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Abstract

The goal of the thesis is to investigate the issues related to the temporal link qual-

ity variation in large scale WSN environments, to design energy efficient link quality

estimators able to distinguish among links with different quality on a short and a long

term.

First, we investigate the characteristics of two physical layer metrics: RSSI (Re-

ceived Signal Strength Indication) and LQI (Link Quality Indication) on SensLAB [75],

an indoor large scale wireless sensor network testbed. We observe that RSSI and LQI

have distinct values that can discriminate the quality of links.

Second, to obtain an estimator of PRR, we have fitted a Fermi-Dirac function to the

scatter diagram of the average and standard variation of LQI and RSSI. The function

enables us to find PRR for a given level of LQI. We evaluate the estimator by computing

PRR over a varying size window of transmissions and comparing with the estimator.

Furthermore, we show using the Gilbert-Elliot two-state Markov model that the

correlation of packet losses and successful receptions depend on the link category. The

model allows to accurately distinguish among strongly varying intermediate links based

on transition probabilities derived from the average and the standard variation of LQI.

Finally, we propose a link quality routing model driven from the F-D fitting functions

and the Markov model able to discriminate accurately link categories as well as high

variable links.

Keywords Received Signal Strength indicator (RSSI), Link quality indicator (LQI),

Link quality, Indoor Senslab-testbed, RPL, uIPv6, Duty Cycle Medium Access Control

(MAC), Wireless sensor networks (WSN).





Résumé

Résumé L’objectif de la thèse est d’étudier la variation temporelle de la qualité

des liens dans les réseaux de capteurs sans fil à grande échelle, de concevoir des estima-

teurs permettant la différenciation, à court terme et long terme, entre liens de qualité

hétérogène.

Tout d’abord, nous étudions les caractéristiques de deux paramètres de la couche

physique: RSSI (l’indicateur de puissance du signal reçu) et LQI (l’indicateur de la

qualité de liaison) sur SensLab, une plateforme expérimentale de réseaux de capteurs à

grande échelle situés à l’intérieur de bâtiments. Nous observons que le RSSI et le LQI

permettent de discriminer des liens de différentes qualités.

Ensuite, pour obtenir un estimateur de PRR (Taux de Réception des Paquests),

nous avons approximé le diagramme de dispersion de la moyenne et de l’écart-type du

LQI et du RSSI par une fonction Fermi-Dirac. La fonction nous permet de trouver le

PRR à partir d’un niveau donné de LQI. Nous avons évalué l’estimateur en calculant le

PRR sur des fenêtres de tailles variables et en le comparant aux valeurs obtenues avec

l’estimateur.

Par ailleurs, nous montrons en utilisant le modèle de Gilbert-Elliot (châıne de

Markov à deux états) que la corrélation des pertes de paquets dépend de la catégorie de

liens. Le modèle permet de distinguer avec précision les différentes qualités des liens,

en se basant sur les probabilités de transition dérivées de la moyenne et de l’écart-type

du LQI.

Enfin, nous proposons un modèle de routage basé sur la qualité de lien déduite de

la fonction de Fermi-Dirac approximant le PRR et du modèle Markov Gilbert-Elliot

à deux états. Notre modèle est capable de distinguer avec précision les différentes

catégories de liens ainsi que les liens fortement variables.

Mots-clés Indicateur de Puissance du Signal Reçu (RSSI), Indicateur de Qualité

de Liaison (LQI), Plateforme de test (Senslab), RPL, uIPv6, Méthodes Duty Cycle

d’accès au Médium (MAC), Réseaux de Capteurs (WSN).





Chapter 1

Introduction

Contents

1.1 IP for Wireless sensor networks (WSN) . . . . . . . . . . . . . 15

1.2 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . 17

1.1 IP for Wireless sensor networks (WSN)

WSN started over a decade ago to become popular mainly due to a wide range of

scenarios in which they can be used. More specifically, the idea of embedding in the same

device a communication module with sensing and processing capabilities contributed

to the increased interest in the WSN.

The current progress of WSN is due to: hardware solutions such as Micro Electro-

Mechanical Systems (MEMS), low-power communication hardware, low-power micro-

controllers, as well as advanced software optimizations (lightweight communication pro-

tocols, real time systems).

A WSN is a set of objects deployed indoor or outdoor aiming at a common goal.

The objects contain tiny autonomous sensors that allow monitoring large regions for

short or long periods of time. Each sensor node has a limited memory, so it needs to

report periodically collected data to a base station. Communication happens over a

radio device having a range from several meters up to about 100m. Furthermore, data

is usually communicated at a low bit rate of 250 kbps or even lower (60kbps). The

main power supply of a sensor node is a AAA battery with a lifetime that can reach at

maximum about 5-10 years for low traffic scenarios. In terms of cost, we have sensors

with prices down to few $s that render deployments low-cost.

Each deployment targets a long lifetime. Basically, the lifetime is a vital factor

for WSN, as sensor nodes dispose of non-renewable energy resources that make them

dependent on energy consumption. Among the energy consumption sources we mention

transmissions, sensing, signal and data processing, the phases during which the CPU

continues to consume energy.

WSN networks need to meet other requirements: they need to be reactive, to act

as quickly as possible aiming to respect the imposed deadlines, they need to be ro-

bust to adapt to the topology, density, and environmental changes, and moreover, the

connectivity with the sink should be guaranteed.

The applications of WSNs spread across multiple domains such as home automa-

tion, industrial manufacturing, environmental monitoring, military, habitat or natural
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phenomena surveillance etc. Each particular application may rely on a small or large

scale. However, a large scale raises new challenges as the environmental conditions may

change unexpectedly.

The research community has already carried out several large scale experiments, for

instance, performed in the forests, where sensors monitor the habitat or open fields to

track wild animals.

Generally, applications can be classified according to different targets: improve

productivity, enhance security, support health care, ensure the maintenance, save energy

in smart grids, render buildings intelligent. Another way to classify applications is by

the deployment size, cost, topology, or mobility of nodes. Data they generally gather

is mostly humidity, temperature, pressure, or lightning.

Table 1.1 presents a brief classification of existent applications. One predominant

application is home automation. As it monitors and controls the living conditions,

nodes have to be integrated into buildings.

One of the first applications of this type dates from 2002. It was initiated by Intel

Research Laboratory from Berkeley University. The experiment consisted of a collection

of more than 1 million of data readings from 32 nodes deployed along the Great Duck

Island [61]. The reached lifetime of a sensor node was about 9 months.

Another pioneer application on WSN was the Zebranet project [61] headed at Mpala

Research Center, Kenya. It consisted of tracking zebras using mobile sensors equipped

with GPS technology. In medicine, E-health brings new perspectives through dis-

tance monitoring. Regarding natural phenomena, an example application was deployed

around the Tungurahua volcano in Equator, where infrasonic signals during eruptions

were monitored.

Today applications focus more on offering services, for instance, the Smart PARKing

(SPARK) System [78] monitors and delivers information concerning available parking

places. BorderSense, a patrol border service [86] is another common surveillance service.

Multimedia sensors can detect intruders while mobile nodes are in charge of tracking

the intruders.

The mentioned applications helped to better understand the issues that may arise

in real deployments. For instance, it is important that communication protocols are

designed and tunned fully considering the application scenario requirements, e.g. traffic

pattern [65].

WSNs have recently evolved into the concept of the Internet of Things (IoT). It

aims at interconnecting sensor nodes with the Internet. The communication in IoT

relies on unique addresses for each ”object”. The IoT tends to make use of the existing

technologies and infrastructure of the Internet. More specifically, we can define the IoT

as a merge between three following visions.

The first one concerns simple objects such as RFID (the pioneers of the IoT) and

sensor nodes. Both, RFIDs and sensor nodes, are simple to use allowing to track objects,

to read their status, to identify, to monitor.

In the second vision, the IP for Smart Objects (IPSO) Alliance boosts the Internet

Protocol (IP) as a key for a worldwide spread of smart objects. They promote the IP

protocol stack as a lightweight protocol working on the tiny and constrained devices.
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Home automation To improve comfort and safety, light monitoring, heating

control, remote device control.

Industrial Manufacturing automation, process control.

Environmental Monitoring soil, water and air, agriculture.

Traffic Highway, bridge monitoring.

Biology Patient monitoring, body sensors, e-health.

Services Electricity, water, gas sensors to storage the usage statistics,

e-money, e-learning, commercial.

Phenomena Volcano monitoring, habitat sensing and monitoring, natural

disastrous detection.

Entertainment Improving TV, smart phones experience.

Military Border patrol sensors, battlefield management, area discov-

ery, surveillance, defense.

Table 1.1: WSN applications.

IPSO advises as a solution for IoT connectivity an adaptation of the IP protocol on top

of the IEEE 802.15.4 standardization.

The last aspect concerns the ”semantic vision”, in which sensors are queried to get

relevant data, organize them, and reason upon.

In this struggle to find feasible solutions, it is important to mention the major

constraints that slow down the IoT progress: energy, limited resources, highly unstable

radio links, dense topologies in terms of the number of nodes etc.

However, an optimistic view of IoT foresees that in 10 years from now, the real world

will join the digital one. Such a widespread adaptation of the IoT raises challenges: how

to store all data, how to search for the needed information, how to guarantee privacy.

Hence, once the IoT will satisfy all the requirements including (privacy, reliability,

scalability), a widespread presence of smart objects will be predictable.

1.2 Motivation and Contributions

To benefit from all the potential of WSN, robust and reliable communication should

be achieved on low-power, low-cost, tiny, autonomous, secure devices. Therefore,

to achieve inter-connected constrained devices, the Internet Engineering Task Force

(IETF)[37] created working groups that explore different directions: routing (Low

Power and Lossy Networks(ROLL)[39]), IPv6 over Low power WPAN (6LoWPAN)

[77], or the application layer CoRE [38]. Researchers address the challenges of inter-

connecting constrained devices to the Internet in two ways. The first one relies on

designing protocols with low energy consumption. The second one consists of designing

appropriate hardware systems.

In this thesis, we analyze a large scale WSN testbed to identify the factors that im-

pact signal propagation, the relation and the pattern deviation of the hardware metrics

that result in energy waste when communication protocols are used.

We propose a link classification for lossy environments. Based on this classification,
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we propose two mathematical models (a fit function and a Markov model) able to

predict the packet reception rate.

Furthermore, we propose a link quality estimator that takes as input hardware and

software factors and combine them to reduce the overhead and the collisions introduced

by retransmission while gaining in energy and packet delivery ratio. Finally, we conclude

our work with future perspectives and needed further studies.

The thesis is organized into six chapters as follows:

Chapter 2 gives an overview of existing studies on the main factors that influence

link quality. Furthermore, we discuss the main characteristics of the hardware metrics

(RSSI/LQI/SNR). We present the main link characteristic studies as well as the existing

link quality estimators based on simple or composed hardware metric combinations. We

emphasize the existing efforts that use Markov chain model to achieve link assessment

Last, an overview of routing in IPv6-based 6LoWPAN networks is offered. We point

out the main aspects of the metrics used by the most popular distance-vector based

routing protocols (RPL, LOAD, CTP).

Chapter 3 presents an empirical study of the link quality factors based on the large

scale testbed. The aim is to capture temporal fluctuations as well as link asymmetry

in a given indoor environment. Furthermore, the investigation allows us to distinguish

links based on their channel dynamics, and classify links using CC1101 and CC2420

radio chips based on hardware metrics such as the link quality indicator (LQI) and the

received signal strength indicator (RSSI). We report on a study of good link proportion,

environmental factors impacting signal propagation, and the bi-directionality of links

varying the output power, the inter-packet time interval, and the length of the packet.

Chapter 4 statistically analysis the link quality. To obtain an estimator of the

packet reception ratio (PRR), we have fitted a Fermi-Dirac function to the scatter

diagram of the average and standard variation of LQI. The function enables us to find

PRR for a given level of LQI. The estimator leads to better neighborhood management

and routing metrics in wireless sensor networks.

Chapter 5 presents a study of the Gilbert two state model to catch the temporal

evolution of each link category. To discriminate high variable links, we have found that

the GE stationary probabilities derived from avg and std LQI can decide well the lowest

variable links. Considering that the neighborhood relies only on high intermediate links,

the good stationary probability of the avg LQI is able to distinguish the best one.

At the end of the Chapter, we discuss in details our routing metrics proposal. More

specifically, we propose to use our fit function (LQI average and LQI deviation) and the

stationary probabilities given by the Markov model to choose among links with high

link variation. The idea is to put together the fit functions over average and standard

deviation LQI to predict PRR and further use the stationary probabilities computed

by the Markov model to discriminate more accurately the high variable intermediate

links.

Chapter 6 We conclude the work by summarizing the main contributions. We also

address the issues that continue to challenge the community. Moreover, we end up with

the perspectives for the future work.
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We will mainly concentrate on the link quality estimation approaches regarding the

Media Access Control(MAC) and routing protocols (RPL/LOAD). The principal goal is

to design a link quality estimator able to construct stable topologies and reduce energy

consumption.

First, we present existing empirical studies performed on various radio chips (CC1100/

CC1101/TR1000/CC2420) with respect to several metrics, such as received signal strength

(RSSI), link quality indicator (LQI), and packet reception ratio (PRR). Environmental

factors that prone to radio signal propagation distortion are discussed.

Second, we briefly overview the existing link assessment mechanisms that make use

of RSSI, LQI, PRR, or Markov chain model.

Finally, we point out the main aspects of several distance-vector based routing pro-

tocols (RPL, LOAD, CTP).

2.1 Introduction

Wireless sensor networks rely on low complexity circuits and very low power radio

hardware that enable battery supply nodes to last at most 10-15 years depending on

their duty cycle. Therefore, to achieve such a long lifetime any energy waste should be

avoided.

Low power links are sensitive to the environment and interferences. In this context,

robust MAC protocols and stable routing protocols are difficult to design since the next

hop choice may depend on an unreliable link quality estimator.

So, as long as the link quality estimation remains an open issue, much work consid-

ered the problem of characterizing wireless link quality [96, 106, 101, 6, 16, 80, 55, 95].

Moreover, in the link characterization process, the fluctuation of link quality rises con-

tinuous challenges due to the great impact on MAC and network layers. Figure 2.1

illustrates the link quality estimation process.

The quality of a link may vary as a function of time or distance. In particular,

the temporal fluctuation of the link quality was reported by several studies on various
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Figure 2.1: The link quality estimation process.

environments such as urban, habitat, university outdoor, offices [16, 83, 101, 80]. Like-

wise, the spatial variation of the link quality has been shown [103, 15, 105]. A common

observation is that the link quality changes depending on the RSSI zone (connected,

transitional, disconnected) the link is part of [101, 6, 28, 103, 97]. Generally, links in

the connected zone are stable, contrary to the transitional and disconnected zones.

Furthermore, most of the studies used various platforms. We can cite platforms such

as Mica 1, Mica 2 [23], Moteiv Tmote Sky [54], TelosB [60] equipped with CC1100/CC1101

[76], TR1000 [52], or CC2420 [22] low-power RF transceivers, among which the CC2420

radio is the most widespread.

Thus, the goal of this chapter is to overview the efforts done in characterizing lossy

wireless links as well as on routing protocols (RPL, CTP, LOAD).

The chapter is organized as follows: first, we address the link characterization stress-

ing out the impact of the physical layer on the link behavior. Second, we discuss the

metrics that rely on online and offline link assessment mechanisms. The metrics are

aiming to achieve energy consumption by estimating the stability of the links referring

short and long term fluctuation of link quality. Likewise, we emphasize the advantages

and the drawbacks of both mechanisms.

Finally, we overview the main features of the RPL, LOAD and CTP routing proto-

cols followed by a brief discussion on their used routing metrics.

2.2 Link characterization

2.2.1 WSN context

Communication in WSN relies on low-power and cheap radio chips such as (TR1000/

CC1100/CC1001/CC2420) that present irregular radio patterns and a limited transmis-

sion range.

Nevertheless, due to the low power constraints and the fact that they need to act

near the noise level while they are equipped with very simple radio circuits, the com-

munication depends on the environment, frequency, the specific modulation scheme, or

antenna patterns. As a result, the RF signals in indoor and outdoor environments may

be highly variable and prone to bit errors. Still, they have to offer good packet delivery
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ratio in multi hop scenarios for upper layers (MAC/Routing) whereas targeting few

retransmissions and energy high efficiency.

The IEEE 802.15.4 standardization [85] targets low-cost, low-power devices low-data

rates. It achieves three targets: low-power, low-data rate, and low-cost for the wireless

personal area (WPAN) networks. The standardization was approved back in 2003, but

due to the interest it attracted along years various variants of the standardization were

proposed.

We bring up below the hardware and the environmental factors that influence IEEE

802.15.4-Compliant (CC2420) and IEEE 802.15.4-non-compliant (CC1101) radio links.

2.2.2 IEEE 802.15.4 standard and devices

We present in this section the most common aspects of the physical characterization

of IEEE 802.15.4-compliant radios such as bit stream (CC1101) and packet oriented

(CC2420) radios.

2.2.2.1 IEEE 802.15.4 PHY

The IEEE 802.15.4 PHY layer defines a total of 27 channels among which 16 non-

overlapping channels. Before the transmission starts, every 4-bit symbol is transformed

into a 32-chip sequence. At the reception, to decode the chip-sequence, the symbol that

gives the higher chip correlation is chosen Figure 2.2.

Bit-to-Symbol Symbol-to-Chip

Modulation
OPSK(CC2420)
2FSK(CC1101)

Bit stream (PPDU) RF signal

Figure 2.2: The IEEE 802.15.4 PHY transmission process.

Each transmission or reception happens on a chosen channel that employs a specific

modulation and encoding technique Table 2.1. Lower frequencies have a lower receiver

sensitivity that gives a larger transmission range. Moreover, the range depends on the

transmission power and the receiver sensitivity.

The IEEE 802.15.4 PHY is responsible of :

❼ Turning on/off the radio transceiver as required by the MAC layer.

❼ Energy detection (ED) within the current channel. This measure helps to detect

the state of the channel busy/occupied. In 802.15.4, the ED takes 128µs and

serves for the Clear Channel Assessment (CCA) or the channel selection.

❼ Link Quality Indication (LQI). The LQI indicates the quality of the received

signal computed either using the ED, the signal to noise ratio, or both. This

measure is important at the network layer as the routing metric can benefit from

this measure.

❼ Received Signal Strength (RSSI). RSSI gives the strength of the received signal.

It is measured over the first 8 symbols following the start delimiter of a frame.
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❼ Clear Channel Assessment (CCA). The purpose of CCA is to inspect the medium

state if it is busy or idle. A CCA may be performed in three modes. Mode 1

depends on an Energy Detection Threshold whereas mode 2 and 3 are depending

on carrier sensing. CCA Mode 1 senses the channel as busy if the detected power

in the channel exceeds the chosen threshold (generally -77dBm). CCA Mode 2 is

based on carrier sense that considers a channel busy only if a signal with an IEEE

802.15.4 modulation and spreading technique is detected. Then, CCA Mode 3 is

a combination of the mode 1 and 2. More specifically, a channel is detected as

busy if it detects a IEEE 802.15.4 signal and the energy in the channel overcomes

the chosen threshold.

❼ Channel Frequency Selection The transceiver can send data over one of the 27

channels available in 802.15.4. Thus, the physical layer is in charge of choosing

the channel over which the transceiver sends packets.

Band[Hz] Number of channels Bit rate [kbps] Modulation Sensitivity [dBm]

868M 1 20 BPSK -92

915M 10 40 BPSK -92

2.4G 16 250 O-QPSK -85

Table 2.1: IEEE 802.15.4 channel characteristics.

More specifically, physical layer provides instant information (RSSI/LQI) right after

it decodes a packet. Therefore, the information may be employed as a link quality

indicator. However, due to the short-term link variation, it is hard to predict the link

quality just on a single packet [83].

2.2.2.2 RF features

The literature reports on several hardware factors that impact the link quality

[15, 63, 92], such as: frequency, modulation, antenna (gain, orientation), output power,

receiver sensitivity, internal noise, and hardware mis-calibrated. Table 2.2 presents the

parameters of the most popular transceivers already mention: CC1101 and CC2420.

Frequency: The impact of the oscillation rate of radio waves has been proven on

bit stream (CC1101) or packet oriented (CC2420) radio technologies. The bit stream

technology relies on older radio transceivers such as the CC1101 that operate on the

868MHz frequency, whereas packet oriented ones refers to newer radios such as CC2420

(IEEE802.15.4 compliant) that operate on 2.4GHz frequency.

In particular, the platforms operating in the 868MHz ISM band are less exposed

to external interferences, whereas the ones operating on 2.4GHz are likely exposed to

external interferences fromWiFi, Bluetooth, or microwaves. The 868MHz frequency has

been used in various deployments [16, 15, 103, 67, 13]. The reason is its larger range as

the attenuation of a signal is proportional to the used frequency. Modulation: Moreover,

a drawback of the older radios 868MHz-based is related to a less robust modulation.

In particular, older radio chips (CC1101/TR1000) use a simpler modulation such as
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Frequency Shift Key (FSK), Gaussian Shaped Frequency Shift Keying (GFSK), On/Off

Key (OOK), Minimum-shift Keying (MSK), Amplitude Shift Keying (ASK) with low

bandwidth requirements. Nevertheless, the most popular radio transceiver (CC2420)

is a IEEE 802.15.4 compliant. It uses Direct Sequence Spread Spectrum (DSSS) and

Offset Quadrature Phase-shift Keying (O-QPSK) modulation scheme.

Radio CC1100 CC2420

Data rate(max) 500 kbps 250 kbps

Frequencies 315/433/915 MHz 2.4 GHz

Rx Current 14 mA 17.4 mA

Tx Current 15 mA 19.7 mA

Output Power +10dBm:-30dBm 0dBm:-25dBm

Receiver Sensitivity -88 dBm -95 dBm

Modulation 2-FSK/GFSK/MSK/OOK/ASK O-QPSK/DSSS

Table 2.2: Radio parameters of CC1101 [76] and CC2420 [22].

Antenna: Zhou et al. [104] identified the sources of radio irregularities as non-

isotropic path-loss caused by multi-path effects and hardware calibration. Hardware

calibration is explained as a manufacturing problem according to which antenna gain

may not be the same for all directions.

Receiver Sensitivity: It refers to the minimum signal strength needed at the input

of a receiver in order to guarantee the reception.

2.2.3 RF signal propagation

Signal propagation depends on the type of the environment: indoor (i.e. offices,

home), outdoor (i.e. urban, habitat). Distortion of the RF signals is due to various en-

vironmental and hardware factors [63, 92]. For instance, environmental factors include

path-loss, fading, and interference.

❼ Path-loss (signal attenuation with distance):

– Free space (no multi-path sources are present) see Equation 2.2.

– Log-distance path loss model (includes multi-path sources) see Equation 2.4.

❼ Fading

– Multi-path ( the radio signals propagate over multiple paths, therefore, re-

ceivers retrieve multiple copies of the a signal):

✯ scattering (the deviation of the signal from the straight line) occurs when

the signal mets objects (IT equipments, small pieces of furniture).

✯ reflection (the signal bounces off an object) is present when the signal

meets large objects or surfaces (wall, ceiling, metal, glass, pieces of fur-

niture).
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✯ refraction (bending of RF signal, one part is absorbed the other part is

reflected) from obstacles.

✯ diffraction (the signal is obstructed by sharp edges) encountered due to

obstacle presence.

– Shadowing (large obstruction of the RF signal):

✯ human presence, walls, doors.

❼ Interference:

– Concurrent transmissions,

– Presence of other transmitters in the same band: Wi-fi, Blue-tooth or Mi-

crowaves.

Path-loss models predict the average received strength of a signal at a certain dis-

tance from the transmitter. It depends on the distance (line of sight) between the

sender and the receiver. In fact, most of the models are based on the Fries free space

equation 2.1.

Pr(d) = PtGtGr(
λ

4πd
)2, (2.1)

where Pr denotes the available power at the input of the receiving antenna, Pt denotes

the output power of the transmitting antenna, Gt and Gr are the antenna gains of the

transmitter and receiver, d is the distance between transmitting and receiving antenna,

and λ is the wavelength.

The equation is simple, it provides an estimation of the received signal strength

when between the transmitting and receiving antenna is a clear line of sight.

Pr(d) = Pr(d0)(
d0
d
)2, (2.2)

where Pr(d0) is the received power in Watts at distance d0, and d0 < d. Therefore, the

received power at any distance is referred by Equation 2.2. Moreover, RF signal power

deteriorates with the squared inverse distance.

Path loss of a channel is measured in dB and is the difference (attenuation of the

RF signal) between the transmitted power and receiver power in dB (see Equation 2.3).

PL(dB) = −10log10(
λ2

(4π)2d2
), (2.3)

Once we include multipath sources and ground reflection the path loss equation be-

comes:

PL(dB) = 10nlog10(
d

d0
), (2.4)

where n (common value ranges from 2 to 6) is the loss exponent that indicates that the

rate of the loss increase with respect to the distance. The path loss exponent depends

on the environment and takes lower values for indoor (2) and higher for outdoor (6)

[63]. Ganesan et al. [28] reported that the path loss formula changes with hardware

characteristics.
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Fading is defined as the deviation of the attenuation of the signal. It depends on

frequency, location, and time. It can result in multi-path (fast fading on the order of

10 to 100 ms) or shadowing (slow fading on the order of 1s to 5s).

Multipath fading is the most common factor that affects link fluctuation resulting

in a large deviation from the path loss models [63]. Especially, multipath it is due to

reflection, refraction, diffraction or scattering of RF signals. Indoor, multi-path depends

on the placement of nodes and the spatial characterization of the environment (office,

halls, home). In particular, reflection is one of the main factors of multi-path presence

that may alter the link reliability trough huge drops of the packet reception ratio. It

occurs due to the presence of good reflectors such as metal or glass, and leads not just

to the multipath effect, but also to the noise increase and interference.

The second fading factor is shadowing, a large scale effect that steers to creation of

shadow zones (deep fade) where no radio emission/reception is encountered. However,

Watteyne et al. [92] claimed that the fading effects can be avoided by changing the

node location or the carrier frequency. Pucinelli et al. [63] emphasized that fading has

to be considered in the design of wireless channels.

Interference is another important factor harming signal propagation. As a result of

interference presence, protocols may become unstable due to packet reception drops,

retransmissions, and link instability. It occurs in the presence of concurrent transmis-

sions (internal interface) or from external interfering technologies e.g. IEEE 802.11

(WLAN), 802.15.1 (Bluetooth), and 802.15.4 [80].

Furthermore, Polastre et al. [59] reported that the IEEE 802.11b interference may

result in energy waste as it may wake-up the duty-cycle MAC protocols that use an

energy detection threshold to enter in listen mode. For example, to overcome the

false wake-ups, Srinivasan et al. [79] recommended the use of adaptation clear channel

assessment mechanism that takes into account the eventual noise from 802.11 networks.

On the other hand, concurrent transmissions lead to constructive or destructive

interference that distorts the signal reception by creation of deep fading zones [55]. A

constructive interference within two waves is defined as a multiple of 2π phase difference,

while a destructive interference designates an odd π phase difference.

In this section, we have highlighted that links are lossy due to environmental factors

harming signal propagation (path-loss, fading, interferences). The main observations

on link dynamics driven from existing empirical studies are presented below.

2.3 Link behavior through hardware metrics

Radio transceivers provide two hardware metrics able to estimate the strength

(RSSI) and the quality (LQI) of the received packet. For instance, each received packet

embeds both hardware metrics (RSSI and LQI). Numerous existing studies explored

the temporal fluctuation of RSSI and LQI in order to predict temporal link behavior.

Generally, a stable link guarantees a successful packet reception whereas short signal

drops results in unsuccessful reception.
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2.3.1 RSSI/LQI Overview

Received Signal Strength Indicator (RSSI) is an estimation of the received

signal power in the channel. The obsolete radios such as CC1000/CC1101 are not

based on the IEEE 802.15.4 standard, still, they provide the RSSI hardware parameter

[76]. As the CC1101 transceiver enters in the reception mode, the RSSI is read out in

raw from the RSSI register. The reading stops when the sync word is detected. The

readout value is converted from 2 complement (hexadecimal) to decimal (RSSI dec),

following by a subtraction of -78dBm (offset) for CC1100 and -74dBm for CC1101 at

868MHz and a data rate of 250kbps. Additionally, in case the decimal value is below

128 the value is scaled conform the Equation 2.5. Conversely, for a value above 128,

the RSSI estimation becomes Eq. 2.6. The offset depends on the data rate and the

used frequency.

RSSI [dBm] = (RSSI dec)/2−RSSI offset (2.5)

RSSI [dBm] = (RSSI dec− 256)/2−RSSI offset (2.6)

Figure 2.3 a) presents the CC1101 frame format. In the newer radios such as CC2420

[22], the RSSI is an 8-bit integer value. It is read from the RSSI register (in case of the

signal absence, the value indicates the noise). RSSI for CC2420 radio chip is computed

over the eight symbol period (128µs):

RSSI [dBm] = RSSI V AL+RSSI OFFSET (2.7)

The RSSI VAL is a 12 bit register and the RSSI OFFSET is equal to -45dBm. RSSI

ranges from -28dBm to -127dBm. Figure 2.3 b) presents the frame format for the

CC2420 radio.

Another measure extensively used to quantify link behavior is SNR that denotes

the strength of the signal. It is defined as the ratio of the received signal strength and

the strength of the background noise. To estimate SNR, the receiver records at first

the RSSI of the received packet, then it has to measure the background noise. RSSI of

a signal is defined as:

RSSI [dBm] = 10log10(Power received packet+Background noise), (2.8)

RSSI of the ambient noise is estimated as 10log10(Background noise):

SNR [dBm] = RSSI[dBm]−Backgroud noise [dBm] (2.9)

The Link Quality Indicator (LQI) is a metric that estimates the current quality

of the received information.

For CC1101, LQI gives an estimate of how easily a received signal can be demodulated

by accumulating the magnitude of the error between ideal constellations and the received

signal over the 64 symbols immediately following the sync word [76] (see Figure 2.3).

It ranges between [0..127]. A low value indicates a good link quality. Thus, its values

depend on the used modulation (2-FSK/GFSK/MSK/OOK/ASK).
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Figure 2.3: The frame format for CC1101 and CC2420 radio chips.

For CC2420 [22], provides an average correlation value for each incoming packet,

based on the 8 first symbols of the received PHY header (length field) and PHY Service

Data Unit (PSDU). The LQI software value is computed as in Eq. 2.10 and ranges

from 0 to 255.

LQI = (CORR− a) ∗ b (2.10)

CORR represents the hardware correlation taking values between 50 and 110, a and

b are constants whose values are specific to each hardware provider. For this reason,

it remains unclear how LQI is computed. Specifically, a high correlation value of LQI

gives better links. Figure 2.3 b) illustrates the RSSI and LQI computation for CC2420.
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The strength of the signal (RSSI) and the link quality indicator (LQI) metrics are

computed over each received packet. Since RSSI and LQI are correlated with the

goodness of a signal, they may be used to predict link dynamics.

Generally, the quality of a link is estimated as a proportion of successfully received

packets. Hence, the goodness of a link is linear to the proportion of received packets.

Thus, a generic observation is that each link may belong to one of the following zones:

high link quality, transitional (’gray zones’) for intermediate link quality, and low link

quality [28, 103, 97, 67, 101, 6]. Overall, previous efforts claimed that intermediate

links are highly unstable.

In this context, we further present the work that was done to predict the link

quality using hardware metrics. We mainly focus on several proposed link classifications

according to PRR as well as on the temporal and spatial fluctuation of RSSI and LQI.

Moreover, link asymmetry is discussed.

2.3.2 Link Classification based on PRR

Empirical studies carried out on various platforms resulted in a link classification

based on the packet reception ratio (PRR). A PRR is defined as the ratio of the suc-

cessful received packets to the total number of send packets. Generally, three classes

of links are commonly mentioned such as good (high PRR), intermediate (intermediate

PRR), and bad (low PRR): a common classification defines good links as the ones with

a PRR above 90%, intermediate with PRR within 90% and 10%, and bad links for PRR

below 10%. For example, Srinivassan et al. [79] claimed for the CC2420 transceiver

that good links with PRR > 85% are above the receiver sensitivity threshold (-87dBm).

Table 2.3 summarizes the most common existing link quality classifications.

Considering the proportion of each link category on a large and small scale, it was

reported a higher proportion of intermediate links on large scale platforms [28, 103].

Likewise, a study of the outdoor and indoor environments claimed a lower proportion

of intermediate links in the outdoor with respect to indoor environments [67]. They

conclude that the indoor environments are highly affected by multi-path effects.

Radio/Platform Good Intermediate Bad Reference

TR1001/ EYES PRR≥ 85% 15% < PRR < 85% 15% ≥ PRR [67]

TR1000/Rene PRR ≥ 65% 15% < PRR < 65% 15% ≥ PRR [97]

TR1000&CC1100/Mica1&2 PRR≥ 80% 20% < PRR < 80% 20% ≥ PRR [15]

CC2420/Tmote Sky&JCreate PRR≥ 75% 35% < PRR < 75% 35% ≥ PRR [13]

CC2420/TelosB,Micaz 90 ≥ PRR% 10% < PRR < 90% 10% ≥ PRR [80, 92, 95]

Table 2.3: Link classification highlighted by various research efforts.

Moreover, we present below several findings on temporal fluctuation.

2.3.3 Temporal fluctuation

The literature investigated the RSSI/LQI temporal variation aiming to distinguish

the fluctuation factors and patterns. Please note that the fluctuation term refers to RSSI
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and LQI value changes over successive readings. Distinct factors such as environment,

temperature, humidity, interference, were identified in Section 2.2.

2.3.3.1 RSSI fluctuation

First, the fluctuation of the RSSI indicator has been intensively analyzed in the

literature [83, 63, 101, 66, 87].

Boano et al. [11] reports that RSSI is affected by the temperature change (day/night).

The humidity seems to be another factor that generates RSSI variation [46]. External

interference generates high fluctuation of RSSI [100]. They proposed an interference

classifier that distinguishes between the potential interference sources (WLANs, Blue-

tooth, microwave ovens) that disturb the RSSI readings on the IEEE 802.15.4 channel.

In addition, constructive and destructive interferences generated by the concurrent

transmissions or environment factors result in high fluctuation of the RSSI [55]. More-

over, RSSI may encounter variance due to the antenna alignment (with the following

degrees 0, 90, 180, and 270) [104]. It proposes a non-circular radio irregularity model

(RIM) based on registered degree of the RSSI variation.

Tang et al. [87] concluded that RSSI fluctuation is due to hardware configuration,

in particular, the transmitter and the receiver variability may vary for each radio chip.

In addition, the antenna orientation is another important factor due to its non uniform

radiation pattern and its magnetic pole position [92].

However, the conclusions of the studies are contradictory as they claim a small

variation of the RSSI when above the radio sensitivity -87dBm for CC2420 chip [83], a

large variation [101, 66] or even RSSI does not fluctuate in time [63]. The large temporal

variation of the RSSI can reach 11dBm with a time-scale variation about 0s-20s or few

hours [66]. However, RSSI is unreliable if the channel is in contention between several

interfering motes.

Furthermore, considering SNR, Srinivasan et al. [81] claimed that its variation is

correlated with the fluctuation of RSSI as the noise is quite stable.

2.3.3.2 LQI fluctuation

In terms of LQI, low variation was claimed for packets coming from nodes placed in

zones with good radio connectivity. On the other hand, the variation of LQI becomes

large for lower radio connectivity. Therefore, several studies demonstrated that LQI

may vary drastically if the node is in the transitional or the disconnected zone [55, 50,

12]. However, for the link in the connected zone, the LQI is highly stable [83], which

may be a good indicator for link quality.

A generic observation is that LQI variation can determine if a link is very good or

extremely bad. However, it is not a good predictor for the transitional links, which are

highly unpredictable. For instance, Srinivassan et al. [79] claimed that LQI varies in a

wider range compared to RSSI.

A wide conclusion is that RSSI/LQI/SNR metrics are individually inadequate to

evaluate correctly the link quality as they are based only on a single received packet.
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Hence, an exponential average with a sliding window over historical data is widely

recommended to properly estimate the link quality [80, 99].

2.3.4 Spatial fluctuation

It was shown in several research efforts a distance dependence of the RSSI and LQI.

For instance, RSSI values decrease due to the path loss while LQI shown a distance cor-

relation for the connected (high RSSI) and disconnected (low RSSI) zone [101, 79, 70].

Hence, they argued no correlation of LQI with distance for the transitional (intermedi-

ate RSSI) zone affected by anisotropic radio pattern, multipath effect, reflection, and

external interference.

On the other hand, Woo et al. [97] claimed that the temporal variability of packet

reception ratio is correlated with the distance. The study proposed a link estimation

model, where the quality of a link is associated with a certain distance it is situated.

Still, due to various environmental factors and the radio pattern it is hard to predict

properly the distance.

2.3.5 Link asymmetry

Another issue of wireless links, is the link asymmetry. The most common factors

that lead to link asymmetry are argued to be the hardware or the environmental factors

[103, 97, 4, 15, 101, 80, 95].

The asymmetry of a link can be defined as an absolute difference |PRRsenderx−>receivery−

PRRreceivery−>senderx |, where x, y are the ids of the nodes whereas the arrow points at

the receiver. A link is called asymmetric if the absolute difference is bigger than 1%

[95].

On the contrary, Srinivasan et al. [80] calls a link asymmetric if the absolute dif-

ference is above 40%. They claimed the good links (PRR>90%) are likely symmetric

over time independently of the output power. The observation was also confirmed by

Mottola et al. [55].

It was shown that intermediate links present high asymmetry due to multi-path

effects and hardware mis-calibration where as bad links are less asymmetric [103, 97, 4,

15, 101, 80, 95]. Thus, Srinivasan et al. [80] shown a non-persist temporal asymmetry

for unstable links mainly presented in the transitional zone.

To sum up, RSSI varies much less that LQI for intermediate and bad links. Con-

versely, LQI seems to be stable for good links whereas, for intermediate and bad links

is highly unstable. Thus, the high variation is an interesting approach that have been

extensively studied. For instance, numerous authors have combined RSSI, LQI and

PRR in their link estimation schemes to discriminate lossy and asymmetric links from

the good ones.
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2.4 Packet loss modeling

First efforts on capturing loss burstiness through the well-known 2-state Gilbert-

Elliot model was applied to IP voice flows traces [41, 73] and to packet tains in computer

network traffic [40].

A pioneer study that models packet losses of wireless links was elaborated by Syed

et al. [43]. They proposed the Markov-based stochastic chains that model the 802.11b

links behavior of bit errors and packet losses. To show that higher order Markov chains

(i.e. Markov chains of order 9) model more accurately the channel behavior, a compar-

ison for full-state, hidden, and hierarchic Markov chains was performed. However, they

claimed that such high order models are far too complex to be integrated into real-time

systems.

Sanneck et al. [73] claimed that to accurately model packet losses, more complex

models are required. They have proven this affirmation through a comparison between

a two-state and kth order Gilbert model. Moreover, they concluded that the order of

the Gilbert model should be chosen conform with the application requirements.

Kamthe et al. [42] proposed a multilevel approach to model short and long term

link behavior, it uses Hidden Markov Models (HMMs) and Mixtures of Multivariate

Bernoullis (MMBs). To build the multi-state model training vectors were used. The

model has several limitations: having only one transition will lead to a lack of data,

a slow dynamics of PRR makes the M&M model to converge to the value of PRR.

Moreover, the model is inaccurate when a link encounters too long chains of consecutive

successes or losses as data traces are divided into training vectors of predefined size. On

the other hand, such M&M model is recommended for long time scale testbeds because

the training process requires about 12 hours. Therefore, as link behavior changes with

time a M&M model may not be properly trained.

To measure the burstiness of a link, Srinivasan et al. [81] introduced the β factor. It

assesses if packet losses are independent or equally distributed. To do so, the estimator

uses the conditional probability delivery function (CPDF). A CPDF function determines

the probability that a packet will be successfully received according to previous failures

or successes. They found that packet losses are correlated, so that they claimed that

second layer has to delay the acknowledgements sending with 500ms, to avoid the short

term spans of the links.

Alizai et al. [2] proposed a short term link estimator (STLE) to detect the short

term reliable links. STLE sets a threshold of 3 to identify the intermediate links. The

threshold choice relies on the hypothesis that any link becomes unreliable after three

consecutive packet receptions over the link. Sending data packets at an inter-packet

time interval of 250ms, they argued that intermediate links present short term stability

over periods above 750ms. Aguayo et al. [1] claimed a short term correlation period

above 1s for 802.11b mesh networks. However, in our study, we observed that packet

losses correlation differs with the link category.

Heinzer et al. [34] came up with a link estimator that predicts the packet reception

from the relationship between chip (coded bits of information on direct sequence spread

spectrum) errors in symbols (4 bits–32 chips) at IEEE 802.15.4 physical layer. The
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approach is interesting as it aims to estimate PRR over a single packet from the number

of consecutive erroneous chips detected in the payload. Moreover, using β factor over

chips, they did not attain any relevant estimation of the link quality, instead a geometric

linear model performed well. However, by our knowledge, we suspect that a bit rate of

10kbps is not standard compliant, therefore, the estimator requires further investigation

at a bit rate of 250kbps. Thus, we consider that one packet is insufficient for an accurate

PRR estimation, because good links may miss a single packet at a certain instant of

time, which leads to underestimation of the link quality.
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2.5 Link assessment in WSN

Link assessment is required for a better comprehension of the environments we cope

with. More specifically, a good perception on the link behavior helps to design robust

link quality estimators (LQEs). In fact, a good LQE for routing has to guarantee

low energy consumption, stable topology, a high throughput, a low end-to-end delay,

reliable paths when retransmissions are present, and low churn (neighbor changes).

On the other hand, it should be reactive, able to predict short and long term link

fluctuations, stable in time, to accurately discriminate link quality, should rely on simple

computation (light memory footprint), or to have accurate predefined thresholds to

discriminate unreliable neighbors (blacklist mechanism). Please note that a too low or

a too high threshold for blacklisting mechanism may contribute to routing instabilities.

To overcome the energy waste, LQEs should properly foresee the quality of the link

over few samples. Since a wrong decision leads to packet loss and neighbor changes,

which are costly. More exactly, when routing relies on bad links, retransmissions at the

MAC layer increase, which causes energy waste.

If the metric fails choosing an unreliable neighbor, interferences through concurrent

transmissions are introduced. Interference that affects the quality of neighboring links.

Therefore, the main requirements related to the literature in designing a good link

estimator are :

❼ reliability successful data delivery;

❼ accuracy: link quality should be properly predicted;

❼ energy consumption: low data overhead should be guaranteed;

❼ reactivity: the necessity to quickly adapt to network changes;

❼ stability: it has to avoid short term link fluctuations so that the routing does not

have to reconsider alternative links, which is energy consuming;

❼ little computation

❼ memory efficient to required low memory.

In the light of fulfilling the main requirements of a good link quality estimator, much

research have addressed numerous estimation techniques such as:

❼ average: Packet Reception Ratio (PRR), Required Number of Packets(RNP) [16],

The Link Quality Indication Based on Metric (LQIBM) [102], Expected Trans-

mission Time (ETX) [24],

❼ maximum: MAX-LQI [72],

❼ filter: Kalman filer algorithm (KLE) [74], WindowMean with Exponential Weighted

Moving Average (WMEWMA) [97], LQI-based ETX (LETX) [72], 4Bit [27],

❼ standard deviation: σm metric [53],
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❼ probability: β factor [81],

❼ weighted sum: Double Cost Field Hybrid Link (Duchy) [64], Holistic Packet

Statistics (HoPS) [68],

❼ classification: Link Quality Ranking (LQR) [106],

❼ regression: Weighted Regression Algorithm (WRA) [98]

❼ fuzzy logic : A Fuzzy Link Quality (F-LQE) [5].

Basically, independently of the used technique, each quality link estimator relies on

few stages such as: monitoring the link over a temporal window, recording the needed

data, analyzing the data.

Active monitoring is based on broadcasts sent periodically over short periods to

estimate the link quality [16]. Hence, the reception of packets is not confirmed by

layer 2 acknowledgements, neither retransmissions are required. A primary concern is

the trade-off between the periodicity of data probes. A too low rate will affect energy

consumption as an important overhead will be introduced, and in dense networks it

will lead to high congestion. On the other hand, a too large periodicity window renders

impossible detection of links with short-term fluctuations.

Passive monitoring is the most common monitoring scheme [97, 72, 53, 81]. It

estimates the quality of links based on received information. It is energy efficient as

no additional overhead is introduced. Still, for low traffic communication, the link

estimation may be inaccurate due to the lack of information.

Hybrid monitoring includes a broadcast phase for active monitoring followed by a

passive phase in which it considers the information from received packets such as layer

two acknowledgements. In fact, using passive monitoring and a constrained active

monitoring that employs only data traffic yielded a much better link quality estimation

in terms of energy consumption [64, 27]. Once the monitoring mechanism is chosen, the

node records the hardware parameters and the statistics about the send/receive data

and acknowledgements.

Afterwards, a defined technique such as average, filter, standard deviation, classifi-

cation, regression are applied to estimate the link quality. An open question ’How many

readings are needed for a good link quality estimator?’, remains unanswered. However,

various studies claimed to attain a reliable estimation over large historical data above

50 packets [66, 83, 97].

Overall, LQEs evaluate the quality of links based on hardware metrics (RSSI, LQI,

SNR) or software metrics evaluated on the basis of routing information (i.e. PRR,

RNP). Hardware metrics are easy to monitor (no computation is required), even so

they are highly hardware and environment dependent. Conversely, software metrics

count, average, or approximate packet receptions/retransmissions, which increases the

overhead.

The majority of LQEs uses an exponential moving average to smooth readings and

reduce the link quality metric to a single value. Thus, a bad choice of parameter setting
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Figure 2.4: Temporal evolution of the main link estimators that use active, passive,

or hybrid monitoring.

for the moving average algorithm may lead to bad decisions. Moreover, both hardware-

based and software-based LQEs offer a partial link estimation, because they assess a

single link propriety.

Several LQEs that employ statistical methods as regression or classification [81, 106]

were proposed. Fuzzy logic opened a new perspective in combining different link

proprieties in designing better estimators [5]. For instance, it outperformed PRR,

WMEWMA, ETX, RNP, and Four-bit, but still, a drawback arose in terms of compu-

tation complexity, memory footprint [5]. Again, there is no LQE that offers a holistic

link quality characterization.

Figure 2.4 illustrates the temporal evolution of the main link quality estimators.

Next, we proceed to offer a short overview into the main LQEs approaches. We

classify the existent link quality metrics as link quality metrics (computed over link)

and link quality routing metrics (computed over path).

2.5.1 Link quality metrics

Much research has considered the problem of characterizing the quality wireless

links to derive metrics for finding the best routes in wireless sensor networks. Several

empirical studies provided a better understanding of the complex behavior of low-power

links. The transmission quality in terms of the PRR depends on the received signal

strength, the level of interference, and the ability of the receiver to correctly decode

transmitted information.
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2.5.1.1 RSSI/LQI/PRR

Many studies revealed the importance of RSSI in the evaluation of link quality and

analyzed the relation between RSSI and PRR.

One of the recent studies of Srinivasan et al. [83] showed that RSSI of CC2420 is a

promising indicator when its value is above the sensitivity threshold. In particular, it

allows to detect a threshold above which links present good PRR. Below the threshold,

the PRR values largely vary and one RSSI value may correspond to several values of

the PRR. Nevertheless, RSSI has a low variance compared to LQI, indicating that an

RSSI value for one packet is a good estimator of an average RSSI value for consecutive

packets. The authors also observed that LQI (Link Quality Indicator) presents a better

correlation with PRR than RSSI, however, it needs to be averaged over many packets

(about 120). Rondinone et al. analyzed the link quality in sensor networks and proposed

to use as a link quality indicator the product of the PRR and the normalized average

RSSI [71].

Similar analysis by Rondinone et al. led to the conclusion that neither RSSI nor LQI

do not sufficiently discriminate the level of PRR for a successful link quality indicator

[71]. They proposed to use as a link quality indicator the product of the PRR and the

normalized average RSSI, which presents the advantage of distinguishing links with the

same PRR, but with a different average RSSI. The drawback of this approach is that it

requires the knowledge of PRR that we actually want to estimate in this thesis based

on the RSSI and LQI indicators.

PRR accounts for the ratio between total send packet and the successfully received

packets. It is not hardware dependent as RSSI and LQI. Cerpa et al. 2005 [16] claimed

that PRR overestimates the link quality of intermediate links due to the distribution

of losses. Its instability was also shown by Baccour et al. [6]. However, its granularity

depends on the number of packets received over a temporal window.

In another paper, the authors modeled packet loss with a binomial distribution

and concluded that good links are symmetric [97]. Meier et al. 2008 [53] analyzed

measurements of an indoor sensor network with CC2420 exhibiting high link quality

variability and considered metrics derived from modeling the loss process as a Bernoulli

process, (i.e. ETX that depends on PRR, wide used by RPL [88] and LOAD uses the

number of weak links in a path as a metric [19]).

2.5.1.2 Window Mean with EWMA (WMEWMA)-2003

Window Mean with EWMA (WMEWMA) estimator [97] is a simple and memory

efficient estimator widely used in WSN. It uses an exponential weighted moving average

(EWMA) filter to estimate the link quality based on the current recorded PRR and the

historical PRR.

WMEWMA is responsible to filter the transient fluctuation of the PRR. It is com-

puted at the receiver side through passive monitoring, so that additional overhead is not

introduced. The algorithm calculates the average of the data reception rate following:

WMEWMA(α,w) = α ∗WMEWMA+ (1− α) ∗ PRR (2.11)
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where α [0..1] decides on the historical data importance, w defines the time window.

The current PRR is more important than the historical PRR when α < 0.5.

In a comparison study, WMEWMA outperformed the Time Weighted Moving Av-

erage (TWMA) , Moving Average, EWMA, Flip-Flop Packet Loss, and Success Interval

with EWMA filters, being more reactive and more stable [96].

2.5.1.3 Required number of packets retransmissions (RNP)-2005

RNP [16] estimates short-time link fluctuation using passive monitoring. More

specifically, it periodically broadcasts control packets for a short time, then it averages

the number of sent packets (transmitted/re-transmitted) before a successful reception

as follows:

RNP (w) =
Total transmitted/re− transmitted packets

Total acknowledged packets
− 1 (2.12)

In the context of neighbors with the same packet reception rates, RNP favors links

with less retransmissions which offers an advantage over PRR metric. As drawbacks

we can mention instability and the energy waste due to additional messaging overhead.

Moreover, Baccur et al. reported RNP as unreliable for link estimation because of the

asymmetry presence [3].

2.5.1.4 Kalman filter (KLE)-2007

Kalman filter [74] estimates the link quality using passive monitoring. It predicts

PRR using the signal-to-noise ratio (SNR) of the link and a pre-calibrated SNR-PSR

curve. The SNR curve is decided offline by plotting the collected average SNR against

PRR. Each receiver has to record the SNR using the Kalman Filter algorithm in order

to minimize the error estimation. It claimed a fastest adaptation to the channel changes

compared to RNP, PRR, or ETX.

2.5.1.5 The norm(RSSI)-2008

A normalized LQE metric is proposed by combining PRR and RSSI [71]. The metric

is defined as follows:

LQIndicator = PRR ∗ norm(meanRSSI) (2.13)

norm(meanRSSI) =
meanRSSI

60
+

100

60
(2.14)

They reported that the metric provides stable and accurate links estimation on the

Moteiv’s TelosB nodes equipped with the CC2420 radio transceiver. They concluded

that sliding windows of 10 packets are appropriate to estimate the link quality. More-

over, PRR and RSSI are logged in neighbor discovery phase.
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2.5.1.6 The beta factor-2008

β factor [81] measures the link burstiness using conditional probability delivery

functions (CPDFs). CPDF was derived from packet delivery traces and determines the

probability that a packet will be received after certain consecutive successes or failures.

Therefore, a CPDF will call a link ideal bursty if it has a strong packet successes or

failures correlation. This means that an ideal bursty link has long bursts of consecutive

failures or successes. On the other hand, it calls a link independent, when no correlation

of packet successes or failures was detected.

Yet, a β factor close to zero denotes a low correlation of packet successes or failures.

It is computed as follows:

β =
KW (I)−KW (E)

KW (I)
(2.15)

where KW() is the Kantorovich-Wasserstein distance (i.e. the KW distance between

two vectors denotes the absolute difference of their corresponding elements), KW(E)

represents the CPDF of the empirical data recorded over a link, whereas KW(I) is the

CPDF of the ideal bursty link. In other words, KW will indicate how close the CPDF

of an empirical is from the CPDF of the ideal bursty link.

β metric was tested on the Mirage testbed and it is integrated in the CTP routing

protocol for which it improves its efficiency up to 15% when it copes with bursts [81].

2.5.1.7 (σm metric)-2008

σm metric [53] detects the degree of the link stability by comparing the standard

deviation of the link with the deviation of a (stochastic) Bernoulli Process (σrand
m ). It

relies on active monitoring as nodes need to broadcast packets.

They claimed that good links have a reception sequence similar to a Bernoulli pro-

cess. To prove their observation, they considered the sequence: 1 for a good packet

reception and 0 for a lost packet. They found that a perfectly stable link is a Bernoulli

process with independent random variables, where each has the probability Pr. Fur-

thermore, to map the temporal PRR given an observation window of m packets to a

stochastic Bernoulli process, they found a stochastic standard deviation:

σrand
m (Pr) =

√

(
1

m
Pr(1− Pr)) (2.16)

where m is the number of aggregated packets (window size), and Pr the probability of

each independent packet.

On the other hand, the standard deviation of the temporal PRR given an observation

window of m packets (PRRw) is:

σPRRw
m =

√

(std(PRRw)). (2.17)

Last, a link stability factor γm gives the degree of link stability and is computed as

follows:
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γm =
σPRRw
m

σrand
m (Pr)

. (2.18)

They concluded that the estimator distinguishes among stable and unstable links

whereas using limited resources.

2.5.1.8 F-LQE: A Fuzzy Link Quality-2010

F-LQE [5] considers four link properties such as packet delivery (PRR), stability

of the link (SF), coefficient-of-variation over last 30 packets, asymmetry (ASL-PRR),

absolute PRR difference within the uplink and the downlink link between two nodes,

and the channel quality (SNR).

More specifically, F-LQE defines a good link as having good packet delivery ratio,

low asymmetry, high stability, and high channel quality (high SNR). In addition, the

EWMA filter is used to provide the smoothness of the F-LQE values:

F − LQE(α,w) = α ∗ F LQE + (1− α) ∗ LQ(w) (2.19)

where, α = 0.9, w-estimation window, LQ(w) = 100 ∗ µ(i), µ(i) is defined as:

µ(i) = β ∗min(PRR(i), ASL(i), SF(i), SNR(i))+(1−β)∗mean(PRR(i), ASL(i), SF(i), SNR(i))

(2.20)

where 0 < β < 1 gives the smoothness of the fuzzy value, PRR(i) is the average PRR

of a link i, ASL(i) measures the asymmetry of link i, SF(i) is the deviation of PRR over

last 30 packets for link i, SNR(i) is the average SNR of the link i.

PRR(i), ASL(i), SF(i), SNR(i) are normalized [0..1]. Hence, high values of F−LQE

denote good link quality.

F-LQE outperformed PRR, WMEWMA, ETX, RNP, and 4B regarding the stability,

reliability, and asymmetry. However, F-LQE considers four link properties which lead

to complex computation and large memory footprint. Additionally, an observation

window of 30 may be too large because estimators should target estimation of link

quality over few packets.

2.5.1.9 Triangle Metric-2010

The Triangle metric [13] combines PRR, LQI, and SNR to guarantee fast and re-

liable link quality estimation. It relies on active monitoring as each node broadcasts

periodically 10 packets per second. It considers an observation window (w) of size m

over which it counts the number of received packets, then, calculates mean LQI, and

mean SNR:

LQIw =

∑n
k=1 lqii
n

(2.21)

SNRw =

∑n
k=1 snri
n

(2.22)
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where n is the number of successfully received packets (0<n ≤ m), lqii and snri
denote the lqi and the snr of the received packet i.

Next, Triangle metric computes the distance between the node location character-

ized by a point(SNR, LQI) and the origin (0,0).

distance =

√

SNR
2
w + LQI

2
w (2.23)

Hence, based on the computed distance, the link quality between sender and receiver

is estimated. A large distance indicates a better link quality. However, an empirical

threshold is used to discriminate between link categories. Thus, broadcasting 10 packets

each second introduces overhead which enhance the energy depletion.

2.5.1.10 Holistic Packet Statistics (HoPS)-2011

HoPS [68] is measured at the receiver side and uses four link-quality descriptors

(LQI, SNR, PRR, ETX), that are periodically updated. A first-order EWMA filter

captures the short-term fluctuations of packet successful ratio (hSTτ ). It aims to retrieve

the deviation of PRR in the recent past:

hSTτ = α ∗ hSTτ−1 + (1− α) ∗ qτ (2.24)

where 0 < α < 1 gives the smoothness of the short term fluctuation, qτ is a binary

value that denotes whether an expected packet at time τ was received.

A second-order EWMA filter measures long-term fluctuations (hLTτ ):

hLTτ = β ∗ hLTτ−1 + (1− β) ∗ hSTτ (2.25)

where 0 < β < 1 gives the smoothness of the long term fluctuation,

To track short and long term fluctuations, a third filter EWMA filter is applied:

δ+τ = γ ∗ δ+τ−1 + (1− γ) ∗ φ(hSTτ , hLTτ ) (2.26)

δ−τ = γ ∗ δ+τ−1 + (1− γ) ∗ φ(hLTτ , hSTτ ) (2.27)

where τ is time, 0 < γ < 1, hSTτ - short term fluctuation. hLTτ - long term fluctuation,

and

φ(x, y) =

{

x− y, x > y

0 else

Next, the absolute deviation estimation gives link stability as follows:

hστ = δ+τ + δ−τ . (2.28)

An expected deviation estimation so called trend estimation is computed as follows:

hθτ = δ+τ − δ−τ . (2.29)
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Finally, HoPS is estimated due to the absolute and the expected deviation estimation:

HoPSτ = hLTτ +
|hθτ |

hστ
(hSTτ − hLTτ ). (2.30)

HoPS argued to outperform RPN, F-LQE, LEEP, ALE in terms of stability and

efficiency. Moreover, they claimed a lower memory footprint than F-LQE. Hops is an

interesting approach as it uses three EWMA filters to track short and long temporal

fluctuations. However, the complexity of computation and the need to store the output

of three EWMA filters renders it heavy for usage.

2.5.1.11 Link Quality Ranking (LQR)-2011

LQR [106] metric is designed to identify best links when only unreliable links are

present. It is a sender initiated metric: a sender periodically sends a predefined number

of probes. Next, as soon as a receiver is reached by a probe, it triggers a timer and

sends back to sender its physical metric indicators. Once a sender receives back the

hardware information from its neighbors, it proceeds by selecting the best quality link

to forward data.

The best link is chosen as a result of the comparison of the triplet (PRR, SNR,

LQI) for each single link. For example, assuming that xi, yi, and zi indicate the prr,

snr, and lqi of link i, then, the comparison of these metrics for two independent links,

i and j is given by as follows:

e =< sgn(xi − xj), sgn(yi − yj), sgn(zi − zj) > (2.31)

where e represents the comparison of the PRR, SNR, LQI metrics for link i, and sgn(x)

is the sign function (sgn(x) = {1, 0,−1} depending if x = {> 0, 0, < 0}).

LQR is meant for sparse deployments where data are required to be fast transfered to

neighbors. Even if it argued to identify best available links, the application to multihop

scenarios is limited by the large number of packets that have to be broadcast, i.e. 100.

2.5.2 Link quality routing metrics

2.5.2.1 ETX - Expected Transmission Count-2003

Expected Transmission Count (ETX) [24] is one of the well-known routing metrics

used in WSN. ETX is due to find high throughput path on multihop networks. It offers

an estimation of the link quality, channel noise, and asymmetry.

ETX is defined as the estimated average of the number of data and acknowledge-

ments (ACK) frame transmissions necessary to successfully transmit a packet. ETX is

an additive metric. The computation of ETX requires that nodes periodically broad-

cast small probes to compute forward (data frame (df )) and reverse (acknowledgement

frame (dr)) probability. Furthermore, ETX is computed as the product of data frame

delivery probability and acknowledgement frame delivery probability:
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ETX =
1

(df ∗ dr)
. (2.32)

It assumes that the reception of data frames is same as the acknowledgement ones,

independently on the packet size.

Equally important is the calculation of the path ETX as a sum of the ETX for each

individual link of the path:

ETX(path) =
∑

link∈path

ETXlink (2.33)

To prove the performances of ETX, it was integrated to two routing schemes such as

Destination-Sequenced Distance-Vector Routing (DSDV) and Dynamic Source Rout-

ing (DSR). The metric outperformed the hop count metric as it has knowledge about

delivery ratio over the path and the total number of retransmissions.

Today, ETX metric filtered by WMEWMA is highly used in routing (i.e. CTP,

RPL).

2.5.2.2 LQI-based ETX (LETX)-2006

LETX [72] metric is a LQI based metric, it relies on a PRR estimation based on

LQI. LETX estimates the link cost as the overall transmission tries to achieve successful

delivery during neighbor discovery:

LETX(link) =
1

Φ(link)
(2.34)

where Φ(link) is a function that estimates PRR from the LQI values of the link. The

function is a polynomial order one function that estimates PRR from average LQI.

Being the inverse of the estimated PRR, LETX aims same as ETX, a minimum number

of retransmissions over a link. A path is the route along which packets travel from

source to destination. The path cost is computed as the sum of the link costs of the

path. Moreover, LETX is an additive metric that does not introduce overhead as it is

computed online during the route discovery process.

2.5.2.3 PATH-DR-2006

PATH-DR [72] was designed to predict the link quality from the LQI value of a

single packet reception. It relies on the neighbor discovery during which it reads the

LQI values. The goal is to choose the path with the best packer delivery ratio (PDR):

p∗ = arg maxp∈P
∏

link∈Lp

ESTLDR(link) (2.35)

where arg comes from the set of points the function attains the maximum value, ES-

TLDR(link) is the estimated hop by hop packet delivery ratio of the LQI values of the

messages received during the discovery of neighboring motes. To estimate the PRR,

they mapped the average LQI with a linear model.
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2.5.2.4 MAX-LQI-2006

Each receiver selects the path with the highest minimum LQI value, to avoid weak

links.

p∗ = arg max minp∈P,link∈Lp
LQI(link) (2.36)

where p is the path, P is the set of available paths, Lp is the set of path links. The

MAX-LQI metric [72] is computed at the receiver side.

2.5.2.5 Four-Bit (4Bit)-2007

4Bit [27] metric aggregates the information provided by physical, link, and network

layers. Is composed of four information bits. The first bit, so called ’white bit’ denotes

that the quality of the medium is high. The second bit (ack bit) is given by the link

layer, and as soon a packet is acknowledged, the bit is set. The third bit (pin bit) is

set by the network layer. If on, it designates that the link is part of the routing table

entries. Last, the fourth bit (compared bit) tells if a link entry is better that the other

one existing in the routing table.

Thus, it is initiated by the sender and makes use of the active and passive monitoring

to compute the ETX needed to set the ack bit.

The ETX is computed after previously broadcast packets are sent for a short time,

so that ETX from a receiver to sender:

ETX receiver sender(w,α) =
1

WMEWMA(w,α)
− 1 (2.37)

where, 0 < α < 1, w is the observation window.

Furthermore, the sender estimates the ETX as following:

ETX sender receiver(w,α) = α ∗ ETX sender receiver + (1− α) ∗RNP (2.38)

Once the ETX is computed from receiver to sender and from sender to receiver, the

four-fit expression becomes:

4B(w,α) = α ∗ 4B + (1− α) ∗ ETX sender receiver(ETX receiver sender) (2.39)

4B provides a third layer neighbor’s choice based on information coming from the

first layer (LQI) and the second layer (ETX). Finally, it was concluded that 4B outper-

forms the LQI metric alone. Specifically, it obtained a better link delivery radio than

ETX and RNP metrics.

2.5.2.6 DUCHY: Double Cost Field Hybrid Link-2008

The Duchy metric [64] is a routing metric that aims to choose shortest hops and

good link quality. To do so, it uses RSSI information to discriminate good links, uses
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LQI information to discriminate bad links, and a feedback scheme that relies on link-

level ACKs. It embeds two estimators, one for channel instability (Channel State

Information-CSI) and second for the path expected transmission count (ETX).

For instance, CSI relies on active monitoring thorough beacons. CSI considers both

RSSI and LQI information measured from each received beacon, information that is

normalized and then smoothed using a WMEWMA filter. The second used scheme is

RNP that counts the number of layer-2 ACKs.

Duchy constructs an outer cost filed for depth control (RNP) and an inner field for

parent selection (CSI). The two cost field information is embedded into each dissemi-

nated beacon. The outer field will keep track of the ETX cost, whereas the inner field

contains the LQI and RSSI cost.

DUCHY was integrated with Arbutus routing protocol, and claimed to achieve

shortest paths with good link qualities compared to the MultiHopLQI metric.

2.5.2.7 Link quality indication based on metric (LQIBM)-2012

LQIBM metric [102] combines mean and deviation LQI to accurately discriminate

poor links.

Initially, probes have to be broadcast to estimate the mean and the variance coef-

ficient of LQI. The metric tracks the mean and the deviation of LQI along the entire

routing path as follows:

P = α ∗ Pcm − (1− α) ∗
σ

µ
(2.40)

where 0 < α < 1 gives the smoothness of the historical data, P denotes the selection

probability of routing, µ indicates the mean LQI, σ indicates the standard deviation of

LQI , and Pcm is a quantitative value that indicates the proximity degree of LQI mean

with LQI maximum.

Pcm is given by:

Pcm = e−( 100−µ
110−50

)2 (2.41)

The metric is supposed to overcome the bottleneck links, congestion and retransmis-

sions. Nevertheless, the LQI variance is unpredictable for intermediate links, so that it

may occur that links with low mean LQI have low deviation, moreover, the asymmetry

of links is not considered. Also, is not specified the type of the found fitting function

or the observation window the mean and deviation LQI are computed.

2.5.3 Discussion

LQEs were designed as a result of extensive analyses carried on various platforms.

Thus, the most common are Mirage [18] ( Mica2 and Mica2Dot ), MoteLab [93] (Mica2

or Telos), TWIST testbed [32, 106] (Tmote Sky), SCALE[15] (Mica 1&2). Except the

existing testbeds, other studies were performed on local deployments such as offices,

halls, buildings, parks. For example, the Berkeley mote platform was used to assess the
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EWMA filter performance [97]. Recently, frameworks such as SWAT [82] or RadiaLE

(TelosB motes) [6] were designed to ease the link estimator evaluation.

Empirical studies performed on the above platforms addressed mostly linear topolo-

gies [103, 67, 94] (868 MHz), grid [96] (868 MHz), [72] (2.4GHz), or random [79]

(2.4GHz). In fact, empirical studies assessed the impact of link estimators by inte-

grating routing protocols such as CTP [45, 103, 8, 27] for MultiHopLQI, 4Bit, β factor

[81], DSDV and DSR for ETX [24], Not-so-Tiny Ad-hoc On-demand Distance Vector

(NST-AODV) for LETX [72], AODV for LQIBM [102], Arbutus [62] for Duchy [64].

Moreover, ETX link estimator is one of the pioneer link estimators. Once it was

proposed, it outperformed the classic hop count metric [24].

Each of the link assessment approaches we have discussed were confronted with

existing approaches. We highlight the main observations of each performed comparison.

❼ RNP [96] gives a higher PRR as it keeps track of retransmissions [6] while PRR

overestimates the link quality for intermediate links.

❼ LETX [72] outperformed hop count and PATH-DR in terms of packet delivery

ratio.

❼ PATH-DR and MAX-LQI [72] outperformed hop count in robustness and over-

head.

❼ F-LQE [5] metric is more stable compared with ETX, RNP, 4Bit, PRR. It as able

to discriminate very good links (PRR > 99%) and good links (90 < PRR < 99%).

– F-LQE considers three link proprieties such as PRR, stability (avoiding the

short term fluctuation) and asymmetry.

– ETX, RNP, 4B do not consider link stability property.

– PRR and SPRR are less sensitive to short term fluctuation, therefore, both

are more stable than RNP and 4B.

– ETX is unstable for bad links, it tends to infinity whereas PRR reaches 0.

❼ Duchy [64] outperformed MultiHopLQI metric by achieving shortest paths with

good links quality.

❼ HoPS [68] metric offered better stability and efficiency than RPN, F-LQE, LEEP,

ALE metrics, because it considers short and long term fluctuations.

❼ 4Bit [27] attains better PRR than ETX, RNP, LQI metrics.

Several metrics were designed to achieve a specific target, for example βfactor

(bursty traffic), LQR (choice of links among unreliable links at a certain instant). Table

2.4 presents the described LQEs.

Several studies use real testbeds to provide evaluation of the proposed link quality

estimators in order to find out the best one. We present the conclusions of the most

recent studies.
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❼ WMEWMA outperforms filter-based LQEs [96] as it selects shortest paths, still,

data collection is not reliable as retransmissions are omitted.

❼ Liu et al. 2009 [51] compared RNP, ETX, and 4Bit metrics in terms of path

quality, delivery rate, cost per packet, routing overhead, and neighbor blacklist-

ing (accurate predefined thresholds to discriminate unreliable neighbors). They

concluded that RPN choses shorter paths compared with ETX and 4B and ob-

tains a smaller overhead. Moreover, ETX outperforms RPN being more reactive

when links encounter short-term drops. Besides, ETX introduces a high overhead

compared to RNP and 4B. On the other hand, in dense networks, none of the

three metrics guarantee a good path quality. Overall, ETX achieved the best

delivery rate.

❼ Baccour et al. [3] claimed that ETX outperforms PRR, RNP, 4B, WMEWMA

estimators with respect to energy efficiency, the number of retransmissions and the

path length. They observed that estimators perform better when they consider

the link layer retransmissions.

❼ Using the RadiaLE framework [6], the authors studied the performance of the

following estimators: PRR, ETX, RNP, WMEWMA, and 4Bit. They found that

four-bit and RNP underestimate the link quality whereas PRR, WMEWMA, and

ETX overestimate the link quality [5]. The underestimation is due to the maxi-

mum number of retransmissions, for instance, RNP has to perform a maximum

of 4 retransmissions before to drop a packet. A link is classified as bad link since

the retransmission threshold of 4 is reached. For example, RadiaLE recorded that

when RNP is used 90% of links performed packet transmissions after and average

of 4 retransmissions. 4B underestimates less the link quality. Moreover, the un-

derestimation is cause by the fact that the estimators do not know if the packet

was transmitted or not after 4 retransmissions as layer 2 ACKs are not used. On

the contrary, when retransmissions are avoided and decisions are taken from the

successfully received packets, links may be overestimated since a received packet

denotes a good link, even if the packet was received after numerous retransmis-

sions. Furthermore, the authors claimed that WMEWMA and PRR are more

stable than RNP and 4B, because of EWMA filter that soothes the short-term

fluctuations.

We can see in Table 2.4 that among single and composite metrics, the composite

metrics such as F-LQE, HoPs, LQIBM achieved a good reactivity, they are less sensitive

to short term fluctuation of the links, considered the bi-directionality of links, and are

reliable. However, HoPs remains the most interesting approach as it uses three EWMA

filters to track short and long temporal fluctuations. Moreover, a drawback of HoPs is

its heaviness for usage due to the complexity of the computation and the need to store

the output of three EWMA filters.
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LQE Reactivity Stability Bi-directionality Reliability Fluctuation

PRR yes yes no no short-term

WMEWMA yes yes no no long-term or short-term

RPN yes no yes no short-term

LETX yes no yes no short-term

Path-DR yes no no no short-term

MAX-LQI yes no no no short-term

norm(RSSI) yes yes no no short-term

β factor yes - - no short-term

F-LQE yes yes yes yes long-term

HoPS yes yes yes yes long-term and short-term

ETX yes no yes yes short-term

Triangle yes yes no no short-term

LQIBM yes yes yes yes short-term

Duchy yes no no yes short-term

4B yes no yes yes short-term

LQR yes no no yes short-term

Table 2.4: Link quality estimators classification in terms of their attained reactivity

(adapt to network changes) , stability (capacity to ignore small fluctu-

ations of links), bi-directionality (asymmetry of links), reliability (suc-

cessful data delivery).

2.6 Routing in IPv6-based 6LoWPANs

We focus our attention on the most common approach that enabled the Internet of

Things. We highlight how to push IPv6 in sensor networks. We review on aspects of

the distance-vector based routing protocols such as CTP, LOAD [19], and RPL [88].

2.6.1 Introduction

Ten years ago, putting a TCP/IP stack in a sensor was hardly possible. Nowadays,

several operating systems including optimized IP stacks run on different resource and

energy-constrained platforms already tested in real deployments. The standardization

efforts are still on their way, but major problems were overcome progressively during

the past decade.

Simultaneously, existing IP routing protocols raises several issues in the context of

wireless multi-hop low power and lossy networks (LLN). Several routing protocols were

proposed: CTP, LOAD, RPL.

Routing is an important feature of the WSN communication that presents vari-

ous challenges with respect to other wireless networks like mobile ad hoc networks

(MANET) or cellular networks. In this context, routing protocols have to ensure the

next hop packet forward as well as the path calculation. Most of WSN application

scenarios are multi-hop as WSN networks are deployed over large spaces and short

radio range coverage. Packets should visit several intermediate nodes to reach a sink

destination.

The destination plays the role of a collector that gathers data for further analysis
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and evaluation. The collector may disseminate information back to nodes so, it also

needs to communicate with rest of the nodes.

2.6.2 The Collection Tree Protocol (CTP)

Back in 2005, one of pioneering routing protocols for LLN was the Collection Tree

Protocol (CTP) [69]. CTP is a hierarchical distance vector protocol based on multi-hop

communication. It was designed to collect information from sensor nodes and delivered

it to a central station (root). CTP constructs anycast route paths from each node to

the collection point (root) defined in the network (cf. Figure 2.5).
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Figure 2.5: Cluster tree topology.

CTP aims at reactivity (quickly react to changes), efficiency (low energy consump-

tion), and reliability (successful data delivery). It accounts for three mechanisms: link

quality estimation, data-path validation, and adaptive beaconing. First, to cope with

the lossy links while providing reactivity, it uses the 4Bit [27] link quality estimator (cf.

Section 2.5.2.5).

Second, data path validation is meant to detect network inconsistencies such as

short and long term link breaks, loops, leading to energy waste. Short data packets

that embed link layer information (root distance) are generated (active monitoring).

When a node needs to forward a packet coming from a lower or equal root distance, it

may initiate a local repair by correcting the topology and then forward the packet.

The last mechanism, active beaconing relies on the trickle mechanism [47]. Routing

control packets generation change dynamically from small time intervals around few

milliseconds to large time intervals around dozen of minutes. A small interval gives

better reactivity at the price of additional overhead and energy. On the other hand, a

larger interval decreases energy waste and the overhead but may be slower to network

changes.

CTP was used for clinical monitoring [17, 44], environmental monitoring (i.e. trop-

ical forest), Greenorbs with more than 1000 motes [31], or protocol validation as β
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factor [81]. Various implementations are available on nesC for TinyOS [49], Java for

Sun SPOTs motes, C for ContikiOS [26], or C++ for Castilia simulator [56].

2.6.3 6LoWPAN Ad-Hoc On-demand Distance Vector (LOAD)

LOAD [19] protocol was proposed as an adaptation of AODV [57] to sensor networks.

Its features are to establish and maintain multihop routing paths. It operates on top of

the adaptation layer. LOAD uses several mechanisms: route discovery using broadcast,

local structure maintenance (routing and route-request tables), local and global repair,

and loop avoidance. It relies on point to point (P2P) traffic pattern.

LOAD routes are constructed on demand, so that when a packet has to be sent

to a destination, the node checks for the destination in its routing table. In case the

entry misses, it initiates route discovery by broadcasting a Route Request (RREQ)

message. Each intermediate forwarder of the RREQ will add the originator address

in the routing table. In this way, a reverse route from the destination to the source

of the RREQ message is created. Once RREQ reaches the destination, to confirm the

reception, a route-reply (RREP) message is sent to the originator using the reverse-

route already created. Since the reverse route is installed, the bi-directional route is

ready for use.

To keep track of connectivity, LOAD uses data link layer information. When a

router detects a link breakdown, it may initiate a local repair (using route discovery

mechanism in LOAD ) by broadcasting a Route Request (RREQ). The bi-directional

route is re-installed with the reception of the unicast reply-request (RREP), however,

any packet reception for the destination the link is down, will be buffered for a further

forward to the destination.

Whenever a node fails to repair a break link, it sends back to originator a unicast

route-error (RERR) message that needs to drop buffered packets. Moreover, during

local repair only the originator of a RRQE message is notified about the reachability

of a destination, , whereas AODV will notify all the neighbors that have the respective

destination as the next hop.

Unlike AODV, LOAD does not allow intermediate routers to reply to a route-

request. Forbidding the intermediate nodes to respond respond with a RREP to a

RREQ, LOAD assures loop freedom.

The route cost in LOAD is computed as the accumulated link cost and the hop

count from the source to destination. To measure the link cost, it utilizes the Link

Quality Indicator (LQI) hardware (cf. Section 2.5.1). LOAD will prefer in its routing

decisions a route that contains a smaller number of weak links (links with LQI below a

certain threshold value) and less hops from source to destination.

2.6.4 Routing in LLNs (RPL)

RPL [88] is a distance vector protocol for LLNs. It was designed by the Internet

Engineering Task Force(IETF) working group, ROLL [88]. In March 2012, it became

a standard (RFC 6550).
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The principle of RPL relies on a Destination Oriented Directed Acyclic Graph

(DODAG) generated based on few RPL signaling messages: DODAG Information

Object (DIO), Destination Advertisement Object (DAO), and DODAG Information

Solicitation (DIS).

Routing starts with the root (sink) that periodically generates DIO link-local multi-

cast messages using the trickle algorithm [47].

The DODAG topology allows a node to have more than one parent at a time,

Figure 2.6 shows the DODAG topology. Nodes in RPL can play the role of a edge

router, router, or a leaf.

❼ An edge router (LBR) is in charge of the DODAG generation. It is a powered node

with high storage capacity, able to store information from inside the DODAG. In

addition, it ensures the communication with other DODAGs or the Internet.

❼ A router is responsible of forwarding messages to the next hop towards the des-

tination and to disseminate DIO or DAO messages when needed.

❼ A leaf is an end-device that can only send data traffic.
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Figure 2.6: RPL DODAG.

Each DIO disseminates:

❼ RPLInstanceID gives the topology instance number associated with the current

DODAG. Each RPL instance may hold several DODAGs initiated by different

edge routers having identical objective function.
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❼ Rank, is the node relative position with respect to the DODAG root. It increases

monotonically following the requirements of the objective function (OF).

❼ DODAGID is the identifier of the DODAG, typically it is an IPv6 address given

by the DODOAG root. Note that the root can initiate disjoint DODAGs with

different objective functions.

❼ DODAG VersionNumber is a counter that gets incremented by the root each time

the topology triggers changes. It is a way to track network updates.

The Objective Function plays different roles in RPL: estimates the rank value from

a chosen routing metric (hop count, ETX, energy, etc.), decide optimal routing paths,

and define constraints on path selection. Recently, two OFs were defined, hop count

(OF0[91]) and ETX (OF1[30]). A node favors a path with a minimal number of hops

towards the root (OF0), or a minimal ETX value (OF1). However, manifold metrics

associate with nodes or links can be applied [91]. Node metrics may represent node

characteristics such as:

❼ Node state indicating if the node can or not aggregate traffic flows.

❼ Node energy points out the available energy on the node. When the metric is

used, a node should prefer the path (towards the root) that alleviates the energy

cost.

❼ Hop count announces the number of visited nodes to reach the root.

On the other hand, link metrics represent the link quality towards neighbors. Each

application scenario may require information such as:

❼ Latency – the time delay required for a specific data communication.

❼ Throughput – data rate per unit time may be used to discriminate nodes with low

data rates.

❼ Reliability – reflects the link quality estimation. The proper algorithm for link

estimation remains an open issue. Besides, we have discussed in Section 2.5.1 ex-

isting propositions. One link estimator is ETX (OF1), that estimates the number

of retransmissions over a link (see Section 2.5.2.1).

❼ Color of the links denotes patterns of bit values predefined by the user. For

example, encrypted links can be discriminated trough a flag value.

RPL supports three types of traffic patterns shown in Figure 2.7:

❼ Multi Point to Point (MP2P) or converge-cast for data collection: from nodes to

LBR (upward routing).

❼ Point to Multi point (P2MP) for data dissemination: from LBR to a node or a

group of nodes (downward routing). P2MP it is extensive use in building and

industrial automation [88].
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Figure 2.7: DODAG traffic patterns.

❼ Point to Point (P2P) for communication between any node inside the DODAG.

Topology generation process

Upward routes facilitate the MP2P communication. The root disseminates DIO

messages on the link local multi-cast address to initiate the DODAG construction (up-

ward routes). The LBR (sink) has the rank set to 1. At each received DIO, a node

decides to join or not the DODAG topology according to the predefined Objective

Function. Once it joins the DODAG, it creates an entry in the candidate neighbor list.

Then, it computes its own rank as a sum between the rank in the DIO message and the

link metric value (e.g. ETX [24]). A neighbor that proposes a lower rank towards the

root is selected in the node’s parent set as preferred parent. A default route is installed

and inward traffic is forwarded to the preferred parent. The preferred parent should be

updated whenever a lower rank is proposed or a new entry is recorded. Once a node has

decided the upward default route, it should send DIO messages to announce its rank

value. A node can ask for a DIO message through the generation of a DIS message.

To restrict extensive preferred parent changes due to instable links, low-pass filter,

thresholds, or hysteresis algorithms are recommended.

To ensure upward routes maintenance, nodes periodically transmit DIOs at a fre-

quency given by the trickle algorithm [47]. The mechanism is simple and is intended

to detect network instabilities. Each node keeps track of a DIO transmission interval

limited by a a minimum interval (Imin [ms]) and a maximum interval (Imax [minutes]).
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The trickle algorithm sets the DIO interval to Imin when the network is unstable (lost

of preferred parent, loops, updates), and it increases exponentially otherwise.

2.Downward routes installation enables the P2MP and the P2P communication.

RPL may employ two types of operation modes to maintain downward routes. First,

storing mode when each child has to send to the elected parent or to a multi-cast

subgroup a DAO message to announce its prefix. The parent has to store each prefix

received in DAO message, and further communicate the reachability to its own parent.

An issue of this approach is the storing capacity of parents that have to hold all the

routes to the leaves.

Second, in non-storing mode, once an intermediate parent receives an unicast DAO

from its child, it cannot store the child prefix. Thus, it needs to forward the DAO

packet to its legitimate parent after it appends its address to the DAO packet. Clausen

et al. [21] reported that source-routes may result in fragmentation that may lead to

packet losses as a packet is dropped if a single fragment is lost.

For downward routes, the periodicity of DAO emission remains open so that each

implementation can decide when to send DAO messages, or successively send several

DAO messages to ensure the reachability of the parent [20].

RPL properties

RPL provides mechanisms to avoid or detect loops, based on rank decision and

path validation. Once a node losses all the parent set candidates, it may be tempted

to attach to its own sub-DODAG in case it misses DIOs. To avoid this situations,

RPL defines several rules: a node may not pick as parent the node having a higher

rank than a maximal depth, a node may poison its sub-DODAG. A maximal depth is

defined as a minimal accepted rank and a DAGMAXRankIncrease is specified by the

user. The poison process assumes that a node out of the parent candidates table due to

a lost connection or no more availability has to advertise an infinite rank to its children.

Moreover, to prevent loops, nodes check that the forwarding direction is same as the

traveling direction (upward/downward).

A lot of work concerns RPL, because of the interest it rises for large topologies such

as building automation [25], home automation[14], and smart grids[58]. However, Levis

et al. [48] due to detailed analysis of the existent routing protocol features concluded

that none of them fulfill wholly the Low Power and Lossy Networks(LNN) require-

ments. Hence, efforts were directed to design a new protocol in charge to overcome the

mentioned issues.

2.6.5 Conclusions

WSN protocols such as media access, routing, localization are highly depended on

the efficiency and stability of LQEs. Therefore, much effort resulted in LQE proposals

as a combination of hardware or software metrics. Hardware metrics (RSSI/LQI/SNR)

are simple and easy to read from the radio device. For example, SNR and RSSI can

differentiate between very good links that exhibit a PRR>99% and the other ones with

a PRR below 99%. However, in the first section of this chapter, we have seen that

they are highly dependent on the hardware and environmental factors. Hence, link
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estimators only based on hardware metrics are not sufficient to discriminate the quality

of links.

On the other hand, software link estimators may consider the number, the aver-

age, or approximate packet receptions/retransmissions using techniques such as filters,

standard deviation, weighted sum, classification, regression, or fuzzy logic. Anyway,

most of the estimators use the exponential moving average (EWMA) filter to smooth

metrics.

Up to now, the most promising approaches are the composite metrics, because they

aggregate several link properties e.g. 4Bit [27], F-LQE [5], Triangle [13], HoPS [68],

LQR [106], LQIBM [102]. Clearly, composite metrics outperform simple metrics such

as RSSI, LQI, SNR, PRR not able to track at once all proprieties of links (delivery,

stability, asymmetry, reactivity).

LQIBM only models the LQI variance, which is highly unpredictable for interme-

diate links and does not catch the long term link behavior. HoPS outperforms F-LQE

in terms of the memory footprint and short term link behavior. Thus, two main is-

sues have been identified, one that a deeper temporal link behavior is needed to model

mathematically the fluctuations of links, and therefore, avoid bad parent choices at

the routing level, and second, the collected information (SNR, LQI, sequence number,

ETX) are merged into one value, which may underestimate the link quality.

Nonetheless, the widest used metric in WSN is ETX, it presents few limitations,

i.e. as it relies on counting packet retransmissions, it does not consider packet losses:

considering that after 5 retransmissions, a packet has to be dropped, if a node records a

dropped packet (5 retransmissions) and one successful transmission (1 retransmission),

while the second node records, two successful transmissions (4 retransmissions), ETX

will prefer the first node. Consequently, ETX is unstable and unreliable for dense

networks where we may encounter high packet losses.

An ideal link estimator needs to: assure a good delivery rate, be accurate, be reactive

(adapt to network changes), consider the link asymmetry, have low overhead, be reliable

in dense and noisy networks, be stable (able to ignore small fluctuations of link quality).

An open issue remains the design of a link estimator able to consider all the above

mentioned link proprieties and furthermore, to assure a holistic estimation. Moreover,

estimators need to perform well in noisy and dense networks by avoiding unreliable

links and choosing stable paths for multihop routing.

In this context, at first, we have observed that hardware metrics turn out to provide

good information of the link characteristics (delivery, stability, asymmetry, reactivity).

Second, composite metrics outperform single metrics. Even so, composite metrics need

still further investigation in terms of the required computation time, complexity, mem-

ory footprint, behavior in noisy environments and dense networks. To reduce the mem-

ory footprint and complex computation of the existing composite metrics, we believe

that link estimators should integrate mathematical models able to capture the dynamics

of the hardware metrics (average RSSI, std RSSI, average LQI, deviation LQI).

In this thesis, we intend to find an approach able to predict the link behavior from

hardware metrics that will require low computation and low memory storage.
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We report in this chapter on the results of measurements on SensLAB [75], an

indoor large scale wireless sensor network testbed equipped with CC1101/CC2420 ra-

dio chips. We have done extensive experiments on the SensLab platform and recorded

two main hardware metrics: RSSI (Received Signal Strength Indicator) and LQI (Link

Quality Indicator). LQI gives “an estimate of how easily a received signal can be de-

modulated by accumulating the magnitude of the error between ideal constellations

and the received signal over the 64 symbols immediately following the sync word” [89].

Further, we grouped the links function of their degree of fluctuation as good (80% ≤

PRR ≤ 100%), intermediate (20% < PRR ≤ 80%), and bad (80% < PRR < 20%).

We analyze RSSI and LQI behavior in what it concerns the correlation between

link properties, temporal fluctuation and asymmetry aspect, to find the best way of

detecting good links in comparison to weak ones. To attain a deep understanding of
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link dynamics we are aware of the spatial displacement of nodes. Moreover, we present

the main characteristics of links dynamics after previously we identify the external and

internal factors that may contribute to signal distortion.

3.1 Introduction

In the literature, much research has explored the link quality on indoor and outdoor

environments. In this chapter, we concentrate on an indoor environment. We focus on

two hardware metrics such as RSSI and LQI. Their temporal fluctuation was reported

to be the main issue of the link quality variation.

Referring to an indoor or an outdoor environment, signal distortion leads to decrease

of RSSI, LQI increase for CC1101 with values between 0 (good)-110 (bad), and LQI

decrease for CC2420 with values between 110 (good)-50 (bad). Generally, the distortion

of the signal is due to the presence of various factors such as the presence of good

reflectors (metal or glass) that lead to multi-path (reflections, fading, diffraction) effects,

interference all named in Section 2.2.3. Hardware miss-calibration and antenna position

are other two additional factors that may affect signal propagation [15, 63, 92].

A link by definition refers a two-way interconnecting system between two nodes in

the purpose of transmitting or receiving data. Various studies classified links by their

quality in three categories: bad links, intermediate, and good links. In particular, Table

2.3 presents an existing link classification. A good link improves the lifetime of a node

thanks to the high packet delivery rate reducing energy consumption. On the contrary,

intermediate links are highly variable which increase energy consumption.

In order to discriminate links by their quality, efforts analyzed the temporal devi-

ation of RSSI and LQI hardware metrics. They concluded that either observed RSSI

does not vary sufficiently, either LQI metric presents unpredictable variation. There-

fore, remains a challenge the right methodology to estimate link quality, by merging

LQI and RSSI behavior, or by other means.

Consequently, due to the temporal nature of signal propagation, existing studies

showed through empirical studies the existence of three zones: good (high link quality),

intermediate (intermediate link quality), and bad (bad link quality). Good zones or so

known as connected are characterized by stable and mostly symmetric links. Thus, in

intermediate or transitional (gray) zones link quality may vary drastically, and more,

they are highly asymmetric. The bad or disconnected zones refer to very poor links

that should be avoided [101, 6].

Back in 2003, Zhao et al. used a 60 node testbed to show a high variation in

packet reception in intermediate zones [103]. Woo et al. observed that distance may

discriminate signal zones. They claimed good connectivity of nodes up to 3m and a

high variability between 3m and 12m [97].

In this chapter, at first, we aim to understand better the environmental factors that

may affect the signal propagation in our large scale testbed (Senslab), equipped with

two different radio chips (CC1101 and CC2420). Second, we want to stress out the main

characteristics of CC1101, CC2420 links. Last, we provide observations on temporal
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link behavior in terms of RSSI, LQI, PRR, and asymmetry. We have organized the

chapter as follows:

Section 3.3 presents the experimental set up scenarios for CC1101 and CC2420

testbeds. Next, in Section 3.4, we provide a link classification based on the PRR (good,

intermediate, bad). For each category, we report on how varying inter-packet time and

output power affects the proportion of links.

Section 3.5 discusses the RSSI/LQI characteristics for good/intermediate/bad links.

We consider individually each category to observe the main link property correlation,

their temporal fluctuation, and their asymmetry.

Finally, we conclude this chapter by listing down the main characteristics of links

that we further use for finding a link quality estimator able to accurately predict PRR.

3.2 Motivation

In this chapter, our main goal is to exploit the temporal deviation of the hardware

metrics, namely, LQI and RSSI, in order to accurately distinguish the quality of links.

Initially, we conduct experiments to better understand the Senslab indoor environ-

ment. Once we identify the factors, we aim to elaborate a new approach to identify

best the reliable links. Likewise, our findings may be used in the design of more accu-

rate radio models in simulators. Finally, we elaborate recommendations on how a new

testbed has to be properly deployed.

3.3 Experimental Set Up

We have run experiments on the Strasbourg platform of SensLAB [75] composed of

1024 nodes distributed across 4 sites (Grenoble, Strasbourg, Lille, Rennes). Each indi-

vidual site comprises 256 WSN430 nodes. Designed to serve as testbed for the Internet

of Things scenarios. Our study uses two sites, the SensLAB Strasbourg (CC1101) and

SensLab Lille (CC2420).

We observe for CC1101 the quality of transmission of a node that broadcasts a total

of 5000 packets of 110 bytes every 0.5s. There is no other ongoing transmission, so there

is no interference nor contention between nodes. When one node broadcasts its packet,

the other 79 nodes (Strasbourg) are active and ready to receive—they log the values of

LQI and RSSI of the received packet. The values are recorded for the correctly received

packets with good CRC and also for those with incorrect CRC. As there is one sender at

a time, we are able to relate the sender and the receiver of a packet even if the receiver

cannot decode a packet.

The receiver nodes do not acknowledge frames and the MAC layer does not retrans-

mit frames in case of failed transmissions. After the experiment, we compute for each

link:

❼ the average value of RSSI over all received packets,

❼ the average value of LQI,
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Figure 3.1: Topology of the second tray of SensLAB testbed in Strasbourg. An

example of the measured PRR for Node 14 (transmission power: 0dBm):

an arrow represents a link labeled with the measured PRR.

❼ the average value of the Packet Reception Ratio (PRR) of each link as the pro-

portion between the number of correctly received packets (correct CRC) to the

total number of sent packets.

We assume that all nodes can potentially communicate with each other. We further

discuss separately the results obtained for CC1101 and CC2420.

3.3.1 Senslab-Strasbourg (CC1101)

SensLAB Strasbourg is composed of 240 WSN430 fixed nodes distributed across

three trays at different heights. Each tray contains 80 nodes arranged in a regular grid

(10x8) with a distance between each node of about 1m (cf. the topology of the second

tray of the testbed in Fig. 3.1). A node is composed of a MSP430F1611 CPU (48KB

ROM, 10KB RAM) and a CC1101 radio operating at 868MHz. Its transmission power

ranges between -30dBm and 10dBm, and the reception sensitivity is set to -88dBm. In a

single experiment, we use one tray at a time, i.e. 80 nodes. We run the experiments with

two levels of the transmission power: 0dBm and -10dBm. The bit rate is 60kb/s and

nodes use the Frequency Shift Keying (2-FSK) modulation and channel 30. Table 3.1

summarizes the parameters of the experiments.

We assume that all nodes can potentially communicate with each other, the total

number of unidirectional links is 6320 (80 sender nodes times 79 receiver nodes).
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Table 3.1: Experiment parameters

Experiment area 9m x 7m x 2m

Number of nodes 3 x 80

Traffic type, inter-packet interval broadcast, 0.1s/0.2s/0.5s/1s/30s

Number of sent packets 5000

Packet size 110 & 6 bytes

Transmission power 10dbm, 5dbm, 0dBm, -10dBm, -30dBm

Topology grid

3.3.2 Senslab-Lille (CC2420)

SensLAB Lille [75] composed of 256 WSN430 nodes scattered across two horizontal

trays of different heights and one vertical tray. Each of the horizontal tray contains

100 nodes regulate in a grid of (20x5) with a distance of about 0.6m between nodes. A

node is composed of a CC2420 radio operating at 2.4GHz. Table 2.2 presents its main

parameters.

We use for our study one tray of 100 nodes.

Table 3.2 shows the parameters of the experiment. We run experiments with three

levels of transmission power: 0dBm, -15dBm, and -25dBm. The bit rate is 250kb/s

and nodes use the orthogonal quadrature phase shift keying (OQPSK) modulation. We

concentrate on the 0dBm output power on our study.

Thus, either in the case of Lille-Strasbourg (CC2420) the receiver nodes do not

acknowledge frames so that the MAC layer does not retransmit frames in case of failed

transmissions.

Moreover, we assume same as in Strasbourg platform that all nodes can potentially

communicate so that the number of unidirectional links is 9900 (100 sender nodes times

99 receiver nodes).

Experiment area 11.4m x 2.4m

Number of nodes 20 x 5

Environment: testbed Senslab Lille

Traffic type, inter-packet interval broadcast, 0.1s/0.2s/0.5s/1s

Number of sent packets 1000

Packet size 110 & 6 bytes

Transmission power 0dBm, -10dBm

Topology grid

Table 3.2: Parameters of the WSN430, CC2420-based testbed.

3.4 Link categories

We consider three main categories of link quality: good links with a PRR above

80%, intermediate with PRR between 20% and 80%, and bad ones with PRR below

20% (such categories appear in previous studies Table 2.3 where the most common
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threshold is 90%–10%). Please note that the decision of the three categories is due to

the temporal deviation values of LQI. For example, a density distribution of the LQI

deviation picks around the value of 1 for good links, 2.5 for intermediate links, and 5

for bad links.

We discuss the impact on link proportion for three cases. One when we decrease

power down to -10dBm (CC1101) and to -25dBm (CC2420), and last, a short (6bytes)

and long packet (110bytes) case.

3.4.1 Link proportion for CC1101

Table 3.3 gives the proportion of links in each category (over all 6320 unidirectional

links). Figure 3.2 shows the portion of links in terms of PRR over the whole experiment.

We encounter an important percentage of links with PRR>80% and PRR<20% links.

PRR = 0% corresponds to the case in which a given node did not receive any packet.
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Figure 3.2: The link occurrence ratio for links with a given PRR at 0dBm output

power on CC1101.

Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20% PRR = 0%

Trays t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

110B, 0.5s,

0dBm

48% 49% 38% 9% 8% 10% 12% 10% 10% 31% 33% 42%

Table 3.3: Proportion of links in each category: good (PRR ≥ 80%), intermediate

(20% ≤ PRR < 80%), bad (0 < PRR < 20%) for each of the three

available trays (t1-tray1, t2-tray2, t3-tray3), with transmission power:

0dBm.

We can observe in Table 3.3 that at 0dBm output power and an inter-packet interval

of 0.5s there is a large proportion of good links. Besides, the number of intermediate

links is fairly low.

Table 3.4 shows that the decrease of the transmission power to -10dBm only slightly

affects the proportion of good links for the first and second tray.
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The third tray decreased significantly the number of good links at -10dBm, which

shows that nodes are highly affected by multipath effect as third tray is close to metal

fixed supports. We can say that the presence of reflectors at a low power affect more

the proportion of good links.

Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20% PRR = 0%

Trays t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

110B, 0.5s,-

10dBm

46% 44% 13% 8% 6% 7% 6% 9% 15% 40% 41% 65%

Table 3.4: Proportion of links in each category: good (PRR ≥ 80%), intermediate

(20% ≤ PRR < 80%), bad (0 < PRR < 20%) for each of the three

available trays (t1-tray1, t2-tray2, t3-tray3), with transmission power:-

10dBm.

We have also noticed that at an output power of 5dBm or 10dBm, the intermediate

and bad links are in-existing, they are below 1%. We observe a proportion of good links

of 65% for 5dBm and 83% for 10dbm.

Consequently, when we decrease the output power down to -30dBm, the majority

of links are bad. Aside from the power decrease impact on the link proportion, we are

interested in how interference and long or short packets impact link proportion.

In Table 3.5 we show the concurrent interference case. We set up node 86 as an

interferer that concurrently transmits data packets of 110 bytes each 0.5s. The second

tray presents at -10dBm a proportion of good links about 45% whereas in the presence

of high interference, the proportion of good links decreases drastically and reached only

7%, a drop of 85% is observed. A similar observation was made by Mottola et al.

[55]. They reported that concurrent transmissions substantial increase the interference

resulting in important packet delivery drop.

Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20% PRR = 0%

110B,0.5s,-

10dBm

44% 6 9% 40%

110B,0.5s,-

10dBm,+int.

7% 5% 32% 56%

Table 3.5: Proportion of links for the second tray-Strasbourg with concurrent inter-

ference.

Table 3.6 presents that on CC1101 radio, good links increase from 65% at 100ms

to 69% at 1s for packets of 110B, and from 87% at 100ms to 89% at 1s. Intermediate

links also increase from 2% (100ms) to 5% (1s) for long packets and from 2% (100ms)

to 4% (1s) for short packets.

To conclude the link proportion study for CC1101, we can observe that link pro-

portion changes with power decrease as well as with interference presence.
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Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20% PRR = 0%

110B, 0.1s, 0dBm 65% 2% 2% 31%

110B, 0.2s, 0dBm 66% 1% 3% 30%

110B, 0.5s, 0dBm 64% 2% 2% 32%

110B, 1s, 0dBm 69% 5% 2% 24%

6B, 0.1s, 0dBm 87% 2% 9% 2%

6B, 0.2s, 0dBm 86% 2% 8% 4%

6B, 0.5s, 0dBm 87% 1% 10% 2%

6B, 1s, 0dBm 89% 4% 6% 1%

Table 3.6: Proportion of links for short and long packets, grid of 80 nodes,

Strasbourg-CC1101 at 0dBm output power.

Still, while varying the inter-packet interval for 100ms, 200ms, 500ms, 1s, to 30s we

observe that it does not affect link proportion. On the other hand, at an inter-packet

interval of 30s we encounter a small drop of about 6% of good links and an increase

in intermediate links of only 3%. Therefore, we claim that for CC1101 the proportion

of good links may be affected by the output power decrease and by large inter-packet

intervals, no matter the packet size, long (100B) or short (6B).

3.4.2 Link proportion for CC2420

We consider the same three categories of link quality: good, intermediate, and bad.

Table 3.7 gives the proportion of links in each category (over all 9900 unidirectional

links).

A first observation is that CC2420 (2.4GHz) radio records a percentage of 20%

of good links for long data packet (110B) scenarios, while for CC1101 (868MHz) we

reached 46%. In terms of intermediate links, we record a proportion of about 70% for

CC2420 radio and aprox. 10% for CC1101. These observations agree with previous

studies that claimed about 35% to 50% for Mica 1 platform (CC1101) [103, 107] and

5% to 60% for TelosB (CC2420) [80].

A second observation regards the impact of intermediate link proportion with the

decrease of the output power. Choosing a too low output power (-25dBm), the radio

range diminishes considerably, so that we may not have enough radio range to reach

neighbors, and run properly our experiments. For instance, the good links proportion

goes below 1% at -25dBm output power.

Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20% PRR = 0%

110B, 0.5s, 0dBm 24% 71% 1% 4%

110B, 0.5s, -15dBm 4% 38% 7% 51%

110B, 0.5s, -25dBm 0.2% 13% 4% %82.8

Table 3.7: Proportion of links for data packets of 110 bytes, grid of 100 nodes,

Lille-CC2420 at 0dBm, -15dBm, and -25dBm output power.
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Furthermore, we analyze the impact of the packet size on the proportion of the links.

Table 3.8 illustrates that short packets (6 bytes) result in 80% of good links, because

of a lower probability of a packet loss. Likewise, for CC1101 radio, the proportion of

good links holds around 80%, see Table 3.6.

Moreover, Table 3.8 shows that good links proportion increases from 25% at 100ms

to 27% at 1s for 110B packets, and from 81% at 100ms to 91% at 500ms for packets of

6B. The intermediate link proportion increases with 4% from 67% at 100ms to 73% for

packets of 110B and with 6% from 4% at 100ms to 10% for 6B packets.

Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20% PRR = 0%

110B, 0.1s, 0dBm 25% 67% 1% 5%

110B, 0.2s, 0dBm 26% 59% 5% 11%

110B, 0.5s, 0dBm 24% 71% 1% 4%

110B, 1s, 0dBm 27% 73% 1% 1%

6B, 0.1s, 0dBm 81% 4% 1% 14%

6B, 0.2s, 0dBm 90% 5% 0.5% 4.5%

6B, 0.5s, 0dBm 87% 6% 1% 2%

6B, 1s, 0dBm 91% 7% 0.5% 1.5%

Table 3.8: Proportion of links for short/long packet, grid of 100 nodes, Lille-CC2420

at 0dBm output power.

Therefore increasing the inter-packet time result in increase of intermediate link

proportion for long packets, observation made as well by Srinivasan et al. [81]. In

following, we study the temporal fluctuation of RSSI and LQI.

3.4.3 Temporal fluctuation of link quality

We analyze the temporal deviation of LQI and RSSI. We have observed on CC1101

that RSSI varies between 0dBm-4dBm for good links and slightly increases for the

intermediate and bad links, up to 10dBm.

On the other hand, for CC2420, RSSI has a larger variation (std. RSSI that takes

values higher than 5) for intermediate and bad links, see Figure 3.9, which corresponds

to the literature [101, 66].

In addition, we confirm the observation that intermediate links drop from high to

low PRR over short time spans, similarly to Bas et al. [7] who claimed a RSSI variability

of 5dBm-6dBm for CC2420.

We have looked at the temporal variation of the RSSI over 24 hours for two links,

one with a PRR=100% and the second with a PRR=50%. Figure 3.3 shows that good

links have a steady RSSI over the long term whereas for intermediate links, the RSSI

variation is more important.

Furthermore, with respect to LQI, a generic observation is that LQI varies little

over time for good links while a high variation occurs for intermediate and bad links.

In spite of a LQI variation of 1 encountered for a good link on CC1101 radio, CC2420

has a higher fluctuation about 5. Even though, to discriminate best the intermediate
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Figure 3.3: The RSSI evolution over 24h for 16 → 23 (PRR=100%) and 16 → 53

(PRR=50%) links for on the CC1101-testbed.

from good and bad links, the fluctuation of LQI may not be sufficient. For this reason,

we elaborate a deeper analysis of the standard deviation and the average values of RSSI

and LQI.

Referring to the short term link dynamics, a challenge remains of how large the

observation should be, or how long the link drops last for individual link categories.

The research claimed an observation sliding window size of 10 [12] or within 40 and

120 [79]. However, the interval of 120 data packets to make decisions regarding the

quality of links is too large for low rate traffic or dense networks.

Furthermore, the average model over historical data was claimed as a solution [80,

99]. In the last chapter we provide a deeper insight on the short term link drops

correlation through a 2-state Markov model.

3.5 RSSI/LQI

In this section, we investigate the quality of a link in terms of RSSI and LQI.

Moreover, we study the bi-directionality of links.

3.5.1 RSSI

At first, we consider the RSSI hardware metric at different output power by tracing

the probability density function of the averaged and standard deviation of RSSI values

corresponding to each link.

A) Probability density function of RSSI

Figure 3.4 shows the probability density function of the RSSI averaged and RSSI stan-

dard deviation for CC1101. Figure 3.4 a) shows that the probability density function
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Figure 3.4: The Probability Density Function (CC1101) of a) avg. RSSI for Stras-

bourg trays: 1,2,3 at 0dBm, b) avg. RSSI for Strasbourg tray 2 at

0dbm, -10dBm, -30dBm, c) std. RSSI for Strasbourg tray 2 at 0dbm,

-10dBm, -30dBm.

for the third tray has a pick around -72dBm, while the first and the second tray have

both a density pick around -66dBm. This is the effect of the multi-path presence on the

third tray coming from fixed metal supports holding the RJ45V cables and the light

lamps.

In Figure 3.4 b), we see a shift of 13dBm from -65dBm at 0dBm down to -78dBm at

-30dBm. Interestingly, Figure 3.4 c) shows that decreasing the output power to -30dBm

stirs the RSSI standard deviation from 0.5 to 1.

Figure 3.5 a) shows that at 0dBm output power the RSSI values for CC2420 con-
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Figure 3.5: The Probability Density Function for 100 nodes on Lille (CC2420) for

a) avg. RSSI at 0dbm, -10dBm, -30dBm output power, b) std. RSSI

at 0dbm, -10dBm, -30dBm output power.

centrate around -75dBm, unlike to CC1101 3.4 b) where values concentrate around

-65dBm. This is due to the environment, more specifically, the Strasbourg testbed is

less exposed to multipath effects and also the distance between nodes is 1m with respect

to Lille testbed that has 0.6m.

We have come to the conclusion that neither packet size nor inter-packet interval

do not impact the probability density function of the averaged RSSI. However, the

probability density function of the standard deviation and average RSSI are affected by

the output power decrease. For example, the standard deviation of RSSI picks around

0.9 at 0dBm, 0.5 at -10dBm and -30dBm.

B) Cumulative density function of RSSI

Figure 3.6 shows the RSSI readings for all received packets for the main subcate-

gories of good links at 0dBm. More specifically, Figure 3.6 a) and b) shows that good

links may be distinguished on CC1101 by a threshold of -65dBm, independently of the

packet size 6 bytes (a) or 110 bytes (b).

Hence, we noticed that good links with a PRR above 99% have a RSSI above -

65dBm. Additionally, we have observed that the threshold keeps around -65dBm either

at -10dBm with or without concurrent transmissions.

We investigated the cumulative distribution function of average RSSI and deviation

RSSI over the entire experiment for each sub-category of links at a step of 10%. First

and foremost, we have observed that for CC1101, the average RSSI overlaps for sub-

categories with a PRR below 99%. Yet, links with PRR above 99% go over -63dBm.
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Adversely, regarding std RSSI, the deviation is too little about 1, resulting in an overlap

of CDF curves and therefore, may not be used to discriminate link categories.

At the same time for CC2420 (0dBm), Figure 3.6 c) (6 byte packet size) and 3.6

d) (110 byte packet size) show that a value -65dBm can discriminate up to 90% of the

RSSI readings for links with PRR above 99%, and 70% for PRR [95%-99%). Figure 3.7

shows that the threshold value depends on the chosen output power for both radio chips

CC1101 and CC2420.

On CC2420 radio, Figure 3.8 shows a -70dBm avg RSSI value that can distinguish

links with PRR>95%, a proportion of ∼ 50% of links 80% ≤ PRR ≤ 95%, and ∼

20% of links 70% ≤ PRR ≤ 80%. Contrary to CC1101, the CDF curves of avg RSSI

for good and intermediate links do not overlap, therefore, avg RSSI may be used to

distinguish good and intermediate links.

Figure 3.9 a) shows that a std RSSI of 4 can distinguish links with a PRR (95% ≤

PRR ≤ 100%). Moreover, Figure 3.9 b) shows that intermediate links ( 20% ≤ PRR ≤

80%) have a std RSSI within 4 and 10 while links with low PRR (PRR ≤ 20%)) the

std RSSI is significantly higher (above 10). Please note that the mentioned std RSSI

values of 4 and 10 are observed on the CDF curves. We mainly want to point out that

the std RSSI can discriminate link categories.

We observe that avg RSSI and std RSSI can well discriminate links with a high

reception ratio (PRR>95%) for CC1101, though for CC2420, they can discriminate all

link categories.

More specifically, on CC2420, good links may be discriminated by an avg RSSI

higher than -75dBm and a std RSSI below 4; intermediate links have a avg RSSI

generally between -75dBm and -90dBm at 0dBm output power, and a std RSSI between

4 and 10; bad links overlap intermediate avg RSSI whereas, the std RSSI higher than

10 distinguishes bad links.

To conclude this subsection, we point out, at first, that the probability density

function of the averaged RSSI is not affected neither by packet size nor by the inter-

packet interval. Second, we observe that links having a PPR above 99% (CC1101) can

be discriminated easily with a value of -65dBm, and -75dBm for CC2420 radio.

Third, we point out that the avg RSSI and the std RSSI can discriminate on CC1101

only links with reception ratio (PRR>99%). Moreover, for CC2420, std RSSI and avg

RSSI can discriminate better links with a reception ratio below 99%.

Likewise RSSI, we investigate below the features of the LQI measured on our testbed.

3.5.2 LQI

We want to find the correlation between LQI and PRR. We record for each link

5000 (CC1101) / 1000 (CC2420) readings during each experiment. We group links

into sub-categories, and we consider the average and standard deviation LQI to under-

stand better the link behavior and further benefit of observations to improve routing

performances.

To have a deeper insight on the std LQI, we investigate the level of std LQI

(CC1101/CC2420) for each sub-group of links at a step of 10. LQI values for good
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(d) 110 byte packets, CC2420.

Figure 3.6: The cumulative distribution function for good links (PRR>80%) as

a function of RSSI at an transmission power set to 0dBm for a) 6

byte packets, CC1101, c) 110 byte packets, CC1101 c) 6 byte packets,

CC2420, d) 110 byte packets, CC2420

links are close to 0 for CC1101 radio, whereas for CC2420 the values are close to 110.

Figure 3.10 a) shows that avg LQI keeps below 1.5 for good links. Figure 3.10 b)

shows that links with a PRR within 40% and 80% reaches an avg LQI of 4. Figure 3.10 c)

presents that for bad links with PRR below 10% the avg LQI goes to much higher values.

Also, it reveals that average LQI is enough to discriminate links with a PRR ≥ 99 which

are stable, observation confirmed by literature [83, 50, 12]. Bad links with PRR ≤ 10

may be also easily discriminated only with the average LQI.

Observing std LQI, Figure 3.11 illustrates that a threshold of 1.5 for std LQI is able

to identify links 90%<=PRR<=100% Figure 3.11 a). Figure 3.11 b) shows that raising
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(a) 110 byte packets, CC1101.
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Figure 3.7: The cumulative distribution function of RSSI for links with PRR ≥ 99%

for various output power: a) CC1101: 0dBm, -10dm and -30dBm; b)

CC2420: 0dBm, -15dBm and -25dBm.

the threshold from 1.5 to 3, can distinguish almost all links from 90% to 40% of PRR

along with 60% of links with a PRR from 40% to 20%. In particular, Figure 3.11 c)

presents a high std LQI, typically, more than 4, for links with less that 20% of PRR.

Figure 3.12 a) shows for CC2420 that avg LQI is around 105 for links with PRR

above 80; avg LQI decreases for intermediate links down to 70, see Figure 3.12 b),

whereas for bad links, it continues to decrease to 50, see Figure 3.12 c). The decrease

of avg LQI with the link quality shows that LQI can be a good indicator for the quality

of links.

On the other hand, Figure 3.13 illustrates that std LQI overlaps for good and

intermediate links , showing a range within 5 and 10. However, std LQI helps to

discriminate bad links that exceed a deviation of 10.

As we can see, avg LQI helps to discriminate good links, their value is less than

1.5 for CC1101 and between 104-107 for CC2420. Thus, std LQI remains below 2 for

CC1101 and is between 5 and 10 for CC2420. Therefore, to discriminate good links of

CC2420 radio, we need to combine avg LQI and std LQI.

Then, intermediate and bad links may be discriminated using avg LQI and std LQI

for both CC1101 and CC2420 radios.

To conclude, we can draw a first conclusion that, avg LQI and std LQI for good

links vary little. On the other hand, intermediate (20%<=PRR<80%) and bad links

(PRR less than 20%) have high average LQI and deviation LQI. Therefore, we can use

avg LQI and std LQI to discriminate link categories.

It may occur that bad links exhibit low std LQI because of a sequence of bad packet

receptions (high number of errors). In this case, avg LQI is important as it will denote

a high LQI (CC1101), or low LQI (CC2420).

Second, we believe that avg LQI coupled with std LQI will give a more accurate
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Figure 3.8: The cumulative distribution function of avg RSSI for sub-groups of links

spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%,

c) 0%<PRR<40% at an output power of 0dBm, CC2420.
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Figure 3.9: The cumulative distribution function of std RSSI for sub-groups of links

spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%,

c) 0%<PRR<40% at a transmission power set to 0dBm on CC2420.
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Figure 3.10: The cumulative distribution function of avg LQI for sub-groups of links

spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%,

c) 0%<PRR<40% at a transmission power set to 0dBm on CC1101.

estimation, avoiding bad discrimination of links with close qualities.

In the next chapter, we show how together LQI and RSSI can accurately discriminate

links on long and short term.

3.6 Link Asymmetry

Another issue of wireless links is link asymmetry as it may dissolve the assumptions

adapted in routing protocols. The reasons may be: receiver sensitivity, hardware mis-

calibration, radiation patterns (multi-path effects), integrated antenna in the printed

circuit board, and low-noise amplifier (LNA) [35].

We compute the asymmetry of a link as the absolute difference |PRRx−>y−PRRy−>x|,
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(40%<=PRR<80%).

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LQI std.

F
(x

)

 

 

30%<=PRR<40%

20%<=PRR<30%

10%<=PRR<20%

0%<=PRR<10%

(c) std LQI for links (0%<PRR<40%).

Figure 3.11: The cumulative distribution function of std LQI for sub-groups of links

spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%,

c) 0%<PRR<40% at a transmission power set to 0dBm on CC1101.

where x, y denote the nodes and the arrow points to the receiver node.

Hence, we consider that a link presents asymmetry if the absolute difference is higher

than 1%, and at least one packet was exchanged. Moreover, in our study we call an

asymmetry as: stable if the absolute difference is less than 20%, average for an absolute

difference between 20% and 80%, and strong if the absolute difference is above 80%.

Also, we use the term of bi-directional link, for a link that has an absolute difference

less than 1 within uplink and downlink. We call unidirectional link, a link that received

data packets on the forward and do not record any successful packet reception on the

backward link, or reverse.

Figure 3.14 shows that RSSI is symmetric (CC1101) for long (110bytes) and short

(6bytes) packets. Instead, when we decrease the output power to -10dBm, and -30dBm,

the number of unidirectional links increases. For instance, we see in Figure 3.14 c) that
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Figure 3.12: The cumulative distribution function of avg LQI for sub-groups of links

spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%,

c) 0%<PRR<40% at a transmission power set to 0dBm on CC2420.

at -10dBm we have numerous links at -100dBm, which represents the noise, meaning

that these links are unidirectional, and that are part of the group with strong asym-

metry. We observed that once we decrease the output power, the unidirectional links

multiply.

For CC2420 radio, Figure 3.15 shows that the symmetry of RSSI is not affected by

the packet size. Once we decrease the output power to -15dBm, or -25dBm we lose on

RSSI symmetry, see Figure 3.15 c).

Figure 3.16 illustrates that links with a 100% of reception ratio are symmetric in

proportion of 97%. We notice also that the size of packets affects with only ∼ 2% the

proportion of links that are asymmetric. Thus, short packets recorded only 1% of the

total links as asymmetric, while for long packets we record 3%. However, decreasing

the output power to -10dBm results in an increase of asymmetric links from 3% to 5%.
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Figure 3.13: The cumulative distribution function of std LQI for sub-groups of links

spaced at a step of 10: a) 80%<=PRR<=100%, b) 40%<=PRR<80%,

c) 0%<PRR<40% at a transmission power set to 0dBm on CC2420.

Moreover, links with PRR (80% ≤ PRR < 100%) have a stable asymmetry of

maximum 20%, while the intermediate links have an average asymmetry from 20% to

80%. Also, the packet size or the power decrease do not affect the symmetry of good

and intermediate links.

Still, we observed that at 0dBm 40% of bad links have strong asymmetry, whereas

at -10dbm the percentage of bad links with strong asymmetry is 90%.

On the other hand, for CC2420 radio, Figure 3.17 shows that increasing the packet

size from 6 bytes to 110 bytes leads to a lost of 5% of perfect symmetric links (same

PRR in both directions), along with a asymmetry increase for intermediate and bad

links. Again, similarly to CC1101, reducing the output power to -15dBm leads to a

slightly asymmetry increase for intermediate and bad links, while the perfect symmetric

links are completely lost.
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(a) 6 byte packets size at 0dBm.
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(b) 110 byte packets size at 0dBm.
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(c) 110 byte packets size at -10dBm.

Figure 3.14: RSSI of bidirectional links (x → y and y → x) for CC1101: a) 6 bytes,

output power of 0dBm, b) 110 bytes, output power of 0dBm, c) 110

bytes, output power of -10dBm.

Figure 3.18 and 3.19 highlight that unidirectional links exist mostly in zones with

low RSSI. Also, bi-directional links are not influenced by packet size, whereas the uni-

directional links widen the RSSI range once the packet size increases. However, the

RSSI range of unidirectional links narrows with the decrease of power for both radio

chips CC1101 and CC2420.

Table 3.9 presents the symmetry degree for CC1101 and CC2420 radio chips at

different emission power: 0dBm, -10dB, -15dBm and different packet size, 6 bytes, 110

bytes, respectively.

To sum up, as we can see in Table 3.9 that links with PRR=100% are slightly

influenced by the packet size. On the contrary, when we decrease the power to -10dBm

we observe that we record with 20% links with A=0%. Even so the good links maintain
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(a) 6 byte packets size at 0dBm.
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(b) 110 byte packets size at 0dBm.
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(c) 110 byte packets size at -15dBm.

Figure 3.15: RSSI of bidirectional links (x → y and y → x) for CC2420: a) 6 bytes,

output power of 0dBm, b) 110 bytes, output power of 0dBm, c) 110

bytes, output power of -15dBm.

Parameters PRR ≥ 80% 20% ≤ PRR < 80% 0 < PRR < 20%

Asymmetry A=0% 0%<A<=20% 20%<A<=80% A>80% A=0% 0%<A<=20% 20%<A<=80% A>80% A=0% 0%<A<=20% 20%<A<=80% A>80%

CC1101,0dBm,6B 72 18 0 0 0 20 80 0 0 18 32 50

CC1101,0dBm,110B 79 21 0 0 0 20 80 0 3 47 30 20

CC1101,-10dBm,110B 90 10 0 0 0 10 90 0 2 5 4 89

CC2420,0dBm,6B 23 77 0 0 0 87 13 0 15 27 56 2

CC2420,0dBm,110B 50 50 0 0 10 86 4 0 10 40 43 3

CC2420,-15dBm,110B 15 85 0 0 14 71 15 0 5 45 50 0

Table 3.9: Link asymmetry (A[%]:absolute difference) for each category: good

(PRR ≥ 80%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR <

20%) for CC1101 and CC2420 with a packet size of 6 bytes and 110 bytes

at various transmission power: 0dBm, -10dB, -15dBm.
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Figure 3.16: The RSSI symmetry for perfect (PRR = 100%), good (80% ≤ PRR ≤

99%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%)

links for CC1101: a) 6 bytes, output power of 0dBm, b) 110 bytes,

output power of 0dBm, c) 110 bytes, output power of -10dBm.

an asymmetry below 20% for CC1101 and CC2420.

Moreover, for CC1101, intermediate links (20% ≤ PRR < 80%), are not influenced

by the packet size neither. We record a majority of links with average asymmetry for

CC1101 and a majority of link with stable asymmetry for CC2420. of 20%<asymme-

try<=80% for CC1101 and a majority of 0%<=asymmetry<=20% for CC2420. Over-

all, decaying the output power results in a decline of the number of strong asymmetric

links. Thus, most percentage of bad links have a strong asymmetry for CC1101 and an

average asymmetry for CC2420.

Lastly, for CC1101 and CC2420, the power decay leads to an enhance the number

of links with average and strong asymmetry while reduces the percentage of links with
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Figure 3.17: The RSSI symmetry for perfect (PRR = 100%), good (80% ≤ PRR ≤

99%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%)

links for CC2420: a) 6 bytes, output power of 0dBm, b) 110 bytes,

output power of 0dBm, c) 110 bytes, output power of 0dBm -15dBm.

strong asymmetry.

3.7 Discussion

In this chapter, we have analyzed the empirical data from indoors testbed with

CC1101 and CC2420 radio chips to better understand the proprieties of links. The

study focuses on the link dynamics and the link asymmetry for specific categories of

links. We have considered several aspects such as the percentage of formed links, average

and standard deviation of RSSI/LQI, and the asymmetry of links.
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Figure 3.18: The cumulative distribution function of unidirectional links (with a

PRR>0% in just one direction) and the bidirectional links as a func-

tion of RSSI for CC1101 radio: a) 6 bytes, 0dBm, b) 110 bytes, 0dBm,

c) 110 bytes, -10dBm.

Good Link proportion

First, we have presented a link classification as good (PRR ≥ 80%), intermediate

(20% ≤ PRR < 80%), bad (0 < PRR < 20%) due to temporal fluctuation of hardware

metrics. Moreover, we have observed a large proportion of good links. Also, we have

noticed that third tray of Strasbourg platform reduces its RSSI of about 5dBm due to

multipath presence.

Namely, we have identified on Strasbourg platform the factors affecting the link

quality as multipath, shadowing, and interference. Multipath effect refers to scattering

from wall, window, ceiling, or floor surfaces, partial/total reflection from glass fiber,

wood poles, RJ45V cables, and diffraction from obstacles (poles-wood/cement, light
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Figure 3.19: The cumulative distribution function of unidirectional links (with a

PRR>0% in just one direction) and the bidirectional links as a func-

tion of RSSI for CC2420 radio: a) 6 bytes, 0dBm, b) 110 bytes, 0dBm,

c) 110 bytes, -10dBm.

lamps). The shadowing may occur from obstacles: poles on cement/wood. Last, the

interference can occur due to the train presence that is equipped with mobile nodes.

Moreover, we have observed for CC1101 that an output power of 0dBm results in a

majority of good links and a quite low proportion of intermediate links. The proportion

of good links is not affected by varying the inter-packet interval (100ms, 200ms, 500ms,

1s, 30s), the packet size, also the power decrease to -10dBm slightly impacts the good

links proportion.

However, in presence of the multipath effects and concurrent interference, the power

decrease leads to a decay of good links of about 70%. Contrary to CC1101 where we

observed a majority of good links (∼65%), CC2420 has a majority of intermediate links
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(∼71%).

For CC2420, decreasing the output power to -15dBm and -25dBm leads to a link

proportion decrease of good links with 80% and with 46% of intermediate. Similarly to

CC1101, the inter-packet interval affects little the proportion of good links. Moreover,

in terms of packet size, we observe that the proportion of good links for short packets

is close to 90% and only ∼27% for long packets.

RSSI

We have noticed that the packet size and the inter-packet interval do not affect the

probability density function of the averaged RSSI that concentrates around -65dBm

(CC1101) and -75dBm (CC2420) at 0dBm output power. Besides, the probability

density function of the standard deviation of RSSI encounters a low variation from 0.5

to 1.

We have noticed that links with a PRR above 99% are spread above -65dBm

(CC1101)/-70dBm (CC2420) value that can be used as a threshold to discriminate

good links, independent of the packet size. Howsoever, the threshold value does not

depend on the output power neither on CC1101 nor on CC2420 radios.

Moreover, contrary to CC1101, the CDF curves of avg RSSI and std RSSI over-

lap less, which shows that avg RSSI and std RSSI can distinguish between good and

intermediate links.

LQI

We can draw the conclusion that, for CC1101, good links show low variation of avg

LQI and std LQI. On the other hand, intermediate (20%<=PRR<80%) and bad links

(PRR less than 20%) have high average LQI and deviation LQI. Hence, bad links have

higher average LQI and deviation LQI.

Link temporal fluctuation of link quality

The fluctuation of RSSI is about 0dBm to 4dBm for good links and increases for

intermediate and bad links up to 10dBm. On the other hand, for CC2420, the RSSI

variation is more important as the difference between minimum and maximum RSSI

may reach 30dBm for bad links.

LQI has a minor temporal fluctuation while intermediate and bad links have a major

temporal fluctuation on both radios (CC1101/CC2420).

Link asymmetry

We have observed that good links are less affected by the packet size or by output

power decrease. In our study, intermediate and bad links present a high degree of

asymmetry for both CC1101 and CC2420 radio chips. The asymmetry of intermediate

links (20% ≤ PRR < 80%) is not influenced by the packet size, whereas the decrease of

the output power leads to a decay of links that present stable asymmetry. Contrastively,

the packet size and the power decrease highly impact the asymmetry of bad links

(0 < PRR < 20%).

For instance, good links have an asymmetry below 20%, majority of intermediate

links are characterized by an asymmetry between 20% and 80%. Bad links have a high

asymmetry for CC1101 (a majority of strong asymmetry), and between 20% and 80%

for CC2420.
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3.8 Conclusions

Our analysis has shown that the network may benefit from a large proportion of

good links on CC1101 and CC2420 (for 6 byte packet size).

The analysis of the CDF and PDF of RSSI (average, standard variance) and LQI

(average, standard variance) enable us to observe that RSSI and LQI have distinct

values—they can discriminate the quality of links.

However, on CC1101, avg RSSI may help to discriminate links with PRR=100%,

since avg RSSI for links below PRR=100% overlap. Also, the deviation of RSSI

(CC2420) can be an interesting measure, but not sufficient to discriminate link quality

in an accurate manner.

Contrary to CC1101, the CDF curves of avg RSSI and std RSSI overlap less, which

enables avg RSSI and std RSSI to distinguish better between good and intermediate

links. For instance, RSSI variation is low on CC1101 (max. 10dbm), whereas for

CC2420 it may reach about 30dBm.

In what it concerns asymmetry, we have observed that good links present stable

asymmetry, while intermediate and bad links present intermediate and strong asymme-

try for CC1101 and CC2420 radio chips. Besides, we found that the packet size and

the power decrease highly impact the asymmetry of bad links (0 < PRR < 20%).

We use the observations of empirical data of avg/std RSSI and avg/std LQI to find

a mathematical model able to capture the link quality.
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In this chapter, we analyze the link quality in a statistical way. Different empirical

studies agreed on the fact that very good and very bad links can be discriminated using

samples of physical metrics (RSSI, LQI). However, links with PRR<99% present sig-

nificant temporal fluctuation, and large number of samples are needed to characterize

the link quality.

To obtain an estimator of PRR, we have fitted a Fermi-Dirac function to the scatter

diagram of the average and standard variation of LQI. The function enables us to find

PRR for a given level of LQI. We evaluate the estimator by computing PRR over a

varying size window of transmissions and comparing with the estimator. The aim of

the estimator is to provide a better routing metric in wireless sensor networks.

4.1 Introduction

We want to design a metric that estimates PRR. Recent work on routing protocols

emphasized the importance of using stable metrics of link quality .

Our observations from Chapter 3 helped to find the relationship between RSSI,

LQI, and PRR. Moreover, we use RSSI as an indicator of possible anomalous behavior

of sensor nodes. We characterize PRR in function of RSSI and LQI by looking for

continuous distributions that fit the best the measured values of the PRR. We notify

that RSSI is not a good discriminator of link categories, because the functions overlap

for CC1101 and CC2420. The average LQI and the standard variation of LQI better

discriminate between the categories. Our analysis confirms the main findings of the

previous work and provides new insights on the link quality metrics based on LQI.
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Fitting a Fermi-Dirac function to the scatter diagram of the average and standard

variation of LQI, we have attained the estimation of the PRR. The found function

facilitates the prediction of PRR from a given level of the average and standard deviation

of LQI. To prove the functionality of the prediction, we compute PRR over variable

size windows and compared the value against the estimated PRR, which we obtained

from the fitting FD function.

The findings of this Chapter have been validated by the community as they have

been accepted in Algotel [9] , PIMRC [10] conferences.
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Figure 4.1: Scatter diagram of PRR in function of the average RSSI for each link.

4.2 Analysis of RSSI

We started with the analysis of RSSI and its influence on PRR for the second tray.

Figure 4.1 presents the scatter diagram of PRR vs. the average RSSI for all links (each

point corresponds to a link with a given average RSSI and the observed PRR). We can

observe that some values (red crosses) lie in a region with high PRR and low RSSI

values. The values indicate a possible anomalous behavior in the generation of RSSI

values or another problem of hardware operation.

Figure 4.2 presents the distribution of the average RSSI measured by all nodes (one

curve per node). A node receives packets from all other nodes placed in a regular

pattern in the experiment area so that the expected range of RSSI values needs to

smoothly vary from the sensitivity threshold to some large values. Cross distributions

correspond to two nodes that generated the anomalous group in Figure 4.1. They are

different from the distributions of other nodes.

On the contrary, on the CC2420 platform we are not aware of the existence of nodes

with anomalous behavior.

Figure 4.3 shows the scatter diagram corresponding to Figure 4.1 with the two
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Figure 4.2: CDF of the measured average RSSI for each node (80 distributions in

total). The distributions of two nodes are clearly different from other

nodes.
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Figure 4.3: Scatter diagram of PRR in function of the average RSSI, two anomalous

nodes eliminated.
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anomalous nodes eliminated—crosses have disappeared. We believe that the RSSI

analysis enables us to detect nodes with hardware anomalies or bad calibration that

result in unlikely values of RSSI. In the case of our testbed, there are 2 anomalous

nodes out of 80, a small proportion of bad nodes. We thus eliminate the results from

the nodes to take away the bias of unlikely RSSI values.
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Figure 4.4: Fitting of the scatter diagram with a Fermi-Dirac function.

The next step is to explore the dependence between RSSI and PRR. Figure 4.4

presents the fitting of the scatter diagram with a Fermi-Dirac function of the form

f(x) = 1/(1 + exp −(µ−x)
σ ).
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Figure 4.5: Fitting of the averaged RSSI.

We have also averaged the values of RSSI for each value of PRR (at the step of 1%)
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and found the fitting function presented in Figure 4.5. We can see that the Fermi-Dirac

function fits perfectly well PRR especially the values greater than 80%. We can use

the function to determine a cutting threshold over which the RSSI results in a PRR of

good links. The observation is valid as well for the first and third tray of Strasbourg

platform.

4.3 Fitting the Distributions of RSSI and LQI

To further characterize PRR in function of RSSI and LQI, we have looked for

continuous distributions that fit best the measured values of PRR. The goal is to predict

PRR or at least the link category based on the observed values of RSSI and LQI. We

have considered as candidate distributions the most common continuous distributions

with a bounded, semi-infinite, variable support or unbounded see Table 4.1

Table 4.1: List of continuous distributions.

Bounded Semi-infinite Variable support Unbounded

Beta Chi-squared Generalized Extreme Value Cauchy

Johnson SB Dagum Generalized Pareto distribution Gumbel Max

Logitnormal Exponential Phased Bi-Weibull Gumbel Min

Dirac delta SB Erlang Wakeby Johnson SU

Kumaraswamy F Distribution Logistic

Logarithmic Fatigue Life Normal

Pert Frechet Student’s t

Reciprocal Generalized Gamma

Log-Logistic

Lognormal

Nakagami

Pareto

Rice

Weibull

We used Matlab as tool to find the best distribution fit for our data set. The

distributions that fitted the best are the following:

❼ Log-Logistic distribution is defined by scale α, shape β, and location γ. Its Cu-

mulative Distribution Function (CDF) is Fx;α,β,γ = (1 + (β/(x − γ)α)−1. The

Log-Logistic models the mid of the extreme values (highs and lows) of a data set

of random variables.

❼ Johnson SB distribution has a bounded support that fits a bounded distribution

to known moments and has CDF of Fx = φ(γ + δln(z/(1 − z))), where φ is the

Laplace integral and z is defined as (x − ξ)/λ. It is parametrized with shape γ,

two scale parameters δ and λ, and location parameter ξ.
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❼ Generalized Extreme Value is a distribution that models the maxima of the ex-

treme values of a data set. It is parametrized by shape ξ, scale σ, and location µ.

Its CDF is

F (x;µ, σ, ξ) = exp
{

−
[

1 + ξ
(x−µ

σ

)]−1/ξ
}

.

❼ Beta distribution is defined on the interval [0, 1] with two positive continuous

shape parameters α and β. Its CDF is F (x;α, β) = B(x;α, β)/B(α, β) = Ix(α, β),

where B(x;α, β) is the incomplete beta function and Ix(α, β) is the regular-

ized incomplete beta function. The incomplete beta function is the following:

B(x; a, b) =
∫ x
0 ta−1 (1− t)b−1 dt.

We have used three common statistical tests: Kolmogorov-Smirnov, χ2, and Anderson-

Darling [36] to find the best distributions.

First, we account for the Kolmogorov-Smirnov test (K-S) [36], a nonparametric test.

One-sample K–S test verifies the equality of a sample with a distribution probability

reference. Especially, it estimates the vertical distance between the empirical distribu-

tion function (ECDF) of the chosen sample and cumulative distribution function (CDF)

of the reference distribution, see Eq. 4.1. For two-sample K-S case, it quantifies the

distance between the EDF of two data samples. The principle of the test is based on the

null hypothesis that data sample is derived from the reference continuous distribution

(one-sample K-S), or that both data samples follow the same distribution (two-sample

K-S).

The K-S test applies only to continuous distributions, and is characterized by two

hypotheses: H0, the data follows a specific distribution, Ha the data do not follow a

specific distribution, and test statistic (D), Eq. 4.1.

DK−S = max1≤i≤N (F (Yi)−
i− 1

n
,
i

n
− F (Yi)), (4.1)

where N is the number of data points, F is the theoretical cumulative distribution of

the tested distribution, and Y1, Y2, ..., YN , are the data points.

For instance, we use the one-sample K-S where as data sample we consider averaged

RSSI, averaged LQI, and standard deviation LQI. As reference continuous distributions,

we use the distributions from Table 4.1.

We make use of another test, Chi-Square test [36]. The test compares an empirical

distribution with another one. Data sample distribution approximate a chi-square dis-

tribution if the null hypothesis is true, which means that the observed distribution is

close to the expected one. The test relies on Eq. 4.2.

χ2 =
∑

(
(O − E)2

E
) (4.2)

where O is the observed distribution, E is the expected distribution.

Another test is the Anderson-Darling test (A-D) [36]. It evaluates if the data sample

set comes from a specific distribution. For example, the test verifies if a sample set

(x1, ..xk) comes from a given distribution using the Eq. 4.3.
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A2 = −k −

n
∑

i=1

(2i− 1)

n
[ln(F (xi)) + ln(1− F (xk+1−i))] (4.3)

where N is the number of data samples in the set, F is the cumulative distribution

function of the chosen reference distribution.

We group into three categories (good, intermediate, and bad). Furthermore, for

each link category group, we run fit tests on candidate distributions. To decrease the

number of samples to handle, we average the measured values of LQI and RSSI for each

link.

Figure 4.6 a)– shows that Johnson SB and Gamma density functions fit best the

averaged RSSI. We can observe that average RSSI is not a good discriminator of link

categories, because the functions overlap. Even the bad category overlaps the category

of good links. Alike on CC1101, Figure 4.6 b) illustrates that on the CC2420 radio

chip, RSSI is best fitted by Johnson SB and Gamma functions. Moreover, RSSI is not

able to discriminate the quality of the links as the functions overlap.
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(a) Fit for CC1101.
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Figure 4.6: Density functions fitting the average RSSI: a) CC1101, b) CC2420.

The average LQI better discriminates between the categories, especially it can dis-

tinguish between good and bad links on both radios, CC1101 and CC2420. Figure 4.7

a)–depicts the best fitted functions for the averaged LQI, such as Generalized Extreme

Value as well as Beta, and Johnson SB. Also, shifting to CC2420 radio, Figure 4.7 b)

shows that Generalized Extreme Value and Johnson SB fit best the average LQI.

Observing the standard deviation of RSSI, we encountered a low deviation, about 1

for CC1101 that is insufficient to discriminate categories, whereas, for CC2420, the RSSI

deviation is higher, about 5 for good and intermediate links, and concentrate about 20

for bad links, Figure 4.10. So, we claim that the deviation of RSSI can discriminate

good from bad categories on CC2420.

Figure 4.8 a) depicts that for CC1101, the standard deviation of LQI is also a good
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Figure 4.7: Density functions fitting the average LQI: a) CC1101, b) CC2420.

discriminator of the link categories. Besides, for CC2420 radio, Figure 4.8 b) shows that

LQI deviation can discriminate good from bad categories, same as the average LQI.
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(a) Fit for CC1101.
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Figure 4.8: Density functions fitting the standard deviation of LQI: a) CC1101, b)

CC2420.

Figure 4.9 brings another view on the variability of LQI. It presents LQI for all

packets (correctly decoded and with bad CRC) for choosing links with PRR of 100%,

80%, 20%, and 0.06%. We can observe that the average LQI and its variability increases

for lower PRR.

To sum up, using average RSSI metric, bad link category overlaps the category of

good links. Therefore, it cannot discriminate the link categories. Thus, the standard

deviation of RSSI varies too little on CC1101, instead, on CC2420 radio, it varies more,
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Figure 4.9: LQI variation of a link with PRR of 100%, 80%, 20%, and 0.06%, on

CC1101 a), on CC2420 b).

so it can discriminate good from bad link categories.

On the other hand, the average LQI discriminates better between the categories,

especially it can distinguish good from intermediate and bad links on CC1101 radio

chip, and good and intermediate for bad links on the CC2420 radio chip. We can also

observe that the standard variation of LQI is also a good discriminator of the categories

for CC1101, and same as LQI average it can correctly discriminate bad from good and
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intermediate links on CC2420 radio.

4.4 Fitting PRR in Function of RSSI and LQI

Figure 4.10 b) depicts the Fermi-Dirac function fit over the scatter diagram of

the standard deviation of RSSI. We observe that the deviation of RSSI can easily

discriminate good and intermediate from bad links, still, it overlaps for the good and

intermediate links. Therefore, analyzing the average and the standard deviation for

RSSI and LQI on CC2420, we found out that the ratio between RSSI std./LQI avg.

fits well the F-D function, Figure 4.10 c). Hence, it discriminates best good from

intermediate and bad links. In fact, we have obtained a goodness of the ratio fit

characterized by: SSE: 0.2338, R-square: 0.9711, Adjusted R-square: 0.9708, and a

RMSE: 0.0491.

We have applied a similar approach to LQI—fitting a Fermi-Dirac function to the

scatter diagram of the average and standard variation of LQI (we use the logarithmic

scale).

For CC1101, Figure . 4.11 a) displays a good fit for average LQI, accordingly LQI

can discriminate the link categories. However, on CC2420, Figure . 4.11 b) presents

a not so good fit of average LQI, thus, average LQI is insufficient to discriminate link

categories.

On the other hand, the F-D function fits very well (with the R-value >0.98 ) the

standard deviation of LQI, 4.12 a)–b) present the corresponding result.

4.5 Estimating PRR using F-D function

We want to find an estimator of PRR based on the measured values of RSSI and

LQI. We have fitted PRR in function of RSSI, so possibly we could derive PRR from

a given value of RSSI. However, using RSSI may lead to errors in the evaluation of

PRR in the case of real networks—they experience contention between nodes and si-

multaneous transmissions. Concurrent transmissions may increase RSSI and decrease

the probability of correct decoding leading to a lower PRR. In this case, the estimation

based on RSSI would result in wrong values of the PRR. So, we have decided to focus

on LQI and analyze estimators based on its average value and standard deviation.

First, we try to understand the impact of the window size. Figure 4.14 shows that

short window of 5 presents much higher short term fluctuation which leads to link

instability. Still, a good link estimator should ensure a good trade between short and

long term shifts. Further we concentrate on the windows of 10 and 100 as they present

less short fluctuations.

Figure 4.13 shows the temporal behavior of PRR computed over a window of 10

transmissions and its estimator derived from the average LQI. We can observe a fairly

good fit between the data real PRR computed over a window of 10 and estimated PRR

from the obtained Fermi-Dirac fit.
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Figure 4.10: Fitting the density and Fermi-Dirac function of the standard deviation

of RSSI on CC2420: a) Fitting the density functions on standard

deviation of RSSI, b) Fitting F-D on standard deviation of RSSI, c)

Fitting F-D on the radio function, std RSSI/ avg LQI over links.
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Figure 4.11: Fitting averaged LQI over links.
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Figure 4.12: Fitting the standard deviation of LQI averaged over links: a) CC1101,

b) CC2420.
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Figure 4.13: Estimation of the PRR for a link with PRR 80% with w=10. PRR

vs. LQI avg.

We have tested several estimators based on the values computed on window w:

LQI, average LQI, STD, the standard deviation of LQI, and sqrt(LQI
2
+ STD

2
), the

geometric mean of the previous ones. We have also derived the estimator of PRR from

a moving average of LQI:

EWMA(α, n) = EWMA(α, n− 1) ∗ α+ (1− α) ∗ LQI (4.4)

where 0 < α < 1.

We have considered two values of the window w = 10, 100.

Tables 4.2, 4.3, 4.4 present the precision of the estimators for a single link in terms

of several standard error measures: AE (Absolute Error), MSE (Mean Square Error),

RMSE (Root Mean Square Error).

The MSE si given by the eq. 4.5.

MSE(model) =
1

n

∑

i=1

n(predictioni ∗ true valuei) (4.5)

We can observe that for a short window of 10 the estimation based on LQI results

in an error of the order of 18% (RMSE). Considering larger windows reduces the error

to 9%. EWMA with α = 0.9 also results in a good precision for a good link.

However, tables 4.5, 4.6, 4.7 illustrate for the totality of good links the estima-

tion triggers a precision of 93% and for a window of 10 and about 95% for a window

of 100 (for EWMA with α = 0.9, LQI, and sqrt(LQI
2
+ STD

2
) ). Oppositely, for

intermediate and bad links the estimator triggers a precision of about 80%.
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(a) PRR of link 23 → 58.
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(b) PRR of link 69 → 19.
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Figure 4.14: Temporal fluctuation of PRR for links: 23 → 58 with PRR 80%,

69 → 19 with PRR 50%, and 6 → 51 with PRR 20% and with a

window w∈{5,10,100}.
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Table 4.2: Error of estimating PRR for a link (mean PRR of 80%).

Estimator MSE,w = 10 MSE,w = 100 RMSE,w = 10 RMSE,w = 100

LQI 0.035 0.012 0.187 0.109

STD 0.058 0.010 0.240 0.100

EWMALQI(α = 0.1) 0.094 0.060 0.306 0.244

EWMALQI(α = 0.5) 0.075 0.043 0.264 0.207

Table 4.3: Error of estimating PRR for a link (mean PRR of 50%).

Estimator MSE,w = 10 MSE,w = 100 RMSE,w = 10 RMSE,w = 100

LQI 0.081 0.039 0.284 0.197

STD 0.157 0.197 0.390 0.443

sqrt(LQI
2
+ STD

2
) 0.099 0.071 0.301 0.266

EWMALQI(α = 0.1) 0.194 0.177 0.440 0.420

EWMALQI(α = 0.5) 0.178 0.159 0.421 0.398

EWMALQI(α = 0.9) 0.137 0.203 0.370 0.450

Table 4.4: Error of estimating PRR for a link (mean PRR of 20%).

Estimator MSE,w = 10 MSE,w = 100 RMSE,w = 10 RMSE,w = 100

LQI 0.03 0.04 0.173 0.200

STD 0.076 0.040 0.275 0.200

sqrt(LQI
2
+ STD

2
) 0.044 0.034 0.209 0.184

EWMALQI(α = 0.1) 0.158 0.205 0.397 0.452

EWMALQI(α = 0.5) 0.076 0.099 0.275 0.314

EWMALQI(α = 0.9) 0.054 0.062 0.232 0.248

Table 4.5: Error of estimating good links (mean PRR of [80%-100%]).

Estimator AE,w = 10 AE,w = 100 MSE,w = 10 MSE,w = 100 RMSE,w = 10 RMSE,w = 100

LQI 0.063 0.032 0.010 0.002 0.100 0.044

STD 0.07 0.037 0.017 0.004 0.130 0.063

sqrt(LQI
2
+ STD

2
) 0.06 0.028 0.009 0.003 0.094 0.054

EWMALQI(α = 0.1) 0.048 0.032 0.025 0.021 0.158 0.144

EWMALQI(α = 0.5) 0.037 0.028 0.014 0.007 0.118 0.083

EWMALQI(α = 0.9) 0.033 0.021 0.005 0.001 0.071 0.031

Table 4.6: Error of estimating intermediate links (mean PRR of [20%-80%)).

Estimator AE,w = 10 AE,w = 100 MSE,w = 10 MSE,w = 100 RMSE,w = 10 RMSE,w = 100

LQI 0.211 0.161 0.072 0.039 0.268 0.197

STD 0.244 0.181 0.094 0.061 0.306 0.246

sqrt(LQI
2
+ STD

2
) 0.197 0.144 0.062 0.038 0.248 0.194

EWMALQI(α = 0.1) 0.290 0.288 0.159 0.140 0.398 0.374

EWMALQI(α = 0.5) 0.255 0.254 0.128 0.110 0.357 0.331

EWMALQI(α = 0.9) 0.191 0.207 0.076 0.064 0.275 0.252
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Table 4.7: Error of estimating bad links (mean PRR of (0%-20%)).

Estimator AE,w = 10 AE,w = 100 MSE,w = 10 MSE,w = 100 RMSE,w = 10 RMSE,w = 100

LQI 0.160 0.158 0.047 0.216 0.034 0.464

STD 0.225 0.150 0.088 0.291 0.296 0.539

sqrt(LQI
2
+ STD

2
) 0.166 0.133 0.048 0.215 0.219 0.463

EWMALQI(α = 0.1) 0.285 0.280 0.171 0.190 0.410 0.437

EWMALQI(α = 0.5) 0.200 0.240 0.118 0.170 0.343 0.412

EWMALQI(α = 0.9) 0.190 0.320 0.109 0.290 0.330 0.538

4.6 Conclusion

In this chapter, we have reported on the results of measurements of PRR, RSSI,

and LQI on an indoor wireless sensor network testbed. First, we have analyzed RSSI

and used it as an indicator of possible anomalous behavior of sensor nodes.

To further characterize PRR in function of RSSI and LQI, we have looked for

continuous distributions that fit the best the measured values of the PRR. As RSSI

is not a good discriminator of link categories, we have considered the average LQI and

its standard variation.

We have found the density functions that fit the observed values for each link cate-

gory such as Generalized Extreme Value, Johnson SB or Beta.

We have obtained an estimate of PRR by fitting the Fermi-Dirac function to the

scatter diagram of the average and standard variation of LQI on both radio chip-set

CC1101 and CC2420. The function decides on the level of PRR of a link from the

average or standard deviation of LQI. To evaluate the estimator, we have varied the

size of the observation window from 1 to 100. We have observed that at the window

size of 10, we reach low MSE (0.005–0.02).
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In this chapter, we aim at better understanding of channel fluctuations by investi-

gating the number of successfully transmitted packets before a loss as well as the number

of consecutive losses on 802.15.4 links.

Once we have found the PRR estimator, we want to capture the short term link

dynamics. Therefore, we propose to use the Gilbert model, a 2-state Markov model, to

compute the stationary probabilities to discriminate high variable link qualities. We end

up the chapter by presenting our algorithm to estimate PRR across a link, derived from

the obtained fitting function and the 2-state Markov model.

5.1 Introduction

In this chapter, we apply the Gilbert model, a 2-state Markov model, to packet

reception sequences and the average and standard deviation values of LQI to estimate

the short term PRR across high variable links. We end up by discussing the algorithm

to estimate PRR employing the FD fitting function and the stationary probabilities of

the 2-state Markov model.

5.2 Gilbert-Elliot (GE) Model

The GE model is widely used to represent the state of a channel (good, bad) by

analyzing the errors on the channel [29] (cf. Figure 5.1). The model is memoryless

as the next state depends only on the current state. The approach is simple, it has

two states, a good state interprets a successful symbol arrival and a bad state denotes
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Good Bad

p

r

1-r1-p

Figure 5.1: Transition probabilities of Gilbert-Elliot: 2-state Markov diagram.

Good state represents a better quality channel whereas Bad state cor-

responds to a lower quality channel.

an erroneous symbol. In communication networks, it is used to capture the temporal

correlation of packet losses [33]. To study the loss length using the two state Gilbert-

Elliot model, we consider the packet reception process as a sequence of bits. Therefore,

a value of 1 stands for a successful packet reception whereas a 0 value denotes a lost or

corrupted packet. The GE model is shown in Figure 5.1.

It is defined by the transition matrix M between states st at time t:

M =

(

1− p p

r 1− r

)

where p = P (st = Bad|st−1 = Good), and r = P (st = Good|st−1 = Bad), 0 < p < 1

and 0 < r < 1 are the transition probabilities between states, respectively.

A transition from Good (G) state to Bad (B) state takes place whenever the cur-

rent packet is lost when the previous one was successful. In the opposite direction, a

transition from Bad (B) to Good (G) state takes place whenever the current packet is

successfully received, but the previous one was lost. The conditional loss probability of

remaining in the good state (probability that a loss arises after a success) is given by

p = P (st = Bad|st−1 = Good) while the conditional loss probability remaining in the

bad state is denoted by 1− r, where r = P (st = Good|st−1 = Bad) (probability that a

loss arises after a loss).

The stationary probability of the Good state πG and the Bad state πB are given by:

πG =
r

p+ r
, πB =

p

p+ r
. (5.1)

Considering the given stationary state probabilities, the loss probability is defined

as:

πloss = p ∗ πG + (1− r) ∗ πB = πB (5.2)

Parameter µ called channel memory is defined as:

µ = 1− p− r, −1 ≤ µ ≤ 1. (5.3)
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When µ = 0, the probability of getting a good or a bad symbol at any time instance

is independent of the last symbol value, that is, the channel behaves as a memory-less

channel. µ becomes negative for oscillatory links.

To show how the parameters of the GE model can be obtained from link loss ob-

servations, let us consider that the first link has sequence1 = [011110] (1 denotes

a received packet, 0 denotes a lost packet). The second link is characterized by

sequence2 = [101011]. We see that sequence1 has 4 consecutive successful packet

receptions whereas sequence2 records only 2.

Transition matrices M1(p1, r1), M2(p2, r2) for sequence 1 and 2 are the following:

M1 =

(

0.75 0.25

1 0

)

M2 =

(

0.33 0.66

1 0

)

We obtain the following transition probabilities: the first link has p1 = 0.25 and r1 = 1,

and the second link has p2 = 0.66 and r2 = 1.

Table 5.1: Performance for Link1 and Link2.

Link PRR p r πG πB πloss µ

1 0.67 0.25 1 0.8 0.2 0.2 -0.25

2 0.67 0.66 1 0.6 0.39 0.39 -0.66

Table 5.1 summarizes the performance derived from the GE model applied to Link1
and Link2. Moreover, even if both links have a the same PRR = 0.67 (67%), Link1
would be preferred over Link2 as it records a higher good stationary probability (πG
of about 0.8 compared to 0.6) and a higher negative channel memory (µ = −0.25

indicating that Link1 is less oscillatory than Link2 with µ = −0.66).

The aim of the study is to use the stationary probabilities given by the GE model in

link quality election and therefore, avoid links that are have faster oscillations between

two states.

5.2.1 Experimental results

We call a run length the number of consecutive successful reception of packets and

a loss length the number of consecutive lost packets.

Figure 5.2 a) shows that the distribution of packet losses and successful receptions

depends on the link category. For instance, 98% of good links have an average 1.6

loss length, meaning that the probability of having consecutive lost packets is low. We

have observed large average loss length of about 5.3 for intermediate links and about

56.8 for bad links, which shows that good links have independent losses with respect to

intermediate and bad links. Yet, bad links may have bad states that last seconds.

Figure 5.2 b) illustrates that run length also varies in function of link category.

Good links stick to good state for long periods, instead bad links have a quite small
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run length, about 1. This means that after only one successful reception most probably

bad links go to bad state.

Figure 5.2 c)–d) show that good and bad stationary probabilities can discriminate

quite well link categories.

Studying the performance of µmetric, Srinivasan et al. [84] concluded that µmetrics

cannot track the long term channel state. Computing the µ metric for each link, we do

not obtain any interesting result as the curves overlap (cf. Figures 5.2 e) and 5.3 e)).

We can conclude that µ metric is insufficient to distinguish accurately the quality of

links.

Changing the radio to CC2420, we have observed that loss length is below 1.5 for

good links and increases linearly with the link quality decrease (see Figure 5.3 a ). Run

lengths continue to be low for bad links (about 1) and high for good links (above 5),

Figure 5.3 b).

Again, good stationary probability (πG) discriminates links categories as it takes

values within: 0.8-1 (good links), 0.6-0.8 (intermediate links), and 0-0.2 (bad links),

Figure 5.3 c). Figure 5.3 d) depicts that bad state stationary probability (πB) distin-

guishes also well link categories (0-0.2–good links, 0.2-0.4–intermediate links, 0.8-1–bad

links).

Varying inter-packet interval

First, we have considered the impact of data dissemination frequency. For this

reason, we vary the inter-packet interval within 100ms and 30s.

Figure 5.4 exhibits an increase with 15% of the proportion of loss lengths below 2

for IPTs above 1s. This effect is due to the expansion of the good links proportion for

IPT of 1s or 30s as shown in Section 3, cf. Table 3.6.

Table 5.2 reports that run lengths are slightly affected by IPT (i.e., good links have a

run length of 74 at 100ms and 88 at 500ms), still, bad links have independent successful

reception, having a run length average of 2. Besides, loss lengths for good and bad links

do not depend on IPT values. However, loss lengths of intermediate links may decay

at larger IPTs.

For a better understanding of Table 5.2, Figure 5.5 a) illustrates that loss lengths

for good links have an average less than 1 for each IPT of 100ms, 200ms, and 500ms.

Observation that proves that upper layers should consider to adapt their parameters to

access the channel based on the quality of the link they rely on.

Figure 5.5 b) shows that intermediate links have losses with low correlation whereas

bad links have strong correlated losses (i.e., from 4s to 28s).

The table shows as well that transition probabilities P (Good|Bad) and P (Bad|Good)

do not depend on IPT values. For instance, a low P (Good|Bad) (i.e. 0.03) indicates

that there are few transitions from Good to Bad state over the link. On the contrary,

a low transition probability, P (Bad|Good), demonstrates that links tend to preserve

their bad state.

Table 5.3 presents the performance given by the 2-state Markov model in terms of

stationary state probabilities πG, πB, loss probability πLoss, and µ metric. We see that

a good link has high πG (0.96), low πB (0.03), and low πLoss (∼0.03).

Packet size decrease
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Figure 5.2: Cumulation Distribution Function for each link category: good, inter-

mediate, bad for a) packet loss length, b) packet run length, c) station-

ary probability in good state πG, d) stationary probability in bad state

πB, and e) channel memory µ on CC1101, 110B, 0dBm.



108 Chapter 5. Analysis of Packet Loss with 2-state Gilbert-Elliot Model

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Loss length[no. of consecutive losses]

 

 

80%<=PRR<=100%

20%<=PRR<80%

0%<PRR<20%

(a) Packet loss length.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Run length [no. of consecutive successes]

 

 

80%<=PRR<=100%

20%<=PRR<80%

0%<PRR<20%
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Figure 5.3: Cumulation Distribution Function for each link category: good, inter-

mediate, bad for a) packet loss length, b) packet run length, c) station-

ary probability in good state πG, d) stationary probability in bad state

πB, and e) channel memory µ on CC2420, 110B, 0dBm.
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Figure 5.4: Cumulation Distribution Function of loss length at IPT of 100ms,

200ms, 500ms, 1s, 30s, CC1101, 0dBm.

Parameters run length loss length GE: p GE: r

IPT 100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms

110B PRR ≥ 80% 74.2 73.5 88.5 1.6 2 1.7 0.03 0.03 0.02 0.84 0.87 0.89

110B 20% ≤ PRR < 80% 14.8 7.6 9.4 12.5 7.9 5.3 0.43 0.40 0.41 0.42 0.41 0.38

110B 0 < PRR < 20% 2.2 1.4 1.5 43.4 41.1 56.8 0.81 0.82 0.82 0.07 0.08 0.05

Table 5.2: Average number of consecutive good packet receptions (run length),

packet losses (loss length), the GE transition probabilities (p = P (ti =

Bad|ti−1 = Good), r = P (ti = Good|ti−1 = Bad) for good (PRR ≥

80%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%) links

a with 110B packet size, CC1101.

Parameters πG πB πLoss µ

IPT 100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms 100ms 200ms 500ms

110B PRR ≥ 80% 0.96 0.96 0.97 0.03 0.03 0.02 0.03 0.03 0.02 0.13 0.1 0.09

110B 20% ≤ PRR < 80% 0.49 0.50 0.48 0.50 0.49 0.51 0.50 0.49 0.51 0.15 0.19 0.21

110B 0 < PRR < 20% 0.07 0.08 0.05 0.92 0.91 0.94 0.92 0.91 0.94 0.12 0.1 0.13

Table 5.3: Average stationary state probabilities πG, πB, loss probability πLoss, and

µ metric for good (PRR ≥ 80%), intermediate (20% ≤ PRR < 80%),

bad (0 < PRR < 20%) links a with 110B packet size, CC1101.

To study the impact of the packet size over run and loss length, we reduce the packet

size from 110B to 6B. Table 5.4 presents that good links continue to have short loss

periods, about 1 to 2 for IPTs of 100ms, 200ms, 500ms, and 1s. To observe the long

term distribution of packet losses, we set IPT to 30s. We can notice that loss length

maintains an average of ∼1, proving that no relation exists between packet losses of

good links. This is especially relevant to discriminate short term behavior of reliable
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Figure 5.5: Temporal behavior between 0:Bad and 1:Good states of links belonging

to categories: a) good, b) intermediate, and c) bad for long packets

(110B).
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links.

Additionally, P (Good|Bad) is low (∼0.03) whereas P (Bad|Good) is high (∼0.9) for

good links; they do not depend on IPT set-up values.

Intermediate links show higher transition probability P (Good|Bad) ( ∼0.4) and

lower P (Bad|Good) (max. ∼0.7). At the same time, bad links may be out of recep-

tion for long periods i.e. P (Good|Bad) ( ∼0.8) and P (Bad|Good) (max. ∼0.07). A

P (Bad|Good) about 0.1 means that there is only 10% chance to return from bad to a

good state.

Table 5.5 shows that πG and πB are independent of IPT for the 6B packet size. Yet,

they vary with the link category (0.03–good links, 0.52–intermediate links, 0.90–bad

links).

Parameters run length loss length GE: p GE: r

IPT 100ms 200ms 500ms 1s 30s 100ms 200ms 500ms 1s 30s 100ms 200ms 500ms 1s 30s 100ms 200ms 500ms 1s 30s

6B PRR ≥ 80% 30.2 150 157 141 27 2 1.5 1.3 1 1.4 0.05 0.03 0.02 0.04 0.04 0.81 0.87 0.89 0.93 0.94

6B 20% ≤ PRR < 80% 8 18.8 24.4 59.6 11.7 9 12 19 2.3 2.5 0.23 0.24 0.23 0.19 0.19 0.42 0.41 0.38 0.25 0.74

6B 0 < PRR < 20% 5 2.4 3 4 1.3 52 80 107.8 16.3 19.1 0.42 0.38 0.46 0.41 0.79 0.07 0.08 0.10 0.04 0.07

Table 5.4: Average number of consecutive good packet receptions (run length),

packet losses (loss length), the GE transition probabilities (p = P (ti =

Bad|ti−1 = Good), r = P (ti = Good|ti−1 = Bad) for good (PRR ≥

80%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%) links

with a packet size of 6B, CC1101.

Parameters πG πB πLoss µ

IPT 100ms 200ms 500ms 1s 30s 100ms 200ms 500ms 1s 30s 100ms 200ms 500ms 1s 30s 100ms 200ms 500ms 1s 30s

6B PRR ≥ 80% 0.94 0.96 0.97 0.95 0.95 0.05 0.03 0.02 0.04 0.04 0.05 0.02 0.02 0.04 0.04 0.14 0.10 0.09 0.03 0.02

6B 20% ≤ PRR < 80% 0.64 0.63 0.62 0.56 0.79 0.35 0.36 0.37 0.43 0.20 0.35 0.36 0.37 0.43 0.20 0.35 0.35 0.39 0.56 0.07

6B 0 < PRR < 20% 0.14 0.17 0.17 0.08 0.08 0.85 0.82 0.82 0.91 0.91 0.85 0.82 0.82 0.91 0.91 0.51 0.54 0.44 0.55 0.14

Table 5.5: Average stationary state probabilities πG, πB, loss probability πLoss, and

µ metric for good (PRR ≥ 80%), intermediate (20% ≤ PRR < 80%),

bad (0 < PRR < 20%) links with a packet size of 6B, CC1101.

Parameters run length loss length GE: p GE: r

IPT 100ms 200ms 500ms 1s 100ms 200ms 500ms 1s 100ms 200ms 500ms 1s 100ms 200ms 500ms 1s

110B PRR ≥ 80% 13.1 14.6 17.4 7.6 1.2 1.2 1.4 1.1 0.13 0.12 0.09 0.10 0.84 0.85 0.82 0.87

110B 20% ≤ PRR < 80% 3.5 3.7 4.2 3.1 1.9 2.4 2.7 2.3 0.29 0.27 0.24 0.32 0.78 0.76 0.65 0.64

110B 0 < PRR < 20% 1.0 1.0 1.1 1.0 28.0 35.2 26.7 22.6 0.92 0.92 0.85 0.88 0.08 0.08 0.07 0.08

6B PRR ≥ 80% 12.1 9.0 10.3 9.8 1.5 1.8 1.9 1.3 0.11 0.09 0.09 0.10 0.89 0.91 0.86 0.93

6B 20% ≤ PRR < 80% 2.8 3.4 3.8 3.5 2.9 2.14 3 8.3 0.32 0.31 0.24 0.32 0.79 0.63 0.61 0.75

6B 0 < PRR < 20% 1.1 1.0 1.6 1.0 24.2 30.2 15.7 21.6 0.86 0.94 0.85 0.91 0.04 0.02 0.02 0.04

Table 5.6: Average number of consecutive good packet receptions (run length),

packet losses (loss length), the GE transition probabilities (p = P (ti =

Bad|ti−1 = Good), r = P (ti = Good|ti−1 = Bad) for good (PRR ≥

80%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%) links

for short (6B) and long (110B) packets, at 0dBm output power, CC2420.
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Parameters πG πB πLoss µ

IPT 100ms 200ms 500ms 1s 100ms 200ms 500ms 1s 100ms 200ms 500ms 1s 100ms 200ms 500ms 1s

110B PRR ≥ 80% 0.86 0.87 0.90 0.89 0.13 0.12 0.09 0.10 0.13 0.12 0.09 0.10 0.03 0.03 0.09 0.03

110B 20% ≤ PRR < 80% 0.72 0.73 0.73 0.66 0.27 0.26 0.26 0.33 0.27 0.26 0.26 0.33 -0.07 -0.03 0.11 0.04

110B 0 < PRR < 20% 0.08 0.07 0.07 0.08 0.92 0.92 0.92 0.91 0.92 0.92 0.92 0.91 0 0 0.08 0.04

6B PRR ≥ 80% 0.89 0.91 0.90 0.90 0.11 0.09 0.09 0.09 0.11 0.09 0.09 0.09 0 0 0.05 -0.03

6B 20% ≤ PRR < 80% 0.71 0.67 0.71 0.70 0.28 0.32 0.28 0.29 0.28 0.32 0.28 0.29 -0.11 0.06 0.15 -0.07

6B 0 < PRR < 20% 0.04 0.02 0.02 0.04 0.95 0.97 0.97 0.95 0.95 0.97 0.97 0.95 0.1 0.04 0.13 0.05

Table 5.7: Average stationary state probabilities πG, πB, loss probability πLoss, and

µ metric for good (PRR ≥ 80%), intermediate (20% ≤ PRR < 80%),

bad (0 < PRR < 20%) links for short (6B) and long (110B) packet, at

0dBm output power, CC2420.

Considering the CC2420 radio, Table 5.6 highlights that like CC1101, losses are

independent for good links with the maximum 1.9 average loss length per link for both

110B and 6B packet sizes. Intermediate links may encounter losses with an average

length ranging from 2 to 10 for 110B and 6B packet size. Also, bad links show a

loss length above 15, independent of the packet size. Again, transition probabilities are

linearly dependent to the link category, exhibiting a P (Good|Bad) of ∼0.10 (good links),

∼0.3 (intermediate links), and ∼0.9 (bad links). On the other hand, P (Bad|Good)

probability decreases from ∼0.80 for good links to ∼0.04 for bad links.

According to Table 5.7, on CC2420, good and bad stationary probabilities are in-

dependent of the packet length or the IPT. Thus, the probability loss remains a good

link quality discriminator (0.13–good links, 0.27–intermediate links, 0.92–bad links).

Power decrease

We next decrease the output power to -10dBm and -30dBm on the CC1101 radio

to verify the validity of our assumption. Table 5.8 presents that transition probabilities

P (Good|Bad), P (Bad|Good) continue to be linearly dependent on the links category.

Moreover, good links keep having large run lengths (may reach 120 consecutive suc-

cesses) and low loss lengths ( ∼1.2) at -10dBm and -30dBm output power.

The output power decrease does not affect stability of good links, instead, inter-

mediate links decay the stationary good probability from 0.66 at -10dBm to 0.57 at

-30dBm (cf. Table 5.9). Additionally, bad links reduce their stationary probability

from 0.14 at -10dBm to 0.05 at -30dBm.

On the CC2420 radio, to assess the effect of power decrease, we set up the output

power to -15dBm and the -25dBm (lowest bound of CC2420). We observe that we

may have at maximum two consecutive losses for good links and maximum 4-5 for

intermediate links. Similarly to CC1101, the probability to transit from good to bad

state is about 10% for good links at -15dBm and -25dBm.

The output power decrease contributes to the decrease of the intermediate and bad

links good stationary probability from 0.62 at -15dBm to 0.56 at -25dBm and from 0.07

at -15dBm to 0.05 at -25dBm (cf. Table 5.11).

It is interesting to investigate how the loss length may discriminate the quality

of links. To illustrate this point, we study the correlation between the probability of

consecutive successes P(Good|Good) and the real PRR.
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Parameters run length loss length GE: p GE: r

IPT 500ms 500m 500ms 500ms

110B, TX=-10dbm PRR ≥ 80% 120 1.2 0.04 0.94

110B, TX=-10dbm 20% ≤ PRR < 80% 54 3 0.3 0.59

110B, TX=-10dbm 0 < PRR < 20% 1.3 24 0.7 0.12

110B, TX=-30dbm PRR ≥ 80% 117 1 0.05 0.94

110B, TX=-30dbm 20% ≤ PRR < 80% 34 2 0.4 0.55

110B, TX=-30dbm 0 < PRR < 20% 0.9 63 0.8 0.05

Table 5.8: Average number of consecutive good packet receptions (run length),

packet losses (loss length), the GE transition probabilities (p = P (ti =

Bad|ti−1 = Good), r = P (ti = Good|ti−1 = Bad) for good (PRR ≥

80%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%) links

at -10 dbm and -30dBm output power, CC1101.

Parameters πG πB πLoss µ

IPT 500ms 500m 500ms 500ms

110B, TX=-10dbm PRR ≥ 80% 0.95 0.04 0.04 0.02

110B, TX=-10dbm 20% ≤ PRR < 80% 0.66 0.33 0.33 0.11

110B, TX=-10dbm 0 < PRR < 20% 0.14 0.85 0.85 0.18

110B, TX=-30dbm PRR ≥ 80% 0.94 0.05 0.05 0.01

110B, TX=-30dbm 20% ≤ PRR < 80% 0.57 0.42 0.42 0.05

110B, TX=-30dbm 0 < PRR < 20% 0.05 0.94 0.94 0.15

Table 5.9: Average stationary state probabilities πG, πB, loss probability πLoss, and

µ metric for good (PRR ≥ 80%), intermediate (20% ≤ PRR < 80%),

bad (0 < PRR < 20%) links at -10 dbm and -30dBm output power,

CC1101.

5.2.1.1 Fitting the GE P (Good|Good) probability

In Figure 5.6, we fit the probability of successful receptions express as 1− p (prob-

ability that a success is followed by a success) with a first order polynomial function,

F (x) = p1 ∗ x + p2, where p1 = 0.9785 and p2 = 0.01309. The goodness of the fit is

given by: a) CC1101 – R2: 0.9818, a SSE of 5.495, and a RMSE of 0.0394, b) CC2420

– R2: 0.977, a SSE of 2.675, and a RMSE of 0.017974.

5.2.2 Estimating PRR using stationary probabilities

Previously, we have obtained an estimation of PRR through a F-D function applied

over avg and std LQI measured values; RSSI is recommended only for the detection of

anomalous behavior.
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Parameters run length loss length GE: p GE: r

IPT 500ms 500m 500ms 500ms

110B, TX=-15dbm PRR ≥ 80% 8.5 1.1 0.09 0.90

110B, TX=-15dbm 20% ≤ PRR < 80% 4.5 1.5 0.32 0.54

110B, TX=-15dbm 0 < PRR < 20% 1.2 8 0.90 0.07

110B, TX=-25dbm PRR ≥ 80% 8.2 1.1 0.10 0.88

110B, TX=-25dbm 20% ≤ PRR < 80% 3.6 2 0.39 0.54

110B, TX=-25dbm 0 < PRR < 20% 1.1 23 0.94 0.05

Table 5.10: Average number of consecutive good packet receptions (run length),

packet losses (loss length), the GE transition probabilities (p = P (ti =

Bad|ti−1 = Good), r = P (ti = Good|ti−1 = Bad) for good (PRR ≥

80%), intermediate (20% ≤ PRR < 80%), bad (0 < PRR < 20%) links

at -15 dbm and -25dBm output power on CC2420 radio.

Parameters πG πB πLoss µ

IPT 500ms 500m 500ms 500ms

110B, TX=-15dbm PRR ≥ 80% 0.90 0.09 0.09 0.01

110B, TX=-15dbm 20% ≤ PRR < 80% 0.62 0.37 0.37 0.14

110B, TX=-15dbm 0 < PRR < 20% 0.07 0.92 0.92 0.03

110B, TX=-25dbm PRR ≥ 80% 0.89 0.10 0.10 0.02

110B, TX=-25dbm 20% ≤ PRR < 80% 0.56 0.43 0.43 0.11

110B, TX=-25dbm 0 < PRR < 20% 0.05 0.94 0.94 0.01

Table 5.11: Average stationary state probabilities πG, πB, loss probability πLoss,

and µ metric for good (PRR ≥ 80%), intermediate (20% ≤ PRR <

80%), bad (0 < PRR < 20%) links at -15 dbm and -25dBm output

power on CC2420 radio.

Also, we have noticed that stationary probabilities (πG and πB) are good discrim-

inators of link quality. Therefore, to refine the prediction of PRR using the obtained

F-D fitting function, we apply the 2-state Markov model over avg and std LQI measured

values for highly variable links.

We consider avg and std LQI values of the received packets as a sequence of bits:

f(lqi) =

{

1, if lqi ≤ LQIthreshold.

0, otherwise.
(5.4)

f(σlqi) =

{

1, if σlqi ≤ σLQIthreshold .

0, otherwise.
(5.5)

where LQIthreshold and σLQIthreshold are the threshold values of avg LQI and std LQI

that may be elected with respect to the used hardware or to the environment. More
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Figure 5.6: Fitting of the scatter diagram of PRR in function of P (Good|Good)

probability (1− p) with a linear function.

specifically, we chose a LQIthreshold of 1.7; an avg LQI value below 1.7 corresponds to

1 (good reception) whereas an avg LQI above 1.7 corresponds to a 0 (bad reception),

Equation 5.4. The avg LQI value of 1.7 was decided observing the obtained F-D fit,

Figure 4.7.

Similarly, for std LQI, we consider a bound (σLQIthreshold) of 1.5, values below are

associated with 1 (good reception) while values above 1.5 are associated with 0 (bad

reception) ( cf. Equation 5.5).

Figure 5.8 a) depicts the temporal evolution of avg LQI computed over windows

of size 2 whereas Figure 5.8 b) shows the temporal evolution of std LQI. Given the

overlapping of avg LQI and std LQI for the link with PRR=50% and PRR=20%, we

associate each value of avg and std LQI to a sequence of bits; then, we compute the

stationary probability πG for each sequence of five values as in Figure 5.7.

Stationary probability πG computed over avg LQI, Figure 5.8 c), shows that the link

with PRR of 80% can be easily distinguish between links with 50% or 20% of PRR.

Not only πG of avg LQI, but also πG of std LQI helps to discriminate links with 80%,

50% or 20% of PRR (cf. Figure 5.8 d)).

Considering that a node has in its neighborhood only intermediate links, we explore

the effect of estimating PRR of available intermediate links through the FD fit as well

as by computing the stationary probability πG of avg and std LQI. As intermediate

links, we pick three links such as: 6 → 20 (PRR=64%), 6 → 57 (PRR=54%), 6 → 34

(PRR=34%).

We show the measured PRR over an observation window of 10 in Figure 5.9 a).

Figure 5.9 b)–c) present the temporal evolution of avg LQI that ranges within 0.5 and

∼3 and std LQI with values concentrated within 0.5 and 5. Both avg LQI and std LQI

have curves that overlaps.

To perform the PRR estimation, we fit the Fermi-Dirac function with the following
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pk1 pk2 pk3 pk4 pk5 pk6 pk7 pk8 pk9 pk10

(lqi1,σlqi1) (lqi2,σlqi2) (lqi3,σlqi3) (lqi4,σlqi4) (lqi5,σlqi5)

2-state Markov: 
- (πG,πB) of avg LQI 

f(lqii)=
1,lqii ≤1.7
0,lqii >1.7  

e.g (0 1 1 0 1)

2-state Markov: 
- (πG,πB) of std LQI 

f(σlqii)=
1,σlqii ≤1.5
0,σlqii >1.5  

e.g (1 1 1 0 1)

Figure 5.7: Computation process of the stationary probabilities from avg and std

LQI values.

parameters: (µ = 2.5, σ = 0.6) for avg LQI and (µ = 2.75, σ = 0.65) for std LQI.

Figure 5.9 d) shows that using FD for avg LQI, the link 6 → 20 (PRR=64%) overlaps

the link 6 → 57 (PRR=54%). On the other hand, when we use FD for std LQI all three

links overlaps, see Figure 5.9 e).

To attain a better estimation of such high variable links, we calculate the stationary

probability given by 2-state Markov model.

Figure 5.10 a) points out that πG of avg LQI gives a fairly good differentiation

between the link of PRR=64%, PRR=54%, and PRR=34% πG of std LQI is also able

to determine the best link within links of PRR=64%, PRR=54%, and PRR=34%.

We have also evaluated the relevance and the efficiency of using stationary proba-

bilities to categorize high variable CC2420 links. Like CC1101, we assess the temporal

fluctuation of intermediate links with different reception ratio: 174 → 127 (PRR=60%),

99 → 179 (PRR=40%), 188 → 105 (PRR=20%).

At first, we plot the real PRR that clearly identifies the links by their reception ratio

(cf. Figure 5.11 a)). Looking at Figure 5.11 b), we observe that the temporal evolution

of average LQI for 174 → 127 and 99 → 179 are quite close. Therefore, average LQI

is not able to decide which one is better. Additionally, each link varies sporadically in

a large range from 0 to 15 deepen the complexity of selecting the most reliable link as

shown in Figure 5.11 c) .

Trying to identify the best link, we apply the Fermi-Dirac function over average

LQI (µ = 25.4, σ = 4.3) and std LQI (µ = 14.4, σ = 1.8). Figure 5.11 d) illustrates

that link 174 → 127 and link 99 → 179 have short spans overlap that may mislead link

selection when we use the FD fit of avg LQI. However, link 188 → 105 with 20% can

be well identify from the avg LQI FD fit. Moreover, investigating the FD fit of std LQI

it is hard to decide best link as we face high overlapping (cf. Figure 5.9 e)).

To cope with easy-going PRR prediction when intermediate links are difficult to be

estimated from the FD fit, we compute the stationary probability conforming to Figure
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(a) avg LQI, w=10.
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(b) std LQI, w=10.
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(c) πG of avg LQI.
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(d) πG of std LQI.

Figure 5.8: Stationary probability πG of avg/std LQI derived from avg/std LQI

measured values a) avg LQI, b) std LQI, c) avg LQI (threshold of 1.7),

and b) std LQI (threshold of 1.5) for link 23 → 58 (PRR=80%), link

69 → 19 (PRR=50%), and link 6 → 51 (PRR=20%), w=10, CC1101,

0dBm.
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(a) Measured PRR.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

a
v
g

 L
Q

I

window seq no.

 

 

6−>20,PRR=64%

6−>57,PRR=54%

6−>34,PRR=34%

(b) avg LQI.
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(c) std LQI.
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(d) Estimated PRR (FD of avg LQI).
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Figure 5.9: Estimating PRR using the Fermi Dirac fitting function for three in-

termediate links (6 → 20 (PRR=64%), 6 → 57 (PRR=54%), 6 → 34

(PRR=34%)) a) measured PRR, b) avg LQI, c) std LQI, d) FD fit of

avg LQI, and e) FD fit of std LQI over an observation window of 10 for

CC1101, 0dBm.



5.3. Link quality metric approach 119

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π
G

 o
f 

a
v
g

 L
Q

I 

window seq no.

 

 

6−>20,PRR=64%

6−>57,PRR=54%

6−>34,PRR=34%

(a) πG of avg LQI.
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(b) πG of std LQI.

Figure 5.10: Stationary probability πG of avg/std LQI derived from avg/std LQI

measured values a) avg LQI, b) std LQI, c) avg LQI (threshold of 1.7),

and b) std LQI (threshold of 1.5) for link 23 → 58 (PRR=80%), link

69 → 19 (PRR=50%), and link 6 → 51 (PRR=20%), CC1101, 0dBm.

5.7 with LQIthreshold = 72 and σLQIthreshold = 4.

Figure 5.12 a) shows that πG of avg LQI can very well distinguish among CC2420

links with PRR=60%, PRR=40%, and PRR=20%. On the contrary, we cannot exploit

πG of std LQI due to the inaccurate prediction (cf. Figure 5.12 b)).

5.3 Link quality metric approach

To enable energy efficiency and reliable multi-hop communication, link quality es-

timators (LQE) need to be accurate independently of the network density or the noisy

environments. Moreover, LQE needs to predict the quality of a link, the quality that

reflects the successful data delivery across it.

To design such accurate link quality, it should be taken into consideration several

requirements such as: energy efficiency, assure the stability of the route while data

is transferred, avoid high rate dissemination of control packets (low overhead), or low

complexity.

To meet these challenges, we propose an agile link estimator able to predict PRR on

short term from existent hardware metrics (RSSI, LQI). We have concluded that RSSI

manages to single out nodes with anomalous behavior (CC1101), or that low averages

and standard deviations usually designate good packet receptions (CC2420). However,

LQI demonstrates to characterize better link qualities via its average and standard

deviation.

To assess short term link estimation, we use our statistical approach (Fermi-Dirac

fitting function–coefficient of correlation up to 0.98 and the 2-state Markov model)

driven from the carried out experiments on large scale indoor Senslab testbed (CC1101,



120 Chapter 5. Analysis of Packet Loss with 2-state Gilbert-Elliot Model

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
R

R
[%

]

window seq no.

 

 

174−>127, PRR=60%

99−>179, PRR=40%

188−>105, PRR=20%

(a) Measured PRR.
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(b) avg LQI.
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(c) std LQI.
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(d) Estimated PRR (FD of avg LQI).
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(e) Estimated PRR (FD of std LQI).

Figure 5.11: Estimating PRR using the Fermi-Dirac fitting function for three in-

termediate links (174 → 127 (PRR=60%), 99 → 179 (PRR=40%),

188 → 105 (PRR=20%)) a) measured PRR, b) avg LQI, c) std LQI,

d) FD fit of avg LQI, and e) FD fit of std LQI over an observation

window of 10 for CC2420, 0dBm.
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(a) πG of avg LQI.
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(b) πG of std LQI.

Figure 5.12: Stationary probability πG of avg/std LQI derived from avg/std LQI

measured values a) avg LQI, b) std LQI, c) avg LQI (threshold of

70), and b) std LQI (threshold of 3.5) for 174 → 127 (PRR=60%),

99 → 179 (PRR=40%), 188 → 105 (PRR=20%), CC2420, 0dBm.

CC2420).

Considering the RPL routing protocol, we count for the couples (lqii,rssii) recorded

with each reception of packets such as NS/NA, RS/RA (neighbor discovery), DIO/DIS/DAO

(routing), and data.

Our approach of PRR estimation is two-folded. First, we consider the Fermi-Dirac

model:

f(x) = 1/(1 + exp
−(µ− x)

σ
), (5.6)

where f(x) gives the PRR prediction of sample x that may denote the lqii, the rssii
of a single packet, or lqii, σlqii computed over an observation window of size w; We

obtained good performance for w = 10 (µ = 2.5, σ = 0.6) for avg LQI and (µ = 2.75,

σ = 0.65) for std LQI. The Fermi-Dirac model has proven to predict PRR by achieving

more than 80% accuracy. The significance of the Fermi-Dirac function is pictured by µ

(cf. Equation 5.6 ) that gives the inflection point value and σ that indicates the slope

of the curve. Both parameters are hardware reliable.

Second, to overcome spare spaces with prevalent poor links that present high varia-

tion, we compute additional to F-D, the stationary good state probability (πG), where

a high value of the link demonstrates reliable packet reception across it.

We further plan to integrate the algorithm 1 described above with RPL so that

nodes may decide as preferred parent neighbors with good quality.
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Algorithm 1 Estimating PRR of link (i,j): LQij

Require: (lqii,rssii) for each received packet (DIO/DIS/DAO, data, NS/NA,

RS/RA),0 ≥ lqii > 60 for CC1101, 60 ≥ lqii > 110 for CC2420

1: n ⇐ size of w (observation window)

2: for all link(i, j) ∈ neighborhood do

3: seq(k)ij ⇐ {(lqi1,rssi1), ..., (lqin,rssin)}

4: lqi ⇐ 1
n ∗

n
∑

l=1

lqil

5: σlqi ⇐

√

1
n

n
∑

l=1

(lqil − lqiseq(p))

6: PRRlqi ⇐ 1/(1 + exp −(µ−lqi)
σ )

7: PRRσlqi
⇐ 1/(1 + exp

−(µ−σlqi)
σ )

8: PRRij ⇐
1
2(PRRlqi + PRRσlqi

)

9: end for

10: if Only intermediate links then

11: Compute πG
12: Choose link with higher πG as preferred parent.

13: else if Good links detected then

14: Choose link with higher PRRij as preferred parent.

15: end if

5.4 Conclusions

Investigating the correlation of losses, the first aspect to be pointed out is that losses

are independent for good links, no matter the packet size. Moreover, on a short period of

time, about seconds, we observed that loss length depends on the link quality. Varying

the inter-packet time interval, we have noticed, that P (Good|Bad) and P (Bad|Good)

probabilities are not impacted. We argue that upper layer may adapt their mechanism

to access the channel (decaying retransmissions to 400ms for low IPT and 1s for higher

IPT values), this way, they overcome extensive retransmissions due to short term loss

correlation. Since the upper layer relies only on intermediate links the timing to delay

further packet transmissions may be set up to 1.5s-2s.

We further analyzed the channel memory metric µ together with transitional and

stationary probabilities (πG, πB) of the GE model. We concluded that due to curve

overlapping, the channel memory it is not a good link quality predictor neither for

CC1101 nor for CC2420. Good and Bad state stationary probabilities measured for

packet reception sequences or over sequences derived from avg and std LQI assess good

link quality estimation. For example πG may range within 0.8-1 (good links), 0.6-0.8

(intermediate links), 0-0.2 (bad links)).

We have decreased the output power and we concluded that good links are not

affected while intermediate and bad links can reduce with 10%, 50%, respectively the

good stationary probability when they go from -10dBm to 0.57 -30dBm.
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We have shown that estimating PRR using the F-D fitting function may have short

spans overlap that may mislead link prediction when links are high variable (i.e links

with PRR=64%, PRR=40%, PRR=20%). Therefore, to overcome this issue, we employ

the computation of the stationary probabilities associated to the avg and std LQI.

In order to measure πG and πB of avg LQI, we found that filtering avg LQI with

a LQIthreshold of 1.7 (CC1101), 72 (CC2420) leads to a fairly good estimation of link

quality. However, as links vary sporadically in wide ranges, the πG and πB of std LQI

is versatile as curves overlap.

Finally, we propose a PRR estimation algorithm based on hardware metrics by

combining the obtained Fermi-Dirac fit with the stationary probability of the 2-state

Markov model. The approach aims to discriminate between good, intermediate, and

bad links using the F-D fit. Once we rely only on intermediate links we differentiate

them by favoring links with the highest good stationary probability πG corresponding

to the avg LQI.





Chapter 6

Conclusions and Future Work

Conclusions

The main contribution of this dissertation is to investigate the link quality estima-

tion in large scale dense Wireless Sensor Networks. We focus our attention on a large

scale WSN testbed (Senslab) to identify the factors that impact the pattern deviation

of the hardware metrics that result in energy waste when communication protocols are

used.

In Chapter 2 we give an overview of the main factors that influence link quality

whereas we focus our attention on the hardware metrics (RSSI/LQI/SNR). We provide

a critical study of existing link assessment mechanisms in terms of RSSI, LQI, PRR

that relies on link or a composite link and routing information. Also, we overview the

main aspects of several distance-vector based routing protocols (RPL, LOAD, CTP).

We concluded the chapter by several observations:

❼ An ideal link estimator needs to: assure a good delivery, be accurate, be reactive

(adapt to network changes), consider the link asymmetry, have low overhead, be

reliable in dense and noisy networks, be stable (able to smooth small fluctuations

of links).

❼ Hardware metrics provide good information of the link properties (delivery, sta-

bility, asymmetry, reactivity).

❼ Composite metrics outperformed single metrics but require further investigation

in terms of the required computation time, complexity, memory footprint, and

temporal behavior in noisy environments and dense networks.

❼ To reduce the computation complexity and the memory footprint, link estima-

tors should integrate mathematical models able to capture the dynamics of the

hardware metrics (average RSSI, std RSSI, average LQI, deviation LQI).

In Chapter 3, we report on the results of measurements on SensLAB [75] testbed

equipped with CC1101/CC2420 radio chips. We recorded RSSI (Received Signal Strength

Indicator) and LQI (Link Quality Indicator) hardware metrics for which we consider

several aspects such as average and standard deviation of RSSI/LQI, asymmetry of

links, and percentage of formed links to find the best way of detecting good links in

comparison to weak ones. Besides, we investigate various scenarios by varying the

output power, the inter-packet time interval, and the length of the packet. We pro-

pose a link classification function of link degree of hardware metric fluctuation (LQI,

RSSI) as good (80% ≤ PRR ≤ 100%), intermediate (20% < PRR ≤ 80%), and bad
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(0% < PRR < 20%). Based on the classification, we report on the proportion of link

categories.

Our analysis has shown that:

❼ The network may benefit from a large proportion of good links on CC1101 and

CC2420 (for 6 byte packets). However, for CC2420 radio, we record for 110 byte

packets a majority of intermediate links.

❼ The CDF and PDF of RSSI (average, standard variance) and LQI (average, stan-

dard variance) can discriminate the quality of links. For example, on CC1101 the

avg RSSI may help to discriminate links with PRR=100%, since avg RSSI for

links below PRR=100% overlap. Also, the deviation of RSSI (CC2420) can be

interesting but not sufficient to discriminate link quality. On CC2420, because

CDF curves of avg RSSI and std RSSI overlap less we can use avg RSSI and std

RSSI to distinguish between good and intermediate links. Furthermore, we can

conclude that RSSI can fairly well differentiate good and bad links while LQI can

help discriminate intermediate links.

❼ Good links present strong asymmetry (in Chapter 4 we called strong asymmetry

a link with an asymmetry below 20) whereas intermediate and bad links present a

high degree of asymmetry for CC1101 and CC2420 radio chips. Hence, the asym-

metry of intermediate links (20% ≤ PRR < 80%) is not influenced by the packet

size, even though decreasing the output power we lose links that present strong

asymmetry. Moreover, the packet size and the power decrease highly impact bad

links (0 < PRR < 20%).

In Chapter 4 we analyze the link quality in a statistical way. We have fitted a

Fermi-Dirac function to the scatter diagram of the average and standard variation of

RSSI and LQI to obtain an estimator of packet reception ratio (PRR). The function

can estimate the level of PRR given the average and standard deviation of LQI and

RSSI. To evaluate the estimator, we vary the observation window size over which we

compare the obtained PRR to average and deviation of RSSI and LQI.

We concluded that:

❼ Looking for continuous distributions fitting the measured values of RSSI and LQI,

we have found that Generalized Extreme Value, Johnson SB or Beta fits best.

❼ RSSI can be used it as an indicator of possible anomalous behavior of sensor nodes

on CC1101, whereas on CC2420 its average and standard deviation can be used

to discriminate link categories.

❼ The resulting Fermi-Dirac fitting function managed to predict accurately PRR

over few samples for CC1101 and CC2420 from a given level of average and

standard deviation of LQI.

❼ We have observed that having a window size of 10 we reach low MSE (0.005–0.02).
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The work of this chapter has been published in the Algotel conference [9] and the

PIMRC conference [10].

In Chapter 5, to detect the short term link dynamics, we study the loss and run

length by applying the 2-state Markov model to each link. We next compute the

probability of successive packet successes and losses for each link called as stationary

probabilities. Probabilities that can offer fine discrimination of high variable links.

Lastly, we discuss on how we can take advantage of our Fermi-Dirac fit together

with the two state Markov model metrics by integrating them within a RPL metric.

We concluded the chapter as follows:

❼ Investigating 2-state Markov model, we conclude that packet size and power de-

crease do not affect the successes and losses correlations. Moreover, packet losses

and successful receptions depend on the link category. For example, a good link

has no correlation of packet losses which means that losses are independent for

good links. The packet loss length increases with the degradation of the quality

of the link.

❼ We have observed that for low inter-packet interval time ∼ 200ms the loss cor-

relation for good links reaches 400ms, whereas for intermediate links it may be

down to 1.5s–2s.

❼ The channel memory is not a good link quality (µ) as is not able to estimate

properly the link quality as curves overlap for each category.

❼ The πG, πB of the Markov model derived from avg and std LQI can accurately

distinguish between high variable links; πG ranges within 0.8-1 (good links), 0.6-

0.8 (intermediate links), 0-0.2 (bad links)). To convert the avg and std LQI, we

recommend a LQIthreshold of 1.7 (CC1101), 72 (CC2420), and a σLQIthreshold of

1.5 (CC1101) and 4 (CC2420).

❼ The power decrease from -10dBm to -30dBm leads to a reduction with 10% (in-

termediate links) and 50% (bad links) of the good stationary probability (πG).

❼ Our approach of identifying link categories from the obtained Fermi-Dirac fit

offers low prediction errors for the measures obtained from Senslab testbed. Also,

intermediate links with high variation are well differentiated by good stationary

probability πG corresponding to the avg LQI.

Future work

The work presented in this dissertation provides valuable insight on the link quality

estimation issues on real testbeds. We highlight what appears to us the most promising

research directions:

Integration and testing the approach

In Chapter 4 and Chapter 5, we have evaluated the relevance of the received signal

strength indication (RSSI) and the link quality indicator (LQI) hardware metrics to
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predict the PRR using distribution models ( e.g Log-logistic, Johnson, Beta).), Fermi-

Dirac function, and 2-state Markov model. The promising way of estimating PRR

that looks for stable links of good quality and adapt to slowly changing conditions is

important for nodes joining the network and to improve overall network performance.

An interesting aspect that remains to be explored is the integration of the found

model with the RPL (hop count, ETX) and LOAD (weak links) metrics.

A step forward is to prove its performance against common routing metrics as ETX,

LQI, MinLQI, Hops, Weak links (cf. Chapter 2) by deploying it on Contiki OS and

testing it on Senslab testbed.

Channel hopping

It is claimed by the literature that the channel hopping is the best solution to avoid

bad links when multipath factors or Wi-Fi interference is present. More specifically,

a protocol may perform well on a chosen channel whereas on a different channel the

performance may be far different. So, in order to generalize our findings, it is needed

to check the applicability of our model on different channels.

Impact of the link estimation model on different hardware platforms

Considering the PRR prediction coupled together with ETX estimation, we plan to

validate the above mentioned results of the link characterization on different ready-to-

use large scale testbeds such as Mirage [18] ( Mica2 and Mica2Dot), Kansei, TWIST

testbed [32, 106] (Tmote Sky), Wisebed (Telos B, iSense) [90], Greenorbs (Greenorbs

nodes) [31].

Smoothing to a single value

Another direction that remains unexplored is the need to check the inefficiency of

smoothing the link estimation to a single value. We believe that tracking simultaneously

different values such as the average/deviation of the hardware metrics (layer 1), the

number of retransmissions (layer 2), and at the same time routing information such as

density, delay will lead to more accurate link estimation.

Opportunistic routing

Another direction that requires investigation is the opportunistic routing that takes

advantage from a set of links at the same time.

It would be quite interesting to be able to choose dynamically the set of links on

the basis of the short term quality. The idea is to rely on the observations driven from

the FD fit and the GE model to predict the PRR on short terms, and therefore, to be

able to guarantee high reception independently of the fluctuation degree.
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