
HAL Id: tel-01168467
https://theses.hal.science/tel-01168467v1
Submitted on 16 Oct 2014 (v1), last revised 2 Jul 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Comprehensive Methodology for Complex Systems’
Requirements Engineering and Decision Making

Vikas Schukla

To cite this version:
Vikas Schukla. Comprehensive Methodology for Complex Systems’ Requirements Engineering and
Decision Making. Computer Science [cs]. INSA Toulouse; Université de Toulouse, 2014. English.
�NNT : �. �tel-01168467v1�

https://theses.hal.science/tel-01168467v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 06/01/2014 par :
Vikas SHUKLA

Comprehensive Methodology for Complex Systems’ Requirements
Engineering and Decision Making

JURY
Camille SALINESI Professeur, Université de Paris 1

Panthéon-Sorbonne, France
Président du Jury

Daniel KROB Professeur, Ecole Polytechnique,
Paris, France

Membre du Jury

Guillaume AURIOL Maître de Conférences, INSA de
Toulouse, Toulouse, France

Membre du Jury

Hamid DEMMOU Maître de Conférences, Université
Paul Sabatier, Toulouse, France

Membre du Jury

Dominique SÉGUÉLA Expert Senior en Système
Spatiaux Sol-Bord, Centre

National d’Études Spatiales,
Toulouse, France

Membre du Jury

Philippe THUIILLIER Technical Director, Systems
Engineering, Intelligent

Systems/Altran (group solution)
Toulouse, France

Membre du Jury

École doctorale et spécialité :
EDSYS : Informatique et Génie Industriel

Unité de Recherche :
Laboratoire d’Analyse et d’Architecture des Systèmes(8001)

Directeur de Thèse :
Guillaume AURIOL

Rapporteurs :
Camille SALINESI et Daniel KROB

UNIVERSITÉ DE TOULOUSE

ÉCOLE DOCTORALE EDSYS

T H È S E
en vue de l’obtention du

Doctorat de l’Université de Toulouse
delivré par l’Institut National des Sciences Appliquées de Toulouse
Mention : Informatiques et Génie Industriel

Préséntée et soutenue par

Vikas SHUKLA

Comprehensive Methodology for
Complex Systems’ Requirements
Engineering and Decision Making

Directeur de thèse : Guillaume Auriol

Préparée au LAAS-CNRS Toulouse
soutenue le 06 Janvier 2014

Jury

Rapporteurs : Camille SALINESI, Professeur, Université Paris-1, Panthéon Sorbonne, Paris,
France
Daniel KROB, Professeur, Ecole Polytechnique, Paris, France

Directeur : Guillaume AURIOL, Maître de Conférences, Institut National des Sciences
Appliquées de Toulouse, Toulouse, France

Examinateur : Hamid DEMMOU, Maître de Conférences, Université Toulouse-III, Paul
Sabatier, Toulouse, France

Invités : Dominique SÉGUÉLA, Expert senior en Systèmes Spatiaux Sol-Bord, Centre
National d’Études Spatiales, Toulouse, France
Philippe THUILLIER, Technical Director, Systems Engineering, Intelligent
Systems / Altran (group solution) Toulouse, France

Acknowledgements
Once I read somewhere that, “journey itself is more important than the destina-

tion”. I could not really understand what it meant that time, but now I know
the subtle and salient message hidden within that simple looking phrase. The jour-
ney of this thesis did not started the day doctoral school selected my candidature,
but long before ... Every single person who pointed me towards the right directions
deserves my sincere thanks. Whenever, I walked through the right direction, I was
provided by them with the signs and symptoms of right path.

First thanks to my father, who is my first guru, and source of all spirit and
inspirations. He only taught me about good and bad, about righteousness and
wickedness. Next, my sincere thanks to my mother who blessed me with the courage,
patience and energy necessary to overcome various hurdles. My siblings for providing
me with the just necessary environment, equilibrium, and space that I needed, and
for taking on their shoulders completely the responsibility that I owed to my family
during all these years of my stay in France.

I would like to express my immense gratitude to Yves and Mireille Karceles, my
French family, who did not only hosted me for the first critical months of my stay
in France, but provided me with the confidence of learning and accepting the new
language, and adapting to the completely new culture, society and values.

I would like to thank Dr. Jean Arlat, director LAAS-CNRS, for providing me
with all the resources, equipments and other necessary conditions to carry out the
research activities with ease.

I would like to express my regards and gratitude to Dr. Camille Salinesi, Pro-
fessor, University de Paris-1, Panthéon-Sorbonne, and Dr. Daniel Krob, Professor,
Ecole Polytechnique, Paris, for honoring me by accepting, reporting and recommend-
ing my research work. I would equally like to pay my regards to other members of
jury, Dr. Hamid Demmou, Associate Professor, Université Paul Sabatier, Toulouse,
Mrs. Dominique Séguéla, Senior System Expert, CNES, Toulouse and Mr. Philippe
Thuillier, Technical Director, Systems Engineering, Altran group, for their valuable
recommendations, insights and feedbacks.

I would equally take opportunity to thank my Ph.D. advisor Dr. Guillaume
Auriol, who selected me as his student, poured his invaluable efforts to refine me to
become a better researcher and teacher, provided his full attention and stood by me
in times of need, praised and criticized me for my ultimate good.

Dr. Vincent Albert and Lucie for maintaining the continuous flow of motivation,
enthusiasm and musical interpretations of various issues of not only research, but of
other crucial axes of life throughout the Vee-Cycle of PhD project. I would take the
opportunity to equally thank Dr. Claude Baron for the encouragement and timely
help she provided, and for the empathy she bore in difficult times of thesis.

Special thanks to Dr. Pierre-Emmanuel Hladik for providing me with the valu-
able guidance, motivation, support and encouragement to take final decision of opt-
ing for doctoral research and for providing me with the necessary feedbacks during
masters degree-thesis and doctoral research work.

ii

I would also like to pay my gratitude to senior members of Systems and Inte-
gration Engineering Team, Dr. Alexandre Nkesta, Dr. Abd-El-Kader Sahraoui, Dr.
Philippe Esteban and Dr. Jean-Claude Pascal for wholeheartedly welcoming me in
the team.

I would like to thank our Canadian collaborators at University of Waterloo,
Dr. Keith William Hipel, for the fruitful summer research stay at System Design
Department and for such a multi-perspective enriching experience.

Sincere thanks to Dr. Christophe Chassot, Dr. Didier Le Botlan, Mrs. Gwendo-
line Le Corre, Dr. Theirry Monteil and Dr. Slim Abdellatif for providing guidance,
support and convivial integration into the faculty team at DGEI. I would equally
like to thank other members of faculty team at DGEI and LAAS, Denis Carvin,
Miguel Nuñez Del Prado Cortez, Maxime Cheramy, Johan Mazel, Code Diop, Ab-
delaziz El Fatni, Florian Perget, and Mathieu Claeys. I would like to take the
opportunity to thank Mrs. Hélène Thirion, Secretary, EDSYS, Mrs. Joëlle Breau,
Secretary, DGEI, INSA Toulouse, and Mrs. Sonia de Sousa, Secretary, ISI team, for
promptly providing their support in the numerous tedious administrative tasks and
procedures.

I feel greatly indebted to my colleagues of A-126, LAAS for their ceaseless flow of
motivation, encouragement, discussions, feedbacks, translations, questions and for
numerous subtle explanations of things coming from different walks of life. I would
like to thank Damien Foures, Saurabh Indra, Sylvain Noblecourt, Roberto Pasqua,
Romaric Guillerm, Rui Xue and Xinwei Zhang for sharing and filling the numerous
coffee breaks at LAAS premises. Thanks to Lucille, Marion, Sven, Crock, Boubou,
Max and Tony for numerous sweet and unforgettable moments.

Many thanks to Amit, Sonal, Gurunatha Kargal, Chandu, Thilak, Vikram, Ra-
jesh, Shiva & Pushpa, Akshath, Mujahid, Nagendra, Tajuddin for numerous things.
First, for sharing their precious moments and company during this journey. Second,
for making me feel at home during this exceptionally long stay in France. Third
and most important, for the timely breaks to make life look good and realize that
the happiness was so affordable. Special thanks to my friend and roommate Naveen
Kumar Channaiah for bearing so much of patience, providing moral support, and for
sharing the stressful moments of the final year. Numerous thanks to Boris-Wilfried
Nyasse, Claire Dufour, Maxime Corbion, Fan Wei, Yuxing Zhang, and Miao Jing for
their help and collaboration during initial years of my stay in Toulouse. My friends
of engineering degree with whom I shared different types of fate and time: diffi-
cult, cherishable and decisive — Kamal Dalakoti, Nishith Gupta, Anoop Painuly,
Abhishek Kapruwan, Amit Joshi, Nishant Pandey, Aalap Maithani, Rachit Lohani,
Rahul Jain, Vijay Bhaskar Semwal, Ankur Binwal, Vivek Shaily, Vipul Jain, Viren-
dra Singh Dharamshaktu, Surender Deopa, Garima Singh, sarthak Nautiyal, Arshad
Ali, Sachin Gupta, and Ranjan Saxena.

Finally, I would also take the opportunity to thank my old friends back home,
with whom I grew up and shared my childhood, and have barely seen and met them
during these last few years: Vivek Tiwari, Vivek Kukreja, Yuvraj Manish Bhatt,
Dheeraj Gunwant, and Deepanshu Bhatt for making schooling worth remembering.

iii

Mukam karoti vachalam
pangum langhayate girim
yat-kripa tam aham vande
shri-gurum dina-taranam

∼∼

To the supreme soul who created this most complex system called Universe...to my
motherland India and beautiful country of France...to my Family & my Friends

Contents

General Introduction 1

1 Context and Problem Formulation 7
1.1 Introduction . 7
1.2 Problem Context . 8

1.2.1 Complex Systems . 8
1.2.2 Systems Engineering . 8

1.3 Problem Focus . 13
1.3.1 Technical Processes . 13
1.3.2 Decision Management Processes 15
1.3.3 Vee-Model of Project Development Life-Cycle 15

1.4 Research Focus . 17
1.4.1 Requirements Engineering . 18
1.4.2 Requirements Management & Traceability 21
1.4.3 Decision-making . 23

1.5 Conclusion . 28

2 Requirements Engineering 29
2.1 Introduction . 29
2.2 What are actually requirements ? . 30

2.2.1 State of Art Requirements Engineering Techniques 36
2.2.2 Proposed Formulations on Requirements 40
2.2.3 Proposed Comprehensive Requirements Modeling Language . 41

2.3 Writing Natural Language Requirements 47
2.3.1 State of Art of NLRs Writing Techniques 47
2.3.2 Proposed Approach for Writing Requirement 53
2.3.3 Experiment and Empirical Findings 55
2.3.4 Using Negation to Negotiate the Requirements 58

2.4 Discussion . 58
2.5 Conclusion . 59

3 Requirements Traceability 61
3.1 Introduction . 61
3.2 Requirements Traceability . 62

3.2.1 Requirements Traceability Processes and Problems 63
3.2.2 Traceability Recovery Challenges 68

3.3 State of Art of Requirement Traceability 70
3.3.1 Information Retrieval Based Techniques 70
3.3.2 Structurally Rule Based Techniques 74
3.3.3 Linguistically Rule Based . 75

vi Contents

3.3.4 Transformation Rule Based 75
3.3.5 Other Miscellaneous Based 76
3.3.6 Works on Traceability Maintenance 82
3.3.7 Traceability For Systems Engineering 83

3.4 Proposed Solution for Traceability Problems 84
3.4.1 Semantics of Relationships for Requirement Traceability . . . 85
3.4.2 Planning and Managing Traceability Strategy 87
3.4.3 Trace Creation Process . 89
3.4.4 Trace Maintenance Process 93
3.4.5 Trace Usage . 96
3.4.6 Using Traceability Information for SE Activities 96
3.4.7 Comprehensive Traceability During Project Development . . 98

3.5 Discussion . 101
3.6 Conclusion . 102

4 Decision-Making in SE 105
4.1 Introduction . 105
4.2 Decision Analysis in SE . 106

4.2.1 Issues with Decision Making 109
4.2.2 Criteria Weighting Problem in Systems Engineering 110

4.3 State of Art of Decision Making . 112
4.3.1 Multi Criteria Decision Making Methods 112
4.3.2 Game Theory Based Conflict Resolution and Negotiation . . 117
4.3.3 State of art of Criteria Weighting Techniques 118

4.4 Proposed Methodology . 123
4.4.1 Roles in Decision making for SE 124
4.4.2 Prerequisite to technique . 125
4.4.3 Methodology . 125
4.4.4 Optimality Check . 131

4.5 Simple Example . 131
4.6 Analysis and Comparison With Other Technique 137

4.6.1 Optimality Check . 137
4.6.2 With Entropy . 137
4.6.3 With Rank Order Centroid 138
4.6.4 With Eigen-vector from AHP 138

4.7 Discussion . 139
4.8 Conclusion . 140

5 Integrating Requirements Engineering and Decision Making 143
5.1 Introduction . 143
5.2 Comprehensive Methodology: Integrating Concepts 144

5.2.1 Methodology . 144
5.2.2 Tool Support: SysEngLab . 147

5.3 Case Study: Iron Bird Integrated Simulator 152

Contents vii

5.3.1 Assumptions . 154
5.3.2 IBIS Stakeholders Needs Elicitation 154
5.3.3 IBIS System Requirements Definition 165
5.3.4 IBIS Architecture Design and Analysis 171
5.3.5 Landing Gear Detail Design 173
5.3.6 Deciding Specifications using our Technique 175
5.3.7 Deciding Design Components 177

5.4 Requirements Traceability . 182
5.4.1 Purposed Traceability . 183
5.4.2 Cost-effective Traceability . 183
5.4.3 Pre-requirement traceability 183
5.4.4 Post-requirement traceability 186

5.5 Limitations and Conclusions . 188

Conclusion and Future Perspectives 189

A Tools Developed 197
A.1 SysEngLab . 197
A.2 RequirementLab . 197
A.3 DecisionLab . 198

B Résume en Français: Approche Globale d’Ingénierie Systèmes 199
B.1 Introduction . 199
B.2 Systèmes Complexes . 200
B.3 Ingénierie Systèmes . 200
B.4 Ingénierie des Exigences . 202
B.5 Gestion des Exigences et de la Traçabilité 204
B.6 La Prise de Décision et Résolution de Conflit 205
B.7 Approche Globale . 207
B.8 Conclusion . 209

C List of Publications and Reports 211

Bibliography 213

Index 234

List of Figures

1 Thesis Goals & Objectives . 3
2 Thesis Outline . 5

1.1 System Life-Cycle Processes (ISO 15288:2008) 11
1.2 Generic Life Cycle (ISO 15288:2008) 12
1.3 Vee-Model of Development Life-Cycle 16

2.1 Taxonomy of Requirements . 34
2.2 Requirements Relationships . 35
2.3 Relating Requirements, Rationales and Viewpoints 40
2.4 CReML Goal Meta-model . 42
2.5 CReML Responsibility Meta-model 43
2.6 CReML Strategy Meta-model . 43
2.7 Taxonomy of Ambiguity Types . 51
2.8 Restricted Interpretation . 54
2.9 Gross Percentage of Affirmative Phrases vs Negative Phrases 56
2.10 Individual Percentage of Affirmative Phrases vs Negative Phrases . . 57

3.1 Current Traceability Process . 64
3.2 Traceability Relationships and Infrastructure 85
3.3 Trace Information Model . 86
3.4 Proposed Traceability Process . 88
3.5 Proposed Traceability Maintenance Trace 94
3.6 Trace Addition . 94
3.7 Trace Suspension . 95
3.8 Proposed Traceability Usage . 96

4.1 Interest Vs. Power Grid . 110
4.2 Taxonomy of MCDM Methods . 113
4.3 Decision Makers Classification . 124
4.4 Proposed Decision Methodology . 126
4.5 Interest vs. Influence Grid . 127
4.6 Decreasing Utility Function . 128
4.7 Taking in Account Differences in Utilities of Categories 130
4.8 Categorization Using Interest vs. Influence Grid 133
4.9 Score vs. Rank . 135
4.10 Criteria vs. Weight . 138

5.1 Comprehensive Methodology . 145
5.2 Example of Solution Components . 150
5.3 Solution According to Business Engineer 151

x List of Figures

5.4 Life Cycle of Simulation in SE . 153
5.5 IBIS Context Diagram . 155
5.6 IBIS Rationale Map . 158
5.7 IBIS Goal Diagram . 159
5.8 IBIS Viewpoint Map . 159
5.9 IBIS Constraints . 160
5.10 IBIS Viewpoint Map . 160
5.11 IBIS Objectives . 161
5.12 Stakeholder Weighting . 162
5.13 Criteria Weighting . 163
5.14 Test Case for Customer Requirements 165
5.15 Architecture of IBIS Platform . 166
5.16 IBIS Simulation Infrastructure Platform 167
5.17 IBIS Landing Gear . 168
5.18 IBIS Landing Gear System . 168
5.19 IBIS Landing Gear System Requirements 169
5.20 Landing Gear Derived System Requirements 169
5.21 IBIS Landing Gear MiTL Requirements 170
5.22 Validation Test cases for Landing gear of IBIS 171
5.23 IBIS Landing Gear User Interface Requirements 172
5.24 IBIS Landing Set Detail Design . 173
5.25 Landing Gear Signals and Interfaces Specifications 174
5.26 Landing Gear Signals and Interfaces Specifications 175
5.27 Categorizing Stakeholder . 175
5.28 Categorizing Stakeholder . 176
5.29 Generating Criteria Weights . 176
5.30 Stakeholder Categorizing and Weighting 178

A.1 SysEngLab Console . 197
A.2 DecLab module in SysEngLab Console 198

List of Tables

1.1 Increasing Complexity of Aircraft Simulators (1989-2002) 10
1.2 Stages and their Purpose in Life Cycle ISO/IEC 15288:2008 12
1.3 Technical Process . 13
1.4 Keeney’s Classification of Decision Theories 25

2.1 Terminologies Used in Requirements Engineering 31
2.2 Requirement Definition by SE Standards 33
2.3 Comparing popular Gore RMLs . 38
2.4 Requirement Artifacts definition in CReML 43
2.5 Comparing Different Approaches for Ambiguity Problem in NLRs . . 50
2.6 Table of Requirements Using and Without Using Negation 55

3.1 Comparative Analysis of Various Traceability Techniques 79

4.1 Comparing Alternative Focused and Value focused thinking 107
4.2 Decision Contexts . 107
4.3 MCDM Techniques . 116
4.4 Subjective Criteria Weighting Techniques 122
4.5 Multi Criteria Alternative Evaluation 131
4.6 Design Criteria of a Hybrid Car . 132
4.7 Hybrid Car . 133
4.8 Design Criteria categorization . 133
4.9 Design Criteria Scores . 135
4.10 Normalized Design Criteria Weight 136
4.11 Multi Criteria Alternative Evaluation 136

5.1 User Stories . 156
5.2 Prioritizing Goals . 162
5.3 Goal Categorization . 162
5.4 Goal Weights . 163
5.5 Writing Requirements with Negation 164
5.6 Design Criteria for Specification Selection 175
5.7 Stakeholder Weight . 176
5.8 Criteria Weights . 176
5.9 Normalized Criteria Weights . 176
5.10 Evaluation Degree of Redundancy 177
5.11 Design Criteria for Landing Gear Component Selection 177
5.12 Design Criteria Categorization . 179
5.13 Design Criteria Scores . 180
5.14 Normalized Design Criteria Weight 180

xii List of Tables

5.15 Door Actuator Alternatives . 181
5.16 Extension and Retraction Actuators 182
5.17 Stakeholder Rationale Goal Traceability Matrix 184
5.18 Objectives Stakeholders Goals Traceability Matrix 184
5.19 Pre-requirement Traceability . 185
5.20 Post-requirement Traceability . 187

List of Abbreviations

AFIS Association Française d’ingénierie Système

AHP Analytical Hierarchy Process

AIAA American Institute of Aeronautics and Astronautics

AIT Arrow’s Impossibility Theorem

ANP Analytical Network Process

CBA Cost-Benefit Analysis

CFG Customer Focus Group

CM Configuration Management

CMMI Capability Maturity Model Integration

DFD Data Flow Diagram

DM Decision Maker

DSS Decision Support System

EIA Electronics Industries Alliance

FFBD Functional Flow Block Diagram

H/W Hardware

HoQ House of Quality

IBIS Iron Bird Integrated Simulator

IEEE The Institute of Electrical and Electronics Engineers

IEEE/EIA 12207 IEEE/EIA Standard 12207, Software Life Cycle Processes

INCOSE International Council of Systems Engineering

M&S Modeling and Simulation

MAUT Multi Attribute Utility Theory

MBSE Model Based Systems Engineering

MCDA Multi Criteria Decision Analysis

MCDM Multi Criteria Decision Making

xiv List of Abbreviations

MNS Mission Need Statement

MoA Matrix of Alternatives

MoE Measure of Effectiveness

MoP Measure of Performance

OMG Object Management Group

OOSEM Object Oriented Systems Engineering Method

PERT Program Evaluation and Review Technique

RE Requirements Engineering

RM Requirements Management

RML Requirement Modeling Language

RT Requirement Traceability

S/W Software

SADT Structured Analysis and Design Technique

SD System Design

SE Systems Engineering

SEBoK Systems Engineering Body of Knowledge

SIP Stakeholder Identification Process

SME Subject Matter Expert

SoS System of Systems

SoSE System of Systems Engineering

StdV Standards Viewpoint

SV Systems Viewpoint

SysML System Modeling Language

TD Technology Development

TRL Technology Readiness Level

UML Unified Modeling Language

V&V Verification and Validation

VV&A Verification Validation and Accreditation

WP Work Package

General Introduction

This chapter briefly introduces the research work accomplished during the thesis.
The research works presented in this thesis were carried out in Laboratoire

d’Analyse et d’Architecture des Systèmes of Centre National de la Recherche Scien-
tifique (CNRS-LAAS), Toulouse, France, with the research funding from Ministry
of Higher Education and Research (MESR). The research was carried out with
Ingénierie Système et Intégration (ISI) group, i.e., Systems and Integration Engi-
neering group at LAAS-CNRS. ISI team works in the context of design of complex
systems by improving development life-cycle processes, particularly requirement en-
gineering & management, modeling & simulation, verification & validation, and
safety engineering, in a method, process and tool vision.

First the background and motivation of this thesis are introduced. The pri-
mary research goal of the thesis, i.e., comprehensive methodology for the design
in systems engineering is presented. Next, in order to achieve the primary goal
the primary research goal is divided into a set of three sub-goals: requirements
engineering, requirements management & traceability, and decision making. The
necessary technical objectives to achieve the sub-goals are identified and research
themes necessary to achieve these objectives are determined. Next, a brief insight
into the actual research themes is presented and their significance to the systems
engineering is high-lightened. The research problems are identified and difficulty to
address them is also discussed briefly. Finally, structure of the thesis and the links
between the various chapters are presented.

Background and Motivation

Recently, there has been a surge in the complexity of our immediate environment in
which we live. We find ourselves surrounded with numerous technologies, to carry
out our normal day to day tasks. The rate of induction of these new technolo-
gies to our environment has took us with surprise. Our daily routine as compared
to our immediate predecessors has changed enormously. At any instant, we can
access information easily, and also we are becoming both consumer and producer
of the information. With the latest innovations in the technologies nothing seems
to be impossible. With these completely new radical innovative technologies, we
can achieve what was once thought to be impossible. These new technologies have
given birth to new necessities for complex systems, which are safer, more capable,
more robust... Contrary to this, our existing product development processes are not
yet well equipped to harness completely the benefits of these new techniques and
technologies to deliver the organized complexity demanded into the products.

Over the years, the Standish group’s Chaos reports [Eveleens 2010, Hull 2010]
have reportedly shown the numbers of challenged projects nearly fixed at 46%, while
the percentage of failed projects varying between 18%–40%. In fact recent Chaos

http://www.laas.fr/
http://www.laas.fr/
http://www.cnrs.fr/
http://www.cnrs.fr/
http://www.laas.fr/
http://www.laas.fr/

2 General Introduction

report shows 24% of project as failures. Also, with rise in the complexity of the
products demanded, the traditional techniques used to develop them are often found
to be unsuitable or lacking in multiple aspects. The techniques, tools, and human
resources used to develop them remain under tremendous pressure. It is evident
that, our means to develop such highly complex systems are far from being ready
or suitable to develop them. We need completely new set of updated competent
methodologies, processes and tools to develop such new highly complex systems
and technologies, that are demanded nowadays and in near future. There is an
immediate need to completely overhaul our existing product design methodologies,
to take benefit from new technologies and deliver much more, better and faster.

The above mentioned concerns provide the motivation and fundamental neces-
sity of research to address them properly. We formulate our research goals keeping
in mind the previously identified concerns of system design industry. The primary
goal identified for the research was to improve systems engineering activities compre-
hensively to deliver with ease correct system with quality. In this thesis, to achieve
this primary goal, we divided it into three sub-goals: to be able to deliver correct
system demanded, to be able to deliver the quality of system demanded and to be
able to develop system with low cognitive load. To address the identified sub-goals
relevant research themes were identified with the various axes of systems engineering
(design and development of complex systems falls under a multidisciplinary domain
called Systems Engineering). To achieve the three subgoals, a goal based require-
ments modeling language is introduced, certain guidelines to write natural language
requirement are developed, a requirement traceability mechanism is introduced, a
multi criteria-multi participant decision making method is developed, which can
also be used for conflict resolution and negotiation. A few of the modifications are
proposed for system modeling techniques.

For the first sub-goal, to be able to deliver correct system demanded, requirements
engineering and requirements management were identified as major themes. For the
second goal, to be able to deliver the quality of system demanded, three themes were
identified requirements management, requirements traceability and decision mak-
ing. Finally for third sub-goal i.e., to be able to develop system with low cognitive
load, all four themes previously identified were recognized as necessary for its ac-
complishment. It is clear that, the issues with the three sub-goals are linked to each
other. As, the three sub-goals are holistically linked and they need to be addressed
holistically. Figure 1, shows the goals, subgoals and objectives of this thesis. Finally,
the major contributions of this thesis can be classified in the following themes of
research.

— Requirement Engineering,

— Requirement Management & Traceability,

— Decision Making/Engineering.

Following, we briefly present the importance of each theme to the problem and what
were the outcome of research from each of the themes, and show how they are linked
together to our primary goal.

3

To improve systems
engineering activities
comprehensively

To be able to de-
liver correct sys-
tem demanded.

To be able to de-
liver quality sys-
tem demanded.

Develop system
with least cogni-
tive load.

Requirements
Engineering

Requirements
Management

Requirements
Management

Requirements
Traceability

Decision
making

Requirements
Engineering

Requirements
Management

Requirements
Traceability

Decision
making

Figure 1: Thesis Goals & Objectives

Requirement Engineering, Management & Traceability

Requirements Engineering activities start as soon as the projects sets out. It is car-
ried out in an early phase of a system development program to understand the client
or end-users’ needs clearly. Requirements Engineering involves a set of activities,
which allow to understand the end-users’ actual need and transform them into a
contractual set of user-needs also called user requirements/customer requirements.
It is the most important phase of a project, as if it is sure that a requirements engi-
neering team has elicited all the right set of user requirements in the very beginning,
and if given to proper resources in forthcoming phases, the project is destined to
succeed. While, on the contrary, if even a trivial requirement is missed or misunder-
stood at this stage, it’s sure to cost dearly to the stakeholders involved in the later
phases. The later one discovers a problem, the higher it costs to them.

Although requirements engineering literature is largest among all the three
themes concerned with the thesis, there are still some of the problems and hur-
dles left, which need to be solved. There are substantially large number of tech-
niques proposed to carry out requirements engineering, but a few of them are really
popular. The majority of problems linked with the requirements arises during the
transition of the requirements, i.e., when requirements are passed from one person
to other. This aspect may seem to be trivial for someone, who has never worked

4 General Introduction

in the systems engineering industry, but nowadays in the era of globalization the
development is carried out round the globe and round the clock. Which leaves a big
space for blunders about the interpretation of requirement.

Requirements management & traceability can be visualize together as one man-
agement type activity, but still there is subtle boundary between them. Require-
ments management & traceability activities involve all the activities which are linked
to their handling, i.e., prioritization, implementation, negotiation and traceabil-
ity of requirements throughout the life-cycle. The requirement management is all
about how requirements are handled and carried out throughout the life-cycle of the
project. Requirements management activities are directly responsible for the quality
of the end product. A proven requirements management process will lead to greater
user confidence in the product. It can help to reduce the uncertainty of the project
success or failure. Requirements engineering should provide requirement traceabil-
ity, which is one of the recommended activities for the project development process.
Requirement traceability in systems engineering projects is much more sought-after
owing to their long lifespans. We show in the later chapters that, our approach can
provide the right traceability for right engineering activity with least effort. More
issues and details about requirements engineering, management & traceability are
presented in Chapter 2 & 3.

Decision Making and Conflict Resolution

In a systems engineering project, decision making and conflicts are pervasive phe-
nomenon, decisions are made and needed, as soon as the stakeholder identification
process starts. As, systems engineering project development involves interaction
among multiple disciplines, each having more or less vague understanding of oth-
ers, this often leads to emergence of conflicts during project as it progresses. Some
conflicts need tacit efforts and are resolved mutually, but a few of them are severe
conflicts. Such severe conflicts need to be resolved in order to go through the project
development. Similarly, evaluating and choosing a right architecture or component
requires efforts from multiple decision makers or stakeholders. User needs are elicited
and transformed into the system requirements and later into system architecture,
components, subcomponents,. . . Often, the organizations following the SE principles
model more than one alternative solution to the systems architectures, which are
later compared and evaluated over a few criteria to choose the best one. Various
stakeholders have differences regarding the priority of their requirements often arrive
at conflicts. These conflicts among the stakeholders, may emerge at any point of the
life cycle of product. System design activity begins after the system requirements
are fixed. Once the system requirements are fixed various system behavior models
are proposed. The follow-up process of these behavior models is physical allocations
to subsystems and components. During this step of system-modeling various prob-
lems arise: how to select the best set of subsystems and components to implement
the behavior? As there are numerous set of solutions proposed, it becomes tedious
task to analyze the various available possible configurations for system design. Of-

5

ten, these numerous solutions lead to conflicts among the decision-makers. These
conflicts can only be resolved by properly evaluating the proposed various solutions,
but these evaluations depend on the preference of the various system stakeholders
which are also decision-makers. An appropriate decision strategy can help to avoid
lot of wastage of time and resources.

Decision making is one of the area which can help to augment the quality of the
product and cut short the delivery time of the product by resolving the conflicts
and providing solutions to the evaluations of the requirements, architecture solu-
tions, design components,. . . More details about decision-making are presented in
Chapter 4.

Structure of the thesis

Introduction

Chapter1:

Chapter2:

Chapter3:

Chapter4:

Chapter5:

Conclusions &
Future Perspectives

Context of Thesis

Requirements

Requirements

Decision Making

Combining Previously
Developed Concepts

Engineering

Management
& Traceability

Figure 2: Thesis Outline

Figure 2, shows the outline of this thesis and how its different chapters are linked
together giving solution to the subgoals and themes shown in Figure 1. Following

6 General Introduction

to this general introduction, Chapter 1, presents the context of the problem i.e.,
the fundamental notions of systems engineering and its activities, with respect to a
few of standards EIA-630 [EIA632 2005], INCOSE handbook of systems engineer-
ing [Haskins 2011], IEEE 1220 [IEEE 2005]. It presents the problem focus, i.e., the
product life cycle and product development cycles. Finally, research foci of this
thesis are presented, i.e., the RE & RM, system modeling, and aspects related to
decision-engineering, it provides the links between the previously mentioned activi-
ties. Major problems for each foci are identified to carry out the research work.

Chapter 2, presents the state of art of requirement engineering and manage-
ment. The problems in the themes of requirement engineering and management are
exposed. The proposed solution are also presented, together with results and brief
discussion over each solution brought forward.

Chapter 3, presents the issues with the requirements traceability in the life cycle.
The state of art if requirements traceability with different objectives is presented,
various techniques are compared and then our solutions are presented to a few of
the problems.

Chapter 4, presents the state of art of decision making involved in SE project,
using the multi criteria group decision making, and conflict resolution. various
problematics of decision making and conflict resolution are presented. Finally, our
proposed solutions are presented and discussed how they contribute to the associated
sub-goals.

Chapter 5, presents how all the previously introduced solutions and modifica-
tions brought to the various themes can be holistically integrated together to provide
a comprehensive approach for the system design of complex systems. It also presents
an application of our comprehensive approach, on a real case study of a system de-
sign: Iron Bird Integrated Simulator (IBIS) system. IBIS shows how our techniques
can be used to create a complex system.

Final chapter presents the general conclusion of the research work carried out
during the thesis and the future perspectives.

Chapter 1

Context and Problem Formulation

Contents
1.1 Introduction . 7

1.2 Problem Context . 8

1.2.1 Complex Systems . 8

1.2.2 Systems Engineering . 8

1.3 Problem Focus . 13

1.3.1 Technical Processes . 13

1.3.2 Decision Management Processes 15

1.3.3 Vee-Model of Project Development Life-Cycle 15

1.4 Research Focus . 17

1.4.1 Requirements Engineering . 18

1.4.2 Requirements Management & Traceability 21

1.4.3 Decision-making . 23

1.5 Conclusion . 28

1.1 Introduction

Over thousands of years of human civilization, humans have evolved to learn
how to survive. Humans have surpassed other species by mastering the art of

resolving their problems by using tools and techniques, which they developed from
their immediate environment. Often, they created entities and structures which they
used in their day-to-day life to increase their quality of life and decrease the amount
of effort. These primary entities or structures were called simple machines or tools.
Over the time, humans learned to use a set of these machines together to solve their
problems, this set of interacting simple machines is called a system. Going forward
with the evolution humans continued learning to use these set of primitive systems
together to do relatively more difficult tasks. The moment humans interwove these
simple systems in such a manner that resultant system was no more comprehensible,
complex systems came into existence.

8 Context and Problem Formulation

1.2 Problem Context

1.2.1 Complex Systems

As, it is clear from the introduction the term complex system is relative. A system
may seem to be complex to one observer and simple to another. But in this thesis we
should formally define the boundary of interpretation of the term complex system.
The term complex system is previously defined in numerous references [Sage 2000,
Haskins 2011, IEEE 2005, EIA632 2005, ISO 2008, IEEE 1998, IEEE 2008].

Definition 1.1. Combination of interacting elements organized to achieve one or
more stated purposes [ISO 2008]. Complexity of a system is relative. A complex
system often involves multiple interdependent agents, a purposeful behavior, it often
learns and adapts and manifests an emergent behavior.

Definition 1.2. A combination of interacting elements organized to achieve one or
more stated purposes [Haskins 2011]. An integrated set of elements, subsystems,
or assemblies that accomplish a defined objective. These elements include products
(hardware, software,firmware), processes, people, information, techniques, facilities,
services, and other support elements.

Definition 1.3. A complex system is one that by design or function or both is
difficult to understand and verify [Weng 1999].

Elements of a complex system

A complex system has many diverse components, these components are often inter-
dependent, and there are usually nonlinear interactions, i.e., small changes can bring
big effects and big changes may lead to small effects. A complex system acts on
local knowledge and conditions, i.e., its not centrally controlled. It has a purposeful
and autonomous behavior. Complex systems tend to have hierarchical organization.

Behaviors of complex systems

A complex systems solves complex problems, it continually reshapes its collective
future, exhibits novelty and adapts itself, it learns from its experience and displays
emergent and possibly unexpected and unpredictable behavior. Complex systems
are both organized and varied.

1.2.2 Systems Engineering

The multidisciplinary domain concerned with the whole life-cycle of systems is often
associated to systems engineering. SE is recognized as a preferred mechanism to
establish agreement for the creation of products and services to be traded between
the two or more organizations. It can be applied for any kind of system development:
for a home appliance, an aircraft, a nuclear power plant, etc. Proper application of
SE principles and methods can maximize the chances of success for a project.

Problem Context 9

Definition of Systems Engineering

There are various institutions which have previously tried to provide a formal defini-
tion to Systems Engineering. INCOSE, NASA, USDoD, USDoT, AFIS, have coined
different definitions for SE.

Definition 1.4. INCOSE SE handbook [Haskins 2011] defines it as “Systems en-
gineering is an interdisciplinary approach and means to enable the realization of
successful systems.It focuses on defining customer needs and required functionality
early in the development cycle, documenting requirements, and then proceeding with
design synthesis and system validation while considering the complete problem: op-
erations, cost and schedule, performance, training and support, test, manufacturing,
and disposal. SE considers both the business and the technical needs of all customers
with the goal of providing a quality product that meets the user needs.”

Definition 1.5. NASA SE handbook defines it as [NASA 2007] “Systems engi-
neering is the art and science of developing an operable system capable of meeting
requirements within often opposed constraints.”

SE focuses on defining customer needs and required functionality early in the
development cycle, documenting requirements, and then proceeding with design
synthesis and system validation while considering the complete problem: operations,
cost and schedule, performance, training and support, test, manufacturing, and
disposal. SE considers both the business and the technical needs of all customers
with the goal of providing a quality product that meets the user needs. In simple
terms, the SE approach consists of:

– Identification and quantification of system goals,

– Creation of alternative system design concepts,

– Performance of design trades,

– Selection and implementation of the best design,

– Verification that the design is properly built and integrated, and

– Post implementation assessment of how well the system meets (or met) the
goals

In this thesis term SE or engineering project is used for representing hardware
intensive systems. The term software engineering or software project is used to
represent software intensive system. However, it is unquestionable that, the term
SE is applicable for both hardware and software based systems. We consider a
project to be of SE, when it has a majority of part in non-software subsystems. We
use the term non-software intensive system for a SE project and a software intensive
system for software engineering project.

10 Context and Problem Formulation

1.2.2.1 Historical Developments

The term “Systems Engineering" is comparatively new and can be traced to early
1930s to Bell Telephone laboratories. The discipline of “Systems Engineering” was
first time taught in 1950 at MIT [INCOSE 2013]. Over the years multiple SE stan-
dards have evolved, from MIL-STD 499 in 1969 to MIL-STD 499B in 1994, EIA-632
in 1998, IEEE-1220 in 1994 to IEEE-1220-2004, ISO/IEC 15288:2002 to ISO/IEC
15288:2008. SE as a discipline was formally recognized with the introduction of
international standard ISO/IEC 15288 in 2002 [Haskins 2011]. SE is continuously
evolving to the level System of Systems Engineering (SoSE).

First major applications of SE principles in modern age dates to World War II,
when a British multi-disciplined team was formed in 1937 to analyze air defense sys-
tem, and when Bell laboratories supported the development of project Nike during
1939-45 [Arunski 1999, Haskins 2011]. Space shuttle stands among one of the most
complex systems ever developed using SE. Nuclear reactors, satellite launch vehicles,
long-haul passenger aircrafts, aircraft carrier, supertankers, rapid-transit passenger
transport system are few of the popularly known man made complex systems. The
Table 1.1 provides an idea of increasing complexity of the systems under usage and
development in recent times [Albert 2012]. Table 1.1 compares the complexity of
various Airbus Industries aircrafts simulators through the span of 1989-2002.

Table 1.1: Increasing Complexity of Aircraft Simulators (1989-2002)

Metrics\Aircraft A-320
(1989)

A-330
(1992)

A-340
(1998)

A-380
(2002)

Components 30 50 68 100
Line of Code - - - - 1,000,000 4,500,000
Manual Coding - - - - 47% 19%
Average CPU Load
(models and exchanged data)

1 2 3 30

Avionics Signals 2000 4000 5000 9000

It is interesting to note that with the time the size of aircrafts have grown bigger
so has the complexity of the system.

1.2.2.2 Systems Engineering Project Life-Cycle Processes

Like any man made engineering system, SE project has a life-cycle. Every SE project
can be assumed to have two parts: product and project (management). Product
part is the expected end-product and enabling products which are expected to satisfy
or solve the problems of the client. Project part includes all the other necessary
activities and resources which allow to develop the product itself. ISO/IEC 15288
standard divides the project life-cycle into four stages as shown in Fig.1.1, it also
identifies four system life-cycle processes that are followed during the various stages
of the project:

Problem Context 11

System Life Cycle Processes
Agreement Processes Project Processes Technical Processes

Organizational
Project-Enabling Processes

Acquisition Process

Supply Processes

Life Cycle Model
Management Process

Infrastructure Management
Process

Project Portfolio
Management Process

Project Planning Process

Project Assesment and
Control Process

Decision Management
Process

Risk Management
Process

Configuration Management
Process

Information Management
Process

Measurement Process

Stakeholder Requirement
Definition Process

Requirement Analysis
Process

Architectural Design
Process

Implementation Process

Integration Process

Verification Process

Transition Process

Validation Process

Operation Process

Maintenance Process

Disposal Process
Quality Management

Process

Human Resource
Management Process

Figure 1.1: System Life-Cycle Processes (ISO 15288:2008) [ISO 2008]

1. Agreement Processes,

2. Organizational project-enabling processes,

3. Project Processes,

4. Technical processes,

The Agreement Processes are used to create the formal contracts of acquisition and
supply between two organizations or between two teams of a same organization.
They are employed to agree upon the various respective responsibilities of the orga-
nizations involved in the project.

The Organizational project-enabling processes are concerned with ensuring that
the resources needed to enable the project to meet the needs and expectations of
the organization’s interested parties are met. They are typically the strategic policy
process of the organization concern with remaining competitive and profitable in
the business.

The Project Processes are concerned with managing the resources and assets
allocated by enterprise management and with applying them to fulfill the agreements
into which that organization enters. They relate to the management of projects, in
particular to planning in terms of cost, time scales and achievements, to the checking

12 Context and Problem Formulation

of actions to ensure that they comply with plans and performance criteria, and to the
identification and selection of corrective actions that recover shortfalls in progress
and achievement.

The Technical Processes are concerned with technical actions throughout the
life cycle. They transform the needs of stakeholders first into a product and then,
by applying that product, provide a sustainable service, when and where needed in
order to achieve customer satisfaction. The Technical Processes are applied in order
to create and use a system, whether it is in the form of a model or is a finished
product, and they apply at any level in a hierarchy of system structure.

Concept Stage Development Stage Production Stage

Support Stage

Retirement
Stage

Utilization Stage

Figure 1.2: Generic Life Cycle (ISO 15288:2008)

A project life-cycle englobes all the activities surrounding the project from its
inception to its retirement. Fig.1.2, shows a generic project life-cycle as shown
in ISO/IEC/IEEE 15288:2008. A typical system engineering projects goes through
various stages: concept stage, development stage, production stage, utilization stage,
support stage and finally retirement stage. Table 1.2, presents the significance of

Table 1.2: Stages and their Purpose in Life Cycle ISO/IEC 15288:2008

Life Cycle Stages Purpose Decision Point

Concept
Identify stakeholders’ needs

Decision Options:
–Execute next stage,
–Continue this
stage,
–Go to a preceding
stage,
–Hold project
activity,
–Terminate project

Explore concepts
Propose viable solutions

Development

Refine system requirements
Create solution description

Build system
Verify and validate system

Production
Produce systems
Inspect and test

Utilization Operate system to satisfy users’ needs
Support Provide sustained system capability

Retirement Store, archive or dispose of the system

various stages in a generic life-cycle and the decision options available at each stage.
Another term popularly used within systems engineering is ‘development cycle’,
which consists of only the phases which are linked to concept and development
stages as shown in Fig 1.2 and Table 1.2. This thesis is primarily concerned with
the Technical processes involved during the development cycle. A few aspects of the
project processes which are directly linked to the Technical process are also studied.

Problem Focus 13

1.3 Problem Focus

Already, we have presented the global context of this thesis, now we present the
problem focus of the thesis, i.e., the precise scope of this thesis where solutions
have been brought up, which concerns to our problems. Our problem focus lies in
the Technical processes of the system life cycle processes and particularly in the
development cycle of the product. Next sections will discuss the Technical processes
and the development life cycle.

1.3.1 Technical Processes

Technical processes under ISO/IEC 15288 are further classified into eleven sub-
processes as shown in Table 1.3. The technical processes concerns with the technical
activities throughout the life cycle of the product from conception to retirements.
But in this thesis work we limit ourselves to the development life cycle of the prod-
uct, i.e., we limit ourselves to the process from stakeholder requirement analysis
till architectural Design Process. The implementation process, integration process,
verification process, transition process, validation process, operation process, main-
tenance process and disposal process are not in scope of our problem focus, we
present them briefly but they would not find any mention in rest of this thesis.

Table 1.3: Technical Process

Process Definition
Stakeholder
Requirement
Definition
process

The purpose of the Stakeholder Requirements Definition Process
is to define the requirements for a system that can provide the
services needed by users and other stakeholders in a defined en-
vironment. It identifies stakeholders, or stakeholder classes, in-
volved with the system throughout its life cycle, and their needs,
expectations, and desires. It analyzes and transforms these into
a common set of stakeholder requirements that express the in-
tended interaction the system will have with its operational envi-
ronment and that are the reference against which each resulting
operational service is validated.

Requirements
Analysis
Process

The purpose of the Requirements Analysis Process is to transform
the stakeholder, requirement-driven view of desired services into a
technical view of a required product that could deliver those ser-
vices. This process builds a representation of a future system that
will meet stakeholder requirements and that, as far as constraints
permit, does not imply any specific implementation. It results in
measurable system requirements that specify, from the supplier’s
perspective, what characteristics it is to possess and with what
magnitude in order to satisfy stakeholder requirements.

14 Context and Problem Formulation

Table 1.3 – Technical Processes continued
Process Definition
Architectural
Design Pro-
cess

The purpose of the Architectural Design Process is to synthesize a
solution that satisfies system requirements. This process encapsu-
lates and defines areas of solution expressed as a set of separate
problems of manageable, conceptual and, ultimately, realizable
proportions. It identifies and explores one or more implementa-
tion strategies at a level of detail consistent with the system’s
technical and commercial requirements and risks. From this, an
architectural design solution is defined in terms of the require-
ments for the set of system elements from which the system is
configured. The specified design requirements resulting from this
process are the basis for verifying the realized system and for
devising an assembly and verification strategy.

Implementation
Process

The purpose of the Implementation Process is to realize a speci-
fied system element. This process transforms specified behavior,
interfaces and implementation constraints into fabrication actions
that create a system element according to the practices of the se-
lected implementation technology.

Integration
Process

The purpose of the Integration Process is to assemble a system
that is consistent with the architectural design. This process
combines system elements to form complete or partial system
configurations in order to create a product specified in the system
requirements.

Verification
Process

The purpose of the Verification Process is to confirm that the
specified design requirements are fulfilled by the system. This
process provides the information required to effect the remedial
actions that correct non-conformances in the realized system or
the processes that act on it.

Transition
Process

The purpose of the Transition Process is to establish a capability
to provide services specified by stakeholder requirements in the
operational environment. This process installs a verified system,
together with relevant enabling systems, e.g., operating system,
support system, operator training system, user training system,
as defined in agreements.

Validation
Process

The purpose of the Validation Process is to provide objective
evidence that the services provided by a system when in use com-
ply with stakeholders’ requirements, achieving its intended use in
its intended operational environment. This process performs a
comparative assessment and confirms that the stakeholders’ re-
quirements are correctly defined.

Problem Focus 15

Table 1.3 – Technical Processes continued
Process Definition
Operation
Process

The purpose of the Operation Process is to use the system in
order to deliver its services. This process assigns personnel to op-
erate the system, and monitors the services and operator-system
performance.

Maintenance
Process

The purpose of the Maintenance Process is to sustain the capabil-
ity of the system to provide a service. This process monitors the
system’s capability to deliver services, records problems for anal-
ysis, takes corrective, adaptive, perfective and preventive actions
and confirms restored capability.

Disposal Pro-
cess

The purpose of the Disposal Process is to end the existence of
a system entity. This process deactivates, disassembles and re-
moves the system and any waste products, consigning them to a
final condition and returning the environment to its original or
an acceptable condition.

1.3.2 Decision Management Processes

As decisions need to be made during the architectural design process. ISO/IEC
15288:2008 mentions a decision management process specifically to the project pro-
cesses. Our interests lies in the decisions which are made during the analysis of
alternatives for component selections. For these reasons decision management pro-
cess lies in our areas of interest.

ISO/IEC 15288:2008 states that: “the purpose of the decision management pro-
cess is to select the most beneficial course of project action where alternatives exist.
This process responds to a request for a decision encountered during the system
life cycle, whatever its nature or source, in order to reach specified, desirable or
optimized outcomes. Alternative actions are analyzed and a course of action se-
lected and directed. Decisions and their rational are recorded to support future
decision-making.”

1.3.3 Vee-Model of Project Development Life-Cycle

There are various project development life-cycle models, such as Waterfall model,
Spiral, Vee, and Agile Development models like XP, yPBL which are used to mark
the various stages of life-cycle: definition, design, development, production, deploy-
ment, and withdrawal of the system. In this thesis, we considered the Vee-model
of life-cycle owing to the ease of visualization it provides for the various Technical
processes and its popularity and acceptance in SE community. We assume that the
product development cycle follows Vee-model as shown in Figure 1.3. The devel-
opment cycle is the focus of our research problems. We researched throughout the
literature to determine the key activities which influence the majority of product
and their success or failure.

16 Context and Problem Formulation

User Requirements
Elicitation Process

System Requirements
Definition

Architecture Design

Detail Design

Procurement &
Implementation

Unit &Integration
Testing

Subsystem
Verification

System
Verification

System
Validation

& Analysis

Figure 1.3: Vee-Model of Development Life-Cycle

The Vee-model of system development cycle shown in Fig.1.3, constitutes only
the two premier stages of generic life cycle: concept stage and the development stage,
as shown in Fig.1.2 [Forsberg 1995, Haskins 2011]. Vee-model shows the systematic
flow of various processes in the development cycle of the product. The presented
Vee-model comprises till the validation process of the presented Technical processes,
hence it is only the project development cycle. An extended Vee-model covers all of
the Technical processes of the project life cycle, from conception process till disposal
process mentioned in [ISO 2008, Forsberg 1995].

User requirements elicitation phase’s purpose is to elicit all the relevant user
needs, desires, wants, rationales and determine exhaustively all the potential stake-
holder and their corresponding roles, which can influence the success of the project.
End result of this phase should provide exhaustive list of all the user/stakeholder
needs with their origins.

System requirements definition phase takes input from the previous phase and
transforms them into set of system requirements. Abstract models of the func-
tional and structural architectures are developed to understand better the system
requirements & vice-versa.

Architecture design & analysis phase involves development of concepts of struc-
tural and behavioral architectures to satisfy the system requirements. Multiple
logical and structural architectures are proposed to satisfy the system requirements.
System requirements are allocated to the logical and structural architectures and

Research Focus 17

architecture specifications are developed. Evaluations of architectures is carried out
by a group of developing team and stakeholders, Once a particular architecture is
accepted detail design is carried out.

Detail design phase involves transforming the architecture specifications into
specific design specifications. The abstract architectures are rendered more precise.
The goal of this phase this phase is a set of detailed design specifications that should
result in a useful system product. Another product of this phase is a refined set
of specifications for the operational deployment and evaluation phases of the life
cycle. Again, design alternatives are evaluated and a final choice is made, which
can be developed with detail design testing and at least preliminary operational
implementation.

During the Procurement and implementation phase all the equipments and de-
sign components are procured from the respective organization and system is im-
plemented as described in the detail design phase.

Unit & integration testing phase involves with every design equipment to be
tested unit wise and with completely integrated to its proximate environment. The
testing is carried out with respect to the detail design specifications previously de-
veloped.

Sub-system verification phase involves the test cases for the subsystem to verify
that are in conformance with the subsystem architectural specifications previously
developed in the architectural analysis phase.

System verification phase put to tests the system developed to verify that the
system corresponds well and is in conformance with the system requirements. It is
verified that all the system requirements are implemented into the system.

System validation phase involves putting system to series of test that were ac-
cepted and contracted with client during the stakeholder requirement elicitation
process. These tests validate that system satisfies well all the the contracted needs
of the stakeholders. Our problem focus remains in the development cycle of the
product.

1.4 Research Focus

Currently, there are numerous issues in the development cycle of the product. This
thesis tried to focus on the issues which seemed more influencing on the end-result.
It is clear that the errors caused during the left hand side of the Vee-model of
development cycle imply huge cost escalations and other unnecessary wasteful ex-
penditures. If the solutions to the problems of the processes to the left hand side of
Vee-cycle could be brought, then results of the processes to the right hand side of
Vee-cycle would improve significantly. We have classified some of the problems of the
left hand side into three broad categories: requirements engineering, requirements
management & traceability and decision engineering. In this thesis, we present re-
quirements engineering, requirements management & traceability separately owing
to the extent of contribution in them, but in literature they are treated in single
domain of requirements engineering.

18 Context and Problem Formulation

1.4.1 Requirements Engineering

Before discussing about requirements engineering & management it is essential to
know, what is a ‘requirement’? In literature, there are various definitions of re-
quirement, and its very hard to say which one is most appropriate. An appropriate
definition of requirements [MITRE 2012] is “a requirement is a singular documented
need—what a particular product or service should be or how it should perform. It is
a statement that identifies a necessary attribute, capability, characteristic, or quality
of a system in order for it to have value and utility to a user."

INCOSE SE handbook [Haskins 2011] defines it as “A statement that identifies
a system, product or process’ characteristic or constraint, which is unambiguous,
clear, unique, consistent, stand-alone (not grouped), and verifiable, and is deemed
necessary for stakeholder acceptability.”

Requirements engineering & management are concerned with the elicitation,
evaluation, specification, analysis, and evolution of the objectives, functionalities,
qualities and constraints to be achieved by a system within an organizational or
physical environment [van Lamsweerde 2009].

Requirements engineering is the discipline concerned with establishing require-
ments. It consists of requirements elicitation, analysis, specification, validation and
verification methods (V&V), communicating, documenting and managing require-
ments. Requirements engineering is a set of interdisciplinary functions that mediates
between the domains of the acquirer (customer) and the supplier (developer) to es-
tablish and maintain the requirements to be met by the system, software or service
of interest [IEEE 2011].

Sommerville and Sawyer [Sommerville 1997], define it as “a requirements engi-
neering process is a structured set of activities which are followed to derive, validate,
and maintain a systems requirements document.”

Out of the eleven technical processes defined in ISO/IEC 15288:2008, stake-
holder requirement definition process and requirement analysis process fall under
the domain of requirements engineering, previously mentioned in Table 1.3.

Stakeholder is a popularly used term in SE issues and processes, understanding
stakeholders is necessary in the context of project development, the term stakeholder
can be defined as [ISO 2008] “a party having a right, share or claim in a system or
in its possession of characteristics that meet that party’s needs and expectations.”

“A stakeholder in an organization is any group or individual who can affect or
is affected by the achievement of the organization’s objectives.”[Freeman 2010]

The definition of stakeholder in the domain of systems & software engineering
changes slightly. In the context of information systems, stakeholders may be defined
as: “A stakeholder is any individual, group, or organization that can affect or be
affected (positively or negatively) by the system under study and that have direct or
indirect influence on the systems.”[Ballejos 2008], INCOSE SE handbook defines it
as “A stakeholder is any entity (individual or organization) with a legitimate interest
in the system.”

Requirements can be categorized in two categories: Stakeholders requirements &

Research Focus 19

System requirements. Stakeholders requirement are also known as user requirements
or user needs, they are defined as abstract statements describing the system services
which people need or desire to have in their system for use and integration with their
organization [Sommerville 1997].

System requirements are detailed specifications of the system facilities which
should be implemented and the constraints on that implementation. This descrip-
tion may be the basis of a contract for a system development so it should be a
complete description of the behavior of the system [Sommerville 1997].

Stakeholder requirements are treated and transformed to system requirements,
which represent more specifically what system should do in order to achieve the
stakeholder requirements. A system requirement is more technically enriched form
of stakeholder requirement.

The system specifications are derived following to system requirements, system
specification are formalized and quantified system requirements; the system specifi-
cations typically include the following [Buede 2011, Sage 2000]:

1. A definition of the system as an entity,

2. The major characteristics of the system,

3. Related technical performance measures for system evaluation,

4. Some general criteria for design and assembly of the system,

5. Major data requirements for the system,

6. Logistics and producibility considerations,

7. Test and evaluation requirements,

8. Quality assurance provisions.

Stakeholder requirements are largely independent of any particular product
team; they are not specific to a particular architecture or concept, Whereas spec-
ifications are more specific towards with a particular architecture or concept in
focus [Ulrich 2008].

1.4.1.1 Requirements Elicitation, Modeling & Analysis

Requirement elicitation is the term used to designate the process of deriving require-
ments from the potential end-users, clients, and their environment. A substantial
part of requirement elicitation is dedicated to uncovering, extracting, and surfacing
the wants of the potential stakeholders. The major activities of the requirement
elicitation involve, understanding the application domain, identifying the sources
of requirements, analyzing the stakeholders, selecting the techniques, approaches
and tools to use and eliciting the requirements from stakeholders and other re-
sources [Zowghi 2005, Goguen 1993]. The process starts with the very basic need
of product or system. The product need is followed up by stakeholder identifica-
tion process (SIP). The SIP leads to various roles of the stakeholders influenced
by the various rationales and beliefs. After identification of various stakeholders,

20 Context and Problem Formulation

their needs are taken into account. This iteration is carried out suitable number of
time, until the development team is satisfied with the SIP that all the stakeholders
have been taken into account. These gathered needs are the result of first phase
of product development life cycle. The gathered needs are also known as customer
requirements or stakeholder requirements.

There are many techniques in the literature which describe to carry out the elic-
itation processes such as: interviews (closed and open), questionnaires, task analy-
sis, domain analysis, introspection, repertory grids, card sorting, laddering, group
work, brainstorming, joint application development, workshops, observation, pro-
tocol analysis, apprenticing, prototyping, goal based approaches, direct elicitation,
ethnography, viewpoints, scenario generation, use-cases, Mind Maps, etc.

Requirement Modeling refers to techniques involved with the comprehension
and representation of the context and environmental problem domain of the system
under development. Requirement modeling allows to analyze and understand the
problem and propose the pertinent solutions, and their representation using a formal
or semi-formal technique. There are many Requirement Modeling Languages (RML)
and techniques proposed in the literature such as: i* framework, KAOS framework,
Use-cases modeling from UML & SysML, Z-language, B-language, Tropos based
methodologies etc.

Although, there are numerous RMLs proposed in the literature Natural lan-
guages are usually the one which are used to capture the requirements formally or
informally first-hand from the stakeholders, as they allow to document or write any
type of need, wants or desire owing to the huge vocabulary it boosts. The process of
writing down the requirements is also called requirement documentation in require-
ments engineering. Natural language remains the only viable solution by through
which the requirements can be communicated and validated by the end-users, clients
or stakeholders emerging from the various disciplines. Formal languages allow to
represent the requirements in a unambiguous way, and are often sought by the
developers as blue prints for development process. But, they are often source of
irritation to customers as they can’t understand it, which causes issues in making
them contractual.

1.4.1.2 Research questions for Requirements Engineering

In literature, we have identified a few of the problems in requirement engineering and
propose a few of pertinent solutions to them. State of art of relevant requirements
engineering activities and the proposed solution for each challenge is presented in
Chapter 2. Identified research question for the requirements engineering activities
are listed as below:

Question 1.1. What are the relationships between the various requirement arti-
facts, customer requirements and system requirements ? what is their significance
to clients and other stakeholders ?

Question 1.2. How to improve the early phase requirements modeling with ade-

Research Focus 21

quate level of scalability of graphical diagrams ?

Question 1.3. How to improve the modeling of the requirements such that their
core and optional features of the system under development are clear to designer
from the beginning of RE phase ?

Question 1.4. How to model the preference of the various stakeholders and weight
the various goals and objectives of the system under the study during the require-
ment modeling phase?

Question 1.5. How to write requirements in a more uniguous manner, which are
also easy to understand?

1.4.2 Requirements Management & Traceability

Requirements management is the process of managing existing requirements and
requirements related artifact [Glinz 2011]. Requirements management en-globes
activities that ensure requirements are identified, documented, maintained, com-
municated and traced throughout the life cycle of a system, product, or ser-
vice [IEEE 2011, Pyster 2012]. Requirements management ensures that each of
the desired requirement is built into the system according to their priority; if a
requirement is abandoned, then provides the reasons for its seclusion.

1.4.2.1 Requirements Negotiation & Prioritization

Once the stakeholder requirements are elicited and analyzed by the developing team,
before passing to the next stage, they need to be negotiated with the various stake-
holders, designers and developers. There are many reasons to carry out this activity
such as: exhaustive implementation of the all the requirements may not be feasible
with the given resources, client stakeholders may not agree upon requirement, the
level of requirements’ priority or criticality. Or simply it may not be possible to
implement the given requirement with given resources for the enterprise. All such
requirements are put through the negotiation process. This process is known as re-
quirements negotiation . The result of the negotiation process leads to an acceptable
description or suitable modification of the requirement such that the stakeholders
agree upon the decision and next stage can be carried on.

For developing a system, it is obvious that all the requirements or needs do not
hold the same importance for stakeholders. The needs and thus leading requirements
need to be given priority in order of their perceived importance or value to the
stakeholder. This process is popularly known as requirements prioritization. There
exist numerous techniques in the literatures but still RE community phases multiple
problems while carrying out these activities [Parnell 2011, Jureta 2006].

1.4.2.2 Requirements Traceability

In systems development process, requirements traceability is the one of the antici-
pated attributes for the quality control. In EIA-632 standard [EIA632 2005] require-

22 Context and Problem Formulation

ments traceability is described as an important task of outcomes management under
control process requirements procedure. It is defined as, requirements traceability
is instituted for tracking requirements from the identification of acquirer and other
stakeholder requirements to the system technical requirements, logical solution rep-
resentations, physical solution representations, derived technical requirements, and
specified requirements.

Requirements traceability is seen as an index of quality in systems and is one of
the anticipated attributes throughout the product life-cycle. Various norms like EIA-
632, IEEE-1220 [IEEE 2005], ISO/IEC 15288 [ISO 2008], and CMMI [SEI 1994],
recommend it as ‘best practice’ and strongly suggest its usage.

The recent research works of Gotel et al. [Gotel 2012a, Gotel 2012b] have led to
recent developments in requirements traceability, by providing the much necessary
vision for the future course of research. In [Gotel 2012b, Gotel 2012a] they explored
in detail seven key challenges of traceability: purposed, cost-effective, configurable,
trusted, scalable, portable, and valued. They identify the grand challenge of trace-
ability (GCT) called ubiquity, which could only be achieved by achieving the seven
other in a systematic manner.

Requirements traceability is always associated with artifacts. In literature, an
artifact is defined as something that is created or shaped by humans, either di-
rectly or indirectly via automation [Gotel 2012b]. In other words a product, which
may have originated during the course of development process or is utilized dur-
ing the development process or later, and is important for the success of project.
Requirements traceability process consists of tracing artifacts to the user needs, re-
quirements, rationales, stakeholders, design, use cases, test cases, and constraints
or to final disposal plan. This process consists of four major parts: creation, gener-
ation, maintenance and usage of traces. Requirements traceability finds vast usage
in many aspects of product life-cycle: quality management, product verification
and validation, testing, change impact analysis, maintenance plan, re-usability plan
etc. It leads to better client satisfaction and a stronger confidence in product from
customer side.

As previously mentioned, requirements traceability process implies four activ-
ities: trace creation, trace generation, trace maintenance, and trace usage. Trace
creation can be reactive or proactive, usually it is reactive, i.e., traces are created as
a response to user demand of trace capture, in proactive tracing the system proposes
to capture traces. Traceability generation process can be manual, semi-automatic
and fully automatic. Trace maintenance is most demanding activity and can be
completely manual or semi-automated. Manual traceability generation techniques
are often plagued with scalability issues, whereas the automatic traceability recovery
techniques lack in precision and recall. The recovery process recovers the traces from
the various existing artifacts. The trace maintenance process keeps track of evolu-
tion of the various requirements and various artifacts. The trace utilization process
deploys the available information from the traces to various systems engineering ac-
tivities like: configuration management, conflict resolution, system comprehension,
project scheduling, etc.

Research Focus 23

The scope of requirements traceability can be different with different traceability
policies or strategies. A good requirements traceability process in a project provides
the accountability of every artifact from its very fundamental reason of existence.
There are primarily three types of requirement traceability generation techniques:
manual traceability, automatic traceability, semi-automatic traceability. Recent
trends have shown that stakeholders are more and more aware of values provided by
the requirements traceability. Value based traceability emerged as new paradigm in
the domain of requirements traceability, it becomes evident to have an estimate of
cost of traceability scheme, which an organization is supposed to use. This thesis
tried to provide a semi-automatic approach for requirements traceability with taking
in account important questions of value and cost of traceability .

1.4.2.3 Research questions for Requirements Management

A few of the research problems in requirements management which provide the basis
of research work are presented below:

Question 1.6. How to negotiate, prioritize and weight the requirements with the
stakeholders?

Question 1.7. How to engineer requirements such that requisite amount of trace
requirements are implemented throughout the SE of life cycle of product?

Question 1.8. How to do requirements traceability in SE projects?

Question 1.9. How to maintain requirements traceability in SE project ?

Question 1.10. How to provide the cost effective requirements traceability?

Question 1.11. How to provide purposeful requirements traceability to stakehold-
ers?

Question 1.12. Can we estimate the cost of requirements traceability? If yes how?
if no why?

Solutions to above questions are presented and discussed in Chapter 3.

1.4.3 Decision-making

Decision making is a pervasive phenomenon of nature, from microscopic level to
macroscopic levels, from plant kingdom to animal kingdom, every individual takes
decisions at some point. Humankind is also busy in making decisions at one or
another point of time. Every moment of a human life is surrounded by decisions, to
do something or to not to do something. Sometimes these decisions are trivial and
sometimes these decisions hold great importance. Often, the decisions made in the
daily-life are based on single criterion and are made by a single decision maker. The
responsibility of such a decision depends upon the sole single decision maker, but

24 Context and Problem Formulation

at some instants some decisions involve more than one decision maker, thus adding
fabric of complexity to the decision problem.

In this thesis, we often use two terms decision-maker and stakeholder. The term
decision-makers refers to the entities, who are responsible for choosing a course of
action or option. All decision-makers are stakeholders but the not all stakeholders
are decision makers. Decision making becomes more complex, when multiple criteria
get involved in the problem. Such problems, where multiple criteria and multiple
decision makers are involved in a problem are called multi criteria decision making or
analysis (MCDM/MCDA) problems [Triantaphyllou 2000]. Often, such is the case
of systems engineering projects. Decisions are needed in a product development
cycle, although they are made much before the project even starts, i.e., they are
not only parts of the technical processes but also of the other three processes of the
systems life-cycle and particularly of project processes. In this thesis, we concentrate
on the decision making applicable to the product development cycle. Decisions are
made whenever there are choices to be made. In systems engineering often a series
of decision are made, such as series of decision can be termed decision-strategy.
Decisions are also needed whenever conflicts broke out among stakeholders during
the product development cycle. Often, in a SE project, decisions are made while
taking in account multiple criteria and multiple decision makers.

A systems engineering project involves multiple stakeholders and multiple cri-
teria during decision analysis [Sage 2000]. Such problems need attention and a
formal methodology, to provide pertinent solutions. Variety of methodologies ex-
ist in the literature which provide more or less acceptable solutions, such as the
famous AHP technique [Saaty 1990], Multi-attribute utility theory [Keeney 1993],
ELECTRE Methods [Roy 1968, Roy 1978, Roy 1973], PROMETHEE [Brans 2005],
TOPSIS [Hwang 1981], etc. In this thesis, we are concerned with a systematic
decision making methodology for complex decisions involving MCDA/MCDM.

A systems engineering project typically involves a crowd of multi-disciplinary
stakeholders. Success of a project depends upon the decisions and choices made
during the analysis of architectures & alternatives, and during the selection of com-
ponents during the detail design phase [Ulrich 2008]. Systems engineering is about
making the right decisions to achieve the development of a product which is exactly
demanded by their clients and stakeholders. These right decisions do not come
automatically from a thin air, rather precise metrics are needed to evaluate the ap-
propriate alternatives and right design components. As these decisions are based
on these multiple criteria, they need to be weighted to measure their impact on the
final decision choice. This task of providing weights to the criteria may seem trivial
for a single decision maker, but when multiple stakeholders are involved this task
becomes fairly difficult. As the different stakeholders differ upon the weights for
various criteria, while each stakeholder being correct in his own view.

It is interesting to see that industries seldom use techniques which demand high
cognitive loads on DMs. Even if a techniques is more correct technically but leads
to high cognitive load, it will hardly find usage in industry. Industries prefer simple
techniques to pacify majority of its non-technical stakeholders.

Research Focus 25

1.4.3.1 Approaches of Decision making

In literature, there are popularly three types of decision theories mentioned: nor-
mative, descriptive and prescriptive. Normative theories describe how the rational
decisions should be made in an organization. They are also known as theory of
rational choice. They assume that a rational decision-maker (DM), will choose an
alternative with highest expected value. Most popular theory of the rational be-
havior under risk and uncertainty is expected utility theory [Von Neumann 1937],
where the objective is to maximize the expected utility. In literature, there are
multiple utility theories and there is no consensus on a single utility theory. In eco-
nomics, Utility can be defined as “the pleasure or satisfaction obtained from a good
or service.”

Decision making, is not new to the human being, thousands of years ago an-
cient civilizations have shown engineering and design skill evident from the mon-
uments. Such designs needed some sort of decision making approach, but unfor-
tunately they was never published. The earliest mentions of in utility in modern
times can be traced to Gabriel Cramer (1728) [Cramer 1728] and Daniel Bernoulli
(1738) [Bernoulli 1738] theory can be traced to Daniel Bernoulli in 1738, with his
solutions of St. Petersburg Paradox. Table 1.4, presents the Keeney’s classification
of the decision theory [Keeney 1992].

Table 1.4: Classification of the Three Categories of Decision Theories [Keeney 1992]

Theories Domain Criterion
Judges of
Theories

Normative
All
decisions

Correctness
Theoretical
sage

Descriptive
Classes of
Decisions

Empirical
Validity

Experimental
Researcher

Prescriptive
Specific
Decisions

Usefulness
Applied
Analysts

Other well known works in utility theory are from Keeney &
Raiffa [Keeney 1993], Fishburn [Fishburn 1970], subjective utility the-
ory [Savage 1954], introduced by Savage in 1954. Normative theories assume
that decision makers are able to make the required assessments of probabilities
and utilities accurately. However, over the years experiments have shown that
the axioms of the expected utility theory are often not held valid during the
actual decision making. It has been argued that the decisions cannot be made
by just analyzing the probabilities, which are often the base of utility theories, as
they represent most of the time decision making problem by a lottery, which are
obviously based on some probability function.

Descriptive theories describe how people actually make decisions. Descriptive
theories use psychological and social behavior models to reason how decisions are
actually made. One of the popular descriptive theory is the prospect theory proposed

26 Context and Problem Formulation

by Kahneman and Tversky in 1979 [Kahneman 1979]. The descriptive theories argue
that basic assumption of normative theories of complete human rationality is not
only impractical but unrealistic. The judged expected utility of an alternative cannot
be reproduced same by different rational stakeholders. Judging of utility depends
upon other subconscious factors arising during the interaction process.

The discrepancy between theory and real behavior is the very heart of prescrip-
tive interventions and decision analysis as a more pragmatic approach than what the
normative theories suggest [Bell 1988]. In 1966, Howard coined the term decision
analysis as a formal procedure for the analysis of decision problems.

Prescriptive decision theories are usually domain specific and they are judged
my their usefulness or ease of usability, French et. al. [French 2000] suggested that a
decision analysis theory should be able to perform reasonably on following clauses:

• Axiomatic basis. The axiomatic analysis should be acceptable to users and
they should want their decision making to reflect the ideal behavior encoded
in the set of axioms used for analysis.

• Feasibility. The techniques and methods should be easily usable, suggesting
that input data elicitation process should be feasible.

• Transparency to users. The analysis process should be transparent to the
various participating stakeholders and they should be able to understand the
analysis process.

• Robustness. The sensitivity to the variations in input must be understood,
e.g., the heavy dependency on a particular data should be taken in account
during the analysis process.

1.4.3.2 Conflict Resolution & Decision making

Occurrence of conflicts in SE projects is part of reality in which projects are devel-
oped. During a SE project, often some stakeholders do not agree upon some decision,
or some direction of flow of process and lead to a state of fix or indecisiveness. Such
state of fix or indecisiveness over some issue can be called a conflict . Conflicts
in case of SE projects cannot be resolved using the traditional conflict mitigation
approaches. In literature [Parnell 2011], the conflicts during the SE projects has
received attention recently with the increase in the number of challenged projects,
which have been somehow to poor conflict resolution approaches deployed by the
organizations. Even when all the decisions are carefully carried out, conflicts do
occur and seek attention. Decision making processes are accountable for conflict
resolution in a SE project.

Project development process often encounters conflicts, which can emerge dur-
ing any of the project cycle phase: user/customer requirements elicitation, system
requirement definition, architecture analysis, detailed design, implementation, test-
ing, verification & validation, etc. During the user/customer requirements elicitation
phase conflicts occur among stakeholders for prioritization of the needs, similarly

Research Focus 27

in system requirements definition phase, conflicts may occur during finalizing the
system requirements metrics precision.

Choosing the appropriate architecture concept may pose a conflict among the
stakeholders during architecture analysis and selecting the right sub-system compo-
nents for implementing the final system may also lead to a conflict. It is very clear
that, whenever, there is a choice to be made among the available solutions, with one
or more DMs involved, there could be a potential for a conflict or an indecisiveness.

1.4.3.3 Preference Modeling and Negotiation

Preference modeling is the process of evaluating concepts with respect to customer
needs and other criteria, comparing the relative strengths and weaknesses of the
concepts, and selecting one or more for further investigation and development.

The decision-making techniques can be classified into two types: formal and
informal techniques. The various formal existing approaches for modeling and eval-
uating the preferences are as follows [Triantaphyllou 2000, Greco 2004]: weighted
sum model (WSM), weighted product model (WPM), analytic hierarchy pro-
cess (AHP) and its improvements like analytic network process (ANP), the three
ELECTRE methods and the TOPSIS method. Then there are other categories
of decision-making tools, which allow imprecision in to the preference struc-
ture like Fuzzy sets and Fuzzy multi criteria decision-making. Utility theories
[Fishburn 1970, Arrow 1963] and multi-attribute utility theory [Keeney 1993], are
also used for decision-making. The other significant approaches are as follows:
PROMETHEE -I & II, multi objective linear programming [Greco 2004]. The ques-
tion, “which decision making method, should be used to choose the best method for
decision making? ” is yet to be answered by the scientific community.

The informal techniques are the group decision-making techniques based on vot-
ing involving cardinal or ordinal social welfare functions. The graph model for
conflict resolution can be categorized into informal techniques for decision making.
The graph model for decision making has been used earlier for disputes and con-
flicts [Fang 1993], for example application of the resolution of the environmental
conflict of Garrison diversion unit (GDU) [Fang 1993], and Canadian-US softwood
lumber dispute. The other works on graph model have tried to answer the stability
analysis of states with uncertain preferences and also with the measure of strength
of preferences. Issues like status quo analysis and policy stability of states have been
discussed in previous works [Li 2004a, Hamouda 2004, Zeng 2004]. The graph model
uses the preference structures defined in literature [Fishburn 1970, Öztürké 2005].
Roy et al. [Roy 1984] tried to define what is called fundamental relational system of
preference and combined relational system of preference. Recent research has shown
that, the traditional game theoretic approaches i.e., non-cooperative games are not
very beneficial in system design activities [Mahajan 2004].

Similarly, the conflict resolution and negotiation in requirement engineering as
previously introduced five generations of WinWin negotiation models [Boehm 1998,
Boehm 2001, Jureta 2009, Kukreja 2012, Robinson 1990, Boehm 1995]. Machine

28 Context and Problem Formulation

learning based approaches for software prioritization [Perini 2012] [Egyed 1997] an-
alyzed the negotiation patterns, but still most of them lack to provide a systems
theory of how the requirements are compared and given rank within the cognition
of the stakeholders.

1.4.3.4 Research Questions for Decision Making

In literature, we have evaluated the state of art of decision-making techniques for
various phases of development life-cycle. State of art of Decision-making is presented
in Chapter 4. The major issues in decision-making are listed below:

Question 1.13. How to generate weights for a set of criteria for group decision
making?

Question 1.14. How to remain transparent to all the stakeholders or decision
makers in decision process?

Question 1.15. How to do group decision making and negotiate?

Question 1.16. How to resolve a conflict?

Question 1.17. How to provide a requisite level of transparency to the various
decision makers?

Solution to the above mentioned issues are presented in the Chapter 4.

1.5 Conclusion

Previously, we have presented problem context, followed by problem focus and then
research focus. Although, we have divided the problems found in the literature
in three subcategories: requirements engineering & management and decision en-
gineering. The identified problems are linked to each other in an holistic manner,
small errors arising in the requirements engineering phase may jeopardize the whole
project. It would be interesting to note that an incomplete solution to any prob-
lem may create another problems instead of solving it. Great efforts have to be
poured into the requirements engineering and management, during their elicitation
and prioritization, and equally great efforts have to be poured in for their trace-
ability to develop a quality product. A product should satisfy its end-users and
clients as much as possible. To make this happen, appropriate components and
design elements should be included in the system according to their perceived util-
ity by the end-users. This can only be achieved through efficient and transparent
decision-making.

Chapter 2

Requirements Engineering

Contents
2.1 Introduction . 29
2.2 What are actually requirements ? 30

2.2.1 State of Art Requirements Engineering Techniques 36
2.2.2 Proposed Formulations on Requirements 40
2.2.3 Proposed Comprehensive Requirements Modeling Language . 41

2.3 Writing Natural Language Requirements 47
2.3.1 State of Art of NLRs Writing Techniques 47
2.3.2 Proposed Approach for Writing Requirement 53
2.3.3 Experiment and Empirical Findings 55
2.3.4 Using Negation to Negotiate the Requirements 58

2.4 Discussion . 58
2.5 Conclusion . 59

2.1 Introduction

Requirements are backbone of a SE project. The early phase of requirements
engineering deals with elicitation of stakeholder needs, expectations, require-

ments, system environment, operational capabilities, constraints, points of interac-
tions with the system, etc., of the system under development and determine the
measure of effectiveness and measure of performance. The needs and requirements
should be traced to the various rationales of stakeholder with their preferences. Un-
derstanding stakeholder needs, requirements, architecture specifications, and design
specifications for a complex product holds up-most importance in a SE project. An
improperly carried out RE activity can cost dearly to the project and cause dents
into the image of developing enterprise. There are issues with properly eliciting
requirements and their representations. Writing requirements is a critical task for
future system development. An ambiguous requirement can jeopardize, delay or
may lead to faulty design solution to the problem, whereas a properly written set
of requirements can swift the way for the rapid development of the right product
demanded. In this Chapter, we explore a few of the problems of the RE phase that
were raised in Section 1.4.1, we provide their corresponding state of art and propose
some solutions to the identified problems.

30 Requirements Engineering

A SE project involves multiple stakeholders, in their various forms of roles and
actors, during and after the various SE project phases. These stakeholders and their
various roles and responsibilities lead to various needs and requirements. Require-
ments engineering (RE) activities englobe activities like stakeholder identification,
requirements elicitation, modeling, measurement, analysis, documentation, verifica-
tion and validation, negotiation, improvement, prioritization, etc. All these activi-
ties require certain understanding of the system under development and hence their
requirements itself. Previously, in Section 1.4.1, a few of the questions were raised
relevant to the early phase RE.

Question 1.1: what are the relationships between the various requirement ar-
tifacts, customer requirements and system requirements ? what is their significance
to clients and other stakeholders ?

Question 1.2: how to improve the early phase requirements modeling with
adequate level of scalability of graphical diagrams ?

Question 1.3: how to improve the modeling of the requirements such that their
core and optional features of the system under development are clear to designer
from the beginning of RE phase ?

Question 1.4: how to model the preference of the various stakeholders and
weight the various goals and objectives of the system under the study during the
requirement modeling phase ?

Question 1.5: how to write requirements in a more uniguous (unambiguous)
manner, which are also easy to understand ?

Section 2.2 presents the theoretical aspects of the requirements and simplified
interpretations of the various RE artifacts, their significance to the stakeholders and
to the project itself. It also presents the requirements modeling and state of art of
requirements modeling. In Subsection 2.2.2 proposed formulations on requirements
are presented, which provided solution to the Question 1.1. Subsection 2.2.3 presents
the proposed goal based requirement language called Comprehensive Requirements
Modeling language (CReML), as a solution to Questions 1.2, 1.3 and 1.4. Section
2.3 presents the issues linked with writing natural language requirements. Section
2.3.2 presents the method for writing requirements unambiguously and a simple
experiment and empirical study and thus solution to Question 1.5. Section 2.4
discusses the issues linked with the proposed solution their potential benefits and
challenges. The extent of their pertinence of the proposed solutions are discussed
and other open questions left. Section 2.5 draws the conclusions.

2.2 What are actually requirements ?

It is essential to understand requirements first, to be able to work upon them and
realize a successful product. As the literature of RE is vast, there are already nu-
merous definitions of requirements and requirement artifacts. The various popularly
used requirements artifacts terminologies are: rationale, needs/stakeholder require-
ments, views, viewpoints, desires, beliefs, constraints, etc. Different terminologies

What are actually requirements ? 31

used in RE are selected and presented in Table 2.1. The definitions of the require-
ments and specifications as mentioned in different standards and norms are briefed
in Table 2.2. Given that there are multiple definitions of requirements in litera-
ture, it still remains today a tedious task to extract requirements properly from the
user-stories owing to the confusion that term ‘requirements’ semantically mean to a
particular requirement engineer.

Table 2.1: Terminologies Used in Requirements Engineering

Terminologies Definitions
Rationale Rationale can be defined as the fundamental justifications

or reasons that lead to needs, desires, wants, constraints
or requirements. The rationale of a requirement is infor-
mation which summarizes why that requirement has been
specified [Sommerville 1997].

Needs/Stakeholder
requirements

Stakeholders’ statements that describe the capabilities, ex-
pectations they want the system to fulfill [ISO 2008]. Needs
are result of formulation by stakeholder analyst.

View A view is a representation of whole system from the per-
spective of a single view-points. An excerpt from an arti-
fact, containing only those parts one is currently interested
in [Glinz 2011].

View-Point A view-point represents an encapsulation of partial informa-
tion about a system’s requirements from a particular per-
spective [Sommerville 1997].

Desires/Wants Desires represent the motivational state of an stakeholder.
The state they want to achieve [Rao 1995]. They form the
basis of needs. They are the stakeholder statements as a re-
sults of his beliefs which represent his perception of problem
and often problem solution (what might solve the problem).

Belief A belief represents the perception that a stakeholder holds
about world, a belief may not necessarily be true [Rao 1995].

Intentions Word ‘intention’ is often used in RE, it is used as synonym
to desires [Rao 1995].

Constraints A requirement that limits the solution space beyond what is
necessary for meeting the given functional requirements and
quality requirements [Glinz 2011].

Assumption An assumption is an indicative property intended to be rel-
evant to the system development project [Zave 1997].

Stakeholder An individual, group of people, organization or other entity
that has a direct or indirect interest (or stake) in a sys-
tem [Hull 2010].

Continued on next page

32 Requirements Engineering

Table 2.1 – continued from previous page
Terminologies Definitions
Actor/Agent A person, a system or a technical device in the context of a

system that interacts with the system [Glinz 2011]. A Person
or a technical device that act and process information in
order to achieve some goals [Van Lamsweerde 2001].

Role A role is an abstract characterization of the behavior of a
social actor within some specialized context or domain of
endeavor [Yu 1995].

Scenario A description of a potential sequence of events that lead to
a desired (or unwanted) result [Glinz 2011].

Goal A goal is a condition or desired set of affairs that a stake-
holder wants to achieve [Yu 1995, Bolchini 2003].

Objectives Objectives are specific, measurable steps that can be taken
to meet the goals.

In order to understand requirements, it is essential to know from where they do come.
Requirements do come from the stakeholders, some times from standards, norms or
laws. Stakeholders often present their requirements based upon the beliefs they
hold about their environment. These beliefs may be right or wrong. In Table 2.1
desires, intentions and beliefs are taken in account from the literature and their
subtle difference are presented. In Table 2.1, needs can be differentiated by other in
a manner that they are the feasible or achievable set of statements as they are often
the result of formulation by a requirement analyst. Other terms, such as wants,
desires, intentions they might represent infeasible solutions, or useless description,
which does not actually solves their problem. Sometime they express more than
what they actually need to solve their problem. Requirements for stakeholder come
from their desires, beliefs, intentions and rationales. Constraints are externally
imposed limitation on system requirements, design, or implementation or on the
process used to develop or modify a system [IEEE 2011]. It is imposed on the
solution by force or compulsion and may limit or modify the design changes or
solution space.

Requirements can be classified in numerous ways, but the one popularly ac-
cepted classification of requirements classify them into functional and non-functional
requirements [IEEE 2011, Sommerville 2010, Hull 2010].

What are actually requirements ? 33

T
ab

le
2.
2:

R
eq
ui
re
m
en
t
D
efi

ni
ti
on

by
SE

St
an

da
rd
s

S
ta
n
d
ar
d
s

S
ta
ke
h
ol
d
er

re
qu

ir
em

en
ts

S
ys
te
m

re
qu

ir
em

en
ts

S
p
ec
ifi
ca
ti
on

/S
p
ec
ifi
ed

re
qu

ir
e-

m
en
ts

E
IA

-6
32

[E
IA

63
2
20

05
]

A
re
qu

ir
em

en
t
th
at

re
pr
es
en
ts

w
ha

t
st
ak

eh
ol
de

rs
of

a
sy
st
em

ne
ed

or
ex
pe

ct
of

th
e
sy
st
em

pr
od

uc
ts
.

A
re
qu

ir
em

en
t

de
ri
ve
d

fr
om

on
e

or
m
or
e

st
ak
eh

ol
de
r
re
-

qu
ir
em

en
ts

an
d
st
at
ed

in
te
ch
-

ni
ca
lt
er
m
s.

A
do

cu
m
en
t
th
at

co
nt
ai
ns

sp
ec
ifi
ed

re
qu

ir
em

en
ts

fo
r
a
pr
od

uc
t
an

d
th
e

m
ea
ns

to
be

us
ed

to
de

te
rm

in
e
th
at

th
e
pr
od

uc
t
sa
ti
sfi
es

th
es
e
re
qu

ir
e-

m
en
ts
.

IS
O
15

28
8
[I
SO

20
08

]

St
ak
eh

ol
de

r
re
qu

ir
em

en
ts

de
-

sc
ri
be

th
e

ne
ed

s,
w
an

ts
,
de

-
si
re
s,

ex
pe

ct
at
io
ns

an
d

pe
r-

ce
iv
ed

co
ns
tr
ai
nt
s
of

id
en
ti
fie

d
st
ak
eh

ol
de

rs
.

Sy
st
em

re
qu

ir
em

en
ts

sp
ec
ify

,
fr
om

th
e
de

ve
lo
pe

r’
s
pe

rs
pe

c-
ti
ve
,

w
ha

t
ch
ar
ac
te
ri
st
ic
s

it
is

to
po

ss
es
s
an

d
w
it
h

w
ha

t
m
ag

ni
tu
de

in
or
de
r
to

sa
ti
sf
y

st
ak
eh

ol
de

r
re
qu

ir
em

en
ts
.

Sp
ec
ifi
ca
ti
on

s
ar
e
th
e
ba

si
s
of

th
e

sy
st
em

so
lu
ti
on

an
d

an
or
ig
in

fo
r

sy
st
em

el
em

en
t

ac
qu

is
it
io
n

ag
re
e-

m
en
ts
,
in
cl
ud

in
g

ac
ce
pt
an

ce
cr
it
e-

ri
a.

T
he

y
m
ay

be
in

th
e
fo
rm

of
sk
et
ch
es
,
dr
aw

in
gs

or
ot
he

r
de

sc
ri
p-

ti
on

s
ap

pr
op

ri
at
e
to

th
e
m
at
ur
it
y
of

th
e
de

ve
lo
pm

en
t
eff

or
t,

e.
g.

fe
as
i-

bi
lit
y
de
si
gn

,c
on

ce
pt
ua

ld
es
ig
n,

pr
e-

fa
br
ic
at
io
n
de

si
gn

.

IE
E
E
12

20
[I
E
E
E

20
05

]

W
ha

t
th
e

st
ak
eh

ol
de

r
w
an

ts
th
e

sy
st
em

to
ac
co
m
pl
is
h.

H
ow

w
el
l
ea
ch

fu
nc

ti
on

is
to

be
ac
co
m
pl
is
he

d.
T
he

na
tu
-

ra
l
an

d
in
du

ce
d
en
vi
ro
nm

en
ts

in
w
hi
ch

th
e
pr
od

uc
t
of

th
e

sy
st
em

op
er
at
es

or
m
ay

be
us
ed

.C
on

st
ra
in
ts
.

A
st
at
em

en
t

th
at

id
en
ti
fie

s
a

pr
od

uc
t

or
pr
oc
es
s

op
er
-

at
io
na

l,
fu
nc

ti
on

al
,

or
de

-
si
gn

ch
ar
ac
te
ri
st
ic

or
co
n-

st
ra
in
t,

w
hi
ch

is
un

am
bi
gu

-
ou

s,
te
st
ab

le
or

m
ea
su
ra
bl
e,

an
d

ne
ce
ss
ar
y
fo
r
pr
od

uc
t
or

pr
oc
es
s
ac
ce
pt
ab

ili
ty
.

A
do

cu
m
en
t
th
at

fu
lly

de
sc
ri
be

s
a

de
si
gn

el
em

en
t
or

it
s
in
te
rf
ac
es

in
te
rm

s
of

re
qu

ir
em

en
ts

(f
un

ct
io
na

l,
pe

rf
or
m
an

ce
,
co
ns
tr
ai
nt
s,

an
d

de
-

si
gn

ch
ar
ac
te
ri
st
ic
s)

an
d
th
e
qu

al
ifi
-

ca
ti
on

co
nd

it
io
ns

an
d
pr
oc
ed
ur
es

fo
r

ea
ch

re
qu

ir
em

en
t.

34 Requirements Engineering

Requirements

Functional
requirements

Non-functional
requirements

Product Organizational External
requirements requirements requirements

Usability
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Environmental
requirements

Operational
requirements

Development
requirements

Regulatory
requirements

Ethical
requirements

Legislative
requirements

Accounting
requirements

Safety/Security
requirements

requirements

requirements

Performance

Space

requirements

requirements

requirements

requirements

Behaviour

Data

Reaction

Stimuli

Exceptions
requirements

Maintenance
requirements

Retirement
requirements

Figure 2.1: Taxonomy of Requirements

Functional requirements can be further classified as: behavior, data, reaction,
stimuli and exceptions requirements (comes from software engineering background).
Non-functional requirements can be classified into three types: product requirement,
organizational and external requirements. Product requirements can be divided into
usability requirements, security requirements, dependability requirements and effi-
ciency requirements. Efficiency requirements can be divided again into performance
requirements and space requirements. Organizational requirements can be divided
into environmental requirements, operational requirements, development and main-
tenance requirements. Finally, external requirements can be divided into regulatory
requirements, ethical requirements, retirement requirements, and legislative require-

What are actually requirements ? 35

ments. Legislative requirements can be divided into accounting requirements and
safety/security requirements. Figure 2.1, shows the taxonomy of requirements as
summarized from the literature. Functional requirements for a system describe what
the system should do. Specific functional requirements define the input-output to
the system the, reaction of the system upon the given input, system services and
functions and exceptions (which come from software based systems). Non-functional
requirements are all other requirements which are not concerned with any of the ser-
vices or functionalities that the system should provide. All the quality requirements,
specific constraints, standards compliance requirements fall under the non-functional
requirements.

EIA-632

113

Annex G—Requirement relationships (informative)

The generation and use of various requirements and representations are introduced in Subclause 4.3. These
are further described below. Figure G.1 shows the relationship of these requirements.

ACQUIRER
REQUIREMENTS

SYSTEM
TECHNICAL

REQUIREMENTS

LOGICAL
SOLUTION

REPRESENTATIONS

PHYSICAL
SOLUTION

REPRESENTATIONS

OTHER
STAKEHOLDER
REQUIREMENTS

DESIGN SOLUTION

SPECIFIED
REQUIREMENTS

TRACE TO

ASSIGNED TO

ASSIGNED TO

ASSIGNED TO

SOURCE OF

SPECIFIED BY

DERIVED
TECHNICAL

REQUIREMENTS

DRIVE

TRACE TO

DRIVE

ASSIGNED TO

BUILDING BLOCK

Figure G.1—Requirement relationships

Acquirer requirements come from a customer or user (including operators, where applicable) for a major
system such as an aircraft, automobile, check processor, mail sorter, or telecommunication switch.
Acquirer requirements also come from a developer needing subsystems to make up an end product of a
system (see Subclause 6.2). The latter are identified as assigned requirements and would have been
defined by a prior application of the System Design processes of Subclause 4.3.

Other stakeholder requirements, when added to the acquirer requirements, make up a set of stakeholder
requirements that are transformed into system technical requirements. Stakeholder and system technical
requirements are identified, collected, or defined by completing the Requirements Definition Process
(Subclause 4.3).

The logical and physical solution representations, derived technical requirements, design solution and
specified requirements are defined by completing the Solution Definition Process (Subclause 4.3).

Stakeholder requirements (acquirer and other stakeholder requirements), as well as system technical
requirements and the derived technical requirements, differ from specified requirements.

1) In effect, stakeholder requirements constitute the input that establishes the problem to be
solved. Such requirements can be considered as the initial specification for a development
effort or as a set of specified requirements for procuring an off-the-shelf item. End
products developed or purchased, and that are to be or that have been delivered to an
acquirer, are validated against these specifications (see Requirement 33).

COPYRIGHT Electronic Industries Association
Licensed by Information Handling Services
COPYRIGHT Electronic Industries Association
Licensed by Information Handling Services

Figure 2.2: Requirements Relationships [EIA632 2005]

In literature, [EIA632 2005] mention specifically the existing relationships be-
tween the various types of requirements as shown in Figure 2.2. Acquirer require-
ments and other stakeholder requirements have relationship trace to with the system
technical requirements. System technical requirements are assigned to logical solu-
tion representation and physical solution representations. Logical solutions are also
assigned to physical solutions. Logical and physical solution representations drive
the technical requirements. The derived technical requirements are in turn assigned
to physical solutions representations. The physical solutions are source of design
solutions and specified by specified requirements. The relationships presented by
[EIA632 2005] can provide reasonable vocabulary for modeling traceability relation-
ships, once the stakeholder requirements are known. But certainly lacks some other
semantical relations which actually exists between the artifacts.

36 Requirements Engineering

Other complementing relationships (other than one’s defined in [EIA632 2005])
can be found in literature of requirements traceability. These relationships emerged
from different types of development methods and techniques. Relationships are just
a noun to quantify the semantics of particular dependency. Some other relationships
are introduced in Section 2.2.3 to further provide specific semantical meaning to
relationships existing between the artifacts. Stakeholders statements are stored as
user-stories, source of all requirements from which all requirements are derived.
More details about the semantics of relationships is provided in Section 3.4 of next
chapter.

2.2.1 State of Art Requirements Engineering Techniques

Poor RE is the reason for majority of all the challenged and failed SE projects. Many
empirical studies previously carried out have indicated that poor RE leads to poor
requirements, faulty design, poor requirement traceability, rework and cost/budget
overflows [Van Lamsweerde 2000, Eveleens 2010, Hull 2011, Tonnellier 2012]. Re-
quirements modeling is carried out during early phase of the RE. There are a few
of approaches like: Goal-Oriented RE (GORE) [Van Lamsweerde 2000], Scenario-
Based RE (SBRE) [Carroll 1995], Aspect-Oriented RE (AORE) [Grundy 1999], and
Service-Oriented RE (SORE) [Lichtenstein 2007]. The two most popular and refer-
enced modeling methodology are GORE and SBRE, owing to the benefits and ease it
provides during the requirement modeling phases. Often, GORE and SBRE are used
together in industries for empowering better RE, often one being the input to other
and vice-versa. It has been argued and shown that the GORE and SBRE comple-
ment each other during the requirement modeling phase of RE [Misra 2005]. How-
ever in literature, GORE and SBRE have been criticized for their inadequacy to han-
dle non-functional requirements in use cases or viewpoint boundaries [Grundy 1999].
Some other issues like their inaptness to represent the business rules across the
requirement documentation [Rashid 2008]. AORE distinguishes itself by explic-
itly separating the composition specifications. SORE has its roots in service ori-
ented computing and service oriented software engineering, with their main goal of
improving the development and delivery process for complex inter-organizational
software applications. SORE emerged as a methodology for developing software
based systems with special stress on service performance metrics, exhaustive ser-
vice specifications, socio-technical issues while dealing with customers and service
providers [Flores 2010].

In our work, the two referenced and used methodologies are GORE and SBRE
owing to their popularity in the practice as empirical studies have shown. There are
tools built upon popularly known GORE methodologies: i* and KAOS, and have
reported lots of success in industrial application because of ease of understanding it
offers to both technical and non-technical stakeholders. But still there is some scope
of improvement and certain difficulties and problems to be improved as discussed
later in Section 2.2.1.1. RE research has focused on goals as a way of providing the
rationales (why) for a system under development [Van Lamsweerde 2001].

What are actually requirements ? 37

Literature of GORE based methodologies is vast if we take in account all the
RMLs mentioned. There are a few notable GORE frameworks such as i*, Tropos,
KAOS, GBRAM, NFR, etc., but still there are various aspects to be improved upon
as mentioned in Section 2.2.1.1. As previously mentioned, our approach refers to
i* and KAOS owing to the proximity of our approach. i* and KAOS frameworks
are apparently the two most popular GORE methodologies. The seminal work of
Erik Yu [Yu 1997] introduced the i* framework. It is hard to provide a fair compar-
ison between them, as both of them have certain benefits and disadvantages when
compared to each other [Werneck 2009]. Underlying principles of GORE were re-
inforced by Regev et. al. [Regev 2005] by bringing together the various concepts
from various methodologies. Recent works involving goals, preferences, and incon-
sistency have led to development of an abstract requirement modeling language
called Techne [Jureta 2010]. Recent work have tried to address the optionality and
preference of the requirements during the modeling [Liaskos 2010]. The preference
of the goals are marked on the the goal notation thus allowing to evaluate the im-
portance of one goal with respect to another. Goal argumentation methods (GAM)
were introduced to make it explicit the reasons of selecting a goal [Jureta 2006].

Tropos [Castro 2002] framework was founded on social and intentional aspects
of information system, used requirement modeling based on their operational envi-
ronment. Tropos introduced textual syntax to allow the later phase formal analysis
of the early requirements models done using i* to represent their social milieu. The
major advantage given by i* based frameworks is they allow to represent the strate-
gic relationships existing between the various stakeholders of the project. But many
empirical studies [Easterbrook 2005, Werneck 2009] have shown that the readability
of the models designed using i* are greatly marred when the number of participants
is sufficiently large. This problem comes due to layout used by the i* models, on
the contrary it can be argued that the tree based layout of KAOS models are much
better in this aspect of the goal modeling. One of the disadvantage of the KAOS
models is its deficiency in modeling the strategic relationships of the stakeholders.
Previously mentioned techniques for integrating preference in goal models do not
help user in any readability aspect [Liaskos 2010, Jureta 2010]. In can be argued
that surcharge of information increases the pressure on the designer or stakeholders.
The way the data is represented and made available to the design engineer can be
rendered more readable.

Currently, there are a variety of tools available for the GORE modeling such as
Objectiver based on KAOS [Objetiver 2013], other recently introduced RE-TOOLS
based upon recently introduced light weight RMLs like VLML [Glinz 2010]. Still
there are numerous issues to be solved by a RML and lots of lessons learned during
all there years of RE needs to be brought together to a standard GORE language. A
standardized GORE notation based on KAOS seems to be most appropriate for this
unifications of lessons learned and hence we propose in this work few modifications
into the KAOS modeling notations to the benefit of RE community.

38 Requirements Engineering
T
ab

le
2.
3:

C
om

pa
ri
ng

po
pu

la
r
G
or
e
R
M
Ls

A
pp

ro
ac
he

s
K
ey
po

in
ts

A
dv

an
ta
ge
s

D
is
ad

va
nt
ag

es

i* [Y
u
19

97
]

It
fo
cu

se
s
on

st
ra
te
gi
c

de
pe

nd
en

cy
an

d
in
te
nt
io
na

lit
y

of
th
e

va
ri
ou

s
st
ak
eh

ol
d-

er
s.

In
te
rn
al

ra
ti
on

al
es

of
th
e
st
ak

eh
ol
d-

er
s
ar
e
ta
ke
n
in
to

ac
co
un

t.
A
ge
nt

or
ie
nt
ed

fr
am

ew
or
k,

tw
o
co
m
po

ne
nt
s:

St
ra
te
gi
c
de

-
pe

nd
en

cy
m
od

el
an

d
St
ra
te
gi
c
ra
ti
on

al
e

m
od

el
.

R
ea
so
ns

fo
r
th
e
ne

ed
of

th
e
sy
s-

te
m

un
de

r
st
ud

y.
T
he

go
al
s
ar
e
re
fin

ed
ti
ll

th
ey

ar
e
sa
ti
sfi
ed

by
a
ta
sk

an
d
re
so
ur
ce
.

A
llo

w
s

to
re
pr
es
en
t

th
e

st
ra
te
gi
c

re
la
ti
on

sh
ip
s

be
-

tw
ee
n

th
e

st
ak
eh

ol
de

rs
ex
-

pl
ic
it
ly
.

It
al
lo
w
s
to

m
od

el
cr
it
ic
al

si
tu
at
io
ns

by
us
in
g

so
ft
-g
oa

ls
an

d
th
ei
r

co
n-

tr
ib
ut
io
ns

as
so
ci
at
ed

w
it
h

St
ra
te
gi
c
ra
ti
on

al
e
m
od

el

P
re
fe
re
nc

e
ca
n
no

t
be

ta
ke
n

in
to

ac
co
un

t,
sc
al
ab

ili
ty

is
su
es

w
it
h
go
al

m
od

el
s,

di
f-

fic
ul
ty

to
re
pr
es
en
t
do

m
ai
n

as
su
m
pt
io
ns
,

co
ns
tr
ai
nt
s,

an
d

co
re
-o
pt
io
na

l
fe
at
ur
es
.

N
on

fu
nc

ti
on

al
re
qu

ir
em

en
ts

ar
e
tr
ea
te
d
as

so
ft
go
al
,
bu

t
no

m
ea
ns

to
ar
ri
ve

at
th
em

.

T
ro
po

s
[C

as
tr
o
20

02
]

B
as
ed

on
i*

sy
nt
ax

tu
al

fr
am

ew
or
k,

al
lo
w
s

to
en

ri
ch

i*
gr
ap

h
w
it
h
fo
rm

al
sp
ec
ifi
ca
ti
on

la
ng

ua
ge
:
Fo

rm
al

tr
op

os

M
od

el
ch
ec
ki
ng

ca
n
be

ca
r-

ri
ed

ou
t,

ot
he
r
be

ne
fit
s
si
m
-

ila
r
to

i*

Si
m
ila

r
to

i*

K
no

w
le
dg

e
A
cq
ui
si
-

ti
on

in
au

tO
-

m
at
ed

Sp
ec
ifi
ca
-

ti
on

(K
A
O
S)

[V
an

La
m
sw

ee
rd
e
20

01
]

T
he

go
al

m
od

el
st
ar
ts

w
it
h
th
e
de

co
m
po

-
si
ti
on

of
go

al
s
in
to

su
b-
go

al
s
un

ti
la

rr
iv
in
g

at
re
qu

ir
em

en
ts
,s
of
tw

ar
e
ag

en
ts

ta
ke

ca
re

of
re
qu

ir
em

en
ts

an
d

re
qu

ir
em

en
ts

of
hu

-
m
an

ag
en
t
as

in
te
rf
ac
es
.

It
s
a
to
p-
do

w
n

m
od

el
,b

eg
in
ni
ng

w
it
h
m
os
t
st
ra
te
gi
c
go

al
to

su
bg

oa
ls
.
It

is
co
m
po

se
d
of

fo
ur

ty
pe

s
of

m
od

el
s:

go
al

m
od

el
,o

bj
ec
tm

od
el
,o

pe
r-

at
io
na

l
m
od

el
,
re
sp
on

si
bi
lit
y
m
od

el
.
P
ro
-

vi
de

s
m
ix
tu
re

of
se
m
i-f
or
m
al
,
fo
rm

al
,
an

d
qu

al
it
at
iv
e
re
as
on

in
g.

T
re
e
ba

se
d
la
yo

ut
m
od

el
s
al
-

lo
w

be
tt
er

co
m
pr
eh

en
si
on

.
E
as
e

of
un

de
rs
ta
nd

in
g

to
te
ch
ni
ca
l
an

d
no

n-
te
ch
ni
ca
l

st
ak
eh

ol
de

rs
,
ob

st
ac
le

m
od

-
el
in
g

ca
n

be
ca
rr
ie
d

ou
t

fo
r

ri
sk

an
al
ys
is
,

it
ca
n

m
od

el
ro
le
s
as

re
sp
on

si
bi
li-

ti
es
,N

F
R
s
ar
e
tr
ea
te
d
as

ob
-

st
ac
le
or

co
ns
tr
ai
nt

an
d
th
us

al
lo
w
s
m
or
e
pr
ec
is
io
n
fo
r
im

-
pl
em

en
ta
ti
on

.

Fo
ur

ty
pe

s
of

m
od

el
s

ar
e

us
ed

w
hi
ch

co
ul
d

be
co
n-

fu
si
ng

.
P
re
fe
re
nc

e
ca
n

no
t

be
ta
ke
n
in
to

ac
co
un

t,
sc
al
-

ab
ili
ty

is
su
es
,

co
ns
tr
ai
nt
s,

an
d

co
re
-o
pt
io
na

l
fe
at
ur
es
.

St
ra
te
gi
c

de
pe

nd
en

cy
be

-
tw

ee
n

st
ak
eh

ol
de

rs
ca
nn

ot
be

ta
ke
n
in
to

ac
co
un

te
xp

lic
-

it
ly
.

What are actually requirements ? 39

Table 2.3 provides a comparison of popular RMLs and their benefits and limi-
tation.

2.2.1.1 Early Phase Requirements Modeling Problems

Early phase requirements engineering starts, once the requirement elicitation process
starts following to the interviews, questionnaires, ethnography and other elicitation
techniques mentioned in literature. Through all the elicitation techniques the in-
formation gathered is converted to textual documents, often known as user-stories.
These user-stories form the foundation of the requirements modeling (RM) pro-
cesses. We have identified a few of the problems which seek attention and proper
resolution during RM.

Ease of Scalability: recent empirical studies using i* GORE methodology
have shown that scalability can turn out to be big problem when modeling require-
ments for a sufficiently large projects either with different viewpoints or integrated
modeling [Easterbrook 2005].

Traceability of goals: often, during RM goals are elicited through stakeholders
and as the project evolves, the complexity of the models may increase to an extent
where it becomes tedious task to answer why a particular goal exists in the model
and which particular stakeholder needs it. Also, it can be equally cumbersome to
link a goal to a particular user story previously elicited, owing to syntactic differ-
ences [Easterbrook 2005]. There is need of dedicated mechanism to link goals to the
user-stories previously documented during elicitation.

Preference of multiple stakeholders over goals: in a systems engineering
project, it is of great importance that most of stakeholders are satisfied with the
various decisions taken during the product development and with the final resulting
end product. A higher satisfaction among the stakeholders can be guaranteed if the
various stakeholders preferences are taken into account in a transparent and holistic
manner during the goal modeling.

Multiple view-point requirement modeling: during the requirement mod-
eling multi-view point modeling is often instrumental in understanding the system
under study. Multi-view requirements modeling allows separation of concerns and
can help to elaborate particular aspects of the system under study. But it becomes
tedious task to combine these multiple views and present one single coherent and
comprehensive models. Often, the resultant combined model is inconsistent and
hard to understand, which demands significant amount of resources.

Modeling of core and optional features: modeling of core features and
optional features from the very beginning of project can allow the engineers to have
better understanding of the systems under study and lots of effort and resources can
be saved if they can be modeled in early phase of RM. There are some dedicated
feature modeling languages in the literature but this often leads to redundant efforts.

Representation of domain assumptions: domain assumptions or beliefs
are often implicit during the requirement modeling but often lead to goals and
requirements. They are usually held by the stakeholders and sometimes designers.

40 Requirements Engineering

Their implicit nature during the RM may cause potential traceability errors and
may cause worries for the quality control of the product.

2.2.2 Proposed Formulations on Requirements

Beliefs Rationales

Stakeholder Requirements

System Requirements

System Specifications

Information

Lower level of
Information

Medium level of

higher level of
Information

(Abstract viewpoints)

(Finer viewpoints)

(Very Fine viewpoints)

Partially Known
information

Figure 2.3: Relating Requirements, Rationales and Viewpoints

Previously, Question 1.1,what are the relationships between the various requirement
artifacts, customer requirements and system requirements ? what is their signifi-
cance to clients and other stakeholders ? was raised in Chapter 1. In order to
respond to this question a theory of requirements is developed, which tries to ana-
lyze requirements from a different angle. It states that requirements are projection
of stakeholders rationales in product with his beliefs. In other words, together with
his set of beliefs and his rationales a stakeholder arrives at a need or a stakeholder
requirement. A rationale in turn is composed of multiple viewpoints which are of
interest to stakeholder, but this fact is often hidden from himself. Figure 2.3 shows
the proposed formulation. It shows that as we move from stakeholder requirements
toward the system specifications, the degree of clarity in information increases grad-
ually from very abstract viewpoints to very specific fine viewpoints.

What are actually requirements ? 41

Stakeholder Requirements as Projection of Rationales

Stakeholder requirements can be thought of an abstraction of stakeholder rationales,
which may be known or unknown to him. An aware stakeholder knows these ra-
tionales and can easily identify his requirements more precisely. This is the reason
why lots of requirements in an organization come from a small set of participant
often known as 20-80 rule of Pareto. It is observed that rationales are govern by
the law’s of nature: laws of physics, laws of economics, laws of chemistry, etc., and
hence relationship between them are logical. They can either be directly propor-
tional, inversely proportional and a few times independent. There is still something
which is more important to dig out—the beliefs. Beliefs are hard to elicit from the
stakeholders, often they remain implicit in the user stories and costly iterations are
sometimes needed to really reach them. This is often the case in software based
systems engineering.

The relationship between belief, rationale and stakeholder requirements can be
assumed in mathematical equation as below:

fB(b1, b2, · · · , bn) ? fR(r1, r2, · · · , rm) =⇒ fSre(re1, re2, · · · rel) (2.1)

In Eq.(2.1) fB is a set representing the stakeholder beliefs and fR is the set represent-
ing the rationales of stakeholders. Unknown operation ? leads to fCre, representing
the resultant set of stakeholder requirements. Eq.(2.1), shows the complex process
of the how the stakeholder beliefs and rationales together play a role in generating
an array of customer requirements. fB, fR are often hidden and the only known
thing is fCre, which comes as a result of elicitation process.

Rationales as projection of Viewpoints

As the requirements are projection of rationales together with the beliefs, similarly
rationales are projections of viewpoints. Rationales can be decomposed into a set of
viewpoints, together with a importance vector, which provides the strength of their
preference held by a particular stakeholder. This vector of importance is implicit to
the stakeholder and difficult enough to elicit completely.

System Requirements and System Specifications

System requirements and design specifications can also be expressed in terms of
viewpoints and rationales. System requirements can be thought of composed of
coarser granularity of viewpoints. System specifications are the very fine granularity
level projections of viewpoints. The whole process of requirements engineering can
be thought of discovering of these viewpoints, rationales and the weight vector held
by the various stakeholders.

2.2.3 Proposed Comprehensive Requirements Modeling Language

Proposed approach is implemented as Comprehensive Requirement Modeling Lan-
guage (CReML), which is based on Goal-Oriented Requirements Engineering

42 Requirements Engineering

(GORE) methods. CReML can be used complementarily with the Unified Mod-
eling Language (UML) or System Modeling Language(SysML) and helps to provide
better design specifications and insights to the system under study. It provides way
to model the requirements representing the core and optional features of the sys-
tem from early phases of RE and the stakeholders’ preferences associated to them.
It equally provides ways to visual modeling, which are more scalable and compre-
hensible to the engineers and the various stakeholders using layers of abstraction,
visibility and invisibility. Classical GORE method is augmented using view-points
as a tool to take in account the non-functional requirements which can be carried
out from the very beginning and be carried out separately and integrated later. The
non-functional requirements are made contractual by associating test cases which
represent their functional implementations (as all non-functional requirements are
transformed into appropriate functionality [Pinheiro 2004]). Figure 2.4, shows the
goal meta-model of the proposed CReML, Figure 2.5 shows the responsibility meta-
model. Figure 2.6, shows the CReML strategy meta-model. Table 2.2 explains the
syntax and semantics of CReML.

Artifact

ViewPoint Objective

Rationale

Goal

Requirement

TestCases

Constraint Assumption Domain
0..*0..*

Stakeholder

Property

1..*

1..*

0..*

1..*

1..*

1..*

1..*

1..*

1..*

0..*

derive

co
nt
rib

ut
e

1..*

derive

validate

verify

1..*

deriveconflict

conflict
0..*

0..*

derive
0..*

derive
0..*

conflict

0..*

1..*
1..*

derive

1..*

Figure 2.4: CReML Goal Meta-model

A goal model is used to understand the problems and its formulation as goals, and
objectives, which lead to formulation of systems requirements. The strategic model
allows to represent the strategic relationships existing between the stakeholders, i.e.,
their dependency upon each other for their success or failure. Strategic model allows
to understand the strategic relationships existing in the environment of its customers
and how together they can succeed or fail in carrying out their missions. The
responsibility model comes later when the modeling starts. The responsibility model

What are actually requirements ? 43

Responsibilty

TestCase

(Actor)

Component
(SysML Block)

Requirement 0..*

1..*

1..*

1
Stakeholder

Model

Figure 2.5: CReML Responsibility Meta-
model

Strategy

Relationships

1..*0..*

Stakeholder

Model

Figure 2.6: CReML Strategy Meta-
model

allows to understand the allocation of requirements to the design components, their
associated test cases and corresponding actors (if necessary). CReML necessitates
SysML/UML block diagram to represent the components, other SysML diagram can
also be used together with CReML to understand the system behavior (Out of scope
of this thesis).

Table 2.4: Requirement Artifacts definition in CReML

Graphical
Diagrams

Semantic meaning

Goal

Goals represents the fundamental state, that the stakeholder
would like to achieve by using the system under study. A sys-
tem can have one primary goal and many other secondary goals.
Goals may not be strictly measurable or tangible but stakehold-
ers agree upon certain conditions for determining the accept-
ability of goal by system under study.

Rationale

Rationales are the fundamental reasons, why the goals needs
to be achieved by the system under study. Rationales are ex-
tracted from stakeholders. A single stakeholder may have mul-
tiple rationales. These rationales are actually linked to various
responsibilities and roles played by a given stakeholder.

Viewpoint

Viewpoint is a certain perspective of the system which is of
interest to a particular stakeholder. Viewpoints allow to visu-
alize system from a particular aspect while hiding unnecessary
details.
Continued on the next page

44 Requirements Engineering

Table 2.4 – Requirement Artifacts definition in CReML continued
Graphical
Diagrams

Semantic meaning

Objective

Objectives are the measurable set of tasks and conditions, which
the system needs to meet in order to accomplish tasks. Goals
projected with a particular viewpoint lead to a objective in a
direction of particular viewpoint to achieve the goal.

Constraint

Constraints are the limitations imposed on the system by the
non-development stakeholders or they may represent some chal-
lenges to overcome by the system.

Domain-
Property

A domain-property can defined as a knowledge or information
about the domain of the system under study which is uniformly
acceptable by all stakeholders: technical or non-technical and
which can be verified and validated using scientific methods.

Assumption

Assumptions are hypothesis or non-verifiable information or
conditions which are considered valid for the system under
study (but they can be false). They are close to domain-
property but domain-properties can be verified and be easily
validated and hence are always correct.

Requirement

Requirements specify, from the stakeholders’ viewpoint, what
characteristics it is to possess and with what magnitude in or-
der to achieve the stakeholders’ objectives. Requirements are
derived from a particular or a set of objectives, constraints,
assumption and domain properties.

New Test-
Case

Test Case

Test Case provide the means to Verify and Validate a require-
ment partially or fully, they define the environment of the test,
input conditions, output conditions, pass conditions and failure
condition.

Component

Component is the physical representation of the design concepts
as a result of system modeling process. It is responsible to show
the end product of the previously developed requirements. They
can be the structural or behavioral UML/SysML diagrams.

Conflict

Conflict relationship is used to represent the conflict occurring
between two objectives, or two requirements and hence between
two source stakeholders. Conflict means that the implementa-
tion of the two requirement artifact cannot be achieved by the
system under study at the same time.
Continued on the next page

What are actually requirements ? 45

Table 2.4 – Requirement Artifacts definition in CReML continued
Graphical
Diagrams

Semantic meaning

Derive

Derive relationships represent the parent-child relationships ex-
isting between the various requirements artifacts. A derive
relationship exists between the goal and rationales, rationales
and viewpoint, viewpoint and objective, objective and require-
ments, constraints and requirements, domain-property and re-
quirements, assumption and requirements, and between require-
ments and requirements.

Contribute

Contribute relationship is used to represent the direct contribu-
tion of information about requirement artifacts from an stake-
holder for system under study, such as constraint, domain prop-
erty, assumption or goal.

Stakeholder

Stakeholders of the project are the entities which have genuine
interest in the project. They are of two types: stakeholders
from the client side or end-users and stakeholders responsible
for the development of the project. In our terminology, we use
Agents also as an stakeholder, as they interact with the system.

Proposed approach aims to use and devise techniques previously used and matured
in domain of software engineering for the benefit of systems engineering community.
Many advances in the RE community come from software industries. These advances
provide new opportunities to systems engineer to make their process more lean and
mean. This approach is designed for early phase requirements engineering. It is
not here to replace use-cases or requirements block used in UML/SysML, it is their
precursor and complementary technique to them in RE activities.

This approach identifies nine types of early phase RE artifact: Stakeholders,
Goals, Rationale, Viewpoint, Objectives, Constraints, Domain Property, Assump-
tions, Requirements and Test cases, three types of early phase relationships : Con-
tribute, Derive, Conflict and other contributing artifacts Components. Requirement
artifact diagrams and their semantic meanings is shown in Table 2.4. They are used
to address the problems previously raised in Subsection 2.2.1.1. There are three
types of models introduced in CReML: Goal models, Responsibility model and Strat-
egy model. User stories, interview statements and statements are necessary to start
using the CReML, this step of requirement elicitation activities is out of scope if
this thesis. CReML models are result of the analysis of these user-stories and other
statements by the requirements engineer. Goal model and Strategy models are de-
veloped simultaneously. Strategy models can be started once the goal modeling
begins. Strategy model and goal model provide inputs to each other over different
iterations to better understand the system goals and environment. Responsibility
model is development can be carried out once the goal-model and the strategy model
are available.

46 Requirements Engineering

In first stage Goal models and strategy models are developed simultaneously.
For Goal modeling the stakeholders are identified and their goals are extracted out
of their corresponding available user stories. Since the stakeholders contribute the
goals the relationship between the stakeholders and goal is called contribute. These
stakeholders are then analyzed and their responsibilities are analyzed taken in ac-
count both in presence and absence of the system under study. This analysis leads
to various rationales of the corresponding stakeholders role. These rationales of the
stakeholders provide the basis of strategy modeling. Rationales provide the inputs
regarding how the different stakeholders can be satisfied. Strategy models provide
the statements (in form of rationales), which bind together the stakeholders and the
statements for their potential conflict. At this stage stakeholders’ preference about
the various goals are gathered and core and optional goals are identified. This pref-
erence gathered over the goals from different stakeholders provides the inputs for
the strategy formulations for system development. Stakeholders’ preference about
traceability of various rationales are also gathered, they are later used to formulate
the traceability policies according to the needs of the stakeholders.

In the second stage, the various viewpoints are which are of concern to each
stakeholders are gathered; a viewpoint is a particular aspect of the system un-
der study which is of interest to stakeholder: client or developer. The analysis of
viewpoints lead to the formulation of objectives corresponding to a particular stake-
holder. This allows us to understand very clearly the capabilities stakeholder wants
to acquire with respect to each viewpoint. At this very stage, potential conflicts
among the objectives can be observed, a conflict relationship is marked for fur-
ther resolution and negotiation for the magnitude of accomplishment of particular
objectives.

In the third stage, the responsibility model is created by separately mapping
the stakeholders, viewpoint, objectives, constraints and assumptions. Mapping of
objectives with the actors (roles of stakeholders) allows to model the responsibility
and point of interactions between the agents (roles of stakeholders) and system.
This mapping allows to determine the constraints and assumptions held by the
stakeholders and their interrelationship.

In the final stage, the Goal model is enriched with the assumptions, and con-
straints previously extracted from stakeholders. Developers held domain properties
are included at this stage to transform them together with objectives into achievable
requirements. Each objective may lead to one or more requirement.

Responsibility modeling can be carried out once the Goal modeling starts.
Responsibility model is basically the network of requirements, their test cases, their
logical and physical design component representations and necessary actors. Re-
sponsibility modeling provides higher level traceability of the requirements artifact
which can be used later different purposes. Goal models are responsible for pro-
viding pre-requirement traceability, whereas responsibility model is accountable for
providing the post-requirement traceability.

Writing Natural Language Requirements 47

2.3 Writing Natural Language Requirements

Writing good requirements is one of the most important task. Writing require-
ments is a technical task so it is different from other types of writing. Previ-
ously, we mentioned and framed Question 1.3: how to write requirements in a
uniguous manner, which are also easy to understand? In this Section, we are
concerned with the Natural language for writing requirements, i.e. natural lan-
guage requirements (NLR). Although, it is an imperfect way of expressing require-
ments, it remains the only universal means of expression that covers the huge
variety of concepts needed [INCOSE 2012]. Previously, it had been well debated
in literature whether natural language should be used for writing requirements or
not [Kovitz 2002, Berry 2005], well it is hard to correctly answer this question but
natural language remains the de facto industry standard for writing requirement doc-
uments, as it allows to communicate with great expressiveness between stakeholders
and developers. Ben Kovitz [Kovitz 2002] has previously quoted that “requirements
communication, to be effective, must work human-to-human. Formal notations, with
their total lack of ambiguity, are the end point of software development, not the
start.” What he pointed out was that the context is more important than the de-
scription itself and its only the natural language which fully enables you to capture
and communicate the context and the description together in the two way direction
of customer and developer. Whereas there are numerous issues yet to be solved as
previously highlighted in Chapter 1, and this provides the motivation to work in this
direction. Writing of requirements documents has multiple aspects to be carefully
balanced such as readability and usability [INCOSE 2012, Hooks 1993, Hull 2011].
A requirement document which is hard to understand is as good as no requirement
document. Usually, the model of requirements may depend on the policies and prac-
tices used by the organizations. A few general requirements templates or boiler plates
have been previously mentioned in the literature like VOLERE [Robertson 2006].

2.3.1 State of Art of NLRs Writing Techniques

In software engineering literature, requirement ambiguity and requirement preci-
sion are inversely proportional to each other, the more a requirement is ambigu-
ous the lesser is its precision. The more a document is precise, the better the
quality of a requirement is. The earlier works have laid emphasis on resolving
ambiguity of requirement sentences and lesser work has been produced regarding
the precision of requirement. The earlier works of Ryan [Ryan 1993] have showed
that the actual role of natural language processing for requirement engineering
is limited, as there could be no machine intelligent enough to understand every
context. The writing styles have evolved for writing unambiguously [Berry 2003,
Berry 2005, Berry 2004, Sommerville 1997, Kovitz 1998, Dupré 1998]. Manual am-
biguity detection techniques like inspection [Kamsties 2001, Kamsties 2000], to-
gether with various tools have been developed to write requirements in natural
language [Ambriola 1997, Huyck 2000]. The various techniques other than natu-

48 Requirements Engineering

ral language have been introduced like constrained natural language, semi-formal
languages and formal languages for writing requirements, however the ambiguity
and understandability problem remains intact. The earlier works have mentioned
the reverse requirements with no test case associated for non-functional require-
ments [Berry 2003], just for avoiding ambiguity. Previously, none of work has
reported the concept of understandability associated with negative requirements.
Supakkul et al. [Supakkul 2010] proposed usage of requirement patterns for reuse
in elicitation of non-functional requirements using knowledge base. Cysneiros et
al. [Cysneiros 2004] advocated the usage of Language Extended Lexicon (LEL),
which is based on vocabulary capture approach for writing non-functional require-
ments [do Prado Leite 1993].

Earlier works [Svahnberg 2008] have been produced linking requirements as ar-
tifacts consumed by the decision making process outside of the requirement engi-
neering process.

In general, there are three types of approaches which have previously addressed
the ambiguity problem of requirements: approaches that define linguistic rules and
analytical keywords [Fabbrini 2001a, Fabbrini 2000, Wilson 1997], approaches that
define guideline rules [Juristo 2000, Tjong 2008] and approaches that define spe-
cific language patterns to be used in writing the natural language requirements
(NLRs) [Denger 2003, Ohnishi 1994, Rolland 1992].

In the first kind of approach [Wilson 1997], software requirements and spec-
ification documents’ quality aspects are defined and such as completeness, cor-
rectness, traceability, uniguity, etc., and other indicators for lack of quality such
as imperatives, continuances, directives, options and weak phrases. Fabbrini et
al. [Fabbrini 2000] further refined the ambiguity aspects of requirements itself called
requirements sentence quality (RSQ) and requirements document quality (RDQ) in
global. RSQ related indicators include implicit subject, multiple sentence, optional
sentences, underspecified sentences, vague sentences and weak sentences. RDQ re-
lated indicators include comment frequency, reliability index, under referenced sen-
tences and unexplained sentences. Their finding about RSQ and RDQ were im-
plemented in an automatic tool called QuARS (Quality Analyser of Requirements
Specifications).

In the second type of approach, Juristo et al. [Juristo 2000], classified require-
ments into two types static and dynamic. They defined Static Language Utility
(SLU) and Dynamic Language Utility (DLU) structures, which is specified by a for-
mal grammar and a set of natural language structures transformable into predicate
logic. This transformation allows to achieve a set of unambiguous requirements. An-
other guidelines based approach [Tjong 2008] provides set of of guideline rules and a
inspection checklist for writing less ambiguous requirements the guideline rules and
checklist were implemented in an experimental lexical analyser tool called SREE.
Upon inspection of the NLRs, its notifies the user about the potential ambiguity
in the document, leaving space for the user to act upon and disambiguate a truly
ambiguous statement.

In the language patterns approach for writing NLRs, Ohnishi [Ohnishi 1994]

Writing Natural Language Requirements 49

developed a software specification method with help of a visual requirement def-
inition language (VRDL) and a text base language (X-JRDL). VRDL allowed to
define shape and semantics of an any icon to specify requirements and X-JRDL
language based on case grammar allowed to define case structures of any new verbs
to specify requirements. These languages were used under a concept called require-
ment frame model. It allowed to distinguish three kinds of frame models: Noun
frame, Case frame and Function frame. [Rolland 1992] et al. working with database
development domain, defined patterns and cases based on the Fillmore’s case sys-
tem: Agentive, Instrumental, Dative, Factitive, Locative and Objective for writing
requirements. They defined several classes of verbs and clauses and distinguish
the main linguistic patterns: elementary patterns which allow associating clauses
to syntactic units of clauses and sentence patterns that allow associating cases to
clauses of a sentence. Denger et al. [Denger 2003] developed an approach for reduc-
ing the ambiguity in NLRs with the use of natural language patterns , authoring
rules and document templates. They outlined distinct language patterns such as
functional requirement sentence patterns, event patterns, reaction patterns, compu-
tational patterns, relationship patterns, exception patterns, patterns for special as-
pects and non-functional requirement sentence pattern. A few other work also exist,
notably on Controlled English [Fuchs 1996], which is a subset of natural language
with restricted syntax and semantics. Experiments with Controlled English were
carried out on Attempto [Fuchs 1996], which translated the specifications written
in Controlled English into discourse representation structures and logic program-
ming language (Prolog). Their findings indicated that Controlled English could be
used for specifications, but there is need for establishing the small number of easy
to remember functions to formulate sentences in Controlled English.

Table 2.5, summarizes the key-points of the three approaches and their corre-
sponding advantages and disadvantages. It is difficult to say with whom we can com-
pare our actual work, as we have addressed the precision problem of non-functional
requirements, which is a type of ambiguity problem. Our work is actually very
different from the previously existing approaches, however it can be located into
placed into a category with natural language patterns for NLRs with some excep-
tions. Earlier, it has been advised to use only affirmative phrases for requirement
description, in contrast to our proposed work which advocates that it can be use-
ful to use negative phrases to explore quality requirements and can be used as a
measure to prevent ambiguity and understandability problem.

2.3.1.1 Issues Identified with Writing of NLRs

Ambiguity of NLR We confront ambiguity in everyday life in different forms:
conversations, signs, pictures, newspapers, documents etc. Sometimes their implica-
tions are trivial and sometimes significant to us. In the context of system engineering
the role of ambiguity is significant and is a determining factor for success or fail-

50 Requirements Engineering

Table 2.5: Comparing Different Approaches for Ambiguity Problem in NLRs

Approaches Keypoints Advantages Disadvantages
Linguistic rules
and analytical
keywords
[Fabbrini 2001a],
[Wilson 1997]

Model of language attributes
and indicators used in eval-
uating the quality of exist-
ing NLRs. Frequently used
keywords, phrases and sen-
tence structure are grouped
and counted by computer pro-
gram

Effective in de-
tecting defects
and ambiguous
NLRs

Depends a lot
upon different
contexts, hu-
man interven-
tion is required

Guidelines rules
[Tjong 2008],
[Juristo 2000],
[Berry 2003]

Guiding rules that can detect
defects, ambiguities and weak
phrases .

Avoids incor-
rect construc-
tion of NLRs,
rules functions
as a checklist.

Restricts free-
dom of writing
NLRs

Language
patterns
[Denger 2003],
[Rolland 1992],
[Ohnishi 1994]

Linguistic patterns used as
reference, set of authoring
rules and document tem-
plates, limited vocabulary lan-
guage.

Allows to pro-
vide transfor-
mation rules

Requires
considerable
efforts for de-
vising patterns

ure of project [Auriol 2008]. Ambiguity infers poor or opaque understandability of
documents. The usability of a requirements specification document depends on the
quality with which the document is written; consciously or subconsciously the de-
velopment teams expect document to be unambiguous and easy to understand. The
understandability of a requirement is usually forgotten by requirement engineers as
an attribute of document, but they expect it subconsciously [Svahnberg 2008].

Understandability of NLR In literature the definition of understandability of
requirement documents is usually taken from English dictionaries: able to be un-
derstood. [Fabbrini 2001b] defines understandability with respect to requirement
specification, as the capability of the Requirements Specification Document to be
fully understood when read by the user. It can also termed to be readability or
comprehensibility of a document [Kamsties 2003].

In our approach we categorize the understandability of a requirement document
as good, if it enables its readers to operate upon them with ease, enables transpar-
ent decision making and provides a pathway for the test cases while remaining in
conformance with the user.

2.3.1.2 Defining Ambiguity

In literature the definition and scope of ambiguity is considered different in different
disciplines like philosophy, linguistics, law and, of course, systems engineering. Here

Writing Natural Language Requirements 51

Requirements
Ambiguity

Vagueness

Generality

Linguistic
Ambiguity

Software
Engineering
Ambiguity

Lexical

Syntactic

Semantic

Homonymy

Polysemy

Attachment

Coordination

Scope

Requirements
Document Ambiguity

Application
Domain Ambiguity

System Domain
Ambiguity

Development
Domain Ambiguity

Ambiguity

Ambiguity

Ambiguity

Ambiguity

Ambiguity

Ambiguity

Figure 2.7: Taxonomy of Ambiguity Types [Berry 2003]

we have tried to highlight few of the existing definitions of ambiguity in the literature
of software engineering.

The IEEE recommended practice for software Requirements Specification de-
fines an unambiguous requirement: a SRS (Software Requirement Specification)
is unambiguous, if and only if, every requirement stated therein has only one in-
terpretation [IEEE 1998]. Implying that, a requirement is ambiguous if it is not
unambiguous.

According to [Kovitz 2002], ambiguity is a relation between a description
and reality in which the distinctions in the description fails to guide you when
you meet the reality. [Huyck 2000] defines, a sentence is ambiguous if it has
more than one complete interpretation. [Leffingwell 2003] defines ambiguity as:
a requirement is ambiguous if there is a probability of being misunderstood.
[Kamsties 2001, Kamsties 2000, Berry 2003] extend further the concept of ambi-
guity to context knowledge and they used three complementary definitions to curve
out RE-ambiguity, the first definition defines a requirement as ambiguous if it has
multiple interpretations despite the reader’s knowledge of the RE (Requirement
Engineering) context. The second definition states that the required RE context
necessary to disambiguate a requirement consists of four parts; the requirement doc-
ument, the application domain, the system domain, and the development domain.
The third definition [Kamsties 2000, Berry 2003], implies that a requirement allows
multiple interpretations if it contains linguistic or RE-specific ambiguity. Linguistic
ambiguity arises independently from any context and comprises vagueness and gen-
uine ambiguity in the form of lexical, requirements-document, application-domain,

52 Requirements Engineering

system-domain and development-domain ambiguity.
Figure 2.7, shows the taxonomy of ambiguity that can be encountered in a natu-

ral language requirement specification [Leite 2004]. It is clear from Figure 2.7 that
the requirement ambiguity can be traced to system/software-engineering ambiguity,
lexical, generality, vagueness or all of them [Leite 2004]. [Leite 2004] describes all
of these types of ambiguities with examples.

2.3.1.3 Understandability and Ambiguity Problem in RE

In the context of RE, the poor understandability of requirements document implies
wastage of resources [Sommerville 1997]: it will demands more efforts from the
reader and hence will cost time and money.

In RE context, an ambiguous or misunderstood requirement may lead to faulty
development of product. The product deviates from the actual needs of the stake-
holders and may upset both the client and the developer. Therefore early detection
and resolution of ambiguity in requirements documents is recommended. As natural
language allows many structural possibilities of sentences, one sentence that seems
ambiguous to one, may be interpreted uniguously by another. The faulty interpreta-
tion may arise because of cultural differences, linguistic differences, methodological
differences, or as trivial as geographical or climatic differences.

A perfectly unambiguous requirement would be when everybody has the single
interpretation of it. Currently, the projects are getting more and more complex
leading to highly complex requirements, and this goal of unambiguous requirement
seems very difficult to achieve with natural languages and current writing styles.

With formal languages there is a big communication barrier to overcome when
dealing directly with clients. A poor knowledge of the particular formal language
by clients can not help in establishing correct set of requirements. Also it is not
possible for all the stakeholders to express themselves in a particular formal lan-
guage [Altenhofen 2010].

The main problem of semi-formal notations is their lack of precise semantics
for modeling notations, which may lead to incorrect interpretations and misun-
derstandings for corresponding models. Another problem linked to semi-formal or
constrained natural language is that, there is difficulty with expressiveness and con-
venience of usage. Similar to usage of formal languages, it is not possible for all the
stakeholders to use the new set of grammatical rules to write sentences, or to learn
a new set of notations to express fine details, in the case they do so, there is always
a fear of something being left out.

In a complex system, at times it becomes very difficult to transform a system
needs into a precise verifiable requirement statement which can be easily contracted
with the client. Usually, it turns out to be qualitative or non-functional require-
ments with which the requirement engineers and clients/stakeholders face this prob-
lem [Cysneiros 2004]. It remains a challenge to elicit such requirements from the
stakeholders, as they are not clear to stakeholders as are functional requirements.

Writing Natural Language Requirements 53

Problem of Negotiating Test Cases

The quality requirements derived from soft goals are often hard to quantify, i.e., to
know exactly when the system fulfills them exactly. Such requirements are often
bone of contention among the developers and other stakeholders. There are few
methods in the literature to quantify such quality requirements.

2.3.2 Proposed Approach for Writing Requirement

The negation technique we propose considers the ambiguity definition given by Kam-
sties [Kamsties 2000] and understandability definition as given in Section 2.3.1.1.
We suppose that the stakeholders and requirement engineer share a common sys-
tem glossary for referencing and there is no ambiguity in glossary definitions of
terminologies. The idea is that if you want to convey ‘circle’ do not convey it as
‘diagram’, otherwise it may be misunderstood as ‘rectangle’.

The quality requirements test cases are difficult to be agreed upon by the stake-
holders and requirement engineers. The traditional way of writing requirements
specification is using the affirmative phrases but it gets difficult to link a test case
with which the qualitative requirement can be verified. It is not the inverse require-
ment [Berry 2003, Berry 2004] which cannot be verified with a test case, but instead
they are the characteristics or symptoms which could be tested and verified.

Such requirements can be identified easily, as they are non-functional or qual-
ity requirements, they seem to be opaque for both client and supplier. Another
symptom for such requirement is that, it seems difficult to establish a test case for
verification of such requirement.

Usually, it seems to be difficult for the document writer to explain in detail
such requirements with traditional affirmative sentences alone. Such requirements
written in affirmative sentences are usually written following the rules and writing
styles imposed, making them less interactive and useful [Kovitz 1998]. We have
found that while using the negative phrases in combination with affirmative phrases
the effort is greatly reduced and test cases can be easily established to verify and
validate the requirement. Use of negation for such requirement seems very natural
and is easily accepted by the reader.

For example: The Need of a comfortable chair could be expressed as:
(a) the user should feel relaxed even after prolonged usage or as,
(b) the user should not feel any pain or cramp in his body, even after prolonged

usage.
The second phrase seems more natural and turns out to be verifiable. We relate

this fact later with our interviews and experiments in Section 2.3.3.
We also propose that a complex requirement statement should be written with

complementary requirement statements, that restricts the possible deviated inter-
pretations of the original requirement. We advocate the usage of negative sentences
for restricting the mind of readers from interpreting the sentences in the wrong direc-
tion and guiding them towards the exact interpretation. Figure 2.8, shows the idea

54 Requirements Engineering

Requirement fAmbiguity

!

!

X

Figure 2.8: Restricted Interpretation

of restricted interpretation of the requirement statement. We propose that as soon
as a document writer with suitable domain knowledge writes down a requirement
in natural language, he should add the relevant negation statements which could
otherwise be interpreted as the original requirement with the same context. Each
requirement specification written with its complementary statements should be vali-
dated with the corresponding stakeholder. It should be verified that the stakeholder
has also understood the complementary statements.

For example, if an auto-mobile company wants to develop a golf-car, it receives
some of the stakeholder needs such as :

(a) The car shall be comfortable.

(b) The car shall be reliable.

(a) The car shall be ecological.

Table 2.6 shows how a requirement engineer will write the user needs in to re-
quirement statements, using the two techniques; first with only affirmative sentences
and second with affirmative and negative sentences. The table shows that the neg-
ative statements have increased the understandability of the requirement sentences
and it helps greatly to generate the corresponding test cases.

For instance, to validate if the car is comfortable, a test case based on the simple
affirmative requirement sentence would be difficult to conceive, whereas to validate
whether the usage of car doesn’t cramp your limbs would be easier. In this case, ‘X’
number of people could be made to sit on the car seats for a determined duration
and later asked if they had any sensation of strain, cramp or pain in their limbs.

Similarly, it is easy to verify the pollution index of the car with a negative re-
quirement statement, as it links directly to an associated test case. It is evident that
the negative requirement statement helps the requirement engineer to have a better
insight of product. Also, it demands less effort to conceptualize and also lessens
the amount of effort for corresponding test cases to be generated for validation and
verification of the product.

Writing Natural Language Requirements 55

Table 2.6: Table of Requirements Using and Without Using Negation

Affirmative Affirmative + Negative

a)The user shall be relaxed.
b)The user shall remain at ease.

a)The usage of car shall not cause strain
in the user’s body.
b) The user shall not get cramped while
using car.
c)The usage shall not induce postural de-
formity.

a) The car shall be safe.
b) The car shall turn or move as per
user’s actions.
c)The car shall provide protection to
the user in case of accident.

a) The car shall not fail its missions.
b) The car engine, breaks, and gears shall
never fail before a particular duration.
c) The car shall not get crushed in half, in
case of a head on collision.

a)The car shall be pollution free.
b) The car shall be 95% recyclable.

a) The car shall not release green house
gases or toxic waste in to the environment.
b) The car shall not produce noise more
than 55 decibels.

2.3.3 Experiment and Empirical Findings

We proposed an experiment and a survey to know, whether negation really helps in
explaining an idea or whether it really increases the understandability of ideas. We
tried to verify this fact in two steps :

1. Questionnaire

2. Interviews

The language of interview and questionnaire were optional : English or French. Sub-
jects involved in the questionnaire and interviews were of different nationalities and
scientific background. Subjects had good command over English and had abilities
to analyze and interpret a notion with scientific perspective. Total number of sub-
jects, who participated in these questionnaires and interviews was 31. The survey
was carried out in two steps. In the first step, first half of them were interviewed
and other half put through the questionnaires. After an approximate gap of three
months the second step of survey was carried out, which involved the same process
but with the two groups switched with questionnaires and interviews. Till the end
of second step, the subjects were not provided with the explanations of what the
survey is upto. This was done to avoid any prejudice on affirmation or negation of
interview or questionnaires. On an average the duration of an interview was of 8
minutes. The questionnaire contained four qualitative attributes, with 1-2 questions
for every attribute. In the second part of the survey which was carried out after

56 Requirements Engineering

Figure 2.9: Gross Percentage of Affirmative Phrases vs Negative Phrases

some gap of days (approximately 3 months) the two previous groups were again
surveyed but with swapping of questionnaires and interviews, keeping the duration
of interview and type of questionnaires similar as before.

Questionnaire

The questionnaire we carried out contained phrases describing the quality of a prod-
uct, for example comfortable, ecological, etc. In the first section, all the qualitative
properties were written in affirmative phrases and in the second section, the same
properties were written in a set of affirmative and negative phrases reinstating the
same property. The reader was asked which one of the two types of explanation
seems clearer and offers better understandability and less ambiguity. The readers
were asked to rate the understandability of the two types of presentation on a scale
of 1-10, with 10 meaning excellent and 1 referring to poor understandability.

Results

The results obtained showed that 60% of readers found it more understandable,
when a qualitative property is written down together with negative phrases. 20%
of readers said that both are equally understandable, rest of 20 % said it depends
on the prior knowledge of a concept.

Interviews

We interviewed the other half of selected peoples for interview sessions. We asked
them to explain a complex concept of an object. We asked them how they define
a particular characteristic quality of a system. We tried to put cases from real life
scenarios like reliability, comfort, or usability of a product. We counted the number
of phrases utilized to explain the concept and counted the total number of negative
phrases one used during the conversation for explaining the idea. Then they were
asked, whether negative phrases were coming more easily in mind then affirmative
phrases to explain the same concept.

Writing Natural Language Requirements 57

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

Af
f

N
eg

F
ig
ur
e
2.
10

:
In
di
vi
du

al
P
er
ce
nt
ag

e
of

A
ffi
rm

at
iv
e
P
hr
as
es

vs
N
eg
at
iv
e
P
hr
as
es

P
ro
du

ct
io
n

58 Requirements Engineering

A few examples of questions that were used with the majority of individuals are
as: What do you mean by comfortable chair? How would you define reliability in
context of a car? etc.

Results

The total number of phrases produced in the interview sessions was 348 phrases
by 31 individuals, out of which 178 were in affirmation, and 170 were in negation.
Figure 2.10, shows the individual distribution of negative and affirmative phrases.
Figure 2.9, shows that roughly 48,85% of total phrases utilized to express a non-
functional requirement were in negation, whereas 51.15% were in affirmation. On
average, of the various interviewed peoples utilized, 89% of people used a blend of
negative and affirmative phrases to elaborate a concept. After the interviews we
pointed out to the individuals their pattern of sentence production and asked them
why they tend to use negative sentences. 80% of them said that for explaining some
notion, negative phrases seem to be more intuitive and natural.

2.3.4 Using Negation to Negotiate the Requirements

As empirical study carried out by us shows that, clients use negation as part of their
conversation in natural language. It is very unnatural and artificial to provide them
requirements documents written only in affirmative phrases. Although, it depends a
lot on many factors: cultural, geographical, etc., in many cultures negation is com-
pletely avoided. Some discussions with experts in RE domain provided the reasons
for using only affirmative sentences. The reason they provided could be summarized
as: “requirements written in negative phrases can be tormenting to developers”. But,
given to the benefits the negation allows in framing the user needs, it can be used
as tool to negotiate the requirements. These aspects of negation can be very useful
in designing and negotiating the verification and validation test cases with the cus-
tomers. With our empirical study, we would like to recommend to appreciate the
use of negation while negotiating the requirements and test cases.

2.4 Discussion

We have provided some theoretical formulations of requirements. They may seem to
be too abstract and hard to understand. But these formulations present a theory to
understand requirements in depth. We have provided reasons for their existence in
the system. The link between the stakeholders, their beliefs, rationales, requirements
and viewpoints is new and allows to argue and understand a given requirement.

Although it is hard task to go through each and every requirements and ratio-
nale and stakeholder and differentiate them to find their roots. But some hard to
understand and ambiguous requirements can be put through this process, which
makes them explicitly clear and contractual. Our theory of requirements explains
the vagueness of the requirements and need of the stakeholders, as it provides the

Conclusion 59

reasons for their ambiguity and intangibility. We provided some means and tools to
make this requirements elicitation process more semi formal and try to bridge the
gap of natural and semi-formal modeling.

Still, there is little to say how to help the design team in detecting all the
viewpoints explicitly which are of interest to stakeholder and more importantly the
stress vector of each stakeholder that he holds for the particular rationales. Even
if one brings to light the various viewpoints held by a particular stakeholder, it is
hard to claim that there are non other left. But some techniques can be devised
to narrow down the list of view-points that can be held by a particular stakeholder
and approximate stress vector.

Like any GORE based language CReML may suffer from similar issues, but
the remedies of all the GORE based language lies in the transforming it into tool.
The tool developed to implement the CReML has overcome a few of the challenges
and makes it more scalable and allows to design highly complex diagrams while
still remaining understandable by using layers of abstractions between the various
artifacts. Artifacts which require a particular users attention are presented to him
rather than presenting the whole complex system at a time.

Using negation as a tool for avoiding ambiguity also poses some challenges, it
could be hard to say which requirement is appropriate for using negation. There
are some cultural challenges too which are associated with using negation, in some
cultures negation is reputed to have evil meaning, whereas in some cultures negation
is used commonly and has nothing to do with evil sense. During our study, we
tried to find the reasons that why it is recommended to use affirmative sentences for
writing requirements. We could not find the precise reference which gives the reasons
for secluding negation. During some discussions, a few of researchers suggested that
some persons find negation to be cruel, hence they try to avoid it.

2.5 Conclusion

This chapter started from state of art of requirements engineering techniques for
modeling and writing natural language requirements. Various definitions in the lit-
erature were reviewed for understanding the notions related to requirements. Issues
with the current state of art of requirements modeling and writing natural language
requirements were raised. A theory of requirements was presented with the aim of
better understanding the requirements and the other notions related to it.

In order to take the benefit from the theoretical formulations, a requirements
modeling language CReML is introduced, which tries to overcome the inherent chal-
lenges linked to the scalability issues of complex requirement diagrams. We in-
tegrated CReML with SysML to take benefit from the existing system modeling
infrastructure. The proposed a graphical modeling language which is capable of
functionalities typical to popular GORE techniques like i* and KAOS and other
functionalities which are of concern to systems engineers and other stakeholders.
Proposed language and supporting tool allows to represent the preferences of the

60 Requirements Engineering

various stakeholders on the various goals and objectives. It allows to model both the
core and optional features of the system under study. The goals can be traced back
to the user stories which are linked to the goal modeling diagram. The responsibil-
ity and interaction among the agents is separately modeled and can be integrated
if the developer wishes. The other interesting capability our tool provides is to
model the rationales using view-points. The stakeholder rationales are projected
and divided in to various viewpoints from the very early stage, which allows to
better understand the user requirements. The end-product of goal modeling leads
to system requirements which can be allocated to the UML/SysML diagrams. Our
tool supports a few of the diagrams of the UML/SysML notably Use-case diagram
and Block definition diagram. This is to provide direct traceability throughout the
V-cycle.

We have handled other issues related to natural language requirements such as
ambiguity and understandability. Devised some methods to avoid ambiguity us-
ing negation and used them for negotiating test cases. A few of the surveys were
carried out to reinforce belief in the theoretical formulations and results were en-
couraging. Restricted negation technique offers interesting aspects as a tool against
the ambiguity and understandability problem in context of RE. It is argued that for
quality notions it is comparably easier to elaborate using negative sentences, than
with purely affirmative ones. Findings with surveys have reaffirmed that for quality
concepts negation is more natural than affirmation. In the context of requirement
engineering, it can be used successfully as it seems more or equally natural and
intuitive as affirmative ones. Our examples have manifested that, a good blend of
affirmative and negative sentences can provide in depth view implications of a qual-
ity requirement. Interviews confirm that the user may prefer negative phrases and
they may come intuitively. Fundamental argument is that, if some phrases seem
to be natural, they are easily understood and accepted. Negation are natural in
a natural language, so they should be banished from requirements rather than use
them as a tool.

Chapter 3

Requirements Traceability

Contents
3.1 Introduction . 61
3.2 Requirements Traceability . 62

3.2.1 Requirements Traceability Processes and Problems 63
3.2.2 Traceability Recovery Challenges 68

3.3 State of Art of Requirement Traceability 70
3.3.1 Information Retrieval Based Techniques 70
3.3.2 Structurally Rule Based Techniques 74
3.3.3 Linguistically Rule Based . 75
3.3.4 Transformation Rule Based 75
3.3.5 Other Miscellaneous Based 76
3.3.6 Works on Traceability Maintenance 82
3.3.7 Traceability For Systems Engineering 83

3.4 Proposed Solution for Traceability Problems 84
3.4.1 Semantics of Relationships for Requirement Traceability . . . 85
3.4.2 Planning and Managing Traceability Strategy 87
3.4.3 Trace Creation Process . 89
3.4.4 Trace Maintenance Process 93
3.4.5 Trace Usage . 96
3.4.6 Using Traceability Information for SE Activities 96
3.4.7 Comprehensive Traceability During Project Development . . 98

3.5 Discussion . 101
3.6 Conclusion . 102

3.1 Introduction

In systems engineering activities, requirements management occupies a consider-
able amount of space, both in technical processes and project processes. Require-

ments management processes consists of providing the platform for identification,
management and implementation of client needs or requirements during a product
life cycle. Requirement traceability is one of the activities of requirements manage-
ment process which governs the life of requirements from their inception to their

62 Requirements Traceability

implementation and thereafter. Requirement traceability deals with identifying or
creating the trace links between the artifacts and using them further for conflict
resolution, consistency checking, change impact analysis, testing, verification and
validation. These activities depend on the quality of trace links identified earlier.
The trace link identification process is also called traceability recovery. Traceability
recovery techniques can be broadly classified in to three categories: manual, semi-
automatic and automatic. Requirement traceability recovery techniques are of great
interests in systems engineering as they are used in product life cycle management
process. Success of a SE project depends on various factors, and requirements man-
agement activities are one of them. Adequately carried out RM activities ensure
that the system is correctly defined, verified, validated and deployable.

In SE process, requirement traceability is one of the anticipated attribute for
quality control. INCOSE handbook [Haskins 2011] for SE, mentions and demands
special attention for traceability, but provides no insight about the methods or
techniques for it. The most of the research work on requirement traceability is
recent and it has gradually gain importance as industries look for better products
and development processes. Still, industries have to gain lot from traceability.

In this chapter, Section 3.2 presents the requirements traceability, its processes
and problems with the current traceability schemes. It also identifies the challenges
faced by the systems engineers while selecting a particular recovery technique. Sec-
tion 3.3 aims to bring together all the contemporary requirement traceability tech-
niques, as part of an extensive literature survey, to identify the various existing
requirement traceability techniques, their various benefits, limitations or inconve-
niences linked with the usage. Section 3.4 presents the proposed approach for the
various problems raised. Next, the approach is discussed with its benefits and limi-
tations in section 3.5. Finally, conclusions are presented in Section 3.6.

3.2 Requirements Traceability

Definition 3.1. In words of Gotel and Felkinstein [Gotel 1994], “requirements trace-
ability refers to the ability to describe and follow the life of a requirement, in both a
forwards and backwards direction (i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and through periods of on-going
refinement and iteration in any of these phases).”

The requirement traceability principle states that [Gotel 2011] “there is no ability
to trace without a track and there is no ability to lay a track without making signs”.
In accordance with the above mentioned principle, requirement traceability process
consists of four activities: trace creation, trace recovery, trace maintenance and
trace usage. Trace creation is the process of lying down the signs across the length
and breadth of artifacts. Trace recovery is the practice of extracting links using
the signs laid before to find the information flow and the relationships between the
artifacts. Trace maintenance can be seen as the process of maintaining and updating
the signs between the artifacts, which reflect the instantaneous and past states of the

Requirements Traceability 63

system under development. Trace usage involves the set of activities which use this
information held by the links for other SE activities like: change impact analysis,
configuration management, verification & validation, installation, etc.

Every organization implements its own suitable guiding principles for require-
ment traceability which are known as ‘traceability policies’. Traceability policies
define which information dependencies between requirements should be maintained
and how this information should be used and managed. The existing literature shows
that information like who, why, what, where, when, etc., and other relationships are
maintained for efficient requirement traceability [Spanoudakis 2005, Shukla 2012b].
There are already many methods for traceability maintenance like described in lit-
erature [Cleland-Huang 2003, Drivalos-Matragkas 2010, Nguyen 2005, Shukla 2011],
without efficient maintenance, a traceability scheme becomes useless and is ignored
by the users. Another important concern with traceability is of trace generation.
There are numerous techniques in literature describing various methods to recuper-
ate trace from artifacts. The majority of existing literature in requirement trace-
ability is in context to software engineering. Although, we cover the traceability
recovery schemes for both software engineering and SE, we try to present the trace-
ability schemes in a broader picture of SE.

Requirements traceability can be broadly classified into various types: pre-
requirement traceability and post-requirement traceability [Gotel 1994], upward trace-
ability and downward traceability [Pinheiro 2004].

The pre-requirement traceability is accountable for all the mechanism before the
stakeholder requirement(needs) are conceptualized. The pre-requirement traceabil-
ity reveals the complex network of links between the stakeholders, their various roles,
their rationales & beliefs, viewpoints and their various requirements.

The post-requirement traceability tracks this projection of requirements at vari-
ous stages of the project life cycle. Various other notations may describe the trace-
ability schemes like: upward-downward traceability, functional traceability, non-
functional traceability, intra requirement traceability, extra requirement traceability.

3.2.1 Requirements Traceability Processes and Problems

The problem of requirements traceability in software and systems engineering exists
because we lack the precise track on which we can trace the artifacts. As previously
quoted by Gotel et al. [Gotel 2011], “there is no ability to trace without a track and
there is no ability to lay a track without making a sign”.

We have understood that, there cannot be a single technical solution which can
address all of the challenges of traceability, in fact each of the challenge is an own
class of problem. If a technique strives to achieve them all, it is deemed to fail. Each
of them needs to be addressed individually systematically and holistically, and then
only later integrated to form a whole solution to traceability problem. They cannot
be solved in isolation, rather they can only be achieved when they are solved in a
concurrent manner while one solution communicating with other. Figure 3.1, shows
the current model of traceability process in industry. The requirements traceability

64 Requirements Traceability

Figure 3.1: Current Traceability Process [Gotel 2012b]

problems have other set of organizational problems, for instance, there is no consen-
sus over the fundamental vocabulary of requirements traceability, although recent
works have started in this direction [Gotel 2012b]. There is no meta-model of trace
which is generally accepted by all. The trace community has yet to achieve con-
sensus on multiple fundamentals of traceability. The semantics of various existing
relationships are yet to be standardized. The actual scenario is far more alarming,
the systems engineering community demands extensively the traceability, but the
tools on which they depend are not equipped to provide it. Even a few of them
provide it remains confined to one tool, or if it claims to provides for another set
of tools , then linking them remains manual. Traceability across the heterogeneous
tools remains the bottleneck of requirements traceability in systems engineering
projects. Fundamentally, the ideal solution would be to have a completely au-
tomated traceability scheme, but with the current technical limitations, it is not
possible to fully automate the pre-requirement traceability. It is hard, to extract ra-
tionales and beliefs from human, as well as non-human stakeholders automatically.
The pre-requirement traceability can only be tracked by involving the stakeholders
in discussions and taken into account the rationales and beliefs of the stakeholders.
The stakeholder identification process should also be traced, i.e., the techniques used
by the teams to properly discover the stakeholders. The post-requirement traceabil-
ity problem can be divided into three parts: creation, generation, and maintenance.
All three activities are carried out in a context boundary called traceability strategy
which includes planning and managing organizations’ traceability schemes.

Requirements Traceability 65

3.2.1.1 Traceability strategy

Traceability strategy is all about deciding what to trace and how much to trace at
what cost. Traceability strategy planning is critical task, it has to take in account
organization’s budget and resources, clients traceability needs, or a particulars stan-
dard’s traceability compliance needs. Upon the budget and considerations regarding
the available human and technical resources it is decided how much to automate and
what should be automated ? How much fine granular traceability should be achieved
? The choice of approach: manual, semi-automatic, automatic; techniques; tools;
other traceability infrastructure is made during strategy formulation. Deciding upon
whose traceability requirements are to be fulfilled and to which extent are part of
strategy formulations. Figure 3.1 shows that strategy formulation and planning as
the central task to establish requisite requirement traceability.

3.2.1.2 Trace Creation

The process of linking various requirements to artifacts at various levels of life-cycle
is called trace generation. The trace creation problem is about how to create traces
in such a manner that at a given instant all the artifacts are accountable, i.e., we
know about the parameters like ‘who’, ‘why’, ‘what’, ‘where’, ‘when’ and the trace
relationships existing between the particular source artifact and the target artifact.
The trace extraction process can be assumed as an on-demand trace creation process,
i.e., when the system analyst demands the traceability between the two artifacts
at same or different level in system. Determining the relationships between the
two artifacts is a complicated process. It requires comprehensive understanding
of the interaction between the various artifacts/components with their immediate
environment and their interactions globally. The interactions can be at any level or
view. The interactions from the multiple aspects of the system can ease the trace
determining process [Shukla 2012a].

Among the various available traceability recovery techniques, the information
retrieval based techniques are being used commercially by various industries for
automatic link creation. This class of traceability recovery techniques are measured
using two parameters called precision and recall [Antoniol 2000]. Precision is the
fraction of the retrieved documents that are relevant to the search, as given by
Eq.(3.1). Recall is the fraction of the documents that are relevant to the query that
are successfully retrieved, as given by Eq.(3.2).

precision =
|{relevant document} ∩ {retrieved documents}|

|{retrieved document}|
(3.1)

recall =
|{relevant document} ∩ {retrieved documents}|

|{relevant document}|
(3.2)

The information retrieval based techniques are yet far from being perfect and
have issues with the problem of poor precision and low recall. A poor precision leaves
space for considerable human involvement despite of automatic retrieval, rendering
the traceability recovery to be semi-automatic.

66 Requirements Traceability

Similarly, in the case of poor recall, a missed relationship can be disastrous
and may lead to considerable loss of resources. Therefore, human intervention is
necessary to be sure that the recall is sufficient. But this two tier approach for
inspection can have scalability issues, or in worst case some traces may be ignored
deliberately or unknowingly. This leads to an erroneous traceability where the user
or analyst has low confidence in the system.

3.2.1.3 Trace Generation

The process of extracting the links which indicate the relationships between the ar-
tifacts at different phases is called trace generation or recovery. The various trace-
ability recovery techniques can be broadly classified into various classes: information
retrieval based, structural rule based, linguistic rule based, transformation rule based
and many other miscellaneous techniques.

A major difficulty of the requirements traceability recovery problem is about
providing the fine grained traceability, i.e., ability of traceability scheme to provide
very precise location of the relevant artifact in the provided documentation. Fine-
grained traceability provides the links between the various customer requirements
and the artifacts generated during the development activity and later during other
project’s activities. such as, customers requirements to the design components,
installation plans, user manuals, configuration plan, etc. In the case of software
engineering products, it can be compared to provide the exact location of a function
in a source code, and in case of another system engineering product (hardware
intensive system) the precise location of the implemented system functionality.

In the case of software engineering project, providing fine grained traceability
can be much easier than the systems engineering projects. The part of source
code in a software system can be identified with the very precise line numbers of
the implemented functions or methods. Contrarily, in a hardware intensive system
this is fairly complicated. For example, the machine drawings are usually drawn
with various types of projections and with heterogeneous tool sets. Drawing of
systems and sub-systems are drawn from different levels and perspectives. It can be
cumbersome task to locate very precisely functionalities drawn into the such set of
available drawings.

Another problem of traceability recovery process is linked with the heterogeneous
set of artifacts. An acceptable traceability recovery technique should be able to
provide the traceability of the artifacts across the various types of artifacts, i.e.,
a technique should be independent of types of input artifacts. The traceability
recovery process should also address problems linked to the maintenance of the
artifacts or the evolution of the requirements and their proposed solutions.

The requirements traceability recovery scheme should enhance the confidence of
its users. There are many metrics proposed in literature to measure this, but the one
more popular are precision and recall. False positives or false negatives are biggest
challenge to a traceability recovery process. A false positive will lead to unnecessary
work, whereas, a false negative will necessarily lead to huge amount of rework. Both

Requirements Traceability 67

of these activities are highly undesired in an enterprise.

3.2.1.4 Trace Maintenance

Trace maintenance poses another serious challenge to traceability, without proper
trace maintenance, everything previously achieved and maintained is supposed to
be doomed. A complex traceability maintenance scheme is not appreciated by the
analysts, whereas, a traceability scheme which provides proactive maintenance with
minimum amount of interactions is desired by the analysts. The requirements trace-
ability is a continuous activity, involving people of various levels to participate con-
tinuously and maintaining a perfect communication channel among them for avoid-
ing any information lapse. A good communication channel can help to figure out in-
consistencies in the interpretation of requirements among various stakeholders which
is very necessary for requirements engineering activities. Besides the communication
there are various issues in traceability maintenance. Maintenance is the activity of
updating and modifying already existing traceability relationships [Schwarz 2010].
The traceability maintenance can be further divided into four major problems: cost
of maintenance, dangling traces, information loss and low value of trace for low-end
users.

Cost of maintenance: As the requirements are continuously evolving through the
life of a project, requirements are added, removed or modified. The links between
these evolving requirements need to be maintained. In a sufficiently complex system,
the number of requirements can vary up-to a few thousand requirements depending
upon the granularity. Maintaining these requirements can be a tedious task involving
lot of computational and human resources.

Dangling Trace: A dangling trace is one which points nowhere or it lacks either
a source or a target. Such situation may arise due to human or system error during
the course of a continuous evolution of a fairly complex system. They may also arise
due to changes in the system model rendering some part of old system out of the
boundaries of new system and hence it becomes difficult to trace them with respect
to new requirements.

Information Loss: Whenever a new requirement is added to the system it needs
to be linked to other requirements and available artifacts. The corresponding own-
ers of the linked artifacts should be informed and advised to bring up the necessary
changes. Similarly whenever an artifact is removed or altered or its dependency
changes all the information should be communicated to the various stakeholders.
This task usually involves maintaining these fine grained relationships and continu-
ous update of such information usually leads to loss of data and hence information.
We claim this information to be important as they are result of earlier high level dis-
cussions and decisions which involved certain cost. If any such information is deleted
permanently then in case of a future discussion there is chance that development
team may reach a similar decision which was earlier found to be inutile. This may
happen due to a probable change in the team or may be just of a simple absence of
a member, which is quite possible as project development may take sufficiently long

68 Requirements Traceability

time.
Increasing value of Trace for low end users: For the low end users traceability

seems to be a monotonous task and they are reluctant to involve themselves in
traceability process. They do not find it very useful for their objectives and hence
traceability does not offer them sufficient valorization for their work.

The questions raised in Section 1.4.2 are based on this section and are addressed
in this chapter.

Question 1.7: how to engineer requirements such that requisite amount of trace
requirements are implemented throughout the SE of life cycle of product?

Question 1.8: how to do requirements traceability in SE projects?
Question 1.9: how to maintain requirements traceability in SE project ?
Question 1.10: how to provide the cost effective requirements traceability?
Question 1.11: how to provide purposeful requirements traceability to stake-

holders?
Question 1.12: can we estimate the cost of requirements traceability? If yes

how? if no why?

3.2.2 Traceability Recovery Challenges

The traceability recovery is only one step of the complete requirement traceability
process. The choice of traceability recovery technique is very critical to the success
of a project. Research works in this field have addressed many problems of require-
ment traceability but still there are some issues ahead. We discuss some of the
challenges faced by the traceability schemes or more precisely recovery schemes and
tools. Automatic generation and verification of links: It is still among one of the big
issues of requirement traceability problem. There are traceability tools which claim
to be fully automatic and fully capable of generating the traceability relationships
among the artifacts; this generation process is followed by verification of traceability
links, because still now the various information retrieval based traceability recovery
techniques do not have 100 percent recall or 100 percent precision; the computing
systems are not able to verify these semantic aspects flawlessly or better than hu-
man, therefore, manual verification of the relationships is the usual procedure. This
manual verification is time consuming, and costly; this can also have scalability and
reliability issues. A semi-automatic process but with credible verifiability is better
choice than a fully automatic technique which is partially dependable. Research
community should try to focus on this problem, as mere generation does not solve
the problem. Therefore a process which can both generate and verify the traceability
links with proven credibility will be solution to this problem.

Inconsistency: During the evolution of project, dependencies among the artifact
changes and the relationships among them may remain intact or get changed. This
is one of the biggest challenges faced by requirements engineer to track the trace-
ability relationships among the artifacts. Maletic et al. [Maletic 2003] proposed a
conformance analysis based on a formal hypertext model. They proposed using
latent semantic indexing (LSI) signatures to detect changes in the documents and

Requirements Traceability 69

track them using conformance graph. The challenge ahead is how to equip the
traceability techniques to maintain consistency? How to highlight inconsistency us-
ing traceability techniques? How to make traceability a more active entity in the
SE or software engineering?

False positives or negative: The another challenge with semi-automatic and au-
tomatic traceability techniques is of false positive, with the IR techniques available
today the analyst has to decide thresholds with trial and error methods. For dif-
ferent projects this can be cumbersome, and time taking to find the exact value,
as the number of false positives grows up too rapidly when similarity of artifacts
pair decreases. One challenge is to develop confidence among analyst regarding
tools and techniques. If an analyst encounters large number of false positive or false
negative notifications during process, analyst stops using the tool and prefers using
his experience and expertise to draw the links among the artifacts, and hence the
traceability problem remains unsolved, costing significant amount of resources.

Scalability: Some traceability recovery techniques use indexing of terms, for
retrieving the correct link between the artifacts, but this technique may have scal-
ability issues, with respect to a sufficiently large project. The timely indexing of
terms of complete set of documents can be very costly and time taking. It may
not be possible also index all the documents available at different geographical lo-
cations, which is quite possible in today’s scenario owing to distributed locations of
sub-contractors or teams.

Automatic detection of relationship type: It is necessary to know about the type
of relationship existing between the artifacts. The various types of relationships
need to be identified between artifacts, to make them useful to the analyst. The
current traceability recovery schemes do not provide a mean to automatically detect
the types of relationships between the artifacts. Or if they provide, there is always
a lack of confidence, which can only be verified with a human intervention.

Traceability across heterogeneous artifacts: Traceability recovery techniques are
not well equipped to handle fine grained traceability relationships across heteroge-
neous artifacts. As the various documents used for developing the system are in
different file formats, it is still cumbersome to link them properly. These heteroge-
neous artifacts are hard to be linked in a fine-grained manner. The vocabulary used
in different documents may mean same or different things; hence, semantic aspects
of different documents available in different format cause this problem. Semantic
correctness can only be verified with human intervention.

Forward or reverse traceability policy: Traceability recovery should be a parallel
activity to the development, but many recovery techniques are either implemented
for forward traceability or backward traceability, which creates a gap between the
current state of project progress and traceability state. It is also very difficult to se-
lect which type of traceability policy should be implemented or used in a project. As
not all projects are similar, they have different needs for recovery policies: depending
upon the type of project; software intensive or non-software intensive project; long
duration project or short duration project; small size project or large size project.

70 Requirements Traceability

3.3 State of Art of Requirement Traceability

Current literature on traceability contains ample work on need, and generation of
traceability. Traceability literature is vast, as mention Gotel et al. [Gotel 2012a] the
first paper on traceability arrived fifty years ago. The recent works [Gotel 2012b,
Gotel 2012a] of CoEST1 have formulated and elaborated the major traceability chal-
lenges and provided the new insight in to the actual traceability problem. There
are few previous works [Cleland-Huang 2012], which have highlighted the issues of
strategy formulation for traceability with purpose, but to best of our knowledge
there is no comprehensive policy which provides the insights of traceability needs
of each stakeholder. There is no traceability policy cost comparison and measure-
ment technique in the literature to best of our knowledge, for both software and
systems engineering projects. There are seminal works on value based requirements
traceability in literature such as Egyed et al. [Egyed 2005b], and by Cleland-Huang
et al. [Cleland-Huang 2012] in which they discuss the return on investment using
heterogeneous techniques for maximum benefit with optimal efforts.

The earlier analysis of traceability problem [Gotel 1994] presented the differ-
ence between the pre-requirement and post-requirement traceability. Requirement
traceability techniques can be broadly classified as: manual, semi-automatic or fully
automatic. Manual techniques are those, in which direct human intervention is nec-
essary for trace creation, quality of traceability fully depends on his expertise. In
semiautomatic traceability scheme potential traces are proposed to the requirement
engineer, and following to an analysis of proposed traces, the requirement engineer
establishes the links between the artifacts. In fully automated traceability scheme
human intervention is not necessary and traces are created and deployed, based on
code synthesis using certain algorithms.

Otherwise, traceability recovery schemes can also be classified as follow:

1. Information retrieval based (IR)

2. Structurally rule based

3. Linguistically rule based

4. Transformation rule based

5. Other miscellaneous techniques

Table 3.1 provides a comparative analysis of the various traceability techniques,
with their suitability for application domain of Software engineering or SE.

3.3.1 Information Retrieval Based Techniques

Information retrieval strategies calculate the similarity between a query and a doc-
ument. Grossman and Frieder [Grossman 2004] define a as: a retrieval strategy
is an algorithm that takes a query Q and a set of documents {D1, D2, · · · , Dn} and
identifies the similarity coefficient SC(Q,Di) for each of the document 1 ≤ i ≤ n.

1http://www.coest.org/

State of Art of Requirement Traceability 71

The group of documents over which the retrieval is performed is called collection
or corpus. The quality of results in IR is measured using two metrics: precision and
recall. Precision and recall are given by Eq.(3.1) and Eq.(3.2).

Vector space model (VSM) was introduced by Salton, Wong, and Yang
[Salton 1975] as a technique for automatic indexing. It defines a document space
consisting of documents Di, each identified by one or more index terms Tj ; the terms
may be weighted or unweighted according to their importance between 0 and 1. Each
document is represented by a t-dimensional vector: Di = (di,1, di,2, · · · , di,t), where
dij represents the weight of the jth term.

Given the index vectors for two documents, it is possible to compute a similarity
coefficient between them, S(Di, Dj), which reflects the degree of similarity in the
corresponding terms and term weights.

Antoniol et al. [Antoniol 2002] introduced the usage of information retrieval
technique based on VSM and latent semantic indexing (LSI) schemes for trace-
ability recovery. They used if − idf metric for retrieval effectiveness [Salton 1988].
According to this metric, the jth element di,j is derived from the term frequency tfi,j
of the jth term in the document Di and the inverse document frequency idfj of the
term over the entire set of documents. The term frequency tfi, j is the ratio between
the number of occurrences of word jth over the total number of words contained in
the document Di. Antoniol et al. [Antoniol 2002] compared these results with prob-
abilistic retrieval models. They carried out experiments with two case studies and
suggested that both IR models are suitable for the problem of recovering traceability
links. They show that the probabilistic model achieves higher values of recall with
smaller cut values and makes little progress towards 100 percent of recall. On the
other hand the VSM starts with lower recall values and makes regular progress with
higher cut values towards 100 percent of recall.

Hayes et al. [Hayes 2003] considered the traceability problem as IR problem and
implemented the Vanilla VSM and its two variants: with key-phrases and using
thesaurus retrieval. In the first modifications they augmented the traditional vector
model, by associating a list of technical terms or key- phrases with the document
repository. When the model building software detected a technical term, it was
added to the vocabulary and was treated as an ordinary term. This allowed aug-
menting the relevance of matches related to technical terms, and excluding some
coincidental match. In the second modification based on thesaurus retrieval, they
used a simple thesaurus. Each entry of thesaurus is a triplet (ki, kj , aij) , where
ki and kj are vocabulary terms and αi,jε[0, 1] is perceived similarity coefficient of
ki and kj . During the model building stage, thesaurus entries are recognized and
added to the vocabulary as new word.

The main change in the behavior of this method with respect to classical Vanilla
VSM and Vanilla VSM with key-phrases comes during the query processing stage.
When computing the similarity between the query requirement and a document set,
the standard cosine computation receives an add-on that is generated by matches
found via the thesaurus.

The probabilistic models computes the similarity coefficient (SC) between a

72 Requirements Traceability

query, and a document as the probability that the document will be relevant to
the query. Probability theory is used to compute a measure of relevance between
a query and a document. Probabilistic retrieval system computes the weight of
a term with respect to its probability of occurrence in a document. There are
many probabilistic models like simple term weight model [Robertson 1977], which is
based on probability ranking principle, non-binary independence model [Yu 1989],
Poisson model [Robertson 1994], component-based models [Kwok 1990], language
models [Mori 1997]. Antonial et al.[Antoniol 2002] used a probabilistic model based
on stochastic language model [Mori 1997] for information retrieval.

Deerwester et al. [Deerwester 1990] introduced an indexing scheme for informa-
tion retrieval based on the semantic meaning of the words called Latent Semantic
Indexing (LSI). LSI is based on vector space model. The earlier available IR tech-
niques (VSM...) were using the keywords to index the terms, which had more
chances of error as many people may not use the same term to represent same con-
cept, this causes errors on the systems which fully depend on syntax and not on
the semantics. They used singular value decomposition matrix (SVD) to filter out
noise between two documents, such that two documents that have semantically sim-
ilar terms are located close to each other in a multidimensional space. Marcus and
Maletic [Marcus 2003] used first time latent semantic indexing methods for trace-
ability recovery. Earlier they had used LSI for measuring similarities between source
code elements. They carry out experiments and showed that LSI performs at least as
well as Antoniol’s [Antoniol 2002] methods of probabilistic and VSM IR techniques.
Like others they also measured the quality of results in form of two IR metrics:
recall and precision. Lormans and Deursen [Lormans 2006] explored whether LSI
can help to trace requirement traceability in design and test, they equally carried
out research to look if LSI based techniques can be plausible solution for trace-
ability coverage [Lormans 2005]. Their findings say that, if the documents to be
investigated are set up according to a well-designed traceability structure then LSI
can reconstruct it. They say that LSI based techniques are not yet capable to fully
replace a systematic requirement management process. Gross et al. [Gross 2007]
used LSI for component procurement and conducted three case studies, they sup-
ported the usage of LSI for establishing the implicit relationships between different
components and requirements explicitly. Mahmoud et al. [Mahmoud 2011] explored
the aspects of source code indexing for automated tracing. LSI has been used for
semantic clustering by Kuhn et al. [Kuhn 2007] for reverse engineering of systems,
in other words reverse traceability.

The Jensen-Shannon (JS) similarity model is an IR technique proposed by Abadi
et al. [Abadi 2008], it is driven by a probabilistic approach and hypothesis testing
techniques [Gutman 1989]. It represents each document through a probability distri-
bution i.e. each artifact is represented by a random variable, where the probability
of its states is given by empirical distribution of terms occurring in the artifact.
They conducted various experiments on real world datasets and compared their
technique with LSI, VSM (implemented as lucene package), PLSI (probabilistic LSI)
and SDR (Sufficient Dimensionality Reduction) techniques with various dimensions.

State of Art of Requirement Traceability 73

Their findings indicated that VSM and JS have almost equal performance; results
showed SDR bit behind VSM and JS whereas LSI and PLSI gave worst performance.
PLSI was significantly behind all the other techniques tested and compared. SDR
is also an information retrieval technique but its applications on traceability are not
explored elsewhere except by them, so we do not discuss SDR further.

Inference networks use evidential reasoning to estimate the probability that a
document will be relevant to a query. They model the probabilistic retrieval models
and enhance them to include additional evidence that a document may be relevant
to a query. The essence of an inference network is to take known relationships and
use them to “infer” other relationships. The two types of techniques which have
been discussed in literature are Bayesian and linear inference.

Omoronyia et al. [Omoronyia 2011] describe a traceability generation approach
based on Bayesian inferencing technique to model relevance of artifacts associated
with traceability links. It depends on the interaction events trails left behind by
collaborating developers while working within a development environment. The
Bayesian inference technique explores the use of single and multiple variables as
evidence nodes to determine the conditional probability of relevant use cases, devel-
opers, and code artifact entity instances.

Omoronyia et al. [Omoronyia 2011] also used a linear inferencing technique. Sim-
ilar to the Bayesian technique it is also dependent on the interaction trail left be-
hind by the developers. The linear inference technique accumulatively determines
the relevance of use cases, system developers, and code artifacts to the requirement
traceability link. Unlike Bayesian model, linear inference techniques capture con-
text size dimension for the entities involved in each interaction event. It use work
contexts graphs that characterize the situation of entities in work environment. It
also uses a sphere of influence (SOI), the SOI ratio is used to represent the relative
influence an entity exacts on the collaboration space. SOI ratio of an entity is de-
fined as the ratio of the total number of unique entity instances directly associated
with an entity (size of work context) compared to the total number of unique entity
instances in the environment.

Capobianco [Capobianco 2009] introduced a technique based on numerical anal-
ysis for recovering traceability links between code and software documentation called
B-Spline Method. They claim it to be better than vector space models and latent
semantic indexing. They say that it can be comparable or sometimes better than
probabilistic model i.e. Jensen-Shannon method. The proposed approach models
the information contained in a software artifact by particular interpolation curves
of plots mapping terms and frequency on the artifact. Like other IR techniques this
traceability recovery technique is applied in two steps: artifact indexing and arti-
fact classification. During the artifact indexing process, they indexed only nouns
contained in the artifact. The extracted information is stored in a matrix called
term-by-document matrix, with m being the number of all terms within the artifact,
and n being the number of artifact in repository. During the artifact classification
process, the B-spline approach is used: the artifacts are represented as set of points
in the Cartesian plane. Once obtained the B-spline curve for each artifact ai and aj ,

74 Requirements Traceability

the similarity between two artifacts can be defined calculating the distance between
two B-spline curves i.e. Bsplinei(t) and Bsplinej(t).

3.3.2 Structurally Rule Based Techniques

Structurally rule based techniques for traceability can be of many types: some
involve program analysis, some are based on formal description of specifications.

Egyed [Egyed 2001, Egyed 2003, Egyed 2004a], and Egyed et al. [Egyed 2002,
Egyed 2005a, Egyed 2007] introduced scenario driven approach for traceability,
their work was similar to work of Lange and Nakamura [Lange 1997] in some as-
pects like: visualization of trace information by execution of program. scenario
driven approach generates traceability information based upon observation of ex-
ecution of test scenarios. This is a reverse engineering approach which traces
artifacts after a product is available. This technique is strongly iterative by
running software systems and observing dependencies. Scenario driven approach
[Egyed 2004a, Egyed 2004b, Egyed 2005a] requires an observable and executable
software system, a corresponding software model and a scenario describing test
cases or usage scenarios of the software systems or it components and a monitoring
tool (for monitoring which lines of code were executed).

A forward engineering approach given by Richardson and Green
[Richardson 2004] for traceability generation is based on program synthesis.
They claim it to be fully automatic as program code is derived based on the
specifications of the behavior. Program can be changed completely by changing
the specifications. The work is based on the automated software engineering
group’s work on domain-specific program synthesis systems (AUTOBAYES,
AMPHION [Whittle 2001] and AUTOFILTER) at NASA Ames Research Center.
They describe two types of traceability techniques: deep traceability and surface
traceability. Deep traceability scheme is a heavyweight approach for traceability; it
involves augmenting the program synthesis systems so that calculations carried out
by the synthesis program are annotated with information on what the calculations
were and why they were made. They claim that this approach works well for
a purely deductive synthesis. In surface traceability scheme, the relationships
between source and target are mapped automatically in two steps: in the first
step, the synthesis system (or compiler) is applied to the source to generate target.
The original source is called nominal source and the corresponding generated
target is called nominal target. In the next step, small changes (perturbations)
are made to the source (perturbed source) and the corresponding target programs
are synthesized from it (perturbed target). As long as the synthesis process is
deterministic, differences between the nominal and perturbed target program can
only be caused by the differences between the nominal and perturbed source. They
tested their technique on two examples: AUTOFILTER program synthesis systems
and GNU GCC compiler.

State of Art of Requirement Traceability 75

3.3.3 Linguistically Rule Based

Zisman et al. [Zisman 2003] proposed an automatic traceability recovery technique
based on natural language processing techniques used during requirements engi-
neering. They used a requirement object model expressed in UML; a model which
specifies the main parts, and their relationships of the product, it plays a role in
the interactions with the users and delivers the common functionality. In proposed
technique, they limited the requirement documentation to only three parts: com-
mercial requirements specifications (CRS), functional requirements specifications
(FRS) and requirement object model (ROM). They defined and used three types of
relationships: overlaps, realizes, and requires relationship among the artifacts and
documentation. The generation of traceability relations is based on two types of
traceability rules: requirement to object model rules (RTOM) and inter-requirement
rules (IREQ).

RTOM rules give means to trace relationship between requirement statements,
and use case and analysis object models. These rules are used to match syntacti-
cally related terms in CRS and FRS with semantically related terms in ROM. IREQ
rules are used to generate traceability between CRS and FRS. The natural language
requirements are processed with a tool called CLAWS [CLAWS 2013] to convert
them in to .xml format files with respective ‘part-of-speech’ tags representing differ-
ent part of sentence. The two types of rules allows mapping of relationships using the
corresponding CRS.XML, FRS.XML and ROM.XML files. They have implemented
a tool and carried out experiments on requirement documentation of TV products.
The results show interesting aspects with variation of recall between 0.46-0.81, and
variation of precision between 0.52-0.94.

Spanaudakis et al. [Spanoudakis 2004] further carried out work based on the
RTOM and IREQ rules given by Zisman [Zisman 2003]. They considered require-
ment documentation to be composed of: requirement statement documents use
case documents and analysis object models. They described four types of rela-
tionships between artifacts: overlap relation, requires_execution_of_relations,
requires_features_in relations and can_partially_realise relations. They im-
proved the RTOM and IREQ rules to accommodate newer modifications. They
allowed customizing their approach by adding new type of relations and RTOM or
IREQ rules or by modifying or deleting them. They developed a machine learning
algorithm to create rules to trace hard to generate relationships.

3.3.4 Transformation Rule Based

The transformation rule based techniques are usually the one employed during model
driven engineering, when one model is transformed in to another. The rules which
define this transformation are responsible for this traceability.

The domain specific deductive program synthesis also allows such type of auto-
matic traceability features. The Amphion/NAIF project and Amphion/NAV project
at NASA Ames research center used deductive synthesis for space systems program

76 Requirements Traceability

synthesis [Whittle 2001]. Amphion/NAIF system generated source code based on
the high-level graphical specification describing input/output functions. In parallel
to code generation, the NAIF system generates in parallel to proof that this imple-
mentation is correct. As NAIF project was limited to a domain of space science,
NAV project tried to design state estimation software.

The Amphion projects are based on a domain theory. The domain theory spec-
ifies the types and operation signatures in the domain, and axioms describing the
implementation of the abstract operations in terms of concrete operations. The do-
main theory also explains each axiom providing documentation about their meaning.
The process of deductive synthesis submits the specifications and the axioms of the
domain theory to the synthesis engine. The engine proves that the specification
is a consequence of the domain theory, and returns a proof and witness terms for
the output variables. The code generator records a trace of the application of the
transformations.

Similar to the program synthesis approach, the OMG’s model driven engineer-
ing [Soley 2000] allows the creation of systems based on a meta-model and also allows
transformation from one meta-model to another meta-model. The rules between
the meta-model and model contain the traceability information, equally between
two meta-models the transformation trace information is stocked as rules written in
a transformation language like, ATL [INRIA], QVT [OMG 2013], etc. of type of
system.

The transformation rules between platform specific models are the trace in-
formation. A model driven traceability approach described by Anquetil et
al. [Anquetil 2010] employs special independent modules called trace extractors for
recovering information from artifact repository. The other existing traceability ap-
proaches in model driven engineering [Galvao 2007] consider model transformation
as mechanism to generate trace links, apart from model transformation, the other
technique used for traceability recovery is through merger languages. The merger
languages use two separate models: primary model and trace model. They are
merged together to produce an annotated model for inspection on demand.

3.3.5 Other Miscellaneous Based

Apart from above discussed techniques there are other possible ways to recover
traceability information, we discuss below some of major works based on other
techniques.

Xiaofan et al. [Chen 2011] tried to enhance the performance of traceability link
recovery using IR by combining it with three other techniques: regular expression,
key phrases, and clustering. They tried to put together these three techniques to
overcome the limitation of each other. Their technique comprises of VSM as base
technique which is responsible for link recovery. The regular expression technique is
used to find all of occurrences of class names in documents, to augment the number
of retrieved links at high cut points. Key phrases are used to extract key words from
comments of code to provide a brief summary of each class’s description comment

State of Art of Requirement Traceability 77

and use these to augment VSM technique’s link recovery. Clustering is a division of
set of objects in to groups of similar objects. Preliminary results were encouraging
for both recall and precision.

Sherba et al. [Sherba 2003] have proposed an approach based on hypermedia and
information integration. It allows the generation of new traceability relations based
on relationship chaining. This approach uses special information integrators, and
open hypermedia services. Integrators can discover and create traceability relations
between software artifacts and other previously defined relations. Open hypermedia
systems enable the creation and viewing of relationships in heterogeneous applica-
tions as well as the traversal of those relationships within and between applications.
The new identified relations can be generated based on indirect and transitivity de-
pendencies, complex dependencies containing more than one source or destination
elements being related (anchors), intersection of anchors, or matching of pre-defined
conditions between artifacts or relations.

Antoniol et al. [Antoniol 2000] introduced the concept of modeling programmer
behavior for traceability recovery. In their technique they assumed that program-
mers tend to process applicationŰdomain knowledge in a uniform way, applying a
set of unknown rules when writing code, more precisely when choosing identifiers.
Thus program item names of different code chunks, related to the same high level
documents or concepts are likely to the same nature. The technique says that, the
rules adopted by the programmers choosing identifiers, those rules are implicitly
represented by the joint probability distributions estimated on training sets.

Aponte et al. [Aponte 2011] advocated the use of software artifact summariza-
tion for improving the traceability link recovery using information retrieval tech-
niques. They proposed the text summarization to create summaries for text based
software artifacts. For other types of artifacts they suggested usage of hybrid sum-
marization that combines textual and structural information. They argued for the
generation of normative summaries which are capable of representing the original
artifacts. They found that a wide variety of documents need to be summarized be-
cause IR based tools use heterogeneous software artifacts. To generate summaries
at various stages they used various techniques like: text retrieval; structured based
vocabulary; natural language processing; structural information etc.

To improve requirement traceability, Cleland-Huang et al.
[Cleland-Huang 2005] introduced the concept of using supporting evidences
for dynamic requirements traceability. Based on a basic probabilistic network
model [Wong 1991, Wong 1995], she introduced three enhancement techniques:
using hierarchical modeling, using artifact clustering, and using semi-automated
graph pruning. The probabilistic network retrieval model consists of a graphical
and a quantitative component. The graphical component is a directed acyclic
graph (DAG), where the nodes are random variables, and the arcs are link pairs of
nodes and represent association between variables. The DAG encodes the model’s
conditional independence assumptions among the variables.The results of the
three different approaches gave interesting results; they showed varying abilities to
enhance the retrieval of requirements trace.

78 Requirements Traceability

Reflexion technique introduced by Murphy et al. [Murphy 1995] offers interest-
ing aspects for requirements traceability. Although, it is rather a technique for arti-
fact summarization but can be employed for traceability recovery and used equally
for the traceability activities like: change impact analysis, program comprehension,
and design conformance. Reflexion technique is primarily employed for using the
drift between the design, and implementation of software systems. The analyst de-
fines a high level model of interest, extracts a source model from the source code,
and defines a mapping between the two models. A software reflexion model is then
computed to determine where the engineer’s high level model does and does not
agree with the source model.A reflexion model summarizes a source model of a
software system from the viewpoint of a particular high-level model.

Dagenais et al. [Dagenais 2007] proposed a technique for tracing concern imple-
mentation in a software project using structural patterns. Their technique tracks the
implementation of concerns throughout the multiple versions of a software system
by leveraging existing structural patterns that may exist among the elements in a
mapping. The concerns can be mapped to the source code in many ways, including
manual entry to sophisticated automated entries. Two popular techniques used for
concern mapping are: extensionally, intensionally. In extension mode of concern
implementation, the corresponding elements of the source code are recorded, and
mapped to the concern, through the signatures of the code. This technique is poor
in case of software code evolution. The other technique in which concerns are listed
through patterns is called intensions; they describe their characteristics. This type
of mapping requires more effort from the programmer.

Recent research work on using ontologies for traceability recovery has shown
interesting aspects. Zhang et al. [Zhang 2006] introduced a technique using text
mining(TM) system based on ontologies for traceability recovery. They used text
mining for linking the artifacts produced during the life cycle of a project. Their
technique provides formal ontological representation of both source code and docu-
ment artifacts. The ontologies capture structural and semantic information conveyed
in artifacts and allow recovering traceability links between software implementation
and documentation at semantic level. The traceability links between the ontolog-
ical representations of source code and documentation are linked through existing
ontological alignment techniques. Alignment techniques try to align ontological in-
formation from different sources on conceptual or instance levels. The TM system
can also directly take input from the results of the source code analysis when de-
tecting named entities. Manual definition of new concept or relationships is also
allowed to establish links that cannot be detected by automated alignment.

State of Art of Requirement Traceability 79

T
ab

le
3.
1:

C
om

pa
ra
ti
ve

A
na

ly
si
s
of

V
ar
io
us

T
ra
ce
ab

ili
ty

T
ec
hn

iq
ue

s

N
am

e/
T
yp
e
of

T
ec
hn

iq
ue

A
d
va
nt
ag
es

D
is
ad

va
nt
ag
es

T
oo

l
A
p
p
li
ca
ti
on

D
om

ai
n

V
ec
to
r
Sp

ac
e

M
od

el
/I
R
B

E
as
e
of

us
ag

e
&

in
te
gr
at
io
n
in

to
th
e
SE

&
So

ft
w
ar
e
en

gi
ne

er
in
g
pr
oj
ec
ts
.
R
eq
ui
re
s

le
as
t
am

ou
nt

of
m
an

ua
l
in
te
rv
en
ti
on

fo
r

se
tt
in
g
up

th
e
tr
ac
ea
bi
lit
y
pr
oc
es
s
in

th
e

ex
is
ti
ng

pr
oj
ec
t.

M
ai
nt
en

an
ce

is
an

is
su
e,

R
ec
al
l&

pr
e-

ci
si
on

ca
n
be

va
ry
in
g,

lin
ki
ng

do
es

no
t

ta
ke
s
in
to

ac
co
un

t
th
e
se
m
an

ti
c
as
-

pe
ct
s
of

ar
ti
fa
ct
s,

tr
ac
e
cr
ea
ti
on

de
-

pe
nd

s
st
ro
ng

ly
up

on
th
e
m
ne

m
on

ic
s

us
ed

R
eq
ti
fy

A
rc
hT

ra
ce

S/
W

&
SE

pr
oj
ec
ts

La
te
nt

Se
m
an

ti
c

In
de

xi
ng

/I
R
B

Si
m
ila

r
to

V
SM

,a
llo

w
s
to

ca
pt
ur
e
th
e
si
m
-

ila
ri
ty

of
un

de
rl
yi
ng

co
nc

ep
ts
,b

et
te
r
re
ca
ll

an
d
pr
ec
is
io
n
th
an

V
SM

re
ca
ll
&

pr
ec
is
io
n
ca
n
be

va
ry
in
g,

in
ef
-

fic
ie
nt

w
it
h
hu

ge
da

ta
se
to

rl
ar
ge

nu
m
-

be
r
of

do
cu

m
en
ts

R
E
T
R
O

S/
W

&
SE

pr
oj
ec
ts

P
ro
ba

bi
lis
ti
c

M
od

el
/I
R
B

Si
m
ila

r
to

V
SM

,
In
fo
rm

at
io
n

lo
ss

is
po

ss
ib
le
,

is
su
es

w
it
h
re
ca
ll
&

pr
ec
is
io
n,

sc
al
ab

ili
ty

is
-

su
es

w
it
h

hu
ge

da
ta

se
t,

co
m
pa

ra
-

ti
ve
ly

m
or
e
eff

or
t
is
re
qu

ir
ed

fo
r
qu

er
y

an
d
do

cu
m
en
t
re
pr
es
en
ta
ti
on

s

S/
W

&
SE

pr
oj
ec
ts

Je
ns
en

Sh
an

no
n/

IR
B

B
et
te
r
pr
ec
is
io
n
fo
r
la
rg
e
da

ta
se
t,

ro
bu

st
ov
er

di
ffe

re
nt

pa
ra
m
et
er
s
th
an

an
y
ot
he

r
IR

ba
se
d
te
ch
ni
qu

e

Is
su
es

si
m
ila

r
to

V
SM

,L
SI

T
oo

l
ex
-

is
t(
N
am

e
un

kn
ow

n)

S/
W

&
SE

pr
oj
ec
ts

B
ay
es
ia
n

in
fe
re
nc

e/
IR

B
A
llo

w
s
to

ca
pt
ur
e
re
la
ti
on

sh
ip
s
w
it
h

se
-

m
an

ti
ca
l
lin

ks
,
tr
ac
e
lin

ks
w
it
h

pu
rp
os
e

ca
n
be

ob
ta
in
ed

R
ec
al
l&

pr
ec
is
io
n
ca
n
be

va
ry
in
g,

or
-

ga
ni
za
ti
on

po
lic

ie
s
m
ay

ca
us
e
hi
nd

er
to

us
e
th
is

ap
pr
oa

ch

E
cl
ip
se

S/
W

pr
oj
ec
ts

80 Requirements Traceability
T
ab

le
3.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

N
am

e/
T
yp
e
of

T
ec
hn

iq
ue

A
d
va
nt
ag
es

D
is
ad

va
nt
ag
es

T
oo

l
A
p
p
li
ca
ti
on

D
om

ai
n

Li
ne

ar
in
fe
re
nc

e/
IR

B
A
llo

w
s
to

ca
pt
ur
e
re
la
ti
on

sh
ip
s
w
it
h

se
-

m
an

ti
ca
l
lin

ks
,
sp
ec
ifi
c
co
nt
ex
tu
al

in
fo
r-

m
at
io
n
ca
n
be

pr
ov

id
ed

,r
el
ev
an

ce
ra
nk

in
g

of
ar
ti
fa
ct
s
ca
n
be

ob
ta
in
ed

D
oe
s
no

t
pr
ov

id
es

co
m
pr
eh

en
si
ve

re
-

qu
ir
em

en
ts

tr
ac
ea
bi
lit
y,

ra
th
er

a
to
ol

fo
r
tr
ac
ea
bi
lit
y

E
cl
ip
se

S/
W

pr
oj
ec
ts

B
-S
pl
in
e

M
et
ho

d/
IR

B

R
ob

us
t,

se
m
an

ti
c

re
la
ti
on

sh
ip
s
pa

rt
ia
lly

ar
e
ta
ke
n

in
to

ac
co
un

t,
le
ss
er

fa
ls
e
po

si
-

ti
ve
,b

et
te
r
th
an

V
SM

,L
SI

S/
W

&
SE

pr
oj
ec
ts

Sc
en

ar
io

D
ri
ve
n

ap
pr
oa

ch
/S

R
B

E
as
e
of

us
ag

e,
co
ul
d

be
us
ed

fo
r
va
lid

a-
ti
on

of
tr
ac
es

al
so
,
ca
n
be

us
ed

on
le
ga

cy
sy
st
em

s
to
o

N
ee
ds

sp
ec
ia
lly

an
ob

se
rv
ab

le
ve
rs
io
n

of
so
ft
w
ar
e,

ca
n
on

ly
be

ap
pl
ie
d
on

ce
so
ft
w
ar
e
is

re
ad

y
to

us
e,

di
ffi
cu

lt
y
in

de
te
rm

in
in
g
ty
pe

of
de

pe
nd

en
ci
es

T
ra
ce
-

A
na

ly
ze
r,

ST
R
A
D
A

S/
W

pr
oj
ec
ts

P
ro
gr
am

Sy
nt
he

-
si
s/
SR

B
ve
ry

Si
m
pl
e,

ve
ry

re
ac
ti
ve

A
cc
ur
ac
y
an

d
co
ve
ra
ge

ca
n
be

va
ry
in
g

S/
W

pr
oj
ec
ts

Li
ng
ui
st
ic
al
ly

R
ul
e
B
as
ed

T
ec
hn

iq
ue
s

A
ut
om

at
ic

ge
ne

ra
ti
on

of
tr
ac
ea
bi
lit
y,

ra
pi
d,

di
ffe

re
nt

ty
pe

s
of

tr
ac
ea
bi
lit
y
in
fo
r-

m
at
io
n,

be
tt
er

re
ca
ll
&

pr
ec
is
io
n

on
ly

sy
nt
ac
ti
c
re
la
ti
on

s
ar
e
ta
ke
n
in
to

ac
co
un

t,
cr
ea
ti
on

of
tr
ac
ea
bi
lit
y
ru
le
s

de
m
an

ds
ex
tr
a
w
or
k
an

d
ar
e
ve
ry

su
b-

je
ct
iv
e(
va
ry

fr
om

on
e
pr
oj
ec
t
to

an
-

ot
he

r)

T
oo

l
ex
is
t

(N
am

e
un

kn
ow

n)

S/
W

pr
oj
ec
ts

M
od

el
B
as
ed

T
ra
ce
ab

ili
ty
/T

R
B

G
oo

d
fo
r
th
e
SE

,s
pe

ci
al

ta
sk
s
lik

e
si
m
ul
a-

ti
on

of
su
bs
ys
te
m
s

M
B
SE

E
di
-

to
rs

S/
W

&
SE

pr
oj
ec
ts

IR
C
om

bi
na

ti
on

A
pp

ro
ac
he

s
Si
m
ila

r
to

V
SM

,
be

tt
er

re
ca
ll

an
d

pr
ec
i-

si
on

,
de

pe
nd

s
up

on
th
e

m
ne

m
on

ic
s
us
ed

,
de

pe
nd

s
up

on
th
e
in
pu

ts
pr
ov

id
ed

at
di
ffe

re
nt

st
ep

s

T
oo

l
ex
-

is
t(
N
am

e
un

kn
ow

n)

S/
W

&
SE

pr
oj
ec
ts

State of Art of Requirement Traceability 81

T
ab

le
3.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

N
am

e/
T
yp
e
of

T
ec
hn

iq
ue

A
d
va
nt
ag
es

D
is
ad

va
nt
ag
es

T
oo

l
A
p
p
li
ca
ti
on

D
om

ai
n

H
yp

er
m
ed

ia
an

d
In
fo
rm

at
io
n

In
te
-

gr
at
io
n

Q
ua

lit
y
tr
ac
ea
bi
lit
y
ca
n
be

ac
hi
ev
ed

,e
ve
n

co
m
pl
ex

re
la
ti
on

sh
ip
s

M
or
e
st
ud

ie
s
ne

ed
s
to

be
ca
rr
ie
d
ou

t
T
ra
ce
M

S/
W

pr
oj
ec
ts

M
od

el
in
g

P
ro
-

gr
am

m
er

B
eh

av
-

io
r

C
an

be
fu
lly

au
to
m
at
ed

,
ot
he

r
be

ne
fit
s

si
m
ila

r
to

IR
ba

se
d
te
ch
ni
qu

es
Is
su
es

w
it
h
es
ti
m
at
io
ns

of
pr
ob

ab
ili
ty
,

de
pe

nd
s
up

on
th
e

m
ne

m
on

ic
s
us
ed

,
re
qu

ir
es

tr
ai
ni
ng

fo
r
S/

W
de

ve
lo
pe

rs

T
oo

l
ex
-

is
t(
N
am

e
un

kn
ow

n)

S/
W

pr
oj
ec
ts

So
ft
w
ar
e

A
rt
ifa

ct
su
m
m
ar
iz
at
io
n

Q
ua

lit
y

tr
ac
ea
bi
lit
y,

lig
ht

w
ei
gh

t,
de

-
cr
ea
se
s
am

ou
nt

of
eff

or
t
du

ri
ng

tr
ac
e
ex
-

am
in
at
io
ns

R
eq
ui
re
s
co
ns
id
er
ab

le
eff

or
ts

fr
om

th
e

de
ve
lo
pe

rs
T
oo

l
ex
-

is
t(
N
am

e
un

kn
ow

n)

S/
W

pr
oj
ec
ts

D
yn

am
ic
R
eq
ui
re
-

m
en
t
tr
ac
ea
bi
lit
y

H
ig
h
re
ca
ll
&

be
tt
er

pr
ec
is
io
n

R
eq
ui
re
s
eff

or
t
fo
r
in
it
ia
liz

in
g
in
pu

ts
,

da
ta
se
ts

m
ay

be
ha

ve
di
ffe

re
nt
ly

P
oi
ro
t

S/
W

&
SE

pr
oj
ec
ts

R
efl

ex
io
n

T
ec
h-

ni
qu

e
Li
gh

tw
ei
gh

t,
ap

pr
ox
im

at
e,

Sc
al
ab

le
M
ul
ti
pl
e

it
er
at
io
ns

ar
e

re
qu

ir
ed

to
ge
ne

ra
te

re
fle

xi
on

m
od

el
s,
st
ro
ng

ly
de
-

pe
nd

s
up

on
th
e
hu

m
an

re
so
ur
ce
s

R
efl

ex
io
n

M
od

el
T
oo

l
S/

W
pr
oj
ec
ts

St
ru
ct
ur
al

P
at
-

te
rn
s

fo
r

tr
ac
e-

ab
ili
ty

E
as
ily

de
te
ct
s
m
od

ifi
ca
ti
on

s
in

di
ffe

re
nt

ve
rs
io
ns
,h
ig
h

le
ve
l

tr
ac
ea
bi
lit
y

ca
n

be
ac
hi
ev
ed

in
m
uc
h
ea
sy

w
ay
,r
es
ili
en
tt

o
ev
o-

lu
ti
on

ar
y
ch
an

ge
s

R
eq
ui
re
s
m
or
e
eff

or
t
fr
om

pr
og
ra
m
-

m
er
,
fin

e
gr
ai
ne

d
tr
ac
ea
bi
lit
y
ca
nn

ot
be

ac
hi
ev
ed

IS
IS
4J

S/
W

pr
oj
ec
ts

U
si
ng

O
nt
ol
og

ie
s

C
or
re
ct

tr
ac
ea
bi
lit
y

ca
n

be
ac
hi
ev
ed

,
se
-

m
an

ti
ca
lly

lin
ke
d
tr
ac
ea
bi
lit
y

R
eq
ui
re
s
co
ns
id
er
ab

le
eff

or
ts

fr
om

th
e

de
ve
lo
pe

r
th
ro
ug

ho
ut

th
e

de
ve
lo
p-

m
en
t
pr
oc
es
s,

ti
m
e
ta
ki
ng

SO
U
N
D

S/
W

&
SE

pr
oj
ec
ts

82 Requirements Traceability

3.3.6 Works on Traceability Maintenance

Compare to traceability generation fewer work have addressed the traceability main-
tenance [Cleland-Huang 2003, Nguyen 2005, Mader 2009, Drivalos-Matragkas 2010,
Seibel 2010]. Cleland-Huang et al. [Cleland-Huang 2003] proposes publish-
subscribe mechanism, a relationship between artifacts is registered to a central
server. The evolution is represented by the series of change event. When a require-
ment is changed, the subscribers are notified about the change and they may bring
the potential changes to their artifacts. It allows complete removal of requirement
artifacts.

Another event based scheme [Mader 2009] uses a tool called Ttracemaintainer
but it uses only UML structural models. Another similar tool to Ttracemaintainer
is ArchTrace [Murta 2006], it addresses the consistency and evolution of trace links
between software architecture models and their associated code. Another approach
for evolving traceability for heterogeneous artifacts [Hong 2010] gives interesting
insights about which information should be traced for corresponding artifacts so
that fine-grained differencing can be used to identify evolution.

The graph-based traceability schemes exist in literature like [Pinheiro 1996,
Lucia 2007, Schwarz 2010]. Schwarz et al. [Schwarz 2010] recommends the com-
plete deletion of traceability links hence in this respect it is like our mainte-
nance model, but it insists the trace maintenance using the technique based on
[Cleland-Huang 2003], but essentially they are based on transformation models.

Some earlier works have recommend versioning schemes for traceability main-
tenance of artifacts [Nguyen 2005], but with the versioning schemes it becomes
hard to see the evolution at an instant. Other significant approaches is state-
based [Drivalos-Matragkas 2010].The state-based techniques employ syntactic dif-
ferences between different versions of model. Some use text differencing to identify
change. The other techniques for managing traceability based on evolution, use pol-
icy based support [Seibel 2010]. An important aspect of various traceability models
is of the traceability recovery scheme. To reduce the cost of traceability, use of semi-
automatic and automatic mechanism for traceability recovery is advocated. This is
an important aspect, as for a fairly large sized project creating traces manually can
be tardy.

ADAMS [Lucia 2007, De Lucia 2010] uses a latent semantic indexing scheme for
traceability recovery from the checked in artifacts. There are many schemes based
on IR (information retrieval) and vector space model techniques. The majority of
traceability tools equipped with semi-automatic or automatic recovery techniques
are plagued with ‘false positive’ problem [Lucia 2007]. The tool ADAMS uses an
event notification scheme and claims automatic traceability recovery scheme and
other modules for project management. It also uses a versioning scheme for traces,
but still some information loss is still possible owing to complete removal of artifacts
before the version release. There are many traceability models, but most of the
systems are overly complex and do not address the chronological evolution and
information loss problem in particular.

State of Art of Requirement Traceability 83

3.3.7 Traceability For Systems Engineering

Systems engineering standards specifically mention the creation of requirements
traceability between the various artifacts created and used during design activi-
ties [ISO 2008, EIA632 2005]. The most of the traceability recovery techniques that
are found in literature of requirements engineering have their origins in software
products or software engineering. In the literature of SE, it is recommended to
follow requirement traceability, but there is hardly any prescribed description of
traceability techniques, which should be applied while carrying out SE. The trace-
ability creation and recovery is usually manual in early systems development phase.
Apparently, techniques like model transformation, structural rule-based, or infor-
mation retrieval have limited applications for traceability recovery in non-software
intensive systems. One of the popular tools used for handling requirement manage-
ment activities in industry is DOOR [Eng 2002], which is also used for requirement
traceability, but usually creation of links between the requirements is done manually.

Industries have much to gain from automatic traceability recovery techniques.
Information retrieval (IR) techniques used for traceability in software consider the
source code along with documents to provide fine grained traceability. The same
procedure cannot be applied as it is to hardware intensive systems, for the reasons
of accuracy or precision; valid information can be missed and outcomes can be
disastrous for a project. Until now, no information retrieval technique has claimed
to achieve 100% recall even with a lower degree of precision.

The scenario based traceability techniques can have scalability and reachability
issues if they are applied on the systems, as in a fairly large system (complex) it
is not possible to monitor the whole system at a time, and derive the dependency
relationships between the subsystems; for another reasons, it is not feasible to lead
a project successfully without having the traceability or dependency information a
priori. For small projects also, unlike software systems, we cannot monitor every
relationship in a non-software intensive system. The transformational rule based
techniques have limited application for traceability recovery; they can be utilized
up until systems modeling and design. For implementing fine grained traceability
in SE suitable metrics should be carefully designed which are capable of answering
the various needs of system analyst or stakeholders. The automatic traceability
recovery techniques are not equipped enough, to reply to the needs of non-software
intensive systems currently.

The industrial challenge of requirement traceability has not been popularly ad-
dressed. A report available at website of AFIS [AFIS 2013] shows that tools like
DOORS and Reqtify are used together complementarily by many enterprises, to
overcome the limitation of one another. DOORS employs parsing techniques to
capture requirements, and Reqtify uses Perl regular expression extraction mecha-
nism for creating links between existing documents, glossary, indexes, etc.

Some tools also use knowledge-based techniques like ontologies for creating trace-
ability links between the artifacts. Currently the techniques above mentioned are
still not 100 percent reliable as they may cause false negation or false positive er-

84 Requirements Traceability

rors. Industries do not consider Reqtify a requirement-engineering tool, but only
a complementary tool to DOORS for traceability, also DOORS do not correspond
to the needs of requirement engineers; maintenance issues are among the biggest
challenging issues with it. For doing SE, the traceability recovery and maintenance
techniques need to be more active entities in the SE process. The SE processes
should try to holistically integrate the traceability process within it, making it inte-
gral part of itself, considering its implications to wide range of other tasks or process
such as: decision making, conflict resolution, change impact analysis, simulations,
tests, verification, validation, end user evaluations, etc.

Traceability relationships should be reasonable and verifiable; they should be
able to answer the “raison de être” of every entity or artifact in the system. It
should not only capture the rationale behind every need but also provide process
and means to show how they are implemented at next levels of life-cycle. Rule-based
techniques [Zisman 2003, Spanoudakis 2004] like IR techniques also show interesting
aspects for traceability recovery, with varying precision and recall degrees depending
upon artifacts. But still the problem remains unsolved as they too do not report
consistent high level of recall and precision.

There are also issues regarding, how much traceability information should be
maintained, and up to which extent they should be traced at different level. Egyed
et al. [Egyed 2005b] tried to determine the cost quality trade-off for software trace-
ability. In this respect, software and systems share similar problems. There is no
theory which can correctly answer these needs of modern Software and SE. The
traceability policies for different types of projects should be adapted adequately to
address the special needs of projects. The traceability policies which are used for
a very large size project should not be implemented on a small or medium size
project or vice-versa, because in the first case it would lead to over-expenditure and
in second case it may lead to inadequate traceability.

3.4 Proposed Solution for Traceability Problems

To address the challenges and questions raised upon traceability problems an ap-
proach is devised. The approach lies in establishing a network of traceability infras-
tructure across the life-cycle, as shown in Figure 3.2. A dedicated trace repository
is established, which is connected bidirectionally with the heterogeneous tool sets
and communicating with a standard trace file format across the product develop-
ment cycle. The product development cycle consists of different phases as shown in
Figure 3.2, and can be assumed of five layers. The traceability recovery process can
be solved by dividing it into subtasks.

The pre-requirement traceability and the post-requirement traceability are ad-
dressed separately and then integrated to form a comprehensive solutions to the
traceability problems. The stakeholder identification process is also covered in the
traceability recovery process. This traceability recovery process aims at uniquely
identifying each entity or artifact. The effectiveness of traceability process lies in

Proposed Solution for Traceability Problems 85

the manner the data are managed, to avoid lot of data that serves no purpose except
leading to unnecessary burden. Relationships defined in Chapter 2 Section 2.2.3 are
sufficient for providing the pre-requirement traceability, however they are valid for
post-requirements traceability too. Derive, conflict and contribute relationships are
reused here, with their semantics unchanged. As in literature, semantics of trace-
ability relationships have differences originating from different authors. In order
to use traceability relationships precisely, the semantics of traceability relationships
need to be clarified precisely. Semantics to various relationships existing in post
requirement traceability process, which can help to automate the entire process are
presented in next section.

3.4.1 Semantics of Relationships for Requirement Traceability

A trace is a relationship existing between a source artifact and a target artifact.
Previously, various terminologies were defined and used in Chapter 2, they are used
here too. Semantics needed for defining the relationships used in post-requirement
traceability are considered here. A design element is defined as an artifact that
models the structural or behavior of a component. Various requirements artifact
were introduced in Chapter 2, they are used in proposed approach.

User Requirements

System Requirements

Procurement &
Implementation

Trace
Repository

Test case/
Validate

Verify

Verify

Verify

Test case/

Test case/

Test case/

Other validation
Techniques

Other system
verification technique

other subsystem
verification technique

Unit/Integration

Other techniques

Architecture
Spec.

Logical/Physical
Architecture

Design Logical/Physical
DesignSpec.

refine allocation

satisfy

satisfy

allocationrefine

derive

Figure 3.2: Traceability Relationships and Infrastructure

Figure 3.2, shows the locates the occurrence of traceability relationships in the
Vee-model of life cycle together with the necessary infrastructure. Figure 3.3 shows
the trace information model used in our approach. A trace is a type of relation-
ship, existing between a source artifact and a target artifact. A trace itself may
be composed of other traces. An artifact in the system can be alive or dead de-
pending upon the conception stage. An artifact owns a few of the data about it,
‘who’, ‘why’, ‘what’, ‘when’, ‘where’, ‘how’, ‘verify’ and the ‘time stamp’ are iden-

86 Requirements Traceability
package TraceModel Class diagram1 {1/1}

 Trace

Artifact
alive:Boolean
Type:String

'source Artifact' 'Target Artifact'

1

1

1

1

Information

who : String
why : String
what : String
when : String
where : String
how : String
verify : String
part : Relationships
TimeStamp : String

 0..*

<<metaclass>>

Relationship

Derive

Refine

Allocation

Satisfy

Validate

Verify

Conflict

Dependency

Overlap

Contribute

Figure 3.3: Trace Information Model

tified as information fields it may have. A few artifact may exist without all of
the information fields, depending upon the type of artifact. Who block provides
the information about the primary origin of the stakeholders of the requirement. It
can have single or multiple values. Why block provides the information about the
rationales for existence of the corresponding requirement. ‘Where’ block provides
the location of the implementation of the requirements in the system and hence
provides fine grain traceability. What block provides the information about the role
of the requirement, the function with which it is associated. When block, provides
the temporal information about the implementation of the requirement in the sys-
tem. How block provides the information about the mode of implementation of the
requirement. It reveals the information about the realization of the requirement in
system. Verify block provides the information about, how it can be proven that
the associated requirement is successfully implemented in the corresponding sys-
tem. Time stamp provides the information about the introduction of artifact into
the conception process.

In our approach semantics of trace relationships are defined as follows:

• Derive is the relationship existing between a user need (Stakeholder require-
ment) and a system requirement, such that the first implies the later.

• Refine is the relationship existing between a system requirement and an ar-
chitecture specification, or between an architecture specification and a design
specification such that the first implies the later.

• Allocation is the relationship existing between a system requirement and pro-
posed system architecture, or between a system architecture and a design

Proposed Solution for Traceability Problems 87

component such that the first implies the later.

• Satisfy is the relationship existing between an architecture and an architecture
specification or between a design element (component) and a design specifica-
tion, such that the later is characteristic of first.

• Validate is the relationship existing between a stakeholder requirement(need)
and its corresponding test cases.

• Verify is the relationship existing between a system-requirement and verifica-
tion test cases or between a specification and test cases or between a design
component and its corresponding unit/integration test cases.

• Conflict is the relationship existing between two requirements such that their
co-existence cannot be achieved as such without negotiation; or between two
architectures or between two design components such that their co-existence
cannot be achieved as such without negotiation.

• Dependency is the relationship existing between two requirements such that
they are dependent to each other to exist; or between two design elements
such that they are dependent to each other to exist.

• Overlap is the relationship existing between two requirements or needs such
that they lead to common set of specifications.

• Contribute relationship is used to represent the direct contribution of infor-
mation in context of a particular requirement artifact from a stakeholder for
system under study.

Relationships derive and refine represent the two different levels of abstraction in
the life-cycle. Similarly allocation and satisfy, represent the two different levels of
abstraction in the life-cycle. Figure 3.4 shows the proposed traceability process
in form of an activity diagram. Whenever a project starts, traceability is required.
First activity with traceability involves planning and managing traceability strategy.
RE activities may add, modify or remove artifacts which should be followed by
creation of traces. This is followed by maintenance of traceability information.
Usage of traceability information provides feedback, which is used for traceability
planing and strategy. Various activities mentioned in Figure 3.4 are detailed in next
sections.

3.4.2 Planning and Managing Traceability Strategy

Although it is difficult to extract exhaustively all the rationales from the various
stakeholders, the first step towards the pre-requirement traceability is to take into
account all the rationales and valid beliefs held by various stakeholders. Rationale
extraction is usually manual, involving fair amount of interaction. Here we do not go
into details about how to do it. For managing the traceability strategy, we propose
a rationale map.

A rationale map consists of three matrices: Stakeholder-Rationale (St_R),
Stakeholder-Preference (Str_P) and Rationale-Rationale (R_R). The St_R is

88 Requirements Traceability

activity Activity1 TraceabilityProcess {1/1}

Creating

Using_Trace

Trace_Demanded

'Planning_and _Managing
Traceability'

Maintaining_TraceabilityAdd_remove_Modify_artifacts

Maintenance_Feedback

Requirements_for_traceability_Changed

Traceability_Required

 Project_Achieved

Usage_Feedback

Trace_Retired

Maintenance_demanded

Maintenance_Demanded

Trace_Created

Trace_Envisaged

 RE_Activities

Figure 3.4: Proposed Traceability Process

a matrix of size m × n, where m is the number of stakeholders of the project and
n is the number of rationales elicited, given by Eq.(3.3). The St_R matrix allows
to trace the origins of a rationales to stakeholders. The Str_P matrix is also of
size m×n, it allows to represent the traceability preferences of various stakeholders
towards the elicited rationales in the life cycle, given by Eq.(3.4). The R_R matrix
is a n × n matrix, where n is number of rationales, given by Eq.(3.5). It is a sym-
metric matrix with diagonal composed of either of all zeros or all ones. It allows to
take in account the potential relationships between the various rationales and hence
requirements.

• For each entry aij ∈ (St_R), specifies whether stakeholder i is origin of ratio-
nale j or not.

aij =

{
1 If stakeholder i is origin of rationale j
0 If stakeholder i is not origin of rationale j

(3.3)

• For each entry bij ∈ (Str_P), specifies stakeholder i ’s traceability preference
of rationale j in the product life cycle.

bij =



2 If stakeholder i strongly needs traceability of rationale j
1 If stakeholder i weakly needs traceability of rationale j
0 If stakeholder i is indifferent to traceability of rationale j
−1 If stakeholder i weakly dislikes traceability of rationale j
−2 If stakeholder i strongly dislikes traceability of rationale j

(3.4)

Proposed Solution for Traceability Problems 89

• For each entry ci,j ∈ (R_R), specifies rationale i ’s relationship with rationale
j.

cij =


1 If rationale i is directly proportional to rationale j
0 If rationale i is independent to rationale j
−1 If rationale i is inversely proportional to rationale j

(3.5)

The graphical model of rationale map is converted to matrices and enriched manually
for eliciting the preferences and dependencies existing between the rationales.

The rationale map allows to understand the relationship existing between stake-
holders and rationales, and relationships between the various rationales. CReML
goal-modeling allows to take in account the various rationales by creating rationale
map from user stories and interviews as mentioned in Chapter 2.

3.4.2.1 Towards Purposed Tracing

The Str_P matrix allows the systems engineer to invest suitably towards the stake-
holders’ sensitivities vis-à-vis traceability of rationales and requirement in life cycle.
This allows to associate the various requirements with their end-users who are most
demanding for their corresponding traceability, before starting the project. Sharing
of this Str_P matrix with other organizations or projects can also be helpful and
can be helpful to provide patterns of purposeful tracing.

3.4.2.2 Towards Cost-effective Tracing

As in any organization all the stakeholders are ranked and weighted before kick-
starting the project, the product of the stakeholders’ weights and Str_P , St_R
matrices provides insights into the amount of relative benefit the particular require-
ments traceability will provide. This information can be very useful when planning
the budget of traceability.

3.4.3 Trace Creation Process

3.4.3.1 Making Traces

Trace creation process assumes, trace engineer invests suitable amount of effort to
properly create them. A Trace can provide relationships using the data like ‘who’,
‘why’, ‘what’, ‘where’, ‘how’, ‘when’ and ‘verify’ of an artifact. In order to avoid
confusion at different layers of development, we use two other block: How-fine and
Validate. Their semantics is similar to ‘how’ and ‘verify’ but they are used at
different layers.

• How-fine is the ‘how’ block for details design phase, it provides the measur-
able precise information about the realization of the customer requirement in
system.

90 Requirements Traceability

• Validate is the ‘verify’ block that provides the information about, how it can
be proven that the stakeholder requirement is successfully implemented in the
corresponding system. The information is in form of links to associated test
cases and validation techniques (acceptance test, crash tests, etc.,).

The systematic trace creation is carried out throughout the life-cycle of project,
hence at every phase of life cycle we create some part of trace. AS the project life
cycle can be assumed to be divided in five layers from top to bottom. Phases in one
layer are planned together, phase in left followed by one in right. The creation with
respect of every phase of project life cycle is described below:

• In the customer needs elicitation phase, we assume that we already have the
St_R matrix, it can also be called as who-why matrix, as it maps the ‘who’
& ‘why’. Following to this, map Stakeholders and the customer needs in a
matrix progressively during customer needs elicitation phase, this provides the
who-what matrix. As after the customer needs elicitation phase, the system
validation plan is already started, for each customer requirement the validation
plan is mapped providing the what-verify matrix. In who-why matrix sti
represents the i’th stakeholder and rj represents the j’th rationale. In who-
what (who-wht) matrix sti represents the i’th stakeholder and crj represents
the j’th customer requirement. In what-validate(wht-vl) matrix vli represents
the i’th validation plan.


who-why r1 ··· rn

st1 1 · · · 1

st2 1 · · · 0
...

...
. . .

...
stm 1 · · · 0

,


who-wht cr1 ··· crl

st1 1 · · · 1

st2 1 · · · 0
...

...
. . .

...
stm 1 · · · 0

 (3.6)


wht-why r1 ··· rn

cr1 1 · · · 1

cr2 1 · · · 0
...

...
. . .

...
crl 1 · · · 0

,


wht-vl vl1 ··· vln

cr1 1 · · · 1

cr2 1 · · · 0
...

...
. . .

...
crm 1 · · · 0

 (3.7)

• In the system requirements definition phase, system requirements are derived
from customer requirements. And following to that system verification plan
(set of test cases) is also planned. In what-how(wht-how) matrix sri represents
the i’th system requirement and crj represents the j’th customer requirement.
In how-verify(vf) matrix vfi represents the i’th system requirement verifica-
tion plan.


wht-how sr1 ··· srn

cr1 0 · · · 1

cr2 1 · · · 1
...

...
. . .

...
crm 1 · · · 0

,


how-vf vf1 ··· vfn

sr1 1 · · · 1

sr2 1 · · · 0
...

...
. . .

...
srm 1 · · · 0

 (3.8)

Proposed Solution for Traceability Problems 91

• In the architecture and analysis phase system requirements are allocated to
a proposed system architecture, architecture specifications are derived from
proposed system architecture. And following to that, architecture verification
plan is also planned using the architecture specifications. In how-where matrix
sri represents i’th system requirement and saj represents the j’th system
architecture component. In where-howfine(whr-hf) matrix asi represents i ’th
system architecture specification, In how-vf matrix vfj represents the j ’th
architecture specification verification plan(set of test cases).


how-whr sa1 ··· san

sr1 1 · · · 1

sr2 1 · · · 0
...

...
. . .

...
srm 1 · · · 0

,


whr-hf as1 ··· asn

sa1 1 · · · 1

sa2 1 · · · 0
...

...
. . .

...
sam 1 · · · 0

 (3.9)


how-hf as1 ··· asn

sr1 1 · · · 1

sr2 1 · · · 0
...

...
. . .

...
srm 1 · · · 0

,


how-vf vf1 ··· vfn

as1 1 · · · 1

as2 1 · · · 0
...

...
. . .

...
asm 1 · · · 0

 (3.10)

• In the detail design phase, design components are allocated to architec-
ture and refined set of design specifications are derived from selected design
components. The unit/integration test plan is also planned for the design
components. In where-howfine(whr-hf) matrix asi represents i’th architec-
ture specification and dsj represents the j’th design specification. In where-
finewhere(whr-fwh) matrix dsi represents i’th design specification and dcj rep-
resents the j’th design component. In how-vf matrix vfj represents the j’th
design specification test case.


how-whr dc1 ··· dcn

sa1 1 · · · 1

sa2 1 · · · 0
...

...
. . .

...
sam 1 · · · 0

,


whr-hf ds1 ··· dsn

dc1 1 · · · 1

dc2 1 · · · 0
...

...
. . .

...
dcm 1 · · · 0

 (3.11)


how-hf ds1 ··· dsn

sa1 1 · · · 1

sa2 1 · · · 0
...

...
. . .

...
sam 1 · · · 0

,


how-vf u/i1 ··· u/in

ds1 1 · · · 1

ds2 1 · · · 0
...

...
. . .

...
dsm 1 · · · 0

 (3.12)

92 Requirements Traceability

• In the implementation plan is mapped to component plan using the fine where-
when matrix as shown in below in Eq.(3.13). In where-when matrix dci rep-
resents i’th design component and imj represents the j’th implementation
plan.


where-when im1 ··· imn

dc1 1 · · · 1

dc2 1 · · · 0
...

...
. . .

...
dcm 1 · · · 0

 (3.13)

In total with above mentioned different types of traceability matrix are needed
for a life-cycle of nine phases for a very fine grained traceability. To achieve very
coarse granularity lesser matrices would be required. These matrices provide a
comprehensive fine grained, traceability throughout the life cycle and later. The
matrices shown by Eq. (3.6) can only be created manually. The matrices shown in
Eq. (3.7), (3.8), (3.9), (3.10), (3.11),(3.12) and (3.13) can be created assisted with
software module in SysEngLab tool.

3.4.3.2 Trace Generation

Trace Generation is basically to find the relationships between the source artifact
and the target artifact. Once the trace creation process is fully accomplished. The
various trace matrices are stored in an trace repository, which can be shared with all
the participants. The trace matrices allow bidirectional traceability at any moment,
if all the required matrices exist.

Finding traceability relations between the entities

The previously defined matrices in section 3.4.3.1 can be used to determine the
relationships existing between the various requirements artifact.

Derive: Derive relations existing between the customer requirement and system
requirement are traced using what − how matrix, every entry in column of matrix
means the requirement is derived from the customer requirement lying in the same
row.

Refine: Refine relations existing between the system requirements and archi-
tecture specifications is calculated using how − howfine matrices.

Allocation: Allocation relationship is calculated using the how−where matrix.
Each entry with value ‘1’ represents an allocation.

Satisfy: Satisfy relationship is calculated using the where−HowFine (whr-hf)
matrix. Each entry with value ‘1’ represents a satisfy relationship.

Validate: Validation relations exists at top layer of life cycle between the cus-
tomer requirements and the system validation phase. They are traced using the
wht− vl matrix.

Proposed Solution for Traceability Problems 93

Verify: Verify relations exists at three layers of life cycle, between system re-
quirements definition phase and system verification phase, architecture & analysis
phase and subsystem verification phase, and detail design and unit/integrated test-
ing. They are traced using the how − vf matrices of their respective phases.

Conflict: Conflict relations represent the potential conflicts arising between the
various requirement. The R_R matrix is looked upon and, as the entries with
the values equal to ‘-1’ represents inverse proportionality, they are potential for a
conflicting set customer requirements. Identified Customer requirements are traced
forward to system requirements specification. At any moment of life cycle any
artifact can be looked up for conflicts.

Dependency: Dependency relationship between customer requirements can be
determined using wht − how matrix, at the end of system requirements definition
phase. Between system requirements using how − where at the end of architecture
analysis phase. Between architecture specifications using how − where et the end
of detail design phase.

Overlap: An overlap relation between two customer requirements or system
requirements arises when they share same set of rationales, it can be calculated
using the what− why matrix.

Contribute: Contribute relation between customer and requirements is given
the who-what matrix.

A trace from customer requirement to design component is hence the resultant
set of relationships of type derive, refine, allocation, and satisfy. And a comprehen-
sive trace would also include validation and three types of verification relationships.

3.4.4 Trace Maintenance Process

Previously in Figure 3.4, ‘maintaining traceability’ was identified as part of trace-
ability process. Figure 3.5 presents the details of ‘maintaining traceability’ activity
or trace maintenance process as an activity diagram. The trace maintenance process
employs techniques to keep the relations between the various artifacts updated and
valid. Traceability mechanism is based on the graphical traceability techniques in
which artifacts are represented as nodes and traces are links between the two or
more artifacts. The root nodes of a traceability tree can be stakeholders or artifacts
like: rationales, requirements, etc. Previously Figure 3.3, showed that an artifact
can be dead or alive. This concept of dead or alive is used in trace maintenance.
The traceability mechanism, has three actions defined: addition, modification, and
rejuvenation; they can be applied both on traces and artifacts; there is no deletion
operation but instead another sub-operation of modification called suspension. Sus-
pension is envisaged to provide similar functionality like deletion, which permits to
keep the track of trace evolution. Each node/artifact maintains two additional lists,
one for the dependencies or links, which are pointing to a alive artifact, and one
which maintains the names of dead child artifacts.

The proposed concept of dead and alive artifacts, is shown in Figure 3.6 and 3.7.
Alive artifact is one which is coherent till date and represents the current state of

94 Requirements Traceability
activity MaintainProcess Maintainance {1/1}

System

User

CheckAction

Updates_artifact

AddTrace

SuspendTrace

ReviveTrace

ModifyTrace

ifAddition

ifSuspension

ifRejunevation

ifModified

UpdateTrace
Repository

Figure 3.5: Proposed Traceability Maintenance Trace

system development, whereas dead artifact is one which is obsolete with respect
to current state of system evolution but still holds information which shows the
chronological evolution of system. In our traceability maintenance system, a vali-
dated artifact is never deleted completely rather it is simply marked to be dead and
is stored as dead artifact linked to its precursor artifact in life cycle.

Child ArtifactChild Artifact New Child
Artifact

Parent
Artifact

Trace Link Demand of Trace link

Parent
Artifact

Trace Link

Child Artifact

Figure 3.6: Trace Addition [Shukla 2011]

1. Addition operation. Figure 3.6 shows the addition operation, when an artifact
is created a trace is created pointing from the parent node to the recently
created node. All the necessary data are filled and the node is initialized.

Proposed Solution for Traceability Problems 95

Child Artifact

Parent
Artifact

Trace Link

Child Artifact Child Artifact

Parent
Artifact

Trace Link

Suspension
operation

Dead info

Trace link
suspended

Child Artifact

Parent
Artifact

Trace Link

New Artifact Child Artifact

Parent
Artifact

Trace Link

Dead info

Child Artifact

Dead info
Demand of trace link

Figure 3.7: Trace Suspension [Shukla 2011]

2. Modification operation. Modification operations are of two types change and
suspension.

• Change. In case of modification change operation whenever data are
updated the earlier existing data are marked dead and the newer ones
take their place and are marked alive.

• Suspension operation. Modification-suspension operation is one when
an artifact is no longer coherent with the current system state, and user
actually wants to remove it, in this case the artifact is marked dead and is
suspended and instead of complete deletion from tree it is moved one level
up and is added to the list of dead artifacts of corresponding node. Figure
3.7 shows the modification-suspension operation. The other consequence
to modification-suspension operation is that all the links from the various
other artifacts which were pointing to dead artifact are added to the list
of dead pointers.

3. Rejuvenation operation. A rejuvenation operation permits to change the status
of a trace from dead to alive. This operation can only be applied when all
the pre-artifacts to current artifact are alive or controlled i.e., all the earlier
artifacts which were the existential reason for the current artifacts should have
been taken in account suitably.

96 Requirements Traceability

3.4.5 Trace Usage

activity UsingTrace Activity diagram1 {1/1}

System

User

UseRequested

TraceRequest

DelieverTrace

 AssessTrace

CheckCorrectness

RecordUsage

Yes

No

UseTrace

Feedback

Figure 3.8: Proposed Traceability Usage

Previously in Figure 3.4, ‘Using’ activity was identified as part of traceability pro-
cess. Figure 3.8 presents in detail the the ‘Using’ activity. It shows how the traces
should be rendered and used for the various activities. Once the trace request is
received the trace information is generated according to the trace user and the ac-
tivity concerned. Then it is checked for conformity, if the required granularity is
matched with the users requirements. If the trace information thus generated is
suitable for the activity demanded, it is used and its usage record is stored and
updated. Otherwise, if the trace information generated is unsuitable a request for
trace information generation is send again with requisite granularity for the activity.

3.4.6 Using Traceability Information for SE Activities

The roles of various trace blocks can be defined to solve many other activities during
the project life cycle or later during deployment: change impact analysis, configu-
ration management, product upgrades or updates, maintenance, component reuse,
etc. Usually, there is vast amount of information, which needs to be properly ana-
lyzed before carrying out these activities. A classification of such information helps
to carry out these tasks rapidly.

Change impact analysis (CIA) is an activity carried out to measure the
ripple effect on the system, brought by some changes in the existing components
of the system or because of some system upgrades. The trace table elements can
be used to calculate this change impact analysis very efficiently. Primarily, only
the ‘relationship’, ‘who’, ‘what’, ‘why’, and ‘how’ blocks of a component need to
be analyzed to calculate the CIA brought, instead of searching through the length
and width of the documents. Upon occurrence of an event, depending on during
which phase it does occurs, the corresponding impact of event can be analyzed

Proposed Solution for Traceability Problems 97

using the matrices previously developed in each layer. What−Why matrices allow
to detect which requirements can be potentially effected and What−How, How−
Where, Where − HowFine and Where − FineWhere allows to locate precisely
the components impacted.

System upgrade or update involves the activities which enhance the functional
or non-functional capacity/capability of the system. This is usually carried out after
the delivery of the product. Usually, involved with the large size products, for which
enhancing capacity of the system is much cheaper than buying a new system with
desired capability, for example aircrafts, ships, or buildings. System upgrading is
very close to CIA, so trace block involving CIA are needed and additionally ‘where’
block.

Product reuse of a component involves studying only the ‘why ’, ‘how’, and
‘what’ block of a component in the traceability information. The information gath-
ered provides the functionality of the system and its procedure and the various
reasons for its usage or recycling. This can also be very helpful in finding the
reusable components in the system.

Maintenance process involves the activities, which intend to avoid the system
degradation or activities which restore the degraded system state to the ideal or near
ideal state, so that all the functionalities expected from the systems can be delivered
to user. Maintenance process of a component needs minimally the ‘relationship’,
‘what’, and ‘how’ blocks.

Configuration management (CM) is needed for large products, when the
different customers need different functionalities out of the system. Their different
functional or non-functional product needs are addressed individually. The various
functionalities are implemented as various components, which can be integrated to
the same system. To carry out these CM activities all the blocks ‘relationship’,
‘who’, ‘what’, ‘why’, ‘where’, ‘verify’, ‘when’ and ‘how’ are needed. As, it is a
highly complex task to maintain the different configurations of the same system
, the traceability information in form of blocks can provide valuable input to the
various CM tools.

Understanding system is necessary for end user from various perspectives
to evaluate the system and to quickly assess the system. The data blocks ‘rela-
tionships’, ‘what’, ‘why’, ‘where’, and ‘how’ are needed to understand the system.
Before operationally deploying a complex system, the operator or the user needs
to understand completely the system. Minimum two matrices What −Why and
How −Where are needed to understand the system.

Prioritizing requirements can also be done using the ‘why’, ‘what’, and ‘who’
blocks. These blocks provide sufficient information to give the priority to the re-
quirements using the functionality and rationales.

Measuring project progress can be done using the ‘why’, ‘what’, ‘who’,
‘where’ and ‘when’ blocks. The progress in project implementation and account-
ability is achieved using the above mentioned blocks. This can save valuable analyst
time in predicting the system completion or failure or delays in system delivery.

Manual generation or system documentation is an important activity to

98 Requirements Traceability

define the various mode of utilization of system, doing this activity necessitates
proper understanding of sub-systems, their constraints, etc. The relationships be-
tween the various components and their interaction should be known. The ‘who’,
‘what’, ‘why’, ‘where’, and ‘relationship’ blocks are needed to create the proper man-
uals. These blocks can also help to rapidly analyze and measure the adequateness
of the manuals or system documentation.

3.4.7 Comprehensive Traceability During Project Development

Considering the Vee-model as shown in Figure 1.3 for the project life cycle. Previ-
ously in Chapter 2, it is mentioned that the requirements can be globally categorized
into functional or non-functional requirements. Functional requirements lead to the
functionalities and non-functional requirements are converted to the functional fea-
ture and often account for the magnitude and strength of the functionalities. In
Section 3.4.1, comprehensive traceability entities were mentioned as different fields:
‘why’, ‘what’, ‘when’, ‘how’,‘how-fine’, ‘where’, ‘verify’,‘validate’, ‘who’, ‘relation-
ship’.

During User Requirements elicitation , the ‘what’ block should have data
about the functionality that is expected from the system. Eventually, as the non-
functional requirements are also implemented as some functionality in the system
they should be treated as functional requirements. In the end of ‘user needs’ level,
the user needs are recorded and ‘what’ block is filled with the key functionality
associated with the corresponding user need. The value of the ‘what’ block at this
level is singular entity. The ‘who’ block value is multiple and contains the name of
corresponding stakeholders responsible for the requirement. The ‘why’ block gathers
the rationale behind the requirements, it can have multiple values. The ‘why’ block
values are retained throughout the Vee-model at various levels. Hence, this quality
can be later used as for linking trace blocks throughout the life-cycle [Shukla 2012b].
The ‘where’ and ‘how’ blocks at this stage occupy vague values, which the analyst
assumes to locate in future. The values can be left unfilled also. The values are filled
later at other stages when the features are designed and decisions are made about the
components in system. ‘validate’ block contains the information about the planned
validation test for the user requirement. ‘when’ block contains the abstract temporal
information about the planned requirement implementation, which is in proportion
with the duration of project development. As, at this stage the exact functional
requirements are not very precise, the ‘relationship’ blocks for them empty, while
the qualitative or non-functional requirements of system can have relationships a
prior, for example, in case of an auto-mobile ‘speed’ and ‘body weight’ can have a
prior relationships of conflict and dependency.

At the System requirements derivation level all the user requirements func-
tional or non-functional are converted in to functional system requirements. The
‘What’ block of each requirement should mention the name of operation that is ex-
pected from it. The ‘Who’ block contains the name of the user requirement which
needs the functionality. The ‘why’ block gathers the rationale behind the system

Proposed Solution for Traceability Problems 99

requirement, which is similar to the higher level user requirement, it can have multi-
ple values. The ‘how’ block at this stage still occupies the vague values or null, they
can only be filled at later stage. The ‘where’ blocks still occupies vague values. The
‘When’ blocks at the end of systems requirements phase contain the temporal infor-
mation about the implementation of the operations. The ‘verify’ block contains the
information about the planned validation tests for the system requirements. The
‘Relationship’ at this level start to be organized, the refinement relations are ana-
lyzed for various user requirements and system requirement, ‘Who’ block is used to
determine the various relationships.

As, at the Architecture and analysis level , more fine work about require-
ments is carried out, various solutions and concepts are proposed for various im-
plementations of requirements. At this stage every artifact introduced or produced
during the development process is identified with corresponding requirements, there-
fore the ‘Who’ block in this level can have multiple values. The ‘Who’ block contains
the information of the various system level requirements which lead to the artifact.
Similarly, the ‘Why’ block at this level can have various rationales linked to the
artifact with various system requirements. ‘What’ block at this level contains the
exact functionalities expected from the component. As, components at this stage
start falling in to shape, an approximate structure of the system is known by the
end of this level. Design engineers start having presumptions about the location
implementations of the system. The ‘Where’ block, contains the location of the
component in the system. The ‘Verify’ block at the end of this stage points to
the various the sub-system tests. The ‘Relationship’ block contains the various re-
lationships between the sub-systems at the end of this stage. These relationships
are carried up to the higher levels of system requirements and user requirements,
and the vague values of the relationships at these levels are replaced by the more
suitable values determined by the analysis at architecture and analysis level. At the
end of this level the concept selection for various sub-systems component is made
and decision-making information is stocked as ‘Why’ in various system component
levels.

Detail design step starts with detailed inputs from the architecture and anal-
ysis stage, the ‘Who’ block at this stage should contain the information about the
refined requirement from the systems requirement stage and the information about
the selected concepts at analysis and architecture stage. At this stage the selected
concepts are explored and developed. ‘why’ block at this stage contains the various
rationales with which each component is linked, at this level we know the exact
interactions of the components. The ‘what’ block contains the exact functionality
of each component similar to the ‘what’ block at superior level. ‘how-fine’ block at
this level contain the precise information about the components and their working
principles. The ‘verify’ block contains the information about the unit and inte-
gration tests of the corresponding components which are planned together with the
detailed design. The ‘Relationship’ blocks for the components at this stage evolve as
the interactions between the various components are known at this stage; they are
filled with respect to various other interacting components (requirements) and are

100 Requirements Traceability

also propagated to the higher-level verify blocks of analysis and architectural stage,
system requirements and user requirements stage. The ‘Where’ block at the end of
this stage contains, the very precise location of the implementations of the require-
ments in the system. The ‘when’ block at this stage contains the precise temporal
information about the implementation of the component, it may also contain the
temporal dependencies with the other components (requirements). At the end of
detailed design the systems engineer has all the necessary data and valid simulation
results to go ahead finally with the selected concept.

The implementation phase is carried based on the results obtained from de-
tailed design. This phase finally takes input from the detail design and other previ-
ous phases and executes the project implementation plan. The data in various blocks
should remain same as in detailed design stage in ‘who’, ‘what’, ‘why’, ‘verify’ and
‘where’ blocks. The values in ‘when’, ‘how’, and ‘Relationship’ block depend on the
project execution plan, the various resource allocation strategies and the temporal
relationships between them before execution of the project. Once, the project is
executed the, all the desired information is collected and stocked: the mistakes,
violation of temporal constraints of the implementation and their reasons, etc.

At the end of the implementation phase, the product is available in form of
various sub-systems, following to this, unit and integrated testing is carried out of
the product. At this stage we have a system in which, each system requirement is
allocated to one or more sub-system. So, the ‘who’, ‘what’, ‘why’, ‘verify’, ‘where’,
‘when’, ‘how’, and ‘Relationship’ blocks at this level have practically the same in-
formation as of detailed design phase.

Similarly, the Sub-systems verification has all the trace blocks in accordance
with the analysis and architectural plan of the system. The three blocks ‘where’,
‘When’ and ‘Relationship’ may not contain any value at this stage. They should
identify the exact component with the very precise system requirements and the
verification process as per the verification strategy used by the team. The ‘Who’
block should give the data about the system requirements and the verification strat-
egy, ‘What’ block specifies the verification process and ‘Why’ provides the rationale
behind the system requirement, and ‘How’ contains the data about the procedure
for verification, ‘Verify’ gives the information about verification model proving that
verification model is valid.

For the System verification plan, the trace block contains the similar informa-
tion as previous sub-system verification plan but at a more abstract level. The trace
blocks at system validation plan validate that each user requirement is implemented
in to the system.

The ‘who’ block at the System validation plan point to various user needs
(functional and non-functional). ‘What’ block specifies the validation process and
‘Why’ block provides the rationale behind the user requirement. ‘How’ contains the
information about the procedure of the validation plan of the user needs in system.
‘Where’ localizes every user requirement in the system. There can be ‘relationships’
between the validation plans of different requirements. ‘Validate’ block shows the
information about the validity of the validation process about the truthfulness and

Discussion 101

end user acceptance of validation plan. ‘When’ trace block may have void value, or
the temporal order of execution of the system validation plan.

3.5 Discussion

The main reason for the failure of many traceability recovery approaches in providing
desired quality of requirement traceability can be contributed to their being passive
in nature. Passive nature of traceability activity means that they are not being used
repeatedly in the system engineering activities. Whereas, regular use of traceability
information can benefit a lot in the systems engineering processes.

Another reason for their poor acceptance by the systems engineers in the en-
terprises is that they are always implemented as a side activity of another major
system engineering processes. Currently, the traceability activities in industries be-
gin only after the completion of one phase of the life cycle, whereas our approach
does not waits to begin the traceability activity. The traceability activity of a system
engineering phase starts with the beginning of the corresponding phase.

Earlier, there were issues with the acceptance of traceability activity by the
enterprise personnel, but with the recent arrival of automated and semi-automated
tools, there is enthusiasm about it. However, the automated and semi-automated
traceability recovery techniques are plagued with other issues, such as: precision
and recall. Unlike the information retrieval based techniques for trace generation,
our approach does not have issues with precision and recall of the trace. On the
contrary with a suitably integrated software module in design tools, with feeble
manual efforts, we can assure very high quality comprehensive traceability even for
very large number of requirements.

The manual efforts invested in our approach are never wasted. They are always
asset for the development team and for the knowledge base. The knowledge ac-
quired through our approach can also be used later as resource for better decision
making for the ongoing projects and the projects to come. The proposed approach
augments the status of requirement traceability from merely being the instrument of
verification and validation to a more active entity of decision-making and knowledge
base synthesis. Our approach is different from other existing traceability recovery
approaches. Our proposed technique usage recommends some policies to be incor-
porated into the system engineering process, which begin as soon as stakeholder
identification process.

Although it is very difficult to capitalize upon the social issues linked with the
requirements traceability, the presented approach attempts to reduce the burden of
traceability in a more organized and systematic manner. The proposed approach is
designed to be integrated into the main systems engineering processes by becoming
part of it. Up to a certain extent it can provide valuable help, but to expect to
have 100% traceability throughout the life-cycle would be naive. More than tooling
of traceability other measures have to be designed, which can valorize the effort of
analyst and developers during various phases of life-cycle. Certainly, motivation and

102 Requirements Traceability

environment of work have lot to do with improving the traceability. In principle,
the majority of graph-based traceability tools are more or less similar, plagued with
similar deficiencies. We would recommend a semi-automatic traceability recovery
technique. As, in a fairly large system a fully automatic mechanism can lead to false-
positive notifications, which can be errant for requirement engineers. The current
traceability mechanisms based on information retrieval (vector space models, latent
semantic indexing, and probabilistic model etc.), structural rule-based, linguistically
rule based, transformation rule based or other hybrid techniques are still error prone
and needs to be improved.

Proposed traceability maintenance technique can be coupled with any traceabil-
ity recovery technique, and used efficiently. A part of this chapter addresses vital
issue of information loss; for example, in a fairly large project which has duration of
several years, it is possible that one artifact which was previously decided not to be
included in the product owing to a certain constraint, is reintroduced. If the analyst
had removed this artifact from system, the information regarding its exclusion was
lost which was valuable to the project, and hence it costs again time and money,
only to be discovered later regarding its deficiency. We claim that this ‘artifact evo-
lution information’ is useful and should not be lost whether the decision regarding
the artifact is finally affirmative or negative.

The major limitation of event based traceability approach is of scalability: as the
number of messages generated passes a certain limit, it becomes difficult to handle
so many notifications manually [De Lucia 2010]; even reduced subscription cannot
answer this problem. This maintenance problem is addressed by proposed approach,
as the cost of maintenance using proposed approach is fairly less as compared to
other techniques, as for every artifact updated the information which is obsolete
becomes part of the parent node in the form of dead info and the pointing trace
is also removed and stocked as dead info with parent node, this eases the work of
requirement engineer. In a large project with an event based notification procedure,
with our proposed technique, the deletion operation on any artifact would be ex-
ecuted without the overhead of notification and then trace deletion request from
lower level artifact owner to a higher level artifact owner.

3.6 Conclusion

This chapter provides a small step towards approaching the traceability challenges.
This chapter presented a SE methodology for a few of the traceability problems
existing in the literature. The traceability problem is divided into various subprob-
lems: creation, generation, maintenance, cost estimation, etc. Systematic solutions
are designed within the framework of pre-requirement traceability and post require-
ment traceability; necessary and minimum relationships are identified for providing
traceability for pre-requirements and post-requirements traceability. Suitable met-
rics for modeling the purposed traceability policy and return on investment are
provided, which can later be used for decision making process.

Conclusion 103

The basic idea of our methodology is to make the requirement traceability pro-
cess more and more reactive and formal with precise semantics of relationships.
We provided a trace creation process which can be easily implemented semi au-
tomatically. The proposed traceability approach well for both pre-requirement and
post-requirement traceability, with the desired granularity as demanded by the stake-
holder or user. An improved approach for traceability maintenance is designed. The
proposed traceability model emphasizes on maintenance with efficient maintenance
schemes. Maintenance technique provides interesting solution to the dangling trace
problem, which can immensely help to reduce the tediousness of tracing process.
The Solution offers a plausible solution to the information loss problem as the in-
formation ever generated in the development process remains in system to provide
the exact trace of evolution of the system.

With the ease in trace maintenance process the cost of maintenance can be re-
duced noticeably as the dangling pointer problem is solved the effort in maintenance
is reduced and hence less time and less human resources are engaged to do the same
task. The software tool on which it is implemented is a composite platform for
RE&RM, system modeling and decision-making called SysEngLab. RE&RM mod-
ule implements the CReML and the requirement traceability technique.

Presented traceability techniques are currently in use on a SE research project
called IBIS at LAAS-CNRS, presented as a case study in Chapter 5. Our approach
can be used as a tool for organizing complexity in the composite system design by
providing ready to use traceability from previous step. Still, overcoming the social
issues of traceability problem remains a challenging task and more research work
needs to be done to address the traceability challenges.

Chapter 4

Decision-Making in SE

Contents
4.1 Introduction . 105
4.2 Decision Analysis in SE . 106

4.2.1 Issues with Decision Making 109
4.2.2 Criteria Weighting Problem in Systems Engineering 110

4.3 State of Art of Decision Making 112
4.3.1 Multi Criteria Decision Making Methods 112
4.3.2 Game Theory Based Conflict Resolution and Negotiation . . 117
4.3.3 State of art of Criteria Weighting Techniques 118

4.4 Proposed Methodology . 123
4.4.1 Roles in Decision making for SE 124
4.4.2 Prerequisite to technique . 125
4.4.3 Methodology . 125
4.4.4 Optimality Check . 131

4.5 Simple Example . 131
4.6 Analysis and Comparison With Other Technique 137

4.6.1 Optimality Check . 137
4.6.2 With Entropy . 137
4.6.3 With Rank Order Centroid 138
4.6.4 With Eigen-vector from AHP 138

4.7 Discussion . 139
4.8 Conclusion . 140

4.1 Introduction

System design activity begins after the requirements are fixed. Once the require-
ments are fixed various system behavior models are proposed. The follow-up

process of these behavior models is physical allocations to subsystems and compo-
nents. At this step various problems arise: how to select the best set of subsystems
and components to implement the behavior and services demanded by requirements.
As there are numerous set of functional or physical solutions proposed, it becomes te-
dious task to analyze the various available possible configurations for system design.

106 Decision-Making in SE

Often, this is the case of multi criteria decision making (MCDM). In a multi criteria
decision making, this step of criteria weighting is very critical for the selection of
the right product. Often these criteria are traced-back to a set of multi-disciplinary
stakeholders participating in the evaluation process. Usually, these stakeholders dif-
fer upon their weighting of this particular set of criteria with other stakeholders.
This chapter provides answers to the various question previously raised in Chapter
1, Section 1.4.3.4, which are as revisited below.
Question 1.13: How to generate weights for a set of criteria for group decision
making ?
Question1.14: How to remain transparent to all the stakeholders or decision mak-
ers in decision process ?
Question1.15: How to do group decision making and negotiate ?
Question1.16: How to resolve a conflict ?
Question1.17: How to provide a requisite level of transparency to the various
decision makers ?

Section 4.2, presents the general decision making process and some issues linked
to it. Section 4.2.2 presents the criteria weighting problem. Section 4.3.3 presents
the state of art of criteria weighting techniques. Section 4.4 presents proposed ap-
proach. Section 4.5 presents an example of our approach. Section 4.7 discusses
about the advantages and disadvantages of our approach, and the industrial readi-
ness assessment. Finally, Section 4.8 derives the conclusion .

4.2 Decision Analysis in SE

Howard [Howard 1980] defined decision making in very simple terms as: “decision
making is what you do when you don’t know what to do.” Reformulating words of
Howard, Parnell et al. [Parnell 2011] defined decision making in context of SE as: “a
decision is an irrevocable allocation of resources.” Decision analysis is a formalism,
a logical procedure for decision making [Howard 1980]. In other words, decision
analysis is a structured and formal viewpoint that relates how a course of action
would lead to a result[Sage 2000].

In literature there are two popular schools of philosophies in decision making:
alternative focused thinking (AFT) and value focused thinking (VFT). AFT is con-
sidered as reactive way of decision making and VFT is proactive way of decision
making. Keeney [Keeney 2009] defines value as: “values are what we care about.
They are the principles used for evaluation.” Value focused thinking stresses upon
understanding the values of the stakeholders first and then generating the set of
alternatives. This set of alternative is evaluated later upon the criteria representing
the values. Decisions can be broadly of two types: decision problems and decision
opportunity. Decision problems are said to be one which arise as result of an external
event, whereas decision opportunities are one arising as a result of an internal event
necessitating an action. Table 4.1 presents the comparison of AFT and VFT in case
of decision opportunities and decision problems.

Decision Analysis in SE 107

T
ab

le
4.
1:

C
om

pa
ri
ng

A
lt
er
na

ti
ve

Fo
cu

se
d
an

d
V
al
ue

fo
cu

se
d
th
in
ki
ng

[K
ee
ne

y
20

09
]

A
lt
er
n
at
iv
e
Fo

cu
se
d
th
in
ki
n
g

V
al
u
e
fo
cu

se
d
th
in
ki
n
g

Fo
r
de
ci
si
on

pr
ob
le
m
s

Fo
r
de
ci
si
on

op
po
rt
un

it
ie
s

B
ef
or
e
sp
ec
ify

in
g
st
ra
te
gi
c
ob
je
ct
iv
es

A
ft
er

sp
ec
ify

in
g
st
ra
te
gi
c
ob
je
ct
iv
es

1.
R
ec
og
ni
ze

a
de
ci
si
on

pr
ob

le
m

1.
R
ec
og
ni
ze

a
de
ci
si
on

pr
ob

le
m

1.
Id
en
ti
fy

a
de
ci
si
on

op
po

rt
un

it
y

1.
Sp

ec
ify

va
lu
es

2.
Id
en
ti
fy

al
te
rn
at
iv
es

2.
Sp

ec
ify

va
lu
es

2.
Id
en
ti
fy

a
de
ci
si
on

op
po

rt
un

it
y

2.
C
re
at
e
a
de
ci
si
on

op
po

rt
un

it
y

3.
Sp

ec
ify

va
lu
es

3.
C
re
at
e
al
te
rn
at
iv
es

3.
C
re
at
e
al
te
rn
at
iv
es

3.
C
re
at
e
al
te
rn
at
iv
es

4.
E
va
lu
at
e
A
lt
er
na

ti
ve
s

4.
E
va
lu
at
e
A
lt
er
na

ti
ve
s

4.
E
va
lu
at
e
A
lt
er
na

ti
ve
s

4.
E
va
lu
at
e
A
lt
er
na

ti
ve
s

5.
Se
le
ct

an
al
te
rn
at
iv
e

5.
Se
le
ct

an
al
te
rn
at
iv
e

5.
Id
en
ti
fy

a
de
ci
si
on

op
po

rt
un

it
y

5.
Se
le
ct

an
al
te
rn
at
iv
e

T
ab

le
4.
2:

D
ec
is
io
n
C
on

te
xt
s

U
n
d
er

ce
rt
ai
nt
y

U
n
d
er

u
n
ce
rt
ai
nt
y

C
on

fl
ic
t-
C
oo

p
er
at
io
n

P
ro
ba
bi
lis
ti
c
un

ce
rt
ai
nt
y

P
ro
ba
bi
lis
ti
c
im

pr
ec
is
io
n

In
fo
rm

at
io
n
G
ap

A
ct
io
n
re
su
lt
s
in

on
ly

on
e

ou
tc
om

e
Se
ve
ra
l
po

ss
ib
le

ou
tc
om

es
w
it
h
kn

ow
n
pr
ob

ab
ili
ty

Se
ve
ra
l
po

ss
ib
le

ou
tc
om

es
w
it
h
un

kn
ow

n
pr
ob

ab
ili
ty

Se
ve
ra
l
po

ss
ib
le

ou
tc
om

es
w
it
h
un

kn
ow

n
pr
ob

ab
ili
ty

Se
ve
ra
lp

os
si
bl
e
ou

tc
om

es

C
or
re
ct

de
ci
si
on

st
ru
c-

tu
ra
lm

od
el

C
or
re
ct

de
ci
si
on

st
ru
c-

tu
ra
lm

od
el

C
or
re
ct

de
ci
si
on

st
ru
c-

tu
ra
lm

od
el

A
pp

ro
xi
m
at
e

de
ci
si
on

st
ru
ct
ur
al

m
od

el
A
pp

ro
xi
m
at
e

&
un

st
ru
c-

tu
re
d
de
ci
si
on

m
od

el

N
o
pa

ra
m
et
ri
c
U
nc
er
ta
in
-

ti
es
,
al
l
st
ak
eh
ol
de
r
ut
ili
-

ti
es

kn
ow

n

K
no

w
n
pa

ra
m
et
ri
c
U
nc
er
-

ta
in
ti
es
,

al
l

st
ak
eh
ol
de
r

ut
ili
ti
es

kn
ow

n

U
nk

no
w
n
pa

ra
m
et
ri
c
U
n-

ce
rt
ai
nt
ie
s,
al
ls
ta
ke
ho

ld
er

ut
ili
ti
es

kn
ow

n

U
nk

no
w
n

pa
ra
m
et
ri
c

U
nc
er
ta
in
ti
es
,
fe
w

st
ak
e-

ho
ld
er

ut
ili
ti
es

kn
ow

n

U
nc

er
ta
in
ti
es
,

A
ss
um

ed
st
ak
eh

ol
de

r
U
ti
lit
ie
s,

st
ak
eh

ol
de

rs
ob

je
ct
iv
es

m
ay

di
ffe

r

108 Decision-Making in SE

First and second column show how the decision are made when facing a decision
problem using the AFT and VFT approaches respectively. Third and Fourth column
of Table 4.1 show how the decision opportunities are handled in case when strategic
objectives are not defined and in case when strategic objectives are defined.

Mitchell et al. [Mitchell 1997] define a DM as a stakeholder which possesses an
urgency to find a solution to the dilemma facing the system, the power to select
and implement a solution, and a recognized legitimacy by all stakeholders to make
this selection. In other words a DM can be defined as a stakeholder who shares a
genuine responsibility in a decision opportunity or decision problem.

Essentially, SE itself is value focused, as product developed is for the values of
the client or customers. But there are situations where AFT and VFT may find
usage simultaneously. In practice, whenever a conflict arises DMs are rushed in,
and they might already find alternatives in place to resolve the conflict and take a
decision. In such cases AFT and VFT are quite essentially same or have very subtle
difference in practice. In a SE project, decisions some time need to be made as a
reaction to a situation and most often as proactive way to create value in system.

Decision context in SE can be broadly classified in three types depending upon
the environment in which decision is made: decision under certainty, decision under
uncertainty, and decision under cooperation or conflict. Table 4.2 summarize the
class of decision context upon which decisions are taken. They are compared over
the results of action, the decision model, the outcome uncertainties and utilities of
the stakeholders. The decision under uncertainties can be sub-classified into three
types: under probabilistic uncertainty, under probabilistic imprecision, and under
information gap. In SE often decisions are not made in isolation, but in sequence.
In some cases, we can wait for the result of a decision to take another decision and in
other cases, it might not be possible. This leads decision making in SE to the class
of decision under uncertainty. In some cases stakeholders involved in a particular
decision may differ upon the objectives to achieve. This leads to forming of groups
of stakeholders in conflict.

The decisions under conflict & cooperation are based upon game theory, where
the conflict or cooperation occurs according to the difference and agreements upon
the objectives of stakeholders [Fang 1993, Sage 2009]. Strategic decision occurring
at the higher levels of management can derive benefits by using conflict & cooper-
ation based decision models of game theory [Sage 2009]. The decisions at higher
management level are less structured then the decision made for physical design
solutions. Aspects related to the strategy of organization is out of scope of this
thesis.

Decision making in the SE is a type of multi participant MCDM, in other term
multi criteria group decision making. This chapter presents the decision making
in the light of evaluation of requirements, alternatives of design component, etc.,
however technique presented in Section 4.4 may be formulated to use for strategic
decisions of organizations.

Decision Analysis in SE 109

4.2.1 Issues with Decision Making

Previously, AFT and VFT were presented, it is clear that SE involves both types
of challenges of AFT and VFT, but essentially its a VFT problem. Considering SE
project as decision opportunity, the issue faced are:

1. Who should provide the value of system ?

2. Is it the design engineer, one who can determine the value of the system who
tries his best to design a new system and is the father of this system or is it
the end-customer/client who will use this system and will be the future owners
of the system ?

There are arguments from both sides designer and developers themselves will
hardly use these systems themselves and are little influenced economically or socially
by the system they design. On the other hand end-users are the one who will be
actually benefited or harmed by the systems they use, they are the one actually
influenced economically, socially or politically sometimes through these systems.
These arguments mostly fall in favor of end-users. Given the arguments which
indicate that its the end-user who has necessity of the system demanded, so the
actual system value should be decided by the end-users, as developers are only the
means to acquire the system. But than, there are many end-users who will use
the same system for different purpose, can they provide the whole value of system
? The system ultimately serves to a more abstract level users like: companies,
defense forces, transport authorities, health authorities, countries, or whole world
itself. This question might be very hard to answer, but needs to be answered for a
successful product to be designed.

Although, decision making is long researched topic and holds high importance in
SE during various activities, particularly in selection of design components. There
are still multiple issues to tackle such as: how to select the stakeholders for a particu-
lar decision ? Once a stakeholder is selected how to measure his stake or importance
in decision? Can we assume all stakeholders to have equal stake ? How to handle
this fact that some values might be totally irrelevant to one stakeholder and some
for other? These questions need to be answered, because a lot depends upon their
inclusion or exclusion and on their stake in decision. Even if we ignore these question
and look at criteria weighting problem, there are questions like: how to accommo-
date the various stakeholders preference into one set of criteria ? There are also
problems like how to elicit the preference itself ? How much precision should be
demanded from stakeholders ? And if the precision demanded is correct for a par-
ticular stakeholder or if he can really provide this precision with accuracy and if this
can be validated that his preference are actually correct ? Many of these question
have roots in the psychology and human behavior and cognitive sciences.

Colin and Eden previously devised a technique for categorizing the stakeholders:
power vs. Interest grid [Eden 2013]. power vs. Interest grid is shown in Figure
4.1. Power and interest grid has been used extensively in various projects for

110 Decision-Making in SE

Interest

Power

low

High

High

low

Subjects

PlayersContext Setters

Crowd

Figure 4.1: Interest Vs. Power Grid [Eden 2013]

stakeholder categorization [Bryson 2011, Eden 2013]. For interested reader var-
ious techniques for stakeholder analysis for strategic planning are discussed in
[Bryson 2011, Eden 2013, Mahoney 2012].

There are other issues regarding the elicitation of preferences of the stakeholders
upon the value previously elicited. There are issues regarding the roles played by
the systems stakeholders, who should be responsible to what? There are issues of
the transparency of the decision making process how to make the decision process
more and more transparent when deciding upon the components. Some of questions
raised are of course out of the scope of this thesis but majority of them are researched
and some pertinent solutions are designed.

Some questions were previously introduced in the Chapter 1, some are added
in this section. The research questions previously were formulated in light of these
issues.

The list of additional questions raised is as follow:

Question 4.1. How to select the stakeholders for a particular decision ?

Question 4.2. How to weight the stake of stakeholders in a decision ?

Question 4.3. How much precision should be demanded from stakeholders ?

Question 4.4. Who should provide system value ?

Question 4.5. Who should evaluate alternatives upon these values ?

4.2.2 Criteria Weighting Problem in Systems Engineering

In a systems engineering project, it is of great importance that most of stakeholders
are satisfied with the various decisions taken during the product development and
with the final resulting end product. A higher satisfaction among the stakeholders

Decision Analysis in SE 111

can be guaranteed if the various stakeholders criteria weights are taken into account
in a transparent and holistic manner.

The criteria weighting is critical part of the MCDM problem during analysis of
alternatives in a systems engineering project. Different stakeholders own different
views towards the different criteria, their perception of weights differ from each other
which makes it very tedious and difficult to come up with an agreement on a partic-
ular set of criteria weights. This often causes the conflicts among the stakeholders,
which may halt the progress of the project, if it remains unresolved.

The criteria weighting problem refers to the problem of generating a single array
of criteria weights from multiple arrays of criteria weights emerging from different
stakeholders. Often, such problems start with demanding the DMs’ weights for
all the involved criteria and then provide a mechanism to find the mean weight.
This approach assumes that the DMs’ know their particular weights, which is often
not supported by any evidence. The criteria weighting problem faces four critical
challenges:

— Evidence of validity for criteria weights.

— Transparency about DMs’ participation.

— Scalability of criteria weighting.

— Low Cognitive load on DMs.

Evidence of validity for criteria weights refers to the means which can prove that
the assumed criteria weight is correct for a DM or to be able to reason why it is
correct for a particular DM. Transparency of DM’ participation in criteria weighting
is necessary to at least make sure that the criteria weights are not illicitly decided
in a manner to favor a particular DM’ preferences, or in other words to make sure
that every participant DM is satisfied with his bit of contribution in the process.
The scalability of the techniques for a sufficiently large number of criteria which
may arise in a systems engineering project.

In a systems engineering project the number of broad criteria hardly rise more
than ten. These broad criteria later can be divided in to multiple criteria in next
level. The criteria weighting technique should be able to address this hierarchy of
criteria. The fourth most important challenge is about the amount of cognitive load
that a technique poses on the DM. If majority of DMs find it difficult to use the
technique for weighting the criteria, then the technique has less chances to be used
in the process. Whereas, if a technique which poses less cognitive load on the DMs,
can easily win over others and find acceptability in the approach, even if it provides
less accurate results.

Another aspect of the criteria weighting problem is about the uniform satisfac-
tion among the stakeholders, pointed out by the well known Arrow’s impossibility
theorem [Arrow 1963], which states that DM can find no procedure that can com-
bine individual’s rankings of alternatives to obtain single unified rankings. Which
is based on some assumptions and states that there is no way to satisfy all the
stakeholders completely.

112 Decision-Making in SE


ST

St1
St2
...

Stm

 ?


c1 c2 ··· cn

w11 w12 · · · w1n

w21 w22 · · · w2n
...

...
. . .

...
wm1 wm2 · · · wmn

 =⇒
[w

w1 w2 · · · wn

]
(4.1)

Eq.(4.1) represents the criteria weighting problem mathematically. In Eq (4.1)
on the left hand side Sti refers to i ’th stakeholders weight, cj refers to the j ’th
criterion, and wij refers to the weight of the i ’th stakeholder for the j ’th criterion.
On the right hand side wi refers to the final derived weight of i’th criteria.

4.3 State of Art of Decision Making

4.3.1 Multi Criteria Decision Making Methods

Multi criteria decision making is one of young and very well known branch of de-
cision making. Multi criteria decision making (MCDM) can be divided into two
branches multi-objective decision making (MODM) and multi attribute decision
making (MADM) [Zimmermann 2001]. However MADM and MCDM are currently
used as synonyms and refer to the same class of problems [Triantaphyllou 2000].
MODM focuses on problems with continuous decision space. Whereas MADM con-
centrates on the problems with discrete decision space. SE projects involve multi
criteria decision making (MCDM), and MCDM involves evaluation of various alter-
native solutions upon a set of criteria. The result of multi criteria decision making
is the best alternative which secures the highest score with the predefined crite-
ria. These criteria are often conflicting but demanded by the different stakeholders.
Usually, these criteria are weighted in an order to represent their stake in the final
selection. Often stakeholders have to make trade-offs their one criterion for another
or one value for another. All MCDMmethods can be thought of containing following
three steps:

• Calculate the weight of the criteria for evaluation.

• Evaluate each alternative solution separately on each criteria.

• Calculate the overall score of each alternative by aggregating the evaluations
on each criteria.

Some of the popular MCDM methods are multi attribute value theory (MAVT),
multi attribute utility theory (MAUT) [Keeney 1993], utility theory [Fishburn 1970],
analytic hierarchy process (AHP) [Saaty 1980, Saaty 1990], analytic network process
(ANP) method [Saaty 1996], minimum weighted squares method, weighted sum
method (WSM), weighted product method (WPM) [Triantaphyllou 2000]. WSM
method is one of the easiest and commonly used approach, based on additive utility
assumption, particularly for single dimensional analysis. WPM method like WSM

State of Art of Decision Making 113

Multi criteria
Decision Making

No Information

Information on the
Attributes

Standard
level

Ordinal

Cardinal

Dominance
Maximin
Maximax

Conjunctive method
(Satisfying method)

Elimination by Aspect
Lexicographic Semi order
Lexicographic Method

WSM, WPM, AHP,
ELECTRE, TOPSIS

Type of information
from the decision maker

Salient Feature of
Information

Major Classes of methods

Figure 4.2: Taxonomy of MCDM Methods [Chen 1992]

is simple and easy to use and allows dimensionless analysis. AHP and its various
variants have gain much popularity. It uses eigenvector to derive weights for criteria
and carry outs pairwise comparisons using a cardinally deployable verbal scale. In-
spite of a few of the issues AHP gained popularly for SE, INCOSE handbook uses
it one MCDM methods for SE [Haskins 2011].

Reference point method for vector optimization [Wierzbicki 1998], takes into
account the goals and targets to be acgived and models the the ideal and anti-ideal
reference points to find the solution concepts, this method is used for satisficing
problem. Reference point method could provide valuable help in determining the
set of possible set of alternatives in AFT approach of SE.

The technique for order preferences by similarity to an ideal solution (TOP-
SIS) [Hwang 1981] method is relatively close to the principle of reference points
method. It is based on a simple principal that the best alternative should have the
shortest distance from the positive ideal solution and largest distance from the anti-
ideal solution in some geometrical sense. This method can also be used for criteria
weighting.

PROMETHEE family of methods [Brans 2005] are another class of outranking
methods which are equally popular to for MCDM problems. PROMETHEE is well
supported by the decision support system Decision Lab, with a well documented pro-
cedure to carry out group decision. PROMETHEE method is adapted to problems
where limited numbers of alternatives are evaluated over several criteria.

Measuring attractiveness by a categorical cased evaluation technique (MAC-
BETH) [Bana e Costa 1994, Bana e Costa. 2005] uses pairwise comparison to ex-
press strength of preference on semantic scale, for value increments in moving from

114 Decision-Making in SE

performance levels. MACBETH creates scales or indices of value for each criteria
involved in the evaluation process, using their range from various alternatives in
competition. These indices are dimensionless and with each level they too have a
value associated. Evaluation of an alternative requires summing up all the scores
an alternative gets, which is product of the weight of criterion and value of index
level of alternative on that criterion. This process often leads to a narrow set of
alternatives, which with further iterations may eventually lead to best solution.

Potentially all pairwise rankings of all possible alternatives (PAPRIKA) method
is another MCDM method [Hansen 2008]. Similar to MACBETH, criteria have
value levels. Decision maker is presented with the all possible undominated pairs(
a pair of alternatives where one is characterized by higher level of one criteria and
another is characterized by higher level of another criteria) defined on just two
criteria. Decision maker is asked to provide his preference for each pair which can
be strict preference or indifference. Corollaries are generated from a few of these
available preferences and ranks of the alternatives are generated. Criteria level values
are derived from these rankings using linear programming. PAPRIKA method is
essentially a tool for screening problem. Its application to SE could be in selection of
set of alternatives for evaluation. Also group decision problem could be challenging
with PAPRIKA.

ELECTRE family of Methods [Roy 1968, Roy 1978, Roy 1973] (elimination and
choice expressing reality) are also popular in SE applications. ELECTRE I, has im-
proved over time to ELECTRE II, III, IV, Tri. ELECTRE methods use outranking
relationships and create the final ranking of alternatives. ELECTRE methods ba-
sically analyze the dominance relationships existing between the alternatives. They
are particularly good when evaluating large number of alternatives, but can have
some issues with contrasting the results. Like PAPRIKA it could be used as a tool
for screening alternatives in SE.

The VlseKreterijumska Optimizacija I Kompromisno Renseje (VIKOR) method
was developed for multi criteria optimization in complex systems [Opricovic 2002,
Tzeng 2002]. It is similar to TOPSIS and ELECTRE method in many ways, as its
chooses the solution which has shortest distance to ideal solution and farthest from
negative ideal solution in a geometrical space. It determines the compromise ranking
list, the compromise solution, and the weight stability intervals for preference sta-
bility of the compromise solution obtained from the initial weights [Opricovic 1998].
Unlike vector normalization used in TOPSIS, linear normalization is used in VIKOR.

A few descriptive models of MCDM based on Fuzzy set theory [Zadeh 1965],
have been proposed. Fuzzy set theory tries to model the ambivalent perceptions and
preferences of the decision makers. In literature multiple hybrid approaches have
been devised using Fuzzy set theory such as Fuzzy WSM, Fuzzy WPM, Fuzzy AHP,
Fuzzy revised AHP, Fuzzy ANP, Fuzzy Topsis, etc [Triantaphyllou 2000]. Even
fuzzy approaches have been used more or less successfully in academia they suffers
from some practical issues in their elicitation [Belton 2002]. It could be very hard
to actually exploit them in real projects with various stakeholders in SE.

State of Art of Decision Making 115

Surrogate worth-trade off (SWT) method [Haimes 1974] helps to choose a pre-
ferred solution from a set of non-dominated set of solutions. Previously it has find
usage in environmental engineering problems. It is four step process with first step
involving non-dominated solutions, second step obtains relevant trade-off informa-
tion. Third step solicits decision-makers assessment of each objectives improvement
and degradation. The best solution is one which remains stable given to all the
chances of improvements and degradations. This approach is based on AFT. The
way popularly known MCDM techniques are used, it gives an impression that they
are used in AFT.

A few of Comparative study of popular MCDM methods are found in litera-
ture [Triantaphyllou 2000, Opricovic 2007]. Triantaphyllou devised few metrics for
comparison of MCDM techniques. In his simulation based studies MCDM tech-
niques are compared upon two evaluation criteria: ranking inversions, ranking in-
discrimination [Triantaphyllou 2000]. His studies assumed that decision makers are
rational. Through his studies he tried to answer the question :“which decision mak-
ing method should be used to choose the best decision making method ? ” Although,
with no concrete conclusion could be derived, his work mentions that decision maker
should be vigilant before accepting the results from the MCDM methods, only if
they are resilient enough in terms of ranking inversions and ranking indiscrimina-
tion. For certain problems one may never know what the best decision is, even if
the perfect knowledge of the decision problem and input data are assumed. These
studies indicate the choice of MCDM method is strongly depends upon the problem
context, and still there is lack of sound theory and method to select the right method
for right problem.

More studies need to be carried out based on classes of methods with appropriate
problem frames [Opricovic 2007]. Still there is shortage of metrics and validation
models to correctly assess a particular MCDM technique. Surprisingly, most of the
methods mentioned above are very difficult to use operationally in a real industrial
scenario. Except for some which are used for problems such screening patients for
surgery, or candidates for immigration in developed countries.

The discussed MCDM methods often consider only one decision maker, which
makes it difficult to actually apply the technique in real life scenarios. They mostly
assume that the decision maker is rationale. MCDM techniques which derive weights
of the criteria for selection in the later stages of decision making such as: PAPRIKA,
MACBETH are applicable to situations where the AFT is used.

A few of the discussed methods have been extended to support group decision
making, but still there is lack of research which takes into account the transparency
and cognitive efforts required for the group decision making using MCDM tech-
niques. Distinction of roles played by different types of decision makers needs to be
clarified to know a priori the responsibilities of different decision makers.

Table 4.3, presents a comparison of the various researched MCDM techniques
with their strengths and weaknesses.

116 Decision-Making in SE

Table 4.3: MCDM Techniques

MCDM
Technique

Strength Weakness

WSM
Ease of usage and understanding Violates additive utility assumption

(applicable only to single dimen-
sional cases)

WPM
Dimensionless analysis, ease of
usage and understanding

No upper bound in scores cause dif-
ficulty in interpreting the scores

AHP

Pair-wise comparison allows pre-
cision and accuracy, provides ra-
tionale strategy, deterministic

High cognitive load, could be diffi-
cult to judge two alternatives by se-
mantic scales, issues with rank re-
versal, needs consistence informa-
tion

ANP

Provides rationale strategy, ben-
efits similar to AHP, more struc-
tured problem modeling

High cognitive load, Very complex
task to make the network, highly
cognitive demanding, issues with
transparency to stakeholders

MAVT
Provides rationale strategy, al-
lows to take in account risk

High cognitive load, determining
value functions could be very diffi-
cult

MAUT
Provides rationale strategy, al-
lows to take in account risk

High cognitive load, determining
utility functions could be very dif-
ficult

TOPSIS

Ease of defining the ideal and
anti ideal solution, ease of deter-
mining rankings of the solutions

May fail to determine the best al-
ternative, the solution selected may
not be the best one as relative dis-
tances from ideal and anti ideal are
not considered

ELECTRE
Good for analyzing large number
of alternatives upon few criteria

Time consuming, may fail to deter-
mine the best alternative

MACBETH

Takes into account the qualita-
tive preferences, helps in strat-
egy formulation, inconsistency
checks help to avoid errors

Cognitive load, time taking, order
of preference elicitation may lead to
different results

PAPRIKA
Good for screening problems,
generates inferences from the ba-
sic preferences elicited, less cog-
nitive load

Higher degree of levels can increase
the amount of effort and time re-
quired for analysis. Criteria Weights
are derived later part of process.

PROMETHEE
Good for evaluating limited
number of alternatives,

time taking, selecting the right type
of utility function can be subject to
errors and inconsistencies

Continued on the next page

State of Art of Decision Making 117

Table 4.3 –MCDM Techniques

MCDM
Technique

Strength Weakness

VIKOR

Uses linear preference function,
easier in its class of methods,
similar as PROMETHEE and
ELECTRE methods

Time Consuming process

Fuzzy methods

Allows to represent the qual-
itative preferences(uncertainty),
can handle inconsistent informa-
tion, allows better precision

Difficulty to elicit the preferences
comprehensively,

SWT
Correctness, traceability of pref-
erences

High cognitive load, difficulty for de-
termining low ranked alternatives

4.3.2 Game Theory Based Conflict Resolution and Negotiation

Game theory based techniques evolved to tackle the conflict resolution problem.
Normal form of the game model can be used to model a conflict in which each DM
chooses a course of action without knowing the choice and course of action of the
adversaries [Von Neumann 1937]. A tree structure of the game is called extensive
form, with its nodes representing the choices available to the decision maker to move
forward or backward. Although it can provide information available in an organized
manner, it has some scalability issues.

Graph model for conflict resolution (GMCR) methodology is a further extension
of game theory based conflict modeling and resolution techniques. It emerged as
a popular technique for strategic conflict resolution [Fang 1993]. GMCR greatly
improved the theory and practice of conflict analysis. In the GMCR methodol-
ogy, each DM has a directed graph that records the unilateral moves available to
DM to move the conflict from one state to another. Several contributions were
brought forward to handle the various elements of the conflict such as the status
quo analysis [Li 2004a], strength of preferences [Hamouda 2004], unknown prefer-
ences [Li 2004b], emotions [Obeidi 2005], attitudes [Walker 2009] and fuzzy prefer-
ences [Bashar 2012].

Game theory based conflict resolution techniques are suitable to handle conflict
at strategic levels. Applying game theory based techniques for conflict arising dur-
ing product design faces several challenges. Most important of them is transparency
of the decisions and decision process available to the stakeholders. Transparency
to the stakeholders can not be compromised, when resolving a conflict arising be-
tween stakeholders in system design. System design process demands clarity, jus-
tifications, trust and strong willingness to collaborate and cooperate. Absence of
these attributes only leads to game theory based decision process such as strategic
conflicts. This factors limits the application of game theory based techniques in
resolving conflicts occurring at system design levels. However, GMCR and other

118 Decision-Making in SE

game theory based techniques have found application in strategic conflicts arising
at international levels such as trade disputes, boundary disputes, environmental
problems [Fang 1993].

4.3.3 State of art of Criteria Weighting Techniques

In the literature of multi-criteria decision making, often the problem of criteria
weighting comes along the multi-criteria decision analysis. The vast literature on
criteria weighting techniques found mentions of large number of different techniques.
Criteria weighting methods can be classified primarily into two types subjective and
objective.

Popularly known objective methods are equal weights method [Dawes 1974],
rank sum method, rank reciprocal method, rank exponents method [Stillwell 1981],
entropy method [Shannon 1949, Shannon 2001], regression method [Albright 2009],
variance method, least mean square, standard deviation method [Diakoulaki 1995],
criteria importance through inter-criteria correlation(CRITIC), and other methods
based on multi-objective optimization techniques such as LINMAP method.

Rank sum, rank reciprocal and rank exponents methods were proposed by Still-
well et al. [Stillwell 1981]. Equal weights method requires no additional information
except the number of criteria and assigns equal weights to each criteria [Dawes 1974].
Rank sum method allocates weight to the criteria which correspond top their ranks,
normalized by the sum of ranks. Rank reciprocal method gives weights based upon
the reciprocal of the ranks. The non-normalized weights are given as 1, 1/2, · · · , 1/n.
Normalized weight are achieved by dividing each term by the sum of these weights.
Rank exponent method requires specific knowledge of the exact weight of the most
important criteria. Decision maker measures the weight of the most important cri-
teria on 0-1 interval and use it for determining the other weights using the equation
Eq.(4.2).

wi =
(N − ri + 1)z∑N
j=1(N − rj + 1)z

(4.2)

where, ri is the rank of the ith criteria. N is the total number of criteria, z is the
undefined measure of dispersion in weights called rank exponent. If the z = 0 the
equal weights are allocated. If z = 1, it leads to rank sum weights.

Entropy, in decision theory is a criterion for the amount of uncertainty,
represented by a discreet probability distribution, in which there is an agree-
ment that a broad distribution represents more uncertainty than does a sharp
one [Shannon 1949, Shannon 2001]. The Entropy method can be used to determine
the weights of criteria by the Eqs.(4.3),(4.4).

Ej = −
∑m

i=1 pij ln(pij)

ln(m)
, i ∈ [1,m], j ∈ [1, n] (4.3)

wj =
1− Ej∑n

k=1(1− Ek)
, j ∈ [1, n] (4.4)

State of Art of Decision Making 119

The Entropy method is be used to determine the provide an index which represents
the variation between the performance index of criteria, it provides a higher score
to a criteria, whose values vary most.

Standard deviation method [Diakoulaki 1995] like entropy method allocates
smaller weight to the criteria if it has similar importance across various instances of
criteria weight. It determines the criteria weight in terms if their standard deviation.
This approach is compared to entropy method is less accurate.

CRITIC method is based on standard deviation method [Diakoulaki 1995]. The
methods starts with a priori evaluation matrix of alternatives upon a set of criteria
with references as ideal values and anti-ideal values. The evaluation is transformed
into a matrix of relative scores. Standard deviation is calculated for the vectors in
the matrix, which calculates quantified intensity of contrast of each criterion. Linear
correlation coefficients matrix is calculated between the previously available evalua-
tion score vectors. This provides the measure of conflict that each criteria is having
with rest of others. The two available information are used to generate weights for
each criteria by multiplicative aggregation. This is followed by normalization to
obtain normal weight summing up to 1. A few case studies are available which use
CRITIC method in alternative selection.

Least mean square method like SD and CRITIC also gives higher weight to the
criteria which have stronger contrasts in the a priori available evaluation matrix
of alternatives. A criteria which receives similar values on various alternatives is
awarded lesser weight.

Variance and regression techniques [Wang 1970] can be used to for criteria
weighting like other statistical techniques. Not many studies mention the usage
of variance and regression methods for criteria weighting. Fundamentally, Standard
deviation, CRITIC, and least mean square method give higher weights to criteria
which have bigger diversity in the evaluation grid.

Subjective methods take a deeper insight into the problem and often involve deep
analysis of the problem. Easiest approaches for subjective weighting in literature
mention direct rating and point allocation.

In direct rating and point allocation, decision makers rates directly the weighting
criteria upon his analysis of criteria. Direct rating has been used since prehistorical
times. Modern studies have focused on direct rating and point allocation from an
analytical angle. Point allocation methods involves allocation of points or distribu-
tion of upto 100$ to the criteria set. Comparison of two approaches was studied
by Bottomley et al. [Bottomley 2000, Doyle 1997]. Their studies showed that direct
rating and point allocation are different approaches although they look same or mi-
nor variant of each other. They lead to different results. Their studies claim that
direct rating should be preferred over point allocation.

Simple multi attribute rating technique (SMART) [Edwards 1977] finds mentions
in literature as a whole process of rating alternatives, which tries to determine
weights in more organized way. It asks decision maker to choose the least important
criteria, allocates 10 points to it. The rest of the criteria are allocated points with
reference to the least important one. There is no upper limit to the points allocated.

120 Decision-Making in SE

In SWING method [Von Winterfeldt 1986, Edwards 1977] decision makers is
asked to allocate the weights in a range to criteria. In the next step the decision
maker is asked to select the criterion that he would like to change most from its
worst to best value(Swing). This criterion is given the highest points, 100. This
process is repeated to all other criteria, hence providing relative weights to all other
criteria. The final weights are the normalized scores.

Barron developed the rank order centroid (ROC) method [Hutton Barron 1992]
for generating weights directly from the ranking of the criteria set. Roc method
was successful in generating reasonable weights without full information about the
attributes gathered [Barron 1996a].

Edwards and Barron combined SMART and Swing and called it SMARTS
(SMART using Swing). SMARTS was introduced as an improvement over SMART
which corrected one previous error of SMART [Edwards 1994] regarding the range of
the attribute weighted. They also introduced SMART exploiting rank (SMARTER)
method [Edwards 1994, Barron 1996b] based upon the idea of using centroid
method. SMARTER method was improvement over SMARTS with lesser partici-
pation demanded from the decision maker using surrogate weights from centroid.

Eigenvector method in AHP [Saaty 1980, Saaty 1990] is used for evaluating cri-
teria weights. Verbal preferences over the criteria are elicited and transformed to
cardinal values in form of ratios. A pairwise comparison matrix is prepared for
the criteria set, where each criteria is compared with others on ratio scales. Based
upon this matrix criteria weight can be generated using various techniques such as:
arithmetic mean method, least square method, etc. As the individual perception is
hardly coherent, the degree of consistency is measured by consistency ratio to check
if the comparison is good enough.

Trade off method [Keeney 1993], described by Keeney and Raifa judges criteria
in pair. They judge two hypothetical competing alternatives upon two criteria. First
alternative has the best consequence level of criteria one and worst consequence level
of criteria two and second alternative has worst consequence level of criteria one and
best consequence level of criteria two. Next, they measure how much the decision
maker is willing to shed the most important criterion in order to change the other
one to best level. This approach is very subjective and assumes that the decision
makers are rationale.

A recently introduced prescriptive method called CROC [Riabacke 2012] has
tried to overcome many of previous issues of criteria weighting problem. First step
involves elicitation of the rankings of criteria based upon their perceived importance.
The most important criteria is given 100 points. The decision maker expresses
the importance of least important criteria in relation to the most important one.
In the next step, an analogue visual scale is created and criteria are set on this
scale. This visual scale allows to show the relative distances between the criteria on
cardinal scale. Then ROC method is used to provide weights to the ordinal weights,
augmented with cardinal weights.

Interval methods [Walley 1991] has been devised to handle preferential informa-
tion in a range. Interval methods [Jiménez 2003, Jiménez 2006] are another class

State of Art of Decision Making 121

of methods for criteria weighting in a lesser precise way. A range of possible val-
ues is shown as an interval. They are claimed to be best suited for group decision
making. As they allow big enough imprecisions between the different individual
perceptions [Jiménez 2006].

There are some other subjective techniques such as 5Ws & H technique,
which use subset of SWING and SMART techniques for criteria weight genera-
tion [Čančer 2012]. They devised a couple of questions for both SWING and SMART
methods. First question for SWING is “which criterion change from the worst to the
best level is considered most important ? ” and second question is “with respect to this
change importance, how many points less and how many points are given to other
criteria change ? ”, first question for SMART is “which criterion change from the
worst to the best level is considered least important ? ” and second question is “with
respect to this change importance, how many points more and how many points are
given to other criteria changes ?” A few other techniques based on the visualization
aids for selecting the right stakeholder weight such as: cognitive mapping, fishbone
diagrams, mind mapping, etc., have evolved and implemented in multiple software
decision support system.

A few other works have tried to address criteria weighting problem from a very
different angle Simos card playing techniques [Simos 1990, Figueira 2002] associates
a playing card with criteria, the participants are asked to rank these cards from the
least important to most important. The rank order of playing cards determines the
perceived importance. The first criteria in the ranking is least important and last
card in the order is most important. If the two criteria are equally important these
are given same ranking. To allow associate strong preference between the cards,
another set of white cards is used. The participants are asked to put white cards
between two successive colored cards. The number of white cards represents the
degree of difference between two criteria. The rank positions are divided by the
total sum of positions of the considered criteria set. Thus leading to the criteria
weight set as normalized score summing up to 1.

There are some other hybrid approaches of many different techniques, but
in almost all of them they started with assumption about the particular criteria
weight. The combination weighting technique is one of the popular technique which
uses principles of multiplicative and additive synthesis to generate the combined
weight. Multiplicative synthesis is shown by Eq.(4.5). Additive synthesis is given
by Eq.(4.6).

wj =
w1jW2j∑n
j=1w1jW2j

(4.5)

where w1j , w2j , wj are subjective weight, objective weight and combination weight
of the jth criteria respectively.

wj = kwij + (1− k)w2j (4.6)

where k is the linear combination coefficient and k ≥ 0.

122 Decision-Making in SE

The previously mentioned techniques depend completely on human judgment
about the preference weighting to get the weight, but seldom human can provide
reasoning about the preference weight. To best of our knowledge, in the literature of
decision making, there is no comprehensive way to reason the weight of the decision
maker, to allocate systematically the weights at the various levels of the preferences.
In this respect our work is very different from the previous work. We provide
a mechanism to weight the human perception and link it with the mathematical
formulations to derive the criteria weight. To have more robust criteria weighting,
we have used multiple algorithms to find the weight.

Table 4.4: Subjective Criteria Weighting Techniques

Weighting
Technique

Strength Weakness

SWING
Structured technique for weight-
ing, normalized cardinal weight,
rapid

Cognitively demanding, no measure to
validate the correctness, no guidance
available for group weighting

ROC

Derives weight with ordinal
rankings, without any cognitive
load

Weights are mechanical, lower ranking
criteria are severely punished, weights
generated may not reflect the real
preferences, no Guidance available for
group weighting

SMART
Structured technique for weight-
ing, cardinal weight

Cognitively demanding, rating inconsis-
tencies, rating depends upon range of
criteria value, other issues similar to
ROC Based, no Guidance available for
group weighting

SMARTER
Structured technique for weight-
ing, cardinal weight

Cognitively demanding, other issues
similar to ROC Based, no guidance
available for group weighting

SMARTS
Structured technique for weight-
ing, cardinal weight

Cognitively demanding, other issues
similar to ROC Based, no guidance
available for group weighting

Eigenvector

Ratio weight, measures of con-
sistency known, different partic-
ipants can provide different ma-
trices, consistency check is avail-
able for group weighting

Highly demanding cognitively, hard to
validate the preferences, time taking,
semantic interpretation of preference
phrases can be misleading

CROC

Ordinal ranks, cardinal weights
taken into account (through
graphical scale) for the difference
between the cardinal difference
between the ranks

Direct ordinal ranking process is bound
to create errors or some inconsistencies,
(perhaps impact of different graphical
scales needs to be studied, issues with
GDN needs to be studied)

Interval
Interval weights, closeness to
correctness, less cognitively de-
manding

Precision could be difficult to obtain,no
guidance available for group weighting

Continued on the next page

Proposed Methodology 123

Table 4.4 –Subjective Criteria weighting Techniques

Weighting
Technique

Strength Weakness

Trade-off

Pairwise comparison, cardinal,
Correctness

Highly demanding cognitively, time
taking, explicit difficulty for weight-
ing less important criteria, no guidance
available for group weighting

Point
Allocation

Cardinal, rapid, less cognitively
demanding

Possibility of errors,no guidance avail-
able for group weighting

Simos card
playing

Ordinal, less cognitively de-
manding

possibility of errors, no guidance avail-
able for group weighting

Direct rating
Cardinal, rapid, less cognitively
demanding

Could be very challenging cognitively,
possibility of errors,no guidance avail-
able for group weighting

5W&H
Same advantages as
SWING/SMART, more struc-
tured,

Highly demanding cognitively, simi-
lar challenges like SWING/SMART,no
guidance available for group weighting

Rank Sum
Rapid, less cognitively demand-
ing

Possibility of errors, does not takes into
account the cardinal differences

Rank Exponent
Rapid Fairly demanding cognitively, does not

takes into account the cardinal differ-
ence, prone to errors,

Table 4.4 shows the comparison of subjective criteria weighting techniques avail-
able in the literature, discussed previously. Most of the techniques discussed previ-
ously are more apt for single person decision making, with an assumption of decision
maker as rational. Some of these techniques have tool implementation, like CROC.
This chapter does not discusses any of the technique which use weight elicitation
directly from uses visual tools, which do not take any account of rational justifica-
tion.

It is clear that the objective weighting techniques need various vectors or sets of
criteria weights to operate upon and determine the final set of criteria weights. The
choice of using an objective criteria weight generating technique can hugely affect
the final result. Objective weighting techniques have strong mathematical base,
that allows to avoid the participation from the decision makers. The problem with
the subjective criteria weighting technique is about how to assimilate the various
weights obtained from the different decision-makers.

4.4 Proposed Methodology

Different roles in the decision process and prerequisite to the techniques are provided
before the technique and an optimality check procedure is defined for the decision
process. The proposed approach is a six step process. We assume that all the
necessary stakeholders who are decision makers for the particular criteria set are
already identified for the system under study.

124 Decision-Making in SE

4.4.1 Roles in Decision making for SE

In first step towards categorizing the stakeholders involve in the SE project. The
stakeholders of a SE project could be classified in two classes: client/end-users and
developers. Both client/end-user and developer stakeholders play different roles in
decision making. Client/end-user are the system value providers or criteria weight
determiners and developer stakeholders are evaluators.

package Stakeholders DecisionMakers {1/2}

Stakeholders

Clients/'End-Users' Developers

'Decision Makers'

'System value providers'
weight_Criteria()

'Subject Matter Experts'
evaluate_Alternatives()

'Project Manager'
weight_System_Value_Providers()
take_decision()

Figure 4.3: Decision Makers Classification

Figure 4.3 shows the proposed classification of SE stakeholders. Criteria weight
determiners are the decision makers who would like to provide a measurement of a
particular quality in the system upon which evaluation should be carried out. The
criteria weight determiners are the general stakeholders which have no interest in the
technical specifications rather than quality of product only. Whereas evaluators are
the decision makers who have the competence to evaluate the alternative on various
parameters and provide a score relevant to their characteristics. These are often the
domain experts often known as subject matter expert in SE. Project manager is a
type of developer stakeholder who should be responsible for weighting system value
provider and take the final decision upon the analysis and evaluation done by subject
matter expert. A multi participant MCDM problem in SE can be conceived as two
step problem, in first step criteria weights are determined using the preferences of
the general decision makers and in second step evaluation by the subject matter
experts of the alternatives upon the previously determined criteria set.

Proposed Methodology 125

4.4.2 Prerequisite to technique

Preference modeling can be done using the classical preferences mentioned in var-
ious Utility theories [Fishburn 1970, Roy 1991, Roy 1984, Tsoukias 1992], and in
MAVT [Keeney 1993]. Similar preference modeling is also used in game theory
based approaches like GMCR techniques [Fang 1993, Hamouda 2004].

• D = {di}, i ε [0, N], is the set of decision makers (DMs), di involved in the
concerned conflict..

• ‘C’ is the set of distinguishable criteria, satisfying 2 ≤ |C| < Z. For each
stakeholder set ‘C’ consists of three distinct subsets H, M , L, such that:
{H}∪ {M}∪ {L} = {C}, and {H}∩ {M} = {M}∩ {L} = {H}∩ {L} = {φ}.
Where cardinality of each set can be different.

• For each di ∈ D, there is set of preference relationships {�di , >di ,∼di} defined
over ‘C’.

– For each di ∈ D, a complete binary relation �di on C, specifies DM di’s
strong preference over C. If s, t ∈ C, then s �di t means the DM di
strongly prefers s to t.

– For each di ∈ D, a complete binary relation >i on C, specifies DM di’s
weak preference over C. If s, t ∈ C, then s >di t means the DM i weakly
prefers s to t.

– For each di ∈ D, a complete binary relation ∼di on C, specifies DM
di’s indifference over C. If s, t ∈ C, then s ∼di t means that s to t are
indifferent to DM di.

– The relation � and > are asymmetric, ∼ is symmetric and reflexive and
the triple {�di , >di ,∼di} is complete.

The proposed approach can be divided into six steps: stakeholder categorization,
stakeholder weighting, criteria categorization, preference modeling, score generation
and evaluation. They are described in following section.

4.4.3 Methodology

Step 0: Determine Relevant Stakeholders

Decision makers which can provide the system values are analyzed and determined.
This first step may differ in different organizations depending upon their policies.
Method for determining the stakeholder could not be generalized. This methodology
assumes that system value providers or relevant stakeholders are already determined
and available.

Step 1: Stakeholder Categorization

In order to carry out multi-participant MCDM, it is essential to determine the
importance of the stakeholders who are decision makers for the decision prob-

126 Decision-Making in SE

Determine stakeholders
relevant for decision

Categorize stakeholders

Weight stakeholders

Define crietria set

Elicit preference of each
stakeholder over criteria set

Generate weights for criteria set

Are stakeholders
satisfied with

NO

criteria weights

Evaluate alternatives
upon criteria set

Yes

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 4.4: Proposed Decision Methodology

Proposed Methodology 127

lem. Their particular importance in the weighting process should be taken into
account. For this purpose a influence vs. interest grid is used as shown in Figure
4.5. The influence vs. interest grid derives its motivation from the one mentioned
in [Bryson 2011, Eden 2013] but is more apt for stakeholder categorization in SE.
Influence vs. interest grid allows to map stakeholders stake in the decision process.
The grid can be divided into five zones which represent the strength of their stake
in a particular decision: stakeholder with very strong stake, with strong stake, with
medium stake in decision, with weak stake in decision and with very weak stake in
decision.

Interest

In
flu

en
ce

low

High

High

low

Very Strong Stake

Very Weak stake

Strong Stake

Weak stake

medium stake

in decisionMedium

Medium

in decision

in decision

in decision

in decision

Figure 4.5: Interest vs. Influence Grid in Decisions

Step 2: Stakeholder Weighting

Once the stakeholders are categorized using the Influence vs. interest grid, an order
of their importance or ranking is available to the project manager or chief decision
maker. This ranking order can be converted to cardinal weights using the surrogate
weight generation technique based on decreasing utility functions as shown in Figure
4.6. For each given ranking a utility function is can provide a cardinal weight. The
choice of function depends upon the decision maker and may choose to use one or
more functions with different degrees of risk averseness, or risk proneness.

Step 3: Criteria Categorization

All the decision makers involved in the decision process should categorize the agreed
set of criteria in to three sub sets high preference (H), medium preference (M), low
preference (L), according to their perception of utility of the criteria. Hence, the

128 Decision-Making in SE

More Risk Averse

More risk prone

Risk Neutral

Less Risk Prone

Less Risk Averse

Ui(Xi)

Xi

Figure 4.6: Decreasing Utility Function [Keeney 1993]

sorting of criteria is such that the perceived utility is in the order p(H) > p(M) >

p(L).

Step 4: Preference modeling over criteria

Each DM i ∈ D, creates the preference matrix Pi, over the criteria j ∈ C, given
by Eq.(4.7). The previously created three subsets H,M,L are used as reference for
creating the preference matrix in the next step.

Pi =


c1 c2 ··· cj

c1 0 p12 · · · p1j
c2 p21 0 · · · p2j
...

...
...

. . .
...

cj pj1 pj2 · · · 0

 (4.7)

where the value pab of a DM i ∈ D is given by Eq(4.8) below:

pab =



2 If a is strongly preferred criterion than b
1 If a is weakly preferred criterion than b
0 If a is indifferent to criterion b
−1 If a is weakly disliked criterion than n
−2 If a is strongly disliked criterion than b

(4.8)

As the matrix Pi is skew-symmetric, it is sufficient to express the value of pij to
get pij and vice versa. Once Pi matrix is available, the criteria are ranked in order
with maximum number of 2, 1, 0,−1 and − 2 respectively. It is possible for a DM
to have two or more criteria securing exactly same ordinal ranking, depending upon
the entries in matrix.

Step 5: Generating scores

The scores are generated using a simple marking process consisting of a maximum
of j number of moves, where j = |C|, in which every DM di ∈ D starts marking the

Proposed Methodology 129

criteria set C. The marking algorithm is shown as Algorithm 1. In this marking
process every DM, di starts marking with the most preferred criterion towards the
least preferred criterion till all criteria are marked. The result of the marking process
is that all criteria are marked in a j×j matrix. The net score of each criteria by each
algorithm is the sum of the total score obtained by each marking at different steps of
process. The scores can be generated using the utility algorithms, depending upon

Data: D, C, N
Result: Criteria marked according to their ranks
D=1, N=1;
while ∀ i ∈ C not marked do

if Rank of Ci is unique then
mark Ci ;
N++;

else
mark ∀ i ∈ C where rank Ci == Cj ;
N:=N+2;

end
end

Algorithm 1: Marking Process Algorithm

the risk averseness, risk neutrality or risk proneness as shown Figure 4.6. There
are two approaches to calculate weights from the available ranking from criteria
categorization, preference and final ranking:

1. Taking into account only the rankings of the available criteria set and using
the different utility functions.

2. Taking into account the degree of preference difference between the various
categories of criteria and use different utility functions for generating criteria
weights.

The net score of each criteria by each algorithm is sum of the total score obtained at
each marking. The scores are calculated using the utility functions. Slight variations
in Eq.(4.9), (4.10) and (4.11) with parameters j, d and ci can generate different risk
averse, risk prone and risk neutral algorithms for scoring.

score(ci) = k − ji (4.9)

where k is some constant used as index term, j is some variable dependent on i.

score(cn) = score(c1)− (n− 1).d (4.10)

where score(c1) is maximum score used as index term, d is some constant.

score(cn) = score(c1)− jn (4.11)

130 Decision-Making in SE

where score(c1) is maximum score used as index term, j is some variable dependent
on n.

Once the scores are calculated they are normalized to obtain the score as shown
in Eq. (4.12).

Normalised score(ci) =
score(ci)∑
i score(ci)

(4.12)

Risk Averse

Risk prone

Risk Neutral

Ui(Xi)

Xi

Risk Neutral

Risk Averse

Risk prone

Rank

Score

Figure 4.7: Taking in Account Differences in Utilities of Categories

Figure 4.7, shows the two different cases of using different utilities for three
categories, in the first case higher criteria are weighted using risk prone, medium
using risk neutral and lower using risk prone. In second case higher criteria are
weighted using risk averse, medium using risk neutral and lower using risk prone.

Step 6: Evaluating Alternatives on various criteria

Once the criteria weights are available the domain expert are then involved to eval-
uate the alternatives. As in industrial practice, domain experts use relative scoring
techniques based on symbols which often represent a cardinal value such as: ++,
+,+−, −, and −−, each representing cardinal scores of 100, 80, 60, 40 and 20
respectively [Ulrich 2008]. Domain experts may choose to put precise evaluation
scores if they want to provide the precision between two weights of same sign. The
alternative with the highest net score is the selected as the best one. Table 4.5 shows
the evaluation grid, Alti shows the i’th alternative and Emn shows the evaluation
score of m’th alternative for n’th criteria.

Simple Example 131

Table 4.5: Multi Criteria Alternative Evaluation

Criteria Alti Altj · · · Altm

c1 Ei1 Ej1 · · · Em1

c2 Ei2 Ej2 · · · Em2

... · · · · · · . . . · · ·

cn Ein Ej3 · · · Emn

Net Score
∑
Ei

∑
Ej · · ·

∑
Em

4.4.4 Optimality Check

Optimality check can be carried out on the different types of scoring functions.
In order to carry out the optimality check, it is necessary to assume that all the
stakeholders have equal stake in decision process or have equal weight in decision.
We recommend to use the mean distance of criteria rankings as a metric to determine
the limits of optimality for a particular utility function. The mean distance is given
by the formula:

C =

∑
i ∆ci
|C|

(4.13)

Where, ∆ci is the difference between the ranking obtained as a result of the scoring
function and the actual ranking of a criteria ci, and |C| is the total number of criteria
under consideration. For a given function the limits of of mean distance signify the
acceptable ranking distance for each stakeholder, i.e., the mean difference of ranking
of DM and resultant ranking obtained, when the DMs’ weight is not considered in
decision process. A scoring function is said to be [a, b] optimally acceptable, if its
minimum acceptable distance a, is such that a ≥ a and its maximum acceptable
distance b is such that b ≤ b.

It should be the responsibility of project manager or a unbiased party to devise
the optimality limits for the different types of scoring function during the decision
making process. Optimality check technique allows to have an estimate of the degree
of satisfaction of the stakeholders with the final scores.

4.5 Simple Example

To show the ease of usage of our technique, we present here an example of Criteria
weighting problem. We take an example of a hybrid car. The design team in a
automotive industry wants to design a hybrid car and they need to weight design
criteria to proceed with the selection of alternatives.

132 Decision-Making in SE

Step 0

The project manager determines five stakeholders which are decision makers for the
early phase design concepts: (a) design team, (b) marketing team, (c) end-users rep-
resentative, (d) safety engineers and (e) maintenance or after sales service team. The
set of involved DMs is D = {a, b, c, d, e}, the criteria set be C = {c1, c2, c3, c4, c5, c6}.
The interpretation of various criteria is explained in Table 4.6. Four design alter-
natives for the hybrid propulsion system, under evaluation are: petrol-diesel (PD),
diesel-gas (DG), gas-electric (GE), and diesel-electric (DE). Their specifications and
other details are mentioned in Table in 4.7.

Table 4.6: Design Criteria of a Hybrid Car

Criteria Description

c1 Flexibility of usage

c2 Maintainability

c3 Robustness

c4 Aesthetic value

c5 Environment Friendly

c6 Ease of manufacture

Step 1

The decision makers (DMs), D = {a, b, c, d, e} are categorized using the Influence
vs. Interest grid. The grid is shown in Figure 4.8, which provides DM’s stakes in
decision. Clearly, the order of importance of their stake is as follow: c > a > d >

b > e.

Step 2

To convert the rankings into the weights, we use the surrogate weight generation
technique based on decreasing utility functions. A risk averse function based on
Eq.(4.11) is used to generate weights with score(c1) = 80, j = 3.2n. The resultant
weights are shown in the Eq.(4.14) below.

[a b c d e

0.238 0.18 0.258 0.22 0.103
]

(4.14)

Simple Example 133

Table 4.7: Hybrid Car

Design-Concepts Possible Specifications

Petrol-Diesel Engine
Stroke - 2, 4, 6, Wankel
Volume - 800cc, 1000cc, or 1200cc
Engine Cooling - Air , Water , Oil

Diesel-Gas Engine
Stroke - 2, 4, 6, Wankel
Volume - 800cc, 1000cc, or 1200cc
Engine Cooling - Air , Water , Oil

Gas-Electric Engine

Stroke - 2, 4, 6, Wankel
Volume - 800cc, 1000cc, 1200cc
Engine Cooling - Air , Water , Oil
Electric Power - 55hp, 60hp, 65hp, 70hp
Type - Series wounding DC Motor, Permanent Magnet
DC Motor, 3-Phase Induction Motor

Diesel-Electric Motor

Stroke - 2, 4, 6, Wankel
Volume - 800cc, 1000cc or 1200cc
Engine Cooling- Air , Water , Oil
Electric Power - 55hp, 60hp, 65hp, 70hp
Type - Series wounding DC Motor, Permanent Magnet
DC Motor, 3-Phase Induction Motor

DM H M L

a c1, c5 c2, c4 c6, c3
b c4, c6 c1, c2 c3, c5
c c3, c4 c2, c1 c5, c6
d c6, c3 c2, c1 c4, c5
e c2, c3 c1, c6 c5, c4

Table 4.8: Design Criteria categoriza-
tion

Interest

In
flu

en
ce

low

High

High

low

End-users R

Maintenance Team

Design Team

Safety Engineers

Marketing Team

Medium

Medium

Figure 4.8: Categorization Using Inter-
est vs. Influence Grid

Step 3

The stakeholders (DMs) which are system value provider categorize criteria set
according to their perception of criteria as shown below in Table 4.8.

134 Decision-Making in SE

Step 4

The DMs create their preference matrices according to their categorization from
step 1 . The preference matrix of stakeholder a, b, c and d are shown in Eq.(4.15),
(4.16) and (4.17) respectively.

Pa =



c1 c2 c3 c4 c5 c6

c1 0 1 2 1 1 2

c2 −1 0 2 1 −2 2

c3 −2 −2 0 −1 −2 0

c4 −1 −1 1 0 −1 1

c5 −1 2 2 1 0 1

c6 −2 −2 0 −1 −1 0


, Pb =



c1 c2 c3 c4 c5 c6

c1 0 1 2 −2 1 −2

c2 −1 0 1 −2 2 −1

c3 −2 −1 0 −2 1 −2

c4 2 2 2 0 2 1

c5 −1 −2 −1 −2 0 2

c6 2 1 2 −1 2 0


(4.15)

Pc =



c1 c2 c3 c4 c5 c6

c1 0 1 −1 −1 1 1

c2 −1 0 −1 −1 1 1

c3 1 1 0 1 2 2

c4 1 1 −1 0 2 2

c5 −1 −1 −2 −2 0 1

c6 −1 −1 −2 −2 −1 0


, Pd =



c1 c2 c3 c4 c5 c6

c1 0 −1 −1 1 1 −2

c2 1 0 −1 1 1 −2

c3 1 1 0 2 2 −1

c4 −1 −1 −2 0 1 −2

c5 −1 −1 −2 −1 0 −2

c6 1 1 1 2 2 0


(4.16)

Pe =



c1 c2 c3 c4 c5 c6

c1 0 −1 −1 1 1 1

c2 1 0 1 2 2 1

c3 1 −1 0 2 2 1

c4 −1 −2 −2 0 −1 −2

c5 −1 −2 −2 1 0 −1

c6 −1 −1 −1 1 1 0


(4.17)

Step 5

The DMs play a simple marking process according to their preferences. In this this
example we have used five algorithms for calculating the score, one risk neutral and
one risk averse and three risk neutral algorithms with slight difference in degree of
neutrality.

Simple Example 135

0 1 2 3 4 5 6

14
12
10
8
6
4
2

Rank

S
co
re

RA
RP

RN1
RN2

RN3

Figure 4.9: Score vs. Rank

Markings =



c1 c2 c3 c4 c5 c6

1 a e c b 0 d

2 0 0 d,e c a b

3 b,e c,a,d 0 0 0 0

4 c,d b 0 a 0 e

5 0 0 b d c,e a

6 0 0 a e b,d c


(4.18)

After the marking is over, the DMs agree on a set of score generating algorithm.
By using the first score generating algorithm as mentioned in Eq.(4.11), the scores
can be obtained. The weights obtained are shown in Table 4.9. Next step is to
normalize the score of each criteria using the Eq.(4.12).

Table 4.9: Design Criteria Scores

Algorithms
Criteria Risk-N1 Risk-N2 Risk-N3 Risk-P Risk-A

c1 5.99 4.99 4.306 6.18 10.269
c2 6.02 5.02 4.02 5.56 10.758
c3 5.76 4.76 3.76 6.556 8.531
c4 5.62 4.62 3.62 5.738 8.658
c5 4.31 3.31 2.31 2.626 4.538
c6 5.26 3.86 3.26 5.305 7.19

After using the five algorithms and normalization we have a set of criteria weights
as shown in matrix below by Table 5.14.

136 Decision-Making in SE

Table 4.10: Normalized Design Criteria Weight

Algorithms
Criteria Risk-N1 Risk-N2 Risk-N3 Risk-P Risk-A

c1 0.181 0.187 0.202 0.193 0.205
c2 0.182 0.189 0.188 0.173 0.215
c3 0.174 0.179 0.176 0.205 0.170
c4 0.17 0.173 0.17 0.179 0.173
c5 0.13 0.124 0.103 0.081 0.090
c6 0.16 0.145 0.153 0.166 0.144

Once the criteria weight matrix is available, the final criteria can be obtained
either by the mean of weights obtained for each criteria or by accepting any partic-
ular criteria array. In this example we took the mean of the four array of criteria
weights and the resultant criteria weight array is represented by Eq.(4.19).

[c1 c2 c3 c4 c5 c6

0.194 0.189 0.18 0.173 0.106 0.154
]

(4.19)

Step 6

Once the criteria weight are available the subject matter experts of propulsion sys-
tem can evaluate and provide the scores of the various alternatives under study.
As previously mentioned the weighting notation can vary and each notation may
correspond to an cardinal number.

Table 4.11: Multi Criteria Alternative Evaluation

Criteria Alt(PD) AltDG AltGE AltDE

c1 = 0.194 ++(100) +−(60) ++(100) −(40)

c2 = 0.189 +−(60) −−(20) ++(100) +(80)

c3 = 0.18 ++(100) −−(20) −−(20) +−(60)

c4 = 0.173 −(40) +(80) ++(100) +(80)

c5 = 0.106 −−(20) +−(60) ++(100) +(80)

c6 = 0.154 ++(100) +−(60) +−(60) −−(20)

Net Score
∑
w 73.18 48.46 79.04 59.08

Analysis and Comparison With Other Technique 137

Upon evaluating the various alternatives on the given criteria set, the most suit-
able alternative for the propulsion system is third alternative Gas-Electric propulsion
system, which secured the highest scores during the multi participant MCDM. Ta-
ble 4.11 shows the evaluation grill withe various scores obtained by the different
alternatives during analysis.

4.6 Analysis and Comparison With Other Technique

4.6.1 Optimality Check

In example mentioned in Section 4.5, if the weight of decision-makers are not taken
into account then the ranking orders achieved would be different. Using the risk
averse function in Fig 4.9, the ranking obtained while not considering stakeholder
weights is c2 > c1 > c3 > c4 = c6 > c5, different to actual rankings c2 > c1 >

c4 > c3 > c6 > c5. In this case the mean distance is calculated for each stakeholder
for risk averse function using Eq.(4.13) is: Ca = 1.33, Cb = 1.667, Cc = 1.667,
Cd = 1.33, and Ce = 0.667. In the resultant limits are found to be [0.67-1.67]. If
it lies within the acceptable optimal limits the function is acceptable. For example
[0.67-1.67] lies within acceptable limits of [0.5-2.0], hence it is acceptable.

4.6.2 With Entropy

Entropy method of information theory [Shannon 1949, Shannon 2001] is a popu-
lar objective method for criteria weights generation, which finds mention in lit-
erature. Entropy, in decision theory is a criterion for the amount of uncertainty,
represented by a discreet probability distribution, in which there is an agree-
ment that a broad distribution represents more uncertainty than does a sharp
one [Shannon 1949, Shannon 2001]. The entropy method can be used to determine
the weights of criteria by the Eqs.(4.3),(4.4).

The entropy method is used to determine an index which represents the variation
between the performance index of criteria, it provides a higher score to a criteria,
whose values vary most. The entropy method is given by the Eqs. (4.3), (4.4). The
comparison of results obtained using our approach and the results obtained after
applying entropy method can provide more insight about suitability of our approach.

Upon using the Eqs. (4.3), (4.4), the entropy of criteria weights are estimated to
be as shown below by Eq.(4.20), which provides a measure of degree of randomness
in the criteria weights, and provide a criteria weight according to simple principle
of higher entropy leads to higher criteria weight. In our case, the entropy method
provides criteria weights which cannot be accepted in a systems engineering project,
because it gives unreasonably very high weight to criteria c5, which was initially least
important to all DMs. This examples shows that entropy method based approaches
are not suitable for criteria weighting in systems engineering projects.

[c1 c2 c3 c4 c5 c6

w 0, 069 0, 1072 0, 033 0, 148 0, 516 0, 126
]

(4.20)

138 Decision-Making in SE

4.6.3 With Rank Order Centroid

Rank Order Centroid(ROC) is a popularly emerged technique for surrogate weight
generation technique allows to generate weights for any given number of criteria
rapidly. But its disadvantage lie in the disproportionate distribution of criteria.
ROC technique is often severe with criterion associated to lower rankings and thus
making it unsuitable for a fair trial of alternatives. For example, four given criteria
are bound to get weight distribution as 0.52, 0.27, 0.15 and 0.06, thus making first
criteria overweighted and leading to unfair distribution.

4.6.4 With Eigen-vector from AHP

With eigenvector based techniques [Saaty 1980, Saaty 1990], it is assumed that the
decision-makers are rational and capable of determining perfect ratio of preference
between two criteria. Although, theoretically it provides very good results based on
the assumptions but often for the stakeholders, providing precise comparison ratio is
difficult and mostly a guess. There is no tool to help the stakeholders to determine
this ratio. For example it would be very difficult to measure if the ratio of preference
between two criteria is 1/6 or 1/7.

c1 c2 c3 c4 c5 c6
0

5 · 10−2

0.1

0.15

0.2

0.25

0.
20

5

0.
21

5

0.
17

0.
17

3

0.
09

0.
14

4

0.
19

3

0.
17

3 0.
20

5

0.
17

8

0.
08

1

0.
16

6

0.
18

1

0.
18

2

0.
17

4

0.
17

0.
13

0.
16

0.
18

7

0.
18

9

0.
17

9

0.
17

3

0.
12

4 0.
14

5

0.
20

2

0.
18

8

0.
17

6

0.
17

0.
10

3

0.
15

3

0.
19

4

0.
18

9

0.
18

0.
17

3

0.
10

6

0.
15

4

criteria

w
ei
g
h
t

RA RP RN1 RN2 RN3 mean

Figure 4.10: Criteria vs. Weight

Discussion 139

4.7 Discussion

Figure 4.9, shows the score generating algorithm used in the example and Figure
4.10 shows compares the resulting normalized weights obtained by the algorithms
used.

Presented approach tried to provide a methodological solution to one of the ig-
nored problems of MCDM. Most of MCDM techniques mentioned in the literature
use these criteria weights which often lack in representing the true nature of pref-
erences of system value providers. Some techniques derive weight in later stages,
which may give rise to conflicts between the stakeholders. Often, this is not the case
in SE component selection. The proposed technique provides means to allow any
number of DMs to achieve an appropriate array of criteria weights, while remaining
in synergy with other DMs criteria weights. The trace for validation and trans-
parency is obtained in form of pairwise comparison matrix of criteria. One of the
benefit of proposed approach is about the scalability of the technique, it can easily
take in account a large number of DMs with different perception of criteria weights
and even large number of criteria if needed. But with respect to systems engineering,
it would not be fruitful to employ large number of criteria as recommended by the
SE good practice guides. The INCOSE SE handbook [Haskins 2011] recommends
to have 7-9 criteria in a project. If the number of criteria are too many it would be
advised to create a hierarchy of criteria and then use this technique hierarchically.

In addition to ease of application, technique provides other multiple benefits. It
helps a DM to understand his perception of criteria better and of the other DMs. It
also helps to avoid conflicts among the DMs, which often arrive during the decision
making process. The transparency of the approach allows easy negotiation of the
criteria weights and hence maximum number of DMs are satisfied with their contri-
bution. The low cognitive load that our technique demands can be important factor
for acceptability of the technique. Criteria weighting technique can be coupled with
a variety of MCDM approaches, such as PROMETHEE, TOPSIS, WSM, WPM,
ELECTRE, AHP, ANP, etc.

The decision makers are free to propose their own utility functions or scoring
algorithms based on the ordinal ranking achieved. This allows a more conducive
environment for criteria weight negotiation, as the whole process is transparent,
with no black-box process involved.

It is possible that the different stakeholders in the projects have different impor-
tance. In proposed approach, the project managers can use their preference matrix
to generate the DMs’ weight, as is the case in a real SE project. Proposed approach
offers possibility to weight the different DMs involved in a project while reasoning
his priority using a structured framework. For stakeholders weight generation only
one preference matrix is required, i.e., only of responsible Project manager. While,
for weighting DMs it would be advised to use a set of risk averse, prone and neutral
utility functions according to the categorization obtained by them. If there is huge
difference between the cardinal preference, risk prone type of algorithm should be
used. If they are rather perceived to be closed cardinally risk averse is advised to be

140 Decision-Making in SE

used. Similarly, if they are perceived to be equally separated linearly, risk neutral
should be used.

There can be arguments that the utility score generation algorithms can not be
accepted as weighting mechanism. But the literature shows that, every individual
DM has a utility function, which he uses consciously or unconsciously while provid-
ing scores directly as it usually happens. Here we attempted to provide a formalism
to use this conscious/unconscious utility function, in order to help other DMs to
understand the perceptions of each other. The benefit that our approach provides
over other is that, it involves the DMs to methodologically provide the ordinal
ranking by first demanding them to attempt to categorize them in three categories.
This categorization provides input to the next step; depending on the preference of
the various DMs, a range of scoring algorithm can be applied and weights can be
obtained.

In the beginning our approach demands slightly more participation from the
DMs, as compared to the other approaches, but once the weights are methodolog-
ically obtained they are certainly more reliable then the other contemporary ap-
proaches with least amount of conflict. Better decisions allow to design the right
systems, with more stakeholders getting more confident about their product.

Decision making in SE has to deal with very complex problems, created by the
organization and stakeholders itself. A very robust process is required to avoid
the unnecessary influence from a particular stakeholder. This is the problem of
strategy formulation of decisions in SE. The proposed process is designed to be
transparent and keep trace to validate the preferences and take in account at the
same time the ordinal and cardinal difference. In literature only CROC allows to do
same. While CROC provides no guidelines to take in account the preferences from
multiple decision makers (who are system value providers), the proposed approach
allows to do so.

4.8 Conclusion

This chapter presented the situation faced by systems engineers when they have
to make a decision about choosing a solution for a design element from a set of
alternatives. In this chapter, we provide a technique which allows to assimilate the
various criteria weights from the different stakeholders to provide a single array of
criteria weights which can be uniformly accepted by all the different decision makers
or stakeholders. The major contributions are as follows:

— It provides a holistic way to integrate the different criteria weights from differ-
ent stakeholders to provide a single array of criteria weights using the classical
preference modeling.

— It shows that all stakeholders are uniformly satisfied with the proposed tech-
nique.

In this current work, we have provided a systems theory of how the criteria weights
can be obtained using the classical theory of preference modeling. This approach

Conclusion 141

provides multiple benefits compared to other existing approaches. Usually in sys-
tems engineering project, the engineers rely upon their intuition to provide weights,
and later use other technique to combine the different DMs’ preferences. Our ap-
proach provides a formalism to this systems engineer intuition and hence provides
the reasoning for the various weights achieved. Our approach is very easy to under-
stand and use and demands very low cognitive load from the engineers. It allows
to formally provide the scores using the DM’ drawn utility functions: risk prone,
risk averse, or risk neutral; it provides a mechanism to combine them together to
come up with a uniformly acceptable solution. In future, we look forward to link
the simulation of the DMs’ preferences with the design library, in order to shorten
the decision time. Our approach can easily be applied to the class of methods which
require information on the attributes to carry out a decision analysis.

We provided a methodology to use this UROW criteria weighting technique
holistically to make a decision based on the value of the system provided by the cus-
tomer stakeholder (system value provider) executed by the subject matter experts.
In order to provide maximum satisfaction from the characteristics and services they
required with the quality and constraints they imposed upon the developers. We
classified the various stakeholders according to the various roles they play in the
decision making of a systems engineering project.

Chapter 5

Integrating Requirements
Engineering and Decision Making

Contents
5.1 Introduction . 143
5.2 Comprehensive Methodology: Integrating Concepts 144

5.2.1 Methodology . 144
5.2.2 Tool Support: SysEngLab . 147

5.3 Case Study: Iron Bird Integrated Simulator 152
5.3.1 Assumptions . 154
5.3.2 IBIS Stakeholders Needs Elicitation 154
5.3.3 IBIS System Requirements Definition 165
5.3.4 IBIS Architecture Design and Analysis 171
5.3.5 Landing Gear Detail Design 173
5.3.6 Deciding Specifications using our Technique 175
5.3.7 Deciding Design Components 177

5.4 Requirements Traceability . 182
5.4.1 Purposed Traceability . 183
5.4.2 Cost-effective Traceability . 183
5.4.3 Pre-requirement traceability 183
5.4.4 Post-requirement traceability 186

5.5 Limitations and Conclusions 188

5.1 Introduction

Previously in Chapter 2, 3 and 4, we have presented requirements engineering
& management and decision making methods respectively. These methods

needs to be integrated in order to make them really useful for SE. This chapter
provides an approach to combine previously brought contributions together for a
comprehensive methodology for requirements engineering and decision making. It
also presents the tool and modules developed to support the proposed methodology.
In order to demonstrate the feasibility and readiness level of the applicability of our
comprehensive approach developed for SE, this chapter presents a case study applied

144 Integrating Requirements Engineering and Decision Making

on a real project called IBIS. The case study allows to have first hand evaluations
of the previous contributions and the comprehensive methodology itself.

Section 5.2, presents the comprehensive methodology by integrating the previ-
ously developed concepts of RE&M and decision making. Section 5.3, introduces
the case study called IBIS and illustrates how the comprehensive methodology can
be used for a SE project. Section 5.4 summarize the results on post-requirements
and pre-requirements traceability achieved. Finally, limitations and Conclusions of
our study are presented.

5.2 Comprehensive Methodology: Integrating Concepts

Figure 5.1, shows the proposed comprehensive methodology in form of Gantt chart.
Previously developed concepts are used and integrated in a chronological order of
their usage during the development life cycle. The proposed methodology can be
divided into eight sections principally. The first six sections involve the RE, design
and decision making methods and are of core of our comprehensive methodology
mentioned in this chapter. Once the project gets green signal from necessary au-
thority, the project kick-starts.

5.2.1 Methodology

First phase: In the first step primary stakeholder of the system is identified. User
stories, interviews and other statements from him are gathered. In the next step
the other secondary stakeholders are identified and their statements, user stories,
etc., are gathered similarly. Following to the analysis of the stakeholder statements,
the context modeling of the system under design is started. Next step involves
the weighting of the various stakeholders which are the potential customers of the
system. The weighting at this level is carried out to calculate their stake in any
decision at the system level, such as decisions determining the missions and services
of the product at system level. Traceability between the stakeholders and user
stories and statements is maintained as simple table at this stage.

Second phase: First step of the second phase takes as input the previously
collected user-stories and other various statements from the stakeholders and iden-
tifies the goals (state they want to achieve) of the various stakeholders. In the next
step, their rationales are identified and mapped as a graph. Following to this, the
stakeholders’ values are identified, i.e., system characteristics upon which system
goals can be measured, once values are identified their importance is measured us-
ing the input from the previous step. Following to this, stakeholders are asked to
weight the various system goals identified by the requirements engineers. In the next
step the traceability needs of the stakeholders are identified in order to formulate
the traceability policies required by the stakeholders and institutions involved with
the project. The traceability policies for the project are designed and configured
according to the needs of the stakeholders.

Comprehensive Methodology: Integrating Concepts 145

P
ro
je
ct

ki
ck
st
ar
t

Id
en
tif
y
P
rim

ar
y

St
ak
eh
ol
de
r

G
at
he
r
us
er
-s
to
rie

s,
st
at
em

en
ts
,

in
te
rv
ie
w
s,
et
c.

Id
en
tif
y
Se

co
nd

ar
y

St
ak
eh
ol
de
r

St
ar
t
C
on

te
xt

m
od

el
in
g

W
ei
gh

t
St
ak
eh
ol
de
rs

Id
en
tif
y
go

al
s
of

th
e
st
ak
eh
ol
de
rs

W
ei
gh

t
go

al
s

Id
en
tif
y
tr
ac
ea
bi
lit
y
ne
ed
s

of
th
e
st
ak
eh
ol
de
rs

Id
en
tif
y
st
ak
eh
ol
de
r
ra
tio

na
le
s

Id
en
tif
y
st
ak
eh
ol
de
r
va
lu
es

Id
en
tif
y
ob

je
ct
iv
es

to
m
ee
t
go

al
s

Id
en
tif
y
vi
ew

po
in
ts

of
in
te
re
st

Id
en
tif
y
tr
ac
ea
bi
lit
y
ne
ed
s

of
th
e
st
ak
eh
ol
de
rs

Id
en
tif
y
op

tio
na
l&

co
re

ob
je
ct
iv
es

vi
s-
à-
vi
s
vi
ew

po
in
ts

to
Sy

st
em

Id
en
tif
y
C
on

st
ra
in
ts

C
he
ck

am
bi
gu

ity
in

st
at
em

en
ts
;

D
er
iv
e
sy
st
em

re
qu

ire
m
en
ts

St
ar
t
sy
st
em

m
od

el
in
g

Id
en
tif
y
te
st
ca
se
s
fo
r
ev
er
y

ob
je
ct
iv
e/
co
ns
tr
ai
nt

id
en
tifi

ed

us
in
g
vi
ew

po
in
ts

Id
en
tif
y
te
st
ca
se
s
fo
r

St
ar
t
tr
ac
in
g
ar
te
fa
ct
s

C
ur
e
am

bi
gu

ity
w
ith

/w
ith

ou
t

ne
ga
tio

n
su
ita

bl
y

sy
st
em

re
qu

ire
m
en
t

T
im

e
Li
ne

...

Id
en
tif
y
co
nfl

ic
tin

g
ob

je
ct
iv
es

K
ee
p
Tr
ac
in
g
A
rt
ef
ac
ts

T
im

e
Li
ne

Id
en
tif
y
fu
nc
tio

na
lit
ie
s
to

m
ee
t
sy
st
em

Id
en
tif
y
te
st
-c
as
es

fo
r
fu
nc
tio

na
l

Se
le
ct

co
m
po

ne
nt
s

Id
en
tif
y
po

te
nt
ia
lf
un

ct
io
na
la

rc
hi
.

Ev
al
ua
te

fu
nc
tio

na
la

rc
hi
te
ct
ur
es

re
qu

ire
m
en
ts

Id
en
tif
y
po

te
nt
ia
ls
tr
uc
tu
ra
lar
ch
i.

Ev
al
ua
te

St
ru
ct
ur
al

ar
ch
ite

ct
ur
es

an
d
st
ru
tu
ra
la

rc
hi
.

D
et
ai
ld

es
ig
n
of

fu
nc
tio

na
l&

st
ru
ct
ur
al

Te
st

ca
se
s
fo
r
ar
ch
ite

ct
ur
e

C
ar
ry

ou
t
va
lid
at
io
n
te
st

ar
ch
ite

ct
ur
es

In
te
gr
at
e
co
m
po

ne
nt
s
to

C
ar
ry

ou
t
ve
rifi

ca
tio

n
te
st
s

C
ar
ry

ou
t
un

it
te
st
s
fo
r

sp
ec
ifi
ca
tio

ns

Id
en
tif
y
al
te
rn
at
iv
es

fo
r
co
m
po

ne
nt
s

Ev
al
ua
te

co
m
po

ne
nt
s

ha
rd
w
ar
e
co
m
po

ne
nt
s

im
pl
em

en
t
th
e
sy
st
em

C
ar
ry

ou
t
in
te
gr
at
io
n
te
st
s

C
ar
ry

ou
t
te
st
s
fo
r

su
bs
ys
te
m
s

D
es
ig
n
&

im
pl
em

en
t
tr
ce
ab
ili
ty

po
lic
ie
s P
re
-r
eq
ui
re
m
en
t
tr
ac
ea
bi
lit
y

Po
st
-r
eq
ui
re
m
en
t
tr
ac
ea
bi
lit
y

Id
en
tif
y
st
ak
eh
ol
de
r
va
lu
es

Id
en
tif
y
st
ak
eh
ol
de
r
va
lu
es

Figure 5.1: Gantt Chart of Proposed Comprehensive Methodology

146 Integrating Requirements Engineering and Decision Making

The traceability process starts for the project according to the policies desired by
stakeholders. Requirements artifacts produced till now are traced to the stakeholders
and their user stories, statements, etc.

Third phase: Previously identified goals of the stakeholders are taken as input
and a set of objectives are identified, which when accomplished permit to achieve
the goals. In the next step, the identified objectives are marked as optional or core
according to their importance perceived by the requirements engineers and validated
later by the stakeholders vis-à-vis constraints, emerging from their side. Next step
involves identification of the viewpoints which are of interest to the system, require-
ment engineers and the stakeholders. Analysis of previously identified objective in
the light of identified viewpoints leads to the determination of the potentially con-
flicting objectives. In the next step traceability needs of the stakeholders vis-à-vis
the identified viewpoints is elicited and traceability policies are fine-tuned for each
stakeholder. The final step of third phase focuses on identification of the constraints
imposed on the system by the stakeholder. Already identified objectives and view-
points ease this task and previously gathered user stories and statements form the
input to this task.

Fourth phase: Fourth phase begins with checks for the ambiguity in the previ-
ously produced requirements artifacts and statements. The ambiguous statements
are treated and rendered unambiguous by using suitable techniques, such as nega-
tion or other techniques mentioned in literature. Design of test-cases can be carried
out once the objectives and constraints are treated for ambiguity. An ambiguous
objective would be hard to be associated with test-cases. Once the test-cases for
the objectives and constraints have been designed, the process of transforming the
objectives into system requirements starts. System requirements are derived using
the various viewpoints, which allow them to be quantifiable, precise and measurable.
System modeling can be started once a few of the system requirements are available,
taking inputs from the previously carried out context modeling of the system envi-
ronment. Test-cases for the system requirements are designed at this stage, once a
set of system requirements are available.

Fifth phase: This phase starts with identification of the functionalities de-
manded by the system requirements previously identified. This is followed by the
design of different functional architectures, which can provide the accommodate
the desired functionalities. Once the functional architectures are available to the
requirement engineers, their evaluation is carried out and a selection is made for im-
plementation. Next, Various potential structural architectures are identified which
can support the proposed functional architectures. This is followed by the evalua-
tion of the structural architectures and a selection for final implementation. Finally,
test-cases for the functional and structural architectures are identified.

Sixth phase: Detail design of the functional and structural architectures is
carried out and precise design specifications are established. Test cases for the
design specifications of functions and structures are decided. This is followed by
the identification of alternatives for the physical implementation of the components.
Once the set of alternatives is available to the designer and subject matter experts

Comprehensive Methodology: Integrating Concepts 147

(SME), evaluation of the alternatives/components can be carried out, and final
selection are made for the implementation. Prior to physical implementation unit-
tests are carried out on the hardware components.

Seventh Phase: All the necessary components are acquired or manufactured
and the implementation of the system is carried out during this phase. All the sub-
systems are integrated to realize the whole system. All the software components are
installed and system is readied for the various tests.

Eight Phase: Predefined integration testing is carried out on the system, fol-
lowed by the subsystem verification, system verification and finally the system val-
idation tests are carried out. Upon successfully passing all the testing procedures
the system is ready for delivery.

5.2.2 Tool Support: SysEngLab

A software platform is designed and implemented which supports CReML for RE,
traceability technique for RM and the decision making technique for various pur-
poses, the platform is called SysEngLab: it is composed of two major components:
RE&M module, and decision-engineering module [Shukla 2013].

5.2.2.1 Engineering requirements

The GORE-based notation, previously developed in Chapter 2 is implemented as
RE module. This module is also capable of tracing the requirements artifacts pro-
duced during the development process. RE module allows to engineer requirements,
categorize them based on their types such as: functional, performance, quality, etc.
Ambiguity checks for the requirements which are marked for quality can be carried
out using various techniques based on previous research of natural language require-
ments or manual analysis and proposes them to write with negation and requests
user for their quantification using metrics of measurements. Eventually, it demands
for one or more test case for validation of user requirements with precise condition of
acceptance by the end-user or client.The user requirements are hence prepared for a
validation plan with at least one test case against each identified user requirement.
System requirements are derived following to the user requirements elicitation and
similarly to each user requirements, for each derived system requirement atleast
one test case is designed for system verification, with a agreed upon environmental
context and input data and preconditions and postconditions.

Tagging User Stories with Goals: During the stakeholders requirement elic-
itation process various techniques are used to elicit the stakeholder requirements.
Often, empirical studies have shown that during the first encounter with the clients
the needs, desires, and wants are first hand written down in natural languages. The
implemented tool allows to create tags for the various user stories based on the
goals determined allowing to keep trace of exact origin of a goal in a user story.
Often, these requirements represented by various stakeholders also represents the
various roles attached to them, which are sometime hidden in the first iteration of

148 Integrating Requirements Engineering and Decision Making

the project. The stakeholder identification process first should be carried out to
determine all the potential stakeholders with their all potential roles. With each of
their roles there are some potential rationales attached. Requirements are actually
projection of these rationales in stakeholders’ statements often known as user needs
or stakeholder requirements. This information which provides links to the stake-
holder requirements and various roles is critical for providing the traceability in the
later stages.

Integrated Traceability: Traceability approach as mentioned in Chapter 3 is
implemented in the RE module. As previously mentioned, the problem of traceabil-
ity lies actually the way it is done. Usually, requirement traceability is carried out
when it is demanded by the quality control departments, i.e., when it is solicited.
Whereas, our proposed tool tracks the links from the very beginning of the goal
modeling, every requirement artifact is linked to its parent and child artifact and
the root is linked to the user stories. In fact, the responsibility of traceability is
shared by the requirement engineer and the tool itself. Tool establishes the links
in the order as it is used by the requirement engineer, by using the markings es-
tablished by him when linking different requirements artifacts with viewpoints and
rationales. RE module in our tool allows to model the traceability preference of
the system, from the very early stage the system tracks which stakeholder has more
affinity to which goal and in which viewpoint. As the goal models can be bridged to
some of UML/SysML diagrams (Use-case and Block definition diagram) the trace-
ability is continued to the next stage of system design. Upon demand of a particular
stakeholder, he is provided with the traceability of the requirements artifacts which
are of his interest or what he demands according to his preference matrix.

Modeling preference In a systems engineering project, it is of great impor-
tance that most of stakeholders are satisfied with the various decisions taken during
the product development and with the final resulting end product. A higher satisfac-
tion among the stakeholders can be guaranteed if the various stakeholders criteria
weights are taken into account in a transparent and holistic manner. Preference
modeling of the goals and prioritization of requirements is essential activity, our
tools allows to elicit and model both of them over the goal and requirements no-
tations. Unlike goal preference modeling in [Liaskos 2010], our approach takes in
account the preferences of group of stakeholders and calculates the net preference
of each goal using the integrated decision module, and shows it above the goal no-
tation. Similarly, the core and optional features of the system under study can also
be marked to keep track of requirements of a product line.

Including Boiler Plates: The requirements diagram used in goal-modeling
are equipped with boiler plates mentioned in [Hull 2011, (RWP) 2012] to help user
to write the requirements. The boiler templates aids user to put their capability,
capacity, constraint, performance requirements and other type of requirements.

Generation of reports: Our tool supports automatic generation of reports
supporting various types of formats. The requirements specification document can
be generated in pdf format, user stories can be exported using excel, goal-model,
strategy-model and responsibility models can be generated in image forms, trace-

Comprehensive Methodology: Integrating Concepts 149

ability information can be generated in form of matrix with demanded parameters.

5.2.2.2 Decision module: Evaluation, Conflict resolution and Negotia-
tion

Decision module of SysEngLab is responsible for carrying out the decision process as
required at different steps of system design. It implements the decision methodology
mentioned in Chapter 4. It is also used in resolving the conflicts arising among
different stakeholders, essentially surfacing from different objectives they sought to
achieve. A conflict may break out about an action to be taken or not to be taken.
SysEngLab allows to gather the preferences of the various stakeholders over the
different types of requirements artifacts generated during RE activities. Conflicts
may arise between two requirements arising from different objectives to achieve. To
resolve such conflict the requirements need to be measured and quantified. These
requirements are evaluated over a set of criteria such as: cost, benefit, etc., to
resolve the conflict. This allows to readily resolve the conflicts and propose choices,
to negotiate the design options available to the stakeholders. The stakeholders’
preferences regarding the traceability are also provided according to their particular
interests and demands and decisions made are stored for future references. But still
to validate the preferences elicited from the stakeholders a simulation can be carried
out, to confirm their choices for the technologies or macro family of technologies
that their preferences lead to.

Simulating preferences for solution: The criteria weighting evaluation is
always a difficult step for high level stakeholders who have simply limited knowledge
about the technical aspects of system they want. For this purpose a simulation of
solutions is proposed by decision module of SysEngLab, which could be retained
if criteria weights are accepted by the stakeholders. This high level simulation is
individually processed for each stakeholder. A stakeholder could display the effect of
his/her choice of criteria weights. This simulation is based on data bound to some
system components. At the beginning of a new project, Subject matter experts
(SME) could draw a very simple organic (or functional) system breakdown. During
this step, they can add on each high level component approximative values for
criteria. This approach is suitable because SME have skills on available technologies.
They don’t need to precisely know the features of each components of the real system
breakdown. At this step, SME can only categorize the parts of solutions into sets of
criteria values, for example they can chose between low, medium or high. The aim of
this simulation is to provide stakeholders an approximative solution if they confirm
their criteria weighting. Let’s illustrate this approach with a very simple example.
This one deals with the design of a new powered transport system proposed to city
inhabitants for their short distance trips. Let the stakeholders be:

— end users’ representative,

— technical engineer of the product development company,

— business engineer of the product development company,

150 Integrating Requirements Engineering and Decision Making

Figure 5.2: Example of Solution Components

— city representative in-charge of city traffic.

In a very simplified way, let the design criteria be:

— economical,

— environmental,

— reliable,

— innovative,

— repairable.

Without knowing the details of solution, design experts have some elements of so-
lution as far as the breakdown is concerned, for example:

— chassis,

— engine,

— energy tank,

— gearing.

For each element of this breakdown, they are able to give some categories of solu-
tions. Fig.5.2 gives an example of partial breakdown.

For each categories of solution, SME could add approximative criteria values.
The chassis could be in carbon, magnesium, aluminum or in polyethylene. For each

Comprehensive Methodology: Integrating Concepts 151

Figure 5.3: Solution According to Business Engineer’s Center of Interest

technology, subject matter experts are able to approximatively weight each element
of this structure.

For each technology, the SME are able to make a “categorization” for alternative
solutions based on the proposed criteria set, without the details of specifications, it
is not accurate sizing, but SME know about the advantages and disadvantages of
basic technologies involved. This simulation does not attempt to validate a solution
but tries to establish a more precise relationship between a criterion and a family
of solution. Considering the choice of the two following stakeholders. The sales
engineer wants a conveyance which is economical, reliable and robust. He will
therefore fill his preference matrix accordingly. He may not have realized that his
criteria preference matrix guides the choice solution to polyethylene chassis and
using an old noisy and polluting engine.

The ecological criterion may not be a priority for him, but the solution proposed
would not be commercially very attractive. It would be difficult to place the product
in the market demand. Similarly, considering the mayor of the city, responsible for
public transport system. He wants an ecological and innovative solution, that repre-
sents modernity and dynamism of the city. He does not realizes that his preference
matrix may lead towards the solution of the latest technologies that are likely to
be less reliable and expensive to maintain for a product designed for intensive use.
In these two examples, we see that the perception of a stakeholder to the criteria
is necessarily biased. The head of the city was not opposed to having a robust and

152 Integrating Requirements Engineering and Decision Making

reliable, but he can interpret these criteria with his knowledge, which are a certainly
limited on technologies. His perception represents the criteria “robust” and “reliable”
with respect to its repository of life for the project in question: a modern car, a
scooter, ... Now consider the difference of preferences of the business engineer, they
lead to a solution with magnesium chassis, mechanical gearing, with heat engine and
a fuel tank as shown in Figure 5.3. The three stakeholders differ a lot completely
and sometimes due to partial understanding of the whole cycle of business and prod-
uct. In such cases, this simulation can aide the stakeholders to really understand
each other preferences and validate or refute their preferences. To summarize, this
simulation is a mean, proposed to help each stakeholder when choosing values for
the weight of importance of the design criteria. Simulation offers the ability to view
a draft solution based on criteria elements informed by SME.

5.3 Case Study: Iron Bird Integrated Simulator

Our developed approach is applied on a project called Iron Bird Integrated Sim-
ulator (IBIS). IBIS project aims to develop a fully functional platform capable
of demonstrating the life cycle of simulation used in a SE project. Engineering
schools of Institut Nationale des Sciences Appliquées de Toulouse and Université
Paul Sabatier plan to use the IBIS platform later in their curriculum for teaching
& research purpose. A few other industrial collaborators had also showed interest
in the platform but plan to participate later, once the platform is deployed.

Application of our methodology during case study consists of:

• Application of proposed RE methods

– User requirements elicitation,
– Preference modeling and requirements prioritizing,
– Writing better requirements,
– Requirements modeling.

• Application of proposed RM methods

– Creating value based requirements traceability,
– Traceability creation, recovery, maintenance & usage,
– Estimation of effort & cost of traceability,
– Purposed tracing of requirements,
– Automatic detection of relationships between artifacts.

• Application of decision making and conflict resolution techniques

– Stakeholders weighting,
– Criteria weighting,
– Evaluation of alternatives,
– Conflict resolution wherever applicable.

Case Study: Iron Bird Integrated Simulator 153

To carry out all these mentioned activities, SysEngLab is used which implements
the proposed methods introduced in previous chapters. SysEngLab is explained with
all its modules and capabilities in Annexe A. Section 5.3.5 develops the landing gear
detail design and component selection for the landing gear, the criteria for selection
are weighed and evaluation of alternatives is carried out. In order to understand
the IBIS platform, it is necessary to have prior understanding of simulation. A brief
introduction to simulation and its life-cycle is presented in the follow up of this
section. The US DoD [USDoD 1993] defines simulation as a method for executing
a model over time. A simulation is also a technique for testing, analysis or training
in which real systems or models representing these real systems are used.

Growing complexity of the systems poses hurdles to know the behavior of the
system in its entirety. These complexity problem of systems have led to develop-
ment of multiple techniques for Verification and validation (V&V) of the systems.
One of the popular approach is simulation, which avoids tedious task of carrying
out numerous manually applied set of stimuli over the system, while observing its
behavior. Simulation consists of building a computer executable model of system
and its environment, and exercising test cases upon it, which could be generated
both automatically and manually. Simulation helps to reduce development cost and
time.

Simulation life-cycle can be divided into four phases [Foures 2013]. The transi-
tion from one simulation platform to another requires more or less effort, depending
on the type of systems developed, and tests which are required to complete the
phase. Figure 5.4 illustrates the chronology of platforms. It is difficult to establish
a precise location for each method. Depending on the activities and policies of the
development team and the type of system to be deployed, these phases will be forced
to slide, and thus appear more or less early in the development cycle.

Figure 5.4: Life Cycle of Simulation in SE [Foures 2013]

• MiTL: “Model in the loop” consists of recovering a model describing the be-
havior of the system to be validated by simulation.

• SiTL: “Software in the loop” consists of recovering a program that implements
the model in the target language. This implementation can lead to bias due
to model implementation constraints. A new phase of validation and/or veri-
fication is required to ensure the semantic equivalence.

• CiTL: “Controller in the loop” consists of validating the behavioural equiva-

154 Integrating Requirements Engineering and Decision Making

lence of the program after controller integration. All control systems is still
simulated.

• HiTL: “Hardware in the loop” consists of replacing successively simulated sys-
tems by physical systems. The environment remains simulated.

Figure 5.4, shows the life-cycle of simulation from Model in the loop(MITL), to
Software in the loop (SITL), to Controller in the loop (CITL) and final stage of
simulation Hardware in the loop (HITL). IBIS is conceived to provide a platform
to support the life-cycle of simulation based SE for a drone aircraft. IBIS system
is supposed to be part of many other activities of research and teaching carried out
for the M&S and SE courses at Université Paul Sabatier and Institut National des
Sciences Appliquées de Toulouse. In this Chapter, general context of IBIS system
is presented. Rest of chapter presents the landing gear system of IBIS in detail and
its MiTL and SiTL.

5.3.1 Assumptions

During the study a set of assumptions were made, some of which which come from
the clients and were adopted by consensus with other stakeholders. Assumptions
used in study are as follows:

1. Given the size of the flightless aircraft, it could require special resources from
university and laboratory to host it, which is out of scope of funding con-
straints.

2. The flightless aircraft simulator is preferred over the flight capable aircraft
by the laboratory and other surrounding agencies (assumptions made by the
researchers).

3. The visitors shall be interested in interacting with the flightless aircraft and
try to understand its role during the development cycle.

4. ‘Students’ include both the university masters students and the doctoral stu-
dents (which are also researchers).

5. A platform to carry out the experiments on M&S can contribute significantly
to develop the theoretical as well as practical knowledge base of the university.

6. A realistic platform would attract researchers from around the world to test the
theoretical formulations of M&S and hence strategic outreach to the research
community could be achieved (assumptions made by the researchers).

5.3.2 IBIS Stakeholders Needs Elicitation

In this section, IBIS stakeholders requirements elicitation process is detailed. In the
first step stakeholders potentially associated with the IBIS project are identified and
their user stories are collected. User stories form the basis of the customers needs.
Customers needs are later improved using negation to avoid ambiguity. Validation

http://www.univ-tlse3.fr/?
http://www.insa-toulouse.fr/
http://www.insa-toulouse.fr/

Case Study: Iron Bird Integrated Simulator 155

tests are designed for the customer needs thus collected. Stakeholders preferences
upon the various needs are thus collected and recorded.

5.3.2.1 Stakeholder Identification

To own a platform which can demon-
strate the capacity of th ongoing research
in M&S and demonstrate the life-cycle of
simulation based SE

Researcher

CS

Student

CS

Laboratory

CS

University

CS

Visitor

CS

R&D Community

CS

I/D partners

CS

User

CS

S/W Engineers

CS

Control Engineers

CS

Dev Engineers

CS

Figure 5.5: IBIS Context Diagram

IBIS projects is a result of vision of the researchers and Ph.D. students working
with the complex system simulation, with aspects related to the validation of simu-
lation. To implement and test their theories for validating a simulation they needed
a real platform and hence IBIS project was conceived. Figure 5.5, presents the
stakeholders initially identified which could be of interest to IBIS. The primary goal
identified for the IBIS project is “To own a platform which can demonstrate the ca-
pacity of the ongoing research in M&S and demonstrate the life-cycle of simulation
based SE ”. Four client stakeholders are identified which are directly link to the IBIS
project for either hosting it or as end-user: “Researcher ”, “Students”, “University”
and “Laboratory”. Four other potential stakeholders are identified which may have
interest in IBIS: “Research Community in whole”, “Industrial partners”, “Visitors”,
and “Others miscellaneous”. In the first step towards the acquisition of platform in
IBIS project, started with gathering of the “User-Stories” as shown in Table 5.1.

156 Integrating Requirements Engineering and Decision Making

Table 5.1: User Stories

Stakeholder
Name

User Stories

Researchers

Researchers would like to acquire a platform which is capable to
demonstrate the life cycle of a simulation, in context of systems
engineering. The desired platform should enable him to validate or
refute models of the systems. The platform should have all neces-
sary simulation modules for an aircraft system. Researchers want
to establish a research axis in the university and associated labora-
tory based on Simulation based Systems Engineering and use the
“Acquired Platform” as the experimental system and case-study
during the project work of students. The platform should enable
researchers to use it in university for teaching with other professors
of engineering domains like, control engineering, architecture de-
sign, safety engineering, etc. The platform should provide students
the actual know-how of simulation in complex systems engineering.
Also the system should be attractive enough for general public and
other visitors who visit laboratory during “Journée porte ouverte”
or “Fête de la science”. The researcher wants to use this platform
in order to attract the research community’s attention and wants
other researchers to use their theories and metrics used in sys-
tems engineering M&S on the platform. The platform should be
able to validate and refute system models put through the simula-
tion. The platform would increase the collaboration between the
academic-industrial collaboration, and academic-academic collab-
oration which surely accounts for quality research publications and
also the improvement of quality of education imparted in Univer-
sity. Collaboration with research Community will lead to devel-
opment of new theories and models of simulation, which can lead
to overall large scientific contribution. Also the platform would be
attractive for the youngsters and other visitors who are interested
in science or wants to pursue a scientific career.
Roles: End-user, Maintainer, Configurator

Student

Students would like to work on a real simulation platform and
implement the theoretical knowledge imparted to him in university
on a real system. He would like to acquire an experience which is
useful for his future industrial career.
Roles: End-users

Continued on the next page

Case Study: Iron Bird Integrated Simulator 157

Table 5.1 —-Continued from the previous page
Stakeholder
Name

User Stories

University

University would like to diverse its portfolio of courses on Simu-
lation. A Simulation platform would help to increase the quality
of education and education facility in the University. A platform
could enhance endogenously the quality of research in domain and
overall image of University. This will keep University competitive
in general. The platform should be able to be stationed in the
system design laboratory with surface area equal to that of shelfs
available.
Roles: Host-organization

Laboratory

Laboratory would like to host the platform, as it would certainly
increases the quality and quantity of research in Simulation do-
main, which one of the most sought by industries. Platform would
enable laboratory to provide better consulting to the industries
which are its customer in multiple projects and hence will improve
the overall reputation of the laboratory. This platform would en-
able to bridge the gap between the industrial needs and academic
research. The platform should be able to be stationed and remain
functional in a closed room.
Roles:Host-organization

Industrial
partners

An Industrial partner would seek to use a platform which can pro-
vide reliable results about the simulation of a model. A platform
which could be instrumental in V&V of the models developed for
customer application. The platform should be able to guide the
user about the modeling choices.
Roles: Collaborator

Research
Community

Research community would like to participate in developing the-
ories with the platform. Platform could be great help to develop
collaboration with the researcher and hence with the University
and Laboratory. It could be instrumental in developing new theo-
ries in M&S, with real test case.
Roles: End-user, Collaborator.

Others A platform should allow it to attach with reality and demonstrate
it purpose in a very intuitive manner. It should be able to attract
new young mids for scientific study and research. A visitor may
also be interested business opportunity linked with this platform.
Roles: Visitor, End-user, Collaborator

5.3.2.2 IBIS Stakeholder Requirements

After the stakeholders are identified, stakeholder requirements are elicited. A few
stakeholder requirements are provided explicitly by the stakeholders and find men-

158 Integrating Requirements Engineering and Decision Making

tion in their user stories explicitly or implicitly, such as the technical constraints
imposed. The rest of them need to be engineered. First step towards eliciting the
customers’ needs involves determining their ‘rationales’. Rationales can be extracted
from the previously collected user stories and interviews from the stakeholder. Fig-
ure 5.6 shows the rationale map of the various stakeholders. Rationales are traced
to the user stories in Table 5.1. Rationale map aides to create the strategic model
of the system in order to guide the system designer for the potential conflict arising
owing to the various rationales held by the stakeholders.

Following to the mapping of rationales, IBIS goal model is created. The primary
goal is divided in to sub-goals. each subgoal is traced to its source stakeholder as
shown in Figure 5.7. Rationales are further contemplated upon till they can provide
hint of the viewpoint held by the respective stakeholder. The viewpoints are hence
derived from the rationales, which are actually held by the stakeholders. A minimal
representation of relationship between viewpoints and rationales relevant to IBIS are
shown in the Figure 5.8. It shows three “Viewpoints" derived from the previously
elicited rationale. Figure 5.9, shows the constraints imposed by the stakeholders on
the IBIS project.

The sub-goals are divided into various objectives, which represent the customer
needs. The derived objectives for the IBIS system are shown in Figure 5.11. The
objectives can be marked as optional or core as viewed by the corresponding stake-
holder. By default, objectives are core until they are marked with an ‘O’ in top right
corner. Objective “platform shall allows to assess the students” is marked optional
in Figure 5.11, rest of them are core objectives by default. Objectives are typically
the customer needs. A set of validation test case is designed for each objective,
test-cases provide the contractual base between the developers and clients.

Researcher

ST1:CS

Student

ST2:CS

Laboratory

ST3:CS

University

ST4:CS

RTN1: Improve the
TRLs of simulation
models, to acquire
industrial contracts.

RTN2: Strategic
outreach

to research
community.

RTN3: Quality
Research

publications.

RTN4: Outreach to
general public to

promote interest in
science & technology.

RTN5: Developing
quality education faculty.

RTN6:valorization
of competences.

RTN7:Acquire practical
knowledge during

university education.

Figure 5.6: IBIS Rationale Map

Constraints imposed by the customer are also elicited at this stage and are
taken in account during next steps of system design. Although, constraints are
also type of customer need, they are treated specifically and account for system

Case Study: Iron Bird Integrated Simulator 159

Researcher

CS

Student

CS
Laboratory

CS

University

CS

G0:To own a platform which can
demonstrate the capacity of th
ongoing research in M&S and
demonstrate the life-cycle of sim-
ulation based SE

G1:To be able
to contribute
significantly in
M&S research
domain, by ex-
tending the the-
ory and prac-
tice.

G2:A platform
which enables in-
teractive demon-
stration of re-
search with gen-
eral public.

G3:To be able
to teach theory
of M&S with a
platform.

G4:Acquire a
platform on
which experi-
ments can be
carried out to
validate or re-
fute a theoreti-
cal development.

G5:To be able
to have experi-
ence in domain
while studying
at university.

derive

derive

derive

derive
derive

contribute

contribute contribute

contribute

contribute
contribute

contribute

contribute
contribute

Figure 5.7: IBIS Goal Diagram

RTN7:Acquire practical
knowledge during

university education.

V13:
Relevance
to career

V16:
Realistic

V19:
Scalability

derive derive derive

Figure 5.8: IBIS Rationale Viewpoint

requirements derived in next phase. IBIS project has three constraints regarding:
space, energy or propulsion system and a funding constraint. Space constraints
forces designer to design the system such that it does not requires more than 9m2

of space in laboratory/university premises. Energy constraint implies to use non
ignitable source of energy in the system. Funding constraint limits the expenses on
software and hardware components of the system within e 10,000. Space constraint
comes from the corresponding host university/laboratory authorities. Energy and
funding constraints come from the relevant laboratory authorities.

Figure 5.7, shows the goal-model of the IBIS system and the involved client
stakeholders described in goal-model of our tool SysEngLab. A total of five sub-goals
are derived from the primary goal. Figure 5.10, shows the primary stakeholders and
the viewpoints held by them for the project development.

160 Integrating Requirements Engineering and Decision Making

C1 Funding Constraints: funding for hardware & Soft-
ware components is limited to e 10K.

C2 Energy constraints: non ignitable source of energy in
System.

C3 Space Constraints: IBIS platform shall occupy not
more than 9m2 area in Laboratory premises.

Laboratory

ST3:CS

University

ST4:CS

contribute

contribute

contribute

Figure 5.9: IBIS Constraints

Researcher

ST1:CS
Student

ST2:CS

Laboratory

ST3:CS

University

ST4:CS

V1: Space V2: Cost V3: Safety V4: Ease
of Usage V5: Reality

V6: Mod-
ularity

V7: Recon-
figurability

V8: Cor-
rectness

V9: Rel-
evance

V10:
Functionality

V11:
Scalability

V12: Oper-
ationality

V13:
Relevance
to career

V14:
Robustness

V15: De-
pendability

V16:
Realistic

V17: User
friendly

V18:
Evidence

V19:
Scalability

V20:
Intuitiveness

Figure 5.10: Primary Stakeholders and Viewpoint

Case Study: Iron Bird Integrated Simulator 161

G1:To be able to
contribute signif-
icantly in M&S
research domain,
by extending the
theory and prac-
tice.

O1:Platform
shall allow
to couple

together different
domain models.

O2:Platform
shall allow to
communicate
the different

domain models
at different ab-
straction layers.

O3:Platform
shall provide
different layers
of abstraction
and granularity
for simulation
as demanded
by the User.

O4:Platform
shall be

modular and
reconfigurable

O5:Platform
shall be easy to
use and deploy

G2:A platform
which enables
interactive
demonstration
of research with
general public.

O6:Interactions
with the plat-
form shall be
made using
a realistic

user interface.

O7:Platform
shall allow
loading and
unloading
of different
executable

modules within
few minutes.
O8:Platform
shall provide
feedbacks

understandable
by different

types of users.

O9:Visual
feedbacks,
graphical

feedbacks,or
other tangible
or non-tangible
measurable
feedbacks.

O10:Platform
shall be

safe to use

G4:Acquire a
platform on
which experi-
ments can be
carried out to
validate or re-
fute a theoreti-
cal development.

O11:Platform
shall support

MiTL,SiTL,CiTL,&
HiTL for each

system of
aircraft.

O12:Platform
shall support

different degrees
of structural
and functional
robustness or
dependability.

O13:Platform
shall have M&S
of following

aircraft systems:
Air Traffic con-
trol, Hydraulics,

Pneumatic,
Navigation,

Communication,
Flight manage-
ment, Landing
gear, Power

system, Alternate
power unit,

Flight Control,
Cockpit, etc.

O14:Platform
shall have real-
istic sub-system

G3:To be able
to teach theory
of M&S with a
platform.

O15:Platform
shall allow
to assess the
students.

O

O16:Platform
shall be able
to model

very simple
models to very
complex models.

O17:Platform
shall be able
to use system

models based on
industry used
technologies
like MatLab,

State machines,
Automata,
Petri nets.

O18:Platform
shall be able
to provide

suggestions to
students for M&S

O

G5:To be able
to have experi-
ence in domain
while studying
at university.

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

derive

Figure 5.11: IBIS Objectives

5.3.2.3 Prioritizing Goals Using Our Approach

Prioritizing subgoals is necessary before further development is carried out. Prior-
itization of subgoals forms the basis of decisions and inputs to purposed require-
ments traceability to come in future. Project manager asks for the preferences
of the stakeholders: researcher, university representative, laboratory representative
and students representative. Project manager creates his own preference matrix of
stakeholders, representing his perceived importance of the stakeholders. The pref-
erence matrix leads to ranking and a risk averse function is used to convert those
rankings into weights shown in Figure 5.12. Eq.(5.1) shows the preference matrix

162 Integrating Requirements Engineering and Decision Making

and the resultant weights for the stakeholders.

PPM =


r u l s

r 0 1 1 2

u −1 0 0 1

l −1 0 0 1

s −2 −1 −1 0

, [r u l s

0.32 0.26 0.26 0.16
]

(5.1)

Table 5.2: Prioritizing Goals

Origin Sub-goals description
Researchers, University G1 :To be able to contribute significantly in M&S re-

search domain, by extending the theory and practice.
University, Laboratory,
Researchers

G2 :A platform which enables interactive demonstra-
tion of research with general public.

Researchers, University,
Laboratory

G3 :Acquire a platform on which experiments can be
carried out to validate or refute a theoretical develop-
ment.

Researchers, University G4 :To be able to teach theory of M&S with a platform.
Student G5 :To be able to have experience in domain while

studying at university.

1 2 3 4

8
6
4
2

Rank

S
co
re

Figure 5.12: Stakeholder Weighting

Table 5.3: Goal Categorization

DM High Medium Low

Researchers G1, G3 G4 G5, G2

University G1, G4 G2, G5 G3

Laboratory G3, G1 G2 G4, G5

Student G5, G4 G3, G1 G2

Table 5.2 shows the various sub-goals and their origins as traced from user sto-
ries. Each stakeholder is asked to arrange the goals in three categories: high (H),
medium(M), and low(L), depicting their corresponding perceived level of priority.
Table 5.3 shows the goals categorization by the corresponding stakeholders. Then
their preferences are elicited using the preference matrices shown by Eq.(5.2) and
Eq.(5.3). Once the Preference matrices of stakeholders are available they have their
ranking available for the different subgoals. The simple marking process consisting
of putting their rankings one after another till all the subgoals are marked is shown
by Eq.(5.4). In the following step weight for each subgoal is calculated using the

Case Study: Iron Bird Integrated Simulator 163

three types of discrete utility function as shown in Figure 5.13 with the help of
Eq.(4.11). The calculated weights are shown in Table 5.4, where R − A, R − N ,
R − P and nm refer to risk averse, risk neutral, risk prone and normalized score
respectively. Weights are based on the utility function with discrete values with risk
averseness, risk neutrality and risk proneness. The Final weight is taken using the
mean of the three weight arrays.

Pr =



G1 G2 G3 G4 G5

G1 0 2 1 1 2

G2 −2 0 −2 −1 0

G3 −1 2 0 1 2

G4 −1 1 −1 0 1

G5 −2 0 −2 −1 0

, Pu =



G1 G2 G3 G4 G5

G1 0 1 2 1 1

G2 −1 0 1 −1 1

G3 −2 −1 0 −1 −1

G4 −1 1 2 0 1

G5 −1 −1 1 −1 0

 (5.2)

Pl =



G1 G2 G3 G4 G5

G1 0 1 −1 2 2

G2 −1 0 −1 1 1

G3 1 1 0 2 2

G4 −2 −1 −2 0 1

G5 −2 −1 −2 −1 0

, Ps =



G1 G2 G3 G4 G5

G1 0 1 −1 −1 −1

G2 −1 0 −1 −2 −2

G3 1 1 0 −1 −1

G4 1 2 1 0 −1

G5 1 2 1 1 0

 (5.3)

1 2 3 4 5

8
6
4
2

Rank

S
co
re

Figure 5.13: Criteria Weighting

Game =



G1 G2 G3 G4 G5

1 r,u 0 l 0 s

2 l 0 r s,u 0

3 0 u,l s r 0

4 s r 0 l r,u

5 0 r,s u 0 r,l


(5.4)

Algorithms
Goals R−A R−N R− P mean

score nm score nm score nm
G1 6.97 0.242 6.75 0.256 6.299 0.30 0.266
G2 5.346 0.185 4.19 0.159 2.949 0.14 0.161
G3 5.807 0.201 5.306 0.201 4.655 0.222 0.208
G4 5.998 0.208 5.77 0.218 3.641 0.173 0.199
G5 4.668 0.162 4.353 0.165 3.43 0.163 0.163

Table 5.4: Goal Weights

164 Integrating Requirements Engineering and Decision Making

5.3.2.4 Writing Stakeholder Requirements using negation

In Figure 5.11, high level customers requirements are modeled as objectives. Upon
their analysis a few of the needs particularly which represent the qualitative aspects
of the system are perceived to have some ambiguity and seem hard to be contracted.
We use the negation method as mentioned early in the Chapter 2, to avoid the
ambiguity and make it more clear.

Table 5.5: Writing Requirements with Negation

Affirmative Affirmative + negative

Platform shall be safe to use.
Using platform shall not cause any
health hazards.

Platform shall be modular.
Platform components shall not be cor-
rupted by the immediate components.

Platform shall be reconfigurable.
Platform shall not stop user to change
the system modules on his command.

Platform shall be easy to use.
Platform shall not take more than five
steps to start using the platform.

Platform shall be easy to deploy.
Platform shall not take more than 10
minutes to go critical.

The platform should be able to remain
functional in a closed hall.

Platform shall use non ignitable source
of energy in system.

Constraint imposed by the laboratory “The platform should be able to be sta-
tioned and remain functional in a closed room,” can be interpreted easily upon
analysis that, laboratory can not host a platform with gaseous emissions or with
considerably noise polluting components. This constraint can be simplified and
written as above.

5.3.2.5 Negotiating Stakeholders Requirements

From the very beginning of the elicitation process the stakeholders requirements or
needs are negotiated and marked as either: core feature or optional feature. This
is done by the objective blocks property of being marked as optional or core as
shown in Figure 5.11, objectives “O15: platform shall allow to assess the students”
and “ O18: platform shall be able to provide suggestions to students for M&S ”
are marked with an ‘O’ in north east corner. If designing test case for a given
stakeholder need seems to be difficult to understand, it means that the need is still
not very clear. Different stakeholders may not have the same impression about the
priority of requirements. Only a few of the requirements pose this problem and need
prompt solution. Prioritizing needs can be done using the same process as used for
prioritizing goals in Subsection 5.3.2.3. For each customer need elicited a validation
test case is proposed, which forms the basis of the contract.

Case Study: Iron Bird Integrated Simulator 165

O6:Interactions
with the plat-
form shall be
made using
a realistic

user interface.

O12:Platform
shall support

different degrees
of structural
and functional
robustness or
dependability.

O4:Platform
shall be

modular and
reconfigurable

O5:Platform
shall be easy to
use and deploy

O6:Platform
shall have real-
istic sub-system

O10:Platform
shall be

safe to use

User interface: Remote control for flight control. User Interface for AiTL, SITL, CiTL: Graphi-
cal user interface implements the
1)Extend landing gear command is given from user interface switch; If landing gear extension
occurs within 3 seconds; Test condition1 =Pass; Otherwise, Test condition1= Fail.

Upon flying condition; while Weight on wheels= false;
1)Extend landing gear command is given from user interface switch; Faults are injected in the
door opening of actuators to block them, If landing gear extension occurs within 3 seconds; Pilot
informed about the actuator blockage; Test condition1 =Pass; Otherwise, Test condition1= Fail.

On Ground condition; 1)Unloading of flight control software demanded; 2)Installation of new
compatible Flight control software demanded; If installation within 30 seconds=True; Test con-
dition1=Pass; Otherwise, Test condition1= Fail. 3) Installation of new flight control software
with some functionalities disabled deliberately; If anomalies and incompatibilities detected af-
ter installation and warning/errors raised=True; Test condition2 =Pass; Otherwise test condi-
tion2=fail.

Upon flying condition; while Weight on wheels= false;
1)Reconfiguration of flight control frequency requested originating from pilot; If flight control
frequency changed according to request occurs within 5 secondsTtrue; Test condition1=Pass;
Otherwise, Test condition1= Fail. 2)Reconfiguration of flight control algorithm requested orig-
inating from pilot; If control algorithm changed according to request=True; Test condition2
=Pass; Otherwise, Test condition1= Fail.

Remote control device has standard switches to control the roll, pitch and yaw movement of
plane; standard switch to control the power of the propulsion unit; switch to control the brake,
switch to command landing gear door opening; switch to command landing gear extension and
retraction.
Prerequisite: Pilot takes the course for handling the IBIS aircraft; Pilot practices same on the
simulator.
1)Upon following the instruction sequence of no more than five single action steps, pilot is able
to take-off successfully; Test condition1 =Pass; Otherwise, Test condition1= Fail. 2)Upon fol-
lowing the instruction sequence of no more than two single action steps, pilot is able to roll the
aircraft; Test condition2 =Pass; Otherwise, Test condition2= Fail. 3)Upon following the instruc-
tion sequence of no more than two single action steps, pilot is able to pitch the aircraft; Test
condition3 =Pass; Otherwise, Test condition3= Fail. 3)Upon following the instruction sequence
of no more than two single action steps, pilot is able to yaw the aircraft; Test condition4 =Pass;
Otherwise, Test condition4= Fail.

Upon flying condition; while Weight on wheels= false;
1)The aircraft remains stable: no auto roll, pitch or yaw movement during flight; Test condi-
tion1 =Pass; Otherwise, Test condition1= Fail.
2)The flight control law source code takes in account the errors caused by environment; Test
condition2 =Pass; Otherwise, Test condition2= Fail.

Upon inspection the user is able to visualize the different flight equipment modules on the
graphical user interface of the simulator.
1)Platform equipments contains modules for: Landing gear, electrical circuit, flight warning,
flight Control, propulsion system, Air traffic control and alternate power unit.
2)Each component contains minimal standard functions.
3) The simulator is able to generate and inject the standard signals and error signals into the
main controller to stimulate the flight control and landing gear controller.

1)Electrical safety: Electric supply in system less than 12V.
2)Screen Vision:The user interface should use default font size 18, enough.
3) Chemical Safety: No toxic Chemical used in operating platform. No toxic chemical releasing compo-
nents as mandated by CNRS. No toxic chemicals exposed to users or maintenance personnels upon dis-
mantling or integrating system.
4)Physical safety: Rotors of aircraft enclosed within transparent protection case.
5) Hydraulic components as passed by CNRS for internal usage.

Figure 5.14: Test Case for Customer Requirements

5.3.3 IBIS System Requirements Definition

Figure 5.15, presents the architecture of the IBIS platform in the form of the SysML
block definition diagram. System requirements modeling is carried out in parallel
with system modeling, both activities provide inputs to each other which lead to
better formulation of the system.

166 Integrating Requirements Engineering and Decision Making

package Iron_Bird_Integrated_Simu Systems {3/7}

Aircraft_Equipement

<<block>>
Air_Traffic_Control

<<block>>
Hydraulics_System

<<block>>
Pneumatic_System

<<block>>
Communication_System

<<block>>
'Power_System(FADEC)'

<<block>>
Navigation_System

<<block>>
Electrical_Systems

<<block>>
Door_System

<<block>>
Auxillary_Power_Unit

<<block>>
Landing_Gear_System

1..*

<<block>>
Iron_Bird_Integrated_Simulation_System

Development_Cost: Integer
Space_Required:Integer
Weight:Integer
Energy_Consumption:Integer
Human_Resource_Required:Integer
Life_Duration:Integer
Maintenance_Cost:Integer
Location:String
Reusability:String
Recyclable:Boolean

System_Demonstration()
Research_Activities()
Educational_Activities()

<<block>>
Simulation_Infrastruture

1..*

1

<<block>>
ElectricalCircuit

1..*

<<block>>
FlightWarningSystem

1..*

<<block>>
Flight_Control_System

Figure 5.15: Architecture of IBIS Platform

Case Study: Iron Bird Integrated Simulator 167

package Simulation_Infra SimulationComponents {1/1}

<<block>>
Simulation_Infrastruture

<<block>>
CiTL

<<block>>
HiTL

1..*

<<block>>
ControlLawModel

<<block>>
SystemModel

<<block>>
ActuatorModel

<<block>>
SensorModel

<<block>>
ControlHardware <<block>>

Sensor
<<block>>
Actuator

<<block>>
System

<<block>>
SitL

1 .. *

1 .. *

0 .. *

0 .. *

<<block>>
ControlSoftware

1 .. *

<<block>>
MiTL

1 .. *

1 .. *

1 .. *

0 .. *

0 .. *

1..*

1..*

0..*

0..*

1..*

1..*

Figure 5.16: IBIS Simulation Infrastructure Platform

168 Integrating Requirements Engineering and Decision Making

5.3.3.1 Landing Gear Requirements

Landing Gear Extended

Landing Gear Retracted

Door

Landing Gear Box

Figure 5.17: IBIS Landing Gear

package Hardware LandingGear {1/1}

<<block>>

Landing_Gear_System

openDoors()
closeDoors()
ExtendLandingGear ()
retractlandingGear()

<<block>>
Wheels<<block>>

WheelBox

<<block>>
LandingSets

3

1..*

<<block>>
ElectroValve

1..*

<<block>>
WeightSensor <<block>>

DoorClosedSensor

1..*

1..*

<<block>>
Sensor

<<block>>
HydraulicPump

1..*

<<block>>
DoorOpenSensor

1..*

<<block>>
Door

1

<<block>>
landingGearRetractedSensor

<<block>>
landingGearExtendedSensor

1..*

1..*

<<block>>
LandingGearController

<<block>>
Brakes

<<block>>
SteeringActuator

0..1

<<block>>
ActuatorDoor

<<block>>
LG_Ex_Ret_Lock_Actuator

1..*

1..*

Figure 5.18: IBIS Landing Gear System

Case Study: Iron Bird Integrated Simulator 169

Figure 5.17 shows an abstract sketch of landing gear. Figure 5.18 presents the
modeled landing gear in SysML block definition diagram. Landing gear simulation
requirements are derived from the previously modeled objectives. Figure 5.19, 5.20,
show some of the derived landing gear system requirements.

O13_LG: Land-
ing Gear System

SR_LG1: Landing gear shall be able to take on

maximum weight of 20KG.

SR_LG2: Landing gear shall be able to sustain

maximum ground speed of 100km/hr.

SR_LG3: Landing gear shall be able sustain

brakes at speed of 100 km/hr.

SR_LG4: Landing gear shall be functional in all-

weather conditions.

SR_LG5: Landing gear extension shall be possible

at a maximum speed of 300km/hr.

SR_LG6: Land gear retraction shall be possible at

a maximum speed of 350km/hr.

SR_LG7: Landing gear shall be able to absorbs

shocks.

SR_LG8: Landing gear shall be able to withstand

lightning.

SR_LG9: Landing gear shall be capable of dissi-

pating electrostatic charges.

SR_LG10: Nose landing gear shall be able to turn

safely.

SR_LG11: Any damage to landing gear shall be

known to user at all times.

SR_LG12: Landing gear shall have redundant

health management sensors.

SR_LG13: Landing gear shall have redundant door

monitoring sensors.

SR_LG14: Landing gear shall have redundant

wheel monitoring sensors.

SR_LG15: Landing gear shall have redundant

weight monitoring sensors.

SR_LG16: Landing gear system shall implement

the standard interfaces for coupling with fuselage.

derive derive

Figure 5.19: IBIS Landing Gear System Requirements

SR_LG10: Nose landing gear shall be
able to turn safely.

SR_LG10_1: Landing gear
shall be able to turn on ramps
till 30◦inclination with angular
speed of 5◦/sec at maximum
speed of 40m/sec without any
assistance.

SR_LG10_2: Landing gear
shall be able to turn by 60◦on
runways & taxiways at speed of
45m/sec.

SR_LG10_3: Landing gear
shall be able to turn on ramps
till 40◦inclination with angu-
lar speed of 3◦/sec at maxi-
mum speed of 20m/sec with
tow tractor assistance.

SR_LG4: Landing gear shall be func-
tional in all-weather conditions.

SR_LG4_1: Landing Gear
shall function without any
anomaly between -40◦C to
+50◦C.

SR_LG4_2: landing gear shall
be able to withstand heavy rain
showers.

SR_LG4_3: Landing gear shall
be able to work without any
anamoly between 0-100% hu-
midity.

derive derive derive

derive derive derive

Figure 5.20: Landing Gear Derived System Requirements

170 Integrating Requirements Engineering and Decision Making

Requirements which appear to be general are derived till they become more
measurable or quantified. For example Figure 5.20, shows one example of derived
requirements. The three system requirements derived from the original system re-
quirement allows to quantify the aspect it wanted to express.

5.3.3.2 Landing Gear MiTL Requirements

O11_LG: Platform shall
support Landing Gear MiTL

SR_LG_Mi1: The user shall be able to simulate

door opening of Landing gear.

SR_LG_Mi2: The user shall be able to simulate

no-weight condition on wheels.

SR_LG_Mi3: The user shall be to simulate weight

on wheels.

SR_LG_Mi4: The user shall be able to simulate

on-ground condition of landing gear.

SR_LG_Mi5: The user shall be able to inject

faults in the hydraulics of the landing gear.

SR_LG_Mi6: The user shall be able to inject

faults in the valves of the landing gear.

SR_LG_Mi7: The user shall be able to inject

faults in the door opening.

SR_LG_Mi8: The user shall be able to simulate

landing gear retraction.

SR_LG_Mi9: The user shall be simulate landing

gear extension.

SR_LG_Mi10: The user shall be able to simulate

in-flight condition of landing gear.

SR_LG_Mi11: The user shall be able to release

brakes to wheels, while on ground.

SR_LG_Mi12: The user shall be able to apply

parking brakes, while on ground.

SR_LG_Mi13: The user shall be able to release

parking brakes to wheels, while on ground.

SR_LG_Mi14: The user shall be able to apply

brakes to wheels, while on ground.

SR_LG_Mi15: The user shall be able to simulate

faulty weight sensor.

SR_LG_Mi16: The user shall be able to simulate

faulty landing-gear retracted sensors.

SR_LG_Mi17: The user shall be able to simulate

faulty landing gear extended sensors.

SR_LG_Mi18: The user shall be able to simulate

faulty door-open sensors.

SR_LG_Mi19: The user shall be able to simulate

faulty door close sensors.

SR_LG_Mi20: The user shall be able to simulate

landing gear controller.

SR_LG_Mi21: The user shall be able to inject

faults in the landing gear controller.

SR_LG_Mi22: The user shall be able to inject

faults in the door closing.

SR_LG_Mi23: The user shall be able to simulate

together the integrated thermal, electrical, and

mechanical models of landing gear.

SR_LG_Mi24: The user shall be able to add or

remove different domain models without interrupt-

ing the simulation.

derive derive

Figure 5.21: IBIS Landing Gear MiTL Requirements

Case Study: Iron Bird Integrated Simulator 171

Figure 5.16, presents the IBIS simulator infrastructure. Figure 5.21 shows the
MiTL requirements derived from the objective “Platform shall support Landing
Gear MiTL.” These requirements may lead to other derived requirements.

5.3.3.3 Landing Gear User Interface Requirements

Figure 5.23, presents the landing gear user interface requirements as modeled in
CReML using SysEngLab. User interface requirements are derived from the pre-
viously modeled objective: “landing gear user interface.” Sixteen user interface
requirements are listed in the CReML diagram.

5.3.3.4 Writing System Requirements using negation

The non-functional requirements related to the quality of system such as: recon-
figurability, modularity, robustness can be explored further and written in an non-
ambiguous form using suitable usage of negation. A test case is designed to verify
the requirement and forms the basis of contract between the client stakeholders and
the developer stakeholders.

SR_UI_LG1: The user shall be

able to give commands to extend

landing gear while flying.

SR_UI_LG16: The User shall
be able to give extend and re-
tract commands to landing gear
system using switch.

Upon flying condition; while Weight on wheels= false;

Extend landing gear command is given from user interface

switch; If landing gear extension occurs within 3 seconds;

Test=Pass; Otherwise, Test= Fail.

Upon flying condition; while Weight on wheels= false;
1)Extend landing gear command is given from user in-
terface switch; If landing gear extension occurs within 3
seconds; Test condition1 ,=Pass; Otherwise, Test condi-
tion1= Fail.
2) While Landing gear extended=True; Weight on
wheels=False; Landing gear retraction command is given
from user. If Landing gear retracted= True within 5
seconds, Test condition2= pass. Test condition2= Fail.

3) While Landing gear extended=True; Weight on

wheels=True; Landing gear retraction command is given

from user. If Landing gear retracted= True, Test condi-

tion3= Fail. If warning alarm raised within 1 sec=true,

Command blocked=true, Test condition3= pass.

Figure 5.22: Validation Test Cases for Landing Gear System Requirements

5.3.4 IBIS Architecture Design and Analysis

As, architecture design and analysis are quasi-parallel activities, as soon as the user
needs are elicited, system requirements definition process starts together with archi-
tecture design. Figure 5.15, presents the model of IBIS platform. IBIS Platform is
composed of the two components: aircraft equipment and simulation infrastructure.
Aircraft equipment typically groups the subsystems which constitute the aircraft and
simulation infrastructure constitutes the systems which are responsible for carrying
out the simulation of the aircraft equipment.

172 Integrating Requirements Engineering and Decision Making

Figure 5.16, shows the simulation infrastructure required by the IBIS platform.
IBIS simulation infrastructure is composed of the four different levels of simulators:
MiTL, SiTL, CiTL and HiTL. MiTL is composed of system model, control laws
model and actuator models (algorithm coded in different language then target).
SiTL block is composed of sensor models, actuator models, control software and
system model (algorithms coded in target language). CiTL is in-turn composed of
control hardware, control software, sensors, actuators and system model. HiTL is
composed of system itself, its control hardware and software, sensors and actuators
of the system.

Among the aircraft equipments, only the Landing gear is detailed in this chapter.
Figure 5.18, presents the proposed architecture of the landing gear system. Landing
gear is composed of landing sets and landing gear controller. Each landing set
is composed of wheels, wheel box, door, hydraulic actuators, valves, and a set of
sensors for monitoring landing gear. Weight sensor monitors if the weight of the
aircraft is on the wheels or not. Door close and open sensors provide the status of
the door if its open, or close. Landing gear’s extension and retraction is monitored
by two other dedicated sensors.

O6_UI_LG: Landing
Gear User Interface

SR_UI_LG1: The user shall be able to give com-

mands to extend landing gear while flying.

SR_UI_LG2: The User shall be able to

give extend and retract commands to land-

ing gear system using lever.

SR_UI_LG3: The status of landing gear shall be

known to user at all times.

SR_UI_LG4: The user shall be able to command

landing gear without any blockage.

SR_UI_LG5: The user shall be able to give com-

mand to retract landing gear only while flying.

SR_UI_LG6: The User shall be able to close and

open the landing gear doors.

SR_UI_LG7: The User shall be able to know,

when the weight of aircraft is on the wheels.

SR_UI_LG8: The User shall be able to know,

when the weight of aircraft is on the wheels.

SR_UI_LG9: The User shall be able to know,

when the weight of aircraft is not on the wheels.

SR_UI_LG10: In case of any blockage the

user shall be provided instructions to solve

the problem.

SR_UI_LG11: The user shall be able to release

brakes to wheels, while on ground.

SR_UI_LG12: The user shall be able to apply

parking brakes, while on ground.

SR_UI_LG13: The user shall be able to release

parking brakes to wheels, while on ground.

SR_UI_LG14: The user shall be able to release

parking brakes to wheels, while on ground.

SR_UI_LG15: The user shall be able to apply

brakes to wheels, while on ground.

SR_UI_LG16: The User shall be able to give ex-

tend and retract commands to landing gear system

using switch.

derive derive

Figure 5.23: IBIS Landing Gear User Interface Requirements

Case Study: Iron Bird Integrated Simulator 173

5.3.5 Landing Gear Detail Design

<<block>>class LandingSets landingSetInternalStructure {1/1}

HACommand

DopSLS1

DoorOpen

DopSLS2

DoorClose

WSLS

WeightOnWheels, NoWeightOnwheels

LGLGRLS

LGRetracted

LGESLS

LGExtended

<<block>>
WheelBox : WheelBox

<<block>>
Wheels : Wheels

<<block>>
Valve : Valve

<<block>>
WeightSensor : WeightSensor NoWeightOnwheels

<<block>>
DoorClosedSensor : DoorClosedSensor

<<block>>
HydraulicActuators : HydraulicActuators

HACommandR

<<block>>
DoorOpenSensor : DoorOpenSensor

DOS

DoorOpen

<<block>>
Door : Door

<<block>>
landingGearRetractedSensor : landingGearRetractedSensor

LGLRLGRetracted

<<block>>
landingGearExtendedSensor : landingGearExtendedSensor

LGE
LGExtended

AttachedTo

AttachedToBox

AttachedTobox

linkedTo

AttachedtoDoor

AttachedtoDoor

AttachedToWheels

WheelBind

bindedto

AttachedtoBox

SRCommand

DCS
DoorClose

DoorStatusClose

landingGearStatus

Statusupdate

bindsto

WS

DoorStatusOpen

Figure 5.24: IBIS Landing Set Detail Design

Detail design is carried out to provide in-depth composition of the landing gear.
Figure 5.24, shows the detail design of landing set. Signals and interfaces are de-
signed which allow to communicate between the sub-systems. Detail design forms
the basis of the system specifications and selection of components.

174 Integrating Requirements Engineering and Decision Making

5.3.5.1 Design Specification for Landing Gear

As the system requirements are allocated to the architecture designs, the system
specifications are refined set of system characteristics. System specifications for the
landing gear and the MiTl infrastructure are mentioned below.

package LandingGearCommunication SignalsandInterfaces {1/1}

<<interface>>
LGToFWS

<<interface>>
FWStoLG

<<interface>>
LGControllerToLS

<<interface>>
LSToLGController

<<interface>>
LGControllerTOHA<<interface>>

HAtoLGController

<<interface>>

WeightSenesorToLGset

signal NoWeightOnwheels ()
signal WeightOnWheels ()

<<interface>>

DoorSensorToLGset

signal DoorOpen ()
signal DoorClose ()

<<interface>>

WheelSensorToLGSet

signal LGExtended ()
signal LGRetracted ()

<<signal>>
WeightSenesorToLGset::NoWeightOnwheels()

<<signal>>
WeightSenesorToLGset::WeightOnWheels()

<<signal>>
DoorSensorToLGset::DoorOpen()

<<signal>>
DoorSensorToLGset::DoorClose()<<signal>>

WheelSensorToLGSet::LGExtended()

<<signal>>
WheelSensorToLGSet::LGRetracted()

<<block>>
Fuselage PortToLG

LGToFuselage

FuselageToLG

<<block>>
Mechanical_Systems::Landing_Gear_System

PortToFuselage
FuselageToLG

LGToFuselage

<<interface>>
FuselageToLG

signal power ()
signal control ()

<<interface>>
LGToFuselage

signal Anomoly ()
signal Status ()

Figure 5.25: Landing Gear Signals and Interfaces Specifications

Specifications for modularity: IBIS platform should implement bus-modular ar-
chitecture for plugging in various aircraft equipment modules. Communication bus
between hardware and controller. options available: AFDX, ARINC 429, CAN,
TTP. Weight Sensors, door open and door close sensors, wheel retracted and ex-
tended sensors, Valves and hydraulic actuators.

Case Study: Iron Bird Integrated Simulator 175

5.3.5.2 Design Specification for MiTL of Landing Gear

<<block>>class Landing_Gear_System LandingGearSystemInternal {1/1}

FlightWarning

<<block>>
LandingSets : Hardware::LandingSets

ReceiveCommands

SendStatus

<<block>>
LandingGearController : Hardware::LandingGearController

SendCommands ReceiveStatus

Comands

 GetStatus

ToFlightWarning

ToLandingGearController

Figure 5.26: Landing Gear Signals and Interfaces Specifications

5.3.6 Deciding Specifications using our Technique

Degree of redundancy needs to be determined, in order to satisfy few of the require-
ments mentioned previously.

Step 1: Categorizing Stakeholders Categorizing stakeholders according to
their influence and interest in the design.

Interest

In
flu

en
ce

low

High

High

low

Researcher(S&M)

Students

M
ed
iu
m

Medium

Researcher(Teaching)

Figure 5.27: Categorizing Stakeholder

Criteria Description
c1 Development time
c2 Cost
c3 Benefit

Table 5.6: Design Criteria for Specifica-
tion Selection

Step 2: Weighting Stakeholders Project manager uses a risk averse function
to weight the stakeholders associated with the robustness requirements. Previously
derived rankings provide the base for weighting. The weight for each ranking is
shown in Figure 5.28.

176 Integrating Requirements Engineering and Decision Making

1 2 3

8
6
4
2

Rank

S
co
re

Figure 5.28: Categorizing Stakeholder

Stakeholder weight
(a)Researcher(M&S) 0.421
(b)Researcher(Teaching) 0.368
(c)Students 0.21

Table 5.7: Stakeholder Weight
The weight for each stakeholder is shown in Table 5.7.
Step 3: Criteria Categorization Given to the number of criteria under consid-
eration, this step can be ignored.
Step 4: Stakeholders’ Preference Modeling

Pa =


c1 c2 c3

c1 0 1 −1

c2 −1 0 −2

c3 1 2 0

, Pb =


c1 c2 c3

c1 0 2 0

c2 −2 0 −2

c3 0 2 0

, Pc =


c1 c2 c3

c1 0 1 −2

c2 −1 0 −2

c3 2 2 0

 (5.5)

Step 5: Criteria Weight Generation The DMs carry out the marking process
according to their preferences. In this example we have used three algorithms for
calculating the score, one risk neutral and one risk averse and one risk neutral
algorithms with slight difference in degree of neutrality.

1 2 3

8
6
4
2

Rank

S
co
re

Figure 5.29: Generating Criteria Weights

Game =



c1 c2 c3

1 b 0 a,b,c

2 a,b,c 0 b

3 0 a,b,c 0


(5.6)

Algorithms
Criteria R−A R−N R− P
c1 9.944 6.255 5.941
c2 2 2 2
c3 10.576 7.939 8.045

Table 5.8: Criteria Weights

Algorithms
Criteria R−A R−N R− P
c1 0.44 0.386 0.371
c2 0.09 0.123 0.125
c3 0.47 0.49 0.503

Table 5.9: Normalized Criteria Weights

[c1 c2 c3

0.399 0.111 0.49
]

(5.7)

Case Study: Iron Bird Integrated Simulator 177

Step 6: Evaluating Alternatives Table 5.13, shows the evaluation of degree
of redundancy required by the different stakeholders. Legends 0 − redundt, 2S −
redundt, 3S − redundt, and 3M − redundt mean zero redundancy, double same
type redundancy, triple same type redundancy, and triple mixed type redundancy
respectively.

Table 5.10: Evaluation Degree of Redundancy

Alternatives
Criteria weight 0-redundt 2S-redundt 3S-redundt 3M-redundt
c1 0.399 ++ ++(95) ++(90) +
c2 0.111 ++ ++(95) + +(75)
c3 0.49 −− +− ++(95) ++
Net Score

∑
w 60.8 77.85 91.34 89.245

As the third option for 3S-redundancy secures the highest score on the evaluation
matrix. The stakeholders agree upon the 3 pair of same type of redundant actuators.

5.3.7 Deciding Design Components

Table 5.11: Design Criteria for Landing Gear Component Selection

Criteria Description Comopsed of Sub-Criteria

c1 Functionality Endurance, speed of operation, weight

c2 Initial cost Initial expenditure for acquisition , time
for delivery

c3 Durability Tolerance to harsh conditions, water, elec-
tric charges, tolerance to shocks, duration
of life while regular usage

c4 Dependability Rate of failure, tolerance to faults, poten-
tial hazards

c5 Maintainability Time required to maintain, cost of main-
tenance

c6 Ease of integration S/W, H/W, & other interface require-
ments

The project manager of IBIS determines five stakeholders which are decision mak-
ers and system value providers makers for the design components selection: (a)

178 Integrating Requirements Engineering and Decision Making

Interest

In
flu

en
ce

low

High

High

low

Researcher(S&M)

Laboratory Maintenance

Students

University Safety Eng
Medium

Medium

Researcher(Teaching)

(a) Categorizing Stakeholders

1 2 3

14
12
10
8
6
4
2

Rank

S
co
re

RA
RP

RN1
RN2

RN3

(b) Stakeholder Weighting

Figure 5.30: Stakeholder Categorizing and Weighting

Researcher(M&S), (b)Researcher(Teacher), (c) Student representative, (d) Mainte-
nance team and (e) University-Laboratory Safety Personnel,

Step 1: Categorizing Stakeholders The decision makers which are system
value providers are DMs D = {a, b, c, d, e} are categorized using the Influence vs.
Interest grid. The grid is shown in Figure 5.30a, which provides DM’s stakes in
decision. Clearly, the order of importance of their stake is as follow: a > b > c >

e > d.

Step 2: Weighting Stakeholders To convert the rankings into the weights, we
use the surrogate weight generation technique based on decreasing utility functions.
A risk averse function based on Eq.(5.8) is used to generate weights with k = 80, j =

3.2i.

score(ci) = k − i.j , k = Maxscore, j ∈ Z (5.8)

The resultant weights are shown in the Eq.(5.9) below.

[a b c d e

0.238 0.18 0.258 0.22 0.103
]

(5.9)

Step 3: Stakeholders’ Preference Modeling of criteria The DMs categorize
criteria set according to their perception of criteria as shown below in Table 5.12.

Case Study: Iron Bird Integrated Simulator 179

Table 5.12: Design Criteria Categorization

DM High Medium Low

a c1, c5 c2, c4 c6, c3

b c4, c6 c1, c2 c3, c5

c c3, c4 c2, c1 c5, c6

d c6, c3 c2, c1 c4, c5

e c2, c3 c1, c6 c5, c4

Step 4:Stakeholders’ Preference matrix The DMs create their preference ma-
trices according to their categorization from previous step. The preference matrix
of stakeholder a, b, c, d and e are shown in Eq.(5.10), (5.11),and (5.12) respectively.

Pa =



c1 c2 c3 c4 c5 c6

c1 0 1 2 1 1 2

c2 −1 0 2 1 −2 2

c3 −2 −2 0 −1 −2 0

c4 −1 −1 1 0 −1 1

c5 −1 2 2 1 0 1

c6 −2 −2 0 −1 −1 0


(5.10)

Pb =



c1 c2 c3 c4 c5 c6

c1 0 1 2 −2 1 −2

c2 −1 0 1 −2 2 −1

c3 −2 −1 0 −2 1 −2

c4 2 2 2 0 2 1

c5 −1 −2 −1 −2 0 −2

c6 2 1 2 −1 2 0


, Pc =



c1 c2 c3 c4 c5 c6

c1 0 −1 −1 −1 1 1

c2 1 0 −1 −1 1 1

c3 1 1 0 1 2 2

c4 1 1 −1 0 2 2

c5 −1 −1 −2 −2 0 1

c6 −1 −1 −2 −2 −1 0


(5.11)

Pd =



c1 c2 c3 c4 c5 c6

c1 0 −1 −1 1 1 −2

c2 1 0 −1 1 1 −2

c3 1 1 0 2 2 −1

c4 −1 −1 −2 0 1 −2

c5 −1 −1 −2 −1 0 −2

c6 1 1 1 2 2 0


, Pe =



c1 c2 c3 c4 c5 c6

c1 0 −1 −1 1 1 1

c2 1 0 1 2 2 1

c3 1 −1 0 2 2 1

c4 −1 −2 −2 0 −1 −2

c5 −1 −2 −2 1 0 −1

c6 −1 −1 −1 1 1 0


(5.12)

Step 5: Criteria Weight generation The DMs carry out the marking process
according to their preferences as shown in Eq.(5.13). In this example we have used
five algorithms for calculating the score, one risk prone (Risk-P) and one risk averse
(Risk-A) and three risk neutral(Risk-N1, Risk-N2, Risk-N3) algorithms with slight

180 Integrating Requirements Engineering and Decision Making

difference in degree of neutrality. The resultant criteria weight set is shown in
Eq.(5.14).

Game =



c1 c2 c3 c4 c5 c6

1 a e c b 0 d

2 0 0 d,e c a b

3 b,e c,a,d 0 0 0 0

4 c,d b 0 a 0 e

5 0 0 b d c,e a

6 0 0 a e b,d c


(5.13)

Table 5.13: Design Criteria Scores

Algorithms
Criteria Risk-N1 Risk-N2 Risk-N3 Risk-P Risk-A
c1 5.82 4.85 4.6 6.7 9.92
c2 5.78 4.81 3.84 5.07 10.37
c3 5.86 4.61 3.75 6.42 8.19
c4 5.52 4.55 3.58 5.61 8.67
c5 3.052 3.27 2.18 2.66 4.57
c6 5.07 4.1 3.13 5.18 6.78

Table 5.14: Normalized Design Criteria Weight

Algorithms
Criteria Risk-N1 Risk-N2 Risk-N3 Risk-P Risk-A
c1 0.187 0.1851 0.2182 0.1927 0.204
c2 0.186 0.184 0.182 0.160 0.214
c3 0.1884 0.176 0.1778 0.2029 0.166
c4 0.17 0.17 0.17 0.17 0.18
c5 0.098 0.125 0.1034 0.098 0.094
c6 0.16 0.15 0.15 0.163 0.139

[c1 c2 c3 c4 c5 c6

0.1974 0.185 0.182 0.172 0.1008 0.1524
]

(5.14)

Case Study: Iron Bird Integrated Simulator 181

Step 6: Evaluation of Alternatives Once the criteria weight are available the
subject matter experts of landing gear system can evaluate and provide the scores of
the various alternatives under study for the door actuators of landing gear system.
As previously mentioned in Chapter4, we use a simple weighting notation composed
of only ++,+,+−,−,−−, with each sign representing one cardinal weight. The
weighting notation can vary and each notation may correspond to an cardinal num-
ber. Table 5.15 shows the alternative evaluation matrix for landing gear actuators.

Table 5.15: Door Actuator Alternatives

Criteria Weight Pneumatic Electric Hydraulic
Functionality 0.1974 +(74.4) + + (85, 6) +(72.4)

Speed of Operation 32% ++ + +

Weight 18% + ++ +−
Endurance 30% − ++ +

Power consumption 20% + +− +−
Initial cost 0.185 + + (93) + + (87) +− (54)

Acquisition cost 65% ++ + −
Delivery time 35% + ++ +

Durability 0.182 +− (50) + + (97) + + (90)

Tol. to harsh conditions 30% −− ++ +

Tol. to water 15% ++ + ++

Tol. to electrical charges 20% + ++ +

Tol. to shocks 20% −− ++ ++

Duration of life 15% +− ++ +

Dependability 0.172 +(76) + + (86) + + (84)

Rate of failure 40% ++ + +−
Tol. to faults 30% + + ++

Potential hazards 30% − ++ ++

Maintainability 0.1008 + + (100) + + (88) −− (20)

Time requirements 40% ++ ++ −−
Cost of maintenance 60% ++ + −−

Ease of integration 0.1524 +(75) + + (85) +(65)

S/W requirements 50% ++ ++ +

H/W requirements 25% + +− −
Interface requirements 25% −− + +−

Net Score
∑
w 100 75.57 87.26 67.4

Similarly, the analysis of alternatives for the landing gear extension and retrac-
tion actuators is carried out. Table 5.16 shows the the alternative evaluation matrix
for the landing gear extension and retraction actuators.

182 Integrating Requirements Engineering and Decision Making

Table 5.16: Landing Gear Extension and Retraction Actuators

Criteria Weight Pneumatic Electric Hydraulic
Functionality 0.1974 +(64.8) + + (79, 2) +(78.4)

Speed of Operation 32% ++ +− +

Weight 18% +− ++ +−
Endurance 30% −− ++ ++

Power consumption 20% + +− +−
Initial cost 0.185 +(80) +(60) +(80)

Acquisition cost 65% + +− +−
Delivery time 35% + +− ++

Durability 0.182 +(70) +(72, 6) + + (100)

Tol. to harsh conditions 30% +− + ++

Tol. to water 15% ++ + ++

Tol. to electrical charges 20% + ++ ++

Tol. to shocks 20% +− + ++

Duration of life 15% +− ++ ++

Dependability 0.172 +(70) + + (86) + + (92)

Rate of failure 40% ++ + +

Tol. to faults 30% +− + ++

Potential hazards 30% − ++ ++

Maintainability 0.1008 +− (52) +(80) +− (44)

Time requirements 40% ++ + +

Cost of maintenance 60% −− + −−
Ease of integration 0.1524 +(75) + + (90) +80

S/W requirements 50% + ++ +

H/W requirements 25% + + +−
Interface requirements 25% +− + ++

Net Score
∑
w 100 69.04 76.51 80.92

5.4 Requirements Traceability

Requirement traceability information is necessary for various activities in the project
life cycle. Requirement traceability benefits and its usage are explained in Chapter 3.
In this chapter, we have not detailed the various stages of the project development,
particularly aspects around the the V&V have not been presented. In our tool
SysEngLab the traceability is provided by two means, implicit and explicit. Implicit
traceability information is generated as the by-product of development process itself.
Explicit traceability is provided by tool through allowing to create link between
different types of artifacts explicitly.

Requirements Traceability 183

5.4.1 Purposed Traceability

Previously, information regarding the perceived importance of goals by different
stakeholders was elicited for the various goals in Eq.(5.2) and (5.3). The traceability
needs of stakeholders can also be elicited in similar manner. Previously in Chapter 3,
Eq.(3.4) mentions modeling the traceability preferences of stakeholders.

Str_P =


G1 G2 G3 G4 G5

r 2 −1 2 1 −1

u 2 1 1 2 −2

l 2 0 2 1 −2

s −2 −2 1 2 2

 (5.15)

With this stakeholder-traceability preference matrix, the stakeholders are provided
with only the traceability information they are interested in. Researchers are given
the traceability of goal1, goal3 with very fine granularity and goal4 in coarser and
goal2 and goal5 even more coarse. Similarly for University, Laboratory and students.

5.4.2 Cost-effective Traceability

Cost effective traceability necessitates creation of a matrix St − R mentioned in
Eq.(3.3).

weight ∗ Str_P =


w

r 0.32

u 0.26

l 0.26

s 0.16




G1 G2 G3 G4 G5

2 −1 2 1 −1

2 1 1 2 −2

2 0 2 1 −2

−2 −2 1 2 2

 (5.16)

weight ∗ St_R =


w

r 0.32

u 0.26

l 0.26

s 0.16




R1 R2 R3 R4 R5 R6 R7

1 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

 (5.17)

Already calculated weight of the matrix in Eq.(5.1) provides an estimate of the
potential benefits that tracing of a particular of rationale may provide.

5.4.3 Pre-requirement traceability

Pre-requirement traceability is calculated by tracing back the requirements to the
stakeholder and their rationales. Table 5.17, shows the traceability achieved between
the stakeholders and the corresponding rationales and the leading goals. Table 5.18,
shows the traceability achieved between the customer requirements depicted as ob-
jectives and the corresponding goals and stakeholders.

184 Integrating Requirements Engineering and Decision Making

Table 5.17: Stakeholder Rationale Goal Traceability Matrix

Sth/Rtnl −Goal R1 R2 R3 R4 R5 R6 R7 G1 G2 G3 G4 G5
ST1 x x x x x x x
ST2 x x x
ST3 x x x x x
ST4 x x x x

Table 5.18: Objectives Stakeholders Goals Traceability Matrix

Ob/Stb ST1 ST2 ST3 ST4 G1 G2 G3 G4 G5

O1 x x x x
O2 x x x x
O3 x x x x
O4 x x x x
O5 x x x x
O6 x x x x
O7 x x x
O8 x x x
O9 x x x
O10 x x x
O11 x x x
O12 x x x x
O13 x x x
O14 x x x
O15 x x x x
O16 x x x x
O17 x x x x
O18 x x x x
C1 x
C2 x
C3 x

Table 5.19 the pre-requirement traceability achieved between the system re-
quirements and the corresponding objectives representing the user/customer require-
ments, and stakeholders which account for the particular system requirement.

Requirements Traceability 185

Table 5.19: Pre-requirement Traceability

SR/Obj_ST O1-O5 O6-O10 O11-O14 O15-O18 ST1 ST2 ST3 ST4

_LG1 O13,14 x x
_LG2 O14 x x
_LG3 O14 x x
_LG4 O14 x x
_LG5 O14 x x
_LG6 O10 O14 x x x
_LG7 O10 O14 x x x
_LG8 O10 O14 x x x
_LG9 O10 O14 x x x
_LG10 O10 O14 x x x
_LG11 O10 x x
_LG12 O12 x x
_LG13 O10 O12 x x x
_LG14 O10 O12 x x x
_LG15 O10 O12 x x x
_LG16 O14 x x

_LG_Mi1 O1,2 O11,13 x x x
_LG_Mi2 O1,2 O11,13 x x x
_LG_Mi3 O1,2 O11,13 x x x
_LG_Mi4 O1,2 O11,13 x x x
_LG_Mi5 O1,2 O11,13,14 x x x
_LG_Mi6 O1,2 O11 x x x
_LG_Mi7 O1,2 O11 x x x
_LG_Mi8 O1,2 O11 x x x
_LG_Mi9 O1,2 O11 x x x
_LG_Mi10 O1,2 O11 x x x
_LG_Mi11 O2 O11 x x x
_LG_Mi12 O2 O11 x x x
_LG_Mi13 O2 O11 x x x
_LG_Mi14 O2 O10 O11 x x x
_LG_Mi15 O1,2 O10 O11 x x x
_LG_Mi16 O1,2 O10 O11 x x x
_LG_Mi17 O1,2 O10 O11 x x x
_LG_Mi18 O1,2 O10 O11 x x x
_LG_Mi19 O1,2 O10 O11 x x x
_LG_Mi20 O1,2 O11 x x x
_LG_Mi21 O1,2 O10 O11 x x x
_LG_Mi22 O1,2 O10 O11 x x x
_LG_Mi23 O1,2,3 O10 O11 x x x
_LG_Mi24 O1,2,3,4,5 O11 x x x
_UI_LG1 O11,13,14 x x
_UI_LG2 O5 O11,13,14 x x x
_UI_LG3 O11,13,14 x x
_UI_LG4 O5 O11,13,14 x x x
_UI_LG5 O5 O11,13,14 x x x
_UI_LG6 O11,13,14 x x

186 Integrating Requirements Engineering and Decision Making

Table 5.19 – continued from previous page
SR/Obj_ST O1-O5 O6-O10 O11-O14 O15-O18 ST1 ST2 ST3 ST4

_UI_LG7 O11,13,14 x x
_UI_LG8 O11,13,14 x x
_UI_LG9 O11,13,14 x x
_UI_LG10 O5 O11,13,14 x x x
_UI_LG11 O11,13,14 x x
_UI_LG12 O11,13,14 x x
_UI_LG13 O11,13,14 x x
_UI_LG14 O11,13,14 x x
_UI_LG15 O11,13,14 x x
_UI_LG16 O5 O11,13,14 x x x

5.4.4 Post-requirement traceability

Post requirements traceability provides the links between the requirements and the
other artifacts generated as part of the development activity. Table 5.20, shows the
post requirement traceability for the landing gear system. The traceability matrix
shows the landing gear system requirements matched against the design components
of the landing gear system.

Requirements Traceability 187

T
ab

le
5.
20

:
P
os
t-
re
qu

ir
em

en
t
T
ra
ce
ab

ili
ty

D
E
/S

R
_

L
G
1

L
G
2

L
G
3

L
G
4

L
G
5

L
G
6

L
G
7

L
G
8

L
G
9

L
G
10

L
G
11

L
G
12

L
G
13

L
G
14

L
G
15

L
G
16

W
ei
gh

t
Se

ns
or

x
x

x
L
an

di
ng

se
t

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

W
he

el
s

x
x

x
x

x
x

E
le
ct
ro

va
lv
e

x
x

x
x

x
x

x
x

H
yd

ra
ul
ic

P
um

p
x

x
x

x
x

x
x

x

E
xt
-R

et
A
ct
ua

to
r

x
x

x
x

x
x

x

B
ra
ke
s

x
x

x
x

St
ee
ri
ng

A
ct
ua

to
r

x
x

x

L
G

co
nt
ro
lle

r
x

x
x

x
x

x
x

x
x

x
x

W
he

el
B
ox

x
x

x
L
G
-R

et
se
n-

so
r

x
x

x
x

D
oo

r-
O
pe

n
Se

ns
or

x
x

x
x

x

D
oo

r-
C
lo
se

se
ns
or

x
x

x
x

x

L
G
-E

xt
se
n-

so
r

x
x

x
x

x

D
oo

r
A
ct
ua

-
to
r

x
x

x
x

x
x

188 Integrating Requirements Engineering and Decision Making

5.5 Limitations and Conclusions

The approach proposed provides enthusiastic results, but its findings should be
taken into account with the inherent limitations and assumptions made to realize
this case study. As the IBIS project is in its first iteration of development, only the
conceptual modeling has been carried out with a few of the simulations using the
M&S platforms. The best criticism of the study could be that it is an academic
project and only a very small team is in charge of its development. The members
already are familiar with each other and have strong trust in each other’s jurisdiction.
Only minor conflict issues regarding the choice of aircraft systems capabilities rose in
beginning, which were sorted out according the budget in hand. Another limitation
regarding the results of the requirements traceability achieved is about the data set.
The data set available for deriving traceability was available on a single workstation
and not distributed and scattered like an actual work environment. The traceability
generated remained limited to the first iteration of conception.

A case study on an aircraft simulator system called IBIS is presented, upon
which various methods proposed in previous chapters are applied to demonstrate
their ease of application. Goal model, responsibility models, strategy models and
other requirements artifacts of the system are created using various diagrams of
CReML through SysEngLab tool. User stories are elicited from the various poten-
tial stakeholders. High level rationale map is created using the rationales retrieved
from the user stories of the stakeholders. Goals are derived from the thus obtained
user stories. Goals are divided into smaller objectives which represent the customer
requirements. Objectives representing the qualitative requirements can be rendered
more measurable and quantified by proposing test cases against them. An ambigu-
ous customer requirement can be treated by suitably using the negation or a test
case with negation.

Traceability matrix of the IBIS project is generated automatically by the tool.
Preference modeling over the traceability needs is also shown using the tool. Various
objectives in which their is a possibility of conflicts are marked using the conflict
relationship upon their analysis, the requirements are negotiated to resolve the con-
flicts. The decision for the various types of design solutions are made using the
URoW technique. The results are encouraging but still there are few issues like:
difficulty in judging precisely the definition of ‘suitable’ when using the negation,
for instance developer may choose to use negation systematically for quality require-
ments, it is hard to tell where to stop. Choosing the weight generation function can
be quite tricky and puts a big responsibility over the project manager. CReML on
the other hand proves to be quite useful to define requirements and other artifacts.
A comparative study of the CReMl and other Gore based languages needs to be
made to precisely evaluate the advantages and disadvantages in deep. The ability
to provide abstraction at different levels allows to model large number of require-
ments and still rendering them comprehensible. Judging the cost & effort involve in
generation of traceability information is still an approximation and depends upon
the judgement of requirement engineer involved.

Conclusion and Future
Perspectives

The research conducted as part of this thesis develops a comprehensive method-
ology for the conception of the complex systems. This methodology aims to

be the appropriate solution for the new paradigm of the highly complex systems
demanded by the consumers. The consumer of these highly complex systems range
from public to private organizations with systems ranging from medical & health
systems, public transport systems, communication systems, defense and military
systems, etc., covering nearly all aspects of modern lifestyle.

High degree of complexity and interdependency puts enormous pressure on the
system architects and engineers. This pressure upon the architects, often leads to
the poor conception or design flaws, owing to the lack of tools and methods apt to
handle this situation. The complexity of the products come from the large numbers
of requirements, which need to be satisfied by the system in order to be acceptable
to the customer.

As mentioned in Chapter 2, requirement engineering activities are the foundation
stone for the product development. They lone can determine the success or failure of
products. A poorly organized requirements elicitation process might lead to faulty or
incomplete set of requirements or hard to understand or unrealizable requirements.
Their proper management can ensure the development of right product in right
way, with everything which is indispensable to the customer. There are some issues
linked to management of requirement mentioned in Chapter 3 such as, traceability of
requirements, purposeful traceability, etc., which when addressed can help to handle
this complexity by organizing it, and hence providing multiple benefits. Certain
difficulties of the SE have origins in the weak decision making process, as mentioned
in Chapter 4. Decision making process also needed to be improved to improve the
quality of the product while precisely satisfying the customer requirements.

Various shortcomings and challenges were identified in the form of questions
(Chapter 1) from the existing systems engineering activities and methodologies.
Relevant axes were identified and researched extensively. For each identified chal-
lenge, holistic and pertinent solutions were identified. Appropriate techniques and
methods were developed and integrated to form this holistic and comprehensive so-
lutions. Previous chapters have detailed the researched presented. Requirements
engineering, requirements management & traceability and decision making are re-
searched and the finding and the contributions are presented.

Summary of Findings & Contributions

We presented a GORE based technique. The proposed graphical modeling language
which is capable of functionalities typical to popular GORE techniques like i* and

190 Conclusion and Future Perspectives

KAOS and other functionalities which are of concern to systems engineers and other
stakeholders. Proposed language and supporting tool allows to represent the pref-
erences of the various stakeholders on the various goals and objectives. It allows to
model both the core and optional features of the system under study. The goals can
be traced back to the user stories which are linked to the goal modeling diagram.
The responsibility and interaction among the agents is separately modeled and can
be integrated if the developer wishes. The other interesting capability our tool pro-
vides is to model the rationales using view-points. The stakeholder rationales are
projected and divided into various viewpoints from the very early stage, which al-
lows to better understand the stakeholder requirements. The end-product of goal
modeling leads to system requirements which can be allocated to the UML/SysML
diagrams. Our tool supports a few of the diagrams of the UML/SysML notably Use-
case diagram and Block definition diagram. This is to provide direct traceability
throughout the V-cycle.

Aspects regarding the ambiguity and understandability of requirements are re-
searched and a negation technique for writing quality or hard to understand re-
quirements is presented. Restricted negation technique offers interesting aspects as
a tool against the ambiguity and understandability problem in context of RE. We
argued that for some notions such as quality, it is comparably easier to elaborate
using negative sentences, than with purely affirmative ones. Our empirical findings
have reaffirmed that for some concepts negation is more natural than affirmation.
In the context of requirement engineering, it can be used successfully as it seems
more natural and intuitive. Our examples have manifested that, a good blend of
affirmative and negative sentences can provide in depth view implications of a qual-
ity requirement. Our interviews confirm that the user may prefer negative phrases
and they may come intuitively. We argue that if something seems more natural, it
is easily understood and accepted. Negation are natural in a natural language, so
we should not hesitate to use them as a tool. Finally, we say that our technique
improves the readability of requirement documents. The IBIS case study carried out
confirmed our claims regarding negation, and their usage for design of test cases.

We present in this thesis a comprehensive approach for the requirement trace-
ability for a systems engineering project. We give the distinction between the re-
quirement traceability for software intensive system and hardware intensive systems.
We use the existing literature for understanding the needs of comprehensive require-
ment traceability. We identify trace blocks to have minimum eight distinct types
of values, which can provide the traceability, throughout the Vee-model of project
development. We provide a platform to link these trace blocks with various rela-
tionships to the artifacts generated throughout the life-cycle and the requirements.
We have seen that a comprehensive and reliable traceability link establishment is
a two way process: forward and backward. Requirement traceability information
remains a valuable entity for the enterprises involved in huge projects where new
projects may find inspirations from the earlier projects. Requirement traceability
information remains valuable even after the project ends and the product is removed
from the service. Our approach for laying down the trace signs using the rationales

191

throughout the life cycle allows to link the artifacts in a systematic manner.
The basic idea of our methodology is to make the requirement traceability pro-

cess more and more reactive and formal with precise semantics of relationships.
We provided means to integrate our approach cohesively with tools supporting
UML/SysML. We have seen that requirement traceability is iterative process. A
semi-automatic approach is better choice for carrying out requirement traceability,
with suitable human involvement. A carefully carried out requirement traceability
activity is a huge source of knowledge for the entire enterprise, for the current and
future projects including the entire life cycle of the product. We defined the seman-
tic relationships between the various requirements artifacts. Our approach can be
used as a tool for organizing complexity in the composite system design by providing
ready to use traceability from previous step. Still, overcoming the social issues of
traceability problem remains a challenging task and more research work needs to be
done to address the traceability challenges.

This thesis also presents a new approach for traceability maintenance scheme,
trying to address chief problems of current trace processes. The proposed traceabil-
ity model emphasizes on maintenance with efficient maintenance schemes, developed
tool implements our technique, and we have obtained a few of the results and ob-
servations which support our claims. Our technique provides interesting solution
to the dangling trace problem, which can immensely help to reduce the tediousness
of tracing process. Our solution offers a plausible solution to the information-loss
problem as the information ever generated in the development process remains in
system to provide the exact trace of evolution of the system. With the ease in trace
maintenance process the cost of maintenance can be reduced noticeably as the dan-
gling pointer problem is solved the effort in maintenance is reduced and hence less
time and less human resources are engaged to do the same task. Usually in the sys-
tem development process there are numbers of iterations before an artifact is finally
accepted as a part of the system, our technique allows retaining the information
regarding iterations and chronological evolutions and hence helps in better decision
making.

We have shown that the different set of requirement traceability block can
be used for different product management activities: configuration management,
change impact management, maintenance, system up-gradation, product reuse, re-
lease management, system comprehension, etc. Such a use of set of trace blocks
eases these tedious jobs, as the required data is easily available, and ultimately low-
ers resource consumption. Usually graph becomes large and hard to understand,
our technique can be constrained to map intra-level traceability, reducing size and
increasing the understandability of graph. Our technique can be evolved further to
enable global distributed traceability.

In this thesis, we have also provided a systems theory of how the criteria weights
can be obtained using the classical theory of preference modeling. Our technique
Utility Rank Order Weighting (UROW) technique, organizes properly the influence
and interest of stakeholders, seeks their preferences and before using them validates
through a simulation. This approach provides multiple benefits with compared to

192 Conclusion and Future Perspectives

other existing approaches. Usually in systems engineering project, the engineers rely
upon their intuition to provide weights, and later use other technique to combine
the different decision makers’ preferences. Our approach provides a formalism to
this systems engineer intuition and hence provides the reasoning for the various
weights achieved. Our approach is very easy to understand and use, and demands
very low cognitive load from the engineers and stakeholders. It allows to formally
provide the scores using the DM’ drawn utility functions: risk prone, risk averse, or
risk neutral; it provides a mechanism to combine them together to come up with
a uniformly acceptable solution. In future, we look forward to link the simulation
of the decision makers’ preferences with the design library, in order to shorten the
decision time. Our approach can easily be applied to the class of methods which
require information on the attributes to carry out a decision analysis.

Other significant contribution of this thesis is about integrating the previously
mentioned contributions in a way to provide a methodology to carry out the require-
ments engineering and decision making activities. The planned stepwise execution
of the various tasks and their integration is provided and applied on a case study
and the results are shared.

Future Research and Perspectives

Requirements engineering

As our research regarding the use of negation remained limited to only English and
French language with more on occidental cultural boundary. More empirical studies
need to be carried out to validate the use of negation in various other languages
and cultures. We look forward to using this technique in a graduate level project
at the university, involving multiple teams and multiple clients expressing their
requirements.

Further research can be carried out in use of uniguous semantic language trans-
lation techniques, although it will demand expertise in both linguistics and infor-
matics. RE can derive lot of benefits from the uniguous semantics translation as it
could easily detect the multiple translations of one natural language text to another
restricted vocabulary natural language or formal languages.

Further research can be carried out in representation of graphs, such that big
and complicated graphs can be presented and understood by the user. Abstraction
of information from the graphs is one solution for the scalability issues, but still
it can be argued that abstraction from the highly complex graphs could be very
difficult task itself.

Requirements Traceability

For our proposed requirements traceability scheme more empirical studies need to
be conducted to validate the benefits from the various propositions made such as
planning for purposed and cost effective traceability.

193

In spite of these facts there are other issues which need to be addressed like
heterogeneous traceability schemes for capturing informal aspects.

Our traceability maintenance approach can be suitably coupled with event based
approach as described by Cleland-Huang et al. [Cleland-Huang 2003]. As our case
study is not based a collaborative environment, it needs to be further studied in
a collaborative environment and integrated with the event based approach, which
seems to be most appropriate for a collaborative maintenance.

We cannot still trace 100% of information as it is always difficult to trace the
informal aspects of many artifacts. We advocate the usage of semi-automatic trace
mechanism with event specific human intervention for the optimal benefits of trace-
ability. Chapter 3 attempted to provide a small step towards approaching the trace-
ability challenges. The fully reliable automation of comprehensive traceability in a
systems engineering project remains a challenging activity yet for the requirement
engineering. The information retrieval based traceability recovery policies still have
issues with complete recall and a satisfactory precision. Traceability approach dif-
ferent then information needs to be researched, such as ontology based requirements
traceability. More research on ontology based can traceability and its optimal inte-
gration to the various tools and platforms of the engineering needs to be researched
more.

There are still issues like increasing the value of trace and methods to augment
the usability of trace in organization and how to holistically link the various aspects
of system development with the traces. Can we utilize traces for rapid development
process? Can traceability patterns be used for product development? These are the
numerous issues which need to be addressed by research communities.

Requirements traceability research needs more empirical studies and data to
determine and estimate the cost and effort of traceability, however we have some
idea how to do this.

Estimating Effort & Cost of Traceability

Calculating cost and effort poured into the traceability need to be estimated or
predicted before kick-starting the project. As nowadays computing memory and
speed cost doesn’t really bothers the projects. But the amount of time poured in
for creating traces can be significant. A prescription of rationale-viewpoint based
matrices is proposed for very fine granularity, but for certain projects more matrices
can be envisaged and or reduced depending upon traceability needs. For estimating
the effort of traceability, we need to provide a unit for it.

To actually able to estimate the cost and effort of traceability throughout a
project, it is essential to take into account the efforts poured for linking the artifacts
during the various stages of conception and development. Various factors need to be
taken into account for estimating the traceability such as: number of tools/editors
used to conceive and develop the system, number of stakeholders, number of user-
stories/interview documentation available, number of requirement artifacts, test ar-
tifacts, expected granularity, size of code, etc. The traceability efforts estimation

194 Conclusion and Future Perspectives

needs to sum up all the efforts starting from requirements elicitation till system
validation.

User Requirements

System Requirements

Procurement &
Implementation

Trace
Repository

Test case

Test case

Test case/

Test case

/
Other validation

Techniques

/
Other system

Verifcation technique

other subsystem
verification technique

Unit/Integration
/

Other techniques

Architecture
Spec

Logical/Physical
Architecture

Design Logical/Physical
DesignSpec

a’ b’

a” b”

a” ’ b” ’

a” ”

b""

a b

Requirements Traceability Effort Estimation

Estimating requirements traceability effort can be summarized in the above
schema, where a, a’, a”, a”’, a”” represent the efforts poured in mapping trace-
ability information vertically in the Vee-cycle, and b, b’, b”, b”’, b”” represent the
effort poured in maintaining traceability horizontally.

Terms a, b, a’, b’, etc., are dependent on several factor and can be roughly
estimated according to the project traceability needs such as granularity, views,
etc., a, b, a’, b’ can be roughly estimated by the equations below:

a = (Number_of_tools).(Number_of_lines_of_user_stories).

(Number_of_requirements_artifacts).(Number_of_stakeholders)

b = (Number_of_tools).(Number_of_lines_of_user_stories).

(Number_of_requirements_artifacts).(Number_of_stakeholders).

(Number_of_V alidation_Testcases)

a′ = (Number_of_tools).(Number_of_requirements_artifacts).

(Number_of_system_requirements_artifacts).(Granularity).

(Number_of_V alidation_Testcases)

195

b′ = (Number_of_tools).(Number_of_requirements_artifacts).

(Number_of_system_requirements_artifacts).(Granularity).

(Number_of_V erification_Testscases)

Similarly, a”, b”, a”’, b”’, a””, b”” can be roughly estimated. More works needs
to be carried out in refining these equations according the traceability demanded.
Working in this direction towards evaluating the effort needed to create the matrices,
we define a traceability cost unit (TCU), as amount of effort needed to create a
10× 10 sized R−R matrix, i.e., rationale-rationale matrix. We used R−R matrix
for baseline because, rationales are govern by the law’s of nature: laws of physics,
laws of economics, laws of chemistry, etc., and hence relationship derived are logical
ones. If one TCU is represented as %, cost of creating St − R or any other matrix
can be given by the Equation below.

Cost = K× %

where K is some constant, and depends upon factors such as: the type of ma-
trix (who-why, where-how, etc.,), the quality of human resource participating, the
number of rows and column.

The total cost of implementing traceability in a project would be sum of all cost
incurred in establishing the matrices in the whole life cycle, i.e., project traceability
cost =

∑L
l Costl. This equation allows to compare the cost incurred by implement-

ing different traceability policies in the project. The system engineers can then
choose the right traceability policy according to their need and budget.

Decision Making

Although, we provided a methodology for multi criteria decision making. There are
still issues on elicitation of preferences from the stakeholders such as: how much
should be the difference between two degree of preferences and how to quantify
them? how to elicit preferences of numerous stakeholders in a collaborative en-
vironment on-line ? Does elicitation in a collaborative environment impacts the
preferences of the stakeholders ? Are these impacts beneficial for the group decision
making or not ? These questions need to be answered with empirical studies. De-
cision making process cannot be a purely mathematical problem, it certainly needs
help from other discipline such as social sciences and psychology. We have pro-
posed simulation as a tool for validating the preferences and evaluation of macro
family of solutions, but still there are issues such as whether , the simulation results
lead to change in the preferences or perceived value by the stakeholders ? Some
more empirical studies needs to be conducted in different scenarios to answer these
questions.

196 Conclusion and Future Perspectives

Other Issues

Apart from them, few aspects of system design and modeling were also researched
but kept aside from the main stream of the research. The development of reactive
system modeling using UML/SysML needs to be researched in order to provide solu-
tion for the widely popular problem of rework in industry. We tried to seek insights
this problem [Shukla 2012a], provided some methods, which are not mentioned in
this thesis but are still relevant and need to be researched more in depth.

In future we look forward to implement and integrate all the structural and
behavior diagrams of UML/SysML in our tool to make it more comprehensive and
useful. We look forward to automating more and more the trace creation process
using model transformations, as in model based systems engineering. In future
we look forward to research the use of lattices for seeking extra benefits from the
traceability information.

Appendix A

Tools Developed

A.1 SysEngLab

As previously mentioned, different tools were developed for implementing the theo-
retical developments. Tool Support is developed to encompass the various stages of
Vee-life cycle. The platform upon which all the different developed tool modules are
integrated is called SysEngLab. A software module for supporting requirements
and other RE activities is called RequirementLab, which implements the CReML
and the proposed traceability approach in Chapter 2 and 3 respectively. Another
developed module is called DecisionLab which implements the proposed decision
technique, UROW, in Chapter 4. The platform is developed in Java and generates
different kinds of reports in industrial and academic popular formats: Word, Pdf
and Latex formats.

Figure A.1: SysEngLab Console

A.2 RequirementLab

RequirementsLab implements the CReML meta-model described in Chapter 2, it
also allows to store different user-stories collected in tabular form. The require-
ment diagrams are implemented with ready to use requirement templates suitable

198 Tools Developed

for different categories of requirements. The requirements traceability creation and
maintenance approach is built in the tool, with additional tagging features to allow
traceability. The traceability preference for different stakeholders can be taken into
account, which allows to provide the appropriate demanded traceability. Require-
mentsLab is designed in a manner to support scalability issues with the graphs used
during the requirements modeling. It equally generates the traceability matrices de-
manded by the particular stakeholder. Core and optional features can be recorded
from the very early stage of the requirements elicitation. Conflicting requirements
can be resolved using the weighting of the requirements. Its GUI is coded using the
Java mxGraph library and documentation is generated using iText library.

A.3 DecisionLab

DecisionLab is integrated as a tool support for decision making process. A decision
support system, which can function independently itself and in integrated mode with
RequirementsLab. It is designed to analyze stakeholders, collect their preferences
over different issues and make decisions. It supports storing the decisions made
previously and hence supports the decision traceability. Its GUI is coded using the
mxGraph and java Swing libraries, reports are generated using the iText library.
Currently only the UROW technique is implemented in the tool, but other MCDM
techniques are also being considered for integration in the tool.

Figure A.2: DecLab module in SysEngLab Console

Appendix B

Résume en Français: Approche
Globale d’Ingénierie Systèmes

Contents
B.1 Introduction . 199
B.2 Systèmes Complexes . 200
B.3 Ingénierie Systèmes . 200
B.4 Ingénierie des Exigences . 202
B.5 Gestion des Exigences et de la Traçabilité 204
B.6 La Prise de Décision et Résolution de Conflit 205
B.7 Approche Globale . 207
B.8 Conclusion . 209

B.1 Introduction

Récemment, il y a eu une forte augmentation de la complexité de notre environ-
nement immédiat dans lequel nous vivons. Nous nous trouvons entourés de nom-
breuses technologies, pour mener à bien notre journée normale de tâches quotidi-
ennes. Le taux d’induction de ces nouvelles technologies à notre environnement a
nous pris par surprise. Notre routine quotidienne par rapport à nos prédécesseurs im-
médiats a énormément changé. A tout instant, nous pouvons accéder à l’information
facilement, et nous sommes devenus à la fois consommateur et producteur de
l’information. Avec les dernières innovations technologues rien ne semble impos-
sible. Avec ces toutes nouvelles technologies radicalement innovantes, nous pouvons
réaliser ce qui était autrefois considéré comme impossible. Ces nouvelles technologies
ont donné naissance à de nouveaux besoins pour les systèmes complexes, nous avons
besoin de systèmes plus capables, plus sûr, plus robustes... Contrairement à cela,
nos processus actuels de développement de produits ne sont pas encore équipés pour
exploiter complètement les avantages de ces nouvelles techniques et technologies afin
d’offrir la complexité organisée exigé dans les produits.

En outre, avec augmentation de la complexité des produits demandés, les tech-
niques traditionnelles utilisées pour les développer sont souvent jugés inaptes ou
manquent en aspects multiples. Les techniques, les outils et les ressources humaines
utilisées pour les développer restent sous une pression énorme. Il est évident que,

200 Résume en Français: Approche Globale d’Ingénierie Systèmes

de nos moyens de développer ces systèmes très complexes sont loin d’être prêt ou
apte à les développer. Nous devons apportée tout nouvel ensemble de mises à jour
compétentes des méthodologies, des processus et des outils pour développer des nou-
veaux systèmes et technologies très complexes, qui sont exigés aujourd’hui et dans le
proche avenir. Il y a un besoin urgent de réformer en profondeur nos méthodologies
existantes de conception de produits pour bénéficier de ces technologies et d’offrir
beaucoup plus, mieux et plus vite.

B.2 Systèmes Complexes

Les humains ont développé des machines pour faciliter leur vie quotidienne. Peu à
peu, les humains ont appris à utiliser des groupes de ces machines ensemble pour
résoudre les problèmes encore plus grands. Ce groupe de machines interaction est
appelé système. Avec l’évolution, les humains continué d’apprendre à utiliser ces
groupe de systèmes primitifs ensemble pour accomplir des tâches relativement plus
difficiles. Moment où les humains entremêlés ces systèmes simples tel que résultant
système n’était pas plus compréhensibles complètement, système complexe sont en-
trés en existence.

Le système complexe est en soi une notion relative, en fonction de l’observateur.
Un système peut sembler complexe pour un observateur et non à l’autre. Une
combinaison d’éléments en interaction, organisé pour atteindre un ou plusieurs ob-
jectifs déclarés. Un ensemble intégré d’éléments, sous-systèmes ou ensembles qui
permettent d’atteindre un objectif défini. Ces éléments comprennent les produits
(matériels, logiciels, firmware), des processus, des personnes, des informations, des
techniques, installations, services et autres éléments de soutien. Un système com-
plexe est celui qui de par leur conception ou la fonction ou les deux est difficile à
comprendre et à vérifier.

Un système complexe comporte de nombreux éléments différents, ces composants
sont souvent interdépendants, et il y a généralement des interactions non linéaires,
c’est à dire de petits changements peuvent apporter de grands effets et les grands
changements peuvent conduire à de petits effets. Souvent un système complexe agit
sur les connaissances locales et les conditions, c’est à dire, ce n’est pas contrôlée cen-
tralement. Il a un comportement délibéré et autonome. Les systèmes complexes ont
tendance à avoir l’organisation hiérarchique. A systèmes complexes résout des prob-
lèmes complexes, il remodèle sans cesse son avenir collectif, présente la nouveauté
et s’adapte, il apprend de son expérience et affiche un comportement émergent et
peut-être inattendu et imprévisible. Les systèmes complexes sont à la fois organisés
et variés.

B.3 Ingénierie Systèmes

Le domaine multidisciplinaire concerné avec le cycle de vie complet des systèmes est
souvent associée à l’ingénierie des systèmes (IS). Ingénierie Systèmes est reconnue

Ingénierie Systèmes 201

comme un mécanisme privilégié pour établir un accord pour la création de produits
et services qui seront échangés entre les deux organismes ou plus. Il peut être ap-
pliqué à tout type de développement du système : pour un appareil électroménager,
un avion, une centrale nucléaire, etc. Bonne application des principes et méthodes
d’IS permet de maximiser les chances de succès d’un projet.

INCOSE manuel définit comme l’ingénierie des systèmes est une approche inter-
disciplinaire et des moyens pour permettre la réalisation de systèmes. Succès d’IS
se concentre sur la définition des besoins des clients et la fonctionnalité requise au
début du cycle de développement, la documentation des besoins, puis de procéder
à la synthèse de la conception et du système validation tout en considérant le prob-
lème complet : les opérations, les coûts et calendrier, la performance, la formation
et le soutien, l’essai, la fabrication et la retraite. IS considère à la fois aux besoins
commerciaux et techniques de tous les clients avec l’objectif d’offrir un produit de
qualité qui répond aux besoins des utilisateurs.

En termes simples, l’approche IS se compose de:

– Identification et quantification des objectifs du système,

– Création de concepts alternatifs de conception du système,

– Performance des métiers de la conception,

– Choix et mise en œuvre de la meilleure conception,

– Vérification que la conception est bien construit et intégré, et

– Evaluation de la mise en œuvre du message de la façon dont le système répond
(ou atteint) les objectifs.

Dans cette thèse projet d’ingénierie système est utilisé pour représenter les systèmes
intensifs de matériel. Le terme ingénierie logicielle ou d’un projet de logiciel est
utilisé pour représenter un système intensif de logiciels. Toutefois, il est incontestable
que, le terme IS est applicable à la fois pour les systèmes basés sur matérielles et
logicielles. Nous considérons qu’un projet soit d’IS, quand il dispose d’une majorité
de la partie en sous-systèmes autres que logiciels. Nous utilisons le terme système
intensif non-logiciel pour un projet IS et d’un système intensif de logiciels pour le
projet de génie logiciel. Le processus d’IS est utilisé par itération à chaque étape du
cycle de développement afin de générer des descriptions plus détaillées du système.

Ces descriptions comprennent ce qui doit être atteint (exigences fonctionnelles et
concepts des opérations), comment cela doit être atteint (exigences de performance),
la manière dont cela est atteint (conception), et les résultats d’analyse et de tests
sur la capacité de satisfaire les exigences (vérification) et de satisfaire l’utilisateur
(validation). Le processus d’IS conduit à des descriptions plus détaillées pour chaque
phase du cycle de développement. Chaque phase commence à partir d’un niveau
supérieur de description du système et décompose les exigences du niveau supérieur
en exigences de niveau inférieur pour chaque fonction.

202 Résume en Français: Approche Globale d’Ingénierie Systèmes

B.4 Ingénierie des Exigences

Les activités d’ingénierie des exigences (IE) commencent dès que les projets
s’énoncent. Elle est réalisée dans une phase précoce d’un programme de développe-
ment de système pour comprendre le client ou les besoins des utilisateurs finaux
clairement. IE implique un ensemble d’activités qui permettent de comprendre les
besoins réels des utilisateurs finaux et les transformer en un ensemble contractuel
des besoins des utilisateurs ou des exigences de l’utilisateur. C’est la phase la plus
importante d’un projet, s’il est sûr que l’équipe d’IE a suscité tout le bon ensemble
des besoins des utilisateurs dans le tout début, et si on leur donne les ressources
appropriées dans les prochaines phases, le projet est destiné à réussir. Bien au con-
traire, si même une exigence trivial est oubliée ou mal compris à ce stade, il est sûr
de coûter cher aux parties prenantes impliquées dans les phases ultérieures. Le plus
tard on découvre un problème, plus il en coûte pour eux. Pour la phase d’IE, nous
avons donné deux contributions importantes: pour l’écriture exigences en utilisant
CReML et l’amélioration de leur qualité dans le sens de l’ambiguïté.

Les Contributions sur le Théorie des Exigences et CReML

La théorie des exigences stipule que les exigences sont projection de justifications
de parties prenantes en produit avec leurs convictions. En d’autres termes, avec
son ensemble de croyances et de ses justifications partie prenante arrive à un besoin
ou à une exigence des parties prenantes. Une justification à son tour se compose
de multiples points de vue qui sont d’intérêt pour les parties prenantes, mais ce
fait est souvent caché à lui-même. La théorie développée dit que, lorsque nous
passons des exigences des parties prenantes vers les spécifications du système, le
degré de clarté de l’information augmente progressivement à partir de points de
vue très abstraits vers les points de vue très spécifiques. Les exigences des parties
prenantes peuvent être considérées d’une abstraction de justifications intervenants,
qui peuvent être connues ou inconnues de lui. Un intervenant au courant connaît
ces raisons et peut facilement identifier plus précisément ses besoins. C’est la raison
pour laquelle beaucoup de besoins dans une organisation viennent d’un petit groupe
de participants souvent connu comme règle de Pareto 20-80. On observe que les
justifications sont gouvernées par les lois de la nature : les lois de la physique, lois de
l’économie, les lois de la chimie, etc., et donc les relations entre eux sont logiques. Ils
peuvent être soit directement proportionnel, inversement proportionnel et quelques
fois indépendant. Il y a toujours quelque chose qui est plus important à creuser–
les croyances. Les croyances sont difficiles à susciter des intervenants, souvent,
ils demeurent implicites dans le récit utilisateurs et des itérations coûteuses sont
parfois nécessaires pour atteindre vraiment. C’est souvent le cas dans l’ingénierie
des systèmes à base de logiciels.

Comme les exigences sont projection de justifications avec des croyances, des
même justifications sont des projections de points de vue. Les justifications peuvent
être décomposées en un ensemble de points de vue, avec un vecteur d’importance, qui

Ingénierie des Exigences 203

fournit la force de leur préférence détenues par un intervenant particulier. Ce vecteur
d’importance est implicite à l’intervenant et assez difficile d’obtenir complètement.

Afin de prendre l’avantage à partir des formulations théoriques, un langage de
la modélisation des exigences CReML est introduit, qui tente de surmonter les dé-
fis inhérents liés aux problèmes d’évolutivité de diagrammes d’exigences complexes.
Nous avons proposé CReML pour utiliser en complément avec SysML pour prendre
l’avantage de l’infrastructure existant de la modélisation du système. Le langage
proposé de modélisation graphique qui est capable de fonctionnalités typiques des
techniques GORE populaires comme i * et KAOS et d’autres fonctionnalités qui sont
source de préoccupation pour les ingénieurs systèmes et d’autres parties prenantes.
Proposé un libellé et un outil de support permet de représenter les préférences des
différents acteurs sur les différents buts et objectifs. Cela permet de modéliser à la
fois le cœur et les fonctionnalités optionnelles du système à l’étude. Les objectifs
peuvent être retracés aux témoignages d’utilisateurs qui sont liés à la modélisation
de but diagramme. La responsabilité et l’interaction entre les agents sont modélisées
séparément et peuvent être intégrés si le développeur souhaite. L’autre fonctionnal-
ité intéressante de notre outil offre est de modéliser les logiques à l’aide de point
de vue. Les justifications des parties prenantes sont projetées et divisé en différents
points de vue de la scène très tôt, ce qui permet de mieux comprendre les besoins
des utilisateurs. Le produit final de la modélisation de but conduit à la configura-
tion requise qui peuvent être allouées à la modélisation UML/SysML diagrammes.
Notre outil prend en charge quelques-uns des schémas d’UML/SysML notamment
diagramme de cas d’utilisation et diagramme de définition de bloc. Il s’agit de
fournir une traçabilité directe tout au long du cycle en V.

Rédaction des Exigences avec Négation

Nous avons traité d’autres questions relatives aux exigences linguistiques naturelles
telles que l’ambiguïté et compréhensible. Mis au point des méthodes pour éviter
toute ambiguïté en utilisant négation et les ont utilisés pour la négociation des
cas de test. Quelques-uns des enquêtes ont été menés pour renforcer la croyance
dans les formulations théoriques et les résultats sont encourageants. Technique
de négation restreint offre des perspectives intéressantes comme un outil de lutte
contre le problème de l’ambiguïté et compréhensible dans le contexte de IE. Il est fait
valoir que, pour les notions de qualité, il est comparativement plus facile d’élaborer
en phrases négatives, que autrement avec seulement phrases affirmatif. Résultats
avec les enquêtes ont confirmé que des concepts qualité exprimé en négation est
plus naturel que une exprimé en que des phrase affirmatif. Dans le contexte de l’IS,
il peut être utilisé avec succès comme il semble plus ou moins naturel et intuitif
que ceux positive. Nos exemples ont manifesté que, un bon mélange de phrases
affirmatives et négatives peut fournir en vue de la profondeur implications d’une
exigence de qualité. Les entretiens confirment que l’utilisateur peut préférer des
phrases négatives et ils peuvent venir plus intuitivement. Argument fondamental
est que, si certaines phrases semblent être naturelles, elles sont facilement comprises

204 Résume en Français: Approche Globale d’Ingénierie Systèmes

et acceptées. La négation est naturelle dans une langue naturelle, de sorte qu’ils
devraient n’être pas bannis pour rédiger les besoins plutôt que de les utiliser comme
un outil.

On voit également que, avec l’aide de la négation, le cas de test peut être plus
facilement conçu pour les exigences difficiles à comprendre.

B.5 Gestion des Exigences et de la Traçabilité

Les activités de gestion des exigences (GE) concernent toutes les activités qui sont
liées à leur manipulation, c’est à dire, la priorisation, la mise en œuvre, la négociation
et la traçabilité. La gestion des exigences est tout au sujet de la façon dont les
exigences sont effectuées tout au long du cycle de vie du projet. Les activités de
gestion des exigences sont directement responsables à la qualité du produit final. Un
processus de GE éprouvée permettra d’accroître la confiance des utilisateurs dans le
produit. Il peut aider à réduire l’incertitude de la réussite d’un projet ou d’échec.

L’IE doit fournir la traçabilité des exigences, ce qui est l’une des activités recom-
mandées pour le processus de développement du projet. La traçabilité des exigences
dans les projets d’IS est beaucoup plus prisée en raison de leur longue durée de vie.
Nous montrons que notre approche peut fournir la bonne traçabilité de l’activité
d’ingénierie droite avec moins d’effort.

Les Contributions sur la Traçabilité

Le problème de la traçabilité est divisée en plusieurs sous-problèmes : la création,
la production, la maintenance, l’estimation des coûts, etc., de la traçabilité des
exigences. Solutions systématiques sont conçus dans le cadre de la traçabilité pré-
exigence et post-exigence de traçabilité, les relations nécessaires et minimum sont
identifiés pour fournir la traçabilité pour les pré-exigence et post-exigence. Mesures
appropriées pour modéliser la politique de traçabilité avec but et le retour sur in-
vestissement sont fournis, qui peut ensuite être utilisée pour la prise des les décisions.

Nous avons fourni un processus de création de trace qui peut être facilement
mis en œuvre semi-automatiquement. L’approche de la traçabilité et à la fois pré-
exigence et post-exigence traçabilité, avec le niveau de granularité souhaité comme
exigé par l’acteur ou de l’utilisateur. Une meilleure approche pour la maintenir de
traçabilité est conçu. Le modèle de traçabilité proposé insiste sur l’entretien avec
une maintenance efficace régimes. Technique de maintenir de trace permet de portée
de solution intéressante au problème de la trace ballants, ce qui peut immensément
contribuer à réduire la pénibilité du processus de traçage. La solution offre une
solution plausible à la problème de la perte de l’information, comme les informations
généré dans le processus de développement toujours reste dans le système pour
fournir l’exacte retrace de l’évolution du système.

Avec la facilité dans le processus de maintien trace le coût de maintenir peut
être réduit sensiblement. La problème de pointeur ballant est résolu, l’effort dans
l’entretien est réduites et donc moins de temps et moins de ressources humaines

La Prise de Décision et Résolution de Conflit 205

sont engagé à faire la même tâche. Le logiciel sur lequel il est mis en œuvre est une
plateforme composite pour l’ingénierie des exigences, leur gestion, la modélisation de
système et pour le processus décisionnel, appelé SysEngLab. Module de l’ingénierie
des exigences est implémenté comme la CReML avec le module de traçabilité des
exigences pour leur gestion.

Notre approche peut être utilisée comme un outil pour organiser la complexité
dans la conception du système composite en fournissant des prêts à utiliser la traça-
bilité de l’étape précédente. Pourtant, surmonter les problèmes sociaux de problème
de traçabilité reste une tâche difficile et plus de travail de recherche doit être fait
pour relever les défis en matière de traçabilité.

L’idée de base de notre méthodologie est de rendre le processus de traçabilité des
exigences de plus en plus réactive et formel avec sémantique précise des relations.
Nous sommes impatients de fournir des moyens d’intégrer notre approche cohérente
avec les outils de soutien du UML/SysML.

Les Contributions sur le Stratégie de Traçabilité

On a proposé des mesures appropriées pour modéliser la politique de traçabilité
orientée des buts, et le retour sur investissement, qui peut ensuite être utilisée pour
la prise des décisions.

La matrice de préférence des parties prenantes permet à l’ingénieur des systèmes
d’investir convenablement vers les sensibilités des parties prenantes à la traçabilité
des justifications et des exigences du cycle de vie. Cela permet d’associer les diverses
exigences avec leurs utilisateurs finaux qui sont plus exigeants pour leur traçabil-
ité correspondant, avant de commencer le projet. Le partage de cette matrice de
préférence des parties prenantes avec d’autres organisations ou des projets peut aussi
être utile et peut être utile de fournir des modèles de délibéré traçage.

Comme dans toute organisation de toutes les parties prenantes sont classés et
pondérés avant le coup de départ du projet, le produit des poids des parties prenantes
et des préférences des parties prenantes, matrices des parties prenantes et justifi-
cations, donne un aperçu du montant de l’avantage par rapport aux exigences en
matière de traçabilité particulier fournira. Cette information peut être très utile lors
de la planification du budget de la traçabilité.

B.6 La Prise de Décision et Résolution de Conflit

Dès que les conditions sont fixés, divers modèles de comportement du système sont
proposées. Suivant, ces modèles de comportement sont allouées physiquement aux
sous-systèmes et composants. À cette étape, différents problèmes se posent: com-
ment choisir le meilleur ensemble de sous-systèmes et composants pour implémenter
le comportement et les services demandés par les exigences. Comme il existe de
nombreux ensemble de solutions fonctionnelles ou physiques proposées, il devient
fastidieuse tâche d’analyser les différentes configurations possibles pour la concep-
tion du système. Souvent, c’est le cas de la décision multicritère. Dans une prise

206 Résume en Français: Approche Globale d’Ingénierie Systèmes

de décision multicritère, cette étape de pondération des critères est très critique
pour le choix du bon produit. Souvent, ces critères sont tracés de retour à un en-
semble d’intervenants multidisciplinaires qui participent au processus d’évaluation.
Habituellement, ces intervenants diffèrent sur leur pondération de cet ensemble par-
ticulier de critères avec d’autres parties prenantes.

Dans un projet d’IS, la prise de décision et les conflits sont phénomène om-
niprésent, les décisions sont nécessaires et prises, dès que le processus d’identification
des parties prenantes commence.

Comme, Projet de développement IS implique une interaction entre plusieurs
disciplines, chacun ayant plus ou moins vague compréhension de l’autre, ce qui
conduit souvent à l’émergence de conflits au cours du projet à mesure qu’il pro-
gresse. Certains conflits ont besoin efforts tacites et sont résolus mutuellement,
mais quelques-uns d’entre eux sont de graves conflits. Ces graves conflits doivent
être résolus afin de passer par le développement du projet. De même, l’évaluation et
le choix d’une architecture de droite ou du composant exige des efforts de plusieurs
décideurs ou des intervenants.

Les besoins des utilisateurs ont été générés et transformés dans les exigences
du système et plus tard dans l’architecture du système, les composants, sous-
composants,. . . Souvent, les organisations suivant les principes de la IS, modèle
plusieurs alternatives aux architectures de systèmes, qui sont ensuite comparés et
évalués sur plusieurs critères pour choisir le meilleur. Divers intervenants ayant des
différences de prioriser leurs besoins, présentent souvent sous conflit les uns avec les
autres. Ces conflits entre les parties prenantes peuvent se produire à tout moment
durant le cycle de vie du produit.

Contributions sur la Pondération des Critères

Nous avons proposé une technique de pondération sur le critères, qui permet
d’assimiler les différents poids des critères des différentes parties prenantes à fournir
un seul ensemble de critères poids qui peut être uniformément acceptée par tous les
différents décideurs. L’approche s’appelle pondération de l’ordre au risque d’utilité
(UROW). Les principales contributions sont les suivantes:

— Il fournit un moyen holistique pour intégrer les différents poids des critères des
différentes parties prenantes à fournir un éventail de poids critère l’aide de la
modélisation des préférences classique.

— Il montre que la façon dont toutes les parties sont uniformément satisfaits de
la technique proposée.

Dans ce travail actuel, nous avons fourni une théorie des systèmes de la façon dont les
poids des critères peuvent être obtenus en utilisant la théorie classique de la modéli-
sation des préférences. Cette approche offre de nombreux avantages par rapport aux
autres avec les approches existantes. Habituellement, dans le projet de l’ingénierie
des systèmes, les ingénieurs s’appuient sur leur intuition pour donner poids et une

Approche Globale 207

utilisation ultérieure autre technique de combiner les préférences des différents dé-
cideurs. Notre approche fournit un formalisme de cette intuition d’ingénieur sys-
tèmes et fournit donc le raisonnement pour les différents poids obtenus. Notre
approche est très facile à comprendre et à utiliser et exige très faible charge cogni-
tive des ingénieurs. Il permet de fournir officiellement les résultats en utilisant les
fonctions d’utilité tirés du décideur, risque couchée, l’aversion au risque ou risque
neutre, il fournit un mécanisme permettant de les combiner ensemble pour trouver
une solution uniforme acceptable.

Contributions sur la Méthodologie de Prise de Décision

Nous avons fourni une méthodologie à utiliser la technique des critères de pondéra-
tion holistique de prendre une décision basée sur la valeur du système prévu par
la partie prenante à la clientèle (fournisseur de valeur du système) exécuté par les
experts en la matière. Afin de fournir le maximum de satisfaction des caractéris-
tiques et des services dont ils avaient besoin avec la qualité et les contraintes qu’ils
imposées aux développeurs. Nous avons classé les différents acteurs en fonction des
différents rôles qu’ils jouent dans la réalisation d’un projet d’ingénierie des systèmes
décisionnels.

B.7 Approche Globale

Figure 5.1, indique la méthodologie globale proposée sous forme de diagramme de
Gantt. Concepts développés précédemment sont utilisés et intégrés dans un ordre
chronologique de leur utilisation au cours du cycle de vie du développement. La
méthodologie proposée peut être divisé en huit sections principalement. Les six
premiers phase concernent la IE, la conception et les méthodes de prise de décision
et sont de cœur de notre méthodologie globale. Après l’étude de faisabilité de
la première phase du projet, une fois le projet reçoit le signal vert de l’autorité
nécessaire, le lancement du projet commence.

Première phase: Dans la première étape, principaux parties prenantes du
système sont identifiées. Récit utilisateur, des interviews et autres déclarations
de leur part sont rassemblés. Dans l’étape suivante, les autres parties prenantes
secondaires sont identifiées et leurs déclarations, témoignages d’utilisateurs, etc.,
sont rassemblées. Suite à l’analyse des déclarations des parties prenantes de la
modélisation de contexte du système en cours de conception est lancée. L’étape
suivante consiste à la pondération des différents acteurs qui sont les clients potentiels
du système.

Deuxième phase: La première étape de la deuxième phase prend en entrée les
récit utilisateurs précédemment collectées et d’autres récits, différentes déclarations
des intervenants et définit les objectifs (état qu’ils veulent réaliser) des différentes
parties prenantes. Dans l’étape suivante, leurs justifications sont identifiées et car-
tographiées sous forme de graphique. Suite à cela, les intervenants sont invités à
pondérer les différents objectifs identifiés par les ingénieurs des exigences. Dans l’

208 Résume en Français: Approche Globale d’Ingénierie Systèmes

étape suivante, les besoins de traçabilité des acteurs sont identifiés en vue de for-
muler des politiques de traçabilité exigées par les acteurs et institutions impliqués
dans le projet. Les politiques de traçabilité pour le projet sont conçus et configurés
selon les besoins des parties prenantes. Le processus de traçabilité commence pour
le projet conformément aux politiques souhaitées par les intervenants. Les besoins
des artefacts produits jusqu’à maintenant sont tracées pour les parties prenantes et
leurs témoignages d’utilisateurs, déclarations, etc.

Troisième phase: Objectifs préalablement identifiés des parties prenantes sont
prises en entrée et un ensemble d’objectifs sont identifiés, qui, lorsqu’il est accompli
permis d’atteindre les objectifs. Dans la prochaine étape, les objectifs fixés soient
marqués comme facultatifs ou de base en fonction de leur importance perçue par
les ingénieurs d’exigences et validées ultérieurement par les parties prenantes vis-
à-vis des contraintes, sortant de leur côté. L’étape suivante consiste à identifier
les points de vue qui sont d’intérêt pour le système, les ingénieurs d’exigence et
les parties prenantes. Analyse des objectifs préalablement identifiés à la lumière
des points de vue identifiés conduit à la détermination des objectifs potentiellement
contradictoires. Dans l’étape suivante traçabilité besoins des parties prenantes vis-
à-vis des points de vue identifié est suscité et les politiques en matière de traçabilité
sont affinés pour chaque partie prenante. La dernière étape de la troisième phase se
concentre sur l’identification des contraintes imposées au système par l’intervenant.
Les objectifs et les points de vue déjà identifiés faciliter cette tâche et histoires
d’utilisateurs recueillies précédemment et déclarations constituent la contribution à
cette tâche.

Quatrième phase: Quatrième phase commence avec contrôles sur l’ambiguïté
des artefacts des exigences et des déclarations déjà produites. Les exigences am-
biguës sont traitées et rendues sans ambiguïté en utilisant des techniques appro-
priées, telles que les techniques de négation ou d’autres signalées dans la littérature.
Conception de cas-tests peut être effectuée une fois que les objectifs et les contraintes
sont traitées à l’ambiguïté. Un objectif ambigu serait difficile d’être associé à des
cas-tests. Une fois le test-cas pour les objectifs et les contraintes ont été conçus, le
processus de transformation des objectifs en exigences système démarre. Exigences
du système sont établies à partir des différents points de vue, qui leur permettent
d’être quantifiés, précis et mesurables. Modélisation du système peut être lancé une
fois quelques-unes des exigences du système sont disponibles, en tenant entrées de
la modélisation de contexte précédemment effectués de l’environnement du système.
Cas-test pour les exigences du système sont conçus à ce stade, une fois un ensemble
d’exigences de système sont disponibles.

Cinquième étape: Cette phase commence par l’identification des fonction-
nalités exigées par les exigences du système précédemment identifiés. Il est suivi
par la conception des architectures fonctionnelles différentes, qui peuvent fournir
le accommoder les fonctionnalités souhaitées. Une fois les architectures fonction-
nelles sont disponibles pour les ingénieurs d’exigence, leur évaluation est effectuée
et une sélection est faite pour la mise en œuvre. Ensuite, les différentes architec-
tures structurels potentiels sont identifiés pouvant supporter les architectures fonc-

Conclusion 209

tionnelles proposées. Il est suivi par l’évaluation des architectures de structure et
d’une sélection de mise en œuvre finale. Enfin, des cas-tests pour les architectures
fonctionnelles et structurelles sont identifiés.

Sixième étape: La conception détaillée des architectures fonctionnelles et
structurelles est effectuée et les spécifications de conception précises sont établies.
Les cas de tests pour les spécifications de conception des fonctions et structures
sont décidées. Elle est suivie par l’identification d’alternatives pour la mise en œu-
vre physique des composants. Une fois que l’ensemble des solutions de rechange
est disponible pour le concepteur et experts en la matière (PME), l’évaluation des
solutions de rechange/composants peut être réalisée, et la sélection finale sont faites
pour la mise en œuvre. Avant la mise en œuvre physique tests unitaires sont effectués
sur les composants matériels.

Septième phase: Tous les composants nécessaires sont acquis ou fabriqués et
la mise en œuvre du système est réalisée au cours de cette phase. Tous les sous-
systèmes sont intégrés à réaliser l’ensemble du système. Tous les composants logiciels
sont installés et le système est préparé pour les différentes épreuves.

Huitème Phase: Tests d’intégration prédéfinie est effectuée sur le système,
suivis de la vérification, la vérification du système de sous-système et, enfin, les
tests de validation du système sont effectuées. Après avoir passé avec succès toutes
les procédures d’essai le système est prêt pour la livraison.

B.8 Conclusion

Nous avons présenté dans cette thèse une approche globale pour l’ingénierie des
exigences et des activités de prise de décision, pour un projet d’IS. Une théorie des
besoins a été présenté dans le but de mieux comprendre les exigences et les autres
notions qui lui sont liées.

Nous avons traité d’autres questions relatives aux exigences en langue naturelles
telles que l’ambiguïté et compréhensibilité. Mis au point des méthodes pour éviter
toute ambiguïté en utilisant négation et les ont utilisés pour la négociation des
cas de test. Quelques-uns des enquêtes ont été menées pour renforcer la croyance
dans les formulations théoriques et les résultats sont encourageants. Technique de
négation restreint offre des perspectives intéressantes comme un outil de lutte contre
le problème de l’ambiguïté et compréhensible dans le contexte d’IE.

Nous avons présenté dans cette thèse une approche de la traçabilité des exi-
gences pour un projet d’IS. Nous avons donné la distinction entre la traçabilité des
exigences pour un système intensif de logiciels et de systèmes intensifs de matériel
(systèmes cyber-physiques). Nous avons utilisé la littérature existante pour formuler
une schéma et stratégie du traçabilité complète de l’exigence. Cette thèse a égale-
ment présenté une méthodologie d’ingénierie des systèmes pour quelques-uns des
problèmes de traçabilité existantes dans la littérature. Nous avons identifié de blocs
des trace d’avoir huit types de valeurs distinctes, qui peuvent fournir la traçabilité
tout au long de la V-modèle de développement du projet. Nous avons fourni une

210 Résume en Français: Approche Globale d’Ingénierie Systèmes

plate-forme pour relier ces blocs de traces avec diverses relations avec les artefacts
générés tout au long du cycle de vie et les exigences. Nous avons vu que la mise
en place complète et fiable lien de traçabilité est un processus à double sens: vers
l’avant et vers l’arrière. Informations de traçabilité des exigences demeure une en-
tité précieuse pour les entreprises impliquées dans de grands projets où de nouveaux
projets peuvent trouver inspirations des projets antérieurs. Informations de traça-
bilité des exigences reste valable même après la fin du projet et le produit est retiré
du service.

Nous avons montré que les différents réglages du bloc de la traçabilité des ex-
igences peut être utilisé pour différentes activités de gestion des produits: gestion
de configuration, gestion des impacts du changement, la maintenance, le système
de mise à gradation, la réutilisation des produits, la gestion des versions, la com-
préhension du système, etc. Une telle utilisation du jeu de blocs de traces facilite
ces tâches fastidieuses, comme les données requises sont facilement disponibles, et
réduit en fin de compte la consommation des ressources.

Nous avons formulé paramètres pour la modélisation de la politique de traçabilité
purposed et retour sur investissement. Nous avons fourni un processus de création
de trace qui peut être facilement mis en œuvre semi-automatique. L’approche de la
traçabilité et à la fois pré-condition et post-exigence de traçabilité, avec le niveau
de granularité souhaité comme exigé par l’acteur ou de l’utilisateur. Le logiciel
sur lequel il est mise en œuvre est une plate-forme composite pour l’ingénierie des
exigences, la conception du système, la simulation et la prise de décisions appelé
SysEngLab.

L’automatisation entièrement fiable de traçabilité compréhensif dans un projet
reste une activité difficile et loin d’être réalisable. Les politiques de relance de
traçabilité à base de recherche d’information ont encore des problèmes avec rappel
complet et une précision satisfaisante.

Nous avons vu que la traçabilité des exigences est un processus itératif. Une
approche semi-automatique est un meilleur choix pour la réalisation de la traça-
bilité des exigences, avec la participation de l’homme convenable. Une activité de
traçabilité des exigences soigneusement réalisée est une énorme source de connais-
sances pour l’ensemble de l’entreprise, pour les projets actuels et futurs, y compris
l’ensemble du cycle de vie du produit. Nous avons l’intention de concevoir un al-
gorithme qui permet de déterminer automatiquement les relations entre les diverses
exigences.

Autre contribution importante de cette thèse est d’intégrer les contributions
mentionnées précédemment de manière à fournir une méthodologie pour mener à
bien les activités d’IE et prise de décision. L’exécution progressive prévue des di-
verses tâches et leur intégration est fourni et appliquée sur une étude de cas et les
résultats sont partagés.

Appendix C

List of Publications and Reports

Chapter in Books

• G.AURIOL, C.BARON, V.SHUKLA, J.Y.FOURNIOLS, “System engineering
method for system design, Systems Engineering - Practice and Theory,” Boris
Cogan (Eds), InTech, 354p., NřISBN 978-953-51-0322-6, Mars 2012, pp.201-
216 .

International Journal

• V.SHUKLA, G.AURIOL, “A survey on contemporary requirement trace-
ability techniques” demande de modifications mineures, INCOSE Systems
Engineering Journal (Submitted), 15 pages.

• V.SHUKLA, G.AURIOL, K.W. HIPEL, “Comprehensive Multi Criteria Deci-
sion Making Methodology for Systems Engineering”, IEEE Systems Journal,
11 pages.

International Conference with Proceedings

• V.SHUKLA, K.W.HIPEL, G.AURIOL, “Negotiation and conflict resolution in
systems engineering: A prescriptive Approach,” 13 International Conference
on Group Decision and Negotiation, June-17-21, Stockholm, Sweden, 9 pages

• V.SHUKLA, G.AURIOL, C.BARON, H.DEMMOU, “Empowering graph
model of game theory for system design,” International Conference on
Software and Systems Engineering and their Applicat ICSSEA 2012, 23-25
octobre 2012, Paris (France), 2012, 5 pages. ,

• V.SHUKLA, G.AURIOL, C.BARON, D.ESTEVE, J.C.PASCAL,
P.ESTEBAN, M.MALBERT, “Intelligent system design tool: a compre-
hensive PDM/PLM tool,” International Conference on Software and Systems
Engineering and their Applications, ICSSEA 2012, 23-25 octobre 2012, Paris
(France), 2012, 2 pages.

212 List of Publications and Reports

• V.SHUKLA, G.AURIOL, C.BARON, X.ZHANG, “Comprehensive require-
ment traceability information and relations in project life-cycle,” INCOSE
International Symposium 2012, Rome (Italie), 9-12 Juillet 2012, 15 pages.

• V.SHUKLA, G.AURIOL, C.BARON, “Integrated requirement traceability,
multi-view modeling and decision-making,” IEEE International Systems
Conference, Vancouver (Canada), 19-22 Mars 2012, pp.406-410.

• V.SHUKLA, G.AURIOL, C.BARON, “Use of negation to improve under-
standability of natural language requirements,” Complex Systems Design &
Management (CSDM 2011), Paris (France), 7-9 Décembre 2011, 12 pages.

• V.SHUKLA, G.AURIOL, C.BARON, “A graph based requirement traceabil-
ity maintenance model,” International Conference on Software Engineering
Advances (ICSEA 2011), Barcelona (Spain), 23-28 Octobre 2011, pp.161-165.

• X.ZHANG, G.AURIOL, C.BARON, V.SHUKLA “How to think about
customer value in requirements engineering,” International Conference on
Software Engineering Advances (ICSEA 2011), Barcelona (Spain), 23-28
Octobre 2011, pp.483-486.

• G.AURIOL, C.BARON, V.SHUKLA, J.Y.FOURNIOLS, “Design and sim-
ulations of wireless sensors networks in a long range aircraft” WSEAS
International Conference on Communications, Corfu (Greece), 14-17 Juillet
2011, pp.117-124

• V.SHUKLA, G.AURIOL, “Reinventing goal-based requirements modeling"
poster CSD&M 2013,12 pages.

• V.SHUKLA, G.AURIOL, “Methodology for determining stakeholders’ criteria
weights in systems engineering” Poster CSD&M 2013, 13 page.

Reports LAAS CNRS

• V.SHUKLA, G.AURIOL, “Engineering for traceability,” Dec 2012.

• V.SHUKLA, K.W.HIPEL, G.AURIOL, “Negotiation and conflict resolution:
graph model for complex system design,” Dec, 2012.

• G.AURIOL, C.BARON, V.SHUKLA, J.M.DILHAC, J.Y.FOURNIOLS, “En-
gineering wireless sensor network in an aircraft environment,” Dec 2011.

Bibliography

[Abadi 2008] A. Abadi, M. Nisenson and Y. Simionovici. A traceability technique
for specifications. In Program Comprehension, 2008. ICPC 2008. The 16th
IEEE International Conference on, pages 103–112. IEEE, 2008. 72

[AFIS 2013] AFIS. Association Francaise de Ingénierie Systèmes.
http://www.afis.fr, 2013. 83

[Albert 2012] Vincent Albert. Support de cours en: Modélisation et simulation des
systèmes complexes. Université Paul Sabatier, Toulouse, France, September
2012. 10

[Albright 2009] S Christian Albright, Wayne L Winston and Christopher James
Zappe. Data analysis and decision making with microsoft R© excel. Cengage-
Brain. com, 2009. 118

[Altenhofen 2010] Michael Altenhofen and Achim D. Brucker. Practical issues with
formal specifications: lessons learned from an industrial case study. In Pro-
ceedings of the 15th international conference on Formal methods for in-
dustrial critical systems, FMICS’10, pages 17–32, Berlin, Heidelberg, 2010.
Springer-Verlag. 52

[Ambriola 1997] V. Ambriola and V. Gervasi. Processing natural language require-
ments. In ASE ’97: Proceedings of the 12th international conference on
Automated software engineering (formerly: KBSE), pages 36–46, Washing-
ton, DC, USA, 1997. IEEE Computer Society. 47

[Anquetil 2010] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.C. Royer,
A. Rummler and A. Sousa. A model-driven traceability framework for soft-
ware product lines. Software and Systems Modeling, vol. 9, no. 4, pages
427–451, 2010. 76

[Antoniol 2000] G. Antoniol, C. Casazza and A. Cimitile. Traceability recovery by
modeling programmer behavior. In Reverse Engineering, 2000. Proceedings.
Seventh Working Conference on, pages 240–247. IEEE, 2000. 65, 77

[Antoniol 2002] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E. Merlo.
Recovering traceability links between code and documentation. Software En-
gineering, IEEE Transactions on, vol. 28, no. 10, pages 970–983, 2002. 71,
72

[Aponte 2011] J. Aponte and A. Marcus. Improving traceability link recovery meth-
ods through software artifact summarization. In Proceedings of the 6th In-
ternational Workshop on Traceability in Emerging Forms of Software Engi-
neering, pages 46–49. ACM, 2011. 77

214 Bibliography

[Arrow 1963] K.J. Arrow. Social choice and individual values, volume 12. Yale
university press, 1963. 27, 111

[Arunski 1999] Karl Arunski, Martin James, Phil Brown and Dennis Buede. Systems
engineering Overview. In Presentation to the Texas Board of Professional
Engineers. INCOSE, September 1999. 10

[Auriol 2008] G. Auriol, C. Baron and J.-Y. Fourniols. Teaching requirements skills
within the context of a physical engineering project. In Requirements Engi-
neering Education and Training, 2008. REET ’08., pages 6 –11, sept. 2008.
50

[Ballejos 2008] Luciana C Ballejos and Jorge M Montagna. Method for stakeholder
identification in interorganizational environments. Requirements Engineer-
ing, vol. 13, no. 4, pages 281–297, 2008. 18

[Bana e Costa 1994] Carlos A Bana e Costa and Jean-Claude Vansnick.
MACBETH–An interactive path towards the construction of cardinal value
functions. International transactions in operational Research, vol. 1, no. 4,
pages 489–500, 1994. 113

[Bana e Costa. 2005] Carlos A. Bana e Costa., De Corte Jean-Marie and Vansnick
Jean-Claude. On the Mathematical Foundations of MACBETH. In Multiple
criteria decision analysis: state of the art surveys, pages 163–186. Springer,
2005. 113

[Barron 1996a] F Hutton Barron and Bruce E Barrett. Decision quality using ranked
attribute weights. Management Science, vol. 42, no. 11, pages 1515–1523,
1996. 120

[Barron 1996b] F Hutton Barron and Bruce E Barrett. The efficacy of SMARTER
Simple multi-attribute rating technique extended to ranking. Acta Psycholog-
ica, vol. 93, no. 1, pages 23–36, 1996. 120

[Bashar 2012] Md Abul Bashar, D Marc Kilgour and Keith W Hipel. Fuzzy pref-
erences in the graph model for conflict resolution. Fuzzy Systems, IEEE
Transactions on, vol. 20, no. 4, pages 760–770, 2012. 117

[Bell 1988] D.E. Bell, H. Raiffa and A. Tversky. Decision making: Descriptive,
normative, and prescriptive interactions. Cambridge University Press, 1988.
26

[Belton 2002] Valerie Belton and Theodor J Stewart. Multiple criteria decision
analysis: an integrated approach. Springer, 2002. 114

[Bernoulli 1738] Daniel Bernoulli. "Specimen Theoriae Novae de Mensura Sortis,"
Commemarii Academiae Scientiarum Imperialis Petropolitanae 5, 175-192,
Translated by Louise Sommer in Bernoulli, Daniel (1954). "Exposition of a
New Theory on the Measurements of Risk.". Econometrica, 1738. 25

Bibliography 215

[Berry 2003] Daniel M. Berry, Erik Kamsties and Michael M. Krieger. From Con-
tract Drafting to Software Specification: Linguistic Sources of Ambiguity,
2003. Version 1.0. 47, 48, 50, 51, 53

[Berry 2004] Daniel M. Berry and Erik Kamsties. Ambiguity in Requirements Spec-
ification. In Julio Cesar Sampaio do Prado Leite and Jorge Horacio Doorn,
editeurs, Perspectives on Software Requirements, pages 7–44. Kluwer, 2004.
47, 53

[Berry 2005] Daniel M. Berry and Erik Kamsties. The Syntactically Dangerous All
and Plural in Specifications. IEEE Software, vol. 22, no. 1, pages 55–57,
2005. 47

[Boehm 1995] B. Boehm, P. Bose, E. Horowitz and M.J. Lee. Software requirements
negotiation and renegotiation aids: A theory-W based spiral approach. In
Software Engineering, 1995. ICSE 1995. 17th International Conference on,
pages 243–243. IEEE, 1995. 27

[Boehm 1998] B. Boehm and A. Egyed. Software requirements negotiation: some
lessons learned. In Software Engineering, 1998. Proceedings of the 1998
International Conference on, pages 503–506. IEEE, 1998. 27

[Boehm 2001] B. Boehm, P. Grunbacher and R.O. Briggs. Developing groupware
for requirements negotiation: lessons learned. Software, IEEE, vol. 18, no. 3,
pages 46 –55, may 2001. 27

[Bolchini 2003] D. Bolchini and J. Mylopoulos. From task-oriented to goal-oriented
Web requirements analysis. In Web Information Systems Engineering, 2003.
WISE 2003. Proceedings of the Fourth International Conference on, pages
166–175, 2003. 32

[Bottomley 2000] Paul A. Bottomley, John R. Doyle and Rodney H. Green. Testing
the Reliability of Weight Elicitation Methods: Direct Rating versus Point
Allocation. Journal of Marketing Research, vol. 37, no. 4, pages pp. 508–513,
2000. 119

[Brans 2005] Jean-Pierre Brans and Bertrand Mareschal. PROMETHEE methods.
In Multiple criteria decision analysis: state of the art surveys, pages 163–186.
Springer, 2005. 24, 113

[Bryson 2011] J.M. Bryson. Strategic planning for public and nonprofit organiza-
tions: A guide to strengthening and sustaining organizational achievement.
Bryson on Strategic Planning. Wiley, 2011. 110, 127

[Buede 2011] D.M. Buede. The engineering design of systems: Models and methods.
Wiley Series in Systems Engineering and Management. Wiley, 2011. 19

[Čančer 2012] Vesna Čančer. Criteria weighting by using the 5Ws & H technique.
Business Systems Research, vol. 3, no. 2, pages 41–48, 2012. 121

216 Bibliography

[Capobianco 2009] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella and
S. Panichella. Traceability recovery using numerical analysis. In Reverse
Engineering, 2009. WCRE’09. 16th Working Conference on, pages 195–204.
IEEE, 2009. 73

[Carroll 1995] John M Carroll. Scenario-based design: envisioning work and tech-
nology in system development. 1995. 36

[Castro 2002] Jaelson Castro, Manuel Kolp and John Mylopoulos. Towards
requirements-driven information systems engineering: the Tropos project. In-
formation Systems, vol. 27, no. 6, pages 365 – 389, 2002. 37, 38

[Chen 1992] Shu-Jen Chen and Ching-Lai Hwang. Fuzzy multiple attribute decision
making methods. Springer, 1992. 113

[Chen 2011] X. Chen, J. Hosking and J. Grundy. A combination approach for
enhancing automated traceability:(NIER track). In Software Engineering
(ICSE), 2011 33rd International Conference on, pages 912–915. IEEE, 2011.
76

[CLAWS 2013] CLAWS. http://www.comp.lancs.ac.uk/ucrel/claws.
http://www.comp.lancs.ac.uk/ucrel/claws, 2013. 75

[Cleland-Huang 2003] J. Cleland-Huang, C.K. Chang and M. Christensen. Event-
based traceability for managing evolutionary change. Software Engineering,
IEEE Transactions on, vol. 29, no. 9, pages 796 – 810, sept. 2003. 63, 82,
193

[Cleland-Huang 2005] J. Cleland-Huang, R. Settimi, C. Duan and X. Zou. Utilizing
supporting evidence to improve dynamic requirements traceability. In Require-
ments Engineering, 2005. Proceedings. 13th IEEE International Conference
on, pages 135–144. IEEE, 2005. 77

[Cleland-Huang 2012] Jane Cleland-Huang, Grant Zemont and Wiktor Lukasik. A
Heterogeneous Solution for Improving the Return on Investment of Require-
ments Traceability. 2012 20th IEEE International Requirements Engineering
Conference (RE), vol. 0, pages 230–239, 2012. 70

[Cramer 1728] Gabriel Cramer. Letter from Cramer to Nicholas Bernoulli. Trans-
lated by Louise Sommer in Bernoulli, Daniel (1954). "Exposition of a New
Theory on the Measurements of Risk.". Econometrica, 1728. 25

[Cysneiros 2004] Luiz M. Cysneiros and Erik Yu. Non-Functional Requirements
Elicitation. In Julio Cesar Sampaio do Prado Leite and Jorge Horacio Doorn,
editeurs, Perspectives on Software Requirements, pages 115–138. Kluwer,
2004. 48, 52

Bibliography 217

[Dagenais 2007] B. Dagenais, S. Breu, F.W. Warr and M.P. Robillard. Inferring
structural patterns for concern traceability in evolving software. In Pro-
ceedings of the twenty-second IEEE/ACM international conference on Au-
tomated software engineering, pages 254–263. ACM, 2007. 78

[Dawes 1974] Robyn M Dawes and Bernard Corrigan. Linear models in decision
making. Psychological bulletin, vol. 81, no. 2, page 95, 1974. 118

[De Lucia 2010] Andrea De Lucia, Fausto Fasano, Rocco Oliveto and Genoveffa
Tortora. Fine-grained management of software artefacts: the ADAMS sys-
tem. Software: Practice and Experience, vol. 40, no. 11, pages 1007–1034,
2010. 82, 102

[Deerwester 1990] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer and
R. Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, vol. 41, no. 6, pages 391–407, 1990. 72

[Denger 2003] Christian Denger, Daniel M Berry and Erik Kamsties. Higher quality
requirements specifications through natural language patterns. In Software:
Science, Technology and Engineering, 2003. SwSTE’03. Proceedings. IEEE
International Conference on, pages 80–90. IEEE, 2003. 48, 49, 50

[Diakoulaki 1995] Danae Diakoulaki, George Mavrotas and Lefteris Papayannakis.
Determining objective weights in multiple criteria problems: the CRITIC
method. Computers & Operations Research, vol. 22, no. 7, pages 763–770,
1995. 118, 119

[do Prado Leite 1993] Julio Cesar Sampaio do Prado Leite and Ann Paula M.
Franco. A Strategy for Conceptual Model Acquisition. In Proceedings of the
First International Symposium on Requirements Engineering, pages 243–246.
IEEE Computer Society Press, 1993. 48

[Doyle 1997] John R Doyle, Rodney H Green and Paul A Bottomley. Judging rel-
ative importance: direct rating and point allocation are not equivalent. Or-
ganizational Behavior and Human Decision Processes, vol. 70, no. 1, pages
65–72, 1997. 119

[Drivalos-Matragkas 2010] Nikolaos Drivalos-Matragkas, Dimitrios S Kolovos,
Richard F Paige and Kiran J Fernandes. A state-based approach to traceabil-
ity maintenance. In Proceedings of the 6th ECMFA Traceability Workshop,
pages 23–30. ACM, 2010. 63, 82

[Dupré 1998] L. Dupré. Bugs in writing: a guide to debugging your prose. Addison-
Wesley, 1998. 47

[Easterbrook 2005] Steve Easterbrook, Eric Yu, Jorge Aranda, Yuntian Fan, Jen-
nifer Horkoff, Marcel Leica and Rifat Abdul Qadir. Do viewpoints lead to

218 Bibliography

better conceptual models? An exploratory case study. In Requirements En-
gineering, 2005. Proceedings. 13th IEEE International Conference on, pages
199–208. IEEE, 2005. 37, 39

[Eden 2013] C. Eden and F. Ackermann. Making strategy: The journey of strategic
management. SAGE Publications, 2013. 109, 110, 127

[Edwards 1977] Ward Edwards. How to Use Multiattribute Utility Measurement for
Social Decisionmaking. Systems, Man and Cybernetics, IEEE Transactions
on, vol. 7, no. 5, pages 326–340, 1977. 119, 120

[Edwards 1994] Ward Edwards and F Hutton Barron. SMARTS and SMARTER:
Improved simple methods for multiattribute utility measurement. Organiza-
tional Behavior and Human Decision Processes, vol. 60, no. 3, pages 306–325,
1994. 120

[Egyed 1997] A. Egyed, B. Boehmet al. Analysis of System Requirement Negotiation
Behavior Patterns. In Proceedings of INCOSE, pages 269–276, 1997. 28

[Egyed 2001] A. Egyed. A scenario-driven approach to traceability. In Proceedings
of the 23rd international conference on Software engineering, pages 123–132.
IEEE Computer Society, 2001. 74

[Egyed 2002] A. Egyed and P. Grunbacher. Automating requirements traceability:
Beyond the record & replay paradigm. In Automated Software Engineering,
2002. Proceedings. ASE 2002. 17th IEEE International Conference on, pages
163–171. IEEE, 2002. 74

[Egyed 2003] A. Egyed. A scenario-driven approach to trace dependency analysis.
Software Engineering, IEEE Transactions on, vol. 29, no. 2, pages 116–132,
2003. 74

[Egyed 2004a] A. Egyed. Resolving uncertainties during trace analysis. In ACM
SIGSOFT Software Engineering Notes, volume 29, pages 3–12. ACM, 2004.
74

[Egyed 2004b] A. Egyed and P. Grunbacher. Identifying requirements conflicts and
cooperation: How quality attributes and automated traceability can help. Soft-
ware, IEEE, vol. 21, no. 6, pages 50–58, 2004. 74

[Egyed 2005a] A. Egyed and P. Grünbacher. Supporting software understanding
with automated requirements traceability. International Journal of Software
Engineering and Knowledge Engineering, vol. 15, no. 05, pages 783–810,
2005. 74

[Egyed 2005b] Alexander Egyed, Stefan Biffl, Matthias Heindl and Paul Grün-
bacher. A value-based approach for understanding cost-benefit trade-offs dur-
ing automated software traceability. In Proceedings of the 3rd international

Bibliography 219

workshop on Traceability in emerging forms of software engineering, TEFSE
’05, pages 2–7, New York, NY, USA, 2005. ACM. 70, 84

[Egyed 2007] A. Egyed, G. Binder and P. Grunbacher. STRADA: A tool for
scenario-based feature-to-code trace detection and analysis. In Software
Engineering-Companion, 2007. ICSE 2007 Companion. 29th International
Conference on, pages 41–42. IEEE, 2007. 74

[EIA632 2005] EIA632. Processes for Engineering Systems. Electronics Industry
Association, 2005. 6, 8, 21, 33, 35, 36, 83

[Eng 2002] Jeremy Dick BSc Eng. Doors: A tool to manage requirements. In Re-
quirements engineering, pages 187–204. Springer, 2002. 83

[Eveleens 2010] J.L. Eveleens and C. Verhoef. The rise and fall of the Chaos report
figures. Software, IEEE, vol. 27, no. 1, pages 30 –36, 2010. 1, 36

[Fabbrini 2000] F Fabbrini, M Fusani, S Gnesi and G Lami. Quality evaluation
of software requirement specifications. In Proceedings of the Software and
Internet Quality Week 2000 Conference, pages 1–18, 2000. 48

[Fabbrini 2001a] F. Fabbrini, M. Fusani, S. Gnesi and G. Lami. The Linguistic
Approach to the Natural Language Requirements Quality: Benefit of the use
of an Automatic Tool. Software Engineering Workshop, Annual IEEE/NASA
Goddard, vol. 0, page 97, 2001. 48, 50

[Fabbrini 2001b] F. Fabbrini, M. Fusani, S. Gnesi and G. Lami. The Linguistic
Approach to the Natural Language Requirements Quality: Benefit of the use
of an Automatic Tool. Software Engineering Workshop, Annual IEEE/NASA
Goddard, vol. 0, page 97, 2001. 50

[Fang 1993] L. Fang, K.W. Hipel and D.M. Kilgour. Interactive decision making:
The graph model for conflict resolution. Wiley New York, 1993. 27, 108,
117, 118, 125

[Figueira 2002] José Figueira and Bernard Roy. Determining the weights of criteria
in the ELECTRE type methods with a revised Simos’ procedure. European
Journal of Operational Research, vol. 139, no. 2, pages 317–326, 2002. 121

[Fishburn 1970] P.C. Fishburn. Utility theory for decision making. Rapport tech-
nique, DTIC Document, 1970. 25, 27, 112, 125

[Flores 2010] Fernando Flores, Manuel Mora, Francisco ÃĄlvarez, Laura Garza and
Hector Duran. Towards a Systematic Service-oriented Requirements Engi-
neering Process (S-SoRE). In JoÃčoEduardo Quintela VarajÃčo, Maria-
Manuela Cruz-Cunha, GoranD. Putnik and AntÃşnio Trigo, editeurs, EN-
TERprise Information Systems, volume 109 of Communications in Computer
and Information Science, pages 111–120. Springer Berlin Heidelberg, 2010.
36

220 Bibliography

[Forsberg 1995] Kevin Forsberg and Harold Mooz. The relationship of system engi-
neering to the project cycle. 1995. 16

[Foures 2013] D. Foures, V. Albert and A Nketsa. Simulation validation using the
compatibility between Simulation Model and Experimental Framework. In
proceedings of the Summer Simulation Conference (SCS 13), 2013. 153

[Freeman 2010] R.E. Freeman. Strategic management: A stakeholder approach.
Strategic Management: A Stakeholder Approach. Cambridge University
Press, 2010. 18

[French 2000] S. French and D.R. Insua. Statistical decision theory. Kendall’s Li-
brary of Statistics Series. Arnold, 2000. 26

[Fuchs 1996] Norbert E Fuchs and Rolf Schwitter. Controlled english for require-
ments specification. IEEE Computer Special Issue on Interactive Natural
Language Processing, 1996. 49

[Galvao 2007] I. Galvao and A. Goknil. Survey of traceability approaches in model-
driven engineering. In Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International, pages 313–313. IEEE, 2007. 76

[Glinz 2010] Martin Glinz. Very lightweight requirements modeling. In 18th IEEE
International Requirements Engineering Conference, pages 385–386, 2010.
37

[Glinz 2011] Martin Glinz. A Glossary of Requirements Engineering Terminology.
2011. 21, 31, 32

[Goguen 1993] Joseph A. Goguen and C. Linde. Techniques for requirements elicita-
tion. In Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on, pages 152–164, 1993. 19

[Gotel 1994] O.C.Z. Gotel and CW Finkelstein. An analysis of the requirements
traceability problem. In Requirements Engineering, 1994., Proceedings of the
First International Conference on, pages 94–101. IEEE, 1994. 62, 63, 70

[Gotel 2011] O.C.Z. Gotel and S.J. Morris. Out of the labyrinth: Leveraging other
disciplines for requirements traceability. In Requirements Engineering Con-
ference (RE), 2011 19th IEEE International, pages 121–130. IEEE, 2011. 62,
63

[Gotel 2012a] O. Gotel, J. Cleland-Huang, J.H. Hayes, A. Zisman, A. Egyed,
P. Grunbacher and G. Antoniol. The quest for Ubiquity: A roadmap for
software and systems traceability research. In Requirements Engineering Con-
ference (RE), 2012 20th IEEE International, pages 71 –80, sept. 2012. 22,
70

Bibliography 221

[Gotel 2012b] O. Gotel, J. Cleland-Huang, J.H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol and J. Maletic. The Grand Chal-
lenge of Traceability (v1. 0). Software and Systems Traceability, pages 343–
409, 2012. 22, 64, 70

[Greco 2004] S. Greco. Multiple criteria decision analysis: State of the art sur-
veys. International Series in Operations Research & Management Science.
Springer, 2004. 27

[Gross 2007] H.G. Gross, M. Lormans and J. Zhou. Towards software component
procurement automation with latent semantic analysis. Electronic Notes in
Theoretical Computer Science, vol. 189, pages 51–68, 2007. 72

[Grossman 2004] D.A. Grossman and O. Frieder. Information retrieval: Algorithms
and heuristics, volume 15. Springer, 2004. 70

[Grundy 1999] John Grundy. Aspect-oriented requirements engineering for
component-based software systems. In Requirements Engineering, 1999. Pro-
ceedings. IEEE International Symposium on, pages 84–91. IEEE, 1999. 36

[Gutman 1989] M. Gutman. Asymptotically optimal classification for multiple tests
with empirically observed statistics. Information Theory, IEEE Transactions
on, vol. 35, no. 2, pages 401–408, 1989. 72

[Haimes 1974] Yacov Y Haimes and Warren A Hall. Multiobjectives in water re-
source systems analysis: The surrogate worth trade off method. Water Re-
sources Research, vol. 10, no. 4, pages 615–624, 1974. 115

[Hamouda 2004] Luai Hamouda, D.Marc Kilgour and KeithW. Hipel. Strength of
Preference in the Graph Model for Conflict Resolution. Group Decision and
Negotiation, vol. 13, pages 449–462, 2004. 27, 117, 125

[Hansen 2008] Paul Hansen and Franz Ombler. A new method for scoring additive
multi-attribute value models using pairwise rankings of alternatives. Journal
of Multi-Criteria Decision Analysis, vol. 15, no. 3-4, pages 87–107, 2008. 114

[Haskins 2011] Cecilia Haskins and Kevin Forsberg. Systems engineering handbook:
A guide for system life cycle processes and activities; incose-tp-2003-002-03.2.
1. 2011. 6, 8, 9, 10, 16, 18, 62, 113, 139

[Hayes 2003] J.H. Hayes, A. Dekhtyar and J. Osborne. Improving requirements
tracing via information retrieval. In Requirements Engineering Conference,
2003. Proceedings. 11th IEEE International, pages 138–147. IEEE, 2003. 71

[Hong 2010] Youngki Hong, Minho Kim and Sang-Woong Lee. Requirements man-
agement tool with evolving traceability for heterogeneous artifacts in the entire
life cycle. In Software Engineering Research, Management and Applications
(SERA), 2010 Eighth ACIS International Conference on, pages 248–255.
IEEE, 2010. 82

222 Bibliography

[Hooks 1993] Ivy Hooks. Writing Good Requirements (A Requirements Working
Group Information Report). In Proc. Third International Symposium of the
NCOSE, volume 2, 1993. 47

[Howard 1980] Ronald A Howard. An assessment of decision analysis. Operations
Research, vol. 28, no. 1, pages 4–27, 1980. 106

[Hull 2010] E. Hull, K. Jackson and J. Dick. Requirements Engineering. Springer,
2010. 1, 31, 32

[Hull 2011] E. Hull, K. Jackson and J. Dick. Requirements engineering. Springer
London, 2011. 36, 47, 148

[Hutton Barron 1992] F Hutton Barron. Selecting a best multiattribute alternative
with partial information about attribute weights. Acta Psychologica, vol. 80,
no. 1, pages 91–103, 1992. 120

[Huyck 2000] Christian R. Huyck and Feroz abbas. Natural language processing and
requiremnents engineering: a linguistics prespective. Proc 1st Asia-Pacific
Conference on Software Quality, 2000. 47, 51

[Hwang 1981] Ching-Lai Hwang, Kwangsun Yoonet al. Multiple attribute decision
making: methods and applications: a state-of-the-art survey, volume 13.
Springer-Verlag New York, 1981. 24, 113

[IEEE 1998] IEEE. IEEE Recommended Practice for Software Requirements Speci-
fications. IEEE Std 830-1998, 1998. 8, 51

[IEEE 2005] IEEE. IEEE Standard for Application and Management of the Systems
Engineering Process. IEEE Std 1220-2005 (Revision of IEEE Std 1220-1998),
2005. 6, 8, 22, 33

[IEEE 2008] IEEE. ISO/IEC/IEEE Standard for Systems and Software Engineering
- Software Life Cycle Processes. IEEE STD 12207-2008, pages c1 –138, 2008.
8

[IEEE 2011] IEEE. Systems and software engineering – Life cycle processes –
Requirements engineering. ISO/IEC/IEEE 29148:2011(E), pages 1–94, 2011.
18, 21, 32

[INCOSE 2012] INCOSE. Guide for Writing Requirements, INCOSE-TP-2010-006-
01,V.1, April 2012, 2012. 47

[INCOSE 2013] INCOSE. Brief History of Systems Engineering.
http://www.incose.org/mediarelations/briefhistory.aspx, 2013. 10

[INRIA] INRIA. ATL, month = June, year = 2013, howpublished =
http://eclipse.org/atl/. 76

Bibliography 223

[ISO 2008] Systems and software engineering System life cycle processes. ISO/IEC
15288:2008(E) IEEE Std 15288-2008 (Revision of IEEE Std 15288-2004),
pages 1–84, 2008. 8, 11, 16, 18, 22, 31, 33, 83

[Jiménez 2003] Antonio Jiménez, Sixto Rıťos-Insua and Alfonso Mateos. A deci-
sion support system for multiattribute utility evaluation based on imprecise
assignments. Decision Support Systems, vol. 36, no. 1, pages 65–79, 2003.
120

[Jiménez 2006] Antonio Jiménez, Sixto Ríos-Insua and Alfonso Mateos. A generic
multi-attribute analysis system. Computers & operations research, vol. 33,
no. 4, pages 1081–1101, 2006. 120, 121

[Jureta 2006] I.J. Jureta, S. Faulkner and P. Schobbens. Justifying Goal Models.
In Requirements Engineering, 14th IEEE International Conference, pages
119–128, 2006. 21, 37

[Jureta 2009] I. Jureta, J. Mylopoulos and S. Faulkner. Analysis of Multi-Party
Agreement in Requirements Validation. In Requirements Engineering Con-
ference, 2009. RE ’09. 17th IEEE International, pages 57 –66, 31 2009-sept.
4 2009. 27

[Jureta 2010] I.J. Jureta, A. Borgida, N.A. Ernst and J. Mylopoulos. Techne: To-
wards a New Generation of Requirements Modeling Languages with Goals,
Preferences, and Inconsistency Handling. In Requirements Engineering Con-
ference (RE), 2010 18th IEEE International, pages 115–124, 2010. 37

[Juristo 2000] Natalia Juristo, Ana Maria Moreno and Marta López. How to use
linguistic instruments for object-oriented analysis. Software, IEEE, vol. 17,
no. 3, pages 80–89, 2000. 48, 50

[Kahneman 1979] Daniel Kahneman and Amos Tversky. Prospect theory: An analy-
sis of decision under risk. Econometrica: Journal of the Econometric Society,
pages 263–291, 1979. 26

[Kamsties 2000] Erik Kamsties and Barbara Paech. Taming Ambiguity in Natural
Language Requirements. In in Proceedings of the 13th International confer-
ence on System and Software Engineering and their Applications, volume 2,
2000. 47, 51, 53

[Kamsties 2001] Erik Kamsties, Daniel M. Berry, Barbara Paech, E. Kamsties,
D. M. Berry and B. Paech. Detecting Ambiguities in Requirements Docu-
ments Using Inspections. In in Proceedings of the First Workshop on Inspec-
tion in Software Engineering (WISE’01, pages 68–80, 2001. 47, 51

[Kamsties 2003] Erik Kamsties, Antje von Knethen and Ralf Reussner. A controlled
experiment to evaluate how styles affect the understandability of requirements
specifications. Information and Software Technology, vol. 45, no. 14, pages

224 Bibliography

955 – 965, 2003. Eighth International Workshop on Requirements Engineer-
ing: Foundation for Software Quality. 50

[Keeney 1992] Ralph L Keeney. On the foundations of prescriptive decision analysis.
Utility theories: Measurements and applications, pages 57–72, 1992. 25

[Keeney 1993] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Pref-
erences and value trade-offs. Cambridge University Press, 1993. 24, 25, 27,
112, 120, 125, 128

[Keeney 2009] R.L. Keeney. Value-focused thinking: A path to creative decision-
making. Harvard University Press, 2009. 106, 107

[Kovitz 1998] B.L. Kovitz. Practical software requirements: a manual of content
and style. PowerBuilder Developer’s Library. Manning, 1998. 47, 53

[Kovitz 2002] B. Kovitz. Ambiguity and what to do about it [requirements engineer-
ing]. In Requirements Engineering, 2002. Proceedings. IEEE Joint Interna-
tional Conference on, 2002. 47, 51

[Kuhn 2007] A. Kuhn, S. Ducasse and T. Gírba. Semantic clustering: Identifying
topics in source code. Information and Software Technology, vol. 49, no. 3,
pages 230–243, 2007. 72

[Kukreja 2012] N. Kukreja and B. Boehm. Process implications of social networking-
based requirements negotiation tools. In Software and System Process (IC-
SSP), 2012 International Conference on, pages 68–72. IEEE, 2012. 27

[Kwok 1990] KL Kwok. Experiments with a component theory of probabilistic in-
formation retrieval based on single terms as document components. ACM
Transactions on Information Systems (TOIS), vol. 8, no. 4, pages 363–386,
1990. 72

[Lange 1997] D.B. Lange and Y. Nakamura. Object-oriented program tracing and
visualization. Computer, vol. 30, no. 5, pages 63–70, 1997. 74

[Leffingwell 2003] Dean Leffingwell and Don Widrig. Managing software require-
ments: a use case approach. Addison-Wesley, 2003. 51

[Leite 2004] Julio Cesar Sampaio do Prado Leite and Jorge Horacio Doorn, editeurs.
Perspectives on software requirements. Kluwer, 2004. 52

[Li 2004a] Kevin W Li, D Marc Kilgour and Keith W Hipel. Status quo analysis in
the graph model for conflict resolution. Journal of the Operational Research
Society, vol. 56, no. 6, pages 699–707, 2004. 27, 117

[Li 2004b] K.W. Li, K.W. Hipel, D.M. Kilgour and Liping Fang. Preference uncer-
tainty in the graph model for conflict resolution. Systems, Man and Cyber-
netics, Part A: Systems and Humans, IEEE Transactions on, vol. 34, no. 4,
pages 507 – 520, july 2004. 117

Bibliography 225

[Liaskos 2010] S. Liaskos, S.A. McIlraith, S. Sohrabi and J. Mylopoulos. Integrating
Preferences into Goal Models for Requirements Engineering. In Requirements
Engineering Conference (RE), 2010 18th IEEE International, pages 135–144,
2010. 37, 148

[Lichtenstein 2007] Sharman Lichtenstein, Lemai Nguyen and Alexia Hunter. Is-
sues in IT service-oriented requirements engineering. Australasian journal of
information systems, vol. 13, no. 1, 2007. 36

[Lormans 2005] M. Lormans and A. van Deursen. Reconstructing requirements cov-
erage views from design and test using traceability recovery via LSI. In Pro-
ceedings of the 3rd international workshop on Traceability in emerging forms
of software engineering, pages 37–42. ACM, 2005. 72

[Lormans 2006] M. Lormans and A. Van Deursen. Can LSI help reconstructing re-
quirements traceability in design and test? In Software Maintenance and
Reengineering, 2006. CSMR 2006. Proceedings of the 10th European Con-
ference on, pages 10–pp. IEEE, 2006. 72

[Lucia 2007] A.D. Lucia, F. Fasano, R. Oliveto and G. Tortora. Recovering trace-
ability links in software artifact management systems using information re-
trieval methods. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 16, no. 4, page 13, 2007. 82

[Mader 2009] Patrick Mader, Orlena Gotel and Ilka Philippow. Enabling Automated
Traceability Maintenance through the Upkeep of Traceability Relations. In
RichardF. Paige, Alan Hartman and Arend Rensink, editeurs, Model Driven
Architecture - Foundations and Applications, volume 5562 of Lecture Notes
in Computer Science, pages 174–189. Springer Berlin Heidelberg, 2009. 82

[Mahajan 2004] R. Mahajan, M. Rodrig, D. Wetherall and J. Zahorjan. Experi-
ences applying game theory to system design. In Proceedings of the ACM
SIGCOMM workshop on Practice and theory of incentives in networked sys-
tems, pages 183–190. ACM, 2004. 27

[Mahmoud 2011] A. Mahmoud and N. Niu. Source code indexing for automated
tracing. In Proceedings of the 6th International Workshop on Traceability
in Emerging Forms of Software Engineering, pages 3–9. ACM, 2011. 72

[Mahoney 2012] Joseph T Mahoney. Towards a stakeholder theory of strategic man-
agement. Towards a New Theory of the Firm. Barcelona: IESE Research
Unit, forthcoming, 2012. 110

[Maletic 2003] J.I. Maletic, E.V. Munson, A. Marcus and T.N. Nguyen. Using a
hypertext model for traceability link conformance analysis. In Proc. of the
Int. Workshop on Traceability in Emerging Forms of Software Engineering,
pages 47–54, 2003. 68

226 Bibliography

[Marcus 2003] A. Marcus and J.I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Software Engineering,
2003. Proceedings. 25th International Conference on, pages 125–135. IEEE,
2003. 72

[Misra 2005] S. Misra, V. Kumar and U. Kumar. Goal-oriented or scenario-based
requirements engineering technique - what should a practitioner select? In
Electrical and Computer Engineering, 2005. Canadian Conference on, pages
2288–2292, 2005. 36

[Mitchell 1997] Ronald K. Mitchell, Bradley R. Agle and Donna J. Wood. Toward
a Theory of Stakeholder Identification and Salience: Defining the Principle
of Who and What Really Counts. The Academy of Management Review,
vol. 22, no. 4, pages pp. 853–886, 1997. 108

[MITRE 2012] Corp. MITRE. Mitre systems engineering guide. The MITRE Cor-
poration, Bedford, Massachusetts, USA, 2012. 18

[Mori 1997] R.D. Mori. Spoken dialogues with computers. Academic Press, Inc.,
1997. 72

[Murphy 1995] G.C. Murphy, D. Notkin and K. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In ACM SIGSOFT
Software Engineering Notes, volume 20, pages 18–28. ACM, 1995. 78

[Murta 2006] L.G.P. Murta, A. van der Hoek and C.M.L. Werner. ArchTrace:
policy-based support for managing evolving architecture-to-implementation
traceability links. In Automated Software Engineering, 2006. ASE’06. 21st
IEEE/ACM International Conference on, pages 135–144. IEEE, 2006. 82

[NASA 2007] Headquarters NASA. Nasa systems engineering handbook (nasa/sp-
2007-6105 rev1). Books Express Publishing, 2007. 9

[Nguyen 2005] T.N. Nguyen, C. Thao and E.V. Munson. On product versioning for
hypertexts. In Proceedings of the 12th international workshop on Software
configuration management, pages 113–132. ACM, 2005. 63, 82

[Obeidi 2005] Amer Obeidi, Keith W Hipel and D Marc Kilgour. Perception and
emotion in the graph model for conflict resolution. In Systems, Man and
Cybernetics, 2005 IEEE International Conference on, volume 2, pages 1126–
1131. IEEE, 2005. 117

[Objetiver 2013] Objetiver. http://www.objectiver.com/, Juin 2013. 37

[Ohnishi 1994] Atsushi Ohnishi. Customizable software requirements languages. In
Computer Software and Applications Conference, 1994. COMPSAC 94. Pro-
ceedings., Eighteenth Annual International, pages 5–10. IEEE, 1994. 48,
50

Bibliography 227

[OMG 2013] OMG. QVT. http://www.omg.org/spec/QVT/1.0/, 2013. 76

[Omoronyia 2011] I. Omoronyia, G. Sindre and T. Stålhane. Exploring a Bayesian
and linear approach to requirements traceability. Information and Software
Technology, vol. 53, no. 8, pages 851–871, 2011. 73

[Opricovic 1998] Serafim Opricovic. Multicriteria optimization of civil engineering
systems. Faculty of Civil Engineering, Belgrade, vol. 2, no. 1, pages 5–21,
1998. 114

[Opricovic 2002] Serafim Opricovic and Gwo-Hshiung Tzeng. Multicriteria Planning
of Post-Earthquake Sustainable Reconstruction. Computer-Aided Civil and
Infrastructure Engineering, vol. 17, no. 3, pages 211–220, 2002. 114

[Opricovic 2007] Serafim Opricovic and Gwo-Hshiung Tzeng. Extended VIKOR
method in comparison with outranking methods. European Journal of Oper-
ational Research, vol. 178, no. 2, pages 514–529, 2007. 115

[Öztürké 2005] M. Öztürké, A. Tsoukiàs and P. Vincke. Preference modelling. Mul-
tiple Criteria Decision Analysis: State of the Art Surveys, pages 27–59, 2005.
27

[Parnell 2011] G.S. Parnell, P.J. Driscoll and D.L. Henderson. Decision making in
systems engineering and management. Wiley Series in Systems Engineering
and Management. Wiley, 2011. 21, 26, 106

[Perini 2012] A. Perini, A. Susi and P. Avesani. A Machine Learning Approach to
Software Requirements Prioritization. 2012. 28

[Pinheiro 1996] F.A.C. Pinheiro and J.A. Goguen. An object-oriented tool for trac-
ing requirements. Software, IEEE, vol. 13, no. 2, pages 52–64, 1996. 82

[Pinheiro 2004] Francisco AC Pinheiro. Requirements traceability. In Perspectives
on software requirements, pages 91–113. Springer, 2004. 42, 63

[Pyster 2012] A Pyster, D Olwell, N Hutchison, S Enck, J Anthony, D Henry and
A Squires. Guide to the Systems Engineering Body of Knowledge (SE-
BoK) version 1.0. Hoboken, NJ: The Trustees of the Stevens Institute of
Technology c© 2012, 2012. 21

[Rao 1995] Anand S Rao, Michael P Georgeffet al. BDI Agents: From Theory to
Practice. In ICMAS, volume 95, pages 312–319, 1995. 31

[Rashid 2008] Awais Rashid. Aspect-oriented requirements engineering: An in-
troduction. In International Requirements Engineering, 2008. RE’08. 16th
IEEE, pages 306–309. IEEE, 2008. 36

228 Bibliography

[Regev 2005] G. Regev and A. Wegmann. Where do goals come from: the underlying
principles of goal-oriented requirements engineering. In Requirements Engi-
neering, 2005. Proceedings. 13th IEEE International Conference on, pages
353–362, 2005. 37

[Riabacke 2012] Mona Riabacke, Mats Danielson, Ekenberg Love and Aron Lars-
son. Employing Cardinal Rank Ordering of Criteria in Multi-Criteria Deci-
sion Analysis. In Proceedings of the 10th International FLINS Conference
on Uncertainty Modeling in Knowledge Engineering and Decision Making
(FLINS), 2012. 120

[Richardson 2004] J. Richardson and J. Green. Automating traceability for generated
software artifacts. In Automated Software Engineering, 2004. Proceedings.
19th International Conference on, pages 24–33. IEEE, 2004. 74

[Robertson 1977] S.E. Robertson. The probability ranking principle in IR. Journal
of documentation, vol. 33, no. 4, pages 294–304, 1977. 72

[Robertson 1994] S.E. Robertson and S. Walker. Some simple effective approxima-
tions to the 2-Poisson model for probabilistic weighted retrieval. In Proceed-
ings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 232–241. Springer-Verlag
New York, Inc., 1994. 72

[Robertson 2006] James Robertson and Suzanne Robertson. Volere: Requirements
specification template (2006). The Atlantic Systems Guild, 2006. 47

[Robinson 1990] W.N. Robinson. Negotiation behavior during requirement speci-
fication. In Software Engineering, 1990. Proceedings., 12th International
Conference on, pages 268–276. IEEE, 1990. 27

[Rolland 1992] Colette Rolland and Christophe Proix. A natural language approach
for requirements engineering. In Advanced information systems engineering,
pages 257–277. Springer, 1992. 48, 49, 50

[Roy 1968] B. Roy. Classement et choix en présence de points de vue multiples (la
méthode ELECTRE). Riro, vol. 2, no. 8, pages 57–75, 1968. 24, 114

[Roy 1973] B. Roy and P. Bertier. La Méthode ELECTRE II(Une application au
média-planning...). 1973. 24, 114

[Roy 1978] B. Roy. ELECTRE III: Un algorithme de classement fondé sur une
représentation floue des préférences en présence de critères multiples. Cahiers
du CERO, vol. 20, no. 1, pages 3–24, 1978. 24, 114

[Roy 1984] B. Roy and P. Vincke. Relational systems of preference with one or more
pseudo-criteria: Some new concepts and results. Management Science, pages
1323–1335, 1984. 27, 125

Bibliography 229

[Roy 1991] B. Roy. The outranking approach and the foundations of ELECTRE
methods. Theory and decision, vol. 31, no. 1, pages 49–73, 1991. 125

[(RWP) 2012] Requirements Working Group (RWP). Guide for writing require-
ments. INCOSE, 2012. 148

[Ryan 1993] Kevin Ryan. The role of natural language in requirements engineer-
ing. In Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on, pages 240–242, 1993. 47

[Saaty 1980] Thomas L Saaty. The analytic hierarchy process. McGraw-Hill, New
York, 1980. 112, 120, 138

[Saaty 1990] Thomas L Saaty. How to make a decision: the analytic hierarchy
process. European journal of operational research, vol. 48, no. 1, pages 9–26,
1990. 24, 112, 120, 138

[Saaty 1996] Thomas L Saaty. Decision making with dependence and feedback: The
analytic network process. 1996. 112

[Sage 2000] A.P. Sage and J.E. Armstrong. Introduction to systems engineering.
Wiley series in systems engineering. Wiley, 2000. 8, 19, 24, 106

[Sage 2009] A.P. Sage and W.B. Rouse. Handbook of systems engineering and man-
agement. Wiley series in systems engineering and management. Wiley, 2009.
108

[Salton 1975] G. Salton, A. Wong and C.S. Yang. A vector space model for automatic
indexing. Communications of the ACM, vol. 18, no. 11, pages 613–620, 1975.
71

[Salton 1988] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information processing & management, vol. 24, no. 5, pages
513–523, 1988. 71

[Savage 1954] Leonard J Savage. The foundations of statistics. John Wiley & Sons,
1954. 25

[Schwarz 2010] H. Schwarz, J. Ebert and A. Winter. Graph-based traceability: a
comprehensive approach. Software and Systems Modeling, vol. 9, no. 4, pages
473–492, 2010. 67, 82

[SEI 1994] CMU SEI. The capability maturity model: guidelines for improving the
software process. US: Addsion Wesley Longman Inc, 1994. 22

[Seibel 2010] A. Seibel, S. Neumann and H. Giese. Dynamic hierarchical mega mod-
els: comprehensive traceability and its efficient maintenance. Software and
Systems Modeling, vol. 9, no. 4, pages 493–528, 2010. 82

230 Bibliography

[Shannon 1949] Claude Elwood Shannon, Warren Weaver, Richard E Blahut and
Bruce Hajek. The mathematical theory of communication, volume 117. Uni-
versity of Illinois press Urbana, 1949. 118, 137

[Shannon 2001] Claude E Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5, no. 1,
pages 3–55, 2001. 118, 137

[Sherba 2003] S.A. Sherba, K.M. Anderson and M. Faisal. A framework for mapping
traceability relationships. In Proceedings of the 2nd International Workshop
on Traceability in Emerging Forms of Software Engineering, pages 32–39,
2003. 77

[Shukla 2011] V. Shukla, G. Auriol and C. Baron. A Graph-Based Requirement
Traceability Maintenance Model. In ICSEA 2011, The Sixth International
Conference on Software Engineering Advances, pages 161–165, 2011. 63, 94,
95

[Shukla 2012a] V. Shukla, G. Auriol and C. Baron. Integrated requirement trace-
ability, multiview modeling, and decision-making: A systems engineering
approach for integrating processes and product. In Systems Conference
(SysCon), 2012 IEEE International, pages 1–5. IEEE, 2012. 65, 196

[Shukla 2012b] V. Shukla, G. Auriol, C. Baron and X. Zhang. Comprehensive re-
quirement traceability information and relations in project life-cycle. In 22nd
Annual INCOSE International Symposium. INCOSE, 2012. 63, 98

[Shukla 2013] V. Shukla and G. Auriol. Methodology for Determining Stakeholders’
Criteria Weights in Systems Engineering. 2013. poster in CSDM 2013, Paris.
147

[Simos 1990] Jean Simos. Evaluer l’impact sur l’environnement: Une approche orig-
inale par l’analyse multicritère et la négociation. 1990. 121

[Soley 2000] Richard Soleyet al. Model driven architecture. OMG white paper,
vol. 308, page 308, 2000. 76

[Sommerville 1997] Ian Sommerville and Pete Sawyer. Requirements engineering:
A good practice guide. John Wiley & Sons, Inc., New York, NY, USA, 1st
édition, 1997. 18, 19, 31, 47, 52

[Sommerville 2010] Ian Sommerville. Software engineering (9th ed.). Pearson Edu-
cation, London, United Kingdom, 2010. 32

[Spanoudakis 2004] G. Spanoudakis, A. Zisman, E. Pérez-Minana and P. Krause.
Rule-based generation of requirements traceability relations. Journal of Sys-
tems and Software, vol. 72, no. 2, pages 105–127, 2004. 75, 84

Bibliography 231

[Spanoudakis 2005] G. Spanoudakis and A. Zisman. Software traceability: a
roadmap. Handbook of Software Engineering and Knowledge Engineering,
vol. 3, pages 395–428, 2005. 63

[Stillwell 1981] William G Stillwell, David A Seaver and Ward Edwards. A com-
parison of weight approximation techniques in multiattribute utility decision
making. Organizational Behavior and Human Performance, vol. 28, no. 1,
pages 62–77, 1981. 118

[Supakkul 2010] S. Supakkul and L. Chung. Visualizing non-functional requirements
patterns. In Requirements Engineering Visualization (REV), 2010 Fifth In-
ternational Workshop on, pages 25 –34, sept. 2010. 48

[Svahnberg 2008] M. Svahnberg, T. Gorschek, M. Eriksson, A. Borg, K. Sandahl,
J. Borster and A. Loconsole. Perspectives on Requirements Understandability
– For Whom Does the Teacher’s Bell Toll? In Requirements Engineering
Education and Training, 2008. REET ’08., pages 22 –29, sept. 2008. 48, 50

[Tjong 2008] Sri Fatimah Tjong. Avoiding ambiguity in requirements specifications.
PhD thesis, University of Waterloo, 2008. 48, 50

[Tonnellier 2012] Edmond Tonnellier and Olivier Terrien. Rework: models and met-
rics. In Complex Systems Design & Management, pages 119–131. Springer,
2012. 36

[Triantaphyllou 2000] E. Triantaphyllou. Multi-criteria decision making methods:
a comparative study, volume 11. Kluwer Academic Publishers Dordrecht,
2000. 24, 27, 112, 114, 115

[Tsoukias 1992] A. Tsoukias and P. Vincke. A survey on non conventional preference
modelling. Ricerca Operativa, vol. 61, pages 5–49, 1992. 125

[Tzeng 2002] Gwo-Hshiung Tzeng, Sheng-Hshiung Tsaur, Yiou-Dong Laiw and Ser-
afim Opricovic. Multicriteria analysis of environmental quality in Taipei:
public preferences and improvement strategies. Journal of environmental
Management, vol. 65, no. 2, pages 109–120, 2002. 114

[Ulrich 2008] K.T. Ulrich and S.D. Eppinger. Product design and development.
McGraw-Hill, 2008. 19, 24, 130

[USDoD 1993] USDoD. System Safety program requirements Appendix A: Guidance
for Implementation of System Safety Program. Department of Defense, 1993.
153

[Van Lamsweerde 2000] Axel Van Lamsweerde. Requirements engineering in the
year 00: A research perspective. In Proceedings of the 22nd international
conference on Software engineering, pages 5–19. ACM, 2000. 36

232 Bibliography

[Van Lamsweerde 2001] A. Van Lamsweerde. Goal-oriented requirements engineer-
ing: a guided tour. In Requirements Engineering, 2001. Proceedings. Fifth
IEEE International Symposium on, pages 249–262, 2001. 32, 36, 38

[van Lamsweerde 2009] A. van Lamsweerde. Requirements engineering: From sys-
tem goals to uml models to software specifications. John Wiley & Sons, 2009.
18

[Von Neumann 1937] J. Von Neumann and O. Morgenstern. Theory of games and
economic behavior. Princeton university press, 1937. 25, 117

[Von Winterfeldt 1986] D. Von Winterfeldt and W. Edwards. Decision analysis and
behavioral research. University Press, 1986. 120

[Walker 2009] Sean Bernath Walker, Keith W Hipel and Takehiro Inohara. Strate-
gic decision making for improved environmental security: coalitions and at-
titudes. Journal of Systems Science and Systems Engineering, vol. 18, no. 4,
pages 461–476, 2009. 117

[Walley 1991] Peter Walley. Statistical reasoning with imprecise probabilities.
Chapman and Hall London, 1991. 120

[Wang 1970] Marilyn W Wang and Julian C Stanley. Differential weighting: A
review of methods and empirical studies. Review of Educational Research,
vol. 40, no. 5, pages 663–705, 1970. 119

[Weng 1999] Gezhi Weng, Upinder S Bhalla and Ravi Iyengar. Complexity in bio-
logical signaling systems. Science, vol. 284, pages 92–96, 1999. 8

[Werneck 2009] Vera Maria Bejamim Werneck, Antonio de Padua Albuquerque
Oliveira and JCSdP Leite. Comparing GORE Frameworks: i-star and KAOS.
In Workshop em Engenharia de Requisitos (WER 2009), Val Paraiso, Chile,
2009. 37

[Whittle 2001] J. Whittle, J. Van Baalen, J. Schumann, P. Robinson, T. Press-
burger, J. Penix, P. Oh, M. Lowry and G. Brat. Amphion/NAV: Deductive
synthesis of state estimation software. In Automated Software Engineering,
2001.(ASE 2001). Proceedings. 16th Annual International Conference on,
pages 395–399. IEEE, 2001. 74, 76

[Wierzbicki 1998] Andrzej P. Wierzbicki and Gordon Macdonald. Reference Point
Methods in Vector Optimization and Decision Support, 1998. 113

[Wilson 1997] William M Wilson, Linda H Rosenberg and Lawrence E Hyatt. Au-
tomated analysis of requirement specifications. In Proceedings of the 19th in-
ternational conference on Software engineering, pages 161–171. ACM, 1997.
48, 50

Bibliography 233

[Wong 1991] S.K.M. Wong and YY Yao. A probabilistic inference model for infor-
mation retrieval. Information Systems, vol. 16, no. 3, pages 301–321, 1991.
77

[Wong 1995] S.K.M. Wong and Y.Y. Yao. On modeling information retrieval with
probabilistic inference. ACM Transactions on Information Systems (TOIS),
vol. 13, no. 1, pages 38–68, 1995. 77

[Yu 1989] C.T. Yu, W. Meng and S. Park. A framework for effective retrieval. ACM
Transactions on Database Systems (TODS), vol. 14, no. 2, pages 147–167,
1989. 72

[Yu 1995] Eric Siu-Kwong Yu. MODELLING STRATEGIC RELATIONSHIPS
FOR PROCESS REENGINEERING. PhD thesis, University of Toronto,
1995. 32

[Yu 1997] E.S.K. Yu. Towards modelling and reasoning support for early-phase re-
quirements engineering. In Requirements Engineering, 1997., Proceedings of
the Third IEEE International Symposium on, pages 226–235, 1997. 37, 38

[Zadeh 1965] Lotfi A Zadeh. Fuzzy sets. Information and control, vol. 8, no. 3,
pages 338–353, 1965. 114

[Zave 1997] Pamela Zave and Michael Jackson. Four dark corners of requirements
engineering. ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1, pages 1–30,
Janvier 1997. 31

[Zeng 2004] Dao-Zhi Zeng, Liping Fang, KeithW. Hipel and D.Marc. Kilgour. Pol-
icy Stable States in the Graph Model for Conflict Resolution. Theory and
Decision, vol. 57, pages 345–365, 2004. 27

[Zhang 2006] Y. Zhang, R. Witte, J. Rilling and V. Haarslev. An ontology-based ap-
proach for traceability recovery. In 3rd International Workshop on Metamod-
els, Schemas, Grammars, and Ontologies for Reverse Engineering (ATEM
2006), Genoa, pages 36–43, 2006. 78

[Zimmermann 2001] H.J. Zimmermann. Fuzzy set theory-and its applications.
Kluwer Academic Publishers, 2001. 112

[Zisman 2003] A. Zisman, G. Spanoudakis, E. Pérez-Miñana and P. Krause. Tracing
software requirements artifacts. In Proceedings of 2003 International Confer-
ence on Software Engineering Research and Practice (SERP’03), Las Vegas,
Nevada, USA, pages 448–455, 2003. 75, 84

[Zowghi 2005] Didar Zowghi and Chad Coulin. Requirements elicitation: A survey
of techniques, approaches, and tools. In Engineering and managing software
requirements, pages 19–46. Springer, 2005. 19

Index

5Ws & H, 121

AFT, 106
Agreement Processes, 11
AHP, 112
ANP, 112
AORE, 36
Architectural Design Process, 14
Arrow’s impossibility theorem, 111
Assumption, 31

Belief, 31

Card playing techniques, 121
Chaos Reports, 1
CiTL, 153, 172
Complexity, 8
Conflict, 26, 108
Constraints, 31
CReML, 41
Criteria, 106
Criteria weighting, 111
CRITIC method, 119
CROC, 120

Decision, 106
Certainty, 108
Conflict, 108
Cooperation, 108
Makers, 108
Uncertainty, 108

Decision Analysis, 26
Decision analysis, 106
Decision Making, 23

Descriptive, 25
Normative, 25
MCDM/MCDA, 24
Prescriptive, 25

Desires, 31

Direct rating, 119
Disposal Process, 15

EIA-632, 33
Eigenvector method, 120
ELECTRE, 114
Entropy method, 118, 119
Equal weights method, 118
Ethnography, 20
Expected Utility Theory, 25

Fuzzy set theory, 114

Goal, 32
Goal model, 46
GORE, 36

HiTL, 154, 172

i* framework, 20
IBIS, 152
IEEE1220, 33
Implementation Process, 14
Integration Process, 14
Intentions, 31
Interval methods, 120
Interviews, 20
ISO/IEC 15288, 10, 13
ISO15288, 33

KAOS framework, 20

Least mean square, 118
Life-cycle, 10

MACBETH, 113
Machine, 7
MADM, 112
Maintenance Process, 15
MAUT, 112

Index 235

MAVT, 112
MCDM, 106, 112, 115
MiTL, 153, 172
MODM, 112

NLR, 47

Operation Process, 15
Organizational project-enabling pro-

cesses, 11

PAPRIKA, 114
Point allocation, 119
Power and interest grid, 109
Project Processes, 11
PROMETHEE, 113
prospect theory, 25

Rank exponents method, 118
Rank reciprocal method, 118
Rank sum method, 118
Rationale, 31
Reference point, 113
regression method, 118
Requirement, 18
Requirement Management, 4
Requirements

Analysis Process, 13
Boiler plates, 47
Document, 47
Documentation, 20
Elicitation, 19
Functional, 35
Modeling, 20
Modeling Languages, 20
Negotiation, 21
Non-Functional, 35
Prioritization, 21
Stakeholder, 31
Templates, 47
Traceability, 21
Traceability Cost, 23
Automatic Traceability, 23
Manual Traceability, 23
Semi-automatic Traceability, 23

Value Based Traceability, 23
Requirements Engineering, 3, 18
Responsibility model, 46
ROC method, 120
Role, 32

SBRE, 36
Scenario, 32
Scenario generation, 20
Simulation, 153
SiTL, 153, 172
SMART, 119
SMARTER, 120
SMARTS, 120
SORE, 36
Stakeholder, 3, 18, 31

Requirements, 18
Identification Process, 4, 19
Requirement Definition process, 13

Standard deviation, 119
Standard deviation method, 118
SWING, 120
SWT, 115
System, 1, 7

Requirements, 19
Complex System, 8

Systems Engineering, 2

Technical processes, 11
TOPSIS, 113
Trace Relationships, 86

Allocation, 86
Conflict, 87
Dependency, 87
derive, 86
Overlap, 87
Refine, 86
Satisfy, 87
Validate, 87
Verify, 87

Trade off method, 120
Transition Process, 14

uniguous, 47
Use-Cases, 20

236 Index

Utility theory, 112

Validation Process, 14
Variance method, 118
Vee model, 15
Verification Process, 14
VFT, 106
View, 31
View-Point, 31
Viewpoints, 46
VIKOR, 114
Volere, 47

WPM, 112
Writing Requirements, 47
WSM, 112

Comprehensive Methodology for Complex Systems’ Requirements
Engineering and Decision Making

Abstract: The primary goal of the systems engineering is the creation of a set
of high quality products and services that enable the accomplishment of desired
tasks and needs of the clients or user groups. A typical systems engineering project
can be divided in to three phases: definition, development, and deployment. The
definition phase involves the activities of requirement elicitation and refinement.
By the end of system definition phase, we have all the system functional and non-
functional requirements. One of the results of development phase is initial working
model of the system. The deployment phase consists of activities of operational
implementation, operational testing and evaluation, and operational functioning and
maintenance. In a project life cycle there are numerous issues to be sorted out during
the various phases to finally deliver a successful product. We proposed solution to
the problems of requirements engineering & management, design conflict detection,
and stakeholders conflict resolution. This thesis is based on the recent advances in
industrial practices and research in the field of system design engineering.

The objective of this thesis work is to propose an innovative and holistic concep-
tion methodology taking into account the multidisciplinary environment and multi-
ple stakeholders. We have proposed a requirements modeling language based on the
GORE techniques. We have proposed a few of tools for reducing the ambiguity of
requirements such as: using negation and test cases using negation for contracting
difficult requirements. Requirement management techniques are proposed to pro-
vide better requirements traceability and aid for other systems engineering activities.
Few guidelines have been designed to guide the design of traceability policies. Crite-
ria weighting technique has been designed to better carry out the conflict resolutions,
during the various life cycle stages. Using the same criteria weighting technique a
flexible multi criteria multi participant decision methodology is proposed for various
decision problems arising during the life cycle of systems engineering project.

Finally, a comprehensive prescriptive systems engineering approach is proposed
using all the previously made contributions and an illustrative case study of a real
ongoing project is presented developed using the supporting tool SysEngLab, which
implements majority of the methods and techniques proposed during thesis.

Mots clés : Systems engineering, Requirements engineering, Requirements
management, Decision Making, Comprehensive methodology

Auteur: Vikas SHUKLA
Titre: Approche globale de l’ingénierie des exigences et de la prise de décision pour
les systèmes complexes
Directeur de thèse: Guillaume Auriol
Lieu et date de soutenance: Toulouse le 06 Janvier 2014

Résumé: L’objectif principal de l’ingénierie des systèmes est la création d’un ensemble
de produits et des services de haute qualité qui permettent l’accomplissement de tâches
pour répondre aux besoins des clients. Un projet typique d’ingénierie des systèmes peut
être divisé en trois phases : la définition, le développement et le déploiement. La phase
de définition comprend les activités de capture des exigences et de leur raffinement. À
la fin de la phase de définition du système, nous avons toutes les exigences fonctionnelles
et non-fonctionnelles du système. L’un des résultats de la phase de développement est le
modèle de travail initiale du système. La phase de déploiement se compose des activités
liées à (1) l’évaluation opérationnelle du système, à (2) l’utilisation du système et à (3) son
entretien. Dans un cycle de vie du projet, il y a de nombreuses questions qui doivent être
traitées au cours des différentes phases pour finalement livrer un produit.

Nous avons proposé une solution aux problèmes liés à l’ingénierie des exigences et aux
techniques de la détection, de la gestion et de la résolution des conflits entre les parties
prenantes. Cette thèse est basée sur les dernières avancées dans les pratiques industrielles
et de recherche dans le domaine de l’ingénierie de conception du système.

L’objectif de ce travail de thèse est de proposer une méthodologie de conception no-
vatrice et globale en tenant compte de l’environnement multidisciplinaire et de multiples
intervenants. Nous avons proposé un langage de modélisation des exigences basé sur les
techniques GORE. Nous avons proposé quelques outils pour réduire l’ambiguïté des exi-
gences tels l’utilisation de phrases négatives et de tests á l’aide de négation lorsqu’il s’agit
de traiter certaines exigences difficiles à comprendre avec les techniques classiques. Nous
avons également proposé des techniques de gestion des exigences pour mieux assurer leur
traçabilité. Concernant la résolution des conflits, nous avons proposé des techniques de
pondération des critères au cours des différentes étapes du cycle de vie. En utilisant la
même technique de pondération de critères, une méthode de décision multicritères et multi
participants est proposée pour divers problèmes de décision survenant pendant le cycle de
vie du projet d’ingénierie systèmes.

Enfin, une approche globale de l’ingénierie des systèmes est proposée pour intégrer
toutes les contributions faites précédemment et est illustrée sur une étude de cas concernant
un projet réel avec la présentation dŠun outil SysEngLab que nous avons développé pour
mettre en œuvre la majorité des méthodes et des techniques proposées au cours de thèse.

Motclés: Ingénierie système, Ingénierie des exigences, Gestion des d’exigences,
Theory de la prise de décision, Méthodologie globale

Discipline administrative: Informatiques et Génie Industriel
Intitulé et adresse du laboratoire: Laboratoire d’Analyse et d’Architecture des Systèmes -
7 avenue du Colonel Roche -F-31077 Toulouse, France

	Thesis_Title
	Blank Page

	These
	General Introduction
	Context and Problem Formulation
	Introduction
	Problem Context
	Complex Systems
	Systems Engineering

	Problem Focus
	Technical Processes
	Decision Management Processes
	Vee-Model of Project Development Life-Cycle

	Research Focus
	Requirements Engineering
	Requirements Management & Traceability
	Decision-making

	Conclusion

	Requirements Engineering
	Introduction
	What are actually requirements ?
	State of Art Requirements Engineering Techniques
	Proposed Formulations on Requirements
	Proposed Comprehensive Requirements Modeling Language

	Writing Natural Language Requirements
	State of Art of NLRs Writing Techniques
	Proposed Approach for Writing Requirement
	Experiment and Empirical Findings
	Using Negation to Negotiate the Requirements

	Discussion
	Conclusion

	Requirements Traceability
	Introduction
	Requirements Traceability
	Requirements Traceability Processes and Problems
	Traceability Recovery Challenges

	State of Art of Requirement Traceability
	Information Retrieval Based Techniques
	Structurally Rule Based Techniques
	Linguistically Rule Based
	Transformation Rule Based
	Other Miscellaneous Based
	Works on Traceability Maintenance
	Traceability For Systems Engineering

	Proposed Solution for Traceability Problems
	Semantics of Relationships for Requirement Traceability
	Planning and Managing Traceability Strategy
	Trace Creation Process
	Trace Maintenance Process
	Trace Usage
	Using Traceability Information for SE Activities
	Comprehensive Traceability During Project Development

	Discussion
	Conclusion

	Decision-Making in SE
	Introduction
	Decision Analysis in SE
	Issues with Decision Making
	Criteria Weighting Problem in Systems Engineering

	State of Art of Decision Making
	Multi Criteria Decision Making Methods
	Game Theory Based Conflict Resolution and Negotiation
	State of art of Criteria Weighting Techniques

	Proposed Methodology
	Roles in Decision making for SE
	Prerequisite to technique
	Methodology
	Optimality Check

	Simple Example
	Analysis and Comparison With Other Technique
	Optimality Check
	With Entropy
	With Rank Order Centroid
	With Eigen-vector from AHP

	Discussion
	Conclusion

	Integrating Requirements Engineering and Decision Making
	Introduction
	Comprehensive Methodology: Integrating Concepts
	Methodology
	Tool Support: SysEngLab

	Case Study: Iron Bird Integrated Simulator
	Assumptions
	IBIS Stakeholders Needs Elicitation
	IBIS System Requirements Definition
	IBIS Architecture Design and Analysis
	Landing Gear Detail Design
	Deciding Specifications using our Technique
	Deciding Design Components

	Requirements Traceability
	Purposed Traceability
	Cost-effective Traceability
	Pre-requirement traceability
	Post-requirement traceability

	Limitations and Conclusions

	Conclusion and Future Perspectives
	Tools Developed
	SysEngLab
	RequirementLab
	DecisionLab

	Résume en Français: Approche Globale d'Ingénierie Systèmes
	Introduction
	Systèmes Complexes
	Ingénierie Systèmes
	Ingénierie des Exigences
	Gestion des Exigences et de la Traçabilité
	La Prise de Décision et Résolution de Conflit
	Approche Globale
	Conclusion

	List of Publications and Reports
	Bibliography
	Index

