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Abstract 

Pattern-recognition receptors (PRRs) play a key role in plant immunity by assuring 

recognition of microbe-associated molecular patterns (MAMPs), signature of microbial presence. 

MAMP perception constitutes the first layer of pathogen detection and activates defense 

mechanisms that aim to block the intruder.  

This study brings an insight into how grapevine (Vitis vinifera) perceives two MAMPs: the 

flagellin-derived flg22 peptide and chitin, which are conserved motifs occurring over the whole 

bacterial and fungal classes, respectively. This study analyzed MAMP-triggered early signaling 

events, defense gene expression and also the efficiency of elicited defense against gray mold and 

downy mildew diseases. These two MAMPs are active in grapevine suggesting that perception 

systems exist. So far, no PRR is known for this crop. 

Given the availability of grapevine genome, we could identify in silico putative grapevine 

receptors (VvFLS2, VvCERK1-3 and VvCEBiP1-2) that might function as PRRs for flg22 and 

chitin, respectively. Their functional characterization was firstly achieved by complementation 

assays in the corresponding A. thaliana mutants and, secondly, by a gene silencing strategy in 

grapevine. 

Our results permitted the identification of VvFLS2, the V. vinifera receptor for the 

bacterial flagellin. The function of VvFLS2 was demonstrated by restoring the flg22 

responsiveness in the Arabidopsis fls2 null mutant. Thus, our work provides the first description of 

an active grapevine PRR-MAMP pair. We further compared VvFLS2 and the Arabidopsis 

receptor, AtFLS2, in their capability to perceive flagellin-derived flg22 epitopes from endophytic 

or pathogenic bacteria. Our data clearly show that VvFLS2 differentially recognizes flg22 from 

different bacteria and suggest that flagellin from the beneficial plant growth-promoting 

rhizobacteria (PGPR) Burkholderia phytofirmans has evolved to evade grapevine immune 

recognition system. We also obtained preliminary data on chitin sensing system in grapevine and 

show that VvCERK3 might be a functional ortholog of AtCERK1 by partly restoring the oxidative 

burst triggered by chitin in the Arabidopsis cerk1-2 mutant. 

 

Key words: grapevine, immunity, MAMP, receptors, PRR, FLS2, flg22, CERK1, chitin, Vitis 

vinifera 
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Résumé 

Les récepteurs PRR (Pattern-recognition receptors) jouent un rôle clé dans l‟immunité des 

plantes en assurant la reconnaissance d‟éliciteurs, des motifs moléculaires associés aux 

microorganismes (MAMP) qui témoigne de leur présence microbienne. La perception de ces 

MAMPs constitue le premier système de détection d‟agents potentiellement pathogène, et 

déclenche des mécanismes de défense qui ont pour but de bloquer leur développement. 

Cette étude met en lumière comment la vigne (Vitis vinifera) perçoit deux MAMPs : le 

peptide flg22 dérivé de la flagelline et la chitine, des  motifs conservés existant dans la plupart des 

espèces bactériennes et fongiques, respectivement. Cette étude analyse les événements précoces de 

signalisation, l‟expression de gènes de défense activés par ces MAMPs et l‟efficacité de la 

résistance induite contre les agents de la pourriture grise et du mildiou de la vigne. Si nos résultats 

suggèrent que des systèmes de perception pour ces deux MAMPs existent chez la vigne, aucun 

récepteur PRR n‟est actuellement connu pour cette plante cultivée. 

La disponibilité du génome de la vigne nous a permis d‟identifier in silico des récepteurs 

putatifs (VvFLS2, VvCERK1-3 et VvCEBiP1-2) pouvant fonctionner comme PRR respectif de 

flg22 et de chitine. Leur analyse fonctionnelle a été réalisée d‟une part par complémentation des 

mutants correspondants d‟Arabidopsis et, d‟autre part, par une stratégie d‟extinction de gène chez 

la vigne. 

Nos résultats ont permis d‟identifier VvFLS2, le récepteur de la vigne à la flagelline 

bactérienne. La fonction de VvFLS2 a été démontrée en restaurant la réponse à flg22 du mutant 

fls2 d‟Arabidopsis. Ainsi, nos travaux sont les premiers à décrire un couple PRR-MAMP actif chez 

la vigne. Nous avons également comparé les capacités de perception de VvFLS2 et du récepteur 

d‟Arabidopsis, AtFLS2, envers des épitopes flg22 provenant de bactéries endophytes ou 

pathogènes. Nos données montrent clairement que VvFLS2 reconnait différemment les peptides 

flg22 des différentes bactéries et suggèrent que la flagelline de la bactérie bénéfique Burkholderia 

phytofirmans a évolué pour échapper au système de reconnaissance immunitaire de la vigne. Nous 

avons également obtenu des données préliminaires concernant le système de perception de la 

chitine chez la vigne et montré que VvCERK3 pourrait être un orthologue fonctionnel d‟AtCERK1 

en restaurant partiellement le burst oxydatif induit par la chitine dans le mutant cerk1-2 

d‟Arabidopsis. 

 

Mots-clés : vigne, immunité, éliciteurs, récepteurs, PRR, FLS2, flg22, CERK1, chitine, Vitis 

vinifera.  
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GlcN glucosamine 

GlcNAc N-Acetylated glucosamine 

GPI glycosylphosphatidylinositol 

GUS β-glucuronidase 

HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) 

hpt hours post treatment 

HR hypersensitive response 

IgG immunoglobulin G 

INRA Institut National de la 

Recherche Agronomique 

(National Institute for 

Agricultural Research) 

INSEE Institut National de la 

Statistique et des Études 

Économiques 

 (National Institute for 

Statistics and Economic 

Studies) 

JA jasmonic acid 

KAPP kinase-associated protein 

phosphatase 

KLH keyhole limpet hemocyanin 

Lam laminarin 

LB Luria-Bertani broth 

Le Lycopersicum esculentum 

(newly Solanum 

lycopersicum) 

LexA lambda excision A 

LG Le-Gascuel 

Lj Lotus japonicus 

LOX lipoxygenases 

LPS lipopolysaccharide 

LRR leucine-rich repeat  

LRRNT N-terminal of LRR 

ectodomain 

LysM lysin motif 

LYK LysM-RLK 

LYP LysM-RLP 

MAMP microbe-associated molecular 

pattern 

MAPK mitogen-activated protein 

kinase 

MES 2-(N-

morpholino)ethanesulfonic 

acid 

miRNA micro RNA 

M-MLV Moloney Murine Leukemia 

Virus 

 

MS Murashige & Skoog 

Mt Medicago truncatula 

MUSCLE multiple sequence comparison 

by log- expectation 

Myc mycorrhiza 

NAA 1-Naphthaleneacetic acid 

NADPH nicotinamide adenine 

dinucleotide phosphate 

NCBI National center for 

biotechnology information 

NF nodulation factor 

NF-κB nuclear factor κB 

NFP Nod-factor perception 

NFR Nod factor receptor 

NO nitric oxide 

Nod nodulation 

NPK nitrogen, phosphorous and 

potassium 

nt nucleotide 

dNTP deoxyribonucleotide 

triphosphate 

OG oligogalacturonides 
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OIV L'Organisation Internationale 

de la Vigne et du Vin 

(International Organisation of 

Vine and Wine) 

Os Oryza sativa 

qPCR quantitative polymerase chain 

reaction 

PAL phenylalanine ammonia lyase 

PAMP pathogen-associated molecular 

pattern 

PBL PBS1-like 

PBS phosphate buffered saline 

PBS1 avrPphB Susceptible 1 

Pcal Pseudomonas cannabina pv 

alisalensis 

PCR polymerase chain reaction 

qPCR quantitative PCR 

Pep peptide 

PEPR Pep(1) receptor 

Pfu Pyrococcus furiosus 

PGN peptidoglycan 

PGPR plant growth promoting 

rhizobacteria 

PMSF phenylmethylsulfonyl fluoride 

PR pathogenesis-related 

PROPEP protein precursor of AtPeps 

PRR pattern recognition receptor 

PS3 sulfated laminarin 

Pto Pseudomonas syringae pv 

tomato 

PUB plant U-box 

Pv Plasmopara viticola 

R Resistance 

RbohD respiratory burst oxidase 

homolog D 

RC DC reducing and detergent 

compatible 

RH relative hygrometry 

RLK receptor-like kinase 

RLP receptor-like protein 

RLU relative luminescence unit 

RNA ribonucleic acid 

RNAi RNA interference 

ROS reactive oxygen species 

RT-PCR reverse transcription PCR 

SA salicylic acid 

SAIL the Syngenta Arabidopsis 

insertion library 

SDS sodium dodecyl sulfate 

SDS-PAGE SDS polyacrylamide gel 

electrophoresis 

SERK somatic embryo receptor 

kinase 

seWT somatic embryogenesis wild 

type 

Sl Solanum lycopersicum 

(Lycopersicum esculentum) 

SNP single nucleotide 

polymorphism 

60SRP 60S ribosomal protein 

STS stilbene synthase 

T1/2/3 transformant generation 1/2/3 

Taq Thermus aquaticus 

T-DNA transfer DNA 

TBS Tris-buffered saline 

TF transcription factor 

TLR Toll-like receptor 

TNF tumor necrosis factor 

TTSS type III secretion system 

U unit 

UDP uridine diphosphate 

UniProt universal protein resource 

UTR untranslated region 

VST Vitis stilbene synthase 
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Vv Vitis vinifera 

v/v volume/volume 

WAK1 Wall-associated kinase 1 

WP Woody Plant medium 

WT wild-type 

w/v weight/volume 

Xc Xanthomonas campestris 

Xcc Xanthomonas campestris pv 

campestris 

(CaMV)35S Cauliflower Mosaic Virus 35S 

α- anti- 

αs- antisense- 
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INTRODUCTION 

I. General introduction 

1 Socio-economical context 

The modern agriculture has massively intensified over the past 70 years, which was 

enabled by adoption of high-yielding crop varieties, intense agricultural practices using frequent 

fertilization and irrigation together with the pesticide use. As the global population expands, this 

intensification meets the requirements for increased food supply. However, it also causes severe 

environmental problems, such as the deteriorated soil quality and the release of toxic compounds.  

Domestication and breeding of plant varieties for yield and fruit quality brings a negative 

effect on disease resistance. Nowadays, most of the crops are susceptible to numerous diseases, 

caused by different microorganisms (pathogens). Diseases decrease crop yield and the food quality 

and toxins released by some microorganisms may be present in the harvest. In the past, plant 

diseases were responsible for severe economical and nourishment crises and are currently, to 

blame for a loss of approximately 14% of the worldwide crop production (Agrios, 2005). To date, 

an intensive use of numerous phytochemical pesticides is required to ensure a satisfactory yield 

and the quality of the harvest. However, pesticides cause harmful effects on crops, on the 

environment, the health of farmers and consumers. As a side-effect, they select resistant pathogen 

strains. All these reasons call for alternative and sustainable disease management. 

Viticulture is an important agricultural and economical sector of many countries. In 2011 

world vineyards reached a total area surface of 7,585 million hectares (OIV report 2012, 

http://www.oiv.int/oiv/info/enstatsro). European vineyards represented 38% of this surface, but 

produced 65% of the total wine production. France belongs to the main five wine producers, 

competing mostly with Italy and Spain for the 1
st
 place (OIV report 2012). In 2012, French wines 

contributed by 19% to the world wine production. This production also represented more than 15% 

of the total national value of the agricultural products sold in 2012 (INSEE, 

http://www.franceagrimer.fr). 

The cultivated grapevine (Vitis Vinifera) is susceptible to many diseases. Roots, leaves, 

wood or grapes can be infected by different microorganisms, such as oomycetes (downy mildew), 

fungi (gray mold, powdery mildew, anthracnose, black rot, esca), bacteria (crown gall, Pierce's 

disease, bacterial necrosis) or phytoplasms (flavescence dorée). Diseases of grapevine plants affect 

yield, wine taste and quality. Viticulture is an important consumer of pesticides. For illustration, 

French viticulture consumes 20% of all the pesticides used in France, although vineyards 

constitute only 3.2% of cultivated land (Viniflhor, 2005). In average, 15 preventive or curative 
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fungicide treatments are applied in vineyards every year (Delaunois et al., 2014). In 2010, only 

2.1% of the overall grape production area in European Union was of organic origin bypassing the 

pesticide use (http://www.eubusiness.com/topics/food/organic-wine/). Current European and 

French regulation aims to reduce the use of pesticides in agriculture by 50% and to ban the most 

harmful ones by 2018 (REACH & Ecophyto 2018, set in 2008). Viticulture is among the first to 

comply with this target and to adopt alternative strategies. 

Among these alternatives are organic and integrated farming practices, the biological 

control, the use of resistant hybrids or transgenic crops. However, genetic improvement based on 

the assisted crossing or transgenesis is not allowed for French grapevines with an AOC 

(Appellation d‟origine contrôlée) seal. Another alternative consists in stimulating of the plant 

immune system with elicitors, natural molecules that mimic pathogen attack, or by living 

organisms.  

 

In our laboratory, we study the mechanisms of elicitor-induced resistance in grapevine. 

This implies a detailed knowledge on the biotic interaction of grapevine with its pathogens, but 

also on mechanisms of elicitor perception and triggered defense responses. My work focused on 

the perception of several microbial elicitors in grapevine and aimed to identify the corresponding 

receptors.  

2 Plant immunity 

All plants are steadily subject to an environment rich in potentially harmful (pathogenic) 

microbes, such as bacteria, fungi, oomycetes or viruses. Microbes (either pathogenic or symbiotic) 

infect plants to pump nutrients for their growth and development. Nevertheless, plants are resistant 

to most microbes due to an efficient immune system, combining constitutive and inducible defense 

responses. 

The constitutive defenses are formed by physical and chemical barriers, such as cuticle, 

cell walls, and antimicrobial phytoanticipins. The second defense line is inducible by the detection 

of microbial presence. Immune receptors detect a variety of molecules recognized as “non-host” or 

“danger” signals and switch on, on their turn, complex system of defense tools but also attacking 

weapons. These molecule signals are therefore called elicitors, as they elicit host responses (Jones 

and Dangl, 2006). Mechanisms of these immune responses are similar to the innate immunity 

described in animals. This is an ancient, broad-spectrum defense strategy with germ-line encoded 

components. Unlike jawed vertebrate animals, plants lack the adaptive immunity capable of the 

specific antibody production. On the other hand, all plant cells (not only specialized immune cells) 

can activate innate immune system in an autonomous manner (Jones and Dangl, 2006). 



Figure 1. Simplified model of the plant immune system 

A. Upon infection, pathogens/microbes are source of microbe-associated molecular patterns 

(MAMPs). Plants sense these motifs by pattern recognition receptors (PRRs) localized at the cell 

surface and activates its immune responses, such as reactive oxygen species (ROS) production and 

defense gene activation. This first defense is referred to as MAMP-triggered immunity (MTI). B. 

Microbial effectors are secreted into the plant cell cytoplasm and disrupt immune signaling at multiple 

levels leading to disease susceptibility and infection: this is the effector-triggered susceptibility (ETS). 

C. Plants sense these effectors (avirulence products, avr) by cytoplasmic R proteins leading to the 

activation of immune responses and immunity, which is referred to as effector-triggered immunity 

(ETI). Adapted from Gamm (2011). 
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The main and evolutionary older layer of this inducible immunity is based on the external 

recognition of conserved microbial signatures called microbe/pathogen-associated molecular 

patterns (MAMPs/PAMPs) that are generated during microbial attack. The early external 

recognition is also achieved with the host-derived damage-associated molecular patterns (DAMPs) 

produced as a consequence of enzymatic microbial activities and toxins (Boller and Felix, 2009; 

Dodds and Rathjen, 2010; Monaghan and Zipfel, 2012). MAMPs and DAMPs are recognized by 

the plasma-membrane localized pattern recognition receptors (PRRs) and induce a broad variety of 

defense responses commonly referred to as MAMP-triggered immunity (MTI; Fig. 1A). This layer 

is also referred as PAMP- or Pattern-triggered immunity (PTI) or even basal immunity. 

However successful pathogens can secrete effectors, pathovar-specific microbial 

molecules that are delivered into host cells to suppress or interfere with MTI responses, resulting 

in facilitated host colonization and effector-triggered susceptibility (ETS; Fig. 1B). In an ongoing 

arms-race between the host and attacking microorganism, another more specialized layer of 

microbial detection evolved more recently, termed effector-triggered immunity (ETI, Fig. 1C). In 

ETI, host-specific intracellular receptors known as resistance (R) proteins detect the presence or 

activities of effectors. Host can sense effector activity by monitoring perturbations in a few key 

cellular processes. As the number of pathogen effectors is virtually unlimited, this indirect 

detection allows minimizing the array of sensing receptors. As the effector recognition reduces the 

pathogen virulence, effectors are also referred to as avirulence (Avr) products (Jones and Dangl, 

2006). The bases for formulating the ETI model were already set in 1942 by Flor proposing the 

gene-for-gene resistance. According to this concept, the resistance or the disease outcome is 

controlled by corresponding gene pairs, encoding the R and Avr proteins in the plant or the 

pathogen, respectively. Upon the co-evolution of a host with its pathogen, the ETI can be broken 

by new effector(s) leading again to susceptibility (ETS; Fig. 1B). The co-evolution of host 

immunity along with pathogen‟s effectors can be suitably illustrated by the zig-zag model (Jones 

and Dangl, 2006). 

Interactions between plants and pathogenic microbes can be classified according to the 

mechanisms of the “molecular dialog” and the disease outcome. A non-host interaction is 

established between a plant and a non-adapted pathogen that lacks specialized effectors to disrupt 

immunity of a given plant. In this case, MTI responses are sufficient to block pathogen and result 

in a lack of disease (Fig. 1A). We speak about the incompatible interaction, when a specific 

pathovar overcoming MTI attempts to infect a plant that recognizes its effector(s). The resulting 

ETI leads to a resistance (Fig. 1C). In contrast, the compatible interaction occurs when the 

effective ETI is missing or was overcome by novel effectors, finally leading to disease (Fig. 1B). 



      

MAMP Active motif Microorganism 

Activator of XA21 (Ax21) axyS22 (sulfated peptide) Bacteria (Xanthomonas spp.) 

β-glucans tetraglucosyl glucitol, Fungi (Pyricularia oryzae),  

  branched hepta-β-glucoside, Oomycetes (Phytophthora spp.),  

  linear oligo-β-glucosides Brown algae 

Cerebrosides sphingoid Fungi (Magnaporthe spp.) 

Cellulose-binding elicitor 
lectin (CBEL) 

not defined Oomycetes (Phytophthora spp.) 

Chitin/Chitosan (GlcNAc)n / (GlcN)n All fungi 

Cold shock protein N-terminal peptide Bacteria Gram -; + 

Elicitins not defined Oomycetes (Phytophthora spp., Pythium spp.) 

Elongation factor (EF-Tu) N-terminal peptide elf18 Bacteria Gram -  

Ergosterol not defined All fungi 

Flagellin N-terminal peptide flg22 Bacteria Gram - 

Harpin (HrpZ) not defined Bacteria Gram - (Pseudomonas spp., Erwinia) 

Invertase N-mannosylated peptide Yeast 

LPS LipidA lipooligosacharide 
Bacteria Gram - (Xanthomonas spp., Pseudomonas 
spp., Burkholderia spp.) 

Necrosis-inducing protein  not defined 
Bacteria (Bacillus spp.), Fungi (Fusarium spp., 
Verticillium spp.), Oomycetes (Phytophthora spp., 
Pythium spp.) 

Peptidoglycan (PGN) muropeptides Bacteria Gram - ; + 

Siderophores   Pseudomonas fluorescens 

Sulfated fucans Oligomer Brown algae 

Transglutaminase (TGase) peptide pep-13 Oomycetes (Phytophthora spp.) 

Xylanase (EIX) pentapeptide Fungi (Trichoderma spp.) 

DAMP     

Systemin not defined protein (defense) 

PROPEPs Peps precursor protein 

Oligogalacturonides oligomer plant cell wall (pectins) 

Cutin dodecane-1-ol plant cuticle 

Cellodextrins oligomer plant cell wall (cellulose) 

      

Table 1.  Summary of selected MAMPs and DAMPs recognized by plants. 

Adapted from Postel and Kemmerling (2009) and Newman et al. (2013). 
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2.1 MAMP-triggered immunity 

2.1.1 MAMPs 

It is believed that during plant-microorganism interactions, MAMPs are the first non-host 

molecules that plant senses. By MAMPs we understand molecular structures or parts of structures 

that are essential for the overall fitness of microbes. It is therefore difficult for a microbe to modify 

or loose these motifs and as a consequence, MAMPs are conserved among microbes, pathogenic or 

not. Diverse MAMPs have been already described (Table 1; Postel and Kemmerling, 2009; 

Newman et al., 2013); they can be (glyco)proteins, carbohydrates or lipids.  

The most extensively studied MAMPs are the bacterial flagellin, the elongation factor Tu 

(EF-Tu) and the fungal chitin. The protein flagellin, the main building block of bacterial flagella, 

and its minimal motif flg22 is a potent plant elicitor recognized by many plant species (Felix et al., 

1999). EF-Tu is the most abundant bacterial protein playing a crucial role in protein biosynthesis. 

EF-Tu and its minimal epitope elf18 are active at subnanomolar concentrations but responses are 

restricted uniquely to Arabidopsis and the Brassicaceae family (Kunze et al., 2004). Chitin, a 

homopolymer of N-acetylglucosamine (GlcNAc), is the major component of fungal cell walls. 

Other identified MAMPs include i) harpin proteins, cold-shock proteins, lipopolysaccharides 

(LPS), peptidoglycans (PGN), Ax21 protein and rhamnolipids, derived from bacteria, ii) xylanase, 

ergosterol and different glycans, derived from fungi, or iii) transglutaminases, β-glucans and 

fucanes derived from oomycetes or evolutionary close brown algae (Table 1). Calcium-dependent 

cell wall transglutaminases of the Phytophthora spp. are recognized via the conserved epitope pep-

13 and elicit defense responses in parsley and potato (Brunner et al., 2002). Beta-1,3-glucans are 

found as the main cell wall components of oomycetes. Laminarin, a ß-1,3-linked glucan of the 

brown algae Laminaria digitata, induces defense responses in tobacco, Arabidopsis or grapevine 

(Klarzynski et al., 2000; Aziz et al., 2003; Menard et al., 2004). MAMPs can be components of 

distinct microbial structures, such as organs of motility (flagellin) or cell walls (LPS, PGN, chitin 

or β-glucans). They can be also cytoplasmic (EF-Tu, cold-shock proteins) or secreted by microbes 

(Ax21, xylanase; Boller and Felix, 2009).  

MAMPs were initially considered as invariant, but recent works show that MAMPs evolve 

more than expected (Cai et al., 2011; McCann et al., 2012). Although MAMPs are under a strong 

negative selection to preserve function required for the microbial fitness, they are also under strong 

positive selection exerted by host PRRs. It was observed that the immunogenic epitopes elf18 and 

flg22 diversified between different bacteria species and strains (Sun et al., 2006; Cai et al., 2011) 

with a higher rate than the non-immunogenic protein parts (McCann et al., 2012). 

MAMPs can be also required for microbial virulence, which was considered for a long 

time as an exclusive effector characteristic (Boller and Felix, 2009; Thomma et al., 2011). 

Moreover, while many described MAMPs are widely distributed among the whole microorganism 



Figure 2. Summary of selected plant pattern recognition receptors (PRRs) with their ligands. PRRs 

for peptidic PAMPs of bacterial origin are LRR-RLKs: FLS2 recognizing flagellin (or the active epitope 

flg22) identified in Arabidopsis, tomato, N. benthamiana and rice, EFR recognizing the elongation factor 

Tu (or the active epitope elf18) in Brassicaceae and XA21 recognizing the type-I secreted quorum 

sensing peptide Ax21 in rice. LysM RLPs LYM1 and LYM3 are the receptors for bacterial peptidoglycan 

(PGN) with CERK1 as a co-receptor. Tomato LRR-RLPs Eix1 and Eix2 recognize a fungal PAMP 

xylanase. Tomato LRR-RLP Ve1 recognizes Ave1 ligand from a fungus Verticillium. In rice, the LysM 

RLP CEBiP binds chitin and interacts with the LysM RLK (LYK) CERK1 to initiate signaling. In 

Arabidopsis, CERK1 is the major chitin-binding protein and possibly interacts with other LYKs. In 

legumes, an extracellular β-glucan-binding protein (GBP) binds Phytophthora heptaglucan. Concerning 

damage-associated molecular patterns (DAMPs), the LRR-RLKs PEPR1 and PEPR2 bind endogenous 

AtPeps, and the RLK WAK1, containing an EGF-like domain, is a receptor for cell wall-derived 

oligogalacturonides (OG). From Monaghan and Zipfel (2012). 
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classes of bacteria, fungi or oomycetes (called also general elicitors), others are conserved only 

within smaller taxonomic units (orders, families or genera), such as pep-13 or Ax21 (Boller and 

Felix, 2009). The border between MAMP and effector classification seems thus less clear 

(Thomma et al., 2011).  

Besides MAMPs, plants sense DAMPs, the endogenous elicitors (Table 1). The examples 

of DAMPs are fragments of plant cell walls, such as oligogalacturonides (OG) and cutin 

monomers released by the hydrolysis of pectin and cuticle, respectively. Other examples are short 

peptides, the 18-amino acid long systemin or the 23-amino acid long Pep1. Both originate from 

precursor proteins, prosystemin and PROPEP, that are expressed upon wounding and pathogen 

attack (Boller and Felix, 2009). 

2.1.2 PRRs, receptors to MAMPs and DAMPs 

During the last decade, a considerable progress in the identification of novel plant PRRs 

has been achieved. Known plant PRRs are Receptor-Like Kinases (RLKs) or Receptor-Like 

Proteins (RLPs), which are localized at the plasma membrane and possess extracellular domain for 

ligand recognition (Fig. 2). The RLKs are transmembrane proteins and contain a cytosolic 

serine/threonine kinase domain. The catalytic loop of most of plant PRR kinases contains the 

sequence CD or GD instead of the most frequent RD. These non-RD kinases are rarely present in 

other immune receptors and may be a hallmark of both plant and animal PRRs (Dardick and 

Ronald, 2006). RLPs can be either glycosylphosphatidylinositol (GPI)-anchored or membranous 

proteins lacking a kinase domain. 

Based on the analysis of the Arabidopsis genome, the array of putative PRRs encoded in 

plants is much higher than in mammals. In total, the Arabidopsis genome carries 417 RLKs with 

an obvious receptor configuration and 57 RLPs (Shiu and Bleecker, 2003). RLKs and RLPs 

encoded by plant genomes can be classified into 14 classes according to the type of the 

extracellular domain. The major PRR types carry leucine rich repeats (LRR) or lysine motifs 

(LysM), while others can carry C-type lectin or EGF-like ectodomain (Shiu and Bleecker, 2003). 

These domains confer distinct ligand specificities. 

2.1.2.1 Leucine rich repeat (LRR) receptors 

Around half of Arabidopsis RLKs (~200) falls into the class of LRR-RLKs that can be 

grouped into 13 subfamilies (I to XIII) (Shiu and Bleecker, 2003). It seems that LRR-RLKs are 

involved in defense-related responses and in growth and developmental processes. In plants, the 

LRR domain recognizes proteinaceous microbial ligands (Boller and Felix, 2009; Monaghan and 

Zipfel, 2012) and is formed by LRR repeats that each comprises 23-25 residues and matches the 

consensus sequence IPxxLxxLxx LxxLxLxxNxL
T
/SGx (Mueller et al., 2012). Based on 

crystallographic studies on animal and plant LRR-RLKs (She et al., 2011; Lu and Sun, 2012; Sun 
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et al., 2013), LRR domain assembles into a horseshoe-shaped solenoid. Leucines form the 

backbone of LRR repeat and can be substituted by other hydrophobic residues. The ligand binds 

on the concave surface of the horseshoe, where variable residues (x) can be solvent-exposed and 

thus participate in ligand binding and specificity (Lu and Sun, 2012; Mueller et al., 2012). 

Among the best characterized plant PRRs is the flagellin/flg22 receptor FLAGELLIN 

SENSING 2 (FLS2), a LRR-RLK conserved in many plant species (Fig. 2; Gomez-Gomez and 

Boller, 2000; Hann and Rathjen, 2007; Robatzek et al., 2007; Takai et al., 2008). The structurally 

related LRR-RLK XII Elongation factor-Tu receptor (EFR) recognizes the bacterial EF-Tu/elf18 in 

the Brassicaceae (Zipfel et al., 2006). Another LRR-RLK XA21 confers recognition of the type-I 

secreted bacterial protein Ax21 conserved among Xanthomonas spp. and involved in the bacterial 

quorum sensing (Lee et al., 2009). The LRR-RLP type PRRs include the tomato (Solanum 

lycopersicum) Eix1 and Eix2, which bind ethylene-inducing xylanases derived from fungi (Ron 

and Avni, 2004), and the tomato receptor Ve1, which recognizes the protein Ave1 derived from 

the Verticillium fungi (de Jonge et al., 2012). The recently described LRR-RLP AtRLP30 

functions as a receptor for a proteinaceous elicitor SCFE1 purified from the axenic culture filtrate 

of Sclerotinia sclerotiorum (Zhang et al., 2013). Another LRR-RLP Responsiveness to Botrytis 

Polygalacturonase 1 (RBPG1; AtRLP42), recognizes fungal endopolygalacturonases from the 

necrotroph Botrytis cinerea or the saprotroph Aspergillus niger (Zhang et al., 2014).  

LRR-RLKs possess a similar architecture to animal Toll-like receptors (TLRs) that are 

important innate immune PRRs. TLRs contain a cytoplasmic tyrosine kinase domain of 

Toll/interleukin-1 receptor (TIR) type. Each TLR can recognize very distinct ligands lacking 

structural similarity by employing different sets of LRRs. Upon ligand perception, TLRs form 

homodimers, which are crucial for signaling. Different TLRs can even assemble to heterodimers to 

recognize certain MAMPs, such as lipopeptides (Pasare and Medzhitov, 2004). This high 

versatility is yet unknown for plant LRR-RLKs. 

2.1.2.2 Lysin motif (LysM) receptors 

Plant LysM-PRRs contain ectodomains built from one to three lysin motifs. LysM is a 

sequence of ~40 amino acids in length, found in most organisms. Lysin motifs can be assembled 

into a LysM domain interspaced by short peptides with Cys x Cys (CxC) motifs. The latter might 

be implicated in keeping the spatial conformation of ectodomain via formation of cysteine 

disulfide bridge (Radutoiu et al., 2003). LysM-proteins were initially described in bacteria as 

hydrolases modifying bacterial cell wall. In plants, LysM RLKs and RLPs recognize GlcNAc-

containing glycans and aminosugars present on microbial surface, such as fungal chitin and 

bacterial PGN, or lipochitooligosaccharides secreted by beneficial microorganisms (reviewed in 

Gust et al., 2012). 



Figure 3. Scheme of defense events triggered by MAMPs in plant cells.  

The perception of MAMP/elicitor (1) induces a cascade of events including a calcium influx (2), 

leading to an increase in the cytoplasmic calcium concentration [Ca2+]cyt that further activates 

MAPKs and CDPKs and nitric oxide (NO) production (3). NO participates in triggering the calcium 

efflux from intracellular store pools (4), anion efflux (5) and ROS production (6). This signal 

amplification leads to the activation of defense genes (7), production of defense metabolites such as 

PR proteins, callose, phytoalexins and other phenolic compounds (8) and cell wall reinforcement (9). 

From Adrian et al. (2012). 



 INTRODUCTION ǁ General introduction 

21 
 

Plant LysM RLKs or RLPs assure a highly specific recognition of their corresponding 

ligands, although the latter possess a similar structure (Petutschnig et al., 2010; Gust et al., 2012). 

Fungal chitin is recognized by the LysM-RLP Chitin elicitor-binding protein (CEBiP) in rice 

(Kaku et al., 2006) and the LysM-RLK Chitin elicitor receptor kinase 1 (CERK1) in A. thaliana 

(Fig. 2; Miya et al., 2007). CERK1 together with LysM-RLPs LYM1 and LYM3 mediate PGN 

perception in Arabidopsis (Willmann et al., 2011). 

 

Also several PRRs for DAMPs have been identified (Fig. 2). The Arabidopsis LRR-RLKs 

PEPR1 and PEPR2 recognize AtPep peptides, including AtPep1 (Yamaguchi et al., 2006; Krol et 

al., 2010). Another PRR, Wall-Associated Kinase 1 (WAK1), perceives OG released from 

defected plant cell walls (Brutus et al., 2010). 

2.1.3 PRR-mediated signaling and defense 

From what we know, PRRs are often associated with other RLKs or RLPs to form 

molecular complexes. This can improve the ligand recognition, signal transduction or perform a 

regulatory role (Monaghan and Zipfel, 2012). Notably RLP receptors interact with RLKs for signal 

transduction. The recognition of MAMPs/DAMPs leads to the activation of the PRR kinase 

domain, which initiates phosphorylation events on signaling components. Once activated, these 

proteins elicit a complex cascade of signaling events, including ion fluxes leading to plasma 

membrane depolarization, production of reactive oxygen species (ROS) and nitric oxide (NO) and 

activation of Mitogen-Activated and Calcium-Dependent Protein Kinases (MAPKs and CDPKs, 

Fig. 3; Boller and Felix, 2009; Boudsocq et al., 2010). These signaling events lead to the 

activation of transcription factors (TFs) and massive transcriptional reprogramming related to 

defense (Boller and Felix, 2009). Recently, a novel model for PRR function was described (Park 

and Ronald, 2012). Upon ligand recognition, the rice PRR XA21 is cleaved to release an 

intracellular kinase domain that is translocated into the nucleus, where it interacts with a repressor 

of defense genes (Park and Ronald, 2012). 

Defense gene activation leads to the accumulation of different enzymes or metabolites. 

Among them are frequently found: i) the pathogenesis-related (PR) proteins including hydrolytic 

enzymes (β-1,3-glucanases and chitinases), which degrade microbial cell walls, cationic defensins 

disrupting pathogen membrane, peroxidases, proteinase inhibitors or lipid-transfer proteins; ii) 

compounds with an antimicrobial activity such as phytoalexins, iii) lignin and callose that are 

deposited to cell wall assuring its strengthening (Fig. 3). Other key stones of MTI are iv) 

production of ROS with direct antimicrobial effect, or v) stomatal closure (Jones and Dangl, 2006; 

Melotto et al., 2006; Boller and Felix, 2009).  
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The MAMP perception also triggers the production of phytohormones, such as salicylic 

acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA; Glazebrook, 2005). The 

interplay and fine tuning between these hormones and others, such as auxins, brassinosteroids 

(BR) or giberellins, coordinates activation of these above mentioned defenses and allow directing 

immune responses against the specific intruder. Many of the defense responses strictly depend on 

these phytohormones (Glazebrook, 2005; Robert-Seilaniantz et al., 2011). However, successful 

pathogens are able to manipulate the plant hormonal balance to their own profit (Gohre et al., 

2008; Shan et al., 2008; Gimenez-Ibanez et al., 2009; Tsuda et al., 2009). It was also reported that 

MTI can be sometimes associated with a localized programmed cell death (Hann and Rathjen, 

2007), termed hypersensitive response (HR), which is more likely to be a hallmark of ETI. MTI 

can also trigger a systemic signal leading to resistance induction in distant non-challenged tissues, 

called systemic acquired resistance (SAR; Jones and Dangl, 2006). Triggered immunity aims to 

prevent further microbial entry, disintegrate the microbial protective cell wall, delay its maturation 

or prevent its reproduction.  

It has been proposed that DAMP signaling mediated by the family of small AtPep peptides 

may amplify immune responses induced by MAMPs and compensate for eventual hormonal 

perturbation caused by effectors (Tintor et al., 2013; Ross et al., 2014). 

2.1.4 PRR-mediated disease resistance 

Different works highlight the importance of PRR-mediated MTI in plant disease resistance 

(Table 2; reviewed in Monaghan and Zipfel, 2012). Loss of a given PRR can lead to enhanced 

susceptibility to infections. The mutation/silencing of FLS2 in both A. thaliana and N. 

benthamiana led to enhanced susceptibility to a range of pathogenic and non-pathogenic bacteria 

(Zipfel et al., 2004; Hann and Rathjen, 2007). The mutation in RLP30 caused the 

hypersusceptibility to S. sclerotiorum, B. cinerea or Hyaloperonospora arabidopsidis (Zhang et 

al., 2013).  

On the other hand, the PRR transfer is able to confer resistance (Table 2). The expression 

of the LRR-RLK AtEFR in N. benthamiana or tomato, plants normally blind to elf18, induced 

elf18-triggered defense responses and increased resistance to bacterial pathogens (Zipfel et al., 

2006; Lacombe et al., 2010). Among others, N. benthamiana AtEFR
+
 plants were highly resistant 

to P. syringae pv tabaci or a virulent tumorigenic Agrobacterium tumefaciens strain (Lacombe et 

al., 2010). Tomato AtEFR
+
 also drastically reduced wilting symptoms induced by Ralstonia 

solanacearum, an important agriculturally relevant pathogen (Lacombe et al., 2010). The transfer 

of the tomato LRR-RLP Ve1 to Arabidopsis conferred the resistance to vascular wilts caused by 

several strains of fungi Verticillium dahliae and V. albo-atrum (Fradin et al., 2011). The rice LRR-

RLK XA21 is another receptor mediating robust resistance to multiple Xanthomonas oryzae pv 
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oryzae (bacterial leaf blight) isolates (Wang et al., 1996). Interaction of XA21 with its ligand leads 

to HR and effective immunity in rice cells (Lee et al., 2009). Transfer of XA21 receptor from rice 

into orange (Citrus sinensis) led to increased resistance against X. axonopodis pv citri causing 

citrus canker, showing that the PRR transfer from monocots to dicots can be successful (Mendes et 

al., 2010). The expression of chimeric receptors combining the transmembrane and kinase domain 

of XA21 and the chitin-binding ectodomain of OsCEBiP in rice could initiate HR response to 

chitin and decreased rice susceptibility to the fungus Magnaporthe oryzae (Kishimoto et al., 

2010). Studies using chimeric PRRs have shown that it is entirely the kinase domain which 

dictates the type of immune responses (Brutus et al., 2010; Kishimoto et al., 2010). 

Although many studies show that PRRs are key for plant immunity, not all of the PRRs 

studied so far seem to contribute similarly to the plant resistance. Upon plant-pathogen 

interactions, the importance of a given PRR depends on the abundance of its cognate MAMP, the 

rapidity/efficiency of the immune activation after ligand binding and last, but not least, on the set 

of pathogen effectors or toxins that can affect the immune signaling. 

2.2 Effector-triggered immunity 

2.2.1 Effectors target MTI 

Bacteria, fungi, oomycetes can all secrete effectors in order to perturb MTI signaling. 

Bacterial effectors secreted through the Type III secretion system (TTSS) are the best studied. 

Their activity may be as various as a protease, kinase, phosphatase or E3 ubiquitin ligase. Effectors 

can directly target PRRs, co-receptor RLKs or important signaling components such as the MAPK 

cascade. Some virulent pathogens sometimes employ toxins that cause perturbations in hormonal 

pathways, leading to decreased MTI (Gohre et al., 2008; Shan et al., 2008; Gimenez-Ibanez et al., 

2009; Tsuda et al., 2009). 

2.2.2 ETI responses 

Effectors are recognized by cytoplasmic R-proteins that contain a nucleotide binding 

domain (NB) and a LRR domain; they are referred to as NB-LRR proteins. Effector mediated 

immunity (ETI) leads to partly overlapping, if not the same, signaling and responses as MTI. 

However, ETI is more rapid and stronger in intensity and also includes the HR. HR occurs locally 

to the pathogen presence and is highly effective in preventing further microbial spread. R protein-

mediated resistance was exploited in traditional breeding and transgenic crops; however, 

pathogens can overcome ETI by mutating or losing their effectors (Jones and Dangl, 2006; Tsuda 

and Katagiri, 2010). 



Figure 4. Life cycle of Botrytis cinerea, the causal agent of gray mold. Adapted from Agrios (2005) and 

Gauthier (2009). 
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Figure 5. Life cycle of Erysiphe necator, the causal agent of powdery mildew. Adapted from Agrios (2005) 

and Gauthier (2009). 
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3 Grapevine: its biotic interactions and immunity 

In its environment, cultivated grapevine (V. vinifera) interacts with many microorganisms. 

Some of them are pathogenic, colonize grapevine and cause infections, other are mutualists, such 

as mycorrhiza fungi or plant growth promoting rhizobacteria (PGPR), which can improve the plant 

physiology.  

3.1 Biotic interactions 

3.1.1 Fungi 

Botrytis cinerea: Gray mold (bunch rot) 

B. cinerea, a necrotrophic fungus from the family of Sclerotiniaceae, infects more than 

235 species including grapevine. Mature berries are highly susceptible, although infections may 

occur also on young leaves and inflorescences. B. cinerea overwinters as a mycelium or a 

sclerotium (a resistant compact mass of mycelium) in berry or leaf litter (Fig. 4). In spring, both 

can germinate and emerging conidiophores produce conidia, a source of primary infections. 

Conidia are dispersed by wind or rain, penetrate in wounded tissues or tissues with a high sugar 

content, eventually causing necrosis. New conidiophores can emerge from necrosed tissues and 

thus multiple infection cycles may follow during the spring/summer season (Fig. 4; Elmer and 

Michailides, 2007). 

 

Erysiphe necator: Powdery mildew 

Erysiphe necator (Uncinula necator) is a fungus of Ascomycetes and an obligate biotroph 

developing on green tissues of grapevine, including leaves, inflorescences and young berries. In 

spring, the primary inoculum consists of mature ascospores that are spread by wind and germinate 

on the leaf surface (Fig. 5). Fungus penetrates the cuticle by a specialized structure, the 

appressorium, then forms haustoria for the nutrient intake. Conidiophores, visible as white spots, 

appear on the upper leaf surface under humid conditions and are a source of secondary infections. 

E. necator overwinters as cleistothecium formes in the infected tissues at the end of the season 

(Agrios, 2005). 

 

Plasmopara viticola: Downy mildew 

P. viticola is an oomycete of the order of Peronosporales and a strict biotroph, infecting 

specifically V. vinifera species of all known cultivars. Similarly to the powdery mildew fungus, P. 

viticola infects all green parts of grapevine. In spring, oospores that overwintered in leaf litter and 

soil of vineyards germinate and macrosporangia are produced, eventually leading to zoospore 

release. Zoospores are splashed by rain and infect plants through stomata (Fig. 6). Mycelium then 

extensively colonizes mesophyll and after 7-10 days, “oil spots” are formed on the upper leaf part. 



Figure 6. Life cycle of Plasmopara viticola, the causal agent of downy mildew. Zoospores swim in the 

water film until they reach stomata (1), where they encyst and form a germ tube and an infection vesicle in 

the substomatal cavity (2). Mycelium penetrates host tissues (3) and forms haustoria, specialized structures 

for nutrient uptake (4). After tissue colonization, new sporangiophores emerge (5) and release sporangia that 

can serve as a secondary inoculum. In autumn, oospores are formed in the infected tissues and overwinter in 

the leaf litter. In spring, oospore germination generates a primary inoculum. Adapted from Gamm (2011).  

zoospore 

stomata 

ASEXUAL REPRODUCTION 

sporangia 

zoospore 

oospore germination 
(spring) 

oospore 

meiose and oospores are 
formed (autumn) 

 

lower 
surface 

outer 
epidermis 

“oil spot” 
phenotype 

SEXUAL REPRODUCTION 

sporangia 

oospores 
overwinter in 
the leaf litter 

 

        

Bacterium species Disease Country References 

Pathogens       

Agrobacterium vitis 
crown gall worldwide 

Burr and Otten, 1999 

Agrobacterium tumefaciens  Szegedi et al., 2005 

Xanthomonas campestris pv viticola  bacterial canker Brazil, India Neto et al., 2011 

Xylella fastidiosa subsp. fastidiosa  Pierce's disease American continent Nunney et al., 2010 

Xylophilus ampelinus  bacterial blight Australia Dreo et al., 2007 

Pseudomonas syringae pv syringae bacterial inflorescence rot Australia, Argentina Whitelaw-Weckert et al., 2011 

Endophytes       

Pseudomonas fluorescens      
West et al., 2010 

Pseudomonas syringae sp.     

Burkholderia phytofirmans     Compant et al., 2005b 

Epiphytes       

Pseudomonas aeruginosa      
West et al., 2010 

Pseudomonas putida      

        
Table 3.  Bacterial pathogens, endophytes and epiphytes of grapevine.  

Selection of endophytes and epiphytes with regard to presented work. 
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With humid conditions, white sporulation (or down) formed by emerging sporangiophores appears 

on the lower leaf surface and new secondary infections occur. Many cycles of infections can 

follow in spring and summer. Finally, the infected tissue dry and eventually drop (Agrios, 2005; 

Gessler et al., 2011) 

In contrast to V. vinifera, American Vitis species such as V. riparia, V. rupestris and V. 

labrusca or Muscadinia rotundifolia (from a distinct genus of the Vitaceae family) are resistant to 

downy mildew (Bellin et al., 2009). 

3.1.2 Bacteria 

Grapevine interacts with many bacteria (Table 3). Bacterial infections are not so frequent 

in European vineyards, but represent an important threat elsewhere. The major bacterial disease is 

crown gall, caused by Agrobacterium vitis, and occasionally by A. tumefaciens (Burr and Otten, 

1999; Szegedi et al., 2005). The agrobacteria infect roots and the wood bases at the sites of injury. 

Agrobacterium perceives plant phenolic compounds, attaches to cells and transfer the T-DNA into 

the plant cell causing an overgrowth, visible as crown galls (Burr and Otten, 1999).  

Other pathogenic bacteria are Xanthomonas campestris pv viticola (bacterial canker) or 

Xylella fastidiosa subsp. fastidiosa (Pierce's disease) infecting xylem vessels from xylem-feeding 

insects (Nunney et al., 2010). Grapevine is also associated with many Pseudomonas spp., 

including pathogenic, endophytic and epiphytic strains (Table 3). Pseudomonas aeruginosa, an 

opportunistic pathogen of animals and plants (Rahme et al., 1997), was found as a grapevine 

epiphyte (West et al., 2010). 

 

Burkholderia phytofirmans: a grapevine-associated PGPR 

PGPR are soilborne bacteria that form non-symbiotic beneficial association with their host 

plants. PGPR grow endophytically inside roots and upper plant parts and provide beneficial effects 

such as enhanced plant growth and induced systemic resistance (ISR) to biotic and abiotic stresses 

(Ait Barka et al., 2000; Compant et al., 2005a; Lugtenberg and Kamilova, 2009). The genus 

Burkholderia (β-proteobacteria) contains over 30 species including plant growth-promoting 

bacteria (B. phytofirmans, B. cepacia, B. vietnamiensis), plant pathogens (B. caryophylli, B. 

plantarii, B. glumae, B. andropogonis) and even animal/human pathogens (B. mallei, B. 

pseudomallei). 

B. phytofirmans strain PsJN is notably an endophytic PGPR of grapevine (V. vinifera; 

Sessitsch et al., 2005; Lo Piccolo et al., 2010), but also of potato, tomato and sugarbeet (Mitter et 

al., 2013). Recently, B. phytofirmans has also been shown to colonize Arabidopsis and to promote 

its growth (Zuniga et al., 2013). In grapevine, B. phytofirmans closely attaches to the rhizodermal 

cell walls, extensively colonizes root surface and penetrates the root internal tissues to further 



Table 4.  Selection of MAMPs inducing defense responses in grapevine.  

Adapted from Delaunois et al. (2014). 

Molecule Origin Cultivar (V. vinifera) 

α-1,4-oligogalacturonides (OG) plant pectins Gamay 

glucan  Botrytis cinerea Optima 

endopolygalacturonase BcPG1  Botrytis cinerea Gamay 

β-1,3-glucans (laminarin) Laminaria digitata (brown algae) Gamay, Chardonnay 

chitosan crustaceans Chardonnay 

β-1,4-glucans (cellodextrins) cellulose hydrolysis Gamay, Chardonnay 

rhamnolipids 
Pseudomonas aeruginosa, 
Burkholderia plantarii 

Gamay, Chardonnay 

ergosterol fungi Ugni blanc 

flg22 Pseudomonas aeruginosa Pinot Noir, V. rupestris 

harpin bacteria Pinot Noir, V. rupestris 

oligandrin (elicitin) Pythium oligandrum (oomycete) Pinot Noir 

yeast extract Saccharomyces cerevisiae Pinot Noir 
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spread into aerial parts of the plant such as stems and leaves via xylem vessels (Compant et al., 

2005b). By altering grapevine metabolism, B. phytofirmans confers better tolerance to B. cinerea 

infection and to cold stress (Ait Barka et al., 2000; Ait Barka et al., 2006; Fernandez et al., 2012; 

Theocharis et al., 2012). In grapevine cells, B. phytofirmans triggers a transient extracellular 

alkalinization, the production of SA and defense-related transcripts, suggesting that it is perceived 

by V. vinifera potentially via MAMP detection (Bordiec et al., 2011). 

3.2 Grapevine MAMP-triggered immunity 

Grapevine recognizes a variety of MAMPs including the B. cinerea 

endopolygalacturonase 1 (BcPG1; Poinssot et al., 2003), the linear β-1,3-glucan laminarin 

extracted from the brown algae Laminaria digitata (Aziz et al., 2003), a deacetylated derivative of 

chitin, chitosan (Trotel-Aziz et al., 2006), OG (Dubreuil-Maurizi et al., 2010), flg22 (Chang and 

Nick, 2012) and others (Table 4). Some were shown effective to induce disease resistance when 

applied on plants (reviewed in Delaunois et al., 2014). 

MAMPs elicit signaling and defense responses in grapevine (Aziz et al., 2003; Vandelle et 

al., 2006) including events strongly reminiscent to defense in other plant species (Jones and Dangl, 

2006; Boller and Felix, 2009). Using the pharmacological approach the link between the single 

signaling events has been shown with the proteinaceous elicitor BcPG1 (Vandelle et al., 2006). 

BcPG1 triggers a calcium influx leading to a rise in free cytosolic Ca
2+

 concentration, which 

further triggers NO production. In a back loop, NO induces the calcium efflux from intracellular 

store pools (Vandelle et al., 2006), in agreement with what was observed in tobacco signaling 

(Lamotte et al., 2006). This amplification of Ca
2+

 signal activates the ROS production and is 

required for the expression of grapevine defense genes and the production of phytoalexins. 

Interestingly, BcPG1-triggered activation of two grapevine MAPKs is independent of the Ca
2+

 - 

NO - ROS pathway (Vandelle et al., 2006). Therefore, as observed in other species (Garcia-

Brugger et al., 2006), the signaling events are not arranged in a simple linear pathway but rather in 

a complex signaling branched network. 

Some defense genes are known in grapevine, mainly encoding enzymes involved in the 

phenylpropanoid pathway such as the phenylalanine ammonia lyase (PAL) leading to the 

production of i) phytoalexins via the stilbene synthase (VST or STS), ii) flavonoids via the chalcone 

synthase (CHS), iii) lignins via the coumarate 3-hydroxylase (C3H). Other defense-associated 

genes encode lipoxygenases (9-LOX and 13-LOX) involved in the synthesis of oxylipins and JA, 

respectively, chitinases (PR3, PR4, PR8, PR11), glucanase (PR2), protease inhibitor (PR6/PIN) or 

polygalacturonase inhibiting protein (PGIP) (Adrian et al., 2012; Delaunois et al., 2014). For 

example chitinases are induced by MAMPs or upon infection with P. viticola, B. cinerea or E. 

necator (Busam et al., 1997; Derkel et al., 1999; Jacobs et al., 1999). 
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Grapevine is very rich in content of phenolics, such as stilbenes (and flavonoids). These 

compounds also accumulate following MAMP detection but also abiotic stresses such as UV light 

or ozone. They protect against numerous herbivores and pathogens (Aziz et al., 2003; Poinssot et 

al., 2003; Adrian et al., 2012; Delaunois et al., 2014). The main grapevine stilbenes are resveratrol 

and its derivatives viniferins and pterostilbenes, the latter two providing the highest antifungal 

activity (Jeandet et al., 2002; Pezet et al., 2004). The overexpression of stilbene synthase in 

grapevine confers the resistance against B. cinerea (Coutos-Thevenot et al., 2001). 

Many works studied the resistance mechanisms against P. viticola. A comparative study 

between  

the resistant V. riparia and a susceptible V. vinifera species showed that the “resistance state” 

results from a more rapid and stronger induction of defense gene expression, especially those 

genes encoding PR-proteins such as PR1 (unknown function), PR3, PR4 (chitinases), PR9 

(peroxydase) or the phytoalexin-related STS (Polesani et al., 2010). Resistant species also contain 

a higher basal level of phenolics (Kortekamp, 2006). The sulfated laminarin (PS3)-induced 

protection in grapevine against P. viticola was associated with potentiated ROS production at the 

site of infection, defense gene expression, callose and phenol depositions and a HR-like cell death 

(Trouvelot et al., 2008). A number of studies have shown that both SA and JA are implicated in 

the resistance against P. viticola (Trouvelot et al., 2008; Polesani et al., 2010; Gauthier et al., 

2014). 

 



A 

B 
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Figure 7. Schematic structure of flagellin and the flagellar filament.  

The filament is formed by the helical arrangement of flagellin monomers along its axis. A. The folded 

flagellin monomer (494 amino acids) consists of four domains: D0 (1-55, 451-494, blue), D1 (56-176, 402-

450, brown), D2 (177-189, 284-401, red) and D3 (190-283, yellow). B. View along the filament axis. Each 

helix turn is constituted by 11 flagellin monomers. D0 and D1 domains are stacked to form the filament core, 

whereas domains D2 and D3 are surface exposed and protrude from the filament. C. Tubular filament 

structure, an assembly of 11 intertwined flagellin protofilaments. Here, the side-view on one flagellin helical 

protofilament is presented. Adapted from Tanner et al. (2011). 
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II. Flagellin-triggered immunity 

1 Bacterial flagellum and flagellin 

In bacteria world, motility is important to react to environmental cues such as nutrient 

availability, abiotic factors or for the competitivity in habitation of ecological niches. For most 

“swimming” bacteria, the locomotion is driven by flagellum. Bacteria can possess only a single 

flagellum, a tuft of flagella or multiple flagella randomly distributed over the entire bacterium 

surface. For many bacteria, flagellum is required for pathogenicity. Indeed, the loss of motility 

decreases severly the frequency of host-pathogen interactions (Macnab, 1999). Mammalian 

pathogens often require flagella for adhesion to the mucus or epithelial cell surface, invasion and 

colonization into mucus tissues (Ramos et al., 2004). For beneficial bacteria, such as symbiotic 

Rhizobia, full motile flagellum is required for competition in nodule formation in host legume 

rhizosphere (Ames and Bergman, 1981).  

The eubacterial flagellum is a complex surface organelle. The model of its structure is 

derived from numerous studies on Escherichia coli or Salmonella enterica species. Flagellum 

comprises three main parts: the basal body, the hook and the filament. The basal body is formed by 

membrane-associated proteins of rod and rings that together work as a platform for motor and an 

apparatus for exporting proteins. The motor uses the ion gradient across the plasma membrane to 

generate flagellum rotation. The hook, a flexible joint, links the basal body and the filament. The 

filament is a long, thin helical structure up to 15 µm long. The filament is built up from 20.000 – 

30.000 identical units of a single structural protein flagellin (FliC) which makes it the most 

abundant flagellar protein (Macnab, 2003).   

Flagellar assembly is a highly ordered process and require about 50 genes. Among them, 

20-30 genes encode structural proteins of flagellum; the others are involved in regulation or 

chemosensory mechanisms. Flagellar proteins, including flagellin, are synthetized inside the cell, 

then exported via the export apparatus at the cell surface or outside (Macnab, 1999; Ramos et al., 

2004). 

Flagellin and its structure are crucial for a proper flagellum function. The molecule of 

flagellin is highly conserved in its N-terminal and C-terminal parts, forming conserved domains 

D0 and D1 (Fig. 7A). These domains build the filament core and are required for flagellin 

polymerization and filament function (Macnab, 2003). The central part of flagellin (D2 and D3 

domains) can vary in length and sequence or be absent according to bacterial species (Hayashi et 

al., 2001) and was described to be responsible for flagellin adhesive properties (Ramos et al., 

2004). Flagellin assembles into a hollow cylindrical structure, with 11 flagellin monomers per turn 

(Fig. 7B). Quaternary interactions between flagellin monomers lead to a subtle break of symmetry 
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underlying the helical shape of filament. The tubular filament can be also considered as composed 

of 11 intertwined protofilaments (Fig. 7C; Arkhipov et al., 2006). The flagellar helical shape, 

similar to propeller-like screw, enables transmission of flagellum rotatory motion into pushing 

motion for bacterial motility. 

2 Flagellin: a general elicitor of MTI 

Flagellin is a molecule wide-spread over different eubacteria classes. Flagellin is 

recognized by the innate immune system of plants and animals, where it activates defense against 

bacteria (Boller and Felix, 2009). For plants, it is one of the best studied MAMPs. Both plants and 

animals possess a highly sensitive and selective perception system detecting flagellin (Felix et al., 

1999; Hayashi et al., 2001). Although perceived via distinct epitope/receptor couple, both plant 

and animal species detect a key region, which is required for the assembly of flagellin monomers 

into protofilaments and flagellar motility (Yonekura et al., 2003). Therefore, this region is 

conserved and unlikely to mutate. As these regions are buried within the flagellum structure and 

are surface inaccessible, only a state of monomeric flagellin possesses eliciting activity (Hayashi et 

al., 2001). Flagellin monomers can be also released into environment due to inefficient filament 

capping, during flagellum construction or flagellum break that can be spontaneous or regulated by 

bacterial or host factors such as proteases. Flagellin monomers can be also found in a detritus of a 

bacterial colony (Ramos et al., 2004).  

 

2.1 flg22/FLS2 perception system in plants 

Plants detect flagellin in its conserved N-terminal D0 domain via a 22 residue-long epitope 

(Felix et al., 1999). Flg22 peptide spaning the recognized epitope is highly eliciting in many plant 

species even at nanomolar concentrations (Felix et al., 1999). The plant PRR responsible for 

flagellin perception and binding flg22 is FLAGELLIN SENSING 2 (FLS2) (Gomez-Gomez and 

Boller, 2000; Chinchilla et al., 2006), an LRR-RLK of the family XII (Shiu and Bleecker, 2003). 

FLS2 was first identified in Arabidopsis thaliana (Gomez-Gomez and Boller, 2000), but 

functional FLS2 orthologs have since been identified in tomato (LeFLS2; Robatzek et al., 2007), 

Nicotiana benthamiana (NbFLS2; Hann and Rathjen, 2007) and rice (OsFLS2; Takai et al., 2008). 

The synthetic peptide flg22 QRLSTGSRINSAKDDAAGLQIA, based on the flagellin sequence of 

P. aeruginosa strain PAK (Felix et al., 1999), is a commonly used epitope substituting the effect 

of flagellin in Arabidopsis (Sun et al., 2006) and became a tool to decipher the flg22/FLS2 binding 

and signaling. Flg22- and flagellin-induced responses were abolished in Arabidopsis mutant fls2 

indicating that FLS2 is a unique flagellin-perceiving receptor in Arabidopsis (Gomez-Gomez and 

Boller, 2000; Zipfel et al., 2004). 



Figure 8. Mechanism of flg22 recognition by FLS2. 

A. Schema of flg22 binding to the FLS2 LRR ectodomain (FLS2LRR). Indicated are LRR important for 

flg22 binding and signal transduction. Asterisks indicate predicted N-glycosylation motifs. From 

Robatzek and Wirthmueller (2012). B. Interaction of the core and the C-terminal side (residues 8 to 21) of 

flg22 with FLS2LRR. The FLS2LRR residues Y272 and Y296 interact with K13 of flg22; residues R294 

and H316 interact with D14 of flg22. C. Interaction of the N-terminal portion (residues 1 to 7) of flg22 

with FLS2LRR via Y148 and R152. The side chains of FLS2LRR and flg22 are labeled in cream white 

and yellow, respectively. From Sun et al. (2013). A: Ala, C:Cys, D:Asp, E:Glu, F:Phe, G:Gly, H:His, I:Ile, 

K:Lys, L:Leu, M:Met, N:Asn, P:Pro, Q:Gln, R:Arg, S:Ser, T:Thr, V:Val, W:Trp, Y:Tyr. 

A 

B 

C 
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2.1.1 Ligand binding 

The LRR ectodomain of FLS2 is formed by 28 LRRs that directly bind flg22 in an 

equimolar ratio (Bauer et al., 2001; Chinchilla et al., 2006). Many studies identified LRRs critical 

for FLS2 signaling. According to the resulting model, the flg22 core sequence RINSAKDD (flg22 

aa 8-15) binds to LRRs 7-10 with a high affinity, then the flg22 C-terminus is recognized by LRRs 

19-24 leading to changes in FLS2 conformation and activation of the intracellular signaling (Fig. 

8A; Meindl et al., 2000; Mueller et al., 2012). The LRRs 10, 17, 9-15, 22-23 were also shown to 

be critical for FLS2 signaling in other studies (reviewed in Robatzek and Wirthmueller, 2012). 

FLS2 form a receptor complex with the shorter LRR-RLK BRI1-associated kinase (BAK1; also 

named somatic embryo receptor kinase 3, SERK3; Chinchilla et al., 2007). Recently, the crystal 

structure of FLS2 and BAK1 ectodomains complexed with flg22 was solved (Sun et al., 2013). 

This revealed that the FLS2 LRRs 8-11 form two positively charged pockets as an interface for 

binding of two aspartates D14 and D15 in the flg22 core (Fig. 8B; Sun et al., 2013); which fits 

well with previous studies. It was also shown that the N-terminal part of flg22 (aa 1-7) is 

recognized by the FLS2 LRRs 2-6 (Fig. 8C), while the C-terminal part of flg22 is perceived by 

LRRs 13-17 (Fig. 8B). The FLS2 LRRs 18-26 are involved in the interaction with LRRs of BAK1 

(Sun et al., 2013). BAK1 recognizes the C-terminus of flg22 acting as a flg22 co-receptor (Sun et 

al., 2013). This model applies for Arabidopsis, however differences may exist for other FLS2 

orthologs as ligand specificities and receptor activations are distinct (Chinchilla et al., 2006; 

Mueller et al., 2012). 

2.1.2 Downstream signaling 

In the absence of flg22, FLS2 forms a constitutive complex with the inactive receptor-like 

cytoplasmic kinases Botrytis-Induced kinase 1 (BIK1) and avrPphB Susceptible PBS1-like (PBLs) 

that are positive regulators of most FLS2-mediated MTI downstream responses (Fig. 9; Lu et al., 

2010; Zhang et al., 2010). Within seconds of flg22 binding, FLS2 associates with BAK1 and 

eventually other SERKs, such as BKK1/SERK4, are recruited to FLS2 complex leading to rapid 

phosphorylations (Chinchilla et al., 2007; Heese et al., 2007). BAK1 directly phosphorylates 

BIK1 that is immediately released from FLS2-BAK1 complex and activates MTI signaling (Fig. 9; 

Lu et al., 2010). FLS2 was also shown to form FLS2-FLS2 dimers, but its role in flg22 binding 

and FLS2 activation is not yet clear (Sun et al., 2012). 

Flg22-induced early signaling include plasma membrane depolarization associated with 

changes in ion fluxes and extracellular alkalinization, ROS production (Felix et al., 1999), MAPK 

and CDPK activation (Asai et al., 2002; Ichimura et al., 2006; Boudsocq et al., 2010) that lead to 

transcription of defense-related genes through WRKY TFs WRKY22/29 and WRKY25/33 

(reviewed in Segonzac and Zipfel, 2011). The defense program includes upregulation of PR genes, 



Figure 9. Schema of flg22-FLS2 signaling pathway in Arabidopsis.  

In the absence of ligand, FLS2 can form homodimeric complexes and interact with proteins SCD1 and 

receptor-like cytoplasmic kinases (RLCK) BIK1 and PBLs. Nonactivated FLS2 is constitutively recycled 

between the plasma membrane (PM) and endosomes. Upon flg22 binding, FLS2 associates almost 

instantaneously with BAK1 to form FLS2-BAK1-BIK1 complex. Rapidly, multiple phosphorylation events 

occur on RLK kinase domains. BAK1 directly phosphorylates BIK1 that is immediately released from 

FLS2-BAK1 complex and activates Ca2+ channels, RbohD NADPH oxidase to generate oxidative burst, 

downstream MAPK cascade (MPK 3/6, MPK4, MSK1) and Ca2+ dependent protein kinases (CDPKs 4/11 

and 5/6) that are involved in the activation of transcription factors (TFs) and the consequent induction of 

defense gene expression. Activated  FLS2 is then internalized into endosomes and degraded. The FLS2 

pathway is negatively regulated by phosphatases (KAPP) and ubiquitin ligases (PUB12/13). From 

Robatzek and Wirthmueller (2012). PM: plasma membrane, ACA8: Arabidopsis-autoinhibited Ca2+-

ATPase, PBS1: AvrPphB Susceptible 1, SCD1: stomatal cytokinesis-defective 1 
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callose deposition, increased ET and SA production and stomatal closure to prevent bacteria entry 

(Felix et al., 1999; Gomez-Gomez et al., 1999; Zipfel et al., 2004; Melotto et al., 2006). Evidence 

was brought that early flagellin signaling is split in two separate branches: one leading to MAP 

kinase activation and the other to CDPK-mediated ROS production (Fig. 9; Boudsocq et al., 2010; 

Segonzac et al., 2011; Xin et al., 2012). Another hallmark of flg22-triggered responses is the 

Arabidopsis seedling growth inhibition (Gomez-Gomez et al., 1999). FLS2 pathways seem to be 

conserved between plant species as demonstrated by the successful transfer of the FLS2 receptor 

from tomato or rice to Arabidopsis or from tomato to N. benthamiana (Robatzek et al., 2007; 

Takai et al., 2008; Mueller et al., 2012). 

2.1.3 FLS2/flg22 signaling regulation 

The FLS2 signaling is regulated at several levels. i) The FLS2 transcription is under the 

direct control of EIN3 and EIL1, two ethylene-dependent TFs (Boutrot et al., 2010). As FLS2 

triggers ET production, the FLS2 signaling itself autoregulates FLS2 transcription via a positive 

feedback loop (Boutrot et al., 2010). The level of FLS2 transcript impacts heavily the intensity of 

flg22 responses (Gomez-Gomez and Boller, 2000; Vetter et al., 2012). ii) The FLS2 kinase 

domain associates with the protein phosphatase KAPP (kinase-associated protein phosphatase), 

which prevents flg22 binding and keeps FLS2 signaling switched off (Fig. 9; Gomez-Gomez et al., 

2001). Then, once activated, the intensity of flg22/FLS2 signaling is kept in check by negative 

regulation executed by different mechanisms; iii) plant U-box E3 ligases PUB12 and PUB13 

ubiquitinate activated FLS2, which, in turn, triggers FLS2 degradation and attenuates immunity 

(Lu et al., 2011); iv) FLS2 is also regulated by subcellular compartmentalization. Activated FLS2 

that binds flg22 undergoes internalization (Fig. 9) and is degraded afterwards (Robatzek et al., 

2006; Beck et al., 2012). In contrast, non-activated FLS2 is constitutively recycled between the 

plasma membrane and endosomal compartments (Beck et al., 2012). 

2.1.4 FLS2 protein structure 

FLS2 contains the serine/threonine kinase of the non-RD type that harbors Cys-Asp in the 

catalytic activation loop. The kinase activity was shown crucial to mediate flg22 signaling (Bauer 

et al., 2001; Gomez-Gomez et al., 2001). A kinase dead mutation fls2-17 (G1064R) not only 

abolished flg22 responsiveness but also flg22 binding and the level of FLS2 protein, indicating 

that kinase activity may be required for FLS2 turnover (Gomez-Gomez et al., 2001; Robatzek et 

al., 2006). Mutations in serine/threonine residues at potential phosphorylation sites in the kinase 

domain or the juxtamembrane regions affected flg22 responses (Robatzek et al., 2006).  

As observed from the electrophoretic mobility, the native FLS2 is a glycosylated protein 

(Chinchilla et al., 2006; Haweker et al., 2010). Twenty N-linked glycosylation sites with NxS/T 
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motifs are predicted in its LRR domain and one in C-terminal region of the LRR domain (LRRCT, 

Fig. 8A; Haweker et al., 2010). The N-glycosylation takes place in the endoplasmic reticulum 

(ER) and was shown to be required for correct protein folding of different receptors (Sun et al., 

2012). It is also critical for the functionality of receptors EFR (Nekrasov et al., 2009; Sun et al., 

2012) or the R-protein Cf-9 (van der Hoorn et al., 2005); however, N-glycosylation contributes 

only weakly if at all to the FLS2 function (Sun et al., 2012). 

The conserved cysteine pair (C61 and C68) in the LRRNT of FLS2 also appears to be 

required for the FLS2 quality control (Sun et al., 2012). Mutation of Cys led to the retention of 

FLS2 in ER, dramatically decreased FLS2 abundance and affected flg22 signaling (Sun et al., 

2012). 

2.1.5 Crosstalk with brassinosteroid signaling and other MAMP signaling 

pathways 

BAK1, the regulator of FLS2-mediated responses, form receptor complexes with several 

other LRR-PRRs, such as EFR, Ve1, XA21, but not chitin receptors, and is required for triggering 

the downstream signaling cascade (Fradin et al., 2011; Roux et al., 2011; Park et al., 2013). 

BAK1 is also critical for the restriction of bacterial and oomycete infections (Heese et al., 2007; 

Roux et al., 2011). Furthermore, BAK1 is involved in the brassinosteroid (BR) signaling (Li et al., 

2002). BR promotes cell elongation and division, stimulates flowering. BR is recognized by the 

LRR-RLK Brassinosteroid Insensitive 1 (BRI1; He et al., 2000), which forms a ligand-dependent 

heterodimer with BAK1 (Li et al., 2002) leading to the activation of BIK1 (Lin et al., 2013). It 

was shown that the BR-mediated growth inhibits innate immune signaling initiated by flg22, EF-

Tu or chitin, but independently and downstream from BAK1 (Albrecht et al., 2012). It seems that 

the cross-regulation is finely tuned at the level of BIK1, the chief kinase executing activation of 

signaling initiated by distinct MAMPs but also by BR (Lin et al., 2013). This kinase undergoes 

different phosphorylation events specific to the given receptor complex upstream (Lin et al., 

2013). 

2.1.6 FLS2 polymorphism: ligand specificities 

Plant species are generally sensitive to flg22 (Felix et al., 1999; Albert et al., 2010), 

although with species-characteristic traits that can differ in sensitivity to flg22-derived peptide 

variants (Felix et al., 1999; Bauer et al., 2001; Robatzek et al., 2007). Most of the structure-

function studies investigating principles underlying differences in flg22 sensitivity were carried out 

in Arabidopsis and tomato. One of the first observations was that the perception system in tomato 

is more efficient and recognizes smaller parts of flg22 peptide than Arabidopsis (Felix et al., 1999; 

Meindl et al., 2000). Flg15, the shorter flg22 epitope variant lacking the first 7 N-terminal amino 





  INTRODUCTION ǁ Flagellin-triggered immunity 

33 
 

acid residues, is still highly active in tomato and N. benthamiana but it is about a 100 fold and 30 

fold less active agonist in Arabidopsis and tobacco, respectively (Felix et al., 1999; Bauer et al., 

2001; Robatzek et al., 2007). Overexpression of AtFLS2 in tomato cells led to the gain of 

Arabidopsis-type flg22 perception showing that ligand specificities can be transferred only with 

FLS2 receptor (Chinchilla et al., 2006). It was shown, that this diversity in flg22 perception is 

caused by the allelic diversity of FLS2, and more precisely of the LRR ectodomain (Dunning et 

al., 2007; Mueller et al., 2012). It appears that LeFLS2 possesses LRRs 7-10 with higher affinity 

to flg22 core sequence than AtFLS2 (Mueller et al., 2012), which could explain why tomato does 

not require the N-ter of flg22 for FLS2 activation. Several studies also indicated that upon flg22 

perception in tomato, the ligand is irreversibly “locked” in the LeFLS2 binding site (Meindl et al., 

2000; Chinchilla et al., 2006). In contrast, stimulation of AtFLS2 with flg22 exhibits a weaker 

ligand affinity and receptor locking leading to the reversibility of flg22 binding (Bauer et al., 2001; 

Chinchilla et al., 2006). Therefore, tomato FLS2 is more tolerant to variations in the Cter of flg22, 

whereas its mutations are critical for flg22 agonist activity in AtFLS2 (Mueller et al., 2012). 

The allelic variations of FLS2 between cultivars/ecotypes also include wild-type null 

mutations. For example, Arabidopsis ecotypes Wassilewskija (Ws-0) and Cape Verde Islands 

(Cvi-0) express a non-functional C-terminally truncated version of AtFLS2 (Dunning et al., 2007). 

In rice, flg22 acts as a relatively weak MAMP. Neither flg22, neither flagellin of P. 

syringae pv tabaci triggered a detectable alcalinization in rice cell suspensions (Felix et al., 1999). 

Since, Takai and colleagues reported flg22 responsiveness in rice; however the classical flg22 

(from P. aeruginosa) and flg22 derived from the incompatible strain Pseudomonas avenae induced 

only weak immune responses compared to the effect of purified full-length flagellin from P. 

avenae (Takai et al., 2008). The low sensitivity of rice to flg22 might also be due to low levels of 

the OsFLS2 protein. Indeed, a higher sensitivity to flg22 was acquired when OsFLS2 was stably 

overexpressed in rice cells (Takai et al., 2008). 

2.2 Extra-flg22 flagellin recognition 

2.2.1 flgII-28: a novel flagellin epitope for plants? 

Recently, an additional perception system for flagellin was described in tomato (Cai et al., 

2011; Clarke et al., 2013). Besides flg22, tomato can also recognize flagellin via the flgII-28 

epitope. FlgII-28 lies in a close proximity of the flg22 epitope within the N-terminal D1 domain of 

flagellin (codons 84-111), partly overlapping with the epitope recognized by animals (§2.3). FlgII-

28 peptides derived from P. syringae pv tomato (Pto) strains are biologically active only in a 

number of Solanaceae species, such as cultivated and wild tomato (S. lycopersicum and S. 

peruvianum), potato (S. tuberosum) and pepper (Capsicum annuum), but not in N. benthamiana, 
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tobacco or Arabidopsis (Clarke et al., 2013). FlgII-28 epitopes are conserved within P. syringae 

pathovars but not in all phytopathogens. 

For a given Pto strain, the eliciting activity of derived flgII-28 and flg22 peptides appears 

to be similar (Clarke et al., 2013). However, the biologic importance of flgII-28 perception is not 

known. In tomato, Felix and colleagues showed that flg15-∆5, the flg22 binding site antagonist, 

completely blocked the eliciting activity of the purified flagellin or boiled extracts of Pto, but also 

of other bacteria (Felix et al., 1999). The receptor to flgII-28 is yet unknown. The FLS2 

heterologous expression in Arabidopsis and silencing experiments in tomato showed that LeFLS2 

is not the receptor required for the flgII-28-triggered responses (Clarke et al., 2013).  

2.2.2 Flagellin glycosylation 

Flagellins of some bacteria (P. aeruginosa and syringae, Campylobacter jejuni or 

Helicobacter pylori) are glycosylated. Glycosylation stabilizes the filament structure and lubricates 

the flagellum rotation (Taguchi et al., 2008). The glycan moieties are O-linked to the flagellin 

protein via Ser or Thr residues (Takeuchi et al., 2003; Taguchi et al., 2008). The pattern and the 

role of glycosylation in the flagellum function depend on the bacterial strain.  

It was shown that plants can detect glycosylated patterns on flagellin. Purified flagellins of 

P. syringae pv glycinea and tomato (Pto) triggered HR on non-host tobacco plants, while flagellin 

of pathogenic P. syringae pv tabaci did not cause HR on tobacco, its natural host (Taguchi et al., 

2003). Similarly in rice, flagellin from a rice-incompatible strain of P. avenae induced immune 

responses, including cell death, while the flagellin from the compatible strain was not recognized 

(Che et al., 2000; Takai et al., 2008). This differential eliciting activity was not due to the flg22 

recognition, as the protein sequences were totally identical (Taguchi et al., 2003; Takai et al., 

2008). Glycosylation appears to be the reason of this different recognition. Mutants of P. syringae 

pv glycinea (pathogenic on soybean) with non-glycosylated or weakly glycosylated flagellins were 

altered in the host specificity and could infect tobacco, naturally a non-host plant (Takeuchi et al., 

2003).  

 

2.3 Flagellin/TLR5 perception in animals 

Flagellin acts as an important MAMP in animal innate immunity, particularly for human 

epithelial cells (Zeng et al., 2003). Flagellin is recognized and directly bound by the LRR-RLK 

Toll-Like Receptor 5 (TLR5; Hayashi et al., 2001; Smith et al., 2003; Yoon et al., 2012). The 

recognition site lies mainly in the N-terminal D1 domain (Andersen-Nissen et al., 2005; Yoon et 

al., 2012). Two TLR5 receptors bind two flagellin molecules, forming a 2:2 complex (Yoon et al., 

2012). Also the C-terminal D1 domain as well as D2 and D3 domains of flagellin were shown to 

contribute to its recognition by TLR5 (Smith et al., 2003). The D0 domain contributes to the 
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activation of TLR5 signaling (Yoon et al., 2012). It thus seems that a specific flagellin 

conformation is required for proper TLR5 signaling (Smith et al., 2003).  

TLR5 dimerization induces a TLR-specific activation of the adaptor Myeloid 

Differentiation Factor 88 (MyD88; Hayashi et al., 2001). Also a signaling complex composed of 

the Interleukin-1 Receptor-Associated Kinase 1 (IRAK1), the TNF Receptor Associated Factor 

(TRAF6) and the IκB kinase (IKK) is required for the activation of the proinflammatory 

transcription factor Nuclear Factor (NF)-κB. Activated immune responses consist of production of 

proinflammatory cytokines, antimicrobial compounds, recruitment of phagocyting cells at sites of 

injury and triggering an adaptive immunity (Hayashi et al., 2001; Pasare and Medzhitov, 2004). 

Species-specific differences in flagellin recognition were observed between human and mouse 

(Hayashi et al., 2001). TLR5 polymorphism in humans correlates with the susceptibility to 

Legionella pneumophila infection (Hawn et al., 2003). 

Flagellin can be also recognized intracellulary. In macrophages, flagellin is sensed by the 

inflammasome, a large cytoplasmic inflammatory complex, assembled by the Nucleotide-binding 

Oligomerization Domain (NOD)-like receptor protein NLRC4 (Zhao et al., 2011). 

While most bacteria express only one form of flagellin (fliC, monophasic), some animal 

associated-bacterial strains, such as some serovars of Salmonella enterica, possess extra structural 

genes for flagellin (fljB/fljA or flpA) and can alternate expression of two (biphasic) or rarely three 

(triphasic) forms of flagellins. This switch is termed as a phase variation and can contribute to 

bacterial virulence (Ikeda et al., 2001). 

3 The flagellin perception upon plant-bacteria interaction 

3.1 Evasion of flagellin-mediated immunity 

As flagellin immunogenicity betrays bacteria aiming to colonize plant tissues, different 

strategies have been evolved to avoid this detection. 

Effectors can suppress FLS2 signaling 

FLS2 signaling can be targeted by bacterial effectors. P. syringae secretes effectors 

AvrPto and AvrPtoB that target directly the FLS2 protein. In Arabidopsis, the E3 ubiquitin ligase 

AvrPtoB ubiquitinylates the FLS2 kinase domain as a strategy for FLS2 degradation and 

elimination from the cell surface (Gohre et al., 2008). Also, AvrPto binds the kinase of AtFLS2 or 

LeFLS2, inhibiting activation of downstream MTI (Xiang et al., 2008). The effector HopQ1 

secreted by Pto was shown to decrease the FLS2 expression (Hann et al., 2013). Other effectors 

can target the central kinase BAK1 or attack components downstream of PRRs, including the 

MAPK cascade (Zhang et al., 2007; Shan et al., 2008).  
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Mutations in the fliC gene 

To reduce or completely evade MTI, some pathogens evolved mutations in fliC, at the sites 

recognized by host immune systems. The single nucleotide polymorphism (SNP) standing for the 

recent adaptations of the pathogen can be identified by sequencing strains and isolates within a 

given pathovar (Cai et al., 2011). Such a study on different Pto strains revealed SNPs within the 

flg22 epitop of the fliC gene (Cai et al., 2011). Compared to the ancestral allele, the evolutionary 

novel flg22 allelles triggered weaker MTI in tomato and potato but the difference in eliciting 

activity of alleles was highly dependent on host species (Cai et al., 2011; Clarke et al., 2013). 

Similarly, SNPs were also found within the newly discovered flgII-28 epitop (Cai et al., 2011). 

Over the last thirty years, the ancestral flgII-28 allele almost completely disappeared from the 

worldwide population of Pto and was replaced by a novel less eliciting variant (Cai et al., 2011). 

Interestingly, the genetic diversity in Pto strains and isolates show rather higher frequency of 

mutations in flgII-28 than in flg22 (Cai et al., 2011). From the evolutionary point of view, it seems 

that flagellin-triggered host immunity is disturbing even for highly virulent pathogens such as Pto. 

Mutation within the flg22 epitope can even lead to complete MTI evasion. For pathogens, 

such as X. campestris pv campestris (Xcc), co-evolving with Brassicaceae, a single amino acid 

polymorphism in flg22 (D14G) can completely abolish the Xcc flagellin eliciting activity, as 

observed in Arabidopsis (Sun et al., 2006). Pseudomonas cannabina pv alisalensis (Pcal) ES4326 

also possesses a divergent flg22 epitope. The flg22 peptide derived from Pcal not only lacks 

eliciting activity in Arabidopsis or tomato, but may act as an antagonist of FLS2 signaling in 

tomato. Pretreatment with flg22-ES4326 led to increased Pto growth in tomato (Clarke et al., 

2013). 

The flg22 epitopes derived from A. tumefaciens, Sinorhizobium meliloti and R. 

solanacearum flagellins are highly divergent and are not recognized by Arabidopsis and tomato 

(Felix et al., 1999; Bauer et al., 2001; Pfund et al., 2004). The flagellin of S. meliloti is also not 

recognized in the host legume Lotus japonicus (Lopez-Gomez et al., 2012). Both A. tumefaciens 

and S. meliloti flagellins possess compensatory mutations to preserve motility (Andersen-Nissen et 

al., 2005), as flagellum act as a virulence factor for both bacteria. 

Concerning human immunity, ε-proteobacteria including the important pathogens H. 

pylori or C. jejuni evade TLR5 recognition by mutating the entire flagellin recognition site 

(Andersen-Nissen et al., 2005).  

 

Reduced flagellin content and flagella shedding 

Bacterial motility is important primarily at early stages of infection. At later stages, 

bacteria colonizing plants or animals may lose motility and shed or degrade their flagella (Drake 

and Montie, 1988; Hatterman and Ries, 1989). Bacteria can regulate their flagellin biosynthesis in 

response to different environmental conditions and the localization within the host tissue (Ramos 
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et al., 2004). Bacteria can even block the flagellin immunogenicity; they produce proteases that 

specifically cut monomeric flagellin to release inactive peptides into the environment (Bardoel et 

al., 2011). 

3.2 The role of  FLS2-mediated sensing 

The significance of flagellin perception for the plant immunity was mainly studied in 

Arabidopsis upon infection with P. syringae (notably Pto) and Xcc. The knowledge of flagellin 

involvement in the interactions with plant-associated beneficial bacteria is scarce. 

 

Pseudomonas syringae pv tomato 

Pto causes bacterial speck of tomato, a worldwide economically important disease. Pto is a 

foliar pathogen colonizing mesophyll cells after the entry through stomata or wounds. The Pto 

pathogenicity relies on TTSS-delivered effectors and toxins, such as coronatine, disrupting the 

hormonal balance (Zeng and He, 2010). Pto can also infect Arabidopsis, although it does not 

naturally infect Brassicaceae.  

The FLS2-mediated sensing of flagellin is an important security point to detect and control 

invasion of Pto DC3000 in Arabidopsis leaves (Zipfel et al., 2004; Zhang et al., 2007; Xiang et 

al., 2008; Clay et al., 2009; Zeng and He; 2010) and N. benthamiana (Kvitko et al., 2009), where 

the loss of FLS2 causes enhanced bacterial growth. Similarly, NbFLS2 silencing led to enhanced 

growth of non-pathogenic, non-host strains of Pto and even the compatible virulent strain of Pta 

(Hann and Rathjen, 2007). Several studies have shown that the enhanced susceptibility of the fls2 

mutant towards Pto was observed when plants were infected by inoculum spray or dipping, but not 

with apoplast-infiltrated inoculum, suggesting that flagellin perception restricts bacterial invasion 

at an early step but does not play a major role in post-entry defenses in the apoplast (Zipfel et al., 

2004; Zeng and He, 2010). In Arabidopsis, FLS2 was shown to play an essential role in mediating 

the stomatal closure during the initial Pto DC3000 invasion through stomata (Zeng and He, 2010). 

Likewise, the pretreatment with flg22 was effective to restrict Pto infection (Zipfel et al., 2004; 

Sun et al., 2006). However, we have to keep in mind that flg22 is not the only active MAMP in 

crude bacterial extracts of Pto (Zipfel et al., 2004). 

 

Xanthomonas campestris pv campestris 

Xcc causes black rot, the most important bacterial disease of Brassicaceae/crucifers, 

including Arabidopsis. Xcc is a vascular pathogen; thus it enters the plant via the hydathodes, 

specialized pores at leaf margins, enabling a direct access to xylem and a systemic host infection.  

It was shown that for Xcc, the increase in strain virulence correlates with the loss of 

eliciting activity of crude extracts or purified flagellins. Pretreatment of Arabidopsis leaves with 

purified eliciting flagellins of Xcc constrained growth of both Pto and Xcc pathogens (Sun et al., 
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2006). However flagellin turned out not to be the main eliciting determinant of Xcc (Sun et al., 

2006). Moreover, possessing an eliciting flagellin did not limit the virulent isogenic Xcc strain in 

growth on Arabidopsis leaves, both in leaf mesophyll and hydathode/vascular colonization assays 

(Sun et al., 2006). This suggests that Xcc might interfere with flagellin signaling by 

complementary inhibitory tools.  

 

Sinorhizobium meliloti  

Rhizobia are soil plant beneficial bacteria that colonize roots of legumes (Fabaceae) and 

form root nodules, where they fix nitrogen. During the establishment of beneficial associations, 

microbes are initially recognized as invaders by the host immunity. At later stages of the 

interaction, microbes modulate and minimize plant immune responses to allow tissue colonization 

(Zamioudis and Pieterse, 2012). 

Defenses triggered by flg22 from P. aeruginosa delayed nodule organogenesis in the early 

symbiotic establishment between L. japonicus and S. meliloti (Lopez-Gomez et al., 2012). 

However, no effect of flg22 was observed once the symbiosis was established, probably because of 

secreted MTI-suppressing factors (Lopez-Gomez et al., 2012; Zamioudis and Pieterse, 2012). 

Interestingly, the LjFLS2 expression was down-regulated in nodules (Lopez-Gomez et al., 2012), 

eventhough the flagellin of S. meliloti is not immunogenic. 



Figure 10. Structure of N-acetylglucosamine (GlcNAc)-containing ligands recognized by plant lysin 

motif (LysM) proteins.  

A. Chitin, which is a GlcNAc homopolymeric chain. B. Peptidoglycan (PGN), which contains 

heteropolymeric chains of GlcNAc and N-Acetylmuramic acid crosslinked with a short peptide. The 

diaminopimelic acid (DAP)-type PGN is mainly found in Gram-negative bacteria, whereas the Lys-type 

PGN is mainly found in Gram-positive bacteria. C. Nod factors, in which three to five GlcNAc residues are 

N-linked to an acyl chain. As an example, the major Nod factor of Sinorhizobium meliloti is shown. D. Myc 

factors, in which up to five GlcNAc residues carry acyl and sulfate attachments. As an example, a Myc 

factor from Glomus intraradices is shown. From Gust et al. (2012). 
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III. Chitin-triggered immunity 

1 Microbial GlcNAc-containing ligands 

Many distinct microbial patterns are composed from N-acetylglucosamine (GlcNAc) units, 

including fungal chitin (Fig. 10 A) or bacterial peptidoglycan (Fig. 10 B) present in microbial cell 

walls, but also lipochitooligosaccharidic nodulation (Nod) or mycorrhizal (Myc) factors (Fig. 10 C, 

D) secreted by rhizobia and arbuscular mycorrhiza fungi of the Glomeromycota phylum, 

respectively.  

Plants can specifically recognize these motifs by distinct LysM-containing receptor 

systems (Fig. 11). The chitin and PGN perception (Fig. 11 C, D) will be further presented in detail 

(§3.1-2 and §3.3). For the perception of lipochitooligosaccharides, we note several basic findings. 

Nod factors (NFs) are recognized by the legume L. japonicus LysM-RLKs NF Receptor 1 

(LjNFR1) and LjNFR5 and their functional orthologs are found in Medicago truncatula (MtNFP 

and MtLYK3) or Pisum sativum (PsSym37, PsSym10, Fig. 11 A; reviewed in Gust et al., 2012). 

Less is known about the perception of Myc factors. Nod Factor Perception (PaNFP), a LysM-RLK 

structurally similar to LjNFR5 and MtNFP5, recognizes Myc factors in Parasponia andersonii, the 

non-legume host (Fig. 11 B; reviewed in Gust et al., 2012). Recognition of microbial Nod and 

Myc factors by host plants is required for the symbiosis establishment (Geurts et al., 2005; Gust et 

al., 2012). 

2 Chitin, a structural component of fungal cell walls 

Chitin, a linear polymer of β-1,4-linked GlcNAc (Fig. 10A), is the second most ubiquitous 

natural polysaccharide, after cellulose. Chitin is a major component of fungal cell walls, it is also 

present in the cuticle of non-vertebrates such crustacean shells, insect exoskeletons, in eggs of 

parasitic nematodes, protists, algae (Bueter et al., 2013). Naturally occurring chitin is not a pure 

homopolymer, but it is rather a heteropolymer with varying percentage of deacetylated chitin 

(GlcN) (Merzendorfer, 2011). Chitosan, the deacetylated derivative of chitin produced by chitin 

deacetylases, is also naturally occurring polysaccharide, albeit less common. Chitosan can be 

notably found in some fungal species such as Cryptococcus. While chitin is neutral, chitosan is 

cationically charged (Merzendorfer, 2011; Bueter et al., 2013). 

Cell walls of filamentous fungi contain up to 20% of chitin that is mainly occurring in the 

inner cell wall, close to the plasma membrane. Chitin forms a network made of rigid structural 

fibrils that each contains around twenty tightly packed chitin chains. Chitin fibers are cross-linked 

with glucans for the cell wall reinforcement. Chitin biosynthesis from glucose requires at least 8 



Figure 11. Plant LysM receptors. 

Plant LysM receptors mediating perception of N-Acetylglucosamine (GlcNAc)-containing ligands are 

involved in the establishment of symbiotic interaction with rhizobacteria or mycorrhization or in the 

defense against both bacteria and fungi. A. Nodulation factors (NFs) from rhizobacteria are recognized by 

NF receptors (NFRs) leading to colonization and formation of a legume-specific root nodule. B. In 

arbuscular mycorrhiza, mycorrhization factors (MFs) are sensed by MF receptors leading to fungal 

penetration and establishment of arbuscules for nutrient exchange. C., D. Upon fungal or bacterial 

infection, chitin and peptidoglycan (PGN) are sensed by LysM-PRRs that initiate defense responses 

aiming to prevent further microbial spread. LysM-containing effectors (Ecp6, Slp1) compete with the 

chitin binding. From Gust et al. (2012). CERK1: chitin elicitor receptor kinase 1, CEBiP: chitin elicitor 

binding protein, GPI: glycosylphosphatidylinositol, LYK: LysM-RLK, LYR: nonactive LysM-RLK, NFP: 

Nod factor perception, PM: plasma membrane 
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enzymes. As the last step, chitin synthase polymerizes cytoplasmic stores of UDP-GlcNAc to 

make chitin chains that are secreted through plasma membrane into the extracellular space. There, 

chitin is finally organized into fibrils and deposited mainly at growth sites, such as hyphal tips. The 

chitin synthesis is tightly controlled at multiple levels during growth and development. For 

example, cell walls of spores contain lower amounts of chitin than hyphae. Both bacteria and fungi 

possess chitinases to degrade GlcNAc/GlcN, which allows the degradation of exogenous chitin but 

also the cell wall remodeling during autolysis of old hyphae (Merzendorfer, 2011; Hartl et al., 

2012). Chitinases cleave chitin polymers into chitooligosaccharides (COSs) of the minimal length 

(GlcNAc)2, which can be further hydrolyzed by N-acetylglucosaminidases (Hartl et al., 2012). 

3 Chitin: elicitor of MTI in plants 

Chitin is a main molecular pattern for most of fungi and it acts as a MAMP both in plants 

and animals. In plants, chitin elicits a variety of defense responses including the activation of the 

phenylpropanoid pathway or production of PR proteins such as peroxidases, chitinases or 

thaumatin-like proteins (Kaku et al., 2006; Miya et al., 2007; Boller and Felix, 2009). However, 

its eliciting capacity is highly dependent on the oligomer size. In general, the highest activity was 

reported for heptamers and octamers and little or no activity for shorter COSs (Hamel and 

Beaudoin, 2010). 

While the mechanism of FLS2-mediated flagellin perception system is conserved in 

different plant species (Takai et al., 2008; Boller and Felix, 2009), chitin recognition differs 

between rice, the monocot model, and the dicot model Arabidopsis. In rice, the crucial PRR 

mediating chitin binding is Chitin Elicitor-Binding Protein (CEBiP; Kaku et al., 2006), whereas in 

Arabidopsis it is Chitin Elicitor Receptor Kinase1 (CERK1; Miya et al., 2007).  

 

3.1 OsCEBiP/OsCERK1 perception system in rice 

Receptors 

The mechanisms underlying the chitin perception and signaling were extensively studied 

in rice. CEBiP was the first plant chitin receptor discovered as a high-affinity binding protein from 

the plasma membrane of rice cells (Kaku et al., 2006). OsCEBiP, a LysM-RLP with three LysM in 

the extracelular domain, is the major chitin-binding protein in rice (Kaku et al., 2006; Hayafune et 

al., 2014). The third LysM (LysM0) domain in the N-terminal part of OsCEBiP was reported only 

recently (Hayafune et al., 2014). Biochemical and computational studies have shown that the 

central LysM (LysM1) and notably the I122 is required for chitin binding mediated via N-acetyl 

groups (Fig. 12A; Hayafune et al., 2014). OsCEBiP exhibits high affinity for chitooligomers 

containing at least 7 GlcNAc residues (Hayafune et al., 2014). Upon chitin binding, two OsCEBiP 



Figure 12. Model of the chitin perception system in rice constituted of CEBiP and OsCERK1.  

A. Modeling of binding of chitin oligomers to the central LysM1 domain of CEBiP containing the 

key I122 residue. B. Model of the activation of CEBiP-OsCERK1 complex by binding the (GlcNAc)8 

ligand. The receptor complex is activated in a sandwich-like manner. Upon ligand binding, CEBiP 

and OsCERK1 form heterodimers with two CEBiP receptors simoultaneously binding to the 

(GlcNAc)8 chain via the LysM1 domain. From Hayafune et al. (2014).  

A 
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receptors form dimers enclosing the chitin chain in a sandwich-like manner (Fig. 12B; Hayafune et 

al., 2014). Plants silenced for OsCEBiP totally failed to respond to chitin (Kaku et al., 2006; 

Kouzai et al., 2014). OsCEBiP is a specific chitin receptor, as its gene knock down affected 

response to chitin, but not to PGN nor LPS (Kouzai et al., 2014). It was also reported that the 

dimerization and chitin-induced ROS production was inhibited by (GlcNβ1,4GlcNAc)4, which is 

N-acetylated only on one side of the molecule (Hayafune et al., 2014). 

During chitin perception, OsCEBiP cooperates with OsCERK1, the closest homolog of 

AtCERK1 in rice, on the chitin perception (Shimizu et al., 2010; Hayafune et al., 2014). While 

OsCEBiP lacks an intracellular kinase domain, OsCERK1 is a LysM-RLK with a functional kinase 

capable of signaling initiation (Shimizu et al., 2010). The ectodomain of OsCERK1 possesses one 

LysM domain but cannot bind chitin directly (Shimizu et al., 2010). OsCERK1 is a less abundant 

membranous protein than OsCEBiP (Shimizu et al., 2010). RNAi lines for OsCERK1 were 

affected in chitin responses including the reduction by 90% in chitin-induced transcriptome 

(Shimizu et al., 2010). OsCEBiP and OsCERK1 form transient hetero-dimers in chitin-treated rice 

cells (Fig. 12B; Shimizu et al., 2010; Hayafune et al., 2014). Therefore in rice, the receptor system 

for chitin signaling is built of two-components, OsCEBiP and OsCERK1, that are both required: 

the first one for chitin binding, the second for initiation of the signal transduction.  

In wheat, another monocot crop, homologs of CERK1 and CEBiP are both required for 

chitin-induced defenses (Lee et al., 2014), suggesting conserved CEBiP/CERK1 perception in 

monocots. 

 

OsCERK1-mediated signaling 

Recently, a considerable progress in unraveling the chitin signaling in rice has been made, 

notably by Japanese research teams (reviewed in Kawano and Shimamoto, 2013). After formation 

of the OsCEBiP/OsCERK1 complex, the OsCERK1 kinase rapidly activates the GDP/GTP 

Exchange Factor for OsRac1 (OsRacGEF1) by direct phosphorylation. OsRacGEF1 then directly 

activates a small GTPase OsRac1 (Akamatsu et al., 2013) that initiates cellular signaling, 

including a MAPK cascade (OsMKK6, OsMPK1/3/6), which leads to phytoalexin and lignin 

biosynthesis (Kawano and Shimamoto, 2013).  Genes encoding OsRacGEF1 and OsRac1 were 

previously shown to be involved in rice disease resistance against the rice blast fungus M. oryzae 

(Ono et al., 2001; Suharsono et al., 2002). Phosphorylation of MAPKs in rice seems to be crucial 

for biosynthesis of phytoalexins that are highly effective in defense against M. oryzae (Kishi-

Kaboshi et al., 2010). 

Chitin downstream signaling also requires a receptor-like cytoplasmic kinase OsRLCK186 

that is recruited to the plasma membrane and phosphorylated by OsCERK1 (Yamaguchi et al., 

2013). Similarly to OsRac1, the activated OsRLCK186 also triggers the MAPK cascade 

(Yamaguchi et al., 2013). One of the effectors from Xanthomonas oryzae pv oryzae, Xoo1488, 
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Figure 13. Mechanism of chitin oligomer recognition by CERK1 in Arabidopsis. 

A crystal structure of CERK1 ectodomains complexed with chitin pentamer was solved. A. Four N-

Acetylglucosamine residues (NAG 1-4) bind to a shallow groove on lysin motif 2 (LysM2) domain of 

CERK1 ectodomain. White, blue and red indicate neutral, positive and negative surfaces, 

respectively. B. Detailed interaction between chitin and the LysM2 domain of CERK1. The side 

chains of AtCERK1 are shown in yellow. Dashed lines and red spheres represent bonds and water 

molecules, respectively. C1, C3, C4 and C6 indicate carbon atoms in the chitin oligomer. D, Asp; E, 

Glu; G, Gly; I, Ile; L, Leu; M, Met; Q, Gln; N, Asn; R, Arg; P, Pro; T, Thr; Y, Tyr. From Liu et al. 

(2012b). 



  INTRODUCTION ǁChitin-triggered immunity 

42 
 

targets OsRLCK186 leading to suppression of chitin-induced responses and eventually increased 

susceptibility to the pathogen (Yamaguchi et al., 2013). The Xoo1488 expression in rice also 

abolished the PGN-induced responses, suggesting that the OsRLCK186-mediated signaling 

downstream of chitin and PGN perception are common (Yamaguchi et al., 2013). 

3.2 CERK1: perception system in Arabidopsis 

In Arabidopsis thaliana, CERK1 is the key chitin binding and signaling component (Miya 

et al., 2007; Wan et al., 2008; Petutschnig et al., 2010). AtCERK1 is a LysM-RLK with three 

LysM domains in the extracellular part of the protein. The knockout mutant cerk1 lost its capacity 

to respond to chitin as neither oxidative burst, nor chitin-responsive genes were induced (Miya et 

al., 2007; Wan et al., 2008). AtCERK1 binds chitin directly without any requirement for 

interacting proteins and initiates signaling via its cytoplasmic Ser/Thr kinase domain (Miya et al., 

2007; Wan et al., 2008; Iizasa et al., 2010; Petutschnig et al., 2010). Recognition of chitin by 

AtCERK1 is independent of BAK1 (Gimenez-Ibanez et al., 2009) 

Different studies have shown that AtCERK1 protein binds to (GlcNAc)5 and longer COSs 

(Petutschnig et al., 2010; Liu et al., 2012b), with the highest affinity observed for the polymeric 

chitin (Iizasa et al., 2010; Petutschnig et al., 2010). The minimum (GlcNAc)5  is required to induce 

AtCERK1 phosphorylation in vitro (Petutschnig et al., 2010). 

Since, a deeper insight into the chitin binding and the mode of AtCERK1 activation was 

brought in a recent study of Liu et al. (2012b) that solved the crystal structure of AtCERK1 

ectodomain complexed with chito-pentamer (GlcNAc)5. This study revealed that the three LysMs 

of AtCERK1 ectodomain are tightly packed in a globular structure forming a groove for GlcNAc 

anchoring and that the amino acid residues within the central LysM2 interact with three GlcNAc 

units (Fig. 13A; Liu et al., 2012b). The N-acetyl moities play a key role in this interaction, as 

glutamic acid residues E110 and E114 of AtCERK1 engage hydrogen bonds with GlcNAc 

carbonyl oxygens and I141 binds to amide nitrogen of GlcNAc (Fig. 13B; Liu et al., 2012b). 

Previously, it has been shown that all three LysMs are required for chitin binding, suggesting that 

ectodomain conformation might be required for optimal ligand fixation (Petutschnig et al., 2010). 

The CxC motifs in inter-LysM spacers together with the N-terminal two cysteine residues form 

three pairs of disulfide bridges (Radutoiu et al., 2003; Liu et al., 2012b). 

Liu et al. also showed that (GlcNAc)8 induced AtCERK1 ectodomain dimerization, which 

was required for downstream signaling. Shorter COSs such as (GlcNAc)5 were unable to induce 

dimerization of AtCERK1 ectodomain in vitro and inhibited (GlcNAc)8-induced signaling (Liu et 

al., 2012b). Authors also hypothesized that the clustering of two or more AtCERK1 proteins 

around a chitin chain of a sufficient length is required for signaling (Liu et al., 2012b), possibly 
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explaining the higher affinity of AtCERK1 for polymeric chitin (Iizasa et al., 2010; Petutschnig et 

al., 2010). 

3.2.1 AtLYM2-mediated chitin perception independently of AtCERK1 

An intriguing question was whether a CEBiP-type receptor also takes part in the chitin 

perception in Arabidopsis. The closest OsCEBiP homolog, AtLYM2, is not required for chitin-

triggered defense, as the lym2 mutant was not affected in chitin responses (Wan et al., 2012). Yet, 

AtLYM2 is biochemically functional as a chitin-binding protein in Arabidopsis (Shinya et al., 

2012), similarly to OsCEBiP in rice (Kaku et al., 2006). 

But seek and you will find. Recently it was shown that AtLYM2 is involved in chitin-

induced plasmodesmata closure, independently of AtCERK1 (Faulkner et al., 2013). This suggests 

two chitin perception systems in Arabidopsis, one which is AtCERK1-mediated, the other 

AtLYM2-mediated. The LYM2 also contributes to the B. cinerea disease resistance (Faulkner et 

al., 2013). This regulation of plasmodesmata molecular flux seems therefore important in the 

chitin-triggered immunity. 

3.3 Tight regulation of chitin and PGN perception 

More and more evidence show that PRRs are in complex receptor associations to perceive 

MAMPs. Sensing ligands of distinct origins is linked and tightly regulated by common perception 

components. It seems now evident that chitin and PGN sensing shares co-receptors which are 

independent of signaling to LPS or flg22. 

Arabidopsis 

Apart from chitin recognition, CERK1 is also required for perception of peptidoglycan 

(PGN) (Gimenez-Ibanez et al., 2009; Willmann et al., 2011). PGN consists of heteropolymeric 

chains of GlcNAc and N-Acetylmuramic acid (MurNAc) crosslinked with a short peptide. PGN is 

structurally related to chitin and present in bacterial cell walls (Fig. 10B; Gust et al., 2012). Loss 

of AtCERK1 caused increased susceptibility to bacterial infection caused by Pseudomonas 

syringae pv tomato DC3000 in Arabidopsis (Gimenez-Ibanez et al., 2009). The AtCERK1 protein 

is also a target of the bacterial AvrPtoB effector that ubiquitinates the CERK1 kinase domain and 

targets it for degradation (Gimenez-Ibanez et al., 2009). AtCERK1 cooperates with two LysM-

RLPs, AtLYM1 and AtLYM3, that are glycosylphosphatidylinositol (GPI)-anchored proteins (Fig. 

11D). AtLYM1 and AtLYM3 directly bind PGN (Willmann et al., 2011), whereas AtCERK1 

cannot (Petutschnig et al., 2010; Willmann et al., 2011). It was reported that AtLYM1 and 

AtLYM3 are not involved in chitin response (Wan et al., 2012) and even the triple mutant 

lym1/lym2/lym3 was not affected in the expression levels of chitin-responsive genes (Wan et al., 

2012). 
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In Arabidopsis, CERK1 has a dual perception role, mediating responses either to fungi (via 

chitin) or bacteria (via PGN). Similarly to BAK1 regulator for LRR-mediated MTI, CERK1 may 

function as a regulatory RLK for BAK1-independent LysM-mediated MTI. 

 

Rice 

Similarly, rice seems to engage overlapping perception components for chitin and PGN 

sensing as PGN pretreatment of rice cells attenuated the response to chitin and vice versa (Liu et 

al., 2012a). Liu et al. (2012) also showed that the rice homologs of AtLYM1 and AtLYM3 

(OsLYP4 and OsLYP6) also bind PGN and function as PGN receptors (Liu et al., 2012a). 

Interestingly, OsLYP4 and OsLYP6 also bind chitin and are required for the chitin response (Liu 

et al., 2012a). Silencing of OsLYP4 or OsLYP6 also led to compromised resistance to X. oryzae 

and M. oryzae infections (Liu et al., 2012a). The role of OsCERK1 in PGN sensing in rice is still 

not clear. 

3.4 Role of other LysM-RLKs (LYKs) in Arabidopis 

The Arabidopsis genome encodes a total of five LysM kinases (AtLYK1-5) including 

CERK1/LYK1. It was suggested that AtLYK4, another LysM kinase (LYK), has an auxiliary role 

in chitin signaling (Wan et al., 2012) and might form a receptor complex with AtCERK1 in 

Arabidopsis. AtLYK4 is induced by chitin treatment (Wan et al., 2008) and can be pulled down 

from an Arabidopsis extract by chitin magnetic beads (Petutschnig et al., 2010) suggesting chitin 

binding capacity. The Arabidopsis mutant lyk4 was slightly reduced in Ca
2+

 signaling and 

induction of chitin-responsive genes (Wan et al., 2012). The other three AtLYK proteins 

(AtLYK2, 3 and 5) are not required for chitin responses (Wan et al., 2012). Nevertheless, AtLYK3 

has been recently shown to act as a negative regulator of basal defense gene expression and 

resistance to fungal and bacterial infections in Arabidopsis. Indeed, lyk3 mutants exhibited an 

enhanced disease resistance to B. cinerea and Pectobacterium carotovorum (Paparella et al., 

2014). Actually, AtLYK3 is required for ABA signaling, therefore assuring the crosstalk between 

immune responses and ABA (Paparella et al., 2014). The roles of the other two LysM-RLK, 

AtLYK2 and AtLYK5 remain unknown.  

3.5 Chitosan perception 

Chitosan, a chitin derivative, is also a potent elicitor of plant immunity (Aziz et al., 2006; 

Trotel-Aziz et al., 2006; Povero et al., 2011). For example in grapevine, chitosan elicits 

phytoalexins, chitinase and glucanase activities leading to resistance against B. cinerea and P. 

viticola (Aziz et al., 2006; Trotel-Aziz et al., 2006). AtCERK1 can weakly bind the partially 

deacetylated chitosan whereas it possesses no affinity for fully deacetylated chitooligomers 
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(Petutschnig et al., 2010). Therefore, according to Petutschnig et al. (2010), the acetylation status 

of GlcNAc is crucial for CERK1 binding. Chitosan heptaose and octaose did not elicit ROS burst 

and cell death in rice, suggesting that also rice requires acetylated ligands for immune activation 

(Kaku et al., 2006; Kishimoto et al., 2010). The Arabidopsis cerk1 null mutant lost its 

responsiveness to the partially deacetylated chitosan, as demonstrated by ROS burst and MAP 

kinase assays (Petutschnig et al., 2010). In disagreement with these data, another study reported 

that the partially deacetylated chitosan induces an AtCERK1-independent defense signaling 

(Povero et al., 2011). Therefore a discrepancy exists about the chitosan perception. The character 

of chitosan (degree of polymerization or acetylation) varies among different studies, which was 

shown as an important factor to affect chitosan activity (Iriti and Faoro, 2009). It is also speculated 

that chitosan may be active due to its positive charges which can interact with the negatively 

charged phospholipids, instead of a receptor-specific interaction (Bueter et al., 2013). 

3.6 Chitin perception by animals 

Chitin is known to elicit proinflammatory responses in mammals (Lee et al., 2008). 

However, studies on mechanisms underlying chitin perception in mammals are rather scarse, 

possibly because fungi are mainly plant pathogens. Three innate immune receptors, Toll-like 

receptor (TLR) 2, Dectin-1, and the mannose receptor, have been reported to mediate chitin 

recognition (Bueter et al., 2013). The LRR-RLK Toll-like receptor 2 (TLR2) contributes to the 

chitin sensing by keratinocytes or macrophages (Lee et al., 2008; Koller et al., 2011). It was 

proposed that depending on their size, chitin fragments were recognized by distinct receptors 

leading to distinct immune response. While long chitin fragments were inert, the smaller ones 

induced proinflammatory cytokines with the smallest causing an anti-inflammatory response (Lee 

et al., 2008). 

Also chitosan activates animal immune system. In humans, chitosan is used as an adjuvant 

in vaccines to induce a robust antibody production and T-cell responses (Bueter et al., 2013). 

4 Role of chitin perception in plant immunity 

Different studies show the importance of chitin perception in plant immunity to fungal 

infections. The Arabidopsis cerk1 mutant displayed a partly impaired resistance during the 

interaction with an incompatible fungus Alternaria brassicicola and with a compatible fungus 

Erysiphe cichoracearum (Miya et al., 2007; Wan et al., 2008). However, the involvement of 

CERK1 in disease resistance is dependent on the type of fungi (Miya et al., 2007). Also the knock 

down of OsCEBiP gene caused increased susceptibility to a weakly virulent strain of the rice blast 

fungus (M. oryzae; Kishimoto et al., 2010; Kouzai et al., 2014). HvCEBiP, the closest OsCEBiP 

orthologue in barley, is slightly involved in the resistance during the interaction with the 
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compatible fungus M. oryzae (Tanaka et al., 2010). However, its involvement in chitin recognition 

has not been reported. 

Fungi have developed different strategies to avoid chitin recognition and prevent 

antifungal responses. One frequent strategy is the secretion of LysM-containing effectors (Fig. 

11C). M. oryzae secretes a LysM Protein (Slp1) that accumulates in the apoplastic space of rice 

tissues (Mentlak et al., 2012). Slp1 sequesters chitooligosaccharides by direct binding to avoid 

host recognition (Mentlak et al., 2012). Cladosporium fulvum secretes another LysM effector 

(Ecp6) that binds chitooligosacharides released from invading hyphae (de Jonge et al., 2010). The 

fungal wheat pathogen Mycosphaerella graminicola evades chitin-initiated immunity by the means 

of Ecp6 homolog (Lee et al., 2014). The effector Avr4 of C. fulvum inhibits the activation of 

chitin-mediated immunity by binding to chitin in fungal cell walls, thus preventing degradation by 

host chitinases (van Esse et al., 2007). Homologs of Avr4 was also identified in other pathogenic 

fungi of the Dothideomycete class, including Mycosphaerella fijiensis, the pathogen of banana 

(Stergiopoulos et al., 2010).  

Some fungi, including M. oryzae, Cochliobolus miyabeanus and Rhizoctonia solani, mask 

cell wall surface with α-1,3-glucans, non-degradable by plants. This camouflage occurs 

specifically during plant invasion, as was shown in rice (Fujikawa et al., 2012). It was reported 

that pathogens require production of these LysM proteins or the synthesis of α-1,3-glucans for 

their full pathogenicity (Fujikawa et al., 2012; Mentlak et al., 2012; Lee et al., 2014).   

Treatment with chitin reduced the susceptibility of rice to M. oryzae (Tanabe et al., 2006). 

While the effect of chitin treatment on resistance remains rather mild, chitosan induces a strong 

resistance to fungal pathogens, in different plant species including grapevine (Benhamou et al., 

1994; El Ghaouth et al., 1994; Trotel-Aziz et al., 2006). However, besides its elicitor activity, 

chitosan possesses also antifungal properties by inhibiting mycelial growth and spore germination 

of various fungi (Benhamou et al., 1994; El Ghaouth et al., 1994; Trotel-Aziz et al., 2006). A 

direct antifungal effect was not reported for chitin. 
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AIMS OF WORK 

Although a dozen of MAMPs are known to elicit defense responses in grapevine, nothing 

is known about their perception systems. No PRRs have been identified in this crop. Nowadays, 

the recent sequencing of the grapevine genome (Jaillon et al., 2007; Velasco et al., 2007) 

facilitates the identification of candidate genes encoding putative receptors. 

 

In this context, my study focused on MAMP perception, as a key part of MTI, in grapevine 

(Vitis vinifera). My thesis work has been performed in the frame of the European project “PRR-

CROP” (ERA-NET Plant Genomics) coordinated by Dr. C. Zipfel. This collaborative project 

aimed to identify PRRs of important crops (barley, wheat, grapevine) and novel MAMPs from 

agriculturally important pathogens. 

The main objectives were: 

i) to assess the activity of typical MAMPs (such as flg22, elf18, pep-13, chitin and chitosan) in 

grapevine,  

ii) to identify the putative cognate receptors for active MAMPs by an orthology based approach, 

iii) to investigate their function by functional complementation in Arabidopsis mutants and reverse 

genetics in grapevine,  

iv) to characterize the MAMP/PRR perception systems in grapevine (ligand specificities, 

expression profiles of receptors), and 

iv) to investigate the role of a given perception system in the dialog with an encountered 

microorganism, i.e. its involvement in grapevine disease resistance. 

The receptor identification work was done in collaboration with Drs. Freddy Boutrot, Lena 

Stransfeld and Cyril Zipfel from The Sainsbury Laboratory (Norwich, United Kingdom) that 

carried out the Arabidopsis transformations and mutant selection. The work on the interaction 

between grapevine/Arabidopsis - Burkholderia phytofirmans was done in collaboration with Drs. 

Stephan Dorey and Olivier Fernandez from the University of Reims Champagne-Ardenne 

(Laboratoire Stress, Défenses et Reproduction des Plantes, Reims, France).  





  MATERIALS and METHODS 

48 
 

MATERIALS AND METHODS 

1 Materials 

1.1 Grapevine materials 

1.1.1 Cell suspensions 

Grapevine cells (Vitis vinifera cv Gamay) were cultivated in Nitsch-Nitsch medium (Nitsch 

and Nitsch, 1969); 20 g l
-1

 sucrose, pH 5.5, Annex 1) on a rotary shaker (120 rpm) at 25°C and 

under continuous light (50 µmol m
-2

 s
-1

). Cell suspension was subcultured every 7 days by 

transferring 30 ml of cell suspension into 70 ml of culture medium. Transformed grapevine cells 

(V. vinifera cv Gamay) expressing apoaequorin (pBIN19 p35S::apoaequorin) in the cytosol 

(Vandelle et al., 2006) were cultivated in the same conditions except that the Nitsch-Nitsch 

medium was supplemented with 100 mg l
-1

 paromomycin. For all experiments, 7-day old cultures 

were diluted twice with new medium 24 h prior to use. 

1.1.2  In vitro plantlets 

Wild-type and transgenic grapevine in vitro plantlets (Vitis vinifera cv Pinot Noir PN40024) 

were micropropagated by nodal explants grown on McCown Woody Plant (WP) agar medium 

(Duchefa M0219; 15 g l
-1

 sucrose, 7 g l
-1

 agar, pH 6.2) in a climatic chamber at 25°C/22°C 

(day/night) under fluorescent light (125 µmol m
-2

 s
-1

) with a photoperiod 16 h of light. Explants 

were first grown in Petri dishes (93 x 21 mm, Greiner) sealed with Parafilm on WP medium 

supplemented with charcoal 3 g l
-1

 and 6.5 g l
-1

 bactoagar (Difco). After 2 months, plantlet apexes 

were cut and transferred into tubes (25 x 150 mm, diameter x height) containing 15 ml of WP 

medium. The first transfer in a Petri dish improved the explants‟ vigour and the subsequent growth 

of the in vitro plantlets. Two month-old plantlets were used for generation of new explants or for 

experiments. The middle three leaves (non-senescent and adult) were used for bioassays. 

In vitro plantlets (V. vinifera cv Chardonnay) were grown in the Murashige & Skoog (MS) 

agar medium (30 g l
-1

 sucrose, 8 g l
-1

 agar, pH 5.9) at 26 °C with a photoperiod of 16 h of light.  

1.1.3 Plants 

Grapevine (V. vinifera cv Marselan) herbaceous cuttings were grown in individual pots (7 

x 7 x 8 cm) containing a mixture of peat and perlite (4/1, v/v) in a greenhouse. Growth conditions 

were 25 ± 4°C and 18 ± 7 °C (day and night, respectively), 16 h light period (artificial illumination 

was supplemented when the natural light was less than 200 µmol m
2
 s

-1
), hygrometry 50 ±10%. 

Plants were watered with a fertilizing solution (0.25% Topfert2 solution NPK 10-10-10 + 
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oligonutrients, Plantin, France). Plants were grown until they developed 6 – 8 leaves. The second 

and third youngest adult leaves from each plant were used for experiments. 

1.2 Arabidopsis materials 

1.2.1 Cell suspensions 

Arabidopsis thaliana cells from ecotype Columbia (Col-0) were kindly provided by Pr. 

Jean-Pierre Métraux (University of Fribourg, Switzerland). Arabidopsis cells were cultivated in the 

same conditions as grapevine cells except that suspensions were subcultured every 7 days by 

transferring 5 ml of cell suspension into 100 ml of fresh liquid Linsmaier and Skoog medium 

(Duchefa L0230, 30 g l
-1

 sucrose, 0.5 mg l
-1

 NAA, 50 µg l
-1

 kinetin, pH 5.5). Eight-day old cell 

suspensions were used for experiments. 

1.2.2 Plants 

Arabidopsis (A. thaliana) plants from wild-type (WT) Col-0, mutants fls2c (SAIL_691C4, 

Basta resistance, T-DNA insertion in the FLS2 promoter; Zipfel et al., 2004) and cerk1-2 (GABI-

Kat_096F09, sulfadiazine resistance, T-DNA knock-out mutant; Gimenez-Ibanez et al., 2009), or 

transgenic lines fls2/p35S::VvFLS2-GFP, cerk1-2/p35S::VvCERK1-GFP, cerk1-

2/pLexA35S::VvCERKs-GFP and pPR1::GUS were grown in Jiffy-7 peat pellets (Jiffy) in a 

controlled growth chamber under a 10/14 h day/night cycle at 20/18°C (70% relative humidity) 

with a light intensity of 175 µmol m
-2

 s
-1

 . 

For the in vitro culture, Arabidopsis plants were grown on solid or in liquid half MS 

medium (Duchefa M0222; 5 g l
-1

 sucrose). Seedlings were grown at 22°C with a 16 h photoperiod 

at a light intensity of 100 µmol m
-2

 s
-1

. A. thaliana seeds were sterilized by treating them for 1 min 

in a mix of 95% ethanol and 2% commercial bleach (9/1; v/v), supplemented with 0.01% Tween 

20, followed by three quick washes with 99% ethanol and drying under the hood. 

1.3 Microorganisms 

1.3.1 Botrytis cinerea 

Botrytis cinerea, strain B05.10, was cultivated at 20°C on malt-yeast agar medium (15 g l
-1

 

malt extract, 5 g l
-1

 glucose, 1 g l
-1

 tryptone, 1g l
-1

 casein, 1 g l
-1

 yeast extract, 0.2 g l
-1

 RNA, 15 g l
-

1
 agar). Conidia (5 x 10

4
) were plated on an agar medium in Petri dishes that was kept for 5 days in 

the dark for mycelium development, then 5 days under 16 h photoperiod of near-UV light to 

induce sporulation. Conidia were collected with water, filtered through glass-wool to remove 

mycelia, counted and kept at 4°C prior to infection assays.  
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1.3.2 Plasmopara viticola 

A Plasmopara viticola isolate collected in Burgundy in 2001 was maintained by 

successive infections on susceptible grapevine plants (V. vinifera cv Marselan) grown in 

greenhouse. To obtain sporangia, plants presenting “oil spot” symptoms (6-7 days) were placed in 

the dark overnight at 100% relative humidity. Sporangia were collected from the lower side of a 

sporulating leaf by using a brush, then suspended in distilled water to obtain a 1.10
4
 sporangia ml

-1
 

suspension for P. viticola subculture or experiments. Sporangia were used immediately for 

infection assays. 

1.3.3 Burkholderia phytofirmans 

B. phytofirmans strain PsJN expressing GFP (Sessitsch et al., 2005) was grown in King‟s 

B liquid medium at 20°C and 150 rpm for 48 h. The inoculum of B. phytofirmans strain PsJN was 

produced as described by Theocharis et al. (2012). Briefly, bacteria were collected by 

centrifugation (3 000 g for 15 min), washed twice with phosphate buffered saline (PBS; 10 mM, 

pH 6.5) and suspended in PBS. The bacterial density was estimated by spectrophotometry (600 

nm) and adjusted to 3 × 10
8
 CFU ml

–1
 with PBS. 

1.4 Elicitors 

1.4.1 Peptides 

Sequences of the flagellin-derived flg22 peptides from P. aeruginosa strain PAK 

(QRLSTGSRINSAKDDAAGLQIA), X. campestris pv campestris strain 305 

(QRLSSGLRINSAKDDAAGLAIS), B. phytofirmans strain PsJN 

(TRLSSGKRINSAADDAAGLAIS) and A. tumefaciens strain C58C1 

(ARVSSGLRVGDASDNAAYWSIA) were retrieved from UniProt database, purchased from 

Proteogenix (purity superior to 95%) and kindly provided by Drs. C. Zipfel and S. Dorey. Peptides 

elf18 (SKEKFERTKPHVNVGTIG) from E. coli and pep-13 (VWNQPVRGFKVYE) from P. 

sojae (Brunner et al., 2002) were obtained from Drs. C. Zipfel and F. Brunner, respectively. 

Peptides were dissolved in sterile ultra-pure water, prepared as 1 mM and 100 µM aliquots and 

stored at   - 20°C. 

1.4.2 Oligosaccharides 

The crab shell chitin NA-COS-Y (Lloyd et al., 2014), obtained from Yaizu Suisankagaku 

Industry CO (Yaizu, Japan), was kindly provided by Dr. Chris Ridout. Chitin was dissolved in 

sterile ultra-pure water and prepared as 100 g l
-1

 aliquots. Chitosan polymer (≥75% deacetylated 

form of chitin; mean degree of polymerization (DP) > 500) was purchased from Sigma and 
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purified according to (Bhaskara et al., 1998). Purified chitosan was dissolved in 50 mM HCl, pH 

was adjusted to 5.6 and aliquots of 1 g l
-1

 were prepared. Laminarin (Lam; β-1,3-glucan with a 

mean DP of 25-30), its shorter version (DP of 13), sulfated laminarin (PS3, degree of sulfation of 

2.4) and oligogalacturonides (OG, mean DP of 9-20) were provided by Goëmar Laboratories. 

Laminarin in all forms and OG were dissolved in sterile ultrapure water (25 g l
-1

). Aliquots were 

stored at -20°C. 

1.4.3 Elicitor doses 

For cell suspension treatments, 1 µM flg22, 1 g l
-1

 laminarin, 1 g l
-1

 chitin or 25 mg l
-1

 

chitosan were applied, if not otherwise mentioned. For screening of MAMP responses in 

transgenic lines of in vitro plantlets, 500 nM flg22, 1 g l
-1

 chitin or 0.5 g l
-1

 OG were used. For 

protection assays performed on leaf discs from grapevine plants grown in the greenhouse (§ 2.6), 

the elicitor concentrations were 10 μM for flg22, 2.5 g l
-1

 for Lam and PS3, 1 g l
-1

 for chitin and 

150 mg l
-1

 for chitosan. For these resistance tests, elicitors were dissolved in an appropriate 

surfactant (confidential) at 0.1% (v/v). 

2 Methods 

2.1 MAMP responsiveness in cells and in vitro plantlets 

2.1.1 Cell culture equilibration for early signaling bioassays 

To measure early signaling events, such as ROS production, variations in cytosolic Ca
2+

 

concentrations ([Ca
2+

]cyt) and MAPK phosphorylation, cells were collected and washed three times 

with M10 buffer (175 mM mannitol, 0.5 mM CaCl2, 0.5 mM K2SO4, 10 mM MES, pH 5.3) and 

suspended at 0.1 g fresh weight of cells (FWC).ml
-1

 in M10 buffer. For measurement of H2O2 

production or MAPK phosphorylation, cells were equilibrated 1h (130 rpm, 25°C) before elicitor 

treatments. For [Ca
2+

]cyt variations, washed cells were processed as described elsewhere (§ 2.1.3). 

Arabidopsis Col-0 cells were washed with M10 pH 6.2, equilibrated 1h (130 rpm, 25°C) 

and used for measurements of H2O2 production.  

2.1.2 Luminol-based oxidative burst analysis  

After equilibration, cells were treated with elicitors or a control treatment. At a given time 

point post treatment, 250-µL cell aliquots were mixed with 300 µL of H50 buffer (50 mM HEPES, 

175 mM mannitol, 10 mM CaCl2, 0.5 mM K2SO4, pH 8.5) and 50µL of 0.3 mM luminol. 

Luminescence, expressed in relative luminescence units (RLU), was integrated over 10s by a 

luminometer (Lumat LB9507, Berthold Technologies) and was converted into nmol H2O2.g
-1
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FWC, using a standard calibration curve obtained by addition of H2O2 in grapevine cell suspension 

aliquots. For dose response, oxidative burst was measured at 15 min post treatment or at maximal 

response. Oxidative burst in Arabidopsis cell suspensions was monitored using the same protocol 

as for grapevine. 

The ROS production in Arabidopsis leaf discs was measured in two discs per plant from at 

least 6 plants. Leaf discs (4 mm diameter) were cut and floated on 100 µl ultrapure water in a 96-

well plate overnight in darkness at room temperature. Then 16 h later, water was replaced with 100 

µl of the reaction/elicitation mixture (60 µM luminol, 1 U horse radish peroxidase, elicitor) and the 

luminescence (RLU) was recorded every 90 s (integration over 1 s) and until 60 min, using a 

microplate luminescence reader (Mithras LB 940, Berthold Technologies).  

For grapevine, at least 12 discs (4 mm diameter) from 3 leaves of 2 plants were vacuum-

infiltrated with water and floated on 100 µl water in a 96-well plate overnight in darkness at room 

temperature. Then 16 h later, water was replaced with 100 µl of the reaction mix (60 µM luminol 

and 10 U horse radish peroxidase in H50 buffer, pH 8.5) and luminescence was counted as 

described for Arabidopsis leaf discs. Once ROS levels decreased to the basal level ≤ 80 RLU (~5 

min), elicitor or water was added in each well and the luminescence was recorded every 90s and 

during a 60 min period. 

2.1.3 Analysis of free cytosolic calcium concentration variation  

Apoaequorin-expressing grapevine cells were suspended in M10 buffer (§2.1.1) and 

further incubated for 4h with 3 µM coelenterazine (130 rpm, 25°C, at dark) to perform the in vivo 

aequorin reconstitution before the elicitor treatments. Then, 250 μl cell aliquots were treated with 

elicitors and the emitted bioluminescence was recorded as RLU s
-1

 for 30 min using a 

luminometer. Remaining aequorin was discharged by automatic injection of 300 µl of lysis buffer 

containing an excess of Ca
2+

 (2M CaCl2 in 20% ethanol (v/v)) and luminescence was recorded for 

another 5 min until values were within 1% of the highest discharge value. RLU values were 

converted into Ca
2+

 concentrations using the calibration equation p([Ca
2+

]cyt) = 0.332588 (-log k) + 

5.5593, described in detail by Rentel and Knight (2004), where k is the luminescence counts per 

second/total luminescence counts remaining (Ranf et al., 2008). 

2.1.4 MAPK bioassay 

Grapevine cells were first equilibrated (§2.1.1), then treated with elicitors or a control 

treatment. Aliquots of 1.5 ml were harvested at 0, 5, 10, 15, 30 and 60 min post treatment by 

filtration on GF/A filters, frozen in liquid N2 and kept at -80°C prior to perform the protein 

extraction (§2.2.1) and MAPK detection (§2.2.4). 
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Leaves of in vitro grapevine plantlets were first vacuum-infiltrated with water then floated 

on water (lower leaf surface facing the solution) during 2 h before adding elicitor solutions. 

Treated leaves were collected into liquid N2 at 15 min post treatment and kept at -80°C prior to 

perform the protein extraction (§2.2.2) and MAPK detection (§2.2.4). 

2.1.5 Defense gene induction assay 

For defense gene expression kinetics on grapevine cell suspensions, the cell culture density 

was adjusted to 0.1 g FWC ml
-1

 with sterile Nitsch-Nitsch medium 16 h prior to experiment. 

Otherwise, they were maintained under their culture conditions (25°C, continuous light, 120 rpm). 

Cells were then treated with elicitors or a control treatment and sampled under sterile conditions. 

Aliquots of 1 ml were harvested at indicated time points into liquid N2. 

Leaves of in vitro grapevine plantlets were floated on elicitor solutions with the lower leaf 

surface facing treatment in the growth climatic chamber (25°C). After 6 h of treatment, leaves 

were harvested into liquid N2. For the basal level of VvPRR transcripts, leaves from 2-month old 

plantlets were frozen.  

All harvested tissues were kept at -80°C prior to RNA extraction (§2.2.7) and qPCR 

(§2.2.8). 

2.1.6 Cell death quantification 

Cells were cultured in their culture medium as described for defense gene induction assays 

(§2.1.5). Cell viability was quantified by neutral red staining as a vital dye. Neutral red stains 

vacuoles of living cells, while those of dead cells are colourless (Naton et al., 1996). After 24 h of 

treatment, 500 µl of cell aliquot (~ 50 mg cells) was washed twice with H50 buffer (§2.1.2, pH 

7.5) and colored by 0.01 % neutral red (w/v). The viability was blindly evaluated on at least 500 

cells per sample. The incubation of cells 3 min at 95°C served as a positive control of cell death. 

2.2 Biochemistry, molecular biology and bioinformatics 

2.2.1 Total protein extraction from grapevine cells and Arabidopsis  

Samples of grapevine cells were ground in a mortar. Total proteins were extracted by 

adding 250 µl of the protein extraction buffer (50 mM HEPES-KOH pH 7.5; 10 mM EGTA, 

10 mM EDTA, 1 mM Na3VO4, 50 mM β-glycerol phosphate, 10 mM NaF, 1 mM PMSF, 5 mM 

DTT, 5 µg ml
-1

 leupeptin, 5 µg ml
-1

  antipain) to 100 mg of ground frozen powder. After 

centrifugation (15 min, 10 000 g, 4°C), proteins in the supernatant were quantified by 

spectrophotometry with the Bradford‟s method (Bradford, 1976) using bovine serum albumin 

(BSA) as standard. Samples were stocked in Laemmli sample buffer (Laemmli, 1970) heated at 
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95ºC for 5 min prior to electrophoresis. Total proteins from Arabidopsis leaves were extracted with 

the same method. 

2.2.2 Total protein extraction from in vitro grapevine plantlets 

One hundred mg of fine powder obtained by grinding leaves in mortar were mixed with 

250 µl of the mixture TRI Reagent® (SIGMA) and after 3 min 25 µl of 1-Bromo-3-Chloropropane 

(BCP; Tri Reagent/BCP : 10/1, v/v) was added. Samples were incubated 5 min at room 

temperature and centrifuged (15 min, 12 000 g, 4°C). The supernatants were discarded and pellets 

were mixed by inversion with 75 µl ethanol and let 3 min at room temperature. Samples were 

centrifuged (5 min, 2 000 g, 4°C) and proteins were concentrated by acetone precipitation 

(supernatant/glacial acetone: 1/9, v/v) for at least 1 hour at -20°C. The resulting pellet was 

homogenized in a modified Laemmli buffer (0.125 mM Tris-HCl pH 6.8, 2 % SDS, 5 % β-

mercaptoethanol) without glycerol and bromophenol blue. Extracted proteins were quantified 

using the reducing agent and detergent compatible protein assay kit (RC DC™, Bio-Rad) with 

BSA as the standard. Glycerol (10%) and bromophenol blue (0.01%, w/v) were added to samples, 

which were then heated 5 min at 95°C prior to SDS-PAGE. 

2.2.3 Protein extraction enriched in membrane fraction 

To detect the membrane-associated proteins in Arabidopsis leaves, protein extracts were 

prepared as mentioned above (§ 2.2.1) until the centrifugation step (15 min, 10 000 g, 4°C). 

Hereafter, supernatants were processed differently. To obtain a fraction enriched in the 

membranous proteins, recovered supernatants were further centrifuged (40 min, 100 000 g, 4°C). 

The resulting supernatants were discarded and the pellet was suspended in a volume of Laemmli 

buffer allowing a 50 fold concentration of the extract. Samples were not boiled to preserve 

solubilisation of membranous proteins. 

2.2.4 Detection of phosphorylated MAPK by Western blotting 

Twenty µg of total proteins and molecular mass standards (All Blue Standards; Biorad) 

were separated by 10% SDS-PAGE and transferred to a 0.45 µm nitrocellulose membrane 

(Hybond C, Amersham) by semi-dry electroblotting using a buffer containing 48 mM Tris–HCl, 

39 mM glycine, 0.0375%  SDS (w/v) and 20% methanol (v/v). The membrane was saturated 

overnight at 4°C in TBS buffer (10 mM Tris–HCl pH 7.5, 150 mM NaCl) supplemented with 0.1% 

Tween 20 and 1% BSA. Phosphorylated MAPKs were detected with a primary antibody raised 

against a phospho-Thr202/Tyr204 peptide of human phosphorylated extracellular regulated protein 

kinase 1/2 (α-pERK1/2, Cell Signaling) that was co-incubated with the membrane for 1 h at 1/5 

000 dilution in TBS buffer + 0.1% (v/v) Tween 20. For the secondary detection, membrane was 
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incubated 1 h with a goat anti-rabbit IgG horseradish peroxidase conjugate (Bio-Rad) at 1/100 000 

dilution in TBS buffer + 0.1% (v/v) Tween 20. The final detection was performed with the ECL 

detection kit (Western Lightning Plus; PerkinElmer). Transfer quality and/or homogenous loading 

were checked by Ponceau red staining of membranes (0.1% Ponceau S (w/v) and 5.0% acetic acid 

(v/v) in water) or by colloidal Coomassie brilliant blue (CBB) staining (34% methanol (v/v), 17% 

ammonium sulphate (w/v), 0.5% acetic acid (v/v), 0.1% Coomassie Brilliant Blue G-250 (w/v)) of 

a parallel SDS-PAGE gel.  

2.2.5 Detection of GFP and VvFLS2 by Western blotting 

The GFP and VvFLS2 proteins were detected by Western blotting on protein extracts from 

Arabidopsis leaves. Twenty µg of total proteins (§2.2.1) or the microsomal fraction obtained from 

400 µg of total proteins (§2.2.3) were subjected to 8% SDS-PAGE and thereafter transferred and 

treated as previously described for Western blotting of phosphorylated MAPKs (§2.2.4). After 

saturation with BSA, the membrane was incubated 1 h with an anti-GFP primary antibody 

(Genetex, GTX30738; diluted 1/10 000) raised against all variants of Aequoria victoria GFP or 

with the anti-VvFLS2 antibody, both from rabbit, in dilutions from 1/1 000 to 1/10 000.  

2.2.6 Generation of VvFLS2 antibody and dot-blot specificity test 

A rabbit polyclonal antibody against VvFLS2 (anti-VvFLS2) was purchased from 

Proteogenix. Two rabbits were immunized with the synthetized peptide KTVENPEPEYASALT 

conjugated to keyhole limpet hemocyanin (KLH) carrier protein, antibody titres were determined 

in each rabbit serum with ELISA tests. The antibodies were antigen affinity purified and 

solubilized in PBS buffer pH 7.4 with 0.02% NaN3 (w/v).  

For the anti-VvFLS2 antibody dot-blot immuno-analysis, dots comprising of 0.2 µg of 

Cys-KTVENPEPEYASALT immunogenic antigen or 0.23 µg flg22 (used as a negative control) 

were spotted directly onto the nitrocellulose membrane and were allowed to dry. The membrane 

was incubated with anti-VvFLS2 antibody in dilutions from 1/1 000 to 1/128 000.  

2.2.7 Isolation of total RNA 

Total RNA was isolated either from 100 mg of ground grapevine cells by adding 1 ml of 

Trizol® (Invitrogen) or from 100 mg of ground in vitro plantlet leaves by using the Spectrum™ 

Plant Total RNA Kit (Sigma). Both isolations were carried out according to the manufacturer‟s 

instructions. Purity of RNA samples was determined by measuring the absorbance ratio 260/280 

nm with the NanoDrop 2000 spectrophotometer (Thermo Scientific). RNA quality was visualized 

by electrophoresis in 1% agarose gel. 



Table 5. Primers used for qPCR quantification. 

Amplicon melting temperatures (Tm) were analysed by the LightCycler 480. The mean PCR efficiency was calculated by 

the LinRegPCR program (version 2012.3). For Tm and PCR efficiency data are presented as means ± SD. * Sequence was 

retrieved from Genoscope (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/), ND=Not Determined 

Gene 
Accession #  
(GenBank) 

Sequences (5' => 3') 
Amplicon 
size (pb) 

Efficiency 
(%) 

Tm (°C) References 

VvFLS2 XM_002272283.1 CCAATCATGTCATATCGGTCTCG 
107 91.6 ± 1.5 81.6 ± 0.2 

  

    GTTGGAACTCAAGTCTAGAACCTG   

VvCERK1 XM_002270951.1 TGGCTTTGTTCGAGGATGTG 
92 92.7 ± 1.4 81.5 ± 0.3 

  

    CGAGTGGGTAGTTATCTTCAAGC   

VvCERK2 XM_002264291.1 GACTTGTTGCTTTGTTTGAGGA 
91 85.2 ± 8.9 79.2 ± 0.1 

  

    GTAGTCATCTCCAAGCCTCTG   

VvCERK3 XM_002264252.1 GGCAATGACTACCCACTTGAC 
111 94.6 ± 1.8 82.6 ± 0.4 

  

    TTAGTGCGACAACTACTGACTG   

VvCEBiP1 XM_002278724.1 ATGGAATGTGGGAGTAGTGG 
104 94.4 ± 1.7 80.6 ± 0.1 

  

    TGTGAAGATTGTTTGGTTGGTG   

VvCEBiP2 XM_002278706.1 GATCGGTCTACAAGTCTGGAG 
174 90.6 ± 2.4 80.5 ± 0.2 

  

    CGGAAATTTGCTCATACACTGAC   

EF1α XM_002284888.1 GAACTGGGTGCTTGATAGGC 
150 88.6 ± 2.3 82.6 ± 0.2 

Dubreuil-Maurizi et al., 2010; 
Bordiec et al., 2011     AACCAAAATATCCGGAGTAAAAGA 

EF1γ  XM_003633372.1 GAAGGTTGACCTCTCGGATG 
84 94.7 ± 1.8 81.4 ± 0.3 Dufour et al., 2013 

    AGAGCCTCTCCCTCAAAAGG 

60SRP XM_002270599.1 ATCTACCTCAAGCTCCTAGTC 
165 ND ND Gamm et al., 2011 

    CAATCTTGTCCTCCTTTCCT 

PR6 (PIN) XM_002284411.1 AGTTCAGGGAGAGGTTGCTG 
131 85.8 ± 1.7 81.0 ± 0.3 

            Trouvelot et al., 2008;               
Aziz et al., 2003   CGTCGACCCAAACACGGACCCTAGTGC 

PR3-4c (Chit4c) XM_002275480.1 GCAACCGATGTTGACATATCA 
223 90.6 ± 1.7 83.6 ± 0.3 Aziz et al., 2003 

  CGTCGCCCTAGCAAGTGAG 

LOXC XM_002280615.1 CTGGGTGGCTTCTGCTCTC 
98 90.4 ± 0.9 84.4 ± 0.1 

Dubreuil-Maurizi et al., 2010;    
Aziz et al., 2003   GCATGAATCTGCGGCTTATC 

RBOHD XM_002268568.1 CACCACCATGCTTCAGTCCCTCCAT 
115 90.8 ± 1.0 84.4 ± 0.2 

Dubreuil-Maurizi et al., 2010;   
Aziz et al., 2003   AGCGATCTTCTTGAAGACTTGTCGCC 

ACCS XM_002278453.2 ACGCTGCCACCGTCTTCAGC 
190 92.0 ± 0.7 83.0 ± 0.2 

  

  GCTCGACATCTTGCGGCCGAT   

PAL XM_002268220.1 AGTCTCCATGGACAACACCCG 
237 91.1 ± 0.9 83.6 ± 0.1 

Dubreuil-Maurizi et al., 2010;   
Aziz et al., 2003   TGCTCAGCACTTTCGACATGG 

STS1.2 XM_002265193.1 AGGAAGCAGCATTGAAGGCTC 
102 91.2 ± 1.8 81.1 ± 0.3 Trouvelot et al., 2008 

  TGCACCAGGCATTTCTACACC 

PR1-2 XM_002274239.1 GCGTGGGTGGGGAATGCCGA 
143 91.3 ± 0.9 85.2 ± 0.2   

  GATGTTGTCCCTGATAGTTGCC 

PR2-1 (Gluc) XM_002277133.1 ATGCTGGGTGTCCCAAACTCG 
180 88.2 ± 1.0 86.1 ± 0.2 Aziz et al., 2003 

  CAGAACAAACTGCGCAAACCGT 

17.3 XM_002283642.1 GTACCATCAGACCACCCATAAGTAGTG 
91 ND ND 

  

    AGACCAACGGCAAATCAAGTG   

VvFLS2-like GSVIVT01021409001* GTCGTGTCATGTCAATTATAC 
394 85.4 ± 3.8 82.4 ± 0.1 

  

    TTATTTCTGTACCCTGTGAAGAC   
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2.2.8 cDNA synthesis and quantitative real-time PCR (qPCR) 

One μg of RNA treated with DNase I (Sigma-Aldrich) was reverse-transcribed using 100 

U of SuperScript™ III Reverse Transcriptase kit (Invitrogen) and 2.5 µM 20-mer oligo dTs in a 

10-µl reaction following the instructions of manufacturer. Quantitative polymerase chain reactions 

(qPCR) were carried out in technical triplicates in 384-well plates (5 µl per well) with GoTaq 

qPCR Master Mix 2x (Promega), 500 nM primers and 1:50 dilution of cDNA using a cycler 

platform LightCycler 480 (Roche Applied Science). Used primers are listed in Table 5. PCR 

conditions were as follows: 95°C / 10 min (initial denaturation); 40 cycles of 95°C / 45 s 

(denaturation); 60°C / 45 s (annealing); 72°C / 30 s (elongation). After amplification, a melting 

curve program was performed in each assay to ensure the production of a single amplicon. Using 

the LinRegPCR program (version 2012.3; Ruijter et al., 2009), the mean PCR efficiencies were 

determined per each primer pair and were used to calculate a starting relative quantity of template 

(N0) per sample. The N0 values of a target gene were normalized with N0 values of two reference 

genes encoding the elongation factor 1α and γ (EF1α, Dubreuil-Maurizi et al., 2010 and EF1γ; 

Dufour et al., 2013) giving the gene expression ratio (Ruijter et al., 2009). Gene induction 

between control and treated sample was determined by comparison of normalized relative template 

quantity of target genes versus control samples. 

                              

(
  
      

  
   )

       

(
  
      

  
   )

       
 

 

The conditions for cDNA synthesis and the qPCR analyses realized in the frame of 

collaboration with the University of Reims were different. The cDNAs were synthesized from 150 

ng of RNA using M-MLV reverse transcriptase (Invitrogen) following the manufacturer‟s 

protocol. qPCR reactions were carried out in technical duplicates in 96-well plates. Each reaction 

of 15 µl volume contained SYBR Green I mix (PE Biosystems, Foster City, CA, USA), 280 nM 

primers and a 1:30 diluted cDNA. PCR conditions were as follows: 95ºC / 15 s (denaturation); 40 

cycles of 60ºC / 1 min (annealing/elongation), using a GeneAmp 5700 sequence Detection System 

(Applied Biosystems). Transcript level was calculated using the comparative ∆∆Ct method (Livak 

and Schmittgen, 2001) with the EF1α (Dubreuil-Maurizi et al., 2010) and 60S ribosomal protein L 

18 (60SRP; Gamm et al., 2011) reference genes for normalization. 

2.2.9 Bioinformatics 

Orthologous proteins were searched with BLASTp algorithm available at NCBI (NCBI 

http://www.ncbi.nlm.nih.gov/), CRIBI (http://genomes.cribi.unipd.it/grape/), and Genoscope.fr 
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(http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/, Vitis 12x) that all provide different 

genome annotations based on two grapevine genome sequencing projects (Jaillon et al., 2007 and 

Velasco et al., 2007). Multiple protein alignments were done with T-Coffee 

(http://tcoffee.crg.cat/apps/tcoffee/) or ClustalW2 

(http://www.ebi.ac.uk/Tools/services/web_clustalw2/) and visualized with Boxshade  

(http://www.ch.embnet.org/software/BOX_form.html). Annotation of protein structure was 

performed with SMART (http://smart.embl-heidelberg.de/). Prediction of subcellular localization 

was done with Predotar (http://expasy.org/tools/). The exon-intron structure of genes was 

visualized with the software on http://wormweb.org/exonintron.  

For phylogenetic analyses, protein sequences were aligned with MUSCLE program 

implemented in www.phylogeny.fr (Dereeper et al., 2008). The Maximum-likelihood phylogenetic 

tree was generated with SeaView version 4 software (Gouy et al., 2010) using LG substitution 

model and bootstrapping with 1000 replications. The tree was displayed with MEGA 5.2.2 

software (Tamura et al., 2011). Sequences of other Arabidopsis RLKs, such as EF-TU 

RECEPTOR (AtEFR; Kunze et al., 2004) and Wall-associated kinase 1 (WAK1; Brutus et al., 

2010) were used as outgroups. 

2.2.10 General cloning technics 

Escherichia coli strain TOP10 (Invitrogen) or K12 (ccdB resistant variant) were used for 

multiplication of the different original or recombined vectors. Transformation of chemically 

competent bacteria was carried out by heat shock (4°C / 30 min, 42°C / 1 min, 4°C / 2 min). 

Bacteria were cultivated in liquid LB medium (10 g l
-1

 tryptone, 10 g l
-1

 NaCl, 5 g l
-1

 Yeast 

Extract) at 37°C and 200 rpm, and plated on LB agar medium with selection antibiotic. 

Transformant screening was carried out by PCR on colonies. Each of at least 10 independent 

colonies was suspended in 50 µl of water in a sterile manner. PCR was done with 5 µl of the 

bacterial suspension, 200 µM dNTPs, 200 nM forward and reverse primers and 0.0375 µl of 

GoTaq DNA polymerase (Promega) in a reaction volume of 15 µl. Plasmids were purified with the 

Pure Yield Plasmid™ Mini Prep System kit (Promega) from 2 ml of an overnight culture and 

eluted with 50 µl of water. Restriction endonuclease digest was performed on 600 ng of plasmid 

with restriction endonucleases (Promega or Fermentas) during 2 h at 37°C and visualized on 1% 

agarose gel with DNA ladders (New England BioLabs). 

2.2.11 Cloning of GFP-tagged or antisense VvPRRs by Gateway® technology 

Full-length or antisense (αs) fragments of candidate VvPRR genes were amplified by PCR 

from cDNA obtained from elicited grapevine cells (V. vinifera cv Gamay) by using a proof-reading 

Pfu DNA polymerase (Finnzymes) and gene specific primers (Table 6). For full-length cloning, 



D C 

E 

A B 

Figure 14. Gateway®-based functional genomics strategy and maps of the vectors used. 

A. 1) A cDNA is PCR-amplified using a forward primer that has the sequence CACC for directional cloning into 

the pENTR/D-TOPO vector. 2) A topoisomerase catalyzes ligation between PCR products and the pENTR/D-

TOPO vector. 3) Using the LR clonase enzyme, the target sequence is recombined into a destination vector of 

choice between attL and attR sites. 4) A ccdB gene, located between the attR sites of the destination vector, is 

lethal to most strains of Escherichia coli. As a result, only those E. coli transformed with plasmids having 

undergone successful recombination events survive. B. Map of the pENTR/D-TOPO entry vector used. C., D., 

E. Maps of the destination vectors used for the functional complementation of the Arabidopsis mutants using a 

constitutive (C.) or inducible (D.) over-expression in the sense orientation with a fused GFP or for the silencing 

strategy using a constitutive over-expression in the antisense orientation (E.). Sm/Sp R: 

Streptomycin/Spectinomycin resistance, Kan: kanamycin resistance, Hyg: hygromycin resistance, LB: left 

border, RB: right border, P35S or lexA: constitutive or inducible promoter, T35S or T3A: terminator, ccdB: 

lethal gene, attR and attL: sites used for the Gateway recombination, XVE : engineered estradiol receptor, GFP: 

green fluorescent protein. 
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primers were designed to replace the stop codon by the Ala codon (GCC nucleotides). Products 

were separated on 0.8% agarose gel, stained by Blue Nil (20 mg l
-1

 in water) and a single PCR 

product of the expected size was excised. A gel-purified (Wizard
® 

SV Gel and PCR Clean-Up 

System, Promega) PCR product was first directionally subcloned (Fig. 14A) into the entry vector 

pENTR
™

/D-TOPO
® 

vector (Fig. 14B; kanamycin resistance, Invitrogen), then inserted into 

Gateway expression vectors (Table 7) by using Gateway LR Clonase
™

 II enzyme mix (Invitrogen).  

The full-length CDS of VvFLS2 was cloned into pK7FWG2 (Karimi et al., 2002; 

kanamycin resistance) for p35S::VvFLS2-GFP expression (Fig. 14C). The three full-length coding 

sequences of VvCERK1, VvCERK2 and VvCERK3 were cloned into pK7FWG2 (kanamycin 

resistance) to obtain a constitutive overexpression construct (p35S::VvCERK1/2/3-GFP) or in 

pABindGFP (Bleckmann et al., 2010; hygromycin resistance, Fig. 14D) for a β-estradiol inducible 

gene expression (pLexA35S::VvCERK1/2/3-GFP).  

Fragments of ~200-700 bp from each of candidate VvPRR genes were cloned into 

pH2WG7 (Karimi et al., 2002; Fig. 14E, hygromycin resistance) in the antisense orientation 

(p35S::αsVvFLS2, p35S::αsVvCERK1, p35S::αsVvCERK2, p35S::αsVvCERK3 and 

p35S::αsVvCEBiP1). All constructs were verified by sequencing (GATC Biotech) with primers 

listed in Table 8. 

2.3 Plant transformation 

2.3.1 Grapevine transformation and plantlet generation via somatic 

embryogenesis 

The Agrobacterium-mediated transformation of embryogenic calli from V. vinifera (cv 

Pinot Noir PN40024) and plantlet regeneration via somatic embryogenesis were performed by the 

grapevine transformation platform, INRA Colmar (Jean Masson, Mireille Perrin, Carine Schmitt). 

Briefly, embryogenic calli (EC) initiated from anther filaments (Perrin et al., 2004; Fig. 15A-C) 

were transformed by A. tumefaciens (strain C58pMP90) harboring the antisense constructs 

(pH2WG7 p35S::αsVvPRR) for silencing. In parallel, a transformation with GFP (pBI121 

p35S::m-gfp5-ER, referred as p35S::GFP) and a mock-transformation with water were performed. 

These EC were further grown on medium supplemented with 100 mg l
-1

 cefotaxim to remove the 

remaining Agrobacteria, according to (Perrin et al., 2004). Selection of the transformants was 

initiated 28 days after transformation by transferring EC on growth medium supplemented with 25 

mg l
-1

 hygromycin (pH2WG7 constructs), 25 mg l
-1

  kanamycin (pBI121 construct) or without 

antibiotics for the mock-transformation (somatic embryogenesis wild-type, hereafter referred as 

seWT). The hygromycin/kanamycin-resistant EC issued from independent transformation events 

appeared after 60 days (Fig. 15D) and were subcultured every 21 days on new selection media. 

Different calli lines were tested for αsVvPRR transgene expression by RT-PCR using primers 



Vector name 
Promoter / 
Expression 

Insert Orientation Protein Tag 
Resistance 

References 
plants bacteria 

pK7FWG2 35S / constitutive 5'=>3' (OE) Cter-GFP Kan Sp/Sm Karimi et al., 2002 

pH2WG7 35S / constitutive 3'=>5' (antisense) --- Hyg Sp/Sm Karimi et al., 2002 

pABindGFP 
lexA-46 35S /  

estradiol-inducible 
5'=>3' (OE) Cter-GFP Hyg Sp Bleckmann et al., 2010 

Table 7. List of Gateway-type expression vectors. 

OE: overexpression, Kan: kanamycin, Hyg: hygromycin, Sp: spectinomycin, Sm: streptomycin. Vector 

maps are shown in Figure 14. 

Name Sequence (5' => 3') Target Purpose 

M13 F GTAAAACGACGGCCAG 
pENTR/D-TOPO 

Insert 
localization, 

orientation and 
sequencing 

M13 R CAGGAAACAGCTATGAC 

OE1  L (P35S) TCATTTCATTTGGAGAGGACTCCG pK7FWG2, pH2WG7 

GFP R GTGGTGCAGATGAACTTCAGG pK7FWG2 

OE1 R (T35S) TGCTCAACACATGAGCGAAA pH2WG7, (pK7FWG2) 

lexA_35S_F GCCATGTAATATGCTCGACTCTAG 
pABindGFP 

GFP_pABind_R GGTAGTTTTCCAGTAGTGCAA 

FLS2 seqF1 CCAGAGATCGGGAACTTATCG 

VvFLS2 

Insert 
sequencing 

FLS2 seqF2 AGTTCTGAAACCAGGCATTG 

FLS2 seqR1 TCTCTCCAATAAAGTCCACC 

CERK1 seqF1 GATTAGCAGGTGGTGTGATT VvCERK1 

CERK2 seqMid1R AGGAACCCTCGACACAATATC VvCERK2 

CERK3 seqF1 AACCCTGGAGTTGATTTCAG 
VvCERK3 

CERK3 seqF2 TTACTATGCGGAGCTGCAAG 

Table 8. Primers used for insert sequencing. 
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specific to the 3‟ end of the 35S promoter (OE1L, Table 8) and to the 5‟ end of the αsVvPRR 

(forward primer for each of αsVvPRR fragments). In vitro plantlets were generated from 10 

different transgenic EC lines (Fig. 15E) per construct via the somatic embryogenesis (Perrin et al., 

2001; Perrin et al., 2004; Fig. 15F-I). Two in vitro plantlets per line were delivered 400 – 500 days 

post transformation (dpt).  

2.3.2 Arabidopsis transformation and mutant screening 

Arabidopsis transformation were done by floral dip, according to (Clough and Bent, 1998) 

using the different pK7FWG2 or pABindGFP constructs. The Arabidopsis fls2 mutant was 

transformed with p35S::VvFLS2-GFP, cerk1-2 mutant was transformed with p35S::VvCERK1-

GFP, p35S::VvCERK2-GFP or p35S::VvCERK3-GFP in the first set of transformations. In the 

second set of transformations, GFP-tagged VvCERK1, 2 or 3 were introduced in the inducible 

pABindGFP vector. Antibiotic resistant transgenic plants were screened in T1 generation for 

presence of oxidative burst in leaf discs after elicitor treatment, as described previously (Zipfel et 

al., 2006). The 3:1 segregation ratio for antibiotic resistance in T2 generation permitted the 

selection of single copy complemented lines. To confirm the stability of the phenotype, ROS 

production was measured again in T3 lines (§2.1.2). The chitin-induced oxidative burst in cerk1-

2/pLexA::VvCERK1/2/3-GFP plants was assessed in leaf discs pretreated with 10 or 20µM β-

estradiol or water for 20 h prior to elicitation. The presence of GFP fused proteins was detected by 

Western blotting as described elsewhere (Li et al., 2009). These experiments were performed 

using facilities of the transformation services of the John Innes Centre (BRACT, Norwich, UK, 

collaboration C. Zipfel). 

2.4 Histochemical GUS detection in Arabidopsis pPR1::GUS seedlings  

Ten to 15 seeds were dispensed into each well of a 12-well tissue culture plate with 1 ml of 

MS medium supplemented with 0.5 g l
-1

 MES, pH 5.7. Plates were sealed with Parafilm to prevent 

evaporation of the medium. On the eighth day, the media were replaced with 1 ml of fresh media. 

Ten-day old seedlings were treated with elicitors by adding them directly to the medium at the 

indicated concentrations. GUS enzyme activity of pPR1::GUS Arabidopsis seedlings 

(NASC_N6357) was determined histo-chemically. Seedlings were quick wash with sodium 

phosphate buffer (50 mM sodium phosphate, pH 7), then incubated with 2 ml of 50 mM sodium 

phosphate (pH 7), 0.1% Triton X-100 and 1 mM 5-bromo-4-chloro-3-indolyl-b-D-glucuronic acid 

(Duchefa X1406) for 8 h at 37°C. The samples were then fixed with acetic acid/ethanol 1/3 (v/v) 

and chlorophyll was entirely removed by several washes in 70% ethanol. Seedlings were mounted 

in 100% lactic acid. 

http://arabidopsis.info/StockInfo?NASC_id=6357


Figure 15. Different stages of transgenic grapevine transformation and plant regeneration. 

Embryogenic calli (EC) are initiated from stamens of immature inflorescences that possess high embryogenic 

capacity.  Flowers are uncapped (A.) and anther filaments (0.3 mm in size) are dedifferentiated to give EC (B.). 

The obtained EC (C.) can be transformed. D.-I. Timescale overview of transgenese and somatic 

embryogenesis. Agrobacterium-mediated transformation with a binary vector pH2WG7 led to hygromycin-

resistant EC (D.) that were further subcultured on hygromycin 25 mg l-1 over several cycles. At 150 days post-

transformation (dpt), 10 independent lines of EC, with verified presence of transgene, were selected for plantlet 

regeneration (E.). First, differentiation led through the somatic embryo at the stage of torpedo (F.) and 

cotyledon (G.) until the conversion into plantlet (H., I.). Images were kindly provided by Mireille Perrin and 

Jean Masson (INRA, Colmar). 
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2.5 Flg22- triggered growth inhibition assays on Arabidopsis and grapevine 

For Arabidopsis, seeds of the different genotypes (Col-0, fls2 and fls2/p35S::VvFLS2-

GFP) were first germinated on solid half MS medium then transferred individually into 24-well 

culture plates containing liquid half MS medium supplemented with the different flg22 peptides at 

1 µM concentration.  

For V. vinifera (cv Chardonnay), 2-weeks old in vitro plantlets were transferred from 25-

mm glass tubes to Magenta boxes containing 20 ml of liquid modified MS medium supplemented 

with the different flg22 peptides at 1 µM.  

Fresh weight of 15 individual plants was measured after 1 and 2 weeks for Arabidopsis 

and grapevine, respectively.  

2.6 Protection assays on grapevine leaf discs 

Leaf discs from the second and third adult top leaves of at least 12 grapevine plants were 

cut and floated on elicitor solution in 0.1% surfactant or on surfactant alone (control) for 24 h with 

the lower (P. viticola) or upper (B. cinerea) leaf surface facing the liquid. Discs were then washed 

in ultrapure water and transferred on a wet Whatman paper for additional 24 h with the treated 

surface upward.  

For P. viticola infection, 35 discs (1 cm diameter) were inoculated with a 20 μl-droplet of 

a freshly prepared suspension at 10
4
 sporangia ml

-1
 and maintained in 100% humidity in a plastic 

box placed in a controlled growth chamber under a 11/13 h day/night cycle at 20/17°C with a light 

intensity of 150 µmol m
-2

 s
-1

 provided by fluorescent tubes. Infection intensity was assessed at 7 

dpi. The number of sporangia per leaf disc surface was estimated by counting sporangia using a 

Malassez haemocytometer on 2 sets of 5 randomly chosen discs that were placed in 50% ethanol 

and shaked to liberate entirely spores into ethanol. Each set was counted at least three times.  

For B. cinerea infection, 30 discs (1.5 cm diameter) were inoculated with 5000 conidia in a 

6 μl-droplet in potato dextrose broth (PDB) ¼ diluted. Inoculated discs were maintained in 100% 

humidity in a plastic box placed in a controlled growth chamber as described for P. viticola 

infections. Infection intensity was assessed 3 dpi by measuring the macerated lesion diameter.  

2.7 Grapevine infection with B. phytofirmans 

Roots of 2-week-old grapevine plantlets (V. vinifera cv Chardonnay) grown in vitro were 

immersed in bacterial inoculum of B. phytofirmans (3 × 10
8
 CFU ml

-1
) or PBS (control) for 10 s. 

After inoculation, plantlets were grown for one week in liquid modified MS medium before 

bacterial counting in root and aerial part according to (Compant et al., 2005b). 
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2.8 Confocal microscopy 

Confocal microscopy was performed using a Leica TCS SP2-AOBS confocal laser 

scanning microscope with 40X oil-immersion objective (numerical aperture: 1.25). Pieces of 

leaves were mounted in distilled water or in 1 M NaCl solution for plasmolysis experiments. For 

FM4-64 staining, samples were incubated in 8 µM FM4-64 solution in water during 10 min prior 

observation. Fluorescent markers were visualized by excitation with an argon laser at 488 nm. GFP 

and FM4-64 emissions were band-pass filtered between 500-525 nm and 616-694 nm, 

respectively. Image analysis and background corrections were carried out with the software 

Volocity 6.2.1 and ImageJ 1.43m. Experiments were performed using facilities of the Centre de 

Microscopie INRA Dijon/Université de Bourgogne, Plateforme DImaCell. 
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RESULTS AND DISCUSSION 

I. Screening of MAMP responsiveness in grapevine  

MAMPs are conserved molecules recognized by a broad variety of plant species eliciting 

defense responses. To discover the elicitor repertoire perceived by V. vinifera, the activity of 

MAMPs recognized in other plant species (flg22, elf18, pep-13, chitin and chitosan) was assessed 

in grapevine cells. The effect was compared to the β-1,3-glucan laminarin, a MAMP which is 

recognized by grapevine and triggers early defense signaling and immune responses (Aziz et al., 

2003). Following the MAMP treatment of grapevine cells, signaling events were analyzed with 

different concentrations of each MAMP. The oxidative burst was measured by chemiluminescence 

of luminol, the variation in free cytosolic calcium concentrations ([Ca
2+

]cyt) was measured using 

apoaequorin-expressing cells, and the MAPK activation was assessed by Western blot detecting 

the phosphorylated form of MAPKs.  

According to our results (Table 9), flg22, chitin and chitosan are recognized by V. vinifera 

as they trigger signaling events, previously described for other active elicitors such as laminarin, 

OG or BcPG1 (Aziz et al., 2003; Poinssot et al., 2003; Dubreuil-Maurizi et al., 2010). On the 

contrary, the peptides elf18 (Kunze et al., 2004) and pep-13 (Brunner et al., 2002) were inactive in 

the concentration range of 0.001 – 10 μM (Table 9).  

For further work, we focused on the characterization of perception systems for flagellin 

(Part II) and chito-oligosaccharides (Part III) in V. vinifera. 

 

 

 

 

 



A B 

Figure 16. flg22 triggers a dose-dependent oxidative burst and variations in free cytosolic calcium 

concentrations ([Ca2+]cyt ) in grapevine cells  

A. Oxidative burst at 15 min post treatment with flg22 measured by chemiluminescence of luminol. Values are 

means ± SD of three independent experiments. FWC: fresh weight of cells B.  Variations in [Ca2+]cyt after flg22 

treatment measured with apoaequorin-expressing grapevine cells. Data are from one representative experiment 

out of three. 

 

A B C 

Figure 17. Kinetics of flg22-induced early signaling events in grapevine cells. 

A. Free cytosolic calcium variations measured with apoaequorin-expressing grapevine cells. B. Oxidative burst 

detected by chemiluminescence of luminol. Values are means ± SD from three independent experiments. FWC: 

fresh weight of cells. C. Activation kinetics of two mitogen-activated protein kinases (MAPK) detected by 

Western blot with an anti-phosphorylated pERK1/2 antibody. Homogeneous loading was checked by Ponceau 

Red staining. A. and C. show one representative experiment out of three. Cells were treated with 1 µM flg22 or 

water (control). 
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II. Flagellin perception system in grapevine 

Results 

1 Flg22 induces immune responses and resistance against Botrytis cinerea in 

grapevine  

To determine whether flagellin perception by grapevine triggers the responses commonly 

observed in Arabidopsis, tomato or tobacco (Felix et al., 1999; Gomez-Gomez and Boller, 2000; 

Hann and Rathjen, 2007), we first characterized early signaling events and defense gene 

expression induced by flg22 (from P. aeruginosa) in V. vinifera cell suspensions. Flg22 treatment 

induced a dose-dependent oxidative burst and variations in free cytosolic Ca
2+ 

(Fig. 16A, B). The 

saturating flg22 concentration of 1 µM was then used to study the defense-related events in 

grapevine cells.  

Treatment with 1 µM flg22 induced a transient increase in free [Ca
2+

]cyt that peaked after 4 

min (Fig. 17A) and an oxidative burst with the maximal H2O2 production detected at 15 min (Fig. 

17B). From 5 to 30 min, flg22 induced rapid and transient phosphorylation of two MAPKs with 

relative molecular masses of 45 and 49 kDa, which was not observed in control cells (Fig. 17C). 

The expression of defense marker genes activated by different elicitors (Aziz et al., 2003; Aziz et 

al., 2007; Bordiec et al., 2011) was then monitored by qPCR. Flg22 induced the expression of 

early genes encoding a 1-aminocyclopropane-1-carboxylate synthase (ACCS), a respiratory burst 

oxidase homolog D (RbohD) and a 9-lipoxygenase (LOXC) (Fig. 18A, B, C) and genes 

participating in the biosynthesis pathway of stilbene phytoalexins: a stilbene synthase (STS1-2, 

Fig. 18D) and a phenylalanine ammonia lyase (PAL, Fig. 18E). Genes STS1-2 and PAL are 

induced with the same expression profile, showing a peak of transcription at 1h post elicitation. 

From later genes, flg22 induced pathogenesis-related (PR) genes encoding enzymes such as an 

acidic chitinase (PR3-4c), a protease inhibitor (PR6) or a marker of the SA pathway PR1-2 (Fig. 

18F, G, H). In general, a battery of defense genes was induced as early as 30 min post treatment 

with the strongest induction detected around 1 hour post treatment (hpt). Twenty four h after flg22 

treatment (1 µM), no significant cell death was observed on grapevine cell suspensions (Fig. 18I). 

We further investigated the efficiency of flg22-triggered immunity on V. vinifera leaf discs 

challenged with the necrotrophic fungus B. cinerea or with the biotrophic oomycete P. viticola, the 

causal agents of gray mold and downy mildew, respectively.  

Flg22 treatment applied 48 h before pathogen inoculation significantly reduced the B. 

cinerea lesion diameter, compared with control leaf discs (Fig. 19A). Results were comparable 

with those obtained by pretreatment with the -1,3 glucan laminarin, described to trigger 



Figure 18. Kinetics of flg22-induced defense gene expression and cell death in grapevine cells. 

Relative expression of defence genes encoding A. a 1-aminocyclopropane-1-carboxylate synthase (ACCS), B. a 

respiratory burst oxidase homolog D (RbohD), C. a 9-lipoxygenase (LOX-C), D. a stilbene synthase (STS1-2), E. 

a phenylalanine ammonia lyase (PAL), F. an acidic chitinase (PR3-4c), G. a proteinase inhibitor (PR6) and H. 

PR1-2, induced by 1 µM flg22 (black bars) or water (white bars). The relative expression was measured by qPCR, 

normalized by the housekeeping genes elongation factor α and γ (EF1α, γ) and reported to time 0, set as 1. Data 

are means ± SE from 3 experiments (n=3) I. Cell viability was quantified by neutral red staining 24 h after 

treatment with water (control) or 1 µM flg22 or after incubation at 95°C for 3 min (positive control of cell death). 

Values are means ± SD of two independent experiments. 
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Figure 19. Flg22 enhances the resistance against Botrytis cinerea but not Plasmopara viticola. (Find the 

legend on the next page). 
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protection against B. cinerea in grapevine (Aziz et al., 2003). However, the partial protection 

provided by flg22 pretreatment was weaker than protection induced by the sulfated laminarin 

(PS3), previously described to highly protect grapevine against P. viticola (Trouvelot et al., 2008; 

Gauthier et al., 2014). In a similar experimental setup, we have not observed any significant effect 

of the flg22 pretreatment on severity of disease symptoms caused by P. viticola. Both the mean 

number of sporangia per leaf disc and the sporulating area estimated visually (data not shown) 

remained statistically not significant, while the PS3 treatment quasi abolished the P. viticola 

sporulation (Fig. 19B). 

2 In silico characterization of the predicted grapevine FLAGELLIN SENSING 2 

receptor: VvFLS2 

As grapevine responds to flg22 treatment, we aimed to identify the corresponding flagellin 

receptor. A phylogenetic analysis indicates that the grapevine genome carries a unique predicted 

gene encoding the putative ortholog of AtFLS2, hereby designated as VvFLS2 (CAN78669.1/ 

XP_002272319.2), which is clearly distinct from other grapevine LRR-RLKs (Fig. 20A). 

Alignment with AtFLS2 (Annex 2) permitted the identification of an upstream sequence encoding 

the 26 amino acids of the VvFLS2 signal peptide that was unpredicted by the NCBI. The full 

length VvFLS2 gene (KF562727) consists of an open-reading frame of 3516 bp and contains a 

small 105-bp intron at position 1050, a location conserved amongst Arabidopsis AtFLS2, tomato 

LeFLS2 and rice OsFLS2 (Fig. 20B). Therefore, FLS2 homologs exhibit a highly conserved gene 

structure. 

The predicted encoded protein of 1171 amino acids, called VvFLS2, contains a signal 

peptide, a LRR ectodomain, a single transmembrane domain and a non-RD-type intracellular 

kinase domain also found in other FLS2 proteins (Fig. 20C, Annex 2; Boller and Felix, 2009). The 

LRR domain of VvFLS2 consists of 28 tandem repeats, similarly to AtFLS2 and LeFLS2, which is 

one repeat more than OsFLS2. The VvFLS2 protein sequence exhibits 72% similarity with 

AtFLS2, 77% with LeFLS2 and 66% with OsFLS2 (Table 10). LRR domains of VvFLS2 and 

LeFLS2 share 64% amino acid identity compared to 56% sequence identity found between 

VvFLS2 and AtFLS2 LRR domains (Table 10). Since LeFLS2 and OsFLS2 showed the highest 

homology to AtFLS2 and were identified as functional flagellin receptors in their respective 

species (Robatzek et al., 2007; Takai et al., 2008), VvFLS2 was a promising candidate to function 

as flagellin receptor in grapevine. 

Under non-elicited conditions, VvFLS2 gene is weakly expressed in grapevine cells. 

Indeed, the amount of VvFLS2 transcripts is 100-fold lower than the transcripts level of the 

housekeeping gene VvEF1γ, and 5-fold lower than the VvRbohD transcripts, encoding another 

plasma membrane-associated protein (Fig. 21A). The expression of VvFLS2 was monitored after 
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Figure 20. In silico characterization of the putative grapevine VvFLS2 ortholog.  

A. Maximum-likelihood phylogenetic tree showing the relationship between the protein sequences (GenBank) of 

the Arabidopsis FLAGELLIN SENSING2 (AtFLS2), its identified orthologs in tomato (LeFLS2), rice (OsFLS2) 

and the most similar protein sequences of V. vinifera, including the predicted VvFLS2. Only bootstraps higher 

than 500 (from 1000) are presented. B. Exon-intron architecture of coding regions of VvFLS2 and FLS2 

orthologs. Black boxes represent exons, numbers represent codons. Bar = 200 bp. C.  Deduced amino acid 

sequence of the cloned VvFLS2 cDNA with indication of predicted signal peptide, the N-terminal domain 

(LRRNT), the LRR domain, extracellular juxtamembrane region, the single transmembrane domain, the 

intracellular juxtamembrane region, the serine/threonine (S/T) kinase domain and the C-terminal tail. Amino acids 

matching LRR consensus 
𝐿

𝐼
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𝐺𝑥𝐼𝑃𝑥𝑥 according to Mueller et al. (2012) are shaded in 

gray. Highlighted in bold and underlined are aminoacids affecting FLS2 signaling in Arabidopsis when mutated 

(Cao et al., 2013; Robatzek and Wirthmueller, 2012).  

Figure 19. Flg22 enhances the resistance against Botrytis cinerea but not Plasmopara viticola. 

Leaf discs were pre-treated with flg22 (10 μM), laminarin (2.5 g l-1) or sulfated laminarin (PS3; 2.5 g l-1) in a 

surfactant or with surfactant alone (control) 48h before infection. A. Disease progression caused by B. cinerea at 

3 days post inoculation (dpi). Values represent the means of lesion diameters ± SE (n≥30 lesions per experiment) 

from one experiments out of three. B. Infection symptoms caused by P. viticola at 7 dpi. Sporulation intensity was 

evaluated by counting sporangia on two sets of 5 randomly pooled discs, each set was counted at least 4 times 

with a haemocytometer and expressed as a number of sporangia per leaf disc. Values represent the mean ± SE 

(n≥8) from two experiments. Asterisks indicate statistically significant difference between control and elicitor 

treatment (t-test, *: p<0,05, **: p<0,01). A representative leaf disc for each treatment is shown. 
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treatment of grapevine cells with flg22 or other MAMPs, from 15 min to 24 h.  The flg22 

treatment transiently induced the expression of VvFLS2 at 1 hpt (Fig. 21B). This induction was 

specific to the flg22 treatment, as no modification of VvFLS2 gene expression was observed with 

chitin or laminarin treatment, at any studied time-point (Fig. 21C; data are only shown for 1 hpt).  

The upregulation of VvFLS2 expression after the flg22 treatment supports the choice of 

this gene as a good candidate for flagellin receptor. Further functional genomics studies were 

needed to confirm its involvement in flagellin perception. 

3 VvFLS2 functionally complements the Arabidopsis fls2 mutant and is localized 

at the plasma membrane 

To investigate whether VvFLS2 is the true ortholog of AtFLS2, the functional 

complementation of the Arabidopsis fls2 mutant (Zipfel et al., 2004) was undertaken in 

collaboration with Drs Cyril Zipfel and Freddy Boutrot (The Sainsbury Laboratory, Norwich, UK), 

who carried out the Arabidopsis transformation, screened the mutant complemented lines before 

providing us the T3 generation of the most interesting lines. 

The full-length VvFLS2 cDNA was cloned into the binary expression vector pK7FWG2 

(Fig. 14C), which was used to obtain stable Arabidopsis transgenic lines expressing 

p35S::VvFLS2-GFP. Expression of VvFLS2 in the fls2 mutant restored the ROS production after 

flg22 treatment in 17 of the 24 independent kanamycin-resistant transgenic T1 lines tested (Fig. 

22A). This ROS production was correlated with VvFLS2-GFP accumulation detected by Western 

blotting using an anti-GFP antibody (Fig. 22A). For further characterization, the stable 

homozygous T3 lines #3 and #15 carrying a single VvFLS2 transgene were selected. These lines 

were responsive to flg22 as assayed by measurement of ROS production and seedling growth 

inhibition triggered by 1 µM flg22, while the fls2 mutant was unresponsive (Fig. 22B, C).  

In addition, in agreement with the presence of a predicted signal peptide and a 

transmembrane domain (Fig. 20C), VvFLS2-GFP was localized to the cell periphery on confocal 

microscopy analysis of leaves from fls2/p35S::VvFLS2-GFP #3 plants (Fig. 22D). The green 

fluorescence of VvFLS2-GFP followed the plasma membrane shrinking during plasmolysis 

triggered by 1 M NaCl (Fig. 23A), and co-localized with the red fluorescence of the plasma 

membrane probe FM4-64 (Fig. 23B). These data demonstrate that VvFLS2 is localized at the 

plasma membrane. Together, these results show that VvFLS2 is a functional flg22 receptor capable 

of complementing the loss of FLS2 in Arabidopsis.  

4 Recognition specificities of flagellin perception in grapevine  

Following data were obtained in collaboration with Drs Stéphan Dorey and Olivier 

Fernandez (Université de Reims, FR). 



Table 10. Percentage of amino acid identity or similarity between AtFLS2, LeFLS2, OsFLS2 and 

VvFLS2. Results were obtained with the NCBI BLAST program on the whole protein or the LRR domain of 

AtFLS2, LeFLS2, OsFLS2 and VvFLS2. 

 

Figure 21. VvFLS2 is a low abundant transcript but transiently induced by flg22. 

The transcript level of VvFLS2, RbohD genes and the housekeeping gene EF1γ was assessed by qPCR in MAMP- 

or mock-elicited grapevine cells and quantified with a LinReg program (Ruijter et al., 2009). A. The transcript 

abundance in mock-treated samples were expressed as means ± SE from 3 experiments and reported to the 

amount of EF1γ transcripts, set as 100%. B. Kinetics of VvFLS2 gene expression induced by 1µM flg22 (black 

bars) or water (white bars) and reported to time 0, set as 1. C. Fold-change of VvFLS2 expression at 1 hour post 

treatment with flg22 (1µM), chitin (1 g l-1), or laminarin (Lam, 1 g l-1). For B. and C., the relative expression of 

VvFSL2 is expressed as means ± SE from three experiments (n=3).  

A B C 

0
1
2
3
4
5
6
7
8
9

10
R

e
la

ti
ve

 V
vF

LS
2

 e
xp

re
ss

io
n

  100% 

1% 5% 

0%

20%

40%

60%

80%

100%

120%

EF1γ FLS2 RbohD

R
e

la
ti

ve
 t

ra
n

sc
ri

p
t 

ab
u

n
d

an
ce

  

0

1

2

3

4

5

6

0' 15' 30' 1h 2h 3h 6h 24h

R
e

la
ti

ve
 V

vF
LS

2
 e

xp
re

ss
io

n
 control

flg22



 RESULTS ǁ Flagellin perception system in grapevine 

66 
 

4.1 Perception of B. phytofirmans-derived flg22 induces weaker defense responses 

in grapevine than do X. campestris- or P. aeruginosa-derived flg22 

Burkholderia phytofirmans is a PGPR well adapted to grapevine, and promotes a very 

marked plant growth (Ait Barka et al., 2000; Compant et al., 2005b; Lo Piccolo et al., 2010). 

Compared with P. syringae pv pisi, the perception of B. phytofirmans triggers weak defense 

responses in grapevine (Bordiec et al., 2011) whereas a marked PR1 gene expression was 

observed in Arabidopsis pPR1::GUS seedlings (Fig. 24A). In grapevine, the elicitation of two 

defense genes by a boiled crude extract from B. phytofirmans was greatly affected by proteinase K 

treatment (Fig. 24B). Moreover, purified flagellin from B. phytofirmans was sufficient to elicit 

Arabidopsis PR1 gene expression (Fig. 24C, D). All these results suggest that flagellin might be an 

active MAMP of B. phytofirmans.  

To investigate whether and how grapevine perceives flagellin from its associated PGPR, 

the eliciting activity of the flg22 peptide, based on the flagellin sequence from B. phytofirmans 

strain PsJN (Bp flg22), was tested in grapevine cells and compared to flg22 from P. aeruginosa 

strain PAK (Pa flg22), X. campestris pv campestris strain 305 (Xc flg22) and A. tumefaciens strain 

C58C1 (At flg22). P. aeruginosa PAK and X. campestris 305 have been previously described as 

plant pathogenic bacteria in lettuce and Arabidopsis, respectively (Rahme et al., 1997; Sun et al., 

2006). Compared with the classical Pa flg22 sequence, Xc flg22 and At flg22 have 4 and 12 amino 

acid substitutions, respectively (Fig. 25A). Interestingly, the Bp flg22 epitope possesses 6 amino 

acid substitutions compared to the Pa flg22 sequence but only 3 with Xc flg22 (underlined Q1T, 

L7K and K13A; Fig. 25A). 

Measured in apoaequorin-expressing grapevine cells, Bp flg22 reproducibly induced a 

lower variation in free [Ca
2+

]cyt than Pa flg22 and Xc flg22 whereas At flg22 remained unable to 

induce any [Ca
2+

]cyt variation (Fig. 25B) . 

Dose-response oxidative burst assays revealed that Bp flg22
 
triggered production of H2O2 

in grapevine, but to a lesser extent than Pa flg22 or Xc flg22 (Fig. 25C). The determination of the 

half-maximal response (EC50) revealed that Xc flg22 was the most active epitope with an EC50 = 

~80 nM compared to EC50 = ~300 nM for Pa flg22. The low activity of Bp flg22 is illustrated by 

an EC50 estimated at ~ 8 µM if higher concentrations reached the same plateau. Indeed, at the 

maximal concentration tested (10 µM), Bp flg22 was still less active than either Pa flg22 or Xc 

flg22 at 500 nM. Finally, At flg22 seems to be inactive in grapevine as no H2O2 production nor 

calcium variation could be detected even at a concentration of 10 µM.  

The expression of typical grapevine defense marker genes (Aziz et al., 2003; Bordiec et 

al., 2011) was followed at 1, 6, 9 and 24 hpt, using 1 µM of each flg22 peptide. On the whole, 

maximal inductions were observed at 6 hpt. At this time point, Pa flg22 and Xc flg22 induced a 

high accumulation of the 4 defense gene transcripts encoding a -1,3 glucanase (Gluc), PR1.2, a 

proteinase inhibitor (PR6) and an acidic chitinase (Chit4c) (Fig. 25D). By contrast, Bp flg22 
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Figure 22. VvFLS2 complements the Arabidopsis fls2 mutant and is localized at the plasma membrane.  

A. Correlation between H2O2 production after flg22 treatment (100 nM) and VvFLS2-GFP protein amount 

detected by α-GFP immunoblot in different T1 lines fls2/p35S::VvFLS2-GFP. Equal loading was checked by 

Coomassie brilliant blue (CBB) staining. (Fig. A from F. Boutrot) B. H2O2 production after flg22 treatment (1 

µM) in leaf discs of homozygous single copy T3 complemented lines #3 and #15. Data represent means ± SE in at 

least 16 leaf discs from 8 plants of two independent experiments. For A. and B., ROS production was measured 

using chemiluminescence of luminol and photon counts were expressed as relative luminescence units (RLU). C. 

Flg22-induced growth inhibition is restored in the complemented mutant fls2/p35S::VvFLS2-GFP (lines #3 and 

#5), when compared with Col-0 (WT) and the fls2 mutant. Data represent means ± SD (n=15). Asterisks indicate 

statistically significant difference between control and flg22 treatment (t-test; p<0.05). Similar results were 

obtained in three independent experiments. D. Subcellular localization of VvFLS2-GFP visualized by confocal 

microscopy in leaves of Arabidopsis fls2 mutant transformed with p35S::VvFLS2-GFP line #3. DIC: differential 

interference contrast. Bars = 20 µm.  

 

 

0

500

1000

1500

2000

2500

0 10 20 30 40 50

H
2
O

2
 p

ro
d

u
c
ti

o
n

 (
R

L
U

) 

Time (min) 

Col-0

fls2

fls2 / 35S::VvFLS2-GFP #3

fls2 / 35S::VvFLS2-GFP #15

0

1

2

3

4

5

6

7

8

P
la

n
t 

fr
e

sh
 w

e
ig

h
t 

(m
g)

 H2O
flg22

* * 
 * 



 RESULTS ǁ Flagellin perception system in grapevine 

67 
 

induced only a weak expression of Gluc, PR1.2 and PR6 (Fig. 25D, E) whereas an intermediate 

upregulation of Chit4c was detected (Fig. 25D, F). However, the Bp flg22-triggered Chit4c gene 

expression was very transient compared with the long-lasting effect of Xc flg22 and Pa flg22 

treatments (Fig. 25F). In addition, the 17.3 gene, which is a SA marker in grapevine (Bordiec et 

al., 2011), was strongly induced at 1 hpt by Xc flg22 and Pa flg22, but not by Bp flg22 (Fig. 25G). 

On the whole, our results show that Bp flg22 elicits only weak defense responses in grapevine. The 

treatment with At flg22 was totally unable to elicit defense gene expression (Fig. 25D-G).  

4.2 AtFLS2 and VvFLS2 have different recognition specificities 

B. phytofirmans is able to colonize Arabidopsis and to stimulate its growth in laboratory 

conditions (Poupin et al., 2013; Zuniga et al., 2013). However, both effects are less pronounced 

than in grapevine (Compant et al., 2005b; Zuniga et al., 2013), suggesting potential differences in 

the perception of this bacterium between grapevine and Arabidopsis. Previous studies have 

reported different perception specificities between FLS2 from tomato and Arabidopsis (Felix et al., 

1999; Bauer et al., 2001; Sun et al., 2006; Robatzek et al., 2007; Mueller et al., 2012). We 

therefore characterized the eliciting activity of Bp flg22 in Arabidopsis. In Arabidopsis cells, Bp 

flg22 triggered an oxidative burst comparable with that triggered by Pa flg22 and Xc flg22 (Fig. 

26A). As a significant correlation has been observed between flg22 eliciting activity and seedling 

growth inhibition (Vetter et al., 2012), we carried out seedling growth inhibition assays in 

Arabidopsis. On WT Col-0, we have shown that the level of reduction in seedling weight after 

treatment with Bp flg22 was comparable with the growth inhibition caused by Pa flg22 and Xc 

flg22 (Fig. 26C). The seedling growth inhibition induced by the three active flg22 epitopes was not 

observed in the fls2 mutant, indicating that their perception was strictly FLS2 dependent (Fig. 22C 

and data not shown). The growth inhibition activity of flg22 peptides correlated with their ability 

to induce comparable PR1 expression as revealed using pPR1::GUS expressing plants (Fig. 27A). 

As published previously (Felix et al., 1999; Bauer et al., 2001), At flg22 did not elicit any 

biological response (Fig. 26A, C, 27A). 

In contrast with its strong eliciting activity in Arabidopsis, we found that Bp flg22 is a 

weak elicitor in grapevine. In addition to activating only a weak oxidative burst (Fig. 26B) and 

defense gene induction (Fig. 25D-G), Bp flg22 did not significantly inhibit grapevine plantlet 

growth, in contrast to what was observed on Xc flg22 treatment (Fig. 26D, 27B). Indeed, Xc flg22 

was highly active in grapevine inducing strongly both defense gene expression and growth 

inhibition (Fig. 25D-G, 26D, 27B). In addition, grapevine plants challenged with Xc flg22 

displayed a root darkening phenotype that was not observed on treatments with other flg22 

peptides (Fig. 27B), or in Arabidopsis (data not shown). 



A B 

Figure 23. Confirmation of the plasma membrane localization of VvFLS2.  

A. VvFLS2-GFP follows the plasma membrane shrinking during plasmolysis induced by 1M NaCl. B. The green 

fluorescence of VvFLS2-GFP colocalizes with the red fluorescence of the plasma membrane probe FM4-64. 

Pieces of leaves were mounted in distilled water or in 1M NaCl solution for plasmolysis experiments. For FM4-64 

staining, samples were incubated in 8 μM FM4-64 in water during 10 min before observation. DIC: differential 

interference contrast. Bars = 20 μm.  

A B 

Figure 24. Burkholderia phytofirmans living bacteria, crude extract or purified flagellin trigger grapevine 

and Arabidopsis immunity.  

A. Arabidopsis pPR1::GUS seedlings were incubated with living B. phytofirmans bacteria at the indicated 

densities or with their boiled extract for 24 hours. B. Expression of the grapevine defense genes Chit4c and PR6, 

24 h after challenge with B. phytofirmans crude extract in presence or absence of proteinase K (PK). C. SDS-

PAGE analysis of the 43 kD purified flagellin (arrow) from B. phytofirmans following the purification protocol 

described by Felix et al. (1999). MM: molecular weight marker. D. Arabidopsis pPR1::GUS seedlings were 

treated with purified flagellin from B. phytofirmans. For A. and D., PR1 expression was revealed by GUS staining 

at 24 hours post-challenge. (Fig. A.-D. from S. Dorey, O. Fernandez) 
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Given the polymorphism existing between AtFLS2 and VvFLS2 (Table 10), we tested if 

FLS2 was responsible for the observed species-specific differences in flg22 perception using 

growth inhibition assays on fls2/p35S::VvFLS2 Arabidopsis seedlings. While in WT Col-0, all 

three flg22 epitopes exhibited similar biological activities (Fig. 28A; Table 11), Xc flg22-

challenged fls2/p35S::VvFLS2 plants were consistently and significantly smaller than Bp flg22-

challenged plants (Fig. 28B; Table 11). Therefore, the expression of VvFLS2 in fls2 background 

conferred differential flg22 responses characteristic for grapevine (compare Fig. 26D and 28B). 

These results suggest that VvFLS2 has evolved to distinguish flagellin originating from the 

grapevine-associated PGPR B. phytofirmans. 

4.3 B. phytofirmans overcomes Xc flg22-induced MTI to colonize grapevine plants 

We hypothesized that B. phytofirmans flagellin partially evades strong recognition to 

enable successful plant colonization. As a corollary, we investigated whether the activation of MTI 

by fully active flagellin-derived peptide would reduce the PGPR colonization. Roots of grapevine 

plantlets grown in vitro were exposed to 1 µM Xc flg22, which displayed the strongest eliciting 

activity in grapevine, for either 1 minute (co-treatment) or 24 h prior to the inoculation with living 

B. phytofirmans bacteria. Surprisingly, we observed that treatment with Xc flg22 did not affect the 

colonization of grapevine leaves or roots (Fig. 29). These results suggest that B. phytofirmans 

might overcome flg22-induced MTI to colonize grapevine plants. 

5 Silencing of VvFLS2 in grapevine induced defects in flg22 immune signaling 

5.1 Generation of antisense VvFLS2 lines 

In parallel to the complementation assays in Arabidopsis, we aimed to posttranscritionally 

silence the VvFLS2 gene in grapevine using an antisense construct (Gateway binary expression 

vector pH2WG7, Fig. 14E; Karimi et al., 2002). Indeed, plants silenced in VvFLS2 would be a 

perfect tool to investigate the involvement of flagellin-triggered immunity in grapevine, notably 

during its interactions with bacteria. 

The antisense fragment of 210 bp was designed to target the region 1602-1811 bp within 

the LRR ectodomain of VvFLS2 (Fig. 30). This fragment confers specificity for the VvFLS2 

silencing, according to BLAST programs on Genoscope 12x and NCBI databases. 

Transgenic in vitro plantlets overexpressing the VvFLS2 fragment in the antisense 

orientation (αsVvFLS2) were generated from Vitis vinifera cv Pinot Noir PN40024 by the 

grapevine transformation platform (Jean Masson, Mireille Perrin, Carine Schmitt, INRA, Colmar, 

FR). The Agrobacterium-mediated transformation of PN40024 embryogenic calli with pH2WG7 

p35S::αsVvFLS2 (Fig. 15) resulted in 68 hygromycin-resistant calli issued from independent 
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Figure 25. flg22 from the plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans 

triggers weaker signaling and defenses in grapevine cells than flg22 from Pseudomonas aeruginosa or 

Xanthomonas campestris.  

A. Alignment of flg22 from bacteria P. aeruginosa (Pa), B. phytofirmans (Bp), X. campestris (Xc), and A. 

tumefaciens (At). Arrows indicate key amino acids for flg22 eliciting activity in tomato cells (Felix et al., 

1999). Underlined amino acids differ between Bp flg22 and Xc flg22. B. Variation in free [Ca2+]cyt in 

apoaequorin expressing cells. C. Dose-response of flg22-induced H2O2 production 15 min post treatment, 

measured by luminol chemiluminescence. Data are expressed as percentage of response induced by 1 µM Pa 

flg22 and graphics show means ± SD of three independent experiments. D.-G. Flg22-induced expression of 

defense genes quantified by qPCR. Means of triplicate data were normalized by housekeeping genes EF1a and 

60SRP and compared to water treated control, set as 1.  D. Expression of genes encoding a β-1,3 glucanase 

(Gluc), a PR1 protein (PR1.2), a proteinase inhibitor (PR6) and an acidic chitinase (Chit4c) at 6 hpt. E., F. 

Kinetics of PR6 (E.) and Chit4c (F.) defense gene induction. G. 17.3 gene expression at 1hpt. Cells were 

treated with 1µM of Bp flg22 (white bars), Pa flg22 (dark gray bars), Xc flg22 (black bars) or At flg22 (light 

gray bars). 
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transformation events. Using primers matching the 3‟ end of the p35S promoter and the 5‟end of 

the antisense fragment (Fig. 30), the RT-PCR transgene detection permitted the selection of 10 

αsVvFLS2-expressing calli, hereafter referred as lines #2-2 up to #2-22, for in vitro plantlet 

regeneration via somatic embryogenesis (Fig. 15). At the beginning, the root system was poorly 

developed and plantlets growth was very low, probably due to stresses accumulated during the 

Agrobacterium-mediated transformation and the somatic embryogenesis. By optimizing the culture 

conditions (Material and Methods, §1.1.2 ), 9 of the 10 independent transgenic lines finally 

possessed a similar developmental phenotype compared with the mock-transformed wild-type 

plants (Vitis vinifera PN40024) issued from a parallel somatic embryogenesis (seWT). The line #2-

10 was an exception with a dwarf phenotype. These 10 independent asVvFLS2 lines were then 

screened for the expression levels of VvFLS2 transcript and the loss of flg22 responsiveness in 

leaves of regenerated in vitro plantlets. The flg22-responsive phenotype was compared with seWT. 

5.2 Screening of asVvFLS2 lines for VvFLS2 transcript amounts and flg22 

responsiveness  

In at least two independent biological experiments, the amounts of VvFLS2 transcripts 

were quantified by qPCR with VvFLS2 specific primers matching the 5‟ end of the transcript (Fig. 

30). Fig. 31A indicates that VvFLS2 transcription was not silenced in most of the lines and some 

lines such as #2-13 possessed even more VvFLS2 transcripts than seWT. However, the lines #2-11, 

#2-16 and #2-22 showed a lower VvFLS2 transcript amount reaching 75%, 63% and 46% of the 

VvFLS2 transcripts level in seWT, respectively (Fig. 31A).  

A toolbox was developed to follow flg22 responsiveness in leaves of plantlets grown in 

vitro (Material and Methods, § 2.1.2, 2.1.4, 2.1.5). As a first overall screening, the flg22-induced 

MAPK phosphorylation was detected by Western blotting. Chitin treatment served as a control of a 

VvFLS2-independent immune signaling pathway. By contrast to the seWT and other transgenic 

lines which responded strongly to both elicitors, the antisense line #2-22 was the only one 

displaying a reduced flg22-induced MAPK phosphorylation while the chitin response was not 

altered (Fig. 31B). No defect in MAPK signaling was observed in lines #2-11 or #2-16 (Fig. 31B). 

Our preliminary results showed that silencing was partly successful only in the line #2-22. 

5.3 The line #2-22 is affected in flg22 signaling 

In four independent experiments, the MAPK activation triggered by flg22 was 

significantly reduced compared with that triggered by chitin (Fig. 32A). In addition to MAPK 

signaling, other defense responses were tested in the line #2-22. The flg22-triggered oxidative 

burst was quantified in parallel to the elicitation induced by oligogalacturonides (OG), used as a 

FLS2-independent immune signaling pathway. Indeed, chitin could not be used for this purpose as 

it does not elicit ROS production in grapevine (Part III, Results §1). The relative flg22-induced 
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Figure 26. Species-specific differences in flg22 perception between Arabidopsis and grapevine revealed 

by ROS production and plant growth inhibition.  

A., B. ROS production was measured at 15 min by chemiluminescence of luminol on A. thaliana (A) or V. 

vinifera (B) cell suspension cultures after treatment with Bp flg22, Pa flg22, Xc flg22, At flg22 peptides or 

water control. Data are means ± SD of three independent experiments and are expressed as percentage of 

response induced by 1 µM Pa flg22. C., D. Arabidopsis (C) and grapevine (D) growth inhibition on in vitro 

plants triggered by 1 µM Bp flg22, Pa flg22, Xc flg22, At flg22 and compared to water control (n=30). 

Different letters indicated significant differences (one way ANOVA test followed by a Tukey-Kramer test; 

p<0.05). Similar results were obtained in three independent experiments. (Fig. C,D from O. Fernandez) 

1 cm Bp flg22  1 cm Xc flg22  

Figure 27. Bp flg22, Pa flg22 and Xc flg22 induce similar responses in Arabidopsis but not in grapevine. 

A. flg22-induced expression of PR1 defence gene was assayed in Arabidopsis pPR1::GUS reporter line. 

Seedlings were treated with Bp flg22, Pa flg22, Xc flg22, At flg22 at the indicated concentrations or with water 

or non-treated (NT). PR1 activation was revealed by GUS staining at 24 hours post-challenge. B. 

Representative pictures of growth inhibition in grapevine in vitro plantlets triggered by different flg22 peptides 

(1µM) and compared to water control (n=30). On the right: enlargement of the root system from grapevine 

plantlets challenged by Bp flg22 and Xc flg2. Similar results were obtained in at least three independent 

experiments. (Results O. Fernandez)  
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ROS production of the line #2-22 represented only 40% of the oxidative burst observed in the 

control seWT (Fig. 32B). Similarly, the elicited PR6 transcript amount in line #2-22 represented 

only 43% of the level quantified by qPCR in the seWT (Fig. 32C).  

To sum up, we have characterized the line #2-22, which is partly silenced in VvFLS2 gene 

expression. In this line, the decrease of the VvFLS2 transcripts (46 % of the seWT) correlates with 

a lower intensity of three distinct immune responses (MAPK activation, oxidative burst and PR6 

gene expression) specifically triggered by flg22. These data show that VvFLS2 is involved in the 

flg22 perception in grapevine. 

5.4 VvFLS2 protein detection 

We also aimed to quantify the VvFLS2 silencing efficiency at the protein level using an 

antibody raised against VvFLS2. According to previous works, antibodies developed against the 

Arabidopsis and rice proteins AtFLS2 or OsFLS2 were directed against the very Cter end. These 

sequences are highly specific and are neither shared by other LRR-RLKs of the same family nor 

by FLS2 orthologs of other species (Takai et al., 2008; Boutrot et al., 2010, Fig. 33A). However, 

the BLASTp analysis indicated that the Cter region of VvFLS2 (IPPPLPSSS) was not specific to a 

unique protein encoded by the grapevine genome. Consequently, we have chosen a specific 

hydrophilic epitope (KTVENPEPEYASALT) localized in the inner juxtamembrane region of 

VvFLS2 (Fig. 33A). 

ELISA tests carried out by the antibody manufacturer (Proteogenix) and our dot blot 

experiments revealed that the polyclonal antibody successfully detected the Cys-

KTVENPEPEYASALT antigen (C16) and did not detect a non-specific peptide, such as flg22 

(Fig. 33B). Thereafter, the capacity to detect VvFLS2 protein was firstly investigated on protein 

extracts from Arabidopsis fls2/p35S::VvFLS2-GFP #3 plants.  

Western blots with an anti-GFP antibody detected a specific signal for the VvFLS2-GFP 

fused protein at the molecular mass of ~ 200 kDa (Fig. 33C) that was better visible in samples 

enriched in membrane fractions (C2 samples) than in total proteins (C1 samples). The theoretical 

molecular mass of the non-glycosylated fused protein is ~ 157 kDa. As expected, no signal was 

detected in fls2 or wild-type (WT) Arabidopsis plants (Fig. 33C). However, Western blots with the 

anti-VvFLS2 antibody in p35S::VvFLS2-GFP samples did not detect any specific signal in the 

range 150 – 250 kDa (Fig. 33C). These results indicate that the polyclonal antibody α-VvFLS2 

failed to immuno-detect the VvFLS2 protein whereas the fused protein is present, as revealed by 

the -GFP antibody. 



A B 
Col-0 fls2/p35S::VvFLS2 

Figure 28. FLS2 is responsible for recognition specificities between grapevine and Arabidopsis. 

Arabidopsis growth on 1 µM Bp flg22, Pa flg22 and Xc flg22 in A. wild-type Col-0 plants (n=30) or in B. the 

complemented mutant fls2/p35S::VvFLS2 line #3 (n=30). Different letters indicated significant differences and 

ns=non significant differences (one way ANOVA test followed by a Tukey-Kramer test; P<0.05). Similar 

results were obtained in at least three independent experiments. (Results O. Fernandez)  

A. thaliana V. vinifera 

  Col-0 (WT) fls2/p35S::VvFLS2 Chardonnay (WT) 

Control 0 % 0 % 0 % 

Bp flg22 43.8 % ± 4.7 40.9 % ± 2.5 18.2 % ± 8.0 

Pa flg22 48.5 % ± 2.9 46.7 % ± 3.1 31.8 % ± 10.9 

Xc flg22 45.7 % ± 3.6 55.0 % ± 2.7 47.9 % ± 10.8 

Table 11. flg22-triggered growth inhibition in Arabidopsis and grapevine 

Comparison between A. thaliana (wild type (WT) Col-0 and the complemented line fls2/p35S::VvFLS2 #3) 

and V. vinifera (WT; cv Chardonnay) in vitro plantlets grown on 1 µM Bp flg22, Pa flg22, Xc flg22 or water 

control. Data represent growth inhibition means ± SE (n=30) relative to control, set as 0% of growth 

inhibition. 

leaves roots 

ns 
ns 

Figure 29. Burkholderia phytofirmans overcomes Xc flg22-induced MTI to colonize grapevine plants.  

Grapevine in vitro plantlets were challenged at the root level with Xc flg22 (1μM), at the same time or 24 h 

before inoculation (hbi) with B. phytofirmans (Bp). Bacterial counting was performed 4 days later in the roots 

and the leaves. Data are from one representative experiment (n=8). Similar results were obtained in three 

independent experiments (ns=non significant according to one way ANOVA test followed by a Tukey-Kramer 

test; p<0.05). (Results O. Fernandez)  
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6 FLS2-like gene in grapevine 

VvFLS2 (CAN78669) is the closest predicted ortholog of AtFLS2, located on the minus 

strand of the chromosome 10. According to protein BLAST against grapevine genome with 

AtFLS2 or VvFLS2, CAN78669 is a unique non-duplicated protein prediction. However, a 

BLAST with the nucleotide sequence of VvFLS2 revealed that a highly similar sequence (~3.5 kb 

long) is present on a neighbor locus, hereafter referred as VvFLS2-like (Fig. 34). The gene 

predictions available for this locus, such as GSVIVT01021409001 (Genoscope), cover only 

partially the hypothetical VvFLS2-like coding sequence (CDS). The CDS of VvFLS2 and the 

nucleotide sequence of VvFLS2-like display 86% of identity with the highest conservation over the 

encoded kinase domain. At the CRIBI and Genoscope websites, no read for the VvFLS2-like 

transcript has been detected by different RNA sequencing technologies (454, Illumina and Solid) 

in different tissues from distinct grapevine cultivars (Fig. 34 and data not shown). Moreover, 

frequent transposable elements exist in a distant promoter (Fig. 34). All these results suggest that 

VvFLS2-like gene might be a pseudogene.  

However, we tested if VvFLS2-like gene was transcribed. Using specific primers matching 

the beginning and the end of the hypothetical VvFLS2-like CDS (Table 6), no amplification was 

achieved with cDNA from V. vinifera cv Pinot Noir 40024, Gamay nor Chardonnay. Surprisingly, 

a ~ 3,5 kb-long amplicon was obtained from leaves of cv Marselan (Fig. 35A). Its partial 

sequencing confirmed the identity of the VvFLS2-like transcript, distinct from the VvFLS2 

transcript, and permitted to precise its splicing sites (Fig. 35B). The predicted VvFLS2-like protein 

sequence displays 81% identity with VvFLS2 and contains a signal peptide, 27 LRR repeats in the 

ectodomain, a single transmembrane domain and a kinase domain truncated in the last 22 amino 

acids (Annex 3). 

This sequencing also enabled the design of a specific pair of primers that can distinguish 

VvFLS2-like from VvFLS2 by PCR (Fig. 35C, Table 5). A non-quantitative PCR with these 

specific primers confirmed that VvFLS2-like transcripts are absent in control grapevine tissue from 

cv Pinot Noir and Gamay (Fig 35D). VvFLS2-like expression was not induced by flg22, unlike 

VvFLS2 gene that was upregulated by flg22 treatment (Fig. 21B,C, 35D). Even 40 cycles of qPCR 

were unable to reveal any VvFLS2-like amplification from basal or flg22-elicited tissue of cv Pinot 

Noir and Gamay (data not shown). 

We further aimed to determine whether the VvFLS2-like gene product from cv Marselan 

could participate in flagellin perception by performing a complementation assay in Arabidopsis 

fls2 mutant. This could be interesting for structure-function studies, as ectodomains of VvFLS2 

and VvFLS2-like differ at several residues (Annex 3). However, the preparation of the pK7FWG2 

p35S::VvFLS2-like-GFP constructs have repeatedly failed. Both 5‟ and 3‟ parts of the sequence 



Figure 31. Quantification of VvFLS2 transcript amount and flg22 responsiveness in 10 grapevine 

transgenic lines expressing p35S::αsVvFLS2 (#2-2 - #2-22). 

VvFLS2 expression and flg22 responsiveness were evaluated in leaves of in vitro plantlets expressing 

p35S::αsVvFLS2 or in wild-type plants issued from a parallel somatic embryogenesis (seWT). A. Relative 

VvFLS2 expression was measured by qPCR, normalized to the housekeeping genes EF1α and EF1γ and 

reported to seWT, set as 100 %. Data are means ± SD of at least two independent experiments. B. 

Phosphorylation of two MAPKs (45 and 49 kDa) detected by anti-pERK1/2 Western blots at 15 min post 

treatment with water control (-), 1 g l-1 chitin (C) or 500 nM flg22 (F). Homogeneous loading was checked by 

Coomassie Brilliant Blue (CBB) staining of a parallel gel (not shown). Experiment was repeated twice with 

similar results. Data from one representative experiment out of two is shown. ND=not determined. 
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Figure 30. Antisense construct for VvFLS2 silencing. 

Position of the VvFLS2 antisense fragment (αs) in the VvFLS2 coding sequence and map of the pH2WG7 

p35S::αsVvFLS2 vector. Nucleotide (nt) 1 indicates the start of VvFLS2 translation. The fragment (nt 1602 – 

1811) was PCR-amplified using specific primers and inserted in the antisense orientation into the pH2WG7 

vector. pH2WG7 p35S::αsVvFLS2 was used for the transformation of grapevine embryogenic calli via 

Agrobacterium tumefaciens. Arrows indicate primers used to verify the presence of transgene in transgenic 

calli and plantlets. Black triangles indicate primers used for VvFLS2 quantification by qPCR. 
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were missing in the final construct which therefore lacked the signal peptide and presented a 

premature STOP codon in the GFP sequence.  

All over, the bioinformatics analyses together with these data suggest that the VvFLS2-like 

locus might be a pseudogene in V. vinifera cv Pinot Noir and Gamay while it is transcribed in cv 

Marselan. Due to the fail of the VvFLS2-like cloning, we cannot definitely confirm or exclude the 

putative involvement of the VvFLS2-like protein in flagellin perception. 

 

 

  



B C 

Figure 32.  Grapevine p35S::αs-VvFLS2 in vitro plantlets are affected in flg22 signaling. 

Defense responses in leaves of p35S::αs-VvFLS2 line #2-22 and control (seWT) plants treated with flg22. 

A. Phosphorylation of two MAPKs detected by α-pERK1/2 Western blots at 15 min post treatment with 

chitin (C), flg22 (F), or water control (-). Homogenous loading was checked by Ponceau Red staining. 

Experiment was repeated four times with similar results. B. Oxidative burst measured by luminol method 

in grapevine leaf discs (n≥6) treated with flg22, oligogalacturonides (OG) or water. The total relative 

luminescence (rlu) was counted over 45 min. The ratio between the flg22- and OG-induced oxidative 

bursts was calculated and reported to seWT, set as 100%. Data are means ± SE of three independent 

experiments. C. Relative transcript abundance of the defense gene encoding a proteinase inhibitor (PR6) 

6 hours post treatment with flg22 or water. Expression was measured by qPCR, normalized by the 

housekeeping genes EF1α and EF1γ and reported to seWT treated with flg22, set as 100 %. Data are 

means ± SE from three experiments. In A., B., C., leaves were treated with 500nM flg22, 1 g l-1 chitin or 

500 mg l-1 OG. Asterisk indicates statistically significant difference between seWT and the #2-22 line 

(heteroscedastic t-test, p<0.05, ns=non significant). 
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Discussion 

1 The FLS2/flg22 perception system is conserved in grapevine and triggers a 

typical MTI 

The flagellin-derived flg22 peptide spans the highly conserved N-terminal region and is an 

active elicitor in many plant species. Immune responses elicited by flg22 of P. aeruginosa have 

been characterized in detail in multiple studies, including Arabidopsis and tomato (Boller and 

Felix, 2009). Flg22 triggers a Ca
2+

-associated membrane depolarization, pH alkalinization, 

oxidative burst, MAPK cascade activation, transcriptional reprogramming, ethylene production, 

callose deposition, and seedling growth inhibition (Gomez-Gomez et al., 1999; Asai et al., 2002; 

Zipfel et al., 2004; Jeworutzki et al., 2010). Not much is known about flagellin perception in 

grapevine (V. vinifera). Here, we show that flg22 elicits grapevine immune responses, such as 

[Ca
2+

]cyt variations, an oxidative burst, phosphorylation of two MAPKs (Fig. 17), defense gene 

expression (Fig. 18) and growth inhibition (Fig. 26D, 27B). Our results are in accordance and 

complement the recent study of Chang & Nick (Chang and Nick, 2012) who reported flg22-

triggered medium alkalinization, oxidative burst, induction of several defense genes, but not cell 

death, in V. vinifera and the north-American species V. rupestris. In cell cultures from V. vinifera 

cv Pinot Noir, the EC50 of apoplastic alkalinization was estimated at 877 nM (Chang and Nick, 

2012) whereas our data indicated that V. vinifera cv Gamay cells are around 3 times more sensitive 

to flg22 (EC50 = ~300 nM; Fig. 25C). Moreover, V. rupestris, a species considered as naturally 

more resistant to different diseases, is more sensitive to flg22 perception with an estimated EC50 = 

~5 nM (Chang and Nick, 2012). These differences may be caused by different species or cultivar 

responsiveness in the Vitaceae family, as observed previously in Brassicaceae where variation in 

flg22 perception mostly results from changes in FLS2 protein abundance (Vetter et al., 2012). 

However, an EC50 value should not be considered as absolute, as we have noticed that the 

estimated EC50 could vary from ~30 nM to ~300 nM depending on when the grapevine cell 

suspensions have been used (compare Fig. 16A and 25C).  

We have also shown that flg22 induces resistance against the fungal pathogen B. cinerea. 

In grapevine, flg22 perception triggers the expression of some PR genes (Fig. 18F-H, 25D-F) and 

the activation of the phytoalexin pathway leading to stilbene biosynthesis (Fig. 18D, E; Chang and 

Nick, 2012), two mechanisms known to delay B. cinerea spreading (Coutos-Thevenot et al., 2001; 

Aziz et al., 2007). Our data are in agreement with previous work showing that flg22 induces 

resistance to B. cinerea also in Arabidopsis (Ferrari et al., 2007) and supports the concept that MTI 

confers broad-spectrum disease resistance regardless of the origin of the MAMP perceived. Thus, 

our results indicate that flg22-triggered immune responses are shared between V. vinifera and A. 

thaliana.  



Figure 33. The rabbit anti-VvFLS2 polyclonal antibody directed against a specific epitope of VvFLS2 

does not detect the VvFLS2 protein. 

A. Alignment of the inner juxtamembrane regions and the Cter end of the FLS2 orthologous proteins. Fifteen 

residues KTVENPEPEYASALT used as an epitope for generation of a polyclonal α-VvFLS2 antibody are 

highlighted in red. Residues used as epitopes for generation of  α-AtFLS2 (Chinchilla et al., 2006) and α-

OsFLS2 (Takai et al., 2008) antibodies are highlighted in blue. Underlined is a non-specific sequence 

(IPPPLPSSS) matching other gene products in grapevine. B. Test of the α-VvFLS2 antibody specificity by dot 

blot. Immunogenic antigen C16 (Cys- KTVENPEPEYASALT) and flg22 peptide (control for the non-specific 

detection) were spotted on each membrane piece that was further immuno-marked with different titers of the 

primary α-VvFLS2 antibody. D. Western blotting detection of VvFLS2-GFP protein with anti-GFP or anti-

VvFLS2 antibody in leaves of Arabidopsis fls2, fls2/p35S::VvFLS2-GFP #3 or wild-type (WT; Col-0) plants. 

Samples were prepared by a two-step centrifugation. C1: supernatant after the 1st centrifugation (10 000 g), C2: 

pellet after the 2nd centrifugation (100 000 g). Black arrow indicates the position of the immunodetected 

protein: ~ 200 kDa. Homogenous loading was checked by Ponceau Red staining. The α-GFP and α-VvFLS2 

antibodies were used at 1/10 000 and 1/5 000, respectively.  
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Broad varieties of plant species are highly sensitive to flg22 and carry a functional FLS2 

receptor in their genomes (Boller and Felix, 2009). The successful complementation of the 

Arabidopsis mutant fls2 with the closest grapevine FLS2 ortholog, VvFLS2, demonstrates its 

function as a grapevine flagellin receptor (Fig. 22). The signaling pathways downstream of the 

flg22-FLS2 perception system are highly conserved between species as demonstrated by 

heterologous expression of VvFLS2, OsFLS2 or LeFLS2 in Arabidopsis (our results; Takai et al., 

2008; Mueller et al., 2012). In concordance, the overall organization of the FLS2 gene is 

conserved between the four functionally characterized flagellin receptors, with a unique intron in 

the 3‟ end (Fig. 20B). The structure of VvFLS2 is similar to the Arabidopsis FLS2, as VvFLS2 

contains an ectodomain comprising 28 LRRs arranged in tandem and a typical non-RD kinase 

intracellular domain (Fig. 20C). The predicted signal peptide and the transmembrane domain of 

VvFLS2 targeted the protein to the plasma membrane (Fig. 20C, 22D, 23), as demonstrated 

previously in Arabidopsis (Robatzek et al., 2006; Beck et al., 2012). Lastly, the N-terminal 

cysteine pair (C61/C68) required for normal processing, stability and function of AtFLS2 (Sun et 

al., 2012) as well as residues G318, G493, T867, S938, D997, T1040, G1064, T1072 and P1076, 

identified to affect AtFLS2 function when mutated (Robatzek and Wirthmueller, 2012; Cao et al., 

2013), are strictly conserved in VvFLS2 (Fig. 20C, Annex 2). Based on its observed 

electrophoretic mobility (Fig. 33C), VvFLS2 is a post-translationally modified protein, similarly to 

Arabidopsis or tomato FLS2 orthologs (Chinchilla et al., 2006; Robatzek et al., 2007) or other 

LRR-RLKs (Bleckmann et al., 2010). 

To sum up, our study indicates that the flg22/FLS2 perception system is conserved in V. 

vinifera as in most of higher plants, thus supporting a concept of an ancient origin of flagellin 

perception in plants (Boller and Felix, 2009). 

2 The reduction in VvFLS2 transcript levels affects the flg22 signaling in grapevine 

We have generated and characterized the transgenic line p35S::αs-VvFLS2 #2-22, in which 

the expression of VvFLS2 gene was decreased by ~ 55%  (Fig. 31A). Compared with seWT, this 

line #2-22 also displayed attenuated oxidative burst, MAPK phosphorylation and defense gene 

expression, specifically after flg22 treatment (Fig. 32A-C). Therefore, our results confirm the 

involvement of VvFLS2 in the grapevine perception of flg22. Together with the functional 

complementation of the Arabidopsis fls2 mutant, these results indicate that VvFLS2 functions as a 

flagellin receptor in grapevine. Our data from the line #2-22 (Fig. 32) also indicate that the flg22 

perception is finely tuned by the amount of VvFLS2 transcripts. This is in agreement with previous 

studies in Arabidopsis showing that the level of AtFLS2 transcripts directly impacts on the 

intensity of the flg22-triggered immune responses (Gomez-Gomez and Boller, 2000; Boutrot et 

al., 2010; Vetter et al., 2012). 



Figure 34. Genomic organization and gene structure of the VvFLS2-like locus in the proximity of the 

VvFLS2 locus on chromosome 10. 

Genomic organisation of the VvFLS2-like locus. Black boxes represent a gene prediction based on a partial  

sequencing of a full-length VvFLS2-like coding sequence (CDS) amplified from cDNA (cv Marselan) with 

specific primers illustrated by red arrows. ATG represents the beginning of translation. Gene annotations for 

these loci together with the existence of 454 reads and transposable element repeats are shown (Source 

Genoscope Vitis 12x).  

Figure 35. Expression of VvFLS2-like in different V. vinifera cultivars.  

A. Amplification of full-length coding sequence of VvFLS2-like from cDNA of different V. vinifera cultivars 

Pinot Noir (PN), Gamay (G), Marselan (M) and Chardonnay (C). The expected size of fragment was around 

3.500 bp. The annealing temperature was 62°C. B. Exon-intron architecture of VvFLS2-like  gene based on 

sequenced CDS. Numbers represent the position of codons. Gray arrows represent the position of primers 

spanning an exon1/exon2 boundary used for qPCR. Gray bars represent the sequenced region. The presence of 

the 2nd intron (following codon 842) is not confirmed by sequencing. C. Specificity of VvFLS2 and VvFLS2-

like qPCR primers tested by PCR on cloned coding sequences (CDS) of VvFLS2 and VvFLS2-like. D. 

Amplification of VvFLS2 and VvFLS2-like transcripts from grapevine cDNA from leaves of cv. Pinot Noir or 

cells of cv. Gamay treated with water (-) or flg22 (+) for 6 hours. PCR was run for 28 cycles. The expected 

amplicon sizes are 108 bp for VvFLS2 and 394 bp for VvFLS2-like. MM: Molecular marker.  
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Unfortunately, we could not correlate the level of VvFLS2 transcripts to the level of 

protein, as the VvFLS2-GFP immuno-detection by the α-VvFLS2 polyclonal antibody failed 

whereas it could be detected by the α-GFP antibody (Fig. 33B, C). These results indicate that the 

failed immuno-detection by the α-VvFLS2 antibody is not due to the absence of VvFLS2 in 

protein extracts but rather to the epitope inaccessibility inside the protein. Indeed, an epitope 

within the inner juxtamembrane region might be sterically hindered by the compact kinase domain 

or the membrane proximity, unlike the C-terminal regions chosen as immune epitopes for 

detection of the other FLS2 orthologs (Takai et al., 2008; Boutrot et al., 2010). 

As indicated previously, the silencing in the line #2-22 was not complete, leading to 

residual flg22-triggered immune responses. Grapevine genome possesses a highly close VvFLS2 

paralog, designated as VvFLS2-like. As the VvFLS2-like transcripts were never detected by qPCR 

in mock- or flg22-treated leaves of cv Pinot Noir (seWT or any antisense line), we assume that the 

encoded protein could not substitute the VvFLS2 function. So, in the line #2-22, the remaining 

immune responses triggered by flg22 are rather due to the partial silencing of VvFLS2 than to a 

putative functional redundancy which might have been associated with the VvFLS2-like locus. 

These remaining immune responses of the antisense line #2-22 might become an obstacle for 

evaluating the involvement of VvFLS2 during grapevine interactions with microorganisms, such 

as B. phytofirmans. 

Taken together, our results indicate that VvFLS2 seems to be the unique receptor for the 

flg22 detection in grapevine, similarly to Arabidopsis where the fls2 mutant is flg22 non-

responsive (Zipfel et al., 2004). 

3 Weak eliciting activity of Bp flg22 in grapevine 

We observed that flg22 peptides derived from different bacteria had distinct eliciting 

activities in grapevine. Bp flg22 derived from the non-pathogenic endophytic bacterium B. 

phytofirmans exhibited reduced oxidative burst and defense gene expression compared with the 

same epitope derived from the plant pathogenic bacteria P. aeruginosa or X. campestris (Fig. 25C-

G). The calcium signature and oxidative burst triggered by Bp flg22 were lower compared with the 

one triggered by Pa flg22 or Xc flg22 (Fig. 25B, C). Similarly the expression of some defense 

genes, such as Chit4c, was only transiently induced by Bp flg22 (Fig. 25F). Moreover, other genes 

were not significantly activated by Bp flg22 (e.g. PR6 and 17.3; Fig. 25D, E, G). Accordingly, Bp 

flg22 did not trigger a significant growth inhibition of grapevine plantlets (Fig. 26D, 27B). Thus, 

Bp flg22 is a weak elicitor in grapevine that triggers only partly and transiently flg22-responsive 

events. Indeed, the gene 17.3, which is exclusively regulated by SA in grapevine (Bordiec et al., 

2011), was activated by Xc flg22 and Pa flg22, but not by Bp flg22 (Fig. 25G). These results 

suggest that the SA signaling pathway might not be activated by Bp flg22, but only by the two 
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other epitopes. Moreover, the kinetics of genes induction was very distinct. Although the three 

epitopes induced Chit4c expression at similar level in early time point (1h), the induction of 

expression of this gene was very transient after Bp flg22 treatment (Fig. 25F).  

By contrast, X. campestris-derived flg22 displayed a strong eliciting activity in grapevine 

as demonstrated by low EC50 value in oxidative burst assays, a strong induction of defense genes 

and a marked growth inhibition (Fig. 25, 26B, D, 27B).  

Key amino acids described as crucial for flg22 eliciting activity (Felix et al., 1999; Bauer 

et al., 2001; Sun et al., 2006) are unchanged in Bp flg22 (Fig. 25A). However, the 3 amino acid 

substitutions between the most active peptide in grapevine Xc flg22 and Bp flg22 (Q1T, L7K and 

K13A) are sufficient to strongly increase its EC50 from ~80 nM to ~8 µM, a 100-fold difference in 

sensitivity (Fig. 25C). In tomato, deletion of the first seven N-terminal amino residues of flg22 did 

not strongly affect the biological activity, as the flg15 sequence remained fully active (Felix et al., 

1999). However, fls2 protoplasts expressing AtFLS2 are 1000-fold more sensitive to flg22, relative 

to flg15 (Mueller et al., 2012). Interestingly, mutation of K13A in flg22 has been reported 

previously to decrease its biological activity to 60% in tomato (Felix et al., 1999), whereas the 

mutation K13S had a minimal effect on flg22-eliciting activity in Arabidopsis (Sun et al., 2006). 

Very recently, a solved crystal structure of the Arabidopsis FLS2-flg22-BAK1 complex led to the 

identification of the mutually interacting flg22 and FLS2 residues (Sun et al., 2013). It was shown 

that K13 of flg22 binds directly to Y272 and Y296 residues in LRR8 and 9 of FLS2 and 

contributes to the interacting interface (Sun et al., 2013). However the side chain of K13 is not 

involved in these interactions (Sun et al., 2013), explaining why mutations in this residue had low 

impact on flg22 activity. The corresponding amino acids in LRR 8 and 9 of VvFLS2 are 

unchanged (Annex 2). It seems therefore probable that the N-terminal part of flg22 is important for 

flg22 perception in grapevine, similarly to Arabidopsis, but unlike in tomato. It would be 

interesting to perform substitutions of these distinct amino acids in Bp flg22 in order to identify 

their role in VvFLS2 perception, as previously performed for perception of pathovar variants of Xc 

flg22 in Arabidopsis (Sun et al., 2006). 

Certain pathogenic or symbiotic bacteria, such as R. solanacearum, A. tumefaciens, 

Azoarcus sp. or S. meliloti have specific flg22 sequences that are not recognized by FLS2 (Felix et 

al., 1999; Pfund et al., 2004; Buschart et al., 2012; Lopez-Gomez et al., 2012). In agreement, 

grapevine did not perceive flg22 peptide derived from A. tumefaciens (Fig. 25, 26 B, D, 27 B). 

Other bacteria are able to reduce or increase their flagellum content depending on the stages of 

colonization (Achouak et al., 2004; Bardoel et al., 2011; Bardoel et al., 2012). Another evasion 

strategy is flagellin glycosylation that masks its perception (Taguchi et al., 2009; Hirai et al., 

2011). Weak recognition of their MAMPs, such as flagellin, or even their loss can facilitate host 

tissue colonization by plant-associated bacteria. Our data suggest that alterations in Bp flg22 
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sequence might be a successful adaptation of B. phytofirmans to avoid recognition by the host 

VvFLS2.  

4 AtFLS2 and VvFLS2 have different recognition specificities 

Our results clearly show that V. vinifera and A. thaliana display species-specific 

differences in flg22 perception (Fig. 26, 27). In wild-type Arabidopsis, Pa flg22, Xc flg22 and Bp 

flg22 induced immune responses of a similar intensity (Fig. 26A, C, 27A, 28A). Thus differences 

in MAMP recognition exist between VvFLS2 and AtFLS2. We have further shown that the 

expression of VvFLS2 in the Arabidopsis fls2 mutant conferred a flagellin responsiveness profile 

characteristic to grapevine (Fig. 28B). These results clearly suggest that the differences observed 

between Arabidopsis and grapevine are caused, at least in part, by the different FLS2 proteins. 

As flg22 binding is mediated by the FLS2 LRR ectodomain (Dunning et al., 2007; 

Robatzek and Wirthmueller, 2012), it is interesting to note that the LRR domains of AtFLS2 and 

VvFLS2 only share 56% of amino acid identity (Table 10, Annex 2). Similarly, the LRR 

ectodomain of AtFLS2 shares only 54% identity with the LRR ectodomain of LeFLS2, which 

possesses species-specific traits for flg22 recognition (Robatzek et al., 2007; Mueller et al., 2012; 

Robatzek and Wirthmueller, 2012). Comparing the LRRs of eight FLS2 orthologs, Boller & Felix 

(2009) identified conserved amino acid of β-strands only in LRR 1 and LRR 22-28. Interestingly, 

domain swap experiments between AtFLS2 and LeFLS2 narrowed down the potential Pa flg22 

binding domain to LRRs 7-10 for the RINSAKDD core sequence (Mueller et al., 2012). 

Mutational scanning of LRR domains has also indicated that LRRs 9-15 play an important role for 

FLS2 function (Dunning et al., 2007). Recently, a crystallographic study confirmed that LRRs 8-

11 bind the flg22 core sequence (Sun et al., 2013). The interacting residues in these LRRs are 

conserved in grapevine, with the exception of R294 (Annex 2). The LRRs 3 and 6, and LRRs 13-

17 involved in the recognition of the N- and C-terminus of flg22 (Sun et al., 2013) are less 

conserved between species and differ between grapevine and Arabidopsis (Annex 2). This lower 

conservation could potentially explain the different sensitivities of A. thaliana and V. vinifera 

towards flg22 treatment. Interestingly, OsFLS2 is only weakly conserved in the key residues 

recognizing flg22 (Annex 2), which might be a reason for lower sensitivity to flg22 reported in rice 

cells (Felix et al., 1999; Takai et al., 2008). Future work should reveal which polymorphisms 

underlie the different perception specificities of AtFLS2 and VvFLS2. 

5 B. phytofirmans overcomes MTI in Arabidopsis and grapevine to colonize plants 

The eliciting activity of B. phytofirmans was mainly conserved in the boiled extract and 

proteinase K treatment greatly affected the eliciting activity, indicating that it is mostly 

proteinaceous compounds that are responsible for the elicitation (Fig. 24A, B). Moreover, the 
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purified flagellin from B. phytofirmans and Bp flg22 are strongly active in Arabidopsis (Fig. 24D, 

26A, B, 27A). Thus flagellin seems to be a main MAMP of B. phytofirmans, even if we cannot 

exclude that other elicitors, such as LPS, might participate to the elicitation process (Erbs and 

Newman, 2012). The eliciting properties of flagellins from endophytic bacteria have been studied 

in a few plant systems. For instance, flagellins from P. putida or P. fluorescens induced different 

early defense responses in tobacco cells depending on their origin (van Loon et al., 2008). 

Similarly, boiled extracts from different strains of endophytic PGPRs P. fluorescens and P. putida 

differentially stimulated H2O2 and phytoalexin production in grapevine cell suspensions (Verhagen 

et al., 2010). Unfortunately, flagellin sequences from these bacteria are not known, and it is 

therefore difficult to make a structure-activity correlation. 

B. phytofirmans is a PGPR naturally associated with grapevine (Ait Barka et al., 2000; Lo 

Piccolo et al., 2010). Although this bacterium is not known to be associated with Arabidopsis in 

nature, it is able to colonize this plant under laboratory conditions (Poupin et al., 2013; Zuniga et 

al., 2013). Our data show that, although Bp flg22 has a weak elicitor activity in grapevine, it is 

strongly active in Arabidopsis. These results suggest that VvFLS2 and/or flagellin from B. 

phytofirmans may have undergone evolutionally changes allowing the adapted endophytic 

bacterium to colonize its natural host plants without inducing a strong MTI.  

However, the addition of the strongly-eliciting Xc flg22 during the first stages of 

bacterialization did not interfere with the colonization process in grapevine (Fig. 29). Moreover, in 

Arabidopsis, Bp flg22 triggers a strong growth inhibition which contrasts with the described PGPR 

effect (Poupin et al., 2013; Zuniga et al., 2013). On the basis of these data, it seems that B. 

phytofirmans may ultimately neutralize plant immunity induced by flg22 or other MAMPs using a 

strong evasion process that could be related to ETS (Jones and Dangl, 2006) to successfully 

colonize plants. Therefore, the bacterium may inhibit MTI by injecting effectors. 

Interestingly, no potential secreted effectors have been identified in its sequenced genome 

(Sessitsch et al., 2005; Weilharter et al., 2011; Mitter et al., 2013). Moreover, although B. 

phytofirmans possesses all relevant TTSS genes, the gene encoding the needle-forming protein is 

absent, suggesting that this TTSS apparatus is not functional (Mitter et al., 2013). Furthermore, a 

cell culture filtrate of B. phytofirmans did not suppress flg22-induced Arabidopsis defense 

responses (S. Dorey, unpublished data), in contrast with that shown previously for P. fluorescens 

and Bacillus subtilis (Millet et al., 2010; Lakshmanan et al., 2012). Another hypothesis is that 

bacteria might regulate MAMP responses by lowering ethylene production. Indeed, B. 

phytofirmans is known to reduce the level of ethylene in plants via its 1-aminocyclopropane-1-

carboxylate deaminase activity (Onofre-Lemus et al., 2009; Sun et al., 2009) and endogenous 

ethylene is known to control FLS2 expression (Boutrot et al., 2010; Tintor et al., 2013). Further 

experiments will be needed to investigate the mechanisms underlying the multi-layered evasion of 

plant immunity by the PGPR B. phytofirmans.  
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6 VvFLS2-like gene in grapevine 

We reported that a close paralog of VvFLS2, which we designated as VvFLS2-like, exists 

in an adjacent locus to VvFLS2 on chromosome 10. In basal conditions or after flg22 treatment, the 

VvFLS2-like transcript has never been detected by qPCR in V. vinifera cv Pinot Noir, Gamay nor 

Chardonnay (Fig. 35A, D). Moreover, the SOLID and Illumina‟s RNAseq signal for the VvFLS2-

like transcript is ~0 at the CRIBI website (http://genomes.cribi.unipd.it) and no 454 read has been 

found at the genoscope website (Fig. 34). Finally, the VvFLS2-like transcript has been amplified 

only once from leaves of the V. vinifera cv Marselan (Fig. 35A). All over, these results suggest that 

the basal level of the VvFLS2-like transcripts is very low or not transcribed in most of the 

conditions.  

As attempts to functionally characterize this gene have failed, we cannot definitely 

conclude about the putative role of VvFLS2-like in the flagellin perception. In the tomato genome 

(Solanum lycopersicum), a close paralog, named LeFLS2.2, has also been reported (Clarke et al., 

2013). The LeFLS2.2 gene shares 89% identity with LeFLS2 and is actively transcribed. In 

Arabidopsis, no AtFLS2 paralog sequence exists (BLASTn results). However recent data suggest 

that LeFLS2.2 does not contribute to the perception of the second flagellin epitope active in 

tomato, named flgII-28 (Clarke et al., 2013). Actually, the function of these paralogs in grapevine 

and tomato is still unknown. 
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Perspectives 

We report here the identification of VvFLS2, the V. vinifera receptor of bacterial flagellin 

via the flg22 epitope. We have demonstrated by complementation assays in Arabidopsis and a 

partial silencing in grapevine that VvFLS2 is the functional ortholog of AtFLS2. VvFLS2 exhibits 

distinct recognition specificities than AtFLS2. Our data show that flagellin from the beneficial 

PGPR B. phytofirmans is a weak elicitor in grapevine and might have evolved to evade this 

grapevine immune recognition system. 

Our findings raise several novel questions: 

i) Is the evasion of flg22 recognition a general adaptation of B. phytofirmans to its hosts? 

Thus, it would be interesting to compare the perception of Bp flg22 in tomato, potato or other 

natural host plants that also benefit from B. phytofirmans colonization and growth-promoting 

effect (Mitter et al., 2013). 

ii) What is the role of VvFLS2-mediated flagellin perception during the colonization of 

grapevine with B. phytofirmans? It would be interesting to obtain ∆fliC mutants of B. phytofirmans 

and ∆fliC complemented with a highly eliciting FliC, such as FliC from X. campestris and test 

whether colonization of grapevine plants would be impaired after recognition of these mutants. 

Infection assays with B. phytofirmans ∆fliC would also answer a question whether B. phytofirmans 

requires flagellin for colonization. Furthermore, B. phytofirmans may also lower the ethylene 

levels in host plants (Onofre-Lemus et al., 2009; Sun et al., 2009), which can control FLS2 

amounts (Boutrot et al., 2010). Thus, the expression of VvFLS2 in colonized tissues might be 

tested on the protein and transcript level in parallel with the ET quantification. Similarly, it could 

be possible to quantify the B. phytofirmans growth on V. vinifera plants treated with ET inhibitors.  

The VvFLS2 RNAi plants may be tested for colonization with different flagellin-

expressing mutants of B. phytofirmans. It could be also interesting to express different chimeric 

FLS2 receptors in grapevine, combining the ectodomains of VvFLS2, LeFLS2 or AtFLS2 with the 

transmembrane and kinase domain of a strong kinase such as XA21 and assess the efficiency of 

colonization. 

iii) What is the role of VvFLS2-mediated flagellin perception in the disease resistance 

against pathogenic bacteria? Again, the VvFLS2 RNAi plants may be tested in various 

pathoassays. 

iv) Is the flg22 region the main flagellin epitope for grapevine or can it also recognize 

extra epitopes outside the flg22 region? A number of solanaceous species, including tomato, can 

sense an extra peptide of flagellin, named flgII-28 (Cai et al., 2011; Clarke et al., 2013). The 

activity of flgII-28 could be assessed in grapevine cells and compared to flg22. The eliciting 
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activity of full-length flagellins of P. aeruginosa, B. phytofirmans or P. syringae pv pisi might be 

also tested using VvFLS2 RNAi grapevine. 

v) Does VvFLS2-like participate in the flagellin recognition? It might be interesting to 

obtain the Arabidopsis fls2 mutant complemented with VvFLS2-like and the grapevine lines 

silenced in the VvFLS2-like gene. These mutants might be tested for the immune responses after 

elicitation with flg22 or full-length flagellins purified from different bacteria. 
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Figure 36. Chitin and chitosan trigger a dose-dependent variation in free cytosolic calcium [Ca2+]cyt in 

grapevine cells. 

Dose-response curves of free [Ca2+]cyt variations after chitin (A) or chitosan (B) treatment measured with 

apoaequorin-expressing grapevine cells. Data are from one representative experiment out of two. 
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Figure 37. Chitin and chitosan induce early signaling events in grapevine cells. 

A. Free [Ca2+]cyt variations measured with apoaequorin-expressing grapevine cells. Values are means from two 

independent experiments. B. Activation kinetics of two mitogen-activated protein kinases (MAPK) detected by 

Western blot α-pERK1/2. Homogeneous loading was checked by Ponceau Red staining. Data are from one 

representative experiment out of three. C. Time course of ROS production detected by luminescence of 

luminol. Values are means ± SD from three independent experiments. FWC: fresh weight of cells. Cells were 

treated with 1 g l-1 chitin, 25 mg l-1 chitosan, 1 g l-1 laminarin or water (control). 
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Figure 39. Chitosan but not chitin enhances the resistance to Botrytis cinerea and Plasmopara viticola. 
Leaf discs were pre-treated with chitin (1 g l-1), chitosan (150 mg l-1 ) or sulfated laminarin (PS3; 2.5 g l-1 ) in a 

surfactant or with surfactant alone (control) 48h before infection. A. Disease progression caused by B. cinerea 

at 3 dpi. Values represent the means of lesion diameters ± SE (n≥20 discs from 10 different plants) from one 

experiment out of three. B. Infection symptoms caused by P. viticola at 7 dpi on grapevine leaf discs (30 discs).  

Sporulation intensity was evaluated by counting sporangia on two sets of randomly pooled 5 discs, each set was 

counted at least 4 times with a haemocytometer and expressed as a number of sporangia per leaf disc. Values 

represent the mean ± SE (n=8) from one experiment out of three. Asterisk(s) indicate a statistically significant 

difference between control and the elicitor treatment (t-test, *: p<0,05, **: p<0,01). A representative leaf disc 

for each treatment is shown. 
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III.  Chitin perception system in grapevine 

Results 

1 Chitin and chitosan induce defense responses in grapevine 

Chitin and chitosan, its partially deacetylated derivative, are active MAMPs in grapevine 

(Table 9). We therefore aimed to characterize chitin and chitosan responsiveness in grapevine. 

In apoequorin-expressing grapevine cells, both chitin and chitosan (Chito) induced a dose-

dependent variation in free cytosolic Ca
2+ 

(Fig. 36). The chitin and chitosan responsiveness were 

detected from 10 mg l
-1

 and 0.1 mg l
-1

 concentrations, respectively. In this bioassay, chitin 

responses became saturated at 1 g l
-1

, concentration used for further experiments. For chitosan, the 

saturating concentration was not reached due to its low solubility, but for further studies 25 mg l
-1 

chitosan was applied.  

After chitin or chitosan treatment, variations in [Ca
2+

]cyt displayed a similar profile: 

[Ca
2+

]cyt started to increase at 1 min, peaked at 3 min and decreased to the basal level within the 

next 7 min (Fig. 37A). These [Ca
2+

]cyt variations were weaker and more transient than those 

triggered by laminarin. Chitin also induced rapid phosphorylation of two MAP kinases (Fig. 37B), 

with relative molecular masses of 45 and 49 kDa. Phosphorylation was detected after 5 and 10 min 

of chitin treatment and almost decreased to the basal level already at 15 min post treatment. 

Chitosan induced a similar kinetics of MAPK phosphorylation and both of them were more 

transient than laminarin-induced MAPK phosphorylation. Using a luminol-based bioassay, neither 

chitin nor chitosan induced a detectable oxidative burst throughout the 60 min of experiment (Fig. 

37C). The H2O2 production was undetectable at any concentration tested in the range 0.001-10 g l
-1 

for chitin or 0.01-50 mg l
-1 

for chitosan (data not shown). 

The expression of defense marker genes (Aziz et al., 2003; Aziz et al., 2007; Bordiec et 

al., 2011) was monitored by qPCR in grapevine cells treated with chitin (Fig. 38). Chitin only 

weakly and transiently upregulated the expression of defense genes encoding a 1-

aminocyclopropane-1-carboxylate synthase (ACCS, Fig. 38A), a 9-lipoxygenase (LOX-C, Fig. 

38C) or genes participating in the stilbene pathway: a stilbene synthase (STS1-2, Fig. 38D) and a 

phenylalanine ammonia lyase (PAL, Fig. 38E). Nevertheless, the PR3-4c gene, encoding the acidic 

chitinase Chit4c, was more strongly upregulated by chitin (Fig. 38F). Surprisingly, the gene 

RbohD, encoding the corresponding NADPH-oxidase responsible for the oxidative burst in 

grapevine cells (B. Poinssot, unpublished data), was transiently induced by chitin (Fig 38B), 

whereas no H2O2 production has been detected. Chitin treatment did not induce the expression of 
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Figure 38. Kinetics of chitin-induced defence gene expression and cell death in grapevine cells. 

A.-H. Relative expression of defence genes encoding A. a 1-aminocyclopropane-1-carboxylate synthase (ACCS), 

B. a respiratory burst oxidase homolog D (RbohD) and C. a 9-lipoxygenase (LOX-C), D. a stilbene synthase 

(STS1-2), E. a phenylalanine ammonia lyase (PAL), F. an acidic chitinase (PR3-4c), G. a proteinase inhibitor 

(PR6), and H. PR1-2 induced by chitin (1g l-1) (black bars) or water (white bars) was measured by qPCR, 

normalized to housekeeping genes elongation factor α and γ (EF1α, γ) and reported to time 0, set as 1. Data are 

means ± SE from 3 experiments. I. Cell viability was quantified by neutral red staining 24 h after treatment with 

water or chitin (1 g l-1) or after cell incubation at 95°C for 3 min (positive control of cell death). Values are means 

± SD of two independent experiments.   

I 

A B 

4.4 5.0 1.9 1.6 

0

1

2

3

4

5

6

control chitin chitosan PS3

A
ve

ra
ge

 le
si

o
n

 d
ia

m
e

te
r 

(m
m

) 

** ** 

8.0 9.1 3.8 0.2 

0

2

4

6

8

10

12

control chitin chitosan PS3

sp
o

ra
n

gi
a 

*1
0

4
 /

 d
is

c 

** 

** 

Figure 39. Chitosan but not chitin enhances the resistance to Botrytis cinerea and Plasmopara viticola. 
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two PR genes encoding a protease inhibitor (PR6, Fig. 38G) and PR1-2 (Fig. 38H). No cell death 

was observed on grapevine cell suspensions treated for 24 h with chitin (Fig. 38I). 

We further investigated the effectiveness of chitin- and chitosan-induced immunity on V. 

vinifera leaf discs challenged with the necrotrophic fungus B. cinerea or with the biotrophic 

oomycete P. viticola, the causal agents of gray mold and downy mildew, respectively. Chitin 

pretreatment did not induce any significant resistance against these pathogens (Fig. 39A, B). On 

the other hand, chitosan treatment applied 48 h before pathogen inoculation strongly reduced the 

B. cinerea lesion diameter, compared to control leaf discs (Fig. 39A). The observed necrosis 

reduction was comparable to the reduction obtained by pretreatment with the sulfated laminarin 

(PS3). Chitosan treatment was also strongly effective to reduce the P. viticola sporulation (Fig. 

39B). 

To sum up, chitin and chitosan induce typical grapevine immune responses with different 

kinetics and intensity compared to those triggered by laminarin or flg22 (compare Fig. 37, 38 and 

Fig. 17,18, Part II §1). While chitin pretreatment does not impact resistance against B. cinerea and 

P. viticola, chitosan is highly effective to protect grapevine against these pathogens. 

2 LysM-RLKs (LYKs) in grapevine and identification of putative AtCERK1 

orthologs in grapevine  

2.1 In silico characterization of the predicted grapevine CHITIN ELICITOR 

RECEPTOR KINASE 1 orthologs: VvCERK1, 2 and 3 

We aimed to identify the corresponding chitin/chitosan receptor in grapevine. In 

Arabidopsis, the LysM-containing RLK (LYK) CERK1 is involved in chitin perception by direct 

binding (Miya et al., 2007; Wan et al., 2008; Petutschnig et al., 2010). 

Grapevine genome encodes 12 LYK proteins (VvLYK1 – VvLYK 12, Table 12). BLASTp 

results (E-value = 0) and phylogenetic analysis indicated that the three predicted RLKs 

VvLYK1/VvCERK1 (XP_002270987), VvLYK2/VvCERK2 (XP_002264327) and 

VvLYK3/VvCERK3 (XP_002264288) display the highest degree of homology with AtCERK1  

and OsCERK1 and are clearly distinct from other grapevine or Arabidopsis LysM-RLKs (Fig. 40, 

Table 12). The encoded VvCERK proteins contain a signal peptide, 3 LysM motifs in the 

extracellular part, a single transmembrane domain and a RD-type intracellular kinase domain 

(Annex 5). VvCERKs exhibit 69-73% similarity with ACERK1 and their LysM ectodomains share 

65-68% of amino acid similarity between grapevine and Arabidopsis (Annex 4A). The kinase 

domains of VvCERKs are particularly conserved and share 80-87% similarity with orthologs in 

Arabidopsis or rice (Annex 4A, 5). Compared to VvCERK2 and 3, VvCERK1 shares the highest 

degree of conservation with AtCERK1, OsCERK1 and LeCERK1, the closest predicted ortholog 

in tomato. Compared to AtCERK1, the VvCERK3 protein carries the most identical LysM 



Table 12. List of LysM-containing receptor-like kinases  (LYKs) in Vitis vinifera.  

Protein sequences (GenBank prediction) were identified by BLASTp with AtCERK1, AtLYKs and LjNRFs. 

The presence of predicted LysM domains (PF01476), trans-membrane region and kinase domain (SM000221) 

was verified by SMART (http://smart.embl-heidelberg.de). The closest ortholog of each  VvLYK in 

Arabidopsis was searched with BLASTp (TAIR http://www.arabidopsis.org/Blast).  

*) Protein sequence retrieved from CRIBI.  

Figure 40. In silico characterization of the LysM-RLK (LYK) family. 
A. Maximum-likelihood phylogenetic tree (500 bootstraps) showing the relationship between the protein 

sequences (GenBank) of the Arabidopsis AtLYK1/AtCERK1 (AT3G21630), AtLYK2 (AT3G01840), 

AtLYK3 (AT1G51940), AtLYK4 (AT2G23770) and AtLYK5 (AT2G33580), the rice ortholog OsCERK1 

(D7UPN3), Nod factor receptors of Lotus japonicus LjNFR1a (CAE02591), LjNFR1b (CAE02592), LjNFR5 

(CAE02598) and the LYK protein sequences VvLYK1-12 of V. vinifera. Percentage of bootstraps are 

presented, only values higher than 50% are shown.  

            
Grapevine protein The closest Arabidopsis ortholog 

Name Protein ID (GenBank) Length (aa) ID (TAIR) Name 
E-value 
(blastp) 

VvLYK1/VvCERK1 XP_002270987 614 

AT3G21630 AtCERK1 

0 

VvLYK2/VvCERK2 XP_002264327 625 0 

VvLYK3/VvCERK3 XP_002264288 622 0 

VvLYK4 XP_002282620 593 

AT1G51940 AtLYK3 

2e-89 

VvLYK5 XP_002272814 605 e-105 

VvLYK6 XP_002283628 666 0 

VvLYK7 XP_002277331 665 
AT2G33580 AtLYK5 

e-166 

VvLYK8 VIT_18s0122g00240* 586 e-135 

VvLYK9 XP_002280070 622 
AT2G23770 AtLYK4 

5e-62 

VvLYK10 XP_002269408 638 e-137 

VvLYK11 XP_002263070  675 AT3G01840 AtLYK2 e-124 

VvLYK12 XP_002269472 608 AT2G33580 AtLYK5 6e-65 

0.2 
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domain, reaching 51% of identity (Annex 4A). When aligned, all three VvCERK protein 

sequences share together a high degree of identity (Annex 4B, 5). At the gene level, VvCERK1 is 

located on chromosome 12, whereas VvCERK2 and VvCERK3 lie in neighboring loci on the 

chromosome 10.  

The full-length coding sequences (CDS) of VvCERK1, VvCERK2 and VvCERK3 were 

amplified from cDNA of V. vinifera cv Gamay leading to one major PCR product of the expected 

size for each gene. Sequencing of the cloned CDSs revealed that genes VvCERK1, 2 or 3 consist of 

open-reading frames of 1845, 1878 and 1869 bp, respectively. Their transcripts contain 11 exons 

for VvCERK1 and 12 exons for VvCERK2 and VvCERK3 (Fig. 41), similarly to AtCERK1, which 

also contains 12 exons. Sequencing revealed the presence of nucleotide substitutions present in 

alleles of VvCERK2 and VvCERK3 (cv Gamay). Some of SNPs present in VvCERK3 led to 

changes in amino acid residues (Annex 4C). Some splicing sites between the predicted and the 

sequenced VvCERKs were also different (Annex 4C).  

Based on the sequence conservation, VvCERK1 seems to be the best candidate ortholog of 

AtCERK1, however VvCERK3 displays more conserved LysM ectodomain and the exon-intron 

gene architecture. Concerning other grapevine LysM-RLKs, VvLYK11 appears to be the ortholog 

of AtLYK2, VvLYK6 the ortholog of AtLYK3, VvLYK10 the ortholog of AtLYK4 and 

VvLYK7/8 the orthologs of AtLYK5 (Fig. 40). Clear orthologous sequences of VvCERK9 and 

VvCERK12 are missing in Arabidopsis. These sequences share a high similarity with LjNFR5 

(BLASTp E-value 2e-117, 0.0 and sequence similarity 56% and 68%, respectively). 

All three VvCERKs are candidates to function as chitin receptor in grapevine. As 

AtCERK1 expression was weakly induced by chitin (Wan et al., 2008), the expression of each 

VvCERK gene in grapevine cells after chitin treatment was monitored by qPCR. Under non-

elicited conditions, VvCERK1 and VvCERK3 transcript amounts account for  ~9% of the transcript 

level of the housekeeping gene EF1γ, whereas VvCERK2 transcripts are the less abundant with 

~3% of EF1γ expression (Fig. 42A). From 15 min up to 24 hours, chitin treatment did not induce 

the expression of any of the VvCERKs at any studied time-point (Fig. 42B).  

Functional genomics studies were needed to investigate the function of each VvCERK in 

chitin perception. We have undertaken two parallel strategies: i) the functional complementation of 

the Arabidopsis cerk1-2 mutant, and ii) a silencing strategy of each of VvCERK genes in 

grapevine, by using expression vectors and the Gateway technology (Karimi et al., 2002). 

2.2 Functional complementation of the Arabidopsis cerk1-2 mutant with 

grapevine VvCERKs  

The functional complementation of the Arabidopsis cerk1-2 mutant (Gimenez-Ibanez et 

al., 2009) was undertaken in collaboration with Cyril Zipfel, Freddy Boutrot and Lena Stransfeld 



Figure 41. Exon-intron architecture of spliced AtCERK1 and VvCERK transcripts.  

Black and white boxes represent exons and UTR regions, respectively. Bar = 100 bp.  

Figure 42. The basal transcript abundance and gene expression of VvCERKs following chitin treatment in 

grapevine cells.  

The transcript abundance of the genes VvCERK1, VvCERK2, VvCERK3 and the housekeeping gene EF1γ were 

determined by qPCR in chitin- or mock-elicited grapevine cells and quantified with a LinReg program (Ruijter et 

al., 2009). A. The transcript abundance in mock-treated samples expressed as means ± SE from 3 experiments, 

relative to the amount of EF1γ transcripts, set as 100%. B. Kinetics of VvCERK gene expression induced by chitin 

1g l-1. Expression of VvCERKs was normalized to housekeeping genes EF1α and EF1γ and data are expressed as 

means ± SE from three experiments (n=3) relative to water treated control. 
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Figure 43. VvCERK1 does not complement the chitin-induced ROS production in the Arabidopsis mutant 

cerk1-2. A. Correlation between H2O2 production after chitin treatment (1 g l-1) and VvCERK1-GFP protein 

amount detected by α-GFP immunoblot in different kanamycin resistant T3 lines cerk1-2/p35S::VvCERK1-GFP. 

Equal loading was checked by Coomassie brilliant blue (CBB) staining. ROS production was measured in leaf 

discs using chemiluminescence of luminol. (Fig. A from F. Boutrot) B. Subcellular localization of VvCERK1-

GFP visualized by confocal microscopy in leaves of N. benthamiana  transiently transformed with 

p35S::VvCERK1-GFP. Fluorescence was observed 2 days post Agrobacterium-mediated transformation (Fig. B 

from J. Collemare). 

A 
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(The Sainsbury Laboratory, Norwich, UK), who carried out the Arabidopsis transformation and 

screened the mutant complemented lines. 

At first, the constitutive overexpression of each of VvCERKs in the cerk1-2 background 

was tested. The full-length CDS of VvCERK1, VvCERK2 or VvCERK3 was cloned into the binary 

vector pK7FWG2 (Kanamycin resistance) and then used to obtain Arabidopsis cerk1-2 transgenic 

lines expressing p35S::VvCERK1-GFP, p35S::VvCERK2-GFP or p35S::VvCERK3-GFP. 

2.2.1 Constitutive overexpression of VvCERK1 does not complement cerk1-2  

Transformation of cerk1-2 with p35S::VvCERK1-GFP resulted in 28 independent T1 

kanamycin-resistant lines. For all of these T1 plants, responsiveness was not clear: no or only one 

leaf disc out of two was slightly responsive (data not shown). Thirteen stable homozygous T3 lines 

carrying a single transgene (3:1 antibiotic resistance segregation in progeny) were generated. None 

of them gave a ROS burst in response to 1 g l
-1

 chitin even though the VvCERK1-GFP fusion 

protein accumulated in some lines, as shown by the Western blot detection (Fig. 43A).  

In agreement with the presence of a predicted signal peptide and a predicted 

transmembrane domain (Predotar), confocal microscopy analysis of N. benthamiana leaves 

transiently transformed with p35S::VvCERK1- GFP indicated that the corresponding protein 

seems to be targeted to the plasma membrane (Fig. 43B).  

All together, our data showed that VvCERK1 did not restore chitin-triggered ROS 

responsiveness in at least seven independent stable T3 lines of cerk1-2 p35S::VvCERK1-GFP 

plants, although the fused protein was immuno-detected (Table 13). 

2.2.2 Constitutive overexpression of VvCERK2 or VvCERK3 leads to cell death  

While the transformation with p35S::VvCERK1-GFP was successful, repeated 

transformations with p35S::VvCERK2-GFP and p35S::VvCERK3-GFP resulted in only two 

kanamycin-resistant T1 lines. A hundred of resistant T1 lines are usually obtained. Moreover, T2 

progenies of these lines were sensitive to kanamycin. Thus, no stable cerk1-2 lines constitutively 

expressing p35S::VvCERK2 and p35S::VvCERK3 could be obtained. 

In agreement with this, microscopic analyses of the N. benthamiana leaves transiently 

transformed with p35S::VvCERK2-GFP and p35S::VvCERK3-GFP led to a tissue collapse 

suggesting cell death (Jérôme Collemare, Wageningen University, NL, personal communication). 

This correlates with the failed Arabidopsis transformation with p35S::VvCERK2/3 constructs. 

To sum up, the constitutive overexpression of VvCERK2 and VvCERK3 in Arabidopsis 

failed to generate stable transgenic lines possibly due to an induced lethality (Table 13).  
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Figure 44. β-estradiol inducible expression of VvCERK2 or VvCERK3 partly complements the 

chitin-induced ROS production in the Arabidopsis mutant cerk1-2.  

Oxidative burst after chitin treatment (100 mg l-1) was analyzed by luminol-based method. A.-C. 

Screening of chitin-induced oxidative burst in T1 (A.-C.) and T2 (D.) generation of cerk1-2 plants 

with estradiol-inducible expression of pLexA::VvCERK1 (A.), pLexA::VvCERK2 (B.), 

pLexA::VvCERK3 (C.). Two discs from one plant per line were pre-treated with 10µM β-estradiol for 

20 h, then treated with chitin. D. Chitin induced oxidative burst in T2 progeny of the most responsive 

T1 lines. For each line, twelve discs were pre-treated with 20µM β-estradiol (black bars) or with water 

(white bars) for 20 h, prior to elicitation with chitin. ROS production is compared to wild-type (Col-0) 

and cerk1-2 plants. (Data L. Stransfeld). 
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2.2.3 Inducible expression of VvCERKs in cerk1-2 background  

Given the lethality of the constitutive overexpression of VvCERK2/3, new assays were 

launched with the expression of VvCERK1, 2 and 3 driven by an inducible promoter, using the 

pABindGFP vector (Bleckmann et al., 2010). This vector permits the expression of a Cter tagged 

GFP-VvCERK regulated by the β-estradiol inducible pLexA promoter.  

For each transformation, 18-30 hygromycin-resistant T1 lines were obtained. The VvCERK 

expression was induced by β-estradiol, then 20 h later the chitin-induced oxidative burst was 

measured. Estradiol treatment did not affect chitin-induced ROS production in wild-type Col-0 

(Fig. 44D). This first rapid screening showed that a number of T1 lines seemed to partially 

complement cerk1-2 mutant (Fig. 44 A, B, C). Most of these chitin responsive lines were obtained 

with the VvCERK3 construct (Fig. 44C). The most responsive lines of VvCERK2 and VvCERK3 

were checked again in T2 generation (Fig. 44D). In fact, many of these lines were revealed as false 

positives. However, in lines pLexA::VvCERK3-GFP #6, #71 and #78, but not in cerk1-2, the 

detected chitin-induced ROS production was enhanced in estradiol pretreated leaf discs compared 

to water-treated leaf discs (Fig. 44D). These data suggest that VvCERK3 complements the chitin-

induced ROS burst in cerk1-2 and therefore indicate that VvCERK3 might function as a chitin 

receptor. However, the complementation was only partial. As VvCERK1 did not complement 

cerk1-2 in different stable T3 lines of cerk1-2/p35S::VvCERK1-GFP (Fig. 43A), the inducible T2 

progeny was not tested. For VvCERK2, we did not obtain clear data whether VvCERK2 can 

complement Arabidopsis as the chitin-induced ROS burst observed in cerk1-2/pLexA::VvCERK2 

plants was unstable between T1 and T2 generations (Fig. 44B, Table 13). Further experiments are 

needed to confirm these preliminary results and to better characterize each of VvCERKs. 

2.3 Silencing of VvCERKs in grapevine  

In parallel to complementation assays in Arabidopsis, we aimed to silence the VvCERK1, 2 

and VvCERK3 genes in grapevine using antisense constructs pH2WG7 (Fig. 14E; Karimi et al., 

2002) using the service of the grapevine transformation platform (Jean Masson, Mireille Perrin, 

Carine Schmitt, INRA, Colmar, FR). Indeed, plants silenced in VvCERK1, VvCERK2 or VvCERK3 

would be a perfect tool to investigate the involvement of each VvCERK in chitin perception and 

during the grapevine interactions with fungi.  

The antisense fragments of 235-684 bp were designed to target the ectodomain of a given 

VvCERK (Table 6, Materials and Methods). Their specificity was verified with the BLASTn 

program implemented in Genoscope and NCBI databases. Agrobacterium-mediated transformation 

was successful only with the p35::αsVvCERK3 construct (Fig. 45), while no hygromycin-resistant 

calli could be obtained in repeated transformations with p35S::αsVvCERK1 and p35S:: 

αsVvCERK2 constructs (Fig. 46A, Table 13) 



Figure 45. Antisense construct for VvCERK3 silencing. 

Position of the VvCERK3 antisense fragment (αs) in the VvCERK3 coding sequence and pH2WG7 

p35S::αsVvCERK3 vector map. Nucleotide (nt) 1 indicates the start of translation. The fragment (nt 34 – 268) 

was PCR-amplified using specific primers and inserted in the antisense orientation into pH2WG7 vector. The 

plasmid pH2WG7 p35S::αsVvCERK3 was used for the transformation of grapevine embryogenic calli via 

Agrobacterium tumefaciens. Arrows indicate primers used to verify transgene presence. Black triangles 

indicate qPCR primers used for VvCERK3 quantification. 

A B 

Figure 46. Expression of αsVvCERK1 and αsVvCERK2 , unlike αsVvCERK3 causes lethality  in grapevine 

embryogenic calli. 

Selection of embryogenic calli (cv. Pinot Noir PN40024) transformed with p35S::αsVvCERK1 (A.) or 

p35S::αsVvCERK3 (B.) on hygromycin 25 mg l-1. Lethality was also caused by p35S::αsVvCERK2 (figure not 

shown).  
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The transformation with p35S::αsVvCERK3 construct enabling the expression of a specific 

VvCERK3 fragment (Annex 6A) resulted in 45 hygromycin-resistant calli issued from 

independent transformation events (Fig. 46B). Using primers matching the 3‟ end of the p35S 

promoter and the 5‟end of the antisense fragment (Fig. 45), the RT-PCR transgene detection 

permitted the selection of 10 αsVvCERK3-expressing calli, hereafter referred as lines #6-2 up to 

#6-28, for in vitro plantlet regeneration via somatic embryogenesis. Nine independent lines of 

p35S::αsVvCERK3 plants possessed a similar developmental phenotype compared to the mock-

transformed WT plants issued from a parallel somatic embryogenesis (seWT), whereas one line 

(#6-11) possessed a low growth rate and has been stopped. Lines were then screened for the 

VvCERK3 expression and the loss of chitin responsiveness.  

The VvCERK3 expression was quantified in all lines by qPCR with VvCERK3 specific 

primers matching the 3‟ end of the transcript (Fig. 45, Table 5). The VvCERK3 transcript amounts 

were not reduced in most of the lines reaching in average 98 ± 21 % of levels in seWT (Fig. 47A), 

except in the line #6-2, where VvCERK3 transcripts were significantly reduced to 48% (t-test, 

p<0.05; Fig. 47B). Knowing that the VvCERK3 fragment used in our silencing construct has one 

and two stretches of at least 11 nucleotides with perfect identity to VvCERK2 and VvCERK1, 

respectively (Annex 6A), transcripts of VvCERK1/2 were also quantified. Compared to the seWT 

levels (set as 100%), silencing did not significantly affect the level of VvCERK1 and VvCERK2 

expression in the line #6-2 (t-test, p>0.05; Fig. 47B).  

Chitin responsiveness in the independent p35S::αsVvCERK3 plant lines was verified by 

MAPK phosphorylation assays (Fig. 47C). Leaves of all lines showed a strong MAPK 

phosphorylation, both after chitin and flg22 treatment. Also the line #6-2 exhibited a similar 

response to chitin compared to leaves of seWT or the other p35S::αsVvCERK3 lines. 

 

To sum up, our effort to silence VvCERK3 in grapevine led to only one interesting 

transgenic line p35S::αsVvCERK3 (#6-2) where VvCERK3 transcripts were silenced to 48% of the 

seWT. Nevertheless, no decrease in chitin responsiveness was observed in this line or any other 

line based on detection of the chitin-induced MAPK phosphorylation. Given these results, the role 

of VvCERK3 in grapevine chitin perception remains unclear. Silencing of VvCERK1 and 

VvCERK2 probably led to the embryogenic callus lethality as transformation assays repeatedly 

failed whereas parallel control transformations with p35S::GFP were successful (Table 13). 

 



#6-2 

- C F 

#6-8 

#6-7 

#6-12 

- C F 

#6-13 

seWT 

- C F 

#6-15 

#6-16 

- C F 

#6-25 

#6-28 

C 

Figure 47. Quantification of VvCERK3 transcript amount and chitin responsiveness in grapevine 

transgenic lines expressing p35S::αsVvCERK3.  

The expression of VvCERK3 and chitin responsiveness were evaluated in leaves of different in-vitro plantlets 

expressing p35S::αsVvCERK3 or in wild-type in-vitro plantlets issued from a parallel somatic embryogenesis 

(seWT). A., B. Relative transcript abundance of VvCERK3 (A.) or of VvCERKs (B.) in different lines (A.) or 

the p35S::αsVvCERK3 line #6-2 was measured by qPCR, normalized to housekeeping genes EF1α and EF1γ 

and reported to seWT, set as 100 %. For A., data are means ± SE from at least two independent experiments, 

for B., data are means ± SD from three independent experiments, ** indicates statistical significance (t-test, 

p<0.01), ns: non-significant. B. Phosphorylation of two mitogen-activated protein kinases (MAPK) detected 

by α-pERK1/2 Western blots at 15 min post treatment with water control (-), chitin (C) or flg22 (F). 

Homogeneous loading was checked by Coomassie Brilliant Blue (CBB) staining of a parallel gel (not shown). 

Experiment was repeated at least twice with similar results. Data from one representative experiment are 

shown. Treatments were performed with 1 g l-1 chitin and 500 nM flg22.  
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3 LysM-RLPs (LYPs) family and identification of putative OsCEBiP ortholog in 

grapevine (VvCEBiP) 

3.1 In silico characterization of the predicted grapevine CHITIN ELICITOR 

BINDING PROTEIN orthologs 

Beside identification of the AtCERK1 ortholog, the OsCEBiP ortholog was also searched 

in the grapevine genome. Indeed, the LYP OsCEBiP is the major chitin receptor in rice (Kaku et 

al., 2006). Moreoever, orthologs of CEBiP seems to be implicated in chitin perception in barley 

and wheat (Lee et al., 2014 and Henk-Jan Schoonbeek, John Innes Centre, Norwich, UK, personal 

communication;).  

The grapevine genome encodes a total of 4 LysM-RLPs (LYPs, VvLYP1-VvLYP4, Table 

14). A phylogenetic analysis indicates that the two predicted LysM-RLPs VvLYP1 

(XP_002278760) and VvLYP2 (XP_002278742) display the highest degree of homology to 

OsCEBiP (Fig. 48) and are clearly distinct from other grapevine or Arabidopsis LYPs. Hereafter, 

they are referred to as VvCEBiP1 and VvCEBiP2, respectively. VvCEBiP1 exhibits slightly higher 

BLASTp hits to OsCEBiP (2e-68) and to the closest Arabidopsis ortholog, AtLYM2 (e-99), than 

VvCEBiP2 (E-values 7e-65 and e-76 for the homology to OsCEBiP and AtLYM2, respectively; 

Table 14). The phylogenetic tree also indicates that VvLYP3 (XP_002285848) and VvLYP4 

(XP_002276124) might be the homologs of AtLYM1/AtLYM3 and OsLYP4/OsLYP6, which are 

involved in the peptidoglycan (PGN) binding and perception (Fig. 48; Willmann et al., 2011; Liu 

et al., 2012a). 

VvCEBiP1 and VvCEBiP2 are located in close loci on chromosome 3 and share a high 

degree of identity both at the protein (78% identity) and the nucleotide level (88% identity). The 

gene predictions of VvCEBiP1 and VvCEBiP2 in the genome of V. vinifera cv Pinot Noir consist of 

open-reading frames of 1056 and 1074 bp containing 3 and 4 exons, respectively. VvCEBiP1 

possesses a clear predicted 5‟UTR in contrast to VvCEBiP2 (Fig. 49).  

The predicted encoded proteins of 353 and 357 amino acids contain each a signal peptide, 

and two predicted LysM domains (LysM1 and LysM2), while the prediction of the N-terminal 

LysM0 domain was not clear (Annex 7). VvCEBiP2 has a predicted transmembrane region at the 

Cter extremity, unlike VvCEBiP1 (Annex 7). The VvCEBiP1 protein sequence exhibits 58% amino 

acid similarity with OsCEBiP. 

Under non-elicited conditions, amounts of VvCEBiP1 transcript are ~three times more 

expressed than those of VvCEBiP2, accounting for ~12% of the transcript level of housekeeping 

gene EF1γ (Fig. 50A). In grapevine cells, VvCEBiP1 gene expression was upregulated between 2 – 

6 h after chitin treatment (Fig. 50B). VvCEBiP2 gene expression was not regulated by chitin 

treatment during the whole kinetics (Fig. 50B). VvCEBiP1 seems therefore to be the best candidate 

for functional characterization.  



Table 13. The summary of the VvCERK genetic characterization.  

Endogenous transcript silencing was evaluated by qPCR with primers specific to the targeted VvCERKs. Chitin 

responsiveness in V. vinifera was evaluated by MAPK phosphorylation assays. In Arabidopsis, 

complementation was evaluated by ROS burst assays in T1 and T2 generation of cerk1-2 overexpressing 

constitutively (p35S) or after oestradiol induction (pLexA) VvCERKs. -/+/++ indicate the intensity of 

complementation. The presence of fused protein was verified by the anti-GFP Western Blots or the confocal 

microscopy. ND: Not determined, xxx: fail in the transformant regeneration.  

 

Targeted VvPRRs 
Silencing antisense (αs) 

constructions  (V. vinifera) 

Complementation in cerk1-2 (A. thaliana) 

p35S::VvPRR-GFP pLexA::VvPRR-GFP 

VvCERK1 xxx (lethal) 
Fused protein expression 

No complementation 

? Fused protein 
? complementation 

 (T1:+, T2: ND) 

VvCERK2 xxx (lethal) xxx (lethal) 

? Fused protein 
Partial complementation  

(T1: +, T2: -) 

VvCERK3 
Silencing (50%),                   

Fully responsive to chitin 
xxx (lethal) 

? Fused protein 
Partial complementation 

(T1: ++, T2:+) 

Table 14. List of LysM-containing receptor-like proteins  (LYPs) in Vitis Vinifera.  

Protein sequences (GenBank prediction) were identified by BLASTp with OsCEBiP and AtLYPs. The 

presence of predicted LysM domains (PF01476) was verified by SMART (http://smart.embl-heidelberg.de). 

The closest ortholog of each  VvLYP in Arabidopsis was searched with BLASTp (TAIR 

http://www.arabidopsis.org/Blast). 

            

Grapevine protein The closest Arabidopsis ortholog 

Name Protein ID (GenBank) Length (aa) ID (TAIR) Name 
E-value 
(blastp) 

VvLYP1/VvCEBiP1 XP_002278760 353 
AT2G17120 AtLYM2 

e-99 

VvLYP2/VvCEBiP2 XP_002278742 357 e-76 

VvLYP3 XP_002285848 357 
AT1G21880 AtLYM1 

e-156 

VvLYP4 XP_002276124 408 3e-68 
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3.2 Silencing of VvCEBiP1 in grapevine  

To investigate the function of VvCEBiP1, a silencing strategy was undertaken using the 

Gateway vector pH2WG7 for antisense expression. In order to limit the non-specific matches with 

VvCEBiP2, the antisense fragment (317 bp) was designed to partly target the 5‟UTR of the 

VvCEBiP1 transcript (Fig. 51; Table 6, Materials and Methods). However, two stretches of 30 and 

32 nucleotides with perfect identity between VvCEBiP1 and VvCEBiP2 were present within the αs-

VvCEBiP1 fragment (Annex 6B).  

Transgenic grapevine lines expressing p35S::αsVvCEBiP1 were generated. From the 61 

hygromycin-resistant calli that were obtained, ten were selected based on the transgene detection 

by PCR (data not shown). These lines, referred as #3-1 up to #3-24, were kept for in vitro plantlet 

regeneration via somatic embryogenesis. The obtained transgenic αsVvCEBiP1 lines were then 

screened for the expression levels of VvCEBiP1 by qPCR with specific primers (Fig. 51, Table 5) 

and for the loss of chitin responsiveness.  

Compared with seWT, all lines except the line #3-18 contained lower amounts of 

VvCEBiP1 transcripts, ranging from 21% to 84% (Fig. 52A). Six lines exhibited a silencing 

efficiency higher than 50%, including the best-silenced lines #3-4 and #3-24 presenting only 21% 

and 25% of VvCEBiP1 transcripts, respectively. Compared to seWT, the amount of VvCEBiP2 

transcripts was not significantly reduced in lines #3-4 and #3-24 but its expression might be 

affected in other lines (Fig. 52B). Unfortunately, MAPK phosphorylation assays did not reveal any 

decrease in chitin responsiveness in lines #3-4 and #3-24 or in any of the other lines (Fig. 52C) 

Therefore, no correlation between the level of VvCEBiP1 transcript and chitin 

responsiveness could be deduced. Our preliminary results seem to indicate that VvCEBiP1 does 

not play a major role in chitin perception in V. vinifera, even if some VvCEBiP1 transcripts 

remained. 

  



Figure 48. In silico characterization of the LysM-RLP (LYP) family and OsCEBiP ortholog in Vitis 

vinifera. 

A. Maximum-likelihood phylogenetic tree (500 boostraps) showing the relationship between the full-length 

protein sequences (GenBank) of the rice OsCEBiP (NP_001048875), other LYPs of rice (OsLYP2:ABA94116, 

OsLYP3:NP_001063853, OsLYP4:NP_001063335, OsLYP5:NP_001048242, OsLYP6:BAD35901), LYPs of 

Arabidopsis (AtLYM1:AT1G21880, AtLYM2:AT2G17120, AtLYM3:AT1G77630) and the VvLYPs  

(VvLYP1-4) of V. vinifera. Percentage of bootstraps are presented. 

Figure 49. Exon-intron architecture of spliced OsCEBiP  and VvCEBiP1, 2 transcripts.  

Black and white boxes represent exons and UTR regions, respectively. Bar = 200 bp.  
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Discussion 

1 Chitin is a weak elicitor in grapevine 

Chitin elicits defense responses in various plant species, but not much is known about its 

effect in grapevine. We show that chitin elicited defense responses in grapevine, including 

variations in free [Ca
2+

]cyt, phosphorylation of two MAPKs and the expression of defense genes 

including PR3-4c, ACCS, STS1-2 and PAL (Fig. 37, 38). Upregulation of genes encoding 

chitinases and PAL was also observed in Arabidopsis and rice (Kaku et al., 2006; Miya et al., 

2007). The PR3-4c gene expression was the most strongly upregulated by chitin, yet its induction 

was 30 times lower than that triggered by flg22 (Fig. 38F, Fig. 18F; Trda et al., 2014) or the β-1,3-

glucan laminarin (Aziz et al., 2003). In the same way, both the chitin-induced MAPK activation 

and the [Ca
2+

]cyt variations were triggered more transiently compared with laminarin or flg22 (Fig. 

37 A, B). 

It is curious that chitin did not trigger any detectable H2O2 production in grapevine (V. 

vinifera cv Gamay, Fig. 37 C), unlike in Arabidopsis (Miya et al., 2007), Brassica napus (Lloyd et 

al., 2014), N. benthamiana (Segonzac et al., 2011) or rice (Hayafune et al., 2014). We found that 

chitin upregulated  the expression of the grapevine gene RbohD (Fig. 38B), which is also 

upregulated by OGs (Dubreuil-Maurizi et al., 2010) and flg22 (Fig. 3). AtRbohD and NbRbohD 

are responsible for the flg22-induced ROS production in Arabidopsis and N. benthamiana, 

respectively (Zhang et al., 2007; Segonzac et al., 2011). Similarly, chitin induced a rather weak 

oxidative burst in N. benthamiana and Arabidopsis (Nekrasov et al., 2009; Segonzac et al., 2011). 

Studies in N. benthamiana show that flg22- or chitin-induced ROS burst is not required for MAPK 

activation (Segonzac et al., 2011). In grapevine, these two events induced by BcPG1 also lie on 

independent signaling branches (Vandelle et al., 2006). According to our data, chitin/chitosan 

signaling in grapevine seems to lack the ROS pathway. However, we cannot exclude that using a 

more sensitive method (such as enhanced luminol L-012), the chitin-induced H2O2 production 

could have been detected or that another reactive oxygen species is produced but not detected by 

luminol-based method. 

In grapevine, chitosan induced early MAPK phosphorylation and [Ca
2+

]cyt variations with a 

similar amplitude and duration as the chitin treatment (Fig. 37A, B). Additionally, the chitosan-

induced H2O2 production was not detected in grapevine (Fig. 37C), even though it has been 

reported in tobacco or rice (Iriti and Faoro, 2009). These data suggest that chitin and chitosan 

might be perceived by the same mechanism in V. vinifera. In Arabidopsis, the totally deacetylated 

chitosan penta- to octamers were unable to bind AtCERK1, whereas chitin oligomers of the same 

length possessed affinity to AtCERK1 (Petutschnig et al., 2010). Both binding competitions and 

solved crystal structure show that the acetylation is required for binding to AtCERK1 (Petutschnig 



Figure 50. The basal transcript abundance and gene expression of VvCEBiPs following chitin 

treatment in grapevine cells.  

The transcript abundance of genes VvCEBiP1, VvCEBiP2 and housekeeping gene EF1γ was assessed 

by qPCR in chitin- or mock-elicited grapevine cells and quantified with a LinReg program (Ruijter et 

al., 2009). A. Transcript abundances in mock-treated samples are expressed as means ± SE from 3 

experiments, relative to the amount of EF1γ transcripts set as 100%. B. Kinetics of VvCEBiP gene 

expression induced by 1g l-1 chitin. Relative expression was normalized to housekeeping genes EF1α 

and EF1γ and data are expressed as means ± SE from three experiments (n=3) relative to water treated 

control. 
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Figure 51. Antisense construct for VvCEBiP1 silencing. 

Position of the VvCEBiP1 antisense fragment (αs) in the coding sequence (gray band) and 5‘UTR 

(white band) and pH2WG7 p35S::αsVvCEBiP1 vector map. Nucleotide (nt) 1 indicates the start of 

translation. The fragment (nt -100 to + 217) was PCR-amplified using specific primers and inserted in 

the antisense orientation into pH2WG7 vector. pH2WG7 p35S::αsVvCEBiP1 was used for the 

transformation of grapevine embryogenic calli via Agrobacterium tumefaciens. Arrows indicate primers 

used to verify transgene presence. Black triangles indicate qPCR primers used for VvCEBiP1 

quantification. 
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et al., 2010; Liu et al., 2012b). As the chitosan we used was not fully deacetylated (DA<25%), the 

-(GlcNAc)n- residues might be key for its biological activity as previously shown (Iriti and Faoro, 

2009; Petutschnig et al., 2010). 

We have also shown that chitin did not enhance the resistance of grapevine leaves to the 

necrotrophic fungus B. cinerea or to the obligate biotrophic oomycete P. viticola (Fig. 39). Parallel 

pretreatment with flg22, laminarin or PS3 partly inhibited the infection with B. cinerea (Fig. 19A), 

suggesting that chitin-induced responses might not be sufficiently strong. Especially the weak 

chitin-induced expression of PAL and STS1-2 genes (Fig. 38 D, E) suggests a low activation of the 

phenylpropanoid pathway responsible for stilbene, lignin or flavonoid production. These 

metabolites were identified as active compounds against both pathogens (Coutos-Thevenot et al., 

2001; Polesani et al., 2010). In rice, (GlcNAc)8 induced local and systemic resistance against the 

rice blast fungus M. oryzae (Tanabe et al., 2006). In Arabidopsis, chitooligomers also enhanced 

resistance to A. brassicicola (Wan et al., 2008).  

Previous works reported a chitosan-induced resistance in different plant species 

(Benhamou et al., 1994; El Ghaouth et al., 1994; Trotel-Aziz et al., 2006). In our experiments, 

chitosan reduced the development of B. cinerea and P. viticola by approximately 50 and 70%, 

respectively (Fig. 39). Although chitosan we used was polymeric, these data are consistent with the 

activity of smaller chitosan oligomers (1.5 kDa, DA~20%) conferring a similar rate of protection 

against both pathogens (Aziz et al., 2006; Trotel-Aziz et al., 2006). Chitosan was previously 

shown to induce phytoalexin accumulation and activities of ß-1,3-glucanases and chitinases in 

grapevine leaves (Aziz et al., 2006; Trotel-Aziz et al., 2006). However, it also acts as an 

antifungal compound reducing the radial growth of B. cinerea in vitro and inducing cytological 

alteration of the pathogen and it is toxic to P. viticola spores as well (Benhamou et al., 1994; El 

Ghaouth et al., 1994; Trotel-Aziz et al., 2006). 

2 Role of VvCERK1 

In Arabidopsis, AtCERK1 is the main chitin receptor (Miya et al., 2007; Petutschnig et al., 

2010; Liu et al., 2012b). Grapevine encodes three predicted orthologs of AtCERK1 

(VvCERK1/2/3) that exhibit ~70% similarity to AtCERK1 (Fig. 40, Annex 4A). All VvCERKs 

possess a signal peptide, three LysM domains, one transmembrane region and an active kinase 

domain of the RD-type also found in AtCERK1 and OsCERK1 but unlike in most of the identified 

plant PRRs (Annex 5; Boller and Felix, 2009). Based on the similarity in amino acid sequences, 

VvCERK1 shares the highest degree of conservation with AtCERK1 and OsCERK1 (Annex 4A, 

5) and was also identified as the closest ortholog in previous bioinformatics studies (Boller and 

Felix, 2009; Liu et al., 2012b). 



C 
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Figure 52. Quantification of VvCEBiP1 transcript amount and chitin responsiveness in grapevine 

transgenic lines expressing p35S::αsVvCEBiP1.  

The expression of VvCEBiPs and chitin responsiveness were evaluated in leaves of in-vitro plantlets 

expressing pH2WG7 p35S::αsVvCEBiP1 or in wild-type in-vitro plantlets issued from a parallel somatic 

embryogenesis (seWT). A., B. Relative VvCEBiP1 (A.) and VvCEBiP2 (B.) transcript abundances were 

measured by qPCR, normalized to housekeeping genes EF1α and EF1γ and reported to seWT, set as 100 %. 

Data are means ± SE from at least two independent experiments (except from the line #3-5 and #3-15 that 

were measured once). C. Phosphorylation of two mitogen-activated protein kinases (MAPK) detected by α-

pERK1/2 Western blots at 15 min post treatment with water control (-), chitin (C) and flg22 (F). 

Homogeneous loading was checked by Coomassie Brilliant Blue (CBB) staining of a parallel gel (not 

shown). Experiment was repeated at least twice with similar results. Data from one representative 

experiment are shown. Treatments were performed with 1 g l-1 chitin and 500 nM flg22. ND=Not 

determined. 
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In the transient expression assays in N. benthamiana, VvCERK1 fused to GFP in the C-

terminal end was localized at the cell periphery (Fig. 43B). This suggests that VvCERK1 is 

localized to the plasma membrane as predicted by the presence of a signal peptide. According to 

our complementation assays in the Arabidopsis cerk1-2 mutant, the overexpression of 

p35S::VvCERK1-GFP did not restore the chitin-induced oxidative burst, although the fused 

protein was accumulated in nine independent transgenic lines (Fig. 43A). These data suggest that 

VvCERK1 is not a functional ortholog of AtCERK1. As chitin perception in grapevine does not 

elicit an evident H2O2 production, other chitin-triggered responses should be tested to confirm 

these preliminary results.  

 

3 Role of VvCERK2 

Functional complementation assays in Arabidopsis show that the expression of VvCERK2 

enables the cerk1-2 mutant to partly restore the chitin-induced ROS burst in two lines out of 26 in 

the T1 generation (Fig. 44B). However, the involvement of VvCERK2 in chitin perception 

remains unclear as the complemented phenotype of cerk1-2/pLexA::VvCERK2 was unstable 

between T1 and T2 generation (Fig. 44D, Table 13).  

4 VvCERK3 can partly complement the chitin-induced ROS burst in Atcerk1-2 

VvCERK3 protein carries a LysM ectodomain which is the most similar to AtCERK1 

reaching 51% of identity (Annex 4A). The VvCERK3 gene also displays a gene architecture similar 

to AtCERK1, containing the similar number of exons and introns of conserved length (Fig. 41). To 

limit the negative impact of the receptor overexpression, VvCERK3 was expressed in cerk1-2 

mutant controlled by an estradiol-inducible promoter. Some of the T2 lines of cerk1-

2/pLexA::VvCERK3-GFP plants transiently expressing VvCERK3 after estradiol induction partly 

restored the chitin-induced oxidative burst normally abolished in the cerk1-2 mutant (Fig. 44C, D). 

According to these preliminary results, VvCERK3 might be the AtCERK1 ortholog in grapevine. 

As AtCERK1 is the crucial binding and transduction factor required for chitin recognition 

in Arabidopsis (Miya et al., 2007; Wan et al., 2008; Petutschnig et al., 2010), it would imply that 

VvCERK3 can bind chitin by its ectodomain and induce chitin signaling. AtLYK4 is another 

LysM-RLK which was described to possess an auxiliary role in chitin sensing and thus might 

interact with AtCERK1 (Wan et al., 2012). This suggests that VvCERK3 might also associate with 

other proteins into receptor complexes. 

However, a 20µM estradiol-induced expression of VvCERK3 led only to the partial chitin-

induced ROS burst, reaching ~20% of the maximal ROS production induced by chitin in Col-0 

(Fig. 44D). A parallel transformation of the Arabidopsis fls2 mutant with a constitutive expression 
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of VvFLS2 led to a fully functional complementation, reaching similar amplitudes of flg22-

induced oxidative burst in transformants as in Col-0 (Fig. 22A). However perception mechanisms 

and signaling in FLS2 and CERK1 pathways are different (Monaghan and Zipfel, 2012). The first 

requires the association with a co-receptor BAK1 (LRR-RLK), while the latter self-dimerizes to 

activate signaling (Chinchilla et al., 2007; Liu et al., 2012b). Different reasons for this low 

recovery of chitin response might exist: i) GFP fusion at the Cter might impair the conformation of 

VvCERK3 protein and does not allow proper self-dimerization and/or substrate phosphorylation; 

ii) VvCERK3 kinase domain does not completely fit to the downstream signaling components in 

Arabidopsis, iii) VvCERK3 is not transiently expressed in sufficient quantities, iv) VvCERK3 

possesses a lower affinity to chitin than AtCERK1. Optimizing the transgene expression by the 

estradiol treatment (concentration, time of pretreatment) should lead to an appropriate amount of 

VvCERK3-GFP. In another study, the expression of the LRR-RLK CLAVATA1-GFP protein 

using the pLexA expression system was firstly detected at the plasma membrane 3h post induction 

with estradiol, but after 12h, proteins started to aggregate (Bleckmann et al., 2010). The inducible 

expression of a chimeric receptor consisting of the LysM ectodomain of VvCERK3 and the kinase 

domain of AtCERK1 should elegantly solve the other possible problems.  

5 A partial loss of VvCERK3 in grapevine does not attenuate chitin responses 

As VvCERK3 can complement the chitin-induced ROS production in Arabidopsis, we 

expect that it should be required for chitin sensing in grapevine. The loss of AtCERK1, OsCERK1 

or CERK1 ortholog in wheat led to chitin insensitivity in those plant species (Miya et al., 2007; 

Kishimoto et al., 2010; Lee et al., 2014). We generated grapevine transgenic plants partly silenced 

in VvCERK3 expression. In these plants, the level of VvCERK3 transcripts was decreased by ~50% 

in the best silenced transgenic line p35S::αsVvCERK3 #6-2 (Fig. 47A). However, compared with 

the untransformed line seWT, the line #6-2 was not affected in the chitin- induced MAPK 

phosphorylation in grapevine (Fig. 47B). The decrease in VvCERK3 transcript amounts might not 

be sufficient to affect the VvCERK3 protein amount critical for chitin signaling. We have shown 

that a similar partial silencing (~50%) of VvFLS2 transcript amounts inhibited more than half the 

flg22 responsiveness (Fig. 31, 32). Therefore a tight correlation between the VvFLS2 transcript 

level and flg22 response exists in grapevine, as it was also described for Arabidopsis (Boutrot et 

al., 2010; Vetter et al., 2012). A similar transcriptional control of the AtCERK1 gene is not known 

in Arabidopsis. In grapevine, VvCERK3 might be a relatively abundant protein as VvCERK3 

transcripts are ~10 times more abundant than those of VvFLS2 (compare Fig. 21 and 42).  

Even if our preliminary results indicate that VvCERK3 partly complements the cerk1-2 

mutation, we cannot exclude that other perception components are required for chitin sensing in 
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grapevine. These could assist/substitute the VvCERK3 function. Therefore, the total knockdown of 

each of VvCERKs is needed to unravel their respective role in grapevine chitin perception.  

6 VvCERK-associated cell death phenotype 

Our data showed that the complementation of Arabidopsis cerk1-2 with VvCERK2 and 

VvCERK3 under the control of a strong constitutive promoter caused lethality of transformants. 

Similarly, N. benthamiana leaves transformed with VvCERK2 or VvCERK3 exhibited a cell death-

associated phenotype (J. Collemare, personal communication). Based on these data, it seems that it 

is not possible to constitutively overexpress VvCERK2 or VvCERK3 neither in Arabidopsis nor in 

N. benthamiana. The overexpression of AtCERK1 in N. benthamiana also caused cell death 

(Andrea Gust, Tübingen University, D, personal communication). Thus, it seems that the 

expression of AtCERK1 is strongly controlled. AtCERK1 has an important role in mediating 

crosstalk between chitin and PGN sensing in Arabidopsis (Willmann et al., 2011). Mechanisms by 

which this lethality could be triggered are unknown. Similarly, the overexpression of other 

receptors such as WAK1, the receptor for OG, led to lethality (Brutus et al., 2010). Interestingly, 

no lethality or cell death phenotype was observed when VvCERK1 was constitutively 

overexpressed in Arabidopsis or N. benthamiana, suggesting that its function might be different 

from those of VvCERK2, VvCERK3 and AtCERK1. This also suggests that VvCERK3 and/or 

VvCERK2 may function as chitin receptors. Of note, the Arabidopsis cerk1-2/p35S::VvCERK1 

plants show twisted leaves suggesting that VvCERK1 might be involved in plant leaf development 

(data not shown). 

7 Lethality of antisense VvCERK1 and VvCERK2 calli 

In parallel, the grapevine transformation assays with p35S::αsVvCERK1 and 

p35S::αsVvCERK2 to silence VvCERK1 or VvCERK2 did not succeed in generating hygromycin-

resistant calli whereas transformed calli expressing αsVvCERK3 or the GFP controls were 

successfully obtained in the same experiments. These results suggest a probable lethal effect of 

these two antisense constructions. Thus perturbation in VvCERK1 and VvCERK2 expression might 

interfere with the embryo development or the susceptibility to the Agrobacterium spreading during 

the transformation event. The development of an inducible silencing strategy (in grapevine) could 

be suitable to study the role of VvCERKs. This method was recently developed in the moss 

Physcomitrella patens (Nakaoka et al., 2012). 
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8 The role of the closest grapevine ortholog of OsCEBiP in chitin perception 

CEBiP is the main chitin-binding receptor in rice (Kaku et al., 2006) and the CEBiP 

silencing abolished chitin sensing in rice or wheat (Kaku et al., 2006; Lee et al., 2014). In 

Arabidopsis, none of the three closest OsCEBiP-like proteins (AtLYM1, AtLYM2, AtLYM3) is 

critical for chitin signaling (Wan et al., 2012). Even the triple lym1/2/3 mutant was not affected in 

chitin responses (Wan et al., 2012). Thus, it seems that CEBiP might play an important role for 

chitin perception in monocots but not in dicots.  

The grapevine genome encodes four LysM proteins (VvLYPs; Table 14). Two of them 

(VvCEBiP1 and VvCEBiP2) share the highest homology to OsCEBiP. The transcription of 

VvCEBiP1, but not VvCEBiP2, was upregulated following chitin treatment (Fig. 50B) as it was 

shown for CEBiP in rice (Kaku et al., 2006) and barley (H.-J. Schoonbeek, personal 

communication). 

Two silenced lines have been obtained, where the amounts of VvCEBiP1 transcripts were 

reduced by more than 75% (Fig. 52A). In these two lines (#3-4 and #3-24), such a decrease in the 

VvCEBiP1 expression did not lead to a loss of chitin responsiveness, such as MAPK activation 

(Fig. 52C). As the expression of the close paralog VvCEBiP2 is not affected by silencing in these 

lines (Fig. 52B) and is not upregulated by chitin treatment in grapevine cells (Fig. 50B), it seems 

improbable that VvCEBiP2 would substitute the effect of VvCEBiP1. These data suggest that 

grapevine does not require VvCEBiP1 for chitin sensing. However this knockdown must be 

confirmed at the protein level to validate these preliminary results. 
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Perspectives 

We have shown that chitin is a weak elicitor leading to a low induction of defense genes, 

notably involved in the phenylpropanoid pathway. Chitin pretreatment did not led to an enhanced 

resistance against P. viticola and B. cinerea, suggesting that chitin-triggered immunity might not 

be so effective to stop or delay these diseases in grapevine. The profile and timing of chitosan-

induced early signaling events was similar to those triggered by chitin. Our preliminary results 

suggest that VvCERK3, but not VvCERK1, might recognize chitin. The role of the third candidate, 

VvCERK2, remains unclear. It also seems that chitin sensing in grapevine does not rely on 

VvCEBiP1, suggesting that the grapevine chitin perception system is rather similar to that of 

dicots. 

All over, the preliminary work concerning chitin perception in grapevine is still partial and 

raises many questions: 

i) What is the involvement of VvCERKs in chitin perception? As chitin does not induce an 

evident oxidative burst in grapevine, the role of each VvCERK in the complemented cerk1-2 lines 

should be better characterized by testing other immune responses such as MAPK activation and 

defense gene expression.  

As soon as a functional ortholog of AtCERK1 will be confirmed, complementary studies 

should be performed to investigate: 

ii) What is the involvement of each VvCERK in chitosan and PGN recognition? First, the 

perception of PGN and defined chitin and fully deacetylated chitosan oligomers of the same length 

(hexaose – octaose) should be compared in grapevine cells. Then, the Arabidopsis lines 

complemented with each grapevine VvCERK should be tested for PGN and chitosan oligomer 

response. In parallel, the direct binding of these GlcNAc-containing ligands to distinct grapevine 

VvCERKs might be tested with expressed recombinant VvCERK ectodomains or with chitin-

magnetic beads on soluble and microsomal protein fractions (Petutschnig et al., 2010). Concerning 

PGN sensing, At CERK1 interacts with LYM1 and LYM3 for PGN binding in Arabidopsis 

(Willmann et al., 2011). Thus, the interaction between AtCERK1 and the grapevine LYM1 and 

LYM3 orthologs (VvLYP3 and VvLYP4) might be investigated.  

iii) What is the involvement of chitin perception in immune responses against fungal 

infections? Chitin-induced immunity was shown to be important for resistance against fungal 

pathogens. Of note, the involvement of chitin perception during fungal infections was rather 

reported against low pathogenic strains or pathogens causing incompatible interaction on hosts 

(Miya et al., 2007; Wan et al., 2008; Kishimoto et al., 2010; Lee et al., 2014). In fact, diverse 

pathogens are known to secrete different effectors or toxins to block MTI and fungi can inhibit 

chitin-mediated immunity upon infections (van Esse et al., 2007; de Jonge et al., 2010; Mentlak et 
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al., 2012; Lee et al., 2014). Grapevine plants knocked-down in the grapevine AtCERK1 ortholog 

shoud be tested in fungal infection assays (B. cinerea; E. necator). As the cerk1-2 mutant is 

affected in disease resistance (A. brassicicola, Erysiphe cichoracearum; Miya et al., 2007; Wan et 

al., 2008), VvCERKs might be tested for the restoration of these resistances. Interestingly, the 

cerk1-2 mutant is susceptible to an adapted strain of Erysiphe necator, the causal agent of powdery 

mildew on grapevine (Ian Dry, CSIRO, AUS, personal communication). A collaboration has been 

established with this research group to test our cerk1-2/VvCERKs transformed lines for 

complementation of the E. necator resistance level normally found in the non-host resistant WT 

Col-0. 

It is important to keep in mind the complexity of the receptor complexes, as it was 

particularly revealed for the GlcNAc-sensing multipartite receptor systems. The PRRs that are not 

involved in chitin sensing may be involved in chitosan or PGN sensing. Optimally, studies 

proposed above could be performed on the whole with all VvCERKs/VvCEBiPs. It would be also 

interesting to investigate the role of VvLYK12 and VvLYK9, the closest orthologs of the LjNFR5, 

which is required for nodulation in Lotus japonicus (Gust et al., 2012). 

Taken together, all these results should improve our knowledge to better understand how 

grapevine can specifically perceive different GlcNAc-containing ligands via complex receptors. 
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GENERAL DISCUSSION 

1 Conservation of MTI signaling between species 

The tested MAMPs flg22 and chitin induced typical defense responses as described in 

Arabidopsis or other plant species. The only exception was a lack of chitin/chitosan-induced 

oxidative burst. Different studies show that strong flg22-induced MTI is rather a hallmark of 

dicotyledons (Felix et al., 1999; Sun et al., 2006), while it is a weak elicitor in rice and monocots 

in general (Felix et al., 1999; Takai et al., 2008). On the other hand, chitin appears to be a more 

powerful MAMP in rice than in dicots, inducing a strong oxidative burst and defense gene 

expression that lead to stronger fungal disease resistance (Che et al., 2000; Tanabe et al., 2006; 

Nekrasov et al., 2009; Segonzac et al., 2011). Grapevine induced much stronger MTI in response 

to flagellin than chitin, showing similarity with other dicots. These differences might be based on 

different PRR architecture or different perception systems. It seems that the downstream cell 

signaling components are highly conserved between species and enables heterologous PRR 

expression (Zipfel et al., 2006; Robatzek et al., 2007; Takai et al., 2008; Lacombe et al., 2010; 

Fradin et al., 2011). We also show that the grapevine VvFLS2 and possibly VvCERK3 receptors 

could mediate MAMP signaling in Arabidopsis. 

From our orthology-based approach it seems evident that for one functional gene in 

Arabidopsis, grapevine possesses often at least two paralogs, occurring on the adjacent loci. 

Protein families searched in grapevine are much bigger than in Arabidopsis, as was shown for the 

LysM-RLKs (LYKs; 12 grapevine LYKs versus 5 Arabidopsis LYKs). From the phylogenetic 

analyses and sequence homology of candidate PRRs (VvFLS2 and VvCERK1-3), we also noticed 

that grapevine is evolutionary closer to tomato compared to Arabidopsis. Therefore differences in 

perception are likely to exist between grapevine and Arabidopsis. Indeed, we have shown that 

differences in flagellin-derived flg22 epitopes exist between VvFLS2 and AtFLS2 receptors, as it 

was described for the tomato receptor LeFLS2.  

2 Antisense strategy for use in gene silencing 

The phenomenon of RNA interference (RNAi) is exploited in the RNA post-

transcriptional silencing as a powerful tool for gene function studies. Gene silencing is especially 

required for species where wide mutant collections are not available. In the RNAi, plants detect a 

double-stranded RNA (dsRNAs) that are cleaved into smaller RNAs, called small-interfering 

RNAs (siRNAs). After activation by unwinding, the latter bind to complementary mRNAs 

resulting in their cleavage or inhibition of translation depending whether the base pairing is 

complete or not. In this study, we used an antisense (αs) strategy for gene silencing. It consists in 
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the expression of a gene fragment in the antisense orientation which should lead to transcript 

degradation. 

According to our results, the efficiency of silencing observed with the Gateway vector 

(pH2WG7) was very low and no line with complete silencing was obtained. For each of αsVvFLS2 

and αsVvCERK3 constructs, the expression of the targeted gene was reduced below 50% only in 

one line out of ten. The best silencing efficiency was achieved in the αsVvCEBiP transgenic plants, 

where 2 lines out of 10 contained less than 30 % of the amount of the targeted mRNA. Although 

the antisense strategy can be efficient (Simon-Plas et al., 2002), our data clearly show, that it 

frequently failed to silence our target genes. As a consequence, using this vector would require 

screening of more antibiotic resistant calli and test them for the efficient silencing before the plant 

regeneration. 

Nevertheless, it was shown in other plant species that more efficient silencing was 

achieved with inverted repeat constructs (hairpin, hp), where a fragment from target gene is 

expressed in sense and antisense orientations separated by a spacer (Waterhouse et al., 1998). 

Most of reverse genetics studies currently use hpRNAs. Silencing of OsCEBiP and OsCERK1 

receptors in rice was achieved with this type of vector (pANDA) and led to marked decrease of 

targeted mRNA quantity reaching ~3% and ~20% of the amount found in untransformed cells 

(Kaku et al., 2006; Shimizu et al., 2010). The efficiency of silencing was shown to depend on the 

size of dsRNA and most studies use a 300-700 bp fragment. However, even shorter dsRNA can 

lead to sufficient silencing and fragments of only 23 nucleotides in length could silence a target 

gene (reviewed in Eamens et al., 2008).  

Silencing can be also mediated by artificial miRNA (amiRNA)-mediated silencing. 

miRNAs are ~21-nucleotide-long endogenous RNAs generated from hairpin-like transcribed 

precursors (pre-mi RNA). amiRNAs can be obtained by replacing the miRNA sequence with a 

short ~21 nucleotide-long sequence specific for targeting a given gene. The engineered pre-mi 

RNAs of Arabidopsis are correctly spliced and leads to silencing in different plants including 

grapevine, as recently reported (Jelly et al., 2012). 

The transgenesis via somatic embryogenesis is without any doubt the key method to obtain 

stable transgenic plants. However, it is time consuming and technically complex. Interestingly, 

several previous studies reported a successful Agrobacterium-mediated transformation of 

grapevine cells (Baribault et al., 1989), or a transient expression in grapevine leaves (Santos-Rosa 

et al., 2008). Developing these technologies in our laboratory would permit to obtain the first rapid 

insight into the function of candidate genes. 
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3 PRRs for engineering disease resistance 

The identification of novel PRRs in a given crop species is important to make an inventory 

of the defense equipment the plant disposes with. In Arabidopsis, the screening of vast mutant 

collections and naturally occurring ecotypes, as well as the forward genetics approach, is highly 

facilitated and several studies led to the successful identification of novel PRRs. In crops, 

analyzing genomic variations within different cultivars but also the “wild” relative species and 

their introgression lines allows to map the Quantitative Trait Loci (QTLs) related to disease 

resistance. Although QTLs will mostly carry R-genes, they may also contain PRR genes (encoding 

RLKs or RLPs). Indeed, a gene encoding the PRR XA21 (XA21 was initially classified as R-gene) 

was isolated as an introgressed trait for the bacterial blight resistance (Wang et al., 1996).  

During the last years, a lot of progress has been done in the understanding of the MAMP 

perception and signaling and the role of plant PRRs. So, can we apply this knowledge in 

agriculture?  

Different studies reveal that the simple overexpression of PRR in plants did not lead to 

increased resistance, even if PRRs are key for plant immunity (Takai et al., 2008; Kishimoto et al., 

2010). However, it was shown that PRRs can be successfully transferred from one plant species to 

another, even between dicots and monocots. A very effective demonstration was achieved in 

tomato (from the Solanaceae family), where the transfer of the EFR receptor led to important 

resistance against a wide range of different agriculturally important bacterial pathogens (Lacombe 

et al., 2010). This high efficacy results from the fact that tomato pathogens did not evolve with the 

EFR receptor (from the Brassicaceae family) and thus lack means to inhibit EFR-mediated 

immunity. Therefore, the transfer of EFR seems promising to cure bacterial diseases in non-

Brassicaceae plants. In practice, an interesting project tests whether EFR-mediated resistance can 

work even in other crops such as cereals, bananas, apples or cassava, for which bacterial infections 

are destructive (C. Zipfel, personal communication).  

Also transfer of other LRR-RLK receptors, XA21 and Ve1, led to a robust resistance, even 

though the latter was restricted to one microbial genus or a group of species, respectively. Up to 

now, successful transfer was shown only with LRR-RLK receptors. Different studies showed that 

the ectodomain and kinase domains from distinct PRR can be combined leading to chimera 

receptors with preserved signal transduction determined by the kinase domain. Such a chimeric 

receptor build from the chitin-binding ectodomain of OsCEBiP and the kinase domain of XA21 

highly improved resistance to fungus M. oryzae, when expressed in rice (Kishimoto et al., 2010). 

Thus XA21 receptor and its strong kinase capable to initiate HR in rice (Kishimoto et al., 2010) 

represents an interest for practical use in disease resistance engineering. The potential of chimeric 

receptors is wide: they can i) enhance immune response especially for MAMPs that are only 

weakly abundant during the plant-pathogen interaction or are manipulated by pathogens during the 
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interaction, or ii) improve receptor affinity or kinase activity. Indeed, the latter two are among the 

first factors to impact the amplitude of the host immune responses.  

Analysis of the polymorphism occurring in plant PRRs in different cultivars or species may 

lead to the identification of more efficient PRR variants. As an alternative to the transgenic 

approach, conventional breeding can be assisted by the use of molecular markers that assist to 

deliver the desired PRR gene into the crop, and pyramid it with other genes important for the 

resistance genes such as R-genes. 

All over, the PRR-based breeding, the PRR transfer and creation of novel chimeric PRRs 

might be applicable “one day” as an alternative in agriculture disease and pest management, as a 

“tailored PRR therapy” and might provide more durable and broader resistance than R-genes.  
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CONCLUSION 

Recognition of microbial patterns (MAMPs) by host recognition receptors (PRRs) is 

important for the activation of plant immune system. This work focused on the perception of two 

widely-distributed MAMPs in grapevine: flagellin-derived flg22 epitope and chitin, signatures of 

bacterial and fungal presence, respectively. Immune responses triggered by these MAMPs were 

characterized. As perception systems for these MAMPs were described in other species, mostly 

Arabidopsis, we further aimed to identify the cognate receptors by an orthology based approach. 

The flg22 peptide is an active MAMP in grapevine and triggers early signaling events, 

expression of a set of defense genes and plant growth inhibition in grapevine. Flg22-induced 

immunity is also effective against the necrotrophic fungus B. cinerea. We report here the 

identification of VvFLS2, the V. vinifera flg22 receptor, which is the closest ortholog of FLS2 of 

Arabidopsis. The functionality of VvFLS2 was demonstrated by complementing the lack of flg22 

responsiveness in an Arabidopsis null fls2 mutant. Also the partial silencing of VvFLS2 by RNAi 

in grapevine led to impaired flg22 signaling and defense gene expression confirming its 

requirement for flg22 responses in grapevine. We further compared the recognition specificities of 

VvFLS2 and AtFLS2 in relation to their capability to perceive flagellin-derived immunogenic 

epitopes from endophytic and pathogenic bacteria. We provide evidence that grapevine immune 

responses triggered by flg22 from the endophytic bacteria B. phytofirmans were lower than those 

triggered by the pathogen-derived flg22 peptides from P. aeruginosa or X. campestris. 

Interestingly, these differences were not observed in wild-type (WT) Arabidopsis but were gained 

upon expression of VvFLS2 in the Arabidopsis fls2 mutant, suggesting that FLS2 itself underlies 

the differences observed in FLS2-mediated responses in these species. To our knowledge, VvFLS2 

is the first characterized receptor that differentially recognizes flg22 epitopes from pathogenic or 

endophytic bacteria. In addition, our work provides the first description of an active PRR/MAMP 

pair functioning in grapevine. 

We further show that chitin and chitosan, two carbohydrate polymers, act as MAMPs for 

grapevine immunity, inducing typical signaling and defense gene expression. We show that chitin 

act as a weak MAMP in grapevine as it elicits only transient signaling and weak defense gene 

expression. This chitin-triggered immunity turned out to be insufficient to protect grapevine 

against B. cinerea or P. viticola, though effective immunity could be achieved by other MAMPs, 

such as sulfated β-1,3 glucan or chitosan. We have initiated the work to identify the chitin 

receptor/s. Our preliminary results suggest that VvCERK3, homologous to the main Arabidopsis 

chitin receptor AtCERK1, might recognize chitin. VvCERK3, but not VvCERK1, partially 

restored the chitin perception when expressed in the cerk1-2 Arabidopsis mutant. Role of the two 

other candidates, VvCERK1 and 2, remain unclear. It also seems that grapevine chitin sensing 
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does not rely on a grapevine homolog of CEBiP, the main rice chitin receptor. From these findings 

we suggest that the grapevine chitin perception system is rather similar to other dicots than 

monocots. Further data are needed to expand our knowledge on the function of these candidate 

receptors and the grapevine chitin perception system in general. 

The complementation assays in Arabidopsis enabled to assess the functionality of putative 

grapevine PRRs. The receptors and the downstream signaling components for flg22, and possibly 

also chitin, are conserved between grapevine and Arabidopsis. We also aimed to evaluate the 

biological significance of these VvPRRs by the means of grapevine transgenic plants post-

transcriptionally silenced in each of the candidate genes. However, the antisense strategy for gene 

knockdown led to only partial silencing. Therefore other silencing methods should be tested to 

achieve efficient gene invalidation. 

We could identify grapevine orthologs of FLS2, and possibly CERK1, as functional PRRs 

of grapevine. This opens a space for questions: What is the contribution of these PRRs for MAMP 

sensing in grapevine? Are they the major receptors? Are they specific receptors or provide 

recognition of structurally similar ligands? Is the grapevine CERK1 ortholog involved in both 

chitin and peptidoglycan sensing? Do they play an important role in disease resistance, i.e. will the 

lines silenced in VvFLS2 and VvCERK1, 2, 3 or VvCEBiP exhibit decreased susceptibility to 

bacterial or fungal infections?  

Finally, this work only started the journey for better understanding how grapevine 

perceives microbial motifs and the oncoming pathogen attack. Expanding the knowledge on 

grapevine immune mechanisms is essential to develop alternative strategies in viticulture. 
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Annexes 

 
Nitsch-Nitsch 

 Macroelements   

CaCl2·2H2O 166 

KH2PO4 68 

KNO3 950 

MgSO4·7H2O 185 

NH4NO3 720 

Microelements   

CoCl2·6H2O 0.025 

CuSO4·5H2O 0.025 

H3BO3 10 

KI 0.83 

MnSO4·2H2O 19.5 

Na2MoO4·2H2O 0.25 

ZnSO4·7H2O 10 

Fe-EDTA   

FeSO4·7H2O 27.85 

Na2-EDTA 37.25 

Fe-EDTA 6.9 

Vitamins and amino acids   

Folic acid 0.5 

Nicotinic acid 5 

Biotin 0.05 

Glycine 2 

Myo-inositol 100 

Calcium pantothenate 3 

Pyridoxine HCl 0.5 

Thiamine HCl 0.5 

casein hydrolysate 1 g l
-1

 

  pH before autoclaving  5.5 

autoclaving 120°C, 20min 
  

Annex 1. Composition of the Nitsch-Nitsch medium used for cultivation of grapevine cells.  

Concentrations are indicated in mg l
-1

, if not mentioned otherwise. 
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Signal peptide LRRNT 

LRR2 LRR3 

LRR6 LRR4 LRR5 

LRR7 LRR8 

LRR9 LRR10 LRR11 

LRR13 

LRR14 

LRR13 LRR12 

LRR15 LRR16 

LRR18 LRR17 

LRR19 LRR20 LRR21 

LRR1 

AtFLS2    1 MKLLS-----------KTFLILT---LTFFF--FGIALAKQSFEPEIEALKSFKNGISND 

VvFLS2    1 MVSER-----------VSLILFLICSFLVLV--PLVLTMEPSLEVEHEALKAFKNSVADD 

LeFLS2    1 MMMLK-----------TVVYALAIFSITFLI--PLSSGQNPRFEVEVAALKAFKSSISDD 

OsFLS2    1 MERNKFASKMSQHYTKTICIAVVLVAVLFSLSSAAAAGSGAAVSVQLEALLEFKNGVADD 

 

 

AtFLS2   45 PLGVLSDWTIIG----------SLRHCNWTGITCD-STGHVVSVSLLEKQLEGVLSPAIA 

VvFLS2   48 PFGALADWSEA------------NHHCNWSGITCDLSSNHVISVSLMEKQLAGQISPFLG 

LeFLS2   48 PFSALVDWTDV------------NHHCNWSGIICDPSSNHVINISLIETQLKGEISPFLG 

OsFLS2   61 PLGVLAGWRVGKSGDGAVRGGALPRHCNWTGVACD-GAGQVTSIQLPESKLRGALSPFLG 

 

 

AtFLS2   94 NLTYLQVLDLTSNSFTGKIPAEIGKLTELNQLILYLNYFSGSIPSGIWELKNIFYLDLRN 

VvFLS2   96 NISILQVLDLSSNSFTGHIPPQLGLCSQLLELNLFQNSLSGSIPPELGNLRNLQSLDLGS 

LeFLS2   96 NLSKLQVLDLTLNSFTGNIPPQLGHCTDLVELVFYQNSLFGEIPAELGNLKKLQLIDFGN 

OsFLS2  120 NISTLQVIDLTSNAFAGGIPPQLGRLGELEQLVVSS------------------------ 

 

 

AtFLS2  154 NLLSGDVPEEICKTSSLVLIGFDYNNLTGKIPECLGDLVHLQMFVAAGNHLTGSIPVSIG 

VvFLS2  156 NFLEGSIPKSICNCTALLGLGIIFNNLTGTIPTDIGNLANLQILVLYSNNIIGPIPVSIG 

LeFLS2  156 NFLNGSIPDSICNCTELLLVGFNNNNFTGKLPSEIGNLANLQLFVAYTNNLVGFMPTSIG 

OsFLS2  156 NYFAGGIPSSLCNCSAMWALALNVNNLTGAIPSCIGDLSNLEIFEAYLNNLDGELPPSMA 

 

 

AtFLS2  214 TLANLTDLDLSGNQLTGKIPRDFGNLLNLQSLVLTENLLEGDIPAEIGNCSSLVQLELYD 

VvFLS2  216 KLGDLQSLDLSINQLSGVMPPEIGNLSNLEYLQLFENHLSGKIPSELGQCKKLIYLNLYS 

LeFLS2  216 MLTALHTLDLSENQLSGPIPPEIGNLSSLGILQLHLNSLSGKIPSELGLCINLFTLNMYT 

OsFLS2  216 KLKGIMVVDLSCNQLSGSIPPEIGDLSNLQILQLYENRFSGHIPRELGRCKNLTLLNIFS 

 

 

AtFLS2  274 NQLTGKIPAELGNLVQLQALRIYKNKLTSSIPSSLFRLTQLTHLGLSENHLVGPISEEIG 

VvFLS2  276 NQFTGGIPSELGNLVQLVALKLYKNRLNSTIPSSLFQLKYLTHLGISENELIGTIPSELG 

LeFLS2  276 NQFTGSIPPELGNLENLQMLRLYNNKLNSSIPASIFHLKSLTHLGLSQNELTGNIPPQLG 

OsFLS2  276 NGFTGEIPGELGELTNLEVMRLYKNALTSEIPRSLRRCVSLLNLDLSMNQLAGPIPPELG 

 

 

AtFLS2  334 FLESLEVLTLHSNNFTGEFPQSITNLRNLTVLTVGFNNISGELPADLGLLTNLRNLSAHD 

VvFLS2  336 SLRSLQVLTLHSNKFTGKIPAQITNLTNLTILSMSFNFLTGELPSNIGSLHNLKNLTVHN 

LeFLS2  336 SLTSLEVLTLHSNKLSGEIPSTITNLANLTYLSLGFNLLTGSLPSEFGLLYNLKNLTANN 

OsFLS2  336 ELPSLQRLSLHANRLAGTVPASLTNLVNLTILELSENHLSGPLPASIGSLRNLRRLIVQN 

 

 

AtFLS2  394 NLLTGPIPSSISNCTGLKLLDLSHNQMTGEIPRGFGRM-NLTFISIGRNHFTGEIPDDIF 

VvFLS2  396 NLLEGSIPSSITNCTHLVNIGLAYNMITGEIPQGLGQLPNLTFLGLGVNKMSGNIPDDLF 

LeFLS2  396 NLLEGSIPLSIINCSHLLVLSLTFNRITGEIPNGLGQLSNLTFLSLGSNKMMGEIPDDLF 

OsFLS2  396 NSLSGQIPASISNCTQLANASMSFNLFSGPLPAGLGRLQSLMFLSLGQNSLAGDIPDDLF 

 

 

AtFLS2  453 NCSNLETLSVADNNLTGTLKPLIGKLQKLRILQVSYNSLTGPIPREIGNLKDLNILYLHS 

VvFLS2  456 NCSNLAILDLARNNFSGVLKPGIGKLYNLQRLQAHKNSLVGPIPPEIGNLTQLFSLQLNG 

LeFLS2  456 NSSMLEVLDLSDNNFSGKLKPMIGRLAKLRVLRAHSNSFLGPIPPEIGKLSQLLDLALHK 

OsFLS2  456 DCGQLQKLDLSENSFTGGLSRLVGQLGNLTVLQLQGNALSGEIPEEIGNMTKLISLKLGR 

 

 

AtFLS2  513 NGFTGRIPREMSNLTLLQGLRMYSNDLEGPIPEEMFDMKLLSVLDLSNNKFSGQIPALFS 

VvFLS2  516 NSLSGTVPPELSKLSLLQGLYLDDNALEGAIPEEIFELKHLSELGLGDNRFAGHIPHAVS 

LeFLS2  516 NSFSGAIPPEISMLSNLQGLLLSDNKLEGELPVQLFELKQLNELRLKNNNFFGPIPHHIS 

OsFLS2  516 NRFAGHVPASISNMSSLQLLDLGHNRLDGVFPAEVFELRQLTILGAGSNRFAGPIPDAVA 

 

Annex 2. Alignment of AtFLS2 and its orthologs in grapevine (VvFLS2), tomato (LeFLS2) and rice 

(OsFLS2). (continues on the next page) 
 

* * 

* 

* * 

* 

* 

* * 

* * * 

* * * * 

* 
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LRR22 LRR23 

LRR24 LRR25 

LRR26 LRR28 LRR27 

Transmembrane 

S/T Kinase 

AtFLS2  573 KLESLTYLSLQGNKFNGSIPASLKSLSLLNTFDISDNLLTGTIPGELLASLKNMQLYLNF 

VvFLS2  576 KLESLLNLYLNGNVLNGSIPASMARLSRLAILDLSHNHLVGSIPGPVIASMKNMQIYLNF 

LeFLS2  576 KLESLSLMDLSGNKLNGTIPESMTSLRRLMTVDLSHNLLTGTLPRAVLASMRSMQLYLNV 

OsFLS2  576 NLRSLSFLDLSSNMLNGTVPAALGRLDQLLTLDLSHNRLAGAIPGAVIASMSNVQMYLNL 

 

 

AtFLS2  633 SNNLLTGTIPKELGKLEMVQEIDLSNNLFSGSIPRSLQACKNVFTLDFSQNNLSGHIPDE 

VvFLS2  636 SHNFLSGPIPDEIGKLEMVQIVDMSNNNLSGSIPETLQGCRNLFNLDLSVNELSGPVPEK 

LeFLS2  636 SSNLLHGEIPDEIGVLEMVQEIDMSNNNLSGSIPRSLERCKNLFSLDLSGNMLSGPAPGE 

OsFLS2  636 SNNAFTGAIPAEIGGLVMVQTIDLSNNQLSGGVPATLAGCKNLYSLDLSGNSLTGELPAN 

 

 

AtFLS2  693 VFQGMDMIISLNLSRNSFSGEIPQSFGNMTHLVSLDLSSNNLTGEIPESLANLSTLKHLK 

VvFLS2  696 AFAQMDVLTSLNLSRNNLNGGLPGSLANMKNLSSLDLSQNKFKGMIPESYANISTLKQLN 

LeFLS2  696 ILTKLSELVFLNLSRNRLEGSLPE-IAGLSHLSSLDVSQNKFKGIIPERFANMTALKYLN 

OsFLS2  696 LFPQLDLLTTLNISGNDLDGEIPADIAALKHIQTLDVSRNAFAGAIPPALANLTALRSLN 

 

 

AtFLS2  753 LASNNLKGHVPESGVFKNINASDLMGNTDLCGSKKPLKPCTIKQ---KSSHFSKRTRVIL 

VvFLS2  756 LSFNQLEGRVPETGIFKNVSASSLVGNPGLCGT-KFLGSCRNKSHLAASHRFSKKGLLIL 

LeFLS2  755 LSFNQLEGHIPKGGVFNNIRLEDLLGNPSLCGK-KFLSPCHIKRNRTSSHGFSKKTWIIL 

OsFLS2  756 LSSNTFEGPVPDGGVFRNLTMSSLQGNAGLCGG-KLLAPCHGHAA-GKKRVFSRTGLVIL 

 

 

AtFLS2  810 IILGSAAALLLVLLLVLIL---TCCKKKEKKIENSSESSLPDLDSA-LKLKRFEPKELEQ 

VvFLS2  815 GVLGSLIVLLLLTFSVIIF---CRYFRKQKT----VENPEPEYASA-LTLKRFNQKDLEI 

LeFLS2  814 AALGSVFSLILLVLGIFLF---HRYMKKKKV--NDTEFTNPKCTAA-LSLQRFYQKDLEH 

OsFLS2  814 VVLIALSTLLLLMVATILLVSYRRYRRKRRA--ADIAGDSPEAAVVVPELRRFSYGQLAA 

 

 

AtFLS2  866 ATDSFNSANIIGSSSLSTVYKGQL----EDGTVIAVKVLNLKEFSAESDKWFYTEAKTLS 

VvFLS2  867 ATGFFSAENVIGASTLSTVYKGRT----DDGKIVAVKKLNLQQFSAEADKCFNREVKTLS 

LeFLS2  868 ATNNFRPENIIGASSLSTVYKGTL----EDGKIVAVKKLN-HQFSAESGKCFDREVKTLS 

OsFLS2  872 ATNSFDQGNVIGSSNLSTVYKGVLAGDADGGMVVAVKRLNLEQFPSKSDKCFLTELATLS 

 

 

AtFLS2  922 QLKHRNLVKILGFAWESGKTKALVLPFMENGNLEDTIHGSA------APIGSLLEKIDLC 

VvFLS2  923 RLRHRNLVKVLGYAWESGKIKALVLEYMEKGNLDSIIHEPGV----DPSRWTLLERINVC 

LeFLS2  923 QLRHRNLVKVLGYAWESKKLRALVLEYMENGNLDNMIYGQV------EDDWTLSNRIDIL 

OsFLS2  932 RLRHKNLARVVGYAWEAGKIKALVLDYMVNGDLDGAIHGGAAAPPPAPSRWTVRERLRVC 

 

 

AtFLS2  976 VHIASGIDYLHSGYGFPIVHCDLKPANILLDSDRVAHVSDFGTARILGFR-ED-----GS 

VvFLS2  979 ISIARGLVYLHSGYDFPIVHCDLKPSNVLLDGDLEAHVSDFGTARVLGVHLQD-----GS 

LeFLS2  977 VSVASGLSYLHSGYDFPIVHCDMKPSNILLDKNMEAHVSDFGTARMLGIHLQD-----GS 

OsFLS2  992 VSVAHGLVYLHSGYDFPVVHCDVKPSNVLLDGDWEARVSDFGTARMLGVHLPAAANAAAQ 

 

 

AtFLS2 1030 TTASTSAFEGTIGYLAPEFAYMRKVTTKADVFSFGIIMMELMTKQRPTSLNDEDSQDMTL 

VvFLS2 1034 SVSSSSAFEGTIGYLAPEFAYMRELTTKVDVFSFGIIVMEFLTKRRPTGLAAEDGLPLTL 

LeFLS2 1032 STSSASAFEGTIGYMAPELAYMRKVTTKVDVFSFGVIVMEIITKRRPTSLTGADELPITL 

OsFLS2 1052 STATSSAFRGTVGYMAPEFAYMRTVSTKVDVFSFGVLAMELFTGRRPTGTIEEDGVPLTL 

 

 

AtFLS2 1090 RQLVEKSIGNGRKGMVRVLDMELGDSIVSLKQEEAIEDFLKLCLFCTSSRPEDRPDMNEI 

VvFLS2 1094 RQLVDAALASGSERLLQIMDPFLA-SIVTAKEGEVLEKLLKLALSCTCTEPGDRPDMNEV 

LeFLS2 1092 HQIVQNALANGINKLVQIVDPNLA-SYVS-KKQDVVEGLLNLALSCTSPDPEDRPDMEQV 

OsFLS2 1112 QQLVDNAVSRGLDGVHAVLDPRMK-V-ATEADLSTAADVLAVALSCAAFEPADRPDMGAV 

 

Annex 2. Alignment of AtFLS2 and its orthologs in grapevine (VvFLS2), tomato (LeFLS2) and rice 

(OsFLS2). (continues on the next page) 
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AtFLS2 1150 LTHLMKLRGKA-NSFREDRNEDREV 

VvFLS2 1153 LSSLLKLGAKI-PP--P---LPSSS 

LeFLS2 1150 LSSLSKLSKMDCMP--S---HLVKD 

OsFLS2 1170 LSSLLKMSK-----------LVGED 

 

Annex 2. Alignment of AtFLS2 and its orthologs in grapevine (VvFLS2), tomato (LeFLS2) and rice 

(OsFLS2).  

Protein sequences were aligned with T-Coffee. Black and gray shading representing identical and positive 

amino acids, respectively, was visualized with Boxshade. The predicted signal peptide, the N-terminal 

domain (LRRNT), the leucine-rich repeats (LRRs), the transmembrane region and the serine/threonine 

(S/T) kinase are shown. Arrows indicate residues crucial for FLS2 function: the cysteine pair  C61/C68 

(Sun et al., 2013), residues G318 (fls2-24; Gomez-Gomez and Boller, 2000), G493 (stor; Vetter et al., 

2012) in the LRR ectodomain, S938 (Cao et al., 2013), residues T867, T1040, T1072 in the 

phosphorylation sites (Robatzek et al., 2006), the PEST like motif P1076 (Robatzek et al., 2006) and the 

residues G1064 (fls2-17; Gomez-Gomez and Boller, 2000) and D997 (Sun et al., 2006) required for the 

kinase catalytic activity. The non-RD kinase motif is highlighted in blue. Asterisks indicate residues 

involved in the interaction with flg22 (Sun et al., 2013), including Y272, R294, Y296 and H316 

(highlighted in red) binding the core flg22 sequence (K13 and D14). A: Ala, C:Cys, D:Asp, E:Glu, F:Phe, 

G:Gly, H:His, I:Ile, K:Lys, L:Leu, M:Met, N:Asn, P:Pro, Q:Gln, R:Arg, S:Ser, T:Thr, V:Val, W:Trp, 

Y:Tyr. 

 

 

 

(on the next page) 

Annex 3. Alignment of deduced protein sequences of VvFLS2 and VvFLS2-like. Protein sequences 

were aligned with T-Coffee and visualized with Boxshade. Black and gray shading represent identical and 

positive amino acids, respectively. The predicted signal peptide, the LRR ectodomain containing 27 LRRs, 

the transmembrane region and the serine/threonine (S/T) kinase are indicated (SMART 

http://smart.embl-heidelberg.de/). 

 

 

. 
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Signal peptide 

LRR1-27 

Transmembrane Outer juxta membrane 

Inner juxta membrane S/T Kinase 

VvFLS2         1 MVSERVSLILFLICSFLVLVPLVLTMEPSLEVEHEALKAFKNSVADDPFGALADWSEANHHCNWSGITCD 

VvFLS2-like    1 MEPRSVGLTVVVVCSVLVV--VVISMDPSFEVDHQALKAFKSSVADDPSGVLADWSEANHHCNWSGITCD 

 

 

VvFLS2        71 LSSNHVISVSLMEKQLAGQISPFLGNISILQVLDLSSNSFTGHIPPQLGLCSQLLELNLFQNSLSGSIPP 

VvFLS2-like   69 PSSSRVMSIILMEKQLAGVISPFLGNLSKLQVLDLTLNTFTGQIPPQLGLCSQLSELILYQNSLAGPIPQ 

 

 

VvFLS2       141 ELGNLRNLQSLDLGSNFLEGSIPKSICNCTALLGLGIIFNNLTGTIPTDIGNLANLQILVLYSNNIIGPI 

VvFLS2-like  139 ELGILGNLQSLDLGANFLEGSIPERICNCTGLLNLGIDNNNLSGAIPSDIGRLDNLQVFTGYRNNLVGSI 

 

 

VvFLS2       211 PVSIGKLGDLQSLDLSINQLSGVMPPEIGNLSNLEYLQLFENHLSGKIPSELGQCKKLIYLNLYSNQFTG 

VvFLS2-like  209 PVSIGTLGALQVLDLSTNHLSGVLPPEIGNLSNLETLQLLENQLHGKIPPELGLCRKLTTLNLYGNQFSG 

 

  

VvFLS2       281 GIPSELGNLVQLVALKLYKNRLNSTIPSSLFQLKYLTHLGISENELIGTIPSELGSLRSLQVLTLHSNKF 

VvFLS2-like  279 GIPSELGNLVHLKVLRLYKNRLSSTIPSSLFQLKSLIHLGISENELSGTIPFEVGSLRSLQALTLQLNKF 

 

 

VvFLS2       351 TGKIPAQITNLTNLTILSMSFNFLTGELPSNIGSLHNLKNLTVHNNLLEGSIPSSITNCTHLVNIGLAYN 

VvFLS2-like  349 TGQIPSSITNLTNLTYLSMDFNFFTGDIPSNIGSLYRLKNLTLNNNLLQGSIPSSISNCTRLVVLGLAYN 

 

 

VvFLS2       421 MITGEIPQGLGQLPNLTFLGLGVNKMSGNIPDDLFNCSNLAILDLARNNFSGVLKPGIGKLYNLQRLQAH 

VvFLS2-like  419 RITGRIPQGLGRLANLIFLSFGKNQMSGNIPDDLFNCSNLIILDLAKNNFSGVLKPGIGKLYYLHIFQAH 

 

  

VvFLS2       491 KNSLVGPIPPEIGNLTQLFSLQLNGNSLSGTVPPELSKLSLLQGLYLDDNALEGAIPEEIFELKHLSELG 

VvFLS2-like  489 KNSLVGPIPPEIGNLSQLFSLKLHLNSFSGTVPPELSKLSLLQGLYLNDNALEGALPEVIFELKQLSDLG 

 

 

VvFLS2       561 LGDNRFAGHIPHAVSKLESLLNLYLNGNVLNGSIPASMARLSRLAILDLSHNHLVGSIPGPVIASMKNMQ 

VvFLS2-like  559 LGNNRFAGPIPHAISKLESLLYLTLHGNLFNGSIPTSMGHLSRLATLDLSHNHLVGSIPGPVIAGMKNMQ 

 

 

VvFLS2       631 IYLNFSHNFLSGPIPDEIGKLEMVQVVDMSNNNLSGSIPETLQGCRNLFNLDLSVNELSGPVPEKAFAQM 

VvFLS2-like  629 IYLNFSHNFLSGPIPNELGKLEMVQIVDMSNNNLSGSIPATLQRCKNLFNIDLSVNQLSGTIPEKAFAGM 

 

 

VvFLS2       701 DVLTSLNLSRNNLNGGLPGSLANMKNLSSLDLSQNKFKGMIPESYANISTLKQLNLSFNQLEGRVPETGI 

VvFLS2-like  699 DVLTSLNLSRNNLGGRLPGSLAIMKNLSSLDLSQNKFKGMIPESYANISTLRHLNLSFNQLEGHVPATGI 

 

 

VvFLS2       771 FKNVSASSLVGNPGLCGTKFLGSCRNKSHLAASHRFSKKGLLILGVLGSLIVLLLLTFSVIIFCRYFRKQ 

VvFLS2-like  769 LKNIGASSLVGNPGLCGTKFLGSCSNKSHLAGSHPFSKKVLLILGVVGSLIVLLLLTFLVLIFNRYFRKQ 

 

 

VvFLS2       841 KTVENPEPEYASALTLKRFNQKDLEIATGFFSAENVIGASTLSTVYKGRTDDGKIVAVKKLNLQQFSAEA 

VvFLS2-like  839 KKEE--------TLMLKRFNQKDLEIATSFFSEENIIGSSSLSTVYKGRMEDGKIVAVKKLNLQQFSSES 

 

 

VvFLS2       911 DKCFNREVKTLSRLRHRNLVKVLGYAWESGKIKALVLEYMEKGNLDSIIHEPGVDPSRWTLLERINVCIS 

VvFLS2-like  901 DKCFNREVKTLSQLRHRNLVKVLGYAWESGKIKALVLEYMEKGNLDSIIHEPGVDPSRWTLLERINVCIS 

 

 

VvFLS2       981 IARGLVYLHSGYDFPIVHCDLKPSNVLLDGDLEAHVSDFGTARVLGVHLQDGSSVSSSSAFEGTIGYLAP 

VvFLS2-like  971 IARGLVYLHSGYDFPIVHCDLKPSNILLDGDWEAHVSDFGTARILGVHLQDGSSVCSSSAFEGTIGYLAP 

 

 

VvFLS2      1051 EFAYMRELTTKVDVFSFGIIVMEFLTKRRPTGLAAEDGLPLTLRQLVDAALASGSERLLQIMDPFLASIV 

VvFLS2-like 1041 ELAYMRELTTNVDVFSFGIIVMEFLTKRRPTGLAADDGMPLTLREMVDMGLASESKRLLQMMDPFLASTA 

 

 

VvFLS2      1121 TAKEGEVLEKLLKLALSCTCTEPGDRPDMNEVLSSLLKLGAKIPPPLPSSSA 

VvFLS2-like 1111 TEKAGEVLEEVLKL-------------------------------------A 

 

Annex 3. Alignment of deduced protein sequences of VvFLS2 and VvFLS2-like. (Find the legend on the previous 

page). 
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 Protein alignment (id. % / pos. %) 

 
AtCERK1 OsCERK1 LeCERK1 

 
Total LysM Kin Total LysM Kin Total LysM Kin 

VvCERK1 60 / 73 46 / 68 77 / 85 54 / 69 42 / 55 73 / 87 71 / 83 56 / 75 89 / 95 
VvCERK2 57 / 71 44 / 65 74 / 84 55 / 68 47 / 59 73 / 85 65 / 78 53 / 73 84 / 92 
VvCERK3 56 / 69 51 / 68 70 / 80 52 / 66 42 / 57 69 / 81 62 / 77 47 / 71 78 / 90 
AtCERK1 - - - 49 / 63 40 / 56 67 / 79 57 / 73 47 / 67 76 / 86 
 

Annex 4A. Percentage of amino acid identity or similarity between VvCERKs, AtCERK1, OsCERK1 and 

predicted ortholog in tomato (LeCERK1). 
Two sequences of the total protein (Total), the LysM ectodomain (LysM) or kinase domain (Kin) were aligned 

each time with pBLAST (NCBI). OsCERK1 (D7UPN3), LeCERK1 (NP_001233773), AtCERK1 (NP_566689). 

Lys Motifs (LysM, PF01476) and Kinase domain (PF07714) were annotated with SMART. The signal peptide 

and the outer juxtamembrane region were not included in each of LysM domains. The highest homologies are 

highlighted in red.  Alignments were based on sequenced VvCERK coding sequences. 

 

 

 
Protein (id. % / pos. %) Nucleotide                

id. % (cover %) 
 

Total LysM Kin 
VvCERK1 vs. VvCERK2 69 / 81 57 / 73 88 / 93 83% (cover 52%) 
VvCERK1 vs. VvCERK3 67 / 80 57 / 75 81 / 90 80% (cover 51%) 
VvCERK2 vs. VvCERK3 70 / 81 56 / 72 82 / 91 83% (cover 67%) 

 

Annex 4B. Homology in protein and nucleotide sequence between VvCERK1, 2 and 3.  
Two sequences of the total protein, the LysM ectodomain (LysM) or the kinase domain (Kin) or the total 

nucleotide sequences were aligned each time with pBLAST or nBLAST (NCBI), respectively. Lys Motifs 

(LysM, PF01476) and Kinase domain (PF07714) were annotated with SMART.  

 

 

 

Gene 
name 

mRNA ID 
(GenBank) 

CDS 
Length * 

(pb) 
SNPs intron splicing 

VvCERK1 XM_002270951 1845 --- Missing predicted exon (30 bp)              
after bp 657 

VvCERK2 XM_002264291 1878 825(G→A:x), 
1212(C→T:x) 

Different splicing between 355-633 (Exon1) 
Missing a part (42 bp) of predicted  exon 

after bp 680 (Exon3) 

VvCERK3 XM_002264252 1869 
81(T→C:x),306(T→A:x), 

752(T→C:Val→Ala), 
1481(C→A:Ala→Glu), 
1552(A→G:Ile→Val), 
1733(A→T:Gln→Leu) 

Contains extra codon (671-673, Exon4) 

 
Annex 4C. Sequencing of VvCERKs reveals SNPs and different intron splicing. 
The nucleotide sequences of cloned full-length grapevine CDS of VvCERKs (cv. Gamay) and the corresponding 

transcript predictions based on genome sequencing (cv. Pinot Noir PN40024) available on NCBI (Vitis 8x) were 

aligned. The resulting SNPs and differences in splicing are indicated, relative to PN40024 prediction. In bold are 

SNPs changing the amino acid character. *) Length in bp is indicated for sequenced CDS. x: no amino acid 

modification.  
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AtCERK1    1 MKLKI-SLIAP---ILL----LFSFFFAVESKCRTSCPLALASYYLENGTTLSVINQNLN 

VvCERK1    1 MKQKV---------GLG-FFVLLSVFCAVDSQCSRGCDLALGSYYVWQGSNLTFISQLFQ 

VvCERK2    1 MVISSNSRNAIQILAFG-FHFLVLLCSKANAKCSRGCDLALASYYVWDGSNLTYIRKIFG 

VvCERK3    1 MLVFRISRFEL---MLV-FSVLIFLSIGVESKCSRGCDLALASYNIWNGTTLSFIATAFS 

OsCERK1    1 MFSLP----AL---LIGACAFAAAAVAASGDGCRAGCSLAIAAYYFSEGSNLTFIATIFA 

 

 

AtCERK1   53 SSIAPYDQINFDPILRYNSNIKDKDRIQMGSRVLVPFP-CECQP------GDFLGHNFSY 

VvCERK1   51 TT--------ISEILSYNSQIANQDSVEADTRIRVPYSSCDCIN------GEFLGKVFNY 

VvCERK2   60 RE--------ISEILKYNPQIENQDSIDTGSRINVPFR-CDCLN------GDFLGHTFEY 

VvCERK3   57 TS--------ISEIQSFNPQINDIDLIIVDTRLNIPFS-CSCID------GEFLGHTFFY 

OsCERK1   54 IGGG-----GYQALLPYNPAITNPDYVVTGDRVLVPFP-CSCLGLPAAPASTFLAGAIPY 

 

 

AtCERK1  106 SV----RQEDTYERVAISNYANLTTMESLQARNPFPATNIPL-SATLNVLVNCSCGDESV 

VvCERK1   97 TV----QSGDTYDLVAETYYSNLTTSAWLQNFNSYAANQIPDTDAYLNVTLNCSCGNSTV 

VvCERK2  105 TT----QFGDTYDRIAERAFSNLTTEDWVHRVNEYPPTRIPD-DVQINVTVNCSCGNRRV 

VvCERK3  102 SV----DSNDTYNIIARTFYANLTTVEWLERFNRYEATEIPV-NAIINVTVNCSCGNSRV 

OsCERK1  108 PLPLPRGGGDTYDAVAA-NYADLTTAAWLEATNAYPPGRIPGGDGRVNVTINCSCGDERV 

 

 

AtCERK1  161 SKDFGLFVTYPLRPEDSLSSIARSSGVSA----DILQRYNPGVNFNSGNGIVYVPGRDPN 

VvCERK1  153 SKDYGLFLSYPLRPEDNLTSVAESEGLNA----SLLQSYNPDSNFSAGSGLVYIPTKDTS 

VvCERK2  160 SMKYGLFATYPLRDGENLSTVAAAAGITD----DLVRRYNPAADFSAGTGLVFVPAKDQN 

VvCERK3  157 SKKYGLFVTYPLQPGESLSSIANESGLPS----KLLQDYNPGVDFSLGSGLVFIPGKDQN 

OsCERK1  167 SPRYGLFLTYPLWDGETLESVAAQYGFSSPAEMELIRRYNPGMGGVSGKGIVFIPVKDPN 

 

 

AtCERK1  217 GAFPPFKSSK-QDGVGAGVIAGIVIGVIVALLLILFIVYY-AYRKNKSKGDSFSSS--IP 

VvCERK1  209 GSYRALKSS---TGLAGGVIAGISIAAVVGVLLLTVCIYIGFYRKRKVKEAALLPT--EE 

VvCERK2  216 ETYPPLKLS--NSGISSGVIAGISVAGIVGSLLFAFFLFARICKRKKVKKVLFFPAASEQ 

VvCERK3  213 GSYPPLKLSQ-NAGISVGVIAGISVAGVAGSLLLAFVLYAGIYK-RKMGKAPLLPAAFED 

OsCERK1  227 GSYHPLKSGGMGNSLSGGAIAGIVIACIAI-FIVAIWLIIMFYRWQKFRKATSRPSPEET 

 

 

AtCERK1  273 LSTKADH----ASSTSLQSGGLGGAGVSPGIAAISVDKSVEFSLEELAKATDNFNLSFKI 

VvCERK1  264 HSLQPGHGPGIASDKAVESTGPA-FGSSAGLTGITVDKSVEFSYEELAKASDNFNLANKI 

VvCERK2  274 QYMQHRQAHGSASEETSDSAALV-GAASLGLVGITVDKSVEFSYEELATATDNFSLANKI 

VvCERK3  271 QHMQPGQGYGSTLEKTSDSVALV-AAVSLELVGITADKSVEFTYEELAKATNNFSAASKI 

OsCERK1  286 SHLDD----------------------ASQAEGIKVERSIEFSYEEIFNATQGFSMEHKI 

 

 

AtCERK1  329 GQGGFGAVYYAELRGEKAAIKKMDMEASKQFLAELKVLTRVHHVNLVRLIGYCVEGSLFL 

VvCERK1  323 GQGGFGSVYYAELRGEKAAIKKMDMQASREFLAELKVLTHVHHLNLVRLIGYCVEGSLFL 

VvCERK2  333 GQGGFGSVYYAELRGEKAAIKKMDMQASKEFLAELKVLTHVHHLNLVRLIGYCVEGSLFL 

VvCERK3  330 GQGGFALVYYAELQGQKAAIKKMDMQASKEFLAELKVLTHVHHFNLVRLIGYCVTGSLFI 

OsCERK1  324 GQGGFGSVYYAELRGEKTAIKKMGMQATQEFLAELKVLTHVHHLNLVRLIGYCVENCLFL 

 

 

AtCERK1  389 VYEYVENGNLGQHLHGSGREPLPWTKRVQIALDSARGLEYIHEHTVPVYVHRDIKSANIL 

VvCERK1  383 VYEYIENGNLSQHLRGSGRDPLQWSSRVQIALDSARGLEYIHEHTVPVYIHRDIKSANIL 

VvCERK2  393 VYEFIDNGNLSHHLRGSGKDPLPWSSRVQIALDSARGLEYIHEHTVPVYIHRDIKPANIL 

VvCERK3  390 VYEYIENGNLSQHLRGSGNDPLPWSTRVQIALDAARGLEYIHEHTVPVYVHRDIKSANIL 

OsCERK1  384 VYEFIDNGNLSQHLQRTGYAPLSWATRVQIALDSARGLEYLHEHVVPVYVHRDIKSANIL 

 

Annex 4. Alignment of AtCERK1 and its putative orthologs in grapevine (VvCERK1, 2, 3) and in rice 

(OsCERK1). (continues on the next page) 
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AtCERK1  449 IDQKFRAKVADFGLTKLTEVGGS--AT-RGAMGTFGYMAPE-TVYGEVSAKVDVYAFGVV 

VvCERK1  443 IDKNFHGKVADFGLTKLTEVGSS--SLPTRLVGTFGYMPPEYAQYGDVSPKVDVYAFGVV 

VvCERK2  453 IDKKFRAKVADFGLTKLTEVGSA--SIPTRLVGTFGYMPPEYAQYGDVSPKIDVFAFGVV 

VvCERK3  450 IDKNLRAKVADFGLTKLTVAGSS--SLPTRLVGTFGYMPPEYAQFGEVTPKIDVYAFGVV 

OsCERK1  444 LDKDFRAKIADFGLAKLTEVGSMSQSLSTRVAGTFGYMPPE-ARYGEVSPKVDVYAFGVV 

 

 

AtCERK1  505 LYELISAKGAVVKMTEAV-GEFRGLVGVFEESFKETDKEEALRKIIDPRLGDSYPFDSVY 

VvCERK1  501 LYELISAKEAVVKDNGSV-AESKGLVALFEDVLNKPDPREDLRKLVDPRLEDNYPLDSVR 

VvCERK2  511 LYELISAKEAIVKTNEPIMPESKGLVALFEDVLSQPDPREDFVKLIDQRLGDDYPLDSIW 

VvCERK3  508 LYELISAKEAVIKTNGSTTTEARGLVALFENVLSWPDLREDFCELIDHRLGNDYPLDLIW 

OsCERK1  503 LYELLSAKQAIVRSSESV-SESKGLVFLFEEALSAPNPTEALDELIDPSLQGDYPVDSAL 

 

 

AtCERK1  564 KMAELGKACTQENAQLRPSMRYIVVALSTLFSSTGNWDVGNF-QNEDLVSLMSGR 

VvCERK1  560 KMAQLAKACTQENPQLRPSMRTIVVALMTLSSSTEDWDVGSFYDNQALVNLMSGR 

VvCERK2  571 KMAHLAKACTQENPQLRPSMRSIVVALMTLSSSTEDWDVGSFYENEALMNLMSGR 

VvCERK3  568 KMAQLAKACTLEDPQLRPSMQSVVVALMTLSSSTEDWDVRSVYENKALVNLMSGR 

OsCERK1  562 KIASLAKSCTHEEPGMRPTMRSVVVALMALTANTDLRDMD-----------YHPF 

 

 

Annex 5. Alignment of AtCERK1 and its putative orthologs in grapevine (VvCERK1, 2, 3) and in rice 

(OsCERK1). 

Protein sequences were aligned with T-Coffee. Black and gray shading representing identical and positive 

amino acids, respectively, was visualized with Boxshade. The predicted signal peptide, the lysin motifs 

(LysM), the transmembrane region and the serine/threonine (S/T) kinase are shown. The residues of the 

chitin-binding site in AtCERK1-LysM2 are indicated by asterisks and their conservation is highlighted in the 

grades of green. The residues E110, E114 and I141 bind to N-acetyl moieties of (GlcNAc)5, while Q109, T112, 

Y113, A138, T139, N140, P142 and L143 interact with hydroxyl and hydroxymethyl groups of glucose part 

(Liu et al., 2012b). Conserved Cys residues (in red) form disulfide bridges (indicated by arrows). The RD type 

of kinase is highlighted in blue. SNPs A251, E494, V518 and L578 found in VvCERK3 (cv Gamay) are 

highlighted in orange. Residues S266, S268, S270, S274 and T519 (indicated by ●) were found to be 

phosphorylated in AtCERK1 after chitin treatment (Petutschnig et al., 2010). A: Ala, C:Cys, D:Asp, E:Glu, 

F:Phe, G:Gly, H:His, I:Ile, K:Lys, L:Leu, M:Met, N:Asn, P:Pro, Q:Gln, R:Arg, S:Ser, T:Thr, V:Val, W:Trp, 

Y:Tyr. 

 
 

● 
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Annex 6A. The specificity of αsVvCERK3 fragment used for silencing in grapevine. 
Comparison of similarity between the 235 bp fragment used for VvCERK3 silencing and the closest grapevine 

sequences VvCERK1 and VvCERK2 in grapevine. 

 

 

 

 

Annex 6B. The specificity of αsVvCEBiP1 fragment used for silencing in grapevine.  
Comparison of similarity between the last 217 bp of the DNA fragment, used for VvCEBiP1 silencing, and the 

closest grapevine sequence VvCEBiP2. The first 100 bp of the αsVvCEBiP1 fragment are in 5’UTR of 

VvCEBiP1 and are missing in VvCEBiP2. Highlighted in red are stretches of nucleotides identical to 

αsVvCEBiP1 that are longer than 21 nucleotides. 

 

VvCERK3    1 ATGTTAGTGTTTTCTGTGTTGATATTTCTCAGTATTGGAGTAGAATCCAAGTGTAGCAGA 

VvCERK1    1 GGTTTAGGGTTTTTTGTACTGCTCTCCGTTTTCTGTGCAGTTGATTCGCAGTGCAGTCGC 

VvCERK2    1 GCCTTTGGATTTCACTTTCTCGTTCTCCTCTGTTCCAAGGCCAATGCCAAGTGCTCCCGC 

 

 

VvCERK3   61 GGCTGTGATCTTGCTTTAGCTTCATACAATATATGGAATGGTACAACTCTCAGTTTTATA 

VvCERK1   61 GGCTGTGATCTTGCTCTGGGCTCATACTATGTCTGGCAAGGTTCCAACCTCACTTTTATC 

VvCERK2   61 GGCTGTGATCTCGCCCTGGCTTCATACTACGTGTGGGATGGCTCAAACCTCACCTACATT 

 

 

VvCERK3  121 GCCA-CCGCCTTCTCCACTTCTATTTCTGAAATTCAAAGCTTCAATCCTCAAATAAATGA 

VvCERK1  121 TCTC-AGCTATTCCAGACAACGATTTCTGAAATTCTCAGCTACAACTCACAAATCGCTAA 

VvCERK2  121 AGAAAAATCTTTGGCCGC-GAAATCTCGGAAATTCTCAAGTACAATCCCCAAATCGAAAA 

 

 

VvCERK3  180 TATAGATTTGATCATAGTTGATACAAGATTGAATATCCCCTTC---TCCTGCAGTTGCA 

VvCERK1  180 TCAAGATAGTGTTGAAGCCGATACCAGAATCCGCGTGCCTTACTCCTCATGTGATTGCA 

VvCERK2  180 CCAAGACAGCATCGACACTGGCTCCAGAATCAACGTGCCGTTC---CGGTGCGATTGCC 

VvCEBiP1    1 ATGGGTTCTGCTACGCTGCTTCTCGCCCTATCCTTCCTCTCGGTGCTCATCACTGCGCCG 

VvCEBiP2    1 ATGGGTTCTGCTACTCTGCTTCTCGCCCTATTCTTCCTCTCCGTGCTCACCACTGTGCCC 

 

 

VvCEBiP1   61 AGAGCTCAGGCCAGCTTCAAATGCAGCTCCG-------GC--CCCACCTGTAACGCTCTC 

VvCEBiP2   61 AAAGTTCAGGCAGCCTTCACCTGTAACTCCACCACCAGGTCCACCACCTGCAGCGCTCTC 

 

 

VvCEBiP1  112 GTCGGCTACGTCTCCCCCAACACCACCACTCTATCCGCCATCCAGACTCTCTTCGGCGTC 

VvCEBiP2  121 ATCGACTACGTCTCCCCCAACACCACCACTCTATCTGCCATCCAGACTCTCTTCGACGTC 

 

 

VvCEBiP1  172 AAAAACTTTCGAACTCTACTCGGCGCCAACTCCCTCCCGGCCTCGA 

VvCEBiP2  181 AAAAACCTTCGAACTCTACTCGGCGCCAACTCCCTCCCGACCTCGA 

 





  ANNEXES 

113 

 

 

 

OsCEBiP     1 MASLTAALATPAAAALLLLVL-LAAPASAANFTCAVA-SGTTCKSAILYTSPNATTYGNLVARFNTTTLP 

HvCEBiP     1 MPPARL--AAPAA-VLLFLLH-LAATATAANFTCAAP-RGTTCNSAIGYRVPNATTYGALLARFNTTTLA 

VvCEBiP1    1 MGSATLLL-----ALSFLSVL-ITAPRAQASFKCSS---GPTCNALVGYVSPNTTTLSAIQTLFGVKNFR 

VvCEBiP2    1 MGSATLLL-----ALFFLSVL-TTVPKVQAAFTCNSTTRSTTCSALIDYVSPNTTTLSAIQTLFDVKNLR 

AtLYM2      1 METSCFTLLG---LLVSLSFFLTLSAQMTGNFNCSG--STSTCQSLVGYSSKNATTLRNIQTLFAVKNLR 

 

 

OsCEBiP    69 DLLGANGLPDGTLSSAPVAANSTVKIPFRCRCN-GDVGQSDRLPIYVVQPQDGLDAIARNVFNAFVTYQE 

HvCEBiP    66 GLLGANRLPLATSPKRRVAAMATVVIPFTCLCAGNGVGQSDHAPVYTVQPQDGLYAIARDSFDAVVTYQE 

VvCEBiP1   62 TLLGANSLPASTPTNQSVAAKDKIVIPFRCRCS-NGTGISNHRPVYTVQKDDGLYHIAAEVFAGLVTYQE 

VvCEBiP2   65 TLLGANSLPTSTSPNQSVAAKDKIVIPFRCRCS-NGTGISNHRPVYTVQKDDGLYHIAAEVFAGLVTYQE 

AtLYM2     66 SILGANNLPLNTSRDQRVNPNQVVRVPIHCSCS-NGTGVSNRDIEYTIKKDDILSFVATEIFGGLVTYEK 

 

 

OsCEBiP   138 IAAANNIPDPNKINVSQTLWIPLPCSCDKEEGSNVMHLAYSVGKGENTSAIAAKYGVTESTLLTRNKIDD 

HvCEBiP   136 IATANKIADVNLINVGQKLWIPLPCSCDPVGGADVFHLAHIVNGGETTSGIAATFGVTEDTLLKLNNIAD 

VvCEBiP1  131 IQAVNNISDANLIEVGQELWIPLPCSCDEVNESKVVHYGHVVESGSSVAEIAEKYGTTEETLLELNNITD 

VvCEBiP2  134 IQAVNNISDANLIEVGQELWIPLPCSCDEVNGSKVVHYGHVVEAGSSVELIAEEYGTTQETLLRLNGITD 

AtLYM2    135 ISEVNKIPDPNKIEIGQKFWIPLPCSCDKLNGEDVVHYAHVVKLGSSLGEIAAQFGTDNTTLAQLNGIIG 

 

 

OsCEBiP   208 PTKLQMGQILDVPLPVCRSSISD-TSADHNLMLLPDGTYGFTAGNCIRCSCSS-TTYQLNCTAV-----Q 

HvCEBiP   206 PKSLKKDQVLDVPLPVCSSSISN-NSADHNL-RLPNGTYALTAQDCIQCSCSS-NTFQLDCTLQ-----G 

VvCEBiP1  201 PKNLKAGDVLDVPLKACTSVVKN-TSLDYPL-LLSNGTYAYTANNCVKCQCYSANNWTLQCEQSG-LNIT 

VvCEBiP2  204 PKNLQAGAVLDVPLKACTSMVANNNSLDYPL-LVANGTYVYTANSCVMCKCDSANNWTLQCEPSQ-LKLS 

AtLYM2    205 DSQLLADKPLDVPLKACSSSVRK-DSLDAPL-LLSNNSYVFTANNCVKCTCDALKNWTLSCQSSSEIKPS 

 

 

OsCEBiP   271 N-KGCPSVPLCNGTLKLGETNGTGCG-STTCAYSGYSNSSSLIIQTSLAT-NQ-TTACQRGGSGRSQFAR 

HvCEBiP   268 K-KGCPAVPPCNGGLKLGDTSGAGCD-STMCAYSGYSNGSSFSIQTTLFK-NQTAPACEKGGSSRSVFAG 

VvCEBiP1  268 N-GTCPSMECGSSGLSIGNSTSTTCN-RTTCAYAGYTNQTIF---TSLVE-ST-CSSTNNAPSYASKITL 

VvCEBiP2  272 N-RTCPSMQCEGSSLYIGNSTSAGCN-RTTCAYAGYTSQMIL---TTLVEGNA-CSASNDA----QKIGL 

AtLYM2    273 NWQTCPPFSQCDGALL-----NASCRQPRDCVYAGYSNQTIF---TTAS--PA-CPDSAGPDNYASTL-S 

 

 

OsCEBiP   337 SMWS--MSV---ISFHMV-LIIICFL 

HvCEBiP   335 SVWR--ISA---ISFHMV-LILVCFL 

VvCEBiP1  331 PSWRWNFVF---IVSQLVMLYLHHSQ 

VvCEBiP2  332 QVWSWAFLFISSIALAWSSIFSVRSL 

AtLYM2    331 SSFN--FVI---VLIQCA-LLCLCLL 

 

 
Annex 7. Alignment of OsCEBiP and its orthologs in barley (HvCEBiP), Arabidopsis (AtLYM2) and the 

putative orthologs in grapevine (VvCEBiP1, 2). Protein sequences were aligned with T-Coffee and shading 

was visualized with Boxshade. Lys motifs (LysM) and transmembrane region (TM) are indicated. Conserved 

Cys residues (in red) form disulfide bridges (indicated by arrows). The residues P119, I122 and V124 (counted 

without the signal peptide) involved in the interaction of LysM1-OsCEBiP with the (GlcNAc)8 ligand (Hayafune 

et al., 2014) are indicated with asterisks. A: Ala, C:Cys, D:Asp, E:Glu, F:Phe, G:Gly, H:His, I:Ile, K:Lys, L:Leu, 

M:Met, N:Asn, P:Pro, Q:Gln, R:Arg, S:Ser, T:Thr, V:Val, W:Trp, Y:Tyr. 
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Abstract 

Pattern-recognition receptors (PRRs) play a key role in plant immunity by assuring 

recognition of microbe-associated molecular patterns (MAMPs), signature of microbial presence. 

MAMP perception constitutes the first layer of pathogen detection and activates defense 

mechanisms that aim to block the intruder.  

This study brings an insight into how grapevine (Vitis vinifera) perceives two MAMPs: 

the flagellin-derived flg22 peptide and chitin, which are conserved motifs occurring over the 

whole bacterial and fungal classes, respectively. This study analyzed MAMP-triggered early 

signaling events, defense gene expression and also the efficiency of elicited defense against gray 

mold and downy mildew diseases. These two MAMPs are active in grapevine suggesting that 

perception systems exist. So far, no PRR is known for this crop. 

Given the availability of grapevine genome, we could identify in silico putative 

grapevine receptors (VvFLS2, VvCERK1-3 and VvCEBiP1-2) that might function as PRRs for 

flg22 and chitin, respectively. Their functional characterization was firstly achieved by 

complementation assays in the corresponding A. thaliana mutants and, secondly, by a gene 

silencing strategy in grapevine. 

Our results permitted the identification of VvFLS2, the V. vinifera receptor for the 

bacterial flagellin. The function of VvFLS2 was demonstrated by restoring the flg22 

responsiveness in the Arabidopsis fls2 null mutant. Thus, our work provides the first description 

of an active grapevine PRR-MAMP pair. We further compared VvFLS2 and the Arabidopsis 

receptor, AtFLS2, in their capability to perceive flagellin-derived flg22 epitopes from endophytic 

or pathogenic bacteria. Our data clearly show that VvFLS2 differentially recognizes flg22 from 

different bacteria and suggest that flagellin from the beneficial plant growth-promoting 

rhizobacteria (PGPR) Burkholderia phytofirmans has evolved to evade grapevine immune 

recognition system. We also obtained preliminary data on chitin sensing system in grapevine and 

show that VvCERK3 might be a functional ortholog of AtCERK1 by partly restoring the 

oxidative burst triggered by chitin in the Arabidopsis cerk1-2 mutant. 
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