mid of the extreme values (highs and lows) of a data set of random variables.

❼ Johnson SB distribution has a bounded support that fits a bounded distribution to known moments and has CDF of

, where φ is the Laplace integral and z is defined as (x -ξ)/λ. It is parametrized with shape γ, two scale parameters δ and λ, and location parameter ξ. so it can discriminate good from bad link categories.

On the other hand, the average LQI discriminates better between the categories, especially it can distinguish good from intermediate and bad links on CC1101 radio chip, and good and intermediate for bad links on the CC2420 radio chip. We can also observe that the standard variation of LQI is also a good discriminator of the categories for CC1101, and same as LQI average it can correctly discriminate bad from good and In this chapter, we aim at better understanding of channel fluctuations by investigating the number of successfully transmitted packets before a loss as well as the number of consecutive losses on 802.15.4 links.

Once we have found the PRR estimator, we want to capture the short term link dynamics. Therefore, we propose to use the Gilbert model, a 2-state Markov model, to compute the stationary probabilities to discriminate high variable link qualities. We end up the chapter by presenting our algorithm to estimate PRR across a link, derived from the obtained fitting function and the 2-state Markov model.

Introduction

In this chapter, we apply the Gilbert model, a 2-state Markov model, to packet reception sequences and the average and standard deviation values of LQI to estimate the short term PRR across high variable links. We end up by discussing the algorithm to estimate PRR employing the FD fitting function and the stationary probabilities of the 2-state Markov model.

Gilbert-Elliot (GE) Model

The GE model is widely used to represent the state of a channel (good, bad) by analyzing the errors on the channel [START_REF] Gilbert | Capacity of a Burst-noise Channel[END_REF] (cf. Figure 5.1). The model is memoryless as the next state depends only on the current state. The approach is simple, it has two states, a good state interprets a successful symbol arrival and a bad state denotes 
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