
HAL Id: tel-01169692
https://theses.hal.science/tel-01169692

Submitted on 30 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph mining for object tracking in videos
Fabien Diot

To cite this version:
Fabien Diot. Graph mining for object tracking in videos. Image Processing [eess.IV]. Université Jean
Monnet - Saint-Etienne, 2014. English. �NNT : 2014STET4009�. �tel-01169692�

https://theses.hal.science/tel-01169692
https://hal.archives-ouvertes.fr

École Doctorale "Science, Ingénierie, Santé" (ED 488)

THÈSE

pour l'obtention du grade de

Docteur en Informatique

de l'Université Jean-Monnet

défendue le 3 Juin 2014 par

Fabien Diot

FOUILLE DE GRAPHES POUR LE SUIVI

D'OBJETS DANS LES VIDÉOS

Commission d'examen:

Examinateurs: Christine Solnon - Professeur, INSA Lyon

Christophe Ducottet - Professeur, Université Jean Monnet de Saint-Étienne

Rapporteurs: Toon Calders - Professeur, Université Libre de Bruxelles

Christian Wolf - Maître de Conférences - HDR, INSA Lyon

Directeur: François Jacquenet - Professeur, Université Jean Monnet de Saint-Étienne

Co-directeurs: Elisa Fromont - Maître de Conférences, Université Jean Monnet de Saint-Étienne

Baptiste Jeudy - Maître de Conférences, Université Jean Monnet de Saint-Étienne

Olivier Martinot - Directeur de Département, Alcatel-Lucent BellLabs

Invité: Emmanuel Marilly - Ingénieur de Recherche, Alcatel-Lucent BellLabs

Doctoral School "Science, Ingénierie, Santé" (ED 488)

PhD THESIS

to obtain the title of

Doctor in Computer Science

of the University Jean-Monnet

defended the 3rd of June 2014 by

Fabien Diot

GRAPH MINING FOR OBJECT TRACKING IN

VIDEOS

Jury:

Examiners: Christophe Ducottet - Professor, Université Jean Monnet, Saint-Étienne

Christine Solnon - Professor, INSA Lyon

Reviewers: Toon Calders - Professor, Université Libre de Bruxelles

Christian Wolf - Assistant Professor - HDR, INSA Lyon

Supervisor: François Jacquenet - Professor, Université Jean Monnet, Saint-Étienne

Co-supervisors: Elisa Fromont - Assistant Professor, Université Jean Monnet, Saint-Étienne

Baptiste Jeudy - Assistant Professor, Université Jean Monnet, Saint-Étienne

Olivier Martinot - Department Director, Alcatel-Lucent BellLabs

Invited: Emmanuel Marilly - Research Engineer, Alcatel-Lucent BellLabs

REMERCIEMENTS

Je voudrais commencer par remercier les Professeurs Toon Calders, de l'Université

Libre de Bruxelle, et Christian Wolf, de l'Institut National des Sciences Appliquées

de Lyon, d'avoir accepté de rapporter mon travail de thèse et permis d'améliorer ce

manuscrit grâce à leurs remarques constructives. J'adresse également mes remercie-

ments à Christine Solnon, Professeur à l'Institut National des Sciences Appliquées de

Lyon, et Christophe Ducottet, Professeur l'Université Jean Monnet de Saint Etienne,

pour leur implication en tant qu'examinateurs de ces travaux.

Je tiens ensuite à remercier François Jacquenet pour la con�ance qu'il m'a accordé

en acceptant d'associer son nom à mes travaux en tant que directeur de cette thèse,

faisant � de la piètre qualité du projet de compilation de 3ème année. Je remercie, tout

particulièrement et chaleureusement, mes encadrants au laboratoire Hubert Curien.

Baptiste Jeudy, pour son expertise, sa patience et sa capacité à toujours trouver une

explication simple et intuitive à des problèmes compliqués. Elisa Fromont pour son

éternelle bonne humeur, son implication et l'énergie dont elle a fait preuve, chaque

jour et sur tous les fronts, dans l'accompagnement et l'organisation de cette thèse

pour me recentrer, me motiver et me secouer à chaque fois que cela a été nécessaire.

En dépit de conditions parfois di�ciles, en raison de l'alternance entre Paris et Saint

Etienne, vous avez tous les deux e�ectué un formidable travail d'encadrement sans

lequel cette thèse ne se serait certainement pas aussi bien déroulée. Je remercie aussi

mes encadrants aux Bell Labs, Emmanuel Marilly et Olivier Martinot qui on su me

guider dans les méandres administratifs d'Alcatel-Lucent ainsi que pour toutes ces

discussions qui m'ont permis de prendre du recul sur mes travaux.

Je salue les collègues du laboratoire Hubert Curien, Aurélien, Chahrazed, Chris-

tophe, David, Emilie M., Emilie S., Mathias, Mickaël, Jean-Philippe, Julien S., Laurent,

Thomas et Tung, avec une mention spéciale pour Fabrice A. qui a toujours pris le

temps de répondre à mes questions concernant linux. Je remercie aussi les collègues

d'Alcatel-Lucent, Abdelkader, Alexandre, Arnaud, Corinne, Erwan, Fabrice P., Flo-

iv

rentin, Gérard, Johann, Jerôme, Karim, Marwen, Myriam, Nicolas, Olivier D., Syl-

vain, Vincent H. et Vincent V. pour leur accueil chaleureux au sein des Bell Labs.

Je n'oublie pas les nombreux amis, toujours présents pour partager un canon (avec

l'accent Stephanois). Je remercie ceux qui ont pu se libérer pour assister à ma sou-

tenance, Antoine, Cécile, Charlotte, Gregory (dit Schnoble) avec qui j'ai partagé de

nombreuses discussions constructives (ou pas...) pendant nos pauses déjeuné, Julien

B. (dit Pepess) qui a répondu présent à chaque fois que j'ai eu besoin de lui, de son

drone ou de sa voiture pour réaliser des vidéos et en�n Pierre-Emmanuel (dit Jhu-

nior) pour son petit mot de félicitations qui m'a beaucoup touché. Remerciements

sincères aux amis Parisiens qui m'ont hébergé pendant les débuts di�ciles de cette

thèse, Florent (dit Noeil), Eric et Julie qui nous on prêté leur appartement durant

l'été 2011, Odile et Thomas (dit Roux), ainsi que Gilles et Anne-Flore et leurs amis

qui m'ont accueilli comme l'un des leurs.

En�n, je remercie ma famille, en me remémorant tous ces bons moments passés

ensemble les Samedi et Dimanches après midi chez mes grand-parents. Mes deux

frères, avec qui j'ai partagé une enfance heureuse. Mes parents qui ont admirablement

réussi dans cette di�cile épreuve qu'est celle d'élever trois garçons turbulents (en

particulier en groupe ...). Pour terminer je remercie Delphine, à qui cette thèse et

moi devons beaucoup. Tu m'a supporté quand moi même je n'y arrivais plus et ton

soutien ainsi que tout amour mon énormément aidé à franchir les épreuves. Merci.

v

TABLE OF CONTENTS

REMERCIEMENTS . iv

LIST OF FIGURES . ix

LIST OF TABLES . xi

1. Introduction . 1

I Background 6

2. A Review of Object Detection and Tracking in Videos 7

2.1 Feature Extraction . 8
2.1.1 Interest Point Detection 8
2.1.2 Image Segmentation 9
2.1.3 Edge Detection . 11

2.2 Tools for Visual Tracking . 11
2.2.1 Sliding Window . 11
2.2.2 Background Subtraction 12
2.2.3 Optical Flow . 13
2.2.4 Lucas-Kanade Tracker 15
2.2.5 Mean-Shift Tracker 17
2.2.6 Kalman Filter . 18
2.2.7 Particle Filter . 22

2.3 State-of-the-Art Trackers . 25
2.3.1 Part-Based Tracking 25
2.3.2 Segmentation Based Approaches 27
2.3.3 Tracking by Detection 29
2.3.4 Trackers Exploiting Context 31
2.3.5 Data Association for Multi-Target Tracking 34
2.3.6 Arbitrary Object Detection and Tracking 37

2.4 Datasets . 40

vi

2.5 Conclusion . 45

3. Graph Mining . 47

3.1 Introduction . 47
3.2 Generalities on Frequent Pattern Mining 48
3.3 De�nitions and Notations . 50

3.3.1 Graphs . 50
3.3.2 Isomorphism and Subgraph Isomorphism 52
3.3.3 Support and Frequency of a Subgraph Pattern . . . 53

3.4 The Di�erent Components of Graph Mining Algorithms . . . 54
3.4.1 Graph Matching . 55
3.4.2 Canonical Representations 57
3.4.3 Candidate Generation 58

3.5 Review of Graph Mining Algorithms 60
3.5.1 Exact Mining . 61
3.5.2 Inexact Mining . 65

3.6 Graph Representations of Videos 69
3.6.1 Graph Representations of Images Based on Interest

Points . 70
3.6.2 Graph Representations of Images Based on Segmen-

ted Regions . 71
3.6.3 Video Representation 73

3.7 Conclusion . 74

II Contributions 76

4. Mining Spatio-Temporal Patterns in Dynamic Graphs 77

4.1 Introduction . 77
4.2 De�nitions . 78

4.2.1 Dynamic Plane Graph and Frequency of Plane Sub-
graph Patterns . 78

4.2.2 Occurrence Graph and Spatio-Temporal Patterns . . 79
4.2.3 Problem De�nition 84

4.3 Mining Spatio-Temporal Patterns 84
4.3.1 Extensions . 85
4.3.2 Graph Codes . 86
4.3.3 Code Search Space and Canonical Codes 87
4.3.4 Algorithms . 88

4.4 Experiments . 94
4.4.1 Video Datasets . 96
4.4.2 A comparison of Plagram and gSpan 97

vii

4.4.3 Impact of the Spatio-Temporal Constraints on the
E�ciency . 102

4.5 Conclusions . 104

5. Tracking Objects in Videos Using Spatio-Temporal Patterns 106

5.1 Introduction . 106
5.2 Tracking with Patterns . 107

5.2.1 Spatio Temporal Path 107
5.2.2 Clusters of Spatio-Temporal Patterns 108

5.3 Datasets . 112
5.4 Meaningfulness of the (Spatio-Temporal) Patterns 114

5.4.1 Output of Plagram (plane graph patterns) 115
5.4.2 Output of DyPlagram and DyPlagram_st . . 117
5.4.3 Spatio-Temporal Paths for Object Tracking 120

5.5 Clusters of Spatio-Temporal Patterns for Tracking 123
5.5.1 Experimental design 123
5.5.2 Results . 125

5.6 Conclusions . 130
5.7 Possible Applications . 131

6. Conclusion et Perspectives . 134

6.1 Conclusion . 134
6.2 Perspectives . 136

BIBLIOGRAPHY . 139

viii

LIST OF FIGURES

Figure

2.1 SIFT histograms of gradient orientation 9
2.2 Edges detected with the Canny edge detector 12
2.3 Optical �ow example . 14
2.4 Iterations of Mean-Shift . 18
2.5 Kalman �ltering example . 19
2.6 Main steps of the Kalman �lter . 21
2.7 Main steps of the particle �lter . 22
2.8 Particle �lter example . 24
2.9 FragTrack's grids of image patches 25
2.10 Graph cut example . 28
2.11 Branching Tree of Gu and Tomasi (2011) 32
2.12 Recall results of object proposals 40
2.13 CAVIAR dataset . 41
2.14 PETS 2009 dataset . 42
2.15 TUD dataset . 42
2.16 Babenko dataset . 42
2.17 TLD dataset . 43
2.18 SegTrack dataset . 43
2.19 ETHMS dataset . 44
2.20 Caltech dataset . 44
3.1 Plane graphs . 53
3.2 Patterns with non-monotonic support 54
3.3 gSpan's depth-�rst search tree . 58
3.4 Search space of all subgraphs . 59
3.5 Breadth-�rst search and depth-�rst search 59
3.6 Di�erences between graph mining algorithms 64
3.7 Neighborhood graphs . 71
3.8 Example of Region Adjacency Graph 72
3.9 Decomposition of an object into darts 73
3.10 Combinatorial map representation 73
4.1 spatial distance without an anti-monotonic property 80
4.2 Spatial distance with an anti-monotonic property 82
4.3 Occurrences of a pattern and occurrence graph with τ = 3. 83

ix

4.4 Plane graphs . 85
4.5 Graph codes . 87
4.6 Code tree . 89
4.7 Algorithm Plagram. 89
4.8 Algorithm DyPlagram. 90
4.9 Generation of spatio-temporal patterns. 93
4.10 DyPlagram_st algorithm . 95
4.11 Example of RAGs . 98
4.12 E�ciency of Plagram vs gSpan on the Triangulated dataset . . . 100
4.13 E�ciency of Plagram vs gSpan on the RAG dataset 101
4.14 Relative step times of Plagram 102
4.15 E�ciency of DyPlagram and Plagram 103
4.16 E�ciency of Plagram, DyPlagram and DyPlagram_st for dif-

ferent temporal threshold values . 103
4.17 E�ciency of DyPlagram and DyPlagram_st 104
4.18 E�ciency of Plagram, DyPlagram and DyPlagram_st for dif-

ferent spatial threshold values . 105
5.1 Example of an occurrence graph . 109
5.2 Example of two overlapping spatio-temporal patterns 110
5.3 Lifetime . 111
5.4 Example of frame and RAGs obtained from the synthetic videos . . 113
5.5 Example of discovered patterns . 116
5.6 Precision and Recall of CT, TLD, TRAP, TRAP+VS and VC+C . 125
5.7 Precision and Recall on real videos 126
5.8 Cluster of spatio-temporal patterns 126
5.9 Quality of the best and longest clusters 127
5.10 Precision and recall of TRAP with tau=75 129
5.11 Execution time and number of patterns for TRAP and VS+C . . . 130
5.12 XML video summary . 132

x

LIST OF TABLES

Table

3.1 gSpan's depth-�rst codes . 58
3.2 Permutation β1 and involution β2 of the combinatorial map in Figure

3.10 . 73
4.1 Major di�erences between Plagram, DyPlagram and DyPla-

gram_st . 84
4.2 Valid codes . 87
5.1 Average precision and recall of patterns discovered by Plagram . . 117
5.2 Evaluation of the spatio-temporal patterns on a synthetic video . . 118
5.3 Precision and recall of spatio-temporal patterns for a real video . . . 119
5.4 Evaluation of the spatio-temporal paths 121
5.5 Precision and recall of the spatio-temporal paths for a real video . . 122

xi

CHAPTER 1

Introduction

L'omniprésence des moyens de capture vidéo, tels que les appareils photo ou encore

les téléphones portables et la facilité de partage de ces contenus produits à travers des

plate-formes comme Youtube, Dailymotion ou encore les réseaux sociaux, a conduit

à une explosion du volume de documents multimédias disponibles sur internet. Par

exemple en 2014, il a été estimé que 100 heures de vidéos sont "uploadées" chaque

minute sur Youtube 1. Cette masse de données multimédia soulève de nombreux pro-

blèmes, en particulier celui de leur indexation permettant aux moteurs de recherche

(e.g. Google) de les retrouver facilement. Pour pouvoir répondre de manière e�cace

et pertinente aux requêtes des utilisateurs dans les moteurs de recherche, il est néces-

saire d'associer à chaque contenu multimédia un ensemble de mots-clés. Ces derniers

peuvent prendre une forme textuelle (ce qui est le plus souvent utilisé en indexation)

mais peuvent aussi être constitués de résumés en images ou de courtes séquences vidéo

permettant à un utilisateur de décider rapidement de l'intérêt d'un contenu retourné

par un moteur de recherche. Dans la plupart des cas, les plate-formes de partage

encouragent le producteur de contenu à fournir ces mots-clés. Cependant, ces infor-

mations peuvent être erronées ou simplement incomplètes. Par exemple, il n'est pas

rare de voir des noms de jeux vidéos connus ou des personnes célèbres être associés à

des vidéos simplement pour en augmenter le nombre de vues. De même il est courant

qu'une vidéo soit mise en ligne sans aucun mot-clé associé. De nombreux travaux

sont donc consacrés à l'extraction automatique (sans intervention de l'utilisateur) de

l'information contenue dans les documents multimédias pour en permettre un usage

plus pertinent par la suite.

De nombreuses pistes ont été explorées pour permettre d'associer automatique-

ment à une vidéo un ensemble de mots-clés (des catégories) ou un résumé visuel

de celle-ci (qui pourra ensuite être classé pour permettre une indexation plus perti-

1source : www.youtube.com/yt/press/

1

nente). Dans cette thèse, nous nous intéressons particulièrement aux méthodes qui

ne nécessitent pas d'apprendre des modèles à partir de données étiquetées, appelées

méthodes non supervisées, qui sont plus réalistes pour traiter des vidéos au contenu

très variable. Contrairement aux données textuelles, le contenu visuel n'est pas régi

par un vocabulaire et une grammaire permettant de l'analyser e�cacement et d'en

déduire le sens ainsi que le sujet. Là où les caractères d'un alphabet sont regrou-

pés en mots, phrases et paragraphes dans les documents textuels, la structuration de

l'information contenue dans les images reste à déterminer. Par exemple, le problème

de segmentation qui consiste à regrouper les pixels en ensembles cohérents représen-

tant les di�érents objets d'une image sans avoir une idée du type d'objet recherché

a priori, a fait l'objet de recherches durant des décennies et est toujours d'actualité.

Pourtant, de la même manière que deux textes peuvent être comparés en mesurant

la similitude de la distribution des mots qui les composent, deux images peuvent

également être comparées en utilisant, par exemple, des histogrammes re�étant la

distribution de la couleur des pixels de chacune d'elles. Cette approche permet de

mesurer la similarité de deux images en se basant sur la distribution des couleurs de

leurs pixels mais ignore complètement leur sens. Par exemple, deux images représen-

tant la même scène, l'une de jour et l'autre de nuit, seront considérées très di�érentes

par cette méthode, alors qu'à l'inverse, deux images représentant des objets di�érents

mais de même couleur pourront être considérées similaires. Dans le cas de vidéos, les

histogrammes de couleur sont utilisés pour détecter des frames clefs, c'est à dire, des

frames considérées importantes car ayant une distribution de couleur très di�érente

de celles des frames précédentes, indiquant que la scène a, par exemple, évolué. Ces

frames clefs peuvent être utilisées pour fournir un résumé visuel de la vidéo, mais les

histogrammes ne permettent pas de fournir d'informations sémantiques précises sur

le contenu des séquences vidéo extraites. En particulier, ils ne permettent pas de se

focaliser sur les objets d'intérêts. L'information utilisée dans ces histogrammes est de

trop bas niveau pour décrire le contenu visuel. La structure d'une image, c'est à dire,

la façon dont sont agencés les di�érents éléments visuels qui la composent, est donc

une information capitale pour analyser celle-ci. Les mots visuels locaux ou les repré-

sentations pyramidales de ces mots tentent d'apporter une solution à ce problème en

représentant la structure d'une image à l'échelle de petits groupes de pixels. Cette

structuration reste toutefois limitée car ces mots visuels, au contraire des mots dans

un texte, ne sont pas disposés les uns par rapport aux autres selon les règles d'une

grammaire formelle bien dé�nie ce qui limite leur capacité à décrire la relation entre

les di�érents éléments visuels ainsi que la structure globale de l'image. Notre but dans

cette thèse est d'extraire de l'information sémantiquement pertinente des vidéos de

2

manière non supervisée en prenant en compte les informations topologiques pouvant

exister entre les éléments d'une image. Cette information pertinente prendra la forme

de tracks représentant les objets d'intérêts suivis dans une vidéo.

Dans le cas des vidéos, il est possible d'utiliser l'information temporelle en plus

de l'information spatiale pour identi�er les objets. Lorsqu'un modèle de l'arrière plan

de la scène est connu, comme c'est le cas dans beaucoup d'applications de vidéo

surveillance, il est possible de détecter les objets se déplaçant dans le champ de vision

de la caméra en soustrayant chaque image au modèle de l'arrière plan. Toutefois, même

s'il est possible de maintenir à jour un modèle de l'arrière plan au fur et à mesure que

de nouvelles images arrivent, cette méthode requiert que le mouvement de la caméra

soit faible. Une autre stratégie couramment utilisée même lorsque l'arrière plan est

instable, consiste à entraîner un classi�eur sur un ensemble d'images représentant

la classe d'objets souhaitée. Cette méthode requiert de connaître à l'avance le type

d'objets intéressants et de béné�cier de su�samment d'exemples d'apprentissage pour

apprendre un modèle robuste. Elle est donc assez di�cile à généraliser à tous les objets

pouvant apparaître dans une vidéo dans une base comme Youtube.

Les approches actuelles ne sont applicables que dans des contextes particuliers et

ne peuvent donc pas être utilisées pour traiter automatiquement un grand nombre

de vidéos au contenu très di�érent. Le fait que la caméra soit immobile peut être

facilement détecté (e.g., en utilisant des techniques de �ux optique), auquel cas les

méthodes de soustraction de fond peuvent permettre de détecter e�cacement les ob-

jets. Dans le cadre de cette thèse nous nous intéressons à ce qui constitue un objet

intéressant spéci�quement dans le cas de vidéos prises par une caméra en mouvement.

Pour détecter les tracks représentant les objets d'intérêts, nous partons de l'hypothèse

que les objets principaux apparaissent plus fréquemment que l'arrière plan puisque

celui-ci change constamment. Par conséquent, nous considérons qu'un objet est un

ensemble d'éléments visuels qui apparaissent fréquemment dans les images d'une vi-

déo. De plus, la relation de topologie entre les éléments visuels d'un même objet est

supposée cohérente dans le temps ce qui nous pousse à rechercher des structures ap-

paraissant fréquemment. Pour modéliser la structure globale d'une image, nous nous

intéressons aux représentations à base de graphes attribués. Pour des raisons qui se-

ront évoquées dans ce manuscrit, nous avons décidé de modéliser chaque frame d'une

vidéo par un graphe d'adjacence de régions. Ce graphe s'appuie sur une segmentation

au préalable de l'image en régions. Chaque région est représentée par un n÷ud et

l'adjacence entre deux régions (et donc la topologie) est modélisée par un arc entre

les deux n÷uds correspondant aux régions. Le problème de recherche, non supervisée,

d'ensembles d'éléments visuels fréquents à la topologie cohérente dans le temps (les

3

tracks) est analogue au problème de la fouille dynamique de sous graphes fréquents,

c'est à dire à une recherche de sous graphes fréquents dans une base de données de

graphes représentant une vidéo donnée. De plus, le processus de fouille de graphes

étant non supervisé par essence, et le critère d'intérêt étant basé sur la fréquence, il

n'est plus nécessaire qu'un utilisateur intervienne pour sélectionner les objets à suivre

ou de connaître à l'avance le type d'objets présents dans la vidéo. Dans cette thèse

nous nous focaliserons donc sur l'utilisation de ce type de méthodes pour extraire les

tracks.

Ce document est organisé de la façon suivante. La première partie est consacrée

à l'étude des deux domaines de recherche liés à cette thèse.

• Le chapitre 2 traite des techniques de traitement de l'image utilisées pour le suivi

d'objets dans les vidéos a�n de mettre en avant les limitations des approches

actuelles.

• Le chapitre 3 se concentre sur le domaine de la fouille de graphes fréquents et

en présente les principes ainsi que les principales approches développées dans la

littérature.

La seconde partie de cette thèse est consacrée au développement de nos contribu-

tions.

• Le chapitre 4 est dédié aux contributions dans le domaine de la fouille de graphes

fréquents. Notamment, nous présentons un algorithme de fouille de graphes

plans e�cace ainsi qu'une approche permettant d'exploiter l'information spatio-

temporelle des vidéos pour limiter le nombre de graphes fréquents produits par

notre algorithme et générer des motifs spatio-temporels. Plus précisément, ce

chapitre décrit le fonctionnement de nos trois algorithmes, Plagram (Prado

et al. (2011)), DyPlagram (Prado et al. (2013)) et DyPlagram_st (Diot

et al. (2012)). Il présente les expérimentations conduites dans Prado et al. (2011)

montrant la supériorité, en terme d'e�cacité, de Plagram en comparaison de

l'algorithme générique gSpan dans le cadre de la fouille de graphes plans. Ce

chapitre expose aussi les expérimentations de Prado et al. (2013), comparant

entre autre l'e�cacité de Plagram et DyPlagram ainsi que celles de Diot

et al. (2012), comparant l'e�cacité de DyPlagram et DyPlagram_st.

• Le chapitre 5 présente nos contributions dans le domaine du suivi d'objets. Il dé-

veloppe deux stratégies utilisant les sous graphes fréquents découverts par notre

4

algorithme de fouille. La première, présentée dans Diot et al. (2012), consiste

à construire un graphe connectant les occurrences de sous graphes fréquents

qui sont similaires. La deuxième méthode, appelée TRAP, utilise une technique

de clustering hiérarchique pour regrouper les motifs spatio-temporels de Dy-

Plagram_st ayant une trajectoire similaire. Ces clusters sont ensuite classés

en fonction de leur taille et du nombre d'images de la vidéo qu'ils couvrent.

Ce chapitre expose les expérimentations de Prado et al. (2011), Prado et al.

(2013) et de Diot et al. (2012), visant à montrer que les motifs fréquents de

Plagram, les motifs spatio-temporels de DyPlagram_st et ceux obtenus

en post-traitement des motifs de DyPlagram ont un sens dans un contexte de

suivi d'objets. Les expérimentations de Diot et al. (2012) permettent aussi de

montrer que le chemin le plus court dans le graphe des occurrences permet de

suivre l'objet principal d'une vidéo. Ce chapitre contient aussi une série d'expé-

rimentations publiées dans Diot et al. (2014) montrant que les clusters les mieux

classés, produits par TRAP, correspondent souvent aux objets principaux dans

les vidéos testées. En�n, dans la conclusion de ce chapitre, deux applications

possibles de notre approche, qui ont donné lieu au dépôt de deux brevets, sont

brièvement décrites. La première concerne le résumé automatique de vidéos et

la deuxième présente une application permettant de construire un nuage d'éti-

quettes visuelles pour décrire une vidéo de la même manière que des nuages de

mots sont utilisés pour décrire du texte.

5

Part I

Background

6

CHAPTER 2

A Review of Object Detection and Tracking in

Videos

The visual tracking problem consists in determining the position of objects at

each time step (frames) in a given video. Objects can be of very di�erent types

(e.g., rigid/deformable, variety of textures, di�erent motion ...). The tracking context

can also vary a lot (moving/non-moving camera, clutter, number of objects in the

scene, frequency of occlusions...). Therefore, depending on the information known in

advance about the tracked objects and about the tracking context, the problem of

visual tracking can be addressed in very di�erent ways. For example, in the context

of video surveillance with non moving cameras, the fact that the background is �xed

can be exploited to easily detect moving objects by subtracting consecutive frames

and focus on what has changed. Visual tracking is a very active �eld of research

in the computer vision domain which has grown quickly during the past 20 years.

Indeed, the access to cheap cameras and the development of the web allow users to

produce and share an increasing amount of multimedia content. Because of this, a lot

of e�orts have been put into developing processing tools to extract useful information

from videos. In that regard, being capable of tracking visual features is important

for a lot of applications. For instance, visual tracking is used in video surveillance

applications to track pedestrians and detect suspicious activities and unlikely events.

It is also used for video indexing purposes, by detecting and tracking the objects

in a scene in order to describe it. Visual tracking is also e�ectively used for tra�c

monitoring and vehicle navigation or in the �eld of human-computer interactions

through gesture recognition and eye gaze tracking.

To achieve visual tracking, a variety of visual features can be used. For example

interest points are well suited to describe local features with high precision but fail

at capturing more global features such as shape or topology. Regions and edges are

better suited for the representation of shape and topology but are usually much more

7

in�uenced by image variations in images and are therefore harder to track robustly.

Because the literature about visual tracking is so vast, the purpose of this short

review is not to study each approach that has been used in the past but rather to

identify the current trends in the �eld. The interested reader can �nd a more broad

review of the �eld up to 2006 in Yilmaz et al. (2006). A more recent technical report

of York University also reviews the �eld of visual tracking in Cannons (2008). In

section 2.2 we will introduce some basic tools that are commonly incorporated in

video tracking frameworks. Section 2.3 will deal with the recent approaches in the

visual tracking �eld and section 2.5 will conclude.

2.1 Feature Extraction

In order to track an object, one has to be able to �nd visual features representing

it that are discriminant and robust enough. Those visual features can be regrouped

in three major categories : points, extracted through interest point detection, regions,

obtained with image segmentation techniques and edges, computed with edge detec-

tors. This section will focus on giving some basic information about the techniques

used in the literature to extract those 3 types of visual features.

2.1.1 Interest Point Detection

Interest points are small image patches, that exhibit texture properties. They are

usually associated with a descriptor that tries to represent it in an invariant manner

with respect to illumination changes and camera viewpoint. One of the �rst point

detectors, called the Moravec point detector, was presented in Moravec (1979). The

idea developed by the authors is to select image patches that have a low similarity, in

term of intensities, with nearby overlapping larger image patches. The sum of square

di�erences (SSD) is used to measure the similarity between two patches.

Another early point detector, named the Harris point detector was presented in

Harris and Stephens (1988). Its principle is to use the image derivatives on x and y

to evaluate if shifting a small window would reduce the SSD between the intensities

of the pixels in the window. If shifting the window in any direction reduces the SSD

then a local maxima has been found and the point is considered "interesting".

The most widely used point detector, which has been shown to be the most robust

one (see Mikolajczyk and Schmid (2005)), is the more complex SIFT (Scale Invariant

Feature Transform) detector of Lowe (2004). In its �rst step it computes several

copies of the image by reducing its resolution. This produces a pyramid of scales.

Neighboring images in this pyramid are subtracted to each other and extremums

8

are kept as interest points. Points with low contrast or that are along an edge are

discarded. Then histograms of local gradient orientation are built. The major orien-

tation is chosen as orientation of the point. At this point, each point has a location,

a scale and an orientation. A descriptor is built for each one of them by placing 16

by 16 grid at the point's position, scale and orientation. The cells of this grid are

regrouped in super-cells of 4 by 4 and an histogram of gradient of 8 bins, weighted

with respect to the distance to the center of the grid, is computed in each one of those

super-cells (see Figure 2.1). The value of the 8 bins of each of those histograms are

stored in a vector of 8× 16 = 128 dimensions and serves as descriptor for the interest

points.

Figure 2.1: Histograms of gradient orientation computed for the SIFT descriptor of (Lowe
(2004))

A comparative study of point detectors can be found in Mikolajczyk and Schmid

(2005).

2.1.2 Image Segmentation

The aim of segmentation algorithms is to partition the image in visually similar

regions.

Mean-Shift Clustering is a popular approach presented in Comaniciu and Meer

(1999). This method clusters the multidimensional space P of pixel color and position.

In this space each pixel is represented by a vector [l, u, v, x, y] ∈ P with [l, u, v] for

the color and [x, y] for the position. Random cluster centers ci ∈ P are selected in the

image. A multidimensional ellipse is centered on each of this cluster centers in P . Each

9

ci is moved to the coordinares of the mean of the pixels inside the ellipse. The cluster

centers are moved repeatedly until all of them stop moving. During this procedure

cluster centers that are close can be merge. The Mean-Shift Clustering algorithm

su�ers from the fact that in some cases the mean is not a good representative of

visually similar regions (e.g., regions for which the color changes gradually).

Another approach, developed in Wu and Leahy (1993), is the Graph-Cut segmen-

tation. A graph G = (V,E) is built with a node for each pixel. The weight on edges

connecting the nodes typically represent the color, brightness or texture similarity of

the nodes. A cut is a subset of the edges of the graph which once removed result in

a partition of it into several disconnected subgraphs. The aim of Graph-Cut based

segmentation is to �nd the partition that minimizes the sum of the weights of the

edges in the cut. This minimum cut criterion tends to result in over-segmented im-

ages. To deal with this problem Shi and Malik (2000) proposed another segmentation

algorithm based on graph partitioning. This approach proposed a global criterion,

called the Normalized cut criterion, that captures the global properties of the regions

instead of focusing on local properties like previous approaches. Here the cut depends

both on the sum of the weights of its edges and the ratio between the weights of the

nodes of each partition and all the nodes of the graph.

More recently Felzenszwalb and Huttenlocher (2004) proposed another graph based

image segmentation algorithm1. In this approach each pixel is connected to its neigh-

bors with edges weighted by the color distance between the pixels. Originally, each

node is in its own region, and each region Ri has an internal di�erence Int(Ri) = 0.

Once a region contains at least two nodes connected by an edge, its internal di�erence

is de�ned as the maximum weight edge of its Minimum Spanning Tree (MST). To

grow the regions, the edges are selected iteratively in increasing weight order and

the regions they connect are merged. The process is stopped once the weight of the

current edge is higher than min(Int(R1) + τ(R1), Int(R2) + τ(R2)) where R1 and R2

are the two candidate regions for the merging and τ(Ri) = k/|Ri| favors the merging
of smaller regions. k is a parameter that allows to roughly control the size of the

regions. At each iteration, the maximum edge weight of the MST of any particular

region is always the last edge used to merge elements of that region. In Grundmann

et al. (2010) the authors build upon the algorithm of Felzenszwalb and Huttenlocher

(2004) to produce a video segmentation algorithm2 that tries to segment the image

in temporally consistent regions. Note that the main segmentation we used as a basis

1E�cient graph based segmentation source code available here: http://cs.brown.edu/~pff/

segment/
2Video segmentation web service at this address: http://videosegmentation.com/

10

to build the graphs representing the videos is the one presented in Felzenszwalb and

Huttenlocher (2004). We also used the algorithm of Grundmann et al. (2010) for

some experiments.

2.1.3 Edge Detection

Edges are composed of pixels that lie at the boundary between two regions with

their own intensity or color. Those are useful to detect object boundaries. The most

standard edge detector is Canny's edge detector Canny (1986). This detector �rst

slightly blurs the image to prevent noisy pixels to have signi�cant in�uence on the

result. Then the image gradients on the x and y axis are computed to detect parts of

the image with high spatial derivative. Edges in the original image are characterized

by ridges in the gradient magnitude image. Those ridges are transformed into �ner

edges by applying a non-maxima suppression step. This consists in tracking pixels

at the top of the ridges and set to zero the other ones. This tracking is controlled by

two thresholds T1 and T2 with T1 < T2. The tracking of pixels on the ridges starts by

a pixel higher than T1 and continues in both directions until a pixel lower than T2 is

met. Figure 2.2 gives an example of edges extracted from an image with the Canny

edge detector.

There exists many other methods to detect edges such as the Nalwa (Nalwa

and Binford (1986)), Iverson (Iverson and Zucker (1995)) and Bergholm (Bergholm

(1987)) algorithms. The quality of the di�erent methods used to detect edges is di�-

fult to compare. The choice of a particular edge detector is dependant on the problem

at hand. For example some applications require few false positive while other might

perform better when fewer false negative are detected. For more informations on

the subject, we refer the reader to the recent study of the di�erent edge detection

methods presented in Oskoei and Hu (2010).

2.2 Tools for Visual Tracking

Object detection and tracking are usually achieved through complex frameworks

that make use of several tools to represent the objects, to estimate the motion of

visual features or to locate candidate patches of images that could correspond to the

target. This section presents the most common of those tools.

11

Figure 2.2: Edges detected with the Canny edge detector (Canny (1986))

2.2.1 Sliding Window

The most straightforward way of locating a set of features in an image is to use

a sliding window. It simply consists in sliding a window over an image, possibly

at di�erent scales, and look for the position and scale that best �ts the tracked

set of features. This approach is used by object detectors such as face detectors

or pedestrian detectors. Although it might seem that searching through the entire

image is not computationally e�cient, this strategy has been successfully used in real-

time tracking applications, mainly by trackers using classi�ers do detect the possible

locations of the target, such as in Kalal et al. (2012).

12

2.2.2 Background Subtraction

Background subtraction techniques are commonly used to detect objects in videos

�lmed with a non moving camera. In those cases, since the background is stable,

those techniques can try to learn a model of the background. Each incoming frame

is compared to the background model and its pixels that do not �t the model are

marked as foreground. Usually an algorithm is applied to �nd connected patches of

foreground pixels, which can be used as input by various tracking approaches.

The simplest approach would be to keep an image of the background when no

object is in the �eld of view and then subtract it to incoming frames. Each new

object entering the �eld of view would be detected, but with no adaptation of the

background model, if an object stops for a long time (e.g., a parked car), it will still

be detected as foreground object. This could be solved by subtracting consecutive

frames, but in this case an object would be lost as soon as it stops. It is clear that to

be e�cient, background subtraction techniques need more re�ned ways of modeling

the background.

The work of Wren et al. (1997), which popularized background subtraction, pre-

sented a technique to learn gradual changes in time. The color of each pixel is modeled

by a single Gaussian for which the mean and covariance are learnt over several con-

secutive frames. When a new frame is input, the likelihood of the color of each of

its pixels with respect to the background model is computed. The ones with low

likelihood are marked as foreground. This approach has been improved in Stau�er

and Grimson (2000) by using a mixture of Gaussians to model the color of the pixels

of the background.

More recent approaches such as White and Shah (2007) and Hu and Su (2007),

try to deal with minor camera motion and dynamic background, e.g., leafs of a tree in

the wind. In particular, the ViBe Barnich and Van Droogenbroeck (2011) gives very

impressive real time results. The authors state that their algorithm could be applied

on moving background by taking into account the movement of the camera, using

embedded sensors or algorithmic techniques on the video stream, such as optical �ow

for example.

There exist a lot of other methods developed in the literature, and it would

be impractical to study them in this short introduction to background subtraction.

More details about background subtraction techniques can be found Piccardi (2004),

Benezeth et al. (2008) or Brutzer et al. (2011).

13

Figure 2.3: Example of optical �ow (Sebesta and Baillieul (2012))

2.2.3 Optical Flow

Optical �ow estimation consists in estimating the motion of the di�erent parts

of a �lmed scene (see Figure 2.3). This motion can arise from camera movement

or object motion. Optical �ow estimation techniques all make the assumption that

the brightness and color of pixels stay constant when they �ow between consecutive

frames. This is called the Brightness Constancy Constraint and is characterized by

the following equation :

I(x, y, t) = I(x+ u, y + v, t+ 1), (2.1)

where I(x, y, t) corresponds to the intensity of pixel (x, y) in frame t and [u, v] is

the motion vector relating the position of a pixel between the two consecutive frames.

Assuming the motion is small between t and t+ 1, a �rst-order Taylor expansion

can be applied on the right-hand side of equation 2.1:

I(x, y, t) = I(x, y, t) + u
∂I

∂x
+ v

∂I

∂y
+
∂I

∂t
,

which simpli�es to the Optical Flow Constraint :

u
∂I

∂x
+ v

∂I

∂y
+
∂I

∂t
= 0. (2.2)

Unfortunately the Brightness Constancy Constraint of equation 2.1 and the Opti-

cal Flow Constraint of equation 2.2 only provide one constraint for the two unknowns

u and v, this is called the aperture problem. In practice, optical �ow techniques will

be based either on the Brightness Constancy Constraint or Optical Flow Constraint

14

and turn the equation into an error per pixel, adding additional constraints to deal

with the aperture problem.

For example, the original Horn-Schunck formulation of the problem (Horn and

Schunck (1981)) combined the Optical Flow Constraint with a motion smoothness

constraint favoring a small �rst order derivative of the �ow �eld. The error per pixel

of the equation 2.2 and the motion smoothness are summed over a sampling window

using the L2 Norm. In this case, the resulting energy function to minimize is:

E =
∑
x,y

[
u
∂I

∂x
+ v

∂I

∂y
+
∂I

∂t

]2

︸ ︷︷ ︸
pixel error

+
∑
x,y

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]

︸ ︷︷ ︸
motion smoothness

.

The authors of Sun et al. (2010) showed that this classical Horn-Schunck formu-

lation could give state of the art results when applied in conjunction with modern

optimization techniques.

Another early approach, called the Lucas-Kanade algorithm (Lucas et al. (1981)),

dealt with the aperture problem by considering the motion to be equal for pixels in

a small neighborhood. This allowed the authors to use one equation per pixel of the

neighborhood, resulting in an over determined system of equations that can be solved

e�ciently. More details about this technique are given in section 2.2.4.

One of the leading methods3 was presented in Sun et al. (2010). The authors

formulate a new objective function by adding a non-local term to the original objective

of the Horn-Shunck method to integrate information robustness over large spatial

neighborhoods.

During the 30 years of development of optical �ow techniques, a large number of

penalty functions and optimization have been described in the literature. Discussing

all those methods would be out of the scope of this discussion. The interested reader

can �nd an overview of the �eld in Baker et al. (2011).

2.2.4 Lucas-Kanade Tracker

First presented in Lucas et al. (1981), the Lucas-Kanade tracker is a popular

short-term tracker (i.e., tracks features over a small number of frames). It is used to

estimate the motion of pixels between two consecutive frames. While it was originally

developed to compute optical �ows, this approach is commonly used by tracking

3Optical �ow source code of Sun et al. (2010) available here: http://cs.brown.edu/people/

dqsun/research/software.html

15

algorithms to track sets of visual features representing a target between consecutive

frames, providing an estimate of the motion of the target. It assumes that if the

frames are separated by a small time increment δt, the motion is small and constant

in a small window (usually between 2 to 7 pixels wide) around the tracked pixel. The

idea is to �nd how much the window has to be moved so that intensities within it in

a �rst frame are equivalent to the ones in the moved window in the next frame.

Formally, given two grey scale images A and B and taking for each tracked pixel a

window W centered on its coordinates, we want to �nd the motion vector v = [vx vy]

that minimizes the following error :

ε(v) =
∑

(x,y)∈W

(A(x, y)−B(x+ vx, y + vy))
2, (2.3)

where A(x, y) corresponds to the intensity of image A at coordinates x, y.

At the optimum, the derivative of ε in function of v equals 0. Deriving 2.3 in

function of v we obtain:

∂ε(v)

∂v
= −2

∑
(x,y)∈W

(A(x, y)−B(x+ vx, y + vy)) .

[
∂B

∂x

∂B

∂x

]
.

Since it is assumed that the displacement is small, B(x + vx, y + vy) can be ap-

proximated by its �rst order Taylor expansion at the point (x, y) giving:

∂ε(v)

∂v
≈ −2

∑
(x,y)∈W

(
A(x, y)−B(x, y)−

[
∂B

∂x

∂B

∂x

]
v

)
.

[
∂B

∂x

∂B

∂x

]
. (2.4)

It(x, y) = A(x, y)−B(x, y) is the temporal derivative of the image and
[
∂B
∂x

∂B
∂x

]
=

[Ix Iy] the gradient composed of the two spatial derivatives on x and y, Ix and Iy.

Using the assumption that there is only a small change between A and B, we can

consider the spatial derivatives to be equal in both images, therefore:

Ix(x, y) =
∂A(x, y)

∂x
=
A(x+ 1, y)− A(x− 1, y)

2
. (2.5)

Ix(x, y) =
∂A(x, y)

∂y
=
A(x, y + 1)− A(x, y − 1)

2
. (2.6)

Plugging those notations in equation 2.4 we obtain:

∂ε(v)

∂v
≈ −2

∑
((x,y)∈W

It(x, y)− [Ix(x, y) Iy]v) . [Ix(x, y) Iy(x, y)] .

16

A slight transformation gives:

1

2

[
∂ε(v)

∂v

]T
≈

∑
(x,y)∈W

[
I2
x(x, y) Ix(x, y)Iy(x, y)

IxIy(x, y) I2
y (x, y)

]
︸ ︷︷ ︸

G

v −

[
It(x, y)Ix(x, y)

It(x, y)Iy(x, y)

]
︸ ︷︷ ︸

b

 .

The optimum displacement can be found by solving:

vopt = G−1b. (2.7)

G is invertible if the gradient of A is de�ned and non nul, i.e, the window is

contained in the picture and there is enough contrast inside it. To ensure there is

enough contrast in the window, the tracked pixels are usually interest points since

those are detected based on their contrast.

The aperture problem, encountered by optical �ow methods, is dealt with by as-

suming that pixels in a small neighborhood have identical motion. In this case, the

system of equations 2.7 is overdetermined. Indeed using a 5 by 5 window results in

25 equations for two unknowns.

Note that the result can be improved by multiple iterations of the above com-

putations by warping B using v, i.e., translating the image according to v, and

recomputing a new optimal velocity vector. Let v(n) be the optimal velocity vector

obtained at the nth iteration and B(n+1) the image obtained by warping B(n) with

v(n). Here we can see why it is useful to compute the gradient of A instead of the

one of B in equations 2.5 and 2.6. Indeed, in this way, at each iteration, only the

time derivative changes. Therefore, only the matrix b needs to be recomputed by

calculating the new time derivative I(n)
t = A(x, y) − B(n)(x, y). For n iterations the

optimal velocity vector is equal to vopt =
∑
n

v(i).

In order for the Taylor expansion in equation 2.4 to be a correct approximation,

the small motion assumption has to hold. To deal with cases when the motion is too

large, a pyramidal implementation can be used (see Bouguet (2001)). The Lucas-

Kanade method is applied at di�erent resolutions of the images starting with low

resolutions and re�ning the results with higher resolutions.

The Lucas-Kanade approach can be used to compute the optical �ow of frames

giving information about the motion of each part of a frame. In Kalal et al. (2012),

Lucas-Kanade tracker is used to estimate the position of the tracked object at the

next time step. Features within the object bounding box are sampled and tracked to

17

estimate the displacement and scale change of the bounding box in the next frame.

2.2.5 Mean-Shift Tracker

First presented in Fukunaga and Hostetler (1975), the Mean-Shift procedure is

used to locate the maxima of a probability density function given discrete data sam-

pled from that function. Given an initial estimate x of where the maxima of the

probability density function is, this method iteratively shifts x to the weighted aver-

age of nearby data samples (see Figure 2.4).

Figure 2.4: Graphical example of several iterations of the Mean-Shift procedure given noisy
measurements observed through time (Chang et al. (2010)).

A kernel function K(xi − x) is used to determine the weight of the neighboring

data samples xi in the neighborhood N(x) of x. The position of the weighted mean

is

m(x) =

∑
xi ∈ N(x)K(xi − x)xi∑
xi ∈ N(x)K(xi − x)

.

This computation is iteratively repeated until m(x) converges.

In the context of visual tracking, the Mean-Shift tracker is used in Comaniciu et al.

(2003) to maximize the appearance similarity iteratively by comparing a weighted his-

18

togram representing the object and another one computed around the hypothesized

object location. The similarity between histograms is computed using the Bhat-

tacharya coe�cient.

Another possibility is to use a classi�er to produce a con�dence map re�ecting

the probability for each pixel to correspond to the appearance model of the tracked

object. The Mean-Shift procedure can be used to �nd the peak of this con�dence

map around the initial estimate of the position of the target such as in Avidan (2007).

2.2.6 Kalman Filter

The Kalman �lter is a Bayesian �ltering approach �rst presented in Kalman et al.

(1960). Its purpose is to estimate the state of a system (e.g., position of a target,

its motion, its size etc ...) given noisy measurements observed through time. For

example, given a series of noisy radar measurements corresponding to a single target,

a Kalman �lter can be applied to �lter those noisy measurements and estimate a

trajectory closer to the real trajectory of the tracked object than the one that would

be obtained by simply linking the observations together(see Figure 2.5). The kalman

�lter provides an optimal estimate of the true state of a system when the equations

modeling the relationship between the variables are linear and when all the uncer-

tainty can be modeled by Gaussians. Note that most systems are usually impossible

to model exactly with a linear model, but if a good approximation can be found

with linear equations, and if uncertainties are properly estimated with respect to the

underlying system, a Kalman Filter will be able to handle inaccuracies and �nd good

estimates.

Figure 2.5: Kalman �ltering example with the ground-truth trajectory of the spaceship in
dashed black, the noisy measurements in red and the �ltered trajectory in blue.

Formally, given the posterior state estimate x̂t of the system obtained at time t,

19

the prior estimate, x̂−t+1, of the state at time t+ 1 can be computed as follows :

x̂−t+1 = Ax̂t + Bût, (2.8)

where A is the state transition matrix, u the control inputs (e.g., human input

provided by the steering wheel, break pedal, gas pedal...) and B the system of

equations relating the control inputs to the system's state. In the visual tracking

context, there usually is no control input, therefore B and u can be ignored. For

example the Kalman �lter state could be de�ned as the position of the target and its

velocity (xt = (px, py, vx, vy)
T). In this case the state transition matrix, relating the

position to the velocity, could be :

A =

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 .
Ignoring B and u; plugging this simple transition matrix A in equation 2.8 simply

adds vx to px and vy to py to compute the transition from x̂t to x̂−t+1. In addition of

the a priori estimation of the state, the prior state covariance Pt, which measures

the accuracy of the prediction step, must also be computed:

P−t+1 = APtA
T + Q, (2.9)

where Q is the covariance of the noise associated with the prediction process.

After this prediction step, the second half of the Kalman �ltering procedure, the

correction step, consists in improving the estimate x̂−t+1 by combining it with the new

measurement zt+1.

We �rst compute the Kalman gain which models the con�dence we have in the

estimate versus the measurement.

Kt+1 = P−t+1H
T (HP−t+1H

T + R)−1, (2.10)

whereR is the noise associated with the measurement process andH the system of

equations that converts between state and measurement (if the state and measurement

are the same type of variable then H is the identity matrix). Finally we can compute

the posterior estimate of xt+1 and the posterior state covariance Pt+1 using the two

following formulas :

x̂t+1 = x̂−t+1 + Kt+1(zt+1 −Hx̂−t+1). (2.11)

20

Pt+1 = (I−Kt+1H)P−t+1. (2.12)

In equation 2.12 the posterior state covariance is updated according to the con�-

dence in the prediction step encoded in the Kalman gain.

Figure 2.6: Main steps of the Kalman �lter (Cannons (2008))

Repeating this process for each measurement will produce a trajectory that will

be closer to the true trajectory of the object that emitted the noisy measurements.

Note that the estimation and measurement covariances Q and R are parameters and

the initial estimate of the state x̂0 is also given as input.

Figure 2.6 summarizes the Kalman �ltering steps. The prediction step, which

corresponds to the computation in equation 2.8, in�uences only the mean of the

Gaussian. After computing the Kalman gain in equation 2.10, the stochastic noise

and measurement update steps are both applied simultaneously in equation 2.11 to

obtain the posterior state estimate at time t+ 1.

Two drawbacks can limit the usage of Kalman �lters. First, if uncertainty cannot

be modeled by Gaussians the error covariance Pt might not converge resulting in bad

21

estimations. Secondly Kalman �lters provide optimal estimates only if the underlying

system is linear. The Extended Kalman Filter (Bar-Shalom (1987)) has been designed

to deal with non linear system but requires more complex computations.

In case of multiple target tracking, each target can be tracked by its own Kalman

�lter, but if the correspondence between the measurements and the targets is not

known, a mechanism must make a choice to pick which measurement will be used to

update each �lter.

In the context of tracking, Kalman �lters are not always used to estimate the sate

of a target. For example, in Duan et al. (2012), the authors track groups of objects

and use a Kalman �ltering approach to compute the changes in relative location

between objects in order to build a mutual relation model re�ecting the strength of

their relation.

2.2.7 Particle Filter

First presented in Isard and Blake (1996), the particle �lter is another type of

Bayesian �lter. Based on sequential Monte Carlo sampling methods, particle �lters

estimate the posterior density of the state variables (e.g., position of a target, its

motion, its size etc ...) with random samples. This removes the major restrictions of

the Kalman �lter by allowing the use of non linear equations for the prediction and

update as well as multi-modal distributions instead of Gaussian ones to model the

errors. As shown in Figure 2.7, the particle �ltering procedure is conceptually very

similar to the Kalman �lter.

Each individual particle corresponds to one hypothesised state. In the context

of visual tracking, each particle could be a vector snt = (px, py) representing an hy-

pothetical position of the target. Each particle is assigned an importance weight πnt
re�ecting the quality of the hypothesis.

Given a set of particles St = (s1
t , ..., s

n
t) and their importance weights Πt =

(π1
t , ..., π

n
t) at time t, the �rst step of the particle �lter procedure consists in sam-

pling a new set of particles Πt+1 = (π1
t+1, ..., π

n
t+1) at time t + 1 with respect to their

importance weights. This is done by picking particles in St with replacement (the

same particle can be picked several times) in function of their weight. Then, the

deterministic prediction step is performed by computing the new position of each

particle at time t + 1. This corresponds to the computation of equation 2.8 of the

Kalman �ltering procedure. The di�erence here is that any motion model can be used

whereas the transition matrix of Kalman �lters has to be a linear system of equations.

Because the prediction step is deterministic and the particles in St can be picked

several times, especially if they have a high importance weight, it is likely for some

22

Figure 2.7: Main steps of the particle �lter (Cannons (2008))

of the resulting particles to be identical. Therefore, the particles are di�used by

taking into account the estimation noise to produce a more diverse set of samples.

This corresponds to the stochastic di�usion step. In the case of particle �lters, the

uncertainty of the prediction can be modeled by non Gaussian distributions. Note

that, although a motion model can help to perform more accurate predictions, this

stochastic di�usion step can be enough by itself to predict the new set of particles

at time t + 1 from the set of particles at time t and track a target. For example, in

Erdem et al. (2012), no motion model is used to predict the new set of particles, the

set of particles at time t + 1 is obtained solely by di�using the particles obtained at

time t with a Gaussian.

Next, the measurement update step is applied. It consists in computing new im-

portance weights. This can be done by measuring the similarity of the data observed

at the particle state (e.g., color histograms around the position of the particle, optical

�ow, etc...) with an object model. For example, if the target's appearance is modeled

by a color histogram, the new importance weights could correspond to the similarity

23

between the color histogram measured at the position of each particle and the color

histogram of the object model. Note that while Kalman �lters require measurements

to be convertible into state vectors with the linear system of equations H to compute

the posterior state estimate a time t+ 1 in equation 2.11, particle �lters do not have

such restrictions. They only need a mechanism to compute how much each hypothesis

modeled by each particle is in agreement with the object model.

Once the new particles have been assigned their corresponding importance weight,

the particle �lter procedure is over and can be reiterated for the next time steps. At

each step, the resulting state of the target can be obtained by applying the meanshift

procedure described in section 2.2.5 or simply by computing the mean of the particles

or by selecting the particle with highest probability (i.e., highest importance weight).

Figure 2.8 shows the evolution of the samples and their weights when tracking a target

for one time step.

In Erdem et al. (2012) the authors represent the object with two �xed grids of

rectangular image patches (Figure 2.9). They use a particle �lter to track the object.

The importance weight of each particle is computed by measuring the similarity of

the image patches in the original grid in the �rst frame with the patches obtained by

positioning the same grid at the particle coordinates.

2.3 State-of-the-Art Trackers

In this section we will discuss recent approaches that have contributed to the

development of the �eld of visual tracking.

2.3.1 Part-Based Tracking

Part-based trackers try to preserve the spatial relationship between pixels by rep-

resenting the target by multiple parts. They are often used to track humans by rep-

resenting them with parts for the limbs, torso and head as in Nejhum et al. (2010).

Representing an object with parts has the advantage of keeping some information

about the relative spatial arrangement of its di�erent pieces. They usually need the

model of the object to be known a priori.

In this section we will discuss two di�erent part-based trackers that only require

the target to be tagged in the �rst frame.

A �rst approach, called FragTrack presented in Erdem et al. (2012) uses two �xed

rectangular grids applied at the initial user selected region. The color histograms

of each cell is computed and serves as appearance model T to represent the object

(overall 36 patches; 18 vertical and 18 horizontal; see Figure 2.9).

24

Figure 2.8: Evolution of the particles (in red) for one time step. The size of each particle
corresponds to its importance weight. First, particles at time t are selected according to their
importance weight and their new state vectors in frame t+1 are predicted according to some
motion mode. Then the state vector of each particle is randomly shifted to account for the
prediction uncertainty. Finally, importance weights are recomputed based on the agreement
between the object model and the image patch measured at the position of each particle.

To track the object the authors use a particle �lter in which each particle sti =

(x, y, sx, sy) corresponds to an hypothesized location and scale at time t. Note that

no motion model is used in this approach, the prediction of the new state vector of

each particle at time t+ 1 is achieved by only di�using the particles using a Gaussian

25

Figure 2.9: FragTrack's grids of image patches used to represent the target in Erdem et al.
(2012)

N (sti,Λ) with mean sti, and covariance Λ = diag(σ2
x, σ

2
y, σ

2
sx , σ

2
sy).

After predicting the new state vector of each particle, two grids, with the same

layout as the appearance model, are positioned at the location and scale of each

particle to compute their importance weights. The color histograms of the cells of

the grids of each particle are compared to the one of the appearance model.

Each cell of the appearance model is weighted to re�ect its reliability. Those

weights determine the contribution of each cell to the joint result computed when

comparing the cells of the grids of each particle to the ones of the appearance model.

The weights are updated after each time step in function of the agreement between

each cell and the joint result of all cells. Thanks to this adaptation process the tracker

is capable of dealing with changes in appearance and partial occlusions of the target.

This approach can be performed in nearly real time (≈10 fps) and gives very good
qualitative results. Although it is important to note that only the weights of the

di�erent parts of the template are updated, the color histogram of each image patch

stays �xed. Therefore, the algorithm is very likely to loose the target if its appearance

changes too much.

In the recent article from He et al. (2013), the authors build upon this method

to achieve very good results both in term of quality of the results and in term of

computational e�ciency. The authors use the same kind of grid as in Erdem et al.

(2012) but with around 400 cells. They also use weighted histograms to model the

appearance of each cell of the grid, i.e., histograms in which the contribution of each

pixel of the image decreases exponentially with its distance from the center of the

cell.

In Chockalingam et al. (2009) the authors present a very di�erent approach. All

the images are individually segmented using a region growing method. This consists in

selecting a pixel at random and putting it in its own image region. Then, neighboring

pixels are added if they are within some τ (provided as parameter) standard deviations

of the Gaussian model representing the region. The constraint is relaxed for small

regions that do not have enough pixels for their Gaussian model to be reliable. This

26

process is repeated until all pixels are in a region. The contour of the object is modeled

using a level sets formulation (Brox et al. (2006); Osher and Sethian (1988)). The

�nal object model is composed of the contour and the regions R− inside it. The

background is modeled using all the regions R+ outside the contour. Also the motion

of each fragment is computed by optical �ow using Birch�eld and Pundlik (2008). At

each time step, the position of the object is estimated by using the average motion

of the regions composing it. Then the contour evolves to maximize the likelihood

of the pixels inside it to be part of the object, and minimize their likelihood to be

part of the background. The likelihoods are given by a Gaussian mixture model

(one Gaussian per region). According to the authors this algorithm manages to track

targets undergoing strong deformation, unpredictable motion and complete occlusion.

Part-based algorithms can track targets with unstable appearance but they are

di�cult to update to take into account appearance changes without risking that the

tracker drifts from the target. Besides they require domain knowledge if the layout

of the parts in the appearance model is to re�ect the target's topology.

2.3.2 Segmentation Based Approaches

Some applications require a precise segmentation of the target. To achieve this,

segmentation based approach use the segmentation obtained at time t (the initial

segmentation at t=0 is given as input) to guide the segmentation at time t+1. A

segmentation of the background and N objects can be obtained at each time t by

minimizing the following energy function:

J(λ) = εD(λ) + εR(λ), (2.13)

where λ is a labeling function that assigns a label l ∈ 0...N to each pixel (one

label l corresponds to one object, with label 0 for the background), and εD is the

data term measuring the likelihood of a pixel being assigned a certain label and is

calculated as follows:

εD(λ) = −
∑
x∈Ωt

N∑
l=0

ln(Pl(x))δ(λ(x), l), (2.14)

where Ωt is the set of all pixels of the frame number t, Pl(x) the likelihood of pixel

x corresponding to object l, and δ(l1, l2) = 1 if l1 = l2. The regularization term εR of

equation 2.13 is:

27

εR(λ) = RΩ

∑
x∈Ωt

∑
z∈N

F (x, z)[1− δ(λ(x), λ(z))], (2.15)

with RΩ > 0 the regularization parameter and F (x1, x2) a similarity function

between pixels. This formulation penalizes similar pixels in the same neighborhood

having di�erent labels.

Usually the minimization of the energy function of equation 2.13 is performed

through a Graph-Cut approach such as in Boykov and Funka-Lea (2006). It consists

in building a graph G = (V,E) with nodes corresponding to the pixels of the image.

One terminal node per label is added. Edges connect each pixel with pixels of its

neighborhood and each terminal node to each pixel. A cut C is a subset of all edges

that meets the following requirements:

• Each node is connected to at most one terminal node.

• Two nodes connected to two di�erent terminal nodes cannot be connected to-

gether.

Figure 2.10: Example of graph cut with one object to segment from the background
(Ramírez et al. (2012))

The aim is to �nd the cut that minimizes the energy function J(λ). (see Figure

2.10 for a graphical representation of a cut). In the context of visual tracking, this

28

simple energy minimization framework is not su�cient. Indeed, the temporal dimen-

sion has to be taken into account to achieve tracking. In Malcolm et al. (2007) the

authors use the mean velocity of the object i in past frames to predict the set of

pixels V t+1|t
i that is likely to correspond to the object in frame t+1 and that should

be labeled li. The authors add a third term εγ to the energy function that penalizes

assigning a di�erent label than li to the pixels in the predicted set.

This simple approach su�ers from the lack of mechanism to recover from partial

occlusions and therefore quickly loses the target when it is occluded.

To deal with this problem Papadakis et al. (2011), represents the tracked objects

with two sets of pixels, the visible part and the occluded part. At each time step t,

the Lucas-Kanade algorithm is used to estimate the position of the pixels representing

the object in frame t+1. New terms are added to the energy function to handle the

occluded part. Again the energy function is minimized using a graph cut algorithm.

The results presented show that this approach, unlike Malcolm et al. (2007), can deal

with partial occlusions. In one sequence a pedestrian is almost completely occluded

by a vehicle during around 30 frames and is still well recovered.

A di�erent approach is presented in Tsai et al. (2012). In this paper a multi-

label Markov Random Field (MRF) is used to automatically segment and track the

targets. The authors minimize the energy function J(λ) = εD(λ) + εR(λ). The

di�erence here comes from the fact that the temporal consistency is not represented

by a term in the energy function. Instead pixels in frame t are connected to their

neighbors in frame t+1. The temporal neighborhood of a pixel in frame t consists

in all pixels in frame t + 1 that are spatially close enough (closer than a maximum

displacement threshold). With each label is associated a motion �eld d1, ..., di such

that assigning label lp to pixel p means it will be be displaced by dp. If the maximum

displacement on x or y is m there is (2m + 1)2 possible labels and since each pixel

can also be labeled background or foreground the total number of possible labels

for each pixels is 2 ∗ (2m + 1)2. Associating labels with a displacement enforces

motion coherence through the regularization term. Indeed the regularization term

encourages neighboring pixels in the same frame to have the same label which in

this case also means that they should have the same displacement. This approach

gives good results in term of precision but no occlusion test is conducted and since

no mechanism is present to deal with occlusions, this approach is unlikely to perform

very well when targets are occluded.

Segmentation based techniques can accurately follow deformable objects with high

precision. At each time step, they output a foreground region of pixels corresponding

to the target. They cannot be applied to entire frames, hence they rely on an accurate

29

motion model to predict the position of the target in subsequent frames. Thus, they

usually deal poorly with long term occlusions and interactions between objects. It

also requires more e�ort from the user to provide the initial segmentation than a

simple bounding box.

2.3.3 Tracking by Detection

Tracking by detection consists in iteratively training a classi�er to separate the

object from the background of each frames. At each time step only the previous

frames of the video are used for training. The main challenge of those approaches is

to update the classi�er as new information is provided by the video frames.

In Zhang et al. (2012) the authors present a simple technique called CT4 (for

Compressive Tracking). The tracking from a frame t to a frame t + 1 is achieved

by �rst sampling positive samples around the object location at time t and nega-

tive samples far away from the object and use both negative and positive samples to

build a Bayesian classi�er. Then locations in frame t + 1 around the position of the

object at time t are rated using the classi�er and the one with the highest score is

selected as position in the frame t+1. The originality of CT comes from the fact that

image patches are represented by a sparse feature vector obtained through random

projections of the image features. More precisely, for each sample, its di�erent repre-

sentations at multiple scales are concatenated into a high dimension vector. Using a

sparse random matrix, this high dimension vector is projected onto a lower dimension

vector which is used as �nal representation of each sample. Such a compression of

the representation of the samples preserves salient information while being robust

to noise. It allows the algorithm to handle changes in pose, illumination and scale

as well as partial occlusions. Results show that this algorithm is very fast. Indeed,

in their experiments the authors demonstrate that it can process around 35 images

per second, while average state of the art tracking by detection algorithms handle

around 10 images per second. This approach also gives very good precision results.

However, it is expected to perform poorly when multiple similar targets interact with

each others.

A di�erent method, called TLD5 (for Tracking Learning Detection), is presented

in Kalal et al. (2012). Here, the object is represented by a collection of positive and

negative image patches M . Positive patches are ordered in function of their time of

4source code of CT available here: http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
5source code of TLD available here under the name OpenTLD: http://personal.ee.surrey.

ac.uk/Personal/Z.Kalal/tld.html

30

addition to M . At each time step the image patch representing the target is tracked

by a Lucas-Kanade tracker. The algorithm also performs a window search on the

frame, sampling windows of the size of the initial bounding box at multiple locations

and scales. Those image patches are compared to the object model using a Nearest-

Neighbor classi�er to detect possible locations of the target in the whole frame. The

image patches obtained by both the tracker and the detector are compared to the

earliest 50% of the positive image patches in M . The one with maximum con�dence

is returned as the current position. The collection M is updated with the following

strategy:

• If the new location estimated by the tracker is labeled as negative by the Nearest-

Neighbor classi�er, it is added to M as a positive image patch. This increases

the generalization capability of the object model.

• All responses returned by the detector and the response produced by the tracker

are analyzed. The image patches that do not overlap with the maximally con-

�dent patch are added to M has negative image patches. This increases the

discriminative power of the object model.

This real-time approach gives very accurate results, even under strong and un-

predictable motion. Thanks to the detector, this algorithm can recover from short

disappearances of the target.

Most tracking by detection approaches only use the current frame to update the

object model at each step. In Supancic III and Ramanan (2013), the authors show

that the appearance model is more important than the motion model for long term

tracking and that performances can be improved by learning from the "right frames".

Possible locations of the target in the current frame are detected by a linear SVM.

The detections up to the current time step are structured into a graph, with one

node representing one detection. Between each pair of frames, edges connect the

nodes and represent the cost of transitioning from on location to the other based on

the negative SVM score of the destination image patch and the agreement between

the optical �ows of both locations. After each time step, the SVM is retrained from

previously tracked frames by selecting the ones that minimize the SVM objective. In

each of the selected frames, the patch in the bounding box of the tracked object is

used as positive sample and patches around the bounding box as negative samples.

Tracking by detection method are really e�ective real-time single target track-

ing methods. They can cope with strong and unpredictable motion and adapt to

appearance changes. However this adaptation capability makes them prone to drift-

31

ing problems. Also, in the case of multiple objects with similar appearance, those

methods can easily switch between di�erent targets.

2.3.4 Trackers Exploiting Context

A problem encountered by a lot of single target trackers is to distinguish the tar-

get with other similar objects in the scene, called distracters. For example, if two

pedestrians are walking together, single target trackers can easily confuse them, espe-

cially if they wear similar clothings. In recent years, multiple approaches have tried

to deal with the presence of multiple similar targets by keeping track of distracters

with which the target should not be confused.

Figure 2.11: Example branching tree used in Gu and Tomasi (2011). Each node represents
a tracker and an edge connects two trackers if one has been branched from the other in a
previous frame

In Gu and Tomasi (2011), the authors presented an approach that deals with the

presence of similar objects by branching the tracker when distracters are detected.

This tracker builds upon the tracking by detection algorithm of Gu et al. (2011), which

uses a nearest neighbor classi�er to distinguish between SIFT interest points belonging

to the target and to the background. This initial tracker is used to determine the

optimal location of the target with respect to visual and motion consistency. It is

branched, i.e, a new tracker is spawned, to track each other possible locations that

32

are similar to the target and do not overlap too much with the best location. This

branching operation de�nes a parent relationship between trackers in each frame k

that is modeled in a branching tree Gk =< V,E > where nodes in V represent trackers

and the edges in E model the fact that a tracker has been branched from another

one in a previous frame (see Figure 2.11). The optimal branching tree is built in each

frame by �nding the one that minimizes the following equation:

Ĝk = argmin
Gk

 E(Gk)︸ ︷︷ ︸
visual consistency

+ λ κ(Gk, Gk−1)︸ ︷︷ ︸
structural di�erence

 , (2.16)

where Gk is a branching tree in frame k and λ is a regularization parameter

between the visual consistency and the structural di�erence. The appearance model

used by the tracker is composed of an object model and a background model. The

visual consistency of each tracker is measured by summing the costs of each feature in

the window with respect to its closeness to the object and background models. The

visual consistency term in equation 2.16 E(Gk) corresponds to the sum of the visual

consistency of each tracker in the branch tree. The structural di�erence compares the

spatial geometry of the branching trees of consecutive frames. It is obtained with the

following equation :

κ(Gk, Gk−1) =
∑

(i,j)∈Ek−1

||(W i
k −W

j
k)− (W i

k−1 −W
j
k−1)||2, (2.17)

with (i, j) an edge in Gk−1 between the trackers i and j, and W i
k the spatial

coordinates (x, y) of the window corresponding to the ith tracker in frame k. The

structural di�erence computation in equation 2.17 favors low di�erence between the

relative spatial distances separating pairs of trackers in consecutive frames. This en-

courages the optimal branching tree Ĝk to be geometrically similar to Gk−1. Once

the optimal branching tree has been found, branching operations are performed on

trackers in Ĝk that meet the branching constraints. Then the object and the back-

ground models are updated before extracting candidate locations in the next frame.

Experiments show that this strategy can successfully follow the correct target in the

presence of 2 to 20 similar objects. Its main limitations are the absence of mechanism

to deal with changes in scale and that the branching tree never shrinks to take into

account trackers losing their target.

Another way of exploiting the context to track a target is presented in Grabner

et al. (2010). Instead of exploiting distracters, this approach uses supporters, i.e.,

features that have a correlated motion with the target. Supporters can belong to the

33

target, such as a watch on the wrist of a pedestrian for example, but they can also

belong to the rest of the scene. The idea of this technique is to use few reliable target

locations, provided by a human or a robust tracker, to learn a model, which in this

case is a set of supporters, to predict the position of the target. In this work the

supporters are SIFT interest points. At each iteration, features are extracted and the

ones that match the model are used to vote on the position of the target based on

the correlation of their motion with the motion of the target. If the con�dence with

the current estimate of the target location is high enough, a second set of supporters

is extracted. This second set of supporters helps estimating the position of the target

but is not used to assess the con�dence of the estimate. This means they cannot

trigger the extraction of more supporters which avoids a feedback loop that can cause

the tracker to drift from the target. The authors use this strategy in combination

with the tracker presented in Stalder et al. (2009). When this tracker loses the target

the trained model of supporters is used to infer the position of the object, even if it

is completely occluded or out of the �eld of view. As shown in the experiments, this

approach allowed to signi�cantly improve the recall of the target.

Supporters are also exploited in Yang et al. (2009) to track a target using context.

Here the supporters are obtained through data mining. Each image of the video

is segmented individually. Then, the resulting segmented regions are clustered to

form a vocabulary. This is done incrementally by adding to the vocabulary the

image segments of each incoming frame. Each element of the vocabulary is treated

as an item, and transactions are formed by the items and the other items in their

neighborhood. In each frame the items in the region of interest are used to build

transactions, and a transaction database is formed by the transactions constructed

from all frames in a sliding window. Items with high co-occurrence are then selected

as candidate supporters. A mean-shift tracker is used to �nd the correspondence of

each candidate supporter in successive frames. This is used to estimate the motion

of the candidate and test if it is correlated with the motion of the target, in which

case it is validated as supporter. Then, a message passing mechanism is used to re�ne

the motion estimate of the target. First the supporters send their motion estimate

to the target which updates its own estimate, and then the target propagates the

messages back to them. Those messages correspond to the motion estimate of the

supporters weighted according to their correlation with the target, which results from

the co-occurrence measured during the mining step.

Finally, in Dinh et al. (2011), the authors presented an approach exploiting both

distracters and supporters. Their technique uses an extended version of the tracker

presented in Kalal et al. (2010). The object model of Kalal et al. (2009) is used to

34

represent the target. It consists in a template of image patches representing the target

in previous frames and organized in a binary tree. At each iteration multiple candidate

locations are detected. To distinguish between them, supporters, in this case SURF

interest points (Bay et al. (2006)), are extracted around those candidate locations.

The supporters are then matched with the ones extracted in the 4 previous frames.

If the number of matched supporters around a candidate location is high enough it

is placed in a list of strong candidates. The candidate with highest con�dence in

this list is selected as the target and other candidates are greedily associated to the

distracter trackers. The remaining candidate locations that have high con�dence and

are not already tracked trigger new distracter trackers. The object model of each

tracker is updated and the process starts over with the next frame. The experiments

conducted by the authors show that this technique can follow a target in di�cult

scenarios where other state of the art trackers tend to lose it.

Those trackers exploiting supporters and distracters require more computations

than simpler ones that ignore context but can still manage to process a video in nearly

real time. However, they possess the advantage of considering multiple targets, which

helps to distinguish the correct one in ambiguous cases, without being as complex as

conventional multi-target trackers.

2.3.5 Data Association for Multi-Target Tracking

A lot of multi-target tracking approaches use an object model learnt o�ine to

detect locations of the objects in each video frame. Data association consists in

partitioning the set of detections into tracks representing targets. Most of those

approaches use object detections as a basis and assume a one to one mapping between

object detections and targets. This means that each object detection can be claimed

by at most one track, and only one object detection is selected by each track at

each time step. Although some approaches like Yu and Medioni (2009) do not make

the one to one mapping assumption, this section will focus on the former family of

approaches that are more closely related.

A �rst method consists in casting the problem as the minimization of a network

�ow. In Zhang et al. (2008) a network between detections is created. Each detection

is represented by two nodes, with an edge between them representing the probability

of the observation to be the true detection (modeled by a Bernouilli distribution).

The probability of two detections to be part of the same track is modeled by adding

an edge between the two pairs of nodes representing the two detections. The weights

on those edges are based on the distance between the color histograms of the two

detections, their di�erence in size and the number of frames separating them. Each

35

edge has a maximum �ow capacity of one to prevent single detections to be part

of multiple tracks. Then the Min-cost �ow is solved using a push-relabel approach

(Goldberg (1997)). Pirsiavash et al. (2011) and Berclaz et al. (2011) use a k-shortest

path optimization (Ahuja et al. (1993)) to solve the Min-cost �ow problem much

more e�ciently. The idea is to �nd the k-shortest paths, starting from the source

node of the network and ending at the sink node, such that the sum of their weights

is minimal.

Another family of data association approaches uses iterative hierarchical methods

to link tracklets together, i.e., small tracks composed of a few detections. In Brendel

et al. (2011), a graph is built in which nodes represent every pair of object detections

in consecutive frames. An edge is put between two nodes if they are in con�ict, i.e.,

if they share one of their object detections. Nodes are weighted by measuring the

similarity between the two object detections composing them. This similarity measure

is learnt over time to make observations in a same track more similar between each

others than with detections in other tracks. The produced graph is composed of

several independent graphs, each one of them representing all possible associations

between detections in one frame and the detections in the next one. In this setup

�nding the best tracks corresponds to solving the Maximum Weight Independent Set

(MWIS) problem. Indeed, since con�icting nodes are connected by an edge, �nding

the heaviest subset of nodes that are not connected corresponds to �nding the best

association between detections in one frame and detections in the next one, producing

tracks of size 2. This procedure is repeated iteratively by building a new graph in

which nodes are composed of pair of tracks, with a weight corresponding to the

average similarity of the object detections composing the tracks. An edge connects

two nodes if the corresponding 4 tracks (2 per node) share one detection. The MWIS

of this new graph is computed to produce longer tracks that are used as basis in the

next iteration. This iterative process is stopped when the weight of the MWIS stops

increasing.

While the data association problem can be solved e�ciently by network �ow or

iterative hierarchical approaches, those methods have a strong weakness. They can

only use simple motion models such as the pairwise distance between consecutive

observations. Indeed the cost on the edges can only represent short-term motion (be-

tween two consecutive frames). The work presented in Collins (2012) addresses this

issue by representing the data association problem by a MultiDimensional Assign-

ment (MDA). The MDA is a specialization of the Set Partition Problem (SPP) to the

case of k-partite graphs. It consists in partitioning the observations in sets (tracks),

picking at most one observation per frame for each set and minimizing the cost of

36

each track. To solve the MDA, the best assignments are iteratively computed locally

by considering pairs of adjacent frames. The Kuhn-Munkres Hungarian algorithm

(Burkard et al. (2009)) is applied to �nd such an assignment between the observa-

tions in every pair of consecutive frames. The authors state that around 5 iterations

of this process are necessary to reach convergence. The strength of this approach is

the use of a global cost function for each track cost(t) = Edist + Ecurv. With Edist

the average distance between successive pairs of points and Ecurv a sum of curvature

terms over the length of the trajectory. This global cost function allows to take into

account all the temporal information to obtain more coherent tracks.

Another recent approach, presented in Butt and Collins (2013), also uses a higher-

order motion model. Candidate matches between pair of detections in consecutive

frames are formed based on their appearance similarity and their spatial proximity.

A graph G = (V,E) is built in which each candidate match is represented by 2 nodes,

an incoming node and an outgoing one, connected by an edge weighted by the cost of

matching the two detections. The incoming node represents the detection appearing

in the earliest frame of the candidate match and the outgoing node represents the

detection appearing in the next frame. Note that with this formulation, multiple

nodes represent the same observation (1 node per candidate match involving this

detection). Outgoing and incoming nodes are connected by an edge if they represent

the same observation. In this way, 3 observations are connected together: one in

frame t, one in frame t + 1, which is shared by the two matches, and one in frame

t+ 2. Those edges between the incoming nodes and the incoming nodes are weighted

using a higher-order motion model favoring a constant velocity and direction along

the three nodes connected by the linkage of the two candidate matches. Two special

nodes are added: a source node which is connected to each incoming node, and a

sink node, connected to each outgoing node. This formulation is a network �ow but

is not su�cient. To prevent the selection of nodes representing the same detection,

hard constraints are added, but because of this the problem is not a network �ow

anymore. To remove those constraints and treat the problem as a network �ow

problem, a Lagrangian relaxation is performed. The hard constraints are turned into

soft constraints which are incorporated into the cost function of the network �ow

problem, and weighted by Lagrangian multipliers. This formulation only provides

a lower bound for the original constrained cost function but is convex (Boyd and

Vandenberghe (2004)). Several iterations of the network �ow algorithm are performed,

updating the weights of the soft constraints with a subgradient method, until the

change in weights becomes too small, or if a maximum number of iterations is reached.

The major drawback of these approaches is the use of speci�c object detectors

37

which require to know in advance the type of object to be followed. However no other

type of approach can deal with the same amount of interacting targets, making data

association methods the most suitable way to analyze scenes with lots of objects.

2.3.6 Arbitrary Object Detection and Tracking

Some approaches try to not make any assumptions about the kind of targets to

track. Since in this case, observations usually do not correspond to entire objects

but instead to parts of objects, no one to one mapping assumption is made. Because

of this, a higher proportion of observations has to be managed to track the same

number of targets than standard data association approaches. Without the one to

one mapping assumption the number of possible associations between observation

increases. Therefore, the computations those methods need to perform are more

complex. For those reasons, techniques that try to detect and track arbitrary objects

are usually applied to problems involving fewer targets than the common problem of

pedestrian detection and tracking in crowded scenes.

In Yu and Medioni (2009), no pre-trained detector is used, but instead observa-

tions are gathered by background subtraction. This method allows observations to

be claimed by several objects, and single object can be represented by several obser-

vations in the same frame. The aim is to �nd the best spatial (inside a given frame)

and temporal (across di�erent frames) association between observations. Noisy ob-

servations are regrouped in a special track. Each solution, i.e., set of tracks, is rated,

favoring small number of long tracks with little overlap with other tracks. A Kalman

�ltering approach is used to estimate the motion likelihood of each tracks and the

appearance likelihood is computed by comparing the histogram descriptors of the

observations in the same track in consecutive frames. To �nd the best solution a

Monte Carlo Markov Chain approach is used. This method gives good results on

several pedestrian or vehicle videos but the use of background subtraction makes this

method ine�cient when the camera is moving.

In Endres and Hoiem (2010) the authors have presented an approach to extract

image segments, called object proposals, that better correspond to foreground objects

than regions of traditional segmentations. To do so they learn a category independent

object model from the Berkeley Segmentation Dataset (Martin et al. (2001)). Their

approach produces image segments so that each object of the video is well represented

by at least one segment. Beside, each segment is given an "objectness" score re�ecting

how likely the region is to represent a foreground object. Those scores are computed

so that each object has at least one highly ranked corresponding region.

Based on the object proposals produced by Endres and Hoiem (2010) the authors

38

of Lee et al. (2011) have designed an algorithm to detect and track the main objects

of a video. They �rst rank each proposal using the following formula : S(r) =

O(r) + M(r). O(r) is the score computed by Endres and Hoiem (2010). M(r)

measures the con�dence that the region r corresponds to a coherently moving object

and is computed by measuring the di�erence between the optical �ow histograms of

r and the pixels r̄ around it within a loosely �t bounding box. Then the top ranked

segments (with respect to S(r)) are selected and the similarity between their un-

normalized color histograms is computed, giving high a�nity to regions with similar

color and size. The pairwise a�nity is computed for each pair of regions to obtain an

a�nity matrix Kc. The next step consists in applying a form of spectral clustering

(see for example Perona and Freeman (1998)) that produces partitions of regions with

high a�nities. For each cluster c of regions, Gaussian Mixture Models are estimated

to model the foreground pixels' color (pixels in the regions) and the background

pixels' color (pixels in the complement of c in all images). The authors then use

the background model, foreground model and segments to guide a foreground object

segmentation. The experiments presented in Lee et al. (2011) only show results for

very short videos (≈50 frames) with no occlusion. Besides most results presented show
the performances on single target tracking, in the only video with several objects,

�guring a dense group of penguin, the whole group is segmented as one object.

A second approach exploiting the object proposals produced by Endres and Hoiem

(2010) is presented in Ma and Latecki (2012). This time, the authors focus on iden-

tifying and segmenting the main object of a video in each frames. To do so they

build a graph G = (V,E) in which nodes represent the segments. Edges (u, u) ∈ E
represent the "objectness" score of region u using the same formula as Lee et al.

(2011). Edges (u, v) ∈ E represent the similarity between regions u and v. They also

introduce constraints specifying that regions in the same frame cannot be part of the

same solution as well as regions that are too far apart spatially. Once the graph is

built, the next step consists in �nding the Maximum Weight Clique (MWC). This

MCW corresponds to a sequence of object proposals (1 per frame) that are likely to

represent the same object. Finally, as in Lee et al. (2011), the appearance model of

the foreground and background is estimated and used in combination with the seg-

ments to guide a foreground segmentation of each images. The algorithm successfully

identi�es the main object in the videos and the results obtained are a bit better than

the ones of Lee et al. (2011) in term of precision. Again no occlusion test has been

performed for this approach.

Zhang et al. (2013) also uses the object proposals of Endres and Hoiem (2010) and

tries to detect and track the main object of a video. First they use the optical �ow to

39

warp object proposals in frame t to the frame t + 1 and merge them with the image

segments of frame t + 1 if they have at least 50% overlap. Those merges are added

to the original pool of object proposals. This process is carried out both forward and

backward in time. Then a graph is built using two nodes to represent each proposal,

an incoming node and an outgoing one. Edges between those nodes are weighted

according to the "objectness" score of Endres and Hoiem (2010). Outgoing nodes

are connected to the incoming node of the next three frames with an edges weighted

according to appearance and shape similarity scores. Next, a track is returned by

looking for the highest weight path in the graph. Using the image segments of the

proposals linked by this track, two Gaussian mixture models are built, one modeling

the object's appearance and one the background. Those Gaussian mixture models

are then used to guide a segmentation of the object represented by the track in each

frame.

While those three last state-of-the art approaches are interesting, they still are

very dependant on the quality of the results of detector of Endres and Hoiem (2010),

which does not perform equally on di�erent object classes (see Figure 2.12). They also

don't have any mechanism to deal with occlusions, and have di�culties distinguishing

between objects in crowded scenes, which makes them unlikely to be able to follow

an object in a complex video.

Figure 2.12: Recall results of object proposals obtained with Endres and Hoiem (2010) for
each object categories in PASCAL VOC 2008 (Everingham et al. (2008)). The number of
proposals corresponds to the number of highest ranked segments sectioned

Finally, Fragkiadaki and Shi (2011) presents a motion segmentation approach that

tries to achieve detection free tracking. To do so, they �rst extract dense point tra-

jectories using Sundaram et al. (2010). This dense optical �ow is used to segment the

image into foreground regions with di�erent motion. Using tracks instead of pixels

40

to conduct the segmentation allows to segment pixels even if they stop moving for

some time. Then, a graph is built in which nodes represent tracks and edges repre-

sent attractive and repulsive forces between them. Tracks with similar motions are

attracted while tracks that belong to di�erent segments of the motion segmentation

in at least one frame repulse themselves. Following the solution proposed by Yu and

Shi (2001), a form of spectral clustering is performed on the tracks. At �rst, only

long tracks are clustered, then smaller tracks are added to the clusters depending on

their a�nity with them. Experiments have been conducted on videos of 50 frames.

They show that multiple basket ball players can be detected and tracked with this

approach. Overall 30% of the pixels representing the players are recalled and in 75%

of the video frames the recall of the players is above 20%.

2.4 Datasets

There exists a lot of datasets used by tracking approaches to assess the e�ciency

of their algorithm. Most of datasets are specialised in one type of setup (e.g., mov-

ing/non moving camera, sport event, video surveillance ...).

Video surveillance is the domain for which there is the most choice, a lot of video

datasets involve pedestrians walking in the �eld of view of a �xed camera. The

CAVIAR6 (Caviar (2004), see Figure 2.13), PETS 20097 (Ferryman et al. (2009),

see Figure 2.14) and TUD (Andriluka et al. (2008), see Figure 2.15) datasets are

among the most commonly used in �xed camera setups. The Caltech8 (Dollar et al.

(2012), see Figure 2.20), �lmed from a car in tra�c, and ETHMS9 datasets (Ess

et al. (2007), see Figure 2.19), taken from a moving stroller, are designed for video

surveillance applications under moving camera.

Arbitrary object tracking approaches often reference the Gatech SegTrack1011

(Tsai et al. (2010),Li et al. (2013), see Figure 2.18). Those two datasets are com-

posed of short video segments (usually < 100 frames) in which there is usually a single

object undergoing strong appearance changes.

Single target tracking approaches often perform their experiments on the dataset12

provided by Kalal et al. (2012) (see Figure 2.17). This dataset contains a compre-

hensive range of videos. Their length is comprised between 150 and 10000 frames

6CAVIAR: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
7PETS 2009: http://www.cvg.rdg.ac.uk/PETS2009/a.html
8Caltech: http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
9ETHMS: http://www.vision.ee.ethz.ch/~aess/dataset/
10SegTrack: http://cpl.cc.gatech.edu/projects/SegTrack/
11SegTrack v2: http://www.cc.gatech.edu/~fli/SegTrack2/dataset.html
12TLD: http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/index.html

41

with various objects (cars, pedestrians, animals etc ...). The quality of those videos

is quite low, which is used to assess the robustness of the algorithms. This can be

problematic for approaches that require a minimum of details to properly describe

the targets. Another dataset widely used by single target tracking approaches is the

Babenko13 dataset composed of 12 videos(Babenko et al. (2011), see Figure 2.16).

As we can see there is no common dataset for all tracking methods, most of them

are composed of at most a dozen of videos and are designed to assess the e�ciency

of a particular type of approach. Moreover, it is common practice to compose new

datasets by picking videos from other datasets. This can make it hard to compare

the di�erent approaches.

Figure 2.13: Sample frames from the CAVIAR dataset (Caviar (2004)) with ground truth
for pedestrians with body parts (in yellow), groups of people (green boxes), and ground plane
detection in the last image on the right.

Figure 2.14: Pets 2009 dataset (Ferryman et al. (2009)). Top images (from left to right):
multiple cameras setup. Ground truth for people count and density estimation in di�erent
regions of the �eld of view. Ground truth for the number of people entering through the
brown line and number of people exiting through the red and purple lines. Bottom images
show the ground truth for tracking pedestrians tagged with the marks A and B.

13Babenko: http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml

42

Figure 2.15: Sample frames from the TUD dataset (Andriluka et al. (2008)). Left: Ground
truth for pedestrian tracking with temporal their temporal identi�cation. Middle: Ground
truth for articulated body pose estimation. Right: 8 viewpoint annotations.

Figure 2.16: Sample frames from some of the 12 videos of the Babenko dataset Babenko
et al. (2011)

Figure 2.17: Sample frames of each sequence in the dataset used by TLD (Kalal et al.
(2012))

43

Figure 2.18: Segtrack v2 dataset (Li et al. (2013)) with precise ground truth for the main
objects

Figure 2.19: Example sequence of the ETHMS dataset (Ess et al. (2007)), taken from a
moving stroller, with ground truth for pedestrians as well as their temporal identi�cation

44

Figure 2.20: Frames from the Caltech dataset (Dollar et al. (2012)), taken from a car driving
in tra�c, with ground truth for pedestrians with occlusion labels (in dashed yellow)

2.5 Conclusion

Visual tracking is a very complex problem that is usually reduced to a simpler one

by considering speci�c tracking cases. The ideal goal would be to automatically �nd

the objects that should be tracked in the videos, but, like for clustering and image

segmentation, de�ning exactly what are the expected results is di�cult.

If someone wants to be able to track any visual feature, from small details to entire

objects, tracking by detections achieves very good real time results under a variety of

motions, dealing with occlusions and appearance changes. Approaches in Kalal et al.

(2012), Zhang et al. (2012) or Supancic III and Ramanan (2013) are good example

of state-of-the-art trackers in this category.

Segmentation-based approaches can track targets with high precision but they also

require a precise initial segmentation of the targets. Tracking the target with high

precision requires complex computations that cannot be applied on the entire frame

in reasonable time. This reduces the capacity of those approaches to �nd the target if

its motion cannot be predicted accurately. Hence segmentation based trackers usually

have problems recovering from long term complete occlusions. Under those conditions

Papadakis et al. (2011) provides excellent results.

A common limitation of most single target trackers is that they tend to perform

poorly when multiple similar targets are present. Approaches exploiting the context

45

such as Gu and Tomasi (2011) or Dinh et al. (2011) can overcome this limitation

by tracking distracters, that should not be confused with the target, and by using

supporters to recover the target when it disappears.

When there are a lot of interacting targets to track, data association approaches

are better suited. They also do not necessarily require the number of objects and

their position in the �rst frame to be speci�ed. Instead they restrict themselves to

tracking particular sets of objects or to speci�c scenes with a non moving camera.

This allows them to ignore the background and focus on interesting observations such

as those returned by a speci�c object detector. They directly try to make sense of

the scene by modelling the interactions between objects. If the type of target can be

known in advance, approaches like Collins (2012) and Butt and Collins (2013) give

very good results by exploiting a maximum of the temporal information.

Without any knowledge on the objects to track, Lee et al. (2011), Ma and Latecki

(2012) and Zhang et al. (2013) are good choices in setups with few targets. But

those approaches have only been tested on the short video segments of the SegTrack

dataset (Tsai et al. (2010)), it is therefore unclear how they would perform in long

term tracking conditions. Moreover, those approaches have di�culties distinguishing

the individual objects in a crowded scene.

To conclude, there is still no perfect approach requiring no human input to detect

and track interesting objects in the general case. This is due to the fact that interest-

ingness is a subjective measure. Therefore all approaches have to reduce the number

of scenarios they intend to deal with, either by asking a human to choose what is

interesting or by making assumptions about the type of objects that are interesting.

In this thesis we address the problem of arbitrary object detection. More precisely

we investigate how the interesting objects in a video could be detected and tracked

without requiring any user intervention or supervised information to train a classi�er.

The main assumption we make is that the main objects of a video should appear more

frequently than the background if the camera is moving. Therefore, visual features

appearing frequently in those videos should be useful to achieve arbitrary object de-

tection. The next chapter will discuss the topic of Frequent Pattern Mining which is

the �eld of research that focuses on extracting frequent patterns from the data.

46

CHAPTER 3

Graph Mining

3.1 Introduction

Assuming that the background of a video is changing, for example if the camera is

moving, the main objects should appear more frequently than the elements of the rest

of the scene. However, when the camera or an object moves, or if the illumination of

the scene changes, the visual features composing it are also a�ected. Therefore, visual

features of an object might not be consistent enough through time to constitute a

robust representation. Nevertheless and regardless of its orientation or its scale, the

topology of the di�erent visual parts of an object, i.e, the topological relationships

between parts of the same object, should be more consistent than the ones between

parts of di�erent objects. Based on this observation, the main hypothesis of this

thesis is that if an object frequently appears in the frames of a video, the visual parts

composing it should appear frequently and the topological relationships between those

parts should be frequent as well. By representing the frames of a video with graphs,

the problem of detecting and tracking the main objects of the video can be related to

the problem of discovering frequent subgraphs in the database of graphs representing

the video frames. Such an approach presents the advantage of not requiring any user

intervention to determine what is interesting in a video. Instead, it relies on the

frequency of substructures in the frames representation. Moreover, it is not restricted

to a particular type of object such as pedestrians or cars for example.

This chapter gives an overview of frequent graph mining. The next section deals

with the more general problem of pattern mining. Then we provide important de�ni-

tions related to the �eld of graph mining. In section 3.4 we discuss in more depth the

di�erent problems faced by graph mining algorithms and how they have been tackled

in the literature. Section 3.5 presents a review of popular graph mining methods.

Finally, Section 3.6 brie�y discusses how to represent videos with graphs before con-

47

cluding.

3.2 Generalities on Frequent Pattern Mining

Pattern mining is a sub�eld of data mining that focuses on extracting interesting

patterns and relationships from large datasets or databases. Frequent pattern mining

has been popularized by the Apriori algorithm (Agrawal et al. (1993)) in the context

of the market-basket analysis. Given a set of elements called items I (e.g., eggs, milk,
chocolate ...) and a database D, containing transactions, i.e. sets of items (e.g., the

set of all the goods that a given customer bought in one transaction), a frequent

itemset mining algorithm such as Apriori mines sets of items that frequently appear

together in the transactions of the database.

As pointed out in Frawley et al. (1992), given a reasonably large dataset, a very

large number of potentially interesting patterns could be considered. In fact this

number grows exponentially with the size of the database. It quickly became clear

that measures of interestingness had to be developed to reduce the number of output

patterns. Two types of measures can be distinguished, objective measures, that de-

pend only on the structure of the pattern and the data, and subjective measures, that

can take into account user preferences to return more speci�c types of patterns. Pop-

ular objective measures are the support of an itemset and con�dence of an association

rule (Agrawal et al. (1993)). The support of an itemset corresponds to the number

of transactions in the database that contain it. The con�dence of an association rule

"A⇒ B" (where A and B are itemsets) is the number of transactions containing both

A and B divided by the number of transactions containing A. More explicitly, the con-

�dence of "A⇒ B" corresponds to the proportion of customers who bought B among

the ones who bought A. Piatetsky-Shapiro and Matheus (1994) noted that, objective

measures still output a lot of uninteresting patterns. In Silberschatz and Tuzhilin

(1996), the authors studied a subjective measure called actionability, which considers

a pattern interesting if the user can act on it. For example, consider a database of stu-

dent evaluations of courses at the university. Evaluations can take the form of a vec-

tor e = (term, year, course, section, instructor, instructor_rating, course_rating).

Knowing that a speci�c professor always gets an instructor ratings below its course

rating (instructor_rating < course_rating) can be interesting for a chairperson of

the department in which the professor is teaching because this person can act on it by

advising the professor to improve his teaching. The authors of Piatetsky-Shapiro and

Matheus (1994) also study another subjective measure called unexpectedness, which

considers a pattern interesting if it is unexpected to the user with respect to his belief.

48

A survey on measures of interestingness can be found in Geng and Hamilton (2006).

In this thesis, we focus on the frequency interestingness measure. It is de�ned as

the support of a pattern divided by the total number of transactions in the database.

In this context, a pattern is considered interesting if its frequency is higher than a

minimum frequency constraint. A large number of frequent pattern mining techniques

are described in the literature. They depend on the type of the data, its represen-

tation, or the relationships between elements of a database. Most algorithms can be

roughly summarized as follows:

• Given a frequent pattern p, �nd all its occurrences in the database.

• Extend patterns (e.g., by adding one item to them).

• Scan the database to count the number of occurrences of each extension. Repeat

the process with the extended patterns.

Starting from frequent simple patterns of one item, this process iteratively builds

all frequent patterns in the original database. A pattern p extended in a bigger pattern

p′ is called an extensions of p. A sub-pattern of p′ is a pattern p that is included in p′.

Conversely, p′ is a super-pattern of p. To keep this problem tractable, the search space

of possible candidate patterns has to be bounded in some way. An important property

of the minimum frequency constraint is that it is anti-monotonic. This means that if a

pattern is infrequent, none of its super-patterns can be frequent. Therefore, infrequent

patterns do not need to be extended, i.e., infrequent patterns can be safely pruned

from the search space without missing any frequent pattern. Often, not all frequent

patterns are interesting and redundancies in the discovered knowledge can be reduced

by focusing on particular classes of patterns, such as closed or maximal patterns. A

pattern is closed if all its super-patterns have a frequency strictly lower than his, and

a pattern is maximal if none of its super-patterns is frequent. In Calders and Goethals

(2007), the authors show how to derive lower and upper bounds for the support of

itemsets, based on the support of all subsets of an itemset. Those bounds can be

used to avoid processing patterns for which their support can be derived from their

sub-patterns and focus on Non-Derivable Itemsets. This allows to build a condensed

representation that covers all the frequent itemsets to reduce the output of the mining

algorithm while still discovering the important information.

Before being capable of extracting meaningful patterns, it is crucial to choose a

data representation scheme that �ts the problem at hand. Itemsets are one type of

pattern. If the order among items of the transactions has an importance, patterns

will take the form subsequences. Graphs are used when the relationships between

49

the items has to be modeled, in this case the mining algorithms will try to discover

subgraphs. In the context of this thesis, we choose to represent each frame of a video

with graph in order to take into account the topology of the images. Therefore a

video can be seen as a database of graphs (one per frame) which can be mined to

extract interesting subgraphs that should correspond to parts of the main objects. A

more detailed study of Pattern Mining can be found in Han and Kamber (2006), the

rest of this chapter will focus on the more speci�c problem of Graph Mining.

When mining graphs, two di�erent cases can be distinguished depending on the

type of database mined. Indeed it is possible to either mine a large single graph, or

in a database composed of several graphs. Depending on the setup, the frequency of

the patterns will have to be computed di�erently.

3.3 De�nitions and Notations

3.3.1 Graphs

Graphs are powerful mathematical tools that are used to model relationships

among a set of elements. Simple graphs are de�ned as a pair of elements G =< V,E >

where V = {v1, ..., vn} is a set of nodes and E ⊆ V × V a set of edges connecting

them. If there is an edge between each pair of nodes, the graph is said to be complete.

Often, labels are given to nodes and edges to model more precisely the features of the

elements and their relationships. Those graphs are called labeled or attributed graphs.

De�nition 3.1 (Labeled Graph). A labeled graph is a graph G =< V,E, L > where

V = {v1, ..., vn} is a set of nodes, E ⊆ V × V a set of edges connecting pairs of nodes

(vi, vj). The labeling function L : V ∪ E → N maps each edge and each node of the

graph to a label.

Note that, in the case of directed graphs, each edge is an ordered pair of nodes

(vi, vj), while in the case of undirected graphs the pairs of nodes are unordered. Graph

mining algorithms look for subgraphs that appear frequently in the database.

De�nition 3.2 (Subgraph). Given two graphs G =< V,E > and G′ =< V ′, E ′ >,

G′ is a subgraph of G if and only if V ′ ⊆ V and E ′ ⊆ E.

De�nition 3.3 (Induced Subgraph). Given two graphs G =< V,E > and G′ =<

V ′, E ′ >, G′ is an induced subgraph of G if and only if V ′ ⊆ V and E ′ = E ∩ V ′× V ′.

If a subgraph G′ of another graph G is complete, G′ is called a clique of G.

A path in a graph G =< V,E > is a sequence such that consecutive nodes are

connected by edges. A �nite path is a path with a �nite number of nodes. Its �rst

50

node is called the starting node and its last one the ending node. If the starting node

and the ending node are the same the path is called a cycle. A path is said to be

simple if it never passes twice through the same node.

Most of the time graph mining algorithms deal with connected graphs, i.e., graphs

in which there exist at least one path connecting each pair of nodes.

Trees are also particular graphs that are the focus of many graph mining algo-

rithms. A tree is a connected graph with no cycle. A rooted tree, is a tree for which

one node is singled out as the root. If no root is designated, the tree is called a free

tree.

Finally, in this thesis, the graphs used to represent images are plane graphs, mean-

ing that they are drawn in the plane without any of their edges crossing. Note that

a planar graph is a graph that can be drawn in the plane without any of its edges

crossing, while a plane graph is a planar embedding of a planar graph. Each plane

graph is composed of a set of faces.

De�nition 3.4 (Face). Given a plane graph, a face is a connected region of the

plane which is bounded by a cycle of edges. It is represented by the list of nodes

encountered when following the circuit such that the face is always on the left-hand

side.

De�nition 3.5 (Plane graph). A plane graph is a tuple G = (V,E, F, fe, L) where

V is a set of nodes, E is a set of edges, F is a set of faces and L is a labeling function

on V ∪E. The unbounded region fe in the embedding of the graph is called the outer

face of the graph. The other faces are called internal faces.

For example, Figure 3.1 presents three plane graphs and the graph g1 has two

internal faces 〈1, 2, 3〉 and 〈2, 4, 5, 3〉, and its outer face is 〈1, 3, 5, 4, 2〉.

De�nition 3.6 (k-connectedness). A plane graph is k-connected if k is the size of

the smallest subset of vertices such that the graph becomes disconnected if you delete

them.

The k-connectedness can also be de�ned using Menger's theorem Menger (1927).

Theorem 3.7 (Menger's theorem). A graph G is k-connected if and only if every

pair of vertices is connected by k internally disjoint paths.

Note that, using Menger's theorem, we can see that in a 2-connected graph each

pair of distinct nodes is connected by at least 2 internally disjoint paths forming a

simple cycle (no node or edge is used more than once). Therefore a plane graph is

2-connected if each face (and in particular the outer face) is a simple cycle.

51

3.3.2 Isomorphism and Subgraph Isomorphism

Graph isomorphisms are used to assess if two graphs are equivalent, i.e., if we can

�nd a mapping between the nodes that preserves the edges and the labels.

De�nition 3.8 (Graph Isomorphism). Two graphsG = (V,E, L) andG′ = (V ′, E ′, L′)

are said isomorphic if and only if there exists a bijective function f : V → V ′ such

that

• ∀v ∈ V, L(v) = L′(f(v)),

• ∀(v1, v2) ∈ V × V, (v1, v2) ∈ E ⇔ (f(v1), f(v2)) ∈ E ′

• ∀(v1, v2) ∈ E,L(v1, v2) = L′(f(v1), f(v2)).

De�nition 3.9 (Subgraph Isomorphism). A graph G1 is said to be subgraph isomor-

phic to a graph G2, noted G1 ⊆ G2, if there exists a subgraph G′2 of G2 such that G1

is isomorphic to G′2.

A subgraph isomorphism of a pattern P in a graph G is called an occurrence of

P in G.

Those de�nitions can be extended to the speci�c case of plane graphs. As for

general graphs, a plane graph is a plane subgraph of another plane graph if there

exists a correspondence between their nodes which preserves the labels and the edges,

except that the correspondence between nodes should also preserve the internal faces

(if the outer face is also preserved, then the graphs are plane isomorphic).

De�nition 3.10 (Plane subgraph isomorphism). Let G = (V,E, F, fe, L) and G′ =

(V ′, E ′, F ′, f ′e, L) be two plane graphs. Graph G′ is plane subgraph isomorphic to G

(or G′ is a plane subgraph of G), denoted G′ ⊆ G, if there is an injective function

f : V → V ′ such that:

• ∀v ∈ V, L(v) = L′(f(v)),

• ∀(v1, v2) ∈ E,L(v1, v2) = L′(f(v1), f(v2)),

• ∀ internal faces F = 〈v1, ..., vk〉 of G, f(F) = 〈f(v1), ..., f(vk)〉 ∈ F ′.

As we can see in Figure 3.1, the internal faces 〈2, 4, 5〉, 〈2, 5, 7〉 and 〈4, 5, 7〉 of G
are not present in g2, therefore it is not plane subgraph isomorphic to G.

From this an occurrence of a plane graph in a larger graph is de�ned as follows:

52

1 2

3
4

5

76

1

1

2
3

4 5

2

1

2
3

4 5

a

a

a
a

a
b

bb

b
b

a

c a
a

b

b

b

b b

b

b

b

a

ba

g gG

Figure 3.1: Plane graphs. The edge labels are in {a, b, c} and we assume that all node labels
are equal to a (not represented). Graph g1 is a plane subgraph of G while g2 is not.

De�nition 3.11 (Occurrence of a plane graph in a larger graph). Let two plane

graphs G and G′. If G′ is plane subgraph isomorphic to G, the corresponding injective

function f is called an occurrence of G′ in G.

Example 3.12. In Figure 3.1, graph g1 is a plane subgraph of G. The internal faces

〈1, 2, 3〉 and 〈2, 4, 5, 3〉 of g1 correspond, respectively, to faces 〈2, 3, 4〉 and 〈3, 6, 7, 4〉
of G, with f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 6 and f(5) = 7. Graph g2 has three

internal mutually adjacent faces, one with four edges and two with three edges. Since

such con�guration of faces does not exist in G, g2 is not a plane subgraph of G.

3.3.3 Support and Frequency of a Subgraph Pattern

The support of a subgraph pattern P in a database D corresponds to the number

of graphs Gi ∈ D to which it is subgraph isomorphic:

supportD(P) = |{Gi|P ⊆ Gi and Gi ∈ D}|.

The frequency of a pattern P is the ratio of its support divided by the size of the

database:

frequencyD(P) =
supportD(P)

|D|
.

Note that, while counting the support of a subgraph pattern in this fashion is ap-

propriate when mining a database of multiple graphs, it has to be de�ned di�erently

in the case where a single graph is mined (Bringmann and Nijssen (2008)). Indeed,

in this case if the support is counted in number of non identical occurrences, it is

not anti-monotonic. For example, in Figure 3.2, we can see that there is only one

occurrence of pattern p1 in g while p2 has 8 di�erent occurrences. Therefore, in this

scenario, the support is usually counted in terms of the number of non overlapping

occurrences. This can be computed by �rst building the overlap graph of the occur-

rences in which nodes represent the occurrences of a pattern and an edge connects

53

Figure 3.2: Patterns with non-monotonic support. Although p1 is a sub-pattern of p2, its
support in g is inferior to the support of p2 equating 8 (Bringmann and Nijssen (2008))

two nodes if the corresponding occurrences overlap. Then the support of a pattern P

corresponds to the size of the Maximum Independent Set (MIS) of the overlap graph

of the occurrences of P , which is anti-monotonic (Gudes et al. (2006)). Since the MIS

problem is known to be NP-hard (Michael and Johnson (1979)), some algorithms

such as SIGRAM (Kuramochi and Karypis (2006)) use approximations of the MIS.

Nonetheless, since in the context of this thesis we mine databases of graphs, we will

use the above de�nition.

Similarly to itemsets, not all frequent subgraphs are always interesting. Therefore

some algorithms focus on mining particular types of graph patterns (Yan and Han

(2006)). For example, some approaches mine approximate subgraphs (e.g. Holder

et al. (1994)), this allows to represent several subgraphs with minor variations with a

single subgraph pattern. Other methods look for discriminative subgraphs (e.g. Borgelt

and Berthold (2002)), which are subgraph patterns that are frequent in some dataset

but not in another one. They have been used in the context of graph indexing, in Yan

et al. (2004) for example, to reduce the number of subgraphs pattern used as index for

indexing graphs. Coherent subgraph (Huan et al. (2003b)) are graphs for which the

support of their individual edges is correlated. Another type of interesting patterns

are dense subgraphs, which are graphs with high connectivity. They are used for the

analysis of massive networks, such as �nding communities in social network graphs, for

instance in Newman (2004). Another common way to reduce the output patterns is

to only focus on closed frequent subgraphs (Yan and Han (2003)) or maximal frequent

subgraphs (Huan et al. (2004a)).

3.4 The Di�erent Components of Graph Mining Algorithms

Three main problems have to be addressed by graph mining algorithms. The

�rst one is of counting the number of occurrences of each pattern, which requires

matching patterns to subgraphs in the database. The second problem is the one of

54

e�ciently generating candidate subgraph patterns. Finally, a mechanism is needed

to avoid processing multiple times the same candidate subgraph pattern. The rest of

this section will focus on those three problems. A particular attention will be given

to how they are solved by the gSpan algorithm (Yan and Han (2002)) since we used

it for comparison to our contributions (chapter 4).

3.4.1 Graph Matching

To count the number of occurrences of each pattern, it is necessary to match

them in the database by subgraph isomorphisms, which is a well known NP-Complete

problem (Michael and Johnson (1979)). Therefore, mining algorithms usually try to

avoid computing too many subgraph isomorphisms. Graph matching algorithms can

be classi�ed into two types: exact matching and inexact matching algorithms.

Exact matching algorithms are simpler than inexact matching ones. The Ullman

algorithm (Ullmann (1976)) is one of the �rst and still very popular exact matching

algorithms. This algorithm builds a search tree of possible mappings between the

graphs. It extends a partial matching iteratively by adding to it new node-to-node

correspondences. The partial matching is expanded until no further correspondence

can be added without violating the edge structure or the consistence of the labels on

the nodes and edges. If the search space is fully explored without �nding any valid

match, the two graphs are not isomorphic to each other. VF and VF2 (Cordella et al.

(2004)) are more recent algorithms using this search tree approach. More recently,

Solnon (2010) proposed an algorithm called LAD1. This algorithm formulates the

matching problem as a Constraint Satisfaction Problem (CSP). The author devised

a new conditional constraint expressing the fact that subgraph isomorphism should

preserve edges and that two di�erent nodes cannot be matched to a same unique node.

Another recent algorithm, called RI was presented in Bonnici et al. (2013). This

algorithm matches in priority nodes with high degree which are the ones that can put

the most constraint on the rest of the matching. According to a recent experimental

study on biological databases (Carletti et al. (2013)), RI is currently the best exact

isomorphism algorithm, although the study showed that LAD performed better on

dense graphs.

There exist e�cient polynomial algorithms for some subclasses of graphs such

as paths (Babel et al. (1996)), trees (Buss (1997)), or plane graphs (Damiand et al.

(2009); De La Higuera et al. (2013)). This low complexity led to the development

of algorithms specialized in the mining of paths (Kramer et al. (2001)) free trees

1LAD algorithm source code available here: http://liris.cnrs.fr/csolnon/LAD.html

55

(Rückert and Stefan (2004)) and combinatorial maps (Gosselin et al. (2011)). For

instance, in Horváth et al. (2010), the authors focus on �nding frequent subgraphs in

outer-planar graphs, which are graphs that can be represented in the plane in such a

manner that all their nodes lie on the outer boundary, i.e., it is possible to add a new

node to the graph and connecting it to all other nodes without crossing any edge.

Sometimes one is only interested in �nding how similar two graphs are. It can

be achieved through exact matching by �nding the Maximum Common Subgraph

(MCS). The MCS is a common subgraph between two graphs G1 and G2 such that

there exists no bigger common subgraph between them. A distance measure can be

derived from the MCS in the following way:

dist(G1, G2) =
|mcs(G1, G2)|
max(|G1|, |G2|)

,

where |G1|, |G2| and |mcs(G1, G2)| are respectively the size ofG1, G2 ,mcs(G1, G2)

in terms of number of nodes. A comparison of MCS algorithms can be found in Bunke

et al. (2002).

Inexact matching algorithms, try to deal with small di�erences to �nd graphs that

are similar. An intuitive approach consists in computing a graph edit distance (Bunke

and Allermann (1983)). Given an edit cost matrix that re�ects the cost of deleting a

node or an edge, substituting two nodes or inserting a node or an edge, the aim is to

�nd the minimum cost sequence of edit operations that turns a graph into another.

Note that in order to accurately represent the similarity between graphs, graph edit

distances require a properly tuned edit cost matrix, which is usually achieved by mean

of a learning procedure.

Another family of inexact matching algorithms uses relaxation labeling (Fischler

and Elschlager (1973)). The aim of those approaches is to assign to each node of

one of the graph labels representing the nodes of the other graphs. Each node of

the �rst graph possesses a vector of probabilities of being assigned each label. An

initial labeling of the nodes is computed based on their attributes, connectivity or

other informations. The probability vectors of each node is iteratively re�ned until

the values stop changing or a maximum amount of iterations is reached.

Inexact matching has also been achieved using spectral methods (Umeyama (1988)).

Those approaches are based on the fact that eigenvalues and eigenvectors of the adja-

cency matrix of a graph are invariant with respect to node permutation. This means

that the adjacency matrices of two isomorphic graphs will have the same Eigen de-

composition. The converse is not true. The Eigen decomposition is used to e�ciently

�nd a permutation matrix P , which represents the mapping of nodes of a graph G1

56

to the nodes of another graph G2, minimizing the following cost of the matching:

cost(P) = ||PAG1P
T − AG2||2,

where AG1 and AG2 are the adjacency matrices of graphs G1 and G2. The Eigen

decomposition of the adjacency matrices is given by AG1 = UG1ΛG1U
T
G1

and AG2 =

UG2ΛG2U
T
G2

where ΛG1 and ΛG2 contain the eigenvalues of AG1 and AG2 . P can

be obtained by binarizing the matrix ŪG1Ū
T
G2

where ŪG1 is obtained by taking the

absolute value of each element of UG1

Many other inexact matching methods have been developed such as Arti�cial

neural networks using Hope�eld networks (Sperduti and Starita (1997)) or graph ker-

nels (Neuhaus and Bunke (2007)). An extensive survey of both exact and inexact

matching methods is presented in Conte et al. (2004). Note that, inexact matching

approaches have di�culties dealing with large graphs and therefore are usually too

computationally expensive to be applied in a graph mining context.

3.4.2 Canonical Representations

Testing if a particular subgraph has already been discovered requires doing costly

isomorphism tests. To avoid such cost, graph mining algorithms have been using

canonical codes to represent graphs by ordered sequences. For instance, in Inokuchi

et al. (2000), the AGM algorithm represents a graph by concatenating the elements in

the upper triangle part of its adjacency matrix into a sequence. For example, suppose

that a graph with k nodes has the following adjacency matrix:

Xk =

x1,1 x1,2 x1,3 · · · x1,k

x2,1 x2,2 x2,3 · · · x2,k

x3,1 x3,2 x3,3 · · · x3,k

...
...

...
. . .

...

xk,1 xk,2 xk,3 · · · xk,k

The corresponding code of such a graph is:

code(Xk) = x1,1x1,2x2,2x1,3x2,3x3,3 · · · xk−1,kxk,k.

Several di�erent codes can be obtained for the same graph by permuting the

columns of the adjacency matrix (and the rows accordingly). For this reason, before

building a code, the indexes of the matrix are sorted based on the labels of the

nodes. An order is de�ned on those codes and the minimum one is de�ned as the

canonical code of the graph. Canonical codes have the property of being equal for

57

isomorphic graphs. In Inokuchi et al. (2000), this property is used to check if two

candidate subgraphs are isomorphic in order to not count duplicates when computing

the support of each pattern.

One of the most popular algorithms using a canonical representation is gSpan

(Yan and Han (2002)). Here the code of each graph is built by doing a Depth-First

Search (DFS) traversal of its nodes. Figure 3.3 shows an example of graph (a) and 3

DFS trees (b),(c) and (d) obtained by starting the DFS traversal at di�erent nodes

of (a). This exploration of the nodes of a graph de�nes an order on them based on

their time of discovery, i.e., nodes of a graph are sub-scripted based on their order of

discovery. The authors then de�ne an order on the edges. Each edge is described by

a 5-tuple (i, j, li, l(i,j), lj), with i, j the subscripts of the nodes, li, lj their labels and

li,j the label of the edge (i, j). This order is used to build the DFS code of the DFS

trees. Codes of the 3 DFS trees of Figure 3.3 are shown in table 3.1.

Figure 3.3: Depth-First Search Tree (Yan and Han (2002)). In (b)-(c) thick black edges are
the DFS tree edges, called forward edges, dashed ones are backward edges

edge (b) (c) (d)

0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)
1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)
2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)
3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)
4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,1,Z,c,X)
5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Table 3.1: DFS codes for the DFS trees of Figure 3.3, (Yan and Han (2002))

Based on the order on the edges, an order on the codes is built such that among

all possible DFS codes of a graph, the minimum one is its canonical code. As for

58

AGM, this canonical code can be used to check whether a subgraph has already been

discovered and therefore can be safely pruned from the search space without missing

any important pattern.

3.4.3 Candidate Generation

Figure 3.4: Partial search space of all graphs with two di�erent labels, a and b, only on the
edges.

The search space of the mining algorithms is a tree in which each pattern p of

size k is connected to its father pattern of size k − 1, from which it has been grown,

and to its children of size k + 1. For instance, Figure 3.4, represents a part of the

search space of all possible graphs with two labels, a and b, only on the edges. At

each depth level of the tree, patterns of size n are extended into patterns of size n+ 1

by adding-one edge. Such a search space grows exponentially in the number of edges

of the patterns, thus, it is quickly impractical to explore. The main way to bound

it is to exploit the anti-monotonicity property of the minimum frequency constraint,

which ensures that the growth of infrequent patterns can be stopped without missing

any frequent ones.

There exist two main ways to explore the search space, the Apriori based approach

and pattern growth based approach. They explore the search space in a Breadth-First

Search (BFS) and Depth-First Search (DFS) manner respectively (see Figure 3.5).

The Apriori strategy builds all candidate patterns of size k before building the ones

of size k + 1. New candidate patterns are obtained by joining frequent patterns of

59

Figure 3.5: BFS(in red) and DFS(in blue) traversal of the same search space. Each node
represents one candidate pattern.

size k that share a common subgraph of size k−1 such as in the AGM(Inokuchi et al.

(2000)) or FSG(Kuramochi and Karypis (2001)) algorithms. The main drawback of

the Apriori method is that it requires a lot of memory to store all subgraphs of size

k needed to build the patterns of size k+ 1. Moreover, the joining operation between

graphs can be complex to realize (Kuramochi and Karypis (2001)).

The pattern growth based approach generates patterns by adding edges or nodes

to frequent subgraphs recursively until all their frequent super-graphs are discov-

ered. To avoid generating subgraph patterns that do not appear in the database or

have no chance of being frequent, this pattern growth-approach start from frequent

edges/nodes in the database. A pattern can only be extended by adding one of those

frequent edges/nodes if it is connected to occurrences of the pattern. This strategy

is less costly in memory than the Apriori approach because it only needs to store

occurrences for the current branch of the search space that is explored. gSpan(Yan

and Han (2002)) is the �rst algorithm to use a pattern growth strategy to explore the

search space. To extend the subgraphs, the authors use a right-most extension strat-

egy. Let v0 and vn be respectively the �rst, and last nodes visited when performing

the DFS traversal of the nodes of a graph to build its DFS code. vn is called the

right-most vertex and the direct path between v0 and vn in the DFS tree is called

the rightmost path. The authors showed that to extend the DFS code representing

a subgraph G in a valid way, forward edges (edges of G in the DFS tree) could be

added only on a node of the right-most path and backward edges (edges of G not

in the DFS tree) could be added only on the right-most vertex. With this property,

invalid extension generation can be avoided, therefore reducing the search space. The

authors of gSpan also showed that when exploring the search space of DFS codes in

a DFS manner, similarly to the anti monotonicity property of the frequency, any non

minimal code discovered can be pruned without missing any minimum DFS code.

This property allows to further prune the search space while keeping the complete-

60

ness of the algorithm. Note that there is no clearly better strategy between DFS and

BFS exploration. Depending on the data, one strategy can perform better than the

other. Their e�ciency with respect to the problem at hand usually has to be assessed

through experimental studies.

3.5 Review of Graph Mining Algorithms

This section will shortly present inexact and exact frequent graph mining methods

that have been presented in the literature. A recent and more precise survey of the

frequent graph mining methods was presented in Jiang et al. (2013).

3.5.1 Exact Mining

Exact mining algorithm aim at �nding all the frequent subgraphs in the dataset.

In the general case of arbitrary graphs, such complete algorithms perform e�ciently

only on sparse graphs with a high number of labels on edges and nodes to diminish

the cost of isomorphism tests.

One of the �rst exact mining algorithms, called AGM (Inokuchi et al. (2000)),

is based on the frequent itemset mining algorithm Apriori. This algorithm assumes

that all nodes in a graph have a distinct label and treats the graphs of the database

as transactions and their nodes as items. It explores the search space in a BFS

manner and uses a canonical adjacency matrix representation to compare subgraphs

and avoid processing several times the same one. Candidate subgraph patterns of

size n are generated by joining frequent subgraph patterns of size n− 1 that di�er in

one edge.

The algorithm FSG, presented in Kuramochi and Karypis (2001), also using the

canonical adjacency matrix representation and BFS exploration of the search space,

is aimed at �nding frequent connected subgraph patterns. While, unlike AGM it can

deal with graphs having some of their nodes sharing the same label, experiments show

that, when too many of those nodes are present in the database, FSG tends to not

perform well.

Another algorithm, named DPMine Vanetik et al. (2002), reduces the number

of candidate subgraph patterns by extending the patterns with edge-disjoint paths

instead of simple nodes or edges. It starts by discovering all frequent paths in the

database and then all frequent subgraphs with two paths. Using the Apriori strategy,

to generate candidates with k paths it merges pairs of subgraph patterns with k − 1

paths that have k − 2 paths in common.

61

To generate new candidates the Apriori strategy requires keeping in memory all

size k−1 frequent subgraph patterns to obtain the size k candidate subgraph patterns,

algorithms using this approach require a lot of memory. To deal with this problem, a

number of algorithms using a DFS traversal of the search space have been developed.

In the previous sections, we already discussed one of the most popular of those al-

gorithms, namely gSpan. Another frequently cited one is MoFa (Borgelt and Berthold

(2002)) which is directed at mining connected subgraph patterns. This algorithm

stores all occurrences of the frequent subgraph patterns which allows it to generate

only subgraph patterns that appear in the database. Besides, when a new subgraph

pattern is generated, the subgraph isomorphism tests required to compute its support

can use as basis the occurrences of the sub-pattern from which it has been grown and

only match the newly added edge. MoFa also de�nes an order on the nodes of a

subgraph pattern based on their time of addition to the pattern. When a node is

added to a pattern, later extensions can only happen at this node or the ones added

after him. Although this strategy can limit the generation of duplicate candidates

subgraph pattern, the case still arises and has to be dealt with through isomorphism

tests.

In Huan et al. (2003a), the authors presented an algorithm called FFSM using

the canonical adjacency matrix representation. It keeps a list of the occurrences of

the frequent subgraph patterns to avoid explicit subgraph isomorphism test when

counting the support. The particularity of this algorithm is that it uses both join

operations between pairs of k-edge subgraphs sharing a common (k-1)-edge subgraph

and extension operations adding one edge to a k-edge graph to produce (k+1)-edge

candidate subgraph patterns.

Finally, another algorithm using the pattern extension growth strategy, called

GASTON, was presented in Nijssen and Kok (2004). This algorithm also stores all

occurrences for fast isomorphism testing. The main feature of GASTON is that it

speeds up the mining process by �rst mining simpler patterns before moving on to

arbitrary graphs. Firstly, frequent paths are extracted and then extended into trees

by adding one edge. Those frequent trees are further extended into arbitrary graphs

by adding cycles to them. Since path and tree isomorphism can be done in polynomial

time, this hierarchical approach avoids processing some of the non frequent subgraph

patterns by discarding them at the path or tree mining stages.

An extensive comparison of gSpan, MoFa, FFSM and GASTON was presented

in Wörlein et al. (2005). It concluded that storing occurrences of the frequent sub-

graph patterns did not considerably speed up the mining process. Indeed, although

it does not store occurrences of the patterns, gSpan remained competitive with other

62

algorithms unless patterns became too large. The authors also noted that the can-

didate generation and the computing of occurrence lists (or the support counting

for gSpan) cost much more computational time than the pruning of duplicate candi-

dates. As expected, using canonical representations is better than computing explicit

subgraph isomorphism tests, and GASTON's strategy to delay the generation of arbi-

trary graphs to later stages is even more e�cient. Finally all algorithms tested scaled

linearly in the size of the database.

For the single graph case, the authors of Kuramochi and Karypis (2006) presented

two mining algorithms called HSIGRAM and VSIGRAM. They explore the search

space in a BFS and DFS manner respectively. The support of the subgraph patterns

corresponds to their number of non overlapping occurrences. This is computed by

solving the maximum independent set problem on the overlap graph of the occurrences

of each subgraph pattern. The authors implemented both exact and approximate

methods to �nd the maximum independent set in each overlap graph. According to

the experiments, both algorithm scale well on large graphs but VSIGRAM is faster

than HSIGRAM. This is due to the fact that VSIGRAM reduces the cost of subgraph

isomorphism tests by storing a list of the occurrences of patterns along the DFS path.

As was already mentioned, exact mining algorithms discover often too many pat-

terns while the user might be interested in a speci�c kind of patterns. A �rst possibil-

ity is to mine closed subgraph patterns, i.e., patterns for which all super-patterns have

lower support. A very popular algorithm in this category is CloseGraph (Yan and

Han (2003)). The authors noted that, in the case of biochemical data, 2,000 closed

patterns could achieve the same accuracy than 1,000,000 patterns. Their algorithm

is based on gSpan. It explores the search space in a DFS manner, uses DFS codes

and right-most extension. This algorithm prunes the search space by only extending

patterns that are closed.

Another type of pattern that have been the focus of some algorithms are maximal

patterns, i.e., patterns for which no super-pattern are frequent. One such algorithm

frequently cited is SPIN (Huan et al. (2004a)). Similarly to GASTON, this algorithm

�rst mines frequent trees which are then extended into graphs by adding edges to

them. Among all possible spanning trees for a given subgraph pattern, the canonical

spanning tree is de�ned as the maximal one according to a total order on trees (Chi

et al. (2003); Huan et al. (2004b)). The subgraph patterns with isomorphic canonical

spanning trees are put in the same equivalence class. SPIN tries to enumerate only

subgraph patterns that are maximal in their equivalence class. The experiments

conducted by the authors showed that SPIN could mine a database much more quickly

than gSpan or FFSM.

63

Some graph mining algorithms choose to focus on discovering clique patterns. For

example, CLAN (Wang et al. (2006)), mines frequent closed cliques in transactional

databases graphs with labels only on the nodes. This algorithm takes advantage of

the fact that cliques are fully connected sets of nodes, this means that any two cliques

with the same nodes will have the exact same structure. Therefore each clique can

be represented by a simple sequence of the labels of all its nodes. The minimum

such sequence, according to a lexicographic ordering on the labels of the nodes, is

the canonical code of the clique. The search space is explored in a DFS manner and

patterns are extended by adding a node along all the edges that connect it to the

other nodes of the pattern. The authors show that any pre�x of the canonical code

of a clique is also canonical. This means that the generation of non canonical codes

can be avoided by only adding a node to a clique C if its label is lexicographically

no smaller than the last label in the code of C. The authors also note that any node

of a size k clique must have a degree of at least k − 1. Therefore when scanning the

database to �nd the possible extensions of a size k clique, only nodes with a degree

of at least k − 1 are considered. The authors of Zeng et al. (2006) extended this

work and presented the algorithm Cocain to mine closed frequent quasi-cliques. A

graph of size k is a γ-quasi-cliques if the degree of all its nodes, have a degree above

γ(k − 1), where 0.5 ≤ γ ≤ 1 is a user parameter. Note that a γ-quasi-clique is fully

connected when γ = 1 and singleton graphs are considered as γ-quasi-cliques. The

authors de�ned that two γ-quasi-cliques are γ-isomorphic if they have the same size

and there is a bijection between their nodes preserving their labels. As for CLAN, a

canonical representation of quasi-cliques is used to uniquely represent patterns. The

search space, explored in a DFS manner, is pruned using structural properties of the

quasi-cliques.

64

Algorithm Type of Pattern Representation Candidate Generation Exploration Database

AGM graphs CAM level-wise join BFS transactional
FSG graphs CAM level-wise join BFS transactional

DPMine graphs n/a
path enumeration

BFS
transactional &

+ level-wise join single graph

gSpan graphs DFS Code
rightmost path

DFS transactional
extension

MoFa graphs n/a extension DFS transactional
FFSM graphs CAM join + extension DFS transactional

GASTON graphs n/a
path, tree and

DFS transactional
graph enumeration

HSIGRAM graphs CAM level-wise join BFS single graph
VSIGRAM graphs CAM extension DFS single graph

CloseGraph closed graphs DFS code
right most

DFS transactional
extension

SPIN maximal graphs
canonical tree join

BFS transactional
spanning tree + extension

CLAN closed cliques
vertex label

node extension DFS transactional
sequence

Cocain
closed vertex label

node extension DFS transactional
quasi-cliques sequence

FREQT trees
depth-label rightmost path

DFS transactional
sequence extension

TreeMiner trees label sequence
equivalence class

BFS transactional
extension

Figure 3.6: Di�erences between the mining algorithms discussed in section 3.5.1. In this
table, CAM stand for Canonical Adjacency Matrix, DFS for Depth First Search and BFS for
Breadth First Search

A large number of mining algorithms have been developed to mine trees. Among

them, FREQT (Kenji et al. (2004)), uses a right-most extension strategy, adding new

nodes only on the right-most branch of trees to avoid duplicate candidate generation.

It also stores, for each pattern, a list of the right-most leaves of each occurrences to

quickly �nd the occurrences of super-patterns when counting the support. Another

popular tree mining algorithm, named TreeMiner (Zaki (2002)), represents trees as

sequences of labels in the order they are discovered when traversing it in a DFS man-

ner. Trees of size k that are equivalent up to the (k−1)th node are joined to produce

candidate tree patterns of size k + 1. FREQT and TreeMiner are frequently used

by other approaches as a basis for comparison. Many other tree mining algorithms

exist but since this family of graphs is not the focus of this thesis their details are

omitted in this document. The interested reader can refer to the recent survey on

frequent graph mining presented in Jiang et al. (2013) to learn more about frequent

tree mining algorithms. Table 3.6 summarizes the di�erences between the mining

algorithms we discussed in this section.

65

3.5.2 Inexact Mining

Inexact frequent graph mining algorithms allow subgraphs with minor variations

to be counted as occurrences of the same pattern. While this increases the number of

frequent subgraph patterns, those approaches are usually not interested in �nding all

of them. Instead they focus on extracting more interesting patterns that can capture

relationships among the data that would have been discarded by exact frequent graph

mining algorithms because of small variations in the graphs of the database.

One of the �rst and most popular such algorithms is SUBDUE (Holder et al.

(1994)). A graph edit distance is used to match patterns with the graphs in the

database. It performs a Beam Search of the search space, which consists in Breadth-

First Search exploration but only keeping the best subgraph patterns at each iteration.

GREW (Kuramochi and Karypis (2004)) is another inexact frequent graph mining

algorithm. This algorithm is designed to mine single large graphs to discover patterns

with a number of node disjoint occurrences (occurrences with no nodes in common)

higher than a frequency threshold. Moreover nodes of the dataset can contribute to

the support of multiple patterns only if they have a subgraph/super-graph relation-

ship. Like FGM, this algorithm explores the search space in a Breadth-First manner.

New candidate subgraphs are generated by merging frequent subgraphs of previous

iterations connected by one or several edges. Note that this merging process is not

limited to increasing the size of successive subgraphs by only one node or edge at a

time. Since GREW mines node disjoint patterns (unless they have a subgraph/super-

graph relationship), it can rewrite the input graph by collapsing nodes of occurrences

of frequent patterns into single nodes reducing the relative size of the graph to be

mined at each iteration. This has for consequence the underestimation of the fre-

quency of the patterns, therefore some of them are discarded while they are actually

frequent. The authors compared their algorithm to SUBDUE and showed that it

could discover patterns 4 times bigger in a lot less time.

Another approximate frequent graph mining algorithm, called Monkey, was pre-

sented in Zhang et al. (2007). This algorithm mines transactional databases of graphs.

Instead of using conventional subgraph isomorphism to compare graphs, the authors

de�ne that a graph G1 is β edge subgraph isomorphic to a graph G2 if there is a

subgraph isomorphism between G1 and G2 for which at most β edges are not pre-

served, noted G1 ⊆β G2. Let sup(D,G, β) = {Gi|G ⊆β Gi, Gi ∈ D} be the set of

graphs in the database D to which G is β edge subgraph isomorphic. Given three

parameters, α, β and γ, in order for a subgraph G to be approximately frequent,

it is required that |sup(D,G, β)| ≥ γ and that each edge of G appears in at least

γ − α graphs of sup(D,G, β). This algorithm explores the search space in a DFS

66

manner to discover frequent approximate trees. Then, those approximately frequent

trees are recursively extended by adding one edge connecting two of their nodes until

the candidate subgraph is not approximately frequent or has been searched before.

The authors showed that their algorithm could �nd interesting patterns that exact

mining algorithms would miss (Zhang et al. (2007)). According to the authors this

algorithm was 20% faster than a basic DFS based algorithm, but increasing β would

slow it down heavily due to the explosion of approximately frequent patterns.

The same β edge subgraph isomorphism is used by the RAM algorithm of Zhang

and Yang (2008). This algorithm uses feature vectors instead of canonical codes to

check if a candidate subgraph pattern has already been processed. For each subgraph

pattern, a feature vector is built based on simple features such as the connectivity,

the degree of nodes, the size of the graph, the weight of the Minimum Spanning Tree

or other features that can be computed in linear time when growing the pattern.

Similarly to the usage of canonical codes, if a pattern B is discovered after another

pattern A and they have equivalent feature vectors, B is discarded and the search

space pruned. Note that two isomorphic graphs have the same feature vector, but

di�erent graphs might as well. This means that some patterns might be discarded

even though they have not been processed. This is overcome by growing patterns by

adding edges to them in random order. This means that for some execution of the

algorithm a pattern A might be reached before another pattern B, while for another

run, B might be found before A. The authors state that if a pattern has probability

x of being discovered in one run, it has probability 1− (1−x)p of being discovered in

p runs. For example if 20% of patterns might be missed in one run, only 1% would be

missed after 3 executions. Experiments showed that RAM could discover important

patterns that where missed by exact mining methods.

In Chen et al. (2007) the authors presented the algorithm gApprox which mines

approximate patterns from a single large graph with edges weighted by a positive real

number. In this setup, an approximate pattern is a fragment of the input graph. The

approximation comes from the matching technique used by the authors to compare a

pattern with a candidate subgraph. First, each node is associated a list of matchable

nodes built using a thresholded similarity measure. The tightness of the relationship

between (v1, v2) is de�ned as the sum of the costs on the edges of the shortest path

between v1 and v2, noted dist(v1, v2). In this way, the cost of mapping (v1, v2) to its

image (m(v1),m(v2)) under the mapping m is equivalent to the absolute di�erence

between the tightness of (v1, v2) and (m(v1),m(v2)). The degree of approximation

associated to a particular mapping m of the nodes of a pattern P to a graph G is

equal to :

67

approx(P
m−→ G) =

∑
v∈VP

d(v,m(v)) +
∑

vi,vj∈VP

|dist(vi, vj)− dist(m(vi),m(vj))|,

where VP is the set of nodes of P and d(v,m(v)) is a dissimilarity measure be-

tween nodes. Given an error tolerance ∆, a graph G is an approximate occurrence

of a pattern P if approx(P
m−→ G) ≤ ∆. The support of a pattern corresponds to its

maximum number of node disjoint approximate occurrences. Finding such a maximal

number of disjoint occurrences requires solving the NP-hard Maximum Independent

Set problem on the overlap graph of the occurrences of P . To avoid such a costly

computation the authors use an upper bound of the maximum number of node dis-

joint occurrences. Finally, the search space is explored in a DFS manner, �nding all

possible connected sets of nodes in the input graph. Experiments on protein-protein

interaction networks showed that gApprox could e�ciently discover a large number

of biologically interesting patterns.

More recently, Jia et al. (2011) presented APGM, an approximate algorithm

aimed at mining transactional graph databases. The authors de�ne a graph G =

(V,N, Le, Ln) to be approximate subgraph isomorphic to a graph G′ = (V ′, N ′, L′e, L
′
n)

in the database, if there exist an injection f : V → V ′ such that

• S =
∏
v∈V

MLn(v),L′n(f(v))

MLn(v),Ln(v)
≥ τ ,

• ∀v1, v2 ∈ V, (v1, v2) ∈ E ⇒ (f(v1), f(v2)) ∈ E ′, and

• ∀(v1, v2) ∈ E,Le(v1, v2) = L′e(f(v1), f(v2)).

Where S is the approximate subgraph isomorphism score, M is a matrix indexed

by the labels of the two graphs such that Mi,j represents the cost of changing label

i to label j, and τ is a given similarity threshold. Since there could exist multiple

mappings f satisfying the approximate subgraph isomorphism test, the matching

score between a pattern and a graph in the database is de�ned as the maximum

approximate subgraph isomorphism score obtained by this pattern in this graph.

The support of a pattern corresponds to the sum of the matching scores with all

graphs in the database, divided by the size of the database. This approach allows to

match together graphs that are structurally equivalent but that have nodes labeled

di�erently. An upper bound of the support is used to e�ciently prune the search

space explored in a DFS manner. The experiments conducted by the authors showed

that APGM could discover more and bigger patterns in less time than an exact mining

approach.

68

Some recent approaches have been focusing on mining probabilistic graphs, i.e.,

graphs with a probability of existence assigned to each edge. In this scenario an

uncertain graphs is a graph G =< VG, EG, P > where P (e) is the probability of

existence of edge e ∈ EG. Each uncertain graph implicates a set of exact graphs

I(G) = {I =< VG, EI > |EI ⊆ EG}. The probability that an uncertain graph G

implicates an exact graph I is:

P (G ⇒ I) =
∏
e∈EI

P (e)
∏

e′∈EG\EI

(1− P (e′)).

In Zou et al. (2009), the authors present the algorithm MUSE, aimed at mining

frequent subgraph patterns in transactional databases of uncertain graphs. Given an

uncertain graph database D = G1,G2, ...,Gn, the probability that a pattern p occurs

in one of the uncertain graphs Gi is:

P (p ⊆ Gi) =
∑

I∈I(Gi)

P (Gi ⇒ I) ·Ψ(I, p), (3.1)

where Ψ(I, p) = 1 if p is subgraph isomorphic to I, 0 otherwise. The expected

support of p in database D is computed as follows:

esupD(p) =
1

|D|

|D|∑
i=1

P (p ⊆ Gi).

The algorithm performs a depth-�rst search of the search space of candidate fre-

quent subgraph patterns and approximates their expected support. Experiments

showed that the approximation of the expected support resulted in few false fre-

quent patterns returned. The authors also showed that the time complexity of their

algorithm increased linearly with the number of uncertain graphs in the database.

In Jin et al. (2011), the authors describe an algorithm to discover highly reliable

subgraphs from an uncertain graph G =< VG, EG >. A highly reliable subgraph is

a subset of nodes of the input graph that has a probability of remaining connected

under uncertainty, called reliability, higher than a given threshold. The reliability

of a particular subset of nodes is computed in the same way than the probability

of a pattern occurring in uncertain graphs for MUSE, but this time the indicator

function Ψ in equation 3.1 indicates connectivity instead of subgraph isomorphism.

The authors estimate the reliability of a subset of nodes Vs ⊆ VG through Monte-Carlo

sampling. N graphs are sampled according to their probability of being implicated by

G. The number of them in which the subset Vs is connected is its estimated reliability

in G. The authors reformulate this as the problem of mining frequent cohesive sets.

69

Given a database of graphs D that have the same nodes (in this case the set of

sampled implicated graphs of G), a frequent cohesive set is a subset of nodes Vs that

is connected in more graphs of the database than a given threshold. The frequency

of a cohesive set corresponds to the estimated reliability of Vs in G and is not anti-

monotonic, which means that a super-pattern can be more frequent than some of its

sub-patterns. In order to still be able to bound the search space, the authors �rst

�nd the maximal frequent cohesive sets (MFCS) by relaxing the problem into the one

of �nding the maximal frequent linked sets (MFLS). A linked set is a subset of nodes

that are connected, possibly through nodes outside the set. The MFLS problem can

be turned into a frequent itemset problem by computing the connected components

of each graph of D and treating the node sets of each connected component as a

transaction. Since all the MFCS are contained in the set of MLFS, the authors can

recover the MFCS by a peeling procedure. For each MFLS m, the database is peeled

by removing all nodes that are not in m. This might disconnect m since it is likely

to be connected through nodes outside of it. Then the peeled database is mined

to discover new MLFS that correspond to MFCS of the original database D. This

process is repeated recursively until all MFCS have been found.

3.6 Graph Representations of Videos

There exist various methods to represent images in ways that capture more se-

mantic information than a simple matrix of pixels. For example, color histograms

(Swain and Ballard (1991)) can capture the distribution of the pixels' color. Two

images can be compared by measuring the distance between their color histograms.

While this representation is simple, a single histogram cannot capture the geometry

and topology of an image and it is possible to have two very di�erent images with

similar histograms. Some approaches use a vocabulary of visual words. The images

are described by histograms of the frequency of appearance of each word(Nowak et al.

(2006)). While visual words can retain some spatial information at a local level, like

texture patterns, this image representation su�ers from the same lack of spatial in-

formation at a global level than color histograms. Another possibility consists in

representing images at multiple scales using pyramidal representations (Glantz et al.

(2004)) or quad-trees (Samet (1984)). Pyramidal and quad-tree representations can

be used to compare images at multiple scales, exploiting both the local and global

information, but they are di�cult to update when images change over time and they

do not model their topology explicitly. It is also possible to use strings to describe

images using the Freeman code (Freeman (1961)). Eight symbols are used to encode

70

each of the eight possible directions around a pixel (i.e., left,right,top,bottom, and

both diagonals). A shape is encoded by the directions taken while following the pixels

of its contour. This technique is commonly used to match handwritten symbols by

measuring the similarity of the codes (e.g., using the edit distance for example).

In this thesis we focused on graph representations of images that model their

topology. Some types of representations are particularly suited for certain problems.

For example, in Kotropoulos et al. (2000), the authors compare human faces by using

grids, measuring visual features at each of its node. The amount of deformation

needed to �t the grid representing one face to the grid representing another face

serves as a measure of similarity. This approach is well suited to face recognition

applications since common features such as two eyes, a nose and a mouth are present

on all human faces. But it cannot deal with all the variety in the objects that can

appear in a video and it is not robust to variations in view point. More generally,

graph representations of images are mostly based on two types of visual features:

interest points or segmented regions.

3.6.1 Graph Representations of Images Based on Interest Points

To represent the topology of images, one possibility is to extract interest points and

then build a Neighborhood Graph, connecting points according to some neighborhood

relationship. For example, we can build the Euclidean Minimum Spanning Tree

(Agarwal et al. (1991)), which corresponds to the spanning tree connecting the nodes

with the shortest edges in term of euclidean length. Interest points can also be

connected to form a Relative Neighborhood Graph (Toussaint (1980)), where two

nodes v1 and v2 are connected if the intersection between the two circles centered

on v1 and v2 and with radius v1v2 does not contain any other node. Similarly, the

Gabriel Graph (Gabriel and Sokal (1969)), which connects two nodes v1 and v2 if

the circle of diameter v1v2 does not contain any other node, can be used to represent

images with interest points. Finally, interest points can also be used to build a

Delaunay triangulation (Lee and Schachter (1980)), which consists in dividing the

space into triangular faces so that the circumscribed circle of every faces does not

contain any node. Unsuccessful attempts to triangulate interest points for image

processing applications were described in Samuel (2011). Figure 3.7 shows an example

of Euclidean Minimum Spanning Tree, Relative Neighborhood Graph, Gabriel Graph

and Delaunay Triangulation built for a particular set of points.

71

Figure 3.7: Neighborhood graphs (Samuel (2011))

3.6.2 Graph Representations of Images Based on Segmented Regions

Segmented images are often the basis of graph representations of images. In

Cai et al. (2013) the authors describe an approach that consists in connecting with

an edge the nodes of the graph, representing the segmented regions, if the distance

between the two corresponding regions is lower than their average radius. The four

models based on interest points described in the previous section can also be used

with segmented regions by considering their barycenter's coordinates. There also

exist models speci�c to segmented images. One of the �rst such models is the Region

Adjacency Graphs (RAG) (Trémeau and Colantoni (2000)). In a RAG, each node

72

Figure 3.8: Example of segmented images with 4 regions (left) and its corresponding RAG
(right)

represents a region and an edge connects two nodes if the corresponding two regions

are adjacent in the image (see Figure 3.8). This representation cannot model multiple

adjacency between two regions or distinguish between simple adjacency and inclusion.

To deal with this problem, Dual Graphs (Kropatsch (1995)) have been proposed. This

model is composed of two graphs. The �rst one is a RAG G that can have multiple

edges between two same regions to model the multiple adjacency. The edges of this

graph divide the plane into faces. Based on G a dual graph G′ is built in which nodes

represent the faces of G and for each edge in G separating two faces f1 and f2, an edge

is set in G′ between the nodes representing f1 and f2. The drawback with this model

is that it requires to maintain two graphs for each image. Further more, the inclusion

of a region R1 into another region R2 is modeled by a loop on R2 surrounding R1.

This means that the geometry of the edges has to be analyzed to detect inclusion

relationships. Another model used to model the topology of segmented images are

the Combinatorial Maps (Lienhardt (1991)). They encode explicitly the orientation of

edges around nodes. They can be seen as a decomposition of the image into faces (i.e.,

segmented regions in our case) which are further decomposed into edges. Figure 3.9

shows an example of such a decomposition. Each edge results in two half edges called

darts. Note that although we only consider image representations in two dimensions,

combinatorial maps can be used in higher dimensions (Damiand (2001)). In the 3

dimensional case, an object can be decomposed into volumes, then faces and then

darts.

Formally, a combinatorial map is a triplet M = (D, β1, β2) where D is a set of

darts, β1 a permutation on D de�ning the faces by relating each dart to the next one

around the face, and β2 an involution on D representing the adjacency between the

73

Figure 3.9: Example of decomposition of an object into darts (Damiand (2001))

1 2 3 4 5 6 7 8
β1 2 3 4 5 6 7 1 9
β2 15 14 18 17 10 9 8 7

Table 3.2: Permutation β1 and involution β2 of the combinatorial map in Figure 3.10
(Samuel (2011)

faces by relating darts on the same edge belonging to two adjacent faces. Figure 3.10

gives an example of a combinatorial map representing the object in Figure 3.9, and

table 3.2 shows the values for β1 and β2. As shown in the work of Damiand (2001)

combinatorial maps can be used to represent the inter pixel boundary between regions

of a segmented image and therefore model the geometry of the regions. Unfortunately

a lot of darts might be required to represent complex shapes.

Figure 3.10: Example of combinatorial map representing the object in Figure 3.9 (Samuel
(2011))

3.6.3 Video Representation

Videos can be represented by a set of graphs. For instance in Chang et al. (2004)

the authors represent each frame of a video with a RAG. Any of the graph represen-

tations described in the previous section could be used. We chose to use segmented

74

regions as the basis of our graph representation and focused on models using plane

graphs since those are more e�cient to compare since the plane isomorphism test can

be solved in polynomial time.

The method of Cai et al. (2013) is simple but does not necessarily results in plane

graphs. Dual graphs require to manage two graphs per image which makes them

harder to handle. The combinatorial maps model the topology of images accurately

and result in plane graphs that are similar to or graphs. However their structure is

complex and they are better suited to model high dimensional objects.

We chose to use a simple RAG representation with multiple edges between nodes

when two regions have multiple adjacency resulting in multigraphs. In our video

application, each frame is segmented individually using the image segmentation algo-

rithm of Felzenszwalb and Huttenlocher (2004) and represented by a plane graph Gi.

This segmentation algorithm is discussed in section 2.1.2. We also used the video seg-

mentation algorithm of Grundmann et al. (2010) as a basis for our graph construction

in some of our experiments. Each node in those graphs represents a segmented frame

region, and is associated to the coordinates (x, y) of the barycenter of this region. One

special node is added to represent an unbounded region encompassing all the image.

Informations on the regions (e.g., size, average color etc...) and on their borders (e.g,

length for example) can be added to nodes and edges as labels. In our experiments

we mostly used two types of node labels based either on a discretization of the size of

the regions or a discretization of their average color. The inclusion relationship can

also be represented by a label on the edges. For the sake of comparison, we also tried

another plane graph representation based on the segmented regions by triangulating

the nodes using a Delaunay triangulation.

With those graphs representations, we expect to be able to detect and track the

main objects of a video by mining frequent plane subgraph patterns from the database

of plane graphs representing it.

3.7 Conclusion

We have presented various existing approaches to tackle the graph mining problem.

In the context of this thesis, we want to mine frequent subgraph patterns from a

transactional database of graphs representing images of a video. Since videos evolve

through time, which means that exact patterns are unlikely to be present in all frames,

inexact mining methods seem good candidates to tackle our problem. Moreover, the

image segmentation process can introduce a lot of noise. For instance some regions

can be regrouped in a single one, or conversely a single region can be fragmented into

75

multiple smaller ones from one frame to another. This means that we would need a

mining technique that can deal with uncertainties during the matching phase on both

the nodes and the edges. Unfortunately, e�cient inexact mining methods usually only

allow uncertainties on the edges (e.g, gApprox) or the nodes (e.g, APGM). Often they

require the identi�cation between the di�erent graphs of the database to be known

(e.g., when mining social networks), or mine single graphs (e.g., GREW). As shown

by Zhang et al. (2007), while small uncertainties can be tackled, it is di�cult to deal

with large variations without the search space of candidate patterns becoming too

large. The approach of the RAM algorithm can deal e�ciently with uncertainties but

the features used to represent each graph need to be carefully selected and tuned in

order to accurately account for the structural properties of data.

Exact mining approaches consider similar subgraphs to be occurrences of di�erent

patterns. However interesting relationships can still be captured by the output exact

frequent patterns. While exact graph mining is intractable in large datasets of dense

graphs, focusing on a particular subclass of patterns is a good strategy to heavily

reduce the number of candidate patterns that need to be generated and processed.

The next part of this document will discuss how plane graphs representing a video

can be e�ciently mined and how the number of extracted patterns can be reduced

by taking into account spatial and temporal constraints. We will also show the

meaningfulness of those patterns for object tracking in videos.

76

Part II

Contributions

77

CHAPTER 4

Mining Spatio-Temporal Patterns in Dynamic

Graphs

4.1 Introduction

In our work we represent videos by series of plane graphs (see de�nition 3.5 of

a plane graph), with one graph per frame. Those graphs are obtained by �rst seg-

menting each frame using the color segmentation algorithm of Felzenszwalb and Hut-

tenlocher (2004) and representing each segmented regions by a node. Those nodes

are connected by mean of adjacency relationship (Trémeau and Colantoni (2000)) or

Delaunay triangulation (Lee and Schachter (1980)). With this method each video

can be represented by a series of plane graphs that can be seen as a dynamic graph

in which both nodes and edges evolve.

This chapter discusses our contributions in the �eld of data mining. More precisely,

we investigate how plane graphs can be e�ciently mined in order to extract meaningful

patterns, i.e., in our case patterns that represent objects or parts of them. To do this,

we take advantage of a polynomial plane subgraph isomorphism algorithm (Damiand

et al. (2009)) to e�ciently �nd the occurrence of each pattern. The main focus will

be on how to exploit the spatio-temporal information of videos to reduce the number

of patterns discovered. Indeed, in a video, objects move smoothly along a trajectory,

therefore the occurrences of a pattern representing the same object should not be too

far apart in term of number of frames and spatial distance. To deal with this, we

developed two distances, a temporal one and a spatial one, and use them to output

only patterns that meet some spatial and temporal constraints.

A �rst section will provide de�nitions for the concepts we will use. Then section

4.3 will detail our PLAne GRAph Mining algorithm called Plagram and its variants,

DyPlagram, which only uses the temporal constraint and DyPlagram_st, which

exploits both the spatial and temporal constraints during the mining phase. Those

78

three variants all explore the search space of candidate plane subgraph patterns in a

depth-�rst manner and use canonical codes to avoid processing the same subgraph

several times. Another key di�erence with other graph mining algorithms is that in

our approach we extend subgraph patterns by adding to them complete faces (see

de�nition 3.4) instead of just one node or edge. This extension strategy speeds up

the exploration of the search space but means that our algorithms are restricted to

�nding plane subgraph patterns that are 2-connected, i.e., each face composing it is a

simple cycle. In the section 4.4 we discuss the results of the experiments conducted to

show the e�ciency of our dedicated mining algorithm in comparison with the general

purpose gSpan algorithm (Yan and Han (2002)). We also study the impact of the

spatio-temporal constraints on the e�ciency of our algorithms before concluding this

chapter in section 4.5.

4.2 De�nitions

4.2.1 Dynamic Plane Graph and Frequency of Plane Subgraph Patterns

The set of plane graphs representing the frames of a video can be seen as a dynamic

plane graph in which both nodes and edges evolve through time. The frames in a video

are ordered, and this order is taken into account when computing spatio-temporal

patterns. We thus de�ne a dynamic plane graph as an ordered set of graphs.

De�nition 4.1 (Dynamic plane graph). A dynamic plane graph D is an ordered set

of plane graphs {G1, G2, .., Gn}. Each node of these graphs is associated to spatial

coordinates (x, y).

Building on the de�nition of an occurrence of a plane graph in a larger graph (see

de�nition 3.11) we de�ne an occurrence of a plane graph in a dynamic plane graph

and its frequency.

De�nition 4.2 (Occurrences of a plane graph in a dynamic graph). Given a plane

graph P and a dynamic graph D = {G1, ..., Gn}, the set of occurrences of P in D is

de�ned as Occ(P) = {(i, f) | f is an occurrence of P in Gi}.

De�nition 4.3 (Barycenter of an occurrence). The barycenter of an occurrence is

the average of the coordinates of its nodes.

De�nition 4.4 (Frequency of a plane graph in a dynamic graph). The frequency

freq(P) of a plane graph P in a dynamic graph D is the number of graphs Gi ∈ D in

which there is an occurrence of P , i.e., | {i | ∃f, (i, f) ∈ Occ(P)} |.

79

4.2.2 Occurrence Graph and Spatio-Temporal Patterns

In typical subgraph mining problems, where the input collection of graphs does

not represent a dynamic graph, the frequency freq(P) of a pattern graph P , which is

used by Plagram, is computed regardless of the fact that its occurrences may be far

apart with respect to time and/or space. Indeed, in the context of a video tracking

application, the tracked object changes of appearance smoothly, due to changes in

view point and orientation. Therefore we expect a pattern representing a part of it in

a frame t to also be present in nearby frames, i.e., frames with a time-stamp close to t

with respect to some temporal constraint. Similarly, the tracked object is expected to

move smoothly. Thus, occurrences of a pattern representing the same object should

not be too far, in term of spatial distance, in consecutive frames.

To de�ne a frequency that takes into account the spatio-temporal distance between

the occurrences, we de�ne in this section the notion of an occurrence graph in which

occurrences of the same pattern that are close to one another are linked. Then, we

de�ne spatio-temporal patterns in this occurrence graph and the associated frequency.

Note that we use two di�erent de�nitions of an occurrence graph, one for Pla-

gram and DyPlagram, and one for DyPlagram_st.

4.2.2.1 De�nition of Occurrence graph Used by Plagram and DyPla-

gram

De�nition 4.5 (Occurrence graph and Spatio-temporal pattern). Two occurrences

of a plane graph P in a dynamic graph D, o = (i, f) and o′ = (i′, f ′), are close if

the distance between their barycenters is lower than a spatial threshold ε and their

temporal distance |i′− i| is lower than a time threshold τ . Then, given a plane graph

P and a dynamic graph D, we de�ne the occurrence graph of P as a graph where the

set of nodes is Occ(P) and the set of edges is {(o, o′) |o is close to o'}. In the rest

of this document, each connected component of the occurrence graph of P is called

a spatio-temporal pattern S based on P . The frequency of a spatio-temporal pattern

corresponds to the number of frames in which it has at least one occurrence.

De�nition 4.6 (Frequency of a spatio-temporal pattern). The frequency of a spatio-

temporal pattern S in a dynamic graph D, denoted freqst(S), is | {i | ∃f, (i, f) ∈ S} |.

Given two plane graphs such that P ′ ⊆ P , if there is an occurrence of P in Gi,

then there is also an occurrence of P ′ in Gi. Thus freq(P) ≤ freq(P ′) and, therefore,

if P ′ is not frequent, then neither is P . Given this behavior, we say that freq has

the anti-monotonicity property. Such property can certainly be exploited to prune

non-promising candidate subgraphs, as in classical graph mining algorithms.

80

Figure 4.1: The euclidean distance between the barycenters of the two occurrences of the
sub-pattern (upper part of the image) is higher than the one of the super-pattern in the
bottom. This means the occurrences of the super-pattern can be close while the corresponding
ones of the sub-pattern are not, resulting in a super-pattern that can be frequent, with respect
to freqst, while its sub-pattern is not

However, when de�ning the occurrence graph as in de�nition 4.5, freqst is not

anti-monotone. Suppose that two occurrences a and b of P are close to each other,

leading to a single frequent spatio-temporal pattern S. Conversely, two occurrences

a′ ⊆ a and b′ ⊆ b of P ′ may be far from each other, possibly resulting in two non-

frequent spatio-temporal patterns S ′ and S ′′. In other words, two spatio-temporal

patterns S ′ and S ′′ based on P ′ may be infrequent, while the spatio-temporal pattern

S based on P is frequent. This is illustrated in Figure 4.1.

Nevertheless, the frequency of a spatio-temporal pattern S based on a plane graph

P (i.e., freqst(S)) can be upper bounded with two anti-monotone measures as follows:

freqst(S) ≤ freqseq(P) ≤ freq(P),

where freqseq(P) is the subsequence frequency of P de�ned below.

De�nition 4.7 (Subsequence frequency). The subsequence frequency of a plane

graph P in D, denoted freqseq(P), is de�ned as the size of the longest subsequence

Gi1 ,Gi2 ,..., i1 < i2 < ... of D such that

(a) for all j, Gij contains an occurrence of P and

(b) for all j, ij+1 − ij is lower than the time threshold τ .

Observe that freqseq(P) is an upper-bound on freqst(S), since the sequence of the

Gis that contains an occurrence of S satis�es (a) and (b) in De�nition 4.7. Moreover,

81

if P ′ ⊆ P then any sequence of Gis satisfying (a) and (b) for pattern P also satis�es

them for pattern P ′. freqseq(P) ≤ freqseq(P
′) and therefore freqseq has the anti-

monotonicity property.

4.2.2.2 De�nition of Occurrence graph Used by DyPlagram_st

While freqseq has the anti-monotonicity property, it only accounts for the temporal

constraint. To "give" the anti-monotonicity property to freqst we need to rede�ne the

occurrence graph so that it is not possible anymore for two distinct spatio-temporal

patterns, based on the same pattern, to merge in a single spatio-temporal pattern

composed of more occurrences than the two initial ones. To do so we used a di�erent

spatial distance than the euclidean distance between the barycenters of the occur-

rences. Instead we measure the distance between each node of one occurrence and its

corresponding node in the other occurrence and keep the maximum one.

De�nition 4.8 (Distance between occurrences). The distance between two occur-

rences o = (i, f) and o′ = (i′, f ′) of a plane graph P = (V,E, F, fe, L) in a dynamic

graph D is de�ned as: dist(o, o′) = maxs∈V d(f(s), f ′(s)), where d denote the Eu-

clidean distance between the nodes.

This distance has an anti-monotonic property:

Proposition 4.9. For any pairs of patterns P = (V,E, F, fe, L) and P ′ = (V ′, E ′, F ′, f ′e, L
′)

such that P is a plane subgraph of P ′ and two occurrences o1 = (f1, i), o2 = (f2, i)

of P and two occurrences o′1 = (f ′1, i), o
′
2 = (f ′2, i) of P ′ such that f1 is a re-

striction of f ′1 (i.e., f1 = f ′1 on V) and f ′2 is a restriction of f2, then we have

dist(o1, o2) ≤ dist(o′1, o
′
2).

Proof. Let P = (V,E, F, fe, L) be a pattern and two of its occurrences o1 = (i, f1, i),

o2 = (j, f2). Extending P to P ′ = (V ′, E ′, F ′, f ′e, L
′), with o′1 = (i, f ′1) and o′2 = (j, f ′2)

the occurrences of P ′ respectively extended from o1 and o2, we have f1(V) ⊆ f ′1(V ′)

and f2(V) ⊆ f ′2(V ′). Therefore maxs∈V d(f1(s), f2(s)) ≤ maxs′∈V ′ d(f ′1(s′), f ′2(s′)).

Figure 4.2 gives a graphical example of this spatial distance.

To rede�ne the occurrence graph so that freqst has the anti-monotonicity property,

we used the parent relationship on patterns, de�ned by the depth-�rst traversal of

the search space performed by our mining algorithm.

De�nition 4.10 (Parent of a pattern and of an occurrence). Given a pattern P with

n ≥ 2 internal faces, the pattern p(P) with n − 1 faces that can be extended into

P by the addition of one face is called the parent of P . And given an occurrence

82

Figure 4.2: Extending a pattern cannot result in a lower spatial distance, therefore this
distance has an anti-monotonic property.

o = (i, f) of P , we call the parent of o the occurrence p(o) = (i, f ′) such that f ′ is the

restriction of f to the nodes of p(P).

The de�nition of the parent of an occurrence is then used to de�ne the occurrence

graph. The nodes of the occurrence graph are the occurrences of a pattern and the

edges connect �close� occurrences. This graph is constructed for each pattern in the

mining algorithm.

De�nition 4.11 (Occurrence graph and Spatio-temporal pattern). Given a spatial

distance dist, a spatial threshold ε, a temporal threshold τ , a plane graph P =

(V,E, F, fe, L) and a dynamic graph D, we de�ne the occurrence graph of P as an

oriented graph whose set of nodes is Occ(P).

• If P has only one face, then there is an edge between the occurrences o1 = (i, f1)

and o2 = (j, f2) such that j > i if 0 < j − i ≤ τ and dist(o1, o2) ≤ ε.(j − i) and
there is no occurrence o3 = (k, f3) with i < k < j and dist(o1, o3) ≤ ε.(k − i).

• If P has more than one face, then there is an edge from o1 = (i, f1) to o2 =

(j, f2) if there is an edge (p(o1), p(o2)) in the occurrences graph of p(P) and

dist(o1, o2) ≤ ε.(j − i).

A spatio-temporal pattern S based on P is a connected component of the occurrence

graph of P .

This de�nition is such that the occurrence graph of a pattern P is always a sub-

graph of the occurrence graph of its parent pattern p(P) (if we identify the node o of

the occurrence graph of P with the node p(o) of the occurrence graph of p(P)). In

83

1 4
5
6

7
8
9

10

2 3 11

frame 2 frame 3 frame 4 frame 5frame 1

6 9
11

32

87

Occurrence graph:Distance threshold:

Pattern:

10541

Figure 4.3: Occurrences of a pattern and occurrence graph with τ = 3.

practice, P is obtained by extending occurrences of p(P) and removing the ones that

do not respect the spatio-temporal constraints. This ensures that the spatio-temporal

patterns based on P get �smaller� as the pattern P grows, and this ensures that the

frequency of a spatio-temporal pattern freqst has the anti-monotonicity property. Be-

side, contrary to de�ntion 4.5, with this de�nition, the spatial constraint now takes

into account the number of frames separating two occurrences. The idea is that if we

expect an object to move 10 pixels between frames t and t+ 1, we should expect it to

move 10 × 2 pixels between t and t + 2, therefore the spatial threshold is multiplied

by the number of frames separating the two occurrences. Another improvement is

the fact that we now only connect occurrences with the closest occurrences in term of

time-stamp. In other words, if two occurrences o1(i, f) and o2(g, i+ 1) are connected,

no occurrence o3(h, j) with j > i+1 can be connected to o1, even if the spatio-temporal

constraints are met. This reduces the number of edges in the occurrence graph by

removing redundant transitivity edges without breaking any connected component.

Fig. 4.3 shows 11 occurrences of a pattern P in a video with �ve frames for τ = 3

and with freq(P) = 5 (since it occurres in all 5 frames). Since occurrences 1 and 4 are

close to each other, i.e., their spatial distance is lower than 2× ε and their temporal

distance is 2 ≤ τ , there is an edge (1, 4) in the occurrence graph of P . Conversely,

the edges (3, 5) or (2, 11) do not exist in the occurrence graph, as the spatial distance

between 3 and 5 or the temporal distance between 2 and 11 are too large. There are 4

spatio-temporal patterns based on P: S1 = {1, 4, 5, 7, 8, 10}, S2 = {3, 6, 9}, S3 = {2}
and S4 = {11}. The frequencies of these patterns are: freqst(S1) = 4, freqst(S2) = 3,

and freqst(S3) = freqst(S4) = 1.

Proposition 4.12. Given a pattern P with more than one face, and given a spatio-

temporal pattern S based on P , there is a spatio-temporal pattern S ′ based on the

parent p(P) of P with a larger freqst, i.e., freqst(S) ≤ freqst(S
′).

Proof. Let two occurrences o and o′ of a pattern P . If this pattern has more than

one face, it has a parent pattern p(P) from which it has been extended. According

84

Algorithm Occurrence graph Frequency Constraints enforced
variant de�nition used measure used during mining

Plagram
def 4.5

freq none
DyPlagram freqseq temporal

DyPlagram_st def 4.11 freqst spatio-temporal

Table 4.1: Major di�erences between Plagram, DyPlagram and DyPlagram_st

to de�nition 4.11, there must be an edge between p(o) and p(o′) in the occurrence

graph of p(P) for o and o′ to be connected, even if o and o′ meet the spatio-temporal

constraints. Therefore extending a pattern can only remove edges from its occurrence

graph. This means that any connected component in the occurrence graph of P is

a subgraph of a connected component in p(P). Therefore for any spatio-temporal

pattern S based on P there is a pattern S ′ based on p(P) that covers at least the

same number of frames and has a larger or equal freqst

This proposition shows that, given a minimum threshold σst on freqst, if a pattern

does not have a frequent spatio-temporal pattern then any super-pattern does not

either. This allows us to prune the search space of candidate patterns.

4.2.3 Problem De�nition

Given dynamic graph D, a frequency threshold σst, a spatial threshold ε and a

time threshold τ , the problem is to compute all spatio-temporal patterns of D with

freqst greater than σst.

4.3 Mining Spatio-Temporal Patterns

DyPlagram_st takes advantage of the new de�nition of an occurrence graph

(de�nition 4.11) and can use freqst to mine spatio-temporal patterns directly. Pla-

gram and DyPlagram do not use freqst, instead they respectively use freq and

freqseq. Therefore, to solve the problem de�ned in Section 4.2.3 with those two algo-

rithms, the idea is to �rst mine for all frequent graph patterns (using either freq or

freqseq) and then, in a post-processing step, construct the occurrence graph of each fre-

quent pattern to compute the spatio-temporal patterns, as described in De�nition 4.5.

The key di�erences between the three variants of our algorithm are summarized in

table 4.1.

The rest of this section will give the details concerning the extension strategy

used by our algorithms, the canonical codes used to avoid processing several times

85

1 2

3
4

5

76

1

1

2
3

4 5

2

1

2
3

4 5

a

a

a
a

a
b

bb

b
b

a

c a
a

b

b

b

b b

b

b

b

a

ba

g gG

Figure 4.4: Plane graphs. The edge labels are in {a, b, c} and we assume that all node labels
are equal to a (not represented). Graph g1 is a plane subgraph of G while g2 is not.

the same subgraph and the strategy to explore the search space. Then we give the

pseudo-codes for the three variants of our approach.

4.3.1 Extensions

Our algorithms use a depth-�rst exploration strategy: each time a frequent pattern

is found, it is extended into a bigger candidate pattern for further evaluation. As

gSpan, our algorithms only generate promising candidate graphs, that is, subgraphs

that actually occur in D. However, our extension strategy limits the number of

di�erent extensions that can be generated from a given frequent pattern, as described

below.

De�nition 4.13 (Valid extension). Given a plane graph g and two nodes u 6= v on

the outer face of g, g can only be extended by the addition of a new path P = (u =

x1, x2, . . . , xk = v) to g between u and v. This path must lie in the outer face of g.

Nodes x2,..., xk−1 are (k−2) ≥ 0 new nodes. This new graph is denoted g∪P . Given
a plane graph G such that g ⊂ G, P is a valid extension of g in G if g ∪ P ⊆ G.

In other words, this de�nition states that any pattern graph g composed of aggre-

gated faces can only be extended by the addition of another face lying in the outer

face of g. This new face must share at least one edge with g (since u 6= v). This

restriction is related to that of gSpan, where a graph is extended by the addition of

a single edge, and only to nodes of the rightmost path of the depth-�rst search tree.

A consequence of this extension strategy is that the generated patterns are always

2-connected (this means that for any two nodes of the pattern, there is always a cycle

that contains both).

In Figure 4.4, there is only one occurrence of g1 in G and, for this occurrence,

there are three valid extensions of g1 in G. Since these extensions have two edges,

a new node 6 is added in the outer face of g1. The extensions are: P1 = (1, 6, 3)

(which corresponds to 2, 5, 4 in G), P2 = (3, 6, 5) (corresponding to 4, 5, 7 in G) and

86

P3 = (4, 6, 1) (corresponding to 6, 1, 2 in G). Observe that the path P4 = (1, 5) is not

a valid extension since g1 ∪ P4 is the graph g2, which is not a plane subgraph of G

(see Section 3.3.2).

Given a pattern graph g and a graph Gi in D, our algorithms compute all occur-
rences of g in Gi. Then, for each occurrence, they generate all possible extensions.

For each occurrence of g in Gi and from each node of the external face of g, there is

only one possible extension. This is one reason why Plagram, DyPlagram and

DyPlagram_st generate fewer extensions than gSpan, as we show in Section 4.4.

gSpan extends graph patterns edge by edge, and several extensions may be generated

from one node.

4.3.2 Graph Codes

To avoid multiple generations of the same pattern, the graphs are represented by

canonical codes. Therefore, to �nd the frequent patterns, our algorithms explore a

code search space. Here, we de�ne these new codes. Next, we present important

properties of the code search space.

A code for a plane graph g is a sequence of the edges of g. Each edge is represented

by a 5-tuple (i, j, L(i), L(i, j), L(j)), where i and j are the indices of the nodes (from

1 to n, where n is the number of nodes in g). The nodes are numbered as they �rst

appear in the code.

De�nition 4.14 (Valid code for a plane graph).

• If g = (V,N, F, fe, L) is a plane graph with only one internal face 〈v0, ..., vn−1〉
(i.e., g is a cycle), then a valid code for g is (1, 2, L(1), L(1, 2), L(2)).(2, 3, . . .),

(3, 4, . . .) . . . , (n−1, n, . . .).(n, 1, . . .). We use a �dot� to denote the concatenation

of each 5-tuple representing an edge of g.

• If g = g′ ∪ P and P is a valid extension of g′ in g, then a valid code for g is the

concatenation of a valid code for g′ and the code of P .

It is not obvious from De�nition 4.14 that every 2-connected plane graph g has at

least one valid code. Indeed, since g is 2-connected, it is always possible to construct

a valid code by �rst choosing an internal face of g and then iteratively adding valid

extensions to it.

Table 4.2 shows four valid codes of graph g1 in Figure 4.4 (among seven valid

codes). Figure 4.5 shows the corresponding node numbering on graph g1 (recall that

there is a di�erent numbering of nodes for each code). Codes α, γ, δ start with the

4-edge face and then a 2-edge extension is added to build the second face. Code β

87

3 2

5 2

45 12

4

5

34

5

1 1 34 3 21a
a

b
b

b

b

a
a

b
b

b

b

a
a

b
b

b

b

a
a

b
b

b

b

Figure 4.5: Four copies of g1 of Figure 4.4 with node indices corresponding, respectively, to
the codes α, β, γ, and δ in Table 4.2.

Edge α β γ δ
1 (1,2,a,b,a) (1,2,a,b,a) (1,2,a,b,a) (1,2,a,a,a)
2 (2,3,a,b,a) (2,3,a,b,a) (2,3,a,a,a) (2,3,a,b,a)
3 (3,4,a,a,a) (3,1,a,a,a) (3,4,a,a,a) (3,4,a,b,a)
4 (4,1,a,a,a) (3,4,a,b,a) (4,1,a,b,a) (4,1,a,a,a)
5 (4,5,a,b,a) (4,5,a,b,a) (3,5,a,b,a) (1,5,a,b,a)
6 (5,1,a,b,a) (5,1,a,a,a) (5,4,a,b,a) (5,2,a,b,a)

Table 4.2: Four valid codes for graph g1.

starts with the 3-edge face and then a 3-edge extension is added. In each column, the

line separates the edges of the �rst face from the edges of the valid extension. A valid

code for this graph can start with any of the six edges. For the edge that belongs to

the two internal faces, the code can start with any of the two faces, hence the seven

possible codes.

4.3.3 Code Search Space and Canonical Codes

The set of valid codes is organized in a code tree. A code C ′ is a child of C in the

code tree if there is a valid extension P of C such that C ′ is the concatenation of C

with the codes of the edges of P . The root of the code tree is the empty code.

An example tree rooted at code α (of Table 4.2) is represented in Figure 4.6.

Notice that the codes at a given level of the tree represent graphs that have one

more face than the codes of the level just above. In this code tree, each graph is

represented by several codes (for instance, we have already seen that graph g1 has

seven valid codes). In Figure 4.6 we also see that codes α.A.D and α.C.F represent

the same graph.

Naturally, exploring several codes that represent the same graph is not e�cient.

We therefore de�ne canonical codes such that each graph has exactly one such code:

we start by de�ning an order on the valid codes. We assume that there exists an order

on the labels. Then, we de�ne an order on the edges by taking the lexicographic order

derived from the natural order on node indices and the order on labels. It means that

(i, j, L(i), L(i, j), L(j)) < (x, y, L(x), L(x, y), L(y)) if i < x or (i = x and j < y) or

88

(i = x and j = y and L(i) < L(x)), and so on. Afterwards, we extend this order on

edges to a lexicographic order on the codes. We thus de�ne the canonical code of a

graph as the biggest code that can be constructed for this graph.

De�nition 4.15 (Canonical code for a plane graph). The canonical code of a plane

graph is de�ned as the biggest valid code that can be constructed for this graph.

In Figure 4.5, we assume that a < b < c. Therefore, α > β since they have the

same �rst two edges and the third edge of β is smaller than the third edge of α.

Because of the second edge, β > γ and, �nally, γ > δ since the �rst edge of γ is bigger

than the �rst edge of δ. Code α is then the biggest code for graph g1.

Plagram and DyPlagram do a depth-�rst exploration of a code tree. The next

theorem states that, if they �nd a non-canonical code C, then it is not necessary to

explore the descendants of C; the whole subtree rooted at C can be safely pruned.

Theorem 4.16. In the code search tree, if a code is not canonical, then neither are

its descendants.

Proof. Let C be a non-canonical code of a graph G and C.E a code of a descendant G′

of G. Let Cc be the canonical code of G. As such, code Cc can be extended to a new

code Cc.F for G′. Since Cc is the canonical code of G, Cc > C and thus Cc.F > C.E.

Therefore, C.E is not the biggest one and thus not canonical.

In Figure 4.6, α.A.D and α.C.F are two codes for the same graph. Since α.A.D >

α.C.F , any extension of α.A.D will be bigger than any extension of α.C.F . Therefore,

the latter code can be safely pruned.

4.3.4 Algorithms

This section �rst discusses the pseudo-codes of Plagram and DyPlagram since

those two variants are very similar, then gives the pseudo-code of DyPlagram_st.

4.3.4.1 Pseudo-codes of Plagram and DyPlagram

The pseudo-codes of Plagram and DyPlagram are shown, respectively, in

Figures 4.7 and 4.8.

The overall outline is very similar to that of gSpan. The main di�erences are the

graph code used to represent a plane graph and the way extensions are generated.

As for gSpan, our algorithms perform a depth-�rst recursive exploration of the code

tree. Although the �rst level of the code tree contains codes representing graphs with

one face, for e�ciency reasons, Plagram and DyPlagram start their exploration

89

3 2

1

5

4

6
4 4 4

1
1

1

23

5 6 5

3 2 3

5

6

2

1 1 1 1

2 2 2 23333

4 4 4 4

5 5 5 5

6 6 6
6

7 7

a

a

b
b

b b
a

a
c

a

a

b
b

b

a

b

a

a

b
b

b b
a

a

a

a

b
b

b b

a

a

b
b

b b
a

a

a
c

a

a

b
b

b

a

b
a

a

a

a

b
b

b b
a

a

a
c

a

a

b
b

b

a

b
a

a

Figure 4.6: Part of the code tree starting from code α of Table 4.2. For each pattern, the
gray face corresponds to the last added extension. The extension codes are A, ..., G (the
complete code of the last line leftmost pattern is thus α.A.D). The crossed codes are pruned
since they are not canonical.

Algorithm: Plagram(D, σ)
Input: graph database D and frequency threshold σ.
Output: plane subgraphs P in D such that freq(P) > σ.

1 Find all frequent edge codes in D
2 for all frequent edge code E do
3 mine(E,D,σ)

mine(P ,D, σ)
Input: the code of a pattern P , D, and σ.

1 LE = ∅ //list of extensions of P

2 for all graph Gi ∈ D do
3 for all occurrences f of P in Gi do
4 LE = LE ∪ build_extensions(P,Gi, f)
5 for all extensions E in LE do
6 if freq(E) > σ then
7 if P.E is canonical then
8 output(P.E)
9 mine(P.E,D,σ)

Figure 4.7: Algorithm Plagram.

90

Algorithm: DyPlagram(D, σ, τ)
Input: graph database D, frequency threshold σ, and time threshold τ .
Output: plane subgraphs P in D such that freqseq(P) > σ.

1 Find all frequent edge codes in D
2 for all frequent edge code E do
3 mine(E,D,σ,τ)

mine(P ,D, σ, τ)
Input: the code of a pattern P , D, σ, and τ .

1 LE = ∅ //list of extensions of P

2 for all graph Gi ∈ D do
3 for all occurrences f of P in Gi do
4 LE = LE ∪ build_extensions(P,Gi, f)
5 for all extensions E in LE do
6 if freqseq(E) > σ then
7 if P.E is canonical then
8 output(P.E)
9 mine(P.E,D,σ,τ)

Figure 4.8: Algorithm DyPlagram.

with frequent edges. In both algorithms, the function mine explores the part of the

code tree rooted at a code given by its parameter. It computes their extensions on

every target graph in D (lines 1-4) and makes a recursive call on the frequent and

canonical ones (line 9).

The di�erence between Plagram and DyPlagram is on the exploited frequency

measure in function mine (line 6). The subsequence frequency used by DyPlagram

needs the time threshold τ , which de�nes the maximum gap allowed between two

occurrences of a pattern (see De�nition 4.7). Since freq ≥ freqseq, the number of

extensions that are pruned (in line 6) is higher in DyPlagram than in Plagram.

Next, we present a complexity study of the main steps of function mine. We

denote m the number of edges of a given pattern P , and mi the number of edges of

every target graph Gi.

Pattern matching (line 3): For each pattern P , function mine must �nd all

occurrences of P in every target graph Gi. Each occurrence is found with a subgraph

isomorphism test(Damiand et al. (2009)), which works as follows: �rst, it looks for

an edge e of Gi that corresponds to the �rst edge of P . Once this match is performed,

the complexity of matching the remaining edges of P is O(m). So, the complexity of

�nding one occurrence is, in the worst case, O(m.mi).

91

The function mine uses an optimization that makes this subgraph isomorphism

test linear: it stores, along with pattern P , the list of edges e that match the �rst

edge of P , in every target graph Gi. This list is updated in line 4 when generating

the extensions. Therefore, to �nd the occurrences of P in Gi, it is not necessary to

consider every edge of Gi, but only those in this list. In this way, for each occurrence,

the cost of a matching becomes O(m). Since the number of occurrences of P in a

target graph Gi cannot be higher than 2mi (the �rst edge of P may match each edge of

Gi in two �directions�), the complexity of computing all occurrences of P in all target

graphs Gi is O(m
∑
mi) (which is bounded later by O(

∑
m2
i) in Theorem 4.17). We

show in the experimental section that this complexity improvement over gSpan is

visible in the measured matching times.

Extension building (line 4): For every occurrence f of P in a target graph Gi,

function mine builds all possible extensions. This is done by �nding a valid extension

starting from every node of the outer face of f(P). The complexity of this operation

is linear in the total size of P plus the size of the extensions. This is lower than 2mi

since one edge of Gi is either in f(P) or in at most two of its extensions. Since there

are at most 2mi occurrences of P in Gi, the complexity of building all extensions of

all occurrences of P in all target graphs Gi is O(
∑
m2
i).

Every time a new extension is added to the list LE, its frequency is updated. This

enables the test in line 6. In the case of DyPlagram, the last value of i such that

the extension appears in Gi is also stored for the computation of freqseq. The LE

list is implemented in a way such that the addition of a new extension (together with

its frequency counting) is done with a logarithmic complexity (as a function of the

number of edges of the extension). Therefore, for a �xed pattern P , we bound this

complexity by the total size of all its extensions in all Gis, i.e, by O(
∑
m2
i).

According to the conducted experiments, the extension building step of function

mine was found to be the most expensive step.

Canonical test (line 7): This test is done by comparing code P.E with the canon-

ical code of the graph represented by P.E. Since two plane graphs are isomorphic if

their canonical codes are the same, the complexity of this test is at least as high as an

isomorphism test. The complexity of graph isomorphism, in the general case, is un-

known, but for plane graphs, polynomial algorithms exist (see, for instance, Damiand

et al. (2009) for a quadratic algorithm). The simplest algorithm is to enumerate every

possible code for a graph to test if one particular code is canonical (with an exponen-

tial complexity). Here is a sketch of our canonical test: the canonical code of a graph

92

is constructed by �rst choosing a starting face and a starting edge in this face. Since

a pattern P has m edges and considering that each edge belongs to at most two faces,

there are at most 2m such choices. Then, the code is extended with the biggest valid

extension code. Each of these steps has a complexity of O(m) and must be repeated

as many times as the number of faces in P , which is lower than m. Therefore, the

complexity of �nding the canonical code of a graph is, in the worst case, O(m3).

Although not quadratic, experimental evaluations show that the canonical tests are

not the bottleneck of our algorithms.

Theorem 4.17 (Complexity). The total complexity of the function mine (excluding

the complexity of recursive calls in line 9) is O(m3 +
∑
m2
i), where m is the size of the

pattern P (in number of edges) and mi is the size of the target graph Gi (in number

of edges).

A consequence of this theorem is that, contrary to general graph mining algorithms

as gSpan, Plagram andDyPlagram have a polynomial output delay, i.e., the time

between the output of two frequent patterns is polynomial in the size of the input∑
mi (since, of course, m <

∑
mi).

Theorem 4.18 (Correctness). Plagram and DyPlagram �nd and output exactly

once all frequent 2-connected plane subgraphs in D (using, respectively, freq and freqseq
as the frequency measure).

Proof. Since there is a one-to-one correspondence between canonical codes and 2-

connected plane graphs, we must show that the algorithms do not miss any frequent

canonical code. The algorithms prune a branch of the tree either because the code

is not frequent (line 6) or because it is not canonical (line 7). The frequency of

the descendants of a code C cannot be higher than the frequency of C. Therefore,

if a code is not frequent, its descendants are not either, and thus the pruning step

in line 6 is safe. If the code is not canonical, we know from theorem 4.16 that its

descendants cannot be either. So, the pruning in line 7 is safe as well. In this way,

the algorithms can never miss a frequent canonical code. Finally, every output code

(line 8) is frequent and canonical and, since there is only one canonical code for each

graph, a graph is output only once.

Actually, the algorithms output codes and not graphs. However, since a code is a

list of edges, it is easy to reconstruct a graph from its code.

Once patterns have been extracted using either Plagram or DyPlagram, the

occurrence graph can be constructed in a post-processing step to generate the spatio-

temporal patterns. This is done by connecting occurrences of the same pattern with

93

Input: List of occurrences of P , frequency (freqst) threshold σ, time threshold
τ , and spatial threshold ε.
Output: frequent spatio-temporal patterns based on P .

1 The occurrence graph of P is empty.
2 for all occurrences (x, y, k) do
3 for all 0 < j ≤ k and k − j ≤ τ do
4 for all occurrences (x′, y′, j) do
5 if (x′ − x)2 + (y′ − y)2 < ε2 then
6 add edge ((x, y, k), (x′, y′, j)) to the occurrence graph
7 Build the connected components of the occurrence graph

// each connected component is a spatio-temporal pattern

8 Output the frequent connected components.

Figure 4.9: Generation of spatio-temporal patterns.

an edge if they respect the spatio-temporal constraints, and then computing the

connected components of the occurrence graph.

4.3.4.2 Post-Processing Generation of Spatio-Temporal Patterns

Plagram and DyPlagram respectively use freq and freqseq instead of freqst and

do not build the occurrence graph during the mining phase. Nonetheless, to generate

the spatio-temporal patterns from the frequent patterns returned by both algorithms,

the occurrence graph needs to be built in a post processing phase. When those two

variants output a frequent pattern P (line 8, in function mine), they also output a

list of the occurrences of P . This list consists of triplets (x, y, k) where (x, y) are the

coordinates of an occurrence, and k is the index of Gk ∈ D where this occurrence

appear. From this list, the algorithm of Figure 4.9 computes the spatio-temporal

patterns based on P as follows: �rst, it builds the occurrence graph of pattern P

with respect to ε and τ , as de�ned in De�nition 4.11 (lines 1-6). Given an occurrence

(x, y, k), the algorithm computes its distance with every other occurrence in the τ

previous graphs Gj. The number of these occurrences is at most O(τ.maxi(mi)),

where maxi(mi) is the maximal size of the graphs in D. Therefore, the complexity of

building the occurrence graph of a pattern is O(τ.maxi(mi).
∑

imi) (since the number

of occurrences of a pattern is at most 2
∑

imi). The computation of the connected

components and their frequency (line 7) is done by a traversal of the occurrence graph

(linear complexity). Finally, the complexity of computing all frequent spatio-temporal

patterns based on a pattern P is O(τ.maxi(mi).
∑

imi).

94

4.3.4.3 Pseudo-code of DyPlagram_st

Given a frequency threshold σ (also called minimum support), a minimum thresh-

old σst for freqst a spatial threshold ε and a temporal threshold τ , the proposed al-

gorithm DyPlagram_st computes all spatio-temporal patterns with freqst ≥ σst

based on patterns with freq ≥ σ (the thresholds ε and τ are used in the construction

of the occurrence graph, see Def. 4.11).

With the new distance used for freqst, the frequency constraint is now anti-

monotonic (see de�nition 4.8), therefore we can use it in the DyPlagram_st al-

gorithm directly during the mining phase. However, this frequency is not de�ned on

patterns but on spatio-temporal patterns. We must therefore also build the occur-

rence graph and the spatio-temporal patterns in the algorithm.

As its predecessors, DyPlagram_st uses canonical codes to represents patterns

and extensions. This allows us to e�ciently enumerate only the so called valid exten-

sions of a pattern. Informally, a valid extension of a pattern is an extension that lead

to a pattern not already considered by the algorithm. This is a very e�cient way to

avoid considering several times the same pattern.

As can be seen in the pseudo code of the DyPlagram_st algorithm in Figure

4.10, �rst all frequent one face patterns are built and then the recursive function mine

is called for all of them.

Lines 1, 6, 7, 8, 9, 10, and 11 of the algorithm in Figure 4.10 were not in Dy-

Plagram. Thanks to Prop. 4.12, this algorithm is correct and output exactly the

spatio-temporal patterns whose freqst is above the user de�ned threshold σ.

4.4 Experiments

We now present the computational results obtained by our proposed algorithms

Plagram, DyPlagram and DyPlagram_st. Since, to the best of our knowl-

edge, Plagram is the �rst frequent plane graph mining algorithm, we could not

compare it with any other algorithm with the same purpose. Nevertheless, to check

how e�cient our dedicated algorithm is in comparison with a general-purpose one, we

report here, in section 4.4.2, a comparison between Plagram and gSpan, for which

we gave details in chapter 3. Section 4.4.3 presents a series of experiments aimed at

evaluating the impact of enforcing the temporal and spatio-temporal constraints dur-

ing the mining phase on the e�ciency of the algorithms. In summary, the conducted

experiments aimed to answer three main questions:

1. How do Plagram and gSpan scale on video data?

95

Algorithm: DyPlagram_st(D, σ, σst, τ, ε)
Input: graph database D, frequency threshold σ, spatio-temporal frequency
threshold σst, time threshold τ and spatial threshold ε.
Output: spatio-temporal patterns S in D such that freqst(S) > σst and
freqseq(P) > σ with P the pattern on which S is based.

1 Find all frequent face codes in D
2 for all frequent face code E do
3 mine(E,D, σ, σst, τ, ε)

mine(P,D, σ, σst, τ, ε)

1 occurrences_graph(P) = empty_graph
2 LE = ∅ //list of extensions of P

3 for all graph Gi ∈ D do
4 for all occurrences f of P in Gi do
5 LE = LE ∪ build_extensions(P,Gi, f)
6 Add this occurrence to occurrences_graph(P)
7 Computes the edges of occurrences_graph(P) (using ε and τ)
8 Computes all spatio-temporal patterns based on P
9 for each spatio-temporal pattern S based on P do
10 if freqst(S) ≥ σst then output(S)
11 if there is no frequent spatio-temporal pattern then return
12 else
13 for all extensions E in LE do
14 if freqseq(E) > σ then
15 if P.E is canonical then
16 mine(P.E, σ, σst, τ, ε,D)
17 return

Figure 4.10: DyPlagram_st algorithm

96

2. How e�cient is Plagram in �nding the patterns we are interested in, in com-

parison with gSpan?

3. What impact the spatio-temporal constraints have on the e�ciency of the min-

ing phase ?

For gSpan, we asked the authors of Bringmann and Nijssen (2008) for their C++

code. For DyPlagram and Plagram, we adapted the source code of gSpan to

implement their features and to allow a fair comparison.

The experiments were carried out on a 3.08 GHz CPU with 8 GB of RAM memory

under Debian GNU/Linux (2.6.26-2-amd64 x86_64) operating system.

Before further discussing the experiments, we �rst describe the video datasets we

used.

4.4.1 Video Datasets

The datasets we used for these experiments were created from a set of frames of a

synthetic video. The choice of making a synthetic video was bene�cial to our exper-

iments, since we did not have to deal with common video artifacts that occasionally

disturb the segmentation process. The video has 721 frames in total. Three identical

objects (X-Wings) are moving in the video such that they may overlap or even get

partially out of the video frames (this helped us to evaluate how well spatio-temporal

patterns can be used to represent the trajectory of the X-Wings individually, as re-

ported in Section 5.4).

After generating the video, we represented each frame as a plane graph. For this

task, we used 2 di�erent methods, which led to 2 di�erent datasets of such graphs,

as described below:

Triangulation Assuming that the video frames were already segmented by their

di�erent pixel colors, for each frame, the barycenters of the segmented regions became

nodes and a Delaunay triangulation of this set of nodes was constructed. The �nal

graphs had, on average, 197.33 nodes with an average degree of 2.93. The labels of the

nodes were generated based on the size of the regions (in number of pixels). The size

of the regions were discretized into 10 bins containing the same number of regions,

which led to 10 possible node labels. The �nal set of graphs formed the Triangulated

dataset. Note that, in this dataset, each graph is a 2-connected graph.

RAGs (Region Adjacency Graphs) We also represented each frame as a RAG

(Region Adjacency Graph). More precisely, the nodes are computed in the same

97

way as for the Triangulated dataset, except that there is also one node representing

the outer region. Each continuous frontier between two regions is represented by

one edge. On average, each frame led to a graph with 245.2 nodes, with an average

degree of 2.23, and the labels of the nodes were discretized in the same way as for the

Triangulated dataset.

Contrarily to the graphs in the Triangulated dataset, the edges of the target graphs

are more meaningful, since they represent adjacencies between regions. Moreover, if

di�erent regions have the same barycenters, they are not discarded as for the Trian-

gulated dataset. This explains the higher number of nodes in this new dataset.

One disadvantage of the RAG dataset, however, is that the generated graphs

may not be 2-connected. Since Plagram mines only 2-connected patterns, it is not

able to �nd a pattern that spans on several 2-connected components. Indeed, in

the experiments, we found bigger patterns in the Triangulated dataset. Nevertheless,

interesting patterns were also found by Plagram in the RAG dataset.

Some example frames (left) along with their triangulated (middle) and RAG

(right) representations are illustrated in Figure 4.11.

4.4.2 A comparison of Plagram and gSpan

Here, we evaluate how e�cient Plagram is in comparison with the general-

purpose algorithm gSpan. Several factors may in�uence the e�ciency of Plagram

in comparison with gSpan. As Plagram is dedicated to plane graphs, two patterns

that are di�erent for Plagram (due to the order of their edges) may be only one

pattern for gSpan. In this way, our algorithm would �nd more patterns than gSpan.

However, since our extension building step is restricted to faces instead of single graph

edges as in gSpan, we would expect to generate fewer extensions as well as patterns.

In any case, the complexity of our isomorphism test is lower. Therefore, in order to

understand the most important of these factors, we considered the following in our

experiments:

• The total execution time.

• The number of output patterns.

• The number of generated extensions.

We also considered the following ratios in order to make a fair comparison between

the pattern matching and the extension building steps of Plagram and those of

gSpan:

98

Figure 4.11: Example video frames (left) along with their corresponding triangulated (mid-
dle) and RAG (right) representations. In the latter, the upper-left node represents the outer
region.

• The ratio of the total pattern matching step time to the total size of the matched

patterns (in number of edges).

• The ratio of the total extension building step time to the total size of the

generated extensions (in number of edges).

Figure 4.12 and 4.13 present the results obtained on the Triangulated and RAG

datasets, respectively. In each graph, the x-axis represents absolute minimum sup-

ports, which were lowered while the computation time of Plagram was below 2

hours. Each point on each graph is the average result of 8 executions of the algo-

rithms.

99

gSpan could not �nish its executions, even for the highest tested minimum sup-

port (721) on both datasets (in fact, it was interrupted after 3 days of computation).

However, to better understand its behavior, we stopped it after 2 hours of execution

and plotted here the intermediate results obtained with the highest minimum sup-

port of 721 (which is approximately the same for the other minimum supports). This

2-hour execution of gSpan is referred to here as gSpan2.

Triangulated dataset Graph (a) presents the total execution time of Plagram.

Graphs (b) and (c) present, respectively, the number of extensions and the number

of output patterns of Plagram and gSpan2.

Contrary to gSpan, Plagram �nished its executions for every tested support.

As presented in graphs (b) and (c), the total execution times increased along with the

number of extensions and patterns, respectively. Considering gSpan2, observe that

its number of extensions was higher than that of Plagram for almost all tested min-

imum supports (remember that Plagram only considers 2-connected plane graphs).

In addition, for the minimum support of, e.g., 688, the patterns output by Plagram

had on average 30 edges, while, in the same period of time (two hours), gSpan2

output fewer patterns with at most 10 edges.

What is worth observing as well are the results given by graph (d). It presents

the ratio of the total time for all matchings to the total size (number of edges) of

the matched graphs. Although this ratio was a little higher for Plagram than for

gSpan2, it is worth noting that the patterns generated by gSpan2 were smaller (at

most 10 edges) than those generated by Plagram. If the complexity of the subgraph

isomorphism test of Plagram was the same as that of gSpan (i.e., exponential in

the size of the graph), the matching ratio of Plagram would be a lot higher.

Finally, graph (e) presents the ratio of the total extension step time to the total

size of the generated extensions, in number of edges. Note that Plagram had slightly

better results in comparison with gSpan2.

RAG dataset As shown in Figure 4.13, on this dataset the behaviors of Plagram

and gSpan2 were quite similar to those on the Triangulated one. Here, however,

Plagram had a slightly better matching ratio than gSpan2 for lower minimum

supports. Since Plagram mines only 2-connected patterns, the average size of the

patterns found in the Triangulated dataset was higher than that in the RAG dataset,

for the same minimum supports. For example, if we consider the support of 721

frames, the patterns found in the Triangulated dataset had on average 8 edges. Here,

the patterns had 4 edges, on average.

100

 1

 10

 100

 1000

 10000

 685 690 695 700 705 710 715 720 725
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

minimum support (absolute)

(a)

Plagram

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 685 690 695 700 705 710 715 720 725

nu
m

be
r

of
 e

xt
en

si
on

s

minimum support (absolute)

(b)

Gspan (2 hours)
Plagram

 100

 1000

 10000

 100000

 1e+06

 685 690 695 700 705 710 715 720 725

nu
m

be
r

of
 p

at
te

rn
s

minimum support (absolute)

(c)

Gspan (2 hours)
Plagram

1e-08

1e-07

1e-06

685 690 695 700 705 710 715 720 725

ra
tio

Go
fGt

he
Gto

ta
lGm

at
ch

in
gG

tim
eG

to
Gth

eG
to

ta
lGs

iz
eG

of
Gth

eG
m

at
ch

in
gs

G(
eg

de
Gn

um
be

r)

minimumGsupportG(absolute)

(d)

GspanG(2Ghours)
Plagram

1e-07

1e-06

1e-05

685 690 695 700 705 710 715 720 725

ra
tio

Go
fGt

he
Gto

ta
lGe

xt
en

si
on

sG
bu

ild
in

gG
tim

eG
to

Gth
e

to
ta

lGs
iz

eG
of

Gth
eG

ex
te

ns
io

ns
G(

eg
de

Gn
um

be
r)

minimumGsupportG(absolute)

(e)

GspanG(2Ghours)
Plagram

Figure 4.12: E�ciency of Plagram and the 2-hour execution of gSpan on the Triangulated
dataset.

Step Times We also measured the relative times of the main steps of the algorithms

Plagram and gSpan2. The extension building step of gSpan2 was on average 90%

of the total execution time, whereas the matching step was always less than 5%, and

the canonical-test step was negligible. For Plagram, the most expensive step was

also the extension building step, which varied from 40% to 60% of the total execution

time. The pattern matching step was around 20%, while the canonical-test step was

almost always less than 5%. Figure 4.14 presents the computed relative times of

Plagram (y-axis) on the Triangulated (left) and RAG (right) datasets, for all tested

minimum supports (x-axis). In conclusion, we believe that the main reason why

Plagram is more e�cient than gSpan is the lower number of extensions it produces

101

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

minimum support (absolute)

(f)

Plagram

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 e

xt
en

si
on

s

minimum support (absolute)

(g)

Gspan (2 hours)
Plagram

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 p

at
te

rn
s

minimum support (absolute)

(h)

Gspan (2 hours)
Plagram

1e-08

1e-07

1e-06

0 100 200 300 400 500 600 700 800

ra
tio

po
fpt

he
pto

ta
lpm

at
ch

in
gp

tim
ep

to
pth

ep
to

ta
lps

iz
ep

of
pth

ep
m

at
ch

in
gs

p(
eg

de
pn

um
be

r)

minimumpsupportp(absolute)

(i)

Gspanp(2phours)
Plagram

1e-07

1e-06

1e-05

0 100 200 300 400 500 600 700 800

ra
tio

po
fpt

he
pto

ta
lpe

xt
en

si
on

sp
bu

ild
in

gp
tim

ep
to

pth
e

to
ta

lps
iz

ep
of

pth
ep

ex
te

ns
io

ns
p(

eg
de

pn
um

be
r)

minimumpsupportp(absolute)

(j)

Gspanp(2phours)
Plagram

Figure 4.13: E�ciency of Plagram and the 2-hour execution of gSpan on the RAG
dataset.

rather than only the lower complexity of pattern matching as one could expect.

Scalability Considering the scalability of the proposed algorithm, we evaluated

the performance of Plagram with respect to the number of node labels. Several

datasets were constructed by varying the number of node labels, from 4 to 16, on the

Triangulated and RAG datasets. As predictable, the total execution times decreased

in inverse proportion to the number of labels on both datasets.

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 685 690 695 700 705 710 715 720 725

re
la

tiv
e

st
ep

 ti
m

es

minimum support (absolute)

Triangulated

extension building
pattern matching

canonical test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

re
la

tiv
e

st
ep

 ti
m

es

minimum support (absolute)

RAG

extension building
pattern matching

canonical test

Figure 4.14: Relative step times of Plagram. Black region: canonical-test time, dark gray
region: matching time, and light gray region: extension building time (the un�lled space at
the top-right of the graphs corresponds to other steps of the algorithm, e.g., I/O operations).

4.4.3 Impact of the Spatio-Temporal Constraints on the E�ciency

We �rst evaluate the consequences of the temporal constraint alone by comparing

the e�ciency of Plagram and DyPlagram. We then compare DyPlagram with

DyPlagram_st to assess the impact of additionally enforcing the spatial constraint

during the mining phase.

4.4.3.1 Temporal Constraint Only: Plagram vs DyPlagram

The idea here is to check how e�cient is to consider freqseq (with a time threshold

τ of 1) instead of just freq.

Figure 4.15 shows the total execution time and the number of patterns generated

by DyPlagram and Plagram on the datasets Triangulated (graphs (k) and (l))

and RAG (graphs (m) and (n)) for di�erent minimum supports. Observe that Dy-

Plagram generated fewer patterns than Plagram on both datasets, which makes

its total execution time shorter than that of Plagram. This is particularly clear on

the Triangulated dataset, where it was possible to mine patterns with DyPlagram

with much lower minimum supports in lower execution times.

The next series of experiments investigate the evolution of the execution time

and number of occurrences for τ varying from 1 to 50. In those experiments we set

the frequency threshold to σ = 100 and the spatial threshold to ε = 20 (only for

DyPlagram_st). Figure 4.16 presents the results we obtained for the Plagram,

DyPlagram andDyPlagram_st algorithms. Note that, since Plagram does not

use the temporal constraint, the results for this algorithm remain constant for any

value of τ . As we can see, the temporal constraint only has in�uence for lower values

(below 10), above that the execution time and number of occurrences for Plagram

103

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

minimum support (absolute)

(k)

Plagram
DyPlagram

 100

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600 700 800

nu
m

be
r

of
 p

at
te

rn
s

minimum support (absolute)

(l)

Plagram
DyPlagram

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

minimum support (absolute)

(m)

Plagram
DyPlagram

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 p

at
te

rn
s

minimum support (absolute)

(n)

Plagram
DyPlagram

Figure 4.15: E�ciency of DyPlagram and Plagram on the Triangulated ((k) and (l))
and RAG ((m) and (n)) datasets.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

temporal threshold

DyPlagramST
DyPlagram

Plagram

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 10 20 30 40 50

n
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

temporal threshold

DyPlagramST
DyPlagram

Plagram

Figure 4.16: E�ciency of Plagram, DyPlagram and DyPlagram_st for di�erent tem-
poral threshold values on the RAG dataset with the computational time on the left and the
number of occurrences of frequent (spatio-temporal) patterns discovered on the right. σ = 100

and DyPlagram is almost equivalent. This is due to the fact that RAGs produced

with the synthetic video are very stable, hence there is no large temporal gap between

the occurrences of the same pattern unless the objects are occluded or out of the �eld

of view.

104

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600 700 800

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

minimum support (absolute)

DyPlagram + post proc
DyPlagramST

DyPlagram

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 200 300 400 500 600 700 800

n
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

minimum support (absolute)

DyPlagramST
DyPlagram

Figure 4.17: E�ciency of DyPlagram and DyPlagram_st on the RAG dataset with
the computational time on the left and the number of occurrences of frequent spatio-temporal
patterns discovered on the right.

4.4.3.2 Spatial and Temporal Constraints: DyPlagram vsDyPlagram_st

Here we evaluate how the spatial and temporal constraints combined in�uence

the e�ciency of the mining phase. Figure 4.17 shows e�ciency results comparing

DyPlagram and DyPlagram_st on the RAG dataset. Those experiments have

been conducted with minfreqst = 50, a temporal threshold τ = 1 and a spatial

threshold ε = 20. As expected, pushing the spatial constraints during the mining step

allows us to generate less occurrences. This speeds up the mining process, allowing

DyPlagram_st to extract patterns with low minimum support more e�ciently

than DyPlagram especially for support < 350.

Figure 4.18 shows the evolution of the execution time and number of occurrences

discovered for Plagram, DyPlagram and DyPlagram_st for a minimum sup-

port σ = 100 and for ε varying from 5 to 100. The temporal threshold is set to τ = 25

for both DyPlagram and DyPlagram_st. Since Plagram and DyPlagram

do not use the spatial constraint their execution time and number of occurrences dis-

covered remains constant for all values of ε. Note that DyPlagram discovers a little

less occurrences and takes a little less time than Plagram (406 seconds for Pla-

gram and 396 seconds for DyPlagram) but for clarity they are both represented

by the same line in Figure 4.18. As we can see, even for high spatial threshold values,

the spatial constraint improves the e�ciency of the algorithm.

4.5 Conclusions

We presented a frequent plane graph mining algorithm called Plagram and its

two extensions DyPlagram and DyPlagram_st to mine spatio-temporal pat-

105

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

spatial threshold

DyPlagramST
Plagram/DyPlagram

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 20 40 60 80 100

n
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

spatial threshold

DyPlagramST
Plagram/DyPlagram

Figure 4.18: E�ciency of Plagram, DyPlagram and DyPlagram_st for di�erent spa-
tial threshold values on the RAG dataset with the computational time on the left and the
number of occurrences of frequent (spatio-temporal) patterns discovered on the right. σ = 100
and τ = 25 (for DyPlagram and DyPlagram_st

terns. Our conducted experiments showed that Plagram (and, consequently, Dy-

Plagram and DyPlagram_st) was able to e�ciently run on graph-based video

datasets, on which a general-purpose graph mining algorithm failed to �nish its com-

putations. The experiments proved that our algorithm beni�ts a lot from enforcing

spatial and temporal constraints during the mining process. Indeed, by permitting to

directly mine spatio-temporal constraints the algorithm generates less occurrences re-

sulting in a lower processing time. Our experiments also show that the RAG datasets

could be mined more e�ciently than the triangulated one.

Overall Plagram and its variants have proved to be e�cient at mining 2-connected

plane graph databases. The next chapter will present our contributions in the �eld

of object tracking. We will discuss how meaningful the (spatio-temporal) patterns

are in the context of video tracking and how they could be used to follow objects in

videos.

106

CHAPTER 5

Tracking Objects in Videos Using Spatio-Temporal

Patterns

5.1 Introduction

In the previous chapter we showed how the Plagram algorithm could be used to

e�ciently extract frequent plane graph patterns from a database of plane graphs. We

also demonstrated that using spatio-temporal constraints could further increase the

e�ciency of the mining process. This chapter studies how meaningful the extracted

patterns are in the context of object tracking.

The appearance of moving objects changes over time and so does their graph repre-

sentation. Besides, the instability of the segmentation process also results in di�erent

graph representations of the same object from one frame to another. Consequently,

it is very unlikely to be able to follow an object using one single spatio-temporal pat-

tern. Instead we have to �nd a way of combining several patterns to obtain complete

tracks of the interesting objects. To do so, we use two di�erent strategies described

in Section 5.2. Both of them use the spatio-temporal patterns discovered by the Dy-

Plagram_st algorithm described in Chapter 4, which constructs the occurrence

graph of each pattern during the mining phase.

In a �rst strategy, we build a graph which concatenates the occurrence graphs

of all frequent patterns. We add edges to this graph connecting the occurrences of

di�erent patterns that are similar. Then, we look for paths called spatio-temporal

paths in this global occurrence graph. With the �rst method, the user needs to select

a region of interest in the �rst frame of the video by drawing a bounding box. We

then select the shortest spatio-temporal path (with respect to some weights on the

edges) that starts from one of the occurrences contained in the selected area.

The second strategy exploits a similarity measure between the trajectories of the

spatio-temporal patterns to group them into clusters representing the objects of the

107

scene. The clusters are obtained with a hierarchical clustering algorithm. With this

approach, we cut the hierarchy to obtain the best clusters (i.e., clusters that best

match the main objects) automatically.

In Section 5.3, we describe the datasets used in our experiments. Section 5.4

reports the experiments we conducted to �rst assess the meaningfulness (and thus the

potential) of the spatio-temporal patterns discovered by Plagram, DyPlagram,

and DyPlagram_st (which are not yet spatio-temporal paths nor clusters). An

experimental study of both tracking strategies is presented in Section 5.5. Finally

we conclude in Section 5.6 and give two industrial applications of our approach in

Section 5.7.

5.2 Tracking with Patterns

We �rst describe a method that uses spatio-temporal paths in a global occurrence

graph to track object. Then we detail an alternative hierarchical clustering approach.

5.2.1 Spatio Temporal Path

When tracking an object in a real video, we cannot expect the object to be repre-

sented by the same graph pattern during the whole video (e.g., due to changes in view

point or instability of the segmentation). Thus, if we want to track it, we need to use

several spatio-temporal patterns. To do so, we propose to merge the occurrence graph

of each pattern into a global occurrence graph, and add similarity edges to it so that

similar occurrences of di�erent patterns that appear in the same frame are connected.

In this way, it is possible for a path in the occurrence graph, called a spatio-temporal

path, to �jump� from a spatio-temporal pattern to another one that has similar oc-

currences. The similarity between two occurrences is derived from their overlap in

term of nodes. It can be e�ciently computed by counting how many regions they

have in common. Indeed, since the similarity edges connect only occurrences that

appear in the same frame, their set of common nodes can be obtained by computing

the intersection between their node list.

De�nition 5.1 (Similarity of two occurrences). Let o = (i, f) and o′ = (i, f ′) be two

occurrences of two di�erent patterns P = (V,E, F, fe, L) and P ′ = (V ′, E ′, F ′, f ′e, L
′)

with f, f ′ the mappings of the nodes of the patterns to the graph of the ith frame.

The similarity between these occurrences is de�ned as sim(o, o′) = |f(V)∩f ′(V ′)|
|f(V)| .

This similarity is used to weight the similarity edges of the global occurrence

graph in combination with the spatial distance between occurrences. Note that this

108

similarity is not symmetric in order to favor the transition from smaller patterns to

bigger ones. The other edges of the global occurrence graph, i.e., the ones connecting

occurrences of the same pattern if they are close in space and time, are weighted

according to the temporal distance between the occurrences.

De�nition 5.2 (Global occurrence graph). Given a set of patterns P , temporal and
spatial thresholds τ and ε, a similarity threshold µ, the global occurrence graph is

a weighted oriented graph: its node set is V = ∪P∈POcc(P) and its edge set is

E = EP ∪ Esim where :

• EP is the union of the edge sets of all patterns' occurrence graphs. The weight

of an edge ((i, f), (i′, f ′)) is w = (i′−i−1)
τ

.

• Esim = {(o, o′, w)| o = (i, f), o′ = (i, f ′), sim(o, o′) > µ} is the set of similarity
edges with

w =

{
0 if |V | < |V ′|
1
2
(1−sim(o,o′)

1−µ + d
ε
) otherwise.

where V and V ′ are the node sets of the patterns corresponding respectively to

occurrences o and o′, and d is the distance between the barycenters of o and o′.

A spatio-temporal path is a path in the global occurrence graph.

In de�nition 5.2, the edges in EP are edges between 2 occurrences of the same

pattern that are not in the same frame. If these two occurrences are in consecutive

frames, the weight is 0 (when i′ = i + 1) otherwise the weight increases with the

number of frames between them (normalized by the temporal threshold τ).

The edges in Esim are similarity edges between 2 occurrences of di�erent patterns

that are in the same frame and whose similarity is above µ. To favor paths that use

large patterns we set the weight of edges going from smaller occurrences to bigger

ones to 0. The weight of an edge from an occurrence of a large pattern to a smaller

one increases as the similarity decreases and the spatial distance increases. Otherwise

the weight on the edges increases as the spatial distance increases and the similarity

between the occurrences decreases.

5.2.2 Clusters of Spatio-Temporal Patterns

In this second approach, we want to cluster the spatio-temporal patterns. To do

so, we �rst need to de�ne a distance function between them and then a clustering

algorithm that can regroup them in clusters corresponding to interesting objects. One

109

1

2 4

3

5

6

7
9

8

11

10 12

Figure 5.1: Example of an occurrence graph for a given pattern P which occurs 12 di�erent
times in 6 frames of a given video.

of the main di�culties here is to estimate how many clusters to produce, and how to

choose the ones that are more likely to represent an interesting object.

5.2.2.1 Dissimilarity between spatio-temporal patterns

Each spatio-temporal pattern p can be represented as a trajectory ptr = {(xpi , y
p
i)|

fps ≤ i ≤ fpe } with fps and fpe respectively the starting and ending frames of p. For

each spatio-temporal pattern, the coordinates (xpi , y
p
i) of the points of its trajectory

are obtained by computing the barycenters of its occurrences in each frame i. For

example, in Figure 5.1, we would compute the barycenter of occurrences 1 and 2 for

the second spatio-temporal pattern. Since the temporal threshold τ allows spatio-

temporal patterns to have gaps in the sequence of their occurrences, the coordinates

of the points of the trajectory in those frames are interpolated between the previous

and the next known points.

Let A and B be two patterns. Let fs = max(fAs , f
B
s) and fe = min(fAe , f

B
e). The

distance between two spatio-temporal patterns is de�ned as:

d(A,B) =

if fe − fs > 0

then dtraj(A,B) ∗ (2− dov(A,B))

else ∞

where dtraj(A,B) =
∑fe

fs

√
(xAi −xBi)2+(yAi −yBi)2

fs−fe+1

and dov(A,B) = fs−fe+1
min(fAs ,f

B
s)−max(fAe ,f

B
e)+1

In words, if two patterns never belong to the same frames, their distance is in�nite.

Otherwise, their distance is the normalized (over the number of common frames) sum

110

A

B

2 3 4 5 6 7 8

frame1

a b c

Figure 5.2: Example of two overlapping (on 3 frames) spatio-temporal patterns A and B

of the Euclidean distances between the barycenters of the patterns that appear in

common frames. We added a penalty between 1 and 2 to take into account the

proportion of common frames compared to the span of the union of the two spatio-

temporal patterns. For example, in Figure 5.2, the distance between the two patterns

is (a+b+c)
6−4+1

∗ (2− 3
8−1+1

).

5.2.2.2 Clustering algorithm

To cluster our spatio-temporal patterns without knowing in advance the number

of interesting clusters, we decided to use a simple hierarchical clustering algorithm

(Anderberg (1973)) with the distance function previously de�ned. The main problem

of this algorithm is the choice of the criterion to cut the hierarchy of the dendogram

without any information a priori about the quality of the resulting clustering. We

decided to cut the hierarchy at the level of the creation of the cluster with the highest

lifetime (Ana and Jain (2003)). The lifetime of a cluster corresponds to the di�erence

between the similarity at which it has been formed and the similarity at which it is

merged with another cluster. However, the lifetime criterion tends to behave badly in

the presence of outliers which are fused at the top of the hierarchy and often have the

maximum lifetime (the hierarchy is thus cut at a high level with very few clusters).

To overcome this drawback, we decided to ignore the 10% �rst levels of the hierarchy

(note that there are i clusters at level i) before computing the lifetime. A visual

example of the lifetime is depicted in Figure 5.3. We also tried an other criteria,

called the gain (Jung et al. (2003)), but this criteria tended to cut the hierarchy at

the top, even when ignoring the 10% �rst levels, which resulted in clusters with low

precision.

5.2.2.3 Selection of the best clusters in the clustering

Since with our approach, a lot of the spatio-temporal patterns of the background

are not part of any precise cluster, the optimal number of clusters is usually much

higher than the true number of main objects.

Therefore, after having cut the hierarchy, we still have to decide which clusters

111

1

8

5
4

2
3 k=3.16

lifetime of cluster ST

A B C D P

level

TQ R S...

Figure 5.3: Example of hierarchy of clusters with the lifetime of cluster ST depicted with a
red arrow. The hierarchy is cut at level 5 because cluster ST has the longest lifetime among
those below level k =

√
20/2 = 3.16.

are the most interesting. The idea is to rank the clusters and only keep the best

ranked ones. In the rest of this document, the size of a cluster refers to the number of

spatio-temporal patterns composing it and the length of a cluster refers to the number

of frames it covers. More precisely, the length is computed as the di�erence between

the frame number of the �rst and last frames the cluster has an occurrence in. We

tried di�erent strategies to rank the clusters. We �rst ranked them according to their

length only or size only but the strategy of ranking the clusters according to their

length �rst and then according to their size gave better results overall. This third

strategy still has problems. In particular, in the case where interesting objects do not

appear in all the frames of the video, top ranked clusters do not always represent those

interesting objects. Instead they often are small clusters composed of few patterns

with low discriminative power that cover all the video but do not represent anything

interesting. To deal with this problem we changed our ranking strategy to favor the

biggest clusters among the ones that covered the majority of the video. More precisely,

we �rst keep all the clusters with length l such that lmax ≥ l ≥ lmax−0.1×|D|, where
lmax is the length of the longest cluster and |D| is the number of graphs in the database
(i.e., the number of frames in the video). Within the clusters of this length, we select

the one (or randomly among the ones) with the highest number of spatio-temporal

patterns and then the highest number of occurrences. This cluster is called the longest

112

in the rest of this document.

To decide how many interesting objects should be tracked in the video in a com-

pletely unsupervised manner (without selecting them in the �rst frame), we could

either assume that there is only one object, or �nd among the longest clusters the

ones that are su�ciently far from each other. However, in our experiments, we select

for each video the n longest clusters, with n being the number of main objects in the

video. We then measure their precision and recall with respect to the ground truth.

5.3 Datasets

The benchmark datasets presented in section 2.4 are not entirely satisfactory

because most of them focus on video surveillance setups or are composed of videos

with too few frames for the mining step to extract meaningful patterns. Note that

in these cases, our algorithm could also be used but may perform worse than the

optimized dedicated ones. To assess the qualities of our algorithm, we thus introduce

our own dataset. We used 4 videos for these experiments. The two �rst ones are

synthetic videos, based on the video presented in section 4.4.1. They allow us to

avoid the possible segmentation problems by keeping the true colored regions. The

two last ones are real videos. The real videos are �rst segmented and for all of

them we create a region adjacency graph (RAG) (Chang et al. (2004)) for all the

frames of the video. As our RAGs greatly depend on the segmentation, we tried two

types of segmentation. The �rst segmentation (static) is done independently on each

frame using the algorithm1 presented in Felzenszwalb and Huttenlocher (2004). This

algorithm has three parameters for which we use the default values. As discussed in

section 2.1.2, it favors the merging of small regions which may result in an unstable

segmentation when objects are getting close to or moving away from the camera.

Indeed, the decision of merging two regions depends on the value of τ(Ri) = k/|Ri|,
where k is a parameter, Ri a region and |Ri| its size. The higher the size of the

region |Ri| the lower is τ(Ri) and therefore, the higher are the chances of merging

Ri with another region. In order to prevent this behavior, we modi�ed the code of

this algorithm to make its second parameter independent from the size of the regions

by removing the size of the regions |Ri| form the computation of τ(Ri). In this way,

the decision of merging two regions depends only on their color di�erence and the

magnitude of the parameter k. Figure 5.4 shows examples of RAGs representing a

frame of our videos. The second segmentation is the (dynamic) video segmentation

1E�cient graph base segmentation source code available here: http://cs.brown.edu/~pff/

segment/

113

Figure 5.4: Example of frames and RAGs obtained from the synthetic videos (top), from
the segmented real drone video (middle), and from the segmented car video (bottom).

algorithm2 presented in Grundmann et al. (2010). This algorithm outputs regions

that are identi�ed through time, i.e, it provides a correspondence between regions in

di�erent frames.

Synthetic videos We used the synthetic video we have already used for the ex-

periments discussed in the chapter 4 on the e�ciency of our mining algorithms (see

section 4.4.1). In the rest of this document this video is called Anim1. Based on this

synthetic video, we produced a second one, called Anim2, that is identical except for

the color of the X-Wings that is di�erent for each one of them (cf. top of Figure 5.4).

These videos were used to assess whether our approach can deal with scenes involving

several objects occluding each others and moving out of the �eld of view. We also

2Video segmentation web service at this address: http://videosegmentation.com/

114

used a simpler video, in which there is only one X-Wing, to assess the meaningfulness

of the patterns returned by Plagram. This video has the exact same background

as the two other ones. It has 721 frames and on average, each frame led to a graph

with 245.2 nodes, with an average degree of 2.23.

Real Videos The �rst real video (cf. middle of Figure 5.4) is composed of 950

frames, each RAG has on average 194.5 nodes with an average degree of 5.35. This

video shows a drone �ying across a covered parking lot. This video is simple but the

segmentation still su�ers from the illumination changes. The second real video (cf.

bottom of Figure 5.4) is made of 5619 frames, each RAG has on average 207.5 nodes

with an average degree of 5.5. This video is shot from a car while following another

car (the main object). In this video the main object goes out of the �eld of view, its

scale changes, the global illumination changes all the time and it is also longer than

the other ones which allows us to test the e�ciency of our approach. This video has

been divided into 3 parts (car1000, car2000, car3000) which correspond to the 1000,

2000 and 3000 �rst frames of the car video. This has been done since the tracking

di�culty gradually increases along the video.

For both videos, we use the same modi�ed segmentation algorithm with standard

parameters to segment the images. With these videos, we want to assess whether our

approach can deal with changing appearances and with the segmentation inaccuracies.

The labels of the nodes of the graphs of both the synthetic and real videos were

obtained by discretization of the size and the average color of the regions. Figure 5.4

presents some frames of the videos along with the corresponding RAGs.

5.4 Meaningfulness of the (Spatio-Temporal) Patterns

To evaluate how meaningful our (spatio-temporal) patterns are, before construct-

ing any spatio-temporal path or clusters, we study whether they can be used to track

a given object in a video.

We start by introducing two measures which assess how precisely a (spatio-temporal)

pattern p corresponds to a given target object o in the video frames. These measures,

also used later on to evaluate our more elaborate tracking strategies, are adaptations

of the popular measures precision and recall as described below:

• precision: fraction of the occurrences of p (in the target graphs) for which every
node maps to the object o in the corresponding video frames. The intuition

behind this measure is to evaluate the purity of p, that is, p has the maximum

precision if it maps only to the object o and nothing else.

115

• recall: Let n be the number of frames in which o is present. The recall is

de�ned as the fraction of n in which there exists at least one occurrence of p

where every node maps to o. Here, the intuition is to evaluate the completeness

of p. More precisely, the idea is to check whether the occurrences of p map to

all occurrences of o in the set of video frames.

Since our algorithms are exhaustive, that is, they mine for all frequent (spatio-

temporal) patterns in the graph database without supervision, the mining results may

consist of di�erent (spatio-temporal) patterns corresponding to di�erent objects, or

even to no speci�c one (w.r.t. the proposed measures). Therefore, to follow a speci�c

object in the video, the user should be able to select from the entire set of output

(spatio-temporal) patterns those that correspond to this object. A basic strategy for

this task is the following:

1. First, the user selects a frame area where there exists an object he or she is

interested in tracking, that is, the target object. This is done in a user selected

frame, referred to here as f , where this object occurs.

2. Afterwards, the user starts the graph mining process by executing either Pla-

gram with a given minimum support or DyPlagram with a given minimum

support and time constraint as input, followed by the post-processing step

described in section 4.3.4.2 with a spatial constraint. Alternatively, spatio-

temporal patterns can be directly extracted using DyPlagram_st.

3. Next, the (spatio-temporal) patterns that have no occurrences in the user-

selected area, in frame f , are discarded. The remaining patterns are considered

the target patterns, i.e., those that characterize the target object.

4. Finally, all the occurrences of the target (spatio-temporal) patterns are mapped

to the video frames, allowing the user to detect the position of the target object

through the video.

5.4.1 Output of Plagram (plane graph patterns)

We �rst evaluated our strategy on the patterns returned by Plagram (the plane

patterns). In those experiments we used the simple video with only one X-Wing. We

checked whether it would be possible to follow the X-Wing in this basic video by

considering the patterns that matched it in the �rst frame, i.e., patterns that where

inside the user selected area. As might be expected, those patterns had di�erent

precision and recall with respect to the X-Wing. Some examples are given in Figure

116

(a) (b)

(c) (d)

Figure 5.5: (a): pattern with 100% precision and recall in the Triangulated dataset. (b) &
(c): 2 occurrences of the same pattern (the X-Wing and a keyboard, respectively) with 52%
precision and 100% recall in the RAG dataset. (d): example pattern with 0% precision and
recall in the RAG dataset.

5.5. In (b) and (c), we show 2 di�erent occurrences of a pattern with 100% support,

52% precision, and 100% recall in the RAG dataset. Now, consider the graph in (d). It

illustrates an occurrence of a pattern with support of 378 frames in the RAG dataset.

Note that this occurrence had a node outside of the X-Wing area; this decreased the

precision of the corresponding pattern. Indeed, it had 0% precision and recall.

After executing step 3, we got the patterns whose average precision and recall (in

percentage) are shown in Table 5.1.

Observe that the selected patterns had, on average, very good quality, making step

4 successful. Considering the Triangulated dataset, the average precision increased in

inverse proportion to the minimum support, while the average recall decreased with

the minimum support. Here, lower minimum support led to bigger patterns with

higher precision and lower recall. In the RAG dataset, the behavior was di�erent: big

patterns had nodes that did not map to the X-Wing. In addition, small patterns with

low support did not have good precision nor recall. As a consequence, the average

precision and recall decreased with the minimum support.

However, in a less simplistic context (e.g., when multiple identical object are

present), the precision and recall of the patterns returned by Plagram drops dra-

matically. This is due to the fact that, in the video used for these experiments (see

117

Triangulated RAG
Support precision (%) recall (%) precision (%) recall (%)
721 96.2 99.8 97.1 99.9
711 97.6 98.9 97.2 99.8
701 99.3 97.7 96.5 99.0
691 99.7 96.3 93.9 95.6
681 99.8 95.0 92.8 93.9
671 99.8 93.7 92.5 93.5
661 99.9 92.5 92.5 93.5
651 99.9 91.0 91.8 92.6

Table 5.1: Average precision and recall (in percentage) computed for the patterns selected
at step 3 of the proposed object tracking strategy.

Figure 4.11), the 3 X-Wings may overlap and two of them can partially go out of the

video frames. Besides, as the target X-Wings are identical, some ambiguities may

happen w.r.t the target patterns. For example, a target pattern may be very frequent

just because it maps to multiple X-Wings and thus appear in almost every frame, but

imprecise (i.e., with a low precision) with respect to a given X-Wing o if it maps not

only to o, but to di�erent X-Wings through the video. Therefore, to track a given

object in our more complex video, the use of spatio-temporal constraints becomes

necessary.

5.4.2 Output of DyPlagram and DyPlagram_st

To check whether the de�ned spatio-temporal patterns can well represent the

individual trajectory followed by several similar objects, or the trajectory of objects

in real videos, we used the previously described strategy on the video Anim1 that

shows 3 identical X-Wings moving in a room and using the size discretization to

label the nodes of the RAGs. We also performed experiments on the real video with

the drone to assess the meaningfulness of the spatio-temporal patterns when the

appearance of the target changes and segmentation errors are introduced.

Experiments on Anim1 ForDyPlagram, we �rst extracted all frequent patterns

with a frequency threshold of σ = 721, corresponding to the number of frames in the

video, and a temporal constraint τ = 1 to focus on patterns that appear in every

frame (note that some occurrences of the same pattern may correspond to di�erent

spatio-temporal patterns). Then, we post-processed them to generate spatio-temporal

118

DyPlagram with post-processing DyPlagram_st

Precision(%) Recall(%) # ST patterns Precision(%) Recall(%) # ST patterns
ε = 10, σst = 10

X-Wing 1 78 7 151 78 7 114
X-Wing 2 72 3 129 95 3 71
X-Wing 3 87 2 131 88 2 84

ε = 20, σst = 50
X-Wing 1 77 15 73 82 17 65
X-Wing 2 93 26 43 100 29 39
X-Wing 3 100 10 60 100 10 60

ε = 170, σst = 50
X-Wing 1 45 38 27 51 42 24
X-Wing 2 51 10 15 49 8 17
X-Wing 3 60 12 21 69 13 19

Table 5.2: Evaluation of the spatio-temporal patterns issued from all patterns with σ = 721
and τ = 1 for DyPlagram and for DyPlagram_st. The labels are created from the size
of the region. For both algorithms, the third column indicates how many spatio-temporal
patterns have been discovered. Those experiments were conducted on the synthetic video
Anim1 with 3 identical X-Wings.

patterns using the strategy described in 4.3.4.2. The same temporal threshold τ = 1

and frequency threshold σ = 721 where used to directly extract comparable spatio-

temporal patterns with DyPlagram_st.

Next, the precision and recall of every spatio-temporal pattern whose �rst occur-

rence mapped to an object o in a video frame i were computed with respect to the

object o. The precision allows to assess if spatio-temporal patterns are robust, i.e, if

they tend to follow the same object on all frames they have an occurrence in. The

recall tells us how much of a target, in term of number of frames, spatio-temporal

patterns cover.

Table 5.2 summarizes the results obtained with the spatio-temporal patterns gen-

erated by post processing the frequent patterns of DyPlagram, and the spatio-

temporal patterns of DyPlagram_st. The spatio-temporal patterns were gener-

ated with a minimum freqst threshold σst = 10 and 50, and 3 di�erent spatial thresh-

olds ε of 10, 20, and 170 pixels (from 20 to 160 pixels, the results were quite similar

and thus are not reported here). For each experimented pair (σst, ε) and for each

target X-Wing in the video, the �rst two columns give the average precision and recall

computed for its associated spatio-temporal patterns (as de�ned in our strategy). In

addition, the third column shows the total number of such patterns.

Table 5.2 shows that the spatio-temporal patterns obtained withDyPlagram_st

are in general less numerous, more precise and have a better recall than the ones ob-

tained with DyPlagram. The distance threshold ε has an important impact on the

obtained results. Indeed, if it is set too low (to 10 pixels, in our example), we ob-

119

Table 5.3: Precision and recall computed for the spatio-temporal patterns produced by
DyPlagram_st on the real video with σ = σst, and µ = 0.65

ε = 10 ε = 20
τ σst Precision(%) Recall(%) # ST patterns Precision(%) Recall(%) # ST patterns

10
100 100 26.18 10 92.48 22.97 13
50 93.55 17.40 20 91.35 15.44 25
10 89.78 2.87 294 89.70 2.72 334

25
100 91.28 35.34 11 89.02 30.03 14
50 90.28 25.12 18 83.79 20.14 24
10 88.90 3.18 307 89.47 2.94 358

100
100 89.52 38.21 14 89.02 31.03 19
50 92.27 24.38 27 90.30 22.45 30
10 89.01 4.03 258 89.88 3.63 302

tain spatio-temporal patterns with high average precision for each X-wing as di�erent

occurrences of patterns which map to di�erent X-wing are very well distinguished.

However, this leads to a low average recall: since only very close occurrences of the

same pattern are linked, the spatio-temporal patterns tend to be short (i.e., have low

freqst). When using a distance threshold ε = 10, no spatio-temporal patterns with

freqst ≥ 50 were found for X-wing2 for DyPlagram, which explains why we used

σst = 10 in this case. Conversely, for a higher ε of 170 pixels, the average precision

drops as the di�erent X-wings are not well distinguished anymore. For example, it

was possible to obtain spatio-temporal patterns with higher recall for the X-Wing

1 (when comparing to the other experiments), but, they had low average precision.

Since the X-Wing 1 gets partially out of the video frames around 6 times, a higher

number of spatio-temporal patterns were derived for this X-wing for σst = 50 and ε

of at least 20, which represent the di�erent time intervals where this X-wing is visible

through the video. As another example, the X-Wing 2 is hidden only twice by the

X-Wing 3 (during around 15 frames) and never goes out of the video frames. This

explains the lower number of spatio-temporal patterns found for this object, also for

σst = 50 and ε ≥ 20. Note that, in the case of our example video, increasing the time

constraint τ could increase the length of the spatio-temporal patterns and thus their

recall but this would lead to a lower precision.

Experiments on the drone video The aim of those experiments is to demon-

strate that spatio-temporal patterns can serve has a basis to track objects in real

videos. We experimented on the in�uence of di�erent values for the spatio-temporal

thresholds, using τ = 10, 25, 100 and ε = 10, 20 (above 20 the precision started to

drop signi�cantly which is expected for large ε values), and di�erent values for the

frequency threshold with σst = 10, 50 and 100. The precision and recall results for

120

the spatio-temporal patterns returned by DyPlagram_st under those parameters

are presented in Table 5.3.

As expected, the precision is a little higher with ε = 10 (100% for ε = 10 when

τ = 10 and σst = 100 against 92.48% for ε = 20). The fact that the average recall also

decreases with a higher distance is more surprising at �rst glance. This is explained

by the fact that most of the time, ε = 10 is enough to follow the drone, but sometimes

the drone or the camera movement accelerates. In those cases a higher distance might

give longer and better spatio-temporal patterns but also might introduce some noisy

ones which would decrease the average recall and precision.

The average recall also decreases when we lower σst. This is due to the fact

that when using a low σst DyPlagram_st outputs short spatio-temporal patterns

that necessarily have a low recall. Lowering σst slightly reduces the precision of the

spatio-temporal patterns but increases their number.

As also expected, higher gaps lead to better recall (38.21% for τ = 100 when

ε = 10 and σst = 100 against 26.18% for τ = 10) as well as improve the coverage of

the spatio-temporal patterns in the whole video. The precision does not seem to be

in�uenced by τ when we allow small spatio-temporal patterns (i.e., a low σst).

Overall this series of experiments have shown that spatio-temporal patterns are

robust and can follow a target with high precision. The fact that a single spatio-

temporal pattern is not enough to track an object across all the frames of a video

is also con�rmed by the low recall results. In the next sections we will present the

experiments we conducted to show how this problem can be solved with the spatio-

temporal paths or clusters of spatio-temporal patterns.

5.4.3 Spatio-Temporal Paths for Object Tracking

To assess the e�ectiveness of the spatio-temporal paths for object tracking, we

apply the following strategy. We �rst build the occurrence graph and then, for each

target object, we select the occurrences matching it in the �rst frame. Then we

compute the path of lowest cost starting from those occurrences and reaching the

last frame using Dijkstra's shortest path algorithm. This means that this strategy is

better suited to cases where the target appears in the last frame. Although it could

still follow a target that is not present in the end of the video, in the last frames,

this strategy would drift to some pattern that does not represent the object. In all

experiments reported here we use a similarity of 2/3 (µ = 0.65). We also tried with

a similarity of 3/4 (µ = 0.75) but in this caused the occurrence graph to have to few

edges to �nd a complete track of any object. With a similarity of 1/2 (µ = 0.5) the

occurrences graphs took a lot of space in memory because of the number of edges

121

Table 5.4: Evaluation of the spatio-temporal path with σ = 250, σst = 150, µ = 0.65,
ε = 20. The numbers between parenthesis correspond to the best precision and recall of the
best path in term of recall, and the emphasized results are the best results for each X-Wing

Size Discretization Color Discretization
τ Precision(%) Recall(%) Paths Precision(%) Recall(%) Paths

X-Wing 1
10

98.32 (99.72) 97.50 (99.30) 34 93.92 (99.74) 93.60 (99.86) 21
X-Wing 2 99.63 (99.73) 97.26 (98.19) 24 98.65 (100) 96.82 (99.02) 17
X-Wing 3 9.49 (16.64) 8.70 (15.39) 4 - (-) - (-) 0
X-Wing 1

25
95.79 (100) 94.59 (99.02) 38 99.17 (99.73) 98.40 (100) 21

X-Wing 2 65.66 (99.61) 64.61 (98.05) 32 98.54 (100) 96.34 (99.02) 20
X-Wing 3 2.93 (9.09) 2.50 (8.59) 29 31.95 (31.95) 29.54 (29.54) 2
X-Wing 1

100
79.05 (100) 74.37 (94.31) 42 97.76 (100) 95.36 (99.30) 29

X-Wing 2 72.57 (97.53) 67.05 (93.62) 35 98.87 (100) 96.30 (99.02) 39
X-Wing 3 5.42 (18.46) 4.82 (16.36) 31 86.27 (90.52) 75.92 (82.80) 23

between the occurrences and the track obtained drifted easily to elements of the

background.

In practice the minimum support threshold σ can be set, for example, to 1/5 of

the total number of frames (to make sure that the patterns occur enough and help

the mining process). By default, it will be equal to the σst threshold. σst should be

set as low as possible (depending on available memory). The τ should, in general,

be set as high as possible (as will be shown in the experiments). The ε constraint

depends on the motion speed of the target object and on the resolution of the video.

Most of the time we use 20 pixels.

5.4.3.1 Evaluation of the Spatio-Temporal Path for Object Tracking

For the synthetic videos Anim2 with the 3 di�erent airplaines, and for the drone

video, we report the precision and recall results for the spatio-temporal paths. Each

time we selected the spatio-temporal pattern with lowest weight starting from an

occurrence in the area selected by the user and ending in the last frame. The precision

and recall results are computed on the occurrences taken by the spatio-temporal path

with lowest weight.

5.4.3.2 Experiments on the Synthetic Video Anim2

The experiments reported in Table 5.4 show the precision and recall results for

the paths obtained on the synthetic video when varying the gap between 10 and 100.

Because of the nature of the video, we use a global minimum support σ of 250

in order to prune the number of frequent patterns. Indeed, since the synthetic video

has been especially made to produce stable graphs, DyPlagram_st returns a lot

of frequent patterns on this dataset which leads to a huge global occurrence graph

122

Table 5.5: Precision and recall computed for the spatio-temporal paths for the real video
with σ = σst and µ = 0.65, using the color discretization to label the nodes of the graphs.

ε = 10 ε = 20
τ σst Precision(%) Recall(%) Paths Precision(%) Recall(%) Paths

10
100 96.30 (96.30) 67.89 (67.89) 1 98.23 (100) 80.94 (82) 2
50 98.25 (100) 70.00 (71.26) 2 26.16 (38.96) 24.03 (36.21) 3
10 91.93 (93.34) 69.60 (70.63) 8 18.75 (36.09) 17.88 (34.73) 8

25
100 98.43 (100) 68.89 (70) 6 98.51 (100) 78.68 (79.68) 6
50 98.66 (100) 69.05 (70) 7 98.72 (100) 78.82 (79.68) 7
10 99.06 (100) 69.36 (70.21) 10 99.03 (100) 80.63 (81.36) 10

100
100 100 (100) 67.42 (67.78) 8 100 (100) 77.52 (79.68) 9
50 100 (100) 67.36 (67.68) 9 100 (100) 77.54 (79.68) 9
10 100 (100) 67.21 (67.78) 10 99.26 (100) 79.17 (79.78) 10

that possibly does not �t into memory for processing. To be able to perform various

experiments, especially with the size discretization which does not permit to distin-

guish the three X-Wings at the mining step, we set the σst to 150 (although as already

discussed, it is better to set it as low as possible).

Overall, we obtain very good results for the �rst two X-Wings (precision and

recall close to 100%). We can clearly see the lack of discriminative power of the

size discretization when the gap increases. Indeed the paths start to follow di�erent

X-Wings, reducing their precision and their recall. For those two X-Wings the color

discretization always shows good results, with average precisions and recalls close to

the ones of the best paths (values in brackets). Since the 3rd X-Wing moves back and

forth horizontally across the �eld of view (getting almost completely out every 120

frames), only few paths starting on this X-Wing manage to reach the end of the video

when we use a low gap. The paths which uniquely follow this X-Wing are thus more

expensive than other paths on which the algorithm can "jump" using the similarity

edges, decreasing the precision and recall. As we can see, increasing the gap allows

to overcome this problem with the color discretization while keeping good results for

the other two X-Wings.

5.4.3.3 Real Video with the drone

The experiments reported in Table 5.5 were made without using a global minimum

support threshold (which is equivalent to set σ = σst). Because of the segmentation,

this dataset is a lot less stable than the synthetic one resulting in less frequent pat-

terns. For this one, only the color discretization gave good precision/recall results

(we also tried the size and some other color discretizations using the HSV color space

but our simple discretization of the RGB space worked better).

123

Table 5.5 shows the results for the spatio-temporal patterns of DyPlagram_st

on the real dataset for the color discretization.

A distance ε equal to 20 gives the best results in most cases with high precision and

good recall (99.0380.63σst = 10 for example). However, the values for τ = 10 show

the limits of the use of the shortest path algorithm to tackle our problem. Similarly

to what was happening with the third X-Wing in the synthetic video, the shortest

path might not always be following the object we want to track if elements in the

background or other objects o�er better stability than the original target and are

close enough to "jump" on them.

The results with our preferred setting (low σst = 10, high τ = 100 and a distance

ε = 20) show that the spatio-temporal paths can indeed be used to follow an object

in the video. The similarity edges introduced are very useful to increase the recall of

the patterns and experiments with a higher similarity constraint (for example with

µ = 0.8) provide worst results. This shows the importance of this "inexact" matching

phase in the process. On the downside, the choice of the labels on the node (here it

is a color information) seems to play a very important role to get interesting spatio-

temporal patterns although it is di�cult to evaluate in an unsupervised setting what

could be the best ones. One solution could be to attach more diverse informations

on the labels of the nodes to overcome this problem.

5.5 Clusters of Spatio-Temporal Patterns for Tracking

In this section we present the experiments we conducted to show that the top

clusters, according to our ranking strategy, correspond to interesting objects and can

be used to follow those objects.

5.5.1 Experimental design

To asses the quality of the tracks returned by our approach, we compare our

algorithm to two other state of the art algorithms called TLD (Kalal et al. (2010))

and CT (Zhang et al. (2012)) that we already discussed in section 2.3.3. We also apply

our algorithm on the video segmentation of Grundmann et al. (2010). To summarize

we compare the 4 following approaches:

• TLD (Track Learn Detect) is a tracking algorithm Kalal et al. (2010) that

requires manual selection of the target.

• CT (Compressive Tracking) is a tracking algorithm Zhang et al. (2012) that

also requires manual selection of the target.

124

• TRAP is our tracking algorithm which mines frequent spatio-temporal patterns

and clusters them. It uses the simple segmentation algorithm presented in

Felzenszwalb and Huttenlocher (2004) for the real video (and the original regions

for the synthetic ones). The value for the three parameters of the algorithm (τ ,

σst and ε) are discussed bellow.

• TRAP + VS (Video Segmentation) uses the second type of segmentation pre-

sented in Grundmann et al. (2010).

For the clusters obtained with our approach, the precision corresponds to the

proportion of occurrences of the cluster that have all their nodes in the bounding

box of the ground truth (at the corresponding frame). The recall of a cluster is the

number of frames in which at least one occurrence of this cluster has all its nodes in

the bounding box of the ground truth.

TLD and CT are given the ground truth of the �rst frame of each video as input.

Both algorithms return a sequence of bounding boxes representing the track of the

followed objects. The precision is the area the bounding boxes of the track and of

the ground truth have in common, divided by the area of the bounding boxes of the

track. The recall of the algorithm is the number of frames in which the center of the

bounding box of the track is inside the bounding box of the ground truth.

As explained in Section 5.2.2.3, the choice of the clusters that are used to track

the objects of interest is an important problem. In the experiments, we will show the

results for the Longest cluster as de�ned in Section 5.2.2.2 but also the results for

the Best cluster in the hierarchy (we chose the best cluster for all possible cut of the

clustering hierarchy). This best cluster is the one for which the Precision∗Recall∗100

is the highest. Of course, these �best� results are just given to assess the possible

improvements for our algorithm since they cannot be used in an unsupervised setting.

In some experiments, the two criteria we use (cut with the lifetime and keep the

longest cluster) are not always the best but we can show that a very good cluster

exists and could be found using a di�erent criteria.

5.5.1.1 Parameters of DyPlagram_st

The spatial threshold ε should be high enough depending on the motion of the

objects and the motion of the camera. This can be estimated on the �rst frames of

the video using optical �ow techniques such as the ones described in section 2.2.3.

However, setting this to 20 (pixels) for all experiments gave su�ciently good results.

In general, giving a high value for this parameters will increase the mining time but

will not harm the results. Similarly the time threshold τ is set for all videos to 25

125

Anim 1: Identical Objects Animation 2: 6= Objects
Obj 1 Obj 2 Obj 3 Obj1 Obj2 Obj3

P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)
TLD 22 14 90 17 0 0 14 13 36 5 0 0
CT 39 52 0 0 0 0 68 96 0 0 0 0

TRAP
Longest 97 90 41 99 21 63 100 99 91 99 8 12
Best 99 90 92 88 87 49 100 99 91 99 72 92

VS+C
Longest 14 14 47 55 35 38 91 95 67 84 18 43
Best 100 52 97 63 100 21 91 95 97 63 53 45

Figure 5.6: Precision and Recall of the CT, TLD and TRAP algorithms using the standard
color segmentation, the TRAP algorithm using the video segmentation (TRAP+VS) and the
video segmentation alone with a clustering phase (VC+C) on the two synthetic videos Anim1
and Anim2.

frames (1 second of the video). Again, this may not be the best set of parameters

especially for the car video which is the most complex to deal with. The frequencies

thresholds (σ and σst) should be set after having found a working τ and ε to obtain

a signi�cant number of spatio-temporal patterns (600 < #patterns < 2000). A too

large number would also slow down the algorithm. By default σ = σst. Note that

σ controls the frequency of the patterns from which the spatio-temporal patterns

can be generated. However, a very high σst threshold (for example, more than 20%

of the length of the video) means that the structure of the object (and thus of the

patterns representing it) should not change at all during 20% of the frames which is

not very reasonable for most of the real videos that are recorded by amateurs. Thus,

we impose that σst is always bellow 20% of the length (in frames) of the video. If the

number of patterns is still too big with this bound, we can increase σ to get inside

the #patterns bounds.

5.5.2 Results

We now present the results obtained for our clusters of spatio-temporal patterns

in term of tracking quality and e�ciency.

5.5.2.1 Tracking quality

Synthetic videos In Figure 5.6 we can see that CT and TLD do not give good

results on the synthetic video especially when the 3 planes are identical. Indeed, the

initial bounding box given in the ground truth includes a lot of background between

the wings of the planes which corrupts the appearance model learned. Besides, there

are occlusions between the objects and their rapid changes in direction make them

hard to track. Our approach gives good results (97/90 P/R for Anim1 and 100/99

for Anim2) on the �rst plane which is the most stable. However there is no really

126

Drone Car 1000 Car 2000 Car 3000
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

TLD 63 88 65 68 55 46 55 31
CT 84 99 9 14 8 8 5 5

TRAP
Longest 81 99 92 83 10 98 4 52
Best 97 99 90 98 90 51 90 34

VS+TRAP
Longest 24 95 92 90 5 82 5 65
Best 95 94 93 98 85 54 85 36

VS+C
Longest 90 100 0 0 0 0 0 0
Best 100 100 95 100 84 100 98 79

Figure 5.7: Percentage of Precision (P) and Recall (R) of the CT, TLD and TRAP algo-
rithms using the standard color segmentation, the TRAP algorithm using the video segmen-
tation (TRAP+VS) and the video segmentation alone with a clustering (VC+C) on the two
real videos.

Figure 5.8: Occurrences of frequent patterns (in green) in the longest cluster for the �rst
1000 frames of the car video

good cluster (where the recall and the precision would be both above 90%) in all

the hierarchy representing the second and the third object. For the second object,

the best cluster has 92% precision and 88% recall but this cluster exists only when

cutting the hierarchy at 11 clusters whereas our lifetime criteria cuts the hierarchy

at 252 clusters and thus does not allow us to �nd the best one. For the third object,

the best cluster was only 361 frames long so it was not selected as the longest one.

Because the third object goes almost completely out of the �eld of view for 3 to 4

seconds several times in the video, the clusters representing this object were easily

split. When directly clustering the patterns extracted from the video segmentation

(VS+C) and for Anim1, the best clusters have a high precision but their recall is low,

reaching 63 (less for the longest cluster). This comes from the fact that the video

segmentation is of course less accurate than the original segmentation and tends to

over-segment regions due to the frame-to-frame region matching which decreases the

relevance of the patterns.

The results for Anim2 show that the color di�erence between the three objects

usually helps all the trackers (except for TLD). For our approach, the longest clusters

127

Figure 5.9: Precision an recall results of the best and longest clusters output by TRAP for
the object 1 (top) and object 3 (middle) of animation 2 and for the car (bottom) for car1000.
The vertical red line is the lifetime cut.

at the highest lifetime were the best ones in the hierarchy as can been seen in Figure

5.9 (top). The di�erence between the objects was discriminative enough to be able

128

to follow the third object with a best cluster with 72% precision and 92% recall.

Unfortunately this good cluster was at the 14th level of the hierarchy while it was

cut at the 70th level as can be seen in Figure 5.9 (middle). In this later case the size

of the best cluster decreases around the 50th level of the hierarchy which causes it to

be ranked lower than bigger clusters that do not match the third object.

The video segmentation did less mistakes on this animation and the results are

thus better for the VS+C method. As we can see, the best cluster for the �rst X-

Wing was the longest one with a precision of 91% and a recall of 95%. For the second

X-Wing, the recall drops to 84% and the precision to 67%. For the last object, there

is not enough patterns to build good clusters (the best one only has 53% precision

and 42% recall).

Real videos TLD and CT both track the drone for almost all the video, the former

with 63/88% (P/R) and the later with 84/99% (P/R) (see Figure 5.7). TLD loses it

for some frames which results in a lower recall. Due to the large size of the output

bounding box in some frames, the precision is lower than for our approaches for both

algorithms. TRAP also follows the drone with 99% recall, but the longest cluster is

less precise than the best cluster (81% versus 97%). Note that just reducing σst to 10

in this case would allow us to �nd the best cluster. Clustering the spatio-temporal

patterns extracted from the video segmentation (VS+TRAP) also produces some

good clusters but not at the level the lifetime cuts the hierarchy. Thanks to a high

number of spatio-temporal patterns, VS+C obtains good results (the longest cluster

has 100% recall and 90% precision).

From Figure 5.7, we can con�rm that the car video is a much more di�cult track-

ing problem. TLD follows the car until the frame 1305, losing it occasionally, but

never with a good precision. CT never succeeds in following the car. For both types

of segmentation, the longest cluster returned by TRAP follows the car until the frame

1200 and then loses it. At this point of the video the car is small and both segmenta-

tion segmented it in only one region. Since occurrences of frequent spatio-temporal

patterns have at least 3 nodes (1 face, this is imposed by the DyPlagram_st al-

gorithm), there is none matching the car in this part of the video. The best patterns

for the �rst 2000 and 3000 frames all end at this frame, and, since there is no other

long pattern matching the car, the longest clusters has a bad quality. As shown in

tab 5.10, augmenting the gap allows us to skip the frames of the video where the car

is too small which produces better results. However, the algorithm faces the same

situation for a longer time at the frame 2300. This shows that if the gap threshold τ

can allow us to deal with some situations where the object is hard to detect, it would

129

Car1000 Car2000 Car3000
P R P R P R

TRAP
Long 90 99 96 73 7 83
Best 90 99 93 87 92 61

VS Long 90 99 93 87 7 84
+TRAP Best 92 98 88 91 22 39

Figure 5.10: Percentage of Precision (P) and Recall (R) obtained for the car video when
increasing the gap τ to 75 for the TRAP algorithm.

be better to introduce a mechanism speci�cally designed to deal with long term oc-

clusions. Figure 5.9 shows that, on the �rst 1000 frames, the longest cluster returned

by TRAP is always the best one until the lowest levels of the hierarchy. This shows

that the length criterion can be very good to �nd the best cluster when su�cient

patterns representing the objects can be extracted and when no long disappearance

of the targets splits the clusters. The VS+C method builds good clusters but only at

the higher levels of the hierarchy, they are thus not found using our lifetime criterion.

In conclusion, our unsupervised methods give comparable (and most of the time

better) results than the state-of-the-art trackers TDL and CT. However, we do not

need to select the objects of interests in the �rst frame of the video which makes this

method usable in practice to treat batches of o�-line recorded videos such as Youtube

ones.

5.5.2.2 E�ciency

For the synthetic videos, when keeping the default parameters for τ and ε we

fell into the number of patterns problem mentioned in Section 5.5.1.1. For both

animations, σst was set to 150 but σ was set to 250 for the �rst animation and to 220

for the second one. As can be seen in the Figure 5.11 it takes more than 15 minutes

to process 1700 patterns in both cases. For the video segmentation (VS), we can not

control the number of output patterns and for the simple animation video, we get

only around 100 of them which made the clustering process very fast. Because of

many changes in appearance for the real videos, there were less frequent patterns so

we could keep the default setting for all parameters (except σst as discussed in Section

5.5.1.1). For TRAP, we used σst = 15 for the drone and σst = 25 for the car, and

we set it to 35 for both videos when mining the more stable video segmentation. We

mined the 5600 frames of the car video at once and then restricted the occurrence

graph to the �rst 1000, 2000, and 3000 frames, this explains why the time results for

the mining step of this video are constant. This is also why the number of patterns can

130

Exec Time (s)
pat

Mine Clust Total

Anim1
TRAP 11 1042 1053 1708
VS+C 0 7 7 116

Anim2
TRAP 9 1180 1189 1667
VS+C 0 6 6 113

Drone
TRAP 28 952 980 1421

VS+TRAP 9 722 731 1349
VS+C 0 521 521 1095

Car1000
TRAP 109 231 340 575

VS+TRAP 212 204 416 520
VS+C 0 4560 4560 2923

Car2000
TRAP 153 1005 1158 1046

VS+TRAP 153 954 1107 985
VS+C 0 28524 28524 5196

Car3000
TRAP 153 1758 1911 1232

VS+TRAP 153 1981 2134 1237
VS+C 0 69866 69866 6543

Figure 5.11: Execution time and number of patterns output by the TRAP algorithm and
the method which uses the video segmentation followed by a clustering step (VS+C)

be as low as 500 when processing only the �rst 1000 frames. As we can see, the VS+C

approach produces a lot more patterns which greatly increased the computation time.

In conclusion, the mining phase can give better results and is more e�cient than

directly using the output of the dynamic segmentation for real videos. However, both

methods are far from usable in real time although the clustering step could easily be

improved by designing an optimized algorithm.

5.6 Conclusions

The experiments we conducted on the spatio-temporal patterns showed they are

meaningful in a video tracking context. When the �rst occurrence of a spatio-temporal

pattern matches an object, the rest of its occurrences tend to also match the same

object with high precision.

We also described two techniques that use spatio-temporal patterns to track the

main objects of videos.

The spatio-temporal paths su�er from multiple limitations. They still require the

user to select the target himself. They also tend to drift from the target, especially

if the video is long. Indeed, it is sometimes less costly to move from the original

selected occurrences to occurrences of a pattern that can be more easily followed.

131

Therefore sometimes, the shortest path computed starts by taking multiple similarity

edges until it reaches the occurrence of a more stable pattern than the ones matching

the target.

Our clustering approach solved the problem of the target selection. However, it is

still unclear where exactly to cut the hierarchy to obtain the clusters and how many

of them are matching an interesting object. Nonetheless, the highest ranked cluster

often corresponds to the main object of the video.

5.7 Possible Applications

The works performed in the context of this thesis have lead to the patenting of

two applications suggested by our industrial partner. A �rst possible application of

our algorithm TRAP could be to summarize interactions between the main objects

in videos. Automatic video summary is a broad and di�cult problem that requires to

be capable of analyzing a video and understanding what is happening in it. A major

di�culty is that, to properly describe the content of a video, humans usually make

use of their capabilities to separate the interesting objects from the none interesting

ones and the background. So far this requires to know which object to look for in

advance. Our technique can help solving this problem since it can identify and track

interesting objects. Here we focus on an application designed to provide a textual

summary of the location of main objects and their interactions between each other,

i.e, when the image segments representing them overlap. Given the tracks of objects

extracted using the TRAP algorithm, this application builds a XML �le recording,

for each object, the beginning and ending frames of each video segments in which

the object appears without interruption. For each frame of each one of those video

segments, the XML �le includes the coordinates of the bounding boxes around the

object as well as the segmented regions corresponding to it. The XML �le also stores,

for each object, a list of interactions, i.e, the beginning and ending frames of a video

segment in which the bounding boxes of two objects overlap. This application could

be used online by uploading a video to process, or by supplying an url to a video on

Youtube for instance. Figure 5.12 gives an example of such an XML �le describing

the interactions of the main objects.

Such an application would also be useful as a basis for further description of a

video content. Indeed, once the regions of the frames representing an object are

known, it is possible to identify it by comparing its appearance to a database of

objects and obtain more informations about it, such as its category for example (e.g.,

human, animal, car, plane, boat etc...). It could also be used to quickly retrieve video

132

Figure 5.12: Example of XML �le summarizing a video

segments where two objects interact with each other. Splitting a video in several

segments or detecting key-frames depending on the objects present in the �eld of

view and their interactions is another possible use for this application. It could also

be useful to retrieve videos in which a particular object appears a lot.

The second application we patented consists in using the clusters returned by our

algorithm TRAP as a basis to produce a cloud of images representing the main objects

of a video, similarly to the way clouds of word representing textual documents. From

each cluster we can derive an image segment in each frame t, corresponding to the

object it represents, by recovering the part of the original image that is covered by the

segmented regions of the occurrences of the cluster in frame t. Then, we can compare

133

the visual appearance of the di�erent image segments in each frame and decide which

one(s) best represents the object by selecting, for example, the segments that are the

most similar to the others in the cluster. Then this set of segments can be added

to a cloud of image tags representing the video. The size of the tag representing

each object can vary with respect to the importance of the object, i.e., the number

of frames covered by the cluster it has been extracted from. Such an application

could be useful to e�ciently describe the visual content of a video before watching it.

Being able to represent a video by a set of image segments also o�ers the possibility

to perform queries, on a database of videos, by supplying an image of an object we

are interested in and retrieve videos in which it is important.

134

CHAPTER 6

Conclusion et Perspectives

6.1 Conclusion

Dans cette thèse nous nous sommes intéressés à l'utilisation de techniques de fouille

de graphes pour résoudre certains des problèmes rencontrés dans le cadre de la tâche

de suivi d'objets dans les vidéos acquises à partir d'une caméra en mouvement. Cette

approche nous a permis de répondre au problème général de suivi d'objets ouvrant

la porte à de nombreuses applications, comme le résumé ou l'indexation automatique

de vidéos en fonction de leur contenu visuel qui peut être décrit de manière plus

pertinente en se basant sur les objets de la scène et leurs interactions. Plutôt que de

rechercher des objets correspondant à des modèles cibles, pré-entrainés ou sélectionnés

par l'utilisateur, nous nous sommes intéressés à ce qui constitue un objet intéressant

a�n de pouvoir découvrir automatiquement les objets principaux d'une vidéo et les

suivre. Nous sommes partis de l'hypothèse que lorsque la caméra est en mouvement,

les objets intéressants doivent apparaitre plus souvent que l'arrière plan.

Pour identi�er et suivre les objets principaux, nous nous sommes basés sur l'hy-

pothèse que la topologie des objets ne change pas brutalement au cours d'une vidéo.

A l'aide d'un algorithme de segmentation couleur, nous avons segmenté en régions

chacune des images des vidéos traitées. Nous avons ensuite modélisé la topologie de

chaque image sous forme de graphes plans. Le problème d'identi�cation et de suivi

des objets principaux d'une vidéo est alors analogue à celui de l'extraction de sous

graphes fréquents dans la base de données de graphes représentant les images d'une

vidéo.

Dans la première partie de cette thèse, nous avons présenté un état de l'art du

suivi d'objets (chapitre 2) et de la fouille de graphes (chapitre 3). Ceci nous a permis

d'identi�er les faiblesses des méthodes actuelles de suivi et d'étudier les algorithmes

les plus e�caces en fouille de graphes.

135

Dans la deuxième partie, nous avons présenté nos contributions dans les domaines

de la fouille de graphes (chapitre 4) et du suivi d'objets (chapitre 5).

Dans le domaine de la fouille de graphes, notre première contribution (Prado et al.

(2011)), publiée dans la conférence française "Conférence d'Apprentissage" en 2011, a

été de développer Plagram, un algorithme de fouille de graphes plans basé sur le très

populaire algorithme de fouille de graphes généraux nommé gSpan (Yan and Han

(2002)). Plagram tire parti des travaux de Damiand et al. (2009) sur l'isomorphisme

de graphes plans pour compter e�cacement le support des sous graphes pendant le

processus de fouille. Nous avons montré expérimentalement que l'exploitation de ces

travaux, couplé à notre stratégie d'extension consistant à ajouter des faces complètes,

permettait à Plagram d'être signi�cativement plus e�cace que gSpan pour extraire

les sous graphes fréquents d'un ensemble de graphes plans.

Notre seconde contribution au domaine de la fouille de graphes, publiée dans le

journal international "Intelligent Data Analysis" en 2013 (Prado et al. (2013)), a

été le développement d'une technique permettant d'introduire des contraintes spatio-

temporelles au sein du processus de fouille a�n de limiter le nombre de sous-graphes

fréquents générés. Le nouvel algorithme résultant, appelé DyPlagram, étend Pla-

gram en introduisant une nouvelle mesure de fréquence freqseq qui permet d'ex-

ploiter une contrainte temporelle réduisant le nombre de motifs fréquents décou-

verts. Une étape de post-traitement utilise les occurrences de ces motifs fréquents

pour construire un graphe des occurrences dans lequel deux occurrences sont connec-

tées si elles respectent les deux contraintes de temps et d'espace. Les composantes

connexes de ce graphe des occurrences sont ensuite calculées pour générer des motifs

spatio-temporels. Les expérimentations conduites ont démontré que l'utilisation de la

contrainte temporelle pendant l'étape de fouille augmente signi�cativement l'e�cacité

de l'algorithme.

Notre troisième contribution dans le domaine de la fouille de graphes, publiée dans

la conférence internationale "European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Databases " en 2012 (Diot et al. (2012)),

a été le développement de l'algorithme DyPlagram_st, qui étend Plagram pour

extraire directement des motifs-spatio temporels dont la mesure de fréquence freqst
est supérieure à un seuil minimum. Les résultats expérimentaux montrent que l'ex-

ploitation des contraintes spatiales et temporelles rend DyPlagram_st beaucoup

plus e�cace en temps de calcul que DyPlagram qui n'exploite que la contrainte

temporelle.

Dans le domaine du suivi d'objets nous pouvons énumérer 2 principales contri-

butions. Dans un premier temps nous avons présenté, dans notre article Diot et al.

136

(2012), une méthode enrichissant le graphe des occurrences avec des arêtes de simi-

larité entre les occurrences de motifs di�érents ayant une forte proportion de n÷uds

en commun. Les arêtes de ce graphe des occurrences enrichi ont été pondérées en

fonction de la similarité des occurrences (pour les arêtes de similarité) ou de leur

distance spatio-temporelle (pour les arêtes du graphe des occurrences original). Nous

avons montré expérimentalement, sur des vidéos synthétiques et sur une vidéo réelle

simple, qu'il est possible de suivre un objet en suivant le chemin le plus court dans le

graphe des occurrences enrichi. Cette première méthode nécessite toutefois l'interven-

tion de l'utilisateur pour sélectionner la cible. De plus, les chemins spatio-temporels

doivent se terminer dans la dernière image de la vidéo alors que la cible n'y est pas

nécessairement présente.

Nous avons alors développé une autre stratégie permettant de résoudre cet incon-

vénient. Cette deuxième méthode, publiée dans la conférence internationale "Inter-

national Conference in Pattern Recognition" en 2014 (Diot et al. (2014)), consiste à

mesurer la similarité de deux motifs spatio-temporels en comparant leur trajectoire.

En utilisant cette mesure de similarité dans un algorithme de clustering hiérarchique,

nous avons pu construire des ensemble de motifs spatio-temporels ayant des trajec-

toires similaires. Nous avons ensuite trié ces ensembles en fonction de leur longueur

(en nombre d'images couvertes) et de leur taille en nombre de motifs spatio-temporels.

Nous avons montré expérimentalement, sur des vidéos réelles, que parmi ces ensembles

de motifs spatio-temporels, les mieux classés correspondent souvent aux objets prin-

cipaux.

6.2 Perspectives

Les travaux exposés dans cette thèse présentent bien sûr un certain nombre de

limitations. Tout d'abord, notre hypothèse de base qui consiste à a�rmer que les

objets intéressant apparaissent plus souvent que l'arrière plan n'est valide que si le

mouvement de la caméra est su�samment grand, ce qui n'est pas nécessairement le cas

de toutes les vidéos que l'on trouve par exemple sur YouTube. Ensuite, le fait qu'il soit

di�cile d'établir le nombre d'objets présents et à quel niveau découper la hiérarchie

pour produire les clusters de motifs spatio-temporels limite également l'utilisation

générique de notre méthode. Une troisième limitation de notre approche réside dans

la stratégie d'extension employée par notre algorithme de fouille de graphes plans.

Celle-ci consiste à ajouter des faces complètes, ce qui impose que les objets soient

segmentés en su�samment de régions pour pouvoir être représentés par au minimum

une face. Cette contrainte rend notre approche très dépendante de l'algorithme de

137

segmentation utilisé. De plus, les variations d'illumination peuvent conduire à des

segmentations très di�érentes d'un même objet ce qui in�uence beaucoup la structure

des graphes représentant la vidéo. Les techniques de segmentation vidéo comme celle

de Grundmann et al. (2010) devraient permettre à l'avenir de limiter le bruit introduit

dans les graphes par la segmentation. En e�et, les récentes approches en matière de

segmentation vidéo prennent en compte la segmentation des frames antérieures pour

segmenter les frames suivantes. Ceci permet d'obtenir une segmentation plus stable,

malgré les variations d'illumination, d'orientation de la scène ou le �ou cinétique dû

au déplacement des objets et de la caméra. Grâce à une segmentation plus stable,

notre algorithme de fouille pourrait extraire des motifs plus gros en terme d'arêtes,

et donc plus discriminants. Avec une segmentation plus stable, il serait également

possible de diminuer le seuil de la contrainte temporelle. Les occurrences des motifs

spatio-temporels extraits seraient ainsi séparés par moins de frames ce qui rendrait

l'estimation de leur trajectoire plus robuste.

Une approche alternative consisterait à s'abstraire de la segmentation en construi-

sant di�éremment les graphes représentant les images d'une vidéo. Une possibilité

serait d'extraire des points d'intérêts dans les frames et de se servir de ceux-ci, au lieu

des régions qui sont moins robuste aux variations dans les images, pour construire

un graphe modélisant leur topologie. Cependant, la relation de topologie entre points

d'intérêts n'est pas aussi claire que celle entre les régions segmentées qui sont liées

par leur relation d'adjacence. Une possibilité serait de trianguler ces points d'intérêts

en les connectant de manière à obtenir des graphes plans composés de faces trian-

gulaires. Même si nos expérimentations ont montré que, pour un même ensemble de

n÷uds de départ basés sur la même segmentation en régions, la fouille des graphes

issus d'une triangulation de Delaunay est plus couteuse en temps de calcul que la

fouille des graphes d'adjacence des régions, les motifs extraits restent pertinents dans

le contexte du suivi d'objets.

Une intéressante piste de recherche future serait l'introduction de mesures de

similarité d'apparence entre occurrences. La distance que nous avons utilisé pour re-

grouper les motifs spatio-temporels ne prend en compte que la trajectoire des motifs.

Il serait envisageable d'introduire un terme de similarité d'apparence des occurrences,

à base d'histogrammes de couleurs par exemple. Nous pourrions aussi exploiter les

travaux sur les trackers tenant compte du contexte par l'intermédiaire de supporters

dont nous avons discuté dans la section 2.3.4 comme ceux de Yang et al. (2009) ou

Grabner et al. (2010). Les supporters pourraient par exemple être utilisés pour regrou-

per deux motifs spatio-temporels si les occurrences de l'un couvrent des supporters de

l'autre et inversement. L'utilisation d'une mesure de similarité de l'apparence pourrait

138

aussi permettre de regrouper des clusters représentant le même objet mais disjoints

à cause d'occlusions de longue durée. En�n, l'apparence des clusters pourrait être

utilisée a�n de mieux identi�er les bons clusters en favorisant ceux ayant une forte

cohérence visuelle sur toute leur durée.

Il pourrait également être intéressant d'utiliser les motifs spatio-temporels en com-

binaison des travaux de Lee et al. (2011) dont nous avons discutés en section 2.3.6. En

e�et, comme nous l'avons vu, leur méthode se base sur les segments d'image produits

par Endres and Hoiem (2010) qu'elle regroupe en clusters en fonction de leur a�nité.

Les segments d'image produits par Endres and Hoiem (2010) pourraient être utilisés

comme base pour extraire des motifs spatio-temporels. L'appartenance à un même

motif spatio-temporel pourrait surement être utilisée pour ra�ner la mesure d'a�nité

entre les segments. En e�et, si deux segments d'image ont tendance à apparaitre dans

les même motifs spatio-temporels, cela indique qu'ils sont liés par une relation de

topologie qui est consistante à travers la vidéo. Ceci constitue un fort indice de leur

appartenance au même élément ou objet de la scène et peut donc être exploité pour

mieux mesurer l'a�nité entre deux segments d'image et mieux regrouper ceux ci en

vue d'extraire l'objet principal d'une vidéo.

Une autre perspective serait d'utiliser les contraintes spatio-temporelles pour amé-

liorer des algorithmes de fouille inexacte comme celui de Holder et al. (1994) et Zhang

and Yang (2008) ou encore Jia et al. (2011) a�n de leur permettre de traiter de plus

gros jeux de données. Ces techniques de fouille inexacte ont l'avantage de pouvoir in-

tégrer le bruit introduit dans les données par la segmentation et de compenser, dans

une certaine mesure, les variations d'apparence dues au changement d'orientation des

objets. Leur défaut principal est toutefois qu'elles doivent considérer de nombreux

motifs lors de l'exploration de l'espace de recherche. Ceci les rend donc di�cile à

appliquer sur de gros jeux de données comme des vidéos, qui peuvent être composées

de milliers de frames. Introduire des contraintes spatio-temporelles pourrait limiter

le nombre de motifs évalués par les algorithmes de fouille et donc permettre un réel

passage à l'échelle.

En�n, les approches que nous avons développées lors de nos travaux nécessitent

pour l'instant d'analyser toutes les images des vidéos pendant le processus de fouille.

Ceci empêche nos méthodes d'être appliquées en temps réel. Les travaux de Yang

et al. (2009) montrent, entre autre, que la fouille de données peut être utilisée de ma-

nière pertinente dans un contexte de suivi d'objets en temps réel si elle est appliquée

sur une fenêtre d'images consécutives plutôt que sur l'ensemble de celles de la vidéo.

Leur technique utilise la fouille d'itemsets pour détecter des supporters apparaissant

fréquemment avec la cible. Leur approche pourrait donc certainement être amélio-

139

rée en utilisant les contraintes spatio-temporelles pour détecter des supporters plus

robuste. D'autre part, nous pourrions utiliser le même principe de fenêtre d'images

consécutives pour ne fouiller qu'un sous ensemble des images de la vidéo. Ainsi, nos

approches pourraient traiter les vidéos en temps réel avec un délai de quelques images

en fonction de la taille de la fenêtre d'images fouillées. L'application en temps réel

de la méthode de clustering de motifs spatio-temporels que nous avons présenté dans

Diot et al. (2014) est fortement limitée par le coût en temps de calcul de l'étape

de clustering. En e�et, celle-ci nécessite le calcul de nombreuses similarités entre les

di�érents motifs spatio-temporels. En appliquant la fouille sur une fenêtre d'images,

un plus petit nombre de motifs spatio-temporels serait détecté à chaque étape, ce

qui nécessiterait moins de calculs de similarités. L'étape de clustering pourrait aussi

être améliorée en regroupant, dans un premier temps, uniquement les motifs spatio-

temporels les plus longs, puis en a�ectant, dans un deuxième temps, chaque motifs

spatio-temporel restant au cluster dont il est le plus proche, comme le font les auteurs

de l'approche présentée dans Fragkiadaki and Shi (2011) dont nous avons discuté dans

la section 2.3.6. Ceci permettrait de diminuer drastiquement la combinatoire des cal-

culs de similarités et de clustering, les rendant compatibles avec une approche temps

réel.

140

BIBLIOGRAPHY

Agarwal, P. K., H. Edelsbrunner, O. Schwarzkopf, and E. Welzl (1991), Euclidean
minimum spanning trees and bichromatic closest pairs, Discrete & Computational
Geometry, 6 (1), 407�422.

Agrawal, R., T. Imieli«ski, and A. Swami (1993), Mining association rules between
sets of items in large databases, in ACM SIGMOD Record, vol. 22, pp. 207�216,
ACM.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993), Network Flows : Theory,
Algorithms, and Applications, 1 ed., Prentice Hall.

Ana, L., and A. K. Jain (2003), Robust data clustering, in Computer Vision and
Pattern Recognition (CVPR), vol. 2, pp. II�128, IEEE.

Anderberg, M. R. (1973), Cluster analysis for applications, Tech. rep., DTIC Docu-
ment.

Andriluka, M., S. Roth, and B. Schiele (2008), People-tracking-by-detection
and people-detection-by-tracking, in Computer Vision and Pattern Recognition
(CVPR), pp. 1�8, IEEE.

Avidan, S. (2007), Ensemble tracking, Pattern Analysis and Machine Intelligence
(PAMI), 29 (2), 261�271.

Babel, L., I. N. Ponomarenko, and G. Tinhofer (1996), The isomorphism problem for
directed path graphs and for rooted directed path graphs, Journal of Algorithms,
21 (3), 542�564.

Babenko, B., M.-H. Yang, and S. Belongie (2011), Robust object tracking with on-
line multiple instance learning, Pattern Analysis and Machine Intelligence (PAMI),
33 (8), 1619�1632.

Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski (2011),
A database and evaluation methodology for optical �ow, International Journal of
Computer Vision (IJCV), 92 (1), 1�31.

Bar-Shalom, Y. (1987), Tracking and data association, Academic Press Professional,
Inc.

141

Barnich, O., and M. Van Droogenbroeck (2011), Vibe : A universal background sub-
traction algorithm for video sequences, IEEE Transactions on Image Processing,
20 (6), 1709�1724.

Bay, H., T. Tuytelaars, and L. Van Gool (2006), Surf : Speeded up robust features,
in European Conference on Computer Vision (ECCV), pp. 404�417, Springer.

Benezeth, Y., P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger (2008), Review
and evaluation of commonly-implemented background subtraction algorithms, in
International Conference on Pattern Recognition (ICPR), pp. 1�4, IEEE.

Berclaz, J., F. Fleuret, E. Turetken, and P. Fua (2011), Multiple object tracking using
k-shortest paths optimization, Pattern Analysis and Machine Intelligence (PAMI),
33 (9), 1806�1819.

Bergholm, F. (1987), Edge focusing, Pattern Analysis and Machine Intelligence
(PAMI), (6), 726�741.

Birch�eld, S. T., and S. J. Pundlik (2008), Joint tracking of features and edges, in
Computer Vision and Pattern Recognition (CVPR), pp. 1�6, IEEE.

Bonnici, V., R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro (2013), A subgraph
isomorphism algorithm and its application to biochemical data, BMC Bioinforma-
tics, 14 (Suppl 7), S13.

Borgelt, C., and M. R. Berthold (2002), Mining molecular fragments : Finding relevant
substructures of molecules, in International Conference on Data Mining (ICDM
2003), pp. 51�58, IEEE.

Bouguet, J.-Y. (2001), Pyramidal implementation of the a�ne lucas kanade feature
tracker description of the algorithm, Intel Corporation, 2, 3.

Boyd, S. P., and L. Vandenberghe (2004), Convex optimization, Cambridge university
press.

Boykov, Y., and G. Funka-Lea (2006), Graph cuts and e�cient nd image segmenta-
tion, International Journal of Computer Vision (IJCV), 70 (2), 109�131.

Brendel, W., M. Amer, and S. Todorovic (2011), Multiobject tracking as maximum
weight independent set, in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pp. 1273�1280, IEEE.

Bringmann, B., and S. Nijssen (2008), What is frequent in a single graph ?, in Ad-
vances in Knowledge Discovery and Data Mining (PAKDD), pp. 858�863, Springer.

Brox, T., A. Bruhn, and J. Weickert (2006), Variational motion segmentation with le-
vel sets, in European Conference on Computer Vision (ECCV), pp. 471�483, Sprin-
ger.

142

Brutzer, S., B. Hoferlin, and G. Heidemann (2011), Evaluation of background subtrac-
tion techniques for video surveillance, in Computer Vision and Pattern Recognition
(CVPR), pp. 1937�1944, IEEE.

Bunke, H., and G. Allermann (1983), Inexact graph matching for structural pattern
recognition, Pattern Recognition Letters, 1 (4), 245�253.

Bunke, H., P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento (2002), A comparison
of algorithms for maximum common subgraph on randomly connected graphs, in
Structural, Syntactic, and Statistical Pattern Recognition, pp. 123�132, Springer.

Burkard, R. E., M. Dell'Amico, S. Martello, et al. (2009), Assignment Problems,
Revised Reprint, Society for Industrial and Applied Mathematics (SIAM).

Buss, S. R. (1997), Alogtime algorithms for tree isomorphism, comparison, and cano-
nization, in Computational Logic and Proof Theory, pp. 18�33, Springer.

Butt, A. A., and R. T. Collins (2013), Multi-target tracking by lagrangian relaxation
to min-cost network �ow, in Computer Vision and Pattern Recognition (CVPR),
pp. 1846�1853, IEEE.

Cai, Z., L. Wen, J. Yang, Z. Lei, and S. Z. Li (2013), Structured visual tracking with
dynamic graph, in Asian Conference on Computer Vision (ACCV), pp. 86�97,
Springer.

Calders, T., and B. Goethals (2007), Non-derivable itemset mining, Data Mining and
Knowledge Discovery, 14 (1), 171�206.

Cannons, K. (2008), A review of visual tracking, technical Report CSE-2008-07, York
University.

Canny, J. (1986), A computational approach to edge detection, Pattern Analysis and
Machine Intelligence (PAMI), (6), 679�698.

Carletti, V., P. Foggia, and M. Vento (2013), Performance comparison of �ve exact
graph matching algorithms on biological databases, in New Trends in Image Ana-
lysis and Processing (ICIAP), pp. 409�417, Springer.

Caviar (2004), Context aware vision using image-based active recognition, http://
homepages.inf.ed.ac.uk/rbf/CAVIAR/.

Chang, I., S.-Y. Lin, et al. (2010), 3d human motion tracking based on a progressive
particle �lter, Pattern Recognition, 43 (10), 3621�3635.

Chang, R.-F., C.-J. Chen, and C.-H. Liao (2004), Region-based image retrieval using
edge�ow segmentation and region adjacency graph, in International Conference on
Multimedia and Expo (ICME), vol. 3, pp. 1883�1886, IEEE.

143

Chen, C., X. Yan, F. Zhu, and J. Han (2007), gapprox : Mining frequent approxi-
mate patterns from a massive network, in International Conference on Data Mining
(ICDM), pp. 445�450, IEEE.

Chi, Y., Y. Yang, and R. R. Muntz (2003), Indexing and mining free trees, in Inter-
national Conference on Data Mining (ICDM), pp. 509�512, IEEE.

Chockalingam, P., N. Pradeep, and S. Birch�eld (2009), Adaptive fragments-based
tracking of non-rigid objects using level sets, in International Conference on Com-
puter Vision (ICCV), pp. 1530�1537, IEEE.

Collins, R. T. (2012), Multitarget data association with higher-order motion models,
in Computer Vision and Pattern Recognition (CVPR), pp. 1744�1751, IEEE.

Comaniciu, D., and P. Meer (1999), Mean shift analysis and applications, in Interna-
tional Conference on Computer Vision (ICCV), vol. 2, pp. 1197�1203 vol.2.

Comaniciu, D., V. Ramesh, and P. Meer (2003), Kernel-based object tracking, Pattern
Analysis and Machine Intelligence (PAMI), 25 (5), 564�577.

Conte, D., P. Foggia, C. Sansone, and M. Vento (2004), Thirty years of graph matching
in pattern recognition, International Journal of Pattern Recognition and Arti�cial
Intelligence, 18 (03), 265�298.

Cordella, L. P., P. Foggia, C. Sansone, and M. Vento (2004), A (sub) graph isomor-
phism algorithm for matching large graphs, Pattern Analysis and Machine Intelli-
gence (PAMI), 26 (10), 1367�1372.

Damiand, G. (2001), Dé�nition et étude d'un modèle topologique minimal de repré-
sentation d'images 2d et 3d., Thèse de doctorat, Université Montpellier II.

Damiand, G., C. De La Higuera, J.-C. Janodet, É. Samuel, and C. Solnon (2009), A
polynomial algorithm for submap isomorphism, in Graph-based Representation in
Pattern Recognition (GBR), pp. 102�112, Springer.

De La Higuera, C., J.-C. Janodet, É. Samuel, G. Damiand, and C. Solnon (2013), Po-
lynomial algorithms for open plane graph and subgraph isomorphisms, Theoretical
Computer Science, 498, 76�99.

Dinh, T. B., N. Vo, and G. Medioni (2011), Context tracker : Exploring supporters
and distracters in unconstrained environments, in Computer Vision and Pattern
Recognition (CVPR), pp. 1177�1184, IEEE.

Diot, F., E. Fromont, B. Jeudy, E. Marilly, and O. Martinot (2012), Graph mining
for object tracking in videos, in European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), pp.
394�409, Springer.

144

Diot, F., E. Fromont, B. Jeudy, E. Marilly, and O. Martinot (2014), Unsupervised
tracking from clustered graph patterns, in International Conference on Pattern
Recognition (ICPR), p. to appear.

Dollar, P., C. Wojek, B. Schiele, and P. Perona (2012), Pedestrian detection : An eva-
luation of the state of the art, Pattern Analysis and Machine Intelligence (PAMI),
34 (4), 743�761.

Duan, G., H. Ai, S. Cao, and S. Lao (2012), Group tracking : exploring mutual
relations for multiple object tracking, in European Conference on Computer Vision
(ECCV), pp. 129�143, Springer.

Endres, I., and D. Hoiem (2010), Category independent object proposals, in European
Conference on Computer Vision (ECCV), pp. 575�588, Springer.

Erdem, E., S. Dubuisson, and I. Bloch (2012), Fragments based tracking with adaptive
cue integration, Computer Vision and Image Understanding, 116 (7), 827�841.

Ess, A., B. Leibe, and L. Van Gool (2007), Depth and appearance for mobile scene
analysis, in International Conference on Computer Vision, (ICCV), pp. 1�8, IEEE.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man (2008), The PASCAL Visual Object Classes Challenge(VOC2008) Results,
http ://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html.

Felzenszwalb, P. F., and D. P. Huttenlocher (2004), E�cient graph-based image seg-
mentation, International Journal of Computer Vision (IJCV), 59 (2), 167�181.

Ferryman, J., A. Shahrokni, et al. (2009), An overview of the pets 2009 challenge,
IEEE.

Fischler, M. A., and R. A. Elschlager (1973), The representation and matching of
pictorial structures, IEEE Transactions on Computers, 22 (1), 67�92.

Fragkiadaki, K., and J. Shi (2011), Detection free tracking : Exploiting motion and
topology for segmenting and tracking under entanglement, in Computer Vision and
Pattern Recognition (CVPR), pp. 2073�2080, IEEE.

Frawley, W. J., G. Piatetsky-Shapiro, and C. J. Matheus (1992), Knowledge discovery
in databases : An overview, AI magazine, 13 (3), 57.

Freeman, H. (1961), On the encoding of arbitrary geometric con�gurations, Electronic
Computers, IRE Transactions on, (2), 260�268.

Fukunaga, K., and L. Hostetler (1975), The estimation of the gradient of a density
function, with applications in pattern recognition, IEEE Transactions on Informa-
tion Theory, 21 (1), 32�40.

145

Gabriel, K. R., and R. R. Sokal (1969), A new statistical approach to geographic
variation analysis, Systematic Biology, 18 (3), 259�278.

Geng, L., and H. J. Hamilton (2006), Interestingness measures for data mining : A
survey, ACM Computing Surveys (CSUR), 38 (3), 9.

Glantz, R., M. Pelillo, and W. G. Kropatsch (2004), Matching segmentation hie-
rarchies, International Journal of Pattern Recognition and Arti�cial Intelligence,
18 (03), 397�424.

Goldberg, A. V. (1997), An e�cient implementation of a scaling minimum-cost �ow
algorithm, Journal of algorithms, 22 (1), 1�29.

Gosselin, S., G. Damiand, , and C. Solnon (2011), Frequent submap discovery, in
Annual Symposium on Combinatorial Pattern Matching (CPM).

Grabner, H., J. Matas, L. Van Gool, and P. Cattin (2010), Tracking the invisible :
Learning where the object might be, in Computer Vision and Pattern Recognition
(CVPR), pp. 1285�1292, IEEE.

Grundmann, M., V. Kwatra, M. Han, and I. Essa (2010), E�cient hierarchical graph-
based video segmentation, in Computer Vision and Pattern Recognition (CVPR),
pp. 2141�2148, IEEE.

Gu, S., and C. Tomasi (2011), Branch and track, in Computer Vision and Pattern
Recognition (CVPR), pp. 1169�1174, IEEE.

Gu, S., Y. Zheng, and C. Tomasi (2011), E�cient visual object tracking with online
nearest neighbor classi�er, in Asian Conference on Computer Vision (ACCV), pp.
271�282, Springer.

Gudes, E., S. E. Shimony, and N. Vanetik (2006), Discovering frequent graph pat-
terns using disjoint paths, IEEE Transactions on Knowledge and Data Engineering,
18 (11), 1441�1456.

Han, J., and M. Kamber (2006), Data Mining : Concepts and Techniques, 2nd ed,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Harris, C., and M. Stephens (1988), A combined corner and edge detector., in Alvey
vision conference, vol. 15, p. 50, Manchester, UK.

He, S., Q. Yang, R. W. Lau, J. Wang, and M.-H. Yang (2013), Visual tracking via
locality sensitive histograms, in Computer Vision and Pattern Recognition (CVPR),
pp. 2427�2434.

Holder, L. B., D. J. Cook, S. Djoko, et al. (1994), Substucture discovery in the subdue
system., in Workshop on Knowledge Discovery in Databases (KDD), pp. 169�180.

146

Horn, B. K., and B. G. Schunck (1981), Determining optical �ow, in 1981 Technical
Symposium East, pp. 319�331, International Society for Optics and Photonics.

Horváth, T., J. Ramon, and S. Wrobel (2010), Frequent subgraph mining in outer-
planar graphs, Data Mining and Knowledge Discovery, 21 (3), 472�508.

Hu, J.-S., and T.-M. Su (2007), Robust background subtraction with shadow and
highlight removal for indoor surveillance, EURASIP Journal on Applied Signal
Processing, 2007 (1), 108�108.

Huan, J., W. Wang, and J. Prins (2003a), E�cient mining of frequent subgraphs in
the presence of isomorphism, in International Conference on Data Mining (ICDM),
pp. 549�552, IEEE.

Huan, J., W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha (2003b),
Accurate classi�cation of protein structural families using coherent subgraph ana-
lysis, in Proceedings of the Ninth Paci�c Symposium on Biocomputing (PSB), pp.
411�422.

Huan, J., W. Wang, J. Prins, and J. Yang (2004a), Spin : mining maximal frequent
subgraphs from graph databases, in International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD), pp. 581�586, ACM.

Huan, J., W. Wang, J. Prins, and J. Yang (2004b), Spin : mining maximal frequent
subgraphs from graph databases, Tech. Rep. UNC Technical Report TR04-018.

Inokuchi, A., T. Washio, and H. Motoda (2000), An apriori-based algorithm for
mining frequent substructures from graph data, in European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD), pp. 13�23.

Isard, M., and A. Blake (1996), Contour tracking by stochastic propagation of condi-
tional density, in European Conference on Computer Vision (ECCV), pp. 343�356,
Springer.

Iverson, L. A., and S. W. Zucker (1995), Logical/linear operators for image curves,
Pattern Analysis and Machine Intelligence (PAMI), 17 (10), 982�996.

Jia, Y., J. Zhang, and J. Huan (2011), An e�cient graph-mining method for com-
plicated and noisy data with real-world applications, Knowledge and Information
Systems, 28 (2), 423�447.

Jiang, C., F. Coenen, and M. Zito (2013), A survey of frequent subgraph mining
algorithms, Knowledge Engineering Review, 28 (1), 75�105.

Jin, R., L. Liu, and C. C. Aggarwal (2011), Discovering highly reliable subgraphs in
uncertain graphs, in International Conference on Knowledge Discovery and Data
Mining (SIGKDD), pp. 992�1000, ACM.

147

Jung, Y., H. Park, D.-Z. Du, and B. L. Drake (2003), A decision criterion for the op-
timal number of clusters in hierarchical clustering, Journal of Global Optimization,
25 (1), 91�111.

Kalal, Z., J. Matas, and K. Mikolajczyk (2009), Online learning of robust object de-
tectors during unstable tracking, in International Conference on Computer Vision
Workshops (ICCV), pp. 1417�1424, IEEE.

Kalal, Z., J. Matas, and K. Mikolajczyk (2010), Pn learning : Bootstrapping binary
classi�ers by structural constraints, in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pp. 49�56, IEEE.

Kalal, Z., K. Mikolajczyk, and J. Matas (2012), Tracking-learning-detection, Pattern
Analysis and Machine Intelligence (PAMI), 34 (7), 1409�1422.

Kalman, Rudolph, and Emil (1960), A New Approach to Linear Filtering and Predic-
tion Problems, Transactions of the ASME�Journal of Basic Engineering, 82 (Series
D), 35�45.

Kenji, A., S. Kawasoe, H. SAKAMOTO, H. Arimura, and S. Arikawa (2004), E�cient
substructure discovery from large semi-structured data, Transactions on Informa-
tion and Systems (IEICE), 87 (12), 2754�2763.

Kotropoulos, C., A. Tefas, and I. Pitas (2000), Frontal face authentication using
morphological elastic graph matching, Image Processing, IEEE Transactions on,
9 (4), 555�560.

Kramer, S., L. De Raedt, and C. Helma (2001), Molecular feature mining in hiv data,
in International Conference on Knowledge Discovery and Data Mining (SIGKDD),
pp. 136�143, ACM.

Kropatsch, W. G. (1995), Building irregular pyramids by dual-graph contraction, IEE
Proceedings-Vision, Image and Signal Processing, 142 (6), 366�374.

Kuramochi, M., and G. Karypis (2001), Frequent subgraph discovery, in International
Conference on Data Mining (ICDM), pp. 313�320, IEEE.

Kuramochi, M., and G. Karypis (2004), Grew-a scalable frequent subgraph disco-
very algorithm, in International Conference on Data Mining (ICDM), pp. 439�442,
IEEE.

Kuramochi, M., and G. Karypis (2006), Finding topological frequent patterns from
graph datasets, in Mining graph data, chap. 6, John Wiley & Sons.

Lee, D.-T., and B. J. Schachter (1980), Two algorithms for constructing a delaunay
triangulation, International Journal of Computer & Information Sciences, 9 (3),
219�242.

148

Lee, Y. J., J. Kim, and K. Grauman (2011), Key-segments for video object segmen-
tation, in International Conference on Computer Vision (ICCV), pp. 1995�2002,
IEEE.

Li, F., T. Kim, A. Humayun, D. Tsai, and J. M. Rehg (2013), Video segmentation by
tracking many �gure-ground segments, in International Conference on Computer
vision (ICCV).

Lienhardt, P. (1991), Topological models for boundary representation : a comparison
with n-dimensional generalized maps, Computer-aided design, 23 (1), 59�82.

Lowe, D. G. (2004), Distinctive image features from scale-invariant keypoints, Inter-
national Journal of Computer Vision (IJCV), 60 (2), 91�110.

Lucas, B. D., T. Kanade, et al. (1981), An iterative image registration technique with
an application to stereo vision., in International Joint Conference on Arti�cial
Intelligence (IJCAI), vol. 81, pp. 674�679.

Ma, T., and L. J. Latecki (2012), Maximum weight cliques with mutex constraints for
video object segmentation, in Computer Vision and Pattern Recognition (CVPR),
pp. 670�677, IEEE.

Malcolm, J., Y. Rathi, and A. Tannenbaum (2007), Multi-object tracking through
clutter using graph cuts, in International Conference on Computer Vision (ICCV),
pp. 1�5, IEEE.

Martin, D., C. Fowlkes, D. Tal, and J. Malik (2001), A database of human segmen-
ted natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics, in International Conference on Computer Vision
(ICCV), vol. 2, pp. 416�423, IEEE.

Menger, K. (1927), Zur allgemeinen kurventheorie, Fundamenta Mathematicae, 10 (1),
96�115.

Michael, R. G., and D. S. Johnson (1979), Computers and intractability : A guide to
the theory of np-completeness, WH Freeman & Co., San Francisco.

Mikolajczyk, K., and C. Schmid (2005), A performance evaluation of local descriptors,
Pattern Analysis and Machine Intelligence (PAMI), 27 (10).

Moravec, H. P. (1979), Visual mapping by a robot rover, in International Joint Confe-
rence on Arti�cial Intelligence (IJCAI), pp. 598�600, Morgan Kaufmann Publishers
Inc.

Nalwa, V. S., and T. O. Binford (1986), On detecting edges, Pattern Analysis and
Machine Intelligence (PAMI), (6), 699�714.

Nejhum, S., J. Ho, and M.-H. Yang (2010), Online visual tracking with histograms and
articulating blocks, Computer Vision and Image Understanding, 114 (8), 901�914.

149

Neuhaus, M., and H. Bunke (2007), Bridging the gap between graph edit distance and
kernel machines, World Scienti�c Publishing Co., Inc.

Newman, M. E. (2004), Detecting community structure in networks, The European
Physical Journal B-Condensed Matter and Complex Systems, 38 (2), 321�330.

Nijssen, S., and J. N. Kok (2004), A quickstart in frequent structure mining can make
a di�erence, in International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 647�652.

Nowak, E., F. Jurie, and B. Triggs (2006), Sampling strategies for bag-of-features
image classi�cation, in European Conference on Computer Vision (ECCV), pp.
490�503, Springer.

Osher, S., and J. A. Sethian (1988), Fronts propagating with curvature-dependent
speed : Algorithms based on hamilton-jacobi formulations, Journal of Computatio-
nal Physics, 79 (1), 12�49.

Oskoei, M. A., and H. Hu (2010), A survey on edge detection methods, Tech. rep.,
Technical Report CES.

Papadakis, N., A. Bugeau, et al. (2011), Tracking with occlusions via graph cuts,
Pattern Analysis and Machine Intelligence (PAMI), 33 (1), 144�157.

Perona, P., andW. Freeman (1998), A factorization approach to grouping, in European
Conference on Computer Vision (ECCV), pp. 655�670.

Piatetsky-Shapiro, G., and C. J. Matheus (1994), The interestingness of deviations,
in Association for the Advancement of Arti�cial Intelligence (AAAI), vol. 94, pp.
25�36.

Piccardi, M. (2004), Background subtraction techniques : a review, in Systems, Man
and Cybernetics, vol. 4, pp. 3099�3104 vol.4.

Pirsiavash, H., D. Ramanan, and C. C. Fowlkes (2011), Globally-optimal greedy al-
gorithms for tracking a variable number of objects, in Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1201�1208.

Prado, A., B. Jeudy, E. Fromont, and F. Diot (2011), Plagram : un algorithme de
fouille de graphes plans e�cace, Conférence Francophone sur l'Apprentissage Au-
tomatique (CAp), p. 343.

Prado, A., B. Jeudy, E. Fromont, and F. Diot (2013), Mining spatiotemporal patterns
in dynamic plane graphs, Intelligent Data Analysis (IDA), 17 (1), 71�92.

Ramírez, E., D. Martinez, and R. Carmona (2012), Segmentación de imágenes a color
basada en el algoritmo de grabcut, TekhnÃ©, Revista de la Facultad de IngenierÃa,
(15), 21�37.

150

Rückert, U., and K. Stefan (2004), Frequent free tree discovery in graph data., in
Advances in Databases : Concepts, Systems and Applications, pp. 564�570.

Samet, H. (1984), The quadtree and related hierarchical data structures, ACM Com-
puting Surveys (CSUR), 16 (2), 187�260.

Samuel, E. (2011), Recherche de motifs dans des images : apport des graphes plans,
Ph.D. thesis, Université Jean Monnet de Saint Etienne.

Sebesta, K., and J. Baillieul (2012), Animal-inspired agile �ight using optical �ow
sensing, in Annual COnference on Decision and Control (CDC), pp. 3727�3734,
IEEE.

Shi, J., and J. Malik (2000), Normalized cuts and image segmentation, Pattern Ana-
lysis and Machine Intelligence (PAMI), 22 (8), 888�905.

Silberschatz, A., and A. Tuzhilin (1996), What makes patterns interesting in know-
ledge discovery systems, IEEE Transactions on Knowledge and Data Engineering,
8 (6), 970�974.

Solnon, C. (2010), Alldi�erent-based �ltering for subgraph isomorphism, Arti�cial
Intelligence, 174 (12), 850�864.

Sperduti, A., and A. Starita (1997), Supervised neural networks for the classi�cation
of structures, IEEE Transactions on Neural Networks, 8 (3), 714�735.

Stalder, S., H. Grabner, and L. Van Gool (2009), Beyond semi-supervised tracking :
Tracking should be as simple as detection, but not simpler than recognition, in
International Conference on Computer Vision Workshops (ICCV), pp. 1409�1416,
IEEE.

Stau�er, C., and W. Grimson (2000), Learning patterns of activity using real-time
tracking, Pattern Analysis and Machine Intelligence (PAMI), 22 (8), 747�757.

Sun, D., S. Roth, and M. Black (2010), Secrets of optical �ow estimation and their
principles, in Computer Vision and Pattern Recognition (CVPR), pp. 2432�2439.

Sundaram, N., T. Brox, and K. Keutzer (2010), Dense point trajectories by gpu-
accelerated large displacement optical �ow, in European Conference on Computer
Vision (ECCV), pp. 438�451, Springer.

Supancic III, J. S., and D. Ramanan (2013), Self-paced learning for long-term tra-
cking, Computer Vision and Pattern Recognition (CVPR), pp. 2379�2386.

Swain, M. J., and D. H. Ballard (1991), Color indexing, International Journal of
Computer Vision (IJCV), 7 (1), 11�32.

Toussaint, G. T. (1980), The relative neighbourhood graph of a �nite planar set,
Pattern recognition, 12 (4), 261�268.

151

Trémeau, A., and P. Colantoni (2000), Regions adjacency graph applied to color image
segmentation, IEEE Transactions on Image Processing, 9 (4), 735�744.

Tsai, D., M. Flagg, and J. Rehg (2010), Motion coherent tracking with multi-label
mrf optimization, algorithms.

Tsai, D., M. Flagg, A. Nakazawa, and J. M. Rehg (2012), Motion coherent tra-
cking with multi-label mrf optimization, International Journal of Computer Vision,
100 (2), 190�202.

Ullmann, J. R. (1976), An algorithm for subgraph isomorphism, Journal of the ACM
(JACM), 23 (1), 31�42.

Umeyama, S. (1988), An eigendecomposition approach to weighted graph matching
problems, Pattern Analysis and Machine Intelligence (PAMI), 10 (5), 695�703.

Vanetik, N., E. Gudes, and S. E. Shimony (2002), Computing frequent graph patterns
from semistructured data, in International Conference on Data Mining (ICDM),
pp. 458�465, IEEE.

Wang, J., Z. Zeng, and L. Zhou (2006), Clan : An algorithm for mining closed cliques
from large dense graph databases, in International Conference on Data Engineering
(ICDE), pp. 73�73, IEEE.

White, B., and M. Shah (2007), Automatically tuning background subtraction para-
meters using particle swarm optimization, in International Conference on Multi-
media and Expo (ICME), pp. 1826�1829, IEEE.

Wörlein, M., T. Meinl, I. Fischer, and M. Philippsen (2005), A quantitative compari-
son of the subgraph miners MoFa, gSpan, FFSM, and Gaston, Springer.

Wren, C. R., A. Azarbayejani, T. Darrell, and A. P. Pentland (1997), P�nder :
Real-time tracking of the human body, Pattern Analysis and Machine Intelligence
(PAMI), 19 (7), 780�785.

Wu, Z., and R. Leahy (1993), An optimal graph theoretic approach to data clustering :
theory and its application to image segmentation, Pattern Analysis and Machine
Intelligence (PAMI), 15 (11), 1101�1113.

Yan, X., and J. Han (2002), gspan : Graph-based substructure pattern mining, in
International Conference on Data Mining (ICDM), pp. 721�724, IEEE.

Yan, X., and J. Han (2003), Closegraph : mining closed frequent graph patterns, in
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
pp. 286�295, ACM.

Yan, X., and J. Han (2006), Discovery of frequent substructures, in Mining graph
data, chap. 5, John Wiley & Sons.

152

Yan, X., P. S. Yu, and J. Han (2004), Graph indexing : a frequent structure-based
approach, in International Conference on Management of Data (SIGMOD), pp.
335�346, ACM.

Yang, M., Y. Wu, and G. Hua (2009), Context-aware visual tracking, Pattern Analysis
and Machine Intelligence (PAMI), 31 (7), 1195�1209.

Yilmaz, A., O. Javed, and M. Shah (2006), Object tracking : A survey, Acm computing
surveys (CSUR), 38 (4), 13.

Yu, Q., and G. Medioni (2009), Multiple-target tracking by spatiotemporal monte
carlo markov chain data association, Pattern Analysis and Machine Intelligence
(PAMI), 31 (12), 2196�2210.

Yu, S. X., and J. Shi (2001), Understanding popout through repulsion, in Computer
Vision and Pattern Recognition (CVPR 2001), vol. 2, pp. II�752, IEEE.

Zaki, M. J. (2002), E�ciently mining frequent trees in a forest, in International Confe-
rence on Knowledge Discovery and Data Mining (SIGKDD), pp. 71�80, ACM.

Zeng, Z., J. Wang, L. Zhou, and G. Karypis (2006), Coherent closed quasi-clique dis-
covery from large dense graph databases, in International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 797�802, ACM.

Zhang, D., O. Javed, and M. Shah (2013), Video object segmentation through spa-
tially accurate and temporally dense extraction of primary object regions, Computer
Vision and Pattern Recognition (CVPR), pp. 628�635.

Zhang, K., L. Zhang, and M.-H. Yang (2012), Real-time compressive tracking, in
European Conference on Computer Vision (ECCV), pp. 864�877, Springer.

Zhang, L., Y. Li, and R. Nevatia (2008), Global data association for multi-object
tracking using network �ows, Computer Vision and Pattern Recognition (CVPR),
pp. 1�8.

Zhang, S., and J. Yang (2008), Ram : Randomized approximate graph mining, in
Scienti�c and Statistical Database Management, pp. 187�203, Springer.

Zhang, S., J. Yang, and V. Cheedella (2007), Monkey : Approximate graph mining
based on spanning trees, in International Conference on Data Engineering (ICDE),
pp. 1247�1249, IEEE.

Zou, Z., J. Li, H. Gao, and S. Zhang (2009), Frequent subgraph pattern mining on
uncertain graph data, in Conference on Information and Knowledge Management
(CIKM), pp. 583�592, ACM.

153

Titre Fouille de graphes pour le suivi d'objets dans les vidéos

Résumé Détecter et suivre les objets principaux d'une vidéo est une étape nécessaire en vue d'en décrire
le contenu pour, par exemple, permettre une indexation judicieuse des données multimédia par les moteurs de
recherche. Les techniques de suivi d'objets actuelles sou�rent de défauts majeurs. En e�et, soit elles nécessitent
que l'utilisateur désigne la cible à suivre, soit il est nécessaire d'utiliser un classi�eur pré-entraîné à reconnaitre
une classe spéci�que d'objets, comme des humains ou des voitures. Puisque ces méthodes requièrent l'intervention
de l'utilisateur ou une connaissance a priori du contenu traité, elles ne sont pas su�samment génériques pour
être appliquées aux vidéos amateurs telles qu'on peut en trouver sur YouTube. Pour résoudre ce problème,
nous partons de l'hypothèse que, dans le cas de vidéos dont l'arrière plan n'est pas �xe, celui-ci apparait moins
souvent que les objets intéressants. De plus, dans une vidéo, la topologie des di�érents éléments visuels composant
un objet est supposée consistante d'une image à l'autre. Nous représentons chaque image par un graphe plan
modélisant sa topologie. Ensuite, nous recherchons des motifs apparaissant fréquemment dans la base de données
de graphes plans ainsi créée pour représenter chaque vidéo. Cette approche nous permet de détecter et suivre
les objets principaux d'une vidéo de manière non supervisée en nous basant uniquement sur la fréquence des
motifs. Nos contributions sont donc réparties entre les domaines de la fouille de graphes et du suivi d'objets.
Dans le premier domaine, notre première contribution est de présenter un algorithme de fouille de graphes plans
e�cace, appelé Plagram. Cet algorithme exploite la planarité des graphes et une nouvelle stratégie d'extension
des motifs. Nous introduisons ensuite des contraintes spatio-temporelles au processus de fouille a�n d'exploiter
le fait que, dans une vidéo, les objets se déplacent peu d'une image à l'autre. Ainsi, nous contraignons les
occurrences d'un même motif à être proches dans l'espace et dans le temps en limitant le nombre d'images
et la distance spatiale les séparant. Nous présentons deux nouveaux algorithmes, DyPlagram qui utilise la
contrainte temporelle pour limiter le nombre de motifs extraits, et DyPlagram_st qui extrait e�cacement
des motifs spatio-temporels fréquents depuis les bases de données représentant les vidéos. Dans le domaine du
suivi d'objets, nos contributions consistent en deux approches utilisant les motifs spatio-temporels pour suivre
les objets principaux dans les vidéos. La première est basée sur une recherche du chemin de poids minimum
dans un graphe connectant les motifs spatio-temporels tandis que l'autre est basée sur une méthode de clustering
permettant de regrouper les motifs pour suivre les objets plus longtemps. Nous présentons aussi deux applications
industrielles de notre méthode.

Title Graph mining for object tracking in videos

Abstract Detecting and following the main objects of a video is necessary to describe its content in order to,
for example, allow for a relevant indexation of the multimedia content by the search engines. Current object
tracking approaches either require the user to select the targets to follow, or rely on pre-trained classi�ers to
detect particular classes of objects such as pedestrians or car for example. Since those methods rely on user
intervention or prior knowledge of the content to process, they cannot be applied automatically on amateur
videos such as the ones found on YouTube. To solve this problem, we build upon the hypothesis that, in videos
with a moving background, the main objects should appear more frequently than the background. Moreover,
in a video, the topology of the visual elements composing an object is supposed consistent from one frame to
another. We represent each image of the videos with plane graphs modeling their topology. Then, we search for
substructures appearing frequently in the database of plane graphs thus created to represent each video. Our
contributions cover both �elds of graph mining and object tracking. In the �rst �eld, our �rst contribution is
to present an e�cient plane graph mining algorithm, named Plagram. This algorithm exploits the planarity
of the graphs and a new strategy to extend the patterns. The next contributions consist in the introduction of
spatio-temporal constraints into the mining process to exploit the fact that, in a video, the motion of objects
is small from on frame to another. Thus, we constrain the occurrences of a same pattern to be close in space
and time by limiting the number of frames and the spatial distance separating them. We present two new
algorithms, DyPlagram which makes use of the temporal constraint to limit the number of extracted patterns,
and DyPlagram_st which e�ciently mines frequent spatio-temporal patterns from the datasets representing
the videos. In the �eld of object tracking, our contributions consist in two approaches using the spatio-temporal
patterns to track the main objects in videos. The �rst one is based on a search of the shortest path in a graph
connecting the spatio-temporal patterns, while the second one uses a clustering approach to regroup them in
order to follow the objects for a longer period of time. We also present two industrial applications of our method.

	REMERCIEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	I Background
	A Review of Object Detection and Tracking in Videos
	Feature Extraction
	Interest Point Detection
	Image Segmentation
	Edge Detection

	Tools for Visual Tracking
	Sliding Window
	Background Subtraction
	Optical Flow
	Lucas-Kanade Tracker
	Mean-Shift Tracker
	Kalman Filter
	Particle Filter

	State-of-the-Art Trackers
	Part-Based Tracking
	Segmentation Based Approaches
	Tracking by Detection
	Trackers Exploiting Context
	Data Association for Multi-Target Tracking
	Arbitrary Object Detection and Tracking

	Datasets
	Conclusion

	Graph Mining
	Introduction
	Generalities on Frequent Pattern Mining
	Definitions and Notations
	Graphs
	Isomorphism and Subgraph Isomorphism
	Support and Frequency of a Subgraph Pattern

	The Different Components of Graph Mining Algorithms
	Graph Matching
	Canonical Representations
	Candidate Generation

	Review of Graph Mining Algorithms
	Exact Mining
	Inexact Mining

	Graph Representations of Videos
	Graph Representations of Images Based on Interest Points
	Graph Representations of Images Based on Segmented Regions
	Video Representation

	Conclusion

	II Contributions
	Mining Spatio-Temporal Patterns in Dynamic Graphs
	Introduction
	Definitions
	Dynamic Plane Graph and Frequency of Plane Subgraph Patterns
	Occurrence Graph and Spatio-Temporal Patterns
	Definition of Occurrence graph Used by Plagram and DyPlagram
	Definition of Occurrence graph Used by DyPlagram_st

	Problem Definition

	Mining Spatio-Temporal Patterns
	Extensions
	Graph Codes
	Code Search Space and Canonical Codes
	Algorithms
	Pseudo-codes of Plagram and DyPlagram
	Post-Processing Generation of Spatio-Temporal Patterns
	Pseudo-code of DyPlagram_st

	Experiments
	Video Datasets
	A comparison of Plagram and gSpan
	Impact of the Spatio-Temporal Constraints on the Efficiency
	Temporal Constraint Only: Plagram vs DyPlagram
	Spatial and Temporal Constraints: DyPlagram vs DyPlagram_st

	Conclusions

	Tracking Objects in Videos Using Spatio-Temporal Patterns
	Introduction
	Tracking with Patterns
	Spatio Temporal Path
	Clusters of Spatio-Temporal Patterns
	Dissimilarity between spatio-temporal patterns
	Clustering algorithm
	Selection of the best clusters in the clustering

	Datasets
	Meaningfulness of the (Spatio-Temporal) Patterns
	Output of Plagram (plane graph patterns)
	Output of DyPlagram and DyPlagram_st
	Spatio-Temporal Paths for Object Tracking
	Evaluation of the Spatio-Temporal Path for Object Tracking
	Experiments on the Synthetic Video Anim2
	Real Video with the drone

	Clusters of Spatio-Temporal Patterns for Tracking
	Experimental design
	Parameters of DyPlagram_st

	Results
	Tracking quality
	Efficiency

	Conclusions
	Possible Applications

	Conclusion et Perspectives
	Conclusion
	Perspectives

	BIBLIOGRAPHY

