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Résumé

Résumé

Nous avons étudié les transitions de phases structurales dans une série d’approximant 1/1 de
quasicristaux de type CdYb. Les approximants 1/1 partagent le méme environnement local
que les quasicristaux, mais sont périodiquement ordonnés.

L’approximant 1/1 Cd¢Tb est particulierement intéressant puisqu’il présente un ordre
magnétique a longue distance en dessous de 20K. Une transition structurale est observée a
T.=192K. Nous avons déterminé la structure atomique de la phase cubique haute température
ainsi que celle de la phase monoclinique observée en dessous de 7.. La dépendance en
température de la mise en ordre du tétracdre central a été étudiée en détail entre 192 et 180K.
La distorsion de I’icosaedre Tb,, joue certainement un role important dans la formation de
I’ordre magnétique a longue distance.

Nous avons confirmé que la transition de phase dans CdsYb n’est pas de type [110] mais de
type [111] avec un groupe d’espace de la phase basse température P2/m. De plus I’influence
de I’ordre chimique sur la transition a été étudié¢ sur CdsPr and (Cd-Mg)Pr avec 10% at. Mg.
Dans ces deux cas la mise en ordre se fait le long de la direction [110].

Des simulations de dynamique moléculaire ont été conduite en utilisant des potentiels de
pairs oscillant pour les phases approximantes ZngSc 1/1, Zngs 5S¢ 445 5/3, et Zngs 165C 434 8/5.
Le systeme Zn-Sc est isostructural au systeme Cd-Yb et les approximant 5/3 et 8/5 ont une
maille suffisamment grande pour simuler un quasicrystal de maniere réaliste. Dans les trois
systemes nous avons simulés les diagrammes de diffusion diffuse pour une température
comprise entre 500 et 100K.

Dans I’approximant 1/1 ZnsSc I’évolution du signal de diffusion diffuse est en accord avec
une augmentation de I’ordre a courte distance lorsque la température diminue. La
comparaison de la diffusion diffuse entre 1’approximant 1/1 et I’approximant 5/3 montre
clairement un exces de diffusion diffuse pour 1’approximant 5/3 qui est interprété comme

résultant des fluctuations de phasons.

Dans les trois approximants nous avons mis en évidence un phénomene de diffusion
atomique entre le tétracdre et le dodécaedre. Pour I’approximant 1/1 cette diffusion se produit
le long des diagonales de la maille cubique avec une énergie d’activation de 1’ordre de 0.1 eV.
Les simulations sur les approximants 5/3 et 8/5 ont montré que la dynamique du tétra¢dre et
la diffusion atomique dépendent de la complexité de la structure.

Cette étude monte que la structure des amas atomiques et leur environnement local jouent
certainement un rdle important pour les mécanismes de stabilisation de ces phases.
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Abstract

Abstract

We have studied the structural phase transitions occurring in a series of periodic 1/1
approximant to the CdYb type quasicrystals. 1/1 approximants share the same local
environment as the parent quasicrystal, yet with a periodic long range order.

The Cd¢Tb 1/1 approximant is of particular interest owing to its long range magnetic order
observed below 20K. A structural phase transition is observed at 7.= 192K. The atomic
structures of the high temperature cubic phase and the low temperature monoclinic phase has
been determined. The temperature dependence of the central tetrahedron ordering and its
connection to the phase transition has been studied in details between 192 and 180K. The
distortion of the Tb,, icosahedron resulting from the ordering of the tetrahedron at low
temperature is supposed to play a crucial role in the formation of the long range magnetic
order. Diffuse scattering, characteristic of a short range order has also been observed above T..

For the CdsYb approximant we have confirmed that the phase transition does not correspond
to an ordering along [110]. The space group of the low temperature phase is proposed as
P2/m. Furthermore, the effects of chemical order on the ordering mechanism of the tetrahedra
are investigated on Cd¢Pr and (Cd-Mg),Pr with 10% at. Mg. The ordering scheme of both
Cd¢Pr and (Cd-Mg)4Pr is of the [110] type instead of the previously claimed [111] type.

Molecular dynamic simulations are carried out on the ZnSc 1/1, Zngs,S¢ 455 5/3, and
Zngs 165C 454 8/5 approximants using an effective oscillating pair potential. The Zn-Sc system
is isostructural to the Cd-Yb one and the 5/3 and 8/5 approximant have a unit cell large
enough to mimic a real quasicrystal. In the three systems we have simulated the diffraction
pattern as the temperature goes from 500K to 100K.

In the Zn¢Sc 1/1 approximant, the temperature dependence of the simulated diffuse scattering
evidenced a short range order forming in the low temperature phase. It most likely
correspond to the pretransitional short range order as observed experimentally. The
comparison of the simulated diffuse scattering between the 1/1 and 5/3 approximants
demonstrates an excess of diffuse scattering in the latter phase which is likely the
contribution from phasons modes.

We have evidenced an atomic diffusion taking place between tetrahedra and dodecahedra in
all three approximants. The long range atomic diffusion in the 1/1 approximant is only
observed along space diagonal directions of the cubic cell, with an activation energy of 0.1
eV. Further investigation on the 5/3 and 8/5 approximants have shown that the orientational
dynamics of the central tetrahedra as well as the atomic diffusion are dependent on the
complexity of the structures.

The configuration of the clusters and their local environment are considered to play a crucial
role in the stabilization mechanism of the quasicrystals and their periodic approximants.
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Key words: quasicrystal approximant, quasicrystal, structure, diffuse scattering, phason,
molecular dynamics



Introduction (Frangais)

Introduction (Francais)

Les composés Cd,RE (RE= Terre rare) sont une série de composés bcc isostructuraux qui
sont faits des mémes briques élémentaires, c'est-a-dire les agrégats dits de Tsai, que les
quasicristaux i-Cds,Yb et i-Cds;Ca[1][2]. Bien que leur composition soit trés proche des
deux quasicristaux binaires sus-cités et des quasicristaux binaires magnétiques a base Cd
récemment découverts [3], certaines de leurs propriétés physiques montre des différences
notables. Par conséquent, une comparaison entre quasicristaux et leurs approximants peut
apporter un éclaircissement important dans la compréhension des mécanismes de stabilité de
ces phases complexes.

Structure atomique de la phase Cd,RE

De maniere générale, on peut décrire la structure de la phase Cd(RE de deux manieres. La
premicre est I'empilement de 12 polyhedres RCd,4 o chaque atome R est entoouré de 16
atomes Cd. Dans cette description, huit cubes Cdg peuvent étre générés automatiquement,
comme sur la Figures 4.1.1[4]. Ces cubes seront discutés en détails dans le chapitre sur les
simulations.

La description la plus populaire et la plus largement acceptée de la phase Cd(RE est un
empilement de triacontahedres imparfaits s'interpénétrant, connus sous le nom d'aggrégats de
type Tsai, selon une structure bcc, comme sur les Figures 4.1.2[5]. La structure de la phase
Cd¢RE se caractérise par l'absence complete d'atomes « de colle » en utilisant de tels
triacontahedres rhombiques (RTH). L'aggrégat élémentaire RTH est composé de cing
coquilles denses successives, soit 158 atomes au total. Le tetrahe¢dre central, désordonné car
violant la symétrie globale de 'aggrégat, peut &tre modélisé par une dégénérescence triple des
positions atomiques formant le tétraheédre. Tous les tétrahedres désordonnés connus de la
série Cd¢RE peuvent étre correctement décrits par ce modele en augmentant successivement
la taille de la dégénérescence positionnelle. De plus, le cube Cdg mentionné plus haut partage
deux sites communs avec deux dodécahedres adjacents le long de la grande diagonale de la
maille cubique.

Des études antérieures ont montré que la transition de phase structurelle ordre — désordre est
liée a la mise en ordre du tétrahedre central. A haute température, les tétrahedres occupent de
maniere dynamique toutes les orientations équivalentes, et se figent en s'ordonnant de
maniere antiparallele quand la température décroit [6][7][8]. La structure de la phase
monoclinique a basse température de ZnSc a été déterminée par Ishimasa [8] par diffraction
des rayons X sur poudre. En plus de ces résultats expérimentaux, de nombreux travaux
numériques ont été faits sur CdgYb et Cd¢Ca selon un calcul de premiers principes. Ces
résultats confirment une petite inclinaison du tétrahedre pour éviter une distance irréaliste
avec la couche dodécahedrique. Expérimentallement, l'inclinaison est évaluée a ~15", et un
calcul ab initio de Hatakeyama et al [9] I'évalue a 6". De plus, des mesures de diffusion
diffuse des rayons X [11] montrent que la longueur de corrélation a courte distance augmente
rapidement lors de la mise en ordre des tétraheédres et diverge presque a la température de
transition.



Introduction (Frangais)

La phase a basse température a été caractérisée comme étant monoclinique avec groupe
d'espace Cc ou C2/c [12] et par un doublement de maille élémentaire le long de la direction
[101], comme illustré sur la Figure 4.1.3. En ignorant la distortion induite par la mise en
ordre des tétrahedres, les vecteurs de base des mailles des phases a haute et basse
températures sont liés par la relation suivante : a; = ag-cy, by, = by, ¢;, = ag+cy.

Etude de la structure de I'approximant 1/1 Cd,Tb

Cd¢Tb, un membre de la famille isostructurelle Cd¢RE, et un approximant 1/1 du quasicristal
i-Cd-Mg-RE et des quasicristaux binaires Cds;Ca et Cds,Yb [1][2]. Une transition de phase
unique a basse température a été mise en évidence dans la plupart des composés Cd4RE par
mesure de résistance électrique, diffraction électronique, mesures de chaleur spécifique et
ainsi de suite [12]. Dans les travaux antérieurs, la transition de phase a été interprétée comme
induite par la mise en ordre des tétrahedres centraux de Cd4, dont l'orientation est
désordonnée a haute température. Tous les approximants Cd¢RE possede le méme réseau bcc
a haute température, différant seulement légerement par leur tétrahedre central, qui a été
étudié de maniere détaillée par Gémez et al [4]. La mise en ordre et la phase basse
température ont également été étudiées par Nishimoto ef al [13]. La détermination de la
structure a basse température a été faite sur le cristal isostructural ZnsSc par Ishimasa et al [8].
L'intérét d'étudier Cd4Tb ne se limite pas a la transition ordre — désordre, mais aussi a cause
de I'observation inédite d'une mise en ordre magnétique a longue distance [14].

En effet, il est étonnant de trouver de telles transitions magnétiques, a 24K, 19K et 2.4K dans
Cd¢Thb, qui ont été mises en évidence par des mesures de susceptibilit¢é magnétique et de
chaleur spécifique. Bien qu'on s'attende a découvrir un ordre magnétique inédit sur un cristal
apériodique composé d'éléments chimiques portant un moment magnétique, jusqu'a présent
tous les quasicristaux connus n'ont montré qu'au mieux un comportement de verre de spin a
basse température. L'ordre magnétique a longue distance est absent non seulement dans les
quasicristaux, mais également dans leurs approximants périodiques, sauf Cd,RE. L'ordre
magnétique a longue distance dans Cd¢Tb a été confirmé récemment par diffraction
résonnante magnétique des rayons X par Kim ef al [15]. La finesse des pics magnétiques
correspondent 2 une longueur de corrélation d'au moins 5004, et les ions Tb3+ de maniére
antiferromagnétique entre aggrégats voisins le long de 1'axe de symétrie d'ordre 3. On peut
supposer que ce cas exceptionnel est dii a la compétition entre deux interactions, c'est-a-dire
les interactions Tb — Tb intra- et inter-aggrégats. Par conséquent, il est important de
déterminer la structure cristalline des phases de Cd6Tb au dessus et en-dessous de Tc.

Nous avons mené une mesure systématique in sifu d'un monocristal de Cd¢Tb de température
ambiante jusqu'a 40K sur la ligne de lumicre CRISTAL du synchrotron SOLEIL. La
transition de phase structurelle est observée vers 190K par la fragmentation des pics de Bragg
principaux. Les mesures de diffraction sur monocristal et sur poudre montrent toutes les deux
une augmentation soudaine de la distortion monoclinique entre 190K et 184K. Une anomalie
est observée vers 45K, température en-dessous de laquelle les parametres de maille ne
semblent plus évoluer. Ceci pourrait &tre l'explication du comportement anormal de la
résistivité électronique en-dessous de ~40K.
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En utilisant différents filtres d'atténuation, nous avons collecté des données dont 1'intensité
s'étale sur une large gamme dynamique, obtenant ainsi plus de 60000 reflexions uniques de la
maille monoclinique C2/c de la phase basse température. Les valeurs finales wR2 pour les
affinements a température ambiante et a 40K sont de 0.0726 et 0.0905 respectivement.
Conformément aux hypotheses de Tamura ef al [14] et de Kim et al [15], les liaisons ioniques
intra-aggrégat entre Tb3+ sont compatibles avec les distances inter-aggrégats. Dans la phase
monoclinique, les interactions intra-aggrégat et inter-aggrégats deviennent plus frustrées a
cause de la distortion monoclinique, ce qui joue certainement un rdle crucial dans la
formation d'un ordre magnétique a longue distance.

La dépendence en température de la structure de Cd¢Tb est analysée. Une forte distortion des
couches successives est observée le long de l'axe de symétrie d'ordre 3. Une investigation
approfondie montre que la distortion est induite par la mise en ordre des tétrahedres. Le
comportement des parametres de déplacement isotropique équivalent des deux sites uniques
du tétrahedre suggere que le tetrahedre se comporte comme une seule molécule.

En regard du quasicristal, les résultats de 1'approsimant 1/1 sont importants quant a 1'étude de
la stabilit¢ des quasicristaux, et en particulier la phase Cd6Tb, qui réalise un ordre
magnétique a longue distance en-dessous de 24K. La découverte d'une série de quasicristaux
icosahedriques binaires magnétiques ouvre la voie pour de nouvelles études sur ce
comportement magnétique inédit.

Transition de phase dans Cd,Yb

La phase CdsYb a été identifiée pour la premiere fois en 1964 par Johnson et al [16]. Depuis,
de nombreux efforts ont été faits pour déterminer sa structure [17][4][18]. En particulier, la
découverte du premier quasicristal binaire stable Cds,;Yb [2] et 'observation de la transition
ordre-désordre a basse température dans CdgTb [19][20] ont renouvelé l'intérét de la
communauté scientifique pour ce probléme fascinant.

Nous avons fait des mesures synchrotron sur différents aspects de 1'approximant 1/1 Cd4Tb.
La transition de phase est observée et la valeur de T, est confimé vers 113K, en accord avec
les mesures de résistance électrique et de chaleur spécifique [19]. La distortion de la maille
est observée sur les spectres de diffraction X de poudre et les mesures de diffusion diffuse.
L'apparition des réflections (6.5 7.5 0.5) et (351) indiquent que le mécanisme de la transition
de phase de Cd¢Tb est différent de celui de Zn¢Sc et des autres composés Cd,RE. La longueur
de corrélation augmente rapidement en-dessous de Tc jusqu'a ~1200A, ce qui correspond a
l'ordre de grandeur des domaines.

Ces résultats, dans le contexte de la transition de phase ordre — désordre de l'approximant 1/1
Cd¢Yb appellent des mesures complémentaires sur ce systtme. Un modele de la structure de
la phase basse température et du mécanisme de transition de phase fournira certainement un
éclairement approfondi sur la stabilité des approximants et quasicristaux.

Effet du Mg sur la transition de phase du Cd.Pr
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La structure du Cd¢Pr a température ambiante a été résolue en utilisant les données de
diffraction de rayons X de monocristal par Gomez et Lidin [5]. Il s'agit d'un prototype de Cd,
Y et l'occupation du tétracdre central d'atomes a été déterminée a une valeur d'environ 0.216.
La transition de phase du Cd¢Pr a été étudiée par Nishimoto et al [12], et une T, d'environ
150K a été confirmée par des anomalies dans les mesures de résisitivité electrique. Il est
suggéré que la superstructure est formée suivant le mécanisme décrit dans la section 4.1.
Cependant d'autres résultats ont reporté qu'un second type de mise en ordre apparait pour les
Cd¢Pr et Cd,Ce, ou les tétraedres centraux Cd4 sont orientés selon [1 1 1] et aucune
déformation de la maille cristalline n'est observée a basse température [21]. De plus, il est
également suggéré que l'ajout de 1'élément Mg améliore la diffusion diffuse des réflections de
surstructure. Par conséquent, il apparait intéressant de clarifier I'origine de la mise en ordre
du tétrahédre apparaissant pour le CdPr ainsi que le réle du magnesium dans la diffusion
diffuse des réflections de surstructure.

Des mesures de la diffusion diffuse des approximants 1/1 des systemes Cd¢Pr et (Cd-Mg)sPr
avec 10 % at. Mg ont été effectuées dans une gamme de température comprise entre 300K et
20K sur la ligne de lumiere D2AM au synchrotron ESRF. Une transition de phase est mise en
évidence pour les deux systémes et un mécanisme de mise en ordre non pas selon[1 1 1] mais
selon [1 1 0] est observé. La Tc du CdPr est determinée entre 200K et 150K, mais des
mesures plus détaillées seront nécessaires pour confirmer la valeur exacte.

Comme reporté récemment le signal associé a la surstructure du Cd¢Pr est tres faible. 11 est
montré dans cette étude que les réflections de surstructure ne se renforcent pas a basse
température, impliquant une trés faible longueur de corrélation. Bien que la diffusion diffuse
aux positions de surstructure du Cd4Pr soit visible a basse température, elle n'augmente pas
beaucoup avec la diminution de la température.

Des comparaisons entre le Cd¢Pr et (Cd-Mg)ePr suggerent que le désordre chimique joue un
r6le important dans le mécanisme de mise en ordre. L'effet de substitution sur la transition de
phase des approximants 1/1 a base Zn et Cd a été étudiée par Yamada et Tamura [22], oll un
faible pourcentage des atoms de Zn ont été remplacées par des atomes de Cu. Il a été conclu
que l'ajout de 1'élément Cu entraine une occupation des sites dodécaedraux et une suppression
de la mise en ordre du tetraedre Zn4. D' apres les résultats de Lin et Corbett[23], ces alliages
ternaires conservent la méme symétrie et construction de cluster que I'approximant 1/1 Zn6Sc,
les atomes additionnels de Cu occupant les sites Zn5, i.e, les sites dodécaedraux. La
substitution par les atomes de Cu réduit les distances de liaison entre les atomes
dodécaedriques du Zn, impliquant un volume plus faible de l'enveloppe du dodécaedre.
Néanmoins, dans notre cas, le troisieme élement Mg (~160 pm) posséde un rayon atomique
plus large que le Cd (~151 pm) entrainant un agrandissement de l'enveloppe du dodécaede.
Par conséquent, du fait de l'effet stérique, la suppression de la mise en ordre du tétracdre Zn4
est partiellement relachée, et d'autre part, la déformation de maille résultant de l'intéraction
entre les deux enveloppes devient plus faible.

L'approximant 1/1 ZnSc

La structure initiale de l'approximant 1/1 ZnsSc pour des simulations de dynamique
moléculaire a été optimées a partir de calculs VASP. Suivant le procédé de minimisation
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d'énergie, la cellule élémentaire de surstructure 4x4x4 a été dans un premier temps relaxée
jusqu'a 1'équilibre a 500K puis refroidie de 400K a 60K utilisant le logiciel LAMMPS. De
nombreuses simulations entre 200K et 60K par pas de 10K ont été réalisées. Pour chaque
température, 5 millions de pas sont calculés et 2000 configurations sont collectées pour
l'analyse des données. Afin d'éviter de rester bloqué dans un minimum d'énergie local, des
pas de temps plus grands ont été utilisés a basse température.

Les simulations de dynamique moléculaire du procédé de refroidissement de 1'approximant
1/1 Zn6Sc ont étés réalisées en utilisant un potentiel de paire affiné par le biais d'une base de
données ab-initio. Une comparaison détaillée avec les résultats expérimentaux pour le Zn6Sc
et le Cd6M (M=Ce, Pr et Eu) est ici présentée. Le spectre de diffraction est reconstitué pour
les couches /=0 [=demi-entiers via une transformée de Fourier. La diffusion diffuse devient
ordonnée avec la réduction de la température, conséquence de la mise en ordre du tétraedre.
La mise en ordre a faible distance selon <1 1 0> est observée constituant une bonne
indication de la présence d'une prétransition.

Le tétracdre le plus interne se réoriente de maniere dynamique dans la phase a haute
température. Cette réorientation est ralentie avec la réduction de la température, et finit par se
figer dans un état spécifique. La fréquence d'oscillation suit une regle d'Arrhenius et la
barriere énergétique est determinée a une valeur de 32meV un ordre de grandeur similaire a
celui obtenu expérimentalement, i.e 60 meV.

La diffusion atomique le long des diagonales d'espace de la cellule élementaire cubique est
étudiée en détails. L'énergie d'activation de la diffusion atomique est confirmée autour de
106£11meV, et est pratiquement supprimée en dessous de 200K. D'autre part, la diffusion
atomique décrit bien l'occupation additionnelle au centre des cubes Cdg/Zng, ainsi que
I'élongation des atomes partagés entre les cubes Cdg/Zng et les dodécaedres Cd,y/Zny,
observée expérimentalement. L'apparition de la diffusion atomique est supposément reliée a
la différence d'énergie potentiel entre les sites du tetracdre et du dodécaedre.

Modellisation de 1'approximant 5/3

Les approximant de haut degré n'ont jamais été observés experimentalement. Dans ce
quasicristal de la famille des Cd Yb, l'approximant de plus haut degré observé est le cubique
2/1. Nous avons donc utilisé des approximants périodiques de haut dégré pour simuler le
quasicristal. En ce qui concerne les simulations de dynamique moléculaire, la modélisation
de la structure est réalisée en placant le triacontacdre rhombique sur les vortexs de
I'approximant 5/3 est réalisée par canonical cell tilling suivie d'une procédure de décoration
[24][25]. La configuration finale a été optimisée en réalisant une minimisation de l'énergie
totale du systeme via des calculs ab-initio utilisant le programme de DFT VASP [26][27]. La
cellule élémentaire de I'approximant 5/3 obtenu est de I'ordre de ~58.46 A et contient plus de
10000 atomes par cellule élémentaire. Les détails de la détermination du modele sont
détaillées dans la réference [24].

La simulation de dynamique moléculaire réalisée sur l'approximant 5/3 Zngs;,Sc 445 €St un
refroidissement, utilisant un potentiel de paire via LAMMPS. Les résultats obtenus sont
comparés avec ceux de I'approximant 1/1 ainsi qu'avec les résultats expérimentaux. Les plans
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de Bragg hkO sont reconstruits pour plusieurs températures par transformée de Fourier. De la
diffusion diffuse supplémentaire est observée dans le cas de l'approximant 5/3, en accord
avec les résultats expérimentaux sur le quasicristal correspondant. Cependant il est pour
l'instant impossible de confirmer quantitativement si les phasons contribuent a cet exces de
diffusion diffuse.

Un nouveau mouvement du tétragdre central est observé dans l'approximant 5/3. Les échelles
caractéristiques de temps et de distance de l'oscillation du tétracdre sont toutes deux plus
élevées que celles de l'approximant 1/1. Ces résultats suggerent que les orientations du
tétracdre ont besoin d'étre affinées pour caractériser le phénomene d'oscillation
quantitativement. D'autre part un axe de symétrie d'ordre 3 est retrouvé dans le modele du
tétracdre a haute température. Il est aussi important de noter que les différents
environnements locaux sont supposés jouer des rdles différents dans la détermination des
mouvements du tétraedre.

Modellisation de I'approximant 8/5

La modélisation de 'approximant 8/5 est réalisée par canonical cell tiling comme décrit dans
la section précédente. La structure initiale est affinée par une minimisation de I'énergie totale
du systeme via VASP. La configuration obtenue contient 8032 atomes de Sc et 46088 atomes
de Zn par cellule élementaire avec un paramétre de maille de 94.584A. D'apres les
configurations des environnements d'amas d'atomes, 576 amas d'atomes peuvent se classer en
6 groupes: 5-7, 6-5, 6-6, 6-7, 7-5 et 7-6, ou n dans les n-m nombres précédents représente le
nombre d'axes de symétrie d'ordre 2 et m est le nombre d'axes de symétrie d'ordre 3. La
déformation initiale dans la structure est éliminée par minimisation d'énergie et le modele est
ensuite équilibré pour chaque température avant la collecte des données. Les mouvements du
tétracdre le plus interne de I'approximant 8/5 sont similaires a ceux observés pour
I'approximant 5/3. Sa fréquence d'oscillation estimée est beaucoup plus faible que celle de
l'approximant 1/1. Il est aussi supposé que les atomes du tétragdre doivent franchir une
barriere d'énergie plus haute pour diffuser.



Chapter 1. Introduction

Chapter 1. Introduction

Complex metallic alloys (CMAs) refer to a class of intermetallic alloys possessing huge or
even infinite unit cells with hundreds or thousands of atoms per cell[28]. The definition of
CMA can trace back to the term ‘giant unit cell crystal” which was firstly coined by Samson,
one of the pioneering investigators of the intermetallic compounds[29]. Some time later on,
an updated term ‘structurally complex alloy phases’ was proposed on the 8" International
Conference on Quasicrystals (ICQ) in 2002. Nowadays, for solely practical reasons, the term
CMA has been widely used and it is becoming one of the booming research fields in the
material academic community.

CMAs have been intensely studied for the past decades due to their unique physical
properties. Although much progress has been achieved nowadays, the understanding of their
physical properties is still a challenging work both experimentally and theoretically in
particular the understanding of the stability of these complex metallic alloys. It is significant
not only for the fundamental theory, but also for the potential industrial applications.

The structures of CMA could generally be described with several characteristics: (i) local
units with defined atomic clusters; (ii) long range periodic or aperiodic order and (iii)
disorder[30]. In many cases, theses structurally complex phases can be described based on
clusters such as Bergman cluster, Mackay cluster and Tsai cluster, as depicted in Figures 1.1.
The correlation between the two length scales, i.e. the lattice and cluster scales, has been
proved crucial to understand the physical properties of CMAs. On the other hand, frequently
occurred disorders in CMAs are another aspect that closely relates to the unique properties of
these complex systems. Apart from that, on the basis of building scheme, the CMAs can be
simply classified into two categories: periodic and aperiodic crystals. The two kinds of
structures sometimes are related by sharing the same building blocks, e.g. quasicrystals (QCs)
and their approximant crystals (ACs).

Figure 1.1 (a) Successive shells of Bergman cluster, starting with an icosahedron (12 atoms), followed
by a dodecahedron (20 atoms), a bigger icosahedron (12 atoms) and ending up with a 60 sites soccer

ball, making up a 104-atom cluster.
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'y Ni)

(b) Successive shells of Mackay cluster, two adjacent icosahedra (24 atoms), surrounded by an

icosidodecahedron (30 atoms), forming a perfect Mackay cluster with 54 atoms.

(c) Successive shells of Tsai cluster, an innermost tetrahedron (4 atoms), neighboring with a
dodecahedron (20 atoms), an icosahedron (12 atoms), and finally comprising a 66-atom Tsai cluster

together with an outermost icosidodecahedron (30 atoms).

1.1 Quasicrystal and their approximant crystallines

The discovery of the first synthesized AlgMn icosahedral QC (i-QC) by Dan Shechtman[31]
renewed the traditional concept of crystal which was initially defined as a material with 3
dimensional lattice periodicity in three principle axes and eventually reformulated as any
solid having an essentially discrete diffraction diagram in 1992[32]. Simply speaking, QCs
are solids possessing long-range order which leads to discrete sets of sharp diffraction peaks,
but without 3D translational symmetry which makes the quasi-crystallographic rotational
symmetry (5, 10, and 12- fold et al) permitted (see Figures 1.2).

Figure 1.1.1 (a) Scanning electron microscope image of icosahedral-symmetry grains formed in a
rapidly solidified Al-6at.%Mn alloy (An-Pang Tsai); (b) TEM diffraction pattern taken along 10-fold
axis of the Al;,Ni,;Cog decagonal quasicrystal.
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The classification of QCs is made based on their quasiperiodic dimensions and symmetry:
one is dihedral (polygonal) QCs which possess a periodicity along one direction, such as
octagonal (8-fold), decagonal (10-fold) and dodecagonal (12-fold) QCs; the other is
icosahedral QCs having a characteristic icosahedral symmetry with six 5-fold, ten 3-fold and
fifteen 2-fold axis.

Hundreds of quasicrystals have been synthesized up to now in Al-based, Cd-based, Zn-based
systems and so on[33], of which most belong to intermetallic compounds. In 2004, some new
members of the quasicrystal group, supramolecular dendritic liquid quasicrystals[34][35][36]
and star block copolymers[37][38], were discovered. The discovery of soft quasicrystals not
only extends the border of quasicrystal world but also explores a new platform for study of
quasiperiodic long range order. The answer to question ‘why are these soft quasicrystals
stable’[39] may give us hints on the thermodynamic stability of quasiperiodic crystalline on
one hand. On the other hand, the newly discovered soft quasicrystals based on self-assembled
nanoparticles cleave a new way for prospectively industrial applications.

1.1.1 Structural description of QCs

Many methods and techniques have been put to use to characterize or predict the structures of
QCs[40][41][42][43]. Since no conventional 3D periodicity exist in QC, the classical
crystallography can no longer be applied directly. The most widely used method nowadays
investigating atomic structures of QCs is by introducing the concept of high-dimensional
space[44][45][46]. The QCs could be described as periodic in a 3+n dimensional space where
n is the number of dimensions with quasiperiodicity. For i-QCs, a class that shows
quasiperiodicity in three dimensions, the atomic structures can be described periodically in a
6D space. The 6D hyperspace is composed of two orthogonal 3D spaces: the parallel
(physical) and perpendicular (virtual) space. The real structures of i-QC in 3D physical space
can be obtained by a section of the decorated 6D lattice.

The detailed atomic structures of QCs had puzzled the scientific community for more than
two decades. The first detailed structural analysis on QC was performed in decagonal
AIMnPd phase[47][48]. Difficulties were encountered for more accurate analysis until a
breakthrough was achieved in 2000 by Tsai et al who synthesized the first stable binary
quasicrystal with a composition Cds,Yb[2]. The discovery of Cds,;Yb icosahedral QC offers
a unique opportunity for structural analysis of QCs by experiments owing to its advantages: (i)
the Cds,Yb can be obtained as a single grain in high quality; (ii) the two constituent elements
Cd (Z=48) and Yb (Z=70) display very good x-ray contrast; (iii) the atomic structures of ACs
to this icosahedral i-QC has been intensely studied; (iv) the building blocks, i.e. Tsai type
cluster, of both Cds,;Yb i-QC and its binary ACs exhibit no chemical disorder, meaning that
all polyhedra are occupied fully by one element. By means of X-ray diffraction (XRD), the
detailed structure solution of Cds,;Yb was successfully characterized by Takakura et al[49] in
2007.

The 6D lattice is decorated by 3D objects, named occupation domains (ODs), and a proper
section of the 6D model to the 3D physical space is the structure of QC. Thus the key point is
determining the locations, shapes and sizes of the archetype OD which is, in case of Cds;Yb
as well as other i-QCs[50][51], obtained by truncating the 5-fold tips of a T~ times smaller
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rhombic triacontahedron (RTH) cluster in length. The archetype ODs associating with the
two additional arrangements, obtuse rhombohedron (OR) and acute rhombohedron (AR)
generated from the 1/1 and 2/1 ACs of the i-QCs respectively, constitute various ODs[52][5].
The 3D ODs in 6D model act as atomic positions in 3D physical space. Finally, The 6D
structure model can be achieved by decorating these ODs in a periodic 6D lattice. The
structure refinement of the 6D model of i-QC is performed using a method depicted in [53].
A general procedure to determine atomic structures of QC is:

* Based on the data collection from XRD measurements, the Fourier synthesis was
achieved after phasing the structure factors by applying the low-density elimination
method[54] to generate the electron density in the framework of 6D unit cell.

* The primitive 6D structure model with reasonable number of parameters was
designed using the information obtained from the AC structures and the 6D electron
density map. In this step, generating the decorating ODs plays important role in
describing the quasiperiodic structures.

* The 6D model was refined by subdividing it into fragments with individually
assigned parameters such as composition, parallel shift parameter and so on.

* The resulting 3D atomic structure in physical space was achieved. Atomic
arrangements in several projections as well as the clusters could be drawn for a better
view.

The collection of reflections data is crucial to construct the charge density map as some weak
reflections which possess large perpendicular diffraction vectors contain important
information of the shape of the OD. Therefore the diffraction experiments are normally
performed using synchrotron beam to obtain accurate datasets. In the meantime, another
thing need to be considered is such weak reflections are easy to be affected by multiple
scattering.

The 3D structure of Cds;Yb i-QC in physical space can be described in term of ‘inflation and
hierarchical packing of clusters’[49]. As illustrated in Figures 1.1.2, assuming the
icosidodecahedron as a single point, a larger icosidodecahedron, so called ‘cluster of clusters’
is repeated in a T’ times length scale. The RTH clusters are the dominated arrangements in the
i-QC as 93.8% atoms serve as RTH and the space between RTH are filled by different
decorations of ORs and ARs. Furthermore, the distortions of successive shells induced by c-
linkage, i.e. linkage along 3-fold directions, are observed in both i-QC and its ACs. This
phenomenon as well as the ORs and ARs obtained from different ACs suggest the significant
role of the ACs for better understanding the atomic structures and physical properties of QCs.

10
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Figure 1.1.2 A plane perpendicular to 5-fold units is shown in the left figure, where a larger t-inflated
decagon cluster composed of RTH clusters is framed by thick red lines. The 3D perspective of the T°-
inflated icosidodecahedron, i.e. the ‘cluster of clusters’, is shown in the right figure.

1.1.2 Indexing of icosahedral quasicrystal

As mentioned above, i-QCs are the only QCs which are quasiperiodic in all three directions
of physical space. This means six vectors are necessary to index the diffraction patterns.
Taking a,, a,, a; as the three unit vectors of the physical space and a,, as, a, as those of the
virtual space, then the unit vectors of the i-QCs in 6D reciprocal space are expressed as:

d; = (a*/2)[az + ag),
d; = (a*/2)[(c;a; + s;az)s + cas + (cpia4 + sy;a5)s — cag) (i =2,3,-++,6) 1.1
where ¢; = cos(2mi/5), s; = sin(2mi/5), ¢y = 1/V5,¢; = 2/5.
Then the unit vectors in real space are defined as:
d, = alaz + ag],
d; = a[(c;ia; + s;ay)s + cas; + (cy;a4 + sy;a5)s —cagl (2,3,-++,6) 1.2
where a = 1/a*.

In the indexing rule proposed by Cahn et al[55] for cubic i-QCs, the reflection related to a
plane (HKL) can be indexed in the form of (W/h’, k/k’, I/I’) where: H=h + h't,K = k +
k't,L = | + U't. The relationship between the six-index 3D vectors (h/h’, k/k’, I/l’) and the 6D
vectors (ny, n,, ny, Ny, Ns, Ng) 1S:

h =mnq —ny, h' =n, + ng,

k:n3—n6, k,:n1+n4,

11
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l=n,; —ns, l'" =ngz + ng. 1.3
The square of 6D diffraction vector Q can be expressed as the form:
Q*=N+ Mz 1.4
By mathematical derivations which will not be discussed here, another two-parameter

indexing rule for a reflection of i-QCs which is of the form N/M can be given by:
6

N=22n§=h2+h'2+k2+k'2+12+1'2 1.5
i=1
M=hn?+k"?+1?%+2hh" +kk'+11") 1.6

From that we can tell that the number of N is always even, and M is constrained in a region (-
N/T, ND[55]. When N is divisible by 4, M is divisible by 4 as well. If N is indivisible by 4, M
is of the form 4m+1. Table 1.1 gives the 12 strong reflections of i-QC phase in different

indexing rule.

Table 1.1 12 strong reflections of i-QC in different indexing rule.

N M (n) Wik’ kiK1 multiplicity
2 1 (100000) (1/0 0/1 0/0) 12
4 4 (100100) (0/0 0/2 0/0) 30
6 9 (111000) (1/1 1/1 1/1) 20
8 12 (101101) (0/0 2/2 0/0) 30
10 13 (111011) (1/2 2/1 0/0) 60
12 16 (210010) (2/2 0/2 0/0) 60
(111111) (0/2 2/2 0/0) 12
14 21 (201101) (1/0 2/3 0/0) 60
16 24 (211011) (212 2/2 0/0) 60
18 29% (211111) (1/2 2/3 0/0) 12
20 32% (201201) (0/0 2/4 0/0) 30
22 33 (211201) (0/1 2/4 1/0) 120
24 36 (222000) (212 212 2/2) 20
(211211) (0/2 2/4 0/0) 60

* The strong 5-fold and 2-fold reflections corresponding to (530) and (600) in the 1/1 approximant,
which will be discussed in Chapter 5.

1.1.3 Phason modes in QCs

The term phason was firstly put forward for investigating the lattice excitation of an
incommensurate charge density wave system[56]. Soon after the discovery of QCs, the
phasons are introduced for investigating many aspects from the growth mechanism to their
various physical properties. The analysis of phasons in QC phases is well understood in the
high-dimensional picture where phason modes can be viewed as modes with a wavevector in

12
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parallel space and a polarization in perpendicular space, as illustrated in Figure 1.1.3. It is
noteworthy that the phason modes are not propagative but diffusive.

Figure 1.1.3 INlustration of a phason mode in QC phase presented in a 2D picture. The full dots present

the resulting atomic positions. (from [57])

Different from the propagative long wavelength phonon modes, the phason modes have been
evidenced to be collective diffusive. For QCs as well as incommensurately modulated
structures, the phason modes with wavevector q are of the form:

—lw = Dphasonq2 1.7 (a)
or
1/t = D;ohasonq2 1.7 (b)

where Dppqs0n is the phason diffusion constant which possesses high spatial anisotropy. The
equation indicates that the phason modes have an exponential decay with a characteristic time
proportional to the square of the phason fluctuation wavelength, which has been proved in
experiments[61][62][63]. The characteristic time can be extracted from the time dependent
intensity correlation function of the coherent X-ray scattering:

Fcor(q' t) = [1 + ﬁg(q; t)] 1.8

where g(q,t) is the function involving time dependence of a phason mode with wavevector
q, and f is the partial coherence of the beam which depends on the experiment setup and is of
a typical order of 5% and 3% for low- and high-angle reflections for a third generation
synchrotron source[64]. The measurements had been performed on the well studied i-
AlPdMn phase, and two characteristic times were determined for different q. The
characteristic time t displays a linear correlation with the square of phason wavelengths in
the selected direction, giving the phason constant Dy pqs0n from Eq. 1.2(b). Furthermore, the
measurements at lower temperature give much larger, i.e. 5 to 10 times T of that at 650°C,
which demonstrates the frozen-in of phason fluctuations.

13
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Other than phonon contributing to the well-known thermal diffuse scattering, phason displays
characteristic diffuse scattering located nearby the Bragg peaks for aperiodic crystals[30].
Quantitative phason analysis can be achieved by absolute scale measurements of the X-ray
diffuse scattering in experiments. Phason diffuse scattering has been proved in some
incommensurately modulated phases and all QCs experimentally.

The diffuse scattering intensity of icosahedral phases can be described with five elastic
coefficients[60]: the two phonon terms (Lamé parameters A and w), the two phason terms K,
and K,, and the K; for the phonon-phason coupling term. The reciprocal coordinates of a
Bragg peak in quasicrystals can be decomposed into two orthogonal components: one is the
physically observable component, named Q,,., and the other is the virtually complementary
component Q... When the phonon-phason coupling term could be neglected, the diffuse
scattering intensity at the position Q,,+q can be written as:

S(Qpar + q) = Iqu_Z(anz)ar + ﬁQger) 1.9

where I, is the intensity of the Bragg peak, and «, f§ are given by the eigenvalues of the
inverse of the hydrodynamic matrix. They depend on the q direction, as well as on the Lamé
and phason elastic constants. The first term corresponds to the phonon diffuse scattering and
the second term is the supplementary phason component specially for QCs. For a given QC
and its approximant the Lamé parameters are almost identical, thus by subtracting the phonon
contribution which can be simply evaluated from the related approximant, we can obtain a
O, dependent phason diffuse scattering on the QC.

Investigation on icosahedral phases, such as i-AlPdMn and i-ZnMgSc[60][65] phases,
denotes the shape of phason diffuse scattering is determined by ratio of K, and K, and the
values of K, and K, are responsible for the intensity. The diffuse scattering around Bragg
peaks can be well reproduced in the framework of the hydrodynamic theory using the ratio of
K, and K, as demonstrated in Figures 1.1.4. Both the absolute values and the ratio of K, and
K, are dependent on the composition of the investigated systems. High anisotropy of the
phason diffuse scattering shape is another characteristic feature of the phason modes.

The phason fluctuations are normally frozen in at room temperature due to kinetic reasons,
thus temperature dependent diffuse scattering measurements are of crucial importance to
investigate the microscopic mechanism of phason fluctuations. The temperature dependent
phason modes have been studied in details on the AIPdMn icosahedral phase where a phason
softening is observed in a temperature interval from 550°C to 770°C[66]. In that case, the
diffuse scattering was found counter-intuitively varying with respect to the temperatures, i.e.
it decreases as the temperature increases. This result can be well interpreted by the softening
of the phason elastic constant K;. This softening phason mode is most likely related to a
phase transition from /;, through D, in the direction parallel to 3-fold axis. Moreover, the
diffuse scattering intensity below 500°C does not change anymore, demonstrating that the
observed phason fluctuations is frozen in at room temperature.
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Figure 1.1.4 (a) Experimentally measured diffuse scattering in the i-AlPdMn phase on a plane
perpendicular to 5-fold axis; (b) Simulated phason diffuse scattering using the two phason elastic

constants.

In the picture of high-dimension, the phason modes directly result from the invariance of the
free energy of the parallel space. The long-wavelength phason modes can be viewed, in some
extent, as the fluctuations of the parallel space along the perpendicular direction. As a
consequence, atomic flip, named ‘phason flip’ is expected recognizable in the structures of
QC:s in physical space as depicted in Figure 1.1.5, where the 1D image of Fibonacci chain on
a 2D plane is taken as an example. Direct proof of ‘phason flip’ has been witnessed in the
AlCuCo decagonal QC phase by means of high resolution transmission electron microscopy
(HRTEM) by Edagawa et al[58][43] (see Figures 1.1.6). Two local tiles with a 2nm edge
were observed shift frequently in a time scale of from tens of seconds to about ten minutes at
1123K. On the other hand, ‘phason hopping’ evidenced by time-of-flight neutron scattering,
in which quasielastic signal is sensitive to atomic motions, has also been reported[59].
Additionally, the ‘phason flip’ might exist as well in tetrahedrally packed QCs and ACs in
form of tetrahedron flipping[60][61].

Apart from experiments, simulations have been performed mostly on the random tiling model
proposed by Elser, Henley and Mihalkovic[67][68]. These simulations were carried out by
means of Monte Carlo method for studying the diffuse scattering and phason modes in
QCs[69][70][71]. The details will be presented in the beginning of Chapter 5 where MD
simulations have been carried out for investigation of diffuse scattering in various ACs to i-

QCs.
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Figure 1.1.5 The invariance of free energy of Figure 1.1.6 Direct observation of the atomic
the chain in parallel axis leads to a column flipping between two tile configurations
fluctuation along perpendicular axis. Some A and B. Elapsed times for (a) — (f ) are 0, 5, 8,
points ‘jump’ to nearly equivalent sites as 110, 113, and 115 s, respectively. The scale bar
indicated by grey and red points. indicates 2.0 nm.

1.2 Quasicrystal Approximants

As aforementioned, ACs play crucial role in investigating the atomic structures (providing
building blocks) and physical properties (quantitative analysis of phason diffuse scattering) of
QCs. Considering the challenging work of studying QCs in the framework of high-
dimensional space, knowledge from related ACs could greatly simplify the analysis. The
definition of ACs basically lies on their structures including the same building blocks and
very close chemical compositions with their QCs counterparts. The order of ACs, e.g. 1/1,
2/1 which is defined on the basis of Fibonacci sequence gives their complexity and closeness
with respect to QCs. The correlation between QC and AC could simply represented by 2D
image of Fibonacci chain as will be discussed in the following paragraphs.

1.2.1 Fibonacci sequence

Fibonacci chain is now frequently cited for explanation of quasiperiodic structure in 2D
space[72][73]. Mathematically, it can be constructed by concatenating the two previous
generations, as denoted in its formula:

Fy=F,,+F,_, n=3456.. 1.10

with seed values F =1, F,=1. The rule of construction depends on the two segments: long and
short segments (hereafter L and S respectively) representing the old and young famous
Fibonacci rabbits. The L breeds into LS and S grows as L in the next generation respectively
as listed in Table 1.1.
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Table 1.2 Fibonacci sequence represented by segments L and S with rule L — SL and S — L from

one generation to the next.

Segments n F,
S 1 1
L 2 1
LS 3 2
LSL 4 3
LSLLS 5 5
LSLLSLSL 6 8

According to mathematical deduction, as n — oo, the ratio of F, and F,_; approaches to t.

E, 1++5
lim = =

n—oo Fn—l 2

T 1.11

The number of # is the indicative of how close the sequence is to the limitation z. In case of
QCs and their ACs, the 3D building blocks correspond to the L and S segments, and the ratio
of sequences tells the complexity and closeness of ACs to QCs as mentioned above. The first
six ACs with respect to Fibonacci sequence are presented in Table 1.2.

Table 1.3 Fibonacci chain and periodic approximants, the complexity of unit cell increases as the ratio

approaching to 7.

Sequence of unit cells n Approximants
S.8,8, 8,8, S, ... 1 0/1
L L LLLL,... 2 1/0
LS,LS,LS,LS, ... 3 171
LSL, LSL, LSL, ... 4 2/1
LSLLS, LSLLS, ... 5 3/2
LSLLSLSL, LSLLSLSL, ... 6 5/3

1.2.2 Fibonacci sequence in 2D space

The illustration of Fibonacci sequence in 2D image is displayed in Figure 1.2.1. The plane is
decomposed into two orthogonal axis: parallel and perpendicular axis. By projecting the
points in gray area onto the parallel axis R',,, which cuts the 2D plane with an irrational slope
(7 for instance), a sequence with quasiperiodicity is obtained. The quasiperiodic sequence of
L and S segments are given on the bottom of the image. The width of the gray area is v2a
where a is the edge length of the repeating small squares. It shows clearly here that the
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quasiperiodic 1D Fibonacci chain is periodic in 2D plane, and the small squares in 2D space
act as the 2D lattice.

By cutting the 2D plane with rational slopes, e.g. 1/1, 2/1, 3/2..., one can obtain a series of
periodic sequences, so called approximants, as presented in Figure 1.2.1. As the slope
approaches to 7, the periodicity of approximants gets larger and larger until infinite where
they will meet QCs.

a

Figure 1.2.1 Periodic square lattice in 2D plane. By projecting motifs on 2D lattice to irrational and

rational parallel subspace, one obtains quasiperiodic 1D chain and its approximants.

1.3 Aims of this project

Although remarkable progress has been achieved for CMAs, still there are many open
questions for understanding and developing their outstanding properties. One of the most
challenging questions remains the understanding of the stability of such phases. This is
important from the fundamental point of view, but also for the understanding of their
mechanical properties such as Al or Mg based alloys where CMAs serve as reinforcing
precipitates[74].

Early studies to CdgYb 1/1 AC has evidenced an order-disorder phase transition at low
temperature[ 19][20] which has been universally observed in a series of isostructural phases,
ie. CdRE (RE = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) and
ZngSc[75][6][13][76][12]. Similar but more abundant phase transitions are also observed in
these ACs with respective to pressures[77][78]. On the contrary, the related QCs have been
proved rather stable under very low temperatures and high pressures[79]. The phase
transition has been proved triggered by the ordering of the innermost tetrahedron in Tsai type
cluster[7][80][81][9]. Several ordering schemes have been proposed for different
compositional ACs. One of the aims in this project is to clarify the ordering schemes acting in
different systems.
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An intriguing magnetic transition was observed recently in CdsSm and CdsTb 1/1
ACs[76][14][15]. Instead of spin-glass-like behavior found in relevant QCs, the ground states
of CdgSm and CdgTb are frozen into antiferromagnetic state. Long range magnetic order with
correlation length in excess of 500A was found by means of x-ray resonant magnetic
scattering. Thus the second goal of this project is to solve the atomic structure of the Cd¢Tb
phase at low temperatures.

The phason modes have been well studied in QCs, but also incommensurately modulated
structures[82] experimentally and theoretically. By means of molecular dynamic (MD)
simulations using effectively fitted oscillating pair potential, we try in this project to
reproduce the phason diffuse scattering in QCs. Moreover, trajectories of target atoms and
clusters will offer hints for investigations of phason modes in atomic view.

Combination of experiments and atomistic simulations is the key point of this thesis. Results
from experiments and simulations will be compared mutually. Altogether, this thesis will do
helps to understand the stabilization of QCs and their ACs counterparts in depth.
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Chapter 2. Synchrotron X-ray source

Chapter 2. Synchrotron X-ray source

Synchrotron radiation, as it was named firstly by Pollock[83], is produced when charged
particles with relativistic speed travel through a curved path in applied magnetic fields[84]. It
may be achieved artificially in storage rings or naturally by plasmas moving through stellar
nebula. Practically, all modern sources of synchrotron radiation for X-ray research are storage
rings. In a storage ring, the synchrotron radiation is produced using either bending magnets or
insertion devices such as undulators and wigglers. In bending magnets, the electrons are kept
at constant energy travelling in a closed circular orbit during which the energy loss of
electrons is radiated. In the insertion devices, electrons are forced running in an oscillating
path by an alternating magnetic field.

Comparing with laboratory X-ray sources, the synchrotron radiation possesses unique
properties[85]:

* Broad spectrum: it covers from microwaves to ultrahard X-rays.

* High flux: beam with high intensity photons can shorten experiments and probe very
weak reflections.

* High brilliance: highly collimated photon beam generated by a small divergence and
small size source.

* High stability: submicron source stability provides high accuracy.

* Polarization: linear and circular polarizations are both available.

* Pulsed time structure: pulsed length down to tens of picoseconds allows the
resolution of process on the same time scale.

Synchrotron
storage ring

Spectrometer P ) m
’, Monochromator ~ Undulator

\ Focusing
device e
W
_____ === 30 m
; et 2 m
7 10 m

Figure 2.1 A sketch of a typical third generation synchrotron site. Electrons or positrons are
accelerated in the storage ring. Radiation is emitted at each beamline and a set of optical devices such
as monochromator, focusing device and so on are applied to design proper beams for users. Insertion

devices like undulators, wigglers are placed in the straight sections to oscillate the charged particles

and produce intense X-ray beams[84].
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The quality of an X-ray beam may be described by a quantity called brilliance. The definition
of brilliance combines various effects from X-ray beams including number of photons
emitted per second, the collimation of the beam, source area and relative energy bandwidth
(BW) of photons. Finally the brilliance is given in a form:

Photons/second

Brilliance = 5 2.1
C;As(0.1%BW)

where Cp is collimation of the beam in unit of milli-radian, Ay is the source area given in
mm?2, and 0.1%BW denotes 0.1% of the relative energy BW of the monochromator crystal.
The brilliance of the third generation synchrotron facilities (e.g. European Synchrotron
Radiation Facility-ESRF) is about 10 orders of magnitude higher than that of laboratory
source.

2.1 Bending magnet radiation

Bending magnet radiation is produced by electrons moving in a constant magnetic field
which constrains the charged particles in a circular orbit. The radiation is emitted
continuously throughout the whole orbit since the velocity directions of electrons keep
changing. The emitted spectrum is very broad starting from far infrared until ultra-hard X-ray
region. For an electron travelling with super-relativistic speed, i.e. v = c, the magnitude of its
momentum is given by:

P = ymc = peB 2.2

where y = &,/mc? is the electron energy in units of its rest mass energy, p is the radius of
the circular orbit, and B is the amplitude of the magnetic field. Thus, the radius of the
electron orbit is expressed as:

_ymc £.[GeV]
plm] = —- =33 ST 2.3

The radiation emitted by an electron orbiting along a circular arc at relativistic speed is
compressed into a tightly collimated cone with an opening angle 1/y as illustrated in Figure
2.1.1 (a). The typical energy of electrons in synchrotron is 5GeV, and the rest mass of an
electron is 0.511MeV, which gives the opening angle in order of 0.1mrad. As the electron
moves in the circular orbit, for observers viewing along direction of tangent to point B, the
emitted radiation is observable only when the charged particle appears between the circular
arc AC as indicated in Figure 2.1.1 (b). Due to the Doppler effect, the observer may see a
signal as half period of an oscillation.

The Doppler effect is given by the relation between the observer time dft, i.e. the time interval
between two sequential radiations measured by observers, and the emitter time dt’, i.e. the
time interval between two sequential radiations being emitted, in form of differential equation:
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dt
pri (1 — Becosa) 2.4

o is the angle between velocity and viewing direction of the observer, and 8, = v/c is the
speed of orbiting electrons in unit of light speed. As can be seen, a being O at point B gives
the minimal differential, i.e. the most enormously compressed time and most strongest
Doppler effect. This then explains the pulse signal that the observer receive in the duration
when the electron moves from A to C. The finite time duration implies a characteristic
frequency for the pulsed radiation, which is given by the Fourier transform of the wave:

w. = 1.573w, 2.5
with wq being the frequency of the orbiting electron. Thus wy = 2?11 = (22;;) = E, for super-

v

relativistic charged particle, it is proportional to B /¢, according to Eq. 2.2. Then by taking in
the known quantities, the characteristic energy of photons is given by:

EpnotonlkeV] = 0.665¢2[GeV]B[T] 2.6

Radiationcone @~ _———==zz-----oje---- N

nstantaneous velocity v

(b)

Figure 2.1.1 Bending magnet radiation in a circular orbit. (a) The radiation is emitted in form of a cone
with opening angle 1/y; (b) The radiation is only observable when charged particles appear between A

and C in the circular arc. It gives a radiation with pulsed spectrum.

The phonon flux of emitted radiation by electrons orbiting in bending magnet field may be
calculated by the powder density of the radiated field which is provided by the amplitude of
Poynting vector:

1—)

S = —Erqa*XBraa
u

S[Wm_z] = EraaBraa/t = CEOEEad 2.7
with

Eyaq = |A|e/(4meqc?R) 2.8
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where 4 is the apparent acceleration, and R is the observing distance. Here, the amplitude of

A can be estimated by:
-1

Y
d*x  Ax p(1-cosly)  op2 e

i|=—~—= ~ ~ 2.9
41 dt?  At? (1/y3w,)? (p/cv®? p

where Ax is the distance from point B to segment AC as denoted in Figure 2.1.1 (b).

The power density then can be obtained by combing Eq. 2.7 - 2.9. Furthermore, the radiation
energy emitted by the electron travelling from A to C along the arc in a time interval At at
distance R can be calculated by:
2

(R*y~2)At

-2 e
éraa = céol4| (47‘[60C2R>

1 62 y3

~— — 2.10
4 dmey p

The number of photons emitted from one electron then characterized by the ratio of &;,.44 and
Ephoton Which is given by Eq. 2.6:

N 1 e?/(4meq)

~— 2.11
pho = pm hc

From Figure 2.1.1 (b), we see that the radiation power covers a length AC=p/y, thus the
energy per length unit is < y*/p?. By substituting Eq. 2.3, we finally obtain the total
radiation power emitted by a current / of electrons moving in the bending magnet field by
length of L in form of:

P[kW] = 1.266&2[GeV]B?[T]L[m]I[A] 2.12

Altogether, skipping complex mathematical derivation, the radiation spectrum from bending
magnet field is expressed as:

Photons/second 13 2 w? o (1w
= 1.33x10"°¢*[GeV]I[A] — K2/3( )

2.13
(mrad?)(0.1%BW) W,

2o,
where K22/3 (% wi) is the modified Bessel function. The spectrum of bending magnet radiation

with respect to normalized photon energies is presented in Figure 2.1.2[84].

2.2 Insertion devices

As we depicted in Figure 2.1, apart from bending magnet, there are a set of straight sections
followed by the circular arcs. These sections are equipped by so called insertion devices
which are made of arrays of magnets. Alternating magnetic fields can be produced by these
magnets to force the charged particles move in an oscillating path. In this way, the radiations
with better brilliance can be obtained more efficiently. The two types of insertion devices:
undulator and wiggler will be discussed in the following context.
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Figure 2.1.2 Spectral distribution of bending magnet radiation respective to continuous photon

energies.

2.2.1 Undulator radiation

The undulator works in a way as presented in Figure 2.2.1 (a). Radiations are emitted and
interfere with each other, implying a monochromatic spectrum as displayed in Figure 2.2.1
(b). The spectrum is more like ‘quasi-monochromatic’ since the number of periods in an
undulator is finite.

T
1E16 | 4
1E15 ¢
1E14 |

1E13 £

Flux (Phot/s/0.1%bw)

1E12

0.1 - “““1 - ‘;0 - I.1‘00 = .:|.000 10000(b)‘
(a) Photon Energy (eV)

Figure 2.2.1 (a) Schematic of an undulator[86]: 1. Magnets, 2. Electrons, 3. Synchrotron radiation; (b)
Comparison of flux in terms of various insertion devices and bending magnet (BM) at NSRRC[87]
respective to phonon energy. W20 wiggler, U5, U9 undulators and EPUS.6 elliptically polarizing
undulator are conventional permanent magnetic insertion devices. SWLS is acronym of
superconducting wavelength shifter. IASW6 and SW6 denote (in achromatic) superconducting

wigglers.
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For characterizing the undulator radiation, apart from the natural opening angle y, we need
the undulator spatial period A, as indicated in Figure 2.2.1 (a), as well as the inflection
parameter K which is used to describe the amplitude of the oscillations. The parameter K is
given as:

eByly,

K= = 0.9341,[cm]B,[T] 2.14
2mmec

The fundamental wavelength of undulator radiation is expressed as:
s
A1(0) = Ay (— - cos@) 2.15
Be

where 6 is the angle between observing direction and the radiation, and s = 1 + ¥y "2K?/4 is
the ratio of electron path within one period and the wavelength 4,,. Thus we have:

M (. K? ,
A(0) = ﬁ 1+ 7 + (y6) 2.16

It shows that the fundamental wavelength is adjustable by changing the spatial period and the
maximum magnetic field B,.

The undulators emit radiations only at characteristic phonon energies:

n
= 0.949[KeV](E[GeV])? 2.17
en KeVIEGeV D) T T ¥ k2/2)
with the bandwidth Agi = ﬁ, where N is the number of periods and n=1, 3, 5, 7... is the

number of harmonics.
The opening angle of the undulator radiation cone is expressed as:

(1+K2/2)

1
Op =— 2.18
y 2Nn

The flux of the undulator radiation within the central cone is given in practical units by:

Photons/seconds 14 K?
Flux ~ 1.432%x10"*NI[A] ———— 2.19
0.1%BW 1+ K2/2
2.2.2 Wiggler radiation

The wiggler works in principle as illustrated in Figure 2.2.2 where the magnets are typically
designed in a Halbach array[88]. Since the amplitude of the electrons’ oscillations are larger
in wiggler, meaning that there is no interference between radiations, the spectrum of a
wiggler is broad as shown in Figure 2.2.1 (b). The wiggler can be treated as a series of
bending magnets where the radiations are added incoherently. Thus the radiations are
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enhanced by a factor of 2N, where N is the number of periods. The typical number of N is

about 50, suggesting a 100-times enhancement.

Figure 2.2.2 Schematic drawing
of a wiggler arranged in Halbach
array which augments the
magnetic field inside the access
and cancels the magnetic field
outside the shells to near zero.
The arrows on those permanent

magnets denote the orientations.

The emitted power is expressed similarly to Eq. 2.12, only the magnitude of the magnetic
field in wiggler is BZ /2, where B, is the maximum field:

P, [kW] = 0.633¢2[GeV]B2[T]L[m]I[A] 2.20

The observed length L of the electrons’ path is about the same as the length of the wiggler
which is typically in order of 1m.

As aforementioned, synchrotron beam plays crucial role in determining the atomic structures
and physical properties of QCs, of which much important information is hidden in weak
reflections. This chapter is a brief introduction on the various kinds of synchrotron radiations,
therefore no abstruse mathematics are added. To whom being interested in the detailed
derivations, further information can be found in [89][90].

2.3 Experiment instruments

Throughout the thesis, synchrotron radiation is applied for various X-ray measurements. The
X-ray diffuse scattering is involved for characterizing the disorder features. Single crystal and
powder X-ray diffraction is executed for determining the atomic structures. Experimental
conditions including beam information, tested samples and adopted instruments are tabulated
in Table 2.1. The description of the experimental set-up is given in the following paragraphs.

Table 2.1 Summary of synchrotron experiments in this work.

Synchrotron  Beamline Sample Testing Quality Device Detector
Radiation
Facility
ESRF D2AM Cd¢Pr, (Cd Mg Diffuse scattering Kappa Scintillat
atl0%) (Pr, CdyYb diffractometer or
Soleil Crystal Cd¢Tb Structure 4-circle 2D CCD
determination diffractometer

27



Chapter 2. Synchrotron X-ray source

Soleil Crystal Cd¢Tb, CdsYb Phase transition 2-circle Multi-
. analyzer
diffractometer
detectors
Diamond 116 ZngSc, CdgM Phase transition 6-circle Pilatus,
(M=Tb, Yb, Ho, diffractometer =~ Medipix

2.3.1 The beamline optics

Before getting to the experimental hutch, the white beam produced in the storage ring and
insertion devices is selected in an optical hutch to achieve monochromatic beam. The
beamline optics will be introduced by considering the example of D2am which is located at
the bending magnet D2 of the ESRF.

The optical hutch in D2am and a schematic are illustrated in Figures 2.3.1 (a) and (b)
respectively[91]. The white beam is first collimated by a limitor located in the first vacuum
vessel. Then the attenuation is applied in the next vacuum vessel where two filter holders are
designed. The first slits system is also located in this vessel to set the vertical and horizontal
divergence of the incoming beam. The monochromatic beam is produced by the mirrors and
monochromator following the second vessel. The mirrors are used for vertical focusing of the
beam selected by a two-crystal monochromator. A secondary slits system is located in front
of the second mirror to clean the monochromatic beam. The beam is kept under vacuum until
getting out of the second slits system. Before used in experiments, the beam is finally
adjusted by the secondary shutter and third slits system which are located between optical

hutch and experimental hutch.

monochromator

mirror

experiment mitrror

slits

Figure 2.3.1 A view of the optical hutch in D2am (a), and a schematic of the optical hutch.

2.3.2 Diffractometer

The diffractometer can be operated in both transmission and reflection configurations. In the
case of commonly used 4-circle diffractometer, the reflection one could be realized via 4
circles: Mu, Phi, Kappa and Theta (see Figures 2.3.2). The whole diffractometer is mounted
on a table which could be adjusted for alignment. The incoming beam defined by the optics is
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diffracted by sample, and then collected and analyzed by detectors. Depending on different
experiment requirements, relevant detectors are chosen including photodiodes, 2D-CCD,
photomultiplier with Nal scintillator, XPAD etc.

Figure 2.3.2 (a) View of the 4-circle diffractometer equipped with a gas streamer (Cryolndustries of
America) to cool the sample. (b) 2-Circle diffractometer and its multi-crystal analyzer in the BC hutch.
(Crystal beam, Soleil, Paris)

The 2-circle diffractometer is efficient instrument for powder diffraction as shown in Figure
2.3.2 (b). A rotating motor could be mounted on the sample holder to avoid preferred
orientation. The detection is carried out via multi-analyzer detector, comprising multi-Si (111)
crystal analyzers followed by scintillation detectors (LaCl3 or Ce). Two parameters are
responsible to adjust the detector system, one for the multi-analyzer, and the other for related
detectors. To obtain final diffraction diagram, the multiple independent diagrams are shifted
and summed up simultaneously. The setup enables a data collecting with high speed and high
resolution.

Comparing with 4-circle diffractometer, 6-circle diffractometer adds options for w and 26,
making them adjustable in both horizontal and vertical planes. For Huber 6-circle
diffractometer, a specific design called ‘Huber tower’ could be mounted on the w circle,
allowing system work with grazing beam.

2.3.3 Detectors

Photomultiplier with Nal scintillators was used in the diffuse scattering measurements of
Cd¢Pr, (Cd Mg atl0%)sPr and Cd,Yb. Filters can be inserted after the monitor to avoid
saturation on the detector. A calibrated aperture can be inserted on the slit located between
diffusing Kapton foil and the monitor. By adjusting the aperture, one can control the counting
rate in the monitor.

XPAD pixel detector is a commonly used 2D detector developed using the pixel hybrid
technology. It can provide a large dynamical range and high counting rate. The being
processed XPAD3 allows a counting rate above 2x10° photons/pixel/s. The up-to-date
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technique can reduce the pixel size to 130um with similar or enhanced performances.
Detectors using Si diode can work in the energy range 5-25keV and those with CdTe diodes
are available in an energy range up to 60keV.

The multi-analyzer has been designed for powder XRD. Two adjustable rotations are
available at given energy: one for the crystals and the other for detectors. The crystals
(normally Si(111)) are followed by scintillation detectors mounted on the analyzer. The
crystals are glued with paraffin on precisely machined supports to obtain a stable and
reproducible mount with constant relative configurations between adjacent crystals. The 21-
Si(111) crystal analyzer used at Crystal beam in Soleil is illustrated in Figure 2.3.3. The
signal of each detector, which is detected simultaneously, is shaped and amplified using
homemade amplifiers-discriminators. The collected 21 independent diagrams are then shifted
and summed up to give the final diffraction diagram.

-

T -

Figure 2.3.3 A view of the multi- Figure 2.3.4 Schematic of a hybrid detector.
analyzer detector used at Crystal The PN-diode array and the readout ASIC are
beamline, Soleil, France. connected by small metal balls.

The Medipix is a family of photon counting pixel detector where a semiconductor sensor
layer made of silicon, GaAs or CdTe is bonded to an electronics layer[92]. Electron/hole
clouds are made by the incident radiation in the semiconductor. Then the charges are
collected and processed by the electronics layers. The stimulated electronics provide the
number of events in each pixel. Medipix-2, Timepix, and Medipix-3 are all 256x256 pixels
with a pixel size of 55um. Discriminators are applied to select an energy arrange only in
which the electronics count events.

PILATUS, short for Pixel Apparatus for the Swiss Light Source, is another CMOS-based
photon counting detector developed at the Paul Scherrer Institute during the last decade.
PILATUS detectors are 2D hybrid pixel array detectors which works in single photon
counting mode[93]. They have a high dynamical range, i.e. 10°1, which makes it possible to
collect both strong and weak reflections accurately. The single photon counting technique
reduces the noise signals with a very short readout time (less than 3ms) and high counting
rate (at least 2x10° photons/pixel/s). Moreover, the energy threshold is adjustable to suppress
fluorescence background from the sample. The detector includes two parts: a 2D array of PN
diodes, and the readout ASIC (Application specific integrated circuit). These two parts are
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connected by bump-bonding, i.e. small metal balls. The schematic is displayed in Figure
2.34.

2.3.4 Temperature control

The low cryogenic temperatures applied in this thesis are obtained and maintained using
cryostat. It works in different ways, most commonly with liquid gas such as nitrogen or
helium. Figure 2.3.5 is a schematic of cryostat used in D2am beam in ESRF and 116 beam in
Diamond.

/’ \ Be, sphere, Diameter=80mm
\ Be, sphere, Diameter=50mm

Goniometer head

Phi cradle

X, y, z alignment

Cryostat supply

Figure 2.3.5 A view of the cryostat set inside the phi circle. The temperature auto-tuning is controlled
by model 330 from Lakeshore. There are two thermometers channels, one is a silicon diode

responsible to the temperature control, the other is a silicon or platinum resistor near the sample.[94]

It can be mounted on the phi circle of the goniometer. The top is domed by two Be
hemispheres which allow the beam go through with negligible loss. The inner chamber can
be filled with exchange gas to improve the temperature conduction between the cold
exchanger and the sample.
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Chapter 3. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation is a powerful tool to explain or predict experiments.
The booming of computing techniques (super computer, cloud computing et al) and dramatic
progress in simulation theory (Density Functional Theory(DFT) et al) have enabled us to
simulate very complex systems in various extreme conditions. It allows us to have a view of
the motion of the atoms based on which the physical properties can be investigated in
atomistic scale.

First principle calculation is a powerful method for studying properties of condensed matter.
It is usually the first choice whenever being feasible because of its high accuracy and
reliability. The ab initio calculation is a quantum mechanics method giving configuration or
property of system by solving Schrddinger function. The calculation is carried out with
restricted parameters such as mass of electron, proton and neutron, velocity of light. No
empirical or semi-empirical parameters but proper approximation (Born—Oppenheimer
Approximation[95], Hartree—-Fock Approximation[96] et al) are applied. The introduction of
approximations improved greatly the modeling of the exchange and correlation interactions
in the DFT which determines properties of a many-electron system by using the spatially
dependent electron density. Despite the improvements of DFT and various approximations
reduce greatly the calculation amount, the computing capability of ab initio molecular
dynamics (AIMD) simulation is still limited. Especially for complex compounds with
elements as transition metal whose s, p, d orbital electrons are potentially easy to be
stimulated as valence electrons. In general, the processing capacity of AIMD for metallic
systems is ~100-200 atoms in 10-100ps.

Regarding to our systems, considering the complexity of QCs and ACs, and the limitation of
computer power, ab initio molecular dynamics simulation is impossible to achieve in most
cases. The first principle analysis to ACs up to now is mainly to achieve the energetic or
electronic ground state of 1/1 approximants[10][97].

To study the long-range correlation effect, we need a supercell containing at least 2x2x2 unit
cells which has been much beyond the scope of AIMD. Therefore we carried out classical
MD simulation using code LAMMPS (see section 3.4), which is able to process hundreds of
thousands of atoms with proper accuracy. The details of employed potential and simulation
settings will be introduced in following sections.

The principle of classical MD simulation is integrating Newton’s equation of motion for
atoms, molecules, or other particles that interact with each other by force field. The Newton’s
equation can be expressed in form of vectors as:

a2 _ d_. _.
er:am:al 3.1
v, =v2 +at 3.2
= 704 0 Lo

n=r +vlt+zalt 3.3
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where 7; is displacement of the i" atom at the moment ¢, and v,, a, are velocity and
acceleration respectively. Once 7; is known, the positions of atoms will be knowable.

Leak-frog integration is a popularly used algorithm for solving Newton’s equation developed
by Verlet[98]. The mathematical description of Leak-from method can be written as:

vi(t+%§t) = vi(t—%é’t) + alt& 3.4
Tiersr) = e T v, 6t 3.5

The starting velocities and positions of atoms, i.e. V,|;=¢ and 7|, are defined beforehand.
When v, |t=¢-1 /26t 18 known, then by acceleration Et, which could be given by force field
(Newton’s second law), the velocity and displacement at the moment t + 1/2 §t, i.e.
ﬁ|t:t+1/25t and ?L|t:t+1/25t, is obtained. As a consequence, the expression of velocity is
given by:

I _
Ve =35 [vl(t+%6t) + vl(t—%&)] 3.6

Apart from velocities, the other necessary aspect to describe particles’ trajectories is
acceleration, which is given by force field, i.e. effective potentials.

3.1 Effective potential

As discussed above, other than Schrddinger function, the classical MD simulation determines
particles’ motions by effective potentials which are normally either empirical or semi-
empirical. The principle of an effective potential is combing multiple interactions into a
single one. Various models have been put forward for different systems in the past years. As
a summary, some classical types of potentials will be introduced briefly in the following
subsections.

3.1.1 Pair potential

Pair potential is the most widely used model describing the interactions between two objects.
In general, some pair potentials were developed by theoretically deducing accompanying
some experimental parameters, e.g. elastic constant, equilibrating lattice constant, cohesive
energy and so on. Others were proposed based on empirical approximation, which is easier to
realize however in many cases with lower accuracy. Pairwise potentials can be constructed in
many ways, and the most widely adopted types are Lennard-Jones (LJ)[99][100], Morse[101],
Born-Mayer-Huggins[95][102][103].

LJ potential

The expression of LJ potential is of the form:

= n Kom [m (7;‘_0)11 on (%O)m] 3.7
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where Vj is the amplitude of interactions, r is the distance between two interacting particles,
and ry refers to the atom size. Values of n and m could be determined by dipole-dipole
interaction in secondary perturbation theory of quantum mechanism. Then the expression
could be transformed as:

vy =1el(@) -] e @) 2] s

where € is the depth of potential well, o is the cutoff of the potential, i.e. the interaction
beyond this distance is zero, and 7y, is the distance where potential gets the minimum. The
12-power term denotes the Van der Waals’ force (VDW), and the 6-power term expresses the
repulsive forces which result from Coulomb force between nuclei and the inter-electronic
overlapping energy. So the LJ potential is also named as 12-6 potential or 6-12 potential.

Morse potential

Morse potential was proposed by Morse in 1929 to model potential energy of diatomic
molecules[101]. The mathematical expression of Morse potential is given by:

V. = Do[1 — e Blr=Te)] 3.9

where D, is the depth of the potential well, r is the distance between interacting atoms, and 7,
is the bond length where the inter-particles reach equilibrium, and

2u 3.10
=mv, |— .
p=mve |3
1 mym,
= = 3.11
PTTT Tmm
m; My

V. is the vibrational constant, and m, and m, are masses of the two particles. Morse potential
is usually used for constructing multi-body potential.

Born-Mayer-Huggins potential

The Born-Mayer-Huggins potential is in form of:

C D
= AeBlom _ = _ 2
V= AP — - 3.12

As in the cases above,r is the distance between inter-particles, and o is the equilibrium
distance where force is supposed to be zero. The first term is the repulsion as LJ potential,
and the second and third terms indicate dipole-dipole interaction and dipole-quadrupole
interaction respectively. Such potential is well used to study alkali halides.
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3.1.2 Many-body potential

The pairwise potentials work efficiently for molecular crystals and ionic compounds.
However, difficulties are encountered for intermetallic alloys containing transition metals
because of their complicated electronic structure forming not only metallic bonds but also
covalent bonds. For the sake of a better description, an additional term is in need of being
introduced.

Embedded atom model (EAM) potential

In the view of Daw and Baskes[104], one nucleus is not only repulsed by its neighboring
nuclei, but also interacts with electron cloud forming by extranuclear and background
electron. The energy of a N-body system in EAM is of the form:

Where ¢;; is the pairwise potential of the inter-nuclei, and F; is the energy required to embed
the i nucleus into the electron cloud possessing an electron density of p;.

The expression of EAM for a single elementary system is determined by fitting its lattice
constant, cohesive energy, elastic constant, forming energy of vacancy et al. The fitting could
be carried out by Rose approximation:

U, = —U, [1 +b (ri _ 1)] oY) 3.14
V.B

b= |= 3.15
U,

where U, is the combining energy, V, is the volume of atoms in equilibrium and B is elastic
module. For a binary system, the EAM potential is generally obtained by interpolating with
cubic splines. EAM potential is now successfully used for in most intermetallic alloys.

Finnis-Sinclair (F-S) potential

F-S model[105] is developed based on tight binding theory and commonly used for
interaction of binary systems. The total energy of system is of the form:

N r r
Ui = )| D dge ") _J D e ) 3.16

i=1 | j=1=i j=1#i

r and r, are interacting distance and equilibrium distance respectively, and A4;;, &;;, p;j and
q;j are parameters obtained from fitting in units of eV, ¢V, dimensionless and dimensionless.
The first term indicates the interactions between two nuclei, and the second term denotes the
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correlation energy of N-body interaction. Comparing to EAM potential, F-S model is simple
in form hence easier to fit.

Modified embedded atomic model (MEAM) potential

EAM and F-S potentials are both constructed simply assuming the system as central
symmetry. For materials with highly directional bonds, they work poorly until a modified
version of EAM was proposed by Baskes[106][107]. And later a simplified version was
developed by Lenosky[108] who employs cubic spline instead of predetermined analytic
function.

The total energy of system is of the same form as EAM potential:
Utor = ZZ 2 l](rl]) + 2 F; (Pl 3.17
i=1 j=1+#i
The angular factor is introduced in the term of embedded energy function:
3
1 (n)
pi = p(o)exp —2 m (P 3.18
2 p(O)
h=1

where p(h) (h =0,1,2,3) are related to electron density on orbits of s, p, d, f respectively,
and t™ are weighting factors of each component. The p(h) is given by:

p@ = FO0) 3.19
a

3.20

o 23
i apf

@ =) ) 19 T i f<2><r @) 321

= (tarp )? 3
]xkx ]X
p® = 2 FO(r, )f(3)(rﬁ)““—w 3.22
i,j,k (rarﬁ)

where «, f§ indicate the two interacting particles, x}x,xéle,f are coordinate components of

atom « relatively to the i atom. And £ (r) describes the radial electron density, which is
given by:

_, (T _
fW@E =e" (1) 3.23
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MEAM potentials attempt to describe interactions taking account angular affect, which
results from directional bonds, so the calculation is much huger. Comparing with EAM and
F-S potentials, MEAM takes 3-5 times longer, however, obtaining much accurate results.

3.2 Force matching

With a bunch of potentials mentioned above, we can handle most of simple compounds and
even some organics. However, obtaining practical and accurate force fields is invariably
fussy especially for complicatedly interacting systems. Since quantities are needed for
determination of those energy functions, nevertheless, experimental measurements on some
of these complex systems are unfeasible for the time being. As a solution, force matching
method crosslinking first principle calculation and classical empirical potentials was
proposed[109]. Instead of obtaining potentials from a set of experimental qualities, force
matching method creates potentials by fitting results against first principle calculation.

Generally, the force matching potential is obtained by performing a large number of first
principle calculations with different geometries and a wide range of temperatures, and then
the obtained amount of information is used to fit as closely as possible the force from first
principle calculation. The matching process is carried out by minimizing the energy of the
system with a set of parameters up to the order 100. Since the first principle calculations are
implemented with different geometries and temperatures, the finally constructed potential is
of satisfying transferability.

The potential we employed throughout the work for MD simulations is obtained from a
collection of ab-initio data, fitted to an analytical oscillating pair potential. The database
including force and energy of a set of ZnSc compounds was created by using the program
VASP. The details will be presented detailedly in Chapter 6.

3.3 Simulation conditions

A classical MD simulation consists of three parts: initial configuration, potentials and input
script. Proper settings act significant role in a simulation to make an emulational environment.
Parameters differ between systems according to different properties. Some key variables are
outlined as follows.

3.3.1 Ensemble

An ensemble is defined as a set of systems with consistent conditions. Micro-canonical
ensemble is system with fixed particle number (N), fixed volume (V) and fixed energy (E),
short as NVE ensemble. In case the energy minimization technique (e.g. conjugate gradient
method) or a heat bath (e.g. Berendsen thermostat and Nosé—Hoover thermostat[110]) is
adopted, a canonical ensemble or NVT with particle number (), volume (V) and temperature
(T) being fixed is obtained. For a system with fixed temperature and chemical potential, the
correlated ensemble is grand canonical ensemble, in which systems can exchange both
energy and particles, however, the total energy, particles and volume are kept constant as
well as volume of each system. Similarly to canonical ensemble, if system is coupled to a
barostat, which applies a fixed pressure by rescaling simulation box, i.e. exchanging energy

38



Chapter 3. Molecular Dynamics Simulation

and volume, then the ensemble is abbreviated as NpT. For equilibrated systems, the
microstates are fluctuated in time scale, and in the view of ergodic principle, the average of
each physical quality in time scale in one system equals to the average of related quality to all
systems. The bigger the system is, the smaller the fluctuation rate becomes. Hence for a
macro-system, the physical quantities calculated from different ensembles approaches to
identical.

Canonical ensemble is the most widely used ensemble. As shown in Figure 3.3.1, the
ensemble is surrounded by an adiabatic hard layer, and the hard layers between systems are
energy pervious but particles resistant. As a consequence, after sufficient energitic exchange,
all systems reach a fixed temperature which is decided by the average of E;. As discussed
before, for macro-system the number of particles N is large enough to neglect the fluctuation
of each physical quantity, and the number of systems in ensemble N’, which stands for all the
possible states, is ideally supposed to be oo.

Adiabatic layer

Diathermic layer

Figure 3.3.1 Schematic representation of canonical ensemble.

As systems in canonical ensemble correspond relevant microstates, and it is found that the
number of systems in each microstate is proportional to exp(—BE), where B = 1/kzT with
kg the Boltzmann constant equal to 1.3806488(13)x10723JK 1,

Then the partition function of canonical ensemble is given by:

2(8) = ) exp(~fE) 3.1

If we do natural logarithm to the partition function, then the result gives the Helmholtz free
energy:

F = —kgTInZ 3.2

With the partition function Z, the average energy could be obtained by the first derivative of
InZtof:

dlnZ
ap

E=- 3.3
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3.3.2 Boundary condition

By applying effective potential and proper approximation, the processing capability of
classical MD is improved greatly. Take LAMMPS as an example, the maximum number of
atoms it can handle is up to 10°, equivalently 10-20nm in length scale. However, this is still
far from sufficient to do a simulation comparative to relevant experiment. Furthermore, on
one hand, the smaller the simulation box is, the bigger the surface effect becomes, on the
other hand, when atoms are pushed off the box by interaction, the number of particle will
change. One effective and widely used solution is the periodic boundary condition.

The principle of periodic boundary condition is whenever atom moving out of the box,
equivalent atom will move in on the opposite side. It means the atoms close to or on surfaces
interact not only with atoms on center-close side, but also with atoms located on the opposite
faces. In this case, the cutoff distance of interaction must be considered prior since if the box
size were smaller than cutoff distance, atoms would impact themselves.

One thing to emphasize is that the periodic boundary condition is similar with replicating
process. However, replicate is to create simulation box, and the replica are involved for
relaxation and simulations as shown in Figure 3.3.2. While periodic boundary just exchange
the information (position and interaction) of atoms along surfaces to create an infinite system
without boundary. A scheme illustrates the mechanism how periodic boundary condition
works in Figure 3.3.3.

e |0 |00 e o |l @
e® |oee0® |oo o | o0 |®®
veloslos = lee | en s
e |00 |0e ee|e o| 0o
o0 | o0 | oo e | o0 |® o

Figure 3.3.2 Scheme of duplication and relaxation in 2D image. Left: Structure is replicated at the

beginning by three times; Right: By interacting with each other, system is relaxed.
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Figure 3.3.3 Presentation of periodic boundary condition along x direction. When atom A moves out of

the simulation box, an alternative atom A’ which is equivalent with A moves in on the opposite side.

Therefore the number of particles keeps constant all the time.

3.3.3 Energy minimization

According to the description of inter-atomic forces in studied system, internal stress could
exist in the initial configuration owing to improper atomic positions. Energy minimization is
the process iteratively adjusting atom coordinates until reaching a possible local potential
energy minimum. The energy minimization is terminated when one of criteria is satisfied.
Mathematically, the local minimum energy should be as close as to a critical point of the
objective function:

E(ry,rg, -, 1n) = Z EpalT(TLIT]) + Z Ebond(Tu 7}) + Z Eangle(TLrTjr Tk)

Lk
+ Z Edlhedral(rllrjlrklrl) + Z Etmproper(rurjrrkrrl)
L)kl i,jk!l
+ Z Efixes(ri) 3.4

where Epq;y is the energy of non-bonded pairwise interactions such as long range Coulomb
interactions which differ from bond interactions expressed as the 2™ term. Bonds are pairs
interacting between specific atoms and keep in force for the whole duration of simulation.
Eangter Edinearar and Eymproper are angle, dihedral and improper interactions between
triplets, dihedral and improper quadruplets which are defined in the initial structure
respectively. The last term Ef;yes denotes energy resulting from constrains or forces applied
to atoms by introducing external conditions such as a wall. Details on minimization and
objective function can be found on page 747, minimize command, of the LAMMPS
manual[111].

The methods of realizing energy minimization include conjugate gradient, deepest descent
relaxation, Newton method, damped dynamics method and so on. To terminate the
minimization process, one of the following criteria must be satisfied. Energy tolerance is
defined as the energy change between consecutive iterations divided by the energy magnitude.
The iteration process is stopped whenever energy tolerance is equal to or smaller than the
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criterion. The second criterion is by evaluating the length of force vector of each atom, i.e.
the three components of force to each atom should be less than a pre-setting tolerance. If the
energy or force tolerance can not reach to criteria for a long time, then the iteration would be
terminated by settings of maximum number of iteration or the total force evaluation. The
settings of criteria differ in different systems, so one should attempt to tune the minimization
process. Moreover, the efficiency of minimization is also affected by various algorithms.

Conjugate gradient is the most commonly used algorithm for searching optimization of
unstrained system. It is developed by combining conjugacy with deepest descent method. The
principle of conjugate gradient algorithm (CGA) is computing a new searching direction
conjugate to the previous one to find a local minimum iteratively. Therefore CGA has two
iteration, one named as ‘outer iteration’ is the time step defined for the whole duration of
simulation, and the other so called ‘inner iteration’ is step along line search in a specific
direction (conjugate operation). The following is an example setting for a LAMMPS MD
simulation:

# minimization
min style cg
minimize 1.0e-4 1.0e-6 100 1000

The minimization style is defined as CGA which is the default setting in LAMMPS. The four
parameters indicate the relevant terminating criteria. The first is the stopping tolerance for
energy, which means if energy magnitude is 10*, minimization would not stop until energy
change between two successive iterations come to 1. The other three are stopping force
tolerance, maximum iterations of minimizer, and maximum number of force or energy
evaluations, respectively. Furthermore, for CGA, when step distance of inner iteration
reaches to zero, implying the iterations touch to one of the minimum, the minimization will
stop automatically as well.

3.3.4 Simulation in parallel

As aforediscussed, the techniques of computer are developing greatly to meet the requirement
in different fields. Parallel computing is one of the most efficient ways of improving
computing power, with which many sub-tasks are executed simultaneously. The principle of
parallel computation is that large calculation can be divided into many sub-calculations, and
then be carried out on different processors. Each processor can communicate with others to
solve the calculations in parallel. The ways of employing parallel computing include bit-level,
instruction level, data and task parallelism[112].

Concerning its high efficiency and low power consumption, parallel computing has become
the most popular way of constructing supercomputers. Generally it can be realized either by
connecting multiple computers or running in a single computer with multicores or
multiprocessors. For a parallel calculation, all subtasks must communicate with each other to
synchronize together since the work of each subsystem relies on its neighboring ones. The
problem is divided into many smaller ones, each subtask could be processed faster or slower.
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Therefore according to the ‘Buckets effect’, the speed of parallel computing is determined by
the slowest one. Hence it is of importance to optimize the histogram of processors to reach
highest efficiency. Message Passing Interface (MPI) library is one of the most popularly used
methods to pass messages between subtasks.

Regarding our simulation with LAMMPS, the parallelism is implemented by spatial-
decomposition techniques partitioning simulation system into several 3D subsystems. Each
subsystem is calculated by a single processor, and processors which store information of
border atoms of subsystems, so called ‘ghost’ atoms, communicate with each other. A sketch
drawing of the parallel computing is illustrated in Figure 3.3.4.

3.4 Large-scale Atomic/Molecular Massively Parallel Simulator - LAMMPS

LAMMPS is an open source code package for classical MD simulation being designed for
parallel computing. It was developed by Sandia National Laboratories and funded by US
Department of Energy facility. Generally speaking, LAMMPS works by integrating
Newton’s equations of particles’ motion. Particles interact mutually via short or long-range
forces that are described by potentials.
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Figure 3.3.4 Sketch of parallel computing in 2D. Task is partitioned into 9 smaller subtasks, for the

central one, information of ‘ghost’ atoms (grey ones) is stored and communicated with border atoms.

The input script of LAMMPS includes typically four parts: Initialization, Atom definition,
Settings and Running simulation. Initialization is responsible for the setting of parameters for
all simulation, such as units, boundary conditions, atom type and potential et al. Atom
definition gives the initial structure of simulation, in which the box size, lattice parameters
and duplication are defined. Once configuration is defined, settings for reading and writing
are made. Potential coefficients, output options, and time step and so on are computed in this
part. Finally the simulation is triggered by the command run which tells how many steps the
simulation is supposed to run. The energy minimization discussed above is usually carried
out before formal running.

One example of input scripts for our simulation is attached in Appendix I.
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Chapter 4. Structural study on the Cd,Tb 1/1 approximant

CdRE (RE=rare elements) are a series of isostructural bcc compounds consisting of the same
building blocks, i.e. Tsai clusters as their parent quasicrystals i-Cds,;Yb and i-Cds,Ca[1][2].
Although they possess very close composition as both the well-studied aforementioned
binary quasicrystals and the recently discovered magnetic binary Cd-based quasicrystal
families[3], remarkable different physical properties have been observed in many sides.
Therefore a comparison between quasicrystals and their crystalline approximants may yield
significant insight in understanding the stability of these complex phases.

The scientific interest in these 1/1 crystalline approximants can date back to last 60s’ when a
large number of Cd(,RE compounds were reported by Johnson, Schablaske, Tani and
Anderson[16]. Later in 70s’, Larson et al, Bruzzone et al, and Wang made more progress on
structural determination of these cubic compounds[113][114][115]. The structural
characterization of these compounds had been ambiguous for a long time and all arguments
were focusing on the description of the local disorder residing inside the dodecahedral shell.
Go6mez and Lidin made a comparative study in 2003 on various of Cd¢RE compounds and
proposed a model which is able to well describe the innermost Cd, tetrahedron[4].

The central tetrahedron residing inside the dodecahedron cavity acts crucial role for
understanding the stabilizing mechanism of icosahedral quasicrystals and their crystalline
counterparts. The motion of the tetrahedron is responsible to the dynamical flexibility of the
lattice[81], but also to the intensively studied order-disorder phase transition occurring on
most of the Cd¢RE approximants and structurally related ZnSc phase at low temperature.
The ordering mechanism of the central tetrahedron has been probed by various experimental
means: x-ray diffuse scattering, single grain and powder diffraction using X-ray and neutron,
electron diffraction and so on. Computational simulations have also been combined using
methods of first principle analysis and classical MD simulation.

4.1 Atomic arrangement of the Cd,RE phase

Generally, the structure of Cd,RE phase can be described in two ways. One is the packing of
12 RCd 4 polyhedra where each R atom surrounded by 16 Cd atoms. In this description, eight
Cd; cubes can be generated automatically as shown in Figures 4.1.1[4]. These cubes will be
discussed in details in the simulation chapter.

The more popular and widely accepted representation of the Cd¢RE phase is the packing of
‘partially interpenetrating defect triacontahedron’, named Tsai type cluster, in a frame of bcc
structure as shown in Figures 4.1.2[5]. The structure of the Cd¢RE phase can be fully
characterize without any glue atoms using such RTH. The RTH cluster unit consists of five
successively close-packed shells altogether 158 atoms. The disordered and inherently
symmetry-breaking tetrahedron locating in the center of the RTH cluster unit can be modeled
by a triple split of the tetrahedron sites. All known disorder tetrahedron in the Cd,RE families
can be well described using this model by successively increasing the amount of the split.
Furthermore, the Cdg cube mentioned above shares two common sites with two adjacent
dodecahedron shells along the space diagonal of the cubic lattice.
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(b)

Figure 4.1.1 (a) Building block of the Cd¢M phase with 12 Cd,¢ polyhedra and 8 Cdg cubes; (b) Cd,4
polyhedron with an M atom locating at the center. Ref. [4]

(b)

Figure 4.1.2 (a) Cubic arrangement of the Cd¢M phase with partially interpenetrating triacontahedron;
(b) Triacontahedron shell comprising 92 Cd atoms. Ref. [4]

Previous studies have elucidated that the order-disorder structural phase transition is related
to the ordering of the central tetrahedron. The tetrahedra dynamically reorient between
equivalent orientations at high temperature, as temperature decreases, tetrahedra turn into
ordering in an antiparallel type[6][7][8]. The structure determination of the ZnsSc monoclinic
phase at low temperature has been performed by Ishimasa[8] using powder x-ray diffraction
data. Apart from the experimental results, numerous simulation work has been also
performed on CdgYb and Cd¢Ca via first principle calculation[9][10]. The altogether results
confirm a small tilting angle happening on tetrahedron to avoid an unrealistic short distance
to the dodecahedral shell. Experimentally, the tilting angle is confirmed as ~15°, and in ab
inito simulation executed by Hatakeyama et al[9], this value is around 6°. Moreover, x-ray
diffuse scattering measurements[11] denote that associating with the ordering of the
tetrahedron, the correlation length of short-range order increases rapidly and almost diverges
as temperature gets through the transition temperature.

The low temperature phase has been determined as monoclinic with space group Cc or
C2/c[12] and a doubled unit cell propagates along [101] as illustrated in Figure 4.1.3. Not
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taking the small distortion induced by the ordering tetrahedron into account, the lattice basis
vectors of high and low temperature phases are correlated with the following rule: a; = ay-cy,
bL = bH’ C = aH+CH

Figure 4.1.3 Representation of the ordering of the tetrahedron, both high and low temperature phases

are displayed. The tetrahedra orient antiparallel in different planes.

When phase transition occurs, the symmetric order of the cubic lattice decreases from 24
(Im3) to 4 (C2/c). According to symmetric operation, 6 domains with different orientations
are obtained in the structure of the LT phase. The related six representatives are listed as
follows[11]:

1 0 0 0 0 1 010
E=]0 1 0] C3([111])=[1 0 0] C32([111])=[0 0 1]
0 0 1 0 1 0 1 0 0
-1 0 0 0 0 -1 0 1 0
m(a)=[0 1 0] 56([111])=[1 0 0] 565([111])=[0 0 1] 4.1
0 0 1 01 0 -1 0 0

Because of the distortion of the lattice at low temperature, Bragg peaks derived from domains
with different orientations will not coincide but split which is a significant sign of the phase
transition. Considering two possibilities of orientating domains', i.e. either a” or ¢ are
common axis for neighboring domains as shown in Figure 4.1 .4, the distortion matrices could
be expressed respectively as:

14+¢ 0 (1+¢€.)*cosB
Tl = 0 1 0 ] T2 =
0 0 (1+e.)=*sinp

(1+¢&,)*sinB 0 0
0 1 0 4.2
(1+ey)*cosp 1 1+¢,

Where

1 This part is borrowed from the work of G. Beutier in SIMaP, University of Grenoble, Grenoble,
France.
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Figure 4.1.4 Two possibilities for neighboring domains: either a* (left) or ¢* (right) are set as common

axis.

Finally, the indexing of the i" domain, with respect to the cubic setting, is calculated by
following equation:

h; h
H = Mty H (=12 =12,..6 44
L l

In addition to temperature dependence, phase diagram with respect to pressure and
temperature to CdsYb and ZnsSc have been investigated as well systematically[77][79][78].
Different sensitivities to pressure and temperature have been observed between the CdgYb
and Zn4Sc phases. The CdgYb approximant has been proved stable under ultrahigh pressure
up to 40GPa at room temperature. It illustrates abundant of i.e. five superstructure phases in a
pressure range from room pressure to 5.2GPa and a temperature range from room
temperature to 10K. Whereas, the ZnsSc presents only three superstructures in a wider
pressure interval up to 34.8GPa. Furthermore, different from the CdsYb, no ordering
mechanism along <111> was observed in Zn4Sc.

4.2 Phase transition of the Cd,Tb

Cd¢Tb, a member of the Cd¢RE isostructural compounds family, is a 1/1 approximant of the
i-CdMgRE quasicrystal as well as the stable binary quasicrystal Cds,Ca[1] and Cds,;Yb[2] the
atomic structure of which had been determined by Takakura et al in 2007[49]. Both the i-
QCs and their approximants are composed of the same building blocks, i.e. Tsai type clusters.
Most Cd4RE compounds have been evidenced undergoing an unique phase transition at LT
by measurements of electrical resistivity, selected area electron diffraction (SAED), specific
heat capacity and so on[6][12]. Previous works have interpreted that the phase transition is
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induced by the ordering of the innermost Cd, tetrahedron which is orientationally disordered
at HT. All the Cd4RE approximants possess the same bcc lattice at RT with only slight
difference in the model of the tetrahedron which has been detailedly studied by Gémez et
al[4]. The ordering scheme as well as the LT phase have also been investigated previously by
Nishimoto et al[12]. The structural determination of the LT phase has been accomplished on
the Zn4Sc isostructural crystalline by Ishimasa et al[8]. The interests of studying Cd¢Tb are
not only invoked by the order-disorder phase transition occurred at ~180K, but also the
observation of an unique long-range magnetic order[15][14].

Indeed, it is surprising to find such magnetic transitions in CdsTb at 24K, 19K and 2.4K
which are evidenced by the magnetic susceptibility results as well as the specific heat
measurements. In spite the aperiodic crystals containing moment bearing elements have been
expected an unique magnetic ordering owing to their aperiodic lattice, all of the known QCs
up to now exhibit frustration and spin-glass-like behavior at LT. The long-range magnetic
order is absent not only in QCs, but also in their ACs except Cd¢Tb. The long-range magnetic
order has been confirmed recently by means of x-ray resonant magnetic scattering by Kim et
al[15]. The sharp magnetic peaks provide a correlation length at least S00A, and the Tb** ions
are correlated antiferromagnetically between clusters along the 3-fold linkage. It is supposed
that the exception occurring to the Cd¢Tb results from the interplay between two competing
interactions, i.e. intracluster and intercluster Tb-Tb interactions. As a consequence, it is of
significance to determine the structures of the CdTb crystalline phase above and below T..

4.2.1 Sample preparation®

The single crystal samples of Cd¢Tb were synthesized by means of flux growth from the Cd
rich region. The high purity metals Cd (99.9999 wt%) and Tb (99.9 wt%) were melt in an
atomic ratio of 9:1 at 993K for 24h and mixed in a Al,O; crucible sealed inside a quartz cube
under reduced Ar. After mixing adequately, the ampule is slowly cooled down to 753K with
a cooling rate 2K/h. The excess Cd melt was then removed by high-speed centrifuge. A
subsequent annealing was carried out at 923K for 100h to improve the sample homogeneity.
After cooling the sample down to 473K with a cooling rate 5K/h, further annealing was taken
for 3 weeks to reduce the point defects. The high qualified sample with millimeter size was
firstly measured in the X-ray resonant magnetic scattering experiment. A small single grain
with approximately size 0.1x0.1x0.06 mm’ was cut off from the grand sample for the single
crystal X-ray diffraction measurements. Some other pieces are grinded for the powder X-ray
diffraction measurements.

4.2.2 Experiment measurement

The temperature dependent measurements of the CdysTb was performed by means of powder
and single crystal X-ray diffraction respectively. The experiments were carried out using
synchrotron beamline D2AM at ESRF operated at 25.5keV (A=0.4853A). For the single
crystal X-ray diffraction, the crystal-detector distance was set to 80mm, and a full phi-scan
(360°) with a step size 1° was executed at 300K (RT), 200K, 100K and 40K for data
collection. For other temperatures, measurements were taken with phi scanning from 1° to

* The sample is prepared by Tamura’s group in Science University of Tokyo, Tokyo, Japan.
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180°. Because of the large difference between intensities of main reflections and
superstructure reflections, each data set was collected with three different attenuation factors
1,50, and 1000. A cryostat system was applied for controlling the temperature of the sample,
which was placed in an evacuated Be hemisphere. For the powder X-ray diffraction, the
measurements were accomplished over a temperature range from RT to 7K, and the data
were collected twice for each temperature to reduce the effect of the preferred orientations.

The integrated intensities of reflections were computed via the program CrysAlisPro. The
numerical absorption correction, operating via CrysAlisPro, was carried out based on a model
of the sample which is obtained from the recorded images and optimized by the 1000
strongest equivalent reflections, as illustrated in Figures 4.2.1. The primary structure solution
based on the charge density map was achieved by the program superflip[116] and the
refinement was conducted using the program Jana2006[117]. For the powder X-ray
diffraction, the data was treated by the LeBail fitting method using the software package,
Fullprof _suite[118][119].

(a)

Figure 4.2.1 The image of the sample (a) and the model (b) optimized by the 1000 strongest reflections
at RT. The size of the sample is ~100x100x60um?.

4.2.3 The superstructure of the Cd,Th

As previously elucidated, there exist 6 monoclinic domains in the LT phase, which results in
the splitting of the main peaks. This can be observed from both the single crystal diffraction
images and the powder diffraction profiles. However, the distortion of the lattice is so small
that it is invisible with a crystal-detector distance of 80mm. So we designed two other
detailed measurements increasing the crystal-detector distance to 340mm in a cooling and
heating process respectively.
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Figure 4.2.2 The temperature dependence of the splitting of the main peak (1 -19 -18) in cooling

process (top) and the main peak (0 -18 -18)in heating process (bottom). The distance of the two
splitting subpeaks is measured with respect to temperatures as indicated by the black segment.

Figures 4.2.2 shows the evolution of the main peaks (1 -19 -18) and (0 -18 -18) in the cooling
and heating processes respectively. The peaks split distinctly in both processes indicating that
the phase transition is reversible. Moreover, the T, is determined as around 190K. On the
other hand, we measured the distance of the two splitting subpeaks as indicated in Figure
4.2.2 at 186K. The result shows that the lattice distortion increases linearly as temperature
decreases, as displayed in Figure 4.2.3.

8.5 - // .

Pixels

(o]
6.5 / .

5.5 1 1 1 1 1
195 190 185 180 175 170 165

TIK

Figure 4.2.3 The distance between the two splitting subpeaks of the (1 -19 -18) on a 2-D Bragg plane

as a function of temperatures, demonstrating a roughly linear increase as temperatures cool down.

The phase transition, from bcc to monoclinic system, leads to a doubled unit cell which in the
reciprocal space corresponds to the appearance of the superstructure reflections on the half-
integer Bragg planes. As can be seen in Figures 4.2.4, on hkO layer, the main reflections at
40K are compatible with that of RT. On the hkl layer, a large number of superstructure
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reflections are clearly visible at 40K inbetween main reflections which indicates the doubling
of unit cell.

. . .
. e o & B e o .

Figure 4.2.4 The reconstruction of the Bragg planes on #k0 and hk1 layers comparing between 40K
and RT. The superstructure reflections are clearly visible at 40K on the /=1 Bragg plane.

In Section 4.1, we showed a model of the splitting peaks, based on which we calculated the
positions of the subpeaks arising from the 6 different domains of the main peak (0 0 20) at
40K, and compare it with the experimental result as shown in Figures 4.2.5. Similarly, both
calculated and experimental results display a distribution along @, and Q, respectively. The
centering peak is preserved in the model, however, disappears in experiments, which suggests
that the related domain is unstable in the real phase. Furthermore, there are more subpeaks
being observed experimentally than the theoretical number, which might owe to that the
distortion of the monoclinic lattice happens continuously in the LT phase.

Figure 4.2.5 Positions of the splitting peaks of the (0 0 20) at 40K from calculation (top) and

experiments (bottom).
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The powder diffraction was carried out for a temperature interval from RT to 7K. The peaks
split at LT and some superstructure reflections are identified by comparing the profiles at RT
and 7K as shown in Figures 4.2.6, where an offset is applied for better comparison. As can be
seen, the superstructure reflections arising from multiple domains are very weak.

T T T T T T T, T 1000 T T T T T T T T
—— Cd6Tb_7K —— Cd6Tb_7K
—— Cdé6éTb_RT —— Cd6Tb_RT
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Figure 4.2.6 Peak profiles comparison between RT and 7K of Cd4Tb, the peak splitting and

superstructure peaks are distinct and indicated by arrows.

To figure out the variation of the Bragg peaks with respect to temperatures, we measured the
Bragg angles of three peaks (4 4 2), (4 9 1) and (6 8 0) as a function of temperature as shown
in Figures 4.2.7. An anomaly was observed to the Bragg angles at ~190K, which corresponds
to the splitting of the peaks. This shows a good agreement with the results from single crystal
experiments. Furthermore, both the main and splitting Bragg angles increase as temperatures
decrease, and reach maximum at ~45K. Similarly as the single crystal results, the difference
between the main and sub-peaks increases gradually as it is cooled down.
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Figure 4.2.7 Rocking curves of the main peaks (4 4 2), (4 9 1) and (6 8 0) with respect to temperatures
(bottom, from left to right). Variation of the main and splitting Bragg angles as a function of
temperatures. The T, is determined as ~190K, the lattice distortion increases linearly in the cooling

process and the equilibrium is reached at ~45K.

4.2.4 Structural description of the Cd,Tb 1/1 approximant above and below T,

The structures of CdyTb above and below T, have been determined and refined successfully
using single crystal high-resolution X-ray diffraction data from synchrotron measurements.
Three datasets with different attenuation factors were collected for each temperature which
extends the measuring range to very high Q value and dumps an extremely large number of
reflections.

As we depicted above, six domains formed in the LT phase leading to the main peaks split in
the reciprocal space. The best is integrating the intensities of each domain individually.
However, owing to the short crystal-detector distance and the small step size, i.e. 1° for phi
scan, the peak splitting is invisible on the diffraction images. On the other hand, six twining
domains have been over the handling capability of the CrysAlisPro. An alternative method is
first generating all possible indices using Jana2006 in the form of cubic setting, and then
performing intensity integration on the basis of this reflections list. It is worth noting that to
collect all superstructure reflections of all domains, a 2x2x2 supercell is applied for indexing.

Considering the crystal absorption, varying experimental conditions, sensitivity difference
among various detector regions, the resulting data need to be processed to minimize these
negative effects. For primary data reduction, with one frame being fixed to 1, all other 359
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frames have been rescaled. The scale factors of RT and 40K after absorption correction are
displayed in Figures 4.2.8. The fluctuations are reasonable, i.e. less than £7% for RT and less
than +3% for 40K.
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Figure 4.2.8 Scale factor versus frame number of each dataset at RT (left) and 40K (right).

The measured intensities are corrected for absorption correction using the defined shape
illustrated in Figure 4.2.1 via CrysAlisPro. The sample model is optimized using the
strongest 1000 reflections of each dataset at RT and 40K. The relevant absorption
coefficients of each temperature are given in Table 4.1.

Table 4.1 Scale factors applied in CrysAlisPro and Jana2006 for each dataset at the two temperatures.

Temperature 293K 40K
Attenuator 1 50 1000 1 50 1000
Absorption correction T min 0.356 0.397 0.354 0.342 0.354 0.354
Absorption correction T max 0413 0.530 0413 0.424 0413 0413

Two factors are adopted to rescale the three datasets collected at different attenuators. This
procedure is realized on the basis of common reflections and carried out using CrysAlisPro
and Jana2006 respectively. In CrysAlisPro, in case of the strongest reflections being
saturated, the factor f; is introduced to rescale all reflections. Keep in mind that the scale
factors are independent between different datasets but closely related to the second factor
derived from Jana2006. The Jana factor f; is used to normalize intensities of different
datasets. All f; values are listed in Table 4.2. The f; values of RT and 40K are fitted using
common reflections between different datasets. We generate the common reflections between
attenuator 1 and 50, 1000 and 50 respectively and the ratios are derived from the scatter plots
in Figures 4.2.9. The combination of the two factors corresponds the ratio of the experimental
attenuators as displayed in Table 4.2. The calculated attenuation factors of 40K are smaller
than those of 293K which might be the effect of the weak superstructure reflections. Since f,
is related to the scale between strongest and weakest reflections in each dataset, the weak
superstructure reflections likely biased the f, as smaller than the cubic case at high
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temperature. Finally, the grouping data collections were averaged based on the equivalent
reflections by using the program Jana2006.

Table 4.2 Scale factors applied in CrysAlisPro and Jana2006 for each dataset at the two temperatures.

Temperature 293K 40K
Attenuator 1 50 1000 1 50 1000
£ 0.028 0.086 0.428 0.021 0.108 0.755
fi 0.0568 1 42611 0.10951 1 3.202
Product 0.00159 0.086 1.824 0.0023 0.108 24175
Normalized Scale 1 54.09 1147.17 1 46.96 1051.24
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Figure 4.2.9 The three datasets of RT (right column) and 40K (left column) are grouped into one block
by rescaling two of them (attenuation=1 and attenuation=1000). The scale factors are presented as the

slopes of fitting lines.

The general crystallographic data is given in Table 4.3. Some R, values are a bit of large
which results from the high resolution of measurements, i.e. d-value equal to 0.8(20 equal to
35.3°). The stated R,, values are given by Jana2006 which considers all three datasets and all
twinned domains. Although more than 60000 independent reflections are taken into
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refinement, the resulting R factor for LT phase is rather good, and it is also the first time
solving the LT phase of the Cd4R isostructural compounds using synchrotron data with such a
good fitting. The refinement work is accomplished using the IUCr recommended, more
strictly defined wR,(F?) indicator.

The ratio between calculated and observed structure factors are plotted in Figures 4.2.10. The
fitting is rather satisfying especially for strong reflections. It is less good for reflections with
smaller structure factors because of the relatively larger errors.
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Figure 4.2.10 F,/F., in log scale at HT (left) and LT (right), good fitting is obtained for reflections

with high structure factor.

Figures 4.2.11 (a) and (b) present the powder diffraction profiles of Cd¢Tb at RT and 40K
over a 20 range from 9° to 14°, respectively. They are derived from the resulting structures
refined using the single crystal diffraction datasets. The strong peaks are very similar
between the two phases, however, a large mount of weak superstructure reflections are
clearly observable in the LT phase.
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Figure 4.2.11 Simulated powder pattern based on the structures at RT (left) and 40K (right). The
calculation is performed via the software Diamond. The weak superstructure reflections are clearly
observable at LT.

It is proved that the phase transition for Cd4Tb follows the same scheme as we demonstrated
above, i.e. the ordering of the central tetrahedron triggers the distortion of the successive
shells which leads to a doubling monoclinic lattice. The structures of Cd¢Tb above and below
T, are very close to those of ZnSc determined by Ishimasa[8]. As presented in Figures 4.2.12
(a)-(d), the tetrahedron atoms residing in the dodecahedral cavities at RT shows large
anisotropic displacement factors forming a well-defined cube octahedron which is consistent
with the model proposed from the CdGd case[4]. It has been evidenced by previous
quasielastic neutron scattering measurements and MD simulation that the innermost
tetrahedra at HT are dynamically reorienting among 6 different orientations, giving an
occupancy of 0.333. The structural information for the CdsTb approximant containing atomic
positions and equivalent displacement factors are given in Table 4.4, and the anisotropic
thermal displacement parameters are given in Table 4.5. For the RT, similarly to the Zn4Sc
and CdsYb cases, the dodecahedron atoms located at the 24g site shows extremely
anisotropic displacement along one direction, i.e. U;;=0.0646(3), U,,=0.01297(12) and
U3;=0.01249(12), which denotes the interaction between the dynamically oriented tetrahedra
and the outer dodecahedra.
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i
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(b)

Figure 4.2.12 Schematic drawing of the ordering of the central tetrahedron. (a) The successive shells
forming a Tsai-type cluster, the building blocks of both quasicrystals and their approximants, from left
to right: the Cd, tetrahedron, then the dodecahedron containing 20 Cd atoms, followed by a Tb,
icosahedron and a Cd icosidodecahedron, finally an outermost rhombic triacontahedron (RTH). (b) and
(c) The bce and monoclinic packing of the RTH units in the 1/1 Cd¢Tb approximant above and below
T.. (d) Representation of the ordering scheme of the central tetrahedra along [101] direction with
respect to the HT cubic setting. The two planes with different colors shows an antiparallel correlation
between the clusters. The basis vectors for the LT phase can be obtained as follows: a; 1=1/2(ay-cyr),
by =byr, and ¢, =1/2(ay+cyr). We emphasize that for the real structures of the LT phase, due to the

steric effect, the lattice angle f is deviated from 90°.

Table 4.3 Crystallographic data of CdsTb 1/1 approximant at RT and 40K.

Formula Cd,Tb Cd,,Th,
Temperature/K 293 40
Space Group Im3 (204) C2/c (15)
Pearson code cl184 mC336
a axis/A 15.4926(3) 21.8077(4)
b axis/A 15.4926(3) 15.4170(4)
¢ axis/A 15.4926(3) 21.8193(4)
B/deg. 90 90.026(2)
Z 24 24
Cell volume/ A® 3718.54(15) 7335.9(3)
F(000) 8471 16944
Calculated density (g/cm?) 8.9288 9.052
Absorption coefficient-mu/mm™ 11.097 11.25
Range of theta/® 1.8-32.49 1.69-32.55
Index range -31=s h <31 -47< h =47
-34< k <33 -33<k <33
-34=<1<34 -47=<1 =47
Independent reflections 3678 60245
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Reflections>30 3025 52858
R, (obs/all) 9.35/9.71 7.41/10.75
Number of parameters 52 386
R (all) 0.0394 0.0386
wR, (all) 0.0726 0.0934
Goodness of fit (GOF) 1.44 1.84
Absorption correction Numerical Numerical
Apmax, Agmin/eA~ 5.16,-7.19 11.53,-8.03
Mean change/s. u. 0.0008 0.0064
Table 4.4 (I) Structural information of Cd,Tb 1/1 approximant at RT.

Atom Wyckoff site Occ xla /b Z/c Bis(,_c,q*/Ao2
Tbl 24¢ 1 0.18973(1) 0.29961(1) 0 0.009(1)
Cdl 12e 1 0.50000 0.19063(3) 0 0.0148(1)
Cd2 24¢g 1 0.24129(7) 0.09235(4) 0 0.0300(1)
Cd3 48h 1 0.34060(1) 0.20040(1) 0.11814(2) 0.0158(0)
Cd4 16f 1 0.16098(2) 0.16098(2) 0.16098(2) 0.0210)
Cd5s 24¢g 1 0.50000 0.09570(2) 0.15384(2) 0.0125(1)
Cdé6 12d 1 0.40580(3) 0 0 0.0288(2)
Cd7 24¢g 0.333 0.0746(2) 0.08420(18) 0 0.1054(14)

* Bis_., is defined as one third of the trace of orthorhombic Bjj tensors
Table 4.4 (I) Structural information of Cd¢Tb 1/1 approximant at 40K.

Atom Wyckoff site Occ x/a bly c/z Bm,_eq*/A02
Tbl 8f 1 0.14764(1) 0.43867(1) 0.10142(1) 0.0017(0)
Tb2 8f 1 0.15133(1) 0.06147(1) 0.09996(1) 0.0018(0)
Tb3 8f 1 0.75346(1) 0.25193(1) 0.19436(1) 0.0018(0)
Tb4 8f 1 0.94416(1) 0.24937(1) 0.00520(1) 0.0017(0)
Tb5 8f 1 0.40519(1) 0.05226(1) 0.15483(1) 0.0017(0)
Tb6 8f 1 0.40437(1) 0.45467(1) 0.15442(1) 0.0017(0)
Cdl 8f 1 0.65921(2) 0.41434(3) 0.20904(2) 0.0028(1)
Cd2 8f 1 0.74697(1) 0.44072(2)  -0.00359(1) 0.0030(1)
Cd3 8f 1 0.54646(2) 0.51958(2) 0.20384(2) 0.0029(0)
Cd4 8f 1 0.95947(2) 0.59065(3) 0.41193(2) 0.0028(1)
Cds 8f 1 0.87622(2) 0.75443(2) 0.22120(2) 0.0026(1)
Cdé6 8f 1 0.97060(3) 0.75078(1) 0.12511(3) 0.0024(1)
Cd7 8f 1 0.54062(2) 0.40959(3) 0.09386(2) 0.0030(1)
Cd8 8f 1 0.90570(3) 0.75090(1) 0.34539(3) 0.0029(1)
Cdo 8f 1 0.84445(2) 0.74816(1) 0.09593(2) 0.0026(1)
Cd10 8f 1 0.88788(2) 0.55183(3) 0.52347(2) 0.0030(1)
Cdl11 8f 1 0.61179(1) 0.83651(2) 0.35994(1) 0.0036(0)
Cd12 8f 1 0.79825(2) 0.59432(2) 0.04773(2) 0.0026(1)
Cd13 8f 1 0.73391(2) 0.54572(3) 0.35765(2) 0.0030(1)
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Cd14 8f 1 0.65878(2) 0.59572(2) 0.25198(2) 0.0034(1)
Cd15 8f 1 0.77308(2) 0.44814(3) 0.13658(2) 0.0029(1)
Cd16 8f 1 0.77089(2) 0.62990(3) 0.18120(2) 0.0029(1)
Cd17 8f 1 0.82766(2) 0.34550(2)  -0.07705(2) 0.0025(1)
Cd18 8f 1 0.57030(2) 0.86713(3)  -0.01894(2) 0.0028(1)
Cd19 8f 1 1.00035(2) 0.40960(3) 0.40839(2) 0.0030(1)
Cd20 8f 1 0.83725(2) 0.41457(3) 0.25039(2) 0.0037(1)
Cd21 8f 1 0.49935(2) 0.58779(3) 0.08633(2) 0.0036(1)
Cd22 4e 1 0.5 0.35229(3) 0.25 0.0039(1)
Cd23 8f 1 0.67213(2) 0.34725(2) 0.07722(2) 0.0026(1)
Cd24 8f 1 0.84288(2) 0.59470(3) 0.29099(2) 0.0028(1)
Cd25 8f 1 0.79695(2) 0.90152(2) 0.04791(2) 0.0026(1)
Cd26 8f 1 0.39120(2) 0.54527(3) 0.01661(2) 0.0028(1)
Cd27 8f 1 0.57099(2) 0.74702(2) 0.08650(3) 0.0031(1)
Cd28 8f 1 0.42946(2) 0.36523(3) 0.02127(2) 0.0027(1)
Cd29 4e 1 0.5 0.16263(3) 0.25 0.0037(1)
Cd30 8f 1 0.66946(3) 0.74884(1) 0.17557(2) 0.0029(1)
Cd31 8f 1 0.72874(2) 0.36726(3) 0.32024(2) 0.0028(1)
Cd32 8f 1 0.69989(3) 0.75146(1) 0.04483(3) 0.0032(1)
Cd33 8f 1 0.70363(1) 0.77148(2) 0.45318(1) 0.0038(0)
Cd34 8f 1 0.63398(1) 0.65465(2) 0.38282(1) 0.003()

Cd35 8f 1 0.95466(2) 0.49952(2) 0.29640(2) 0.0031(0)
Cd701 8f 1 0.53972(2) 0.67810(2 0.30097(2) 0.0102(1)
Cd702 8f 1 0.55164(1) 0.81709(2 0.20960(2) 0.0090(1)

Table 4.5 (I) Anisotropic displacement parameters of CdsTb 1/1 approximant at RT.

Atom Uy, Uy, Uss U, Ui Uy
Tbl 0.00906(5) 0.01036(5) 0.00749(5) 0.00078(4) 0 0
Cdl  0.02226(18) 0.01128(13) 0.01101(13) 0 0 0
Cd2 0.0646(3) 0.01297(12)  0.01249(12) 0.01121(15) 0 0
Cd3 0.01288(8) 0.01375(7) 0.02077(9) -0.00157(6)  -0.00353(6) 0.00483(6)
Cd4 0.02099(8) 0.02099(8) 0.02099(8)  0.01083(10) 0.01083(10) 0.01083(10)
Cd5s 0.01412(10) 0.01111(9) 0.01231(10) 0 0 0.00241(7)
Cd6  0.01272(17) 0.0583(4) 0.01519(18) 0 0 0
Cd7 0.0698(17) 0.0451(13) 0.201(4) -0.0401(12) 0 0

Table 4.5—1II Anisotropic displacement parameters (A2) of the Cd,Tb 1/1 approximant at 40K.

Atom Uy, Uy, Us Uy, Ui Uy

Tbl 0.00271(7) 0.00043(5) 0.00205(7)  0.00009(5)  0.00025(4)  -0.00027(5)
Tb2 0.00289(7) 0.00037(5) 0.00201(7)  -0.00018(5)  0.00023(4)  0.00013(5)
Tb3 0.00315(9) 0.00019(8) 0.00194(9)  -0.00001(3)  0.00028(7)  0.00005(3)
Tb4 0.00292(9) 0.00012(9) 0.00213(9)  0.00002(3)  0.00059(8)  0.00008(3)
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TbS  0.00257(7)  0.00049(5)  0.00195(7)  -0.00005(5)  0.00053(4)  0.00001(4)
Tb6  0.00262(7)  0.00055(5)  0.00192(7)  0.00003(5)  0.00065(4)  0.00016(4)
Cdl  0.00431(11) 0.00118(10) 0.00280(11)  0.00078(8)  0.00108(8)  0.00028(7)
Cd2  0.00467(11)  0.0007(1)  0.00377(11)  0.00041(5)  0.00120(8)  0.00028(6)
Cd3  0.00328(9)  0.00258(8)  0.00271(9)  0.00009(8)  0.00049(6)  0.00030(8)
Cd4  0.00353(11) 0.00078(10) 0.00414(11) -0.00011(8)  0.00058(9)  -0.00078(8)
Cd5  0.00412(13) 0.00148(11) 0.00204(13)  0.00000(6)  0.0005(1)  -0.00008(6)
Cd6  0.00357(15) 0.00070(14)  0.00291(14) -0.00003(5)  0.00069(11)  0.00011(5)
Cd7  0.00371(11) 0.00086(10) 0.00457(11) -0.00024(8)  0.00104(9)  -0.00067(8)
Cd8  0.00344(16) 0.00261(11) 0.00258(16) -0.00010(5)  0.00033(8)  -0.00011(5)
Cd9  0.00399(15) 0.00067(10)  0.00325(15)  0.00001(5)  -0.00016(8)  0.00000(5)
Cd10  0.00421(10) 0.00122(10) 0.00349(11)  -0.00051(7)  -0.00060(8)  0.00029(7)
Cdll  000459(9)  000135(7)  0.00471(9)  0.00046(6)  0.00092(7)  0.00047(6)
Cd12  0.00363(12) 0.00107(8)  0.00306(13)  0.00005(8)  0.00014(7)  -0.00033(8)
Cd13  0.00317(10)  0.00080(9)  0.00492(11)  0.00000(7)  -0.00002(8)  0.00051(7)
Cdl4  0.00542(11)  0.00217(10) 0.00269(10) -0.00201(8)  0.00019(8)  0.00024(8)
Cdl5  0.00356(10)  0.00093(9)  0.00426(11) -0.00043(7)  0.00002(8)  0.00074(7)
Cdl6  0.00334(12) 0.00234(11) 0.00307(12)  0.00026(8)  0.00053(9)  -0.00100(8)
Cd17  0.00407(13)  0.00107(8)  0.00249(12)  0.00049(9)  0.00073(7)  -0.00036(9)
Cd18  0.00372(12) 0.00189(11) 0.00276(11) -0.00043(8)  0.00033(9)  0.00004(8)
Cd19  0.00305(11) 0.00116(10) 0.00488(11) -0.00017(8)  0.00053(9)  0.00126(8)
Cd20  0.00595(11)  0.00261(10)  0.00247(10) -0.00215(8)  0.00031(9)  0.00028(8)
Cd21  0.00343(11) 0.00227(11) 0.00515(12) -0.00065(8)  -0.00003(9)  0.00217(8)
Cd22  0.00525(14)  0.00109(11)  0.00536(15) 0 -0.00071(1) 0
Cd23  0.00363(13)  0.00105(8)  0.00301(13) -0.00006(9)  0.00077(7)  0.00068(9)
Cd24  0.00402(11)  0.00143(10) 0.00285(11)  0.00041(8)  0.00105(8)  0.00009(7)
Cd25  0.00367(13)  0.00103(8)  0.00308(13)  0.00004(8)  0.00022(7)  0.00057(8)
Cd26  0.00428(10)  0.00131(9)  0.00291(10)  -0.00050(7)  -0.00050(8)  0.00004(7)
Cd27  0.00410(13)  0.00088(12) 0.00423(13)  0.00005(6)  -0.00141(1)  -0.00019(6)

Cd28  0.00411(12) 0.00160(11) 0.00249(11)  0.00074(8)  0.00043(9)  0.00007(8)

Cd29  0.00500(14) 0.00134(11)  0.00464(15) 0 -0.00037(1) 0

Cd30  0.00435(14) 0.00116(13)  0.00303(13)  0.00051(5)  -0.00054(1)  -0.00020(5)

Cd31  0.00364(12) 0.00182(11) 0.00287(11) -0.00001(8)  0.00060(9)  -0.00077(8)

Cd32  0.00485(15) 0.00158(10) 0.00325(14)  -0.00008(5) 0.00159(10)  -0.00004(5)

Cd33  000398(9)  0.00363(9)  0.00372(9) -0.00062(7) -0.00002(6)  -0.00068(7)

Cd34  000366(9)  000122(7)  0.00396(9)  -0.00023(6)  0.00030(6)  -0.00033(6)

Cd35  0.00324(9)  0.00303(8)  0.00294(9)  -0.00046(8)  0.00043(6)  0.00030(8)

Cd701  001331(13)  0.0049(1)  0.01225(13) -0.00093(9)  -0.00833(1)  0.00323(8)

Cd702  0.01067(12)  0.00356(9)  0.01275(13) -0.00070(8) 0.00785(10)  0.00071(8)

As the temperature approaches to T, the reorientation of the central tetrahedron is slowed
down gradually and frozen in the end. To avoid an unrealistic Cd-Cd distance, the
tetrahedron is tilted from the 2-fold axis by around 7.32° at 40K which is just half of that in
the Zn¢Sc approximant. As a result, two atoms are located under the pentagonal faces of the
dodecahedron, and the other two shift from the 5-fold axis. As explained by Yamada et al[11],
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this distortion of dodecahedron induced by the tetrahedron ordering has propagated through
clusters leading to the formation of long-range order, and the Cd, tetrahedra are correlated
antiparallel as displayed in Figure 4.2.12 (d).
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Figure 4.2.13 (a) and (b) Tsai-type clusters viewing along [001] direction of the HT phase at RT and
40K respectively, labeling atoms indicate different sites; (c)-(d) Distribution of the distances to the
cluster center of the dodecahedron at RT and 40K respectively; (e)-(f) Distribution of the distances to

the cluster center of the icosidodecahedron at RT and 40K respectively.

Figures 4.2.13 (a)-(f) displays the distortion occurring to the dodecahedron and
icosidodecahedron shells. Figures 4.2.13 (c) and (d) illustrate the distances from the cluster
center to the dodecahedron vertices at RT and 40K respectively. It shows that the
dodecahedron is imperfect at RT due to the eight Cd4 atoms possessing longer distances.
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Figure 4.2.13 (a) illustrates that these eight Cd4 atoms distribute along the cubic 3-fold axis.
This phenomenon is likely induced by a stronger interactions with the central tetrahedron
atoms. As the temperature is lowered down to 40K, the difference between the shortest and
longest ‘distances to the cluster center’, i.e. the distances between center and vertex atoms,
goes up to ~0.7A, and the distances become more distributed as illustrated in Figure 4.2.13 (d)
suggesting that the dodecahedron is strongly distorted at 40K. Furthermore, being forced by
the tetrahedron atoms, two of the dodecahedron atoms, i.e. Cd34 as labeled in Figure 4.2.13
(b), are strongly pushed outward, which leads to the largest distance to the cluster center
4.37A as shown in Figure 4.2.13 (d). The second and third longest distances, i.e. Cd21, Cd20
and Cd14, Cd19 correspond to the eight atoms located at the 3-fold axis of the cubic cell as
labeled in Figure 4.2.13 (b).

The six icosidodecahedron atoms possessing shorter distances to the cluster center at RT, i.e.
Cd6, occupy the sites along the three 2-fold axis parallel to the cell edges as displayed in
Figure 4.2.13 (a). The triangles in the icosidodecahedron shell are inequivalent, meaning that
the areas of the two triangles intersecting over the Cd6 atom are smaller than the one just
above the Cd4 atoms. This difference originates from the pushing-off of the Cd4
dodecahedron atoms which possess longer distances to the cluster center. The distances to the
cluster center of the icosidodecahedron turn out distributed at 40K as well which
demonstrates the distortion resulting from interaction with the dodecahedron shell. Moreover,
because of being pushed by the dodecahedron atom Cd34, the distances to the cluster center
of Cd13 and Cd26 increase greatly as displayed in Figures 4.2.13 (b) and (f) comparing with
those at RT. Similarly, the Cd29 is pushed outward by the atom Cd35, and the Cd22 moves
inward because the atom Cd3 is drawn inward.

The moment bearing element Tb, existing in form of Tb*, in the CdsTb approximant
constitutes the icosahedron shell of the Tsai cluster. As previously described, the Tb ions
occupy the 24g Wykoff sites and form icosahedra in the center and corner of the cubic cell.
Above T, the icosahedron distorts slightly, i.e. the 6 out of 30 Tb-Tb edges (~5.8789A)
parallel to the cell edges are larger than others (~5.7519A). It is found that the first nearest
Tb-Tb distances (~5.7246A) exist between neighboring icosahedra and the second nearest
Tb-Tb bonds exist inside the icosahedron shells. As the temperature is cooled down to T, the
distortion of the icosahedron arises gradually. The two distorted neighboring icosahedra
found at 40K are presented in Figure 4.2.14 (a) which are connected by a yellow octahedron.
The adjacent Tb-Tb distances at RT and 40K are displayed in Figures 4.2.14 (b) and (c).

For each Tb atom, there are 9 neighboring bonds containing 5 inside the icosahedra and 4
between neighboring clusters. It is distinguished in Figure 4.2.14 (a) that the two neighboring
icosahedra are connected by a distorted regular octahedron which share a triangle face with
the two icosahedra. Figure 4.2.14 (c) demonstrates all Tb-Tb bonds in the LT phase at 40K
where the red solid bars indicate the intercluster distances and the black dashed bars refer to
the intracluster distances. From top to bottom, it displays the bonds surrounding Tb1 to Tb6
respectively. Again, the 6 longest distances around 5.8A represent the 6 bonds parallel to the
cube edges. Interestingly, owning to the increasing distortion, some of the intercluster
distances, which are always smallest above T, increase and some intracluster distances
become smaller, suggesting a competition between the two types of interactions. It is
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speculated that this exchange of interacting distances plays crucial role in the formation of
long-rang magnetic order.
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Figure 4.2.14 (a) Atomic arrangement of the Tb** in the LT phase of Cd¢Tb. The icosahedral clusters
are displayed in blue and the two adjacent icosahedral clusters are connected by an yellow octahedron.
The intracluster and intercluster bonds are compatible. (b) The distances of Tb-Tb bonds at RT. The
red solid lines refers to the intercluster interacting distances, and the black dashed lines denote the
distances of intracluster bonds. The largest distances, i.e. ~5.82A, correspond to the bonds parallel to
the cubic edges. (c) The distances of Tb-Tb bonds at 40K surrounding each Tb atom. Owning to the

distortion, some intercluster bonds increase and some intracluster bonds reduce.

4.2.5 Structural temperature dependence study of the 1/1 Cd6Tb phase

To have a further insight of the transitioning scheme, we collected the single crystal X-ray
diffraction data in a temperature interval from RT to 40K. The structure solutions and
refinements of all temperatures were performed via Jana2006 as described above. To collect
all reflections in the 6 domains, the data reduction of 40K was carried out under the outlier
rejection condition of P1 with only centric symmetry. From 192K to 150K the measurements
were carried out with phi scanning from 0° to 180° meaning that there were no equivalent
reflections available for optimizing the sample model. Thus the absorption correction was
applied using the refined model at RT as displayed in Figure 4.2.1. Moreover, for
temperatures just below T, the superstructure reflections are too weak to achieve a satisfying
wR, value. The R factors with the related crystallographic data at each temperature are given
in Table 4.6.

The temperature dependent evolution of the anisotropic displacement factors and structural
information above 7, are given in Tables 4.7 and 4.8 respectively. It shows that as
temperature decreases to 196K, the Wyckoff sites of the central tetrahedron have changed
from 24g to 48h which corresponds to the occurrence of pretransition.
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The related structural information for the seven LT phases is attached in the Appendix.

Considering the large dynamical measuring range and the number of reflections, the resulting

wR, values are reasonably acceptable.

Table 4.6 (I) Temperature dependent crystallographic data of Cd¢Tb 1/1 approximant above 7,

Temperature/K 200 196
Space Group Im3 (204) Im3 (204)
Pearson code cl184 cl184

zZ 24 24
a axis/A 15.4647(3) 15.4559(5)
Cell volume/ A3 3698.68(15) 3692.18(19)
F(000) 8472 8472
Calculated density (g/cm3) 8.9767 8.9925
Absorption coefficient-mu/mm-1 11.156 11.176
Range of theta/® 1.8-32.55 1.8-32.57
Index range -31=s h <31 -16= h <31
-34<k <33 -34= k <31
-34=<1<34 -23=1<34
Independent reflections 3476 3624
Reflections>30 3444 3061
R, (obs/all) 9.44/9 45 14.48/14.77
Number of parameters 46 61
R (all) 0.0405 0.051
R, (all) 0.1075 0.0992
Absorption correction Numerical Numerical
Apmax, Agmin 6.26,-10.83 998,-11.11
Mean change/s. u. 0.0006 0.0006

Table 4.6 (II) Temperature dependent crystallographic data of Cd¢Tb 1/1 approximant below T,

T/K 192 188 186 184 180 150 100
Space Group  C2/c (15) C2/c (15) C2/c (15) C2/c(15) C2/c(15) C2/c(15) C2/c(15)
Pearson code mC336 mC336 mC336 mC336 mC336 mC336 mC336

a axis/A 21.858(4) 21.847(4) 21.824(3) 21.856(3) 21.856(3) 21.853(3) 21.825(2)
b axis/A 15.460(4) 154503) 15.452(3) 15456(3) 15457(3) 15.44(3) 15431(2)
¢ axis/A 21.859(4) 21.848(4) 21.835(3) 21.857(3) 21.855(3) 21.864(3) 21.838(2)
B/deg. 90.012(2) 90.017(2) 89.932(2) 90.007(2) 90.004(2) 89.997(2) 90.020(1)
Z 24 24 24 24 24 24 24
Cell volume/  7386.7(3) 73743(2) 7363(2) 7383.4(22) 7383.012) 7378(2) 7354.63(
A’ 1)
F(000) 16944 16944 16944 16944 16944 16944 16944
Calculated 8.9897 9.0048 9.0184 8.9937 8.9942 8.9998 9.0289
density
(g/cm?)
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Absorption 11.172 11.191 11.208 11.177 11.178 11.185 104
coefficient-
mu/mm’
Range of 3.37- 3.31- 3.31-32.6 3.31- 3.31- 10.99- 1.68-
theta/® 32.54 32.56 32.46 32.53 19.5 32.56
Index range  -44sh<47 -46sh=<47 -44=<h=<47 -46=<h=<46 -46<h<47 -29=<h<29 -4T7<h=<47
-33<k<32 -33<k<33 -33<k<33 -32=<k=<34 -33<k<34 -20=<k<20 -34<k<33
-40=l<43  -45<i<47 -46<l<46  -46=<i<47 -45<l<46  -29<I<29  -47<I<47
Independent 41006 63026 75712 77123 77659 15591 129033
reflections
Reflections> 40983 63026 75690 77123 77636 11738 100797
30
Ry 0.0979 0.08 0.0545 0.0535 0.0533 0.0385 0.1627
Number of 487 437 407 407 406 386 386
parameters
R (all) 0.0617 0.0564 0.0544 0.0472 0.0453 0.0964 0.0541
wR, (all) 0.1587 0.1403 0.1370 0.1148 0.1045 0.1358 0.1191
Goodness of 3.75 3.07 3.05 2.57 2.35 2.87 1.80
fit
Absorption Numerical
correction
Apmax, 11.44/- 20.62/- 20.01/- 11.69/- 11.03/- 2.55/- 10.46/-
Aomin/e/A 6.51 10.66 14.7 941 8.89 2.70 8.18
Mean 0.0102 0.0091 0.0031 0.0065 0.0067 0.0120 0.0016
change/s. u.
Table 4.7 Structural information of Cd¢Tb 1/1 approximant above T,
Symbol TK W); ;/ZOff . x/a v/b z/c Oce Biso_(,q*/Ao2
Th1 196 240 0.18975(3) 0.29965(3) 0 1 0.0058(0)
200 0.18974(3) 0.29964(3) 0 | 0.0059(0)
cdl 196 16f 0.16087(2) 0.16087(2)  0.16087(2) 1 0.0140)
200 0.5 0.19056(3) 0 1 0.0099(1)
cd2 196 12¢ 0.5 0.19051(3) 0 | 0.0096(1)
200 0.75859(8) 0.09237(5) 0 1 0.0266(2)
196 0.24133(10)  0.09234(6) 0 | 0.0264(1)
Cd3— 200 248 065941(1)  0.20038(1) 0.118152) ! 0.0108(0)
196 0.34063(1) 0.20040(1)  0.11813(2) 1 0.0107(0)
Cd4 200 48h - 1
0.83912(2) 0.16088(2) 0.16088(2) 0.0142(0)
196 0.5 0.09568(2) 0.15386(2) 1 0.0081(0)
Cds 200 24 - 1
& 0.5 0.09569(2) 0.15381(2) 0.0081(1)
196 0.40571(4 0 0 1 0.0236(2
Cdo 00 12d 0.5942854; 0 0 1 0.02368
cd7 196 48h 0.0757(3) 0.0837(2) 0.0152(4) 0.1667 0.058(2)
200 24¢ 0.9241(2) 0.08395(19) 0 0.3333 0.0809(13)
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Table 4.8 Anisotropic displacement parameters (A2) of Cd¢Tb 1/1 approximant above 7T,

Symbol T/K U11 U22 U33 U12 U13 U23
Tbl 196 0.00578(6)  0.00699(6)  0.00472(6)  0.00058(3) 0 0
200 0.00575(6)  0.00696(6)  0.00486(6)  0.00054(4) 0 0
Cdl 196 0.01404(8) 0.01404(8)  0.01404(8)  0.00750(8)  0.00750(8) 0.00750(8)
200 0.01521(17) 0.00721(13) 0.00713(13) 0 0 0
Cd2 196 0.01489(16) 0.00700(12) 0.00705(12) 0 0 0
200 0.0622(4)  0.00929(14) 0.00833(13) - 0 0
0.01090(17)
Cd3 196 0.0623(4) 0.00904(12) 0.00794(11) 0.01081(16) 0 0
200 0.00848(8)  0.00942(8) 0.01462(9) 0.00090(6) - -
0.00214(6) 0.00393(6)
Cda 196 0.00837(8)  0.00938(8)  0.01436(9) -0.00085(5) - 0.00387(6)
0.00203(5)
200 0.01424(8)  0.01424(8)  0.01424(8)  -0.00758(9) 0.00758(9) -
0.00758(9)
Cd5 196 0.00914(9) 0.00709(9)  0.00797(9) 0 0 0.00164(6)
200  0.00922(10) 0.00723(9)  0.0079(1) 0 0 -
0.00169(7)
Cdo6 196 0.00939(16) 0.0520(5) 0.00958(16) 0 0 0
200 0.00939(17) 0.0519(4) 0.00968(18) 0 0 0
cd7 196  0.066(2) 0.0397(13)  0.067(5) -0.0422(15) -0.007(2) -
0.0035(17)
200 0.0621(17) 0.0383(12)  0.142(3) 0.0394(12) 0 0

Table 4.9 lists the volume fractions of the six domains at each temperature. For temperatures
from 180K to 192K, the weight of each twining domain differs from the results of 40K and
100K because only half region of the sample was probed. In overall, the most dominated
domains are domains 2 and 5, and the least are domains 3 and 6. Moreover, from 100K to
40K, the volume fraction of each domain almost keeps constant. In the selected half region,
the volume fraction varies strongly depending on the temperatures. For instance, from 192K
to 188K, the weight of domain 4 is high up to 28.22%, however, as temperature decreases to
186K, domain 2 increases quickly becoming the dominant one. This implies that domain 4 is
the easiest to form in the preliminary stage of the transition, and domain 2 is more sensitive
to lower temperatures. In addition, the evolution of the volume fractions stops changing at
~184K indicating the accomplishment of the transition around this temperature which is
consistent with the powder diffraction results.

Table 4.9 Temperature dependent volume fractions of different twinning domains.

Temperature 40K 100K 180K 184K 186K 188K 192K
Domainl 0.1702 0.1711 0.1846 0.1859 0.1944 0.1944 0.1956
Domain2 0.0913 0.0876 0.2066 0.2058 0.1938 0.1406 0.1487
Domain3 0.2648 0.2600 0.1119 0.1349 0.1173 0.1113 0.1407
Domain4 0.2098 0.2190 0.1614 0.1619 0.1650 0.2822 0.2373
Domain5 0.0864 0.0875 0.1979 0.1976 0.1866 0.1494 0.1498
Domain6 0.1775 0.1749 0.1375 0.1140 0.1430 0.1221 0.1279
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Figure 4.2.15 Reconstruction of the #k0.5 Bragg planes with respect to temperatures, both the number

and intensity of the superstructure reflections increase as temperatures get lower.

The 1k0.5 Bragg planes have been reconstructed for each temperature as illustrated in Figures
4.2.15. A small number of superstructure reflections have been observable at 200K which is
consistent with the case of Zn¢Sc[11]. By fitting the correlation length and 7-7". in log scale,
one can derive the transition temperature for a second-order transition. Furthermore, as the
temperature decreases, the superstructure reflections become stronger, in the meanwhile the
thermal diffuse scattering gets weakening. A quantitative analysis is performed and shown in
Figure 4.2.16 where the summing intensities of all superstructure reflections on the #k0.5
planes are plotted as a function of temperatures. It is manifested that a drastic increase occurs
at ~193K which agrees well with the measured T, previously. Additionally, the abrupt
increase accomplished at ~184K showing a good agreement with the powder diffraction
results. According to Figures 4.2.3 and Figures 4.2.7 from single crystal and powder
diffraction measurements respectively, this temperature interval reveals the occurrence of the
peak splitting, i.e. the distortion of the unit cell. As a consequence, the lattice distortion
happens at ~193K and grows up rapidly until ~184K, leading to the formation of the six
twinning domains.
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Figure 4.2.16 The summed intensity of the Bragg planes 1k0.5 as a function of the temperature, abrupt

increase happens between 193K and 184K, corresponding to the observation of the phase transition.

Up to now, much work has interpreted that the motions of tetrahedron atoms are responsible
to the phase transition. The evolution of the tetrahedron with respect to temperatures is
presented in details. Figures 4.2.17 illustrate the charge density distribution of the central
tetrahedron derived from the single crystal diffraction measurements at different temperatures.
The tetrahedron model above 7, is almost constant manifesting a well-defined cube
octahedron shape. However, as we stated above, the tetrahedron sites transit from 24g to 48h
at 196K which indicates the occurrence of the pretransition. Interestingly, in addition to the
expected ordering tetrahedron, some other tetrahedron sites are partially occupied as well in
particular just below 7. This is speculated correlating to the completeness of the transition.
As in the temperature interval from 192K to 184K, the phase transition was in progress but
incomplete, therefore some additional occupancy was preserved. In other words, these
transitional charge density shapes are superimpositions of the HT and LT phases. This is
affirmed by the fully occupied tetrahedron arising at 184K where the phase transition has
been completed.

The three most increased Cd-Cd bonds on the successive Cd-component polyhedra have been
measured as indicated in Figure 4.2.18 (a). The d, corresponds to the innermost tetrahedron
bond parallel to the cubic edges, d, demonstrates the distance between the two dodecahedron
atoms adjacent to the related tetrahedron atoms, and d; denotes the relevant bond distance on
the icosidodecahedron cluster. The temperature dependence of the three bonds is displayed in
Figure 4.2.18 (b). An abrupt increase is observed for all three distances within the specific
temperature interval. Moreover, the three bonds grow up simultaneously confirming that the
lattice distortion indeed originates from the ordering of the tetrahedron. The variation before
and after the transition displays the effect of thermal motions. In addition, comparing with the
tetrahedron and dodecahedron shells, the distortion of the icosidodecahedron is much weaker,
therefore the d; displays irregular behavior before and after the transition.
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Figure 4.2.17 Charge density in the location of Cd, tetrahedron with respect to temperatures, The
isosurfaces level for fully measured data, i.e. phi scan from 0° to 360°, is 28-¢/A>.
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Figure 4.2.18 (a) The three defined distances on the three successive Cd-component shells are
indicated. (b) The temperature dependence of the three distances varies simultaneously, demonstrating

essentially the interacting between shells.

According to the thermal expansion, as a response to the decreasing temperatures, the Cd-Cd
bonds should decrease in the cooling process. However, as indicated in Figure 4.2.18 (b) d,
increases as temperature decreases. Indeed, not only d;, but also the distances to the cluster
center of the 4 tetrahedron atoms increase as illustrated in Figure 4.2.19 (b) . This
phenomenon is again speculated corresponding to the constantly reorienting of the
tetrahedron at HT. At high temperature, only an average distance can be evaluated because of
large dynamical disorder. When the monoclinic distortion takes place, the degeneracy is
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lifted and the distances are determined accurately. Similarly to the distances to the cluster
center, the previously discussed tilting angles increase drastically as the temperature
approaches to 7, indicating that this tilting angle is also a result of the increasing tetrahedron
bonds. Figure 4.2.19 (a) displays the equivalent isotropic displacement parameters with
respect to temperatures on the two unique tetrahedron atoms and the averaged values. An
abrupt decrease is observed around 7 indicating the constant reorientation of the tetrahedron
was suppressed. Moreover, the two atoms slow down together in an excellent agreement
demonstrating that the tetrahedron behaves most likely as a single molecule.
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Figure 4.2.19 (a) The equivalent isotropic displacement parameters of the two unique tetrahedron
atoms and the averaged values as a function of temperatures. (b) The temperature dependence of the
tilting angle (green crossed square), the distances to the cluster center of the two unique tetrahedron

atoms (red solid square for atom1 and blue solid circle for atom?2) and the averaged values (black

rhombus).

4.3 Conclusion

We have carried out a systematic in situ measurement on a single grain from RT down to
40K on the Crystal beam line located at the Soleil synchrotron. The structural phase
transition is observed at about 190K evidenced by the splitting of the main Bragg peaks. Both
single crystal and powder diffraction patterns demonstrate the abruptly increasing distortion
from 190K to 184K. An anomaly is observed at ~45K, below which both the lattice
parameter and the scattering angles do not change any more. This may be responsible to the
irregular behavior of the electronic resistivity below ~40K.

Using different attenuation, we have collected integrated intensity in a large dynamical range,
leading to more than 60000 unique reflections in the C2/c monoclinic low temperature phase.
The final wR2 values for RT and 40K are equal to 0.0726 and 0.0905 respectively. The
ordering of the innermost tetrahedron leads to the distortion of the successive shells. As
initially proposed by Tamura ef al[14] and Kim et al[15], the distances of the intracluster
ionic Tb’* bonds are compatible with the intercluster bonds. For the monoclinic phase, owing
to the lattice distortion, the intracluster and intercluster interactions become more competitive
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which is supposed playing a crucial role in promoting the formation of long-range magnetic
order.

A temperature dependent study is carried out to the Cd¢Tb structures. A strong distortion of
the successive shells is observed along the three-fold axis. Further investigation manifests
that the distortion is originally induced by the ordering tetrahedron. The simultaneous
behavior of the equivalent isotropic displacement parameters of the two unique tetrahedron
atoms suggests that the tetrahedron behave as a single molecule. The increasing tetrahedron
Cd-Cd bonds in the cooling procedure shows an exception to the contraction principle which
could be interpreted by the dynamically reorienting of the tetrahedron above T,

As a counterpart of the quasicrystal, the results of 1/1 approximants are significant to study
the stability of quasicrystals in particular the Cd¢Tb phase in which the long-range magnetic
order was observed below 24K. The discovery of a series of binary magnetic icosahedral
quasicrystals also paved the way for further investigation on this unique magnetic property.
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Chapter 5. The stability of Cd,M (M=Yb, Pr) 1/1 approximants

The phase transition taking place on Cd¢Tb has been evidenced for a series of Cd,RE and
ZngSc isostructural compounds by transmission electron microscopy as well as specific heat
and electrical resistivity measurements[12][6]. Among those, the CdsYb and CdsPr were
reinvestigated in this thesis using X-ray diffraction. The diffuse scattering and s.r.o are
measured with respect to temperatures.

5.1 Phase transition of Cd,Yb

The CdsYb phase was identified for the first time in 1964 by Johnson et al [16]. After that,
many efforts have been made to solve its structure[17][4][18]. Especially the discovery of the
first stable binary quasicrystal Cds,Yb[2] and the observation of the order-disorder phase
transition at a low temperature occurring to CdsYb[19][20] have attracted the scientific
community’s attention and interests back to this fascinating system.

Sample preparation’

The CdsYb sample was grown using flux methods. Pure elements of Cd(6N) and Yb(3N)
with an atomic ratio of 9:1 were put into an alumina crucible and sealed into a quartz tube
under an argon atmosphere. Then the sealed tube was set into a muffle furnace and heated to
973K for 24 hours. After being melt adequately, the liquid alloy was cooled down slowly
with a cooling rate -5K/h to form an alloy and the remaining melt was decanted by centrifuge.
An annealing process was performed to the obtained ingots for 24 hours at 673K to form a
homogeneous phase. The sample was prepared by Tamura’s group[19].

Experimental details

X-ray diffuse scattering was performed on single grain of CdysYb on the beamline D2AM
which is located at the European Synchrotron Radiation Facility (ESRF). A series of
expected fundamental and superstructure reflections were measured over a temperature range
from 20K to RT, in reflection geometry using an X-ray beam with energy of 18.2keV
(A=0.681A). The measurements were carried out using a Kappa diffractometer collecting data
with a scintillation point detector. A cryostat system was applied for controlling the
temperature of the sample which is placed in an evacuated Be hemisphere.

To obtain an atomic view of the CdsYb phase, single crystal XRD measurement was carried
out using synchrotron beamline of CRYSTAL at SOLEIL. Sample was measured at three
temperatures: 200K, 140K and 40K. To avoid extinguishing the weak superstructure
reflections or saturating the strong main reflections, we collected four datasets with
attenuation factors equal to 10000, 1000, 50 and 1 for the LT phase at 40K. For the same
reason, two datasets with attenuation factors equal to 1000 and 50 were collected at 200K.
The measurement was executed by rotating phi 180° with step size of 1.0°. The distance
between sample and detector was set to 80mm. Furthermore, since the step size is too large to

? The sample is prepared by Tamura’s group in Science University of Tokyo, Tokyo, Japan.
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observe the split of Bragg peaks, additional Omega scan with step size being 0.025° and
distance between sample and detector equaling 340mm was carried out at 200K, 140K and
40K respectively. The energy of beamline is 25.55keV, i.e. A=0.4853A. The data reduction is
implemented using program CrysAlisPro (Version 1.171.35.6, Agilent Technologies,
Yarnton, England, 2011). The images of Cd¢sYb sample were recorded by camera controlling
by the crystallographic program CrysAlis Pro as illustrated in Figures 5.1.1 (a). By
employing CrysAlis Pro, a 3-D model of the sample was rebuilt as shown in Figure 5.1.1 (b)
and the shape was refined using the 1000 strongest reflections of the 200K dataset with
attenuation factor equal to 50. Numerical absorption correction was carried out based on this
model in CrysAlis Pro.

Powder XRD measurement was performed using the same beamline CRYSTAL at SOLEIL
with energy equal to 25.55keV. The sample is the same as the single crystal discussed above
but was grinded into smaller pieces. A set of systematic scans was carried out in a
temperature interval from 250K to 10K. The measurement is done using 2-circle
diffractometer with multi-analyzer. To reduce the preferred orientation effects, the sample
was mounted on a rotating motor and two individual scans are performed for each
temperature. The velocity is set as 0.02°/s and 0.05s for each step giving a step size equal to
0.001°.

Further diffuse scattering measurement was executed on CdsYb in a temperature interval
from RT to 20K using synchrotron beamline 116 of the Diamond Light Source. 6-circle
diffractometer (in vertical 4-circle mode) is adopted with detector systems Medipix and
Pilatus. The energy of beamline is set to 8keV (A=0.9918A). A series of reflections are tested
as a function of temperature. 2-D and 3-D diffraction patterns are reconstructed in reciprocal
space at both HT and LT via Matlab scripts. The picture of the single grain probed in
experiment was recorded by camera as presented in Figure 5.1.2.

Results and discussion

5.1.1 Split of fundamental reflections

Figure 5.1.1 (a) Single grain of CdsYDb is glued on a sample holder; (b) A 3-D model is rebuilt using

CrysAlis Pro program. The sample size is measured as ~160x160x90um?.
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Figure 5.1.2 Camera view of CdsYDb single crystal glued on the sample holder.

The phase transition from space group Im3 to C2/c observed in most of Cd¢R
approximants[12] leads to not only a doubled lattice by V2axax+/2a along [101] direction,
but also six domains with different orientations in the LT phase. In reciprocal space, the
distorted monoclinic multiple domains results in a split of the fundamental reflections. The
amount of split depends on both the composition and temperature. Therefore it is a significant
sign for judging the formation of the monoclinic phase.

Single crystal XRD

The diffraction profiles of reflection (18 18 0) at 200K and 40K are compared and presented
in Figures 5.1.3. The reflection alters from isotropic to anisotropic instead of splitting. Since
the phase transition has been evidenced previously[20], we suppose that either the LT phase
maintains a cubic lattice which is the conclusion of Xia et al[18] or the distortion is too small
to be detected. In fact, the latter conclusion has been evidenced as it will be presented in the
following paragraph.

(@) (b)
Figure 5.1.3 Diffraction profiles of (18 18 0) at 200K (left) and 40K (right).

Powder XRD
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Profiles of peaks (2 1 5) and (3 0 5) with respect to temperature are displayed in Figure 5.1 .4.
As denoted by arrows A, B, C and A’, B’, C’, peaks split clearly from 100K suggesting that
T, is between 100K and 110K. This verifies the distortion of the cubic lattice and the multiple
domains in the LT phase. It is also seen that the amount of split is very small which explains
the absence of split from the diffuse scattering and single crystal XRD measurements. In
addition, superstructure peaks are observed in LT phase as indicated by arrows D and E.
Furthermore, the relevant peak of D and E is absent at 10K, and as shown by arrow F, the
weak peak next to (3 0 5) is absent as well at 10K. This result implies either additional
extinction appearing in the LT phase at 10K or experimental error.

The Q evolution of main peaks of (2 1 5) and (3 0 5) as a function of temperatures is
generated and plotted in Figure 5.1.5. An obvious anomaly occurs at around 110K indicating
the phase transition. This result agrees well with that of Tamura[19].
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Figure 5.1.4 Evolution of rocking curves of (2 1 5) (left) and (3 0 5) (right) with respect to
temperatures. Peak splitting becomes clearly visible from 100K as indicated by arrows A, B, C and A’,
B’, and C’. Peaks denoted by D and E suggest the appearance of superstructure at LT.
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Figure 5.1.5 Variation of Q of peaks (3 0 5) (open circle) and (2 1 5) (open square) are illustrated as a
function of T.

Diamond x-ray diffuse scattering

The temperature dependence of a selected fundamental reflection (10 0 10) was probed using
synchrotron x-ray source as demonstrated in Figure 5.1.6. It is clearly seen that the peak
splits into two subpeaks at 100K which suggests the formation of a distorted lattice. It is
noteworthy that the step size here is 0.01° which is half of that in the experiment at D2AM
where the split of (15 15 0) is missed. This fact reconfirms that the lattice distortion of
Cd¢Yb is quite small. Moreover, the peaks diminish and broaden rapidly after phase transition,
which is due to the effect of the LT domains size.
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Figure 5.1.6 X-ray diffraction profiles of peak (10 0 10) over a temperature range from 20K to 300K;
(b) Evolution of Eta of (10 0 10) as a function of temperature. An anomaly at 120K indicates the

occurrence of phase transition.
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Figure 5.1.7 Reconstruction of reflection (10 0 10) in reciprocal space. (a) 3D image shows clearly the
splitting of reflection; (b) 2D projection to Qx // [101] and Qy // [010] plane; (c) 2D projection to Qx //
[101] and Qz // [101] plane; (e) 2D projection to Qy // [010] and Qz // [101] plane.

The 2D and 3D images of reflection (10 0 10) at 100K is reconstructed in reciprocal space as
shown in Figures 5.1.7. It shows clearly the splitting reflections resulting from lattice
distortion. The splitting reflections are incompatible with the calculated results derived from
the model depicted in Section 4.1. One possible reason is that the cell parameters we used are
not accurate enough. Therefore further analysis on the powder XRD data is desirable to
obtain accurate cell parameters which are important not only to calculate the splitting
reflections but also to the structure determination of the LT phase.

5.1.2 Superstructure reflections

The superstructure reflections result from the [110] doubling of the unit cell. The appearing
rule of superstructure reflections is closely related to the ordering scheme of the central
tetrahedron. Therefore it is an effective way to investigate the tetrahedron ordering
mechanism[12]. In addition, they are also used to derive the correlation length of s.r.o.

D2AM x-ray diffuse scattering measurements

80



T
1000000 |-

Chapter 5. The stability of CdsM (M=YD, Pr) 1/1 approximants

" 45405

T30k 3 1000000 (2555 1) E
= (35-1)
—T=85k 56.5-
(1:565-1) (3.54.5-1)
100000 | J 100000 |-
(43.50.5)
(32,50.5) (54.50.5)
2 2
Z £
& 10000 § 10000
£ £
1000 1000
ol 100 |
100 1 1 1 1 1 1 1 1 1 | 1 1 1 1
21 24 27 30 33 36 39 42 45 48 10 15 2.0 25 3.0 35
K(r.lu) (a) H(r.Lu) (b)
T T T T T T T " T
(170) 100000 | (2.5 5.5 -0.5) (3.54.5-05) T
124" ]
1000000 | 4
(150) 10000 | 4
> >
4 100000 i % (1.5 6.5 -0.5)
S c
2 2
|~ c
= 10000 L - 1000 2605 E
(15.50) (26-05)
1000 L
100 J
100 A A . . . . . . . . A .
35 40 45 50 55 60 65 70 75 10 15 2.0 25 3.0 35
K(r.L.u) ©) H(r.Lu) (d)

Figure 5.1.8 Line scans in different directions: (a) Line scans along [110] at different temperatures; (b)
Line scan along [110] at 15K; (c) [1kO] scan with k from 3.5 to 7.5 at 15K; (d) Line scan along [110]
at 15K with / being half integer.

Four line scans were implemented to search for possible superstructure reflections at LT. As
shown in Figure 5.1.8 (a), line scan along [110] direction was carried out at different
temperatures. No superstructure reflections visible at 300K, however, as temperature
decreases, a bunch of superstructure reflections appear at 100K and 85K. Three other line
scans were performed along [110], as shown in (b) and (d), and [1k0] with k varying from
3.5 to 7.5 at 15K as displayed in (c). The appearance of those reflections with half integers
displays obvious contradiction with the model of CdgsYb at LT claimed by Xia et al[18]. It is
noticed that there are many reflections with half-integer k, but we can not simply conclude
that lattice is doubled along b axis, because as explained above, six domains with different
orientation are transformed in the LT phase.

On the other hand, by means of group-subgroup analysis of Yamada[11], the relationship
between indices of HT and LT is given precisely (see section 4.1). We analyzed the
superstructure reflection emerging in above figures, and found that the appearance of (1.5 6.5
0.5) and (3 5 1) are forbidden in space group C2/c, suggesting that the phase transition of
CdsYb follows a different rout from others. This result updates the conclusion of Tamura in
his early work[19].
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Systematic scans on selected superstructure reflections were carried out as shown in Figure
5.1.9. The measurements were executed with a heating and a cooling process for each
reflection. Note that all reflections are indexed with respect to the HT phase.
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Figure 5.1.9 Systematic scans to five superstructure reflections. Sample was firstly heated and then

cooled from ~80K to ~170K except (6.5 7.5 -0.5) which is measured only in the heating process.

The variation of integrated intensity of each reflection is plotted as a function of temperatures
as illustrated in Figures 5.1.10. All intensities are normalized on the basis of different foils
and scanning time. An obvious anomaly shows up at around 113K in both the heating and
cooling process, demonstrating occurrence of the phase transition. Moreover, the transition of
2" to 5™ reflections indicates that the phase transition is reversible. An interesting
phenomenon is that the variation of intensity in the heating process behaves differently from
the cooling process which might correspond to different transitional process.
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Figures 5.1.10 Variation of intensity of each reflection in heating and cooling process. An anomaly
occurs at around 113K in both processes. The left figure displays the heating process, and the right

shows cooling process.
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Scattering profiles of all superstructure reflections are fitted using Pseudo-Voigt function,
from which the full width at half maximum (FWHM) can be generated. The temperature
dependence of correlation lengths given by € = m/Aq, where Aq is the FWHM of (4.5 4 0.5),
(2.55.50.5) and (3 5 1) in the cooling process, is illustrated in Figure 5.1.11. As temperature
approaches to T, the correlation lengths increase rapidly from ~200A at RT to ~1100A at
90K, demonstrating the formation of LT domains. The FWHM of the fundamental reflection
(0 6 0) measured at 100K is 0.1° which gives a domain size of 1100A according to the
Scherrer equation. This means the maximum correlation length is limited by the domain size.
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Figure 5.1.11 Correlation length of superstructure reflections (a) (4.54 0.5),(b) (2.55.5 0.5) and (¢) (3
5 1) as a function of temperature in a cooling process. The arrows denote drastic increasing points, i.e.
the T..

Single crystal XRD

The hk1 and hk0.5 layers at both 200K and 40K are reconstructed as illustrated in Figures
5.1.12. Comparing with the HT phase, a large number of superstructure reflections emerge
inbetween the main reflections of the LT phase. Moreover, instead of background diffuse
scattering shown at HT, clearly visible reflections turns up on the hk0.5 layer at LT. As
aforementioned, the superstructure reflections are very weak which makes the structure
determination and refinement of the LT phase very difficult.

Powder XRD

The diffraction spectra of CdsYb at RT and 10K are displayed in Figure 5.1.13 where an
offset is applied for better comparison. The peaks split at LT and an extra peak, as well as
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two mismatching peaks are identified by arrow and dotted-line entangler respectively. This
superstructure peak is confirmed absent in the spectra of Cd,Tb at LT (see hereafter). As
aforesaid, the phase transition of CdsYb follows a different ordering scheme. Thus this

superstructure peak is possibly the indicative of the otherwise phase. Moreover, the loss of
diffuse scattering at LT is contributed by the suppression of thermal motions.

Figure 5.1.12 hkl layer at 200K (a) and 40K (c), and /k0.5 layer at 200K (b) and 40K (d) are
reconstructed in reciprocal space. Inset is the magnification of partial hk1 layer at 40K, and
superstructure reflections are indicated by rectangles.
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Figure 5.1.13 Peak profiles comparison between RT and 10K of Cd;Yb, the mismatching and

superstructure peaks are indicated by entangler and arrow respectively.
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For further analysis, the diffraction spectra of CdsYb and Cd¢Tb at RT and LT are compared
and displayed in Figures 5.1.14 (a) and (b) respectively. It’s noteworthy that Cd¢sTb follows
the phase transition scheme as we depicted in Section 4.1. For a better view, the Q value of
Cd¢Yb is shifted and an offset is applied to the intensity. Two unexpected peaks are observed
in the CdgYb phases of both two samples as indicated by black arrows. Besides, mismatching
is found as well between the two compounds as shown in the dotted-line rectangle. Moreover,
the supplementary diffuse scattering of CdsYb disappears completely comparing with CdsTb.

The same phenomena are observed in the LT phase. Since the HT phases of Cd4Tb and
CdyYD share an identical skeletal network, the small difference between them only comes
from the model of the central tetrahedron. The explanation to these extra and mismatching
peaks most possibly lies on the impurity of the CdsYb samples. Regarding the disappearance
of the broad component of diffuse scattering in CdsYb, it is not yet well understood but most
likely either relates to the different mechanisms of phase transition or comes from the
impurity of the CdysYb samples.
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Figure 5.1.14 (a) Comparison of profiles between CdsYb (black), CdTb (red) and another sample of
CdyYDb (54, blue) at RT; (b) Comparison of profiles between CdyYb (red) and CdsTb (black) at LT. T,
of CdsYb and Cd¢Tb are around 110K and 190K respectively.
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Diamond X-ray diffuse scattering

We executed measurements on some superstructure positions around (10 0 10) in a
temperature interval from 20K to 300K, as shown in Figure 5.1.15. Two superstructure
reflections that are forbidden at HT start appearing at 100K. Again the emergence of (10.5
0.5 10.5) is unexplainable with a doubled superstructure lattice V2axaxv2a but is
compatible with the superstructure lattice V2ax2ax+2a proposed by Nishimoto[12].

A line scan was performed along [10.5 k 10.5] with k varies from -3 to 3 as shown in Figure
5.1.16. The intensity of each [10.5 k 10.5] distributes symmetric to [10.5 k 10.5], which
suggests a two-fold axis along [10.5 0 10.5] with respect to the cubic setting at HT.
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Figure 5.1.15 Variation of rocking curves of a series of superstructure reflections, (10 1 10) (left) and
(10.5 0.5 10.5) (right), with respect to temperature. Both scans are implemented in direction [010].
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10° ———

(10.5 k 10.5)

Intensity

K(r.Lu)

Figure 5.1.16 [10.5 k 10.5] line scan with k varying from -3 to 3. The distribution of intensity is
equivalent for (10.5 k 10.5) and (10.5 -k 10.5), suggesting a 2-fold axis along [hOh].

Table 5.1 lists all reflections we have tested at LT, and as depicted above, space group C2/c
with doubled unit cell propagating along [101] has been excluded for CdgYb. For the time
being, P2/m with superstructure lattice V2ax2ax+2a can interpret these emergent and
absent reflections. But it is still unknown whether superstructure with higher symmetry is
possible or not. Therefore, it is of importance to character the structures of HT and LT phases.
However, the multiple domains resulting from lattice distortion make it difficult to determine
the LT phase.

Table 5.1 Summary of tested reflections at LT, all reflections are indexed with respect to HT phase

Forbidden reflections General reflections
ESRF (140),(1450) (35-1),(06575-05),(2555-0.5),
2555-1),(45405),26-1),(17
T=15K -1)

Diamond (504),(405),(603),(702), (5-13),(513),(100.510.5), (10 -
801),(810),(8-10), (105 0.5 10.5), (105 -0.5 10), (105 0.5
T=7K 010.5),(100.59),(15500)  10), (9.5 0.5 10), (9.5 -0.5 10), (9.5
0.5 10.5), (10.5 0.5 9.5), (10.5 0 10),

(90.5 10), (10 0 10.5), (10 1 10)

87



Chapter 5. The stability of CdsM (M=YD, Pr) 1/1 approximants

5.1.3 Structure Characterization

As described above, two datasets were collected with different attenuators at 200K for
structure determination. Jana 2006[117] is adopted for structure determination and
refinement. The two datasets were combined by rescaling the reflections intensities using
both CrysAlis Pro and Jana2006 (see Chapter 4 for details). Absorption correction was
applied on the basis of the refined sample model as shown in Figure 5.1.1 (b). The atomic
structure of HT phase is achieved. The crystallographic data and technique parameters of the
Cd¢Yb are attached in Appendix II.

The structure solution is proved to be identical with the model proposed by C.P. Gémez et
al[4]. The occupancy of central Cd tetrahedron atoms is confirmed to be 1/6. Figure 5.1.17 (a)
displays the bcc packing of the RTH building blocks. Figure 5.1.17 (b) shows the innermost
tetrahedron residing inside the dodecahedron. The model of the central tetrahedron can be
described as a small cube each vertex of which splits into three positions to avoid an
unrealistic distance to the dodecahedron atom in the outer shell.

(a)

(b)

Figure 5.1.17 (a) Electron density isosurfaces at 15¢/A level, showing a triple splitting of the cubic

vertices; (b) Dodecahedron with elongated displacement.
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Figure 5.1.18 Powder diffractogram from calculation (up) and observed (down) over the 20 range from

9° to 14°. Extra peaks are indicated by arrows.

The innermost Zn, tetrahedron of ZnsSc has been evidenced as dynamically orientational
above T, using quasielastic neutron scattering accompanied with molecular dynamic
simulation[81]. The reorientation was clarified taking place within a time scale of a few ps, a
distance scale of about 1.5A and energy barrier of 60meV, which results in a strong distortion
of the outer shells. The ellipsoid drawing of the Cd,, dodecahedron, as illustrated in Figure
5.1.17 (b), represents the displacement of each atom, and the elongation along 3-fold axis
indicates the dynamical distortion driven by the reorientation of Cd, tetrahedra.

The details of atomic coordinates and equivalent isotropic displacement factors are attached
in Appendix III.

To clarify the extra peaks appearing on CdsYb at RT, we calculate the powder pattern using
the structure model achieved from single crystal XRD measurements. The results are
compared in Figures 5.1.18. It is obvious that these peaks are not essentially from CdsYb, but
most likely come from the impurity of the sample. Indeed, these three extra peaks have been
confirmed coming from the remaining elementary Cd in the sample. The three peaks with 20
equal to 9.91°, 10.79° and 11.88° are (0 0 2), (1 0 0) and (1 O 1) of the hcp Cd phase,
respectively.

5.1.4 Discussion

As concluded above, the superstructure reflections of CdgYb is quite weak which increases
the difficulty of determining its structure of LT phase. On the other hand, integrating
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intensities of reflections from multiple domains is also a troublesome question. Apart from an
accurate atomic structure, analysis by transmission electron microscopy has given a
schematic illustration of the superstructure for CdsYb as presented in Figure 5.1.19. The
superstructure has been affirmed belonging to space group P2/m with a V2x2xv/2 lattice
which is compatible to all the known superstructure reflections[12]. The 2-fold axis of the
ordered tetrahedra is parallel to b axis, and the mirror plane is perpendicular to b axis. In this
case, there is no rule restricting the orientations of the tetrahedra locating on the mirror planes.
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Figure 5.1.19 Ordering scheme of CdsYb with respect to the orientations of the tetrahedra in the phase
transition. Ref. [12]

5.1.5 Conclusion

We have performed synchrotron X-ray measurements to study the CdsYb 1/1 approximant
using different methods. The phase transition is evidenced and T, is confirmed as around
113K, which is in good agreement with electrical resistivity and specific heat analysis[19].
The lattice distortion is observed from powder XRD and diffuse scattering measurements. It
is noteworthy that the split of main reflections were not observed at ESRF but at Diamond on
the same sample. The different results are most likely due to the long annealing time at RT.
Appearance of reflection (6.5 7.5 0.5) and (351) indicates that the mechanism of phase
transition to CdgYb is different from Zn,Sc and other Cd¢,RE phases. The correlation length
increases rapidly after T, up to ~1100A which denotes the formation of LT phase and also the
order of domain size.

According to previous reports, the central tetrahedra are considered dynamically oriented
above T, similar to ZnsSc, which leads to an exceptional dynamical flexibility. The
reorientation of tetrahedra leads to a distortion of the outer shells especially the dodecahedra,
which is represented by the displacement factors of dodecahedron atoms at 200K. The
structure determination of the LT phase is stuck owing to the difficulties encountered from
the multiple domains and weakness of superstructure reflections. According to the observed
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and absent superstructure reflections, the space group of the LT phase of CdsYb is most
likely P2/m with a vV2x2xV2 quadrupled lattice. Further analysis is certainly desirable in
particular the structural determination of the LT phase.

5.2 Effect of Mg to phase transition of Cd,Pr

The structure of Cd¢Pr at RT has been solved using single crystal XRD data by Gémez and
Lidin[4]. It is identical to CdsY and the occupancy of the central tetrahedron atoms are
determined as around 0.216. The phase transition of Cd¢Pr has been investigated by
Nishimoto et al[12] using transmission electron microscopy and a 7, around 150K is
confirmed by the anomaly of electrical resistivity. It is suggested that the superstructure
follows the mechanism we depicted in Section 4.1. However, some other results reported that
a second type ordering occurs to CdCe and Cd¢Pr: the central Cd, tetrahedra are ordered
along [111] and no lattice distortion is observed at LT[21]. Moreover, it is suggested as well
that the addition of Mg element enhance the diffuse scattering of superstructure reflections.
As a consequence, it is interesting to clarify the origin of tetrahedron ordering happening to
Cd¢Pr and the role of Mg element to the diffuse scattering of superstructure reflections.

The samples of CdsPr were prepared by a self-flux-growth method with a Cd-rich
composition CdysPrs in an Al,O, crucible sealed inside a SiO, tube under Ar atmosphere*. The
elements were melted at 973 K for 3 h and cooled to 898 K within 3h and then slowly cooled
at the rate of 1 K/h to 848 K. Then, the Cd melt was removed from the single grains using a
centrifuge. Single grains were annealed at 823 K for 100 h and slowly cooled at the rate of 5
K/h to 473 K and then annealed for about 600 h to remove quenched-in defects introduced
during rapid cooling after the removal of Cd melt. The procedure for (Cd-Mg)Pr at. 10% of
Mg is the same as CdgPr, and the starting composition is Cdg; sMg,, ,Prs.

A temperature dependent study was carried out on Cd¢Pr and (Cd-Mg)¢Pr at. 10% of Mg by
means of diffuse scattering using beamline D2AM at ESRF. Systematic scans are
implemented to specific fundamental and superstructure reflections over a temperature range
from RT to 20K. The energy of incoming X-ray beam is equal to 18.2keV, i.e. A=0.681A.
The temperature is controlled by the cryostat system and samples are placed in a vacuumed
Be dome.

5.2.1 Diffuse scattering of CdPr

The main reflection (0 6 0) is measured at 300K and 90K, as illustrated in Figure 5.2.1. The
shoulder peak appearing at 300K implies that sample is twinned. As temperature deceases to
90K, the peak splits obviously, indicating the occurrence of a lattice distortion.

A line scan along [0kO] with k varying from 0.8 to 7.5 was executed at 90K as displayed in
Figure 5.2.2 (a) where reflections are indexed with respect to the HT phase. It shows that
reflections are allowed only when k is even, which is also the extinction rule of HT phase,
meaning that no doubling of the unit cell is observed along b-axis. Furthermore, the line scan

* The sample is prepared by Tamura’s group in Science University of Tokyo, Tokyo, Japan.
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on (3 5 /) with / going from -0.5 to 1.5 was performed in a temperature range from 200K to
20K to check the ordering direction, as shown in Figure 5.2.2 (b). The reflection (3 5 1),
which was observed in the CdgYb case, does not turn up.
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Figure 5.2.1 Profiles of reflection (0 6 0) at 300K and 90K.

Two other scans along [110] and [011] as a function of temperature were performed as shown
in Figures 5.2.3 (a) and (b) respectively. A set of superstructure reflections are observed at
and below 150K, and the intensity increases as temperature diminishes. The appearance of
half-integer k is due to the multiple domains with different orientations. In Figure 5.2.3 (b),
rocking curves at 90K are compared between two different processes, the good coherence of
them implies that the transition is reversible. In addition, the superstructure reflection (2 5.5 -
0.5) is clearly visible at RT although very weak, suggesting the existence of s.r.o.

Figures 5.2.4 (a) and (b) illustrate diffuse scattering of superstructure reflection (2 5.5 -0.5) at
RT along [011] and [001] respectively. It is demonstrated that the diffuse scattering is quite
anisotropic, i.e. the short-range order is stronger in direction [011] than [001]. The calculated
correlation length € along [011] is 245A, about 7 times longer than in direction [001].

Profiles of four specific superstructure peaks in a temperature interval from 200K to 20K are
represented in Figures 5.2.5. Generally, superstructure reflections start emerging after 150K,
i.e. the T, of Cd¢Pr recently reported as by Nishimoto[12]. On the other hand, the intensity of
superstructure reflections arises as temperature decreases except for 40K and 20K which

could be the effect of experimental error.
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Figure 5.2.2 Line scan of (0 k 0) at 90K (a) and (3 5 [) from 200K to 20K (b).
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Figure 5.2.3 Line scans with respect to temperature along [110] (a) and [011] (b).
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Figure 5.2.5 Variation of rocking curves of four superstructure reflections with respect to temperature,
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the reflections are indexed with respect to cubic setting, as indicated in insets.
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Figure 5.2.6 Correlation length of superstructure reflections (a) (4.5 4 -0.5), (b) (0.55.52) asa

function of temperature.

We calculate the correlation lengths of superstructure reflections (4.5 4 -0.5) and (0.5 5.5 2)
as a function of temperature. FWHM of each reflection is extracted from the fitting of
rocking curves using Pseudo-Voigt function. The s.r.o becomes clearly visible from 150K,
however, instead of sharpening, the s.r.o reaches to maximum at ~250A and keeps unchanged
after 120K as illustrated in Figures 5.2.6.

5.2.2 Diffuse scattering of (Cd-Mg),Pr at. 10% of Mg

The fundamental reflections (0 6 0), (5 5 0) and (15 15 0) were probed at RT and 90K as
illustrated in Figures 5.2.7. Unlike Cd¢Pr, split of peaks was not observed in the (Cd-Mg)sPr
phase indicating that no lattice distortion takes place.
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Figure 5.2.7 Rocking curves of main reflections ((0 6 0) for the left, (5 5 0) and (15 15 0) for the right)
at 300K and 90K to (Cd-Mg)Pr.
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Figure 5.2.8 Rocking curves of superstructure reflections over a temperature range from 300K to 70K,
all reflections are indexed with cubic setting at HT.

To elucidate the influence of the third element Mg to the diffuse scattering of CdPr, four
relevant superstructure reflections of (Cd-Mg)¢Pr at. 10% of Mg are measured and displayed
in Figures 5.2.8. Similar to Cd4Pr, weak reflections start emerging on superstructure positions
at 150K. To take comparison quantitatively, the integrated intensity of each reflection at each
temperature is normalized and compared with that of Cd¢Pr in Figures 5.2.9, where hk/ is
equivalent to hkl. The normalization is applied based on the ratio of the Bragg peak
intensities of each reflection between two compounds.

As denoted from the rocking curves, superstructure reflections become clearly visible from
150K, then followed by a rapid increase. By substitution of Mg element, the integrated
intensities of superstructure reflections increase obviously except (0.5 5.5 2). Furthermore,
the comparison of correlation lengths, presented in Figures 5.2.10, shows that the addition of
Mg promotes the s.r.o in LT phase. Both results suggest the importance of chemical order in
the s.r.o mechanism.
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Figure 5.2.9 Intensity of each superstructure reflection of (Cd-Mg)¢Pr as a function of temperature
comparing with Cd¢Pr.
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Figure 5.2.10 Comparison of correlation length between Cd¢Pr and (Cd-Mg)Pr with respect to

temperatures on superstructure reflections (5.5 4 -0.5) and (4.5 4 -0.5).
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However, an exception was observed on (0.5 5.5 2) of which both intensity and correlation
length of Cd¢Pr are stronger than those of (Cd-Mg)Pr as illustrated in Figures 5.2.11 (a) and
(b). Further analysis elucidates that the unusual behavior of (0.5 5.5 2) is most likely related
to the Gaussian contribution. As aforementioned, all of the rocking curves are fitted using
Pseudo-Voigt function, which involves two components, i.e. Gaussian and Lorentzian
lineshapes. In most cases, Lorentzian curve is the only contribution to the shapes of the
diffuse scattering profiles. Figure 5.2.11 displays the evolution of Gaussian fraction as a
function of temperatures. It shows that the Gaussian fraction increases linearly as temperature
decreases. However in case of (Cd-Mg)¢Pr, all Gaussian fractions are confirmed to be zero,
meaning the Gaussian contribution to (0.5 5.5 2) disappears after addition of Mg element.
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Figure 5.2.11 (a) Comparison of integrated intensity between Cd¢Pr and (Cd-Mg)4Pr as a function of

temperature; (b) Correlation length of two 1/1 approximants with respect to temperature.
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Figure 5.2.12 The evolution of Gaussian fraction of Cd¢Pr as a function of temperature.
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Line scans were carried out on (3 5 /) with / going from -1.5 to 0.5 and along direction [110]
on layer hk0.5 at different temperatures as shown in Figures 5.2.13 (a) and (b), respectively.
As indicated by the arrow in Figure 5.2.13 (a), reflection (3 5 1) is absent in the LT phase of
(Cd-Mg)¢Pr which is a space group restriction of C2/m. Comparing with the profile at 300K,
a bunch of superstructure reflections turns up along [110] as shown in Figure 5.2.13 (b). The
two results evidence that the superstructure happens along [110] and not along [111].
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Figure 5.2.13 (a) Line scan of (3 5 /) with / varying from -1.5 to 0.5 at 90K and 70K; (b) Line scan

along [110] with respect to temperature.

A comparison is taken to the line scan along [110] between CdcPr and (Cd-Mg)¢Pr at
different temperatures as illustrated in Figure 5.2.14. The role of chemical order in (Cd-
Mg)Pr is shown clearly here. Reflection (3 2.5 0.5) is rather visible in (Cd-Mg).Pr at LT
(except 150K, where a problem occurs to the beam), however, it almost vanishes in CdgPr.
Moreover, the intensities of superstructure reflections in (Cd-Mg)Pr are much stronger than
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those in Cd¢Pr. Furthermore, as illustrated above, no peaks turn sharpening at LT suggesting
very short correlation lengths.
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Figure 5.2.14 Comparison of line scans along [110] on the layer 7k0.5 between CdsPr and (Cd-Mg).Pr

over a temperature range from RT to 70K.

5.2.3 Discussion

Comparison between Cd¢Pr and (Cd-Mg)sPr suggests that the chemical disorder is of
importance to the ordering mechanism. The effect of substitution on the phase transition of
Zn-based and Cd-based 1/1 approximants has been investigated by Yamada and Tamura[22],
where small portion of Zn atoms are replaced by Cu. It is concluded that the introduction of
the third element Cu occupies the dodecahedral sites and suppresses the ordering of the Zn,
tetrahedron. According to the results of Lin and Corbett[23], theses ternary alloys keep the
identical building clusters and symmetry with Zn4Sc 1/1 approximant, and the additional Cu
partially occupies Zn5 sites, i.e. the dodecahedral sites. The substitution of Cu reduces the
bond distances of dodecahedral Zn atoms, leading to a smaller volume of the dodecahedron
shell.

In case of Cd¢Pr, the third element Mg (~160pm) possesses larger atomic radius than the Cd
(~151pm), which essentially enlarges the dodecahedron shell. As a consequence, owing to
the steric effect, the suppression to the ordering of the Cd, tetrahedra is partially released. On
the other hand, the lattice distortion resulting from the interaction between the tetrahedron
and dodecahedron shells becomes smaller. Nevertheless, the difference between the two
phases is not very large, demonstrating that the influence of the third element is very small.
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5.2.4 Conclusion

Diffuse scattering measurements are carried out on CdsPr and (Cd-Mg).Pr with 10% at. Mg
1/1 approximants in a temperature range between 300K to 20K using synchrotron source
D2AM at ESRF. Phase transition is evidenced to both systems. Other than the previously
reported [111] type, [110] ordering mechanism is observed to both approximants. The 7, of
Cd¢Pr is determined to be between 200K and 150K.

The superstructure signal of Cd4Pr and (Cd-Mg)sPr with 10% at. Mg is very weak. The
substitution of Mg element may enlarge the dodecahedron cavity which slightly promotes the
ordering of the central tetrahedron. However, the superstructure reflections do not get
sharpening at LT in both cases, which leads to a very short correlation length. It is thus
concluded that the influence of chemical disorder is very small.
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Chapter 6. Molecular dynamic simulation to ZnSc approximants

The phason mode in QCs has been discussed in Chapter 1. Apart from the experimental
techniques such as HRTEM and X-ray diffuse scattering, a few simulations have been
executed to measure phasons in dodecagonal and icosahedral QCs[69][70][71]. To
investigate the phason modes in atomistic scale one may encounter the following
difficulties[57]: (i) the atomic model of QCs; (ii) corresponding Hamiltonian describing
atomic interactions; and (iii) a plausible description of the phason move. A random tiling
model[68] was proposed and applied for most of these simulations. In the scenario of this
model, the QC is treated as a space-filling tiling where two or more defined tiles with distinct
shapes are assembled following the absence of matching rule.

The first simulation was performed by Tang[69] who investigated the phason fluctuations
and Fourier intensities in a 3D random-tiling i-QC. The calculated diffuse scattering was
confirmed in good agreement with the predicted one by the hydrodynamics theory[68]. The
long-rang positional order was also observed by variation of the so called ‘finite-size scaling’.
The temperature dependence of the two phason elastic constants were measured for the first
time theoretically by Mihalkovi¢ and Henley[71]. The simulation was carried out on a
random-tiling i-QC using a Hamiltonian. The phason elastic constant K, changes its sign
from positive to negative as temperature decreases and provides K,/K;=-0.64 which is
compatible with the experiment results of i-AlPdMn[66], i.e. K,/K,=-0.5, however, disagrees
with that of i-AlCuFe. This implies that even with analogical atomic structures, tile-scale
Hamiltonian may be different depending on the chemical component.

It is noticed that all simulations mentioned above were executed using Monte Carlo method.
Since the atomic structures of i-QCs and their ACs have been available by either canonical
cell tiling or X-ray diffraction measurements. Adapted pair potential has also been achieved
and proved efficiently describing the atomic interactions[25][80]. As is well-known, X-ray
diffuse scattering is a crucial tool to investigate the phason modes in QCs. Thus by
performing a MD simulation and applying Fourier transform to the snapshotting
configurations, one may expect to reproduce the diffuse scattering of the target systems.

Hereby, we performed a set of MD simulations attempting to reproduce the diffuse scattering
of ZnSc approximants at RT. Using a large approximant unit cell, e.g. 5/3 and 8/5 ACs, we
expect to observe the complementary phason diffuse scattering characteristic to QCs. The
temperature dependence of the diffuse scattering will also be discussed preliminarily. The
results will be compared with the much studied systems in experiments.

On the other hand, the temperature dependence of the tetrahedron motions are also
investigated to have a detailed insight to the tetrahedron ordering mechanism in different
approximants. The MD simulation can be realized by using the oscillating pair potential of
ZnSc which has been fitted efficiently against ab-initio data as shown in Figure 6.1.

The fitted empirical oscillating pair potential (EOPP), including six parameters as well as the
Friedel oscillations, is of an analytic form:
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Ao\M1 | Ay
V(r) = (7) + rTScos[Zn(ay‘ + ay)] 6.1

The first term describes the short-range repulsion, and the second term corresponds to the
medium-range interactions as well as the long-range oscillating tails. The Friedel oscillations,
i.e. the second and third neighboring wells are related to the Fourier transform of the Fermi
surface which often control the energy difference between competing structures in complex
metallic alloys. The relative weights of the first and second terms can be adjusted by
parameters a, and as. The six parameters are considered independent in the fitting process.
The cutoff distance in our work is determined as ~8.3A, where both energy and force are
negligible. The six parameters are fitted based on a database containing force and energy data
of ScZng, ScZn, and Sc,Zng at both high and low temperature[25]. The structures containing
both relaxed at T=0 data and high-temperatures ab-initio MD results offer 1977 force
components and 51 energy data for fitting. This gives a resulting rms deviation of 0.1eV/A
for forces and 3.6meV/atom for energies. Since the pair potential has been fully validated by
previous work[97][44] and the experimental data[81][80], therefore we chose it to carry out
the simulation on this ZnSc system.

The simulation was implemented by the LAMMPS with a NVT ensemble, i.e. the number of
atoms, the volume of system, and the temperature are constant. A Nosé—Hoover thermostat is
used to control the temperature around the target value. In the case of solids, the application
of Nosé—Hoover thermostat can result in undesirable oscillation of the volume or temperature.
Therefore a drag factor, i.e. 3 for our systems, is introduced to the Nosé Hoover equations to
damp the oscillations. The starting configurations are firstly optimized with an energy
minimization process to release the initial strains. The energetic minimization is computed by
algorithm of conjugate gradient (CG). At each iteration, associating with the previous
iteration information, the force gradient is used to determine a new searching direction
perpendicular to the previous one. Finally the minimum is reached by continuously
conjugating iterations. Then the system is relaxed to the equilibrium at the target
temperatures. All data are collected after structural relaxation. The details on simulation
condition refer to Section 3.3.

Firstly, we performed MD simulations to the 1/1 Zn¢Sc approximant, and then turned to the
5/3 and 8/5. For the 1/1 approximant, a supercell containing 4x4x4 unit cells is applied to
generate the information on s.r.o. Fourier Transform (FT) is executed to all configurations
and all of the FT's are summed up to reproduce the reciprocal space.

6.1 ZnSc 1/1 approximant
Experiment

ZngSc is the 1/1 approximant with body-centered cubic lattice related to the ZnMgSc QC. A
low-temperature phase transition has been evidenced by practical measurements such as an
anomaly of temperature-dependent electrical resistivity, and the appearance of superstructure
reflections[6]. The study on structures and s.r.o above and below T, has been carried out by
Ishimasa[8] and Yamada[11]. The lattice dynamics of both ZnMgSc quasicrystal and Zn4Sc
1/1 approximant has been detailedly investigated by means of neutron and X-ray scattering
and MD simulations[80][81][25]. Experimental analysis of diffuse scattering and phason
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fluctuations have also been compared between the two compounds[60]. Furthermore, the

discovery of the binary i-QC of Sc,Zng[120][121] makes it more interesting to implement a
further study on theses complex metallic compounds.
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Figure 6.1 Oscillating pair potentials fitted against ab-initio database. The potential energies between
Zn-Zn and Sc-Sc reach first minimum at 2.85A and 3.34A respectively. A cutoff is applied at 8 3A,

where both potential energy and interacting force become eligible.

(a)

(b) ()

Figure 6.1.1 (a) Disordered tetrahedron residing in the dodecahedron shell; (b) Ordering tetrahedron
inducing a distortion of the dodecahedron; (c) Schematic of the ordering scheme of the central
tetrahedra along [101] direction with respect to the HT cubic setting. The two planes with different

colors shows an antiparallel correlation. The unit cell is doubled below T..
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In this work, the diffuse scattering of a series of ZnSc approximants with respect to
temperatures will be presented. The correlation between diffuse scattering and the dynamics
of the central tetrahedra will be discussed as well. Apart from these, it is also an attempt to
have an insight on the phason mode in the quasicrystal by means of MD simulation.

The structural phase transition on the ZnsSc 1/1 approximant has been carefully discussed
previously in experiments[11][8]. It follows the uniform procedure as we described above for
the CdgTb 1/1 isostructural phase. Figures 6.1.1 (a) and (b) present the disordered tetrahedron
at HT residing inside the dodecahedron, and the ordering tetrahedron which results in a
distortion of the dodecahedron shell, respectively. The distortion propagates along [101]
direction leading to a doubled monoclinic unit cell at LT, as illustrated in Figure 6.1.1 (c).

Simulation

The initial structure of the Zn¢Sc 1/1 approximant for MD simulation was optimized from
VASP calculation. Following the energy minimization process, a 4x4x4 supercell was first
relaxed to equilibrium at 500K, and then cooled from 400K to 60K using the software
package LAMMPS. Intensive simulations with a temperature step 10K were carried out from
200K to 60K. At each temperature, 5 million steps were run out and 2000 configurations
were collected for analysis. To avoid being trapped into a local minimum energy state, larger
time steps were adopted at LT. The time step for each temperature is listed in Table 6.1.

Table 6.1. Time step settings for each temperature of ZngSc 1/1 approximant

T/K 400 300 200 190-130  120-100 90 80-70 60
Time step/ps  0.004  0.007 0.01 0.008 0.01 0.012 0.015 0.018

The potential energy as a function of temperature is displayed in Figure 6.1.2. The energy
varies linearly with respect to temperatures and no anomaly turns up indicating the phase
transition. Indeed, although 10752 atoms are involved into simulations, the energy difference
among tetrahedra with different orientations are so small, i.e. a few meV per cell according to
[9], that it is unfeasible to observe energetic transition in such scale. The time dependence of
the potential energy at 400K, 300K, 200K and 100K are presented in the insets, showing
good convergences and energetic accuracies of =+0.74meVatom™, +0.65meVatom’,
+0.51meVatom™ and +0.19meVatom™ respectively, which is compatible to the value of ab
initio calculation performed by Mihalkovi¢[24],i.e. ImeVatom™.

6.1.1 Diffuse scattering

Time-averaged FT is applied to all the 2000 configurations at 300K. The result is compared
with the single crystal experiment data of ZnSc as demonstrated in Figure 6.1.3 where the
diffraction patterns are reconstructed from both experiments and simulations on the hkO
Bragg plane. The size of mark indicates the strength of intensities. The 2-fold and pseudo 5-
fold axes are denoted by arrows. An overall similarity of intensity distribution is presented
between real and modeling structures.
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Figure 6.1.2 Evolution of the potential energy of Figure 6.1.3 Diffraction pattern
ZngSc 1/1 approximant with 4x4x4 unit cells as a reconstructed on 4k0 layer compared
function of temperature. The time dependent between experiment (open circle) and
fluctuations of the energy are displayed. simulation (product mark) at RT. The sizes

of marks reveal the intensity.

The reproduced #kO Bragg planes of the ZnsSc 1/1 approximant at 400K, 300K, 200K and
100K calculated from MD simulations are illustrated in Figures 6.1.4, from left to right
respectively. Diffuse scattering resulting from thermal motions is clearly observed at HT. As
temperature decreases, the diffuse scattering sharpens as shown at 100K which is the result of
the ordered central tetrahedra.
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To be continued
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Figure 6.1.4 hk0 layer of 1/1 approximant generated from a 4x4x4 supercell, the temperature is 400K,
300K, 200K and 100K from (a) to (d).

Diffuse streaks on Fourier planes are observed at LT along <110> directions as shown in
Figures 6.1.5, demonstrating the s.r.o along perpendicular directions in real space forming in
the LT phase. According to Welberry’s analysis on similar patterns[122], this sort of diffuse
scattering most likely results from a preferred orientation of the local clusters. Therefore
regarding the Zn4Sc phase, the s.r.o is essentially induced by the preferred orientations of the
central tetrahedra at LT. Moreover, the diffuse scattering is different on equivalent Bragg
planes, e.g. Okl and h0/, manifesting that the correlations of the s.r.o are dependent on

different directions.
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To be continued
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Figure 6.1.5 Bragg planes of ZnsSc at 100K, from (a) to (d): Okl, 1kl, hOl, h1l. The inequivalent diffuse

scattering implies the breaking of the cubic symmetry resulting from the ordered tetrahedra.

As it is elucidated in experiments, the ordering of the central tetrahedra leads to a double unit
cell which results in the appearance of superstructure reflections on half-integer layers. As a
consequence, we calculated the FT on half-integer layers with respect to temperatures as
shown in Figures 6.1.6. We have to emphasize again that, the time scales of our simulations
are tens to hundreds of nanoseconds and the length scale is 55.3244A, which are large
enough to reconstruct the diffuse scattering and the motions of tetrahedra, however,
infeasible to reproduce the occurrence of the phase transition.

In Figures 6.1.6, again the evolution of the scattering intensity shows a sharpening tendency
as temperatures decrease. To analyze it quantitatively, we made a slice along [010] on /k3.5
layers, i.e. h equals 2.5 and k varies from 0 to 11.5. The profiles of the four line scans are
compared in Figure 6.1.6 (b) where a superstructure reflection (2.5 11 3.5) is indexed. It is
clear that the intensity of (2.5 11 3.5) increases as the temperature decreases which is
consistent with the experiment results.

The resulting diffuse scattering has exhibited the forming of the s.r.o in the LT phase of
ZngSc. The preferred orientations of the central tetrahedra at LT are supposed to be
responsible to this s.r.o. The directions of the diffuse streaks suggest the s.r.o distribute
mainly along [110] which is consistent with the experiments. However, other than
superstructure reflections observed in experiments, no evidence proving the phase transition
in the simulation. We suggest that a larger length scale of the supercell may promote the
forming of a long range order.
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Figure 6.1.6 (a): The hk3.5 layers of Zn,Sc 1/1 approximant from 400 K to 100K, a line scan was

performed along [2.5k3.5]; (b): The profiles of four line scans with respect to temperatures, one

superstructure reflection is indexed.

6.1.2 Tetrahedron dynamics

Both experiments and simulations have evidenced that the innermost tetrahedron is
dynamically reorienting instead of being static[81]. A short simulation with a 2x2x2 supercell
was carried out at 500K to observe the ‘jumping’ of the tetrahedron. The coordinates
variation of one tetrahedron atom is shown in Figures 6.1.7. The top figures display the
different orientations of the tetrahedron with respect to time. To follow the trajectory of the
tetrahedron, we extracted the coordinates of one tetrahedron atom, i.e. atom 165, and plot
them as a function of time. Each flip of the tetrahedron reveals a steep coordinates change as
indicated by dashed lines. Altogether 18 flips are observed within 100ps giving an averaged
time scale of ~5ps. It is noteworthy that this value is supposed to be higher than the real
because some flips might be missing between two consecutive frames. Furthermore, the life
time of each state differs from each other. For instance, the two orientations A and B
indicated by shadows possess longer life time demonstrating that the tetrahedron has
preferred orientations.
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Figure 6.1.7 Follow-up of the innermost tetrahedron with respect to time. The chart displays
coordinates of one of the tetrahedron atoms, and the lines indicate the tetrahedron ‘jumping’.

The dodecahedron shell is composed of two crystallographic sites, the 3-fold axes of the
cubic lattice 16f, and the 3-fold axes of the Sc;, icosahedron shell 24g. There are 8 and 12
atoms on each of the site respectively. Hereafter we defined the second type 3-fold axes as
pseudo 3-fold axes which will be used for labeling the orientations of the central tetrahedra.
The 12 dodecahedron Zn atoms located on pseudo 3-fold sites comprise a defective
icosahedron as shown in Figure 6.1.8. To define the tetrahedron orientations, we first
normalize the four vectors of the tetrahedron to one of the 12 icosahedral vectors by applying
scalar products. The 12 icosahedral vectors are listed in Table 6.2. Then we obtain 4
icosahedral vectors and the sum of two, so called ‘unhappy’ vectors, is larger than the other
two. For instance, v, v4, vs, v constitute a tetrahedron in which v;+v, is larger than vs+vg. The
sum of the two ‘unhappy’ vectors indicates a 2-fold axes which is finally used to label the
orientation of each tetrahedron. There are 30 edges in an icosahedron, meaning that the
orientations are classified into 30 labels. The vectors of 30 2-fold axis are listed in Table 6.3.
The graphics of the six orientations whose labeling 2-fold vectors are parallel to the cubic
axis are presented in Figures 6.1.9.

Table 6.2 Icosahedral vectors of the 12 dodecahedron Zn atoms on 24g site.

Vector ID Vector Vector ID Vector Vector ID Vector
1 10t 5 0t-1 9 -1-10
2 0tl 6 t-10 10 10-t
3 tl0 7 -10-1 11 0-t1
4 -10t 8 0-t-1 12 Ttl10
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Figure 6.1.8 Icosahedral vectors viewing along [001], n’ denotes the vector on the back. Six of the
thirty orientations are defined by the six 2-fold vectors parallel to the axis: O,=v;+v; O,=v,+Vs;

O=v,+v,; 0,=v5+v,,; O=vg+v,; O=v+Vv,.

As we denoted above, when we dump trajectories in a large time scale some flips of
tetrahedron would be missing. To obtain the average flipping frequency of one tetrahedron
with proper accuracy, we performed a new calculation with a time scale 0.01ps and 2000
frames were dumped at each temperature over a cooling process from 400K to 60K.

Table 6.3 Twofold vectors of the 30 regular orientations defined based on the icosahedron edges.

Vector ID Vector Vector ID Vector Vector ID Vector
1 100 11 0.5 0.809 0.309 21 -0.5 0.809 -0.309
2 010 12 -0.309 0.5 0.809 22 0.5 -0.809 -0.309
3 001 13 -0.50.809 0.309 23 0.809 -0.309 -0.5
4 -100 14 0.5 0.809 -0.309 24 0.5 -0.809 0.309
5 0-10 15 0.809 0.309 -0.5 25 -0.309 -0.5 -0.809
6 00-1 16 -0.809 -0.309 0.5 26 -0.809 -0.309 -0.5
7 0.309 0.5 0.809 17 -0.309 -0.5 0.809 27 -0.809 0.309 -0.5
8 0.809 0.309 0.5 18 -0.809 0.309 0.5 28 -0.5 -0.809 -0.309
9 0.809 -0.309 0.5 19 -0.309 0.5 -0.809 29 0.309 -0.5 -0.809
10 0.309 -0.5 0.809 20 0.309 0.5 -0.809 30 -0.5 -0.809 0.309
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[100]

Figure 6.1.9 Definition of the six orientations of the tetrahedron referring to the dodecahedron,
extracted from simulations. The blue and red spheres indicate dodecahedron and tetrahedron atoms

respectively. The ‘unhappy atoms’ are indicated by open ellipses.

Firstly we calculated the orientations of all tetrahedra in all configurations. It is noteworthy
that as we will depict in the next section, the tetrahedron atoms keep exchanging with the
dodecahedron atoms, so in some possibilities, e.g. one tetrahedron atom moving out but the
dodecahedron atom has not moved in yet, we could capture only a ‘triangle’ of the
tetrahedron. Nevertheless, these ‘bad’ tetrahedra are observed only when temperature is
higher than 200K, and for 400K the possibility is ~1.3% which is negligible. The second
phenomenon impacting the accuracy of flipping frequency is the deformed tetrahedra, i.e. the
intermediate states between the 30 regular orientations. Analysis manifests that the number of
these intermediate states decreases rapidly with a decreasing temperature. Whereas, similar
with the ‘bad’ tetrahedra, the deformed tetrahedra have a small proportion in all states, i.e.
less than 5% even for 400K.

The average flipping frequency of an individual tetrahedron decreases with decreasing
temperatures following the Arrhenius law perfectly as shown in Figure 6.1.10. It gives an
activation energy equal to 34meV which is of the same order of Euchner’s result from both
experiments and simulation, i.e. 60meV[81]. The impact of the intermediate orientations is
supposed responsible to the loss of the calculated activation energy. Moreover, the frequency
at 300K is 1.94ps”', meaning a time scale of 0.52 ps which is compatible with the experiment
data.
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Figure 6.1.10 Temperature dependence of the average flipping frequency of individual tetrahedron on
an Arrhenius plot. The R value indicates the fitting rate. Error bars give the proportion of deformed
tetrahedra.

Figure 6.1.11 Illustration of the atomic diffusion, the blue and red spheres indicate dodecahedron and
tetrahedron atoms respectively. The initial configuration (top) shows regularly positional occupation,
however, after 17ps (bottom), one tetrahedron atom diffused and occupied a dodecahedron site, as
indicated by the arrow 1. In the meanwhile, the relevant dodecahedron atom diffused simultaneously
as denoted by the arrow 1°. To keep the system stable, the diffusing tetrahedron atom was

supplemented by another dodecahedron atom, as shown in the rightbottom figure.
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6.1.3 Atomic diffusion

It is found that the tetrahedron atoms have moved a lot from their original positions after a
period of simulation time, which is implausible in real structures. Further investigation
indicates that besides tetrahedron jumping, most tetrahedron atoms are involved in an atomic
diffusion. The directions of the atomic diffusion for 1/1 approximant are confirmed along the
space diagonal of the unit cell.

Figures 6.1.11 illustrate the occurrence of the atomic diffusion, i.e. atoms exchange between
tetrahedron and dodecahedron shells. In the beginning of the simulation, the tetrahedron and
dodecahedron clusters are well defined (top figures). After 17ps, one of the dodecahedron
atom moved out of the dodecahedron shell. If we look into the inner tetrahedra, the
movement of the relevant tetrahedron atom is actually responsible for this diffusion. Indeed,
to keep the system stable, once one tetrahedron atom moving out, one dodecahedron atom
will move in to complement the vacancy as displayed in the right panel of Figures 6.1.11. As
a consequence, more and more atoms are involved in this atomic diffusion.

35 T T T T T T T T T T T T T T 100_ T T T T T T
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Figure 6.1.12 (a) The number of diffusing atoms varying with respect to T; (b) Arrhenius plot of the
number of diffusing atoms, R factor indicates the fitting rate.

Figure 6.1.12 (a) displays the number of diffusing atoms with respect to temperatures. The
atomic diffusion is suppressed at 200K. The variation of diffusing atoms follows the
Arrhenius law roughly as shown in Figure 6.1.12 (b). It gives an activation energy equal to
106£11meV. This result is generated from the short simulations, therefore only a small
number of diffusing atoms are available for statistics which leads to a relatively big deviation
in the fitting.

To figure out the direction of the atomic diffusion, we extracted the coordinates of original
tetrahedron atom 5206 which possesses the largest displacement throughout the whole
cooling process. The trajectory of atom 5206 is displayed in Figures 6.1.13. Consecutive
stages of the coordinates are clearly observed. Altogether, 8 sites are indicated in the figure.
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Details of the 7 diffusing processes are listed in Table 6.4. Furthermore, whenever the atom
moves Ax in x axis it moves - Ax in y and z axis, suggesting the atom diffuses along [111]
direction. Study to all tetrahedron atoms demonstrates that the atomic diffusion takes place
on almost all dodecahedron sites, however, distant diffusion can only happen along the space
diagonal directions of the unit cell as presented in Figures 6.1.14. It is noteworthy that the
‘short-range’ diffusion occurs only to center clusters (or vertex clusters).

Position2 /7 g

()

Coordinates of atom 5206/A

[\ P A B BN SN T

0 1000 2000 3000 4000 5000 6000 7000 8000
(b)

Frame Sequence

Figure 6.1.13 (a) Variation of coordinates of atom 5206 in the whole cooling process, each stage

corresponds one diffusing process; (b) All 8 positions of atom 5206 during the whole simulation.

Positions 1,4’ and 6’ stand for tetrahedron sites, and positions 2,3’,5’,7” and 8’ are equivalent

dodecahedron sites. From position 2 to 3°, the atom 5206 moves to a second dodecahedron shell.
Position 8’ is located at the third dodecahedron shell.

Table 6.4 The information of atom 5206 from the 1% to the 7" diffusing processes.

The i" Cluster center T/K Life time at the position/ps Diffusing distance/A
Diffusion
1 (1/23/4 1/4) 480 10 3.11
2 (1/23/41/4) 480 40 4.78
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3 (3/87/8 1/8) 470 10 3.11
4 (3/87/8 1/8) 470 10 3.11
5 (3/87/8 1/8) 470 10 3.11
6 (3/87/8 1/8) 390 15 3.11
7 (1/410) 310 15 4.78

The 8 individual positions for atom 5206 are illustrated in Figure 6.1.13 (b) where positions n’
stand for the equivalent positions on the second dodecahedron shell and n’’ corresponds to
the third shell. The average diffusing distance is confirmed as ~3.6A. These results are in
good agreement with the deduction of Goddens ef al[123] who concluded a hopping process
in the i-AIPdMn phase mainly occurring along 3-fold axes over a distance of 3.8A from
experiments.

Figure 6.1.14 Trajectories of all original tetrahedron atoms at SO0K. The left is graphic viewing along
z axis, and the right is along x axis. Arrows indicate the additional positions inbetween two

dodecahedron sites, which have been observed experimentally.

For the sake of better visualization, we extracted all positions of atom 5206 and atom 8723
which are original tetrahedron and dodecahedron atoms respectively. The trajectories of the
two atoms referring to the supercell boundaries are shown in Figures 6.1.15. Intuitively, the
two atoms diffuse along [111] and [111] respectively. Furthermore, besides the 8 positions
depicted above, there are two additional positions which are crystallographically forbidden as
indicated by arrows. These additional positions can be found all over the supercell as arrowed
in Figures 6.1.14.
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Figure 6.1.15 Blue small spheres demonstrate the trajectories of atom 5206 (top) and 8723 (bottom) at
500K, referring to the dodecahedron shell (larger red atoms). The blue cubes define the boundaries of
the 4x4x4 supercell, inside red small spheres present the trajectories of atom 5206 (top) and 8723
(bottom) diffusing along [111] and [111] respectively. The two intermediate positions are indicated by
arrows. The right graphic displays the two dodecahedron clusters connected by a Zng cube, the
additional intermediate position inside the cube is denoted by the black ellipsoid, and the dashed line

indicates the diffusing direction along [111].
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Analogical phenomenon was observed as well on these intermediate sites in experiments as
illustrated in Figures 6.1.16 (refer to Gémez and Lidin[4]). The site of Cd4 represents the
sharing atom of the Cdg cubes with the Cd,, dodecahedra as illustrated in Figure 6.1.15 (b). In

our labels above it corresponds to positions 2 and 7°.
)
N

W R G @ o @ e @
%)
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Figure 6.1.16 Electron density of the Cdg cubes on isosurfaces 10-¢V/A3. (a) and (b) The symmetry-
independent vacant and fully occupied cubes, respectively, of the compound Ce,Cds,. (c) The
appearance of the symmetry-equivalent cubes in the compound Pr;Cd,s 5. (d) The appearance of the
cubes in the compound Eu;Cd,,. Additional occupancy and elongation along the space diagonal of the
cube is visible in Ce,Cds;, Pr;Cd,5 4, and Eu;Cd,,. (Fig. 5 in [4])

In experiments, the elongations of Cd4 which propagates along [111] direction in the Fourier
map are supposed to occur only when there is an additional atom inside the Cdg cubes. The
additional atom, driving stoichiometry from 1:6 to 1:6.17 and 1:6.06 for Cd¢Ce and Cd4Pr
respectively, is also previously considered one of the reasons leading to the distortion of the
Cd,, dodecahedra and the adjacent Cd, tetrahedra[4]. The other reason is the well-known
dynamical reorientation of the innermost tetrahedra as we depicted above. However,
according to our simulations, the additional occupancy is most likely from the atomic
diffusion. As a consequence the stoichiometry should be exactly 1:6. In addition, the
simulation results interpret as well why the elongations take place in only one direction of the
Cd; cubes, i.e. [111]. Because, as we discussed above, the long-range diffusion of Cd/Zn
atoms can only take place along the space diagonal tunnel.

To investigate the origin of the atomic diffusion, we computed the velocity, the force, the
potential energy and the kinetic energy of the atom 4357 as demonstrated in Figures 6.1.17
(a-d) respectively. According to the coordinates evolution, the atom 4357 jumps from a
dodecahedron site to a tetrahedron site at a specific moment along the [111] direction.
Through the whole process, the velocity and force fluctuate around zero, i.e. the atom vibrate
around the equilibrated point, and no anomaly is observed. However, the atomic potential
energy on the dodecahedron site is clearly lower than that on the tetrahedron site suggesting
an energy gap between the two sites.

Furthermore, the order of the energy gap between the two sites, which is ~0.1eV as shown in
Figure 6.1.17 (b), is well compatible with the calculated activation energy above, i.e.
106£11meV. As a consequence, the impetus of the atomic diffusion most likely lies in the
potential energy difference between tetrahedron and dodecahedron sites. When the
tetrahedron atoms move inside the dodecahedron cavity, they possess a tendency of diffusing
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from higher potential energetic site to a relaxed lower site. After the diffusing, the vacancies
promote the continuation of the atomic diffusion.
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Figure 6.1.17 (a) Time dependence of the coordinates of the atom 4357; (b) Time dependence of the
potential and kinetic energy of the atom 4357; (c) Time dependence of the velocities along three axis

of the atom 4357; (d) Time dependence of the forces along three axis of the atom 4357.

6.1.4 Conclusion

We performed MD simulation on the Zn4Sc 1/1 approximant in a cooling process, using pair
potential fitted against ab-initio database. A detailed comparison with experiment results of
ZngSc and CdgM (M=Ce, Pr and Eu) is presented. The diffraction pattern is reconstructed on
both /=0 and I/=half-integer layers via FT. The diffuse scattering turns ordered as the
temperature decreases which results from the ordering of the tetrahedra. The s.r.o along <110>
directions is observed which is the indicative of a pre-phase transition.

The innermost tetrahedra is observed reorienting dynamically. The reorientation is slowed
down as temperatures decrease and finally frozen on a specific state. The flipping frequency
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follows Arrhenius rule and the energy barrier is determined as 34meV which is of the same
order as that from experiment, i.e. 60meV.

The atomic diffusion along the space diagonals of the cubic cell is investigated in details. The
activation energy of the atomic diffusion is confirmed as 106+11meV, and it is almost
suppressed below 200K. Furthermore, the atomic diffusion interpret well the additional
occupancy in the center of the Cdg/Zng cubes, as well as the elongations of the sharing atoms
of the Cdy/Zng cubes with the Cd,y/Zn,, dodecahedra observed in experiments.

The happening of the atomic diffusion is supposed to be related with the potential energy
difference between the tetrahedron and dodecahedron sites. The tetrahedron atoms tend to
diffuse to the lower energetic dodecahedron sites.

6.2 Model of the 5/3 approximant

High order approximants have never been observed experimetally. In the CdYb type
quasicrystals, the largest observed approximant is the 2/1 cubic one. We have thus used large
periodic approximant (5/3 and 8/5) to simulate the quasicrystal. The obtained 5/3
approximant possesses a unit cell size up to ~58.46A and contains more than 10000 atoms
per unit cell which makes it hard to experimentally determine the detailed structure of the 5/3
approximant. As for our MD simulations, the modeling structure is accomplished by placing
the rhombic triacontahedron clusters on the vertices of the 5/3 approximant model achieved
by canonical cell tiling, followed by a decorating procedure[24][25]. The final configuration
was optimized by performing a total energy minimization process via ab-initio calculations
using the DFT program VASP[26][27]. The details of the model determination are depicted
in[24].

The finally adopted 5/3 approximant contains 136 rhombic triacontahedron units and 12744
atoms per unit cell with a cell parameter equal to 58.456A. According to the configurations of
local environments, the 136 clusters are classified into 5 groups: 5-7, 6-6, 6-7, 7-5 and 7-6,
where n in n-m presents the number of 2-fold linkages around, and m stands for the number
of 3-fold linkages[124]. The stoichiometry is about Zngs,SC;4g5, i.6. 10848 Zn atoms and
1896 Sc atoms per unit cell.

6.2.1 Diffuse scattering of the 5/3 approximant

The 5/3 approximant was first equilibrated at S00K followed by a cooling process from 500K
to 100K with a temperature step of -10K. At each temperature, 2 millions steps were
performed and 400 configurations were extracted for analysis. The time step for each
temperature is listed in Table 6.5. Only one single unit cell was adopted without periodic
boundaries. Accordingly, in some extent, the single unit of 5/3 approximant can be viewed as

QC.

Diffraction pattern on the hkO Bragg plane was reconstructed by performing FT to every
configuration and summing up the 400 frames at each temperature. The resulting pattern at
300K is compared with the experiment data of i-ZnMgSc quasicrystal as illustrated in Figure
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6.2.1. The 5/3 approximant has shown a very good approximation of the QC. Both strong and

weak reflections agree well with the quasicrystal up to high Q value.

Table 6.6 Time step setting for each temperature of 5/3 approximant

T/K 500-400  390-300  290-200 190 180 170 160 150
Time step/ps 0.001 0.0015 0.002 0.0025 0.003 0.004 0.005 0.006
T/K 140 130 120 110 100 90 80

Time step/ps 0.007 0.008

0.009 0.01 0.02 0.03 0.04

The results are compared as well with the 1/1 approximant as illustrated in Figures 6.2.2. The

range of intensities are normalized to make a better comparison. The Bragg planes of 5/3

approximant display well-defined 5-fold and 2-fold axis as indicated by arrows. The

pseudoicosahedral symmetry is demonstrated on the 1/1 approximant as well. To be better

compared, the 5/3 approximant is expressed in the same indexing setting as the 1/1. Due to

the difference of cell parameters, the strong 2-fold reflection in the 5/3 approximant,

corresponding to the (6 0 0) in the 1/1 approximant, shifts rightward slightly. Furthermore,

there are more Bragg reflections visible in the 5/3 approximant than in the 1/1. The related

indices of the strong 2-fold and 5-fold Bragg reflections in the quasicrystal are displayed in

the 5/3 approximant map, which is expressed as N and M indices[55].
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Figure 6.2.1 Diffraction pattern reconstructed on #k0 layer compared between experiment (blue circle)

and simulation (red triangle) at RT. The surface of mark is proportional to the sqrt(I).
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There are remarkable differences between the two approximants at all temperatures. For the
1/1 approximant, the shape of the diffuse scattering is identical around each reflection, i.e. the
intensity distribution elongates along the direction transverse to the @ vector which
reproduces well the experimental results[60]. Whereas, it is more complicated for the 5/3
approximant. The shape of diffuse scattering is dependent on reflections. Apart from that, as
temperature decreases, the diffuse scattering difference between the two approximants
becomes more obvious. The background diffuse scatterings in both phases contributed by
thermal motions disappear gradually with decreasing temperatures. As discussed above, the
diffuse scattering of the 1/1 approximant displays mostly along <110> directions at LT which
reveals an ordering structure in the LT phase. In the case of the 5/3 approximant, however,
the shape of most reflections are constant with respect to the temperatures.
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Figure 6.2.2 Fourier maps on 7k0 Bragg planes of 5/3 (top) and 1/1 (bottom) approximants calculated
from MD simulation. From the (a) to the (d), T equal 400K, 300K, 200K, 100K, respectively.
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Figure 6.2.3 (a) Comparison of the diffuse scattering for the (6 0 0) reflection in the two approximants

at different temperatures, the intensities of the 1/1 approximant have been normalized; (b) The

temperature dependence of the integrated intensities in the two approximants.
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A quantitative comparison has been made between the two approximants. A slice through the
selected 2-fold reflection (6 0 0) along k direction is carried out on both phases at different
temperatures as illustrated in Figures 6.2.3 (a). The phason diffuse scattering can be
characterized in three aspects[61]: (i) the diffuse scattering decays as a function of 1/¢%; (ii)
the intensity is proportional to the Q,.,,; (iii) the shape anisotropy can be reproduced using the
phason elastic constants. The phason elastic constants can be experimentally derived using
the data from absolute scale measurements. Whereas in our simulations, the step size of the
Bragg planes is 0.25A™" which is more than 10 times larger than that in experiments, meaning
that there are no enough points to make an accurate analysis.

Nevertheless, in Figures 6.2.3 (a), the 5/3 approximant shows clearly broader peaks with
excess intensities comparing with the 1/1 approximant at all temperatures which was
confirmed as phason diffuse scattering in experiments[60]. The temperature dependence of
the Debye-Waller B factors (DWBF) is calculated on reflection (10 0 0) on the two phases as
shown in Figure 6.2.3 (b). Generally, the 1/1 approximant possesses larger displacements
than the 5/3 approximant. As the tetrahedra are frozen at LT, the difference of B factors
between the two approximants diminishes. This implies that the larger B factor difference
most likely comes from the contribution of the central tetrahedra. The higher complexity of
5/3 approximant structure is supposed suppressing the atomic displacement.
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Figure 6.2.4 Diffuse scattering maps around the 2-fold reflection 20/32 at the same magnification for
the AgInYb quasicrystal at RT (left) and 350°C (right) and the ZnSc 5/3 approximant result from MD
simulation (middle). Coordinates are expressed in 21/ag, and 27t/a units for quasicrystal and

approximant respectively.
The diffuse scattering around reflection 20/32 of the 5/3 approximant at 300K is magnified to

compare with the experiment results of the AglnYb quasicrystal. The diffuse scattering of
AglnYDb quasicrystal displays two types of distribution: one is along 5-fold axis at RT and the
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other is along 3-fold axis at 350°C as illustrated in Figures 6.2.4. As to the ZnSc 5/3
approximant, it shows a tendency of 3-fold distribution at RT. However, this result is not
accurate enough due to the low resolution of the diffuse scattering map. Further improvement
is certainly desirable for more accurate analysis.

The longitudinal and transverse slices crossing the (8 0 0) reflection are carried out and
illustrated in Figures 6.2.5 (a) and (b) respectively. The (8 0 0) reflection, i.e. 32/48 for the
quasicrystal indices, shows distinctly larger relative excess diffuse scattering comparing with
the (6 0 0), i.e. 20/32 for the quasicrystal indices. This result is consistent with the
experiments[60]. Furthermore, as it is aforementioned, the shape anisotropy of the diffuse
scattering in the 1/1 approximant elongates transversely to the @ vector which is displayed in
Figure 6.2.5 (c). The situation is quite different in the 5/3 as shown in Figure 6.2.5 (d), where
the reflection has a shape anisotropy of the diffuse scattering elongated to the two weak peaks
which are absent in the 1/1 AC.

10° , , . , 10°

-e— 300K_5/3 -e—300K_5/3
——300K_1/1 ——300K_1/1
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10° L
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Figure 6.2.5 Longitudinal (left) and transverse (right) slices of the reflection (10 0 0) in the two
approximants at 300K. The intensities of the 1/1 approximant have been normalized for comparison.
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6.2.2 Tetrahedron dynamics in the 5/3 approximant

Similarly with the 1/1 approximant, the innermost tetrahedra in the 5/3 approximant are
dynamically jumping among all possible orientations. To figure out the model of the central
tetrahedra, we extracted the trajectories of the tetrahedron Zn atoms and visualized the charge
density distribution as shown in Figures 6.2.6. The tetrahedron is collected over a timescale
of 2.5 nanoseconds and 0.5 million frames are superimposed for charge density calculation.
The visualization is carried out via the program VESTA under isosurfaces level of 1.5e-
4e/A° .

As illustrated, the tetrahedron model in 5/3 approximant is completely different from that in
the 1/1 approximant. Three tracks are observed forming a local 3-fold axis. The directions of
the 3-fold axis are supposed to be closely related to the local environments of relevant
tetrahedra. In addition, this result also suggests that new definition of the tetrahedron
orientations is in need.

4 O 4

Figure 6.2.6 Charge density distribution of the central tetrahedron in the 5/3 approximant at 500K. A

local defined 3-fold axis is distinct.

Figure 6.2.7 Electron density iso-surface at the 11.3 eA-3 level, in the location of the dodecahedral
cavity of Yb,3;Cdys. The densities marked in red form a trigonal bipyramid, the central density is
marked in blue (from [52]).

127



Chapter 6. Molecular dynamic simulation to ZnSc approximants

A new simulation was designed to study the tetrahedron flipping quantitatively.
Configurations were dumped every 5fs and 10000 configurations were collected. The result
shows four maximums, forming a regular tetrahedron as illustrated in Figures 6.2.8 (a) where
each color represents one atom. The coordinates evolution of the four atoms with respect to
time are plotted in Figures 6.2.8 (b). Each flip is indicated by a dashed line, and 7 flips are
observed within 50 ps suggesting the time scale of flipping for tetrahedra in 5/3 approximant
is about 7.2 ps at S00K. This value is much larger than that of the 1/1 approximant, i.e. 0.5 ps
calculated with the same time step. Moreover, the atom 3666, i.e. the blue one in Figures
6.2.8 (a), stays at the same position much longer than the other three. Considering the
complexity of the 5/3 approximant structure, the interaction between central tetrahedra and
their local environments is supposed to be more complicated. As a consequence, the central
Zn atoms are applied more restrictions which lead to a much smaller flipping frequency. The
characteristic jumping distance is of the order of 2.5A, i.e. about twice of that in the 1/1
approximant. It is worth noting that the studied cluster here only corresponds to one local
environment. The complexity is also related to different environment of the clusters (2-fold
and 3-fold linkages).

6.2.3 Atomic diffusion in the 5/3 approximant

The number of diffusing atoms with respect to temperatures is shown in Figure 6.2.9.
Comparing with the 1/1 approximant, this atomic diffusion is suppressed at 410K for 5/3
approximant, implying a higher energy barrier compared with the 1/1 AC. Additionally, only
less than 50 atoms out of 12744 were involved in diffusing at HT within Snanoseconds.

Atom 12737 was tracked over the cooling process from 500K to 90K. The variation of
coordinates and trajectory are presented in Figures 6.2.10. Other than the 1/1 approximant,
the diffusing direction of 5/3 is more complicated. One point to emphasize is the setting of
the time scale for dumping configurations which may result in omissive positions between
frames. On the other hand, the relaxation process for each temperature is not recorded,
therefore a more detailed study on the diffusing atoms is suggested. The local environments
of central tetrahedra are supposed to play crucial role with the diffusing directions. As
mentioned above, the diffusing is suppressed below 400K at which temperature the atom
12737 was frozen on an tetrahedron site.

To be continued

128



Coordinates of Atom 3663

Coordinates of Atom 3670

| T T
20 -

|| NMI
W\W\!' It VN&NML«FW/ \L

15

10

N

@
i

X
Y
z
I
|

0 10 20 30

Time/ps

40 50

? e e ]
A e

15 |

10

Time/ps

40 50

Coordinates of Atom 3666

Coordinates of Atom 3805

20

Chapter 6. Molecular dynamic simulation to ZnSc approximants ———

,}ﬂ ﬂf“‘w Mw W’ \J

Time/ps

(b)

Figure 6.2.8 Representation of the tetrahedron jumps, time step for dumping is 5fs and 10000
frames are collected. (a) Trajectories of four tetrahedron atoms, each color displays one tetrahedron

atom; (b) Coordinates evolution of the four atoms as a function of time. The flips are indicated by

dashed lines.
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Figure 6.2.9 The number of diffusing atoms of 5/3 approximant within Snanoseconds with respect to

temperatures.
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Figure 6.2.10 (a) Coordinates evolution of the atom 12737 over the cooling process, the steep changes
are zoomed in in the inset; (b) The trajectory of the atom 12737, the relevant positions are indicated

and the atom was frozen on a tetrahedron site finally.

Analogically with the 1/1 AC, additional positions with partial occupancy were found in 2/1
Cd,xYb;; AC as presented in Figures 6.2.11. The difference is these additional electron
densities are not located in the center of the Cdg cube, but at the mid-center to the vertex
positions as indicated in Figure 6.2.11 (a). Gémez regards the mid-center positions as the
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results of the stacking fault of the interpenetrating RTH, thus only one of the two positions
can be potentially complete. However, from the point of our simulation, these two positions
are essentially from the diffusion of the same atoms (further study to 2/1 or 5/3 ACs may
offer the evidence). Furthermore, this can also explain why the two positions are far from
fully occupied: the diffusing atoms can not stay for a long time on these positions.

In addition, this atomic diffusion may attribute phasons in the ACs. As we aforementioned,
the diffusing directions associating with the local 3-fold axes of the central tetrahedron may
play crucial role in investigating the origin of this additional atomic dynamic. Otherwise,
inelastic neutron scattering on these ACs may provide important support to this conclusion.

(b)

Figure 6.2.11 (a) Schematic representation of the local distortion of the dodecahedral cage in the 2/1
approximants. The shifted tetrahedron pushes a vertex of the dodecahedron into the position marked by
a circle, this is the perfect position of a triacontahedral vertex. All the shifted atoms in the figure are
colored dark. (from [64]); (b) Electron density iso-surface at the 11.3 eA” level, generated from F -
F ., data. The image shows the electron densities found along the space diagonal of a Cdg cube in
Yb,;Cd,. The grey densities correspond to the two vertex atoms of the cube and the black densities
correspond to the mid-center to vertex positions. (from [52])

6.2.4 Conclusion

The MD simulation is carried out on the 5/3 Zngs ,Sc 445 approximant in a cooling process
using oscillating pair potential via LAMMPS. The results are compared with the 1/1
approximant as well as experiment results. The hk0 Bragg planes are reconstructed for a set
of temperatures based on FT. Additional amount of diffuse scattering is observed in the 5/3
approximant which agrees with the experiment results on the related quasicrystal. However,
it is infeasible now to quantitatively confirm whether these excess diffuse scattering are
contributed by the phason or not.

A new motion of the central tetrahedron is found in the 5/3 approximant which agrees well
with the observed one in the 2/1 Cd,Yb,; AC. An inherent 3-fold axis is found in the
tetrahedron model at HT, and the local environments are supposed to play crucial role in
determining the orientations of the tetrahedra. In this work we studied only one local
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configuration. Further studies are needed to complete the picture. Both the characteristic time
scale and distance scale of the tetrahedron jumping are larger than those of the 1/1
approximant. Furthermore, the atomic diffusion is observed again which may attribute to the
phasons in these ACs. Further analysis and experimental support are certainly desirable.

6.3 The model of 8/5 Zng, ,.Sc,,5, approximant

The model of the 8/5 approximant is achieved by canonical cell tiling as described in last
section. The initial structure is refined by a total energy minimization process via VASP. The
obtained configuration contains 8032 Sc atoms and 46088 Zn atoms per unit cell with a cell
parameter equal to 94.584A. According to the configurations of cluster environments, 576
clusters are categorized into 6 groups: 5-7, 6-5, 6-6, 6-7,7-5 and 7-6, where n in n-m presents
the number of 2-fold linkages around and m stands for the number of 3-fold linkages. The
initial strains in the structure is eliminated by the MD energetic minimization and the model
is equilibrated at each temperature before data collection.

For each temperature, 5 million steps were performed and 500 frames were collected for
analysis. The time step for each temperature is listed in Table 6.5. The potential energies per
atom with respect to temperatures are illustrated in Figure 6.3.1 comparing with the 5/3 and
1/1 approximants. All three approximants display very similar temperature dependent
behavior owing to close compositions. Moreover, the potential energy is the smallest in the
1/1 approximant, and it increases as the approximant approaches to quasicrystal.

Table 6.7 Time step setting for each temperature of the 8/5 approximant

T/K 500 400 300 200 100
Time step/ps 0.002 0.002 0.005 0.008 001
'90»"'w"'w"'w"'w"'w""
*
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Figure 6.3.1 Temperature dependence of potential energies in the three approximants.
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The model of central tetrahedra in 8/5 approximant is essentially the same as the 5/3 as
shown in Figures 6.3.2. The visualization of charge density is carried out using the program
VESTA at isosurfaces of 2e-5¢/A°. Imillion atomic positions are counted within 10ns. To
evaluate the time scale of the tetrahedron flipping, we extracted the coordinates of the
tetrahedron atom 43772 within 0.3ns at 500K. Each steep change corresponds one flip as
indicated by dashed lines in Figure 6.3.4. The atom was dumped every 5 steps giving a time
scale of 0.01ps.

Figure 6.3.2 The model of central tetrahedron in the 8/5 approximant viewing along three directions.

In average, the time scale of the tetrahedron flipping in the 8/5 approximant at S00K is of the
order of 17.6ps, much more stable than that of the 1/1 and 5/3 approximants. Accordingly,
the flipping frequency of the tetrahedron seems closely related to the complexity of the
approximant: the more complex the structure is, the more slowly the tetrahedron flips. In
addition, it is also suggested that the activation energy of flipping increases as the structure
complexity increases.

Around 3.1% of all atoms are observed diffusing at 500K within 10ns, and the diffusion has
been suppressed at 400K. The largest displacement over the whole cooling process is about
14.5A which is found on the atom 25082. The coordinates variation of the atom 25082 is
displayed in Figure 6.3.5 (a) accompanying with the trajectory shown in Figure 6.3.5 (b). The
four unique sites are indicated in both two figures respectively. It is noteworthy that because
of the setting of the time scale for dumping configurations, many intermediate positions are
omissive.
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6.4 Conclusion

We performed MD simulations on 1/1, 5/3 and 8/5 approximants of the i-ZnMgSc
quasicrystal using oscillating pair potentials which have been fitted against ab initio data.
Detailed comparison has been made with each other and the relevant experiments.

The diffuse scatterings in the 1/1 and 5/3 approximants are analyzed and compared detailedly.
Excess components are distinctly observed in the 5/3 approximant. Further investigations are
called to clarify whether this additional amount of diffuse scattering is contributed by phason
motions or not. As temperature decreases, the diffuse scattering in the 1/1 approximant turns
into ordered along <110> directions indicating a s.r.o in the LT phase. The motions of central
tetrahedra which reorient constantly at HT and are frozen at LT are considered responsible to
this s.r.o.

The tetrahedron reorientation in 1/1 approximant takes place with a time scale of 0.5ps at
500K and an energy barrier of the order of 34meV. For 5/3 and 8/5 approximants, the values
of time scale at 500K are 7.2ps and 17.6ps respectively. It is suggested that the flipping
frequency of tetrahedra is dependent on the structural complexity: the more complex the
structure is, the more strictly the flipping of central tetrahedra is restrained. Moreover, the
behavior of central tetrahedra in the 1/1 approximant fits well with the model proposed from
experiments, and the tetrahedra in 5/3 and 8/5 shows completely different fashion from the
1/1.

Atomic diffusion is observed in all three approximants. It is shown that atoms exchange takes
place between tetrahedron and dodecahedron shells. The potential energy difference between
the two clusters is supposed to be responsible to this atomic diffusion. For the 1/1
approximant, a channel along which atoms can diffuse distantly is observed along space
diagonal directions of the cubic unit cell. Furthermore, an additional position in between two
dodecahedron sites is occupied partially. This phenomenon can interpret well the results
reported previously by Gomez and Lidin[4]. The energy barrier of atoms diffusion in 1/1
approximant is confirmed as 106+11meV which is compatible with the potential energy
difference found between tetrahedron and dodecahedron sites. Moreover, comparing with the
1/1 approximant, less atoms of the 5/3 and 8/5 approximants are involved into diffusion and
the diffusing behavior is suppressed at higher temperature with shorter displacements. The
complex atomic structures of 5/3 and 8/5 approximants are supposed to play crucial role in
restraining the diffusing process.

These results together with relevant experiments offer new perspectives for better
understanding the stability of quasicrystals and their approximants. It also lays a foundation
for further investigation on quasicrystal by atomic scale MD simulation. Additionally, more
detailed studies are called for the 5/3 and 8/3 approximants.
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Chapter 7. Conclusion

A series of isostructural compounds which are approximants to icosahedral quasicrystals
have been investigated throughout the thesis both experimentally and using atomic scale
simulations. Synchrotron x-ray diffuse scattering, single crystal and powder diffraction
measurements are performed on the Cd-based 1/1 approximants. MD simulations are
executed on Zn-based approximants using an effective pair potential via LAMMPS. The
combination of experiments and simulations is of importance for not only current but also
future work.

The Cd¢Tb 1/1 approximant was probed by means of single crystal and powder x-ray
diffraction in a temperature range from 7K to RT. The structural phase transition is observed
at ~190K evidenced by the splitting of main Bragg peaks. Both single crystal and powder
diffraction patterns demonstrate an abruptly increasing distortion starting from 190K to 184K.
An anomaly of the temperature dependent cell parameters is observed at ~45K below which
both the lattice parameter and the scattering angles do not change any more. This
phenomenon is supposed to be responsible to the irregular behavior of the electronic
resistivity below ~40K.

Using different attenuations, we have collected integrated intensities in a large dynamical
range leading to more than 60000 unique reflections in the C2/c monoclinic low temperature
phase. The final wR2 values for RT and 40K are eventually refined to 0.0726 and 0.0905
respectively. As initially proposed by Tamura et al[14] and Kim et al[15], the distances of the
intracluster ionic Tb** bonds are compatible with the intercluster bonds. For the monoclinic
phase, owing to the lattice distortion, the intracluster and intercluster interactions become
more competitive at LT which is supposed playing a crucial role in promoting the formation
of long-range magnetic order.

A temperature dependent study is carried out to the Cd¢Tb structures. A strong distortion of
the successive shells is observed along the three-fold axis of the cubic cell. Further
investigation manifests that the distortion is originally induced by the ordering tetrahedron.
The simultaneous behavior of the equivalent isotropic displacement parameters of the two
unique tetrahedron atoms suggests that the tetrahedron behaves as a single molecule.

The temperature dependent diffuse scattering of CdsYb 1/1 approximant was studied using
synchrotron x-ray beam. Both the occurrence of peak splitting and the anomaly of Bragg
angle variation evidence a reversible phase transition at ~113K. Observation of the
superstructure reflections (13/2 15/2 m) and (3 5 1) indicates the ordering mechanism of
CdgYb is of [111] type rather than [110] type. The superstructure peaks get sharpening
rapidly as temperature approaches to T, providing a correlation length up to ~1200A.

The effect of Mg substitution on the phase transition of CdsPr 1/1 approximant was
investigated by means of x-ray diffuse scattering. By adding Mg element, the Mg atoms
partially occupy the dodecahedral sites of Cd which essentially enlarge the dodecahedron
edges thus promote the ordering of the central tetrahedra. It is concluded that the effect of
chemical order introduced by the third element is really dependent on the atomic radius of the
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guest element. Furthermore, it is clarified that the ordering of the central tetrahedra in both
Cd¢Pr and (Cd-Mg)Pr with 10% at. Mg follows the [110] mechanism instead of the
previously claimed [111] type.

MD simulations on 1/1, 5/3 and 8/5 approximants of the i-ZnMgSc quasicrystal using
oscillating pair potentials that have been fitted against ab initio data was implemented at
various temperatures. The diffuse scattering derived from the FT of outputting configurations
is compared between the 1/1 and 5/3 approximants, and excess components are observed in
the 5/3 approximant. Further investigations are desirable to clarify whether it is contributed
by phason motions or not. As temperature decreases, the diffuse scattering in the 1/1
approximant turns into ordered along <110> directions implying a s.r.o forming in the LT
phase along perpendicular directions. The s.r.o was suppressed due to the limitation of the
supercell size, however, it evidences the occurrence of a structural pretransition. The motions
of central tetrahedra, which reorient constantly at HT and are frozen at LT, are considered
responsible to this phenomenon.

For the 1/1 approximant, the reorientation takes place in a time scale of 0.5ps at 500K and an
energy barrier of the order of ~34meV. For 5/3 and 8/5 approximants, the values of time scale
at 500K are 7.2ps and 17.6ps respectively. It is suggested that as the structural complexity
increases, the flipping of central tetrahedra is restrained more strictly which leads to a larger
time scale and activation energy. Moreover, the behavior of central tetrahedra in the 1/1
approximant fits well with the model proposed from experiments, and the tetrahedra in 5/3
and 8/5 shows completely different fashion from the 1/1 approximant.

An atomic diffusion between tetrahedron and dodecahedron shells is observed in all three
approximants at high temperatures. For the 1/1 approximant, atoms can diffuse distantly only
along space diagonal directions of the cubic unit cell. Further investigation provides an
activation energy of ~0.1eV which is consistent with the atomic vacancy formation energy.
The potential energy difference between tetrahedron and dodecahedron sites, i.e. ~0.1eV, is
considered the initial impetus driving the first diffusion.

Moreover, additional positions inbetween two dodecahedron sites on the diffusing path are
occupied and this phenomenon can interpret well the results reported previously by Gémez
and Lidin who observed additional charge density on the same positions experimentally.
Comparing with the 1/1 approximant, less atoms of the 5/3 and 8/5 approximants are
involved into diffusion, and the diffusing behavior is suppressed at higher temperature with
shorter displacements in the latter approximants. It is suggested that the complex atomic
decorations of 5/3 and 8/5 approximants play significant role in restraining the diffusing
process.

These results combining experiments and simulations offer new perspectives for better
understanding the stability of quasicrystals and their approximants. The investigation on
structures of Cd4Tb provides helpful clues for researching the magnetic properties of related
binary quasicrystals. Attempts of studying diffuse scattering of various ZnSc approximants
lay a significant foundation for further investigation on quasicrystal by means of MD
simulation. Apart from the above, we believe that the local configuration environments of
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clusters, which reveals the complexity of the investigated phases, act important role in the
stability of these CMAs.
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Appendix

I. Input script for Zn,Sc 1/1 approximant LAMMPS simulation

# Sample LAMMPS input script for Zn6Sc 1/1 approximant

#===============Initialization==============================
units metal # time=ps, energy=eV, force=evV/A, T=K,..
variable T equal 400

variable V equal vol

variable dt equal 0.002 # 2 femtoseconds

dimension 3 # 3D simulation

boundary P p p # periodic boundary condition

atom_style atomic

#===============Atom definition=============================
read_data two_tet.config # initial structure file
#===============Settings====================================
replicate 8 8 8 # replicating in x, y, z direction

pair style table spline 10000

pair coeff 1 1 sczn _new.pot Sc 8.3 # potential file

pair coeff 1 2* sczn_new.pot ScZn 8.3 # cutoff=8.3Angstrom
pair_coeff 2* 2% sczn_new.pot Zn 8.3

10000 r 1.0 8.3 tablell.txt Sc

pair write 10000 r 1.0 8.3 tablel2.txt SciZn

pair write 10000 r 1.0 8.3 table22.txt Zn

compute ea all pe/atom #define potential energy per atom as ea
compute eatoms all reduce sum c_eng

group tetrahedron type == 3 # define group ‘tetrahedron’
reset_timestep 0

thermo 10 # output every 10 steps

thermo style custom step pe 1x 1ly 1z press pxx Dpyy pzz
c_eatoms

pair_write

N ==
NN

min style cg # conjugate gradient
minimize le-9 le-7 1000 500 # minimization stopping criteria
run 0 # trigger simulation

timestep ${dt}
velocity all create $T 16 mom yes rot yes dist gaussian
fix NVT all nvt temp ST $T 10 drag 0.2 # ensemble

run 100 # relaxation

dump 1 tetrahedron atom 100 tetra-400K.lammps # output setting
dump 2 all atom 5000 all.lammps

dump 3 all atom 1000000 sczn6.config

run 1000000

variable natoms equal "count(all)"

variable teng equal "c_eatoms"

variable length equal "1x"

variable ecoh equal "v_teng/v_natoms"

variable L equal "13.8311*8"

print "Total energy (eV) = ${teng};"

print "Number of atoms = ${natoms};"

print "Lattice constant (Angstoms) = ${length};"
print "Cohesive energy (eV) = ${ecoh};"

print "Box size (Angstrom) = S$L"

print "All done!"
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II. Crystallographic data and technic parameters for Cd;Yb phase at 200K

III. Crystallographic data and technic parameters for Cd,Tb phase at 200K and

196K

164

CdsYb T=200K
Space Group Im-3 (no. 204)
a axis/A 15.5939(6)
Cell volume/ A® 3792.0(2)
F(000) 8602
Calculated density 8.9042
(g/cm?)
Absorption coefficient- 12.251
mu/mm’*
Range of theta/° 1.78-32.53
Independent reflections 3723
Reflections>30 3165
R, (obs/all) 12.45/14.3
Number of parameters 49
R (all) 0.038
R, (all) 0.0719
Absorption correction Numerical
T i/ Trmax transmission 0.28657/0.40677
factor
Apmax, Agmin 7.52/-6.89
Mean change/s. u. 0.0008

Temperature/K 200 196
Space Group Im-3 Im-3
a axis/A 15.4650(4) 15.4559(5)
Cell volume/ A’ 3698.71(15) 3692.18(19)
F(000) 8480 8855
Calculated density 8.9767 8.9925
(g/em’)
Absorption 11.156 11.176

coefficient-mu/mm'
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Range of theta/° 1.8-32.55 1.8-32.57
Independent 3650 3624
reflections
Reflections>30 3206 3061
R;, (obs/all) 9.44/9 45 14.48/14.77
Number of 59 61
parameters
R (all) 0.0398 0.051
wR2 (all) 0.0827 0.0992
Absorption Numerical Numerical
correction
Apmax, Agmin 6.26,-10.83 9.98,-11.11
Mean change/s. u. 0.0007 0.0006

IV. Structural information of Cd,Tb 1/1 approximant at 200K and 196K

T/K Wyckoff Occ .
Symbol . x/a y/b z/c Biso/eq
site
Tb1 196 24 0.18975(3) 0.29965(3) 0 0.0058(0)
200 g 0.18974(3) 0.29964(3) 0 0.0059(0)
cdl 196 L6f 0.16087(2) 0.16087(2)  0.16087(2) 0.0140
200 0.5 0.19056(3) 0 0.0099(1)
196 0.5 0.19051(3) 0 0.0096(1)
Cd2 12e
200 0.75859(8) 0.09237(5) 0 0.0266(2)
196 0.24133(10)  0.09234(6) 0 0.0264(1)
Cd3 200 24¢g -
0.65941(1) 0.20038(1) 0.0108(0)
0.11815(2)
196 0.34063(1) 0.20040(1)  0.11813(2) 0.0107(0)
Cd4 200 48h -
0.83912(2) 0.16088(2) 0.0142(0)
0.16088(2)
196 0.5 0.09568(2)  0.15386(2) 0.0081(0)
Cd5 200 24¢g -
0.5 0.09569(2) 0.0081(1)
0.15381(2)
196 0.40571(4) 0 0 0.0236(2)
Cdé6 12d
200 0.59428(4) 0 0 0.0236(2)
cd7 196 48h 0.0757(3) 0.0837(2) 0.0152(4) 0.1667 0.058(2)
200 24¢ 0.9241(2) 0.08395(19) 0 0.3333  0.0809(13)

V. Anisotropic displacement parameters (A% of the CdTb 1/1 approximant at

200K and 196K
Symbol T/K U“ U22 U33 U12 U13 U23
Tbl 196 0.00578(6) 0.00699(6) 0.00472(6) 0.00058(3) 0 0
200 0.00575(6) 0.00696(6) 0.00486(6) 0.00054(4) 0 0
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cdl 196 0.01404(8) 0.01404(8) 0.01404(8) 0.00750(8) 0.00750(8)  0.00750(8)
200 0.01521(1) 0.00721(1)  0.00713(1) 0 0 0
Ccd2 196 0.01489(1)  0.00700(1)  0.00705(1) 0 0 0
200 0.0622(4)  0.00929(1)  0.00833(1) - 0 0
0.01090(1)
Cd3 196 0.0623(4)  0.00904(1) 0.00794(1) 0.01081(1) 0 0
200 0.00848(8)  0.00942(8) 0.01462(9)  0.00090(6) - -
0.00214(6)  0.00393(6)
cda 196 0.00837(8) 0.00938(8)  0.01436(9) - - 0.00387(6)
0.00085(5)  0.00203(5)
200 0.01424(8) 0.01424(8) 0.01424(8) - 0.00758(9) -
0.00758(9) 0.00758(9)
Cds 196 0.00914(9)  0.00709(9)  0.00797(9) 0 0.00164(6)
200 0.00922(1)  0.00723(9)  0.0079(1) 0 -
0.00169(7)
Cd6 196 0.00939(1)  0.0520(5)  0.00958(1) 0 0 0
200 0.00939(1)  0.0519(4)  0.00968(1) 0 0 0
. 196 0.066(2)  0.0397(13)  0.067(5) - -0.007(2) -
0.0422(15) 0.0035(17)
200 0.0621(17) 0.0383(12)  0.142(3)  0.0394(12) 0 0
VI. Structural information of Cd,Tb 1/1 approximant at 100K
Symbol  Wyckoff x/a y/b z/c S.OF Biso/eq
site
Tbl 8f 0.14770(1) 0.43863(1) 0.10146(1) 0.0026(0)
Tb2 8f 0.15132(1) 0.06137(1) 0.09993(1) 0.0025(0)
Tb3 8f 0.75344(2) 0.25181(1) 0.19439(2) 0.0026(0)
Tb4 8f 0.94424(2) 0.2494() 0.00521(2) 0.0026(0)
Tb5 8f 0.40517(1) 0.05214(1) 0.15480(1) 0.0026(0)
Tb6 8f 0.40439(1) 0.45458(1) 0.15445(1) 0.0026(0)
cdl 8f 0.65921(2) 0.41421(3) 0.20904(2) 0.0045(0)
cd2 8f 0.74698(1) 0.44077(2)  -0.00354(1) 0.005()
Cd3 8f 0.54646(1) 0.51911(1) 0.20382(1) 0.0045(0)
Cd4 8f 0.95940(2) 0.59073(3) 0.41184(2) 0.0044(0)
Cds 8f 0.87620(3) 0.75432(1) 0.22122(3) 0.0040(1)
Cd6 8f 0.97063(3) 0.75076(1) 0.12518(3) 0.0038(1)
Cd7 8f 0.54065(2) 0.40954(3) 0.09378(2) 0.0047(0)
Cds 8f 0.90565(3) 0.75084(1) 0.34545(3) 0.0046(1)
Cd9 8f 0.84443(3) 0.74821(1) 0.09602(3) 0.0044(1)
Cd10 8f 0.88779(2) 0.55174(3) 0.52341(2) 0.0046(0)
cdil 8f 0.61181(1) 0.83664(1) 0.36009(1) 0.0061(0)
Cd12 8f 0.79823(2) 0.59438(2) 0.04768(2) 0.0040(1)
Cd13 8f 0.73386(2) 0.54576(3) 0.35764(2) 0.0047(0)
Cd14 8f 0.65885(2) 0.59554(2) 0.25184(2) 0.0062(0)
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cdis 8f 0.77304(2)  044814(2)  0.13655(2) 0.0047(0)
Cdi6 8f 0.77084(2)  0.62989(3)  0.18122(2) 0.0047(1)
Cd17 8f 0.82755(2)  0.34556(2)  -0.07707(2) 0.0040(1)
Cdis 8f 0.57036(2)  0.86703(3)  -0.01904(2) 0.0047(1)
Cd19 8f 1.00047(2)  0.40983(3)  0.40865(2) 0.0051(0)
Cd20 8f 0.83729(2)  041442(3)  0.25041(2) 0.0063(0)
cd21 8f 0.49938(2)  0.58778(3)  0.08643(2) 0.0061(1)
Ccd22 de 05 0.35200(2) 0.25 0.0066(1)
Cd23 8f 0.67221(2)  0.347202)  0.07720(2) 0.0040(1)
Cd24 8f 0.84285(2)  0.59443(3)  0.29094(2) 0.0044(0)
Cd2s 8f 0.79701(2)  090156(2)  0.04792(2) 0.0041(1)
Cd26 8f 039125(2)  0.54537(3)  0.01675(2) 0.0044(0)
Cd27 8f 057104(3)  0.74709(1)  0.08662(3) 0.0054(1)
Cd28 8f 0.42944(2)  036518(3)  0.02130(2) 0.0045(1)
Cd29 de 05 0.16234(2) 0.25 0.0061(1)
Cd30 8f 0.66948(3)  0.74879(1)  0.17553(3) 0.0054(1)
cd31 8f 0.72883(2)  0.36727(3)  0.32020(2) 0.0044(1)
Cd32 8f 0.69992(3)  0.75135(1)  0.04489(3) 0.0062(1)
Cd33 8f 0.70360(1)  0.77107(1)  0.45320(1) 0.0065(0)
Cd34 8f 0.63374(1)  0.65467(1)  0.38267(1) 0.0048(0)
Cd3s 8f 0.95463(1)  049919(1)  0.29639(1) 0.0048(0)
Cd701 8f 053968(1)  0.67812(2)  0.30074(1) 0.0203(1)
Cd702 8f 055147(1)  0.81706(1)  0.20966(1) 0.0179(1)

VII. Anisotropic displacement parameters (A% of the Cd,Tb 1/1 approximant at
100K

Symbol Uy Uss U, Ui Uss
Tb1 0.00127(5) 0.00289(6) 0.00011(4) 0.00035(4) -0.00030(5)
Tb2 0.00114(5) 0.00271(6) -0.00028(4) 0.00038(4) 0.00007(5)
Tb3 0.00106(8) 0.00263(9) 0.00001(2) 0.00040(7) 0.00010(2)
Tb4 0.00064(9) 0.00316(9) 0.00004(2) 0.00089(8) 0.00005(2)
Tb5 0.00159(4) 0.00282(6) -0.00013(4) 0.00090(4) -0.00006(4)
Tb6 0.00172(4) 0.00272(6) 0.00016(4) 0.00102(4) 0.00024(4)
Cd1 0.00253(9) 0.00429(9) 0.00148(6) 0.00161(7) 0.00040(6)
Cd2 0.00215(8) 0.00575(8) 0.00075(4) 0.00242(6) 0.00070(4)
Cd3 0.00569(7) 0.00391(7) -0.00007(6) 0.00090(5) 0.00034(7)
Cd4 0.00232(9) 0.00623(9) -0.00019(7) 0.00119(7) -0.00141(6)
Cd5s 0.00363(9) 0.00295(12) 0.00014(5) 0.00055(9) -0.00009(5)
Cdé6 0.00204(13) 0.00485(15) -0.00004(3) 0.00098(12) 0.00026(3)
Cd7 0.00248(9) 0.00660(9) -0.00045(7) 0.00169(7) -0.00115(6)
Cd8 0.00547(11) 0.00353(17) -0.00021(4) 0.00050(9) -0.00017(3)
Cd9 0.00192(9) 0.00492(16) 0.00016(4) -0.00083(9) -0.00001(4)
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Cd1o 0.00288(8) 0.00446(9) -0.00107(6) -0.00072(7) 0.00067(6)
cdll 0.00301(6) 0.00758(7) 0.00087(5) 0.00257(5) 0.00086(5)
cdi2 0.00244(7) 0.00455(12) -0.00041(7) 0.00014(6) -0.00042(7)
Cd13 0.00243(8) 0.00749(9) 0.00011(6) 0.00002(6) 0.00092(6)
Cd14 0.00520(9) 0.00398(8) -0.00450(7) 0.00044(7) 0.00043(7)
cd1s 0.00253(8) 0.00636(9) -0.00052(6) -0.00026(7) 0.00134(6)
Cd16 0.00488(11)  0.00466(11) 0.00055(8) 0.00074(9) -0.00197(8)
cd17 0.00239(8) 0.00356(12) 0.00093(9) 0.00097(7) -0.00055(9)
cdis 0.00456(11)  0.00397(10) -0.00120(8) 0.00047(9) 0.00002(8)
Cd19 0.00302(9) 0.00807(10) -0.00008(7) 0.00061(8) 0.00299(6)
Cd20 0.00563(10) 0.00345(8) -0.00417(7) 0.00066(7) 0.00015(7)
cd21 0.0051(1) 0.00858(10) -0.00108(8) -0.00050(8) 0.00470(7)
Cd22 0.00248(10)  0.00895(12) 0 -0.00233(8) 0
Cd23 0.00221(8) 0.00467(13) -0.00035(8) 0.00093(7) 0.00110(9)
Cd24 0.00304(9) 0.00422(9) 0.00094(6) 0.00153(7) 0.00020(6)
Cd2s 0.00235(7) 0.00457(12) 0.00048(7) 0.00014(6) 0.00080(7)
Cd26 0.00277(8) 0.00373(8) -0.00087(6) -0.00078(6) 0.00015(6)
Cd27 0.00242(11)  0.00788(14) 0.00000(4) -0.00235(11)  -0.00036(5)
Cd2g 0.00406(11)  0.00323(10) 0.00176(8) 0.00079(9) 0.00025(8)
Cd29 0.00256(10)  0.00781(11) 0 -0.00151(8) 0
Cd30 0.00159(12)  0.00592(15) 0.00093(4) -0.00307(12)  -0.00041(3)
Cd3l 0.00375(11)  0.00425(11) 0.00000(8) 0.00088(9) -0.00152(8)
Cd32 0.0033(1) 0.00681(17) -0.00024(4) 0.00445(11) -0.00014(4)
Cd33 0.00800(8) 0.00544(6) -0.00140(6) 0.00025(5) -0.00139(5)
Cd34 0.00269(5) 0.00582(6) -0.00037(5) 0.00124(5) -0.00059(4)
Cd3s 0.00632(7) 0.00414(7) -0.00074(7) 0.00083(5) 0.00088(7)
Cd701 0.01087(9) 0.02450(13) 0.00157(8)  -0.01701(10) 0.00665(8)
Cd702 0.00774(8) 0.02527(12) -0.00184(7) 0.01732(9) 0.00136(8)
VIII. Structural information of Cd,Tb 1/1 approximant at 150K
Symbol Wyckoff y/b z/c .

) Biso/eq

site
Tb1 8f 0.14783(7) 0.43861(6) 0.10147(7) 0.0088(2)
Tb2 8f 0.15137(7) 0.06124(6) 0.09996(7) 0.0085(2)
Tb3 8f 0.75374(10)  0.25167(2) 0.19457(9) 0.0085(4)
Tb4 8f 0.94413(9) 0.24943(2)  0.00515(11) 0.0091(5)
Tb5 8f 0.40481(6) 0.05213(6) 0.15520(6) 0.0089(2)
Tb6 8f 0.40405(6) 0.45435(6) 0.15488(6) 0.0089(2)
cdl 8f 0.65954(11)  0.41385(13)  0.20897(11) 0.0125(4)
cd2 8f 0.74703(4)  0.44070(12)  -0.00344(4) 0.0115(4)
Cd3 8f 0.54633(10)  0.51876(9)  0.20373(10) 0.0112(3)
Cd4 8f 0.95958(10)  0.59078(13)  0.41108(12) 0.0096(4)
Cds 8f 0.87663(15)  0.75390(5)  0.22026(15) 0.0082(5)
Cd6 8f 097155(16)  0.75074(3)  0.12437(16) 0.0117(8)
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Cd7

Cd8

Cdo
Cd10
Cdl11
Cd12
Cd13
Cd14
Cd15
Cd16
Cd17
Cd18
Cd19
Cd20
Cd21
Cd22
Cd23
Cd24
Cd25
Cd26
Cd27
Cd28
Cd29
Cd30
Cd31
Cd32
Cd33
Cd34
Cd35

Cd701
Cd702

8f 0.54045(10)  0.40940(13)
8f 0.90522(16)  0.75076(3)
8f 0.84443(16)  0.74826(3)
8f 0.88796(11)  0.55131(13)
8f 0.61193(5)  0.83696(5)
8f 0.79832(11)  0.59457(9)
8f 0.73381(11)  0.54600(14)
8f 0.65897(13)  0.59471(15)
8f 0.77292(11)  0.44782(14)
8f 0.77084(12)  0.63021(14)
8f 0.82759(12)  0.34593(8)
8f 0.57022(12)  0.86727(15)
8f 1.00017(11)  0.40955(14)
8f 0.83737(13)  0.41484(15)
8f 0.49971(12)  0.58839(15)
de 0.35192(13)
8f 0.67213(11)  0.34734(8)
8f 0.84246(11)  0.59457(13)
8f 0.79714(11)  0.90140(9)
8f 039131(11)  0.54514(13)
8f 0.57125(17)  0.74706(5)
8f 0.42967(12)  0.36549(15)
de 0.16206(13)
8f 0.66935(16)  0.74875(3)
8f 0.72890(12)  0.36696(14)
8f 0.7002(2) 0.75122(3)
8f 0.70360(4)  0.77034(9)
8f 0.63323(5)  0.65478(5)
8f 0.95462(10)  0.49892(9)
8f 0.53967(5)  0.67796(6)
8f 055127(5)  0.81706(6)

0.09412(11)
0.34549(16)
0.09576(15)
0.52334(11)
0.36063(5)
0.04726(11)
0.35771(13)
0.25199(12)
0.13643(12)
0.18130(11)
-0.07689(10)
20.01913(11)
0.40904(13)
0.25014(12)
0.08644(13)

0.25

0.07696(11)
0.29096(11)
0.04752(11)
0.01695(11)
0.08639(16)
0.02131(11)

0.25

0.17558(16)
0.32002(11)
0.04541(19)
0.45327(4)
0.38217(4)
0.29646(10)
0.30026(6)
0.20955(5)

0.0091(4)
0.0110(7)
0.0117(7)
0.0112(3)
0.0145(2)
0.0119(5)
0.0129(3)
0.0149(4)
0.0126(3)
0.0116(5)
0.0102(6)
0.0124(5)
0.0117(4)
0.0140(4)
0.0131(4)
0.0146(4)
0.0103(6)
0.0122(4)
0.0118(5)
0.0104(3)
0.0146(6)
0.0124(5)
0.0141(4)
0.0136(7)
0.0112(5)
0.0151(7)
0.0138(2)
0.0126(2)
0.0116(3)
0.0361(3)
0.0327(3)

IX. Anisotropic displacement parameters (A?) of the Cd,Tb 1/1 approximant at

150K
Symbol Uy, Uy, Us Uy, Ui Uss
Tb1 0.0149(4) 0.0027(3) 0.0087(5) -0.0002(3) 0.0023(3) -0.0012(3)
Tb2 0.0147(4) 0.0025(3) 0.0084(5) -0.0001(3) 0.0024(3) 0.0009(3)
Tb3 0.0131(7) 0.0007(6) 0.0117(8) - 0.0017(6) 0.00008(10)
0.00002(10)
Tb4 0.0134(7) 0.0006(7) 0.0132(9) 0.00005(8) 0.0038(6) 0.00002(8)
Tb5 0.0135(4) 0.0034(3) 0.0098(4) 0.0003(3) 0.0026(3) -0.0005(2)
Tb6 0.0132(4) 0.0037(3) 0.0097(4) 0.0006(3) 0.0029(3) -0.0002(2)
Cd1 0.0177(7) 0.0071(7) 0.0127(7) 0.0003(4) 0.0035(5) 0.0004(4)
Cd2 0.0190(7) 0.0036(6) 0.0117(6) 0.0007(2) 0.0042(5) 0.0010(2)
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Cd3 0.0125(4) 0.0108(5) 0.0103(4) 20.0007(4)  0.0008(3) 0.0008(4)
Cd4 0.0126(7) 0.0021(6) 0.0143(7) 20.0010(4)  0.0022(5)  -0.0031(4)
Cds 0.0131(9) 0.0040(8) 0.0074(9) 20.0004(2)  0.0015(7) 0.0012(2)
Cd6 0.0171(13)  0.0003(11)  0.0175(15) - 0.0037(11)  0.00059(15)
0.00050(15)
Cd7 0.0130(7) 0.0023(6) 0.0121(7) 20.0013(4)  00032(5)  -0.0026(4)
Cd8 0.0182(13)  0.0075(9)  0.0072(14) - 0.0023(7) -
0.00018(15) 0.00020(14)
Cd9 0.0183(13)  0.0030(7)  0.0138(13)  0.00014(17)  -0.0008(7) -
0.00017(17)
Cd1o 0.0165(6) 0.0057(6) 0.0113(6) 20.0006(4)  -0.0007(4)  0.0014(4)
cdll 0.0209(5) 0.0043(3) 0.0183(5) 0.0014(3) 0.0046(3) 0.0025(3)
cdi2 0.0172(9) 0.0060(6)  0.0125(10)  0.0010(6) 0.0030(5)  -0.0010(5)
Cd13 0.0156(6) 0.0056(6) 0.0176(7) 0.0008(4) 0.0017(5) 0.0024(4)
Cdl4 0.0230(7) 0.0122(7) 0.0097(6) 20.0064(5)  0.0018(5)  -0.0002(4)
cd1s 0.0170(6) 0.0052(6) 0.0156(6) 0.0003(4) 0.0020(5) 0.0019(4)
Cd16 0.0155(8) 0.0083(8) 0.0111(9) 0.0002(6) 0.0028(7)  -0.0029(6)
cd17 0.0211(12)  0.0019(6)  0.0077(11)  0.0026(6) 0.0038(5) 0.0008(6)
cdis 0.0171(9) 0.0083(8) 0.0117(9) 20.0019(6)  0.0021(7)  -0.0004(6)
Cd19 0.0129(7) 0.0037(7) 0.0184(7) 20.0013(5)  0.0006(6) 0.0045(4)
Cd20 0.0229(7) 0.0092(6) 0.0101(6) -0.0048(4)  0.0018(5) 0.0000(4)
cd21 0.0141(8) 0.0074(7) 0.0178(7) 20.0021(5)  0.0001(6) 0.0072(4)
Cd22 0.0200(7) 0.0053(7) 0.0186(8) 0 -0.0033(5) 0
Cd23 0.0205(12)  0.0012(6)  0.0091(11)  -0.0021(6)  0.0043(5) 0.0003(6)
Cd24 0.0177(7) 0.0060(6) 0.0129(7) 0.0005(4) 0.0035(5)  -0.0004(4)
Cd2s 0.0177(9) 0.0055(6)  0.0123(10)  -0.0009(6)  0.0025(5) 0.0011(5)
Cd26 0.0161(6) 0.0045(5) 0.0106(6) 0.0007(4) 20.0004(5)  0.0001(4)
Ccd27 0.0203(11)  0.0062(10)  0.0173(12)  0.0004(2) -0.0037(9)  -0.0009(2)
Cd2g 0.0189(9) 0.0074(8) 0.0110(9) 0.0029(6) 0.0019(7) 0.0004(6)
Cd29 0.0190(7) 0.0066(7) 0.0167(8) 0 -0.0018(5) 0
Cd30 0.0279(15)  0.0017(10)  0.0114(12)  0.00125(17) -0.0047(10) -
0.00053(15)
Cd3l 0.0165(8) 0.0063(7) 0.0107(8) 20.0008(6)  0.0031(7)  -0.0021(6)
Cd32 0.0274(15)  0.0057(8)  0.0120(13) - 0.0084(8) -
0.00054(18) 0.00045(17)
Cd33 0.0142(4) 0.0142(4) 0.0129(4) 20.0023(4)  0.0007(2)  -0.0031(4)
Cd34 0.0204(4) 0.0041(3) 0.0132(4) 20.0001(2)  0.0030(3)  -0.0009(2)
Cd3s 0.0122(4) 0.0119(5) 0.0108(5) -0.00154)  0.0008(3) 0.0012(4)
Cd701 0.0471(6) 0.0189(5) 0.0422(6) 20.0016(3)  -0.0257(5)  0.0094(3)
Cd702 0.0405(5) 0.0140(4) 0.0436(6) 20.00333)  0.0269(5) 0.0022(3)
X. Structural information of Cd,Tb 1/1 approximant at 180K
Wyckoff .
Symbol x/a y/b z/c Biso/eq

site
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Tbl
Tb2
Tb3
Tb4
TbS
Tb6
Cdl
Cd2
Cd3
Cd4
Cd5s
Cdé6
Cd7
Cd8
Cd9
Cd10
Cdl1
Cd12
Cd13
Cd14
Cd15
Cdl6
Cdl17
Cd17'
Cd18
Cd19
Cd20
Cd21
Cd22
Cd23
Cd24
Cd25
Cd26
Cd27
Cd28
Cd29
Cd30
Cd31
Cd32
Cd33
Cd34
Cd35
Cd701
Cd702

8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
4e
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
4e
8f
8f
8f

0.34886(1)
0.35211(1)
0.09480(1)
0.74637(2)
0.55549(2)
0.09547(1)
0.33067(5)
0.36725(1)
0.50044(3)
0.33727(3)
0.45915(3)
0.38765(2)
0.24725(1)
0.34055(3)
0.34252(3)
0.23334(2)
0.15544(4)
0.50055(3)
0.54087(3)
0.22707(2)
0.34078(3)
0.40573(4)
0.4152(4)
0.42886(6)
0.38784(3)
0.39122(3)
05
0.45449(2)
0.42954(3)
0.42946(3)
0.22908(3)
0.45354(2)
0.52924(3)
0.22933(3)
0.37616(4)
0.32755(3)
0.20280(3)
0.30034(4)
0.29824(3)
0.32727(3)
05
0.29646(2)
0.44913(2)
0.46025(3)

0.06113(1)
0.43872(1)
0.05186(1)
0.25153(1)
0.24947(1)
0.45412(1)
0.24874(1)
0.15476(2)
0.59011(4)
0.41429(4)
0.59090(3)
0.33713(2)
-0.44077(3)
-0.08613(3)
0.59387(3)
0.54581(4)
0.24837(1)
0.08819(4)
0.09060(3)
0.05147(4)
0.09460(4)
-0.24926(1)
0.2508(3)
0.24735(2)
0.44823(4)
0.04600(4)
0.66143(3)
0.49823(2)
0.63301(4)
0.13468(4)
0.36746(4)
0.01812(2)
-0.24930(1)
0.12988(4)
0.24617(2)
0.15314(2)
0.40175(2)
0.25109(1)
0.40536(2)
-0.34552(2)
-0.14885(3)
0.26934(3)
0.31691(3)
0.17799(3)

0.09983(1)
0.10125(1)
0.15487(1)
0.19447(2)
0.00529(2)
0.15462(1)
0.17560(4)
0.38180(1)
0.59101(3)
0.24958(3)
0.08875(3)
0.36090(2)
0.00325(1)
0.20928(3)
0.20929(3)
0.14203(3)
0.09598(4)
0.08685(3)
-0.09369(3)
0.13661(3)
0.25142(3)
0.15434(4)
0.0728(7)
0.08692(6)
0.47699(2)
0.48298(2)
0.25
0.20362(2)
0.48059(3)
0.02141(3)
0.17987(3)
0.20381(2)
0.12503(4)
0.18116(3)
0.27886(3)
0.07719(3)
0.04796(3)
0.04465(5)
-0.04768(3)
0.07715(3)
0.25
0.45323(2)
0.20934(2)
0.29994(3)

0.004()
0.0041(0)
0.0041(0)
0.0040(1)
0.0044(1)
0.0042(0)
0.0111(2)
0.0100(1)
0.0088(1)
0.0106(1)
0.0074(1)
0.0122(1)
0.0080(1)
0.0079(1)
0.0079(1)
0.0082(1)
0.0074(1)
0.0108(1)
0.0073(1)
0.0078(1)
0.0115(1)
0.0073(1)

-0.0044(17)
0.0092(2)
0.0078(1)
0.0075(1)
0.0106(1)
0.0090(1)
0.0078(1)
0.0075(1)
0.0073(1)
0.0081(1)
0.0061(1)
0.0078(1)
0.0065(1)
0.0063(1)
0.0067(1)
0.0109(1)
0.0066(1)
0.0063(1)
0.0114(1)
0.0119(1)
0.0391(1)
0.0439(2)

171



XI. Anisotropic displacement parameters (A?)

Appendix

of the Cd,Tb 1/1 approximant at

180K
Symbol Uy, Uy, Uss Uy, Ui Uy
Tbl 0.00540(9) 0.00255(6) 0.00395(9) 0.00048(6) 0.00069(5) 0.00014(7)
Tb2 0.00510(9) 0.00288(6) 0.00443(9) -0.00031(6) 0.00092(5) -0.00055(7)
Tb3 0.00433(8) 0.00350(6) 0.00455(9) 0.00027(6) -0.00026(5)  -0.00020(6)
Tb4 0.00559(12) 0.0024(1) 0.00398(13) -0.00002(3) 0.0000(1) 0.00017(3)
Tb5 0.00575(13) 0.00184(11) 0.00550(14) -0.00012(3) 0.00052(11) 0.00007(3)
Tb6 0.00458(9) 0.00359(6) 0.00444(9) -0.00032(6) -0.00049(5) 0.00023(6)
Cd1 0.0188(3) 0.0041(2) 0.0105(3) -0.00139(7) 0.0093(2) -0.00058(6)
Cd2 0.01187(13) 0.00559(9) 0.01258(14) 0.00151(8) -0.00379(9)  -0.00154(8)
Cd3 0.00563(15) 0.00632(14) 0.01439(18) 0.00004(11) 0.00026(14)  0.00590(11)
Cd4 0.01689(18) 0.00959(15) 0.00543(15)  -0.00735(12)  -0.00063(13) 0.00005(11)
Cd5s 0.00708(15) 0.00372(13) 0.01124(17)  -0.00004(10) -0.00126(12) 0.00228(10)
Cdé6 0.01468(14) 0.00653(9) 0.01533(15) -0.00268(9) -0.00599(10)  0.00273(9)
Cd7 0.00982(16) 0.00396(12) 0.01024(17) -0.00109(6) -0.00322(11)  0.00115(6)
Cd8 0.01104(15) 0.00526(13) 0.00729(16)  -0.00244(10) -0.00182(12) 0.00074(10)
Cd9 0.01050(15) 0.00610(13) 0.00715(16) 0.00208(11)  -0.00188(12) )
0.00098(10)
Cd10 0.00670(13) 0.00475(12) 0.01322(16) -0.00016(9) 0.00176(11) )
0.00203(10)
Cdl1 0.0114(3) 0.00376(12) 0.0070(2) -0.00021(6) 0.00287(12)  -0.00008(6)
Cd12 0.00675(15) 0.00987(16) 0.01567(19) 0.00139(12) 0.00193(14)  0.00918(12)
Cd13 0.00760(15) 0.00388(13) 0.01037(16) 0.00039(10)  -0.00172(12) )
0.00166(10)
Cd14 0.00714(13) 0.00548(12) 0.01092(15) 0.00114(9) 0.00132(11)  0.00267(10)
Cd15 0.01736(18) 0.01120(15) 0.00609(15) 0.00942(13)  -0.00004(14) 0.00064(12)
Cd16 0.0063(2) 0.00969(15) 0.0060(2) -0.00041(6) 0.00055(11) 0.00026(6)
Cd17 -0.011(2) -0.012(2) 0.010(4) 0.0014(8) -0.008(2) 0.0024(11)
Cd17 0.0085(3) 0.00430(17) 0.0149(3) 0.00016(9) 0.0054(3) -0.00017(9)
Cd18 0.01047(14) 0.00518(13) 0.00787(15) 0.00206(10) 0.00232(12)  0.00129(10)
Cd19 0.01124(14) 0.00528(12) 0.00606(13)  -0.00182(10)  0.00211(11) )
0.00056(10)
Cd20 0.0133(2) 0.00494(14) 0.0135(2) 0 0.00475(14) 0
Cd21 0.00582(12) 0.01435(12) 0.00672(13)  -0.00129(11) -0.00041(8) )
0.00235(11)
Cd22 0.00743(16) 0.00895(16) 0.00697(17)  -0.00197(12)  -0.00026(13) 0.00052(13)
Cd23 0.00892(17) 0.00798(16) 0.00563(16)  -0.00297(12)  -0.00101(13) 0.00098(12)
Cd24 0.00702(16) 0.00734(15) 0.00754(18)  -0.00009(12)  0.00026(13)  0.00322(12)
Cd25 0.00586(12) 0.01218(11) 0.00628(12) 0.00104(10) -0.00059(8)  0.00080(11)
Cd26 0.0059(2) 0.00448(18) 0.0079(2) 0.00015(5) 0.00079(16) 0.00045(5)
Cd27 0.00596(16) 0.00917(16) 0.00818(18)  -0.00084(12)  0.00030(13) )
0.00390(13)
Cd28 0.0083(2) 0.00650(15) 0.0047(2) 0.00007(7) -0.00059(15)  0.00000(7)
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Cd29  0.00806(19)  0.00412(10)  0.00676(19)  0.00090(12)  -0.00029(9)  0.00105(12)
Cd30  0.00779(18)  0.00481(10)  0.0075(2)  -0.00096(11)  0.00110(9)  0.00161(12)
Cd31 0.0150(3)  0.00646(14)  0.0114(3) 0.00027(6)  -0.00760(18)  -0.00007(6)
Cd32  0.00735(18)  0.00493(10)  0.0077(2)  0.00062(11)  0.00103(9) )
0.00099(12)
Cd33  0.00955(19)  0.00407(10)  0.00517(19)  -0.00162(12)  -0.00037(9) )
0.00048(12)
Cd34 0.0143(2)  0.00436(14)  0.0155(2) 0 0.00607(15) 0
Cd35  0.00873(12)  0.01772(12)  0.00910(13)  0.00250(12)  0.00053(9) )
0.00262(12)
Cd701 0.0444(3)  0.01803(16)  0.0548(3)  0.00477(16)  -0.0366(2)  0.00267(17)
Cd702 0.0543(3)  0.02405(19)  0.0533(3)  0.00128(19)  0.0380(2)  0.01339(19)
XII. Structural information of Cd,Tb 1/1 approximant at 184K
Wyckoff .
Symbol . x/a y/b z/c Biso/eq
site

Tbl 8f 0.09984(2)  -0.06110(1)  -0.34886(2) 0.004()

Th2 8f 0.10124(2)  -0.43874(1)  -0.35206(2) 0.0042(0)

Tb3 8f 0.15488(2)  -0.05183(1)  -0.09478(2) 0.0042(0)

Tb4 8f 0.19448(2)  -025151(1)  -0.74634(2) 0.0041(1)

Tbs 8f 0.00527(2)  -0.24949(1)  -0.55547(2) 0.0045(1)

Tb6 8f 0.15462(2)  -0.45407(1)  -0.09546(2) 0.0043(0)

cdl 8f 0.17561(5)  -0.24875(1)  -0.33083(5) 0.0118(2)

Ccd2 8f 038169(2)  -0.15479(2)  -0.36737(2) 0.0105(1)

Cd3 8f -0.59097(3) -0.59010(4) -0.50043(3) 0.0089(1)

Cd4 8f 024961(3)  -0.41421(4)  -0.33728(3) 0.0109(1)

cds 8f 0.08886(3)  -0.59091(4)  -0.45912(3) 0.0074(1)

Cd6 8f 036101(2)  -033718(2)  -0.38754(2) 0.0127(1)

cd7 8f -0.00319(1) 0.44074(3) 0.24729(1) 0.0080(1)

Cds 8f -0.20929(3) 0.08618(4) -0.34050(3) 0.0080(1)

Cdo9 8f 0.20930(3)  -0.59381(4)  -0.34244(3) 0.0080(1)
cd1o 8f 0.14196(3)  -0.54580(4)  -0.23330(3) 0.0083(1)
cdil 8f 0.09590(4)  -0.24840(1)  -0.15541(4) 0.0076(1)
cdi2 8f 0.08686(3)  -0.08819(4)  -0.50054(3) 0.0109(1)
cd13 8f 0.09372(3) 0.09061(4)  -0.54088(3) 0.0073(1)
cdl4 8f 0.13662(3) 0.05138(4) 0.22712(3) 0.0079(1)
cd1s 8f 025141(3)  -0.09458(4)  -0.34075(3) 0.0117(1)
cdi6 8f -0.15432(4) 0.24926(1) -0.40569(4) 0.0075(1)
cd17 8f 0.08695(8)  -0.24734(3)  -0.42906(8) 0.0092(2)
Cd17' 8f -0.0735(6) -0.2506(3) 20.4154(5) -0.0034(14)
Cdis 8f 047702(3)  -0.44819(4)  -0.38789(3) 0.0079(1)
Cd19 8f -0.48293(3) -0.04614(4) -0.39122(3) 0.0077(1)
Cd20 4e 0.25 0.66128(3) 05 0.0107(1)
cd21 8f 020364(3)  -0.49812(3)  -0.45443(3) 0.0092(1)
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Cd22
Cd23
Cd24
Cd25
Cd26
Cd27
Cd28
Cd29
Cd30
Cd31
Cd32
Cd33
Cd34
Cd35
Cd701
Cd702

8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
4e
8f
8f
8f

-0.48051(3)
0.02145(3)
-0.17988(3)
-0.20381(3)
0.12511(4)
0.18117(3)
0.27885(4)
0.07716(3)
-0.04793(3)
-0.04447(5)
0.04765(3)
0.07713(3)
025
-0.45325(2)
-0.20932(3)
-0.29994(3)

0.63314(4)
0.13477(4)
-0.36760(4)
0.01803(3)
0.24931(1)
0.12976(4)
0.24623(2)
0.15314(2)
0.40181(2)
0.25107(1)
-0.40535(2)
0.34555(2)
0.14891(3)
0.26914(3)
0.31691(3)
-0.17800(3)

-0.42952(3)
-0.42945(3)
0.22911(3)
-0.45350(3)
0.52927(4)
-0.22936(3)
0.37617(4)
-0.32756(3)
-0.20276(3)
-0.30046(5)
-0.29827(3)
-0.32730(3)
05
-0.29644(2)
-0.44919(3)
-0.46027(3)

0.0080(1)
0.0076(1)
0.0074(1)
0.0083(1)
0.0062(1)
0.0078(1)
0.0065(1)
0.0064(1)
0.0068(1)
0.0110(1)
0.0067(1)
0.0063(1)
0.0114(1)
0.0122(1)
0.0407(2)
0.0456(2)

XIII. Anisotropic displacement parameters (A?) of the Cd,Tb 1/1 approximant at

184K
Symbol Uy, Uy Uss Uy, Ui Uss
Tb1 0.00404(10) 0.00245(7) 0.00553(10) 0.00008(7) 0.00057(6) 0.00057(7)
Tb2 0.00451(10) 0.00275(7) 0.00532(10)  -0.00051(7) 0.00076(6)  -0.00040(7)
Tb3 0.00444(10) 0.00334(6) 0.00477(10)  -0.00017(6)  -0.00046(6)  0.00025(6)
Tb4 0.00383(14) 0.00247(11)  0.00585(13) 0.00016(3)  -0.00012(11)  0.00000(4)
Tb5 0.00563(15) 0.00156(12)  0.00624(15) 0.00007(3) 0.00019(13)  -0.00014(3)
Tb6 0.00429(10) 0.00350(6) 0.00497(10) 0.00023(6) -0.00067(6)  -0.00031(6)
Cd1 0.0106(3) 0.0042(2) 0.0206(4) -0.00057(7) 0.0099(3) -0.00129(7)
Cd2 0.01331(16) 0.00561(10) 0.01247(15) -0.00168(9) -0.00431(10) 0.00167(9)
Cd3 0.0147(2) 0.00604(16)  0.00602(17) 0.00616(12)  0.00023(15) 0.00012(12)
Cd4 0.00562(17)  0.00978(16) 0.0172(2) 0.00005(13)  -0.00063(15) )
0.00753(13)
Cd5s 0.01147(19) 0.00355(14) 0.00732(16)  0.00222(12) -0.00149(14) 0.00001(11)
Cdé6 0.01610(17) 0.00665(10) 0.01548(16)  0.00295(10) -0.00654(11) )
0.00298(10)
Cd7 0.01028(19) 0.00375(13) 0.01003(18) 0.00109(7)  -0.00333(13) -0.00108(7)
Cd8 0.00734(17) 0.00529(14) 0.01122(17) 0.00064(11) -0.00187(14) )
0.00232(12)
Cd9 0.00717(17)  0.00621(15) 0.01072(17) -0.00091(12) -0.00200(14) 0.00210(12)
Cd10 0.01349(18) 0.00458(13) 0.00680(14) -0.00217(12) 0.00175(13) ]
0.00013(10)
Cd11 0.0066(3) 0.00370(14) 0.0124(3) -0.00015(6) 0.00279(14)  -0.00020(6)
Cdi12 0.0159(2) 0.00957(18)  0.00708(17)  0.00946(13) 0.00188(16) 0.00143(14)
Cd13 0.01025(18) 0.00373(14) 0.00782(17) -0.00161(11) -0.00193(13) 0.00037(11)
Cdi14 0.01104(17) 0.00545(14) 0.00734(15) 0.00288(12) 0.00114(13) 0.00124(11)
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Cdl5  0.00625(17) 0.01130(17)  0.0177(2)  0.00049(13) -0.00021(15) 0.00956(14)
Cd16 0.0062(3)  0.00983(17)  0.0066(3)  0.00027(6)  0.00049(13)  -0.00039(6)
cd17 0.0152(4)  0.00421(19)  0.0082(4)  -0.00007(11)  0.0053(3)  0.00033(11)
Cd17'  0.00801(16) 0.00492(14) 0.01072(15) 0.00134(11)  0.00246(13) 0.00201(11)
CdI8  0.00628(15) 0.00530(13) 0.01146(16) -0.00079(11) 0.00211(13) )
0.00178(11)
Cd19 0.0135(3)  0.00515(16)  0.0135(2) 0 0.00470(16) 0
Cd20  0.00684(14) 0.01476(14)  0.00600(13) -0.00244(12)  -0.00045(9) ]
0.00119(12)
cd21 0.00722(19)  0.00884(18)  0.00786(19)  0.00052(14) -0.00053(15) )
0.00202(13)
Cd22  0.00576(18) 0.00781(17) 0.00931(19) 0.00103(13) -0.00121(15) )
0.00298(13)
Cd23  0.00754(19) 0.00734(17) 0.00740(18) 0.00338(14)  0.00011(15) )
0.00003(13)
Cd24  0.00640(14) 0.01241(13)  0.00597(13)  0.00086(12)  -0.00065(9) 0.00130(11)
Cd2s 0.0082(3)  0.00417(19)  0.0062(2)  0.00044(6)  0.00063(18)  0.00017(6)
Cd26 0.0082(2)  0.00903(18) 0.00632(18) -0.00394(14) 0.00016(15) )
0.00085(13)
Cd27 0.0048(2)  0.00650(17)  0.0083(2)  0.00000(8) -0.00080(16) 0.00007(8)
Cd28 0.0068(2)  0.00396(11)  0.0085(2)  0.00111(14)  -0.0004(1)  0.00087(13)
Cd29 0.0077(2)  0.00460(11)  0.0081(2)  0.00168(13) 0.00096(11) )
0.00105(12)
Cd30 00116(3)  0.00645(15)  0.0150(3)  0.00005(7)  -0.0077(2)  0.00025(7)
Cd3l 0.0078(2)  0.00461(11)  0.0076(2)  -0.00105(13) 0.00087(10)  0.00064(12)
Cd32 0.0051(2)  0.00392(11)  0.0100(2)  -0.00053(13) -0.00048(10) )
0.00159(13)
Cd33 0.0156(3)  0.00424(15)  0.0145(3) 0 0.00593(17) 0
Cd34  0.00940(14) 0.01853(13) 0.00881(13) -0.00268(14) 0.00054(10) 0.00268(13)
Cd3s 0.0552(3) 0.0249(2) 0.0568(4) 0.0138(2) 0.0396(3) 0.0012(2)
Cd701 0.007(3) -0.0093(17)  -0.007(2) 0.0013(9) -0.004(2) 0.0013(7)
Cd702 0.0570(3)  0.01866(18)  0.0464(3)  0.00279(19)  -0.0381(3)  0.00497(18)
XIV. Structural information of Cd,Tb 1/1 approximant at 186K
Wyckoff .
Symbol . x/a y/b z/c Biso/eq
site
Tb1 8f 0.14833(2) 0.43892(2) 0.10085(2) 0.0049(1)
Tb2 8f 0.15139(2) 0.06094(2) 0.09950(2) 0.0043(1)
Tb3 8f 0.75381(2) 0.25149(1) 0.19467(3) 0.0049(1)
Tb4 8f 0.94493(2) 0.24949(1) 0.00519(3) 0.0051(1)
Tbs 8f 0.40544(2) 0.05147(2) 0.15511(2) 0.0049(1)
Tb6 8f 0.40479(2) 0.45430(2) 0.15487(2) 0.0047(1)
cdl 8f 0.65926(3) 0.41345(4) 0.20884(3) 0.0080(1)
cd2 8f 0.74739(1) 0.44062(4) -0.00308(1) 0.0091(1)
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Cd3 8f 0.54685(3) 0.51736(3) 0.20369(3) 0.0072(1)
Cd4 8f 0.95912(3) 0.59087(4) 0.41099(3) 0.0081(1)
Cds 8f 0.87620(4) 0.75357(2) 0.22104(4) 0.0065(1)
Cdé6 8f 0.97084(4) 0.75069(2) 0.12531(5) 0.0074(2)
cd7 8f 0.54081(3) 0.40942(4) 0.09369(3) 0.0078(1)
cds 8f 0.90528(4) 0.75069(2) 0.34566(4) 0.0071(2)
Cd9 8f 0.84492(5) 0.74840(2) 0.09543(5) 0.0092(2)
Cd10 8f 0.88796(3) 0.55170(4) 0.52282(3) 0.0083(1)
cdit 8f 0.61297(2) 0.83745(3) 0.36165(2) 0.0144(1)
cdi2 8f 0.79837(3) 0.59448(3) 0.04775(3) 0.0072(1)
Cdi3 8f 0.73285(3) 0.54676(4) 0.35816(4) 0.0096(1)
cdl4 8f 0.65913(4) 0.59418(5) 0.25113(4) 0.0124(1)
Cdis 8f 0.77306(3) 0.44789(4) 0.13670(4) 0.0078(1)
Cdi6 8f 0.77107(3) 0.62956(5) 0.18133(4) 0.0093(1)
Cd17 8f 0.82720(3) 0.34546(3) 20.07716(3) 0.0070(1)
Cdis 8f 0.57037(3) 0.86785(5) 0.01952(3) 0.0094(1)
Cd19 8f 1.00015(3) 0.40940(5) 0.40944(4) 0.0100(1)
Cd20 8f 0.83757(4) 0.41433(5) 0.25060(4) 0.0112(1)
cd21 8f 0.49977(4) 0.58876(5) 0.08661(4) 0.0117(1)

cd22 de 05 0.35067(4) 0.25 0.0099(1)

Cd23 8f 0.67255(3) 0.34675(3) 0.07718(3) 0.0070(1)

Cd24 8f 0.84259(3) 0.59380(4) 0.29114(3) 0.0077(1)

Cd2s 8f 0.79738(3) 0.90205(3) 0.04802(3) 0.0074(1)

Cd26 8f 0.39111(3) 0.54618(4) 0.01723(3) 0.0080(1)

Cd27 8f 0.57089(4) 0.74741(2) 0.08905(5) 0.0120(2)

Cd28 8f 0.42954(3) 0.36620(5) 0.02145(3) 0.0093(1)

Cd29 de 05 0.16074(4) 0.25 0.0094(1)

Cd30 8f 0.67194(5) 0.74880(2) 0.17391(5) 0.0171(2)

cd31 8f 0.72869(3) 0.36779(5) 0.31993(3) 0.0089(1)

Cd32 8f 0.70194(9) 0.75115(2) 0.04656(9) 0.0218(3)

Cd33 8f 0.70351(2) 0.76796(4) 0.45329(2) 0.0136(1)

Cd34 8f 0.63205(2) 0.65501(2) 0.38115(2) 0.0123(1)

Cd3s 8f 0.95405(3) 0.49725(3) 0.29642(3) 0.0085(1)

Cd701 8f 0.54013(4) 0.67738(6) 0.29928(7) 0917 0.0437(3)

Cd702 8f 0.55077(3) 0.81690(4) 0.20930(3) 0.882 0.0372(2)

Cd704 8f 0.5432(3) 0.8412(3) 0.2740(3) 0.125 0.0224(13)

Cd705 8f 0.5402(4) 0.6595(4) 0.2711(4) 0.076 0.0149(17)

XV. Anisotropic displacement parameters (A?) of the CdTh 1/1 approximant at
186K

Symbol Uy, Uy Uss Up U Uy

Tbl 0.00544(11)  0.00459(9)  0.00459(12)  0.00016(8)  -0.00207(7)  -0.00096(9)
Tb2 0.00477(11)  0.00422(8)  0.00377(12)  -0.00017(8)  -0.00107(7)  0.00052(9)
Tb3 0.00584(15)  0.00407(14)  0.00492(17)  -0.00006(4)  0.00047(13)  0.00008(4)
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Tb4
TbS
Tb6
Cdl
Cd2
Cd3

Cd4

Cds
Cdé6

Cd7

Cd8

Cd9
Cd10
Cdl11

Cd12

Cd13
Cd14
Cd15

Cd16

Cd17

Cd18

Cd19

Cd20

Cd21
Cd22
Cd23
Cd24
Cd25
Cd26
Cd27
Cd28
Cd29
Cd30

Cd31

Cd32

Cd33

0.00607(16)
0.00457(11)
0.00494(11)
0.01096(19)
0.0107(2)
0.00423(14)

0.00696(19)

0.0093(3)
0.0069(3)

0.00738(19)

0.0052(3)
0.0121(3)
0.01077(18)
0.0174(2)

0.0084(2)

0.00794(17)
0.0172(2)
0.00658(16)

0.0064(2)

0.0114(2)

0.0074(2)
0.00596(19)
0.0174(2)

0.0070(2)
0.0117(3)
0.0100(2)

0.01000(19)
0.0089(2)

0.01142(18)
0.0107(3)
0.0090(2)
0.0108(3)
0.0253(4)

0.0073(2)

0.0300(6)

0.00876(16)

0.00294(15)
0.00558(8)
0.00477(8)

0.00602(17)

0.00551(17)

0.01129(13)

0.00582(18)

0.0068(2)
0.0077(3)

0.00593(18)

0.00913(19)
0.00625(18)
0.00662(16)
0.00713(12)

0.00646(14)

0.00723(16)
0.0134(2)
0.00579(15)

0.0132(2)

0.00575(14)

0.0131(2)
0.0078(2)
0.01079(19)

0.0120(2)
0.00429(17)
0.00583(14)
0.00618(16)
0.00686(14)
0.00678(16)
0.0088(2)
0.0127(2)
0.00552(18)
0.0045(2)

0.0117(2)

0.0092(2)

0.02254(16)

0.00631(18)
0.00452(12)
0.00449(12)
0.0071(2)
0.0109(2)
0.00597(16)

0.0114(2)

0.0034(2)
0.0076(3)

0.0101(2)

0.0071(3)
0.0091(3)
0.00764(19)
0.0186(2)

0.0068(3)

0.0137(2)
0.0065(2)
0.01116(19)

0.0083(2)

0.0038(2)

0.0077(2)
0.0162(2)
0.00551(19)

0.0162(2)
0.0138(3)
0.0051(2)
0.0071(2)
0.0066(3)

0.00576(17)
0.0163(3)
0.0061(2)
0.0119(3)
0.0214(4)

0.0078(2)

0.0263(6)

0.00946(18)

0.00020(4)
-0.00066(8)
0.00030(7)
0.00293(13)
0.00091(8)

-0.00164(12)

-0.00001(14)

0.00001(9)
-0.00005(7)

-0.00036(14)

-0.00030(7)
0.00037(8)
-0.00196(13)
0.00337(12)

-0.00061(15)

-0.00127(13)
-0.00950(17)
0.00018(12)

0.00016(16)

0.00140(16)

-0.00272(17)
0.00040(15)
-0.00765(16)

-0.00079(16)
0
-0.00079(16)
0.00204(13)
0.00125(15)
-0.00160(13)
-0.00024(9)
0.00370(17)
0
0.00262(10)

-0.00110(16)

-0.00137(11)

-0.00227(17)

-0.00230(14)
-0.00079(7)
-0.00051(7)
0.00098(15)
0.00311(16)
0.00033(10)

20.00016(15)

0.00056(19)
20.0018(2)

0.00047(15)

0.00134(16)
-0.00511(18)
0.00261(15)
0.00901(14)

20.00171(13)

-0.00289(15)
-0.00004(18)
0.00139(14)

-0.00089(17)

-0.00053(12)

-0.00056(17)
-0.00088(18)
0.00075(17)

-0.00194(18)
-0.00476(18)
-0.00064(12)
0.00062(15)
20.00170(13)
0.00227(14)
0.0073(2)
-0.00004(17)
-0.00353(17)
20.0185(3)

-0.00067(17)

0.0221(3)

-0.00046(12)

0.00004(4)
-0.00041(8)
0.00005(8)
0.00148(13)
0.00089(8)
0.00094(13)
0.00255(14)
0.00016(8)
0.00036(7)
0.00194(14)
-0.00022(7)
-0.00037(8)
0.00130(13)
0.00329(13)
0.00085(15)
0.00282(14)
0.00105(16)
0.00187(13)

0.00373(18)

0.00059(15)
0.00187(18)
0.00609(15)
0.00033(15)
0.00988(16)
0
0.00122(15)
0.00047(13)
0.00140(15)
0.00065(12)
0.00173(10)
0.00177(17)
0
-0.00160(9)

0.00339(17)

0.00092(11)
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0.00286(17)
Cd34 0.01509(19)  0.00632(12)  0.0156(2)  -0.00240(11)  0.00685(13) )
0.00245(11)
Cd3s 0.00455(15)  0.01439(15)  0.00657(16)  0.00036(13)  0.00011(10) 0.00186(14)
Cd701 0.0516(5) 0.0246(3) 0.0551(8) 20.0034(3)  -0.0396(4)  0.0164(4)
Cd702 0.0423(4) 0.0175(2) 0.0516(4) -0.0041(2) 0.0352(3) 0.0029(2)
Cd704 0.022(2) 0.0044(12) 0.040(3) -0.0076(12) 20.003(2)  -0.0041(14)
Cd705 0.019(3) 0.007(2) 0.018(4) 0.0091(17) 0.020(3)  -0.0004(19)
XVI. Structural information of Cd,Tb 1/1 approximant at 188K
Wyckoff .
Symbol . x/a y/b z/c Biso/eq
site
Tbl 8f -0.09987(2) -0.06085(2) -0.34915(2) 0.0054(1)
Tb2 8f -0.10091(2) -0.43907(2) -0.35144(2) 0.0056(1)
Tb3 8f -0.15508(2) -0.05121(2) -0.09480(2) 0.0052(1)
Tb4 8f -0.19479(2) -0.25110(1) -0.74581(2) 0.0054(1)
Tb5 8f -0.00524(2) -0.24964(1) -0.55526(2) 0.0060(1)
Tb6 8f -0.15488(2) -0.45299(2) -0.09527(2) 0.0054(1)
cdl 8f -0.17334(5) -0.24918(2) -0.32882(6) 0.0190(2)
cd2 8f -0.37930(3) -0.15541(3) -0.37020(3) 0.0182(1)
Cd3 8f -0.59068(3) -0.59040(4) -0.50018(3) 0.0106(1)
Cd4 8f -0.24988(4) -0.41379(5) -0.33740(4) 0.0132(1)
Cds 8f -0.08911(4) -0.59063(4) -0.45905(3) 0.0093(1)
Cdé 8f -0.36430(3) -0.33886(3) -0.38485(3) 0.0228(2)
Cd7 8f -0.00230(1) 0.44065(4) -0.24805(1) 0.0104(2)
Cds 8f -0.20913(3) 0.08784(4) -0.34099(4) 0.0097(1)
Cdo 8f -0.20914(3) -0.59330(4) -0.34236(3) 0.0092(1)
cd1o0 8f -0.14103(4) -0.54710(4) -0.23203(3) 0.0103(1)
cdil 8f -0.09521(4) -0.24889(2) -0.15506(4) 0.0086(2)
cd12 8f -0.08773(4) -0.08901(5) -0.50023(3) 0.0126(1)
Cd13 8f 0.09262(4) -0.09043(4) -0.54091(3) 0.0095(1)
cdl4 8f -0.13719(4) 0.05105(4) -0.22762(3) 0.0090(1)
Cd1s 8f 0.25117(4) -0.09260(5) -0.33998(4) 0.0148(2)
cd16 8f -0.15429(4) 0.24947(2) -0.40513(4) 0.0086(2)
cd17 8f -0.08847(5) -0.24811(2) -0.42940(5) 0.0137(2)
Cd18 8f -0.47751(3) -0.44898(4) -0.38835(4) 0.0099(1)
Cd19 8f -0.48177(3) -0.04692(4) -0.39076(4) 0.0101(1)
Cd21 8f -0.20354(4) -0.49502(4) -0.45429(3) 0.0153(1)
Cd22 8f -0.48039(3) -0.63261(5) -0.42939(3) 0.0094(1)
Cd23 8f 0.02106(3) -0.13383(5) -0.42930(3) 0.0092(1)
Cd24 8f -0.17999(3) -0.36800(5) -0.22889(3) 0.0098(1)
Cd2s 8f -0.20368(3) 0.01741(4) -0.45370(3) 0.0117(1)
Cd26 8f -0.12512(4) 0.24950(2) -0.52908(4) 0.0079(2)
Cd27 8f -0.18097(4) -0.13005(5) -0.22906(3) 0.0102(1)
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Cd28
Cd29
Cd30
Cd31
Cd32
Cd33
Cd35
Cd20
Cd34
Cd701
Cd702
Cd703
Cd704
Cd705
Cd706
Cd707

8f
8f
8f
8f
8f
8f
8f
4e
4e
8f
8f
8f
8f
8f
8f
8f

-0.27866(4)
-0.07720(3)
-0.04749(3)
-0.04797(8)
0.04728(3)
0.07719(3)
-0.45356(4)
025
025
-0.3000(3)
-0.20959(8)
0.2413(3)
0.3110(14)
0.2773(3)
-0.2803(7)
-0.2857(9)

0.24731(2)
0.15345(3)
-0.40261(3)
-0.25080(2)
-0.40508(3)
0.34559(3)
0.26397(4)
-0.84914(5)
-0.65974(5)

-0.17632(19)
-0.31666(6)
0.2518(2)

20.192(2)
0.3372(4)
-0.1709(5)
-0.1855(7)

-0.37590(4)
-0.32736(3)
-0.20235(3)
-0.29720(7)
-0.29840(3)
0.32716(3)
-0.29653(4)
05
05
0.4612(3)
-0.44898(7)
0.4189(3)
0.4675(13)
0.4555(3)
0.4516(3)
-0.5550(9)

0.52
0.705
0.247

0.09
0.162
0214

0.07

0.0078(2)
0.0078(1)
0.0079(1)
0.0208(3)
0.0076(1)
0.0077(1)
0.0198(1)
0.0153(2)
0.0142(2)
0.0352(9)
0.0386(4)
0.072(4)
0.062(5)
0.0326(14)
0.0452(19)
0.063(6)

XVII. Anisotropic displacement parameters (A?) of the CdTb 1/1 approximant

at 188K
Symbol Uy, Uy Uss Uy, Ui Uss

Tbl 0.00534(13) 0.00363(8) 0.00709(12) 0.00062(9) 0.00204(8) -0.00005(8)
Tb2 0.00582(13) 0.00383(8) 0.00713(12)  -0.00103(9) 0.00243(8) -0.00001(8)
Tb3 0.00457(13) 0.00451(8) 0.00659(12) 0.00022(8) 0.00106(8) 0.00058(8)

Tb4 0.00370(16)  0.00328(13)  0.00907(17)  -0.00001(4)  0.00035(13) 0.00021(5)

Tb5 0.00674(17)  0.00227(13)  0.00885(17) 0.00004(4) 0.00197(14)  -0.00015(4)
Tb6 0.00462(13) 0.00481(8) 0.00678(13)  -0.00047(8) 0.00083(8) -0.00044(8)
Cd1 0.0207(4) 0.00180(19) 0.0346(5) -0.00122(9) 0.0233(4) -0.00171(10)
Cd2 0.0224(3) 0.00683(14) 0.0252(3) -0.00335(15) -0.01369(18) 0.00335(16)
Cd3 0.0165(3) 0.00777(19) 0.0075(2) 0.00757(16) 0.0023(2) 0.00016(16)
Cd4 0.0073(2) 0.0112(2) 0.0210(3) 0.00022(17) 0.0001(2) -0.00823(18)
Cds 0.0132(3) 0.00465(17) 0.0099(2) 0.00274(15)  -0.00039(18) -0.00005(15)
Cdé6 0.0325(4) 0.00905(16) 0.0268(3) 0.00819(19) -0.0187(2) -0.00729(18)
Cd7 0.0125(3) 0.00510(17) 0.0136(3) 0.00081(9)  -0.00351(19) -0.00081(9)
Cd8 0.0075(2) 0.00721(18) 0.0144(2) 0.00139(15) -0.00051(18) -0.00200(16)
Cd9 0.0075(2) 0.00651(17) 0.0137(2) -0.00117(15) -0.00032(18)  0.00092(16)
Cd10 0.0139(2) 0.00631(17) 0.0107(2) -0.00335(15) 0.00477(18) -0.00137(14)
Cdl11 0.0093(3) 0.00443(17) 0.0121(3) -0.00035(8)  0.00547(18)  -0.00023(8)
Cd12 0.0185(3) 0.0110(2) 0.0084(2) 0.01094(17) 0.0031(2) 0.00105(17)
Cd13 0.0135(3) 0.00465(17) 0.0104(2) -0.00256(16) -0.00061(19)  0.00016(15)
Cdi4 0.0114(2) 0.00605(16)  0.00948(19)  0.00305(15) 0.00345(17)  0.00085(14)
Cd15 0.0076(2) 0.0148(2) 0.0221(3) 0.00065(18) 0.0006(2) 0.0110(2)

Cd16 0.0073(3) 0.00940(19) 0.0090(3) 0.00018(8) 0.00148(17)  -0.00015(8)
Cd17 0.0225(4) 0.0083(2) 0.0105(3) 0.00093(10) 0.0086(2) 0.00039(9)

Cd18 0.0101(2) 0.00653(17) 0.0129(2) 0.00178(15)  0.00357(18)  0.00243(15)

179



Appendix

Cd19 00101(2)  0.00665(17)  0.0134(2)  -0.00163(15) 0.00345(18) -0.00211(15)
Cd21 0.0097(2) 0.0288(2) 0.0073(2)  -0.00304(19)  0.00055(14) -0.00262(18)
Cd22 0.0093(2) 0.0110(2) 0.0079(2)  0.00059(17)  0.00071(18) -0.00313(16)
Cd23 0.0083(2) 0.0104(2) 0.0090(2)  0.00078(17)  0.00017(18)  -0.00370(16)
Cd24  0.0103(2) 0.0109(2) 0.0082(2)  0.00431(17) 0.00129(18) -0.00121(16)
Cd2s 0.0099(2)  0.01729(18)  0.00785(19)  0.00205(16)  0.00016(13)  0.00250(15)
Cd26 0.0112(3) 0.0063(2) 0.0062(3) 0.00035(8) 0.0021(2) 0.00014(8)
Ccd27 0.0109(3) 0.0124(2) 0.0074(2)  -0.00479(18) 0.00136(18)  0.00041(16)
Cd28 0.0067(3) 0.0074(2) 0.0093(3) 0.00020(9) 0.0009(2) 0.00039(9)
Cd29 0.0068(2)  0.00484(13)  00117(2)  0.00147(15) 0.00077(14)  0.00097(15)
Cd30 0.0033(2)  0.00611(14)  0.0143(2)  0.00019(14)  0.00238(14) -0.00180(15)
Cd31 0.0283(6) 0.0073(2) 0.0269(5)  -0.00110(11)  -0.0206(3)  0.00130(11)
Cd32 0.0036(2)  0.00548(13)  0.0137(2)  -0.00018(14) 0.00207(13)  0.00116(15)
Cd33 0.0056(2)  0.00480(13)  0.0127(2)  -0.00097(15) 0.00077(14) -0.00137(15)
Cd3s 0.0112(3) 0.0376(2) 0.0104(2) 0.0035(2)  0.00035(17)  0.0016(2)
Cd20 0.0211(4) 0.0061(2) 0.0188(4) 0 0.0109(3) 0
Cd34  00189(4)  0.00602(20)  0.0177(4) 0 0.0092(2) 0
Cd701 0.042(2) 0.020(1) 0.0437(18)  00112(12)  0.0224(15)  -0.0015(12)
Cd702  0.0534(8) 0.0169(3) 0.0453(7) 0.0040(4) -0.0389(6) 0.0020(4)
Cd703  0.0134(19) 0.186(13) 0.0152(18)  0.0031(13)  -0.0045(14)  0.0019(13)
Cd704 0.052(8) 0.078(9) 0.055(8) 0.066(8) 0.065(7) 0.063(7)
Cd705 0.043(3) 0.027(2) 0.028(2) -0.0119(18) 0.003(2) 0.0248(17)
Cd706 0.041(4) 0.050(3) 0.045(3) 0.023(2) -0.007(2) -0.045(3)
Cd707  0.077(12) 0.021(4) 0.089(13) 0.028(5) -0.089(11) -0.033(6)

XVIII. Structural information of Cd,Tb 1/1 approximant at 192K

Wyckoff .
Symbol . x/a y/b z/c Biso/eq
site
Tb1 8f 0.34971(6) 0.06058(7) 0.09964(6) 0.0062(1)
Tb2 8f 0.35103(6) 0.43939(7) 0.10025(6) 0.0063(1)
Tb3 8f 0.09489(6) 0.05047(7) 0.15539(6) 0.0060(1)
Tb4 8f 0.74612(7) 0.25066(3) 0.19546(8) 0.0060(1)
TbS 8f 0.55525(8) 0.24975(3) 0.00608(7) 0.0067(2)
Tb6 8f 0.09515(6) 0.45209(7) 0.15526(6) 0.0062(1)
cdl 8f 0.33411(12) 0.24951(3) 0.17746(9) 0.0245(5)
Ccd2 8f 0.37410(7) 0.15628(6) 0.37545(8) 0.0307(4)
Cd3 8f 0.49982(5) 0.58991(6) 0.59024(5) 0.0128(2)
Cd4 8f 0.33809(5) 0.41287(7) 0.25018(5) 0.0144(2)
Cd5 8f 0.46008(5) 0.58996(6) 0.08965(6) 0.0111(2)
Cd6 8f 0.38065(16) 0.34076(13) 0.36815(17) 0.0344(7)
Cde' 8f 0.6130(3) 0.3401(3) 0.1361(2) 0.239 0.0071(8)
Cd7 8f 0.24896(2) -0.44054(6) 0.00125(2) 0.0103(3)
Cd8 8f 0.34036(5) -0.08980(7) 0.20790(5) 0.0107(2)
Cd9 8f 0.34111(5) 0.59302(6) 0.20794(5) 0.0102(2)
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Cd10
Cdl1
Cd12
Cd13
Cd14
Cd15
Cdl6
Cdl17
Cd18
Cd19
Cd20
Cd21
Cd22
Cd23
Cd24
Cd25
Cd26
Cd27
Cd28
Cd29
Cd30
Cd31
Cd32
Cd33
Cd34
Cd35
Cd702
Cd701
Cd703
Cd704
Cd705

8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
4e
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
8f
4e
8f
8f
8f
8f
8f
8f

0.23085(5)
0.15539(7)
0.49986(5)
0.53989(5)
0.22835(5)
0.33968(6)
0.40431(6)
0.42434(8)
0.38862(5)
0.38996(5)

05
0.45424(6)
0.43041(5)
0.43033(5)
0.22982(5)
0.45396(6)
0.52905(6)
0.22997(5)
0.37521(6)
0.32696(4)
0.20238(4)

0.29728(10)
0.29803(4)
0.32689(4)

05
0.29704(9)
0.46282(17)
0.44894(12)
0.4654(4)
0.4189(3)
0.4229(2)

0.54826(7)
0.24939(3)
0.08900(7)
0.08988(6)
-0.05052(7)
0.09084(7)
-0.24966(3)
0.24907(3)
0.44945(7)
0.04833(7)
0.65830(8)
0.49244(9)
0.63214(7)
0.13288(7)
0.36745(7)
0.01508(9)
-0.24968(3)
0.13150(7)
-0.24850(3)
-0.15409(5)
0.40323(5)
0.25045(3)
0.40454(5)
-0.34538(5)
-0.15306(8)
0.25789(6)
0.17465(20)
0.31743(14)
0.3325(5)
0.2500(5)
0.2502(3)

0.13986(5)
0.09540(6)
0.08843(5)
-0.09166(6)
0.13768(5)
0.25094(5)
0.15471(6)
0.08185(11)
0.47829(5)
0.48062(5)
0.25
0.20385(6)
0.47957(5)
0.02127(5)
0.17914(5)
0.20394(6)
0.12548(6)
0.17968(5)
0.27903(6)
0.07708(4)
0.04800(5)
0.04717(10)
-0.04789(5)
0.07708(4)
0.25
0.45276(9)
0.29784(19)
0.20930(13)
0.2923(5)
0.2396(3)
0.2648(3)

0.656
0.384
0.29
0.274
0.396

0.0118(2)
0.0101(2)
0.0140(2)
0.0111(2)
0.0105(2)
0.0154(2)
0.0095(2)
0.0253(5)
0.0106(2)
0.0111(2)
0.0207(4)
0.0206(3)
0.0113(2)
0.0112(2)
0.0102(2)
0.0184(3)
0.0094(2)
0.0107(2)
0.0084(2)
0.0083(2)
0.0082(2)
0.0213(4)
0.0081(2)
0.0083(2)
0.0222(4)
0.0252(4)

0.0640(11)
0.0426(9)

0.084(3)
0.058(4)
0.066(3)

XIX. Anisotropic displacement parameters (A?) of the Cd,Tb 1/1 approximant at

192K

Symbol Uy, U Uss Uy, Ui Uy
Tb1 0.0086(2) 0.00354(14) 0.0063(2) 0.00081(14) 0.00336(16)  -0.00061(13)
Tb2 0.0085(2) 0.00361(14) 0.0068(2) -0.00093(14)  0.00386(16) 0.00021(13)
Tb3 0.0080(2) 0.00508(14) 0.0050(2) 0.00046(14) 0.00182(15)  -0.00036(13)
Tb4 0.0092(3) 0.0037(2) 0.0052(2) 0.0002(1) 0.0019(2) -0.00021(9)
Tb5 0.0093(3) 0.0026(2) 0.0081(3) 0.00004(9) 0.0022(2) 0.00010(9)
Tb6 0.0081(2) 0.00538(14) 0.0051(2) -0.00038(14)  0.00175(15) 0.00003(14)
Cd1 0.0437(11) 0.0076(5) 0.0223(7) 0.0005(2) 0.0244(7) 0.0002(2)
Cd2 0.0413(7) 0.0068(3) 0.0440(8) 0.0053(4) -0.0331(5) -0.0053(4)
Cd3 0.0103(4) 0.0086(3) 0.0196(4) -0.0019(3) 0.0013(4) 0.0082(3)
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Cd4
Cd5
Cdé6
Cdeé'
Cd7
Cd8
Cdo
Cd10
Cdl1
Cd12
Cd13
Cd14
Cd15
Cdl16
Cd17
Cd18
Cd19
Cd20
Cd21
Cd22
Cd23
Cd24
Cd25
Cd26
Cdz27
Cd28
Cd29
Cd30
Cd31
Cd32
Cd33
Cd34
Cd35
Cd702
Cd701
Cd703
Cd704
Cd705

0.0257(5)
0.0067(3)
0.0379(12)
0.0096(17)
0.0138(5)
0.0147(4)
0.0146(4)
0.0118(4)
0.0171(5)
0.0109(4)
0.0072(3)
0.0110(4)
0.0257(5)
0.0085(5)
0.0207(7)
0.0145(4)
0.0155(4)
0.0262(8)
0.0094(4)
0.0125(4)
0.0130(4)
0.0124(4)
0.0100(4)
0.0098(5)
0.0116(4)
0.0137(5)
0.0108(4)
0.0095(4)
0.0225(8)
0.0093(4)
0.0112(4)
0.0270(9)
0.0120(6)
0.075(2)
0.0501(18)
0.095(6)
0.0060(17)
0.0103(16)

0.0121(4)
0.0060(3)
0.0079(6)

0.0123(13)
0.0056(3)
0.0071(3)
0.0055(3)
0.0087(3)
0.0054(3)
0.0102(3)
0.0056(3)
0.0082(3)
0.0148(4)
0.0107(3)
0.0034(4)
0.0052(3)
0.0053(3)
0.0065(4)
0.0405(6)
0.0128(4)
0.0127(4)
0.0102(3)
0.0325(5)
0.0090(4)
0.0117(4)
0.0052(3)
0.0048(2)
0.0062(2)
0.0079(3)
0.0057(2)
0.0045(2)
0.0075(4)
0.0494(7)

0.0376(11)
0.0180(9)

0.044(3)
0.161(12)
0.167(9)

0.0054(3)
0.0205(5)
0.0572(16)
-0.0005(12)
0.0116(5)
0.0104(4)
0.0104(4)
0.0149(4)
0.0079(4)
0.0210(4)
0.0204(5)
0.0123(4)
0.0058(3)
0.0094(4)
0.0519(12)
0.0122(4)
0.0123(4)
0.0295(9)
0.0120(5)
0.0086(4)
0.0078(3)
0.0080(3)
0.0126(5)
0.0094(4)
0.0090(4)
0.0062(4)
0.0094(4)
0.0091(4)
0.0334(10)
0.0095(4)
0.0091(4)
0.0320(9)
0.0142(6)
0.079(2)
0.0596(19)
0.114(7)
0.007(2)
0.021(3)

20.0103(3)
20.0011(2)
-0.0084(6)
0.0048(13)

-0.00045(17)
-0.0016(3)

0.0018(3)
-0.0037(3)

0.00000(17)

-0.0019(3)
0.0012(2)
0.0032(3)
0.0115(3)

0.00023(17)

-0.00168(19)

0.0023(3)
-0.0028(3)
0
-0.0048(4)
-0.0035(3)
-0.0039(3)
-0.0032(3)
0.0046(4)
0.00011(16)
0.0031(3)
0.00062(17)
0.0027(2)
0.0021(2)
0.00073(19)
0.0017(2)
-0.0026(2)
0
-0.0002(3)
-0.0010(12)
0.0059(10)
0.010(3)
0.0040(18)
-0.0065(15)

0.0024(4)
-0.0005(3)
-0.0390(11)
0.0131(11)
-0.0035(3)
0.0009(3)
0.0018(3)
0.0051(3)
0.0065(3)
0.0014(4)
0.0018(3)
0.0040(3)
0.0026(4)
0.0023(3)
0.0305(8)
0.0062(3)
0.0062(3)
0.0193(6)
0.0015(3)
0.0021(3)
0.0021(3)
0.0011(3)
0.0014(3)
0.0039(3)
0.0008(3)
0.0014(3)
0.0015(2)
0.0030(2)
0.0190(5)
0.0031(2)
0.0015(2)
0.0218(6)
0.0014(4)
0.0368(17)
0.0371(14)
0.057(5)
0.0075(11)
0.0153(16)

20.0017(3)
0.0041(3)
0.0093(7)

-0.0057(11)

0.00059(16)
0.0019(3)
-0.0006(3)
-0.0046(3)

-0.00031(15)
0.0099(3)
-0.0042(3)
0.0040(3)
0.0022(3)

0.00006(17)
-0.0020(2)
0.0003(3)
-0.0003(3)

0
-0.0056(4)
-0.0002(3)
-0.0002(3)
0.0029(3)
0.0038(4)

0.00029(16)
-0.0038(3)

-0.00018(15)
-0.0007(2)
0.0010(3)
-0.0003(2)
-0.0006(3)
0.0010(2)

0
-0.0001(3)
0.0376(12)
0.0019(10)

-0.062(4)
0.002(3)
-0.004(2)
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