
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

João Claudio RODRIGUES AMÉRICO

Thèse dirigée par Didier DONSEZ

préparée au sein Laboratoire d’Informatique de Grenoble
et de École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

A component metamodel for de-
signing flexible and modular real-
time applications

Thèse soutenue publiquement le 4 Novembre 2013,

devant le jury composé de :

Prof. Dr. Florence MARANINCHI
Professeur à Grenoble INP, Président

Prof. Dr. Lionel SEINTURIER
Professeur à l’Université de Lille I, Rapporteur

Prof. Dr. Jean BEZIVIN
Professeur à l’Université de Nantes, Rapporteur

Prof. Dr. Andy WELLINGS
Professeur à l’Université de York (Angleterre), Examinateur

Prof. Dr. Frédéric MALLET
Maître de Conférences à l’Université de Nice/Sophia Antipolis, Examinateur

Prof. Dr. Didier DONSEZ
Professeur à l’Université de Grenoble, Directeur de thèse

Dr. François EXERTIER
Responsable Technique, Bull, Co-Directeur de thèse

M. Frédéric SOINNE
Responsable Entreprise, Bull, Co-Directeur de thèse

M. Stephane ZENG
Ingénieur R&D, Bull, Invité

iii

Remerciements

Ca y est, c’est fini!

Tout d’abord, je tiens à exprimer ma profonde reconnaissance aux professeurs Lionel

Seinturier et Jean Bézivin d’avoir accepté d’être les rapporteurs de cette thèse, ainsi qu’aux

professeurs Florence Maraninchi, Andy Wellings et Frédéric Mallet d’avoir accepté de par-

ticiper à ce jury de thèse et contribuer au résultat final de ce projet.

Mes plus sincères remerciements à ceux qui m’ont soutenu et sans qui ce travail n’aurait

jamais abouti :

Au Prof. Didier Donsez, mon directeur de thèse, pour m’avoir confié ce travail de

recherche, ainsi que pour son aide, ses conseils, les nombreuses pauses-café, réunions et

e-mails échangés au cours de ces dernières années. Je remercie également Dr. François Ex-

ertier et M. Frédéric Soinne pour m’avoir (re-)accueilli chez Bull et pour leur encadrement,

À Pierre Salkazanov, ainsi qu’aux professeurs Philippe Lalanda et Noël de Palma de

m’avoir ouvert les portes des équipes BPS Innovation, ADELE et ERODS, respectivement,

J’aimerais remercier particulièrement le Dr. Walter Rudametkin et le Prof. Diogo Souza,

qui sont à l’origine de toutes mes expériences professionnelles et scientifiques en France et

au Brésil,

Ces remerciements ne serait pas complets sans une pensée pour plusieurs amis de longue

et moyenne date, qui se trouvent au Brésil. Merci de m’avoir encouragé. Merci encore à la

Xepa, à la Tropicolloc’, à Gabriel, à Janine et à Cécile, qui ont été ma famille en France.

Mes dernières, mais pas les moins méritantes, pensées iront vers ma famille, surtout mes

parents, qui m’ont toujours motivé et permis de poursuivre mes études jusqu’à aujourd’hui.

Merci beaucoup, thank you very much e muito obrigado.

v

Abstract

The increase of software complexity along the years has led researchers in the software

engineering field to look for approaches for conceiving and designing new systems. For

instance, the service-oriented architectures and component-based approaches are consid-

ered nowadays as some of the most advanced ways to develop and integrate modular and

flexible applications. One of the software engineering solutions principles is re-usability.

Consequently, generality is important, which complicates its application in systems where

optimizations are often used, like real-time systems. Thus, creating real-time systems is

expensive, because they must be conceived from scratch. In addition, most real-time sys-

tems do not benefit from the advantages which come from software engineering approaches,

such as modularity and flexibility. Recently, some isolated solutions have been proposed to

overcome this problem, such as real-time service-oriented architectures and real-time com-

ponent models.

This thesis proposes a unified metamodel to design real-time service-oriented component-

based applications. This metamodel allows dynamic architecture reconfiguration in real-

time systems, making them flexible and modular. Services, components, connections and

platforms can be modelled with real-time attributes, which are taken into account in offline

and online verifications. Moreover, a methodology is proposed, covering the development

process from design to execution.

In order to exemplify its generality, the metamodel is instantiated in extended versions

of other model standards used to conceive both service-oriented and real-time applications,

namely AADL, SCA and UML-MARTE. A Real-time Java-based framework for an extended

version of the SCA component model has been implemented, and evaluations show that the

expected quality of service is achieved for soft real-time applications.

Keywords: MDE, Metamodel, Real-time, SOA, Component-Based Design, Dynamic

Adaptation

vi

Résumé

La croissante complexité du logiciel a mené les chercheurs en génie logiciel à chercher des

approches pour concevoir et projeter des nouveaux systèmes. Par exemple, les architectures

orientées services (SOA) et l’approche orientée composants sont considérées actuellement

comme deux des moyens le plus avancés pour réaliser et intégrer rapidement des applica-

tions modulaires et flexibles. Une des principales préoccuppations des solutions en génie

logiciel et la réutilisation, et par conséquent, la généralité de la solution, ce qui peut em-

pêcher son application dans des systèmes où des optimisation sont souvent utilisées, tels

que les systèmes temps réel. Ainsi, créer un système temps réel est devenu très couteux,

dû au fait qu’ils sont souvent construits en partant de rien. De plus, la plupart des sys-

tèmes temps réel ne bénéficient pas des facilités apportées par le génie logiciel, tels que la

modularité et la flexibilité. Ces dernières années, quelques travaux isolés ont proposé des so-

lutions à ce problème, telles que la SOA temps réel et les modèles de composants temps réel.

Cette thèse propose un méta-modèle unifié pour la conception d’applications orien-

tées service et composant temps réel. Ce métamodèle permet la reconfiguration architec-

turale dynamique dans les applications temps réel, ce qui les rend plus flexibles et modu-

laires. Services, composants, connexions et plate-formes peuvent être modélisés avec des

attributs temps réel, qui sont pris en compte dans les phases de vérifications avant et du-

rant l’exécution de l’applications. En outre, cette thèse propose aussi une méthodologie qui

couvre tout le processus de développement, dès la modélisation jusqu’à son exécution.

Pour démontrer la généralité de la solution, le metamodèle est projeté sur des ver-

sions étendues de modèles standards AADL, SCA et UML-MARTE. Une plate-forme de

déploiement et exécution, basé sur le modèle SCA, a été implémentée, et les évaluations

montrent que la qualité de service attendue a été obtenue pour des applications temps réel

mou.

Mots-clé: IDM, Métamodèle, Temps-réel, Architectures orientée service, Modèle de

composant, Adaptation dynamique

Contents

1 Introduction 1

1.1 Context . 1

1.2 Challenges . 2

1.3 Contribution . 3

1.4 Document Structure . 4

2 State of the art 5

2.1 Introduction . 6

2.2 Service-Oriented Component Models . 7

2.2.1 Dynamic Software Architectures . 7

2.2.2 Component-Based Design . 10

2.2.3 Service-Oriented Architectures . 13

2.2.4 Service-Oriented Component Models 16

2.3 Real-time Systems . 17

2.3.1 Principles . 17

2.3.2 Infrastructure of Real-time Systems 19

2.3.3 Design and Development Techniques for Real-time Systems 21

2.4 Adaptiveness and Dynamism in Real-time Systems 26

2.4.1 Real-time Component Models . 26

2.4.2 Real-time Service-Oriented Architectures 30

2.5 Summary . 32

3 Unified Real-time Service-Oriented Component Metamodel 35

3.1 Motivations . 36

3.1.1 Problems in the development process of real-time systems 37

3.1.2 Requirements for a real-time service-oriented component model and

framework . 38

3.1.3 URSO main goals . 39

3.2 URSO Concepts . 40

3.2.1 Deployment Concern . 41

3.2.2 Assembly Concern . 49

3.2.3 Behaviour Concern . 60

3.2.4 Revisiting the Deployment Concern 70

3.2.5 Other aspects that must be taken into account 78

3.3 Example: Dynamic Collision Detection Application 81

3.3.1 Overview of the CDx Benchmark . 81

3.3.2 DCDx: A Dynamic and Service-Oriented CDx benchmark 82

3.3.3 URSO Description of DCDx . 83

3.4 Summary and Discussion . 89

3.4.1 URSO Overview . 89

viii Contents

3.4.2 Discussion . 92

3.4.3 Summary . 93

4 Mapping URSO Onto Existing Component Models 95

4.1 Motivations . 96

4.2 URSO and SCA . 96

4.2.1 Overview of SCA . 96

4.2.2 Extending SCA . 97

4.2.3 Mapping extended SCA to URSO 104

4.3 URSO and AADL . 105

4.3.1 Overview of AADL . 105

4.3.2 Extending AADL . 108

4.3.3 Mapping extended AADL to URSO 110

4.4 URSO and MARTE . 113

4.4.1 Overview of UML-MARTE . 113

4.4.2 Extending UML-MARTE . 117

4.4.3 Mapping extended UML-MARTE to URSO 120

4.5 Summary and Discussion . 120

4.5.1 Overview on the extensions to SCA, AADL and MARTE 120

4.5.2 Discussion . 122

4.5.3 Summary . 124

5 Implementation and Validation 127

5.1 Implementation . 128

5.1.1 SCA:PlatformDesc Command . 129

5.1.2 SCA:PlatformInfo Command . 130

5.1.3 SCA:ChangeMode Command . 131

5.1.4 SCA:List Command . 131

5.1.5 SCA:Deploy Command . 131

5.1.6 SCA:Undeploy Command . 132

5.1.7 URSO+NaSCAr framework architecture 132

5.2 Usecase: Revisiting DCDx . 135

5.2.1 Platform Description . 135

5.2.2 Service Compositions, Instances and Tasks: the Detector example . 138

5.2.3 DCDj, a Java-based implementation of DCDx 141

5.3 Validation . 144

5.3.1 Methodology overview . 144

5.3.2 Platform description validation analysis 145

5.3.3 Platform information analysis . 146

5.3.4 Contribution deployment analysis . 146

5.3.5 Contribution undeployment analysis 149

5.3.6 Mode change analysis . 150

5.3.7 Execution timeliness analysis . 152

5.4 Summary and Discussion . 154

5.4.1 Overview . 154

5.4.2 Discussion . 155

6 Conclusions and Perspectives 157

6.1 Conclusions . 157

6.1.1 Summary . 157

Contents ix

6.1.2 Conclusions . 159

6.2 Perspectives . 161

A Appendix 165

A.1 URSO name and logo . 165

A.2 Example: URSO Potential Use Cases Description 166

A.3 Example: Mapping URSO Composite to AADL 170

A.4 UML MARTE Simplified Metamodel . 174

A.4.1 Core Elements . 174

A.4.2 Non-Functional Properties . 174

A.4.3 Time . 175

A.4.4 Generic Resource Model . 177

A.4.5 Allocation . 177

A.4.6 Generic Component Model . 177

A.4.7 High Level Application Model . 179

A.4.8 Generic Quantitative Analysis Model 179

List of figures 182

List of tables 183

List of algorithms 184

List of Listings 185

Bibliography 187

Chapter 1

Introduction

“Begin at the beginning,” the King said,

gravely, “and go on till you come to an

end; then stop.”

Alice in Wonderland

Lewis Carroll

Contents

1.1 Context . 1

1.2 Challenges . 2

1.3 Contribution . 3

1.4 Document Structure . 4

1.1 Context

As the complexity of software systems increases, new techniques have been conceived to

mitigate its impact on several steps of the application development process and improve

efficiency in the management of important software properties, such as adaptability, porta-

bility and maintainability [Crnkovic 2005]. Separation of concerns is one of the main design

principles applied by these techniques: it puts forward the separation of an application into

distinct parts, which address different concerns (that is, aspects that affect an application

in a particular way). Separation of concerns results in modularity, which is an important

application capability in the structured programming paradigm. Modular applications are

composed by independent and interchangeable modules, that communicate with each other

by means of well-defined interfaces. Independence among modules makes development

faster, since several programmers can work on smaller individual modules at the same time.

In case of failure or maintenance, only specific modules can be replaced, easing debugging,

recovery and update. In addition, modules can be reused in other projects; the most generic

modules can actually be reused without change [Mitchell 1990].

Separation of concerns is the foundation of the component-based and service-oriented ap-

proaches in software engineering. In the component-based approach, the system processes

are encapsulated into separate modules (called components), in a way that the internal

data of each component are semantically related (high cohesion). Components interfaces

are used to specify functions provided by the component and required for its functioning.

Only the interface of a component can be seen by other components; it means that internal

details related to its implementation (i.e., the code that truly implements the component

and its inner workings) can not be seen from the outside (low coupling). Components can

be substituted by other components, as long as they implement the same interface [Szyper-

ski 2002]. The Service-oriented architecture (SOA) design extends the component-based

2 Chapter 1. Introduction

architecture by adding a network in the components communication. The functionality

provided and required by components becomes individual entities called services; these

services can be published and discovered over a network, often by means of a service reg-

istry or catalogue. Common and industry-specific standards have been established for SOA

applications, the most popular being related to the Web Services approach [Papazoglou

et al. 2007]. Services and components have been extensively used for several years in many

distributed, flexible and modular applications; still, there are some application domains

which use these techniques in a lesser degree. One of these domains is that of real-time

applications [Crnkovic 2005].

Real-time applications are applications whose correctness depends on both logical and tem-

poral aspects. These temporal aspects are expressed by means of execution timing con-

straints, called deadlines. In order to satisfy those timing constraints, it is important

to know the timing properties of all involved parts, from hardware to software compo-

nents [Stankovic 1992]. Consequently, design approaches favouring dynamic (i.e. at run-

time) adaptation are difficult to use. At the same time, they are often necessary, due to the

interaction of real-time systems and real world entities, whose availability may be dynami-

cally changed. In this context, multiple works have been consecrated to the adaptation of

popular or the development of brand new techniques for the run-time adaptation of real-

time systems [Bihari & Schwan 1991].

This thesis focuses on the adaptation of the service- and component-based approaches for

real-time systems. It aims to deeply understand such techniques, find the common points

between existing solutions and requirements for a service-oriented component-based real-

time system and to propose a metamodel for such applications. This metamodel must take

into account existing models and standards, so that these technologies can be reused in

development of conform applications.

1.2 Challenges

The dynamism offered by service-oriented component models is intrinsically not compatible

with the predictability required by real-time applications. Whereas the former offers dy-

namic availability support through transparent dynamic reconfiguration without downtime,

the latter expects knowledge about the worst case execution time of all components so that

the satisfaction of all timing constraints is guaranteed by means of formal and schedulability

analysis. Indeed, there are very few works concerning the use of service-oriented compo-

nents in real-time applications; most real-time SOA solutions do not include component

models, and, similarly, component models for real-time do not support the service-oriented

paradigm.

To address this limitation, this thesis considers the main existing models for both real-time

and service-oriented applications and provides a metamodel and a methodology to design

service-oriented component-based real-time systems. In order to do so, many issues had to

be accounted for:

• We need to define what dynamism in real-time applications means. It is important to

find a degree of dynamism which brings enough flexibility and does not compromise

the determinism of the application;

• It is necessary to define what is a real-time service, where it is published, which service

properties are published along with the service interface, and how this service can be

retrieved by other components;

1.3. Contribution 3

• Service properties should depend the least possible of the execution platform. How-

ever, time-related properties are necessary at the service selection. That means that

it is up to the platform to qualify the service in regards to the platform where the

service is being executed, taking into account communication channels that are used

to link components;

• Metamodels must represent models, which in turn characterize systems. It is impor-

tant to choose which models can be represented by the proposed metamodel, based

on criteria such as generality, industry adoption, and expressiveness. In addition, if

modifications or extensions must be brought to the target model, which corresponding

changes must be made in its metamodel and how can they be done without disre-

specting conformity rules;

• We need to identify which mechanisms must be implemented by the framework im-

plementing the conform model, so that all constraints are respected at execution.

Moreover, we must detail how these mechanisms must function, how they interact

with the metamodel and how they can interfere in the application execution;

• It is important to find extension and implementation-specific points in the metamodel,

so that it can be easily extended to support more functionality;

• It is desirable to provide tools for model transformation based on the metamodel, and

to prove the consistency of the model transformation function;

• And finally, it is important to implement the proposed ideas and validate their feasi-

bility.

This thesis aims to cover all these aspects and to present its application in the context of

an aircraft collision detection benchmark.

1.3 Contribution

The contributions of this thesis cover three main points. The first is the principal contri-

bution; the last two can be seen as consequences of the application and implementation,

respectively, of the main contribution.

Proposition of a metamodel for real-time service-oriented component-based ap-

plications: We introduce the URSO (Unified Real-time Service-Oriented) component

metamodel. URSO treats three concerns: Deployment, in which software entities are

mapped onto physical platform components and may reserve resources for their execution;

Assembly, where software components are described and composed, and services can be de-

fined and qualified; and Behaviour, in which the internal behaviour of services is generated,

and semantic rules and policies can be associated to services. We also suggest a methodology

to apply in the design of URSO-compliant service-oriented real-time components.

Mapping of the proposed metamodel onto standard models: We define the map-

ping relations between URSO and three standard models for real-time and service-oriented

component-based models: AADL, a standard component-based architecture description lan-

guage used in the avionics domain; UML-MARTE, a UML profile which enables time-related

descriptions in object-oriented real-time applications; and SCA, an extensible OASIS stan-

dard developed by major IT vendors for designing and implementing of service-oriented and

4 Chapter 1. Introduction

component-based applications. These mappings allow transforming applications developed

in a URSO-compliant model to applications developed in another model. For instance,

URSO-compliant SCA applications may benefit from AADL analysis tools. It is worth

mentioning that in order to be conforming with the URSO metamodel, it was necessary to

extend the target models. Consequently, we also present the extensions that were used in

this work.

Implementation of a framework supporting the proposed metamodel: In order

to demonstrate the feasibility and applicability of the proposed ideas, a framework prototype

was developed to support a URSO-compliant extended version of the SCA component

model. In order to validate our proposition, we have developed a dynamic version of the

CDx benchmark proposed in [Kalibera et al. 2009]. The framework has demonstrated to

respect timing constraints established for soft real-time applications in Real-time Java.

1.4 Document Structure

The remainder of this document can be divided into four parts.

The first part comprises the state of the art, and includes basic concepts for understanding

the challenges and the contribution of this thesis. It also presents some of the definitions

and the terminology applied throughout this document. It corresponds to Chapter 2.

The second part presents our approach. It is divided into two chapters: Chapter 3 in-

troduces URSO, the core of our proposition, and its different concerns. It also exemplifies

the application of URSO in a dynamic aircraft collision detector application. Following

that, Chapter 4 presents mappings between URSO meta-elements and AADL, SCA, and

UML-MARTE elements. Moreover, it shows the extensions that were proposed for these

models so that they are conform to the URSO metamodel.

The third part, which corresponds to Chapter 5, presents a framework prototype, imple-

menting real-time and dynamic extensions presented for the SCA component metamodel.

We also depict a use case implemented on this framework: the dynamic aircraft collision

detection application. Evaluation metrics for the framework are presented in the end of the

chapter.

Finally, the fourth part contains our conclusions and perspectives of future work. It is

composed by Chapter 6.

Chapter 2

State of the art

“No one wants to learn from mistakes, but

we cannot learn enough from successes to

go beyond the state of the art.”

To Engineer Is Human: The Role of

Failure in Successful Design

Henry Petroski

Contents

2.1 Introduction . 6

2.2 Service-Oriented Component Models . 7

2.2.1 Dynamic Software Architectures . 7

2.2.1.1 Software Architectures 7

2.2.1.2 Dynamic Software Architectures 8

2.2.1.3 Architecture Description Languages and Dynamism . . . 8

2.2.1.4 Dynamic Software Adaptation 9

2.2.2 Component-Based Design . 10

2.2.2.1 Principles . 10

2.2.2.2 Component Models . 11

2.2.3 Service-Oriented Architectures . 13

2.2.3.1 Principles . 13

2.2.3.2 Dynamic Service-Oriented Architectures 14

2.2.4 Service-Oriented Component Models 16

2.2.4.1 Principles and Motivations 16

2.2.4.2 Existing Service-Oriented Component Models 16

2.3 Real-time Systems . 17

2.3.1 Principles . 17

2.3.1.1 Predictability in real-time systems 18

2.3.1.2 Determinism in real-time systems 19

2.3.2 Infrastructure of Real-time Systems 19

2.3.2.1 Real-time Operating Systems 19

2.3.2.2 Real-time Middleware . 20

2.3.2.3 Real-time Programming Languages 21

2.3.3 Design and Development Techniques for Real-time Systems 21

2.3.3.1 Formal Methods . 22

2.3.3.2 Structured Methods . 23

2.3.3.3 Object-oriented Analysis and Design 24

2.4 Adaptiveness and Dynamism in Real-time Systems 26

2.4.1 Real-time Component Models . 26

6 Chapter 2. State of the art

2.4.2 Real-time Service-Oriented Architectures 30

2.5 Summary . 32

2.1 Introduction

A few decades ago, software development basically consisted of programming. The industry

maturation has significantly changed this scenario in the late 60s, when software engineering

was first recognized as a computer science discipline in itself, and the software development

started to be seen as an engineering discipline rather than an art.

Since then, increasing software complexity has led software engineers to look for new meth-

ods of designing, constructing and maintaining applications. The industry pressure forced

software development methods to focus on non-functional requirements as well as functional

ones [Cooling 2003]:

• Developing complex applications became expensive. Thus, software engineering tech-

niques must reduce development costs as much as possible;

• At the same time, due to code complexity, non-functional properties such as safety,

quality and reliability must be improved and ensured;

• The time dimension has also become very important: time taken for designing and

developing applications, also known as time to market, must be minimal.

The complexity and constant evolution of software originated many of desirable properties

for systems (which may be present or not depending on the software purpose and the

environment in which it is executed) such as:

• Flexibility, that is, the ease with which a system can be adapted for use in envi-

ronments other than those for which it was initially designed for [IEEE Standards

Comittee 1990];

• Dependability, defined as the ability to deliver service that can justifiably be trusted,

that is, the system reliance can justifiably be placed on the service it delivers [Avizienis

et al. 2004];

• Resilience, i.e., the persistence of dependability when facing unpredicted environmen-

tal changes [Avizienis et al. 2004];

• Robustness, i.e., whether a system can function correctly or not in the presence of

faulty inputs and environmental conditions [IEEE Standards Comittee 1990];

• Recoverability, i.e., the ability of a system to restore itself to the point at which a

failure occurred;

• Configurability, that is, whether an application can be fit to one’s needs by adjusting

its parameters1 [Sun et al. 2008].

1Configurability can be measured by an application’s configuration and customization capabilities. Con-
figuration can be distinguished from customization by the fact that the former refers to adjusting an appli-
cation simply by changing parameters without touching its code (for instance, by means of a configuration
file), whereas the latter involves coding, which is riskier and more costly.

2.2. Service-Oriented Component Models 7

Therefore, the ability to adapt software in response to changes in the system’s environ-

ment and in the system itself - called software adaptation - has become a very important

research topic in software engineering. This adaptive behaviour must be designed and

expressed in all software dimensions, from its requirements to its implementation [Cheng

et al. 2009]. These aspects are mapped on top of software architectures and frameworks

supporting software adaptation statically or dynamically. Most of the approaches used to

implement software adaptation are based on software modularity, framework containers to

automatically manage adaptations and, when performed automatically, calls and method

interceptors [Oreizy et al. 2008].

However, when it comes to real-time systems things are different. Many of the methods pro-

posed by the software engineering discipline are not suitable for real-time systems. The en-

gineering of real-time adaptive software is a challenge, due to its need of predictability. But

at the same time, with the emergence of ubiquitous [Weiser 1993] and autonomic [Kephart

& Chess 2003] computing, real-time applications may indeed have the need to take envi-

ronment changes into account in a cost-effective way.

The aim of this chapter is to discuss these background notions needed to understand the

problems underneath designing and implementing of dynamic real-time service-oriented and

component-based applications and provide the state-of-the-art in research of both service-

oriented computing and real-time systems fields.

2.2 Service-Oriented Component Models

In this section, we will present the state-of-the-art in service-oriented component models

(SOCMs). But first, we are going to introduce more basic notions, such as dynamic software

architectures and the main approaches used to represent them: architecture description

languages (ADLs), component-based software engineering and service-oriented architectures

(SOA). The SOCM approach, as the name suggests, reunites the benefits of both service-

oriented and component-based approaches, and is the basis for the main contribution of

this thesis.

2.2.1 Dynamic Software Architectures

2.2.1.1 Software Architectures

Complexity issues have been present in the computer science domain since its early days.

The first problems related to programming complexity were solved through the use of data

structures, the development of algorithms and scope separation. Most of what we know now

as software engineering comes as results of the increasing complexity problem. The first

works about the importance of structuring software systems were developed by Dijkstra [Di-

jkstra 1968] and Parnas [Parnas 1972], in the late 1960s and early 1970s, respectively. These

works were the basis for the software engineering discipline called Software Architecture.

A Software architecture is an abstraction used for structuring software systems, by rep-

resenting their software components, their interconnections, properties over both

components and interconnections, and the rules concerning their design and evolution

over time.

Garlan and Shaw’s definition [Garlan & Shaw 1994,Garlan & Perry 1995,Shaw et al. 1995]

considers that a software architecture is defined by its components and their connections.

Perry and Wolf’s definition [Perry & Wolf 1992] considers that the data transmitted be-

tween components by means of their connections are also part of a software architecture.

This definition is more adapted to network and data-based architectures, in which data is

8 Chapter 2. State of the art

important to determine the system’s behaviour.

We consider that a software system may be represented by several different software ar-

chitectures during its execution. Many aspects of a system can be addressed in its ar-

chitectural descriptions, such as functional and non-functional requirements and different

configurations. Software architectures help dealing with software scalability, evolution and

complexity issues in software. Jointly with compositional techniques, their higher level of

abstraction may ease systems’ design, analysis and implementation.

2.2.1.2 Dynamic Software Architectures

Dynamic software architectures add the dynamism dimension to software architectures.

They are architectures in which the interconnections between components may change

during the system’s execution. This behaviour is known as runtime evolution or adap-

tation [Taylor et al. 2009]. The main motivations for this type of adaptation are risks,

costs and inconveniences incurred by downtime of computation-intensive systems in order

to be adapted (by an administrator or by the software itself) due to changes in its environ-

ment [Oreizy et al. 2008].

The ability to dynamically reconfigure an application can be useful in many application

domains. For instance, some applications require dynamic software updates, in order to fix

bugs or to add new features, without stopping and restarting the full application. Some

examples are critical and non-stop applications, such as financial and air-traffic control sys-

tems, which must provide a continuous service [Magee & Kramer 1996a].

This flexibility does not come without a cost. Although we can perform modifications which

were not foreseen during the application design phase, it is hard to anticipate the effects

of a dynamic modification. It can affect predictability and safety, which is inadmissible

for safety-critical systems; the updated modules may require more disk space and more

resources, which may be unacceptable for constraint and embedded systems; updates can

add unsafe third-party modules, shutting down the whole platform; or it can bring the

application to a wrong and inconsistent state, after applying the changes required for the

adaptation.

Figure 2.1 exemplifies the safety issues on dynamic software adaptation. At design time,

we specify that component B is connected to component A by means of Interface I1. At

run-time, this structure is preserved; however, after an update, the new module may have

dependencies towards other modules, unknown at design time, which are incorporated with

the architecture.

Frameworks supporting run-time adaptation must ensure that changes will remain trans-

parent to the applications. In order to do that, they usually perform modifications in the

binary code, injecting code or intercepting calls.

2.2.1.3 Architecture Description Languages and Dynamism

Architecture Description Languages (ADLs) are languages and/or models used to describe

and to represent software architectures. The ISO/IEC/IEEE 42010 specification [ISO/IEC/

(IEEE) 2007] has defined and standardized the minimum requirements for ADLs. The use

of ADLs helps to take and to communicate early design decisions and to have a system

abstraction on which architects, developers and clients can reason together. ADLs may

have both graphic and textual syntaxes, being able to represent key properties of complex

architectural styles. ADLs are usually human and machine readable, and the latter often

enables automatic code prototype generation and formal analysis and verification [Allen &

Garlan 1997,Perry & Wolf 1992].

2.2. Service-Oriented Component Models 9

Figure 2.1: Dynamic Software Evolution

Among the many existing ADL used in the industry and in the academy, only few sup-

port the expression of dynamic reconfiguration. ACME [Batista et al. 2008], Dynamic

Wright [Allen et al. 1998], Darwin [Magee & Kramer 1996b], Rapide [Vera et al. 1999]

and C2ADL [Medvidovic 1996] are typical examples. Most ADLs do not support both

predicted and unpredicted reconfigurations. A detailed analysis of problems on handling

dynamic adaptation in ADLs is provided in [Minora et al. 2012].

2.2.1.4 Dynamic Software Adaptation

Two main approaches are used to implement software adaptation: parametric adaptation,

in which modification of system variables is enough to change the system behaviour; and

compositional adaptation, where software components are added or replaced in order to

adapt a system to its environment. Parametric adaptation allows tuning application pa-

rameters, however its adaptation mechanism is limited, since it is not possible to adopt

new strategies. On the other hand, compositional adaptation permits an application to

be recomposed during its execution. This dynamic re-composition/adaptation differs from

static (or design time) adaptation, where modifications are made before the system is run-

ning (e.g., in source code or in requirements) [Brogi et al. 2006].

Most approaches implementing dynamic compositional adaptation are based on dynamically

linking/injecting component objects or indirectly intercepting and redirecting interactions

among software entities [Fox & Clarke 2009]. Several techniques may be used to imple-

ment such functionality, like pointer manipulation, aspect weaving, proxies or interception

by means of middleware [McKinley et al. 2004]. In the next sections, we are going to de-

tail two software engineering and architecture approaches commonly used in dynamically

adaptive software: Component-based design and Service-oriented architectures. Both ap-

proaches are based on the separation of concerns principle. This principle emphasizes the

separation of the application logic from cross-cutting concerns (such as quality of service,

synchronization, security and fault tolerance) at conceptual and implementation levels. It

allows for simplifying software development and maintenance, and making software easier

to be reused [Hürsch & Lopes 1995].

10 Chapter 2. State of the art

2.2.2 Component-Based Design

2.2.2.1 Principles

Component-based design uses components as its basic software abstraction. Software com-

ponents are software units, which can be composed in order to build a complete complex

system. Components have contractually specified interfaces and contain explicit context

dependencies. These units can be independently developed and deployed. Component com-

position can be static or dynamic, depending on when the developer is able to add, remove

or reconfigure components (compile time or run time, respectively). Dynamic adaptation in

component-based systems can be performed using late binding mechanisms, which allows

coupling components at run-time, just before its invocation, through well-defined interfaces.

This architectural style also promotes software reuse, reduces production cost (because soft-

ware systems can be built from existing code) and shortens time to market [Clements 2001].

By decoupling the system into distinct components with low coupling and high cohesion,

developing high-quality and consistent complex systems becomes more effective, since de-

velopers may focus on one component at a time.

Thus, three basic characteristics can be distinguished in the component-based software

engineering [Szyperski 2002]:

• Isolation: Components can be deployed and developed independently as an isolated

part of the system. A Component should be an atomic unit of deployment (i.e. can

not be deployed partially);

• Composability: Components should be able to be assembled with other components

in order to create a composed and more complex component (often called composite).

This assembly must be made by means of the component’s well specified interface,

which corresponds to the list of self-contained operations implemented by this com-

ponent; and

• Opaqueness: Internal and implementation details from a component should not be

accessible by other components or by the environment. Opaque components are also

called black-box components.

Using a component-based design however may bring some disadvantages and risks to a

software project [Crnkovic 2001]:

• Increased time and effort required for developing reusable components, due to the need

to correctly design and document it. In addition, reusable parts of a software tend to

be changed more often than non-reusable parts until they reach a stable state;

• Ambiguity and incompatibility in components requirements, which come from the fact

that components are supposed to be general and adaptable enough to be used in

different applications. Consequently, component requirements (functional and non-

functional) tend to be unclear or incompatible with certain applications;

• Increased component maintenance cost, which is another consequence of component

generality. Despite the fact that application maintenance is decreased, components

must still be adapted to the application’s context, environment and requirements

before being executed;

• Reliability issues, which again come from the component generality principle. The

interaction between components created with different requirements, life-cycles, and

potentially, technologies may introduce failures and a non-negligible risk that the final

2.2. Service-Oriented Component Models 11

application’s requirements might not be completely satisfied. Hence the need of an

approach to develop components from design to deployment, considering different

technologies and development processes.

2.2.2.2 Component Models

The foundation of a component-based methodology lies on its component model. A com-

ponent model defines what components are, how they can be constructed, implemented,

assembled, and deployed. Component models also specify how interfaces between compo-

nents should be defined and what these interfaces must contain. Most component models

use objects or architectural elements as components. Thus, ADLs can be seen as component

models as well.

In [Lau & Wang 2007], the authors define software component model as the specification of

the semantics, the syntax and the composition of components.

Semantically, components are seen as software units with provided services (operations

performed by component implementations) and required services (services needed by com-

ponent implementations during the execution of their provided services). A component in-

terface is defined as the specifications of both required and provided services. Components

may sometimes present multiple interfaces with different sets of provided and required ser-

vices or one single interface, consisting of the fusion of all component services’ specifications.

Provided services often correspond to the methods contained in the component implementa-

tions in object-based component models (also called operation-based component interfaces).

Examples of models containing operation-based interfaces are COM [Box 1997], Java-based

component models (such as EJB [Burke & Monson-Haefel 2006] and JavaBeans [Morri-

son 1997]) and Fractal [Bruneton et al. 2006]. In ADLs, provided and required services are

ports, which are linked by means of connectors. These ports may either be distinguished

as input (required service) or output (provided service) ports, or not (the same port is

used by both service provision and consumption). Port-based interfaces are supported by

BIP [Basu et al. 2006], PECOS [Genet al. 2002], ROBOCOP [Muskens et al. 2005] and

SaveCCM [Hansson et al. 2004], among others. Interfaces in the OMG standard CCM sup-

port both operation-based and port-based approaches.

Concerning the syntax of component models, most models contain a component and/or

interface definition language. After its definition, a component can be realized in different

implementation languages. However, in some component models, the implementation and

component definition language happen to be the same. For instance, in the Java-based com-

ponent models JavaBeans and EJB, components correspond to a Java class. Other models,

like COM and CCM [Object Management Group 2006a], define a technology-independent

interface definition language (IDL) for specifying components interfaces.

In component models where the main elements correspond to architectural concepts, ADLs

are used to define both components and interfaces. That is the case in the component

models defined by Koala [van Ommering et al. 2000], PECOS, Fractal and SOFA [Plásil

et al. 1998]. The component and interface definition languages may describe different as-

pects of components: for instance, in BIP, developers are able to describe components’

behaviour, interaction and interactions’ priorities.

Composition is a fundamental issue in component-based approach, since complex systems

are supposed to be built by the assembly of simpler components. System composition can

be defined by means of a composition language, which must be compatible with components

as they were defined in the component model. Some component models (such as JavaBeans,

COM and CCM) do not contain a composition language, whereas other define the com-

positions by means of the architecture connectors (like Koala), ADLs (like PECOS and

12 Chapter 2. State of the art

SCA [Beisiegel et al. 2005]) or UML (like KobrA [Atkinson et al. 2008] and UML2.0 [Ob-

ject Management Group 2006c]). In addition, the composition process may be classified as

horizontal (i.e. when the interface of a service consumer is bound to an interface of the same

type of a service provider, resulting in a set of components cooperating to realize a given

functionality) and/or vertical (also known as hierarchical composition, that is, connecting

a component required (or provided) service interface to another inner component required

(or provided) service interface, so that calls originated by the inner component (or calls to-

wards the inner component) are delegated by the outer component) [Crnkovic et al. 2011].

Composition is based on a theory, which allows developers and architects to predict the

composition result before execution. Depending on the component model, the composition

may take place at different stages (for instance, design, deployment or execution time).

Some other aspects that may be defined by component models are:

• Components life cycle, that is, an abstraction of the states in which the components

are allowed to be during their deployment, execution and reconfiguration processes,

the meaning of each state and its impact on the whole application and on other

components, the transitions between these states and the conditions that must be

respected in order to switch from a state to another;

• Components’ communication type, i.e. the interaction style between service providers

and consumers (e.g. broadcast, request-response, event-driven, etc.), the synchronism

of this communication, how binding both entities is performed and which part of the

system is responsible for doing so;

• Hierarchical composition, that is, if sub-components can be hidden inside the compo-

nent that includes them;

• Non-functional properties, that means, properties which are not specific to the func-

tionality of a system and that may be used to judge its operation. Contrarily to

the system functional properties, which are usually defined during the system design

phase, non-functional properties are related to system architecture. Depending on the

component model, non-functional properties may be managed inside the component

itself, or through an external mechanism (e.g. configuration files). After the defini-

tion of non-functional properties, the component model decides as well what should

be done with this information: for instance, in real-time systems, it is common to

use non-functional properties to perform analysis and to verify the correctness of the

system composition;

• Components’ packaging, i.e. how can we package components and their descriptors

in order to install, remove, and manage them, which package formats are supported

and what information must be present in such packages;

• And components’ deployment, that is, how components are deployed in the system,

whether they are retrieved from a file system placement or a repository, how compo-

nents are instantiated from the executable files in the system, and then how compo-

nents are assembled in order to be executed.

Detailed surveys and classifications on component models are presented in [Feljan et al. 2009]

and [Crnkovic et al. 2011].

2.2. Service-Oriented Component Models 13

2.2.3 Service-Oriented Architectures

2.2.3.1 Principles

Service-oriented computing is a paradigm in which autonomous and and platform-independent

entities called services are used to develop low-cost, interoperable, adaptable and distributed

applications. Service-oriented computing principles are implemented by means of Service-

oriented architectures (SOA). Service-oriented architecture is an architectural style and a

programming model that may be used for implementing separation of concerns and poten-

tially dynamic and distributed adaptive applications [Papazoglou et al. 2007].

In the service-oriented approach, a service is defined as a software unit which performs a

function and whose operations and properties are described in a service descriptor or ser-

vice contract. It is by means of these descriptors that different pieces of software are going

to interact with each other. Service descriptors contain the operations provided by a given

service and how these operations can be invoked. Service and service descriptor concepts are

very similar to the concept of (operation-based) component interfaces in the component-

based software engineering. Indeed, these concepts derived from the design-by-contract

approach conceived for software modularization in object-oriented systems [Meyer 1997].

After their deployment, services advertise their arrival at a service directory or service

registry. Service registries can be centralized or distributed. In some service-based tech-

nologies, this mechanism, called service publication, is performed by means of a broadcasted

message; in some others, the service registers itself directly at the service directory. Another

possible publication mechanism is the automatic detection of services during the deploy-

ment of new software units. Applications can look up services by querying their names and

properties. This query may return details about how to interact with an implementation

of a desired service or even an instance of such implementation. This querying mechanism

is known in the service literature as service discovery or service lookup. Service consumers

may also filter service implementations based on the service properties published in a ser-

vice registry. This mechanism is called service selection. The binding between service

consumers and providers can be performed after these negotiation and agreement of service

usage terms [Raibulet & Massarelli 2008]. These terms can be monitored at run-time and

the violation of the terms by one of the parts may incur the application of special policies

by the underlying platform. The whole interaction mechanism among the different actors

in a service-oriented architecture is depicted in Figure 2.2.

The service-based approach was popularized by the Web-services technology [Weerawarana

Figure 2.2: Service-Oriented Architecture: Actors and Interactions

14 Chapter 2. State of the art

et al. 2005]. Web services are Internet-based services, identified by a Uniform Resource

Identifier (URI). Web-Services use open Internet standards, such as Simple Object Access

Protocol (SOAP) for data exchange, Business Process Execution Language (BPEL) for or-

chestrating services in business processes and Web Services Description Language (WSDL)

for describing service contracts. Discovery in Web-services may be addressed by two dif-

ferent protocols: UDDI (Universal Description, Discovery and Integration), which provides

a central Service Registry, known by all participant applications; and WS-Discovery, in

which service consumers broadcast a service request to locate candidate services and their

properties. Due to their interoperability capabilities, Web Services have been widely used

to implement cross-enterprise software communication.

2.2.3.2 Dynamic Service-Oriented Architectures

Dynamic SOA adds the dynamism dimension to the SOA. Two different forms of dynamism

can be added to SOAs:

• Dynamic availability of services [Cervantes & Hall 2004], which means that services

can change their availability status at any moment at run-time, without the control

of the application;

• And dynamic reconfiguration, that designates services whose properties (thus, whose

service description) can be modified at run-time.

Dynamic availability allows a system to evolve without downtime by means of dynamic ser-

vice publication, update and removal. Figure 2.3 extends the diagram depicted in Figure

2.2 for the dynamic case.

Figure 2.3: Dynamic Service-Oriented Architecture: Actors and Interactions

The research in services dynamic availability was stimulated by two main factors. First, the

booming of highly extensible applications, in which new functionality and content support

may be dynamically incorporated by the user. In this case, applications are constantly

adding new modules to their architecture to integrate new services. Second, the use of un-

reliable and remote entities in applications, which can be unexpectedly disconnected from

2.2. Service-Oriented Component Models 15

a network (e.g. services provided by plug and play devices, or web services provided by a

third-party provider through an unreliable network) or whose battery power may end dur-

ing an execution (e.g. services provided by physical devices in a smart home or by smart

communication devices).

Consequently, most protocols and technologies developed to support dynamic service avail-

ability were inspired by smart homes and devices. UPnP (Universal Plug and Play) [UPnP

Forum 2000] is a platform-agnostic device-level standard that abstracts communication pro-

tocols but relies on specific languages for describing devices and service contracts. UPnP

devices can be connected by means of an ad-hoc network in which services are announced

through broadcasted messages and can be discovered and consumed. In addition, the UPnP

standard supports event-based communication and remote operation of devices through con-

trol commands.

DPWS (Devices Profile for Web Services) [Chan et al. 2005] is profile for Web Services

that supports dynamic discovery and event capabilities. Contrarily to UPnP, DPWS dis-

covery and interoperability can be extended beyond local networks. Since it is aligned with

the Web Services standard, it arranges several of the standards used for Web Services,

and it is technology-agnostic. Just like UPnP, DPWS is an industrial standard protocol.

Other industrial service-oriented protocols targeting devices include IGRS [Group 2003]

and Echonet [Matsumoto 2010].

Another framework that targets devices is the TAco Next Generation Objects (TANGO)2

[Chaize et al. 1999]. TANGO is a CORBA-based framework whose communication layer

uses both CORBA (for synchronous and asynchronous communication) and ZeroMQ3 (for

event-based communication) libraries. This communication is performed through a common

bus (that can be seen as a service registry) in which devices can be added. In addition, the

bus provides central standard services such as logging and security. TANGO applications

can be written in different languages, such as Python, Java and C++.

Jini [Arnold 1999] was a Java-based service platform developed by Sun Microsystems in

which services could be dynamically deployed in a network. Jini services were defined

by Java classes and interfaces. When entering a Jini architecture, service providers and

consumers broadcasted announcements which were received by search services that were

specially provided by the platform. These announcements were replied, so that the new

members could have the registry reference. In order to support dynamic availability, con-

sumers were notified about the availability of the services they were using. The project

Apache River4 and Rio Project5 are both based on Jini’s source code.

Similarly, the OSGi Service Platform [The OSGi Alliance 2012] is a platform where Java

services can be dynamically deployed. Although OSGi’s main objective is to provide a

modularization solution for Java applications, it also provides a service layer, by which

modules can interact and communicate with each other. OSGi modules (also called bun-

dles) can publish and discover services in a non-centralized shared service catalogue, which

is accessible through a special object used to access OSGi framework facilities. Services

can be accessed through service implementation objects which are published along with

the service interface and the service properties in the OSGi service registry. In addition,

OSGi provides an event-based canvas for notifying service consumers about the arrival and

withdraw of new and existing services, respectively.

2More information available at http://www.tango-controls.org/.
3ZeroMQ is a socket library that provides a fast and concurrent framework. It supports several communi-

cation protocols, programming languages and OSs. More information available at http://www.zeromq.org.
4Available at http://river.apache.org
5Available at http://www.rio-project.org/

16 Chapter 2. State of the art

2.2.4 Service-Oriented Component Models

2.2.4.1 Principles and Motivations

Despite the similarities between the component and the service-based approaches, their

main difference remains the fact that they are focused on different actors: while the for-

mer focuses on the provider’s view, easing the deployment of new functionality, the latter

focuses on the consumer’s view, to supply functions to consumers independently of ser-

vice implementations [Rouvoy et al. 2008]. In addition, in the component-based approach,

applications are built from blocks which are integrated at assembly time, whereas in the

service-oriented approach only service descriptions are accessible at assembly time. Other

differences are the explicit separation between component and instances and the importance

of the packaging activity in the component-based approach; none of these are considered

in the service-based approach, which focuses on the activities happening after service reg-

istration and discovery [Cervantes & Hall 2004].

Service-oriented component models (SOCMs) combine advantages from both service-oriented

and component-based approaches. They were born from the need to add explicit dynamism

and dynamic availability support in component models. In this approach, components are

bound by means of services; bindings are thus non-explicit and performed as late as possi-

ble (late-binding), enabling component (and consequently, service provider) substitutability.

An application is formed by a composition whose architecture may evolve and be adapted at

run-time depending on service availability. Dynamic service adaptation may occur automat-

ically, if it runs on a supporting framework, contrarily to the component-based approach,

in which dynamism support usually requires more code development.

Dynamic availability is also the origin of the main problem of service-oriented component

models: unpredictability. The availability changes must be informed and taken into account

by other compositions, their internal components and the instances of these components.

Component departure implies a query for alternative service implementations, and if no im-

plementations can be found for replacement, both composition and framework must decide

what to do with the unsatisfied service dependency.

Next section presents some existing service-oriented component models and their main

characteristics.

2.2.4.2 Existing Service-Oriented Component Models

Most existing SOCMs are OSGi (and consequently Java)-based. They were created to ease

the development and management of components in the OSGi Service platform.

For instance, in the Apache Felix iPOJO [Escoffier et al. 2007] component model, the

framework injects Java objects at execution time and manages service provision, depen-

dency and other aspects by adding a container around each component. iPOJO is an ex-

tensible component model, which means that other aspects (called handlers) may be added

to the container, such as persistence, security and other non-functional concerns. iPOJO’s

container also manages components instances life cycle. Instances may be valid or invalid

depending on the state of all its handlers. Meta-data for handler configuration can be

provided by means of XML files, Java annotations or an API provided by the framework.

iPOJO requires a build step in order to add the code that corresponds to the container

to the service implementation classes. iPOJO (and OSGi as well) has been adapted for

Python [Calmant et al. 2012].

Similarly, the OSGi Declarative Services (DS) model also allows the specification of

dependencies between OSGi components under the form of required and provided services.

This information, which is found in a XML file, is used by the Service Component Runtime

2.3. Real-time Systems 17

container that automatically manages dependencies, service registration and component

binding. Services are “lazily loaded”, that is, they are only loaded if they are used by an-

other component. This behaviour saves start-up time and memory space. Both iPOJO and

DS are based on the Service Binder component model for OSGi [Cervantes & Hall 2004].

Spring Dynamic Modules (Spring DM)6 is an adaptation of the very popular depen-

dency injection framework Spring for OSGi platforms. Recently, the Spring DM model

has originated the Blueprint Service specification which is present in the OSGi official

specification, just as the DS model [The OSGi Alliance 2012]. The Blueprint Service model

uses the extender pattern, in which an external entity (in this case, an external bundle)

monitors the bundles present in the framework and, based on their state, performs actions

on these bundles, if they are Blueprint bundles. A bundle is a Blueprint bundle if it con-

tains a Blueprint XML file describing its services, dependencies and properties. For each

Blueprint bundle, a Blueprint container is created. This container is responsible for parsing,

instantiating, binding and managing services of the Blueprint component (called Bean).

Service Component Architecture (SCA) [Beisiegel et al. 2005] is currently the only

service-oriented component model not based on the OSGi Service Platform. SCA is technology-

independent and its assembly model can be extended to support new client implementation,

binding and interface types. In SCA, components provide and require services, which in turn

are described by interfaces. Components can be organized into larger structures, called com-

posites. Inside a composite, components can be bound dynamically or statically by means

of pre-defined links called wires. Components’ services and dependencies can be promoted,

so that they can be seen by other composites in the system. The SCA specification does not

inform however how the links between different composites can be established inside a SCA

framework. An extension and a framework to support dynamism and dynamic availability

at both component and composite levels have been proposed in [Américo & Donsez 2012].

Seinturier et al. have also taken into account reconfiguration issues in the Fractal-based

SCA runtime FraSCAti [Seinturier et al. 2009]. This reconfiguration is performed by means

of an API and requires the specification of a target and a source component for each bind-

ing. The CEVICHE framework [Hermosillo et al. 2010] extends those capabilities to the

context of Web Services and business processes.

2.3 Real-time Systems

In computer science, the term “real-time systems” designs systems whose correctness de-

pends on both logical and temporal aspects [Stankovic 1992]. While the former is required

by all software systems, the latter comes from the impact these systems have on the real

world.

Although the basis and theory of real-time systems are very well established and perma-

nent, they remain a developing and very promising area for research. That is due to the

evolution in computer architectures and the application of real-time technologies in new

application domains.

The next sections present an overview on real-time systems and technologies.

2.3.1 Principles

Real-time systems can be defined as“systems whose logical correctness depends on both the

correctness of the outputs and their timeliness” [Laplante & Ovaska 2011,Stankovic 1992].

The timeliness in real-time systems may be expressed as timing constraints for the set

6Available at http://www.springsource.org/osgi

18 Chapter 2. State of the art

of tasks which composes the system. Depending on the arrival pattern of these tasks, they

can be classified as periodic, sporadic or aperiodic. Periodic tasks must be executed

within regular time intervals, while the arrival time pattern in sporadic and aperiodic tasks

is unknown; however, in the former, time interval between two releases7 of the task is known

to be greater than or equal to a constant, whereas in the latter, time interval between two

releases is completely unknown (greater than or equal to zero). Thus, in order to satisfy the

different timing constraints present in an application, it is important that the algorithms

and activities performed by the system are executed in bounded time.

Timing constraints, also known as deadlines, can be relative to an event or absolute, pre-

cising a point in time for the termination of a task execution. Depending on task deadline

enforcement, real-time systems can be divided into soft, hard and firm real-time sys-

tems. In soft real-time systems, the violation of a deadline leads the system to a state

where its performance is degraded but not destroyed. In hard real-time systems, the viola-

tion of a single deadline may lead to a complete system failure and potential safety issues.

The definition of firm real-time systems is unclear: for some authors [Kopetz 2011, Liu

et al. 2006, Mok 1996], the results produced after the deadline violation are useless but

consequences are not severe; for some other authors [Shin & Ramanathan 1994,Laplante &

Ovaska 2011], they designate systems which tolerate the violation of a few deadlines, but

missing more than that may lead the system to a complete failure.

Thus, real-time systems do not need to be fast: they must be predictable and determin-

istic. These two concepts will be discussed in the sections below.

2.3.1.1 Predictability in real-time systems

Predictability means that it is possible to guarantee (very often mathematically), for a given

set of real-time tasks, that all timing constraints will be met. This demonstration is usually

performed at design time, when the decoupling of the system into tasks is performed and

their deadlines are associated. Sometimes, however, the response time of a task8 depends on

factors that cannot be completely foreseen at design time. In this case, probabilistic guar-

antees can be assumed [Stankovic & Ramamritham 1990]. Two techniques are commonly

used to ensure predictability:

• Schedulability analysis, in which given a set of tasks, their priorities, their timing

constraints and their worst case execution time (WCET), it is possible to find a

schedule which satisfies all the constraints for all present tasks. Many scheduling

analysis algorithms can be applied for real-time systems. Some examples are the

Rate-monotonic analysis (RMA), Earliest Deadline First analysis (EDFA) and static

order scheduling [Liu & Layland 1973,Davis & Burns 2011];

• And formal verification, in which the whole system and its properties are formalized

into logical statements and timing constraints are verified through model checking or

theorem proving techniques [Wang et al. 2010,Bernstein & Harter 1981].

However, both solutions may not be enough to design a predictable real-time systems [Huang

et al. 2005].

7Release time is the time at which the instance of a scheduled task is ready to be executed [Laplante &
Ovaska 2011]. A release is thus the execution of a given scheduled task.

8Response time is the time between the presentation of a set of inputs to the system and the realization
of the required functionality [Laplante & Ovaska 2011]

2.3. Real-time Systems 19

2.3.1.2 Determinism in real-time systems

Determinism in real-time systems is the ability of ensuring the execution of an application

despite presence of external factors that could unpredictably cause disturbance. Determin-

ism is closely related to predictability, since perturbations may alter the functionality and

response time of a real-time application, invalidating predictability analysis. Thus, deter-

minism is necessary ,so that all application deadlines can be met and predictability can be

achieved.

Two metrics are related to determinism:

• Latency, that is, the time between an event and a system response to that event

(e.g. the time between the instant a task was supposed to be released and the time it

is released in fact). Developers usually focus on minimizing latency, but in real-time

systems it is more important to normalize it, in a such way that system latencyis

known and predictable. In order to minimize latency, it is important to find all

sources of latency of a system and measure the impact of each source in final latency.

For known event processing times, latency can be found by measuring response time

(which will be the sum of the known processing time and the latency itself);

• and Jitter, which defines the unsteadiness of system latency. Jitter can be measured

through the distribution and standard deviation of response times. A common way

to define jitter is as the difference between the highest and the lowest response time

of a system. In real-time systems, reducing jitter is sometimes more important than

deadline enforcement. Jitter may also be known as real-time punctuality [Laplante &

Ovaska 2011].

2.3.2 Infrastructure of Real-time Systems

As said before, in order to minimize latency and achieve predictability, all aspects of a

system must be taken into account and mastered during the design of a real-time system.

Initially, real-time systems were designed for and implemented in dedicated hardware. To-

day, due to advances in computer hardware, even general purpose hardware can be used

to execute real-time systems. Most real-time concerns are concentrated in the software

layer of the system. The next subsections present an overview of the software technologies

available for real-time systems, regarding operating systems, middleware and programming

languages.

2.3.2.1 Real-time Operating Systems

Real-time operating systems (RTOS) are operating systems that support applications with

timing constraints [Stankovic & Rajkumar 2004]. Thus, besides providing access to low level

and basic functions, they must provide determinism. Some features found in traditional

operating systems are not important for RTOSs. However, features related to predictability

and dependability, such as predictable interrupt handling and scheduling, are required. For

firm and soft real-time applications, enhancing conventional operating systems (just as real-

time and low latency kernel versions for Linux distributions) may be enough for achieving

real-time behaviour; however, for safety-critical and other hard real-time applications, cer-

tified RTOS is mandatory [Kopetz 2011,Stallings 2011] . Domain-specific and higher-level

functionality should be implemented by the middleware running on top of the RTOS.

The IEEE Portable Operating System Interface for Computer Environments (POSIX)

1.b standard specifies a list of basic services required by a RTOS [IEEE & Electron-

ics Engineers 1993], such as asynchronous and synchronous input/output, memory lock-

20 Chapter 2. State of the art

ing, semaphores, shared memory, execution scheduling, timers, interprocess communication

(IPC) and real-time threads. It is also common to find deterministic synchronization mech-

anisms, real-time priority levels, dynamic deadline identification and predefined latencies

for task switching and interrupt mechanisms [Baskiyar & Meghanathan 2005].

2.3.2.2 Real-time Middleware

Middleware is a software layer that lays between applications and operating systems or hard-

ware, isolating the application from domain or platform specific differences. Middleware

provides several types of abstraction and transparency to applications, such as host infras-

tructure, distribution, common services and domain specific services [Emmerich 2000].

Today’s real-time systems are increasingly being connected via networks to create dis-

tributed real-time systems [Schmidt 2002]. Along with the increasing software complexity,

this factor has led to the development of the first middleware for real-time systems. By

using middleware, the development of applications can be simplified, resources can be man-

aged effortlessly and interoperability of heterogeneous environments and technologies can

be achieved more easily, reducing system life-cycle costs and code errors [Wang et al. 2004].

In addition, in the particular case of real-time systems, it is important for middleware to

support and respect non-functional properties, such as performance and feasibility.

A popular framework for real-time systems is RT-CORBA [Schmidt & Kuhns 2000],

which adds real-time support for CORBA specification9. CORBA in its standard form pro-

vides distribution transparency, automating tasks like connection management, object mar-

shalling, unmarshalling and demultiplexing, technology independence and fault-tolerance.

RT-CORBA adds quality of service (QoS) control, resource management and priority in-

version control in order to improve applications’ predictability. TAO [ISIS a] is an imple-

mentation of the RT-CORBA specification with component and deployment/configuration

support extensions (CIAO [ISIS b] and DAnCE [Deng et al. 2005], respectively). Other

real-time ORBs are MC-ORB2 [Zhang et al. 2009], nORB [Subramonian et al. 2004] and

the already extinct ROFES [Lankes et al. 2001]. Another implementation, RT-Zen [Raman

et al. 2005], integrates Real-time Specification for Java (RTSJ) [Bollella & Gosling 2000]

features.

The Data Distribution Services (DDS) [Object Management Group 2007] middleware

specification offers a real-time message-based communication. Just as CORBA and RT-

CORBA, DDS is a specification published and maintained by the Object Management

Group (OMG), but instead of focusing on objects and following a RPC-based paradigm,

DDS follows a data-centric publish/subscribe paradigm10. DDS is technology-independent,

flexible, robust, scalable and supports the control of QoS properties that affect predictabil-

ity, overhead and resource usage. There are several implementations for the DDS standard,

both commercial (developed by vendors such as Sparx 11, PrismTech 12, Twin Oaks 13 and

MilSOFT 14) and open source (namely OpenSplice and OpenDDS).

The Quality Objects (QuO) 15 framework is an adaptive layer which supports quality

9CORBA stands for “Common Object Request Broker Architecture”, and the RT- prefix means “Real-
Time”. CORBA is a standard for Object Request Brokers, also known as ORBs. An ORB is a middleware
enabling remote procedure calls (RPC) and interoperability in object-oriented distributed systems.

10In the publish/subscribe message pattern [Birman & Joseph 1987], there are two main roles: publish-
ers and subscribers. Publishers may publish categorized messages to a broker, whereas receivers receive
messages of a particular category from this broker.

11Available at http://www.sparxsystems.com.au/dds.
12Available at http://www.prismtech.com/opensplice.
13Available at http://www.twinoakscomputing.com/coredx.
14Available at http://dds.milsoft.com.tr/.
15Available at http://quo.bbn.com/.

2.3. Real-time Systems 21

of service attributes on the standard CORBA platform and Java RMI. QoS attributes are

defined separately from the objects they are used on, enabling interoperability and their

reuse in several objects at the same time. These attributes can be dynamically adapted as

well. QuO uses aspect-oriented software development techniques and provides a complete

framework for developing applications.

2.3.2.3 Real-time Programming Languages

In order to enable the use of a programming language to develop real-time applications, it is

important to guarantee predictable, reliable and timely operation. Every activity must be

expressed in a language by means of time-bounded constructs, enabling the analysis of the

system timing constraints. Therefore, three approaches can be used to add support to the

expression of timing constraints and deterministic behaviour in programming languages:

• Eliminating constructs which have indeterminate execution times;

• Extending existing languages with constructs to express real-time behaviours; and

• Constructing a language jointly with an operating system, allowing direct access to

low-level (and more predictable) facilities.

Other desirable features for real-time programming languages are process definition and

synchronization, interfaces to hardware access, real-time interrupt handling, error handling,

strong typing and modularity [Stoyenko 1992].

Three types of general-purpose languages are commonly used to develop real-time systems:

• Assembly languages, which provide direct access to hardware and low overhead com-

pared to higher-level languages, in exchange of lack of portability, modularity and

other higher-level abstractions;

• Procedural languages, such as C, FORTRAN 95, and Ada 95, or subsets of these

languages targeting safety-critical systems (like Spark-Ada and MISRA-C), offering

strong typing, abstract data typing, exception handling and modularity features; and

• Object-oriented languages, like C++ (and its subset EC++, for ‘Embedded C++’)

and real-time extensions for Java (based or not in the RTSJ [Bollella & Gosling 2000]

or SCJ [Schoeberl et al. 2007] specifications)16 which benefit from procedural lan-

guages’ advantages and add higher-level programming abstractions, increasing devel-

opers’ efficiency and code reuse, but potentially introducing sources of unpredictability

and overhead.

In addition, many highly-specialized or research-only languages for real-time applications

were also created along the last 40 years. These include Eiffel, Pearl, LUSTRE, MACH,

MARUTI and ESTEREEL, among others [Laplante & Ovaska 2011, Kaisler 2002, Cool-

ing 2003].

2.3.3 Design and Development Techniques for Real-time Systems

Just as in general-purpose software systems, the development process of real-time systems

consists of the following steps:

16Real-time Java extensions and technologies are extensively described in [Higuera-Toledano &
Wellings 2012].

22 Chapter 2. State of the art

• Requirements analysis and specification, that is, to identify and describe what the

software is supposed to do in order to satisfy the customer’s requirements;

• Architectural design, in which the software structure is modelled in terms of essential

software components and how these components communicate with each other;

• Physical design, that is, the mapping of the architectural design onto the hardware

platform. This is a critical activity in real-time systems, since they tend to be very

complex and a mismapping may lead the system to violate its timing constraints;

• Implementation, when the system and program structures are translated to source

code; and

• Test, integration and debug, in which we try to show that the system works as expected

by means of testing individual and combined system modules.

Different development techniques may cover different steps of this development process.

They can be combined in order to obtain a more efficient development process. The next

sections describe four types of development techniques: Formal methods, Structured meth-

ods, Object-oriented methods and Model-Based Engineering methods.

2.3.3.1 Formal Methods

Formal methods is the term used to designate the use of mathematical and logical tech-

niques to express and analyse properties in one of the computer system (hardware, software

or both) development steps. Formal methods are most applied then to the specification and

analysis of requirements (formal specification in a language with precise syntax and seman-

tics), architectural design, physical design (formal modelling of the software and hardware

properties) and test phases (formal analysis and verification based on discrete mathematics

and logic techniques, like propositional logic, set theory and predicate calculus). Formal

methods can be applied as well to the implementation step, by using a formally defined

programming language [Kopetz 2011].

By means of formal methods, one may prove formally that a software module implements

correctly a given information. Formal specification and modelling require human involve-

ment, whereas formal analysis can be mechanized. But since analysis uses results from

specification and modelling, using formal methods is sometimes error-prone. In addition,

they are considered difficult to use and often believed to increase project costs and delays.

Due to their correctness and safety guarantees, use of formal methods is highly esteemed

in the certification of safety-critical applications. It is not sure though that the correctness

of a software according to a specification will lead to correctness in the real world, because

proving a specification does not ‘prove’ a software product itself. It is known as well that,

just as software testing, formal verification can not prove the absence of bugs, just their

presence [Laplante & Ovaska 2011]. Techniques such as model checking and consistency

checking may be used to perform analysis on formal specifications.

Finite state machines (FSM) [Hopcroft 2007] are commonly used to formally model sys-

tems. Basically, this technique relies on the fact that a system can be represented by a

finite number of unique states. Transitions between states may depend on factors such as

time or the occurrence of specific events. FSMs may be represented by diagrams, sets and

matrix. Since it uses a formal mathematical description, FSMs are unambiguous. Con-

currency may be expressed by using several state machines or by using non-deterministic

transitions. Other benefits of using FSM include easy code generation, optimization through

state reduction techniques and a rich theory that can be exploited during the development

2.3. Real-time Systems 23

of systems. It is not possible though to describe the internal aspects of each module/state

and to factorize the system onto functions and sub-functions.

Statecharts [Harel 1987] improve FSMs by combining it with data-flow diagrams and en-

abling the representation of synchronous and asynchronous communication. In statecharts,

states may have their own FSM. In addition, concurrency can be more easily depicted by the

explicit description of concurrent states, called AND-states. Communication between states

is refined and can be achieved by means of two mechanisms: global memory (asynchronous)

and broadcast communication (synchronous). The use of Statecharts can be incorporated

to other types of methods, such as structured or object-oriented methods.

Petri nets [Murata 1989] are another common formal method to specify operations in

real-time software systems [Bucci & Vicario 1995]. In Petri nets, circular boxes (called

places) represent data stores or processes. Rectangular boxes correspond to transitions or

operations over data. These entities are connected by unidirectional arrows. Places may be

labelled with data counts, whereas transitions can be labelled with transition functions. A

transition is fired when it has as many inputs as required for its output. Petri nets can model

flowchart constructs and constitute a very powerful formal method for representing dynamic

multiprocessing systems. Extended types of Petri nets were proposed to particularly deal

with timing issues, such as timed Petri nets [Zuberek 1991], time Petri nets [Merlin & Far-

ber 1976] and stochastic timed Petri nets [Florin et al. 1991]. Formal proving techniques

can be applied to Petri nets. However, the task of decomposing a complete application into

Petri nets may be very costly [Laplante & Ovaska 2011].

2.3.3.2 Structured Methods

Structured analysis and design methods are widely used in real-time systems. This tech-

nique has appeared along with the evolution of the procedural programming languages.

Consequently, they are based on the notion of a data flow in which successive transforma-

tions are performed, so that the structure of the problem matches the high-level structure

of the software solution. Its analysis phase focuses on structuring the system’s context

(interfaces between the system and other entities), processes (functional specification) and

content (data used by the system). During the design phase, it is common to use procedural-

based functional decomposition techniques, such as Parnas partitioning [Parnas 1978].

The de-facto standard for structured methods is the Yourdon’s Structured Method

(YSM) [Yourdon 1989]. This method was proposed in the mid 1970s and ever since

several extensions and derived methods have been proposed, the most famous being the

Ward-Mellor [Ward & Mellor 1991] methodology, widely used in the design of real-time

embedded systems. In the Yourdon model, the information produced in the analysis step

(called essential model) is used as output for the design step. This information is composed

of two parts: an environmental model (i.e. the external view of the system, containing a

description of the complete system, its decoupling into communicating parts, the relation-

ship between different parts and how parts communicate) and a behavioural model (that is,

how the system is supposed to behave, including system functions, how the behaviour may

change over time and the information exchanged within the system). Both models are used

in the design step to create the implementation model, which is going to define how the

system can be implemented in a given technology. The implementation model is composed

of three distinct parts: the processor environment model, in which system partitions are

allocated to processors; the software environment model, which defines tasks, data sections

and communications for each process; and the code organization model, which, as the name

suggests, defines the code structure of each task.

Yourdon model has been updated in 2003 byWieringa [Wieringa 2003] as thePost-modern

24 Chapter 2. State of the art

Structured Analysis, which incorporates elements from both Jackson System Develop-

ment17 [Jackson 1983] and object-oriented methods. In summary, it refines the environ-

mental and behavioural models, enabling a more refined description of the context and of

the desired system behaviour.

Statemate [Harel & Politi 1998] is a tool created in order to help in the requirement spec-

ification of real-time systems. The method implemented by this tool combines statecharts

and activity charts (which are syntactic variations of data flow diagrams), thus being con-

sidered as a formal and structured method. The combination of both models enabled the

expression of parallelism, timed and event-based transitions between activities and activity

hierarchy. The tool could also execute the designed program following a semantically well-

defined execution algorithm.

Many other structured design methods target real-time systems: MASCOT, MOON, DARTS,

MCSE, EPOS, MARS, RTSA, PAMELA, etc. [Burns &Wellings 1994,Burns &Wellings 2001].

According to Gomaa in [Gomaa 1994], there are four important objectives that must be

achieved in a real-time design method:

• To support structuring the system as a set of concurrent tasks;

• To support components reuse through information hiding;

• To support the use of finite state machines for defining behavioural aspects;

• To support the analysis of the system design to validate the respect of its real-time

properties.

Finally, CoRE [Faulk et al. 1992] is a viewpoint-based methodology which is used only

for requirement modelling and analysis. Viewpoints help to see the main problems from

particular points in order to describe its nature and content. Each viewpoint describes

input information, actions necessary to process this information and generated results.

Information necessary to identify and build viewpoints is collected by an analyst; then,

after building the viewpoint-based model of the problem, the analyst can identify conflicts

and inconsistencies in both software and hardware requirements by combining information.

CoRE has been applied to the analysis of European avionic and defence projects.

2.3.3.3 Object-oriented Analysis and Design

While structured methods favour the Von Neumann architecture, in which there is a sep-

aration between data storage and processing, the object-oriented design, just as the whole

object-oriented paradigm, favour the encapsulation of both data storage and data process-

ing in entities called objects. Objects communicate with each other, processing inputs and

generating outputs to their neighbours. Using objects may increase maintainability, under-

standability, modularity, reuse and extensibility in real-time systems.

The object-oriented design method is based on the production of abstract models of the

system under design. It is often composed of the following steps [Deacon 2005,Laplante &

Ovaska 2011,Williams 2005]:

17The Jackson System Development (JSD) is a software development methodology developed by Michael
Jackson in the 1980s. This method consists of three phases: modelling of real world events, entities, roles
and their properties; design of the system processes as a process network, in which data collection, process
and generation processes are added to the basic model processes; and the implementation phase, in which
implementation-related aspects such as timing, scheduling and database are considered. JSD can be seen as
an extension to the Jackson Structured Programming (JSP) method [Jackson 1975], handling more complex
process compositions and including system specification and implementation stages.

2.3. Real-time Systems 25

• Analysis phase: It includes the requirements analysis, the systems analysis and

a high level version of the structural and behavioural object model of the system.

The requirements analysis is performed by defining the system usage through use

cases and real execution scenarios. In the systems analysis, outline aspects of both

system hardware and software are defined, such as the overall architecture of the

system. The preliminary object models are used to represent each subsystem as a set

of collaborating objects and may be used to evaluate aspects related to their timing

constraints, concurrency and external interfaces;

• Design phase: In the design phase, the architecture, the communication and the

object types (called classes) identified in the preliminary object model are refined. In

the detailed architecture design, it is necessary to model concurrency in the system

by identifying the potential active objects18 (which might correspond to real-time

tasks), mapping the software components onto the available hardware (deployment

model) and refining the component decoupling. In the detailed mechanistic design, the

designer must model the objects’ collaboration and the sequence of messages that are

exchanged. Classes are then detailed, by adding fields (called attributes) and internal

data processing procedures (called methods). New classes can be defined if necessary,

and they can be organized onto modules (called packages) according to their category

or functionality;

• Source code translation phase: The model information is translated (manually

or automatically) to source code which is then compiled to generate an executable

application. Generating code from models is an important part of the Model-driven

Engineering (MDE) approach [Bézivin 2005];

• Testing, Integration and Validation phase: In this phase, corrections are made

to the code generated by the model. Defects can be found in the design models and

tests are performed in separate and combined objects so that errors can be detected

and corrected.

A special attention must be given to the affectation of objects to tasks. Too many tasks

may lead to many context switching and scheduling problems, whereas too few may lead

to timing constraints violations due to the excess of operations performed by the present

tasks [Williams 2005].

UML19 diagrams are often used to model object-oriented systems. A given type of UML

diagram can be used in different stages of the development process: the difference lies in

the detail level of the information that is present in the diagram.

There are several design patterns available for the development of object-oriented sys-

tems. These patterns provide proven solutions to common design problems. There are

patterns for mapping and creating objects, for building and interacting with complex

structures, for managing communication between objects and other systems, etc. [Gamma

et al. 1995,Schmidt et al. 2000]. Some design patterns were developed specifically for real-

time systems [Douglass 2002].

Time and timing constraints were introduced in UML by an extension profile called MARTE20.

18The object-oriented paradigm follows a client-server architecture style. We call an active object the
object which performs calls (or execute a method, as said in the object-oriented approach) on other objects
- called passive objects.

19UML [Object Management Group 2006c] stands for Unified Modelling Language. It is a standard-
ized modelling language with graphic notations used to create object-oriented software systems. UML is
currently in its 2.4.1 version and is managed by the Object Management Group (OMG).

20MARTE stands for “Modelling and Analysis of Real-Time and Embedded systems”.

26 Chapter 2. State of the art

Both software and hardware timing properties can be modelled with UML-MARTE. The

fundamental unit of behaviour in the UML-MARTE specification is the action, that trans-

forms set of inputs into a set of outputs and takes a given duration. These actions can

be initiated by triggers. Three types of time can be modelled in UML-MARTE: logical

time, in which time is measured by the temporal order of causal events, without a specific

metric; discrete time, where time is partitioned into a set of ordered granules, during which

actions may be performed; and real time, where physical time progression is precisely mod-

elled [Object Management Group 2008,Laplante & Ovaska 2011,Mallet & de Simone 2008].

The UML-MARTE specification will be further detailed in the Chapter 4.

2.4 Adaptiveness and Dynamism in Real-time Systems

The timing constraints in real-time systems come from the interaction and the impact those

systems have with entities in the real world. However, the real world may be extremely

dynamic. Entities in the real world may appear and disappear, combine and separate,

replace and be replaced, definitely or temporarily. Thus, it is important for real-time

systems to be able to adapt themselves to these real world changes, which may not be

possible to specify during the system design phase. At the same time, real-time systems

must ensure predictable behaviour under no matter what operation conditions. The need

for adaptive real-time systems comes from two types of applications: adaptive systems

whose interactions must be time-bounded, and real-time systems needing flexibility at run-

time [Bihari & Schwan 1991]. In this section, we will discuss some software architectural

styles developed to overcome the conflict between predictability and dynamism in adaptive

real-time systems. Here, we will focus on two of the main styles used to develop flexible

real-time systems: real-time component- and real-time service-based approaches.

2.4.1 Real-time Component Models

Re-usability and modularity were the keys to success of the component-based approach.

With the use of component frameworks, developers can focus on business logic parts of the

system. Non-functional concerns of the code can be delegated to the framework, which can

automatically generate a code, shortening time-to-market, decreasing development costs

and improving developers’ efficiency [Szyperski 2002]. It is also important to mention

its support to compose potentially heterogeneous and distributed components, which is a

relevant advantage for modern applications.

The popularity of the component-based software engineering has led to its adoption in

different application domains. As mentioned before, in the beginning, real-time systems

were developed to a specific hardware and platform, compromising portability, integration

with other systems, increasing development and maintenance costs due to the use of low-

level and platform-specific statements. These difficulties have encouraged the adoption of

the component-based approach in the design and the development of real-time systems.

Consequently, in recent years, several component models targeting real-time and embedded

systems were developed.

It is expected for a real-time component model to satisfy the following requirements:

• These component models should be compatible with the expression and satisfaction

of real-time requirements. This means that the services provided by components must

have a predictable behaviour, in order to assure determinism in their execution time.

To achieve a predictable behaviour, it is not enough to characterize the execution time

2.4. Adaptiveness and Dynamism in Real-time Systems 27

of components services; features such as resource constraints, resource reservation,

dependability, concurrency and synchronization play an important role.

• In the component-based approach, all application entities are modelled as opaque

components or components of components. On the other hand, in real-time appli-

cations, applications are seen as a set of tasks which may be scheduled according to

their real-time (e.g. deadline, latency) and/or scheduling (e.g. priority, period) pa-

rameters. It is important first, to provide a mapping from the code contained within

components to schedulable real-time threads and second, to be able to establish this

mapping without any information concerning the internal details of components.

• Real-time component models should be able to support distribution, since both real-

time and component-based approaches are used to implement distributed systems.

• Real-time components should be able to be composed to provide a more complex

functionality; this composition should not interfere in the real-time behaviour of the

resulting component and that of the whole application.

The main modelling languages for real-time systems support the expression of components.

Most of them offer a pure modelling approach though, without an underlying execution

framework. AADL21 (Architecture Analysis and Design Language) [Feiler et al. 2006] is

a standard language for modelling real-time embedded systems in avionics domain. AADL

allows modelling software and hardware aspects of the application and the early analysis of

their functional and non-functional properties. Semantics of AADL are objects of several

studies in the computer science literature [Yang et al. 2009, Ölveczky et al. 2010]. Compo-

nents can be specified by means of AADL component assembly model, in which components

can be connected with each other and their implementation instances can be referenced.

SysML (System Modelling Language) [Friedenthal et al. 2008] is a result of an effort from

OMG in unifying modelling languages. Just as MARTE, it is a profile of UML2.0. It en-

ables the description of behavioural structures and the assignment of these structures to

the system architecture. Components can be described in MARTE and SysML by means

of UML2.0 component diagrams.

BIP [Basu et al. 2006] is a modelling language and component framework with formal

semantics and mathematically proven properties. The name BIP is derived from the name

of the three layers that compose the model: the Behaviour layer, where behaviour of indi-

vidual components can be represented by transition systems; the Interaction layer, where

connectors between behaviour transitions can be defined; and the Priority layer, which in-

cludes policies (e.g. scheduling policies) that will be applied to transitions interactions.

Composing components in BIP means composing their three layers using well-defined rules

and parameters. BIP contains a set of tools which can be used for code generation and

analysis.

As discussed previously, the CORBA Component Model (CCM) is a platform-independent

component model developed for the CORBA framework. Several works have extended this

component model specification to target safety-critical and real-time applications. The

Lightweight CORBA Component Model (LwCCM) [Object Management Group 2006a]

offers a simplified version of CCM based on the RT-CORBA specification, eliminating dy-

namic mechanisms (such as introspection) and other features that may lead to performance

issues. López Mart́ınez et al. [Mart́ınez et al. 2013] extended the programming model and

the interface specification of LwCCM, removed the dependency on CORBA from the com-

munication layer and created the Real-time Container Component Model (RT-CCM). As

21AADL will be further discussed in the Chapter 4.

28 Chapter 2. State of the art

most of the models, RT-CCM composes the real-time model of each participating component

in order to define the real-time model of the complete application. RT-CCM components

may be passive or active and interact by means of required and provided ports. Active

components are components that can react to external or timed events. These reactions are

triggered internally. RT-CCM concentrates all real-time design, composition and configura-

tion concerns at a container level, so that these mechanisms are invisible to the business code

developer. A container-based approach also improves code reuse. RT-CCM relies on CBS-

MAST [Lopez et al. 2006], an extension of the MAST methodology [Harbour et al. 2001],

which is used to formulate components’ real-time model. In addition, RT-CCM integrates

RT-D&C [Martinez et al. 2010], an extension to OMG’s ‘Deployment and Configuration of

Component-based Distributed Applications’ specification (D&C) for real-time systems.

UM-RTCOM [Dı́az et al. 2008] is another component model based on the RT-CORBA

specification. Its approach is similar to RT-CCM: individual components’ behaviour can

be formulated in SDL-RT (a real-time extension of the Specification and Description Lan-

guage - SDL) [Alvarez et al. 2003] and then schedulability analysis is applied to the final

model resulting from the composition. MyCCM - High Integrity 22 is a project based

on LwCCM in which the application model is mapped onto AADL for analysis and code

generation.

ACM (ARINC-653 Component Model) [Dubey et al. 2011] is a component framework

combining CCM with the static memory allocation and isolation mechanisms specified in

the ARINC-65323 platform standard (i.e. temporal and spatial isolation) [Aeronautical

Radio, INC 1997]. Like RT-CCM, ACM allows the definition of component triggers that

are executed in order to activate components. Deadlines are applied to both end-to-end

compositions and individual component services.

Despite the name similarity, SaveCCM [Hansson et al. 2004] (which means ‘SAVEComp

Component Model’) is not based on CCM. SaveCCM (and its implementation for vehicular

systems, SaveCCT [Åkerholm et al. 2007]) was developed in the context of a project whose

goal was to establish a methodology for the development of component-based applications

for safety-critical and embedded systems. With SaveCCM it is possible to model the be-

haviour of each component through timed automata. The real-time model is analysed by

means of the UPPAAL-PORT [H̊akansson et al. 2008] tool. After the analysis, executable

entities are generated and deployed in the execution environment. SaveCCM focuses on

control systems; thus its components were conceived in a way to only implement passive

functions. Applications are constituted by triggering calls towards sequential component

functions. This low-level granularity approach was also adopted by the PIN [Hissam 2005],

PECOS and COMDES [Ke et al. 2007] component models. It is often associated with

port-based interface component models. ProCom [Sentilles et al. 2008] is an extension

of the SaveCCM model supporting higher-level components and hierarchical composition.

SaveCCM was inspired by Rubus-CM [Hanninen et al. 2008], a component model devel-

oped by Arcticus Systems AB and industrially used in hard real-time systems.

Koala [van Ommering et al. 2000] is another industrial component model. It was conceived

by Philips. The introduction of real-time features into Koala led to the creation of the com-

ponent model ROBOCOP [Muskens et al. 2005]. ROBOCOP supports predictability by

the same means as RT-CCM and UM-RTCOM: composition of isolated component be-

haviours into a final application real-time model. Bosch has developed BlueArX [Kim

et al. 2009], a hierarchical view-based component model targeting embedded applications

22Available at http://sourceforge.net/apps/trac/myccm-hi/wiki.
23ARINC-653 is a software specification created in 1996 which defines an API and principles for space

and time partitioning in safety-critical avionics real-time operating systems.

2.4. Adaptiveness and Dynamism in Real-time Systems 29

in the automotive domain. AUTOSAR 24 is another component model used in the au-

tomotive domain; in fact, it is considered as the standard in this domain, backed by a

consortium of companies. Real-time properties support is not clearly specified, although it

runs on real-time operating systems [Hošek et al. 2010]. This gap has been filled by works

on the extension of the AUTOSAR technology [Becker et al. 2010]. AUTOSAR defines a

complete development process.

In the context of Java technology, some component models have been developed by incor-

porating features of the Real-time Specification for Java (RTSJ) [Etienne et al. 2006, Hu

et al. 2007,Pľsek et al. 2012]. This was motivated by the complexity incurred by the use of

some RTSJ constructs (such as the different types of memory areas) and the lack of mod-

ularity between business code and RTSJ concerns in real-time Java applications. These

models offer access to RTSJ facilities, such as memory management, real-time threading,

asynchronous event handling and asynchronous transfer of control. A component model

combining RTSJ and EJB over a real-time RMI communication has also been proposed

by [Wang et al. 2005].

The most popular approach to implement run-time adaptation in real-time component-

based systems (and in real-time systems in general) is the use of modes. A mode is a

pre-configured architecture which can be switched at well-defined points, called mode tran-

sitions. A mode transition protocol is used to specify how this change occurs (i.e. which

parts of the architecture remain, which ones are replaced and which parts are used to re-

place them).

Another possible approach is the use of components freezing, that is, stopping the whole ac-

tivity of the components before realizing run-time adaptation. This approach was first sug-

gested by Kramer and Magee in [Kramer & Magee 1990]. Wermelinger [Wermelinger 1997]

has improved the algorithm to consider only the involved components in the freezing, min-

imizing interruption time. Rasche and Polsche [Rasche & Polze 2005] presented a related

technique in which the whole application is blocked during a bound time, disabling dynamic

reconfiguration during this time interval. Américo et al. [Américo et al. 2012] used a similar

technique to enable the use of service-oriented component models in real-time applications:

real-time tasks demand the platform to block dynamic reconfigurations during the execu-

tion of critical tasks, and indicate the end of these tasks. If several tasks make a request

at the same time, the platform is only unblocked after receiving termination signals for all

tasks. A time-out can be established in order to avoid the platform to remain indefinitely

blocked.

The use of incremental reconfiguration protocol has been proven as being robust by Boyer

et al. in [Boyer et al. 2013]. This protocol, which is based on the concept of a contractual

reconfiguration based on an incremental sequences of operations, was mathematically for-

malized and proven correct. In addition, the algorithm is fault tolerant and its complexity

is linear with respect to that of the target reconfiguration.

Bozga et al. developed in [Bozga et al. 2002] a toolbox to validate component-based real-

time applications. In their work, components were seen as processes that could be created

and deleted dynamically. These processes were described in a dynamic version of extended

timed automata. Their semantics were similar to those of timed automata and the system

analysis was based on state-space exploration techniques.

Regarding Java applications, solutions for run-time adaptation also include the use of

mechanisms such as concurrent class-loaders [Pfeffer & Ungerer 2004] and agents [Bren-

nan et al. 2002].

24AUTOSAR is an acronym for for ‘Automotive System Open Architecture’. Available at http://www.

autosar.org/.

30 Chapter 2. State of the art

2.4.2 Real-time Service-Oriented Architectures

Real-time Service-Oriented Architectures (RT-SOA) is an extension to the Service-Oriented

Architecture (SOA) approach aiming to include timing properties in aspects such as the

modelling, composition, orchestration, deployment, policy, enforcement and management

of services [Tsai et al. 2006]. Research works in RT-SOA have originated from the need

of enterprises who have adopted the service-based approach in their systems, but suffer

from the lack of predictability in the current solutions. The RT-SOA approach has already

been applied to the medical, military, financial and industrial automation domains in sev-

eral projects [Bohn et al. 2006, McGregor & Eklund 2008, Cucinotta et al. 2009, Panahi

et al. 2010,Moreland 2013].

RT-SOA systems inherit the need for time-bound requests from real-time systems. Thus,

it is necessary to know the timing behaviours of each service implementation; the composi-

tion of these behaviours will result in the characterization of the composite services. This

information, along with service consumer timing requirements, must be taken into account

during service selection and to perform end-to-end timing analysis.

Several works have proposed and investigated techniques for specifying timing behaviours

in service interfaces. Using ontologies, such as OWL-S, may ease semantic analysis and

automatize service composition, despite its lack of mechanisms to specify timing properties

and constraints [Papaioannou et al. 2006,Moussa et al. 2010]. Another alternative is the

use of languages dedicated to the specification of QoS attributes, such as QML25 [Jin &

Nahrstedt 2004,Becker 2008]. Other propositions focus on the use of new service definition

languages based on formal methods, such as SCC [Boreale et al. 2006], CaSPiS [Bruni 2009],

COWS [Lapadula et al. 2007] and SOCK [Guidi et al. 2006].

However, in the industry the most used approach remains the XML-like languages. This

approach includes QoS extensions to service description standards (such as WSDL26 [Al-

Ali et al. 2002,D’Ambrogio 2006,Dai & Wang 2010] and USDL27 [Marienfeld et al. 2012,

Aniketos Project Consortium 2011]) and SLA28 languages [Cucinotta et al. 2009,Kübert

et al. 2011,Américo et al. 2012]. The design of QoS languages and the use of distinct QoS

description and negotiation terms result from the fact that inserting QoS data directly in

the service interface may limit the reuse of both QoS attributes and service interface.

Despite the recentness of the subject (the first openly considering real-time aspects in

service-oriented architectures dates back from early 2000s), many other aspects of real-time

service-oriented applications have been studied in the last years:

• Two main approaches have been proposed to validate and verify service composi-

tions. First, the creation of new service composition languages, whose semantics is

based on formal methods, like process calculus [Benghazi et al. 2010]. These languages

may be combined with other languages for design (e.g. graphical languages) and ex-

ecution (e.g. executable languages). Second, mapping composition languages (such

as BPEL and WS-CDL) to formal methods, such as timed automata and rewrit-

ing logic [Kazhamiakin et al. 2006, Dong et al. 2006, Bruni et al. 2006, Al-Turki &

Meseguer 2007,Wehrman et al. 2008,Mart́ınez et al. 2009a,Tan et al. 2011,Stachtiari

25QML (QoS Modelling Language) [Frølund & Koistinen 1998] is a QoS specification language designed
by HP Labs in late 90s.

26WSDL (Web Services Description Language) [Christensen et al. 2001] is a XML-based language used
for defining web-services and their functionality.

27USDL (Unified Service Description Language) [Oberle et al. 2013] is an extensible service description
language designed to describe technical and business services. USDL is being developed and incubated at
W3C (more information available at http://www.w3.org/2005/Incubator/usdl/.

28SLA (Service Level Agreement) [Verma 1999] is a contract document defining the QoS terms and
requirements between a service provider and a service consumer.

2.4. Adaptiveness and Dynamism in Real-time Systems 31

et al. 2012];

• Service selection was deeply studied by Jaeger and Mühl in [Jaeger & Mühl 2006].

Since service selection with multiple criteria can be seen as a combinatorial problem

[Jaeger et al. 2005], they describe heuristics that can be used in the dynamic selection

of services to service compositions. Anastasi et al. proposed in [Anastasi et al. 2011]

a service registry for service-oriented real-time systems, coping with the issues

raised by the dynamism incurred by this architectural style. Their registry enables

dynamic QoS data gathering, future prediction based on collected data and permanent

data storage. Christos et al. [Christos et al. 2009] worked on a service registry for

dynamic Web Services, where it is possible to specify a QoS execution policy and to

automatically handle exceptions according to the QoS policy activated in the system.

Similarly, Heam et al. proposed a set of techniques for QoS aware verification of web

services substitutability [Heam et al. 2007]. Dynamic reconfiguration and service re-

selection were also studied by Zhai et al. in [Zhai et al. 2009]. In their work, they have

used an iterative inspection algorithm to reconfigure failed services without violating

QoS constraints and applied it to a research service-oriented framework called Llama;

• There are some works exclusively consecrated to the timing analysis of dynamic

real-time service-based systems. For instance, Calinescu et al. applied the quantita-

tive verification approach [Kwiatkowska 2007] to service-based systems in [Calinescu

et al. 2012]. They assume that if the specification and domain assumption statements

(which in their work are modelled as discrete time Markov chains) are satisfied, then

the system requirements (modelled as a probabilistic computation logic tree) are met.

In their turn, Aminpour et al. have described in [Aminpour et al. 2011] how to model

service-oriented architecture systems along with their non-functional properties in

AADL, so that the complete application architecture may be analysed and simulated

with AADL tools.

Several works describe complete real-time service middleware solutions. The framework de-

veloped in the context of the European Union-funded project IRMOS29 [Kyriazis et al. 2010]

targeted soft real-time applications hosted in the Cloud30. In their framework, components

and services can be modelled in UML2. The developer is responsible for providing appli-

cation, component and work-flow descriptors. From these data, an SLA is automatically

produced. The descriptors of different components and the hardware configurations are

used as input for a service that outputs the resulting QoS of the system. The resulting

QoS in turn is used to estimate the application’s behaviour by means of formal methods

such as finite state machines. At run-time, the SLA terms are automatically negotiated and

the virtual and physical resources are reserved by a deployment manager. The execution

of the different work-flows is monitored, and in case of SLA terms’ violation, a resource

adaptation and SLA re-negotiation processes are triggered.

The framework developed by Samaras et al. [Samaras et al. 2010] targets Wireless Sensor

Network (WSN) applications. It aimed to decrease the overhead incurred from connec-

tion establishments and continuous message exchanges. The solution adopted was mapping

WSN to IP networks and compressing messages’ contents, keeping SOA standards and

using SOA technologies to enable interoperability. Similarly, the SIRENA project [Bohn

et al. 2006] was also focused on embedded devices and relied on Web Services standard

29More information at http://www.irmosproject.eu.
30Cloud computing is a term that designates distributed systems with a large number of computers over

a network. It enables ubiquitous and on-demand access to shared resources (resource pooling) that are
provisioned without delays (elasticity), with minimal interaction from the service provider (self-service)
and billed accordingly to resource consumption (measured service) [Hayes 2008].

32 Chapter 2. State of the art

protocols to create real-time service-oriented applications. SIRENA was the base of the

SODA project31, and the results of both were used in the SOCRADES project. Besides

timing constraints, their platform had additional requirements such as energy constraints

and plug and play reconfiguration. Service interfaces were described in DPWS. Service

logic was modelled as Petri nets and verified by the platform. The different aspects of the

SOCRADES framework are managed by the different bots available in the platform [Mendes

et al. 2009].

The RT-Llama framework [Panahi et al. 2010,Panahi et al. 2011] addressed the execution

support of real-time work-flows in SOA platforms. This is achieved through an execution

reservation mechanism based on the use of virtual CPUs. In addition, the framework is able

to perform a deadline-based work-flow composition to provide end-to-end predictability. A

prototype was developed in real-time Java.

With regard to real-time Java applications, some works have proposed real-time extensions

for the OSGi Service Platform. A descriptive approach was described in [Gui et al. 2008],

in which contracts were specified in OSGi component’s meta-data. Then, a special service

in the platform is responsible for the constraint resolution and component binding at run-

time. Management and adaptation logic execute separately in a non-real-time partition of

the platform, whereas real-time tasks, coded in native code, run directly in the RTOS layer.

In turn, Américo et al. [Américo et al. 2012] proposed a dynamism-centric solution based on

the freezing of the components in the platform and the use of real-time SLAs. Richardson

and Wellings [Richardson & Wellings 2012] proposed a more comprehensive solution, which

used RTSJ features to provide temporal isolation, admission control, WCET analysis and

garbage collection pace configuration mechanisms. Similarly, Basanta-Val et al. [Basanta-

Val et al. 2013] analysed the integration of RTSJ features on the OSGi platform, as new

services for schedulability analysis, mode definition, recover, service characterization and

access to the classes in the RTSJ API (more particularly, real-time threads).

2.5 Summary

Real-time systems are systems whose correctness depends on both logical and temporal

aspects. Two properties must be present in a real-time system: determinism, which is

the ability to ensure the execution of the application despite the presence of external and

unforeseen factors; and predictability, which means the possibility to guarantee that for

a set of real-time tasks, all their deadlines will be met. These properties are very related:

predictability assumes determinism, because disturbances in the execution of an application

may alter both functionality and performance aspects. Therefore, it is important to master

the latency sources at all system layers, from the operating system until the applicative

features.

As a result, several technologies have been developed to create a complete real-time infras-

tructure. Real-time operating systems, for instance, are operating systems which incorpo-

rate important features for achieving predictability, such as predictable scheduling policies

and interruption handling. Real-time middleware has been created as well to isolate real-

time applications from platform specific differences and provide infrastructure, distribution,

resource management and heterogeneity transparency. Likewise, programming languages

have also eliminated time-unbounded constructs, offered new extensions to express timing

behaviours or even been created anew to allow the access to more predictable facilities.

Design methods have also been developed or adapted for real-time applications. It is very

common in this application domain to use mathematics-based methods to specify the ap-

31More information available at http://www.soda-itea.org.

2.5. Summary 33

plication behaviour and composition, so that predictability may be verified by means of

techniques like model checking and theorem proof. However, due to the complexity of the

use of formal methods, in the industry it was preferred to adapt popular software engineer-

ing methods, like the structured and object-based approaches.

Due to their interaction with real world devices, some real-time systems must present dy-

namic adaptation features, that is, to be capable to perform unforeseen modifications on

their properties and architecture at run-time, potentially without restarting. Many tech-

niques have been developed to support dynamic adaptation, such as computational reflec-

tion and call interception. Service-oriented architectures and component-based design are

two development approaches used to implement dynamically adaptive systems that have

become very popular. This can be proven by the large number of component models and

service-based technologies available in the industry. Service-oriented component models

(i.e. a component model where components communicate in a SOA-like manner) inherits

the benefits of both approaches. In addition, it enables separating SOA-related mechanisms

from functional code, and adds the support for dynamic availability.

However, despite the flexibility provided by run-time adaptation and evolution features,

these can not be directly applied to real-time systems. Indeed, the predictability that

characterizes real-time systems requires a mastery of the impact of the dynamism on the

application, so that determinism is guaranteed and timing constraints are satisfied. This

conflict between predictability and dynamism is the subject of research works, what mo-

tivated the development of real-time variations of dynamism enabler approaches, such as

real-time component models and real-time service-oriented architectures.

Among the existing approaches some can be identified as potential standards: AADL, a

modelling language used as standard in avionics, with several existing tools for analysis and

simulation; UML-MARTE, a UML profile for designing real-time systems, which besides

having the support of UML editors and an expressive language for describing timing prop-

erties, also has analysis tools; and SCA, an OASIS standard designating a service-oriented

component model, supported by various major IT vendors and service-based frameworks.

These three models have the advantage of being extensible: SCA may support real-time

properties and dynamism by means of extensions, just as AADL and UML MARTE com-

ponents may be extended to interact by means of services.

This thesis aims to introduce a methodology for building real-time service-oriented component-

based applications. With the modularity of the component-based approach and the dy-

namism of the service-oriented architectures, real-time systems may benefit from flexibility,

interoperability, low maintenance and development costs, low time-to-market, and all other

benefits resulting from the use of both approaches, which were listed in the previous sections

of this chapter. This methodology includes a component metamodel, called URSO; the

concepts present in this metamodel can be mapped onto extensible component models and

modelling languages, so that applications developed with one real-time service-oriented and

component-based technology may easily interact with and benefit from tools developed for

another technologies.

Chapter 3

Unified Real-time

Service-Oriented Component

Metamodel

“He who moves not forward, goes

backward.”

Johann Wolfgang von Goethe

Contents

3.1 Motivations . 36

3.1.1 Problems in the development process of real-time systems 37

3.1.2 Requirements for a real-time service-oriented component model and

framework . 38

3.1.3 URSO main goals . 39

3.2 URSO Concepts . 40

3.2.1 Deployment Concern . 41

3.2.1.1 Resources . 41

3.2.1.2 Machines, Nodes and Interconnections 43

3.2.1.3 Platform and Platform Modes 43

3.2.1.4 Definitions . 43

3.2.1.5 Deployment Concern: UML Diagrams 47

3.2.2 Assembly Concern . 49

3.2.2.1 Services, Dependencies and Bindings 49

3.2.2.2 Service Descriptions . 50

3.2.2.3 Components, Composites and Compositions of Services . 50

3.2.2.4 Definitions . 50

3.2.2.5 Assembly concern: UML Diagrams 58

3.2.3 Behaviour Concern . 60

3.2.3.1 Service Operations, Parameters, Restrictions and Instruc-

tions . 61

3.2.3.2 More about Policies . 61

3.2.3.3 Definitions . 61

3.2.3.4 Behaviour Layer: UML Diagram 69

3.2.4 Revisiting the Deployment Concern 70

3.2.4.1 Resource Requirements and Capabilities 70

3.2.4.2 Implementation, Instances and Nodes 71

3.2.4.3 Tasks and Mode Transitions 71

36 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

3.2.4.4 Definitions . 71

3.2.4.5 Deployment Concern: UML Diagrams 73

3.2.5 Other aspects that must be taken into account 78

3.2.5.1 Technical Components 78

3.2.5.2 Run-time Monitoring . 79

3.2.5.3 Applicative WCET vs. Technical WCET 80

3.3 Example: Dynamic Collision Detection Application 81

3.3.1 Overview of the CDx Benchmark 81

3.3.2 DCDx: A Dynamic and Service-Oriented CDx benchmark 82

3.3.2.1 A Service-Oriented version of CDx 82

3.3.2.2 Adding Dynamism to CDx 82

3.3.3 URSO Description of DCDx . 83

3.3.3.1 Application Design Overview 83

3.3.3.2 Platform Description: the Deployment concern 83

3.3.3.3 Services and Components: the Assembly concern 85

3.3.3.4 Mapping onto the Deployment Concern 88

3.4 Summary and Discussion . 89

3.4.1 URSO Overview . 89

3.4.1.1 URSO Metamodel . 89

3.4.1.2 Methodology . 90

3.4.2 Discussion . 92

3.4.3 Summary . 93

This thesis’ main contribution is to establish a metamodel for developing real-time

service-oriented component-based applications. The metamodel, named Unified Real-time

Service-Oriented (URSO) Component Metamodel, describes concepts in three different con-

cerns: Behaviour, Assembly and Deployment.

In the Deployment concern, we will find platform infrastructure-related concepts, such as

hardware component descriptions, components instantiation, resource reservation mecha-

nisms and associations between concepts from service-based applications to the traditional

real-time task-based execution model.

The Assembly concern includes concepts related to application architecture, its decoupling

into components and composites and their interaction by means of explicitly declared ser-

vices and dependencies.

The Behaviour concern contains concepts used for describing the services internal content.

This information is used afterwards by the URSO framework to estimate worst case execu-

tion times and to monitor input sent to service implementations and corresponding output

generated by them.

The next sections describe what motivated us to design URSO, as well as its different

concerns and the content of each one of them. Metamodels are here presented by means

of UML Class diagrams. They are also formalized in order to give them a more precise

semantic. We also present UML Activity diagrams in order to show the methodology that

must be applied in order to correctly use URSO concepts.

3.1 Motivations

As shown in the previous chapter, there are several solutions for designing dynamically

adaptive and real-time applications separately. Some efforts have been made to join both

3.1. Motivations 37

worlds as well: mapping SOA concepts onto real-time component models, developing real-

time extensions to service platforms and creating new service frameworks supporting the

expression and the guarantees needed for real-time applications. However, there are very

few works on the development of service-oriented component models natively supporting

real-time constraints. URSO aims to fill this gap by providing a metamodel for developing

real-time service-oriented components.

In this section, we detail the factors that motivated us to develop URSO.

3.1.1 Problems in the development process of real-time systems

As stated before, initially real-time systems were designed and were implemented in ded-

icated hardware. With the advances in computer hardware, real-time concerns were con-

centrated in the system software layer. Since hardware facilities offer smaller latencies, the

need of predictability has led real-time developers to code targeting specific platforms, ben-

efiting from optimizations and tuning settings. However, despite increasing development

costs due to the fact that it is necessary to train developers to code for a given hardware,

this tuning decreases portability and makes software maintenance more difficult. Improve-

ments in the software engineer discipline, have led to the conception of technologies to ease

the development of real-time, which were detailed in the last chapter.

The introduction of service-oriented and component-based technologies in the development

of real-time systems came naturally with the increased complexity of the latter. The com-

bination of modularity and use of open standards with published interfaces enabled reusing

real-time components among several applications, facilitating new developers’ technology

insertion and the integrating of heterogeneous components into applications and reduced

maintenance constraints [Moreland 2013]. These properties are very important in today’s

real-time systems for several reasons.

The decomposition of applications into smaller pieces is not a new concern for real-time

applications. However, today these multiple pieces are often developed by different com-

panies, with different development cycles and different technologies. It is important for

real-time applications to take into account during all the development process the different

levels of trust in quality of service, and to foresee actions in case of failure of these untrusted

components. This implies a more costly development and potential evolutions in real-time

software. Hence the need of flexible real-time software.

For instance, in a satellite after its launch, only its embedded software elements can be

modified. These modifications are used to repair malfunctioning software elements, to com-

pensate satellite mistrusts and to adapt or evolve the satellite mission. The software must

often be maintained during the whole satellite life-cycle, which may vary between 10 and 25

years, and so must the means to maintain the software: it is important to ease the integra-

tion of new technologies through interoperability or to ensure the competence of developers

in specific technologies for a long time. In addition, the software may be updated several

times due to requirements modification or context adaptation.

The use of models (particularly service-oriented component models) and their integration

in the different phases of the development process, just as the automation of the process

through the use of tools and middleware may help to solve these recurrent issues and of-

fer a generic solution allowing development and characterization of reusable and modular

real-time software.

38 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

3.1.2 Requirements for a real-time service-oriented component model

and framework

A real-time service-oriented component model is in the intersection of three application

domains: service-oriented computing, real-time computing and component-based design.

It must thus satisfy requirements concerning all of these domains. The most important

requirements in such a model are:

(Real-time)

• Provide determinism and real-time performance;

• Provide real-time QoS guarantees;

• Provide compatibility with real-time requirements;

(Service-Oriented)

• Provide continuous and dynamic interaction between services;

• Provide support for service modelling and orchestration;

• Provided bounded response time for SOA framework operations;

• Perform rebinding if performance is not satisfactory or if faults are detected;

• Provide network interconnection transparency;

(Component-based)

• Provide support for horizontal and vertical component composition;

• Enable unit and element-level testing and debugging;

• Enable multi-element integration testing and debugging;

• Support multi-element interoperability;

• Support the scheduling of opaque and distributed elements;

• Provide distribution transparency;

(General-purpose)

• Provide Fault tolerance, recovery and isolation;

• Minimize manual configuration;

• Allow cost-effective functionality enhancement;

• Provide deployment support;

• Support automatic monitoring and management;

• Provide policy enforcement;

• Perform data collection;

3.1. Motivations 39

The three first requirements come from real-time applications. Deterministic real-time per-

formance can be measured in terms of latency (internal, when it references a single service,

or end-to-end, when it refers to service assembly), periodicity and predictability (in this case,

to ensure that a service invocation will be completed within a specific timing constraint).

The provision of real-time QoS guarantees requires performance estimation methods, such

as logical and quantitative model checking (verification), simulation, testing (validation)

and service scheduling analysis. It requires the enhancement of services with real-time at-

tributes, the expression of timing constraints and the characterization of workloads.

The next five requirements issue are from the service-oriented computing domain. The

model must support dynamic service deployment and reconfiguration, without downtime

and in bounded time. Other operations must react within timing constraints as well, such

as service discovery, management, assembly and validation. Through the model, developers

must be able to model real-time services and service orchestration. In addition, the model

must foresee automatic dynamic reconfiguration in case of fault detection or unsatisfactory

performance. Finally, services must be able to communicate with each other locally and

remotely, so abstractions to networks (and related aspects such as topology, protocol and

routing) must be provided [Tsai et al. 2006].

The six requirements that come next emerge from the component-based approach. Be-

sides supporting component composition, it is important to provide support for testing

and debugging components and components of components (hereafter called composites)

with different granularities. It is also important to take into account component dynamic

availability and distribution aspects in those tests. The model must be able to support

components developed with different technologies and provide abstract interfaces for the

communication between those components. Furthermore, it is important to consider that

components are opaque elements, that is, they must be deployed along with their services

without requiring further implementation details.

The last seven requirements are applicable to all applications. Fault tolerance and recovery

are important so that the availability, correctness and determinism of the system are not

compromised upon the detection of a fault or the violation of QoS requirements in a given

component. Fault isolation is important as well to avoid fault propagation to other com-

ponents. Frameworks supporting the model must be able to minimize human interference

and configuration, to avoid error-prone tasks, toreduce design time and to reduce costs. In

addition, it is desirable that the model (and implementing frameworks) may be extended

to support new technologies or protocols, for instance. For the same reason, it is important

to enable the automatic monitoring and management of components and resources, based

on policies that are defined by the developers and enforced by frameworks. A model must

also support deployment tasks and, if possible, help in the mapping of software resources

towards hardware resources respecting the components’ QoS requirements. In the real-time

applications context, deployment also means resource and network reservation, so that tem-

poral isolation is achieved. Finally, data collection may help to evaluate system performance

and, if necessary, modify properties on the model itself to improve predictability.

3.1.3 URSO main goals

URSO aims to provide a metamodel for developing real-time service-oriented components.

Metamodels are central to the Model-Driven Engineering (MDE). MDE principles are based

on two entities (system and model) and two relations (conformance and representation). A

model is a structure representing some aspects of a certain system and conforming to the

definition of another structure called metamodel. For instance, component models are

system models that focus on modularity aspects. Thus, metamodels are used to define and

40 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

express one or more models. Meta-relations are the relations between model elements and

metamodel elements (which are called meta-elements). Metamodels can be used to define

aspects of several models at once [Bézivin 2005].

Thereby, we have decided to reason at the metamodel level. This metamodel can be mapped

onto standard and extensible models. Moreover, developers can use several different com-

ponent models (and the tools available for those models) with some extra extensions in

order to address the real-time and/or service-oriented paradigms. URSO proposes as well a

methodology, indicating the actions that must be taken by all the actors (runtime, adminis-

trators and developers) for both logical and timing correctness of real-time service-oriented

application. Some framework implementation details must be provided too, in order to

parse the information, and deploy and manage the application accordingly to the meta-

model.

In short, these are the main objectives of the URSO component metamodel:

• Provide a technology-independent metamodel for flexible and modular real-time ap-

plications;

• And define a methodology to design, implement, deploy and execute real-time service-

oriented component-based applications.

In addition, it must be generic enough so that real-time and adaptive industry standard

component models may be easily conform to it by adding some extensions.

To illustrate the application of URSO, we have extended the AADL, UML-MARTE and

SCA models so that they are conform to our metamodel. As result, applications modelled

in one component model may be transformed into another to benefit, for instance, from

development and analysis tools support. They may also be developed in URSO and mapped

onto one or more component models to profit from its execution support.

3.2 URSO Concepts

In this section, we introduce the URSO metamodel. Each of its concerns is described in

detail in the following subsections. It is important to mention that the concerns are not

completely independent; some concepts are present in more than one concern (cross-cutting

concerns1). Since each concern corresponds to a different color, these cross-cutting concerns

are easily identified in the UML Class diagram due to the fact their colors correspond to

the different concerns they are present on.

First, we introduce basic aspects of the Deployment concern related to the platform in-

frastructure and hardware, such as resource and nodes definitions. Then, we present the

Assembly concern. It contains concepts related to application development, its decoupling

into components and services and the declaration of dependencies towards these services.

The Behaviour concern is presented afterwards, adding semantic restrictions and informa-

tion about the Service Operations that will be used to estimate their Worst Case Execution

Times (WCET). Then, we revisit the Deployment concern in order to add concepts that

allow mapping instances of the components presented by the Assembly concern, defining

service compositions and real-time tasks. Finally, we present some other aspects which are

more implementation-related but that must be taken into account as well when modelling

an application and conclude the chapter. Figure 3.1 depicts a taxonomy of URSO potential

1The term ‘cross-cutting concern’ is more often used in Aspect-oriented programming to represent an
aspect that affects more than one concern, like logging or authentication concerns. Here it is just used to
show a concept that is present in different concerns of the metamodel.

3.2. URSO Concepts 41

users. Six main categories can be identified: Modellers, which develop models for both hard-

ware and software entities; Developers, which produce artefact and code implementation

for the modelled entities; Deployers, which are responsible for grouping software implemen-

tations into deployable units and mapping them onto hardware entities; Analysts, which

may analyse the model created for different entities against their real implementation and

validate compositions against their constraints; Administrators, which can monitor both

application and platform at execution time and perform actions accordingly; and Execu-

tioners, which are going to instantiate the software entities on the target hardware and

execute them.

Figure 3.1: A taxonomy of potential URSO users.

Figure 3.2 summarizes the potential interactions of the actors with the model and modelled

entities. Although it is possible to infer the description of each use case through its name,

the reader may find more details in Appendix section A.2.

3.2.1 Deployment Concern

The most fundamental concept in URSO’s deployment concern is that of platform. How-

ever, before formally defining what a platform is, we must explain what it represents and

we must define some more basic concepts which are part of a platform’s definition.

A platform represents the infrastructure on which the framework, and consequently the

real-time service-oriented applications are going to be executed. A platform description

must include then the machines that are going to be used, the resources provided by these

machines, connections between these machines and information about platform configura-

tions.

3.2.1.1 Resources

We define resource as anything that can be provided or required by a model entity. Ex-

amples of resources are native libraries, the underlying operating system, available RAM

memory, available disk space and CPUs. Entities may be bound to resources in two differ-

ent ways: if the entity provides a resource, we consider this as a capability ; however, if it

42 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

Figure 3.2: Potential use cases for the URSO metamodel

requires a resource, it is considers as a requirement. A resource is qualified by its name, its

type and a set of resource properties, such as ‘Version’, ‘Vendor’, and ‘Quantity’.

Some resource properties are required for certain resource types: for instance, quantity is

required for the processor resource type. In addition, some other properties are automati-

cally managed for some resource types; for instance, the property available is automatically

updated by the platform as components reserve them during their deployment. Further-

more, some properties may make sense for one type of resource but not for another; e.g.

since a machine can only run a single operating system at a time, it is pointless to have a

property containing the number of available operating systems.

Here is a list of commonly used resource types and properties:

• Processor2: Processor’s usual properties are capacity (the total number of Proces-

sors), available (number of currently available Processors) and minimum (the mini-

mum quantity of available Processors required for the system to work). Additional

information can be added, like processor architecture and endianness;

• Memory and disk storage: Memory3 and disk use similar properties as those of Pro-

cessors. The main difference is the unit used to describe the resource (CPUs in

Processors, bytes in memory and storage);

• Operating system and native libraries: An operating system can be described by

means of its name and properties such as its Version or Memory Addressing Word

Size. Just like processors, extra information can be added, like target architecture.

2By processor, we mean a processor unit. In multi-core architectures, it corresponds to a processor core
3By RAM Memory, we refer to a memory space which is available to all processes in a machine. Thus

it does not include processor’s cache memory and other type of memories with limited visibility.

3.2. URSO Concepts 43

While some resources are unique to a machine, some others can be shared between machines

(e.g. shared memory, shared disk file system or network connections). The access to shared

resources is controlled according to an access protocol. This access protocol may define the

access as exclusive or not.

Our resource mechanism is based on OMG Deployment and Configuration specification

[Object Management Group 2006b] and it is considered mainly as a defensive strategy for

resource reservation. We do not consider in this thesis the time it takes for accessing a

resource (either local or remotely). Since we are focusing on service-oriented systems, it

would be possible to consider the access to resources as calls towards a platform service and

allow the platform to bound the execution time of this operation.

3.2.1.2 Machines, Nodes and Interconnections

A machine corresponds to the physical concept of computer: a device consisting of at least

one central processing unit and some sort of storage system, both used to execute a finite

set of operations. A node is a logical abstraction which refers to a machine or a part of it

(a subset of resources, for example). The main characteristics of a node is that its resources

are isolated (except if it contains a platform shared resource) from those of other nodes.

That means that node resource failures can not be propagated to neighbour nodes.

Machines communicate with each other by means of Interconnections. An interconnection

links two or more machines and is bound to one or more communication protocols.

Since we are dealing with real-time systems, communication delay and response time must

be bound and known by the platform. Thus, the platform can take them into account to

estimate execution times and perform feasibility analysis. Nodes connect with each other

by means of the interconnections of the machines that contain them. If a component in a

node wants to communicate with a component in another node through a specific protocol,

there must exist at least one interconnection between the machines containing these nodes

which supports that specific protocol.

3.2.1.3 Platform and Platform Modes

A platform corresponds to the physical infrastructure on which the URSO framework

will be deployed. A platform is formed by one or more machines and may contain several

resources. The runtime verifies that resources declared by machines and nodes are also

declared in the platform resources, and that their quantities do not exceed the amount of

available resources.

Platforms can declare policies, which can be applied to applicative components (for in-

stance, assigning a fail-stop policy to the non-respect of a service method input restriction)

and some technical components (e.g. scheduling policy). A policy is related to one or more

executed actions that can interfere on applicative components and in the platform itself.

A platform can have several predefined configurations: these configurations are called

modes. Platform modes have their own set of resources capabilities, policies and nodes,

which are subsets of those of the complete platform. Only one mode can be active at a

time. Transitions between nodes can entail: shutting down several nodes, halting their

tasks, stopping their components, and removing those components’ services from service

registries.

3.2.1.4 Definitions

We present here the definitions of the concepts presented above.

URSO Definition 1 (Resource). A Resource is a 3-uple

44 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

〈rName , rType , rProp〉,

where rName is a String-typed identifier, rType specifies its type and rProp is a set of

3-uples

〈name , value , type〉,

where name specifies a property name, value specifies a property value and type is a

ResourcePropertyType.

If we would like to describe a Linux operating system on a server, along with its Kernel

version, the Resource description would look like this:

〈‘Linux′ , ‘OS′ , {〈‘V ersion′ , ‘V ersion′ , ‘3.2.0− 33− lowlatency′〉}〉.

A Resource r: 〈rName , rType , rProp〉 is quantifiable if there are properties named

’Quantity’ and ’Available’ in its property set rProp4. For quantifiable Resources, it is

imposed that the quantity of available Resources of a given type must always be lower

than the declared total quantity, that is, the value of the ‘Available’ property must remain

smaller than the value of the ‘Quantity’ property.

There is a special type of Resource called Shared Resource. Its description follows the same

structure as that of normal Resources, but upon the requirement of a Shared Resource, a

given entity must specify an Access Protocol, which will establish rules for accessing this

Resource. Shared Resources and Access Protocols will be better detailed and explained

further, in the section ‘Revisiting the Deployment Concern’. Examples of Shared Resources

are files and shared memories. For instance, upon declaring a Virtual Machine, which

is a Resource shared by many applications and that can only be accessed as a reader, the

application deployment administrator may specify that Component Implementations access

the JVM Shared Resource as readers according to a “Concurrent access” Access Protocol.

URSO Definition 2 (Communication Protocol). A Communication Protocol is a 2-uple

〈pname , protocolProperties〉

where pname is a String and protocolProperties is a set of 3-uples

〈name , value , type〉,

where name specifies a property name, value specifies a property value and type is a

ProtocolPropertyType.

The protocolProperties field corresponds to the protocol QoS description. Among the

property types, we may find ‘Worst case throughput’, ‘Worst case delay’ and other non

functional aspects.

URSO Definition 3 (Interconnection). An Interconnection is a 2-uple

〈participants , supportedProtocols〉,

where participants is a set of two Machine names (String) and supportedProtocols is a

non-empty set of Communication Protocols supported by this Interconnection.

4Quantity and Available properties are comparable because they have the same Type (e.g. both must
have the type MemoryInMB, referring to Memory measured in MBytes or ProcessingUnit, referring to
processor cores. This will be clearer in the example depicted in the Section 3.3).

3.2. URSO Concepts 45

Interconnections represent a point-to-point connection between two machines in the

platform. In order to use a given protocol prot to bind two Components deployed in two

Machines m1 and m2, at least Interconnection must exist between both Machines (that is,

there must exist an Interconnection which has n1 and n2 in its set of Machine names), and

the protocol prot must be supported by this Interconnection (prot must be present in the

set of supported Communication Protocols supportedProtocol).

Since our restriction does not impose n1 = n2, this is also valid for binding two Components

in the same Machine. A platform must inform a default Communication Protocol, which

will be used when no Communication Protocol is informed. In addition, each machine must

have a local Interconnection (that is, an Interconnection where the two participants are

actually the same machine).

For instance, if the system administrator wants to describe that two machines A and B are

linked by an InfiniBand bus that supports IPoIB5 and SDP6, the corresponding Intercon-

nection would look like this:

〈{〈machineA , machine description〉 ; 〈machineB , machine description〉} ,

{〈IPoIB , IPoIB timing description〉 ; 〈SDP , SDP timing description〉}〉.

An Interconnection can uniquely identified by the elements of its participants set.

URSO Definition 4 (Node). A node is a 2-uple

〈name , capabilities〉,

where name refers to the node’s name (a String-typed identifier), and capabilities is a set

of Resources.

As mentioned before, a Node corresponds to a Machine or part of a Machine (e.g. a

set of processor cores or other resources). The set of Resource capabilities of a Node is a

subset of the Resource capabilities set of the Machine that contains it; in the case where

a Node corresponds to a Machine, both capabilities set (that of the node and that of the

machine) are equal. When a node does not contain any processing unit among its Resource

capabilities, it can not be used to deploy tasks.

URSO Definition 5 (Machine). A machine is a 3-uple

〈name , nodes , capabilities〉

where name is a String-typed identifier, nodes is a set of Nodes, and capabilities is a set

of Resources.

A Machine corresponds to a physical computer. Thus, its interconnections, which are

listed on the platform, are real links towards other machines with their supported protocols

and their timing properties (which are going to depend on real world physical factors such

as machines’ real position and the type of the wire used to link them)7.

URSO Definition 6 (Rule). A rule is a 2-uple,

〈name , expression〉,

where name is a String-typed identifier, and expression is a Boolean expression.

5IPoIB stands for IP over InfiniBand, it adds an Ethernet layer atop an InfiniBand bus
6SDP stands for Sockets Direct Protocol, it adds a socket layer atop an InfiniBand bus
7Clusters may emulated in the metamodel by adding an “abstract” machine which connects to all ma-

chines belonging to the cluster. Consequently, two clusters can be connected with each other by connecting
their corresponding “abstract” machines.

46 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

URSO Definition 7 (Action). An action is a 2-uple,

〈name , command〉,

where name is a String-typed identifier, and command is a machine-executable command.

The commands defined by an Action may refer to the variables used in the Rule expres-

sion and to environment variables.

URSO Definition 8 (Policy). A policy is a 3-uple,

〈name , rules , actions〉,

where name is a unique String-typed identifier, rules is a set of Rules, and actions is a set

of Actions.

Policies are used to indicate actions which must be taken automatically in case of certain

events. For instance, a fail-stop policy would look like this:

〈“Fail − Stop” , 〈“Fail” , platform.errorState = true〉 , 〈“Stop” , platform.stop()〉〉

where the first element of the policy corresponds to a Rule that queries whether the platform

is in an error state and the second element presents a command which can be used to stop

the platform. Policies are similar to the Event Condition Action (ECA) structure used to

express active rules in active databases and event-driven architectures [Dittrich et al. 1995].

URSO Definition 9 (Platform). A Platform is a 6-uple

〈machines , modes , policies , capabilities , currentMode , interconnections〉,

where machines is a set of machines, modes is a set of Platform Modes, policies is a

set of Policies, capabilities is a set of Resources, currentMode is a Platform Mode and

interconnections is a set of Interconnections.

We consider that the following properties must be met in a Platform:

• The platform currentMode field underline means that this field will be automatically

updated by the framework. The Platform administrator can use this field to indicate

an initial Platform Mode.

• The current Platform mode is always an element of the set of Platform Modes modes.

This predicate must be true despite platform dynamic mode changes;

• The Resources referenced by the Platform Machines (i.e. the Machines in the set

machines) must be present as well among the Platform Resources listed in the set

capabilities (just as the Nodes Resources must be a subset of its containing Machine

Resource).

• The total quantity of quantifiable Resources declared for all the Platform Machines is

not greater than the total quantity of Resources declared by the Platform that contains

them. In addition, at execution time, the total amount of available Resources at the

Machines of a Platform must correspond to the amount of available Resources of the

Platform and the current Platform Mode itself.

URSO Definition 10 (Platform Mode). A Platform Mode is a 6-uple,

〈name , isActive , machines , policies , capabilities , interconnections〉

3.2. URSO Concepts 47

where name is a unique String-typed identifier, isActive is a Boolean variable, machines

is a set of Machines, policies is a set of Policies, capabilities is a set of Capabilities and

interconnections is a set of Interconnections.

A Platform Mode must present the same properties present in Platforms concerning

Machines and Resources. In addition, only one Platform Mode can be active at the time,

that is, only the Platform Mode indicated by the Platform’s currentMode field must have

its isActive flag set to true; all the other Platform Modes must have this flag set to false.

This field is automatically updated by the platform.

An example of Platform Mode is the Static mode. In the Static mode, dynamic deployment

and dynamic adaptation are disabled. Thus, new Components can not be installed and

current Components can not be uninstalled or updated (just as the Architectural freezing

approach described in [Américo et al. 2012]). In addition, Service Implementations can

not be substituted in Service Compositions. This can be implemented by disabling the

technical component responsible for performing operations related to dynamic adaptations

and activating policies which fire errors in case of dynamic operations.

Another example of Platform Mode is an Energy saving Mode, in which only a subset of

Machines are activated. Energy saving can also be executed at hardware level, by decreasing

the processor frequencies and voltage and disabling only a subset of processor cores, but

this is feature not available in all processors and since URSO intends to be generic enough

to be executed on any hardware infrastructure, is not covered in this work.

The transition from one mode to another implies a reconfiguration phase, where some tasks,

nodes and components may be disabled, others can be included and many verifications can

be performed. Thus, this can not be done during the execution of critical/real-time tasks.

This transition/intermediary mode is started after the execution of all current tasks8.

3.2.1.5 Deployment Concern: UML Diagrams

A Deployment UML Class diagram depicting the concepts presented in this section can be

found in Figure 3.3.

As stated before, the main element of this diagram is that of Platform. A Platform is com-

posed by Machines, Platform Modes (which are themselves platform descriptions), Resource

capabilities and Policies. Machines are composed by at least one Node. Interconnections

link Machines and Nodes and may offer the support of several Communication Protocols.

The communication in each protocol must be qualified, so that the platform may take com-

munication delay into account in worst case execution time calculations. Given an active

Platform Mode, its provided Resources can be scattered through its different Machines, and

consequently, Nodes. These Resources can be qualified as well, allowing the framework to

reserve them in advance and avoid the introduction of non-deterministic waiting in applica-

tive components’ execution. The Platform and its Platform Modes also provide Policies,

which can be associated to other concerns’ entities (which will be further detailed), enabling

the Platform to properly respond to unexpected events.

An Activity diagram showing a methodology to create the platform description as well as

the actions executed by the framework to process this description is presented in Figure 3.4.

First, platform administrator must describe the platform in terms of Resources, Commu-

nication Protocol support and policy Actions and Rules. The Resource description is then

used to describe the Platform Modes and its Machines and Nodes. Interconnections must

be used to link Machines in a Platform Mode, having in mind that they must have at least

one Interconnection (with itself). Policies can then be created. Communication protocols

8In the case of periodic tasks, its periodic behaviour is disabled.

48 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

Figure 3.3: URSO Component metamodel - Deployment concern concepts

are associated to Interconnections and in the end we have a Platform description, which is

used as input for the framework start. Before starting, the framework performs validations

on Platform Modes, Machines, Nodes and declared Resources, according to the properties

listed in their respective definitions. It is important to mention that in this initialization

phase, the framework is already executing in the described Platform. Special attention

must be paid to the fact that the framework itself does not perform any verification on

the Resources to ensure, for instance, that the declared number of processors matches with

the total number of cores in the machines. However, modifications can be performed in the

framework in order to perform such tasks. In addition, technical components responsible for

3.2. URSO Concepts 49

Figure 3.4: URSO Component metamodel - Platform definition

parsing and verifying the platform description must already be installed before applicative

components9.

3.2.2 Assembly Concern

While the Deployment concern contains concepts related to infrastructure lower levels, the

Assembly concern concepts are in the highest abstraction level. These concepts are used to

model the application architecture in terms of components, composites, service provision

and service dependencies. Services and dependencies are bound to a service description,

which can be seen as a contract, containing a list of operations that are or must be provided

by the service provider Implementations.

3.2.2.1 Services, Dependencies and Bindings

URSO is a service-oriented component metamodel, thus URSO components interact by

means of Services. Services are identified by a name and are associated to a Service De-

scription and a list of Service Properties. Both Service Description and Service Properties

are published in Service registries upon the instantiation of their providing Component in

the Platform.

A Dependency towards a given Service Description means that a service provider Imple-

mentation for this Service is required by the Component. Just as Services, Dependencies

are identified by a name. They also have a Multiplicity and may declare a Service Ranking

function to filter and rank the candidate service provider Implementations. Depending on

its Multiplicity, a dependency may be optional/simple ([0, 1]), optional/multiple ([0, ∞)),

mandatory/simple ([1, 1]) or mandatory/multiple ([1, ∞)).

The link between a Service and a Dependency is called Binding. A Binding may be static

or dynamic. A static Binding means that once a Service is linked to a dependency, this link

9Technical components are discussed in the Section 3.2.5

50 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

will not be removed, unless the Components responsible for providing or consuming the

Service are stopped. In dynamic Bindings, the service provider may be modified during the

application execution. In the Platform Modes that enable application reconfiguration, the

framework will try to satisfy dynamic Dependencies with the best ranked available Service

Implementations for them. As Components can be dynamically started in the Platform,

the publication of Services in the Service registries changes the set of available Services,

potentially adding Implementations which are best ranked than the available ones for a

given Dependency. Bindings are associated to Communication Protocols, which are also

present in the Deployment concern and were presented in a previous section. Cross-concern

concepts like Communication Protocols are very important for putting all concepts together

without mixing different concerns.

3.2.2.2 Service Descriptions

Service Descriptions are defined as a list of Operations, along with its Parameters and Re-

strictions10. They can be used for both publishing and retrieving Services; when the list of

Operations of a Dependency Service Description is contained in a published Service Descrip-

tion (i.e., there is a Service Description which contains at least the same set of operations),

the framework considers that the published Service matches the Service Dependency.

An Operation contains a list of Parameters. These parameters can be classified as input or

output. Inputs and outputs are associated to types, which are described in the Platform.

This type qualification contains information such as the size of objects of this type, which is

important for estimating worst case execution times. Operations will be further discussed

in the ‘Behaviour concern’ section.

3.2.2.3 Components, Composites and Compositions of Services

Components are the software units that provide and require Services. They can be grouped

into Composites. In turn, these Composites can be used as Components inside other Com-

posites, making URSO a hierarchical component metamodel. Each Composite has an in-

ternal service registry, which lists the Services published by its Components. In order to

make an internal Service visible to other same-level Composites (or to search Services in

same-level Composites to satisfy internal Dependencies), a Service (or Dependency) must

be exported (imported, in the Dependency case).

Components may be qualified by means of properties and they can have several Imple-

mentations in different technologies (Java classes, BPEL processes, C applications, Python

scripts, and so forth).

Service Compositions reunite Services in order to mediate them and perform a business

function upon some data. They are going to be assigned to tasks and executed. Depend-

ing on the language used to describe a Service Composition, the corresponding executable

code can be automatically generated by the platform. Despite its similarity, Composites

and Service Compositions can be developed independently. Service Compositions repre-

sent a horizontal service composition (a composition over time, just as business process),

whereas Composites are vertical component compositions (a hierarchical composition and

subcontracting of modules, as present in component models such as SCA or AADL).

3.2.2.4 Definitions

This section presents some formal definitions for the concepts introduced above.

10Restrictions correspond to Pre-conditions, Post-conditions and Invariant predicates defined over Oper-
ation Parameters. They will be explained in detail in the Behaviour concern section.

3.2. URSO Concepts 51

URSO Definition 11 (Service). A Service is a 5-uple

〈name , description , properties , bindings , dependencies〉

where name is a unique String-typed identifier, description is a Service Description, prop-

erties is a set of Service Properties, bindings is a set of Bindings and dependencies is a set

of Dependencies.

A Service corresponds to a provided functionality. It is identified by a name and contains

a Service Description with its lists of operations, a set of Service Properties which qualifies

the Service and helps other Components to filter Implementations, and a set of Bindings to

inform the supported protocols for a given Service. Depending on the protocols supported

by a Service, its publication can be done in different ways (for instance, a Web Service-

typed Service will be published using UDDI or WS-Discovery, whereas a Java Service can

use OSGi-like service registries). The set of Dependencies is used to inform Service-level

Dependencies, that is, which Dependencies must be satisfied before the Service is published.

That allows a Component to only stop a subset of Services if one of its optional Dependencies

is not satisfied.

URSO Definition 12 (Service Property). A Service Property is a 2-uple

〈spName , spV alue〉

where spName is a unique String-typed identifier and spValue is a String.

The Service Property name is an unique ID due to the fact that a Service cannot be

declared with two properties having the same name and different values. Despite the fact

that Service Property values are String, they can be converted to other value type in order

to perform comparisons and to assign a rank for number-type Service Ranking functions.

URSO Definition 13 (Dependency). A Dependency is a 5-uple

〈name , description , multiplicity , ranking , bindings〉

where name is a unique String-typed identifier, description is a Service Description, mul-

tiplicity is a Multiplicity, ranking is a Service Ranking function and bindings is a set of

Bindings.

A Dependency is identified by its name and contains a Service Description listing the

Service Operations required by the Component, the Multiplicity of this Dependency, the

Service Ranking function that will filter the available Service Implementations, and a set of

Bindings that will inform the set of Communication Protocols supported by the Dependency.

URSO Definition 14 (Service Ranking function). A Service Ranking Function is a String-

typed expression which, when parsed, can be considered at the same time as a filter and a

sorting function for service provider Implementations.

A Service Ranking function is considered as a filter when it compares a property value

against another value. For instance, in functions like fps > 25 or location = "under-

ground", all services whose properties match these criteria are considered as equal. An

example of sorting function could be max(fps), which picks all the service provider Imple-

mentations which have a property called fps and sort them in a way that the highest fps

value is the first of the list, the second highest value is the second and so forth.

Pre-defined operators for ranking Service Properties are max, which arrange data in a high

to low sequence (descending sort), and min, which does the opposite (ascending sort). Com-

parison operators for filtering are the ‘equal ’ (=), ‘not equal ’ (! = or 6=), ‘less than’ (<),

52 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

‘greater than’ (>), ‘less than or equal to’ (<= or ≤) and ‘greater than or equal to’ (>= or

≥) operators. Different expressions can be assembled by using the logical operators ‘and ’

(&) and ‘or ’ (|). Expressions can also be negated by using the operator ‘not ’ (! or ¬).
Dynamic service ranking is discussed in details in [Bottaro & Hall 2007].

URSO Definition 15 (Multiplicity). Multiplicity is a String-typed enumeration which

can assume the following values:

• ‘0..1’;

• ‘1..1’;

• ‘0..*’;

• and ‘1..*’.

Multiplicities starting by zero are called optional ; those starting by one are calledmanda-

tory. Optional Dependencies do not need to be satisfied to validate the Component; manda-

tory Dependencies must be satisfied in order to enable the Component to start. If Services

declare optional Dependencies as Service-level Dependencies, the fact that the latter are

not satisfied will only impact the Services that depend on it; thus the whole Component

does not need to stop.

Multiplicities ending by one are called simple; those which end by the star sign are called

multiple or aggregated. A simple Dependency means that only the best ranked service will

be used to satisfy the Dependency, while in multiple Dependencies, all the service provider

Implementations which satisfy the criteria defined by the ranking and filter function will be

injected.

URSO Definition 16 (Binding). A Binding is a 3-uple

〈services , dependency , isDynamic , cProtocol〉

where services is a set of Services, dependency is a Dependency, isDynamic is a Boolean

variable and cProtocol is a set of Communication Protocols.

The service and dependency fields are assigned by the framework itself. Depending on

the value of the isDynamic field, services may assume different values in the same execution.

Communication Protocols can be assigned to a Binding; if none is assigned, the framework

uses the Platform’s default Communication Protocol.

URSO Definition 17 (Service Description). A Service Description is a 2-uple

〈name , operations〉

where name is a unique String-typed identifier and operations is a set of Service Operations.

A service provider Service Description SD1 is considered as a match to a service consumer

Service Description SD2 if SD2’s set of operations is contained in SD1’s set of operations.

A common Communication Protocol must also exist among both Service and Dependency.

These matches are then filtered and ranked according to the Dependency Service Ranking

function.

URSO Definition 18 (Service Operation). A Service Operation is a 4-uple

〈name , parameters , instructions , restrictions〉

3.2. URSO Concepts 53

where name is a unique String-typed identifier, parameters is a list of Parameters, instruc-

tions is a list of Instructions and restrictions a set of Restrictions.

Service Operations are the main elements of Service Descriptions. They usually represent

the concept of subroutine in computer programming. In this work, we are going to focus

on the imperative programming paradigm and consider that they will be mapped onto

callable units, like Java methods, Python functions and Pascal procedures, but they can

also represent data service operations, such as reading and writing data entities, and event-

based operations, like event publication and handling.

Service Operations will be further discussed and detailed in the Behaviour concern section.

URSO Definition 19 (Component). A Component is a 5-uple

〈name , services , dependencies , implementations , properties〉

where name is a unique String-typed identifier, services is a set of Services, dependencies

is a set of Dependencies, implementations is a set of Component Implementations and

properties is a set of Component Properties. The element implementations is optional.

Components may be used to qualify a family of implementations. An application de-

veloper may create a component with no implementation to indicate a family of imple-

mentations. Then, during the description of the Component Implementation, only has to

indicate the name of the Component it is implementing and the other Component elements

(Services, Dependencies and Properties) are automatically inferred.

The Services provided by Component are, by default, only visible to other Components

inside the same Composite. The same is valuable for Component Dependencies. In order

to make the Services visible to other Composites, or to get Services published by other

Composites, Services and Dependencies must be exported and imported, respectively.

URSO Definition 20 (Component Property). A Component Property is a 2-uple

〈cpName , cpV alue〉

where cpName is a unique String-typed identifier and cpValue may have any value.

Depending on the technology used to implement the component, these properties can

be injected in the Component Implementation objects upon their instantiation.

URSO Definition 21 (Component Implementation). A Component Implementation is a

3-uple

〈language , implementationPath , componentName〉

where language, implementationPath and componentName are String-typed fields.

A Component Implementation corresponds to a real implementation artefact for a com-

ponent. The implementationPath must point to a file containing the Implementation’s

object code. It can be a Java class for a Java implementation, a C object code for C imple-

mentations, Code objects for Python Implementations or even code in Assembly language.

From this object code, the framework will be able to estimate the worst case execution time

for the provided services. The componentName field makes reference to the implemented

Component.

URSO Definition 22 (Exported Service). An Exported Service is formed by a reference

towards a child Component Service or a child Composite Exported Service.

The Service referred by an Exported Service becomes visible to other Composites in

the same level of the application architecture. This is implemented by multiple levels of

service registries: A Composite Cn, Composite0
11 has an internal service registry in which

11This notation exprimes a Composite named Composite0 at the nthlevel in the application architecture.

54 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

all non-exported Services provided by its Components are published. When Cn, Composite0

exports a Component Service, this Service is seen as a Service provided by Cn, Composite0

itself; it is then visible to other Composites Cn, *
12 that are children of the same Composite

Cn-1, Composite1. This Composite Cn-1, Composite1 may, in turn, export Services from the

Composites that form it, making it visible for all Composites Cn-1, * that are children of

the same Composite Cn-2, Composite2 and so forth.

Hierarchical and scoped service registries were introduced by Cervantes and Hall along with

the concept of service-oriented component models [Cervantes & Hall 2004].

URSO Definition 23 (Imported Dependency). An Imported Dependency is formed by a

reference towards a child Component Dependency or a child Composite Imported Depen-

dency.

Similarly to Exported Services, Composites may look for other Composites’ Services to

satisfy a given Dependency. In order to do so, an Imported Dependency referring to that

Dependency must be created, meaning the given Dependency is somehow promoted to be a

Dependency of the parent Composite. A Composite can then query for Service Implemen-

tations for that Dependency in the service registry in which the other child Composites of

its parent Composite (what may be considered as its ”brother”Composites) have published

their Exported Services.

The act of importing a Dependency or exporting a Service is called Promotion, because it

promotes the Service or the Dependency so that it becomes a part of a higher-level compos-

ite. Figure 3.5 exemplifies the Service and Dependency promotion mechanism. Provided

services are represented by circles, and required services are represented by half-circles of

the corresponding color13. Inside the Composite C0, the Services S2 and S3 provided by

the components A and B respectively are not promoted. Thus, they are published in the

local service registry, where the Dependencies D1 and D2, that were not promoted either,

can get bound to them. The Service S1 and the Dependency D3 were promoted; so they

become part of the Composite C0 and they can be seen outside. The Composites C0 and

C1 are both included in a bigger Composite named C2. The Service S1 provided by C0 is

promoted inside the Composite C2; however, the Service S2 is not, so it is published inside

Composite C2’s service registry and is used to satisfy C0’s Dependency D1. The Compos-

ite C2 promotes the Composite C1’s Dependency D2 too. The Composites C2 and C3 are

not included inside other composites; they are directly installed in the URSO Framework.

Thus, their provided Services are published in the global service registry.

URSO Definition 24 (Composite). A Composite is a 5-uple

〈name , components , composites , impDependencies , expServices〉

where name is a unique String-typed identifier, components is a list of Components, com-

posites is a list of Composites, impDependencies is a set of Imported Dependencies and

expServices is a set of Exported Services.

In URSO, applications must be modelled as non-empty Composites (that means, com-

ponents or composites lists must be non-empty) with a set of Promoted Services and Refer-

ences, in case the developer wants the Composites to interact with each other. Composites

introduce a notion of scope in URSO. Services or Dependencies that are not explicitly im-

ported or exported can not be seen by other Composites. However, it is not necessary for

12This notation designs all composites at the nthlevel of the application architecture with any ID.
13This notation is based on UML’s notation for implemented interfaces and will be used in this document

to represent the service-based aspect in applicative systems.

3.2. URSO Concepts 55

Figure 3.5: Service Registries in a Service-Oriented Hierarchical Component Model

a Composite to have an existence at run-time. Since URSO is a service-based model where

Services are the only mean for entities to communicate, and Services follow the promotion

and non-promotion rule for publishing and querying, there is no need to implement extra

mechanisms to avoid Composites to interact with each other without the consent of the

framework.

URSO Definition 25 (Service Composition). A Service Composition is a 3-uple

〈name , composition , usedServices〉

where name is a String-typed identifier, composition is a String and usedServices is a set

of Imported Dependencies.

A Service Composition can be seen as a Composite which only has Dependencies to-

wards other Services present in the global service registry. Service Compositions will be

assigned to active (i.e. executable, with their own control flow) entities of our system.

A composition C can be created using the following grammar, which is based on a subset

of the BPEL* language introduced and formalized by [Luo et al. 2008]14

14BPEL was used as language reference due to the fact that it is was standardized and adopted by
major IT industry vendors for describing business process as a service composition. Well before BPEL,

56 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

C ::= 〈A , F 〉

A ::= ε | A ; A | if b then A else A | x := n | invoke a x y | throw | A ‖ A | wait tr | waitUntil

ta | onEvent e do A | fireEvent e | while b do A | do A n times

F ::= A

A Service Composition is composed by an Activity A and a Fault Handler F. In turn,

Activities are composed by several sub-activities that can be grouped to express complex

service composition behaviours. Whenever a throw activity is executed in a Service Com-

position, the control flow is asynchronously transferred to the group of activities indicated

in the Fault Handler activity.

The ε is a NOP (No Operation) instruction - it corresponds to BPEL’s empty activity. The

“;” operator between two activities means that the referenced activities must be executed

sequentially, that is, in A ; B, the activity B will be executed upon the termination of activ-

ity A. The if activity evaluates a boolean condition and, if its value is true, it executes the

activity referenced after the then statement; else, it executes the activity referenced after

the else statement. The “:=” operator is used to assign the value of the expression on its

right side to the variables indicated on its left side. The invoke a x y activity invokes the

Service Operation indicated in a, passing x as input variable and receiving in y any possible

return value. The “‖” operator is used to indicate parallelism between two activities - the

framework is supposed to execute both concurrently and wait for the termination of both

control flows. Wait and waitUntil allow developers to make the composition to pause

its execution for a given duration, informed in relative time (wait) or until a given date,

informed in absolute time (waitUntil). The onEvent e do A activity allows a service com-

position to wait until a given event identified by e occurs - then it will execute the activity

informed after the do statement. FireEvent e is the activity used to fire the events that

are handled by the onEvent activity. Finally, the While and Do n times are activities

used to create indefinite and definite loops, respectively. All these activities correspond to

real constructs in BPEL. A table showing the correspondences is presented in Table 3.1.

It is important for the framework to be able to bound the execution time of a service com-

position in order to perform scheduling analysis. Thus, it is important to estimate the worst

case execution time for every service composition activity in our composition language.

The worst case execution time for a composition is bound by the sum of the execution

time of both group of activities contained in a normal execution and in the fault handler.

This situation can be seen in a composition whose last activity is a throw. Thus, for a

Composition C = 〈A , F 〉, WCET(C) = WCET(A) + WCET(F).

The WCET for the ε activity is considered as negligible, since nothing is executed.

The WCET for the sequential activity composition A1;A2 is the sum of both WCET(A1)

and WCET(A2), since both activities are executed.

The WCET from an If b then A1 else A2 activity is the sum of the time it takes to evaluate

the boolean expression b plus the maximum WCET between both activities A1 and A2.

The WCET from an assignment “x := n” is bound by the time it takes to evaluate the

expression n plus the WCET of the transfer of the number of bytes defined for the type of

n to the position where x is stored in the memory.

The WCET from an invoke a x y activity is defined by the sum of the transfer time for

the in/out parameters x and y, and the WCET of the operation defined by a, which was

estimated in the Behaviour concern and is present among the Service Operation parameters.

many other languages were already well known for describing processes, notably process algebras such
as C.A.R. Hoare’s Communicating Sequential Processes (CSP) [Hoare 1978] and Bergstra’s Algebra for
Communicating Processes (ACP) [Bergstra & Klop 1982].

3.2. URSO Concepts 57

Activity BPEL-like Activity
ε empty

A1;A2 <sequence><A1><A2></sequence>
if b then A1 else A2 <if><condition>b</condition><A1><else><A2></if>

x := n <assign><copy><from variable=“x”>
<to variable=”n”></copy></assign>

invoke a x y <invoke operation=”a” inputVariable=“x” outputVariable=“y”/>
throw <throw />

A1 ‖ A2 <flow><A1><A2></flow>
wait tr <wait for=“tr>

waitUntil ta <wait until=“ta>
onEvent e do A <onMessage partnerLink=“e”><A></onMessage>

fireEvent e <reply partnerLink=“e”/>
while b do A <while><condition>b</condition><A></while>
do A n times <forEach><startCounter>1</startCounter>

<finalCounter>n</finalCounter><A></forEach>

Table 3.1: Mapping towards BPEL activities

A throw activity just signalizes a control flow transfer thus its execution time is negligible.

The WCET of the parallel composition activity A1 ‖ A2 actually depends on the platform

thread scheduling policy. In the worst case, we may consider that both threads must share

a processing unit and that the scheduler has decided to first execute a complete activity

before executing the other (for instance, using a run-to-completion [Chiang et al. 1994]

scheduling algorithm). In that case, the parallel composition works just as a sequential

composition, and its WCET is defined by the some of the WCET of both activities A1 and

A2.

The wait tr activity establishes a relative time during which the framework must wait.

The WCET of this activity is thus tr. The waitUntil ta activity provides an absolute wait

time. If this absolute time is ahead of the current time, then the WCET is defined by the

difference between ta and the current time. Else, this instruction is ignored and its WCET

is negligible.

Firing an event by means of a fireEvent e1 activity requires the framework to look for all

the subscribers of the event e1 and to inform them all that their execution can be carried

on (the event firing is not kept in memory, so it is cleared as soon as all its handlers are

executed). That mechanism can be implemented by means of special partner links based on

event names and asynchronous messages sending. So the WCET of this instruction depends

on the number of subscribers for the event e. Calculating the WCET for the onEvent e2
do A activity is even more complicated: the service composition is registered in memory

along with the event it handles, and then its execution is suspended. Besides calculating

the WCET of the activity A, it is not possible to foresee when the event e2 will be fired.

For both cases, a timeout must be stipulated. Thus we consider that the platform has an

environment variable activityTimeout which informs how long the platform should wait for

the completion of that activity. If the execution of the activity exceeds the timeout defined

by the platform, its execution is interrupted and a throw activity is automatically executed,

transferring the control flow to the fault handler. So for both activities, activityTimeout is

the WCET. The same strategy is used to bound the WCET in the While b do A activity.

Instead of defining a timeout, we use another environment variable called activityMaxLoop

and we keep count of the number of times the loop is executed. The WCET in that situation

is then the maximum value between activityMaxLoop * WCET(A) and activityTimeout.

58 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

A ‘do A n times’ activity works just like a ‘for’ instruction in imperative programming

languages: n is evaluated and the resulting value is used to bound the number of times

the loop is executed. Thus, its WCET is the sum of the evaluation time for the expression

n plus WCET(A) plus the WCET of the instruction used to update the counter variable

multiplied by the maximum value between n and activityMaxLoop.

The WCET of the service composition activities is summarized in Table 3.2. 15,16,17

Activity Estimated Activity WCET
ε 0

A1;A2 WCET(A1) + WCET(A2)
if b then A1 else A2 eval(b) + max(WCET(A1), WCET(A2))

x := n eval(n) + transferTime(n)
invoke a x y transferTime(x) + WCET(a) + transferTime(y)

throw 0
A1 ‖ A2 WCET(A1) + WCET(A2)
wait tr tr

waitUntil ta if ta > current time, ta - current time; else, 0
fire e activityTimeout

onEvent e do A activityTimeout + WCET(A)
while b do A activityMaxLoop * (eval(b) + WCET(A))
do A n times eval(n) + max(n, activityMaxLoop) * (WCET(A) + update(counter))

Table 3.2: Estimated WCET for Service Composition Activities

3.2.2.5 Assembly concern: UML Diagrams

A UML Class diagram depicting the concepts of the Assembly concern is presented in Fig-

ure 3.6. As mentioned in the previous section, an application developer must design its

application in terms of Services, Components, Composites and composites of Composites.

These Services are going to be used in Service Compositions, which represent business

functions. Since Implementation artefacts are linked to Components, only Components

may implement Services and require Dependencies. Implementations are related to the De-

ployment concern due to the fact that the framework must know its requirements in terms

of Resources (that is the reason why the Component Implementation class has a yellow

projection behind it - yellow is the color used in the Deployment concern class diagram).

Composites can promote Components’ Services and Dependencies in order to make it vis-

ible to other Composites; otherwise, the Services are only seen by other Components (or

Composites) in the same Composite, and only these Services can be used to satisfy non-

promoted Dependencies. Services and Dependencies are linked by Bindings, which are

associated to Communication Protocols. These protocols are the same that were described

in the Deployment concern. In order for a Service to match a Dependency three criteria

must be met:

• The set of operations of the Dependency Service Description must be included in the

service provider’s Service Description.

15In the table, we call eval(n) the time needed to evaluate an expression. A timeout can be stipulated
for the expression evaluation, just as for unbound loops.

16Where transferTime(n) = time to transfer a byte * number of bytes indicated as size in the type
descriptor for the type of n

17Update(n) is the function that updates/increments the counter variable of a definite loop or iterator.

3.2. URSO Concepts 59

Figure 3.6: URSO Component Model - Assembly concern

• There must exist at least one common Communication Protocol between the Service

and the Dependency Bindings.

• If the Dependency has a Service Ranking function, and this function uses a filter

operator, the evaluation of the Service Ranking expression for the service provider

properties must result true.

Service Descriptions are made of Service Operations. These operations have a name, a

list of Instructions which is automatically retrieved by the framework, input and output

60 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

parameters and restrictions associated to them. Service Operations will be better discussed

in the Behaviour concern section.

Service Compositions are used to aggregate Dependencies towards Services to perform a

business function. Just as in its Component counterpart, Service Compositions are able to

filter the Services Implementations used in its invoke activities.

The UML Activity diagram in Figure 3.7 shows a part of the process of creating applica-

tions using the URSO metamodel. The definition of real-time tasks was not detailed, as it

is related to another concern. This will be further discussed when the complete Deployment

concern is presented. As stated before, the developer may independently develop Service

Descriptions, Component descriptions and Service Compositions. A Component Implemen-

tation depends on the Component contract it must respect and on the Service Descriptions

of the Services it provides or requires. Services Descriptions are also inputs for defining

Service Compositions, which can be associated to Business real-time Tasks. Business Tasks

will be discussed when we revisit the Deployment concern later on.

Figure 3.7: URSO Component Model - Component Development

3.2.3 Behaviour Concern

The Behaviour concern is composed of concepts related to the real-time characterization

of Component Implementations and their Service Operations. This layer will also include

concepts which are more platform specific, such as execution times and low-level instruction

sets.

3.2. URSO Concepts 61

3.2.3.1 Service Operations, Parameters, Restrictions and Instructions

Service Operations are the main part of Services. They correspond to callable units, such

as procedures, methods and functions, in different programming languages. Service Oper-

ations may contain parameters, that is, variables used to input and output values. These

parameters have a type and may have restrictions associated to their value before, during

or after the operation call. The list of Service Operation instructions corresponds to its

implemented code in an assembly-like language. Each language has its different set of in-

structions, but some instruction types are present in all languages. The framework inspects

the implementation object code and from that it constructs an oriented graph representing

the possible control flows paths and their instructions. Then, if the platform knows the

execution time of each instruction in a given infrastructure, it is possible for the framework

to estimate a partial worst case execution time. This execution time is said to be partial

because the Service Operation code may contain Service calls, and the framework does not

know before the execution which Service Implementation is going to be used by this Op-

eration. Once it has resolved all Component Dependencies, it may then estimate the total

worst case execution time, which will be the path in the control flow graph that results in

the highest execution time.

3.2.3.2 More about Policies

Policies are actions which are automatically taken by the platform when activated by a

given event. This event can be specified by means of Rules, which are logical expressions

over variable values. This variable may be a Service Operation Parameter or a framework

environment variable. When Policies are linked to Restrictions, the Restriction expression is

used as a rule for the Policy activation. Actions are defined by commands. The framework

must be able to parse these commands and execute them. Thus, it is recommended for the

framework developer to specify environment variables and standard commands (for stopping

components, composites, or the whole platform, for instance). Policies were already defined

and presented in the Deployment concern section.

3.2.3.3 Definitions

URSO Definition 26 (Parameter). A Parameter is a 2-uple

〈name , type〉

where name is a unique String-typed identifier, and type is a Type.

A type must be described in the platform beforehand. A type description contains

information such as the type name and the size in bytes of the objects in this type. There

are two categories of Parameters: Inputs and Outputs.

URSO Definition 27 (Restriction). A Restriction is a 3-uple

〈name , expression , policies〉

where name is a unique String-typed identifier, expression is a String and policies is a set

of Policies.

A Restriction is a special type of Rule. There are three different categories of Restric-

tions: Preconditions, Invariants and Postconditions. Preconditions predicates are evaluated

before the execution of the Service Operation, whereas Postconditions are evaluated after its

execution. If a Pre or postcondition predicate indicated by the field expression is evaluated

62 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

to false, the Actions expressed by the Policies contained in the set policies are executed.

Invariants are predicates which are evaluated during the execution of a Service Operation.

Like pre and postconditions, if the Invariant expression is evaluated to false during the exe-

cution of the Service Operation, the bound Policies’ Actions are executed. For performance

issues, the framework developer may decide to evaluate the Invariant expression before the

Service Operation call and then periodically during its execution; he may also consider that

if the condition is false in the beginning of the execution, then its value does not need to

be monitored (like the evaluation of an implication statement - if expression was true then

expression remains true).

URSO Definition 28 (Instruction). An Instruction is a 2-uple

〈name , duration〉

where name is a String and duration is an Integer. Both values are automatically assigned

by the platform.

Instructions are abstractions for the low-level object code instructions. They can then

be grouped into different categories, depending on their functionality. Despite the fact that

the object code instructions set may vary a lot from technology to technology, three types

of instructions are very often present:

1. Arithmetic instructions, e.g. mathematic and bitwise operators;

2. Jump type instructions, e.g. conditional and unconditional control flow transfer; and

3. Memory manipulation instructions, e.g. value storage and retrieval in the computer

memory.

Figure 3.8 shows a taxonomy of Java byte-code instructions set. Many of the features

present in the Java programming language are visible in its byte-code instruction set (e.g.

exception handling, object-orientation and synchronization over attributes and methods).

In addition, due to the fact that the Java byte-code computation model is stack-oriented,

instructions to manipulate the stack are provided as well. The list of instructions from a

Service Operation is automatically created by the framework. After the framework starts,

but before the installation of business components, the platform administrator must use a

sample program in order to allow the platform to estimate the worst case execution time

for all low-level instructions in that hardware infrastructure. This value is then used to fill

the field duration of Service Operation Instructions.

URSO Definition 29 (Service Operation). A Service Operation is a 7-uple

〈name , maxLoops , maxRecDepth , restrictions , parameters , instructions , RTParams〉

where name is a unique String-typed identifier, maxLoops and maxRecDepth are integers,

restrictions is a set of Restrictions, parameters is a list of Parameters, instructions is a

list of Instructions automatically filled by the framework and RTParams is a Real-Time

Operation Parameter automatically managed by the framework as well.

MaxLoops andmaxRecDepth are variables in which the application developer informs the

maximum number of loops and maximum depth recursion in the Operation. These values

help in the estimation of the worst case execution time (WCET). The RTParams attribute

contains data used for the WCET of the whole Service Operation and is automatically

updated upon Service provider changes.

3.2. URSO Concepts 63

Figure 3.8: Taxonomy of Java byte-code instructions

URSO Definition 30 (Real-time Operation Parameter). A Real-time Operation Param-

eter is a 2-uple
〈partialWCETExpression , totalWCET 〉

where partialWCETExpression is a String and totalWCET is an Integer. Both attributes

are automatically managed by the framework.

Real-time Operation Parameters contain data used for the framework to recursively

estimate the WCET of complete applications. The partialWCETExpression is calculated

based on the Service Operation Instructions and the information about loops and recursion

maximum depth. It represents a function depending on Service calls. Once the Component

containing the Service Operation has its Dependencies resolved, this function is evaluated

based on the totalWCET of the consumed Service Operations.

The calculation of the partialWCETExpression is performed in two steps. First the frame-

work transforms the list of Instructions into a control flow graph. The edges of this graph

are weighted with the sum of the duration of Instructions that are executed sequentially.

These edges are also labelled with one of three possible values:

• DIRECT, if the sequence of Instructions that follows can be achieved without passing

by a control transfer instruction;

• IF, if the sequence of Instructions that follows is achieved through a conditional control

transfer instruction; and

• GOTO, if the sequence of Instructions that follows is achieved through an uncondi-

tional control transfer instruction.

An algorithm to obtain the control flow from a sequence of Java byte-code instructions is

presented in pseudo-code in the next pages. The structures used to keep information in this

algorithm are presented in the Algorithm 3.1.This algorithm targets Java byte-code and its

stack-oriented programming model, but it can be easily modified to target object code with

64 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

less complicated programming models.

Each node in the control flow graph contains a name, which corresponds to the name of

the label it represents in the object code. Nodes also contain a set of parent nodes’ name,

that is, the name of the nodes that can reach it in the direct graph. It is important to keep

that list in a data structure, as it will help the algorithm to identify loops in the object

code. It knows that a node is inside a loop when the set of parent nodes’ names includes

its own name. Nodes also contain a list of edges towards other nodes. In turn, an edge is

characterized by the node it is pointing to, an edge type (that can be DIRECT, GOTO or

IF) and a cost. Nodes also contain a flag that indicates whether it is inside a loop or not.

If they are, another variable indicates the depth of the loop it is contained in (for instance,

a node outside a loop would have its depth variable set to zero, whereas a node inside a

‘for’ instruction block would have it set to one). Nodes contain a list of instructions which

are sequentially executed in the code. These instructions will be used to estimate the cost

of the node’s edges.

Algorithm 3.1. Data structures in Byte-code Control Flow Graph

Data Structure CFNode {
String name {Node’s name, based on the label name in the code}
Set of Strings parents {Node’s parent nodes names}
List of Edges edges {Node’s edges}
Integer depth {The depth of the node in the code}
Boolean insideLoop {Indicates whether the node is inside a loop or not}
List of instructions instructions {A list of Instructions that is executed sequentially}

}

Data Structure Edge {
CFNode node {Next node}
Link type type {Edge label}
Integer cost {Edge cost}

}

Enumeration Link Type {
DIRECT, IF, GOTO

}

The algorithm assumes that the object code language uses labels to refer to program points

where the control flow can be transferred. In languages whose jump instructions allow in-

direct jump instructions (like jumping to the instruction which lies in the address pointed

by a variable) it is not possible to establish all the edges between nodes beforehand.

The algorithm snippet presented at the Algorithm 3.2 shows the structure of the graph

construction algorithm. After an initialization phase, the algorithm wanders the list of

instructions of a program. Three special types of instructions are considered by the algo-

rithm for the graph construction: label declarations, which add a new node to the graph;

labelled-jump instructions, that is, instructions that indicate a label to jump to, given a

certain condition; and return instructions, which terminate the program execution, return-

ing a value or not. Other types of instructions are added to the currentNode instructions

list in order to calculate its cost. The only type of instruction that is not taken into account

to estimate execution costs is the label declaration type, since their only function is to

associate a name to a given place in the object code.

3.2. URSO Concepts 65

The algorithm snippet in the Algorithm 3.3 details the treatment of label declaration in-

Algorithm 3.2. Byte-code Control Flow Graph Construction Structure

Input: List of instructions program = [i0 , i1 , ... , in]
Output: A CFNode graph

{Initialization}
graph ← ∅

index ← 0
currentLevel ← 0
initialNode← 〈“lα” , ∅ , ∅ , currentLevel , false , ∅〉 {CFNode tuple representation}
graph ← initialNode
currentNode ← initialNode
ifInstruction ← false

{The algorithm wanders the instruction list}
for all instruction i in program do
if i is a label declaration then
{A label in the program means the creation of a new node}
* Treat the label declaration case *

else
{It is not a label declaration instruction}
Add i to currentNode.instructions
if i is a Jump Instruction pointing to label li then
{It may be an IF, GOTO or JSR}
if i is GOTO or i is JSR then
* Treat the unconditional jump case *

else
{It is an IF instruction}
* Treat the conditional jump case *

end if
else if It is a RETURN instruction then
{Returns are unconditional jumps towards the final state}
* Treat the return case *

end if
end if

end for

structions.

The processing considers two cases: whether there is a node currently being analysed or

not. If existent, it means that the previously analysed node reaches the new node without a

jump instruction: nodes are linked by what we called a DIRECT-type edge. The new node

may already be present in the graph if it has already been referenced by another node’s

jump instructions; in this case, its edges list is updated. If it was not present, a new node

is created with the DIRECT edge. If the instruction before this node declaration was an

IF instruction, this new node is actually one of the branches of a conditional jump, thus

its depth level (and the whole analysis depth level) is set to the current code depth level

plus one. The new node’s set of parents (which are now the anciently current node plus the

current node’s parents) and looping flag (after verifying if the node is reached by itself) are

updated, before setting the new node as the analysis current node.

If there was not a current node being analysed, this means that the new node is either the

66 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

first node of the analysis or a label declared after an unconditional jump - like a GOTO

instruction - that is used as a target for a jump instruction (else it would be considered as

dead code). If the label is already present in the graph, the analysis updates its code depth

level; if it is not, a new node with the name of the new label is added to the graph. Either

way, the current node variable is updated to point towards the new node.

Algorithm 3.3. Byte-code Control Flow Graph Construction - Labels

if i is a label declaration then
{A label in the program means the creation of a new node}
if currentNode 6= ∅ then
currentParents ← currentNode.parents ∪{currentNode.name}
{The parents of the new node will be the set of parents of the ancient current Node
plus the current Node itself}
if there is a CFNode whose name is i already in the graph then
currentNode.edges ← currentNode.edges ∪ 〈i , DIRECT 〉
currentLevel ← i.level

else
{This is the other branch of an IF instruction.}
if ifInstruction is set to true then
currentLevel ← currentLevel + 1
ifInstruction ← false

end if
graph ← graph ∪ 〈i , ∅ , ∅ , currentLevel , false , ∅〉
Add 〈i , DIRECT 〉 to currentNode.edges

end if
currentNode ← node in graph whose name is i
currentNode.parents ← currentParents
if Node whose name is i is in currentParents then
Set the flag insideLoop of the node whose name is i to true

end if
else
{Empty currentNode means that the algorithm is parsing its first node or an isolated
node used by a jump instruction}
if there is a CFNode whose name is i already in the graph then
currentLevel ← i.level

else
graph ← graph ∪ 〈i , ∅ , ∅ , currentLevel , false , ∅〉

end if
currentNode ← node in graph whose name is i

end if
else
{It is not a label declaration instruction}
* Other instruction types’ treatment *

end if

Jump instructions treatment is detailed in the Algorithm 3.4. First the algorithm verifies if

there is a node being analysed. Any instruction must belong to a node in the control flow

graph - if it does not, this instruction is unreachable and the algorithm indicates an error

in the analysed program.

The algorithm then differentiates the treatment for jump instructions whose label is in-

dicated (like GOTOs or IFs) and for RETURN-like instructions, which can be seen as a

3.2. URSO Concepts 67

jump towards a final node/state. For Jump instructions, unconditional jumps (GOTOs and

JSRs18) are processed differently from the conditional ones (IF-like instructions).

Algorithm 3.4. Byte-code Control Flow Graph Construction - Jumps

if i is a label declaration then
{A label in the program means the creation of a new node}
* Treat the label declaration case *

else
if currentNode 6= ∅ then
Add i to currentNode.instructions
if i is a Jump Instruction pointing to label li then
{It might be an IF<condition>(li), GOTO(li) or JSR(li)}
currentParents ← currentNode.parents ∪{currentNode.name}
if i is GOTO or i is JSR then
if there is not a node whose name is li in graph then
Add 〈li , ∅ , ∅ , currentLevel , false , ∅〉 to graph

end if
Add 〈li , GOTO〉 to currentNode.edges
currentNode ← ∅

currentLevel ← 0
else
{It is an IF instruction}
ifInstruction ← true
if there is not a node whose name is li in graph then
Add 〈li , ∅ , ∅ , currentLevel + 1 , false , ∅〉 to graph

end if
Add 〈li , IF 〉 to currentNode.edges

end if
Add currentParents to the field parents from the graph node named li
if there is a node named li in currentParents then
Set the flag insideLoop from the graph node named li to true

end if
else if i is a RETURN instruction then
{RETURN instructions point towards the final node}
Add 〈lω , DIRECT 〉 to currentNode.edges
currentNode ← ∅

currentLevel ← 0
end if

else
Error {Unreachable instruction!}

end if
end if

In the case of unconditional jumps, if there is not a node corresponding to the target label

in the graph, it is created and added. The node that is currently being analysed receives

a new edge, a GOTO-typed one, towards the node corresponding to the target label. The

algorithm then resets the currentNode to none and the currentLevel to zero, since one graph

18JSR (Jump to Sub Routine) is an instruction indicating jump to a subroutine. JSR and RET (which
is used to return from a subroutine) where deprecated in Java 6 due to the complexity it added to byte-
code verification (some normal byte-code constraints, such as stack consistency, were relaxed for these
instructions).

68 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

path ends with this instruction.

In the case of conditional jumps, a flag indicating the execution of an IF instruction is

set by the algorithm. This flag is used to notify the algorithm that the label declaration

following this instruction indicates one of the branches of an IF instruction (the branch that

is executed if the condition specified in the IF instruction is not satisfied). Just as in its

unconditional jump counterpart, if there is not a node corresponding to the target node in

the graph, a new one is created and added; however the code depth level of this new one is

set to the current code depth level plus one. In addition, a new IF-typed edge is added to

the list of edges of the node that is currently being analysed.

Independently of the instruction jump type, the set of parents of the node corresponding to

the target label is updated with the set of parent nodes of the current node plus the current

node itself. A test to see whether the target label node is in a loop is then carried out.

In the case of RETURN-type instructions, a DIRECT-type edge towards a special node

indicating the end of the program execution is added. The variables indicating the current

code depth level and the node currently being analysed are reset. RETURN instructions

may be present anywhere at the program, and just as the GOTO instructions they mean

the end of a graph path.

After wandering the instruction list, some finalizations must be performed by the algorithm.

It must verify the whole graph to recursively update the set of parent nodes for nodes which

were marked as part of loops. It also verifies that the program terminates (that is, the final

state is reachable from the initial state). If so, the algorithm returns the program control

graph; if not, it returns an empty value, to indicate an error. The pseudo-code correspond-

ing to these finalizations is shown in the Algorithm 3.5. The auxiliary functions used to

update the node parents and edges and to verify reachability are presented in the algorithm

snippets 3.6 and 3.7. After creating the control flow graph, it is simple to estimate the

Algorithm 3.5. Byte-code Control Flow Graph Construction - Finalization

for all CFNode node in graph do
if node.insideLoop is true then
updateLinks(node, node.parents)

end if
end for
if canReach(lα, lω) then
Return graph

else
Return ∅

end if

partial WCET: since the worst case execution time of each low-level instruction has been

estimated beforehand, the cost of an edge is the sum of the WCET of the instructions from

its origin graph node. The WCET is considered as the maximum cost from a possible path

from the initial node to the final node. The operation may however execute calls towards

other operations: in this case, if the code of the called operation is available, its behaviour

and WCET is estimated as well; else, if it is, for instance, a call towards a Service De-

pendency, then a variable is added to the WCET and a function expression (depending

on the Service Dependencies) is stored. This expression is evaluated upon the resolution

of the Component Implementation and then the total WCET can be estimated (but the

expression is still stored, due to the dynamic availability of Component Implementations

and the fact the Service Dependency can be satisfied by many Service providers during an

execution).

3.2. URSO Concepts 69

Algorithm 3.6. Byte-code Control Flow Graph Construction - Edge Update

Input: a CFNode node and a set of CFNode parents
Output: a CFNode updatedNode

if parents 6= ∅ then
for all Edge edge in node.edges do
if edge.node.parents do not contain all node names from parents then
for all parentName in parents do

edge.node.parents ← edge.node.parents ∪ parentNameif parentName =
edge.node.name then edge.node.insideLoop ← true

end if
end for
if edge.node.insideLoop is true then
updateLinks(edge.node, edge.node.parents)

end if
end if

end for
end if
Return node

Algorithm 3.7. Byte-code Control Flow Graph Construction - Reachability

Input: CFNode node1, CFNode node2, set of CFNodes visitedNodes
Output: A boolean value

if node1 = node2 then
Return true

else
result ← false
if visitedNodes = visitedNodes ∪ node1 then
Return false

else
for all Edge edge in node1.edges do
result ← result OR canReach(edge.node, node2, visitedNodes ∪ node1);

end for
end if
Return result

end if

3.2.3.4 Behaviour Layer: UML Diagram

Figure 3.9 presents an UML class diagram relating the behaviour layer concepts. The

central concept is that of Service Operation, which is also present in the Assembly Layer,

just as Service Descriptions. The set of instructions contained by the Service Operations is

platform-dependent, which is symbolized by the black class shadow behind the Instruction

class. The Restriction class, which represents semantic restrictions on Service Operations,

is a class derived from the Deployment Layer’s Rule class, and just as its parent class,

is associated to a Policy. Timing constraints are addressed by the class RT Operation

Params, which represents the worst case execution time of a Service Operation. The Type

Description class is used to estimate worst case execution time as well: for instance, it helps

estimating the time it would take to transfer data from a component to another.

70 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

Figure 3.9: URSO Component Model - Behaviour Layer

3.2.4 Revisiting the Deployment Concern

Now that the Assembly and Behaviour concerns were presented, it is possible to refine the

Deployment concern to include concepts related to the mapping of applicative components

on real infrastructure nodes and resources. These new concepts allow the definition of

schedulable real-time tasks, which in turn correspond to a composition of Services and

Service calls. Implementations will also be associated to their consumed resources, enabling

the platform to implement resource reservation and admission control mechanisms to better

improve execution time determinism.

3.2.4.1 Resource Requirements and Capabilities

The Platform contains nodes which are listed as its Capabilities. These Resource Capa-

bilities are shared or divided by the Platform Nodes and activated or not in the different

Platform Modes. Software artefacts, like Component Implementations, are going to use

these Resources in their execution. These dependencies towards material Resources are

called Resource Requirements. In the case of Shared Resources, software artefacts may

require Resources as writers (i.e. can carry modifications to the Shared Resource), readers

(that is, can use a given Resource but they cannot modify it) or both (i.e. can read and

update the properties from a given Resource). Software artefacts may declare Resource

3.2. URSO Concepts 71

capabilities as well (e.g. files or software libraries).

3.2.4.2 Implementation, Instances and Nodes

A given application may have several copies of a given Composite, due to performance

(parallelism, locality factor) or fault tolerance (replication) issues. These several copies can

be seen as several Instances of the Component Implementations of a same Composite. An

Instance will be associated to a platform Node and will have the same Resource Require-

ments as the Component Implementations it is bound to. Based on the Implementation’s

Requirements and on the Node’s available Resources, the Platform may then perform au-

tomatic Instance allocation or block the placement of an Instance in a given Node due to

lack of available Resources.

3.2.4.3 Tasks and Mode Transitions

Traditionally, in real-time systems, applications are modules as a set of tasks, with timing

constraints or not, that may have an activation frequency and other timing properties

associated to them. In URSO, a task is associated to a Service Composition, which, as

described in the Assembly concern, allows structuring a set of Service Operation calls to

realize a business function. As depicted in the previous section, it is possible for the Platform

to estimate the worst case execution time for Service Operations. Considering that the

Platform can also estimate the communication time (based on the Interconnections, on the

Communication Protocols timing properties and on the type size informed in the Type

Description), the worst case execution time of a Service Composition, and consequently,

that of a Task can be estimated. Scheduling analysis can be performed on the set of tasks

in a Node in order to verify the feasibility of the placement informed by the application

developers that of the application as a whole.

The developer can assign a mode transition behaviour to a task. That means that upon a

Platform Mode change, the task can interrupt itself and/or trigger a new task. That would

allow, for instance, a real-time task to execute in a degraded mode in non-critical Platform

modes. Tasks may also indicate dependencies towards other tasks. That way, a given task

will not execute until all the depended tasks are executed.

3.2.4.4 Definitions

URSO Definition 31 (Implementation (revisited)). An Implementation is a 5-uple

〈language , filename , componentName , capabilities , requirements〉

where language, filename and componentName are Strings, capabilities is a set of Resource

Capabilities and requirements is a set of Resource Requirements.

The concept of Implementation was updated to inform the Resources provided (like

applicative software libraries) and consumed (such as RAM memory).

URSO Definition 32 (Instance). An Instance is a 3-uple

〈name , composite , mappedNode〉

where name is a unique String-typed identifier automatically assigned by the platform,

composite is a Composite and mappedNode is a Platform Node.

72 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

An Instance is bound to a Composite. It actually corresponds to the instantiation of all

Component Implementations necessary to the instantiation of the Composite. It is uniquely

identified by a name that is automatically generated by the framework and it is mapped

onto a Platform Node. This Node is informed by the Application administrator, which can

find an effective placement before adding the Component Implementations’ Instances to

the framework by executing off-line placement algorithms based on the current Platform

configuration.

URSO Definition 33 (Task). A Task is a 6-uple

〈name , composition , mappedNodes , properties , transitions , requiredTasks〉

where name is a String-typed identifier, composition is a Service Composition, mappedNodes

is a set of Nodes, properties is a set of Real-time Properties, transitions is a set of Mode

Transitions and requiredTasks is a list of Tasks.

A Task is the schedulable representation of a business process, which in turn is defined by

a Service Composition. Tasks can be mapped onto one or several Platform Nodes. Just as

Instances, this placement can be performed off-line by the application administrator. Tasks

will be characterized by real-time properties, such as deadline, release date and priority.

There two special types of Tasks: Periodic Tasks and Sporadic Tasks. As the name suggests,

Periodic tasks execute periodically often, whereas Sporadic Tasks execute with a minimum

inter-arrival scheduling time. Both have special properties: Periodic tasks contain a period

attribute, and Sporadic tasks contain an attribute that specify their minimum inter-arrival

time. These properties are used by the framework to create and schedule real-time threads

and to perform scheduling analysis. It is worth to mention that all thread creation in the

applicative code is forbidden. The framework verifies at deployment time whether the code

tries to instantiate code and, if possible, it removes these instructions. It is also important

to note that tasks do not depend on Components. Neither do Service Compositions, which

only rely on Service Descriptions and their Service Operations. Both can be deployed

separately from Implementation artefacts and Composite descriptions.

Tasks may depend on the execution of other threads. For instance, a developer in a business

application may express that the payment task always comes after the execution of the

authentication task. In URSO, a given task will not be executed unless all the tasks specified

in the requiredTasks set are executed.

In addition, it is also possible to inform mode change transitions for threads by means of

mode transitions. As we will see in the next definition, a Mode transition will be formed by a

Platform mode and the new replacement task. Tasks which do not inform mode transitions

are able to execute in all Platform Modes.

URSO Definition 34 (Mode Transition). A Mode Transition is a 2-uple

〈ancientMode , newMode〉

where ancientMode and newMode are Platform Modes.

Mode Transitions allow tasks to be interrupted and started automatically upon Plat-

form Mode changes. It is recommended that these changes are controlled by the platform

administrator, but some rules for automatizing mode changes may be created in order to

ease the administration task. How tasks are interrupted and the transition duration (time

during which the executing task set is changed and that both ancient and new Platform

Modes are updated) depend on the platform implementation. Mode transition protocols

for real-time systems is a well-established research domain in computer science [Real &

Crespo 2004].

3.2. URSO Concepts 73

3.2.4.5 Deployment Concern: UML Diagrams

The UML Class Diagram presented in Figure 3.10 adds the concepts presented above to the

Class diagram presented in section 3.2.1. The classes corresponding to Mode Transition,

Tasks and real-time tasks’ properties, Service Compositions and Instances were included.

Figure 3.10: URSO Component Metamodel: Deployment Concern

Many important relations were included such as:

• The relation between the cross-cutting concern class Implementation and both Re-

source Capabilities and Requirements, which allows the framework to reserve Re-

sources for the execution of all Component Implementations related to Composite

Instances and the share of applicative libraries or functions between different Com-

ponents;

74 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

• Instances and Tasks relations with Nodes, indicating the deployment mapping of

Component artefacts and Schedulable threads onto material Resources and processing

units;

• The relation between Tasks and Platform Modes, enabling the automatic interruption

of a Task execution upon a Platform Mode change.

Figure 3.11 shows a UML Activity Diagram illustrating the development process in URSO.

It completes the activity diagram presented in the Assembly concern to illustrate the Com-

ponent development process by adding the notions of Service Composition and Task de-

scriptions. Thus, a Deployment unit may contain Composites, Implementation descriptions

and artifacts, Task descriptions, Service Compositions or a mixed combination of them all.

Figure 3.11: Deployment unit development process

Figure 3.12 depicts the process of deploying a Deployment Unit in the framework. Each

type of description is treated in a particular way and several verifications are performed

before the real installation of Components and execution of Tasks in the framework. Conse-

quently, it is recommended to perform dynamic deployment operations during non-real-time

phases, since the deployment of new Services may imply several changes in an application

architecture.

If the deployment unit contains Component descriptions, the platform is going to parse

3.2. URSO Concepts 75

these descriptions and register them, in case other Component Implementations implement

them. If Component Instances are part of the description, the platform must retrieve its

Resource usage and verify whether there are enough available Resources in the node to

which the Instance is being mapped. If there is not, the platform may define policies for

replacing the Instance mapping, or to ignore them, or to try and find another Implemen-

tation for the same Component in a different technology which requires less Resources, for

example. If there are enough Resources, these are then reserved for the Instances and the

amount of available Resources in the Platform Node is updated (Resources used by the Im-

plementation are decreased and the Resources provided by the Implementation are added).

When the deployment unit contains Implementation artifacts, the framework parses the

Implementation description and the component it implements in order to find its provided

Service Descriptions and Service Operations. Then, the platform retrieves the correspond-

ing operations in the Implementation object code, estimates all partial WCETs and stores

them. Instances are created afterwards. After creating Instances, they must be resolved.

Thus, the platform retrieves the Dependencies of the component they implement, applies

the ranking functions on all present Services and Service Properties and bind the best

ranked Service provider to each Dependency. When dependencies are satisfied, it is able

to calculate the total WCET of Service Operations. Once Instance Services WCET is es-

timated and Instances are satisfied, the Services provided by the instance are published in

the Service Registry (global if it is an exported Services, or local if it is not).

If the deployment unit contains Service Composition descriptions, these are parsed and

internally stored. When a Service Composition is referenced by a Task, then the Service

Composition is resolved. In fact, it can be seen as the dynamic creation of a Component

Implementation: the Services used by the Composition will be selected (they can be filtered

as well, just like in Service Dependencies), and the framework will generate the code to glue

all the declared Service calls. Since the total WCET of published Services were already

been calculated, it is easy to estimate the WCET of the whole Service Composition. This

WCET is stored as well.

When Tasks are described in the deployment unit, its parameters are compared to those

which were stored for the composition it refers to. For instance, the deadline of the task

is compared to the WCET of the Service Composition; if the WCET is bigger than the

deadline, that means that the task will never be able to execute the Service Composition

with these parameters. The task period must be bigger than the WCET as well. After

that, a scheduling analysis is performed in the current set of tasks plus the new task: if all

the tasks are schedulable (taking into account the new task parameters, such as its release

time), then the Service Composition can really be assigned to the Task thread, as well as its

parameters. The framework generates as well parameters to help at run-time: for instance,

it keeps the partial WCET expressions ready in case of Service substitution. Once the

thread has its parameters set, it can be executed. At the same time, monitors follow the

Task execution in order to gather measures for the framework and to inform possible errors

to the system administrator.

Figure 3.13 shows the procedure followed in case of a Platform Mode change. Mode changes

are triggered by the Platform administrator. Upon a mode change request, the platform

wait until the end the execution of the current tasks or the violation of a time-out configured

by the administrator. If the time-out occurs and the mode change was not fully performed,

then the platform enters an error state.

After the execution of the current tasks, the framework checks among all tasks those that

can continue executing, those that must be removed and those that must be added. It

removes the removable tasks and then it verifies whether the whole set of tasks remains

schedulable by adding the new tasks one by one (it can keep track of the result of the

76 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

Figure 3.12: Deployment Process Activity

3.2. URSO Concepts 77

Figure 3.13: Mode Change Activity

schedulability analysis of the last iteration, just like in dynamic programming techniques).

When a task can not be added, it asks the administrator if the system can continue exe-

cuting without it or with a new set of parameters. If not, it puts the system in an error

state. If all tasks have been verified and the system is not in an error state, it updates the

state of Machines, Nodes and Resources: Those which are not enabled in the new state

78 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

are reset (Component Instances are removed from Nodes and Machines and its Services

are unpublished, and all Resources are released). The framework then verifies whether the

Resources capabilities of active Machines and Nodes match those of the current Platform

Mode. Afterwards, it updates the platform to indicate the new Platform Mode as current,

finishing the Mode change phase19.

3.2.5 Other aspects that must be taken into account

Two aspects which are not directly related to business applications must be specifically

taken into account in the development and administration of applications in the URSO

Component Metamodel: the presence of technical components in the platform and run-

time monitoring. Both aspects are not fully detailed, as they are very oriented to the

framework implementation, which is not the main focus of this thesis. Still, some attention

is given to them in the next sub-sections.

3.2.5.1 Technical Components

Technical components are special components which have access to Platform low-level fa-

cilities. They are responsible for automatizing several actions taken by the platform, like

scheduling-related actions or Resource management. Services provided by technical com-

ponents are used uniquely by the platform; however, although the visibility of their services

is special, these components are installed in the Platform like any other component, with

along with its Resource requirements and Instance mapping. Just like in business applica-

tions, several technical components may provide the same service: for instance, two different

scheduler components may implement different scheduling policies. It is up to the admin-

istrator to choose which services to use according to the needs of the business applications

installed in the platform. Other factors may influence the administrator’s choice of techni-

cal components, like the current active mode and current quantity of available resources.

Technical components are fundamental to the good functioning of the platform, and some of

them (like a scheduler) must be present before the installation of any business component.

Examples of technical components are:

• Scheduler : Schedulers provide services to add or remove tasks to/from the the set

of executable tasks, to manage their release, to interrupt their execution in case of

preemption, to perform scheduling analysis to the set of tasks and to execute tasks

according to its implemented scheduling policy.

• Resource Manager : Resource Manager components are responsible for implementing

Resource reservation mechanisms. They update Resources availability according to

the requirements and capabilities of installed components. Resource Managers may

implement dynamic policies where resources can be claimed from a set of components

and lend to another set of more important components.

• Connection Manager : Connection manager components are responsible for imple-

menting transmission protocols or methods. They are part of the Interconnections

between nodes, and the methods they implement is visible as a Binding Protocol in

the URSO metamodel.

19This Mode change protocol can be generalized to include the platform stop as well; we may consider
that the platform stop is a Platform mode with no Tasks and no Machines (thus no Nodes and Resources).
Consequently, the only action performed is the reset of Resources, Nodes and Machines before stopping the
framework.

3.2. URSO Concepts 79

• Shared Resources Access Controller : As the name suggests, the Shared Resources

Access Controller controls the access of Components to Shared Resources. A specific

implementation may create copies of a given Resource for every Component that

requires it as writer and then it aggregates the values of the copies in the original

Resource. Other implementation approaches are allowing only one Component to

access the Resource at a time and forbidding modifications.

• Parsers: A big amount of information is present at the model at the form of descrip-

tors. All these descriptors must be parsed by the framework, and sometimes sorted

under a representation that eases the access of information at runtime. In addition,

there is also information which is passed to the platform as expressions (e.g. ranking

functions). These expressions must be parsed as well and stored in a way that allows

it to easily be evaluated for different input values.

3.2.5.2 Run-time Monitoring

Several aspects of the metamodel must be monitored at run-time. Some of them are local

to components and to nodes, whereas some concern the whole platform. In both cases,

most technical components cited above are or require run-time monitors (which are techni-

cal components themselves, that must as well be characterized in terms of resource usage).

Thus, the excessive use of monitors may compromise the quantity of resources available to

applications. We will not detail how these run-time aspects should be monitored (moni-

toring of real-time applications is a big research domain itself indeed), but we do list the

most important aspects that should be taken into account about run-time monitoring in

the URSO framework.

• Resource Managers: Resource Managers should be present at two levels: a node-level

Resource Manager, and a global platform Resource Manager. This monitor type has

two main functions: first, it must enable resource reservation; second, it can have

resource usage enforcement features. The first function does not required much com-

putation at run-time; upon the installation, update and uninstallation of components,

the local Resource Manager must verify whether the operation is possible (that is, to

verify whether there are enough resources in the node to instantiate the correspond-

ing set of component implementations for installation and update) and then update

the amount of available resources in both local (Node) and global (Platform) Re-

source set. Since these operations are usually performed in non-critical phases, this

verification-and-update mechanism should not interfere in applicative tasks’ execution

time determinism.

The second function (resource usage enforcement) however must verify whether com-

ponents are really using the resource quantity they have declared in their descriptor.

Since components are passive entities in the URSO metamodel (that is, they do not

have a control flow themselves - they are invoked by means of service calls), the best

way to verify its resource usage is when it is executed by a task in a Service Composi-

tion. However, it is very difficult to verify the resources used by a specific component

inside a Service Composition being executed by a thread. An alternative would be

to use on-line resource usage analysis techniques, such as Kim’s analysis for mem-

ory consumption [Kim et al. 1999] and on-line schedulability analysis for CPU [Bini

& Buttazzo 2004]. Resource enforcement requires background execution, what may

interfere in the determinism of real-time tasks.

• Restriction Managers: Restrictions over Service Operations Parameters must be per-

formed in background. It usually consists in a sequence of simple comparisons over

80 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

the set of inputs and outputs; nevertheless, the Service Operation is not executed

unless its set of pre-conditions is completely satisfied. The platform may consider

that the evaluation of those assertions corresponds to calling a Service provided by

the platform itself, whose WCET is the sum of the WCET of the instructions used to

perform all comparisons.

Verifying invariants can be more complicated, because these are assertions that must

remain true during the whole Operation execution. In order to implement that, one

may create a thread that periodically evaluates the invariant assertion or perform

the evaluation only when an instruction uses a given variable (or when it is loaded

in the stack, for stack-oriented languages). An optimization could be to verify only

in the beginning and in the end of the Operation execution, but using the wrong

value inside the Operation could lead to unpredictable consequences. Again, evalu-

ating these values during the method execution may introduce non-determinism in

the Service Operation execution time and must be taken into account (in the worst

case, the framework may verify the value after the execution of each instruction of the

Service Operation, thus its WCET would be the number of instructions multiplied

by the WCET of the sum of the evaluation instructions. Post-conditions would raise

the same problem of Pre-conditions, but in the end of the execution of a method - it

can block the execution of the next activity of the Service Composition, and the time

taken to evaluate the parameters (the sum of the WCET of the instructions used to

perform all comparisons) must be taken into account in the WCET of the Service

Composition.

• Parsers: The parsing of descriptors and expressions is mainly performed in non-

critical phases, such as installation and service composition or components Depen-

dency resolution. Parsing will trigger some background processing, like the storage of

information in a framework-friendly format or object (for expressions or architecture

representation) or code generation (for service compositions).

• Scheduling-related monitors: Several aspects related to scheduling must be monitored

at run-time. Every time a new task is added to the system, a new schedulability

analysis must be performed to ensure that the system will have enough resources

to execute the current set of tasks without violating tasks timing constraints. This

analysis is realized in non-critical phases, when the administrator installs new tasks

to the framework. However the system must be able to react in case of deadline

violation. The administrator may configure different policies in that case: ignore the

deadline violation and let tasks execute, which may incur even more tasks to violate

their timing constraints; interrupt the task execution and switch to the execution

of the next task in the priority list, which may lead to a functional error, since the

interrupted task was not correctly executed until the end and could contain operations

to update memory variables used by other tasks; interrupt the whole set of tasks and

inform the administrator; change the platform mode and change the whole set of tasks

in order to execute in a degraded quality of service state; or many more.

3.2.5.3 Applicative WCET vs. Technical WCET

Estimating the execution time of the instructions of a Service Operation (what we call

Applicative WCET) is not enough to estimate its real WCET; in fact, several platform

features must be used for the application execution to be in good working order, and the

execution time of these mechanisms (here called Technical WCET) must also be taken into

account. First, the communication time must be considered; for that, the framework will

3.3. Example: Dynamic Collision Detection Application 81

see the Service input and output data types, the communication worst-case throughput

(as informed in the Communication Protocol timing descriptor) and estimate the worst

case communication time. This time will be added to the WCET of the operation caller,

which may be another Service Operation or a Service Composition. If the Operations are

restricted by Pre-conditions, Post-conditions and Invariants, the time used to evaluate them

must also be added to the Service Operation WCET (as discussed in the section above).

Thus, we may consider that the real WCET of a Service Operation S is:

WCET(S) = WCET(ScommInput) + WCET(SevalPreCond) + WCET(Sbehavior) +

WCET(SevalInv) + WCET(SevalPostCond) + WCET(ScommOutput)

where ScommInput is the communication time for S inputs, SevalPreCond is the evaluation time

for S Pre-Conditions, Sbehavior is the time estimated by analyzing S behavior (generated by

the platform), SevalInv is the evaluation time for S Invariants, SevalPostCond is the evaluation

time for S Post-Conditions and ScommOutput is the communication time for S outputs.

3.3 Example: Dynamic Collision Detection Application

In order to exemplify the concepts introduced in the previous section, we are going to use

URSO to model a collision detection application based on the CDx benchmark presented by

Kalibera et al. in [Kalibera et al. 2009]. Our collision detection application presents some

small differences from that of Kalibera, in order to introduce two aspects relevant to the

URSO metamodel that are being more and more frequent to real-time applications: service-

oriented computing and dynamism. We call it DCDx (for Dynamic Collision Detector).

3.3.1 Overview of the CDx Benchmark

The CDx benchmark was introduced in 2009 by Tomas Kalibera et al. They proposed an

open source real-time benchmark suite application for evaluating different Real-time Java

virtual machines. The core of the application is a real-time periodic task which reads simu-

lated radar frames and identify potential aircraft collisions. It computes the time between

releases of this periodic thread and the time it takes to compute the collisions and uses both

values as indicators of the degree of predictability of the underlying virtual machine.

The two main components of the application are the air traffic simulator and the collision

detector.

The air traffic simulator generates the the radar frames taken as input for collision detection.

Radar frames are lists of aircrafts and their current positions (a point in a three-dimensional

Cartesian coordinate system). Aircraft positions are defined by the user as functions whose

coordinates are indicated as functions of time. The user can also configure the frame gen-

eration rate and the total number of frames.

The collision detector periodically reads frames and, for each aircraft, it estimates an ap-

proximated trajectory based on its position in the current and in the precedent frames.

Speed is assumed to be constant. The detection is split in two steps: first the whole set

of aircrafts is reduced into smaller sets of aircrafts; then, for every small set, the detector

verifies the collision potential for every two aircrafts. The detector identifies as a collision

potential every pair of aircrafts whose distance is equal or less than a user-defined proximity

radius.

The frame transfer from the simulator to the detector is performed by means of a pre-

allocated frame buffer. Frames can be simulated before the execution of the detector,

concurrently (adding background noise) or synchronously (the detector waits for the gener-

ation of frames and the simulator waits for the frames to be processed by the detector). It

82 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

is also possible to store the frames in binary format, to increase performance and simplify

the benchmark implementation and analysis. Since the list of aircrafts is informed by the

user in a configuration file, it is not possible to change the set of aircrafts at runtime.

3.3.2 DCDx: A Dynamic and Service-Oriented CDx benchmark

3.3.2.1 A Service-Oriented version of CDx

Since every concern is well-defined, decoupling the CDx application architecture and to

produce a service-oriented version of it is very straightforward. Figure 3.14 depicts a possible

architecture representation of a service-oriented version of CDx. The Detection Manager is

periodically invoked by a thread to perform the collision detection. Before executing the

detection algorithm, it retrieves the radar frames by means of the Frame Service. Then, it

uses the Motionizer Service to calculate aircrafts trajectory. The motions are taken as input

by the Collision Detector’s Detection Service, which returns a list of potential collisions.

The Frame Pool component contains a buffer which is filled by the Simulator by means

of the Frame Service as well. The Motionizer uses the Aircraft Position Service to query

for ancient past aircraft positions and to update them. The State Storage contains a table

which stores the Aircraft ID and its precedent positions. Decoupling CDx would increase

its flexibility and allow different implementations of the collision detection algorithm. It

is possible as well to measure the duration of every service call in order to measure its

impact in the application. The Collision Detection Service is invoked by a periodic real-

time thread; depending on the user configuration, the Simulation Service can be invoked

before the creation of the Detection thread to populate the Frame Pool buffer, at the same

time, in a concurrent thread, or synchronously (in the same thread or synchronized by

means of events).

Figure 3.14: A Service-oriented Architecture for the Collision Detector Application

3.3.2.2 Adding Dynamism to CDx

In its original version, CDx does not allow the set of aircrafts to change at runtime. We

have modified its architecture in order to allow the system to dynamically admit (or not)

new aircrafts.

The aircrafts, which before were listed in the configuration file, can now be added to the sys-

tem at run-time. Aircrafts provide an Aircraft Service, which is consumed by the Simulator.

By means of this Aircraft Service, it is possible to retrieve the aircraft’s name and trajectory

function over time. Another parameter is added to Aircrafts: they now have a maximum

3.3. Example: Dynamic Collision Detection Application 83

flight time tmax, after which they are disabled. After tmax, an aircraft unregister its Air-

craft Service from the Service Registry. This allow the current set of Aircrafts to be always

changing. It is possible to as well to establish boundaries for the x-, y- and z-coordinates of

each aircraft, so that whenever an aircraft leaves the delimited region of interest, its position

is discarded for the collision detection phase. For the benchmark, both the aircraft arrival

distribution (the time when they are installed in the system) and aircraft’s tmax parameter

can be randomly generated in order to have a more realistic workload. Figure 3.15 shows

the modification in the benchmark application architecture.

Figure 3.15: Dynamic Collision Detector Application Architecture

3.3.3 URSO Description of DCDx

3.3.3.1 Application Design Overview

Services are passive entities in URSO; that means that they do not have a control flow

themselves, they can only be invoked by another entity. Services can be called by other

Services or by Service Compositions, which are themselves executed by Tasks. Two Tasks

can be identified in DCDx: the radar simulation and the collision detection. The Service

Composition of the former requires gathering all the Service Implementations of the Aircraft

Service, calculating its current position, generating a radar frame and storing it in the Frame

Pool buffer. The Service Composition of the latter will first invoke the Frame Service in

order to get an unprocessed frame, then invoke the Motion Service to get the Aircrafts

trajectories and finally invoke the Detection Service on the trajectories to get a list of

potential collisions. The Motion Service uses the Aircraft Position Service in order to get

and set aircrafts’ position.

3.3.3.2 Platform Description: the Deployment concern

For this example we are going to consider as hardware infrastructure the same machine used

in [Kalibera et al. 2009]: a machine with two Pentium processors (or cores), executing a

Virtual Machine Oracle Java RTS 2.1 (with a 300 MB heap memory) on top of a Real-time

Linux 2.6 Kernel.

We will start by identifying the available resources in the platform: they are the processor,

the virtual machine (along with the libraries it provides), the available heap memory and

the Linux kernel. We list below the URSO description of each one of these Resources.

Resource descriptions:

84 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

processor1Res =

〈“Processor1” , “CPU” , {〈“Brand” , “Brand” , “IntelPentium4”〉 ;
〈“Frequency” , “FrequencyInGHz” , 2.1〉}〉
processor2Res =

〈“Processor2” , “CPU” , {〈“Brand” , “Brand” , “IntelPentium4”〉 ;
〈“Frequency” , “FrequencyInGHz” , 2.1〉}〉
VMRes = 〈“JavaRTS” , “VM” , {〈“V ersion” , “V ersion” , 2.1〉 ;
〈“V endor” , “V endor” , “Oracle”〉〈“Type” , “JVMType” , “RealT ime”〉}〉
memoryRes =

〈“HeapMemory” , “Memory” , {〈“Available” , “MemoryInMB” , 300〉 ;
〈“Quantity” , “MemoryInMB” , 300〉}〉
OSRes = 〈“RTLinux” , “OS” , {〈“V ersion” , “V ersion” , 2.6〉 ;
〈“Name” , “OSName” , “Ubuntu”〉}〉

Except for the memory, all the other Resources are shared. The processor Resource is

managed by the platform Schedulers, but there may be no control for the access of other

Shared Resources.

The benchmark in its original form is executed on top of a Java Virtual Machine and

does not use any network connection; all communication is intra-JVM by means of method

invocation. In this example, we are going to keep this architecture, but more complex

communication protocols could have been used and described by URSO. For the sake of

simplicity and due to the fact that our platform is simple (mono-core, with few Resources),

we are going to define only one node, which is going to correspond to the machine in which

we are executing the benchmark.

Node and Machine descriptions:

node1 =

〈“Node1” , {processor1Res ; processor2Res ; VMRes ; memoryRes ; OSRes} ,

〈{“Node1” ; “Node1”} , {intraJVM}〉〉
machine1 =

〈“Machine1” , {node1} , {processor1Res ; processor2Res ; VMRes ; memoryRes ;

OSRes}〈{“Machine1” ; “Machine1”} , {local}〉〉

We consider that the delay of a method invocation intra-JVM and in the local network is

negligible.

Communication protocols:

intraJVM = 〈“IntraJVM” , {〈“Throughput” , “CommThroughput” , ∞〉}〉
local = 〈“LocalNetwork” , {〈“Throughput” , “CommThroughput” , ∞〉}〉

Our platform will have only one mode, in which all resources and machines are enabled20.

Platform and Platform Modes:

modeStd =

〈“StdMode” , true , {machine1} , ∅ , {processor1Res ; processor2Res ; VMRes ; memoryRes ; OSRes}〉
platform =

〈{machine1} , {modeStd} , ∅ , {processorRes ; processor2Res ; VMRes ; memoryRes ; OSRes} , modeStd〉

20We are assuming an empty set of policies, as the benchmark different possible configurations do not
interfere in the platform behavior itself.

3.3. Example: Dynamic Collision Detection Application 85

3.3.3.3 Services and Components: the Assembly concern

Since the platform infrastructure has been described, we are going now to start describing

the application architecture itself. First, we are going to define the Services used in the

application. As depicted in Figure 3.15, seven services are present in the application archi-

tecture. However only five of them will be useful for us, since the Detection Manager and

the Simulator component (and their provided services) fulfill the role of Service mediator in

the original architecture and will be transformed in Service Compositions (and assigned to

Tasks) in our URSO description. As said in the previous section, Services and Dependencies

are bound by means of intra JVM mechanisms.

Bindings:

intraJVMBinding21 = 〈∅ , ∅ , true , intraJVM〉

Service descriptions:

detSvc = 〈“DetectionService” , detDesc , ∅ , {intraJVMBinding} , ∅〉
motSvc = 〈“MotionService” , motDesc , ∅ , {intraJVMBinding} , ∅〉
airSvc = 〈“AircraftService” , airDesc , ∅ , {intraJVMBinding} , ∅〉
airPosSvc22 =

〈“AircraftPositionService” , airPosDesc , ∅ , {intraJVMBinding} , ∅〉
frmSvc = 〈“FrameService” , frmDesc , ∅ , {intraJVMBinding} , ∅〉

The Service Descriptions23 below are shared between both Services providing them and

Dependencies requiring them.

Service Descriptions:

detDesc = 〈“Detection” , {detectColisionOp}〉
motDesc = 〈“Motion” , {createMotionOp}〉
airDesc = 〈“Aircraft” , {getAircraftOp}〉
airPosDesc = 〈“AircraftPosition” , {getPosOp ; updatePosOp}〉
frmDesc = 〈“Frame” , {getFrameOp ; storeFrameOp}〉

Service Operations:

detectColisionOp = 〈DetectColision ,

{(Input)〈“Motions” , List < Motion >〉 ; (Output)〈“Collisions” , List < Collision >〉}〉
createMotionOp = 〈CreateMotion ,

{(Input)〈“RadarFrame” , Map < String, 3DPosition >〉 ; (Output)〈“Motions” , List < Motion >〉}〉
getAircraftOp = 〈GetAircraft ,

{(Output)〈“ID” , String〉 ; (Output)〈“Trajectory” , String〉 ; (Output)〈“FlightDuration” , int〉}〉
getPosOp = 〈GetPosition ,

{(Input)〈“ID” , String〉 ; (Output)〈“Position” , 3DPosition〉}〉
updatePosOp = 〈UpdatePosition ,

{(Input)〈“ID” , String〉 ; (Input)〈“Position” , 3DPosition〉}〉
getFrameOp = 〈GetFrame ,

{(Output)〈“RadarFrame” , Map < String, 3DPosition >〉}〉
storeFrameOp = 〈StoreFrame ,

{(Input)〈“RadarFrame” , Map < String, 3DPosition >〉}〉

21The set of services and dependencies of each Binding instance is automatically filled by the platform
22The system could also have been modeled in a way that the motion component itself stores the position.

In that case, this Service would not be necessary.
23The operations listed below do not contain the two last fields of the tuple, instructions and restrictions,

as the former is automatically filled by the framework in Component Implementation instances and the
latter is empty in our example

86 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

Once the services have been defined, we may group them onto components and composites.

We have decided to group the Motionizer, State Storage and Collision Detector components

onto a Collision Detection composite; other composites present in the system wrap only one

component (Aircrafts composites and Frame Pool Composite)24.

Component Implementations:

colDecImpl = 〈“Java” , “CollisionDetector.class” , “collisionDetectorComp”〉
motionImpl = 〈“Java” , “Motionizer.class” , “motionizerComp”〉
stateStrImpl = 〈“Java” , “StateStorage.class” , “stateStorageComp”〉
framePoolImpl = 〈“Java” , “FramePool.class” , “framePoolComp”〉
aircraftImplB747 = 〈“Java” , “AircraftB747.class” , “aircraft1Comp”〉
aircraftImplA320 = 〈“Java” , “AircraftA320.class” , “aircraft2Comp”〉

Dependencies used by Components:

storageDep =

〈“StorageDependency” , airPosDesc , “1..1” , ∅ , {intraJVMBinding}〉

Component descriptions:

stateStorage = 〈“stateStorageComp” , {airPosSvc} , ∅ , {stateStrImpl} , ∅〉
motionizer = 〈“motionizerComp” , {motSvc} , {storageDep} , {motionImpl} , ∅〉
collision = 〈“colisionDetectorComp” , {detSvc} , ∅ , {colDecImpl} , ∅〉
framePool = 〈“framePoolComp” , {frmSvc} , ∅ , {framePoolImpl} , ∅〉
aircraft1 = 〈“aircraft1Comp” , {airSvc} , ∅ , {aircraftImplB747} , ∅〉
aircraft225 = 〈“aircraft2Comp” , {airSvc} , ∅ , {aircraftImplA320} , ∅〉

Composite descriptions:

detCpte = 〈“DetectionComposite” , {collision ; motionizer ; stateStorage} , ∅ , ∅ ,

{airPosSvc ∈ stateStorage.services ; motSvc ∈ motionizer.services}〉
frmCpte = 〈“FramePoolComposite , {framePool} , ∅ , ∅ ,

{frmSvc ∈ framePool.services}〉
airCft1Cpte = 〈“Aircraft1Composite” , aircraft1 , ∅ , ∅ ,

{airSvc ∈ aircraft1.services}〉
airCft2Cpte26 = 〈“Aircraft2Composite” , aircraft2 , ∅ , ∅ ,

{airSvc ∈ aircraft2.services}〉

These four components would be ready to be packaged along with its implementation arte-

facts (object codes and descriptors) and dynamically installed in the Platform. As men-

tioned before, components and composites are passive entities, which are going to provide

services that are going to be used by the service compositions or by other composites/com-

ponents when they are executed (again, by means of service compositions).

Now we are going to define two service compositions and tasks to our system. The first is

the composition responsible for simulating the aircraft movement and storing radar frames

in frame pool Component. Thus our service composition has associations with the Aircraft

24We are considering that all implementations here were realized in Java, just as in the CDj distribution.
25One component with two different implementations would mean that the same component offers dif-

ferent implementations, in different technologies. He we are using two different components to show two
aircrafts in the system which are not necessarily alike.

26A group of aircrafts could be encapsulated into one composite. However here we assume that both
aircrafts were developed by different teams and are going to be dynamically and independently deployed in
the platform. It is also possible to create several instances, with different names, of the same composite.

3.3. Example: Dynamic Collision Detection Application 87

service provided by the aircrafts and the FramePool Service27,28,29.

Simulation Service Composition and Dependencies

aircDep = 〈“AircraftDependency” , airDesc , “0..” , ∅ , {intraJVMBinding}〉
frmPoolDep =

〈“FramePoolDependency” , frmDesc , “1..1” , ∅ , {intraJVMBinding}〉
simComption = 〈“SimulationComposition” , simulate , {aircDep ; frmPoolDep}〉

simulate30 =

“counter = 0;

do

invoke system.getCollectionItem, (aircDep, counter), aircraft ;

invoke getAircraftOp ∈ aircraft.description.operations, null, aircraftInfo;

invoke system.timenow, null, t ;

if aircraftInfo.tmax < t then

invoke system.evaluate (aircraftInfo.Trajectory, t), position3d ;

invoke system.addToMap, ((aircraftInfo.ID, position3d), frame), null

counter = counter + 1;

count(aircDep) times;

invoke storeFrameOp ∈ frmPoolDep.description.operations, frame, null ”

The second service composition gets frames from the Frame Pool, transform these frames

into a set of vectors (motions) and then checks for collisions based on these motions. Several

algorithms could be used to detect aircraft collisions; thus, several Implementations could

be installed in the Platform and the application could switch between them in case of a

mode change (e.g. switch to an Implementation which uses less Resources if the Platform

enters in an embedded mode).

Collision Detection Service Composition and Dependencies

motionDep = 〈“MotionDependency” , motDesc , “1..1” , ∅ , {intraJVMBinding}〉
frmPoolDep =

〈“FramePoolDependency” , frmDesc , “1..1” , ∅ , {intraJVMBinding}〉
detectDep = 〈“DetectorDependency” , detDesc , “1..1” , ∅ , {intraJVMBinding}〉
detComption =

〈“DetectionComposition” , detect , {motionDep ; frmPoolDep ; detectDep}〉

detect =

“invoke getFrameOp ∈ frmPoolDep.description.operations, null, frame;

invoke createMotionsOp ∈ motionDep.description.operations, frame, motions

invoke detectCollisionOp ∈ detectDep.description.operations, motions, collisions

invoke system.print, collisions, null”

Since the Behavior concern is related to the Components Implementation and its respective

Object code, and we are not defining any restrictions in this example, it is not up to

27We have defined some system/platform services for this compositions. The operation timenow returns
the current system time. The operation evaluate parses a function represented by a string, calculates it for
a given input value and returns the evaluated output value. The operation addToMap adds an item to a
map. The operation count returns the cardinality of a collection. The operation print prints the value of
a variable to the standard output.

28The word null is being used in the composition to represent the lack of input or output variables in
certain Service Operations.

29The Dependency towards the Services provided by the system is implicit. The system provides basic
services which are usually present in programming languages libraries (e.g. in our example, it offers access
to functions to manipulate collections and to access the system clock.).

88 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

the Developer/Application Designer to describe concepts related to the Behavior concern.

Thus, we are going to return to the Deployment concern and map the assembly elements

back to the Platform and Infrastructure Resources.

3.3.3.4 Mapping onto the Deployment Concern

First we must assign tasks to the Service Compositions defined in the Assembly concern.

The detection composition will be assigned to a periodic real-time task, whereas the simu-

lation task will be assigned to a non-real-time31 sporadic task32,33

Tasks

detectionTask =

(Periodic)〈“DetectionTask” , detComption , node1 , detRTProp , ∅ , ∅ , 10〉
simulationTask =

(Sporadic)〈“SimulationTask” , simComption , node1 , ∅ , ∅ , ∅ , 10〉

Task Properties

detRTProp = {〈“Deadline” , “Deadline” , 10〉}

Since the platform contains only one operating mode, it is not necessary to define mode

changes. It is up to the node to distribute the tasks among its processor units. Policies can

be defined to distribute it equally, or to prioritize the processor with higher frequency.

The next step is to characterize our Implementations in terms of Resource usage. We

suppose here that the memory consumption values were obtained by means of an off-line

resource usage analysis technique based on the allocation rate found in the Java class-

file. Thus, we update the Component Implementation definitions presented beforehand in

order to include Resource Requirements and Capabilities. Two Resources are present in

the Implementations’ Requirements: the dependency towards the Real-time Java Virtual

Machine (present in the collision detection component which will be executed in a real-time

thread and in components holding complex data structure to represent system state, since

they may need to use real-time libraries to avoid non-determinism introduction in both

thread execution and data manipulation) and their RAM memory requirements.

The match between the Resource Requirement and the Resource in the Platform is done

by means of the Resource type and the properties defined over the Requirements (it can

be seen as a selection mechanism, just as in its Service counterpart). We consider that

Java Virtual Machine is a Shared resource which allows concurrent access and only allows

Reader-type access. Consequently, all JVM Requirements are marked as “Shared - Reader”.

Component Implementations updated :

colDecImpl =

〈“Java” , “CollisionDetector.class” , “collisionDetectorComp” , ∅ , 〈true , reqMem10K〉〉
motionImpl =

〈“Java” , “Motionizer.class” , “motionizerComp” , ∅ , 〈true , reqMem1K〉〉
stateStrImpl =

〈“Java” , “StateStorage.class” , “stateStorageComp” , ∅ , 〈true , reqMem1M〉〉

31In our example, the non-real-time factor will be expressed by the fact that the task’s set of real-time
properties is empty.

32The developer must be sure that the detection task, which is real-time and has timing constraints,
will have a priority higher than that of the simulation task. That is particularly important if priorities
are automatically assigned by the platform following a real-time scheduling policy (like Rate-Monotonic
Scheduling or Earliest Deadline First Scheduling).

33Real-time properties values are here expressed in milliseconds.

3.4. Summary and Discussion 89

framePoolImpl =

〈“Java” , “FramePool.class” , “framePoolComp” , ∅ , 〈true , reqMem1M〉〉
aircraftImplB747 =

〈“Java” , “Aircraft−B747.class” , “aircraft1Comp” , ∅ , 〈true , reqMem1K〉〉
aircraftImplA320 =

〈“Java” , “Aircraft−A320.class” , “aircraft2Comp” , ∅ , 〈true , reqMem1K〉〉

Resource Requirements:

reqMem1K =

{〈“Memory” , “Memory” , {〈“Available” , “MemoryInMB” , “0.001”〉}〉}
reqMem10K =

{(Shared−Reader)〈“JavaRTS” , “VM” , 〈“Type” , “JVMType” , “RealT ime”〉〉 ;
〈“Memory” , “Memory” , {〈“Available” , “MemoryInMB” , “0.01”〉}〉}
reqMem1M =

{(Shared−Reader)〈“JavaRTS” , “VM” , 〈“Type” , “JVMType” , “RealT ime”〉〉 ;
〈“Memory” , “Memory” , {〈“Available” , “MemoryInMB” , “1”〉}〉}

These updated versions of the Implementation description must be installed in the Platform

along with the Implementations artifact themselves. Upon the definition of Instances,

the Platform will find the Implementations for the referenced Components/Composites

and perform all verifications concerning Resource Usage. We describe below the Instances

corresponding to our Composites.

Composite Instances:

detInstance = 〈“DetectorInstance” , detCpte , node1〉
frmInstance = 〈“FramePoolInstance” , frmCpte , node1〉
air1Instance = 〈“Aircraft1Instance” , aircft1Cpte , node1〉
air2Instance = 〈“Aircraft2Instance” , aircft2Cpte , node1〉

After parsing the Instance definition, the Platform will instantiate the Composites (and the

Components that form them), resolve them in terms of Dependencies and then publish all

Services. After the Service Publication, the Service Composition will be resolved, and then

the tasks of our application can be started.

3.4 Summary and Discussion

3.4.1 URSO Overview

In this chapter, we have presented the URSO - Unified Real-time Service-Oriented - Com-

ponent metamodel. URSO is composed of three concerns: Deployment, Assembly and

Behaviour.

3.4.1.1 URSO Metamodel

The Deployment concern revolves around the platform description and the mapping of

software elements on platform elements. A Platform is composed of Machines, which in

turn may be divided into smaller elements called Nodes. Platforms, Machines and Nodes

contain Resources; the Resources of a Node must be listed among the Resources of its

containing Machines and must not be shared among other Nodes (unless it is a Shared

Resource). The same relation applies for Machine Resources and their containing Platform.

The Resources offered by Platforms, Machines and Nodes are called Capabilities. Resource

90 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

Capabilities can be quantified, so a specific amount of that Resource can be reserved by

hosted applications.

Nodes and Machines can be connected two-by-two by means of Interconnections. Inter-

connections may support different Communication Protocols. The real-time properties of

Communication Protocols must be characterized, so that the communication delay is taken

into account in the performance estimation analysis.

Platforms may declare Platform modes. In a given mode, only a subset of Resources, Ma-

chines and Nodes may be activated. The Resources of the active Machines and Nodes must

be included in the Platform Mode active Resources. In addition, Platforms and Platform

Modes may have Policies, that is, actions which are performed when a given event (specified

by means of logical rules on Platform variables) is triggered.

The Assembly concern addresses the assembly and composition of software components.

Components can be vertically assembled into Composites. Components and Composites

provide Services. These Services may be qualified with Service Properties and required by

other Components by means of Dependencies. Internal Composite Services and Dependen-

cies may be promoted to Exported Services and Imported Dependencies (respectively) so

that they are seen by other Composites. That works by means of local and global Ser-

vice Registries. Services and Dependencies are described by means of Service Descriptions,

which contain the operations (Service Operations) implemented/required by the Compo-

nent. Service Compositions may be seen as a special type of Composite; they are going to

structure calls towards Services to implement a more complex business function. Service

Compositions only declare Dependencies towards Services present in the global registry (i.e.

Imported Dependencies).

In the Behaviour concern, Service Operations can be associated with Restrictions such as

Invariants, Pre- and Post-Conditions over its Parameters (Inputs and Outputs) and vari-

ables. The implementation of Service Operations is constituted by a technology-dependent

sequence of Instructions. For each Operation, the framework fills the sequence of Instruc-

tions and, based on an internal table with the WCET estimation for each Instruction and

the WCET of the Services the Component is using, it estimates the WCET of the Opera-

tion.

Then we have extended the Deployment concern to include concepts related to the map-

ping of Assembly elements onto Platform elements. Service Compositions are mapped onto

Tasks, which may or not have real-time properties. Tasks may be associated to Platform

modes by means of Mode transitions; that means that when a Platform switches its cur-

rent Mode, a task may be activated or replaced. Component Instances are associated to

Nodes; the Implementation of the Component they correspond may provide or require Node

Resources through Resource Capabilities and Requirements.

3.4.1.2 Methodology

A platform administrator is responsible for describing all the aspects of the platform.

He must:

• Describe the Machines that compose the Platform;

• Describe the logical partitions of the platform machines (Nodes);

• Describe the Resources of the Platform and affect these Resources to Machines and

Nodes accordingly;

• Describe the Interconnections between the Machines and characterize the communi-

cation supported by each Interconnection;

3.4. Summary and Discussion 91

• Define Platform modes and the subset of Resources, Machines and Nodes for each

mode;

• And define the policies supported by the Platform in each mode.

The platform description will configure the framework, so it must be provided to the plat-

form before the installation and execution of any component.

After the platform configuration, the framework must estimate the WCET of low-level

technology-independent instructions that will be used to implement the Service Operations.

This can be done by providing a calib ration/sampling application that will be executed

several time so that a good estimation of the average execution time and the jitter can

be done. The WCET of the instructions is kept internally and used by the platform to

estimate the WCET of its hosted applications.

Once the platform performance is sampled, it is possible to deploy Technical components

(such as Schedulers Monitors and Resource Managers) and components created by appli-

cation developers. Default technical components can be specified. The use of specific

Technical components, as well as the trigger of platform mode changes, is controlled by the

Platform administrator.

Five software artefacts can be defined by the application Developer:

• Service Descriptions, which are constituted by the list of Operations, their Parameters,

Restrictions and associated Policies;

• Components/Composite descriptions, which group Service Descriptions and other

Components for a common goal, by means of Services, Dependencies and promotions

of both of them;

• Component Implementations, which link a Component description with an object

code artefact and the Resources required by it, and whose instances are going to be

mapped onto Platform Nodes;

• Service Compositions, which structure Service calls to perform a business function;

• and Tasks, which map Service Compositions to schedulable units that will be executed

in a given Platform Node.

Service Descriptions are necessary to the creation of Components and Service Composi-

tions; Component and Platform (more specifically Resource) descriptors are necessary to

the description of Component Implementations; and Service compositions are needed to

create real-time and non real-time Tasks.

These five descriptors can be dynamically delivered to the platform (if the current mode

of the platform permits so), which will store them. Upon the deployment of a Component

Implementation the platform will extract the list of Instructions for each Service Operation

and, based on its control flow, estimate its WCET. The WCET of a Component Implemen-

tation will be incorporated to the WCET of the Services of all Components that use it.

When a Task is deployed, an analysis is performed as well, considering the control flow of

the composition code, the real-time constraints in the task descriptor and the WCET of the

Services it depends on. If the adding the task makes the system fail on the schedulability

analysis, or if the task can not execute within its specified deadline due to the services it is

bound to, actions can be executed by the platform depending on the active policies.

92 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

3.4.2 Discussion

For the moment, URSO is a very descriptive model. Most of the information depends on

the data described by developers and administrator on the required set of descriptors. That

may be very error-prone if a tool is not provided to aid the developers to design their ap-

plications and to the administrator to model the target execution platform. A graphic tool,

generating the URSO descriptors and representation of the system could be a very good

solution to this problem. It does not guarantee however that the information given by the

developer is true. Indeed, for the moment resources are not verified against their existence:

the framework keeps a counter for each quantifiable resource but does not enforce its usage

quota. Some of the resources though, such as processors/cores and memory can easily be

reserved and verified.

The communication description can also be improved. First, the timing properties could

be estimated by means of sampling for some protocols, instead of depending on the timing

properties specified by the platform administrator. Indeed, communication and protocols

are going to depend on the underlying run-time and model to which URSO is going to be

mapped to. For instance, in a URSO-conform version of SCA, the binding between two

components using a given protocol will depend on the support of this protocol by the SCA

runtime.

There is a lot of work in the WCET estimation applied to modern computer architectures.

After establishing the control flow graph of the Service Operation, a simple algorithm that

sums the costs of the edges in the most costly path is carried on. However, mechanisms such

as branch prediction and pipeline must also be considered to avoid a too pessimistic WCET

estimation, which may result in large idle slots, and deny the admission of components and

tasks that could have been executed in those slack times. Some techniques could be applied

at run-time to identify those slack times and rearrange the timing information available in

the model.

Many works have been dedicated to performance estimation of Java applications based on

their byte-code. Using byte-code as a WCET indicator is considered an efficient way to keep

portability [Bernat et al. 2000]. The Java Optimized Processor (JOP) is an open-source

bare-metal JVM implementation, which comes with a static WCET analysis tool [Schoeberl

& Pedersen 2006]. This tool has been extended in [Pitter 2008] to support multiprocessor

systems communicating through a shared memory. Just as the algorithm described in this

section, the static analysis adopted by JOP creates a control flow graph representing the

different blocks of byte-code instructions in the application. Since fixed execution times are

assigned to micro-codes, the exact execution time of each block can be calculated. In our

approach though we take into account the fact that services may be replaced or unknown

at design-time, and we replace the service invocation execution times by variables, whose

values may change dynamically. These changes may affect other service dependencies and

components, triggering other service replacements. Another tool, called TetaJ (for “Tool

for Execution Time Analysis of Java bytecode”) [Frost et al. 2011] statically analyses Java

programs by modelling its control flow as networks of timed automata and applying model

checking techniques on them. Contrarily to JOP approach, it targets software implemented

JVMs. The underlying JVM micro-code and hardware actions are modelled as well and

considered in the model checking. It could be an alternative to improve the precision and

portability of the timing analysis in URSO, which for the moment is based on measurements

to estimate the execution time of each micro instruction.

A very important part of the dynamism-related work is attributed to the administrator.

For the moment, it is up to him to perform mode change and substitution of technical

components. It would be interesting to allow the definitions of rules to automatize these

3.4. Summary and Discussion 93

two mechanisms based on information acquired by monitors.

URSO components are passive entities, which means that they can not instantiate new

threads or processes by themselves. A tool may be added to the framework to ensure at de-

ployment that there are no calls in the object code towards threading libraries. Parallelism

can be obtained in the service composition by using the parallel (‖) activity. Parallelism is

subjected to available resources.

In configuration and reconfiguration phases, the URSO framework verifies the satisfaction of

component dependencies. If a dependency is mandatory and not satisfied, the components

are not started. If the dependency is optional, then the component can be started, but

some services may be disabled due to service-level dependencies. That implicitly defines a

life-cycle for both components and services; components and services may be VALID or IN-

VALID and services may be REGISTERED or UNREGISTERED. Services from INVALID

components are always UNREGISTERED. This life-cycle may be refined to support more

component and service states.

URSO time descriptions are based on relative times (that is, time metrics are based on an

initial event, usually the beginning of the execution). Integrating a more refined time model,

like that of CCSL34 could make time description more flexible and expressive. Another al-

ternative would be to adopt the time model and the user-defined clocks feature of the RTSJ

(version 1.1), which can easily be generalized to be used in other technologies [Wellings &

Schoeberl 2011].

Models @ runtime enables the construction and update of a model representing the architec-

ture of a running system [Garlan & Schmerl 2004,Morin et al. 2009]. An interesting feature

for URSO monitor components would be to offer a graphic representation of the current

architecture and allow application administrators to interact with the application through

this interface (for instance, right-click on a component and select a “disable” option). This

interface could also be used to notify errors, control the platform mode and modify the

platform active policies.

A more formal alternative for the specification of business processes would be using the

Process Specification Language (PSL) [Schlenoff et al. 1999]. PSL is a language specified

by the NIST35 whose core is based on concepts specified by logic axioms and ontologies.

Timing relations can be defined between these concepts, what makes PSL suitable for defin-

ing real-time processes. Services could be seen as special activities or objects. On the other

hand, due to the fact that business processes may be defined by actors without a logic or

formal methods background, the use of BPEL (or a subset of it) remains more intuitive and

straightforward.

We consider that this is a first step towards a standard for flexible and modular real-time

applications, and that there is certainly a lot of room for improvement in the URSO meta-

model.

3.4.3 Summary

This chapter has presented URSO, a component metamodel for the design of real-time

service-oriented and component-based applications. URSO focuses on the flexibility and

34CCSL (Clock Constraint Specification Language) is a language annexed by the OMG along with UML-
MARTE profile to specify logical and chronometric time constraints [Object Management Group 2008].
CCSL time model is based on the models used in concurrency theory. Several works have proposed semantics
for the language, enabling both specification and verification of timing constraints [André & Mallet 2009,
Mallet et al. 2009,Mallet & Andre 2009,Boulanger et al. 2012].

35NIST stands for “National Institute of Standards and Technology”. It is an American institute which
provides standards and technology to improve competitiveness and innovation in the US industry. More
details about the NIST in http://www.nist.gov.

94 Chapter 3. Unified Real-time Service-Oriented Component Metamodel

modularity aspects of these applications; independent components may communicate with

each by means of services, both being able to be deployed dynamically. Part of the real-time

behaviour of an URSO application depends on the information added by the application

developer - semantic restrictions over application parameters and service properties must

be informed in the Service description. The time specification of the services is automati-

cally deducted by the URSO platform, which adds this information along with the Service

description and uses it afterwards to carry out performance estimation analysis. URSO also

depends heavily on the manual platform description. This information is used to execute

mechanisms such as resource reservation and logical partitioning to achieve temporal and

spatial isolation.

URSO do not intend to establish a new model to develop applications, but a unified meta-

model defining concepts and good practices that can be mapped onto existing industry-

adopted models. In the next chapter, we are going to present mappings from URSO to

three models currently used in the industry to design real-time and/or service-oriented

applications: the OASIS specification Service Component Architecture (SCA), the SAE36

avionics standard Architecture Analysis and Design Language (AADL) and the UML profile

for Modelling and Analysis of Real-time and Embedded Systems (UML-MARTE).

36SAE stands for ‘Society of Automotive Engineers’. More details about SAE at http://www.sae.org.

Chapter 4

Mapping URSO Onto Existing

Component Models

“Discovery consists of seeing what

everybody has seen and thinking what

nobody has thought.”

Albert Szent-Györgyi

Contents

4.1 Motivations . 96

4.2 URSO and SCA . 96

4.2.1 Overview of SCA . 96

4.2.2 Extending SCA . 97

4.2.2.1 Dynamic Extensions for SCA 98

4.2.2.2 Real-time Extensions for SCA 99

4.2.3 Mapping extended SCA to URSO 104

4.3 URSO and AADL . 105

4.3.1 Overview of AADL . 105

4.3.2 Extending AADL . 108

4.3.3 Mapping extended AADL to URSO 110

4.4 URSO and MARTE . 113

4.4.1 Overview of UML-MARTE . 113

4.4.1.1 MARTE Foundation Package 114

4.4.1.2 MARTE Model-based design package 115

4.4.1.3 MARTE Model-based analysis package 117

4.4.2 Extending UML-MARTE . 117

4.4.3 Mapping extended UML-MARTE to URSO 120

4.5 Summary and Discussion . 120

4.5.1 Overview on the extensions to SCA, AADL and MARTE 120

4.5.1.1 SCA extensions for URSO 120

4.5.1.2 AADL extensions for URSO 121

4.5.1.3 UML MARTE extensions for URSO 122

4.5.2 Discussion . 122

4.5.3 Summary . 124

96 Chapter 4. Mapping URSO Onto Existing Component Models

4.1 Motivations

In the current design of real-time systems, software engineers are accustomed to start the

development cycle by using high-level general-purpose modelling languages (either textual

or graphic, such as UML). In a next step, this high-level representation of the application is

often mapped onto a proprietary programming or modelling language, with its own concepts

and semantics. Once they enter this technology-dependent world there is no turning back:

they use tools and techniques that can not be generalized and applied to other languages.

URSO aims to fill this gap for service-oriented and component-based real-time applications,

providing a metamodel that can be mapped onto other technologies. In order to be conform

to this metamodel though, some models must be extended, as they do not contain in their

standard form all the concepts present in URSO. Thus, we have chosen to map URSO onto

extensible modelling languages, in which new features can be added effortlessly.

In this chapter, we present the mapping between URSO and three standard modelling

languages: Service Component Architecture (SCA), Architecture Analysis and Design Lan-

guage (AADL) and the UML profile for Modelling and Analysis of Real-time and Embedded

Systems (UML-MARTE). For each of these modelling languages, an introductory interview

exhibits its main characteristics. Then, we list the extensions which were made to the model

to address properties important to establish the conformance relation. Finally, we detail

the conformance relation between the model’s concepts and URSO’s concepts.

4.2 URSO and SCA

4.2.1 Overview of SCA

Service Component Architecture (SCA) [Beisiegel et al. 2005] is a component model

created in 2005 by a group of major software vendors (such as IBM and Oracle). This group

was called the Open SOA Collaboration and it aimed to create a model to facilitate the

development of service-oriented applications. The core of the specification can be divided

into four parts:

• Assembly model, which defines service and component description, application archi-

tecture, component packaging and vertical and horizontal composition. The assembly

is performed in a file separate from implementation code, which increases reuse;

• Client and Implementation model, which defines how services can be accessed and

components can be implemented for different programming languages. The dissocia-

tion between the implementation models and the assembly is what allows SCA to be

technology-agnostic;

• Binding specification, in which different communication protocols to access compo-

nent services are defined. Just as the Client and Implementation model, it improves

technology-independence in SCA;

• and the Policy Framework model, which defines code-independent policies and intents

for quality-of-services aspects.

In the assembly model, the main entities are the components. Components can be configured

and instantiated as implementations in a specific language. Implementations may imple-

ment or not business functions. These business functions can be exposed as services by the

components they implement. Services are composed by operations which can be accessed

by the client components. They are described by means of interfaces which depend on the

4.2. URSO and SCA 97

technology used to implement the component (Java interfaces for Java implementations,

WSDL for BPEL implementations and so forth). In order to consumer a service, a compo-

nent declares a reference towards the service interface, containing the needed operations.

Services and references are linked by means of abstractions called wires. SCA components

can be combined into larger logical constructs named composites. It is inside the composites

where component wires are listed. Furthermore, component services and references can be

promoted to become composite services and references, which allows them to be visible to

other composites in the runtime. Composite assembly is described into a configuration file

which uses a XML-like language called SCDL (Service Component Definition Language).

Besides the assembly model, another major part of the SCA specification is technology-

independent: the Policy framework model. It handles SCA non-functional aspects in two

ways. The first is by means of policy sets, which, as the name suggests, hold one or more

policies. A policy is a constraint or capability which can be applied to either a component or

an interaction between components. Policies are expressed in a concrete form. For instance,

Encryption is a policy for service interactions, that can be specified by means of WS-Policy

assertions. The second way is through intents, which are configuration-independent and

abstract high-level forms of policies. For example, Confidentiality is an intent. Whenever a

developer needs confidentiality, he knows that he must use a policy set containing encryp-

tion, among other policies.

SCA applications may contain one or more composites. Component implementations, de-

scriptions and artefacts necessary for their execution are packaged into a deployment unit

called contribution. The standard format for contributions is a ZIP archive. Contributions

contain a file listing all deployable composites. At run-time, composites and components are

contained within a domain, which in the specification is defined as a set of“SCA frameworks

from a specific SCA vendor and managed by a single group”. Domains specify, among other

aspects, how distributed components communicate. Although composites are confined in

one domain, they may communicate with applications (and potentially components) out-

side their domain through binding protocols defined on their services and references.

The ‘Client and Implementation’ and ‘Binding’ specifications allow developers to extend the

SCA model to support new types of service implementation languages (and consequently

service interface description languages) and binding protocols.

Figure 4.1 presents a simplified view of the SCA metamodel in UML. Policy Framework el-

ements were omitted. In fact, components, composites, services and references may specify

policy sets and intents. Service callbacks1 and property values were omitted as well. The

black classes indicate the extensions points.

Several implementations and frameworks for SCA are available, including open source

projects such as Apache Tuscany2, Fabric33, the already extinct Newton, and OW2 FraS-

CAti [Seinturier et al. 2009] projects.

4.2.2 Extending SCA

As we may see, SCA already provides modularity by means of components and compos-

ites. It lacks however two important aspects which are present in the URSO metamodel:

dynamism and real-time support.

1Callbacks in SCA are used to specify two-way and asynchronous services.
2Available at http://tuscany.apache.org
3Available at http://fabric3.org

98 Chapter 4. Mapping URSO Onto Existing Component Models

Figure 4.1: SCA Metamodel

4.2.2.1 Dynamic Extensions for SCA

Although SCA claims to be service-oriented, service and references are bound by means of

static wires declared in the composite file. Composites may enable the “auto-wire” feature

to automatically bind services and references whose service interface match. This is not

enough to achieve a dynamic behaviour though: composites are described in a static con-

figuration file and their constitution cannot be changed at run-time, so the wiring can be

established off-line, before execution.

This solution does not work when we deal with several composites, which are not supposed

to see each others services unless they are included in a larger composite. An alterna-

tive for different composites could be adding them to the top-level domain and promote

their services and references so that the runtime decides what to do with them. Perform-

ing an auto-wire feature is one of the suggested behaviours, but that mechanism is an

implementation-dependent and domain-specific feature.

We have proposed in [Américo & Donsez 2012] an extension to SCA to handle SOA-inherent

dynamism, supporting service selection and dynamic availability aspects. In order to stay

conform to SCA’s metamodel, we proposed a binding extension (binding.dynamic)4; it

makes sense, since it is constitutes a communication style that can be used by SCA services

and references, independently of the technology with which they were implemented. The

extension addresses:

• Dynamic publication and discovery: By adding the binding.dynamic extension,

components may have their services published (when put inside a service element) or

4Extensions in SCA are named according to the following notation: <extension point>.<technology>.
Standard extensions are implementation.java, implementation.C++, implementation.bpel, implementa-
tion.composite (when a composite corresponds to the implementation of a component), interface.java,
interface.wsdl and binding.ws.

4.2. URSO and SCA 99

discovery other composites’ services implementing a given interface (when put inside

a reference element). In the former case, service properties may be added with a

property sub-element; in the latter case, filters may be specified to perform service

selection through the filter element;

• Component life-cycle: We have proposed a life-cycle for SCA components support-

ing dynamic availability of components and dynamic deployment features. Besides

being VALID or INVALID according to the presence of services satisfying components

references requirements, components can be blocked upon the invocation of a service

whose suitable implementation is not available (the BLOCKED stated);

• Service-level dependencies: Service-level dependencies allow to select which ser-

vices will be published according to the satisfied dependencies. They can be specified

through dependency elements in the service’s binding.dynamic element;

• Life-cycle management callbacks: Life-cycle management callbacks are useful if

the developer wants specific actions to be performed upon the binding (removal) of a

reference or the (un)registration of a service. A handler method can be specified for

each life-cycle event;

• and SLA support: SLA terms can be added to services and references. These terms

can be considered, negotiated and monitored by a service-level manager (SLM) in the

platform. The terms can be added through the sla element in both services and

references.

The extensions have been implemented by means of a tool that mapped SCA components

onto iPOJO components, since the latter supports natively most of the features to support

dynamic availability. Figure 4.2 depicts in gray the metamodel of the dynamic binding

extension for SCA.

4.2.2.2 Real-time Extensions for SCA

There are few works on the extension of SCA to real-time applications. Mart́ınez et

al. [Mart́ınez et al. 2009b] have extended SCA to support the expression of timing re-

strictions on services. In order to analyse complex service compositions, SCA services were

extended to inform the references they depend on and in which order they use them. In

addition, the authors have defined a formal semantics to translate their real-time extended

version of SCA to a timed automata, so that model checking techniques can be applied

to analyse the predictability and temporal correctness of the system. The extensions were

only represented in a graphic form and were not integrated in the SCA metamodel.

Aghajani et al. proposed a dynamic real-time service framework based on the extension

of SCA with real-time properties and OSGi awareness [Aghajani & Jawawi 2012]. Timing

properties (period and priority) and events are associated to components themselves, which

may be passive or active. Meanwhile, SCA interfaces for services and references are listed

in a separate bundle descriptor.

Finally, [Brugali et al. 2012] suggest an integration between Orocos, a hard real-time com-

ponent framework used in robotics, and SCA. This integration would be mainly performed

through a binding extension to enable the communication between Orocos and SCA com-

ponents (for instance, translating messages sent from one to another). Other suggested

mismatches to be solved are the communications’ synchronization type (it is not possible

to choose a specific mechanism in Orocos, whereas SCA supports both synchronous and

asynchronous communication modes) and the lack of vertical composition in Orocos.

100 Chapter 4. Mapping URSO Onto Existing Component Models

Figure 4.2: Extended SCA Metamodel: Dynamic Binding Extension

In thesis we propose an extension which cover two extension points of the SCA specifica-

tion (namely service interface and client implementation) and third aspect which is not very

exploited in SCA: the deployment file.

Interface extension We propose to extend the SCA interface so that timing and be-

havioural information may added by the developer and by the framework itself. We will

call this extension interface.urso. Here we will represent the information in a XML-

like file, but any other format (including annotated Java interfaces or extended versions

of JSON, WSDL or USDL) could be used. Figure 4.3 shows a tree representation of the

elements of our SCA interface extension. It can be integrated directly in the SCA composite

description or in a separate file to increase reuse.

As any SCA interface, interface.urso contains a list of operations; each operation has its

own input and output parameters. In addition, service operations may inform restrictions

under the form of logical assertions on its variables. Restrictions can be defined over the

input and output variables of a service operation, which can be easily known by the frame-

work; internal (local) variables could have been added as well with a special notation if the

execution framework is implemented in a language with introspection features. Information

about the service dependencies present in each operation can be retrieved as well by means

of introspection; since we know all the service dependencies interfaces for each component,

every time we match a virtual method call towards that interface we can consider it as a

service call. That information is important for execution time estimation; if the framework

implementation language does not enable introspection, service dependencies for each ser-

vice operation must be listed in the operation description, along with the quantity of times

they are executed in the worst case scenario. It is important as well to assign actions to be

4.2. URSO and SCA 101

Figure 4.3: SCA Real-time Service Interface Extension

performed in case of violation of the restrictions; in this case, references towards platform

actions can be used.

Restrictions can be implemented by adding verifications on throughout of the operation

code through instrumentation. More particularly in Java, this can be achieved through

aspect-oriented programming [Kiczales et al. 1997] and Java assertions5.

Implementation extension Component implementations must be extended to declare

the resources they need for their execution. These resources must be among those listed by

the platform and active in the current platform mode. In addition, for quantifiable resources,

it is necessary to have enough available resources for the deployment of the implementation;

otherwise, it should not be deployed. Our implementation extension elements are depicted

in Figure 4.4. Just like in the interface case, the implementation may be described in a

separate file, which will be referenced in the composite description.

Deployment Extensions The most important information about our extension is con-

tained in the deployment description. SCA deployment description only lists the name of

the deployable composites and enables the explicit import and export of namespaces. We

propose to extend the SCA contributions deployment mechanism in two steps: first, produc-

ing a platform description containing the list of resources, machines, nodes and connections;

then, for each contribution, creating a deployment plan mapping component instances and

tasks to platform entities. The concept of SCA contribution itself was widened as well: a

contribution may now contain Component implementations, Composite descriptions (with

no implementations), Service Compositions, Tasks or a combination of the precedent el-

ements. Not all of them require a deployment plan: only Component Implementations

5Assertion is a mechanism introduced in Java 1.4 which allows developers to test assumptions about
variables in a program. More information about Java assertions is available at http://docs.oracle.com/

javase/1.4.2/docs/guide/lang/assert.html. Before that, a dedicated language to express design by con-
tract constructs in Java, named JML (Java Modelling Language), had been created in 1999 [Leavens
et al. 1999].

102 Chapter 4. Mapping URSO Onto Existing Component Models

Figure 4.4: SCA Real-time Component Implementation Extension

and Tasks do. Composites inside a contribution will be automatically deployed if all their

internal components can be instantiated and all references/dependencies can be satisfied.

Concerning Service Compositions, executable code generation will only happen when a Task

declares to use them. Then a composite is created to wrap the service composition, and

the framework finds the set of services that better satisfy the task timing constraints.

Figure 4.5 shows the elements of the platform description extension. We assume core prop-

erty and data types can be imported from a file or declared in the platform description

itself. With this platform description we are now able to control the available resources in

the platform and to implement resource reservation mechanisms. In addition, the informa-

tion about the machine connections and the protocols with which they can be linked helps

us to better estimate execution time.

Figure 4.6 depicts the elements present in the second step of the deployment extension:

the deployment plan. SCA metamodel limits the number of Component Implementations

to one per component. Since out Implementation extension includes implementations’ re-

source capabilities and requirements, the only data needed to instantiate Composites is

the Composite name. The platform will try to deploy all the composite components on the

specified node; if it is not possible, the platform may suggest a new placement or just inform

that it is not possible to instantiate the composition in that node. In the Task deployment

case, the service composition wrapper composite only contains a component generated by

the platform, so there is only one component to be instantiated. So if the desired placement

is not possible, the platform may behave just like in the composite counterpart. Both node

name and machine name can be specified: if only the latter attribute is used, the platform

will try to place the artefact in any node of the machine with the given name; if the former

attribute is used, the platform will try to find the node with the given name and deploy the

artefact over there. In the case where both attributes are used, the node name has priority

over the machine name, so if the node placement fails, the platform can still try to place in

the specified machine.

The metamodel of the extended version of SCA Assembly, with both real-time and dynamic

extensions can be seen in figure 4.7. The figure does not depict the deployment extensions

(platform description and deployment plan) for two reasons: first, it would make the dia-

gram more confuse due to the big quantity of information; second, deployment and assembly

are two different concerns that should not be mixed, since one is application-independent

and the other depends on the underlying platform; and finally, the resultant deployment

4.2. URSO and SCA 103

Figure 4.5: SCA Real-time Deployment Extension - Platform Description

Figure 4.6: SCA Real-time Deployment Extension - Deployment Plan

104 Chapter 4. Mapping URSO Onto Existing Component Models

Figure 4.7: SCA Assembly with Real-time and Dynamic Extensions

model is very similar to URSO’s Deployment concern diagram (since deployment is a pri-

mary concern of SCA, we had to add all the lacking concepts). As we discussed before,

Service Compositions can be seen as a special composite, which only imports references.

4.2.3 Mapping extended SCA to URSO

The mapping between SCA concepts and URSO concepts is very straightforward. Since

SCA is a service-oriented component model, its assembly model is already very similar to

URSO’s Assembly concern model. The extensions we have provided in the last section

added the missing concepts so that both models can be easily mapped to each other.

Most of the concepts present in URSO’s assembly model are already present in SCA. The

only concepts that needed to be added were those related to service selection (filters and

service properties) and service-level dependencies. Table 4.1 summarizes the correspon-

dences between URSO and (Extended) SCA Assembly models.

URSO’s Behaviour model can be mapped onto the information that is both described in the

SCA interface extension (operations, parameters and restrictions) and gathered by the plat-

form (instructions and timing properties). The concepts present in URSO’s Deployment

concern can be mapped onto the information from both platform description (platform,

4.3. URSO and AADL 105

URSO Concept Extended SCA Concept
Service Service
Service.name Service.name
Service.description Service.Interface
Service.properties Service.BindingDynamic.properties
Service.bindings Service.bindings
Service.dependencies Service.BindingDynamic.dependencies
Exported Services Promoted (Composite) Services

Dependency Reference
Dependency.name Reference.name
Dependency.description Reference.Interface
Dependency.multiplicity Reference.multiplicity
Dependency.ranking Reference.BindingDynamic.Filter
Dependency.bindings Dependency.bindings
Imported Dependencies Promoted (Composite) References

Binding Binding + Wire

Service Description Interface + InterfaceUrso

Component Component
Component.name Component.name
Component.services Component.services
Component.dependencies Component.references
Component.implementations Component.implementation
Component.properties Component.properties

Implementation Implementation + ImplementationUrso

Composite Composite
Composite.name Composite.name
Composite.expServices Composite.services
Composite.impDependencies Composite.references
Composite.components Composite.components

Service Composition Implementation.bpel or another composition language

Table 4.1: Mapping between URSO and SCA Assembly

machine, node, interconnection, resource, platform mode and policy) and deployment plan

(task and instance) extensions.

4.3 URSO and AADL

4.3.1 Overview of AADL

The Architecture Analysis and Design Language (AADL) [Feiler et al. 2006] is a compo-

nent model developed by the Society of Automotive Engineers (SAE) and published as a

standard in 2004. It was designed for the specification and automated analysis and integra-

tion of real-time systems. AADL enables modelling properties such as timing behaviour,

schedulability, fault tolerance, security and many other aspects, thanks to its extensibility

feature. The AADL core standard contains textual language for the specification of compo-

nents, with defined semantics. In addition, four annexes have been added to the standard,

including a graphical notation, compliance rules for specific programming languages, APIs

106 Chapter 4. Mapping URSO Onto Existing Component Models

for interaction between applications and the execution environment, interchange formats

for AADL system representations, and a behaviour model to express high level composition

concepts. The specification is currently in its 2.1 version.

AADL model covers not only the real-time software architecture but also the underlying

computer hardware and the interfaces between the application and the physical world.

Statements in AADL are called declarations. Declarations inside packages are global to all

other packages; otherwise, they remain local to the program specification. These declara-

tions can be classified into four types:

• Component types specify the functional interface of a component, that can be seen

by other components. They can be characterized by means of features (a part of

the interface through which control and data can be exchanged), flow specifications

(an externally observable flow of information throughout a component), modes (op-

erational states, like in traditional real-time systems) and properties. Features can

be required and provided, and they can refer to either ports (more specifically data,

event or event data ports), subprograms (that is, synchronous calls between threads,

which can be parameterized by means of subprogram parameters) and shared access

to component internal data;

• Component implementations, as the name suggests, describe components’ internal

structure in terms of subcomponents, connections between subcomponents’ features,

flows (directional information transfer between a sequence of connected components

or subcomponents), modes and properties. A set of connections from an ultimate

source to an ultimate connection is called a semantic connection, which represent a

specific pattern of data and control flow between components;

• Feature Group Types, which characterizes groups of features;

• and Annex libraries, which may define annex-specific sublanguages whose constructs

may be added to component type and implementation declarations.

Component types and component implementations model are used to describe both hard-

ware (also called execution platform components) and software components of the system.

The following categories of components are supported by the AADL standard:

• Abstract components, which may be refined into any other category;

• Software components

– data components, which corresponds to static data in a source code. This data

can be shared by other components through access protocols specified as prop-

erties. Their types can be modelled in AADL by data component type and data

component implementation declarations;

– subprogram components, which represent a callable set of instructions in a source

code that are executed sequentially. Subprograms can be invoked by other com-

ponents (e.g. threads or other subprograms) and may access (or provide access)

to data components. Subprograms can be grouped into subprogram groups (e.g.

a software library);

– thread components, that model potentially concurrent tasks in a source code.

Just as subprograms, thread components can contain subprogram and data com-

ponents, whose access can be provided or required. Thread execution is man-

aged by schedulers, and its dynamics can be modelled by means of automata.

4.3. URSO and AADL 107

Some standard release protocols are defined for periodic, sporadic and aperiodic

threads, but additional protocols can be defined. Threads can be grouped in

thread groups, that is, a group of threads within a process which may share data

and common properties;

– process components, which provide enforced spatial isolation through address

space partitioning and runtime protection. Process must contain at least one

thread component. In addition, they may contain thread groups and provide or

require access to data components.

• Execution platform components

– memory components, which represent random accessible storage support (e.g.

ROM and RAM memories). Memory subcomponents may be nested inside larger

memory components. They have properties such as size and number of address-

able locations;

– bus components, that represent channels through which data and control can

be exchanged between processors, devices and memory components. Buses may

support different protocols. Buses may access and be connected to other buses.

Virtual data transmission channels can be modelled as virtual buses;

– processor components correspond to the platform elements responsible for the

schedule and execution of threads. They may support different scheduling pro-

tocols. In addition, they contain memory components and access bus compo-

nents. Hierarchical schedulers and virtual machines can be modelled by virtual

processors;

– device components correspond to physical world entities, like sensors and ac-

tuators. They may also represent a software that simulates physical devices.

Devices are associated to processors (on which driver software may be executed)

and connected to other software components. Devices use bus components to

send data;

• System components which are compositional components, i.e. they permit the hier-

archical organization of both software and execution platform components and their

communication through well defined interfaces. System components may contain all

components described above.

AADL is a hierarchical component model; just as components, subcomponents can be

classified by means of component types and component implementations. A component

may contain many subcomponents.

Properties in AADL are used to represent attributes and characteristics of AADL model

elements, such as latency, deadlines, protocols, and so forth. They have a name, a type

and a value. The standard defines some pre-declared properties and property types, but

additional ones can be introduced through property sets.

Some elements in AADL may be partially specified. These template elements can later be

parametrized and refined to assign values to properties and introduce additional elements

such as features and subcomponents. This template mechanism is called prototype in AADL.

Figure 4.8 depicts a simplified version of the AADL metamodel. In the original model, the

component type and implementation concepts had several subtypes corresponding to the

component category; depending on its category, a component may or not have a given

feature. Its category also limits the category of its subcomponents; it would be wrong, for

instance, for a sub-program component to have a memory subcomponent. Most of these

108 Chapter 4. Mapping URSO Onto Existing Component Models

Figure 4.8: AADL Simplified Metamodel

details will be abstracted: they will be necessary though for mapping other models towards

AADL.

4.3.2 Extending AADL

Differently from SCA, AADL already includes deployment and real-time-related concepts.

AADL lacks however the dynamic and loosely coupled architecture from the SOA approach.

Indeed, modes and mode transition are the only native mechanisms that may provide dy-

namism in the architecture of AADL applications.

In [Aminpour et al. 2011], the authors provided a means to model and analyse SOA architec-

tures in AADL. Three distinct types of AADL processes can be specified: service providers,

service requesters and discovery agencies. Three operational modes were defined: initial-

ization (initial mode which activates the system), query (where the requesters query the

discovery agency) and interaction (where data is exchanged between service providers and

requesters). The service provider and the discovery agency are aperiodic processes. Adding

and querying for services is modelled as aperiodic threads in the discovery agency. The

Service provider communicates with the discovery agency via an event data port through

which service registration is performed. The service requester is modelled as a periodic

process, with an aperiodic thread which may be used to receive service data from service

providers and a periodic thread that is used to request services to the discovery agency. The

4.3. URSO and AADL 109

Figure 4.9: SOA model in AADL

communication between the service requester and the discovery agency is done by means of

two event data ports: one, from the requester to the agency, sends queries; the other, in the

opposite direction, sends query results. Figure 4.9 illustrates the processes and how they

communicate with each other. Links between white diamonds symbolizes connections that

are only active in the query mode, whereas links between black diamonds are connections

active in the interaction mode. Grey diamonds links are connection active in both modes

(all the time).

The weak point of this approach is that the set of provided (and required) services is

statically informed in the service provider (and request, respectively) process. In addition,

the links between all processes are statically defined, making it impossible to add new un-

foreseen services at runtime. This limitation is actually related to AADL itself and not to

the authors’ approach. Still, some of the ideas can be reused for a dynamic service-based

approach:

• A component corresponds to an AADL process;

• Each service is a thread subcomponent and their operations can be implemented as

thread subcomponents;

• Service requesters have two periodic threads which set the system operational mode:

one for interaction with service providers and another for querying for services in the

discovery agency.

• We can use modes to define which service operation is called through mode-dependent

connections. That would mean however that only one component at a time can access

a service and that would block the entire component (only one mode can be active at

a time);

• Differently from extended SCA, where services are seen from the outside and can be

automatically registered in the service catalogue, here, services are explicitly published

by the service provider into discovery agencies. That means that there may have two

levels of service visibility, just as in URSO. However, auto-binding (or auto-wire, in

SCA) is not supported by AADL.

Based on the authors’ approach, we have defined some special types to adapt their solution

to dynamic systems:

• A data type URSOServiceRecord, in which the reference towards the interface file and

the set of service properties are declared;

• A data type URSOServiceQueryRecord, in which a reference towards the interface file

and a filter/ranking function are declared;

110 Chapter 4. Mapping URSO Onto Existing Component Models

• A process URSO and a process implementation URSO.i, in which we declare a global

service registry and a global message multiplexer thread subcomponents. This imple-

mentation must be extended by URSO composites;

• And a thread group URSOComponent which must be implemented by URSO compo-

nents.

With these elements in mind, we may now propose a mapping procedure.

4.3.3 Mapping extended AADL to URSO

We make two assumptions in this mapping proposition. First, the global service registry

(GSR) thread component is a special component, implemented in a language which allows

adding and querying data dynamically (for instance, a piece of code which manages data

in a centralized database). This component is able to add data concurrently, due to the

fact that service records are independent from each other. That way, all components that

desire to register their services may do so through the same port. It is important though

that the component registers the component implementation name, so that it can send this

information in the query result, and the service requester may find its required services.

The component has an AADL description just as the local service registry (LSR), with

ports corresponding to service addition, removal and query operations.

Second, we assume that the global message multiplexer (GMM) thread component is a

special component as well, which enables several components to be linked through the same

in and out ports. Which component will send and receive information is determined by

the active mode (and connections) in each system. This component has an AADL de-

scription with two port groups, namely interactIn and interactOut, and is aperiodically

dispatched.

Our mapping procedure, based on the works in [Aminpour et al. 2011], works as follows:

• A URSO “deployable” composite is mapped onto an AADL process that extends

URSO.i, the URSO process implementation that contains the GSR and GMM thread

group subcomponents. By “deployable composite”, we mean a composite which is

not component of any other composite (in SCA, that would be a composite in its

composite file which is not included in any other composite file). This process will be

named URSOComposite.<composite name >;

• Each component in a composite is modelled as a thread group subcomponent. This

subcomponent will be declared as a URSOComponent.<component name >. We have

chosen to model components as thread groups because besides data, thread groups are

the only component category which may have subcomponents of its same category. It

is important to model the recursive nature of components. In addition, each compos-

ite has a thread subcomponent, named LSR, of type ServiceRegistry.<composite

name >;

• For each non-exported component service, we create event data port connections

between the component and the LSR. Each service implies three connections (between

the newService, removeService and actService ports). These connections are active

in two modes - a query and an interaction mode particular to the component (named

query<component name > and int<component name >);

• For each non-imported component dependency, we create event data port connections

between the component and the LSR. Each service implies two connections between

4.3. URSO and AADL 111

the newQuery and queryResult ports. These connections are active in one mode -

the query mode particular to the component (query<component name >);

• Between every pair of components, we add a connection between one’s interactOut

and other’s interactIn port groups. This connection will be responsible for the

exchange of data between the components and will be active in the modes int<one

component name > and int<other component name >;

• Just as in the non-exported services case, for each exported service we create three

connections between event data ports of the component and the GSR. The three con-

nections (again between the newService, removeService and actService ports) are

active during both queryG<component name > and intG<component name > modes.

• For each imported dependency, we also create two event data port connections (be-

tween the newQuery and queryResult ports) between the component and the GSR.

These connections are active in the queryG<component name> mode;

• For each component that import dependency or export services, we connect the com-

ponents interactIn and interactOut port groups to the GMM interactOut and

interactIn port groups, respectively (always in the direction from one out port to

other’s in port). This connection is active during the intG<component name > mode;

Listing 4.1 shows code snippets illustrating the custom data types, the URSO and URSO-

Composite processes, the URSO.i implementation and the URSOComponent thread group.

Listing 4.2 depicts the component type and implementation for the registries. Local and

global service registry have the same component type, but the implementation might be

slightly different, due to the multiple connection factor we have mentioned earlier. A com-

posite implementation declaration example has been included in the Annexes section A.3.

Provided services in component implementations are modelled as threads. Each thread has

a particular mode indicating that it is being executed in the component. Inputs from the

interactIn port group can be redirected to service threads as input; symmetrically, service

threads’ output can be redirected to component’s interactOut ports.

Required services are implemented by adding two periodic thread subcomponents: one for

querying services in the service registry and another for consuming the service itself. These

threads change the system mode to query and interaction modes, respectively. Component

type declared ports are linked to its respective component implementation ports. Section

A.3 includes the implementation declaration of one of its components.

Just as in SCA, service compositions can be seen in our AADL mapping as special types of

composites which only request services globally. The expression representing the composi-

tion may be put in an external file and referenced as a property in data type.

Service-level dependencies can be modelled through event ports. Upon the reception of a

query result, a dependency may send an event to the actService port of a given service

thread, so that its thread operations may be activated.

112 Chapter 4. Mapping URSO Onto Existing Component Models

Listing 4.1: URSO AADL Process and Data Declarations

data URSOServiceRecord

-- Includes interface file

-- it must also include service properties

end URSOServiceRecord;

data URSOServiceQueryRecord

-- We must have the interface file and the filter

end URSOServiceQueryRecord;

process URSO

end URSO

process URSOComposite extends URSO

features

initialized: in event port;

end URSOComposite;

process implementation URSO.i

subcomponents

GSR: thread group ServiceRegistry.global ;

GMM: thread GlobalMessageMultiplexer.i ;

end URSO.i

thread group URSOComponent

features

newService: in out event data port URSOServiceRecord;

removeService: in out event data port URSOServiceRecord;

actService: out event port;

interactIn: port group (basic:: Input_PT);

interactOut: port group (basic:: Output_PT);

newQuery: in out event data port URSOServiceQueryRecord;

queryResult: in out event data port URSOServiceRecord;

end URSOComponent;

Mapping software elements to hardware is natively supported by AADL. Components will

be deployed on the platform execution elements of its system and processor. In order to

analyse whether a system has enough resources to execute its software elements, execution

platform components and software components may declare their capacity and budget re-

spectively. The platform may then sum the budget totals and compare with the system

capacities. Moreover, non-functional properties, such as policies and protocols, can be spec-

ified by means of AADL properties.

Figure 4.10 illustrates the structure of services, dependencies and discovery agencies (ser-

vice registries) in a URSO-compliant AADL application. Service registries have three thread

subcomponents, one for service addition, one for service search and one for service removal.

Service providers structure corresponds to a service provided by a component. It has as

many threads as it has operations in its service description. Service requesters structures

corresponds to a service required by a component. Service requesters have two threads, one

for periodically requesting services (this thread can be used as well to verify the availability

of the consumed services), and one for effectively consuming services. A communication

mechanism may be created if a task requires more than one service dependency.

Figure 4.11 depicts the inclusion of service-related concepts (services, dependencies and

service registries) into components. Components have as many service providers as they

have services and as many service requesters as they have dependencies. Besides, they have

an internal service registry where services and dependencies which are not exported or im-

4.4. URSO and MARTE 113

Figure 4.10: AADL URSO Extension: Service-related concepts

ported can be published. This registry can also be used by their inner components which

export or import services. Components also have a message multiplexer, which redirects

messages depending on the current mode. Deployable composites can be themselves an

AADL process, with a structure similar to that of components.

Listing 4.2: URSO AADL Registry Thread Declaration

thread group ServiceRegistry

features

newService: in out event data port URSOServiceRecord;

removeService: in out event data port URSOServiceRecord;

actService: in out event port;

newQuery: in out event data port URSOServiceQueryRecord;

queryResult: in out event data port URSOServiceRecord;

end ServiceRegistry

thread group implementation ServiceRegistry.local

subcomponents

Service_addition: thread ServiceAddition;

Service_search: thread ServiceSearch;

Service_removal: thread ServiceRemoval;

connections

event data port newService -> Service_addition.newService;

event data port newQuery -> Service_search.newQuery;

event data port removeService -> Service_removal.removeService;

event data port Service_search.queryResult -> queryResult;

event port actService -> Service_addition.actService;

event port actService -> Service_search.actService;

event port actService -> Service_removal.actService;

end ServiceRegistry.local

4.4 URSO and MARTE

4.4.1 Overview of UML-MARTE

The UML profile for MARTE6 [Object Management Group 2008] adds capabilities to the

UML2 standard for specification, design and verification of real-time and embedded sys-

tems. It was designed to replace the extinct UML profile for Schedulability, Performance

6MARTE stands for Modelling and Analysis of Real-time and Embedded Systems.

114 Chapter 4. Mapping URSO Onto Existing Component Models

Figure 4.11: AADL URSO Extension: Component-related concepts

and Time (SPT). Both software and hardware aspects can be independently modelled in

MARTE. Constraints are expressed in OCL and quality of service characteristics use the

UML profile for Modelling Quality of Service and Fault Tolerance (QoSFT) Characteristics

and Mechanisms.

The MARTE specification has two major parts: one dedicated to the application and hard-

ware design model (MARTE design model package) and another addressing the analysis

model (MARTE analysis model package). Both parts share common concerns (MARTE

foundations package) related to time and non-functional descriptions and resource manage-

ment. Annexes to MARTE include specification languages such as CCSL (Clock Constraint

Specification Language) and VSL (Value Specification Language) and data type declara-

tions.

4.4.1.1 MARTE Foundation Package

The MARTE Foundation Package contains foundations for modelling and analysing real-

time systems. It is composed by five clauses:

• Core Elements package, which as the name suggests, contains the concepts used

to define every other concept in the MARTE specification. It defines Model Ele-

ments, which may be Classifiers (element type) or Instances (element instance). In

this package it is also possible to model the system (basic and operational mode-

dependent) run-time behaviour and semantics. Behaviours may be specified through

different mechanisms supported by UML, such as automata and Petri nets. In addi-

tion, the package describes mechanisms to activate mode transitions and behaviours

through actions and event-based triggers and to communicate between concurrent

units through requests;

• Non-Functional Properties (NFP) package, which describes a framework for specifying

4.4. URSO and MARTE 115

non-functional properties in UML-MARTE models. Property values are set through

the Value Specification Language (VSL), an annex of the MARTE specification. NFPs

can be defined as qualitative or quantitative, the latter being defined in terms of

sample realizations and statistic functions over these realizations. Elements may also

be annotated with mode-dependent restrictions defining minimum level of quality of

service and the value space for its NFPs;

• Time package, which enables modelling time and time-related concepts and mecha-

nisms for real-time applications. It defines three classes of time abstractions: causal/tem-

poral, in which the only preoccupation is instruction precedence and dependency;

clocked/synchronous, in which time is divided into a discrete succession of slots (events

occurred in the same time slot are considered as simultaneous or coincident and com-

munications in the same slot are considered as instantaneous); and physical/real-time,

in which duration real time values precision and accuracy are necessary. Time con-

cepts are associated to behavioural, events and objects. Complex time structures can

be establish through relations between different time lines (called time bases). The

package also defines clocks, which are structures related to one time base through

which time measures can be accessed. Clocks may trigger events. Timed elements

(such as timed behaviours, executions or constraints) benefit from this mechanism;

• Generic Resource Modelling (GRM) package, which contains constructs for modelling

both hardware and software executing platform at different detail levels. Resources

offer services, which are described by behaviours. Timed and non-timed NFPs may

be specified for resources. Resources also can be specialized in sub-types (memory,

processor, clock, etc.). The resource reservation can be performed through the stan-

dard resource services acquire and release. Allocation and de-allocation of resources

are managed by the Resource Broker, whereas its creation, maintenance and deletion

are managed by the Resource Manager. A scheduler is seen as a special type of Re-

source Broker and the schedulable entities are the resources it keeps. This package

also enables the specification of resource usage, that is, consumption demands of an

amount of a given resource. A resource usage may be static or dynamic, depending

on its temporary nature;

• Allocation modelling package, which models the allocation of applicative elements onto

the execution platform and its resources (spatial distribution). Since the scheduler

is a resource broker, temporal scheduling aspects are also addressed by this sub-

package. The timing information in both application and execution platform entities

must be taken into account during the pairing. It is also possible to refine models

with different levels of abstraction. For instance, by mapping an application on a

platform, it is possible to refine back the timing model of the application to deduct

its WCET. Allocation maps individual application elements to individual execution

platform elements, so it is expected that the application keeps its structural and

behavioural consistency after the allocation process.

4.4.1.2 MARTE Model-based design package

The MARTE model-based design package specializes the foundation concepts to enable

modelling real-time systems. It is composed by three clauses:

• Generic component model (GCM), which enables modelling MARTE applications fol-

lowing a component-based approach. The generic component model is not associated

to any specific semantics, and real-time concerns are added by another package. It

116 Chapter 4. Mapping URSO Onto Existing Component Models

is based on UML structured classes and SysML blocks. Structured components are

self-contained entities which encapsulate data and behaviour and whose properties

can be used as interaction ports and assembly parts. They are linked through delega-

tion (vertical composition) or assembly (horizontal composition) connectors to other

components’ interaction ports or assembly parts. Components interact via message

passing, and these messages may represent operation calls, events or simple data.

The interaction ports of both ends of a connector must be compatible in regards to

features (client-server) or flow specification and direction (data-flow).

• High-level application modelling (HLAM), which provides high-level modelling ab-

stractions and features for real-time systems. Applications are composed by at least

one Real-time Unit (RtUnit) which is similar to an active object in UML. RtUnits may

own several schedulable resources, which may be created dynamically or not (pool).

They are executed autonomously and may be executed concurrently and can be seen

as system processes or task servers. In addition, RtUnits may invoke services from

one another, communicate through message passing and define operational modes,

behaviours and properties regarding the scheduling of their schedulable resources.

Shared data is modelled through protected passive units (PpUnits). PpUnits provide

services that are accessed by a schedulable resource of a RtUnit and whose concurrent

access policies can be configured through properties. Messages in RtUnits are stored

in a queue and processed according to its defined policies. Actions that are part of

a communication may be declared as real-time actions and contain properties like

deadline, period, synchronization type and message size.

• Detailed Resource modelling (DRM), which details the modelling of both application

and platform resources and specializes the concepts presented in the GRM clause. It

is divided in two sub-clauses:

– Hardware resource modelling (HRM), which specifies a high-level and generic

framework for modelling hardware elements and platform architectures. The

model is composed by two complementary views: one is centred on hardware

physical properties and the other that classifies hardware according to their

functional and logical properties. These two views specialize a more general

hardware model. The general hardware model is composed by hardware re-

sources which may encapsulate other hardware resources and provide and/or

require services. In the logical view, resources are categorized as computing,

storage, communication, timing or device resources. Each of these categories has

its own sub-resources (which may or not be in the same category) and properties

(e.g. computing resources may be specialized into processors, ASICs7 or PLDs8,

and are linked to storage-type resources). In the physical view, it is possible to

model the resource’s size, position, shape, power consumption and other physi-

cal properties. It contains two sub-packages, layout and power. Layout provides

mechanisms to physically describe the platform architecture, whereas power pro-

vides means to annotate layout elements with power-related information.

– Software resource modelling (SRM), which specifies a set of constructs to model

real-time applications as a set of concurrent units that interact through mech-

anisms (API) provided by a RTOS, which acts as execution support and is in

7ASIC stands for Application-specific integrated circuit, which denotes a highly-specialized and efficient
integrated circuit, but whose flexibility is very limited.

8PLD stands for Programmable Logic Device, which denotes digital circuits whose functions can be
reconfigured.

4.4. URSO and MARTE 117

charge of real-time features. It is divided in four packages: core (which presents

the concept of Software Resource, gathering the resource itself, its manager and

services provided by both concepts), interactions (data flow communication and

execution flow synchronization resources, which act according to specific poli-

cies), concurrency (that defines Software Concurrent Resources, which compete

for computing resources at physical and logical levels to execute their instruc-

tions, with an execution context and an execution flow) and brokering (resources

that manage other hardware and software resources, their allocation, configura-

tion, access and so forth).

4.4.1.3 MARTE Model-based analysis package

The MARTE model-based analysis package extends the foundation concepts to enable

analysing real-time systems. It is composed of three clauses:

• Generic quantitative analysis model (GQAM), which gathers common concepts from

different analysis domains and may specialized onto new analysis models. This model

imports concepts from the NFP, Time and GRM packages. Analysis are based on the

description of how behaviours use system resources, and based on some input NFPs,

it may produce a set of output NFPs concerning aspects such as feasibility of the task

set, application timeliness, or the total power consumption. The analysis model is

centred on the concept of analysis context. An analysis context takes into account

the end-to-end system behaviours of a workload, the platform resources necessary

for the execution of those behaviours and a parametrized expression, which defines

what is being considered for the analysis. In addition, it defines observers, which are

entities that define predictions and requirements for measures of a given expression

on an interval between two events in a behavioural model.

• Schedulability analysis model (SAM), which extends the GQAM to specifically ad-

dress schedulability analysis. It also defines a set of NFPs related to this concept.

The workload behaviour corresponds therefore to an end-to-end processing flow, with

time-related observers for requirements (e.g. deadlines, and maximum jitter) and

predictions (e.g. latencies, jitters and other scheduling metrics). Furthermore, the

platform resources descriptions is focused on processing resources and properties re-

lated to the communication between different schedulable resources.

• Performance analysis model (PAM), which extends the GQAM to describe the analy-

sis of temporal properties such as throughput and delay. The techniques used to anal-

yse performance often include simulation and formal models such as Markov chains

and Petri nets.

Annex section A.4 presents a summarized version the metamodels of the different packages

present in the UML-MARTE profile.

4.4.2 Extending UML-MARTE

MARTE presents most of the fundamental concepts presented in the URSO metamodel.

Its core elements and non-functional properties packages enable modelling application’s be-

haviour; its resource and allocation models can be used to address deployment issues; its

generic component and high-level application models can model most of the concepts of the

assembly concern. However, one important aspect that is clearly not natively supported

by the UML-MARTE profile is services-oriented computing [Aziz et al. 2013]. Components

118 Chapter 4. Mapping URSO Onto Existing Component Models

connect to each other by means of static client-server or data-flow ports. It would be neces-

sary to find a mechanism so that components can provide services (operations) which can

be published and discovered in a broker-like structure, as is the case for resources. Substi-

tutability and dynamic reconfiguration are not covered by the MARTE profile either.

In [Marcos et al. 2011], the authors have incorporated some of MARTE features to enable

real-time SOA applications modelling. They have used NFPs to enrich service implementa-

tion and specification description and GRM concepts such as scheduler, storage and process-

ing resources to model infrastructure aspects. Dynamic SOA mechanisms such as service

publication and discovery are not addressed though. Similarly, the SOA4DERTS frame-

work proposed in [Muhammad et al. 2012] adopted the NFP package concepts to model

non-functional properties and SoaML 9 to model the service interface, but dynamism and

substitutability techniques are not handled either.

A different approach was proposed in [Alhaj & Petriu 2010]. The aim of the work was

to generate a performance model from SOA systems modelled in UML. The authors have

integrated several models to express different concerns of the application:

• A work-flow model (like BPEL, BPMN or an UML activity diagram) is used to express

business processes. The same model can be used to express the activities internal to

a given service;

• An ADL or component model is used to express the structure of the system (partici-

pant modules, participant ports and the connections between them);

• A deployment model which describes mapping between software resources and physi-

cal/hardware resources. It also describes the complete infrastructure of the execution

platform;

• A NFP model which can annotate all models cited beforehand.

Despite not detailing dynamism and substitutability mechanisms (thus, possessing the same

flaws as the solutions presented above), this approach has the same structure as URSO’s

and will be the basis for our MARTE extension proposition. While real-time- and platform-

related aspects will be described with MARTE GCM, component- and service-related as-

pects are going to use adaptations of both GCM and SoaML concepts.

In summary, components in SoaML are called participants. Participants may either provide

or require services through their ports. Provided or required services are described by ser-

vice descriptions, which may be classified into simple/UML interfaces, service interfaces,

and service contracts. Simple interfaces design one-way, anonymous service interactions

without callbacks. Service interfaces can be bi-directional, associated to a given protocol,

and callbacks to the service consumer may be informed. In addition, in service interfaces,

the service provider may describe an expected interface for the service consumers. It is

also possible to combine several simple interfaces onto one service interface. Service con-

tracts focus on the service specification, the roles of both service consumer and provider,

the service choreography and the terms of the communication established between both

parts. It can be used to design multi-party service choreographies (service interactions with

multiple providers and consumers). Ports are also associated to service capabilities, which

are abstractions used to represent functions and/or resources of services independently of

their implementing participant. Thus, service providers may use capabilities to generate an

9Service Oriented Architecture Modelling Language (SoaML) [Object Management Group 2012b] is a
UML standard profile defined by OMG through which SOA applications can be described. The profile is in
its 1.0.1 version and upcoming extensions are expected to integrate other service-related OMG extensions
such as BPMN.

4.4. URSO and MARTE 119

implementation-independent view of their services and publish this view on service agencies.

Similarly, service consumers may use capabilities to inform the functions needed for a given

required service, without specifying a particular candidate service. The communication

path between requests and services is called service channel, and is completely transparent

from a participant point of view.

Thus, we have created the concepts of URSO Service and Dependency, which refine both

MARTE GCM ‘Component’ and SoaML ‘Participant’ concepts. Services and Dependencies

are associated to SoaML Service and Request ports. Each port is associated to a Service

Interface, which corresponds to URSO’s Service Description, and a capability, which rep-

resents services’ dynamic availability. Components and their services and dependencies

are connected through new types of connector, service and dependency connectors, respec-

tively. Services and exported services, just as Dependencies and imported Dependencies are

connected through another special type of connector, a promotion connector. Figure 4.12

depicts the URSO extensions and their relation with MARTE and SoaML stereotypes10.

Figure 4.12: URSO Extensions for MARTE, based on SoaML profile

10Stereotypes are an extensibility mechanism in UML. Through UML stereotypes it is possible to define
new elements derived from the existing ones, but with specific properties suitable for a particular domain
[Object Management Group 2006c].

120 Chapter 4. Mapping URSO Onto Existing Component Models

4.4.3 Mapping extended UML-MARTE to URSO

As stated in the previous section, UML MARTE natively supports concepts from URSO De-

ployment concern. A URSO platform would correspond to a set of (software and hardware)

resources, allowed modes and allowed mode transitions. The set of resources would include

all URSO resources (which can be specialized accordingly to their type, e.g. storage re-

source for memories and computing resource for processors units), the set of machines

(and other physical resources, with their respective owned resources), and the connections

between these machines. It is also possible to consider other technical components as re-

sources, like schedulers and monitors. URSO Instances correspond to passive protected

units (PpUnits), and the behaviour associated to it corresponds to the implementation of

the components that form the composite. This behaviour may have resources associated to

it, just as implementations inform the resources they use in URSO. A task can be seen as a

schedulable resource (which is a specialization of concurrency resources). Each node with

computing resources owns a Real-time unit (RtUnit) with which all allocated threads are

associated. Service compositions associated to tasks are execution behaviours.

In the Behaviour concern, an URSO operation corresponds to a method in a SoaML in-

terface. Extra information, such as constraints and actions, can be mapped to NFP Con-

straints and Interrupt resources, respectively, over the URSO service interface. The internal

behaviour of the method is extracted by the platform itself, just as properties concerning

operations’ partial WCET. Other service properties can be included in URSO service in-

terface, as it inherits the property specification support from SoaML Service Interfaces.

In the Assembly concern, components and composites correspond to MARTE GCM’s struc-

tured components. Hierarchical relations can be specified through delegation connectors.

Services, dependencies and service interfaces match the URSO extensions described in the

previous section for the same concept. Filters, service properties and supported binding

protocols can be added as properties in the service interface. Static bindings can be per-

formed by means of assembly connectors between GCM components.

To conclude, the deployment of tasks and instances on execution platform elements can be

performed by means of allocations whose ends point towards the software element and the

platform resource.

4.5 Summary and Discussion

In this chapter, we have presented extensions to SCA, AADL and the UML MARTE profile

so that they match the concepts present in the URSO metamodel. These extensions were

based on ongoing research in the field of real-time service-oriented applications. This section

summarizes these extensions and discusses their applicability in real systems.

4.5.1 Overview on the extensions to SCA, AADL and MARTE

In the next paragraphs, we present an overview of the extensions presented in this chapter.

It details the motivations to extend each model and what approach was used to do so.

4.5.1.1 SCA extensions for URSO

SCA (Service Component Architecture) is a component model developed by major IT ven-

dors to ease the development of service-oriented architectures. SCA is extensible and new

interface, binding and implementations types can be developed according to the develop-

ers’ needs. Despite based on the service concept, SCA does not fully support the publish-

4.5. Summary and Discussion 121

discover-bind SOA interaction pattern. Indeed, SCA components are statically linked by

means of entities called wires, which specify a source service and target reference (the term

used to designate service dependencies). In addition, non-functional properties support in

SCA is limited. It consists in a set of non-configurable policies, policy sets and intents that

can be attached to composites, components and services.

In order to add the support to dynamic composition, we have described in [Américo & Don-

sez 2012] a set of extensions to SCA bindings. By means of these extensions, it is possible

to designate which services must be published and which references must discover services

at run-time. In addition, we have added mechanisms to support service selection, life-cycle

management, service-level dependencies and SLAs.

For the purpose of supporting real-time applications, we have added extensions to support

real-time component implementations, real-time service interfaces and real-time component

deployment. Real-time component implementations require the description of resource us-

age for each implementation. In the real-time service interface extension, we have added

information concerning constraints over service parameters and variables. The extensions

for the deployment of real-time components include a platform description, with platform

resources, modes and nodes, and a deployment plan, which maps tasks and composite

instances to nodes in the platform.

4.5.1.2 AADL extensions for URSO

AADL (Architecture Analysis and Design Language) is a SAE standard component model

used in the avionics domain. By means of this language, it is possible to specify and perform

analysis on hierarchical component-based real-time systems. With AADL it is possible to

specify both software and hardware components. All components can be annotated with

properties, which will be evaluated during the analysis of the system.

The lack of dynamism in AADL prevents it to fully support the SOA architectural style. It

has led us to create prototypes for SOA components based on the approach developed

in [Aminpour et al. 2011], in which three prototypes were developed: one for service

providers, one for service requesters and one for discovery agencies. The authors have

developed all prototypes based on AADL process components. Internal mechanisms were

mapped to thread components. In addition, the authors have suggested to add all services

provided inside the same service provider component, which decreases code modularity.

Based on these observations, we have extended the approach so that it becomes more gen-

eral. Service operations are mapped to thread components, but services themselves are

mapped to thread groups, one per service. Similarly, service dependencies are individu-

ally mapped to thread groups. Services and dependencies are contained inside components,

which now also have an internal discovery agency and a message multiplexer, which changes

the current input and output connection according to the current platform mode. Some

components services and dependencies can be exported/imported so that their services can

be published/discovery in the discovery agency of its parent component. Finally, compo-

nents can be contained inside composites (modelled as AADL process components), which

here represent a deployment unit. Composites exported services and imported dependen-

cies are published and discovered, respectively, in a global discovery agency and a global

message multiplexer. Both component declarations are published in a package and visible

to all composites.

These software components can be sub-components of complete AADL systems, directly

included inside the declaration of the node in which they are deployed. They may also in-

clude information about their resource usage as properties. Restriction, filters and service

properties can be added as properties in service provider/requester entities as well. Service

122 Chapter 4. Mapping URSO Onto Existing Component Models

compositions and tasks can be simulated by creating a composite with service dependencies

and a special sub-component (thread or program) to represent the composition itself. This

sub-component can indicate the file in which the composition expression was stored.

4.5.1.3 UML MARTE extensions for URSO

MARTE (Modelling and Analysis of Real-time and Embedded Systems) is a UML2 profile

for the specification and analysis of real-time and embedded systems. MARTE replaces

the Schedulability, Performance and Time profile for UML2. It enables modelling both

hardware and software aspects of real-time systems detailedly and independently. MARTE

can be integrated with other OMG specifications, like OCL for constraints and QoSFT

for quality of service characteristics. MARTE is divided into three major parts: a com-

mon foundational package, a package dedicated to the design of real-time systems and a

package dedicated to the analysis of such systems. The foundation package includes aspects

shared by the two other packages, such as the core elements, non-functional properties, time

model, allocation and a generic resource model. The design package specializes the generic

resource model into software and hardware resource models, and contains a generic compo-

nent model and a high-level application model. In its turn, the analysis model contains a

generic quantitative analysis model which can be used as template for other analysis model.

It also includes two derived analysis model, for specification and performance aspects.

The generic component model (GCM) present in MARTE enables components to interact

by means of static ports and connectors. Most UML-based approaches for the specification

of real-time SOA applications use SoaML, a SOA profile for UML, enriched with the non-

functional properties model from MARTE. Since we aim to model applications which are

both component-based and service-oriented at the same time, we have added new concepts

to GCM to represent services as components that are linked by means of special connectors

to the component that provides them. Similarly, dependencies are modelled as components

connected to the component that requires them. Service properties, filters and restrictions

can be added in the service interface and exposed as capabilities to the system. SoaML

does not impose a technology on the publication and discovery of services, leaving it up to

the implementation run-times. We assume the service is published and retrieved by means

of service registries, just as in the previous extensions.

Deployment concern concepts are natively supported by MARTE. Its detailed resource

model enables modelling storage, computing and other resources, describing resource usage

and allocating hardware resources to software resources through the allocation and refine-

ment package. Behavioural aspects are equivalent to behaviour and behaviour execution

concepts which are present in the core elements package.

4.5.2 Discussion

Since SCA is basically constituted of an assembly model, extending it to support dynamic

and real-time systems through its extension points was less complex. However, given the

fact that this support is not native, real-time analysis, resource enforcement and many other

mechanisms required for the correct and trustworthy implementation of real-time systems

must be implemented from scratch and integrated to existing run-times. Although the

dynamism part can be directly integrated in the SCA assembly model, most part of the

real-time extension information is added by means of separate descriptor files. We have

chosen to do so to improve the reuse of such files. Moreover, a key feature is the fact that

no technology was imposed on these descriptor files. Real-time service interfaces may be

written in Java enriched with annotations, in XML files or in JSON. The important is that

4.5. Summary and Discussion 123

the information contained is conform to that specified in the extension.

The URSO execution model in which components are passive entities that provide ser-

vices and tasks are active entities that invoke those services fits perfectly SCA. Generally

speaking, URSO can be seen as a super set which contains all SCA assembly concepts and

specializes them to dynamic and real-time systems. That is not the case with AADL and

MARTE, which are more complete models and which have far more concepts than URSO.

Mapping and extending more complete models to find mapping relations from URSO is

more complex. Furthermore, on account of the fact that they are more complex and have

more elements than URSO does, contrarily to SCA, with which is possible to establish a

two-way mapping, mappings to AADL and MARTE are one-way. As a consequence, al-

though URSO applications can be mapped to extended MARTE and extended AADL, not

all MARTE and AADL can be mapped to URSO applications. Using the concepts and

structures introduced by the extensions is necessary to be able to establish mappings in the

opposite way.

AADL foresees a complex hierarchy of component types. Since we wanted inner compo-

nents to be treated as their parent components, the component type needed to support

sub-components of its own type. Only two sub-component types hold that property: data

and thread groups. In view of the fact that thread groups have a higher abstraction level

than data components, we have chosen thread groups as our basic unit for components,

services and dependencies. Please notice that the same approach was used in the MARTE

extension: services and components are described as if they were both components linked

by delegation-like connectors11. However, it may result in a highly complex connection

network between sub-components. Developing conform systems may be very difficult for

untrained developers. In addition, it complicates model analysis, since the message multi-

plexer and discovery agency components have special semantics.

Moreover, the dynamism degree in the AADL extension is smaller than with that of the

SCA extension: since nodes are also declared in AADL through declarations, and the com-

ponents which are hosted in this node are its subcomponents, adding new components to

node, would mean changing its declaration file, which could not be possible at run-time

without restarting the whole node. Consequently, new components can not be individually

added to a running system. It is possible to consider adding new components by adding

new machines and new nodes with new resources to the system. These components could

normally publish their services in the global registry and interact with already deployed

components by means of services.

MARTE extension used concepts from other UML profile, SoaML, an emerging profile for

SOA-based systems. We have borrowed their ‘participant’ concept and combined it with

MARTE GCM structured components to create special components to represent services

and dependencies. These components are also software resources. In MARTE, resources

provide and require services, and may interact by means of resource brokers and man-

agers. We can use this mechanism to publish and discover URSO services. Our MARTE

extension is not very intrusive and does not require many special arrangements to integrate

MARTE semantics and syntax. In addition, UML provides a graphical language which is

widely known, more clear than AADL graphic language, and may ease the design of URSO-

compliant systems. This graphical language can also be used to provide a model @ runtime

representation of the hosted applications.

MARTE’s model specifications may be the basis for the integration of new and more detailed

time and resource models in URSO. We also consider integrating SoaML service contracts

to enable more complex service interactions between service providers and consumers in

11In AADL, delegation is expressed through sub-components and connections between component and
sub-component ports.

124 Chapter 4. Mapping URSO Onto Existing Component Models

MARTE and in URSO.

4.5.3 Summary

In this chapter, we have presented URSO-based extensions to SCA, AADL and UML-

MARTE. These three models consist in widely known standards to develop either service

oriented or real-time systems. We aimed to develop extensions based on URSO metamodel

so that they can all be service-based and real-time at the same time. Seven principal re-

quirements were identified to establish mapping relations between URSO and these models.

To support a component model: All three models natively contain a hierarchical

component model in their specifications. In SCA and AADL, hierarchy is explicit, whereas

in MARTE it can be achieved through delegation connectors.

To support service-based communication between components: Only SCA na-

tively meets this requirements. We have thus developed extensions to MARTE and AADL

to allow their components to communicate in a service-oriented fashion. The extensions

consisted in creating new types of subcomponents to represent services and dependencies

and connect them to their respective components.

To support service dynamic publication, discovery and binding: None of three

models provides dynamism for service mechanisms. We have added a binding extension for

SCA to mark publishable services, besides a service selection support. In the AADL exten-

sion, dynamism is limited by the fact that the whole platform constitutes a unique block of

declarations, but deployable composites may dynamically interact with each other through

a common discovery agency and global message multiplexer. In the MARTE extension,

SoaML-based services capabilities can be published and discovered in a resource broker.

To support the specification of resource usage on component implementations:

MARTE natively supports resource usage specification through its generic resource model.

In AADL, it is possible to add resource usage as properties to software entities. In SCA,

it was necessary to extend component implementations to describe their resource usage

through an external descriptor.

To support the decomposition of the system into tasks and assign them real-time

properties: In MARTE, tasks can be modelled as schedulable units linked to real-time

units owned by URSO nodes. In AADL, it is possible to model tasks as thread components.

These threads can be associated to a sub-program component which would correspond to a

URSO service composition. In SCA, it was added the possibility to define threads through

external descriptors and associate them to (already deployed or not) service compositions.

To support the specification of the execution platform and its resources: De-

tailed software and hardware resource specification is natively supported by MARTE. Fur-

thermore, one resource may own another to express hierarchy. Resource amount and access

information can be included. In AADL, hardware components can be hierarchically or-

ganized into nodes. It is also possible to annotate these components with information

concerning their resource amounts and their access policy (shared or not). SCA originally

does not support either platform description or resource modelling. Support to both was

added in our extension through external files.

4.5. Summary and Discussion 125

To enable the allocation of execution platform resources to software entities:

Resource allocation is natively supported by MARTE. In AADL, there is no explicit method

for such allocation; it is performed considering the execution platform components of the

system in which the software system is declared. In SCA, we have added a deployment plan

extension in which instances and tasks can be placed in specific hardware resources.

Table 4.2 summarizes the lack of each model in each of the define requirements and how

the issue was addressed in the proposed URSO extension.

It is possible to create mappings from SCA to URSO, due to its generality. Since AADL

and MARTE are more complex, mappings from these elements to URSO must respect the

structures added with the extensions. Both models have interesting concerns (e.g. time, re-

source and extensible non-functional properties models) which may be integrated to URSO

in a future version.

In the next chapter, a proof-of-concept implementation of a SCA URSO-compliant lightweight

framework, based on the extensions proposed in this chapter, will be introduced. In addi-

tion, a use-case based on the application introduced in Chapter 3, the Dynamic Collision

Detector, will be detailed. We will also detail its implementation, and test its performance

and timeliness in order to validate our proposition.

Features SCA support AADL support MARTE support
Component Model Explicitly hierarchical Explicitly hierarchical Hierarchical

(delegation connectors)
Service-Based Native support Extension through Extension through

special components SoaML components
Dynamism Extension through Extension through Extension through

dynamic bindings global registry service broker
Resource Usage Extension through Extension through Native support

external descriptor properties
Task support Extension through Native support Native support

external descriptor
Execution platform Extension through Extension through Native support

specification external descriptor properties
Allocation Extension through Native support Native support

deployment plan

Table 4.2: Overview on the URSO extensions to SCA, AADL and MARTE

Chapter 5

Implementation and Validation

“Think like a man of action, act like a

man of thought.”

Henri Louis Bergson

Contents

5.1 Implementation . 128

5.1.1 SCA:PlatformDesc Command . 129

5.1.2 SCA:PlatformInfo Command . 130

5.1.3 SCA:ChangeMode Command . 131

5.1.4 SCA:List Command . 131

5.1.5 SCA:Deploy Command . 131

5.1.6 SCA:Undeploy Command . 132

5.1.7 URSO+NaSCAr framework architecture 132

5.2 Usecase: Revisiting DCDx . 135

5.2.1 Platform Description . 135

5.2.2 Service Compositions, Instances and Tasks: the Detector example . 138

5.2.3 DCDj, a Java-based implementation of DCDx 141

5.3 Validation . 144

5.3.1 Methodology overview . 144

5.3.2 Platform description validation analysis 145

5.3.3 Platform information analysis . 146

5.3.4 Contribution deployment analysis 146

5.3.4.1 Passive entities’ deployment 147

5.3.4.2 Active entities’ deployment 148

5.3.5 Contribution undeployment analysis 149

5.3.6 Mode change analysis . 150

5.3.7 Execution timeliness analysis . 152

5.4 Summary and Discussion . 154

5.4.1 Overview . 154

5.4.2 Discussion . 155

This chapter presents a proof-of-concept implementation of a SCA-based URSO-compliant

lightweight runtime. In the first section, we detail technology-related aspects of the imple-

mentation. In the second section, we revisit the DCDx benchmark application and show

its mapping to extended SCA, so that its components may be deployed on the run-time

prototype. Then, we use the benchmark application to evaluate timing aspects of the pro-

totype. Finally, we discuss the results and draw conclusions about the modelling and the

performance achieved.

128 Chapter 5. Implementation and Validation

5.1 Implementation

In order to implement and validate the contribution of this thesis, we have developed a tool

to deploy URSO-compliant SCA applications. This tool is called NaSCAr (for“Not Another

SCA Run-time”) and was first introduced in [Américo & Donsez 2012]. Originally, NaSCAr

was developed to validate the dynamic binding extension to SCA. It parses SCA contribu-

tion files and creates equivalent iPOJO components on top of an OSGi Service Platform.

The OSGi Platform enables dynamically deploying new modules (called bundles) without

restarting the platform. It has a service registry in which service implementations objects

are stored along with their service interfaces and service properties. Upon a service query,

the platform returns a list containing service implementation objects that satisfy the query.

Then, service requesters may invoke service operations on these objects. Besides manag-

ing service dependencies automatically, iPOJO also enables hierarchical composition. Each

composite has its own internal service registry, which is not visible to other composites.

Services from inner components can be exported and dependencies can be imported. This

behaviour corresponds to that of expected of a URSO-compliant framework, and hence, we

have chosen to adapt NaSCAr to support other URSO concerns.

Developers and administrators can interact with NaSCAr through shell commands on the

OSGi platform. Originally, NaSCAr possessed the following commands: sca:deploy <con-

tribution path>, sca:undeploy <contribution ID> and sca:list. As the names sug-

gest, sca:deploy was used to deploy composites from a SCA contribution on the OSGi

platform, sca:undeploy was used to remove the composites from a given contribution from

the platform and sca:list listed all the contributions currently deployed on the platform.

We have thus added the following commands to NaSCAr:

• sca:platformdesc <file path>: This commands adds the platform description to

the URSO framework. It must be executed before any applicative component is

deployed. The framework stores the platform description and will be responsible for

resource amount update upon resource reservation.

• sca:changemode <mode name>: This commands changes the platform operational

mode. The name passed as parameter must be a valid mode, already listed in the

platform description. During the mode transition, the platform may replace, stop and

start new tasks and instances.

• sca:platforminfo: This commands displays information about the platform, like

its current mode, the available platform modes, resource consumption, tasks and

instances deployed, nodes, and machines.

Original commands semantics were modified as well:

• Initially, sca:deploy was used to deploy all composites from a SCA contributions.

Now, this command may be used to deploy component implementations instances and

tasks informed in a deployment plan inside the contribution file.

• Similarly, sca:undeploy was used to undeploy composites from a contribution. Now

it will be used to undeploy instances and remove tasks.

• sca:list now lists not only the composite definitions per contribution, but also tasks

and instance definitions it contains.

NaSCAr consists in three sub-projects: NaSCAr-core, NaSCAr-shell and NaSCAr-URSO.

We have chosen Apache Karaf 2.3.2 as OSGi target distribution, with an Apache Felix

5.1. Implementation 129

Framework 4.0.3 core. Commands were implemented based on Apache Karaf shell API

and exposed to the framework as Apache Aries Blueprint services. Apache Felix iPOJO

core (1.8.0), API (1.6.0) and Composite (1.6.0) libraries were used. Next section details the

implementation of each of the framework commands.

5.1.1 SCA:PlatformDesc Command

sca:platformdesc command allows platform administrators to enter the platform config-

uration to the framework. The framework stores this information and uses it to decide

whether instances can be deployed or not. At the implementation level, after receiving the

command from the user, the NaSCAr implementation retrieves a URSO controller instance,

which parses the platform description file and creates an object representation of the de-

scription. This object representation is then validated by the URSO controller against a

set of restrictions:

1. The platform object must not be null, else there is no platform on which instances

and tasks can be deployed;

2. The platform must declare an initial mode. From this initial mode, only transitions

declared by mode transitions are allowed;

3. The list of machines in the platform must not be null or empty. Else, there is no

target machine on which instances and tasks can be deployed;

4. There must exist at least one node per machine. Nodes are machines’ logical partitions

to which tasks and instances are mapped. A machine without a node means a machine

which can not be used to deploy URSO entities;

5. The platform must have at least one mode. In cases where the platform has only one

mode, this mode must be the platform’s initial mode. Only transitions informed in

the description file are allowed, so modes which are not referenced in any transition

are never reached.

6. Machines’ capabilities must match platform’s capabilities. It is also important to

verify whether the resource values do not conflict with each other (e.g. a machine

declares more resources than those which were declared for the platform).

7. Nodes’ capabilities must match machines capabilities. Just as machines resources

must not conflict with the resources of the platform that contains them, nodes re-

sources must not conflict with the resources of the machine that contains them.

8. Machines declared in interconnections must match platform machines. Interconnec-

tions indicate a link between two machines on the platform. These machines must be

listed among the platform machines.

9. Supported protocols in interconnections must match the protocols declared by the

platform. Each interconnection lists a set of supported protocols. These protocols

must match those supported by the platform. The set of supported protocols in inter-

connections may change according to operational modes. For each interconnection,

at least one supported protocol must be listed.

10. Machines, resources, interconnections, and policies declared in modes must match

platform’s machines, resources, interconnections, and policies, respectively. In addi-

tion, resources declared by machines and nodes in different modes must not conflict

with those declared in the corresponding platform machine declaration.

130 Chapter 5. Implementation and Validation

11. Each machine must declare at least one connection: a local connection towards itself.

This way, it is possible to characterize the connection between instances hosted in a

same machine.

12. Just as interconnections must reference existing platform machines, mode transitions

must reference existing platform modes.

According to these rules, the minimum platform description contains one machine (with

one node and no resources), with one local interconnection supporting one protocol (with

no declared properties), and one mode (the initial one), containing the machine, the node

and the interconnection description (which references the supported protocol). The object

representation of this platform has 22 URSO objects, one for the platform, one for each

named element in the platform description XML file (11), plus the objects representing the

machines, nodes, interconnections (with its lists of supported protocols), protocols, modes

(plus the machines, nodes and interconnections (with protocols) lists of the initial mode).

For performance reasons, XML parsing was implemented with Javolution’s 1 XML stream

reader library.

5.1.2 SCA:PlatformInfo Command

sca:platformInfo command enables administrators to retrieve current information about

the platform. For a given platform, it displays:

• Current platform mode name;

• Platform resource information. For each resource, it displays resource’s name and

value;

• Platform machine information. For each machine, it displays:

– Machine’s name and description;

– Machine’s resource information (see resource information);

– Machine’s node information. For each node, it displays:

∗ Node’s name;

∗ Node’s resource information (see resource information);

∗ Node’s deployed tasks. For each task, it displays the task’s name;

∗ Node’s deployed instances. For each instance, it displays the instance’s name

and the name of the composite it represents;

• Platform interconnections information. For each interconnection, it displays its

participant machines and the list of supported protocols;

• Platform policy information. For each policy, it displays its name, its rule’s name

and expression and its action’s name and command;

• Platform mode information. For each mode it displays:

– Mode’s resource information (see resource information);

– Mode’s machine information (see machine information);

– Mode’s interconnection information (see interconnection information);

– Mode’s policy information (see policy information);

• Platform mode transition information. For each mode transition, it displays its

ancient and the new modes.
1Java library available at http://www.javolution.org

5.1. Implementation 131

5.1.3 SCA:ChangeMode Command

sca:changemode command enables administrators to change the platform current opera-

tional mode. When the command is received, the platform performs a series of verifications

before effectively changing platform’s mode. First, it is verified if there is a mode whose

name matches the one used as parameter for the changemode command. If it exists, it is

verified whether the mode indicated is not the current mode (if it is, there is nothing left

to do). Else, it is verified whether a transition between the current mode and the new one

is specified in the list of allowed transitions. Finally, if it is, the URSO internal controller

removes all tasks that are not allowed to execute in the new mode, and add all tasks which

are allowed to execute but were not executing yet (not allowed in the previous platform

mode). Mode changes put the platform in a reconfiguration state (non real-time). Addi-

tionally, if nodes are disabled, it also undeploy the node instances allocated in these nodes.

Its execution time depends on both the quantity of tasks and instances deployed in the

platform and the quantity of tasks and instance changes to be performed. More details on

the performance of task and instance deployment and undeployment are available on the

commands sca:deploy and sca:undeploy.

5.1.4 SCA:List Command

sca:list command enables administrators to list all component instances and tasks cur-

rently executing on the platform. The instances and tasks are grouped by contribution.

Its performance depends on the number of installed contributions, component instances

and tasks on the platform. During task and instance deployment, the platform keeps track

of which contribution they come from. That information is useful afterwards to undeploy

contributions (and consequently, their tasks and instances).

5.1.5 SCA:Deploy Command

sca:deploy command enables administrators to deploy new component instances and tasks

in the platform. This command takes contribution file paths as inputs, which are used as

contributions identifiers (i.e. the same contribution can not be deployed twice). The contri-

bution file parsing generates two lists: a list of composite instances, which are instantiated

as iPOJO composites in the underlying OSGi platform; and a list of tasks, whose ser-

vice compositions are transformed into composite instances (which are also instantiated as

iPOJO composites) that are called by schedulable elements (threads). These threads are

automatically created by the platform.

During the contribution processing, the platform generates partial (represented by an un-

evaluated expression) or total (represented by a number) WCETs for all methods in the

classes contained in the contribution file. These WCETs are kept in a hash map, whose

key is the concatenation of the class name, the method name and the method description.

For classes implementing interfaces, the interface name is added to the key as well. Each

time a WCET is inserted in the WCET table, the platform updates partial WCETs so

that they may be evaluated onto total WCETs. The WCET of invocations towards inter-

faces are estimated by picking the greatest execution time among all classes implementing

that interface and method. Since the execution time of a path in the control flow graph

may depend on the invocations performed in this path, the partial WCET expression for

most methods consists of a max operation among the WCETs off all paths2. In addition,

2Paths which may be included in other paths in the graph are excluded, as their execution time can be
upper bounded by the WCET of the paths that contain them.

132 Chapter 5. Implementation and Validation

OSGi bundles are created separating interfaces from implementation classes, so that service

providers and consumers may always refer to the same interface. Bundles exported and

imported packages are declared accordingly.

After inspecting contribution’s classes, processing is divided into composite instance pro-

cessing and task processing.

During instance processing, for each instance, the framework checks whether the node onto

which the instance should be deployed has enough resources. If it does not, it raises an ex-

ception indicating so. If it does, it creates iPOJO components for each composite component

and an iPOJO composite to represent the deployed composite. Services and dependencies,

whether exported/imported or not, are created accordingly and linked to the interfaces as-

sociated to them. When this instance is started, the framework stores a reference towards

it associated to the contribution where it came from. This way, when command is given

to undeploy a contribution, the framework is able to recognize all composite instances that

should be undeployed as well.

During task processing, for each task, the framework first identifies the service composition

it refers to. For simplicity sake, instead of generating executable code, service compositions

were coded in Java. Their description is similar to that of a component, with one or more

dependencies and one implementation class. These implementations have one particular-

ity: they expose a java.lang.Runnable service. From service composition descriptions,

composite instances are created. After instance creation, tasks are created by a scheduler

module. In this module, first the scheduler implementation retrieves the Runnable service

from a given composite instance through its service composition name. Then, it creates real-

time threads (object instances of javax.realtime.RealtimeThread class) configured with

the properties informed by the task entities (release, priority and deadline). The scheduler

then invokes the WCET manager (which contains the WCET table cited beforehand) to

check whether the service composition implementation WCET is smaller than its deadline.

If it is, it checks whether it is still possible to schedule all its threads if the thread in question

is added to the thread set. Then, if the feasibility test is positive, it starts the thread. The

framework also associates the thread name to the contribution name, in order to be able to

interrupt it and remove it from the thread set when its contribution is undeployed.

5.1.6 SCA:Undeploy Command

In the sca:undeploy, the platform identifies the contribution which must be removed and

removes all its component instances and threads with it. For this reason, it keeps two

maps: one that associates composite instances to the identifier of the contribution they

were declared on, and one similar map for tasks and contributions identifiers. iPOJO

composite instances are disposed, and real-time threads are interrupted.

5.1.7 URSO+NaSCAr framework architecture

The URSO compliant NaSCAr implementation was developed in real-time Java. JamaicaVM3

was chosen as real-time JVM implementation. Some third-party libraries were used as well

in the project:

• OW2 ASM library was used to inspect classes byte-code in order to estimate WCET.

• Javolution’s collections were used to have a better performance;

3JamaicaVM is a RTSJ-compliant Java virtual machine. More information about JamaicaVM can be
found in http://www.aicas.com/jamaica.html.

5.1. Implementation 133

• Karaf’s shell commands API was used to implement NaSCAr shell commands. These

commands were published in the Karaf framework by means of Apache Aries Blueprint

services.

• Apache Felix iPOJO API and Composite libraries were used to create new components

and composites dynamically.

The instruction table used by the WCET manager module, can be filled by creating special

classes directly with byte-code instructions to measure the average performance of each in-

struction. In these classes, we execute a byte-code command n times between the execution

of two Clock.getRealtimeClock.getTime() invocations and then divide the difference be-

tween both times by n to get the average execution time. Some commands may require a

special manipulation of the Java stack in order to work property (i.e. stack pop commands).

This approach was based on the works in [Albert et al. 2007,Lambert & Power 2008,Schoe-

berl et al. 2010], which describe ways to measure byte-code performance and discuss the

use of byte-code as portable WCET estimations.

Figure 5.1 depicts the overall architecture of the prototype. The shell commands are in-

terfaced with the SCA container through a SCAContainer object. Our implementation

to SCAContainer, named SCAContainerImpl, was a singleton class, so all command in-

vocations would be executed in the same context. The SCAContainerImpl class contains

instances of classes related to both SCA and URSO concepts. The diagram below uses

the circles and half-circles notation from UML2 Component diagrams to represent provided

and required interfaces.

Figure 5.1: URSO+NaSCAr framework architecture

SCA-related classes were present in NaSCAr’s original project, as described in [Américo &

Donsez 2012]. Among them, we highlight the following classes and interfaces:

• com.bull.nascar.impl.JarProcessor: The JarProcessor interface (and its im-

plementation JarProcessorImpl) contains the method process(), which inspects a

134 Chapter 5. Implementation and Validation

.jar contribution file and returns an object representation of the URSO Contribu-

tion. Our JarProcess implementation uses both URSO and SCA model parsers and

an instance of the URSO Controller. It also creates bundles from the contribution

files. There is a similar class, ZipProcessor, which does the same processing for .zip

contribution files.

• com.bull.nascar.impl.iPOJOAdapter: The iPOJOAdapter class is responsible for

creating iPOJO components and composites from a SCA assembly. Its method

adapt() receives a URSO Composite object and a BundleContext instance and re-

turns an equivalent iPOJO CompositeComponentType object.

• com.bull.nascar.impl.SCAParser: The SCAParser interface (and its implementa-

tion class SCAParserImpl) is responsible for parsing SCA-related files and producing

object representations of them. Its method parse() receives as parameter the path

of the file to parse and returns a URSO Composite object.

• com.bull.nascar.impl.ClassInstrumenter: The ClassInstrumenter class is re-

sponsible for inspecting classes and checking whether they need to be modified. We

consider that a class needs to be modified when it has a service-level dependency. In

this case, we add an iPOJO service controller field and two callback methods, one for

the case when a service implementation is bound to the given dependency and one for

the case when a service implementation is unbound to the dependency. The service

controller field is a boolean variable which controls the publication of a given service:

when this variable is set to true, the service is published; otherwise it is not. Thus,

in the callback methods, we set this variable when the dependency is satisfied, and

unset it otherwise.

URSO-related classes were added to manage URSO-related information. The most impor-

tant interfaces and classes among them are listed below:

• com.bull.urso.URSOController: The URSOController class is a singleton class

which concentrates all methods related to the URSO model life-cycle. It is through

this class that the SCAContainerImpl has access to platform-related information and

the scheduler facilities. The URSOController class has methods for platform cre-

ation (from a platform description) and validation, mode change, task deployment

and undeployment, WCET analysis, and information about the platform and its sub-

components. For this, it uses other URSO-related classes, such as URSOScheduler

and URSOWCETManager implementations.

• com.bull.urso.URSOMethodAnalyser: The URSOMethodAnalyser class is used to

analyse classes’ byte-code instructions and create a control flow graph from them.

From this control flow graph, the WCET Manager may derive a WCET expression

for class’ methods. The method analyser employs the algorithms described in the

URSO Behaviour concern section.

• com.bull.urso.URSOParser: The URSOParser interface (and its implementation class

URSOParserImpl) is responsible for parsing URSO-related files (platform description,

interface description, service compositions and deployment plans) and producing ob-

ject representations of them (A URSO Platform, Interface, ServiceComposition

and URSOContribution object, respectively).

• com.bull.urso.URSOScheduler: The URSOScheduler interface (and its implementa-

tion class URSOSchedulerImpl) is responsible for adding and removing tasks from the

5.2. Usecase: Revisiting DCDx 135

Metric NaSCAr URSO Shell Total
Number of classes 11 60 6 77
Number of methods 50 375 6 431
Total lines of code 1221 3456 102 4779
Avg McCabe Cyclomatic 3.34 3.64 1.167 1.974
Complexity

Table 5.1: NaSCAr project metrics

executing task set. Its methods addTask() and removeTask() create threads from

tasks and remove the selected threads from the task set, respectively. The method

addTask(Task t) is overloaded for periodic and sporadic tasks, since each task type

has its own scheduling parameters.

• com.bull.urso.URSOWCETManager: The URSOWCETManager class is a singleton

class that manages WCET-related aspects. It contains methods for creating WCET

expressions from control flow graphs, evaluating these expressions and updating the

value of these expressions with already-evaluated WCET expressions. A WCET ex-

pression is URSO is represented by an Expression object which has an operator (which

can be ADD, MAX or NULL, the latter being used to represent evaluated expressions)

and two other expressions joint by the operator. The object has also three fields: a

boolean field evaluated to indicate whether the expression has been evaluated (and in

this case, the two other inner expressions are null objects), a long field value, which

contains the value of the evaluated expression, another long field coefficient which is

used to multiply the value of the value of an expression (in loops, for instance) and

a String field which indicates the name of the method that is invoked, if it was not

evaluated yet.

Metrics about the Java implementation prototype can be found in Table 5.1. These metrics

were obtained by a plug-in4 installed in the Eclipse IDE. In the table columns, NaSCAr

corresponds to the NaSCAr sub-project, URSO corresponds to NaSCAr-URSO sub-project

and Shell corresponds to NaSCAr-shell sub-project.

5.2 Usecase: Revisiting DCDx

In this section, we will retake the collision detection benchmark application that we have

described in the Chapter 3 and create a URSO-conform SCA description for it, in order to

deploy it in our implementation framework.

5.2.1 Platform Description

First of all, we will create the description of the platform on which the application is going

to be deployed. The description depicted in the listing 5.1 corresponds to the description

of the machine we have used for our tests. No policies were defined. We have defined two

similar modes: on in which all tasks will be enabled, and one in which no tasks will enabled.

Since we have used only one machine, there is only one interconnection (machine’s local

interconnection). For sake of brevity, we have omitted machine’s and node’s capabilities,

since we have declared only one of each and they contain the same elements as platform’s

capabilities list. We have also omitted the mode description, since its machines, nodes,

4More information about the metrics plug-in can be found in http://metrics.sourceforge.net/.

136 Chapter 5. Implementation and Validation

capabilities and interconnections are equal to those of the platform.

Listing 5.1: Test platform description

<platform defaultMode="Mode1">

<capabilities >

<shared -resource name="JVM" type="Software">

<property name="Brand" type="Brand" value="JamaicaVM"/>

<property name="Type" type="Type" value="Real -time"/>

</shared -resource >

<resource name="RAMMemory" type="Storage">

<property name="Quantity" type="MemoryInMB" value="4096"/>

<property name="Available" type="MemoryInMB" value="4096"/>

<property name="Type" type="Type" value="DDR2"/>

</resource >

<resource name="ProcessorUnit" type="Computing">

<property name="Quantity" type="Core" value="2"/>

<property name="Available" type="Core" value="2"/>

<property name="Brand" type="Brand" value="Intel i5"/>

<property name="Frequency" type="FrequencyInGHz" value="2.4"/>

<property name="Architecture" type="Architecture" value="64-bit"/>

</resource >

<shared -resource name="OS" type="Software">

<property name="Brand" type="Brand" value="Linux"/>

<property name="Distribution" type="OSDistribution" value="Ubuntu"/>

<property name="Kernel" type="Kernel" value="3.8.0-29- lowlatency"/>

<property name="Architecture" type="Architecture" value="64-bit"/>

</shared -resource >

</capabilities >

<machines >

<machine name="Machine1" description="Our test machine">

<capabilities >...</capabilities >

<nodes > <!-- node description detailed below --> </nodes >

</machine >

</machines >

<interconnections >

<connection end1="Machine1" end2="Machine1">

<protocol name="LocalJavaInvocation"/>

</connections >

</interconnections >

<modes >

<mode name="Mode1"> ... </mode>

<mode name="Mode2"> ... </mode>

</modes>

<comm -protocols >

<protocol name="LocalJavaInvocation">

<property name="MaxThroughputInBytesS" type="MaxThroughputBytesMS"

value="99999999" />

<property name="MaxDelayInMS" type="MaxDelayInMS" value="0" />

</protocol >

</comm -protocols >

<mode -transitions >

<transition from="Mode1" to="Mode2"/>

<transition from="Mode2" to="Mode1"/>

</mode -transitions >

</platform >

Since DCDx is composed by two main tasks, we have divided the machine into two nodes,

each one with one processor unit. Other quantifiable resources are shared equally. Listing

5.2 details nodes’ description.

5.2. Usecase: Revisiting DCDx 137

Listing 5.2: Test platform node description

<nodes>

<node name="Node1">

<capabilities >

<shared -resource name="JVM" type="Software">

<property name="Brand" type="Brand" value="JamaicaVM"/>

<property name="Type" type="Type" value="Real -time"/>

</shared -resource >

<resource name="RAMMemory" type="Storage">

<property name="Quantity" type="MemoryInMB" value="2048"/>

<property name="Available" type="MemoryInMB" value="2048"/>

<property name="Type" type="Type" value="DDR2"/>

</resource >

<resource name="ProcessorUnit" type="Computing">

<property name="Quantity" type="Core" value="1"/>

<property name="Available" type="Core" value="1"/>

<property name="Brand" type="Brand" value="Intel i5"/>

<property name="Frequency" type="FrequencyInGHz" value="?"/>

<property name="Architecture" type="Architecture" value="64-bit"/>

</resource >

<shared -resource name="OS" type="Software">

<property name="Brand" type="Brand" value="Linux"/>

<property name="Distribution" type="OSDistribution" value="Ubuntu"/>

<property name="Kernel" type="Kernel" value="?"/>

<property name="Architecture" type="Architecture" value="64-bit"/>

</shared -resource >

</capabilities >

</node>

<node name="Node2">

<capabilities >

<shared -resource name="JVM" type="Software">

<property name="Brand" type="Brand" value="JamaicaVM"/>

<property name="Type" type="Type" value="Real -time"/>

</shared -resource >

<resource name="RAMMemory" type="Storage">

<property name="Quantity" type="MemoryInMB" value="2048"/>

<property name="Available" type="MemoryInMB" value="2048"/>

<property name="Type" type="Type" value="DDR2"/>

</resource >

<resource name="ProcessorUnit" type="Computing">

<property name="Quantity" type="Core" value="1"/>

<property name="Available" type="Core" value="1"/>

<property name="Brand" type="Brand" value="Intel i5"/>

<property name="Frequency" type="FrequencyInGHz" value="?"/>

<property name="Architecture" type="Architecture" value="64-bit"/>

</resource >

<shared -resource name="OS" type="Software">

<property name="Brand" type="Brand" value="Linux"/>

<property name="Distribution" type="OSDistribution" value="Ubuntu"/>

<property name="Kernel" type="Kernel" value="?"/>

<property name="Architecture" type="Architecture" value="64-bit"/>

</shared -resource >

</capabilities >

</node>

</nodes >

Once the platform has been created and validated, applicative contributions can be de-

ployed.

138 Chapter 5. Implementation and Validation

5.2.2 Service Compositions, Instances and Tasks: the Detector ex-

ample

We will exemplify service composition, task and instance deployment by detailing DCDx’s

detector contribution.

Listing 5.3 depicts the service composition descriptor of our task. As it can be noticed, the

Java class implementing the detector has three dependencies: one towards a frame buffer

service, one towards a collision set reducer service and last one towards a motionizer service.

All dependencies are indicated as dynamic. A Runnable service is published, so that the

implementation can be seen by the URSO Scheduler implementation. The description also

contains the implementation requirement in terms of heap memory. Concerning the content

of the URSO interface files:

• the frameService.interface file lists one operation, getFrame, with no inputs and a

Frame object as output. A Frame object is constituted of a list of 2-uples 〈AircraftInfo,
float[]〉, where AirCraftInfo is a structure holding information about an aircraft

and the float array is a three dimensional position (an array with three float ob-

jects, equivalent to 12 bytes). In its turn, an AircraftInfo object keeps an String

ID with at most 30 Unicode characters (each represented by two bytes, so 60 bytes

in total), a trajectory function (which has a six float long array to represent a time-

dependent function for each coordinate, totalling 72 bytes for function) and an int

field informing the duration of its flight (four more bytes). Summing it all, an item

inside a frame has 148 bytes. If we limit the number of aircrafts in a single radar frame

to 30, we would receive 4440 bytes. Since we are using the local Java invocation com-

munication protocol to communicate, the communication delay is assumed to be zero,

but a more efficient data structure would need to be used for other communication

protocols.

• the motionizerService.interface file also lists one operation, createMotions,

which take a Frame as input and returns a list of Motion objects. Motion contains

three float array objects indicating its old position, its actual position and the mo-

tion vector in a three dimensional plan (thus, three float array with three floats

each = 36 bytes) and an AircraftInfo object (136 bytes). Consequently, a motion

consumes 172 bytes. Again, if we limit the number of aircrafts to 30 aircrafts, we

would need 5160 bytes to represent a Motion list.

• the reducerService.interface file lists one operation, reduceCollisionSet, whose

input is a list of Motion and output is a list of lists of Motion.

After reducing the collision set, the detector verifies itself whether there are real collisions,

by checking motions interceptions two by two.

Listing 5.3 also depicts the deployment plan of the task corresponding to the service com-

position. It is a periodic task, whose period and deadline are equal to 100ms (we are

considering that the simulator produces 10 frames per second).

On the deployment of this contribution, the URSO framework will inspect the Detector

class and generate a control flow graph and a WCET expression for it. Figure 5.2 shows

the control flow graph for its main method, run, which is used to execute the composition.

Nodes filled with grey were identified by the algorithm presented in the Assembly section

as being in a loop, and their WCET is multiplied by a constant (maxLoop) which estimates

the maximum number of iterations of the loop. In addition, nodes in black are nodes whose

WCET can not be totally estimated due to their calls towards functions that may not be

5.2. Usecase: Revisiting DCDx 139

present in the WCET Manager map5.

Listing 5.3: Detector service composition and deployment plan

<composition name="detector">

<implementation.urso class="com.bull.dcdj.detector.Detector.class">

<requirements >

<resource name="Memory" type="Storage">

<property name="Available" type="MemoryInMB" value="15"/>

</resource >

</requirements >

</implementation >

<reference name="frameBuffer" multiplicity="1..1">

<interface.urso class="com.bull.dcdj.api.FrameService.class" file="

frameService.interface"/>

<binding.dynamic/>

</reference >

<reference name="reducer" multiplicity="1..1">

<interface.urso class="com.bull.dcdj.api.ReducerService.class" file="

reducerService.interface"/>

<binding.dynamic/>

</reference >

<reference name="motionizer" multiplicity="1..1">

<interface.urso class="com.bull.dcdj.api.MotionizerService.class" file="

motionizerService.interface"/>

<binding.dynamic/>

</reference >

<service name="detector">

<interface.urso class="java.lang.Runnable" file="runnable.interface"/>

<binding.dynamic >

<property name="name" value="detector"/>

</binding.dynamic >

</service >

<semantics >

invoke getFrameOp in frameBuffer.description.operations , null , frame;

invoke createMotionsOp in motionizer.description.operations , frame ,

motions;

invoke reduceMotionsOp in reducer.description.operations , motions ,

motions;

invoke detectCollision , motions , collisions;

invoke system.print , collisions , null;

</semantics >

</composition >

<deployment >

<tasks >

<periodic -task name="Detector" composition="detector.composition" node

="Node1" period="100">

<property name="Deadline" value="100" type="DeadlineInMS"/>

<modes >

<mode name="Mode1"/>

</modes >

</periodic -task>

</tasks>

</deployment >

After creating the graph, the WCET manager looks for all paths (without repeating edges)

from the initial node until the final node. In Figure 5.2, the WCET Manager would find

5It is assumed that the WCET of JVM methods were previously calculated and inserted in the WCET
Manager map.

140 Chapter 5. Implementation and Validation

Figure 5.2: Control flow graph for the Detector Implementation

the paths: 1) L0 - L1 - L2 - L3 - L4 - L5 - L6, 2) L0 - L1 - L2 - L3 - L4 - L5 - L7 - L8 - L9

- L6, and 3) L0 - L1 - L2 - L3 - L4 - L5 - L7 - L8 - L9 - 10 - L11 - L6.

The next step is to reduce the number of paths by seeing which paths are included in other

paths. The WCET Manager considers that a path p1 is included in (or is a subpath of) a

path p2, if p2 visits the same nodes as p1 in the same order. In that case, p1 can be removed

from the paths list. In the given example of the Detector implementation, all paths can be

included in path 3), which will be the only path considered for the WCET calculation.

Listing 5.4: WCET Estimation of Detector Implementation Nodes

WCET(L0) = WCET(ACONST_NULL) + WCET(ASTORE 2)

WCET(L1) = WCET(ALOAD 0) + WCET(GETFIELD frameBuffer) + WCET(INVOKEINTERFACE

FrameService , getFrame) + WCET(ASTORE 1)

WCET(L2) = WCET(ALOAD 0) + WCET(ALOAD 0) + WCET(GETFIELD motionizer) + WCET(

ALOAD 1) + WCET(INVOKEINTERFACE MotionizerService , createMotion) + WCET(

ASTORE 3)

WCET(L3) = WCET(ALOAD 0) + WCET(ALOAD 0) + WCET(GETFIELD reducer) + WCET(

ALOAD 0) + WCET(GETFIELD reducer) + WCET(ALOAD 0) + WCET(ALOAD 3) + WCET

(INVOKEINTERFACE ReducerService , voxelMap) + WCET(INVOKEINTERFACE

ReducerService , reduceCollisionSet)

WCET(L4) = WCET(ALOAD 0) + WCET(ALOAD 0) + WCET(ALOAD 2) + WCET(

INVOKEVIRTUAL determineCollisions) + WCET(ASTORE 4)

WCET(L5) = WCET(ALOAD 4) + WCET(IFNULL L6) + WCET(ALOAD 4) + WCET(

INVOKEINTERFACE List , size) + WCET(IFLE L6)

WCET(L6) = WCET(RETURN)

WCET(L7) = WCET(GETSTATIC System.out) + WCET(NEW StringBuilder) + WCET(DUP)

+ WCET(ALOAD 4) + WCET(INVOKEINTERFACE List , size) + WCET(INVOKESTATIC

String , valueOf) + WCET(INVOKESPECIAL StringBuilder , init) + WCET(LDC) +

WCET(INVOKEVIRTUAL StringBuilder , append) + WCET(INVOKEVIRTUAL

StringBuilder , to String) + WCET(INVOKEVIRTUAL PrintStream , println)

WCET(L8) = WCET(ALOAD 4) + WCET(INVOKEINTERFACE List , iterator) + WCET(

ASTORE 6) + WCET(GOTO L9)

WCET(L9) = maxLoop(WCET(ALOAD 6) + WCET(INVOKEINTERFACE Iterator , hasNext) +

WCET(IFNE L10))

WCET(L10) = maxLoop(WCET(ALOAD 6) + WCET(INVOKEINTERFACE Iterator , next) +

WCET(CHECKCAST Collision) + WCET(ASTORE 5))

WCET(L11) = maxLoop(WCET(GETSTATIC System.out) + WCET(ALOAD 5) + WCET(

INVOKEVIRTUAL Collision , toString) + WCET(INVOKEVIRTUAL PrintStream ,

println))

Next, the WCET Manager generates the WCET expression for the method. In order to

do so, it takes each node from the graph path and calculates its WCET as the sum of

the WCET of its instructions, as shown in the Listing 5.46. If the instruction is not an

invocation instruction, its execution time can be found in a Instruction table kept by the

6For sake of clarity, WCET(x) denotes the function which returns the WCET of an instruction x.

5.2. Usecase: Revisiting DCDx 141

Figure 5.3: WCET Expression for Node L0

framework. Otherwise, the framework queries for the WCET of the invocation in its WCET

Manager table. Figure 5.3 (a) exemplifies the WCET expression object representation de-

tailing L0 node WCET. As depicted in the Figure in (b), when two children nodes (left

and right sides) of an expression are evaluated (that means, both have an associated cost

value), their parent expression can be evaluated as well.

Figure 5.4 (a) shows the WCET expression for the L1 node. L1’s instruction set contains a

service invocation (characterized by a INVOKEINTERFACE instruction), so it can not be

evaluated until a service implementation is found to satisfy its dependency. Every time a

new item is added to the total WCET table, the Manager updates all items of the partial

WCET table. Although L1’s WCET can not be evaluated, it can be simplified as shown in

part (b).

After analysing the class’ byte-code, the framework generates an OSGi bundle from the

SCA contribution. After the deployment of this bundle, the iPOJO adapter module creates

an iPOJO composite wrapping the service composition and exposing its dependencies and

Runnable service. Then, the task object is transmitted to the URSO Scheduler, which

retrieves the task Runnable service and, based on the task type and properties, creates a

real-time thread for it. Before starting the task, the run-time verifies whether the complete

set of tasks can be scheduled without violating their deadlines through an upper bound

response time [Bini et al. 2009] test. In the execution of the schedulability test, it is as-

sumed that all service composition’s dependencies have been satisfied and its WCET has

been evaluated. Otherwise, it is not possible to establish the task’s cost.

5.2.3 DCDj, a Java-based implementation of DCDx

The DCDj implementation is composed by seven SCA contributions which are detailed in

the next paragraphs.

As detailed in the last section, the detector contribution is formed by a service composition

implementation class, a service composition description (with an implementation descrip-

142 Chapter 5. Implementation and Validation

Figure 5.4: WCET Expression for Node L1

tion), a deployment plan defining a periodic task for collision detection and three interface

descriptions corresponding to the interface of the service dependencies it has. Its task and

service composition are responsible for retrieving a radar frame containing a set of aircrafts,

analysing aircrafts’ trajectory and detecting potential collision. To this end, first the detec-

tion module reduces the set of possible collisions by analysing aircrafts in a bi-dimensional

plan. Potential collisions are then analysed in a three-dimensional plan.

The frame buffer contribution contains the FrameBuffer, an entity which manages radar

frames. Frames are kept in an array blocking queue structure. Frame Buffer provides a

service called Frame Service, which possesses operations to add new frames (which receives

a Frame object as input parameter and has no return value) and to get the next frame in

the queue (with has no input parameters and returns a Frame object). Both operations are

described in its service interface. The contribution also contains the FrameBuffer URSO-

conform SCA composite file and a deployment plan mapping one FrameBuffer instance to

the node named ‘Node1’ in the platform.

The motionizer contribution contains the Motionizer, which is an entity that produces

motions from frames. Motions are structures which stores an aircraft information and the

current and last positions of such aircraft. In order to do so, the motionizer stores himself

5.2. Usecase: Revisiting DCDx 143

a map structure associating an aircraft identifier with the last motion produced for such

aircraft. The motionizer provides a service named Motionizer Service. Its only operation is

createMotions, whose input is a Frame object and output is a list of Motion objects. Besides

the service description, this contribution also contains a composite file and a deployment

plan mapping one Motionizer instance to ‘Node1’.

The reducer contribution contains the Reducer, an entity that reduces the set of poten-

tial collisions by analysing aircrafts motions and eliminating those which are too far to be

able to collide. This is performed by an operation called reduceCollisionSet, present on the

interface of the Reducer Service, whose input is a list of Motion objects and output is a

list of list of motions (grouping in inner lists motions which are likely to collide). Motion

set reduction is based on bi-dimensional voxel7 colouring algorithms. Reducer contribution

also contains a composite file and deployment plan mapping one instance of it to ‘Node1’.

The simulator contribution contains the simulator, which is a task and a service compo-

sition that creates radar frames containing the registered aircrafts. Simulation tasks are

sporadic non real-time threads. Their service composition has a mandatory/simple depen-

dency on the Frame service and an optional/multiple dependency on the Aircraft service.

From the Frame service, the simulator uses the operation storeFrame, which adds a frame

to tail of the Frame buffer queue. Upon the registration of a new implementation of the

aircraft service, the simulator adds the implementation object in a list and evaluates its po-

sition based on the trajectory function provided by the aircraft. An aircraft has a maximum

flight time, after which it is removed from the simulator’s aircrafts list. Besides the service

composition implementation class, the composition also contains a deployment plan map-

ping the sporadic non-real-time simulator task to ‘Node2’, a service composition description

and service descriptors for its dependency/reference interfaces. Just as the detector task,

the implementation provides a Runnable service that is used to instantiate its executing

thread.

The aircraft creator contribution is a special contribution responsible for the dynamism

of the DCDj benchmark application. It defines a periodic non-real-time task that dynami-

cally creates new Aircraft instances with different configurations. It is important to notice

that some aircrafts may not be instantiated due to lack of resources in the platform. These

component instances are stored in a component instance pool; once the pool is empty, the

oldest aircraft instance is removed (which means that its reserved resources are released) to

be replaced by a new one. It does not provide or require any service; the aircraft instances

that it creates are responsible for providing the Aircraft Service used by the simulator. The

Aircraft service interface provided by these instances contains one service operation, get-

Info, which returns an AircraftInfo object containing the aircraft identifier, trajectory and

maximum flight time. The contribution contains the service composition implementation

class, a deployment plan mapping its periodic threads to ‘Node2’ and descriptors for its

service composition.

Table 5.2 shows metrics for each contribution mentioned above. The ‘Descriptors’ column

indicates the number of URSO descriptors (interface, composite, service composition or

deployment plan) for each contribution. The ‘Complexity’ column indicates average Mc-

Cabe’s cyclomatic complexity for the set of classes in each contribution. The ‘Aircraft’

contribution corresponds to the aircraft composites dynamically created by the Aircraft

creator contribution. The ‘Common’ contribution is actually an OSGi bundle which con-

tains common classes used by all contributions. It also contains all Java service interface

classes. Its only descriptor is the OSGi Manifest file.

7Voxels (contraction of volumetric elements) are n-dimensional (usually three-dimensional) pixels. In
the context of DCDx they designate bounded areas in a bi-dimensional plan. In order to create voxels from
the three-dimensional space, we ignore the z dimension.

144 Chapter 5. Implementation and Validation

Contribution Methods Classes Lines of Code Descriptors Complexity
Aircraft 5 1 36 3 1.4

AircraftCreator 1 1 31 2 3
Common 30 6 247 1 1.76
Detector 2 1 42 5 2.5

FrameBuffer 3 1 20 3 1.33
Motionizer 1 1 24 3 1
Reducer 7 1 135 3 2.28
Simulator 5 1 66 4 1.6
Total 54 13 601 24 -

Table 5.2: Contributions’ project metrics

Figure 5.5: DCDj Service Architecture on NaSCAr

The resulting overall architecture is depicted in Figure 5.5.

5.3 Validation

5.3.1 Methodology overview

Based on the application architecture presented in the previous section, validation was

carried out adopting the following methodology:

1. First, the command sca:platformdesc was executed with the platform description

file presented in the previous section (analysis of platform validation time);

2. Then, the command sca:platforminfo was executed to check whether the stored

information matches with the data contained in the platform description. This com-

mand was executed several times during the validation phase to certify that the in-

stances and tasks were assigned to the right nodes and to check the impact of the

current number of active entities in the platform on the command execution time;

3. Next, contributions that only provide services were deployed through the command

sca:deploy. For each contribution, it was measured parsing, byte-code instrumenta-

tion, WCET analysis, iPOJO instantiation, and complete deployment time;

5.3. Validation 145

4. Then, contributions containing tasks were deployed. Just as for the contributions in

the previous step, we measured separately each sub-activity of its deployment and

analysed its impact in the total value. Additionally, it was be measured their impact

on the sca:changemode command, the exactitude of its WCET estimation and the

deadline miss ratio of real-time threads;

5. Finally, contributions undeployment was tested by means of the command sca:undeploy.

Consistency checks were performed throughout these steps by means of the sca:list com-

mand.

5.3.2 Platform description validation analysis

In order to analyse the platform description parsing and validation command sca:platformdesc,

platform descriptions of different sizes were used. The test was performed for a minimum

platform description (22 objects), platform descriptions with 68, 162 and 268 objects, and

the platform description depicted in the previous section, which contains 485 objects.

The chart in Figure 5.6 shows the parsing and platform creation methods execution time

variation in seconds according to the number of elements declared in the XML file. Platform

creation process includes parsing the platform description, and performing the validation

on the object representation. It was executed in a JamaicaVM 6.2-4 virtual machine on

a Ubuntu Linux 13.04 with a low-latency kernel version 3.8.0-27-lowlatency. Underlying

processor was an Intel® Core ™ i5 CPU with two cores (with two threads each) running at

2.40GHz. Each test takes into account the minimum execution time from ten benchmark

rounds8, after one warm-up execution round. As it can be seen, the platform validation

time (difference between the platform creation - red line - and parsing - blue line) increases

at a higher rate than the parsing time as the number of object increases. Table 5.3 contains

the resulting values for platform parsing and creation. Values are expressed in seconds.

Platform description parsing and validation

Parsing min Creation min

40 130 220 310 400
0

0.075

0.15

0.225

0.3

Number of Objects

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

 Sheet3 Chart2Chart2

Figure 5.6: SCA:PlatformDesc command: XML parsing and platform creation

8The minimum execution time was picked because it represents the execution time of the method with
least external (e.g. context switch) interference. The model creation and parsing occur during the initial-
ization of the platform, and do not require high performance or predictability.

146 Chapter 5. Implementation and Validation

22 objects 68 objects 162 objects 268 objects 485 objects
Parsing minimum 0.005429 0.011102 0.029219 0.055592 0.138624
Parsing maximum 0.011402 0.017945 0.038836 0.066363 0.158608
Parsing average 0.008506 0.013840 0.033137 0.059640 0.144773
Parsing stdev 0.001827 0.002465 0.003374 0.003366 0.005385

Creation minimum 0.005968 0.011739 0.031101 0.058480 0.143937
Creation maximum 0.011833 0.018624 0.040860 0.069263 0.162211
Creation average 0.009017 0.014596 0.035062 0.062527 0.149921
Creation stdev 0.001787 0.002555 0.003410 0.003380 0.004957

Table 5.3: Platform description parsing and validation results

5.3.3 Platform information analysis

Similarly to platform description parsing and creation, in order to analyse platform infor-

mation retrieval, we have tested the command against platform descriptions with different

complexity levels (number of objects). The same platform descriptions employed in the

previous test were used in this test.

The chart in Figure 5.7 shows a execution time comparison of the sca:platforminfo com-

mand for different platform configurations. As previously, the chart presents the obtained

minimum execution times per configuration. Again, we have used a minimum platform de-

scription, configurations with 68, 162 and 268 objects, and the use-case platform description

described in the previous section. Implementations uses Java’s StringBuilder’s method

append to assemble the information from different levels of the platform. As expected,

execution time grows linearly with the number of objects. Table 5.4 summarizes the results

for a suite with ten benchmark rounds and one warm-up round.

Platform Information retrieval

Info min

40 130 220 310 400

0.000000

0.020000

0.040000

0.060000

0.080000

Number of objects

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

 Desc Chart Info Info chart

Figure 5.7: SCA:PlatformInfo command: Information retrieval and string composition

5.3.4 Contribution deployment analysis

In order to understand contribution deployment analysis, it is important to understand the

different sub-activities that are performed to deploy a contribution. Two main activities can

be identified. For contributions containing passive (composite instances) or active (tasks)

5.3. Validation 147

22 objects 68 objects 162 objects 268 objects 485 objects
Info minimum 0.002011 0.009821 0.021884 0.035982 0.068453
Info maximum 0.006942 0.014996 0.028616 0.056437 0.080609
Info average 0.005497 0.012718 0.025207 0.042899 0.073897
Info stdev 0.001756 0.001956 0.002414 0.007152 0.004146

Table 5.4: Platform description information display results

entities, the first activity is the same:

1. Contribution processing : Contribution processing consists in inspecting the input con-

tribution file and transforming it so that the file and its internal content are conform

with the platform. This activity is composed of three sub-activities:

(a) Textual file parsing : In this activity, descriptors are parsed and object repre-

sentations of them are created. Deployment plans and interfaces are descriptors

common to both passive and active entities. Passive entities composites are

declared in composite files, whereas active entities are associated to service com-

position descriptors;

(b) Implementation class instrumentation and analysis: This sub-activity is respon-

sible for modifying class files byte-code in case of service-level dependencies and

inspecting classes’ methods to establish WCET estimations;

(c) OSGi bundle creation: Bundle creation activity actually includes class instru-

mentation and file parsing; while parsed textual files are not included in the final

bundle, modified classes are added to it. In addition, an OSGi manifest file is

created for the contribution, importing its provided and required service inter-

face class packages and exporting the component implementation classes so that

the iPOJO framework can instantiate them in components and composites.

The second activity is particular to the nature of the entities in the deployed contribution.

The case of passive and active entities is developed separately in the next sections. The

deployment of hybrid contributions, containing both active and passive entities, is performed

by executing the activity set union.

5.3.4.1 Passive entities’ deployment

For passive entities deployment, the second activity is the following:

2. Composite instance deployment : After creating the OSGi file with the necessary

classes and descriptors, instance creation and deployment may take place. This ac-

tivity is composed by three sub-activities:

(a) OSGi bundle installation and start : As the name suggests, in this activity the

generated OSGi bundle is installed and started;

(b) iPOJO-based adaptation: In this activity, the framework uses iPOJO’s Compos-

ite API to create component and composite instances for the URSO composites

declared in the composite file;

(c) Node instance deployment : This activity consists in checking whether the desired

node has enough resources to deploy the composite instance (i.e. it must have

enough resources to attend the resource requirements of all composite inner com-

ponents implementations) and then deploys the instance in the OSGi platform,

storing its reference in case of undeployment.

148 Chapter 5. Implementation and Validation

Reducer Motionizer Aircraft FrameBuffer
Act. 1-a 0.002889 0.002757 0.003242 0.004564

σ 0.000636 0.000107 0.000745 0.001550
Act. 1-b 0.217476 0.016426 0.218405 0.013179

σ 0.010482 0.001843 0.002995 0.003874
Act. 1-c 0.232013 0.032631 0.240410 0.031448

σ 0.009416 0.003757 0.002270 0.005911
Act. 2-a 0.019629 0.027616 0.023181 0.028609

σ 0.003876 0.002218 0.006109 0.002785
Act. 2-b 0.096553 0.050689 0.072306 0.069643

σ 0.002962 0.002955 0.003819 0.004399
Act. 2-c 0.141063 0.128975 0.124125 0.144452

σ 0.012160 0.003787 0.003525 0.002281

Table 5.5: Contribution deployment activity results for passive entities

Figure 5.8 depicts the average execution time for each deployment activity in passive enti-

ties’ deployment. As it can be seen, activity 1-b (implementation class instrumentation and

analysis) execution time impacts heavily on the deployment of contributions whose compo-

nent instance implementation contains several methods. Other activities affected uniformly

in all tested contributions. After instrumentation on complex implementations, activity 2-c

(node instance deployment) is the most time-consuming in all contributions, as it consists

first, on checking whether the deployment node has enough resources for all components

implementation requirements, second, on performing resource reservation, and third, on

deploying the iPOJO instance (and performing all necessary bindings) on the platform.

Passive contributions deployment

Reducer Motionizer Aircraft Frame Buffer

BEGIN 1-a 1-b 1-c 2-a 2-b 2-c END

0

0.15

0.3

0.45

0.6

Deployment activity

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

 Desc Chart Info Info chart Reducer Chart3

Figure 5.8: SCA:Deploy command: Contributions with passive entities

Table 5.5 summarizes the average execution time for each activity. Values are measured

in seconds and were obtained by executing the sca:deploy command five times after one

warm-up execution. The second line in each cell represents standard deviation.

5.3.4.2 Active entities’ deployment

For active entities deployment, the second activity is the following:

5.3. Validation 149

2. Task deployment : As for passive entities, after creating the OSGi file with the neces-

sary classes and descriptors, service composite instance creation and task deployment

may take place. This activity is formed by two sub-activities:

(a) Service composition composite deployment : In fact, this activity comprises the

activity 2 for passive entities. For each service composition, the framework cre-

ates iPOJO composite instances that are deployed in the node indicated for the

task deployment if it has enough resources;

(b) Task scheduling : In this activity, the scheduler queries runnable services exposed

by the service compositions and instantiates real-time threads with them, whose

scheduling and release parameters are based on the properties listed in the task

description;

Figure 5.9 presents the average time for each deployment activity during active entities

deployment. Activities 2-a-a, 2-a-b and 2-a-c correspond to the three activities that form

activity 2 in passive entities. Since active entities implementation are basically constituted

of a class with a single method run(), their instrumentation and analysis time is shorter

than for passive entities. On the other hand, the impact of node deployment for active

entities is more significant, due to the fact that the deployment of their instances require

using service selection mechanisms to satisfy their dependencies.

Active contributions deployment

AircraftCreator Detector Simulator

BEGIN 1-a 1-b 1-c 2-a-a 2-a-b 2-a-c 2-b END

0

0.15

0.3

0.45

0.6

Deployment phases

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

 Desc Chart Info Info chart DeploymentP DeploymentA Chart3 Undeploy ModeChangeChart4

Figure 5.9: SCA:Deploy command: Contributions with active entities

Table 5.6 displays average execution times for active entities’ deployment activities. Again,

values are measured in seconds and were obtained by executing the sca:deploy command

five times after one warm-up execution. Bundles providing services required by activity

entities were already deployed in the platform.

5.3.5 Contribution undeployment analysis

Differently from its deployment counterpart, the sca:undeploy command works similarly

for all contributions. The user must inform the id number of the contribution to be unde-

ployed (it can obtained by means of the sca:list command). Three arrays are stored by

the NaSCAr implementation:

150 Chapter 5. Implementation and Validation

AircraftCreator Detector Simulator
Act. 1-a 0.006023 0.006888 0.006626

σ 0.002233 0.000294 0.001564
Act. 1-b 0.010413 0.065087 0.062870

σ 0.001668 0.005141 0.003535
Act. 1-c 0.028332 0.085827 0.084246

σ 0.003801 0.006567 0.005166
Act. 2-a-a 0.025258 0.026324 0.031065

σ 0.003307 0.002712 0.007273
Act. 2-a-b 0.067639 0.093269 0.088212

σ 0.011437 0.007091 0.009684
Act. 2-a-c 0.157339 0.252298 0.191312

σ 0.006406 0.026257 0.004649
Act. 2-b 0.001844 0.001798 0.002123

σ 0.000046 0.000434 0.000578

Table 5.6: Contribution deployment activity results for passive entities

1. An array containing contribution file paths. The array index is used as identifier for

each deployed contribution;

2. An array containing objects of a class called InstanceInformation. This class con-

tains an integer field indicating the ID of the contribution in which a given composition

instance was declared. It also contains an iPOJO ComponentInstance object.

3. And an array containing objects of a class called TaskInformation. This class also

contains a field that indicates the ID of the contribution in which a given task was

declared. In addition, it stores the name of this task.

So when the undeploy command is executed, first, NaSCAr iterates over the InstanceIn-

formation array and, for each item whose ID field value matches the ID passed as argument

to the command, it disposes the iPOJO instance, releases the resource required by the asso-

ciated implementation and removes the resources provided by them. Then, it iterates over

the TaskInformation array and, for each object whose ID field value matches the command

argument ID, it invokes the URSO Scheduler method undeployTask on the task name. In

its turn, the scheduler implementation must retrieve the thread associated to that name,

and interrupt it. Consequently, the time needed to undeploy a contribution depends on its

number of declared component instances and tasks and on the number of components and

tasks declared by a composite.

In order to analyse the undeployment performance, we have deployed and undeployed a

same contribution several time in the platform. Table 5.7 presents the average task and

instance undeployment execution times for DCDj contributions and their standard devia-

tion. Time was measured in seconds. Values were obtained by executing the sca:undeploy

command five times after one warm-up execution.

5.3.6 Mode change analysis

In order to analyse the behaviour of the framework during mode transitions, it was mea-

sured the execution time of the sca:changemode command. Both tasks and instances may

be affected during mode transitions: if a node must be disabled for a given mode but it was

enabled in the previous mode, all its component instances as tasks must be undeployed.

5.3. Validation 151

Instance undeployment Task undeployment
Motionizer 0.094194 0.000009

σ 0.003087 0.000001
Reducer 0.098222 0.000009

σ 0.008644 0.000001
Aircraft 0.099668 0.000009

σ 0.005379 0.000001
FrameBuffer 0.095982 0.000009

σ 0.004910 0.000001
Detector 0.157883 0.000034

σ 0.006377 0.000004
AircraftCreator 0.138181 0.000038

σ 0.013795 0.000001
Simulator 0.145322 0.000035

σ 0.007571 0.000010

Table 5.7: Contribution deployment activity results for active entities

Similarly, if a node was not activated during a previous mode and is enabled in a new one,

all declared tasks and instances mapped to this node must be deployed. Thus, it is expected

that the mode change execution time is equal to the sum of the undeployment of the entities

whose nodes must be disabled (instances and tasks) or which are not associated to the new

mode (tasks) plus the deployment of entities whose nodes become enabled (instances and

tasks) or which are associated to the new mode and were not associated to the previous

one (tasks).

Three modes were defined in order to evaluate the sca:changemode command: a mode

‘Mode1’ in which all nodes and tasks are mapped, a mode ‘Mode2’ in which no tasks are

declared, and a mode ‘Mode3’ in which only one of the two machines nodes (‘Node1’) is

enabled. Bidirectional transitions between all three modes were declared. It is supposed

that the association between a thread and a mode respects its node assignment, that is,

that the node to which the task was mapped will be activated during its associated modes.

Table 5.8 depicts the execution time and standard deviation obtained for all possible transi-

tions. As mentioned before, in ‘Mode1’ there are seven composite instances and three tasks,

in ‘Mode2’ there are seven component instances and in ‘Mode3’ there are four composite

instances. Table rows indicate the transition origin mode, while columns indicate the tran-

sition destination mode. Table diagonal is not null due to the verifications performed by

the platform to check whether the designated node exists and if it matches the name of the

current mode. Values are slightly higher than those of expected by summing deployment

and undeployment times, due to verifications and iterations over all deployed tasks and

components to check whether they must remain in their actual state (either deployed or

undeployed), be deployed or be undeployed. Based on the previous tables for deployment,

undeployment and mode change, it is possible to state that:

• Both instance deployment and undeployment times are higher than task deployment

and undeployment times in the framework;

• For both tasks and instances, deployment time tends to be higher than undeployment

time.

152 Chapter 5. Implementation and Validation

Mode1 Mode2 Mode3
Mode1 0.000045 0.001209 0.378603

σ 0.000010 0.000175 0.018017
Mode2 0.005663 0.000057 0.290199

σ 0.001351 0.000014 0.009670
Mode3 0.738378 0.680683 0.000066

σ 0.019279 0.055586 0.000013

Table 5.8: Mode change execution time

5.3.7 Execution timeliness analysis

Timeliness analysis has focused on two items:

• Comparison between expected services WCETs9 and obtained worst execution time

for services and service compositions.

• and real-time threads’ timeliness and deadline miss ratio.

Figure 5.10 depicts the comparison between estimated WCETs and worst execution times

obtained in a test suite with ten benchmark rounds for services provided by passive entities.

No warm up round was provided, as worst case execution times may happen (and often do in

Java, due to dynamic class loading costs) during this phase. The default value established

for non-estimated methods has proven to be too pessimistic for most service operations.

This test (and the tests hereafter) assumed that the maximum number of executions for

each loop was 50, and considered recursive calls as methods with non-estimated WCETs

(and consequently using the default value for calculations). We have limited the number of

aircrafts to 50 as well (since most loops iterate over the list of aircrafts). For each service

operation, the third bar (from left to right) represents the real worst time obtained (100%).

The bar in the middle compares the estimated WCET with the worst time obtained in

percentage terms. And the first of the three bars (from left to right) corresponds to the

percentage of the estimated WCET formed by the addition of default values.

WCET Estimation

Added Expected Obtained

getFrame storeFrame createMotions reduceSet getInfo
0

300

600

900

1200

Service operations

P
e

rc
e

n
ta

g
e

 o
f
w

o
rs

t
e

x
e

c
u

ti
o

n
 t
im

e
 (

%
)

 Desc Chart Info Info chart DeploymentP DeploymentA Chart4 Chart3 Undeploy ModeChange WCETs Chart5

Figure 5.10: NaSCAr WCET estimation - passive entities services

9Since a non-open-source JVM was used, it was not possible to have access to all its byte-code beforehand
to populate the WCET table. Consequently, for the timeliness analysis, we have established a default value
for calls towards methods whose WCET could not be estimated: 100 micro-seconds.

5.3. Validation 153

Highest execution time Estimated WCET
FrameService.getFrame 452184 504878.75 (+11.6%)
FrameService.storeFrame 118196 1008906.25 (+753.5%)

MotionizerService.createMotion 878904 1091863.33 (+24%)
ReducerService.reduce 3197680 33198598.75 (+938.2%)
AircraftService.getInfo 57962 618297.917 (+966.7%)

AircraftCreator composition 4483979 14008385.417 (+212.4%)
Simulator composition.getInfo 89071491 139844182.913 (+57%)

Detector composition 15008467 33217411.25 (+121.3%)

Table 5.9: Estimated WCETs for services and service compositions implementations

Based on passive entities’ services WCET, service compositions’ WCET was calculated.

Figure 5.11 presents the comparison between their estimated WCET and the highest ob-

tained execution time among tasks releases. NaSCAr’s WCET estimation was tighter for

service compositions than for passive services. That is mainly due to the default value for

unknown service calls and the difference in the nature of methods executed by them: basic

services tend to make calls towards simple classes and initializer methods, for which the es-

tablished value is too high compared to their execution time, whereas service compositions

tend to use more complex services, whose execution time is closer to the default value.

WCET Estimation

Added Expected Obtained

AircraftCreator Simulator Detector
0

100

200

300

400

Tasks

P
e

rc
e

n
ta

g
e

 o
f
w

o
rs

t
e

x
e

c
u

ti
o

n
 t
im

e
 (

%
)

Figure 5.11: NaSCAr WCET estimation - service compositions

Table 5.9 presents the absolute values for both passive entities’ services and service composi-

tions WCET and worst execution time. Time is presented in nano-seconds. The percentage

value beside the estimated WCET represents the overestimation rate.

As stated before, only one real-time thread is present at DCDj: the detector thread. Based

on the service compositions’ estimated WCET, and on their properties, we have analysed

its deadline miss ratio by varying its period (and consequently the deadline, since both

have the same value in our application) of the detector task. The period of the simulator

task was modified when necessary so that it remains always equal or higher than detector’s

period (otherwise, since our frame buffer implementation has a limited size, radar frames

would be dropped). It was not necessary to perform schedulability test: since we have only

one task with deadlines, the task set is schedulable as long as the real-time task WCET is

higher than its deadline. Consequently, for periods higher than 140 ms the task set would

154 Chapter 5. Implementation and Validation

be considered as schedulable (although other tasks might not have the opportunity to be

scheduled or executed until completion if the detector task has a higher priority). We have

thus disabled the schedulability test in order to verify deadline’s miss ratio for period values

smaller than detector’s WCET. The chart in Figure 5.12 depicts detector’s thread deadline

miss ratio for different period values (from 30 ms to 150 ms). In this interval, the miss ratio

did not exceed 2.05%.

Deadline miss ratio

30 60 90 120 150

-1

0

1

2

3

Period/Deadline (ms)

D
e

a
d

li
n

e
 m

is
s
 r

a
ti
o

 (
%

)

 hart7Figure 5.12: Detector task deadline miss ratio

5.4 Summary and Discussion

5.4.1 Overview

This chapter has presented NaSCAr, a Java framework based on a URSO-conform ex-

tended version of SCA. The framework was implemented in an OSGi platform and mapped

URSO/SCA components to Apache Felix iPOJO component instances. URSO tasks were

mapped to real-time threads, whose parameters were obtained through tasks’ properties.

By means of shell commands, users are able to deploy and undeploy SCA contributions,

gather information about the actual state of the platform, its instances and tasks, and

change the platform current operational mode.

This chapter has also presented an implementation of the Dynamic Collision Detection for

Java, called DCDj. DCDj was separated into seven SCA contributions, four providing ser-

vices through composite instances (Frame buffer, aircraft motionizer, collision set reducer,

and aircrafts), and three defining service compositions and tasks (collision detection, traffic

simulation and aircraft dynamic generation).

The time taken to deploy or undeploy a contribution in NaSCAr depends on the complexity

of the implementation class. Classes with more dependencies and services take more time

to be deployed due to instrumentation and validation phases. Similarly, complex composite

instances take more time to be disposed by iPOJO. Platform mode transition time depends

on the number of components and tasks that must be installed or uninstalled.

Concerning timeliness, NaSCAr’s WCET estimation mechanism is very pessimistic. It as-

signs a high execution time value for the execution of methods whose WCET could not

be estimated (for instance, JVM and native methods). Thus, it is important to populate

NaSCAr’s WCET tables conveniently with all used methods before executing applicative

components, or many task sets may be considered as non-schedulable by its schedulability

5.4. Summary and Discussion 155

test. In addition, DCDj’s detector thread was able to execute in NaSCAr with low levels of

missed deadlines.

5.4.2 Discussion

NaSCAr has demonstrated to maintain good levels of predictability, despite being executed

in a non-real-time OSGi framework. Better results could have been achieved by using

a RTSJ-based OSGi implementation as the ones described in [Basanta-Val et al. 2013]

and [Richardson & Wellings 2012]. NaSCAr could also benefit from some real-time JVM

features on its implementation, such as native or ahead-of-time compilation. Tests on other

virtual machines must be performed to verify if more predictable results can be attained.

A desirable feature for NaSCAr would be to enable users to interact with it by means other

than shell commands. JMX (Java Management Extensions) may provide a way to monitor

and interact with NaSCAr. It would require very little effort to implement it, as it could

communicate through the same API that NaSCAr-shell module uses and iPOJO already

contains a JMX handler to publish NaSCAr methods and field in MBeans. These fields

and methods could then be observed and controlled through graphic consoles, such as Vi-

sualVM10 or JConsole 11.

The manipulation of URSO-based structures is heavily based on the iteration of elements

of potentially big data structures. A way to improve its performance could be to use more

refined structures allowing the easy access to elements, such as hashes or caches.

As discussed in [Américo & Donsez 2012], despite the fact that iPOJO implements many of

the concepts and mechanisms described in URSO and required for a service-oriented com-

ponent model (such as hierarchical service registries, dynamic discovery and publication,

service filtering), it contains one severe limitation: only one service may be provided by

component (which may, in turn, provide several interfaces). Although this limitation did

not impacted on the design of the DCDj implementation, it may restrict the implementation

of other real world applications.

A desirable feature for an OSGi-based implementation of URSO would be to integrate

an implementation OSGi Remote Services specification in order to enable the design of

real-time service-based distributed systems. Among the existing Remote Services imple-

mentation, there are Apache CXF 12 and R-OSGi [Rellermeyer et al. 2007].

An alternative to the use of a unique default value for non-estimated methods WCET would

be to add some intelligence about the nature of the called methods and use diverse default

values based on sampling. For instance, JVM constructors do not tend to have long execu-

tion times. Similarly, getters and setters often have a simple and short implementation. On

the other hand, recursive call or a call towards methods with long lists of arguments tend

to be longer. In addition, considering caches, pipelines and other computer architecture

optimisation elements may highly improve WCET predictions.

Another alternative would be to associate a Java agent to the JVM in order to inspect ev-

ery class during its loading phase and populate the WCET tables with the analysis result.

If a warm-up phase is foreseen, the cost of this approach would be amortized, since used

classes would be loaded and analysed by the agent during that phase and not during the

real application execution. That would require a lot of space in memory for the WCET

10VisualVM is a graphic tool through which Java platforms can be monitored and controlled. More
information about VisualVM can be found in http://visualvm.java.net.

11JConsole is a performance and resource monitoring tool for Java introduced with the JMX specification.
More information about the JConsole can be found in http://docs.oracle.com/javase/7/docs/technotes/

guides/management/jconsole.html.
12More information about Apache CXF may be found at http://cxf.apache.org/distributed-osgi.

html.

156 Chapter 5. Implementation and Validation

table though, in order to be able to store all JVM classes’ WCET.

A sca:update <contribution> command could be added to NaSCAr. This command

could be based on the architectural freezing described in [Américo et al. 2012]. On non-

critical phases, it would undeploy all contributions’ tasks and instances, fetch back the

new version of the contribution file and redeploy its entities. A different version of the

command implementation could verify the differences and perform only the needed modifi-

cations without redeploying entities not concerned by the update, keeping the component’s

state.

Chapter 6

Conclusions and Perspectives

“There are two kinds of people, those who

finish what they start and so on.”

Robert Byrne

Contents

6.1 Conclusions . 157

6.1.1 Summary . 157

6.1.2 Conclusions . 159

6.1.2.1 Designing real-time systems with URSO 159

6.1.2.2 URSO’s service-oriented component model 160

6.1.2.3 URSO framework implementation 160

6.2 Perspectives . 161

6.1 Conclusions

6.1.1 Summary

Many techniques have been developed by software engineers to tackle the software increas-

ing complexity problem. Most of them are based on the separation of concerns principle,

which favours the modularization of software projects into smaller pieces according to their

functions. Modular projects are easier to integrate and to maintain. They may also have

a smaller time to market, due to the fact that modules can be produced independently by

different development teams. In addition, their costs may be decreased by the reuse of old

and third-party modules. The component-based design is a very popular approach for the

development of modular systems. In this approach, components are software units with

well-defined interfaces, which state which functionalities can be seen by other components.

By means of these interfaces, components connectors can be defined and information can

be exchanged. Component models are used in various application domains, from graphical

user interfaces to automotive electrical and electronic systems.

Besides modularity, flexibility is an important feature for systems which interact with real-

world entities. Flexibility is the ability to adapt a software’s architecture at run-time,

without downtime or with a minimized one. Flexibility is crucial for systems which must

react to environmental changes, and for systems whose unavailability could lead to disas-

ters. Updates, additional functionality and bug fixes for these systems must be installed

through a mechanism which dynamically substitute remove, substitute and incorporate new

system components. Service-oriented architectures are an architecture style which enables

the development of flexible systems. This paradigm is based on the concept of service,

158 Chapter 6. Conclusions and Perspectives

which designates a software functionality defined by a contract. Software units implement-

ing this contract (called service providers) publish their services in a service registry, which

is a catalogue associating service interfaces which software implementations. Software units

requiring functions defined in a contract (called service consumers) query for software im-

plementations in the service registry. The service registry returns the query with a proxy

for the service provider, so that consumers may invoke their services directly. Upon the

departure of a service provider, notifications are sent by the service registry to service con-

sumers. This way, they may query for new implementations. The service-based approach

may be incorporated with the component-based one, generating service-oriented component

models, which benefit from the advantages of both approaches.

Real-time systems are systems whose correctness depend on both logical and temporal cor-

rectness. They present timing constraints, whose enforcement classify them onto soft, firm

and hard real-time systems. In soft real-time systems, results obtained after the violation

of a timing constraint are considered, but the system continues executing and its quality of

service is seen as degraded. in firm real-time systems, these results may not be considered,

but the system is not stopped either. However, in hard real-time systems, deadline viola-

tions may lead to catastrophic results, so the results are discarded and the system is put in

a failure state. Thus, it is important for real-time systems to bound the execution time of

all its sub-components, mastering the latency sources, to reduce processing time fluctuation

and to provide means to guarantee that deadlines will not be transgressed.

The lack of predictability in the service-oriented architectures has impeded the adoption of

service-oriented component models in real-time applications. The last decade has seen the

emergence of the first works adapting service-based paradigm and technologies to real-time

systems. Still, none of these works was dedicated to the technology-agnostic development

and deployment of service-based real-time applications. URSO, the main contribution of

this thesis, is a metamodel which relates concepts from service-based, component-based and

real-time domains and provides a methodology for the design and development of modular

and flexible real-time systems. URSO is organized around three main concerns:

• Deployment, which contains concepts associated to the underlying platform, its re-

sources, operational modes and the mapping between software entities to execution

platform entities;

• Assembly, whose concepts are related to the service-based software components com-

position; and

• Behaviour, which contains concepts cognate with the timeliness and internal func-

tioning of service implementations.

We have shown mappings from URSO to other component models used in both service-

oriented and real-time domains: SCA, AADL and the MARTE profile for UML. These

models were chosen because of their extensibility, which enabled the development of exten-

sions to add concepts which were lacking in order to establish URSO mappings. In SCA,

the extensions were developed as a binding extension for dynamic systems, a implemen-

tation extension for real-time systems resource usage, an interface extension for real-time

service descriptions, and a deployment extension consisting of a platform description and

deployment plans. In AADL, we have developed special types of thread group components

to represent provided and required services, URSO components and composites and service

registries. In UML-MARTE, we have used the stereotypes provided by the SoaML profile

to define URSO components and composites.

In order to validate our proposition, we have implemented a proof-of-concept framework

based on our SCA extensions. This framework was developed on an OSGi platform and

6.1. Conclusions 159

mapped URSO-SCA components to Apache iPOJO components. Shell commands were

implemented to provide a URSO platform description, to enable the hot deployment and

undeployment of SCA contributions (which may contain composite instances and tasks),

to change operational modes and to return information about the current tasks, instances

and contributions deployed on the platform. We have tested the timeliness of our frame-

work by adapting CDx, a collision detection benchmark application initially proposed to

evaluate real-time Java virtual machines. Our CDx version, called DCDx, enables the hot

deployment of new aircrafts, which is used to dynamically increase the system charge and

evaluate this impact on the logical and temporal correctness of our implementation. Our

implementation has shown to respect most real-time deadlines and deliver a deterministic

execution.

6.1.2 Conclusions

6.1.2.1 Designing real-time systems with URSO

URSO provides a way to model service-oriented component-based real-time systems. Since

it targets real-time systems, it is mandatory to provide mechanisms to guarantee the hosted

components execution timeliness. Among these mechanisms, it is common to use isolation

(temporal and spatial), WCET analysis, model checking, resource usage enforcement and

access to low-level and hardware facilities. Among these items, only the last one is not

compatible with URSO: in view that it encourages technology-agnostic and portable ap-

plications, it is not recommended to rely on platform-dependent structures. It is possible

though to use a service-based approach to do so, like wrapping these facilities in a service

provider and publishing the interface to make it available to other components.

A big part of URSO’s metamodel is based on descriptions provided by the platform ad-

ministrator and the application deployer. A more reliable solution could be estimating

resource usage, detecting implemented and required services, and automatically creating a

suitable mapping according to the available resources. Despite being more code-intrusive

than URSO’s current approach (it inspects all implementation classes’ object code to es-

timate methods’ WCETs), deducting data from code inspection can be more dependable

than relying on information manually input by human administrators and deployers, which

can be error-prone.

Isolation in URSO is covered by the resource reservation mechanism (temporal isolation)

and node mapping (spatial isolation). As stated above, for the moment, it is based on

descriptions provided by administrators. For quantifiable resources, their availability is au-

tomatically managed by the platform as new components are deployed. A resource usage

enforcement module can be deployed in the platform to ensure that component implemen-

tations’ used resource amount is not superior than the one that was declared. Again, node

partition is another information manually declared by the administrator. We assumed here

that nodes’ non-shared resources are isolated, so that faults can not be propagated. A

resource verifier module can be installed in URSO as well to verify whether this property

holds for the current set of nodes.

Tasks are the only active entities in URSO. Usually, real-time component models and design

methodologies associate triggers to tasks, in order to specify their activation and release

pattern. In URSO this information is obtained through task properties. For the moment,

clocks ,clock expressions and clock specification languages are not integrated with the model,

but they could be present in future version to enable the specification of complex activation

patterns.

Mode transitions have also room for improvement in future versions. For the moment they

160 Chapter 6. Conclusions and Perspectives

are triggered by a platform administrator through shell commands, but rules could be de-

fined in a way that transitions may take place automatically.

WCET analysis in URSO follows a simple approach which has already been adopted in

several works in the past. Control flow graphs are created through code inspection. The

WCET of each path in graph is calculated by summing the WCET of each node in the

graph, and the WCET of each method is the maximum WCET among all paths. Once a

method WCET is evaluated, it is then put in a table which may be consulted to evaluate

other methods. However, this estimation does not take into account platform processors’

internal architecture, which could produce a tighter and less pessimist WCET, to avoid idle

times and be able to schedule more tasks.

6.1.2.2 URSO’s service-oriented component model

URSO’s component model supports the design and implementation of real-time service-

oriented components. Timing information is not present in the composition though; it is

either informed at thread level, or inferred by the run-time after object code inspection. It

makes sense, since the same composition may have different timing characteristics depend-

ing on the available component implementations. Still, it could be possible to add timing

(WCET) restrictions at service selection level.

Despite URSO is technology-independent and could potentially be used to establish a com-

munication between components developed in different technologies, the cost of this com-

munication must be somehow informed to the platform. For this reason, special types of

binding protocol could be used. In addition, intercommunications between machines could

also be enriched with their own properties, such as latency, distance and link availability.

Differently from AADL, where even execution platform entities are components, in URSO

only software and application entities can be componentized. That creates a gap in the

levels of detail of software and hardware elements. Modelling platform entities as compo-

nents could ease the work of the platform modeller. Their functionality could be modelled

as services as well, just as in MARTE. Mapping instances could be seen as a special type of

connection between software and hardware entities. As a consequence, this approach could

make design and analysis simpler, as software and hardware elements are processed equally.

Indeed, the platform/hardware modelling in URSO is still very primitive, providing only a

few abstractions to model resources, machines and machine partitions. An approach more

based on MARTE’s metamodel, which provides a full framework for modelling both hard-

ware and software resources could be more fit for future versions.

Technical components are not fully specified in URSO. They are actually used by the

framework implementation, so their interface and mechanisms used to switch among im-

plementations at run-time may be technology-dependent. Given that, it is important that

the framework provides a mechanism enabling technical components extensibility and sub-

stitutability.

6.1.2.3 URSO framework implementation

The proof-of-concept implementation presented in this work was developed in Java, on top

of an OSGi platform. It is known that Java applications may be very unpredictable when

it comes to execution time determinism. Although part our application was developed us-

ing the RTSJ [Bollella & Gosling 2000] classes and the whole run-time was executed on a

real-time JVM, the underlying OSGi Service Platform and iPOJO component framework

were not re-factored and re-implemented using real-time classes, what may have brought

some unpredictability to the final result.

6.2. Perspectives 161

In addition, although some features needed for real-time systems are described in the RTSJ

specification, they may not have been implemented (or present a mock implementation)

in currently available JVMs. That is the case for resource usage enforcement and schedu-

lability analysis. While the former can be done based on the works of Richardson et al.

in [Richardson et al. 2009], the latter can be achieved by implementing any scheduling anal-

ysis algorithm in Java based on the information provided by URSO task properties.

Another possible improvement for our implementation could be to use OSGi’s remote ser-

vices communication with URSO frameworks in other OSGi platforms, potentially written

in other programming languages (like Celix1, in C, or Pelix [Calmant et al. 2012], in Python).

A desirable feature as well would be a graphical monitor enabling both modelling and run-

time monitoring of components and tasks. The modelling part could generate and display

the equivalent model representation in extended versions of SCA, AADL and UML-MARTE,

as presented in this thesis.

6.2 Perspectives

Service-oriented real-time systems is a relatively new research domain. We have presented

in this thesis a contribution to the integration of some concepts from both paradigms for

modelling and developing applications. We believe there is much yet to be done in inte-

grating more complex real-time and performance-related aspects in service-based systems.

Similarly, there are several open issues in the use and adaptation of service-based systems

and their internal mechanisms to real-time systems. The next paragraphs list some points

which can be considered as continuation of this work.

Parallelized service invocations URSO could be improved with annotations on service

composition invocations to indicate parallelizable invocations. For instance, if a series of

calls in performed in each item of a collection, and these invocations are stateful and inde-

pendent from one another, URSO could create threads to invoke them in parallel depending

on the quantity of schedulable units currently executing in the platform. This would differ-

ent from using BPEL’s parallel activity in the fact that it would be automatically handled

by the platform itself, which could find the best way to divide the data set. This could

improve the performance of our framework and reduce the WCET of service compositions.

To this end, a URSO framework implementation could be based on component models for

grids, like ProActive’ [Baduel et al. 2006], in order to create parallelizable communication

between URSO components.

Probability-based WCET estimation The use of probabilities to model real-time

service-based systems’ behaviour and perform quantitative model checking has been studied

in [Calinescu et al. 2012]. URSO could improve the initial WCET expression with informa-

tion extracted at run-time about the probability of taking a particular path in the control

flow graph.

Deployment platform description refinement As stated before, the URSO platform

model in the deployment concern could be improved based on UML’s MARTE hardware

resource model. This improvement could affect the description of resources, communication

protocols, machines, nodes and machine interconnections.

1Apache Celix is an implementation of the OSGi specification written in C. More information in http:

//incubator.apache.org/celix/.

162 Chapter 6. Conclusions and Perspectives

Integration of other communication and programming paradigms Although we

target service-based applications, sometimes only communicating through services may not

be fit for real-time applications. Indeed, when it comes to the exchange large pieces of

data, a data flow or data service accessed by components may be a better solution. Like-

wise, event-based communication is often supported in service-based applications and may

constitute a better solution for notifications between components than using the service

approach. Event-driven SOA is also known as ‘SOA 2.0’ [Laliwala & Chaudhary 2008,Pa-

pazoglou & Heuvel 2007]. An implementation integrating the OMG DDS standard [Object

Management Group 2007] or MQTT2, which add low-latency and QoS features to the com-

munication layer, would be interesting. DDS integration in SCA has already been studied

by [Labejof et al. 2012] in the R-MOM framework. Another important integration would

be that with asynchronous frameworks or programming languages to support asynchronous

service calls [Gostelow & Plouffe 1978]. This programming model recommends using the

Reactor design pattern [Schmidt et al. 2000] to avoid locks between applications and im-

prove performance. Asynchronous programming is commonly found in application web and

SIP servers. A solution to integrate it with NaSCAr could include using RTSJ or EJB asyn-

chronous event handling for service calls, using Future objects and integrating Reactor3 or

Vert.x4 frameworks.

Platform-based WCET estimation As mentioned before, our WCET is very pes-

simistic, as it does not take into account processors organization and architecture. In-

structions pipeline, cache memories, hyper-threading, branch predictors and speculative

execution are optimization techniques found in most general-purpose processors nowadays,

which could greatly reduce the execution time of an instruction sequence. A too pessimistic

WCET estimation could lead the framework to schedule a smaller set of tasks than it could,

adding idle times to the scheduler. The integration of cache memories (for both instructions

and data) and pipelined execution in the WCET estimation is investigated in many works,

since they constitute well-mastered architectural elements. Besides internal processor fea-

tures, multi-core aspects must also be considered. An overview on methods and tools for

WCET estimation can be found in [Wilhelm et al. 2008]. Future URSO framework imple-

mentations could integrate third-party WCET analysis tools such as Heptane5, SWEET6

or AbsInt’s aiT7.

URSO Cloud extension URSO could be extended to address the cloud computing

[Hayes 2008], incorporating features such as business models for pricing and the possibility

to provide the platform as a service. Several other aspects would require special attention,

such as security, elasticity and the need to include users in model itself.

Automatic resource-based instance and task placement As remarked before, URSO

is based on manual declarations of resource capabilities and resource requirements. It also

2MQTT stands for MQ Telemetry Transport. It is a publish/subscribe protocol over TCP/IP net-
works conceived for sensor-based systems and devices. Its specification is available at http://www.ibm.

com/developerworks/webservices/library/ws-mqtt.
3Reactor is an open-source framework developed by Spring for asynchronous Java applications. More

information about Spring Reactor is available at https://github.com/reactor/reactor.
4Vert.x is an open-source polyglot framework for concurrent, non-blocking and distributed applications.

More information about Vert.X framework is available at http://vertx.io/.
5Heptane is a static WCET analysis tool developed at INRIA Rennes, in France. More information

about Heptane is available at http://bit.ly/1aufXFI.
6SWEET is a static WCET analysis tool developed at Mälardalen University, in Sweden. More infor-

mation about SWEET is available at http://www.mrtc.mdh.se/projects/wcet/sweet/.
7Available at http://www.absint.com/ait/index.htm.

6.2. Perspectives 163

depends on the node mappings expressed in deployment plans. Based on the current re-

source availability, the platform could automatically establish mappings towards execution

platform entities for both instances and tasks. Task placement could take into account the

placement of its service composition composite, just as the availability of processor units.

Automatic resource and service requirement detection As stated in the last sec-

tion, the use of code inspection to estimate resource usage and service requirement and

provision could improve the reliability of the component information used for WCET cal-

culation and resource reservation mechanisms.

Implementation on other service-based technologies At the implementation level,

it could be interesting to evaluate the effort and performance of URSO implementations

based on other service-based technologies, like web services, or real-time technologies, like

code generated by AADL-based tools. It would also be interesting to establish compar-

isons with an implementation based on extensions to complete SCA run-times, like Apache

TuSCAny or OW2 FraSCAti.

Appendix A

Appendix

Contents

A.1 URSO name and logo . 165

A.2 Example: URSO Potential Use Cases Description 166

A.3 Example: Mapping URSO Composite to AADL 170

A.4 UML MARTE Simplified Metamodel . 174

A.4.1 Core Elements . 174

A.4.2 Non-Functional Properties . 174

A.4.3 Time . 175

A.4.4 Generic Resource Model . 177

A.4.5 Allocation . 177

A.4.6 Generic Component Model . 177

A.4.7 High Level Application Model . 179

A.4.8 Generic Quantitative Analysis Model 179

A.1 URSO name and logo

‘Urso’ means ‘bear ’ in Portuguese; that is why URSO’s logo (presented in Figure A.1)

reminds a bear paw. In the back of the hand, the three circles bound by a white triangle

shows the real-time and distributed aspect of URSO - three clocks synchronized as one.

The fingers make an allusion to the UML notation for the provision (elliptic ball) and

requirement (socket) of services, the main feature of service-oriented architectures.

Figure A.1: URSO Component metamodel logo

166 Appendix A. Appendix

A.2 Example: URSO Potential Use Cases Description

In this section, we will detail the URSO potential use-cases. For sake of simplicity, the

corresponding UML use-case diagram is re-presented in Figure A.2.

Figure A.2: Potential use cases for the URSO metamodel

Details of the use case “Build Software Model”

• Actor: Modeler

• Description: The modeler builds a URSO-compliant model of a software entity. The

model can be built through the use of a model conform to URSO metamodel or

through the use of URSO concepts directly. In the former case, the software descrip-

tion will be converted to a URSO representation of the entity. The resulting model

is component-based, software-oriented and may or not have real-time properties and

constraints.

• Deliverable: A URSO compliant model of the software system with its properties and

restrictions.

Details of the use case “Build Hardware Model”

• Actor: Modeler

• Description: The modeler builds a URSO-compliant model of a hardware entity. The

model can be built through the use of a model conform to the URSO metamodel

or directly through the use of URSO concepts. In the former case, the hardware

A.2. Example: URSO Potential Use Cases Description 167

description will be converted to a URSO representation of the entity. The resulting

model must contain the system resources, connections, subcomponents and their real-

time characterization.

• Deliverable: A URSO compliant model of the hardware system with its properties.

Details of the use case “Build Code Implementations”

• Actor: Developer

• Description: The developer builds an implementation of a software modeled before-

hand in a specific technology. The implementation must take into account the prop-

erties and characteristics of the model it implements, that is, provide and consume

the services specified by the model. The developer must also specify the resources

needed for the execution and deployment of the implementation.

• Deliverable: An executable code implementing a URSO software model, along with

its resource usage description.

Details of the use case “Define Deployment”

• Actor: Deployer

• Description: Based on the physical platform description (hardware model) and on the

resource usage of the code implementations, the deployer creates a mapping between

instances of these implementations and entities in the physical platform.

• Deliverable: A mapping between software entities grouped in a deployable unit and

hardware entities.

Details of the use case “Analyze Model Representation”

• Actor: Analyst

• Description: The analyst verifies if all resources were correctly described (e.g. if

resources in sub-components are part of the resources of their parent component).

The analysis phase may statically generate meta-information for dynamic aspects

(for instance, define an expression to estimate the WCET of an entity whose bindings

will be defined at run-time).

• Deliverable: Error in the case of an invalid model representation, and meta-information

for dynamic aspects. It may also output results of the analysis and store this infor-

mation in the platform itself.

Details of the use case “Validate Model Representation”

• Actor: Analyst

• Description: This use case uses analysis results to say whether a model can be deployed

or not in the platform.

• Deliverable: The analysis output.

Details of the use case “Validate Model Composition”

• Actor: Analyst

168 Appendix A. Appendix

• Description: This use case uses the validate model representation use case to validate

all the parts of the composition separately. Then it takes into account all the anal-

ysis result that depend on other parts of the system and verifies whether all model

representations are still valid.

• Deliverable: It returns the analysis result for all the composition (error, if at least one

element is invalid).

Details of the use case “Instantiate Model in Target Hardware”

• Actor: Executioner

• Description: In this use case, the executioner creates instances of the implementations

on the target physical components of the platform, reserving all necessary resources

for its correct execution.

• Deliverable: The platform with the entities instantiated.

Details of the use case “Execute Model”

• Actor: Executioner

• Description: For all executable entities (tasks), after the verification and (schedulabil-

ity) analysis of the complete composition, the executioner instantiates them and adds

them to its pool of tasks to be performed. If the executable entity has a dependency

towards other entity, the executioner first verifies whether the task it depends on is

already in the pool. If it is not, the task is not added to the pool. The scheduling pol-

icy used to execute tasks (and thus define their priority) may depend on the current

state of the platform.

• Deliverable: The platform with the executable entity in the pool of the eligible tasks.

Details of the use case “Monitor Application”

• Actor: Administrator

• Description: The Administrator may access the state of all instantiated software

entities and their compositions to monitor whether errors have been produced or con-

straints have violated. The monitor may also provide a model @ run-time view of the

entities, making the correspondence between the URSO concepts and the instantiated

elements.

• Deliverable: The state of the concerned software entities.

Details of the use case “Monitor Platform”

• Actor: Administrator

• Description: The Administrator may access the state of all platform entities and

their compositions to monitor whether errors have been produced or constraints have

violated. The monitor may also provide a model @ run-time view of the entities,

making the correspondence between the URSO concepts, the platform elements and

the software elements related to it.

• Deliverable: The state of the concerned platform elements.

Details of the use case “Perform Actions In The Platform”

A.2. Example: URSO Potential Use Cases Description 169

• Actor: Administrator

• Description: The Administrator may execute commands on the platform and software

entities. The state of the platform changes accordingly, and it may imply the re-

validation of several elements.

• Deliverable: The platform with the updated state.

170 Appendix A. Appendix

A.3 Example: Mapping URSO Composite to AADL

Listing A.1: Example: AADL Declaration for URSO Composite

process implementation URSOComposite.C1 extends URSO.i

subcomponents

C11: thread group URSOComponent.C11;

C12: thread group URSOComponent.C12;

LSR: thread ServiceRegistry.local;

connections

-- S2

event data port C12.newService -> LSR.newService in modes (queryC12 ,

int12);

event port C12.actService -> LSR.actService in modes (int12 , queryC12);

event data port C12.removeService -> LSR.removeService in modes (

queryC12 , int12);

-- R1

event data port LSR.queryResult -> C11.queryResult in modes (queryC11);

event data port C11.newQuery -> LSR.newQuery in modes (queryC11);

-- Bidirectional communication between C11 and C12 (service invocation)

-- A pair of port groups for every pair of urso components

port group C11.interactOut -> C12.interactIn in modes (int12);

port group C12.interactOut -> C11.interactIn in modes (int12);

-- Exported Services

-- S1

event data port C11.newService -> GSR.newService in modes (queryGC11 ,

intG11);

event port C11.actService -> GSR.actService in modes (intG11 , queryGC11)

;

event port data C11.removeService -> GSR.removeService in modes (intG11 ,

queryGC11);

-- S3

event data port C12.newService -> GSR.newService in modes (queryGC12 ,

intG12);

event port C12.actService -> GSR.actService in modes (intG12 , queryGC12)

;

event port C12.removeService -> GSR.removeService in modes (intG12 ,

queryGC12);

-- Imported Dependencies

-- R3

event data port GSR.queryResult -> C11.queryResult in modes (queryGC11);

event data port C11.newQuery -> GSR.newQuery in modes (queryGC11);

-- R2

event data port GSR.queryResult -> C12.queryResult in modes (queryGC12);

event data port C12.newQuery -> GSR.newQuery in modes (queryGC12);

-- Data exchange with unknown entities

port group C11.interactOut -> GMM.interactIn in modes (intG11);

port group C12.interactOut ->GMM.interactIn in modes (intG12);

port group GMM.interactOut -> C12.interactIn in modes (intG12);

port group GMM.interactOut -> C11.interactIn in modes (intG11);

modes

initialize: initial mode;

-- Internal query modes

queryC12: mode;

queryC11: mode;

-- Global query modes

queryGC12: mode;

queryGC11: mode;

-- Local interaction modes

intC11 : mode;

intC12 : mode;

-- Mode for the interaction with multiplexer

intGC11: mode;

intGC12: mode;

-- Initial transition

initialize -[initialized]-> queryC11;

initialize -[initialized]-> queryC12;

initialize -[initialized]-> queryGC11;

initialize -[initialized]-> queryGC12;

end URSOComposite.i;

A.3. Example: Mapping URSO Composite to AADL 171

Listing A.2: Example: AADL Declaration for URSO Component Implementation

thread group implementation URSOComponent.C11

subcomponents

-- They could also have been grouped into two thread groups

ServiceRequest and ServiceProvision

R1: thread group ServiceRequester.C11R1;

R3: thread group ServiceRequester.C11R3;

S1: thread group ServiceProvider.C11S1;

connections

-- In this case we only need to differentiate the local query mode from

the remote one.

-- In a general case , we would need to specify modes for different

dependencies ’ queries

-- R1

event data port R1.newQuery -> newQuery in modes (queryC11);

event data port queryResult -> R1.queryResult in modes (queryC11);

port group interactIn -> R1.interactIn in modes (intC11);

-- R3

event data port R3.newQuery -> newQuery in modes (queryGC11);

event data port queryResult -> R3.queryResult in modes (queryGC11);

port group interactIn -> R3.interactIn in modes (intGC11);

-- S1

event data port S1.newService -> newService in modes (intC11 , queryC11);

event port interactOut.eventOut -> actService in modes (intC11);

event port actService -> S1.actService in modes (intC11);

port group S1.interactOut -> interactOut in modes (intC11);

port group interactIn -> S1.interactIn in modes (intC11);

modes

queryC11 : initial mode;

intC11: mode;

queryGC11: mode;

intGC11: mode;

end URSOComponent.C11;

thread group ServiceProvider

features

actService: in event port;

newService: out event data port URSOServiceRecord;

interactOut: port group basic :: output_PT;

interactIn: port group basic:: input_PT;

removeService: out event data port URSOServiceRecord;

end ServiceProvider;

thread group ServiceRequester

features

newQuery: in out event data URSOServiceQueryRecord;

queryResult: in out event data URSOServiceRecord;

interactIn: port group basic:: input_PT;

interactOut: port group basic :: output_PT;

end ServiceRequester;

172 Appendix A. Appendix

Listing A.3: Example: AADL Declaration for URSO Services and Dependencies

thread group implementation ServiceProvider.C11S1

subcomponents

OP1: thread OperationOne in modes (op1);

OP2: thread OperationTwo in modes (op2);

connections

event data port OP1.newService -> newService in modes(queryC11 , intC11);

event data port OP2.newService -> newService in modes(queryC11 , intC11);

event data port OP1.removeService -> removeService in modes(queryC11 ,

intC11);

event data port OP2.removeService -> removeService in modes(queryC11 ,

intC11);

event port interactOut.eventOut -> activeThread in modes (intC11);

event port actService -> OP1.service in modes (intC11 , op1);

event port actService -> OP2.service in modes (intC11 , op2);

data port OP1.result -> interactOut.dataOut in modes (intC11);

data port OP2.result -> interactOut.dataOut in modes (intC11);

modes

queryC11: initial mode;

queryGC11: mode;

intC11: initial mode;

intGC11: mode;

op1: mode;

op2: mode;

intC11 -[interactIn.eventIn]-> op1;

intC11 -[interactIn.eventIn]-> op2;

end ServiceProvider.C11S1;

thread group implementation ServiceRequester.C11R1

subcomponents

Requester: thread Requester in modes (queryC11);

Interaction: thread Interaction in modes (intC11);

connections

event data port Requester.newQuery -> newQuery in modes (queryC11);

event data port queryResult -> Requester.queryResult in modes (queryC11)

;

event port Requester.Activation -> Interaction.Activation in modes (

intC11);

port group Interaction.interactOut -> interactIn in modes (intC11);

port group interactOut -> Interaction.interactIn in modes (intC11);

properties

Dispatch_Protocol => Periodic;

Period => 30 Ms;

modes

queryC11 : initial mode;

intC11: mode;

end ServiceRequester.C11R1;

thread group implementation ServiceRequester.C11R3

subcomponents

Requester: thread Requester in modes (queryGC11);

Interaction: thread Interaction in modes (intGC11);

connections

event data port Requester.newQuery -> newQuery in modes (queryGC11);

event data port queryResult -> Requester.queryResult in modes (queryGC11

);

event port Requester.Activation -> Interaction.Activation in modes (

intGC11);

port group Interaction.interactOut -> interactIn in modes (intGC11);

port group interactOut -> Interaction.interactIn in modes (intGC11);

properties

Dispatch_Protocol => Periodic;

Period => 30 Ms;

modes

queryGC11 : initial mode;

intGC11: mode;

end ServiceRequester.C11R3;

A.3. Example: Mapping URSO Composite to AADL 173

We present an example of URSO component described in AADL. The composite is

named C1, and it has two inner components: C11 and C12. The component C11 has one

service, named S1, and two references, named R1 and R3. The component C12 has two

services, S2 and S3, and one reference, R2. The services S1 and S3 are exported. The

dependencies R2 and R3 are imported. The corresponding AADL declarations for that

given architecture is depicted in the Listing A.1.

Listing A.2 and Listing A.3 exemplify the implementation of an URSO Component. We

have decided to detail the implementation of the component C1/C11 described above.

Each dependency or service correspond to an inner component of type Service Requester or

Service Provider. Service requesters contain two periodic threads, one for interacting with

services and another for querying for services. Service providers have one aperiodic thread

and mode per service operation.

174 Appendix A. Appendix

A.4 UML MARTE Simplified Metamodel

This section details the metamodel of the MARTE profile for UML, complementing the

information presented in the section 4.3.1. The diagrams and explanations here presented

depict a simplified version of the original metamodel. Due to the size and complexity

of MARTE, we have created one UML metamodel diagram for each package, with some

cross-cutting concerns. The original metamodel can be found in [Object Management

Group 2008].

This section does not cover the metamodel of the Detailed Resource Modelling, Schedula-

bility Analysis Model and Performance Analysis Model packages, as they are specializations

of other concepts presented below and not essential to the understanding of the MARTE

model.

A.4.1 Core Elements

The simplified metamodel of the core elements package is shown in Figure A.3. A model

element may represent either a classifier or an instance. Models elements may contain other

elements. Classifiers correspond to types, whereas instances represent run-time instantia-

tions of the very same concepts. For example, in this metamodel, the pairs Behaviour -

Behaviour Execution, Composite Behaviour - Comp Behaviour Execution, Action - Action

Execution, Event - Event Occurrence, Start Event - Start Occurrence have a relationship

classifier - instance. A Behavioured Classifier is an element type which possesses behaviour.

A behaviour may be composed by an action or a composition of other behaviours. A special

type of behaviour is the mode behaviour, that is, a behaviour that depends on the current

operational mode. A mode corresponds to a configuration of the platform. Modes can be

switched from one another, through mode transitions. Events can be actively generated by

means of triggers in mode transitions and behavioural elements. They are automatically

generated in case of invocation of other behaviours. This invocation mechanism generates

first an invocation event occurrence, that results a request. Upon the reception of the on

the target element generates a receive event occurrence and may execute a behaviour de-

pending on the request content. The execution of a behaviour also generates an event for

the beginning of the execution and an event for the end of the execution.

A.4.2 Non-Functional Properties

The metamodel presented in Figure A.4 depicts part of the metamodel of the Non-functional

properties (NFP) package in UML Marte. Grey concepts represent concepts from other

packages. It corresponds to two of the three packages in the NFP package, namely NFP Nature

and NFP Annotation. The third package, NFP Declaration, relates properties, their values

and their types with the VSL specification and is not depicted in the Figure. NFPs are

either quantitative or qualitative. Qualitative NFPs corresponds to high-level labels which

may be parametrized with other NFPs. Quantitative NFPs are characterized by measures

and sample realizations. The measure is often a statistical function applied to the domain

of values in the sample realization. Measures have a measurement units and a quantity.

This quantity may either be a base quantity (like length) or derived (like speed, which is

length per time).

Annotated elements designate elements which may be annotated with NFPs. Mode-dependent

constraints may be defined as well. Sets of NFPs may be grouped according to a modelling

concern.

A.4. UML MARTE Simplified Metamodel 175

Figure A.3: UML MARTE - Core Elements

A.4.3 Time

Figure A.5 depicts a simplified metamodel for the Time package. A time base is the most

basic concept, which gathers an ordered non-empty set of instants. It can be extended to a

discrete time base when the nature of the instants is discrete. Time bases can be grouped

into a multiple time base structure, and relations can be defined between these time bases

and their instants. Relations between instants can be established as well. Instants are

used to define interval boundaries. A clock is a structure that can be used to access time

measures. A clock is linked to a time base and produces periodic events called ticks. A

clock measures time on a determined unit of time. Time values refers to a time instant

in a given clock. Instant values specialize time values to denote a set of junction instants.

A time interval value uses two instant value references to denote time intervals. Duration

Figure A.4: UML MARTE - Non-Functional Properties

176 Appendix A. Appendix

Figure A.5: UML MARTE - Time

values make reference to a time span. Constraints can be defined on two or more clocks on

a set of clocks. These constraints can be expressed using a special language called Clock

Constraint Specification Language (CCSL).

Timed elements are model elements associated with a non-empty set of clocks. There are

different types of timed elements:

• Timed Observations, which observe the time associated to an event occurrence, or the

duration of an execution, request or between two event occurrences. Timed observa-

tions are performed in an behaviour execution context;

• Timed Constraints, which imposes constraints on the occurrence of events or in the

duration of an execution. The predicates used to specify the constraints may contain

timed observations;

• Timed Event and Event Occurrences, which associates the occurrence and repetition

of events to instant values and clock value specifications;

A.4. UML MARTE Simplified Metamodel 177

• Timed Execution, which associates the beginning and the end of an execution to

instant values, and its execution duration to a duration value;

• and Timed Processing, which generalizes activities with known processing times (bound

by a duration or start and finish events), and may be extended to timed messages

(which also extends requests), timed behaviour (which extends behaviour) and timed

action (which extends action). A particular timed action is called Delay, which is a

null operation that lasts for a determined duration.

A.4.4 Generic Resource Model

Figure A.6 presents a simplified model for the Generic Resource Modelling (GRM) frame-

work in MARTE. Resources are classifiers for Resource Instances, and they may own other

resources. They provide services which at tun-time correspond behaviour executions. Ex-

amples of services are acquire, release, get amount available and activate. They can be

annotated with NFPs and contain references towards clocks. Two abstract concepts, re-

source reference and resource amount, can be used to represent the dynamic creation of

resources and the quantification of the amount of the resource, respectively. Resources can

be extended to represent storage resources (e.g. memory), timing resources (e.g. clocks),

synchronization resources (e.g. semaphores and locks), computing resources (e.g. CPU),

concurrency resources (e.g. threads, processes), communication resources (e.g. bus) and

device resources (external devices).

Two special types of resources are responsible for resource management mechanisms: re-

source brokers (responsible for allocation and de-allocation) and resource managers (which

controls resource creation, maintenance and deletion). Both can be linked to control poli-

cies. It is worth mentioning that the GRM foresees a special sub-package which details

scheduling mechanisms. Schedulers are in fact resource brokers, which allocate and de-

allocation schedulable resources (an specialization of concurrency resources). Schedulers in

URSO are seen as technical components whose implementation may vary, but the architec-

ture follows the same structure: an entity which hosts several schedulable resources that

are executed in a non-empty set of processing resources according to a scheduling policy.

This package metamodel will be detailed here though, as we are showing the main concepts

of the whole model.

Finally, the consumption of an amount of resource is represented in the model by the re-

source usage entity. It is associated to an usage amount and it may use an event-based

mechanism to demand the reservation. The usage amount can be classified as either static

or dynamic.

A.4.5 Allocation

Figure A.7 depicts the metamodel for the Allocation package. Allocation represents the

mapping from application resources (source) to execution platform resources (target). This

mapping can be restricted to some constraints. The package also describes refinement, that

is, the mapping between elements in different level of abstractions. Refinements can be

constrained as well and operate on both ends (source and target) of the allocation.

A.4.6 Generic Component Model

Figure A.8 presents a simplified metamodel for the Generic Component Model (GCM)

package. Structured components have assembly parts and interaction ports. They can

connect to other components by means of connectors. There are two types of ports: flow

178 Appendix A. Appendix

Figure A.6: UML MARTE - Generic Resource Modelling

Figure A.7: UML MARTE - Allocation

A.4. UML MARTE Simplified Metamodel 179

ports, through which a directed data flow can be specified; and client-server ports through

which remote operations can be called and received. Actions on interaction ports are called

invocation actions, and may be used to send signal or data and call operations.

Figure A.8: UML MARTE - Generic Component Model

A.4.7 High Level Application Model

Figure A.9 illustrates a simplified version of the High-Level Application Model package. A

real-time unit is a concurrency unit with services and behaviours. It also owns a message

queue, which acts as an event and message pool. RtUnits may invoke services on other

RtUnits and send message to them. Shared information is modelled through Passive pro-

tected units (PpUnits), whose access policy can be configured. Ppunits do not constitute a

schedulable resource for themselves, and use that of the RtUnit that invoke their provided

services. Scheduling policies can be defined to determine the order in which messages will

be consumed from the in message queue. Real-time features are information used by the

internal controllers of RtUnits to control their execution. The communication aspects of

the interaction between RtUnits is captured by the concept of RtAction, which may contain

real-time features as well.

A.4.8 Generic Quantitative Analysis Model

Figure A.10 depicts a simplified version of the General Quantitative Analysis Model pack-

age. This package is centred around the concept of analysis context. An analysis context

possesses a workload behaviour (a group of end-to-end system operations considered for the

analysis) and the set of resources of the platform.

A workload behaviour is characterized by a set of triggering events (Workload Event), which

may be generated by timed events, workload generators (which may be represented as a

finite state machine) or event traces (from log files). These events are responded by a be-

haviour scenario from the set of scenarios of the workload behaviour. Sub-operations in the

behaviour scenario are called steps, which can be refined by another behaviour scenario.

Acquiring and Releasing resources are examples of steps. The precedence relation between

180 Appendix A. Appendix

Figure A.9: UML MARTE - High Level Application Modelling

Figure A.10: UML MARTE - General Quantitative Analysis Model

steps establish a sequence of steps. Steps have time- and scheduling-related attributes such

as end-to-end response time and execution priority. These measures are obtained by means

of timed observations. Behaviour Scenarios are also associated to resource usages.

List of Figures

2.1 Dynamic Software Evolution . 9

2.2 Service-Oriented Architecture: Actors and Interactions 13

2.3 Dynamic Service-Oriented Architecture: Actors and Interactions 14

3.1 A taxonomy of potential URSO users. 41

3.2 Potential use cases for the URSO metamodel 42

3.3 URSO Component metamodel - Deployment concern concepts 48

3.4 URSO Component metamodel - Platform definition 49

3.5 Service Registries in a Service-Oriented Hierarchical Component Model . . 55

3.6 URSO Component Model - Assembly concern 59

3.7 URSO Component Model - Component Development 60

3.8 Taxonomy of Java byte-code instructions 63

3.9 URSO Component Model - Behaviour Layer 70

3.10 URSO Component Metamodel: Deployment Concern 73

3.11 Deployment unit development process . 74

3.12 Deployment Process Activity . 76

3.13 Mode Change Activity . 77

3.14 A Service-oriented Architecture for the Collision Detector Application . . . 82

3.15 Dynamic Collision Detector Application Architecture 83

4.1 SCA Metamodel . 98

4.2 Extended SCA Metamodel: Dynamic Binding Extension 100

4.3 SCA Real-time Service Interface Extension 101

4.4 SCA Real-time Component Implementation Extension 102

4.5 SCA Real-time Deployment Extension - Platform Description 103

4.6 SCA Real-time Deployment Extension - Deployment Plan 103

4.7 SCA Assembly with Real-time and Dynamic Extensions 104

4.8 AADL Simplified Metamodel . 108

4.9 SOA model in AADL . 109

4.10 AADL URSO Extension: Service-related concepts 113

4.11 AADL URSO Extension: Component-related concepts 114

4.12 URSO Extensions for MARTE, based on SoaML profile 119

5.1 URSO+NaSCAr framework architecture . 133

5.2 Control flow graph for the Detector Implementation 140

5.3 WCET Expression for Node L0 . 141

5.4 WCET Expression for Node L1 . 142

5.5 DCDj Service Architecture on NaSCAr . 144

5.6 SCA:PlatformDesc command: XML parsing and platform creation 145

5.7 SCA:PlatformInfo command: Information retrieval and string composition . 146

5.8 SCA:Deploy command: Contributions with passive entities 148

182 List of Figures

5.9 SCA:Deploy command: Contributions with active entities 149

5.10 NaSCAr WCET estimation - passive entities services 152

5.11 NaSCAr WCET estimation - service compositions 153

5.12 Detector task deadline miss ratio . 154

A.1 URSO Component metamodel logo . 165

A.2 Potential use cases for the URSO metamodel 166

A.3 UML MARTE - Core Elements . 175

A.4 UML MARTE - Non-Functional Properties 175

A.5 UML MARTE - Time . 176

A.6 UML MARTE - Generic Resource Modelling 178

A.7 UML MARTE - Allocation . 178

A.8 UML MARTE - Generic Component Model 179

A.9 UML MARTE - High Level Application Modelling 180

A.10 UML MARTE - General Quantitative Analysis Model 180

List of Tables

3.1 Mapping towards BPEL activities . 57

3.2 Estimated WCET for Service Composition Activities 58

4.1 Mapping between URSO and SCA Assembly 105

4.2 Overview on the URSO extensions to SCA, AADL and MARTE 125

5.1 NaSCAr project metrics . 135

5.2 Contributions’ project metrics . 144

5.3 Platform description parsing and validation results 146

5.4 Platform description information display results 147

5.5 Contribution deployment activity results for passive entities 148

5.6 Contribution deployment activity results for passive entities 150

5.7 Contribution deployment activity results for active entities 151

5.8 Mode change execution time . 152

5.9 Estimated WCETs for services and service compositions implementations . 153

List of Algorithms

3.1 Data structures in Byte-code Control Flow Graph 64

3.2 Byte-code Control Flow Graph Construction Structure 65

3.3 Byte-code Control Flow Graph Construction - Labels 66

3.4 Byte-code Control Flow Graph Construction - Jumps 67

3.5 Byte-code Control Flow Graph Construction - Finalization 68

3.6 Byte-code Control Flow Graph Construction - Edge Update 69

3.7 Byte-code Control Flow Graph Construction - Reachability 69

List of Listings

4.1 URSO AADL Process and Data Declarations 112

4.2 URSO AADL Registry Thread Declaration 113

5.1 Test platform description . 136

5.2 Test platform node description . 137

5.3 Detector service composition and deployment plan 139

5.4 WCET Estimation of Detector Implementation Nodes 140

A.1 Example: AADL Declaration for URSO Composite 170

A.2 Example: AADL Declaration for URSO Component Implementation 171

A.3 Example: AADL Declaration for URSO Services and Dependencies 172

Bibliography

[Aeronautical Radio, INC 1997] Aeronautical Radio, INC. ARINC Specification 653:

Avionics Application Software Standard Interface, 1997.

[Aghajani & Jawawi 2012] M. Aghajani and D. N A Jawawi. An Implementation of Em-

bedded Real Time System Framework in Service Oriented Architecture. In Cyber-

Enabled Distributed Computing and Knowledge Discovery (CyberC), 2012 Interna-

tional Conference on, pages 334–340, 2012.

[Åkerholm et al. 2007] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson,

John H̊akansson, Anders Möller, Paul Pettersson and Massimo Tivoli. The SAVE

approach to component-based development of vehicular systems. Journal of Systems

and Software, vol. 80, no. 5, pages 655–667, May 2007.

[Al-Ali et al. 2002] Rashid J. Al-Ali, Omer F. Rana, David W. Walker, Sanjay Jha and

Shaleeza Sohail. G-QoSM: Grid Service Discovery Using QoS Properties. Computers

and Artificial Intelligence, vol. 21, no. 4, 2002.

[Al-Turki & Meseguer 2007] Musab Al-Turki and José Meseguer. Real-time rewriting se-

mantics of orc. In Proceedings of the 9th ACM SIGPLAN international conference

on Principles and practice of declarative programming, PPDP ’07, pages 131–142,

New York, NY, USA, 2007. ACM.

[Albert et al. 2007] E. Albert, P. Arenas, S. Genaim, G. Puebla and D. Zanardini. Cost

analysis of java bytecode. In Proceedings of the 16th European conference on Pro-

gramming, ESOP’07, pages 157–172, Berlin, Heidelberg, 2007. Springer-Verlag.

[Alhaj & Petriu 2010] Mohammad Alhaj and Dorina C. Petriu. Approach for generating

performance models from UML models of SOA systems. In Proceedings of the 2010

Conference of the Center for Advanced Studies on Collaborative Research, CASCON

’10, pages 268–282, Riverton, NJ, USA, 2010. IBM Corp.

[Allen & Garlan 1997] Robert Allen and David Garlan. A formal basis for architectural

connection. ACM Trans. Softw. Eng. Methodol., vol. 6, no. 3, pages 213–249, July

1997.

[Allen et al. 1998] Robert Allen, Rémi Douence and David Garlan. Specifying and ana-

lyzing dynamic software architectures. In Egidio Astesiano, editor, Fundamental

Approaches to Software Engineering, volume 1382 of Lecture Notes in Computer

Science, pages 21–37. Springer Berlin Heidelberg, 1998.

[Alvarez et al. 2003] José M. Alvarez, Manuel Diaz, Luis Llopis, Ernesto Pimentel and

José M. Troya. Integrating Schedulability Analysis and Design Techniques in SDL.

Real-Time Syst., vol. 24, no. 3, pages 267–302, May 2003.

[Américo & Donsez 2012] João Claudio Américo and Didier Donsez. Service component

architecture extensions for dynamic systems. In Proceedings of the 10th interna-

tional conference on Service-Oriented Computing, ICSOC’12, pages 32–47, Berlin,

Heidelberg, 2012. Springer-Verlag.

188 Bibliography

[Américo et al. 2012] João Claudio Américo, Walter Rudametkin and Didier Donsez. Man-

aging the dynamism of the OSGi Service Platform in real-time Java applications. In

Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,

pages 1115–1122, New York, NY, USA, 2012. ACM.

[Aminpour et al. 2011] Raziyeh Aminpour, Vahid Rafe and Mohsen Rahmanei. Modeling

and non-functional analysis of service- oriented architectures using AADL. Scientific

Research and Essays, vol. 6, no. 16, pages 3504–3513, August 2011.

[Anastasi et al. 2011] Gaetano F. Anastasi, Tommaso Cucinotta, Giuseppe Lipari and

Marisol Garcia-Valls. A QoS registry for adaptive real-time service-oriented applica-

tions. In Proceedings of the 2011 IEEE International Conference on Service-Oriented

Computing and Applications, SOCA ’11, pages 1–8, Washington, DC, USA, 2011.

IEEE Computer Society.

[André & Mallet 2009] Charles André and Frédéric Mallet. Specification and verification

of time requirements with CCSL and Esterel. In Proceedings of the 2009 ACM

SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded

systems, LCTES ’09, pages 167–176, New York, NY, USA, 2009. ACM.

[Andrieux et al. 2007] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko

Ludwig, Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke and Ming Xu.

Web Services Agreement Specification (WS-Agreement). Technical report, Global

Grid Forum, Grid Resource Allocation Agreement Protocol (GRAAP) WG, 2007.

[Aniketos Project Consortium 2011] Aniketos Project Consortium. D3.1: Design-Time

Support Techniques for Secure Composition and Adaptation, 2011.

[Arnold 1999] Ken Arnold. The Jini architecture: dynamic services in a flexible network. In

Proceedings of the 36th annual ACM/IEEE Design Automation Conference, DAC

’99, pages 157–162, New York, NY, USA, 1999. ACM.

[Atkinson et al. 2008] Colin Atkinson, Philipp Bostan, Daniel Brenner, Giovanni Falcone,

Matthias Gutheil, Oliver Hummel, Monika Juhasz and Dietmar Stoll. The Common

Component Modeling Example. Chapter “ Modeling Components and Component-

Based Systems in KobrA”, pages 54–84. Springer-Verlag, Berlin, Heidelberg, 2008.

[Avizienis et al. 2004] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic con-

cepts and taxonomy of dependable and secure computing. Dependable and Secure

Computing, IEEE Transactions on, vol. 1, no. 1, pages 11–33, 2004.

[Aziz et al. 2013] Muhammad Waqar Aziz, Radziah. Mohamad and Dayang N. A. Jawawi.

Critical evaluation of two UML profiles for Distributed Embedded Real-time Systems

design. International Journal of Software Engineering and its Applications, vol. 7,

no. 3, pages 137–146, may 2013.

[Baduel et al. 2006] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes,

Fabrice Huet, Matthieu Morel and Romain Quilici. Grid Computing: Software

Environments and Tools, Chapter “ Programming, Deploying, Composing, for the

Grid. Springer-Verlag, January 2006.

[Basanta-Val et al. 2013] P. Basanta-Val, M. García-Valls and I. Estévez-

Ayres. Enhancing OSGi with real-time Java support. Softw. Pract. Exper., vol. 43,

no. 1, pages 33–65, January 2013.

Bibliography 189

[Baskiyar & Meghanathan 2005] Sanjeev Baskiyar and Natarajan Meghanathan. A sur-

vey of contemporary real-time operating systems. INFORMATICA-LJUBLJANA-,

vol. 29, no. 2, page 233, 2005.

[Basu et al. 2006] Ananda Basu, Marius Bozga and Joseph Sifakis. Modeling Heterogeneous

Real-time Components in BIP. In Proceedings of the Fourth IEEE International

Conference on Software Engineering and Formal Methods, SEFM ’06, pages 3–12,

Washington, DC, USA, 2006. IEEE Computer Society.

[Batista et al. 2008] Thais Batista, Antônio T. Gomes, Geoff Coulson, Christina Chavez

and Alessandro Garcia. On the Interplay of Aspects and Dynamic Reconfiguration

in a Specification-to-Deployment Environment. In Proceedings of the 2nd European

conference on Software Architecture, ECSA ’08, pages 314–317, Berlin, Heidelberg,

2008. Springer-Verlag.

[Becker et al. 2010] Basil Becker, Holger Giese, Stefan Neumann, Martin Schenck and Ar-

ian Treffer. Model-Based extension of AUTOSAR for architectural online reconfig-

uration. In Proceedings of the 2009 international conference on Models in Software

Engineering, MODELS’09, pages 83–97, Berlin, Heidelberg, 2010. Springer-Verlag.

[Becker 2008] Steffen Becker. Quality of Service Modeling Language. In Irene Eusgeld,

FelixC. Freiling and Ralf Reussner, editors, Dependability Metrics, volume 4909 of

Lecture Notes in Computer Science, pages 43–47. Springer Berlin Heidelberg, 2008.

[Beisiegel et al. 2005] Michael Beisiegel, Henning Blohm, Dave Booz, Jean-Jacques Dubray,

Mike Edwards, Bill Flood, Bruce Ge, Oisin Hurley, Dave Kearns, Mike Lehmann,

Jim Marino, Martin Nally, Greg Pavlik, Michael Rowley, Adi Sakala, Chris Sharp

and Ken Tam. SCA Service Component Architecture Specification - Assembly Model

Specification Version 0.9. Nov 2005.

[Benghazi et al. 2010] Kawtar Benghazi, Manuel Noguera, Carlos Rodŕıguez-Domı́nguez,

Ana Belén Pelegrina and José Luis Garrido. Real-time web services orchestration

and choreography. In Proceedings of the 6th International Workshop on Enterprise

& Organizational Modeling and Simulation, EOMAS ’10, pages 142–153, Aachen,

Germany, Germany, 2010. CEUR-WS.org.

[Bergstra & Klop 1982] Jan A. Bergstra and Jan Willem Klop. Algebraic Specifications for

Parametrized Data Types with Minimal Parameter and Target Algebras. In Pro-

ceedings of the 9th Colloquium on Automata, Languages and Programming, pages

23–34, London, UK, UK, 1982. Springer-Verlag.

[Bernat et al. 2000] Guillem Bernat, Alan Burns and Andy Wellings. Portable worst-case

execution time analysis using Java byte code. In Proceedings of the 12th Euromicro

conference on Real-time systems, Euromicro-RTS’00, pages 81–88, Washington, DC,

USA, 2000. IEEE Computer Society.

[Bernstein & Harter 1981] Arthur Bernstein and Paul K. Harter Jr. Proving real-time prop-

erties of programs with temporal logic. In Proceedings of the eighth ACM symposium

on Operating systems principles, SOSP ’81, pages 1–11, New York, NY, USA, 1981.

ACM.

[Bézivin 2005] Jean Bézivin. Model driven engineering: an emerging technical space. In Pro-

ceedings of the 2005 international conference on Generative and Transformational

Techniques in Software Engineering, GTTSE’05, pages 36–64, Berlin, Heidelberg,

2005. Springer-Verlag.

190 Bibliography

[Bihari & Schwan 1991] Thomas E. Bihari and Karsten Schwan. Dynamic adaptation of

real-time software. ACM Trans. Comput. Syst., vol. 9, no. 2, pages 143–174, May

1991.

[Bini & Buttazzo 2004] Enrico Bini and Giorgio C. Buttazzo. Schedulability Analysis of

Periodic Fixed Priority Systems. IEEE Trans. Comput., vol. 53, no. 11, pages 1462–

1473, November 2004.

[Bini et al. 2009] Enrico Bini, Thi Huyen Châu Nguyen, Pascal Richard and Sanjoy K.

Baruah. A Response-Time Bound in Fixed-Priority Scheduling with Arbitrary Dead-

lines. IEEE Trans. Comput., vol. 58, no. 2, pages 279–286, February 2009.

[Birman & Joseph 1987] K. Birman and T. Joseph. Exploiting virtual synchrony in dis-

tributed systems. In Proceedings of the eleventh ACM Symposium on Operating

systems principles, SOSP ’87, pages 123–138, New York, NY, USA, 1987. ACM.

[Bohn et al. 2006] Hendrik Bohn, Andreas Bobek and Frank Golatowski. SIRENA - Ser-

vice Infrastructure for Real-time Embedded Networked Devices: A service oriented

framework for different domains. In Proceedings of the International Conference

on Networking, International Conference on Systems and International Conference

on Mobile Communications and Learning Technologies, ICNICONSMCL ’06, pages

43–, Washington, DC, USA, 2006. IEEE Computer Society.

[Bollella & Gosling 2000] Gregory Bollella and James Gosling. The Real-Time Specification

for Java. IEEE Computer, vol. 33, no. 6, pages 47–54, 2000.

[Boreale et al. 2006] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti,

F. Martins, U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos and G. Zavat-

taro. SCC: a service centered calculus. In Proceedings of the Third international

conference on Web Services and Formal Methods, WS-FM’06, pages 38–57, Berlin,

Heidelberg, 2006. Springer-Verlag.

[Bottaro & Hall 2007] André Bottaro and Richard S. Hall. Dynamic contextual service

ranking. In Proceedings of the 6th international conference on Software composition,

SC’07, pages 129–143, Berlin, Heidelberg, 2007. Springer-Verlag.

[Boulanger et al. 2012] Frédéric Boulanger, Ayman Dogui, Cécile Hardebolle, Christophe

Jacquet, Dominique Marcadet and Iuliana Prodan. Semantic adaptation using CCSL

clock constraints. In Proceedings of the 2011th international conference on Models

in Software Engineering, MODELS’11, pages 104–118, Berlin, Heidelberg, 2012.

Springer-Verlag.

[Box 1997] Don Box. Essential com. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1st édition, 1997.

[Boyer et al. 2013] Fabienne Boyer, Olivier Gruber and Damien Pous. Robust reconfigura-

tions of component assemblies. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 13–22, Piscataway, NJ, USA, 2013. IEEE

Press.

[Bozga et al. 2002] Marius Bozga, Susanne Graf and Laurent Mounier. IF-2.0: A Vali-

dation Environment for Component-Based Real-Time Systems. In Proceedings of

the 14th International Conference on Computer Aided Verification, CAV ’02, pages

343–348, London, UK, UK, 2002. Springer-Verlag.

Bibliography 191

[Brennan et al. 2002] Robert W. Brennan, Martyn Fletcher and Douglas H. Norrie. A

Holonic Approach to Reconfiguring Real-Time Distributed Control Systems. In Pro-

ceedings of the 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001 on

Multi-Agent-Systems and Applications II-Selected Revised Papers, pages 323–335,

London, UK, UK, 2002. Springer-Verlag.

[Brogi et al. 2006] Antonio Brogi, Carlos Canal and Ernesto Pimentel. Software Adapta-

tion. In L’Objet - Special Issue on Coordination and Adaptation Techniques for

Software Entities, volume 12, pages 9–31, 2006.

[Brugali et al. 2012] Davide Brugali, Luca Gherardi, Markus Klotzbücher and Herman

Bruyninckx. Service Component Architectures in Robotics: The SCA-Orocos In-

tegration. In Reiner Hähnle, Jens Knoop, Tiziana Margaria, Dietmar Schreiner and

Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification,

and Validation, Communications in Computer and Information Science, pages 46–

60. Springer Berlin Heidelberg, 2012.

[Bruneton et al. 2006] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma

and Jean-Bernard Stefani. The FRACTAL component model and its support in Java:

Experiences with Auto-adaptive and Reconfigurable Systems. Softw. Pract. Exper.,

vol. 36, no. 11-12, pages 1257–1284, September 2006.

[Bruni et al. 2006] Roberto Bruni, Hernán Melgratti and Emilio Tuosto. Translating orc

features into petri nets and the join calculus. In Proceedings of the Third interna-

tional conference on Web Services and Formal Methods, WS-FM’06, pages 123–137,

Berlin, Heidelberg, 2006. Springer-Verlag.

[Bruni 2009] Roberto Bruni. Formal Methods for Web Services. Chapter “ Calculi for

Service-Oriented Computing”, pages 1–41. Springer-Verlag, Berlin, Heidelberg, 2009.

[Bucci & Vicario 1995] Giacomo Bucci and Enrico Vicario. Compositional Validation of

Time-Critical Systems Using Communicating Time Petri Nets. IEEE Trans. Softw.

Eng., vol. 21, no. 12, pages 969–992, December 1995.

[Burke & Monson-Haefel 2006] Bill Burke and Richard Monson-Haefel. Enterprise jav-

abeans 3.0 (5th edition). O’Reilly Media, Inc., 2006.

[Burns & Wellings 1994] A. Burns and A. J. Wellings. HRT-HOOD: a structured design

method for hard real-time systems. Real-Time Syst., vol. 6, no. 1, pages 73–114,

January 1994.

[Burns & Wellings 2001] A. Burns and A.J. Wellings. Real time systems and their program-

ming languages: Ada 95, real-time java and real-time posix. International computer

science series. Addison-Wesley, 2001.

[Calinescu et al. 2012] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska and Raffaela Mi-

randola. Self-adaptive software needs quantitative verification at runtime. Commun.

ACM, vol. 55, no. 9, pages 69–77, September 2012.

[Calmant et al. 2012] Thomas Calmant, João Claudio Américo, Olivier Gattaz, Didier Don-

sez and Kiev Gama. A dynamic and service-oriented component model for python

long-lived applications. In Proceedings of the 15th ACM SIGSOFT symposium on

Component Based Software Engineering, CBSE ’12, pages 35–40, New York, NY,

USA, 2012. ACM.

192 Bibliography

[Cervantes & Hall 2004] Humberto Cervantes and Richard S. Hall. Autonomous Adaptation

to Dynamic Availability Using a Service-Oriented Component Model. In Proceedings

of the 26th International Conference on Software Engineering, ICSE ’04, pages 614–

623, Washington, DC, USA, 2004. IEEE Computer Society.

[Chaize et al. 1999] J.M. Chaize, A. Götz, W.D. Klotz, J. Meyer, M. Perez and E. Taurel.

TANGO - an object oriented control system based on CORBA. In Proceedings of

the 7th International Conference on Accelerator and Large Experimental Physics

Control Systems, ICALEPCS ’99, pages 475–479, 1999.

[Chan et al. 2005] S. Chan, C. Kaler, T. Kuehnel, A. Regnier, B. Roe, D. Sather, ,

J. Schlimmer, H. Sekine, D. Walter, J. Weast, D. Whitehead and Wright D. Devices

Profile for Web Services, May 2005.

[Cheng et al. 2009] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff

Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cu-

kic, Giovanna Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina

Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer,

Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park,

Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns and Jon Whittle. Soft-

ware Engineering for Self-Adaptive Systems. Chapter “ Software Engineering for

Self-Adaptive Systems: A Research Roadmap”, pages 1–26. Springer-Verlag, Berlin,

Heidelberg, 2009.

[Chiang et al. 1994] Su-Hui Chiang, Rajesh K. Mansharamani and Mary K. Vernon. Use

of application characteristics and limited preemption for run-to-completion parallel

processor scheduling policies. SIGMETRICS Perform. Eval. Rev., vol. 22, no. 1,

pages 33–44, May 1994.

[Christensen et al. 2001] Erik Christensen, Francisco Curbera, Greg Meredith and Sanjiva

Weerawarana. Web Services Description Language (WSDL) Specification v1.1, 2001.

[Christos et al. 2009] Kareliotis Christos, Costas Vassilakis, Efstathios Rouvas and Panayi-

otis Georgiadis. QoS-Driven Adaptation of BPEL Scenario Execution. In Proceed-

ings of the 2009 IEEE International Conference on Web Services, ICWS ’09, pages

271–278, Washington, DC, USA, 2009. IEEE Computer Society.

[Clements 2001] Paul C. Clements. Component-based software engineering. Chapter“ From

subroutines to subsystems: component-based software development”, pages 189–198.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[Cooling 2003] J.E. Cooling. Software engineering for real-time systems. Addison-Wesley,

2003.

[Crnkovic et al. 2011] Ivica Crnkovic, Severine Sentilles, Vulgarakis Aneta and Michel R. V.

Chaudron. A Classification Framework for Software Component Models. IEEE

Trans. Softw. Eng., vol. 37, no. 5, pages 593–615, September 2011.

[Crnkovic 2001] Ivica Crnkovic. Component-based Software Engineering - New Challenges

in Software Development. In Software Development - Software Focus, pages 127–133.

John Wiley Sons, 2001.

[Crnkovic 2005] Ivica Crnkovic. Component-based software engineering for embedded sys-

tems. In Proceedings of the 27th international conference on Software engineering,

ICSE ’05, pages 712–713, New York, NY, USA, 2005. ACM.

Bibliography 193

[Cucinotta et al. 2009] T. Cucinotta, A. Mancina, G.F. Anastasi, G. Lipari, L. Mangeruca,

R. Checcozzo and F. Rusina. A Real-Time Service-Oriented Architecture for Indus-

trial Automation. Industrial Informatics, IEEE Transactions on, vol. 5, no. 3, pages

267–277, 2009.

[Dai & Wang 2010] Changying Dai and Zhibin Wang. A Flexible Extension of WSDL to

Describe Non-Functional Attributes. In e-Business and Information System Security

(EBISS), 2010 2nd International Conference on, pages 1–4, 2010.

[D’Ambrogio 2006] Andrea D’Ambrogio. A Model-driven WSDL Extension for Describing

the QoS of Web Services. In Proceedings of the IEEE International Conference

on Web Services, ICWS ’06, pages 789–796, Washington, DC, USA, 2006. IEEE

Computer Society.

[Davis & Burns 2011] Robert I. Davis and Alan Burns. A survey of hard real-time schedul-

ing for multiprocessor systems. ACM Comput. Surv., vol. 43, no. 4, pages 35:1–35:44,

October 2011.

[Deacon 2005] J. Deacon. Object-oriented analysis and design: A pragmatic approach.

Pearson Addison Wesley, 2005.

[Deng et al. 2005] Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C.

Schmidt and Aniruddha Gokhale. DAnCE: a qos-enabled component deployment

and configuration engine. In Proceedings of the Third international working con-

ference on Component Deployment, CD’05, pages 67–82, Berlin, Heidelberg, 2005.

Springer-Verlag.

[Dı́az et al. 2008] M. Dı́az, D. Garrido, L. Llopis, F. Rus and J. M. Troya. UM-RTCOM:

An analyzable component model for real-time distributed systems. J. Syst. Softw.,

vol. 81, no. 5, pages 709–726, May 2008.

[Dijkstra 1968] Edsger W. Dijkstra. The structure of the THE-multiprogramming system.

Commun. ACM, vol. 11, no. 5, pages 341–346, May 1968.

[Dittrich et al. 1995] Klaus R. Dittrich, Stella Gatziu and Andreas Geppert. The Active

Database Management System Manifesto: A Rulebase of ADBMS Features. In Pro-

ceedings of the Second International Workshop on Rules in Database Systems, RIDS

’95, pages 3–20, London, UK, UK, 1995. Springer-Verlag.

[Dong et al. 2006] Jin Song Dong, Yang Liu, Jun Sun and Xian Zhang. Verification of

computation orchestration via timed automata. In Proceedings of the 8th interna-

tional conference on Formal Methods and Software Engineering, ICFEM’06, pages

226–245, Berlin, Heidelberg, 2006. Springer-Verlag.

[Douglass 2002] Bruce Powell Douglass. Real-time design patterns: Robust scalable ar-

chitecture for real-time systems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.

[Dubey et al. 2011] Abhishek Dubey, Gabor Karsai and Nagabhushan Mahadevan. A com-

ponent model for hard real-time systems: CCM with ARINC-653. Softw. Pract.

Exper., vol. 41, no. 12, pages 1517–1550, November 2011.

[Emmerich 2000] Wolfgang Emmerich. Software engineering and middleware: a roadmap.

In Proceedings of the Conference on The Future of Software Engineering, ICSE ’00,

pages 117–129, New York, NY, USA, 2000. ACM.

194 Bibliography

[Escoffier et al. 2007] C. Escoffier, R.S. Hall and Philippe Lalanda. iPOJO: an Extensible

Service-Oriented Component Framework. In Services Computing, 2007. SCC 2007.

IEEE International Conference on, pages 474–481, 2007.

[Etienne et al. 2006] Jean-Paul Etienne, Julien Cordry and Samia Bouzefrane. Applying

the CBSE paradigm in the real time specification for Java. In Proceedings of the 4th

international workshop on Java technologies for real-time and embedded systems,

JTRES ’06, pages 218–226, New York, NY, USA, 2006. ACM.

[Faulk et al. 1992] Stuart Faulk, John Brackett, Paul Ward and James Kirby Jr. The

CoRE Method for Real-Time Requirements. IEEE Softw., vol. 9, no. 5, pages 22–33,

September 1992.

[Feiler et al. 2006] P.H. Feiler, Bruce A. Lewis and S. Vestal. The SAE Architecture Analy-

sis x00026; Design Language (AADL) a standard for engineering performance crit-

ical systems. In Computer Aided Control System Design, 2006 IEEE International

Conference on Control Applications, 2006 IEEE International Symposium on Intel-

ligent Control, 2006 IEEE, pages 1206–1211, 2006.

[Feljan et al. 2009] Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petricic and Ivica

Crnkovic. Classification and survey of component models. Technical Report ISSN

1404-3041 ISRN MDH-MRTC-242/2009-1-SE, Målardalen University, December

2009.

[Florin et al. 1991] G. Florin, C. Fraize and S. Natkin. Stochastic Petri nets: Properties,

applications and tools. Microelectronics Reliability, vol. 31, no. 4, pages 669 – 697,

1991.

[Fox & Clarke 2009] Jorge Fox and Siobhán Clarke. Exploring approaches to dynamic adap-

tation. In Proceedings of the 3rd International DiscCoTec Workshop on Middleware-

Application Interaction, MAI ’09, pages 19–24, New York, NY, USA, 2009. ACM.

[Friedenthal et al. 2008] Sanford Friedenthal, Alan Moore and Rick Steiner. A practical

guide to sysml: Systems modeling language. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2008.

[Frølund & Koistinen 1998] Svend Frølund and Jari Koistinen. Quality of services speci-

fication in distributed object systems design. In Proceedings of the 4th conference

on USENIX Conference on Object-Oriented Technologies and Systems - Volume 4,

COOTS’98, pages 1–1, Berkeley, CA, USA, 1998. USENIX Association.

[Frost et al. 2011] Christian Frost, Casper Svenning Jensen, Kasper Søe Luckow and Bent

Thomsen. WCET analysis of Java bytecode featuring common execution environ-

ments. In Proceedings of the 9th International Workshop on Java Technologies for

Real-Time and Embedded Systems, JTRES ’11, pages 30–39, New York, NY, USA,

2011. ACM.

[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. De-

sign patterns: elements of reusable object-oriented software. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1995.

[Garlan & Perry 1995] David Garlan and Dewayne E. Perry. Introduction to the Special

Issue on Software Architecture. IEEE Trans. Softw. Eng., vol. 21, no. 4, pages

269–274, April 1995.

Bibliography 195

[Garlan & Schmerl 2004] David Garlan and Bradley Schmerl. Using Architectural Models

at Runtime: Research Challenges. In Flavio Oquendo, BrianC. Warboys and Ron

Morrison, editors, Software Architecture, volume 3047 of Lecture Notes in Computer

Science, pages 200–205. Springer Berlin Heidelberg, 2004.

[Garlan & Shaw 1994] David Garlan and Mary Shaw. An Introduction to Software Archi-

tecture. Technical report CMU/SEI-94-TR-21, Pittsburgh, PA, USA, 1994.

[Genet al. 2002] Thomas Gen, Alexander Christoph, Michael Winter, Oscar Nierstrasz,

Stéphane Ducasse, Roel Wuyts, Gabriela Arévalo, Bastiaan Schönhage, Peter Müller

and Chris Stich. Components for embedded software: the PECOS approach. In Pro-

ceedings of the 2002 international conference on Compilers, architecture, and syn-

thesis for embedded systems, CASES ’02, pages 19–26, New York, NY, USA, 2002.

ACM.

[Gomaa 1994] Hassan Gomaa. Software design methods for the design of large-scale real-

time systems. J. Syst. Softw., vol. 25, no. 2, pages 127–146, May 1994.

[Gostelow & Plouffe 1978] K.P. Gostelow and W. Plouffe. An asynchronous programming

language and computing machine. Technical report. University of California, 1978.

[Group 2003] IGRS Working Group. Intelligent Grouping & Resource Sharing protocol,

2003.

[Gui et al. 2008] Ning Gui, Vincenzo De Flori, Hong Sun and Chris Blondia. A framework

for adaptive real-time applications: the declarative real-time OSGi component model.

In Proceedings of the 7th workshop on Reflective and adaptive middleware, ARM

’08, pages 35–40, New York, NY, USA, 2008. ACM.

[Guidi et al. 2006] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi and Gian-

luigi Zavattaro. SOCK: a calculus for service oriented computing. In Proceedings of

the 4th international conference on Service-Oriented Computing, ICSOC’06, pages

327–338, Berlin, Heidelberg, 2006. Springer-Verlag.

[H̊akansson et al. 2008] John H̊akansson, Jan Carlson, Aurelien Monot, Paul Pettersson

and Davor Slutej. Component-Based Design and Analysis of Embedded Systems

with UPPAAL PORT. In Proceedings of the 6th International Symposium on Auto-

mated Technology for Verification and Analysis, ATVA ’08, pages 252–257, Berlin,

Heidelberg, 2008. Springer-Verlag.

[Hanninen et al. 2008] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback

and K.-L. Lundback. The Rubus component model for resource constrained real-

time systems. In Industrial Embedded Systems, 2008. SIES 2008. International

Symposium on, pages 177–183, 2008.

[Hansson et al. 2004] Hans Hansson, Mikael Akerholm, Ivica Crnkovic and Martin Torn-

gren. SaveCCM - A Component Model for Safety-Critical Real-Time Systems. In

Proceedings of the 30th EUROMICRO Conference, EUROMICRO ’04, pages 627–

635, Washington, DC, USA, 2004. IEEE Computer Society.

[Harbour et al. 2001] M. González Harbour, J. J. Gutiérrez Garćıa, J. C. Palencia Gutiérrez

and J. M. Drake Moyano. MAST: Modeling and Analysis Suite for Real Time Ap-

plications. In Proceedings of the 13th Euromicro Conference on Real-Time Systems,

ECRTS ’01, pages 125–, Washington, DC, USA, 2001. IEEE Computer Society.

196 Bibliography

[Harel & Politi 1998] David Harel and Michal Politi. Modeling reactive systems with stat-

echarts: The statemate approach. McGraw-Hill, Inc., New York, NY, USA, 1st

édition, 1998.

[Harel 1987] David Harel. Statecharts: A visual formalism for complex systems. Sci. Com-

put. Program., vol. 8, no. 3, pages 231–274, June 1987.

[Hayes 2008] Brian Hayes. Cloud computing. Commun. ACM, vol. 51, no. 7, pages 9–11,

July 2008.

[Heam et al. 2007] P.-C. Heam, O. Kouchnarenko and J. Voinot. How to Handle QoS

Aspects in Web Services Substitutivity Verification. In Enabling Technologies: In-

frastructure for Collaborative Enterprises, 2007. WETICE 2007. 16th IEEE Inter-

national Workshops on, pages 333–338, 2007.

[Hermosillo et al. 2010] Gabriel Hermosillo, Lionel Seinturier and Laurence Duchien. Cre-

ating Context-Adaptive Business Processes. In PaulP. Maglio, Mathias Weske, Jian

Yang and Marcelo Fantinato, editors, Service-Oriented Computing, volume 6470

of Lecture Notes in Computer Science, pages 228–242. Springer Berlin Heidelberg,

2010.

[Higuera-Toledano & Wellings 2012] T. Higuera-Toledano and A.J. Wellings. Distributed,

embedded and real-time java systems. Electrical engineering. Springer, 2012.

[Hissam 2005] S. Hissam. Pin component technology (v1.0) and its c interface. Technical

note. Carnegie Mellon University, Software Engineering Institute, 2005.

[Hoare 1978] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, vol. 21,

no. 8, pages 666–677, August 1978.

[Hopcroft 2007] John E. Hopcroft. Introduction to automata theory, languages, and com-

putation. Pearson Addison Wesley, 3rd édition, 2007.

[Hošek et al. 2010] Petr Hošek, Tomáš Pop, Tomáš Bureš, Petr Hnětynka and Michal Mal-

ohlava. Comparison of component frameworks for real-time embedded systems. In

Proceedings of the 13th international conference on Component-Based Software En-

gineering, CBSE’10, pages 21–36, Berlin, Heidelberg, 2010. Springer-Verlag.

[Hu et al. 2007] Jie Hu, Shruti Gorappa, Juan A. Colmenares and Raymond Klefstad. Com-

padres: a lightweight component middleware framework for composing distributed

real-time embedded systems with real-time Java. In Proceedings of the ACM/I-

FIP/USENIX 2007 International Conference on Middleware, Middleware ’07, pages

41–59, New York, NY, USA, 2007. Springer-Verlag New York, Inc.

[Huang et al. 2005] Jinfeng Huang, Jeroen Voeten, Oana Florescu, Piet Putten and Henk

Corporaal. Predictability in Real-Time System Development. In Pierre Boulet,

editor, Advances in Design and Specification Languages for SoCs, pages 123–139.

Springer US, 2005.

[Hürsch & Lopes 1995] Walter L. Hürsch and Cristina Videira Lopes. Separation of Con-

cerns. Technical report NU-CCS-95-03, Northeastern University, Boston, USA, 1995.

Bibliography 197

[IEEE & Electronics Engineers 1993] Institute of Electrical IEEE and CORPORATE Elec-

tronics Engineers Inc. Staff. Ieee standard for information technology - portable op-

erating system interface (posix): System application program interface (api), amend-

ment 1: Realtime extension (c language), ieee std 1003.1b-1993. IEEE Standards

Office, New York, NY, USA, 1993.

[IEEE Standards Comittee 1990] IEEE Standards Comittee. IEEE Standard Glossary of

Software Engineering Terminology. IEEE Std 610.12-1990, pages 1–84, 1990.

[ISIS a] Institute for Software Integrated Systems ISIS. The ACE ORB (TAO). http:

//www.dre.vanderbilt.edu/TAO.

[ISIS b] Institute for Software Integrated Systems ISIS. Component-Integrated ACE ORB

(CIAO). http://www.dre.vanderbilt.edu/CIAO.

[ISO/IEC/ (IEEE) 2007] ISO/IEC/ (IEEE). ISO/IEC 42010 (IEEE Std) 1471-2000 : Sys-

tems and Software engineering - Recomended practice for architectural description

of software-intensive systems, 07 2007.

[Jackson 1975] M. A. Jackson. Principles of program design. Academic Press, Inc., Orlando,

FL, USA, 1975.

[Jackson 1983] M. A Jackson. System development (prentice-hall international series in

computer science). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1983.

[Jaeger & Mühl 2006] Michael C. Jaeger and Gero Mühl. Soft real-time aspects for service-

oriented architectures. In E-Commerce Technology, 2006. The 8th IEEE Interna-

tional Conference on and Enterprise Computing, E-Commerce, and E-Services, The

3rd IEEE International Conference on, pages 5–5, 2006.

[Jaeger et al. 2005] Michael C. Jaeger, Gero Mühl and Sebastian Golze. QoS-Aware com-

position of web services: an evaluation of selection algorithms. In Proceedings of the

2005 Confederated international conference on On the Move to Meaningful Internet

Systems - Part I, OTM’05, pages 646–661, Berlin, Heidelberg, 2005. Springer-Verlag.

[Jin & Nahrstedt 2004] Jingwen Jin and Klara Nahrstedt. QoS Specification Languages for

Distributed Multimedia Applications: A Survey and Taxonomy. IEEE MultiMedia,

vol. 11, no. 3, pages 74–87, July 2004.

[Jouault et al. 2008] Frédéric Jouault, Freddy Allilaire, Jean Bézivin and Ivan Kurtev.

ATL: A model transformation tool. Sci. Comput. Program., vol. 72, no. 1-2, pages

31–39, June 2008.

[Kaisler 2002] Stephen H. Kaisler. Real-time languages. John Wiley Sons, Inc., 2002.

[Kalibera et al. 2009] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer

and Jan Vitek. CDx: a family of real-time Java benchmarks. In Proceedings of

the 7th International Workshop on Java Technologies for Real-Time and Embedded

Systems, JTRES ’09, pages 41–50, New York, NY, USA, 2009. ACM.

[Kazhamiakin et al. 2006] Raman Kazhamiakin, Paritosh Pandya and Marco Pistore.

Timed Modelling and Analysis in Web Service Compositions. In Proceedings of

the First International Conference on Availability, Reliability and Security, ARES

’06, pages 840–846, Washington, DC, USA, 2006. IEEE Computer Society.

198 Bibliography

[Ke et al. 2007] Xu Ke, Krzysztof Sierszecki and Christo Angelov. COMDES-II: A

Component-Based Framework for Generative Development of Distributed Real-Time

Control Systems. In Proceedings of the 13th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications, RTCSA ’07, pages

199–208, Washington, DC, USA, 2007. IEEE Computer Society.

[Kephart & Chess 2003] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic

Computing. Computer, vol. 36, no. 1, pages 41–50, January 2003.

[Kiczales et al. 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier and John Irwin. Aspect-oriented programming.

In Mehmet Akşit and Satoshi Matsuoka, editors, ECOOP’97 — Object-Oriented

Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–242.

Springer Berlin Heidelberg, 1997.

[Kim et al. 1999] Taehyoun Kim, Naehyuck Chang, Namyun Kim and Heonshik Shin.

Scheduling garbage collector for embedded real-time systems. SIGPLAN Not., vol. 34,

no. 7, pages 55–64, May 1999.

[Kim et al. 2009] Ji Eun Kim, O. Rogalla, S. Kramer and A. Hamann. Extracting, specifying

and predicting software system properties in component based real-time embedded

software development. In Software Engineering - Companion Volume, 2009. ICSE-

Companion 2009. 31st International Conference on, pages 28–38, 2009.

[Kopetz 2011] Hermann Kopetz. Real-time systems: Design principles for distributed em-

bedded applications. Springer Publishing Company, Incorporated, 2nd édition, 2011.

[Koudri et al. 2011] Ali Koudri, Arnaud Cuccuru, Sebastien Gerard and François Terrier.

Designing heterogeneous component based systems: evaluation of MARTE standard

and enhancement proposal. In Proceedings of the 14th international conference

on Model driven engineering languages and systems, MODELS’11, pages 243–257,

Berlin, Heidelberg, 2011. Springer-Verlag.

[Kramer & Magee 1990] Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem:

Dynamic Change Management. IEEE Trans. Softw. Eng., vol. 16, no. 11, pages

1293–1306, November 1990.

[Kübert et al. 2011] Roland Kübert, Georgina Gallizo, Theodoros Polychniatis, Theodora

Varvarigou, Eduardo Oliveros, Stephen C. Phillips and Karsten Oberle. Achieving

Real-Time in Distributed Computing: From Grids to Clouds. Chapter“ Service Level

Agreements for Real-Time Service-Oriented Infrastructures. Igi Global, 2011.

[Kwiatkowska 2007] Marta Kwiatkowska. Quantitative verification: models, techniques and

tools. In The 6th Joint Meeting on European software engineering conference and the

ACM SIGSOFT symposium on the foundations of software engineering: companion

papers, ESEC-FSE companion ’07, pages 449–458, New York, NY, USA, 2007. ACM.

[Kyriazis et al. 2010] Dimosthenis Kyriazis, Andreas Menychtas, Karsten Oberle, Thomas

Voith, Alcatel Lucent, Michael Boniface, Eduardo Oliveros, Tommaso Cucinotta

and Sören Berger. A Real-time Service Oriented Infrastructure. In Proceedings of

the Annual International Conference on Real-time and Embedded Systems, RTES

2010, 2010.

Bibliography 199

[Labejof et al. 2012] Jonathan Labejof, Antoine Leger, Philippe Merle, Lionel Seinturier

and Hugues Vincent. R-MOM: A Component-Based Framework for Interoperable

and Adaptive Asynchronous Middleware Systems. In Proceedings of the 2012 IEEE

16th International Enterprise Distributed Object Computing Conference Workshops,

EDOCW ’12, pages 204–213, Washington, DC, USA, 2012. IEEE Computer Society.

[Laliwala & Chaudhary 2008] Z. Laliwala and S. Chaudhary. Event-driven Service-

Oriented Architecture. In Service Systems and Service Management, 2008 Inter-

national Conference on, pages 1–6, 2008.

[Lambert & Power 2008] Jonathan M. Lambert and James F. Power. Platform Independent

Timing of Java Virtual Machine Bytecode Instructions. Electron. Notes Theor.

Comput. Sci., vol. 220, no. 3, pages 97–113, December 2008.

[Lankes et al. 2001] S. Lankes, M. Pfeiffer and T. Bemmerl. Design and implementation

of a SCI-based real-time CORBA. In Object-Oriented Real-Time Distributed Com-

puting, 2001. ISORC - 2001. Proceedings. Fourth IEEE International Symposium

on, pages 23–30, 2001.

[Lapadula et al. 2007] Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi. A cal-

culus for orchestration of web services. In Proceedings of the 16th European confer-

ence on Programming, ESOP’07, pages 33–47, Berlin, Heidelberg, 2007. Springer-

Verlag.

[Laplante & Ovaska 2011] Phillip A. Laplante and Seppo J. Ovaska. Real-time systems

design and analysis: Tools for the practitioner. Wiley-IEEE Press, 4th édition,

2011.

[Lau & Wang 2007] Kung-Kiu Lau and Zheng Wang. Software Component Models. IEEE

Trans. Softw. Eng., vol. 33, no. 10, pages 709–724, October 2007.

[Leavens et al. 1999] Gary T. Leavens, Albert L. Baker and Clyde Ruby. JML: A Notation

for Detailed Design. In Bernhard Rumpe Haim Kilov and Ian Simmonds, editors,

Behavioral Specifications of Businesses and Systems, pages 175–188. Kluwer, 1999.

[Liu & Layland 1973] C. L. Liu and James W. Layland. Scheduling Algorithms for Mul-

tiprogramming in a Hard-Real-Time Environment. J. ACM, vol. 20, no. 1, pages

46–61, January 1973.

[Liu et al. 2006] D. Liu, X.S. Hu, M.D. Lemmon and Qiang Ling. Firm real-time system

scheduling based on a novel QoS constraint. Computers, IEEE Transactions on,

vol. 55, no. 3, pages 320–333, 2006.

[Lopez et al. 2006] Patricia Lopez, Julio L. Medina and Jose M. Drake. Real-Time Mod-

elling of Distributed Component-Based Applications. In Proceedings of the 32nd EU-

ROMICRO Conference on Software Engineering and Advanced Applications, EU-

ROMICRO ’06, pages 92–99, Washington, DC, USA, 2006. IEEE Computer Society.

[Luo et al. 2008] Chenguang Luo, Shengchao Qin and Zongyan Qiu. Verifying BPEL-Like

Programs with Hoare Logic. In Proceedings of the 2008 2nd IFIP/IEEE International

Symposium on Theoretical Aspects of Software Engineering, TASE ’08, pages 151–

158, Washington, DC, USA, 2008. IEEE Computer Society.

200 Bibliography

[Magee & Kramer 1996a] Jeff Magee and Jeff Kramer. Dynamic structure in software ar-

chitectures. In Proceedings of the 4th ACM SIGSOFT symposium on Foundations of

software engineering, SIGSOFT ’96, pages 3–14, New York, NY, USA, 1996. ACM.

[Magee & Kramer 1996b] Jeff Magee and Jeff Kramer. Self Organising System Structur-

ing. In Joint proceedings of the second international software architecture workshop

(ISAW) and international workshop on multiple perspectives in software develop-

ment (Viewpoints ’96) on SIGSOFT ’96 workshops, ISAW ’96, pages 35–38, New

York, NY, USA, 1996. ACM Press.

[Mallet & Andre 2009] Frédéric Mallet and Charles Andre. On the Semantics of UML/-

MARTE Clock Constraints. In Proceedings of the 2009 IEEE International Sympo-

sium on Object/Component/Service-Oriented Real-Time Distributed Computing,

ISORC ’09, pages 305–312, Washington, DC, USA, 2009. IEEE Computer Society.

[Mallet & de Simone 2008] Frédéric Mallet and Robert de Simone. MARTE: a profile for

RT/E systems modeling, analysis–and simulation? In Proceedings of the 1st in-

ternational conference on Simulation tools and techniques for communications, net-

works and systems & workshops, Simutools ’08, pages 43:1–43:8, ICST, Brussels,

Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering).

[Mallet et al. 2009] Frédéric Mallet, Marie-Agnès Peraldi-Frati and Charles Andre. Marte

CCSL to Execute East-ADL Timing Requirements. In Proceedings of the 2009 IEEE

International Symposium on Object/Component/Service-Oriented Real-Time Dis-

tributed Computing, ISORC ’09, pages 249–253, Washington, DC, USA, 2009. IEEE

Computer Society.

[Marcos et al. 2011] Marga Marcos, Estévez Elisabet, Christophe Jouvray and Antonio

Kung. An Approach to Use MDE in Dynamically Reconfigurable Networked Em-

bedded SOAs. In Proceedings of the 18th IFAC World Congress, pages 14946–14951,

2011.

[Marienfeld et al. 2012] Florian Marienfeld, Edzard Höfig, Michele Bezzi, Matthias Flügge,

Jonas Pattberg, Gabriel Serme, AchimD. Brucker, Philip Robinson, Stephen Dawson

and Wolfgang Theilmann. Service Levels, Security, and Trust. In Alistair Barros and

Daniel Oberle, editors, Handbook of Service Description, pages 295–326. Springer

US, 2012.

[Mart́ınez et al. 2009a] Enrique Mart́ınez, Maria Emilia Cambronero, Gregorio Diaz and

Valentin Valero. Design and Verification of Web Services Compositions. In Pro-

ceedings of the 2009 Fourth International Conference on Internet and Web Appli-

cations and Services, ICIW ’09, pages 395–400, Washington, DC, USA, 2009. IEEE

Computer Society.

[Mart́ınez et al. 2009b] Enrique Mart́ınez, Gregorio Dı́az, Carmen Rosa Mart́ınez,

M. Emilia Cambronero and Valent́ın Valero. Time Ordering Architecture in SCA. In

Proceedings of the 2009 conference on Techniques and Applications for Mobile Com-

merce: Proceedings of TAMoCo 2009, pages 117–126, Amsterdam, The Netherlands,

The Netherlands, 2009. IOS Press.

[Martinez et al. 2010] Patricia Lopez Martinez, Cesar Cuevas and Jose M. Drake. RT-

D&C: Deployment Specification of Real-Time Component-Based Applications. In

Bibliography 201

Proceedings of the 2010 36th EUROMICRO Conference on Software Engineering

and Advanced Applications, SEAA ’10, pages 147–155, Washington, DC, USA, 2010.

IEEE Computer Society.

[Mart́ınez et al. 2013] Patricia López Mart́ınez, Laura Barros and José M. Drake. Design

of component-based real-time applications. Journal of Systems and Software, vol. 86,

no. 2, pages 449 – 467, 2013.

[Matsumoto 2010] S. Matsumoto. Echonet: A Home Network Standard. Pervasive Com-

puting, IEEE, vol. 9, no. 3, pages 88–92, 2010.

[McGregor & Eklund 2008] Carolyn McGregor and J. Mikael Eklund. Real-Time Service-

Oriented Architectures to Support Remote Critical Care: Trends and Challenges. In

Proceedings of the 2008 32nd Annual IEEE International Computer Software and

Applications Conference, COMPSAC ’08, pages 1199–1204, Washington, DC, USA,

2008. IEEE Computer Society.

[McKinley et al. 2004] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten and

Betty H. C. Cheng. Composing Adaptive Software. Computer, vol. 37, no. 7, pages

56–64, July 2004.

[Medvidovic 1996] Nenad Medvidovic. ADLs and dynamic architecture changes. Joint pro-

ceedings of the second international software architecture workshop (ISAW) and in-

ternational workshop on multiple perspectives in software development (Viewpoints

’96) on SIGSOFT ’96 workshops -, pages 24–27, 1996.

[Mendes et al. 2009] J. Marco Mendes, Axel Bepperling, João Pinto, Paulo Leitao, Fran-

cisco Restivo and ArmandoW. Colombo. Software Methodologies for the Engineering

of Service-Oriented Industrial Automation: The Continuum Project. In Proceedings

of the 2009 33rd Annual IEEE International Computer Software and Applications

Conference - Volume 01, COMPSAC ’09, pages 452–459, Washington, DC, USA,

2009. IEEE Computer Society.

[Merlin & Farber 1976] P.M. Merlin and David J. Farber. Recoverability of Communication

Protocols–Implications of a Theoretical Study. Communications, IEEE Transactions

on, vol. 24, no. 9, pages 1036–1043, 1976.

[Meyer 1997] Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[Minora et al. 2012] Leonardo Minora, Jérémy Buisson, Flávio Oquendo and Tháıs Vascon-

celos Batista. Issues of Architectural Description Languages for Handling Dynamic

Reconfiguration. In 6ème Conférence Internationale Francophone sur les Architec-

tures Logicielles, Montpellier, France, 2012.

[Mitchell 1990] R.J. Mitchell. Managing complexity in software engineering. Iee Computing

Series No 17. Peter Peregrinus Limited, 1990.

[Mok 1996] Al Mok. Firm real-time systems. ACM Comput. Surv., vol. 28, no. 4es, De-

cember 1996.

[Moreland 2013] James D. Moreland. Experimental Research and Future Approach on Eval-

uating Service-Oriented Architecture (SOA) Challenges in a Hard Real-Time Combat

System Environment. Systems Engineering, pages n/a–n/a, 2013.

202 Bibliography

[Morin et al. 2009] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey and

Arnor Solberg. Models@ Run.time to Support Dynamic Adaptation. Computer,

vol. 42, no. 10, pages 44–51, October 2009.

[Morrison 1997] Michael Morrison. Presenting javabeans. Sams, Indianapolis, IN, USA,

1997.

[Moussa et al. 2010] Hachem Moussa, Tong Gao, I-Ling Yen, Farokh Bastani and Jun-Jang

Jeng. Toward effective service composition for real-time SOA-based systems. Service

Oriented Computing and Applications, vol. 4, no. 1, pages 17–31, 2010.

[Muhammad et al. 2012] W.A. Muhammad, M. Radziah and N.A.J. Dayang.

SOA4DERTS: A Service-Oriented UML profile for Distributed Embedded Real-Time

Systems. In Computers Informatics (ISCI), 2012 IEEE Symposium on, pages 64–69,

2012.

[Murata 1989] T. Murata. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, vol. 77, no. 4, pages 541–580, 1989.

[Muskens et al. 2005] Johan Muskens, Michel R. V. Chaudron and Johan J. Lukkien.

Component-Based Software Development for Embedded Systems. Chapter “ A com-

ponent framework for consumer electronics middleware”, pages 164–184. Springer-

Verlag, Berlin, Heidelberg, 2005.

[Oberle et al. 2013] Daniel Oberle, Alistair Barros, Uwe Kylau and Steffen Heinzl. A unified

description language for human to automated services. Information Systems, vol. 38,

no. 1, pages 155 – 181, 2013.

[Object Management Group 2006a] Object Management Group. CORBA Component

Model 4.0 Specification. Specification Version 4.0, Object Management Group, April

2006.

[Object Management Group 2006b] Object Management Group. Deployment and Congu-

ration of Component-based Distributed Applications v4.0, 2006.

[Object Management Group 2006c] Object Management Group. UML Specification, Ver-

sion 2.0, 2006.

[Object Management Group 2007] Object Management Group. Data Distribution Service

v1.2, 2007.

[Object Management Group 2008] Object Management Group. Modeling and Analysis of

Real-time and Embedded Systems, Version 1.1, 2008.

[Object Management Group 2011] Object Management Group. Meta Object Facility

(MOF) 2.0 Query/View/Transformation, Version 1.1, 2011.

[Object Management Group 2012a] Object Management Group. Object Constraint Lan-

guage Specification, Version 2.3.1, 2012.

[Object Management Group 2012b] Object Management Group. Service oriented architec-

ture Modelling Language, Version 1.0.1, 2012.

Bibliography 203

[Ölveczky et al. 2010] Peter Csaba Ölveczky, Artur Boronat and José Meseguer. For-

mal semantics and analysis of behavioral AADL models in real-time maude. In

Proceedings of the 12th IFIP WG 6.1 international conference and 30th IFIP

WG 6.1 international conference on Formal Techniques for Distributed Systems,

FMOODS’10/FORTE’10, pages 47–62, Berlin, Heidelberg, 2010. Springer-Verlag.

[Oreizy et al. 2008] Peyman Oreizy, Nenad Medvidovic and Richard N. Taylor. Runtime

software adaptation: framework, approaches, and styles. In Companion of the 30th

international conference on Software engineering, ICSE Companion ’08, pages 899–

910, New York, NY, USA, 2008. ACM.

[Panahi et al. 2010] Mark Panahi, Weiran Nie and Kwei-Jay Lin. RT-Llama: Providing

Middleware Support for Real-Time SOA. Int. J. Syst. Serv.-Oriented Eng., vol. 1,

no. 1, pages 62–78, January 2010.

[Panahi et al. 2011] Mark Panahi, Weiran Nie and Kwei-Jay Lin. The Design of Middleware

Support for Real-Time SOA. In Proceedings of the 2011 14th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-

puting, ISORC ’11, pages 117–124, Washington, DC, USA, 2011. IEEE Computer

Society.

[Papaioannou et al. 2006] Ioannis V. Papaioannou, Dimitrios T. Tsesmetzis, Ioanna G.

Roussaki and Miltiades E. Anagnostou. A QoS Ontology Language for Web-Services.

In Proceedings of the 20th International Conference on Advanced Information Net-

working and Applications - Volume 01, AINA ’06, pages 101–106, Washington, DC,

USA, 2006. IEEE Computer Society.

[Papazoglou & Heuvel 2007] MikeP. Papazoglou and Willem-Jan Heuvel. Service oriented

architectures: approaches, technologies and research issues. The VLDB Journal,

vol. 16, no. 3, pages 389–415, 2007.

[Papazoglou et al. 2007] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar and

Frank Leymann. Service-Oriented Computing: State of the Art and Research Chal-

lenges. Computer, vol. 40, no. 11, pages 38–45, November 2007.

[Parnas 1972] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Commun. ACM, vol. 15, no. 12, pages 1053–1058, December 1972.

[Parnas 1978] David L. Parnas. Designing software for ease of extension and contraction.

In Proceedings of the 3rd international conference on Software engineering, ICSE

’78, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press.

[Parsons & Walsh 2011] P. Parsons and A. Walsh. SOA4GDS : Evaluating the Suitability

of Emerging Service-based Technologies in Ground Data Systems. In Proceedings of

the European Ground System Architecture Workshop, ESAW ’11, 2011.

[Perry & Wolf 1992] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study

of software architecture. SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pages 40–52,

October 1992.

[Pfeffer & Ungerer 2004] M. Pfeffer and T. Ungerer. Dynamic real-time reconfiguration on

a multithreaded Java-microcontroller. In Object-Oriented Real-Time Distributed

Computing, 2004. Proceedings. Seventh IEEE International Symposium on, pages

86–92, 2004.

204 Bibliography

[Pitter 2008] Christof Pitter. Time-predictable memory arbitration for a Java chip-

multiprocessor. In Proceedings of the 6th international workshop on Java technolo-

gies for real-time and embedded systems, JTRES ’08, pages 115–122, New York,

NY, USA, 2008. ACM.

[Plásil et al. 1998] F. Plásil, D. Bálek and R. Janecek. SOFA/DCUP: Architecture for

Component Trading and Dynamic Updating. In Proceedings of the International

Conference on Configurable Distributed Systems, CDS ’98, pages 43–, Washington,

DC, USA, 1998. IEEE Computer Society.

[Pľsek et al. 2012] Ales Pľsek, Frederic Loiret and Michal Malohlava. Component-Oriented

Development for Real-Time Java. In M. Teresa Higuera-Toledano and Andy J.

Wellings, editors, Distributed, Embedded and Real-time Java Systems, pages 265–

292. Springer US, 2012.

[Raibulet & Massarelli 2008] C. Raibulet and M. Massarelli. Managing Non-functional As-

pects in SOA through SLA. In Database and Expert Systems Application, 2008.

DEXA ’08. 19th International Workshop on, pages 701–705, 2008.

[Raman et al. 2005] Krishna Raman, Yue Zhang, Mark Panahi, Juan A. Colmenares, Ray-

mond Klefstad and Trevor Harmon. RTZen: highly predictable, real-time java

middleware for distributed and embedded systems. In Proceedings of the ACM/I-

FIP/USENIX 2005 International Conference on Middleware, Middleware ’05, pages

225–248, New York, NY, USA, 2005. Springer-Verlag New York, Inc.

[Rasche & Polze 2005] Andreas Rasche and Andreas Polze. Dynamic Reconfiguration of

Component-based Real-time Software. In Proceedings of the 10th IEEE International

Workshop on Object-Oriented Real-Time Dependable Systems, WORDS ’05, pages

347–354, Washington, DC, USA, 2005. IEEE Computer Society.

[Real & Crespo 2004] Jorge Real and Alfons Crespo. Mode Change Protocols for Real-

Time Systems: A Survey and a New Proposal. Real-Time Syst., vol. 26, no. 2, pages

161–197, March 2004.

[Rellermeyer et al. 2007] Jan S. Rellermeyer, Gustavo Alonso and Timothy Roscoe. R-

OSGi: distributed applications through software modularization. In Proceedings of

the ACM/IFIP/USENIX 2007 International Conference on Middleware, Middleware

’07, pages 1–20, New York, NY, USA, 2007. Springer-Verlag New York, Inc.

[Richardson & Wellings 2012] Thomas Richardson and Andy J. Wellings. RT-OSGi: Inte-

grating the OSGi Framework with the Real-Time Specification for Java. In M. Teresa

Higuera-Toledano and Andy J. Wellings, editors, Distributed, Embedded and Real-

time Java Systems, pages 293–392. Springer US, 2012. 10.1007/978-1-4419-8158-

5 12.

[Richardson et al. 2009] T. Richardson, A. J. Wellings, J. A. Dianes and M. Dı́az. Providing

temporal isolation in the OSGi framework. In Proceedings of the 7th International

Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES ’09,

pages 1–10, New York, NY, USA, 2009. ACM.

[Rouvoy et al. 2008] Romain Rouvoy, Frank Eliassen, Jacqueline Floch, Svein Hallsteinsen

and Erlend Stav. Composing components and services using a planning-based adap-

tation middleware. In Proceedings of the 7th international conference on Software

composition, SC’08, pages 52–67, Berlin, Heidelberg, 2008. Springer-Verlag.

Bibliography 205

[Samaras et al. 2010] I.K. Samaras, J.V. Gialelis and G.D. Hassapis. A service oriented-

based system for real time industrial applications. In Emerging Technologies and

Factory Automation (ETFA), 2010 IEEE Conference on, pages 1–8, 2010.

[Schlenoff et al. 1999] Craig Schlenoff, Michael Gruninger, Mihai Ciocoiu and Jintae Lee.

The essence of the process specification language. Trans. Soc. Comput. Simul. Int.,

vol. 16, no. 4, pages 204–216, December 1999.

[Schmidt & Kuhns 2000] Douglas C. Schmidt and Fred Kuhns. An Overview of the Real-

Time CORBA Specification. Computer, vol. 33, no. 6, pages 56–63, June 2000.

[Schmidt et al. 2000] Douglas C. Schmidt, Michael Stal, Hans Rohnert and Frank

Buschmann. Pattern-oriented software architecture: Patterns for concurrent and

networked objects. John Wiley & Sons, Inc., New York, NY, USA, 2nd édition,

2000.

[Schmidt 2002] Douglas C. Schmidt. Middleware for real-time and embedded systems. Com-

mun. ACM, vol. 45, no. 6, pages 43–48, June 2002.

[Schoeberl & Pedersen 2006] Martin Schoeberl and Rasmus Pedersen. WCET analysis for

a Java processor. In Proceedings of the 4th international workshop on Java tech-

nologies for real-time and embedded systems, JTRES ’06, pages 202–211, New York,

NY, USA, 2006. ACM.

[Schoeberl et al. 2007] Martin Schoeberl, Hans Sondergaard, Bent Thomsen and Anders P.

Ravn. A Profile for Safety Critical Java. In Proceedings of the 10th IEEE In-

ternational Symposium on Object and Component-Oriented Real-Time Distributed

Computing, ISORC ’07, pages 94–101, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[Schoeberl et al. 2010] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen and

Benedikt Huber. Worst-case execution time analysis for a Java processor. Softw.

Pract. Exper., vol. 40, no. 6, pages 507–542, May 2010.

[Seinturier et al. 2009] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet,

Valerio Schiavoni and Jean-Bernard Stefani. Reconfigurable SCA Applications with

the FraSCAti Platform. In Proceedings of the 2009 IEEE International Conference

on Services Computing, SCC ’09, pages 268–275, Washington, DC, USA, 2009. IEEE

Computer Society.

[Sentilles et al. 2008] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson and

Ivica Crnković. A Component Model for Control-Intensive Distributed Embedded

Systems. In Proceedings of the 11th International Symposium on Component-Based

Software Engineering, CBSE ’08, pages 310–317, Berlin, Heidelberg, 2008. Springer-

Verlag.

[Shaw et al. 1995] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross,

David M. Young and Gregory Zelesnik. Abstractions for Software Architecture and

Tools to Support Them. IEEE Trans. Softw. Eng., vol. 21, no. 4, pages 314–335,

April 1995.

[Shin & Ramanathan 1994] K.G. Shin and P. Ramanathan. Real-time computing: a new

discipline of computer science and engineering. Proceedings of the IEEE, vol. 82,

no. 1, pages 6–24, 1994.

206 Bibliography

[Stachtiari et al. 2012] Emmanouela Stachtiari, Anakreon Mentis and Panagiotis Katsaros.

Rigorous Analysis of Service Composability by Embedding WS-BPEL into the BIP

Component Framework. 2012 IEEE 19th International Conference on Web Services,

vol. 0, pages 319–326, 2012.

[Stallings 2011] William Stallings. Operating systems: Internals and design principles.

Prentice Hall Press, Upper Saddle River, NJ, USA, 7th édition, 2011.

[Stankovic & Rajkumar 2004] John A. Stankovic and R. Rajkumar. Real-Time Operating

Systems. Real-Time Syst., vol. 28, no. 2-3, pages 237–253, November 2004.

[Stankovic & Ramamritham 1990] John A. Stankovic and Krithi Ramamritham. What is

predictability for real-time systems? Real-Time Syst., vol. 2, no. 4, pages 247–254,

October 1990.

[Stankovic 1992] John A. Stankovic. Real-time computing. BYTE, vol. 17, no. 8, pages

155–ff., August 1992.

[Stoyenko 1992] Alexander D. Stoyenko. The evolution and state-of-the-art of real-time

languages. Journal of Systems and Software, vol. 18, no. 1, pages 61 – 83, 1992.

[Subramonian et al. 2004] V. Subramonian, Guoliang Xing, C. Gill, Chenyang Lu and Ron

Cytron. Middleware specialization for memory-constrained networked embedded sys-

tems. In Real-Time and Embedded Technology and Applications Symposium, 2004.

Proceedings. RTAS 2004. 10th IEEE, pages 306–313, 2004.

[Sun et al. 2008] Wei Sun, Xin Zhang, Chang Jie Guo, Pei Sun and Hui Su. Software as

a Service: Configuration and Customization Perspectives. In Congress on Services

Part II, 2008. SERVICES-2. IEEE, pages 18–25, 2008.

[Szyperski 2002] Clemens Szyperski. Component software: Beyond object-oriented pro-

gramming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd

édition, 2002.

[Tan et al. 2011] Tian Huat Tan, Yang Liu, Jun Sun and Jin Song Dong. Verification of

orchestration systems using compositional partial order reduction. In Proceedings

of the 13th international conference on Formal methods and software engineering,

ICFEM’11, pages 98–114, Berlin, Heidelberg, 2011. Springer-Verlag.

[Taylor et al. 2009] R.N. Taylor, N. Medvidovic and P. Oreizy. Architectural styles for run-

time software adaptation. In Software Architecture, 2009 European Conference on

Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference

on, pages 171–180, 2009.

[The OSGi Alliance 2012] The OSGi Alliance. OSGi Service Platform Core Specification,

Release 5. http://www.osgi.org/Specifications, June 2012.

[Tsai et al. 2006] W. T. Tsai, Yann-Hang Lee, Zhibin Cao, Yinong Chen and Bingnan Xiao.

RTSOA: Real-Time Service-Oriented Architecture. In Proceedings of the Second

IEEE International Symposium on Service-Oriented System Engineering, SOSE ’06,

pages 49–56, Washington, DC, USA, 2006. IEEE Computer Society.

[UPnP Forum 2000] UPnP Forum. UPnP Device Architecture. http://www.upnp.org/

download/UPnPDA10_20000613.htm, 2000.

Bibliography 207

[van Ommering et al. 2000] Rob van Ommering, Frank van der Linden, Jeff Kramer and

Jeff Magee. The Koala Component Model for Consumer Electronics Software. Com-

puter, vol. 33, no. 3, pages 78–85, March 2000.

[Vera et al. 1999] James Vera, Louis Perrochon and David C. Luckham. Event-Based Ex-

ecution Architectures for Dynamic Software Systems. In Proceedings of the TC2

First Working IFIP Conference on Software Architecture (WICSA), WICSA, pages

303–318, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[Verma 1999] Dinesh Verma. Supporting service level agreements on ip networks. Macmil-

lan Technical Publishing, 1999.

[Wang et al. 2004] Nanbor Wang, Christopher D. Gill, Douglas C. Schmidt, Aniruddha

Gokhale, Balachandran Natarajan, Joseph P. Loyall, Richard E. Schantz and Craig

Rodrigues. Middleware for communications. J. Wiley & Sons, 2004.

[Wang et al. 2005] Shengquan Wang, Sangig Rho, Zhibin Mai, Riccardo Bettati and Wei

Zhao. Real-Time Component-Based Systems. In Proceedings of the 11th IEEE Real

Time on Embedded Technology and Applications Symposium, RTAS ’05, pages

428–437, Washington, DC, USA, 2005. IEEE Computer Society.

[Wang et al. 2010] Hanbo Wang, Xingshe Zhou, Yunwei Dong and Lei Tang. Timing prop-

erties analysis of real-time embedded systems with AADL model using model check-

ing. In Progress in Informatics and Computing (PIC), 2010 IEEE International

Conference on, volume 2, pages 1019–1023, 2010.

[Ward & Mellor 1991] Paul T. Ward and Stephen J. Mellor. Structured development for

real-time systems. Prentice Hall Professional Technical Reference, 1991.

[Weerawarana et al. 2005] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony

Storey and Donald F. Ferguson. Web services platform architecture: Soap, wsdl,

ws-policy, ws-addressing, ws-bpel, ws-reliable messaging and more. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2005.

[Wehrman et al. 2008] Ian Wehrman, David Kitchin, William R. Cook and Jayadev Misra.

A timed semantics of Orc. Theor. Comput. Sci., vol. 402, no. 2-3, pages 234–248,

July 2008.

[Weiser 1993] M. Weiser. Ubiquitous Computing. Computer, vol. 26, no. 10, pages 71–72,

October 1993.

[Wellings & Schoeberl 2011] Andy Wellings and Martin Schoeberl. User-defined clocks in

the real-time specification for Java. In Proceedings of the 9th International Workshop

on Java Technologies for Real-Time and Embedded Systems, JTRES ’11, pages 74–

81, New York, NY, USA, 2011. ACM.

[Wermelinger 1997] Michel Wermelinger. A Hierarchic Architecture Model for Dynamic

Reconfiguration. In Proceedings of the 2nd International Workshop on Software En-

gineering for Parallel and Distributed Systems, PDSE ’97, pages 243–, Washington,

DC, USA, 1997. IEEE Computer Society.

[Wieringa 2003] R.J. Wieringa. Design methods for reactive systems: Yourdon, statemate,

and the uml. The Morgan Kaufmann Series in Software Engineering and Program-

ming. Elsevier Science, 2003.

208 Bibliography

[Wilhelm et al. 2008] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-

sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Rein-

hold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan

Staschulat and Per Stenström. The worst-case execution-time problemoverview of

methods and survey of tools. ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pages

36:1–36:53, May 2008.

[Williams 2005] R. Williams. Real-time systems development. Elsevier Science, 2005.

[Yang et al. 2009] Zhibin Yang, Kai Hu, Dianfu Ma and Lei Pi. Towards a formal seman-

tics for the AADL behavior annex. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’09, pages 1166–1171, 3001 Leuven, Bel-

gium, Belgium, 2009. European Design and Automation Association.

[Yourdon 1989] Edward Yourdon. Modern structured analysis. Yourdon Press, Upper

Saddle River, NJ, USA, 1989.

[Zhai et al. 2009] Yanlong Zhai, Jing Zhang and Kwei-Jay Lin. SOA Middleware Support

for Service Process Reconfiguration with End-to-End QoS Constraints. In Web Ser-

vices, 2009. ICWS 2009. IEEE International Conference on, pages 815–822, 2009.

[Zhang et al. 2009] Yuanfang Zhang, Christopher Gill and Chenyang Lu. Real-Time Per-

formance and Middleware for Multiprocessor and Multicore Linux Platforms. In

Proceedings of the 2009 15th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications, RTCSA ’09, pages 437–446, Wash-

ington, DC, USA, 2009. IEEE Computer Society.

[Zuberek 1991] W.M. Zuberek. Timed Petri nets definitions, properties, and applications.

Microelectronics Reliability, vol. 31, no. 4, pages 627 – 644, 1991.

Bibliography 209

