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Résumé

L'implémentation distribuée des systèmes temps-réel a été toujours une tâche non-triviale. La coordination des composants s'exécutant sur une plateforme distribuée doit être assurée par des protocoles de communication complexes en tenant compte de leurs contraintes de temps. Dans cette thèse, nous proposons un flot de conception rigoureux à partir d'un modèle de haut niveau d'un logiciel d'application décrit en BIP (Behavior, Interaction, Priority) et conduisant à une implémentation distribuée. Le flot de conception implique l'utilisation de transformations de modèles tout en conservant les propriétés fonctionnelles des modèles originaux de BIP. Un modèle BIP se compose d'un ensemble de composants qui se synchronisent à travers des interactions et des priorités. Notre méthode transforme les modèles BIP en un modèle Send/Receive qui fonctionnent en utilisant le passage de messages asynchrones. Les modèles obtenus sont directement implémentés sur une plate-forme donnée. Nous présentons trois solutions pour obtenir un modéle Send/Receive. Dans la première solution, nous proposons des modèles Send/Receive qui fonctionnent avec un ordonnanceur centralisé qui implémente les interactions et les priorités. Les composants atomiques des modèles originaux sont transformés en composants Send/Receive qui communiquent avec l'ordonnanceur centralisé via des interactions de type Send/Receive. L'ordonnanceur centralisé exécute les interactions sous certaines conditions définies par les modèles à états partiels. Ces modèles représentent une description haut niveau de l'exécution parallèle de modèles BIP. Dans la deuxième solution, nous proposons de décentraliser l'ordonnanceur. Les modèles Send/Receive obtenus sont structurées en trois couches: (1) les composants Send/Receive (2) un ensemble d'ordonnanceurs, chacun exécutant un sous-ensemble d'interactions, et [START_REF] Coulouris | Distributed systems -concepts and designs[END_REF] un ensemble de composants implémentant un protocole de résolution des conflits. Avec les solutions décrites ci-dessus, nous supposons que les latences de communication entre les composants sont négligeables. Ceci est du au fait que les modèles Send/Receive sont conçus de telle sorte qu'il n'y ait pas retard entre la décision d'exécuter une interaction dans un ordonnanceur et son exécution dans les composants participants. Dans la troisième solution, nous proposons des modéles Send/Receive qui exécutent correctement même en présence de latences de communication. Cette solution est basée sur le fait que les ordonnanceurs planifient l'exécution des interactions et notifient les composants à l'avance. Afin de planifier correctement les interactions, nous montrons que les ordonnanceurs sont tenus à observer des composants supplémentaires, en plus de ceux qui participent aux interactions. Nous présentons également une méthode pour optimiser le nombre de composants observés, en se basant sur l'utilisation de techniques d'analyse statique. A partir d'un modèle Send/Receive donné, nous générons une application distribuée où les interactions Send/Receive sont implémentées par les sockets TCP. Les résultats expérimentaux sur des exemples non triviaux et des études de cas montrent l'efficacité de notre méthode. 
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response times are important but the system can still function if the constraints are occasionally violated. Meeting timing constraints depends on features of the execution platform such as its speed. For instance, when the platform is not speed enough, the timing constraints may be violated. Worst Case Execution Time (WCET) can be performed in order to verify whether the target platform is fast enough to respect the timing constraints.

The building process of real-time systems includes in general two essential phases, modeling and implementation.

Modeling

In the modeling phase, the real-time system specifications are transformed into a model. This phase is very beneficial as it deals with the complexity of real-time systems at a highlevel layer where implementation details are omitted. The high-level model abstracts the system behavior and the interaction between components. For instance, abstractions assume instantaneous execution of actions, and zero-delay communication between components.

Modeling provides advantages such as:

• construction ease;

• integrating models of heterogeneous components;

• introducing nondeterminism behaviors, and

• analysis using formal methods.

In practice, high-level models are written in high-level programming languages, sometimes with formal semantics. Those languages provides high-level primitives used for components coordination. In this thesis, we consider high-level models consisting of sets of components, subject to timing constraints and coordinating their actions through multiparty interactions [START_REF] Joung | A comprehensive study of the complexity of multiparty interaction[END_REF], that is strong synchronizations between possibly more than two components.

Implementation

The second phase towards building a real-time system is to derive the implementation from its high-level model. Implementation compromises the abstractions of the high-level model. For instance, in high-level models, actions are assumed to take zero time. Nonetheless, in the implementation actions may take arbitrary execution times. This may lead the system to not meet the timing constraints specified in the high-level model.

The implementation could be either centralized or distributed. This depends on the topology of the underlying architecture on which the real-time system will be deployed. In this thesis, we are interested in distributed implementation of real-time systems.

Distributed implementation assumes that components are located on networked computers and communicate by exchanging messages. One reason for considering distributed implementations could be the physical locations of components that constitute the considered systems. For instance, processing sensor data and controlling actuators requires dedicated computing units in specific locations. A distributed system [START_REF] Coulouris | Distributed systems -concepts and designs[END_REF] consists of a set of autonomous and independent components. At each step, a component executes one of three different types Introduction coordination problem [START_REF] Chandy | Parallel program design: a foundation[END_REF], where a set of professors are organized in a set of committees and two committees can meet concurrently only if they have no professor in common; i.e., they are not conflicting. Conflict resolution is the main obstacle in distributed implementation of multiparty interactions.

The problem of distributed implementation of multiparty interactions has been studied extensively in [START_REF] Bagrodia | A distributed algorithm to implement n-party rendevouz[END_REF][START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF][START_REF] Chandy | The drinking philosophers problem[END_REF][START_REF] Chandy | Parallel program design -a foundation[END_REF][START_REF] Jurdzinski | Small progress measures for solving parity games[END_REF][START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF][START_REF] Parrow | Multiway synchronizaton verified with coupled simulation[END_REF]. These papers proposed protocols for multiparty interaction implementation and established their correctness. In this section we present an overview of some of these protocols.

α-core Protocol

The α-core protocol [START_REF] José | An order-based algorithm for implementing multiparty synchronization[END_REF] provides a fully distributed solution where each multiparty interaction is handled by a separate coordinator. The α-core protocol specify two different behaviors for participants and coordinators. Communications between participants and coordinators is done by exchanging messages.

• Participants send to coordinators the following messages.

Initially, each participant computes its available interactions. If there is only one interaction available, then the participant sends a PARTICIPATE message to the corresponding coordinator. Otherwise, it sends an OFFER message to each coordinator handling available interactions and waits for LOCK messages. For the coordinator side, whenever all OFFER or PARTICIPATE messages have been received from the participants, the interaction is enabled. In the case where all participants have sent a PARTICIPATE message, a START message can be directly sent by the coordinator. Otherwise, the coordinator sends LOCK 1.2 Existing Protocols for Distributed Implementation of Multiparty Interactions 21 messages to the participants that have sent OFFER to lock them, according to the global order on the participants. The LOCK message could be granted by the participant by sending an OK message to the coordinator or rejected by sending REFUSE. If all participants have been locked, the coordinator sends START messages to all participants. If the case where a REFUSE message has been received before the locking phase completes, the coordinator acknowledges receiving this message by sending ACKREF to the REFUSE message sender and sends UNLOCK messages to locked participants.

Kumar's Token

In [START_REF] Kumar | An implementation of n-party synchronization using tokens[END_REF], Kumar presented another solution for implementing multiparty interactions. The proposed solution does not require additional components, but rather it embeds a protocol in the original components. The protocol requires a token for each interaction. This token tries to progress from least to greatest component of the interaction, according to a fixed global order on the components. Intuitively, a token can progress only if the visited process can commit to the corresponding interaction. If the token goes through all components participating in the interaction, then the interaction is safely executed. The last component that receives the token is responsible for notifying all other participating components to execute the interaction.

The component can propagate the token if:

• it can execute the interaction corresponding to the token, and

• it has not yet committed to another interaction.

When the component commits to an interaction, it propagates its corresponding token and waits until the latter succeeds of fails.

In the case where the component receives a token of an interaction that it cannot execute, the latter is canceled. Canceling an interaction corresponds to sending a cancel message to each component that already propagated the token. After receiving a cancel message, a component is not committed to the interaction anymore.

In the case where the component has already committed to an interaction and receives tokens for other interactions, it holds these tokens until the committed interaction succeeds or fails. If the committed interaction fails, one of the held tokens is propagated. Otherwise, that is, if the committed interaction succeeds, each interaction of the held tokens is canceled.

Note that even when the interaction is canceled, the token remains in the process it was visiting. When the process finishes its local computation and reaches a stable state, it sends backs each token corresponding to an enabled interaction to the first process of its path.

Intuitively, the correctness of this protocol comes from the following facts:

• Mutual exclusion is ensured by the fact that each component allows only one token to traverse at a time, then waits until the corresponding interaction succeeds or fails. In particular, conflicting interactions involve at least one common process and this process ensures their mutual exclusion.

• Synchronization comes from the fact that the start message is sent by the last process on the interaction path to all the other involved processes.

• If an interaction is enabled, then either the corresponding token can travel along the whole path and the interaction executes, or the token is blocked at the first process shared with a conflicting interaction. The global order ensures that the first conflicting component is the same for both interactions. Progress is ensured by the fact that either the conflicting interaction succeeds or a cancel message allows the token to go further along the path.

Bagrodia's protocols

Bagrodia proposes three protocols for distributed implementation of multiparty interactions [START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF][START_REF] Babaoglu | On the reliability of consensus-based fault-tolerant distributed computing systems[END_REF] namely, centralized implementation, token-ring based implementation and dining philosophers based implementation. These protocols are hand-shake-like protocols between components and several entities called managers. The first step of these protocols is initiated by components by sending offers containing available interactions to managers. Managers are required then to select one of the enabled interactions and send a message to participating components to notify them for the interaction execution. In order to ensure mutual exclusion of conflicting interactions, managers rely on counters that count the number of offers sent by each component. Indeed, counters ensure that each offer cannot be consumed by more than one interaction.

In this thesis, we are using Bagrodia's protocols as conflict resolution protocols for our distributed implementation of multiparty interactions. We give details on these protocols in Subsection 5.3.3.

Existing Approaches for Modeling and the Implementation of Real-Time Systems

When developing real-time systems, it is important to make a clear distinction between physical and logical time. The notion of time serves two purposes. Firstly, it is used to specify the order of execution of individual actions of systems applications. Secondly, it can be used to specify durations. In one hand, the logical time can be used in both cases, especially in the design phase. In the other hand specifying the order of execution based on the physical time leads to the non-determinism of execution, since physical time is not known at the design stage. Existing rigorous implementation techniques use specific programming models. We present the time triggered and even-triggered approaches, and the synchounous paradigm. Finally, we present some component-based frameworks that allow the design and the implementation of real-time systems.

Time-Triggered Approach

The time-triggered approach [START_REF] Kopetz | Time-triggered real-time computing[END_REF] is dedicated for the implementation of safety-critical applications whose behavior needs to be certified. It addresses the fundamental issues of real-time systems by treating time as a first class quantity. It is based on a two-phased design methodology including an architecture design phase and a component design phase. The architecture design phase specifies essentially the interactions between components as well as the components interfaces in the value and the temporal domains, which makes the system fully time deterministic. The component design phase takes these interface specifications as constraints for building components.

The time-triggered systems rely on a notion of Logical Execution Time (LET) [START_REF] Aussaguès | A method and a technique to model and ensure timeliness in safety critical real-time systems[END_REF][START_REF] Ghosal | Event-driven programming with logical execution times[END_REF][START_REF] Henzinger | Giotto: a timetriggered language for embedded programming[END_REF] which corresponds to the difference between the release time and the due time of an action, defined in the program using an abstract notion of time. To cope with uncertainty of the underlying platform, a program behaves as if its actions consume exactly their LET: even if they start after their release time and complete before their due time, their effect is visible exactly at these times. This is achieved by reading input of actions exactly at their release time, and by producing output of actions exactly at their due time. The time-triggered approach consists in assigning to each action its desired execution time guaranteeing by construction the end-to-end constraints. The system is then implemented over an execution kernel running on the platform and ensuring the following.

1. An action must not start before the real time date of the corresponding logical instant, as this could compromise data coherence among components guided by the logical time.

2. An action being executing should not exceed the duration specified by its LET.

In order to prove correctness of safety critical systems, one approach could be an apriori Worst Case Execution Time (WCET) analysis that verifies whether execution time requirements are respected by a given target platform. The non safety critical systems can occasionally violate the timing constraints. In case of violation there exists mechanisms for keeping the system in a consistent state (skip job execution, degraded mode, skip execution of less important tasks, etc.)

In the following we present three models based on the time-triggered approach, namely Oasis, Port-based Object and Giotto.

Oasis

Oasis [START_REF] Chabrol | Deterministic distributed safety-critical real-time systems within the oasis approach[END_REF][START_REF] David | Safety properties ensured by the OASIS model for safety critical real-time systems[END_REF][START_REF] Louise | OASIS project: deterministic real-time for safety critical embedded systems[END_REF][START_REF] Louise | The OASIS kernel: A framework for high dependability real-time systems[END_REF] is a framework for safety-critical real-time systems, based on a time-triggered architecture. Oasis is a framework encompassing models, methodologies, and tools for the development of embedded critical software exhibiting completely deterministic temporal behavior. Oasis implementation comprises a programming language PsyC (Parallel synchronous C), which is an extension of C. This extension allows one to specify tasks and their temporal constraints as well as their interfaces. An Oasis application is composed of a set of communicating and interacting tasks called agents. Agents perform computation in parallel on private data, and communicate only using dedicated mechanisms namely temporal variables and message box. The processing of each task is synchronous at predefined time instants: at each end of the logical execution time, variables are made visible to other tasks.

Each task T in the system S is associated with a real-time clock H T representing the set of physical instants at which input and output data are (or can be) observed. The system S defined a global and periodic real-time clock H S which includes all observable instants of the system. It represents the smallest clock from which all clocks are derived, i.e. H S exhibits a factor K T and an offset δ T such as H T = K T * H S + δ T . Figure 1 In Oasis, tasks manipulate time through an instruction called "advance". An advance instruction splits the task code into two parts: the part of code (a processing) before and the part of code after the advance instruction. The instruction advance(k) sets both a deadline for the first part of code and a next activation instant for the second one. It is computed from the current instant of clock H T plus k * H T . Thus, agent's future instants are declared (i.e. activation instants) and both earliest start date and latest end date of each processing. Such specific temporal dates are called temporal synchronization points. Figure 1.2 shows elementary instructions in an Oasis application and the associated time intervals. processing1 has a deadline defined by sta defined by the instruction advance(k 1 ) which corresponds to the activation date of processing2. The deadline of processing2 is end defined by advance(k 2 ). There are two modes of communication between tasks. The first mode uses the shared variables, also called temporal variables, the second is by sending messages. Modifications of temporal variables are made visible at synchronization points only, while messages has explicit definition of visibility dates.

Each temporal variable defines a real-time data flow: its values, available to any agent that consults them, are stored and updated by a single writer, the owner agent, at a predetermined temporal rhythm. This rhythm is expressed in the source code as a regular time period parameter and allows computation of a periodic updating date. Based on the example given in Figure 1.2, at each physical instant between the two dates sta and end, the agent is logically considered at sta date. Assume that the agent has a temporal variable x whose value is modified by processing2, and that another agent "observes" the value of x, the last 1.3 Existing Approaches for Modeling and the Implementation of Real-Time Systems 25 activation date of observer agent is t0 between sta and end. At this date, the agent "observes" the past value of x corresponding to the date sta, i.e. x(t0) = x(sta) (see Figure 1.3(a)). For the sending message mechanism, each message defines a visibility date specified by the sender. This date specifies the date beyond which a message can be observed by the recipient agent. The latter has queues for receiving messages that are sorted by their visibility. As an example, consider an agent sending a message M with visibility date t1 to the agent from Figure 1.2. The message cannot be observed before the sta date, since t1 > sta (see Figure 22 (b)).

Oasis provides an off-line tool chain responsible for extracting the application's temporal behavior in order to generate a runtime. More precisely, it computes all the possible temporal behavior from which they can size communication buffers and analyze the timing constraints on the execution times. At runtime, Oasis relies on an Early Deadline First (EDF) algorithm [START_REF] Laung | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF], for dynamically scheduling elementary instructions of agents based on their temporal synchronization points and on monoprocessor architectures.

Oasis-D

Oasis-D [START_REF] Mathieu | The oasis-d transparent approach for safety-critical distributed real-time systems[END_REF][START_REF] Mathieu | Scheduling safety-critical realtime bus accesses using time-constrained automata[END_REF][START_REF] Chabrol | Deterministic distributed safety-critical real-time systems within the oasis approach[END_REF] is an extension of the Oasis approach towards distributed architectures. It is based on TDMA-like protocol used to manage network accesses. TDMA (Time Division Multiple Access) [START_REF] David D Falconer | Time division multiple access methods for wireless personal communications[END_REF] divides the global time into a sequence of time slots, each of them is assigned to an unique CPU. TDMA guarantees the absence of network interference in the slots. Such approach allows a safe and deterministic use of the network. Bounds on data transfers can be computed and taken into account as constraints to verify the schedulability of network accesses. In Oasis-D, network runtimes encapsulate the static TDMA schedule of network accesses.

The Oasis-D provides a tool chain that is responsible for:

1. extracting the network communication needs from the PsyC source code of a given application, and 2. computing the communication load of a given application over the network.
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If this load is within the network capacity, it generates inside network runtimes:

1. the structure of each Oasis packet, 2. the required size for TDMA slots based on the network capacity, as well as the application communication needs, and 3. the schedule of network accesses.

The TDMA approach assumes the use of a global clock, so that each CPU can correctly use the network following the time-triggered paradigm. However, because each CPU has a local clock that can drift, a clock synchronization protocol between CPUs is required. Oasis-D currently uses a dedicated CPU which periodically sends correction values that each CPU of the distributed system needs to apply to its local clock.

Port-Based Object

The port-based object (PBO) [START_REF] Stewart | Design of dynamically reconfigurable real-time software using port-based objects[END_REF] provides a software framework to program reconfigurable robots. A PBO model is composed of a set of tasks called PBO. Each PBO has input and output ports. PBOs are activated periodically and communicate through input and output ports via state variables that are stored in a global table. Indeed, each PBO stores in its own local table a subset of the data that is needed from the global table. Before executing a PBO, the state variables corresponding to its input ports stored in its local table are updated from the global table. After the execution completes, the state variables corresponding to its output ports are copied from its local table to the global table.

The access to the same state variable in the global table by two PBOs must be mutually exclusive. To ensure this, the PBO framework provides a mechanism based on spin-locks [START_REF] Molesky | Predictable synchronization mechanisms for multiprocessor real-time systems[END_REF]. When a PBO needs to access the global table, it first locks the processor on which it is executing, and then waits to obtain the global lock for the global table. The global lock has the highest priority of all the PBOs. When holding the global lock, the PBO accesses the global table and exchanges data.

The amount of communication between a PBO and the global table varies from time to time depending on the size of exchanged data. As a result, if another PBO wants to read the output ports, it may or may not get the results obtained from the current cycle. For example, consider two PBOs, PBO1 and PBO2, where PBO2 reads the output of PBO1. Suppose that PBO1 and PBO2 are running on different CPUs and PBO1 is activated at every instant t = 2k and PBO2 is activated at every intant t = 4k + 2, where k = 0, 1, 2.... Figure 1.4 depicts a possible execution trace of PBO1 and PBO2. Remark that the output of PBO1 has not been produced in the first period of PBO2. Therefore, PBO2 reads the last value of the state variable corresponding to the output of PBO1. However, in the second period of PBO1, PBO2 reads the fresh output of PBO1.

Giotto

Giotto [START_REF] Henzinger | Giotto: a timetriggered language for embedded programming[END_REF] is a programming methodology for embedded control systems running on possibly distributed platforms. It provides a time-triggered programming model for periodic, hard real-time systems. In this model, the execution of tasks is triggered by periodic clocks. Each task has a start time and an end time. The start time corresponds to the starting time instant when the execution period starts. The end time corresponds to the end time instance when the execution period ends. A task reads all its inputs at the start time and makes its outputs available to other tasks at its end time. For example, consider a task that is activated every 2 ms as shown in Figure 1.5. The input data is consumed at the beginning of the 2 ms, the execution is performed within the period, and the output is made available at the end of the period. Thus no matter how quickly or slowly the controller executes, as long as it can finish in 2 ms, the outputs will be produced at the exact time instants. In Giotto all data is communicated through ports. A port represents a typed variable with a unique location in a globally shared name space. There are three types of ports in a Giotto program: sensor ports, actuator ports, and task ports. The task ports are used to communicate data between concurrent tasks. The communication between tasks is well defined and deterministic. It is computed from the worst case communication time, which represents an upper bound on the time required for broadcasting the value of task port over the network [START_REF] Henzinger | Giotto: a timetriggered language for embedded programming[END_REF].

Introduction

Event-Triggered Approach

The event-triggered approach [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] is adopted for the design of systems reacting to unpredictable events. In the following , we present two even-triggered models, namely Timed Multitasking and Ptides.

Timed Multitasking

The Timed Multitasking (TM) model assumes that a system is composed of a set of components called actors [START_REF] Edward | Overview of the ptolemy project[END_REF]. An actor has an interface that consists of input/output ports and parameters. An actor can specify its execution requirements, including priority, execution times, and deadlines, through its parameters.

There are two types of actors in TM which are:

• actors that handle external events called interrupt service routines (ISRs), and

• actors that are triggered internally by messages generated by other actors, called regular tasks.

An ISR actor converts external events from the environment into events that triggers other actors. It does not specify deadlines and trigger conditions in its interface. A regular task actor has a much richer interface (including priorities, execution times and deadlines) than an ISR actor. It is triggered by events at its input ports. Communications between regular actors is done through sending/receiving events through their ports. A regular actor is allowed to execute only if there is an input event that triggers it. Output events are produced only when the deadline is reached. By controlling when output events are produced, TM controls both the starting time and stopping time of each task, thus obtaining deterministic timing properties [START_REF] Tsang | Detecting feature interactions in the intelligent network[END_REF]. TM assumes sequential execution of actors as there is only a single computation resource shared by all the task actors. The execution of ISR actors is managed by an independent thread and is triggered chronologically based on the timestamp of the external events. The execution of regular task actors is handled by a priority-based event handler, which sorts events based on their priorities. If preemption is allowed, then the execution of a lower priority task can by preempted by higher priority tasks. For example, when task A is running, an ISR actor produces an event that triggers task B which has a higher priority than A, then A will be preempted by B. The runtime environment of TM tracks when an output event can be produced. If the task can finish its execution before its deadline, the output is made available to its downstream tasks when the deadline is reached.

In case a task misses its deadline, TM uses overrun handlers to complete the current execution of the task quickly to preserve time determinism as much as possible.

Ptides

Ptides [START_REF] Eidson | Distributed real-time software for cyber-physical systems[END_REF] is a concurrent event-triggered model for distributed real-time systems. It uses a discrete-event (DE) model [START_REF] Edward | Modeling concurrent real-time processes using discrete events[END_REF] as the underlying formal semantics to achieve deterministic behavior in both time and value. DE models consists of a set of concurrent components interacting via events. Each event has an associated time value called timestamp. Correct execution of these models requires respecting the order of timestamped events. Figure 1.6 (taken from [START_REF] Derler | Simulation and implementation of the ptides programming model[END_REF]) depicts a model a simple embedded system distributed over 3 platforms. Each of its components produces and consumes events through event ports. These events cannot be produced/consumed at arbitrary times. For instance, an output event of Sensor1 component of Figure 1.6 is timestamped by the local time at which the sensor reading is taken. Thus, the real time at which the output event is produced is larger than its timestamp. Conversely, an input event of Actuator1 component is timestamped by the lastest real time at which the actuator is allowed to execute. Thus, the local real time at which the input event is produced is smaller than or equal to its timestamp. In fact, this timestamp can be considered as a deadline for the delivery of the event to the actuator.

For network interfaces, Ptides assumes that platforms use a local network to communicate timestamped events. Moreover, it assumes that the network delay is bounded and known in advance [START_REF] Derler | Simulation and implementation of the ptides programming model[END_REF]. The timing constraint and the bounded delay guarantee an upper bound, relative to the timestamp, of the real time at which a timestamped event is received at its destination.

Ptides binds timestamps to real time only at sensors, actuators and network interfaces. For all other components, Ptides requires that input events are processed in timestamp order, but before or after real time reaches timestamps.

Ptides relies on static causality analysis techniques to check whether an event can be processed safely. It also enables independent events to be processed out of timestamp order. For dependent events, the technique requires local clocks to be synchronized with a bounded and known precision. To this end, Ptides relies on network time synchronization, where the computing nodes on the network share a common notion of time with a known precision. Thanks to time synchronization and real-time constraints, checking if an event is safe to process or not is done by simply letting time progress. For instance, an output event from component Computation4 of Figure 1.6 could be processed after the local clock reaches a predetermined real-time value.

The execution strategy of Ptides models is based on two layers: global coordination,
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and local resource scheduling. The global coordination layer determines whether an arriving event from the network can be processed immediately or if it has to wait for other potentially preceding events. As soon as the current event can be safely processed according to DE semantics, it hands the event over to local resource scheduler, which may use existing realtime scheduling algorithms, such as earliest deadline first (EDF) to prioritize the processing of all pending events [START_REF] Zhao | A programming model for time-synchronized distributed real-time systems[END_REF].

Synchronous Systems

Synchronous programming is a design method for modeling, specifying, validating and implementing safety critical applications [START_REF] Benveniste | Synchronous programming with events and relations: the signal language and its semantics[END_REF][START_REF] Halbwachs | The synchronous data flow programming language lustre[END_REF][START_REF] Halbwachs | About synchronous programming and abstract interpretation[END_REF][START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF][START_REF] Halbwachs | About synchronous programming and abstract interpretation[END_REF]. The synchronous paradigm considers systems designed as the parallel composition of strongly synchronized components. It defines a set of primitives that allows a program to be considered as instantaneously reacting to external events [START_REF] Halbwachs | Synchronous programming of reactive systems, a tutorial and commented bibliography[END_REF]. Synchrony is achieved by considering that the system's reaction is fast enough with respect to the environment. Responsiveness and precision are limited by step duration.

The interaction with the environment is performed in global computation steps. In each step, all the system components perform some quantum of computation. The components execution constitutes a sequence of non-interruptible steps that define a logical notion of time. One of the fundamental characteristics of synchronous languages resides in the use of clocks that specify the synchronization points between components. A clock is an infinite subset of the natural numbers. A simple example of a synchronous system consists of a number of components that share a single periodic clock. The operational semantics of such a system is defined as a sequence of cycles executed at each tick of the shared clock. A cycle consists of three phases: acquisition of inputs, computation and publication of outputs. The actual duration of computations is then irrelevant. The synchrony hypothesis assumes that computations duration is negligible compared to that of communication among components. Correctness (i.e. validity of the synchrony hypothesis) is evaluated by first computing the bounds or estimates of worst-case execution time (WCET) of each computations, then performing an end-to-end delay analysis for the entire system [START_REF] Feiertag | A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics[END_REF].

There exist many hardware description languages such as Lustre [START_REF] Halbwachs | The synchronous data flow programming language lustre[END_REF], Signal [START_REF] Benveniste | Synchronous programming with events and relations: the signal language and its semantics[END_REF] and Esterel [START_REF] Berry | The esterel synchronous programming language: Design, semantics, implementation[END_REF], adopting the synchronous paradigm. These languages are used, among others, in signal processing and automatic control applications. In the following, we present (only) Lustre to illustrate synchronous languages.

Lustre

Lustre [START_REF] Halbwachs | The synchronous data flow programming language lustre[END_REF][START_REF] Pilaud | Lustre: A declarative language for programming synchronous systems[END_REF] is a data-flow synchronous language with formal semantics developed at the VERIMAG laboratory for the past 25 years. On the top of the language, there are a number of tools, like code generator, model checker, tool for simulation of the system on design, etc., that constitute the Lustre platform. Lustre has been industrialized by Esterel Technologies in the SCADE tool. SCADE has been used by several companies in the area of aeronautics and automotive. It has been recently used for the development of the latest project of Airbus, the A380 carrier airplane.

In Lustre, a program operates based on flows of values, which are infinite sequences Complex types can be imported from a host language. Usual operators such as arithmetic, boolean, relational and conditional are available. Functions can be imported from the host language. Lustre defines operators that apply either on single clock or on multiple clocks. The combinatorial operator op and the unit delay pre operator are defined as single-clock operators. The when and current operators are defined to operate on multi clocks. Single-clock operators include constants, basic and combinatorial operators and the unit delay operator. Flows of values that correspond to constants are constant sequences of values. Combinatorial operators include usual boolean, arithmetic and relational operators. The unit delay pre operator gives access to the value of its argument at the previous time instant. For example, the expression E = pre(E, v) means that for an initial value In this example, two single-clock operators are defined namely "+" and pre. An input flow i and an output flow o are also defined. The expression pre(o, 0) gives access to the value of the output flow o at the previous time instant which is initialized to zero. The output flow o is obtained by adding the input flow i to its previous value pre(o, 0). The equation of the integrator is the arithmetic operation "+" between a flow and the expression pre. Table 1.1 shows the instants of a possible execution for the first six clock cycles. Lustre defines also multi-clocks operators which are the following.

E 0 = v of E, the value of E at instant i is E i = E i+1 for all i > 0. + pre o i
• The sampling operator when samples a flow depending on a Boolean flow. The expression E ′ = E when b corresponds to the sequence of values E when the Boolean flow b is true. The expression E and the Boolean flow b have the same clock, while the expression E ′ operates on a slower clock defined by the instants at which b is true.

• The interpolation operator current interpolates an expression on the clock which is faster than its own clock. The expression E ′ = current E, takes the value of E at the last instant when b was true, where b is the Boolean flow defining the slower clock of E.

Table 1.2 shows examples of using when and current operators. The basic clock defines six clock cycles. The Boolean flow b and the flow x operate on the basic clock. The flow b defines a slower clock operating at the cycles 3, 5 and 6 of the basic clock. These are the instants such that the value of b is true. The sampling operator when defines the flow y that operates on the slower clock b. The flow y is evaluated when b is defined, that is, at the clock cycles 3, 5 and 6. The interpolation operator current produces the flow z on the basic clock. For the first two instances, the value of z is undefined because y is evaluated for first time at the clock cycle 3. For any other instant, if b is true, the value of z is evaluated to y. Otherwise, it takes the value of y at the last instant when b was true. For instance, at the clock cycle 3, the slower clock b is defined and the value of z is evaluated to the current value of y, that is x 3 . For clock cycle 4, the slower clock b is not defined and the value of z takes x 3 , that is the value of z at the last instant b was true.

The Lustre compiler guarantees that the system under design is deterministic and conforms to the properties defined by the synchronous hypothesis [START_REF] Sofronis | Embedded Code Generation from High-level Heterogeneous Components[END_REF]. It accomplishes this task thanks to static verification which is summarized in the following steps: 

y = x when b x 2 x 3 x 5 z = current y nil x 2 x 3 x 3 x 4 x 4
• Clock consistency: every operator is applied to operands on suitable clocks;

• Absence of cycles: any cycle should use at least one pre operator.

For the mono-processor and mono-thread implementation, the compiler generates monolithic endless single loop C code. The body of this code implements the inputs to outputs transformations of one clock cycle. The generation of C code is done in two steps. First, it introduces variables for implementing the memory needed by the pre operators and then it stores the equations in order to respect data-dependencies.

Component-based Frameworks

Component-based design techniques are used to cope with the complexity of the systems. The idea is that complex systems can be obtained by assembling components. This is essential for the development of large-scale, evolvable systems in a timely and affordable manner. It offers flexibility in the construction phase of systems by supporting the addition, removal or modification of components without any or very little impact on other components. Components are usually characterized by abstractions that ignore implementation details and describe relevant properties to their composition, e.g. transfer functions, interfaces. The main feature of component-based design frameworks is allowing composition. This composition is used to build complex components from simpler ones. It can be formalized as an operation that takes, as input, a set of components and their integration constraints and provides, as output, the description of a new more complex component. This approach allows to cope with the complexity of systems by offering incrementality in the construction phase. In the following, we give an overview of two component-based frameworks, namely Marte and AADL, which allow building real-time systems.

Marte

Marte [START_REF] Taha | MARTE: uml-based hardware design from modelling to simulation[END_REF] extends the Unified Modeling Language (UML) [START_REF] Omg | Uml superstructure[END_REF] with concepts required to model real-time embedded systems. The Marte specification consists of the following main packages [START_REF] Demathieu | First experiments using the uml profile for marte[END_REF].

• Foundations: This package provides basic model constructs for non-functional properties, time and time-related concepts, allocation mechanisms and generic resources, including concurrent resources. These foundational concepts are then refined in two
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other packages to respectively support modeling and analysis concerns of real-time embedded systems.

• Model-based design: This package provides high-level model constructs to depict realtime embedded features of applications, but also for enabling the description of detailed software and hardware execution platforms.

• Model-based analysis: This package provides a generic basis for quantitative analysis of sub-domains. This basis has been refined for both schedulability and performance analysis.

In Marte, the application model is defined by its repetitive structures, interaction ports and the communication between them. Tasks and their interaction are defined at data communication level [START_REF] Wendell | An mde approach for automatic code generation from marte to opencl[END_REF].

The time model in Marte is heavily inspired by the Tagged Signal Model [START_REF] Edward | A framework for comparing models of computation[END_REF], synchronous languages [START_REF] Benveniste | The synchronous languages 12 years later[END_REF], and the Globally Asynchronous and Locally Synchronous (GALS) architecture. Clocks can be defined independently and can be progressively composed with a family of possible time evolutions [START_REF] Yu | Polychronous analysis of timing constraints in uml marte[END_REF]. The time model in Marte is associated with the Clock Constraint Specification Language (CCSL) [START_REF] André | Modeling time (s)[END_REF]. A CCSL specification consists of clock relations and clock expressions. For example, alternatesW ith and isP eriodicOn are instances of clock relations, delayedF or and sampledOn are clock expressions.

AADL

AADL (Architecture Analysis and Design Language) [START_REF] Peter H Feiler | The architecture analysis & design language (aadl): An introduction[END_REF][START_REF] Yang | From AADL to timed abstract state machines: A verified model transformation[END_REF] is an architecture description language for model-based engineering of embedded real-time systems. It is used to design and analyze the software and hardware architectures of embedded real-time systems.

A system in AADL is described as a hierarchy of software and hardware components. There are three distinct sets of component categories:

• software components: thread, thread group, subprogram, data and process.

• hardware components: processor, memory, bus, device, virtual processor and virtual bus.

• composite system which represents composite sets of software and hardware. components.

An AADL component is defined by its type ans its implementation. The type specifies the component's visible characteristics (e.g. ports). The implementation specifies the internal structure of the component such as its subcomponents, interactions and the flows across a sequence of subcomponents.

AADL lacks a formal semantics. This lack is particularly important for real-time embedded systems as many of them are safety-critical systems which usually needs formal semantics to prove their correctness.

Rigorous Design Flow
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Discussion

We have presented some existing approaches for modeling and implementation of real-time systems. The time-triggered approach rely on a notion of logical execution time (LET) which corresponds to the difference between the release time and the due time of an action, defined in the program using an abstract notion of time. Time-safety is violated if an action takes more than its LET to execute. One drawback of time-triggered approach is the lack on flexibility and the restrictive design process. This approach considers fixed LET for actions, that is, time-deterministic abstract models. In addition, their models are action-deterministic, that is, only one action is enabled at a given state. Our work is more general as we consider more general models by considering more general timing constraints which allow the design of non-deterministic systems Even-triggered approach is suitable for the design of systems where actions or events are unpredictable. The main advantage of event-triggered systems is their ability to react to asynchronous external events which are not known in advance.

Synchronous programs can be considered as a network of strongly synchronized components. Their execution is a sequence of non-interruptible steps that define a logical notion of time. In a step each component performs a quantum of computation. An implementation is correct if the worst-case execution times (WCET) for steps are less than the requested response time for the system. One of the difficulties in the synchronous paradigm is to meet the synchrony assumption, in particular when high responsiveness to the environment is required.

There exist many component-based frameworks without rigorous semantics. They use ad-hoc mechanisms for building systems from components and offer syntax level concepts only. In this case, using ad-hoc transformations, may easily lead to inconsistencies e.g. transformations may not be confluent. Generally, component-based frameworks can be divided in two categories. The first category provides high-level design and modeling, however it is still unclear how to derive correct and efficient implementation from the high-level models. In contrast, the second category provides efficient implementation, however the design process is either based on low-level primitives, or not expressive enough. In our work, we rely on BIP framework that provides rigorous semantics and allows building correct systems.

Rigorous Design Flow

In order to obtain correct distributed implementations of real-time systems, one has to consider a rigorous design flow that starts by an application software and leads to a distributed implementation. The design flow involves the use of model transformations for progressively deriving distributed implementation by making adequate design choices. Each transformation preserves the functional properties of the original model. The design flow should rely on a single semantics. That is, models are written in the same language with the same semantics.

Figure 1.8 shows a design flow that involves n model transformations. Intermediate models have different levels of abstraction. Each of these models could be dedicated to perform various tasks such as verification, performance analysis and code generation.

The last model before code generation represents exactly the software to be implemented. Code generation only implements the semantics of this model using a low-level programming language such as C++. The obtained code is correct-by-construction. This is due the fact that intermediate models are functionally equivalent to the application software.

The design flow is implemented through a set of tools automatically performing the different transformations. The designer provides a high-level model of the system from which the implementation is generated. In particular, the mechanisms to handle messages are generated automatically during the transformations. Human intervention is required to choose the parameters of the transformations.

Our Contributions

We present a method that allows deriving automatically distributed implementations from a high-level model of application software in BIP. BIP (Behavior, Interaction, Priority) is a component-based framework with formal semantics that rely on multiparty interactions for synchronizing components and priorities for scheduling between interactions. The key idea of our method is the use of transformations that preserve functional properties for progressively deriving distributed implementations.

Input models

Our input models are described in BIP. A BIP model consists of a set of components whose behavior is modeled using timed automata [START_REF] Alur | A theory of timed automata[END_REF] extended with data. The components model takes into account only platform-independent timing constraints expressing user requirements. Transitions are labeled by ports and are assumed to be timeless. Components are composed using two operators, namely Interaction and Priority. The Interaction operator is parameterized by a set of interactions that are synchronizations of components's transitions. The Priority operator is parameterized by a partial order on the interactions. The global state semantics of such models is defined by a labeled transition systems LTS defining when the system can wait (i.e. when time may progress) and when it can execute the interactions. Time can progress from a global state if all components allow it from their local states. An interaction can execute from a global state (1) if all its participant components are ready to 1.5 Our Contributions execute that interaction, and (2) if there is no higher priority interaction enabled from that state.

Breaking Atomicity

The semantic model of BIP is based on the notion of global states. That is, the system states considered by the standard semantics are such that all the components are not executing and ready to synchronize on interactions. The execution of an interaction is defined by the atomic execution of corresponding transitions of the participating components, transforming the current global state into a new global state.

In real systems, transitions in components could not be instantaneous. They are necessarily subject to execution times when transitions correspond to computations, or also communication delays when the transitions correspond to sending messages. During the transition execution, the component state becomes unknown. In order to model these unknown states, we derive the partial state model from the BIP model where the components can be either in regular states when they are ready to interact, as in the global state semantics, or in busy states when they executes. Ensuring parallelism bowls down to executing interactions from states where some components are still busy. We identify conditions for which the partial state model is observationally equivalent to the original BIP model (global state model). Observational equivalence can be enforced by strengthening the premises of the operational semantics rules by a predicate called safe that ensure safe execution from partial states. The computation of this predicate requires to know the future state reached by components after execution. However, this cannot be computed in practice. Instead, we propose other alternative predicates safe * that can be operationally computed, in particular whose are based on approximations of reached states.

Building Send/Receive Models with Centralized Scheduler

Partial state models correspond to a high-level representation for parallel execution of BIP models. Those models cannot be directly implemented since, in general, distributed platforms do not offer direct support for multiparty interactions an priorities, but rather allow components to communicate using lower level primitives such as asynchronous message passing. In this thesis, we assume that (distributed) components can send messages, wait for messages or execute internal computation.

Our first solution is to transform BIP models into Send/Receive BIP models that involve only Send/Receive interactions. In Send/receive models, the distributed components exchange messages with a coordinator called scheduler (constructed as a BIP component) responsible for executing interactions and for notifying components to execute corresponding transitions. With this version of Send/Receive models, we assume that there is no delay between the decision to execute an interaction in the scheduler and the execution in participating components. Therefore, we assume that this version of Send/Receive models are implemented on platforms that provides fast communications (e.g. multi-process platforms) to meet perfect synchronization in components.

In order to evaluate the enabled interactions at a given state, the distributed components are required to send information about their current states to the scheduler component.
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Regarding the scheduler, it is required to listen to the distributed components and decides the execution of interactions on-line. To maximize progress in the system, the scheduler may not have a global knowledge about system to decide the execution of an interaction. In this case, the scheduling decision is based on a partial knowledge of the system state, which corresponds precisely to an execution from a partial state in the partial state semantics. Safe executions from partial states are ensured using the predicate safe. Any execution decided by the scheduler should also agree with the predicate safe in order to produce correct executions. In practice we are using safe * based on approximations of reachable states.

Decentralizing the scheduler

Send/Receive models with centralized scheduler allow parallelism between components. However, parallelism between interactions is not maximal since the execution of interactions is decided by a single scheduler.

We propose a solution to obtain Send/Receive models with decentralized schedulers. Each decentralized scheduler is responsible for executing a subset of interactions. Thus, our decentralization method is parametrized by an interactions partition. Each partition class defines a set of interactions handled in a dedicated scheduler.

Adding multiple schedulers in a Send/Receive model introduces conflicts between them. A conflict between schedulers occurs when they try to execute interactions involving the same component, which may lead to violate the semantics of the centralized model.

We propose a solution to resolve dynamically conflicts between interactions. The solution is based on the incorporation of a conflict resolution protocol. Before executing a conflicting interaction, the scheduler has to ask the conflict resolution protocol. The latter grants the execution by sending an ok message if it does not break the semantics or rejects the execution by sending a f ail message otherwise. Our solution incorporates several implementations of the conflict resolution protocol. In this thesis we consider the three different implementations of conflict resolution protocol proposed by Bagrodia [START_REF] Antonio Pérez | An order-based algorithm for implementing multiparty synchronization[END_REF].

In this version of decentralized schedulers, we assume again that communication latencies are negligible so that there is no delay between the decision to execute an interaction in a scheduler and its execution in the participating components. We explain below how to handle non negligible communication latencies.

Taking Decision Earlier

The assumption of instantaneous communication restricts the applicability of the approach to platforms having communication means that are fast enough so that communication delays can be neglected.

We propose a method to obtain Send/Receive models that execute correctly even in presence of slow communications. To cope with communication delays, instead of notifying components at the very last moment, we propose a method where schedulers plan interactions execution and notify components in advance. With this approach, schedulers choose as soon as possible a date for executing a selected interaction and send it immediately to the participating components. Once received, the components wait for this date and then execute. The scheduling decisions are taken according to a scheduling policy which is considered as a 1.6 Organization of the Thesis parameter of the approach. Any scheduling policy meeting conditions for correct execution can be considered here. The study of scheduling policies is beyond the scope of the present thesis.

In order to ensure the correct scheduling of an interaction based on this approach, we show that the schedulers need to observe additional components besides the components participating to the interactions. As in the previous version, conflicts between schedulers are referred to the conflict resolution protocol. However, with this approach, it may happen that the conflict resolution protocol confirms (through an ok message) the execution of an interaction while the scheduler cannot find a valid date to execute it. Such situation may introduce deadlocks in the system. To avoid this, we integrate a cancel execution mechanism between the schedulers and the conflict resolution protocol to cancel the execution of interactions. To do so, when such situation occurs, the schedulers send cancel requests to the conflict resolution protocol, which are acknowleged.

In order to correctly schedule an interaction, the scheduler has to know the state of observed components, and therefore to receive messages from them. We propose an optimization method that aims at minimizing the number of observed components when possible, which minimizes the number of messages exchange for executing an interactions. In fact, we define for each interaction a predicate on global states that characterizes components that could not be observed by the interaction. The satisfiability of this predicate is checked using static analysis techniques such as the technique presented in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF].

Implementation

Send/Receive BIP models with a centralized scheduler corresponds to an implementation of partial state models. In practice, this model is never built, but is used for sake of clarity. Instead, we developed a multi-thread real-time scheduler that implements interactions and priorities of partial state models. A code generator has been also developed to generate C++ code for atomic components that execute each one in separate thread that communicate with the multi-thred real-time scheduler. The communication between the multi-thread real-time scheduler and the atomic components is ensured by message passing through FIFO channels.

In order to generate distributed implementations for Send/Receive BIP models with multiple schedulers, we developed a code generator that takes a Send/Receive model as input and outputs a distributed implementation. We generate C++ code for each component in the Send/Receive BIP model where Send/Receive interactions are implemented by TCP sockets. The generated code scheme is the same for each component regardless its role (Send/Receive atomic component, scheduler, conflict resolution protocol component).

• In Chapter 3, we preset partial state models that correspond to a high-level representation for parallel execution of BIP models. We identify conditions for which the partial state model is observationally equivalent to the global state model.

• In Chapter 4, we present our first solution for implementing multiparty interactions and priorities. The solution relies on a centralized scheduler for executing all interactions.

• In Chapter 5, we propose a solution for decentralizing the centralized scheduler. The solution consists in splitting the centralized scheduler into several distributed schedulers, each one handling a subset of interactions. The obtained models are augmented by a conflict resolution protocol in order to resolve conflicts between interactions. Distributed models of Chapter 4 and Chapter 5 are assumed to be implemented on platforms providing fast communications.

• In Chapter 6, we propose a solution to build distributed models that execute correctly even if communications are not instantaneous.

• In Chapter 7, we present an overview of the tools involved in the BIP framework. We focus on the tools related to this thesis. More precisely, we present the multi-threaded real-time scheduler that implements directly partial state models. Also, we present the method for generating distributed code from Send/Receive BIP models.

• In Chapter 8, we evaluate the performance of our tools. Finally, we conclude and outline some future work in Chapter 9.
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High-Level BIP Models

Component-based design is a paradigm that allows construction of complex systems by assembling components. Components models are described by abstract platform-independent models where implementation details are completely ignored. Components are composed in order to build complex components.

BIP [START_REF] Sifakis | A framework for component-based construction extended abstract[END_REF][START_REF] Basu | Modeling heterogeneous real-time components in BIP[END_REF][START_REF] Sifakis | Component-based construction of real-time systems in bip[END_REF] is a framework for the construction of complex, heterogeneous embedded applications. BIP is highly expressive [START_REF] Bliudze | A notion of glue expressiveness for component-based systems[END_REF], component-based framework with formal semantics. A BIP model is described using the superposition of three layers: Behavior, Interaction, Priorities (see Figure 2.1). BIP allows the construction of complex, hierarchically structured models from atomic components characterized by their behavior and their interfaces (ports). An atomic component behavior is described using a transition system whose transitions are labeled by ports. Atomic components are composed using glue operators consisting of Interactions and Priorities. Interactions are used to specify multiparty synchronizations between atomic components. Priorities are used to filter amongst possible interactions and to steer system evolution so as to meet performance requirements ,e.g. to express scheduling policies. Priorities define partial orders between interactions that can change dynamically.

High-Level BIP Models

This chapter is structured as follows. The abstract model of BIP is described in Section 2.1. It gives an abstract formalization of the layers Behavior, Interaction, Priority. Section 2.2 describes the concrete model of BIP. In this model, atomic components are described using Perti Nets extended with data and clocks.

Abstract Models of BIP

We provide a formalization of BIP framework focusing on each layer of BIP models. In this section, we introduce the model corresponding to each layer.

Preliminary Definitions

We use timed automata [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Alur | Automata for modeling real-time systems[END_REF][START_REF] Alur | The theory of timed automata[END_REF] to model the behavior of real-time systems. A timed automaton is basically an automaton equipped with clocks. Its transitions are annotated with timing constraints and its states are annotated with time progress conditions. In the following, we give definitions of each of these elements.

Automaton

Definition 1 (Automaton). An automaton A is defined by a tuple (L, P, T ), where:

• L is a finite set of control locations.

• P is a finite set of ports.

• T ⊆ L × P × L is a set of finite transitions.

We say that a port in enabled at location ℓ if there exists a transition labeled by p outgoing from location ℓ. Throughout this thesis, we consider deterministic automata which means that at a given location ℓ there is at most one outgoing transition from ℓ labeled by p.

Clocks

We consider discrete-time models, that is, time is represented using the set of non-negative integers denoted by Z ≥0 . We assume that time progress is measured by clocks. Clocks are non-negative integer variables increasing synchronously. A clock can be reset (i.e. set to 0) independently of other clocks. That is, clocks keep track of the time elapsed since their last reset.

We denote by T (C) the set of all possible values of clocks in C. As we consider discretetime models, T (C) corresponds to Z n ≥0 , where n is the number of clocks in C . Definition 2 (clocks valuation). Given a set of clocks C, a clocks valuation t : C → Z ≥0 is a function associating with each clock c its value t(c). Given a subset of clocks C ′ ⊆ C and a clock value l ∈ Z ≥0 , we denote by t[C ′ → l] the clocks valuation that coincides with t for all clocks c ∈ C \ C ′ , and that associates l with all clocks c ∈ C ′ . It is defined by:

t[C ′ → l](c) = l if c ∈ C ′ t(c) otherwise.

Timing Constraints

Timing constraints are used to specify when actions are enabled. Given a set of clocks C, we consider simple constraints on clocks which are atomic formulas of the form c ∼ ct, where c ∈ C is a clock , ct ∈ Z ≥0 is a constant, and ∼ is a comparison operator such that ∼∈ {≤, =, ≥}. They are used to build general timing constraints defined by the following grammar:

tc := true | false | c ∼ ct | tc ∧ tc | tc ∨ tc | ¬tc.
We simplify ¬(c ≤ ct) into c ≥ ct + 1, and ¬(c ≥ ct) into c ≤ ct -1. This allows putting any timing constraint tc into the following disjunctive form:

tc = m k=1 tc k
such that expressions tc k are conjunctions of simple constraints and for each k 1 and k 2 tc k 1 ∧ tc k 2 = false. Any conjunction of simple constraints tc k can be put into an interval conjunction:

tc k = c∈C l k c ≤ c ≤ u k c
such that for all c ∈ C, l k c ∈ Z ≥0 and u k c ∈ Z ≥0 ∪ {+∞}. Thus, any timing constraint tc can be put into the following form:

tc = m k=1 c∈C l k c ≤ c ≤ u k c (2.1)
We denote by TC(C) the set of timing constraints over a set of clocks C. The evaluation of a timing constraint tc for a valuation t is the Boolean value tc(t) obtained by replacing each clock c by its value t(c).

Time Progress Conditions

Time progress conditions are used to specify whether time can progress at a given state of the system. They are a special case of timing constraints where ∼ is restricted to {≤} and operators ¬ and ∨ are disallowed. Formally, time progress conditions are defined by the following grammar:

tpc := true | false | c ≤ ct | tpc ∧ tpc.
where c ∈ C, ct ∈ Z ≥0 . Note that any time progress condition tpc can be put into a conjunctive form:

tpc = c∈C c ≤ u c (2.2)
such that for all c ∈ C, u c ∈ Z ≥0 ∪ {+∞}. We denote by TPC(C) the set of time progress conditions over a set of clocks C.

Modeling Behavior

An atomic component is the most basic entity of BIP models that represents Behavior. A formal definition for an atomic BIP component is given below: Definition 3. An atomic component B is a timed automaton represented by the tuple (L, P , T , C,tpc), where:

• L is a finite set of locations,

• P is a finite set of communication ports,

• C is a finite set of clocks,

• T ⊆ L × (P × TC(C) × 2 C
) × L is a finite set of labeled transitions. A transition τ is a tuple (ℓ, p, tc, r, ℓ ′ ) where p is a communication port, tc is a timing constraint over C and r is a subset of clocks that are reset by the transition τ .

• tpc is a time progress condition function assigning to each location ℓ ∈ L a time progress condition tpc ℓ ∈ TPC(C), that is, tpc: L -→ TPC(C).

The semantics of an atomic component B is a Timed Transition System (TTS) in which there are two types of steps: discrete steps and delay steps. A discrete step corresponds to firing a labeled transition of B. A delay step corresponds to letting time progress on a given state. An execution sequence of B is a sequence of such transitions with an alternance between discrete and delay steps. The definition of the semantics of B is given below. Definition 4. The semantics of an atomic component B = (L, P, T, C, tpc) is a transition system S B = (Q, Σ, -→) where:

• Q = L × T (C) is the set of states,
• Σ = P ∪ Z ≥0 is the set of labels: ports or time values,

• -→ is the set of labeled transitions defined as follows:

-Discrete seps. Let (ℓ, t) and (ℓ ′ , t ′ ) be two state and p ∈ P . We have (ℓ, t)

p - → (ℓ ′ , t ′ ) where t ′ = t[r → 0] if transition τ = (ℓ, p, tc, r, ℓ ′
) is in T and tc(t) evaluates to true. Notice that the execution of a discrete step is timeless.

-Delay steps. Let (ℓ, t) be a state and δ ∈ Z ≥0 be a delay. We have (ℓ, t) δ -→ (ℓ, t+δ) if tpc ℓ (t + δ) evaluates to true, where t + δ is the usual notation for the valuation defined by (t + δ)(c) = t(c) + δ for any c ∈ C.

A transition τ = (ℓ, p, tc, r, ℓ ′ ) can be fired from state (ℓ, t) if its corresponding timing constraint tc evaluates to true with respect to the clocks valuation t, i.e. tc(t) = true.

Time can progress by δ from state (ℓ, t) only if it is allowed by the time progress condition of ℓ, i.e. tpc ℓ evaluates to true for the valuation t + δ.

The definition of an execution sequence of B is as follows:

Definition 5. A finite (resp. infinite) execution sequence of B = (L, P, T, C, tpc) from an initial state (ℓ 0 , t 0 ) is a sequence that alterns discrete and time steps:

(ℓ i , t i ) σ i -→ (ℓ i+1 , t i+1 )
where σ i ∈ P ∪ Z ≥0 and i ∈ {0, 1, . . . , n}.

Remark.

The semantics of timed automata presented here is slightly different from the one found in [START_REF] Alur | A theory of timed automata[END_REF], as we consider time progress conditions instead of invariants. In contrast to invariant, an atomic component B may reach a state (ℓ, t) violating the corresponding time progress condition tpc ℓ . In this case B cannot wait and is forced to execute a transition from (ℓ, t). In this thesis, we consider systems that cannot reach states violating time progress conditions. A state (ℓ, t) from which B can neither execute a transition nor wait is a timelock [START_REF] Tripakis | Verifying progress in timed systems[END_REF]. In this thesis, we also consider systems that cannot reach timelocks. 

= {ℓ 1 , ℓ 2 }, P = {sync, set}, C = {c}, T = { τ 1 =(ℓ 1 , sync, true, {c}, ℓ 2 ), τ 2 =(ℓ 2 , set, c ≥ l, ∅, ℓ 1
)} where l ∈ Z ≥0 , and tpc is defined as follows:

• tpc(ℓ 1 ) = true.

• tpc(ℓ 2 ) = c ≤ u, u ∈ Z ≥0 such that l ≤ u.
Notice that when a time progress condition (resp. timing constraint) is not shown on the graphical representation of a location (resp. transition), we consider true as default value.

Consider an execution sequence from state (ℓ 1 , 0):

• Since the time progress condition of location ℓ 1 is true, B can wait infinitely at this location. Thus, any delay transition δ 1 ∈ Z ≥0 is possible from (ℓ 1 , 0) ,i.e. (ℓ 1 , 0)

δ 1 -→ (ℓ 1 , δ 1
). Since the only transition issued from ℓ 1 is τ 1 with label port sync and with timing constraint true, the discrete step sync is possible from state (ℓ 1 , δ 1 ), i.e. (ℓ 1 , δ 1 ) sync -→ (ℓ 2 , 0). This discrete step is always possible from (ℓ 1 , δ 1 ), and it is the only one possible from this state. However, any delay step is also possible from (ℓ 1 , δ 1 ).

• From state (ℓ 2 , 0), time cannot progress more than u time units due to the time progress condition of location ℓ 2 . Thus, any delay step δ 2 ≤ u is possible from (ℓ 2 , 0). Since the only transition issued from ℓ 2 is τ 2 with labeled port set and a timing constraint c ≥ l, the discrete transition set is possible if δ 2 satisfies l ≤ δ 2 .

To summarize the execution sequences of the abstract behavior B from the initial state (ℓ 1 , 0) can be written in following form:

(ℓ 1 , 0) δ 1 -→ (ℓ 1 , δ 1 ) sync ---→ (ℓ 2 , 0) δ 2 -→ (ℓ 2 , δ 2 ) set --→ (ℓ 1 , δ 2 )
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Modeling Interactions

We compose a set of n components behaviors {B i = (L i , P i , T i , C i , tpc i )} n i=1 by using interactions. We assume that their sets of ports and clocks are disjoint, i.e. for all i = j we have P i ∩ P j = ∅ and C i ∩ C j = ∅. We define the set P = n i=1 P i of all ports in the composition. Interactions are explicitly defined as subsets of ports. Definition 6. An interaction a is a non-empty subset a ⊆ P of ports, such that ∀i ∈ {1, . . . , n}, |a ∩ P i | ≤ 1. We often denote a = {p i } i∈I , where I ⊆ {1, . . . , n} contains the indexes of components participating in a and p i is the only port in P i ∩ a.

We denote by part(a) the set of components that have ports participating in a. The set part(a) is formally defined as:

part(a) = {B i | P i ∩ a = ∅}
The interaction model is specified by a set of interactions γ ⊆ 2 P . Interactions of γ can be enabled or disabled. An interaction a is enabled iff, for all i ∈ {1, . . . , n}, the port a ∩ P i is enabled in B i . That is, an interaction is enabled if each port that is participating in this interaction is enabled. An interaction is disabled if there exist i ∈ {1, . . . , n} for which the port a ∩ P i is disabled in B i . That is, an interaction is disabled if there exists at least a port, participating in this interaction, that is disabled.

Modeling Priorities

In a behavior, more than one interaction can be enabled at the same time, introducing a degree of non-determinism. This can be restricted with priorities by filtering the possible interactions enabled at a given state. The formal definition for a priority is given below. Definition 7. A priority is defined by a relation π ⊆ γ × γ. where γ is a set of interactions. We write aπa ′ for (a, a ′ ) ∈ π to express the fact that a has weaker priority than a ′ .

Note that Definition7 defines static priorities. This definition could be extended to dynamic priorities that depend on the system state as presented in [START_REF] Basu | Modeling heterogeneous real-time components in BIP[END_REF]. In this thesis, we focus only on static priorities.

Composition of Atomic Components

Given a set of component {B 1 , . . . , B n }, an interaction model γ and a priority model π, a composite component denoted by GL(B 1 , . . . B n ) is obtained by applying a glue GL to components B 1 , . . . , B n where GL is limited to interactions (i.e. GL = γ), or can correspond to interactions subject to priorities (i.e. GL = γπ). For each of them we define the semantics below.

Definition 8. The semantics of the composite component γ(B n , . . . , B n ), where B i =(L i ,P i , T i , C i , tpc i ) are atomic components with semantics S B i = (Q i , Σ i , -→ i ), is the transition system S γ = (Q, Σ, -→ γ ) where:

• Q = L × T (C), where L = L 1 × . . . × L n
is the set of global locations and C = n i=1 C i is the global set of clocks. We write a global location as ℓ = (ℓ 1 , . . . , ℓ n ) where ℓ i ∈ L i for all i, and a global clocks valuation as t = (t 1 , . . . , t n ) where t i is a valuation of the clocks C i for all i.

• Σ = γ ∪ Z ≥0 .
• -→ γ is the set of labeled transitions defined by the following rules:

-Discrete steps:

Interaction a = {p i } i∈I ∈ γ ∀i ∈ I (ℓ i , t i ) p i -→ i (ℓ ′ i , t ′ i ) ∀i ∈ I (ℓ ′ i , t ′ i ) = (ℓ i , t i ) (ℓ, t) a -→ γ (ℓ ′ , t ′ )
-Delay steps:

Delay δ ∈ Z ≥0 ∀i ∈ {1, . . . , n} tpc ℓ i (t + δ) (ℓ, t) δ -→ γ (ℓ, t + δ)
In Definition 8, discrete steps correspond to the execution of interactions. An interaction a = {p i } i∈I ∈ γ can execute from a global state (ℓ, t), where ℓ = (ℓ 1 , . . . , ℓ n ) and t = (t 1 , ..., t n ), if for each i ∈ I the corresponding component B i can execute a transition labeled by p i from its local state (ℓ i , t i ). That is, from state (ℓ i , t i ) there exists a transition τ i = (ℓ i , p i , tc i , r i , ℓ ′ i ) ∈ T i where the timing constraint tc i evaluates to true at the clocks valuation t i .

From global state (ℓ, t), a delay transition corresponds to letting time progress by δ at location ℓ. Time is allowed to progress by δ if it is allowed by the time progress condition tpc ℓ i of each component B i , i ∈ {1, . . . , n}. Definition 9. Let S γ (Q, Σ, -→ γ ) be the semantics of γ(B n , . . . , B n ). We define the semantics of πγ(B n , . . . , B n ) as the labeled transition system S π =(Q, Σ, -→ π ) where -→ π restricts discrete steps defined by -→ γ as follows:

Prio (ℓ, t) a -→ γ (ℓ ′ , t ′ ) ∀a ′ ∈ γ aπa ′ ⇒ (ℓ, t) a ′ -→ π (ℓ, t) a -→ π (ℓ ′ , t ′ )
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From a state (ℓ, t), an interaction a ∈ γ can execute if (1) a is enabled at (ℓ, t) (i.e.such that (ℓ, t) a -→ γ (ℓ ′ , t ′ )) and ( 2) each interaction a ′ that has higher priority (i.e. aπa ′ ) is not enabled at state (ℓ, t) (i.e. (ℓ, t) • interactions γ = {a 1 , a 2 , a 3 } are defined by a 1 = {sync 1 , sync 2 , sync 3 }, a 2 = {set 1 , get 1 } and a 3 = {set 2 , get 2 }, and

a ′ -→ γ ). Example 2.
• priority π is such that a 2 πa 3 .
From the initial location ((ℓ 1 1 , ℓ 1 , ℓ 1 2 ), 0), it can be easily shown that the execution sequences of the system have the following form:

((ℓ 1 1 , ℓ 1 , ℓ 1 2 ), 0) a 1 -→ π ((ℓ 2 1 , ℓ 2 , ℓ 2 2 ), 0) 5 -→ π ((ℓ 2 1 , ℓ 2 , ℓ 2 
2 ), 5)

a 3 -→ π ((ℓ 2 1 , ℓ 3 , ℓ 1 2 ), 5) δ -→ π ((ℓ 2 1 , ℓ 3 , ℓ 1 2 ), 5 + δ) a 2 -→ π ((ℓ 1 1 , ℓ 1 , ℓ 1 2 ), 5 + δ) a 1 -→ π ((ℓ 2 1 , ℓ 2 , ℓ 2 
2 ), 0), where 5 ≤ δ ≤ 15. Notice that control location err cannot be reached in getter 1 due to the application of priority a 2 πa 3 . 

ℓ 1 1 ℓ 1 2 a 2 πa 3 sync 1 {c 1 } sync ℓ 3 ℓ 2 sync 2 {c 2 } ℓ 2 1 ℓ 2 2 get 2 err get 1 c 2 ≤ 5 c 1 ≤ 20 set 1 set 2 c 2 ≥ 5 c 1 ≥ 10 getter setter 2 setter 1 ℓ 1 get 1 γ = {a 1 = {sync 1 , sync, sync 2 }, a 2 = {set 1 , get 1 }, a 3 = {set 2 , get 2 }}

Concrete Models of BIP

Abstract models from the previous section focus on control. We now present how data is handled in BIP. Data allows representation of complex behavior using Boolean guards expressed over variables to prevent transitions and interactions. Data is modified through update functions. The mechanisms to handle data added on top of the abstract model constitute the concrete model of BIP.

Preliminary definitions

Petri Nets

In concrete models, atomic components are described using Perti Nets. The definition of Petni Nets is given below. Definition 10. A Petri net is defined by a triple S = (L, P, T ), where L is a finite set of places, P is a finite set of ports, and T ⊆ 2 L × P × 2 L is a set of transitions. A transition τ is a triple ( • τ, p, τ • ), where • τ is the set of input places of τ and τ • is the set of output places of τ .

A Petri net is often modeled as a directed bipartite graph G = (L ∪ T, E). Places are represented by circular vertices and transitions are represented by rectangular vertices (see Figure 2.4). The set of directed edges E is the union of the sets

{(ℓ, τ ) ∈ L × T | ℓ ∈ • τ } and {(τ, ℓ) ∈ T × L | ℓ ∈ τ • }.
We depict the state of a Petri net by marking its places with tokens [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. We say that a place is marked if it contains a token. Formally, a marking is an application m : L → N that indicates how many tokens are in each place. A transition τ is enabled at a state if all its input places • τ are marked. Formally, τ is enabled if wor each ℓ ∈ • τ we have m(ℓ) > 0. Upon the execution of τ at marking m, one token is removed in each place of τ and one token is added to each output place of τ . Formally, by executing τ at marking m, one reaches the marking m ′ characterized by:

∀ℓ ∈ L m ′ (ℓ) = m(ℓ) -τ -(ℓ) + τ + (ℓ) (2.3) 
where

τ -(ℓ) = 1 if ℓ ∈ • τ 0 otherwise and τ + (ℓ) = 1 if ℓ ∈ τ • 0 otherwise.
In this thesis, we focus on 1-Safe Petri nets. Given an initial state m 0 , a Petri net (L, P, T ) is 1-Safe (also commonly referred as 1-bounded or simply safe) if for any execution from m 0 output places of enabled transitions are never marked. The behavior of a 1-Safe Petri net (L, P, T ) is defined as a finite labeled transition system (2 L , P, →), where 2 L is the set of states, P is the set of ports, and →⊆ 2 L × P × 2 L is the set of transitions defined as follows. We have (m, a, m ′ ) ∈→, denoted by m

a → m ′ , if there exists τ = ( • τ, a, τ • ) ∈ T such that • τ ⊆ m and m ′ = (m\ • τ ) ∪ τ • .
In this case, we say that a is enabled at m. We say that the Petri net (L, P, T ) is deterministic for initial state m 0 if for any execution from m 0 two transitions τ 1 = τ 2 labeled by same port p are not enabled at the state. Example 3. Figure 2.4 illustrates the execution of a transition on the marking in a Petri net which has five places {ℓ 1 , . . . , ℓ 5 } and three transitions {p 1 , p 2 , p 3 }. The places containing a token are depicted with gray background. The marking on the right shows the resulting state after executing transition p 2 from the marking giving on the left.

Variables

Given a variable x, the domain of x is the set D(x) of all values possibly taken by x. For example, if x is an integer variable then D(x) = Z ≥0 . Given a set of variables X, a valuation High-Level BIP Models of X is a function v : X → x∈X D(x) assigning a value to each variable of X, that is, such that for all variable x we have v(x) ∈ D(x). We denote by V(X) the set of all possible valuations of X. The restriction of v ∈ V(X) to a subset of variables X ′ ⊆ X is the valuation

v |X ′ ∈ V(X ′ ) that coincides with v on X ′ , that is, v |X ′ (x) = v(x) for all x ∈ X ′ . When it is not ambiguous, we write v also for v |X ′ .
Given valuations v ∈ V(X) and v ′ ∈ V(X ′ ) of variables X and X ′ such that X ′ ⊆ X, we denote by v[X ′ ← v ′ ] the variables valuation of X that coincides with v ′ for all variables of X ′ , and with v for all variables of X \ X ′ . It is defined by:

v[X ′ ← v ′ ](x) = v ′ (x) if x ∈ X ′ v(x) otherwise.

Guard

A guard is a predicate on a set of variables X. Given a guard g on X and a valuation v ∈ V(X), we denote by g(v) ∈ {false, true} the evaluation of g for v.

Update function

An update function f : V(X) → V(X) for variables X is used to assign new values f (v) to variables in X from their current values v. It extends to any larger set of variables

X ′ ⊇ X considering that extra variables X ′ \ X are unchanged, i.e., f transforms v ∈ V(X ′ ) into v[X ← f (v)].

Atomic Components

In concrete BIP models, atomic components are Petri nets extended with a set of variables and clocks. Ports are associated with some variables and are used for communication among different components. Each transition of the Petri nets:

• is labeled by a port,

• is guarded by a predicate on variables and a timing constraint on clocks whose bounds may be arbitrary expressions1 on variables in addition to constant values (for example, c ≥ f (v) is a timing constraint on clock c that depends of variable v),

• and triggers an update function that modifies a subset of variables and resets a subset of clocks.

Each place of the Petri net defines a time progress condition on clocks whose bounds may also be arbitrary expressions on variables.

Definition 11. An atomic component B is defined by B = (L, P , T , C, X, {X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T , {tpc ℓ } ℓ∈L )
where:

• (L, P, T ) is a deterministic 1-Safe Petri net.

• C is a finite set of clocks.

• X is a finite set of discrete variables.

• For each port p ∈ P , X p ⊆ X is the set of variables exported by p (i.e., variables visible from outside the component through port p ).

• For each transition τ ∈ T , g τ is a guard on X, tc τ is a timing constraint over C, f τ : V(X) -→ V(X) is a function that updates the set of variables X and r τ ⊆ C is a subset of clocks that are reset by the transition τ .

• For each place ℓ ∈ L, tpc ℓ is a time progress condition over C. The variable x is associated to port set, that is, the variable x can be read and written when an interaction involving port set takes place. The update function associated to transition labeled by sync is a pseudo code that increments the value of x by 1.

Definition 12. The semantics of an atomic component B = (L, P , T , C, X,

{X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T , {tpc ℓ } ℓ∈L
) is defined as the labeled transition system S B =(Q, Σ, -→), where:

• Q = 2 L × V(X) × T (C)
is the set of states,

• Σ = P ∪ Z ≥0 is set of labels: ports or time values.

• -→ is the set of labeled transitions defined as follows.

High-Level BIP Models -Discrete steps: Let (m, v, t) and (m ′ , v ′ , t ′ ) be two states and p ∈ P be a port. We have (m, v, t)

p(v ′′ ) ---→ (m ′ , v ′ , t ′ ), if (1) transition τ = ( • τ, p, τ • ) is enabled at m in the Petri net (L, P, T ), (2) g τ (v) ∧ tc τ (t) is true, (3) v ′ = f τ (v[X p ← v ′′ ]
) and (4)

t ′ = t[r τ → 0]
, where r τ is the set of clocks reset by τ . In this case, we say that p is enabled from (m, v, t).

-Delay steps: Let (m, v, t) be a state and δ ∈ Z ≥0 be a delay. We have (m, v, t)

δ - → (m, v, t + δ) if ℓ∈m tpc ℓ (t + δ) is true.
An atomic component B can execute a transition τ = (m, p, m ′ ) from a state (m, v, t) if its Boolean guard is met by the valuation of variables v and its timing constraint is met by the valuation t. The execution of τ moves tokens of places • τ to τ • , updates a subset of variables in X and resets clocks in r τ . From state (m, v, t), time can progress by δ > 0 if time progress conditions of places belonging to m stays true at t + δ i.e. ℓ∈m tpc ℓ (t + δ) = true.

Petri nets are a well suited formalism for encoding parallel and concurrent execution. As we will see in the next chapters, we use 1-safe Petri nets in order to express schedulers introduced by our method. Any 1-safe Petri net (L, P, T ) can be transformed into an equivalent automaton (2 L , P, T ) where 2 L is the set of locations [START_REF] Droste | From petri nets to automata with concurrency[END_REF]. In particular, an atomic component whose behavior is described by a Petri net could transformed into an equivalent atomic component whose behavior is described by a timed automaton. In fact, each transition τ = (m 1 , p, m 2 ) in the atomic component with Petri net is transformed into a transition τ ′ = (ℓ 1 , p, ℓ 2 ) in the equivalent atomic component with timed automaton where ℓ 1 = ℓ∈m 1 |m 1 (ℓ>0) ℓ and ℓ 2 = {ℓ∈m 2 |m 2 (ℓ)>0} ℓ. The time progress condition of locations ℓ 1 and ℓ 2 are defined by {ℓ∈m 1 |m 1 (ℓ)>0} tpc ℓ and {ℓ∈m 2 |m 2 (ℓ)>0} tpc ℓ , respectively. Transition τ ′ has the same Boolean guard, timing constraint, clocks reset and update function as transition τ .

Example 5. Figure 2.6 depicts a transformation of two Petri net transitions (a) into two automaton transitions (b). For instance, consider transition τ 1 = (m 1 , p 1 , m 2 ) in the Petri net, where m 1 and m 2 are defined such that:

• m 1 (ℓ 1 ) = m 1 (ℓ 2 ) = m 1 (ℓ 3 ) = 1, m 1 (ℓ 4 ) = m 1 (ℓ 5 ) = m 1 (ℓ 6 ) = 0 and • m 1 (ℓ 4 ) = m 1 (ℓ 5 ) = m 1 (ℓ 3 ) = 1, m 1 (ℓ 1 ) = m 1 (ℓ 2 ) = m 1 (ℓ 6 ) = 0.

The transformation of this transition in the automaton gives transition

τ ′ 1 = (ℓ 1 × ℓ 2 × ℓ 3 , p 1 , ℓ 4 × ℓ 5 × ℓ 3 ).
In the sequel, we consider atomic components involving simple automata instead of general Petri nets, that is, in which transitions of components have a single input place and a single output place. Petri nets will only be used for new components introduced by model transformations needed by our method and presented in Chapters 4, 5 and 6

Interactions and Connectors

Similarly to atomic components, interactions are also taking into account variables. An interaction consists of a set of ports, each one exporting a set of variables. The set of these variables can be accessed by the interaction. More precisely, a predicate on variables called guard, has to be true to enable the interaction. A data transfer function modifies the variables upon the execution of the interaction. Consider a set of atomic component {B 1 , . . . , B n }, where for each i ∈ {1, . . . , n} B i is defined as

tpc 1 ∧ tpc 2 ∧ tpc 3 ℓ1 × ℓ2 × ℓ3 ℓ4 × ℓ5 × ℓ3 ℓ1 × ℓ6 × ℓ7 p1 g1 tc1 r1 p2 g2 tc2 r2
(L i , P i , T i , C i , X i , {X p } p∈P i , {g τ } τ ∈T i , {tc τ } τ ∈T i , {r τ } τ ∈T i ,{f τ } τ ∈T i , {tpc ℓ } ℓ∈L i ).
We require that the sets of locations, ports, clocks, and variables of these components are pairwise disjoint i.e., for any two i = j from {1, . . . , n}, we have L i ∩ L j = ∅, P i ∩ P j = ∅, C i ∩ C j = ∅, and X i ∩ X j = ∅. We denote P = n i=1 P i the set of all the ports in the composite component.

Definition 13. An interaction a is a triple (P a , G a , F a ), where:

• P a is a set of ports such that ∀i ∈ {1, . . . , n} |P a ∩ P i | ≤ 1. We denote P a = {p i } i∈I ,
where I ⊆ {1, . . . , n} is the set of indices of participants in a and p i is the only port in

P a ∩ P i ,
• G a is a predicate defined over the set X a = n i=1 X p i of variables involved in a,

• F a is a data transfer function that modifies the variables X a , that is, F a : V(X a ) -→ V(X a ).

Connectors

In BIP, connectors are used to represent sets of related interactions in a compact manner. A connector is defined over a set of ports P that forms its support and, defines a subset of interactions, which is, a subset of 2 P . A connector may export a port that is used for the construction of hierarchical connectors.
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Definition 14. A connector γ is a triple (P γ , A γ , p), where:

• P γ is the support set of γ, that is, the set of ports that γ synchronizes,

• A γ is the set of interactions,

• p is the exported port by the connector γ.

There are two types of ports (trigger or synchron) which define interactions of a connector. A trigger (denoted by a triangle) is an active port that can initiate an interaction without synchronizing with other ports. A synchron (denoted by a circle) is a passive port that needs synchronization with other ports.

(a) Rendez-vous (b) Broadcast In BIP, we distinguish between two types of models for synchronization on connectors.

p 1 p 2 p 3 p 1 p 2 p 3 γ = {p1p2p3} γ = {p1, p1p2, p1p2p3}
• Strong synchronization or Rendez-vous: The only feasible interaction is the maximal one, i.e. it contains all the ports of γ. This corresponds to the case where all the ports of the support set are synchrons. Figure 2.7 (a) depicts an example of Rendez-vous connector. This connector defines only one interaction γ = {p 1 p 2 p 3 }.

• Weak synchronization or Broadcast: All feasible interactions are those containing at least one trigger port. This port "initiates" the interaction even if all other ports are disabled. Figure 2.7 (b) depicts an example of Broadcast connector including one trigger port p 1 . This connector contains the set of all interactions involving port p 1 , that is,

γ = {p 1 , p 1 p 2 , p 1 p 2 p 3 }.
Connectors provide mechanisms for handling data. For each connector, the data transfer function F a of an interaction a is specified by an up and down actions. The action up updates local variables of the connector, from the values of variables exported by the ports. Conversely, the action down updates the variables exported by the ports, from the values of the connector variables. The guard G a of the interaction a is a Boolean expression. Example 6. Figure 2.8 shows a rendez-vous connector. The connector involves three ports p 1 , p 2 and p 3 exporting variables x 1 , x 2 and x 3 , respectively. The only feasible interaction is p 1 p 2 p 3 that takes place only if the guard x 1 > 0 ∧ x 2 > 0 ∧ x 1 3 > 0 evaluates to true. If the interaction is selected for execution, the action up computes the maximum of the variables associated to the ports and stores it in the connector variable y. The action down sets the variables associated to the ports to the maximum values that is stored in y. Hierarchical connectors A hierarchical connector is obtained by combining simple connectors to form a structure of connectors acting as a single connector. This is achieved by including in the support (set of ports that forms the connector) of a top level connector the exported port of a low level connector. Hierarchical connectors are formalized using the algebra of connectors defined in [START_REF] Bliudze | Causal semantics for the algebra of connectors[END_REF]. In this thesis, we do not consider hierarchical connectors. Therefore, we do not formalize here the construction of hierarchical connectors. Interested readers may refer to [START_REF] Jaber | Implémentations Centralisée et Répartie de Systèmes Corrects par construction á base des Composants par Transformations Source-á-source dans BIP[END_REF] for more details. Instead, we give two simple examples as shown in Figure 2.9.

(a) Atomic Broadcast (b) Causality Chain • The connector (a) is called Atomic Broadcast [START_REF] Bliudze | Causal semantics for the algebra of connectors[END_REF]. The bottom connector is a rendezvous synchronizing ports p 2 and p 3 and exporting the port u. This connector defines only interaction p 1 p 2 . The top connector is a broadcast synchronizing ports p 1 and u. Thus, it allows interactions p 1 and p 1 u. Therefore, the feasible interactions defined by this connector are given by γ = {p 1 , p 1 p 2 p 3 }.

p 1 p 2 p 3 p 1 p 2 p 3 γ = {p1, p1p2p3} γ = {p1, p1p2, p1p2p3} u u
• The connector (b) is called Causality Chain [START_REF] Bliudze | Causal semantics for the algebra of connectors[END_REF]. The bottom connector is a broadcast synchronizing ports p 1 and p 2 and exporting the port u. This connector allows interactions p 2 and p 2 p 3 . The top connector is similar to the bottom connector, allowing interactions: p 1 and p 1 u. Therefore, the feasible interactions defined by this connector are given by γ = {p 1 , p 1 p 2 , p 1 p 2 p 3 }.

Notice that hierarchical connectors can be transformed into "flat" connectors as defined in Definition 14 using the transformation method described in [START_REF] Bozga | Source-to-source architecture transformation for performance optimization in BIP[END_REF].

Priority rules

Priorities are defined in order to reduce non-determinism in the system, that is, they are used to filter interactions among enabled ones. As already mentioned, in this thesis, we use static priorities that does not depend on system states. Therefore, Definition 7 remains unchanged for concrete BIP models.

Composition of components

We compose the atomic components using interactions and priorities. Given a set of components {B 1 , . . . , B n } and a set of interactions γ, we denote by γ(B 1 , . . . , B n ) the composite component resulting from the composition of these components using interactions γ. Similarly, given a priority π, we denote by πγ(B 1 , . . . , B n ) the behavior obtained by applying both interactions γ and priority π. Below, we define the semantics of the two models.

Definition 15. The semantics of the composite component γ(B n , . . . , B n ), where

B i = (L i , P i , T i , C i , X i , {X p } p∈P i , {g τ } τ ∈T i , {tc τ } τ ∈T i , {r τ } τ ∈T i ,{f τ } τ ∈T i , {tpc ℓ } ℓ∈L i ) are atomic com- ponents, is the transition system S γ = (Q, Σ, -→ γ ) where: • Q = L × V(X) × T (C) is the set of global states, where L = L 1 × . . . × L n , X = n i=1 X i and C = n i=1 C i . We write a state q = (ℓ, v, t) ∈ Q where ℓ = (ℓ 1 , . . . , ℓ n ) ∈ L is a global location, v = (v 1 , . . . , v n ) ∈ V(X) is a global variables valuation and t = (t 1 , . . . , t n ) ∈ T (C) is a global clocks valuation. • Σ = γ ∪ Z ≥0 is the set of labels,
• -→ γ is the set of labeled transitions defined by the following rule:

-Discrete steps:

Interaction a = ({p i } i∈I , G a , F a ) ∈ γ G a ({v i } i∈I ) {v ′′ i } i∈I = F a ({v i } i∈I ) ∀i ∈ I (ℓ i , v i , t i ) p i (v" i ) -→ i (ℓ ′ i , v ′ i , t ′ i ) ∀i ∈ I (ℓ ′ i , v ′ i , t ′ i ) = (ℓ i , v i , t i ) (ℓ, v, t) a -→ γ (ℓ ′ , v ′ , t ′ ) -Delay steps: Delay δ ∈ Z ≥0 ∀i ∈ {1, . . . , n} tpc ℓ i δ(t i + δ) (ℓ, v, t) δ -→ γ (ℓ, v, t + δ) An interaction a = {{p i } i∈I , G a , F a } can execute from state (ℓ, v, t) if (1)
for each port p i , the corresponding atomic component B i can execute a transition labeled by p i from the projection (ℓ i , v i , t i ) of (ℓ, v, t) on B i , and (2) the guard G a of the interaction evaluates to true on the variables exported by the ports participating in interaction a. Execution of interaction a triggers the function F a which modifies the variables of the components exported by ports p i . The new values obtained, encoded in the valuations v ′′ i are then processed by the components' transitions. The clocks valuation t ′ is obtained when components reset clocks according to the set of clocks reset associated to their transitions. The states of components that do not participate in the interaction remain unchanged.

A delay transition δ can execute from a state (ℓ, v, t) if it is allowed by the time progress condition tpc ℓ i of each component B i , i ∈ {1, . . . , n}.

Definition 16. Let S γ = (Q, Σ, -→ γ ) be the semantics of γ(B n , . . . , B n ). The semantics of πγ(B n , . . . , B n ), is the transition system S π = (Q, Σ, -→ π )
where -→ π restricts discrete transitions of -→ γ as follows:

Prio (ℓ, v, t) a -→ γ (ℓ ′ , v ′ , t ′ ) ∀a ′ ∈ γ aπa ′ ⇒ (ℓ, v, t) a ′ -→ γ (ℓ, v, t) a -→ π (ℓ ′ , v ′ , t ′ )
The application of priority π filters out the interactions which are not maximal. An interaction a = ({p i } i∈I , G a , F a ) executes from state q = (ℓ, v, t) if any other interaction a ′ having higher priority is disabled from that state. Components setter i have variables x i associated to ports set i . Whenever interaction a 1 occurs, transitions sync i of components setter i increments variable x i by one. Interactions a 2 and a 3 transmits the value of variables x i of components setter i to component getter 1 that stores them in variables y i . Component getter 1 computes f 2 (y 2 ) whenever interaction a 3 occurs. The result is stored in variable y. Then, it computes f 1 (y, y 1 ) whenever interaction a 2 occurs. The timing constraints in setter 1 and setter 2 imposes that a 2 executes after a 3 . Thus a correct execution of the model does not lead to location err in component getter 1 .

ℓ 2 2 sync 3 set 2 ℓ 1 2 c 2 ≥ 5 c 2 := 0 x2 f1(y, y1) get1 get2 sync ℓ 1 ℓ 2 err ℓ 3 y2 y1 sync 1 c 1 := 0 ℓ 2 1 set 1 ℓ 1 1 x1 := x1 + 1 sync 1 x1 a 1 sync set 1 set 2 y1 := x1 y2 := x2 a 3 y a 2 c 1 ≥ 10 get2 y = f2(y2) Setter1 Setter2 Getter get1 get1 c 2 ≤ 20 sync 2 x2 := x2 + 1 a 2 πa 3 c 1 ≤ 20

High-Level BIP Models

Conclusion

In this chapter, we presented the component framework BIP which is a formalism for modeling heterogeneous component-based system. The description of systems is allowed through the composition of atomic components characterized by their behavior and their interfaces (communication ports). BIP relies on two operators for the composition: Interaction and Priority. Interactions are used to specify multiparty synchronizations between components. Priorities are used to restrict the system behavior in order to reduce non-determinism.

The BIP semantics presented in this chapter assumes atomic execution of interactions. This semantics is called global state semantics. It assumes that the system moves from a global state to another global state. Implementing such semantics provides sequential execution of the system.

In the next chapter, we present partial state models which represent high-level representation for parallel execution of BIP models. We study conditions for partial state models to be observationally equivalent to original BIP models.

Partial State Models

The semantic model of BIP presented in the previous chapter is based on the notion of global states. That is, at each state of the system, a complete information about components states is available and the execution of transitions is atomic. These models are called global state models. In this chapter, we present partial state models in which the assumption of atomic execution of transitions is discarded. In fact, in real systems, transitions in components could not be instantaneous. They are necessarily subject to execution times when transitions correspond to computations, or also communication delays when the transitions correspond to sending messages. During the transition execution, the component state becomes unknown. In order to model these unknown states, we derive the partial state model from the atomic component where we distinguish between global states where the component is ready to interact and partial states where the component is busy by the execution.

The main objective of this chapter is to identify conditions for which the partial state model is observationally equivalent to the global state model. Preservation can be achieved by strengthening the premises of the operational semantics rules by a predicate called safe that ensure safe execution from partial states. This predicate depends on the future state reached by components after execution. In order to obtain an atomic component with partial states B ⊥ from the corresponding atomic component B, we follow the approach presented in [START_REF] Basu | Distributed semantics and implementation for systems with interaction and priority[END_REF]. We split each transition τ = (ℓ, p, ℓ ′ ) of B into two transitions: (1) a visible transition labeled by p indicating the beginning of the execution of transition τ (2) and an internal transition labeled by β indicating the end of the execution of transition τ . These transitions are separated by a busy location added in Partial State Models the atomic component, modeling the fact that the components is in unknown state when it executes (see Figure 3.1).

Partial State Semantics

ℓ ℓ ′ p tc g r f ⊥ -→ ⊥τ ℓ ′ ℓ p tc g r β f Transition τ = (ℓ, p, ℓ ′ ) in the atomic component.
Corresponding sequences of transitions in the partial state model. 

= (L, P , T , C, X,{X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {r τ } τ ∈T ,{f τ } τ ∈T , {tpc ℓ } ℓ∈L ). the corresponding atomic component with partial state is defined by B ⊥ = (L ∪ L ⊥ , P ∪ {β}, T ⊥ , C, X, {X p } p∈P , {g τ } τ ∈T ⊥ , {tc τ } τ ∈T ⊥ , {r τ } τ ∈T ⊥ ,{f τ } τ ∈T ⊥ , {tpc ℓ } ℓ∈L∪L ⊥ )
where:

• L ⊥ = {⊥ τ | τ ∈ T } is the set of busy locations.
• β is an additional port.

• T ⊥ ⊆ (L ∪ L ⊥ ) × (P ∪ {β}) × (L ∪ L ⊥ ) where if τ = (ℓ, p, ℓ ′
) is a transition in T , then the corresponding transitions in T ⊥ are τ p = (ℓ, p, ⊥ τ ) and τ β = (⊥ τ , β, ℓ ′ ). Transition τ p has a Boolean guard g τp = g τ , a timing constraint tc τp = tc τ , reset clocks r τp = r τ , and no update function. Transition τ β has an update function f τp = f τ .

• The time progress condition on locations L ⊥ are true.

Note that B ⊥ is an atomic component whose semantics is given by Definition 12.

The execution of a transition τ = (ℓ, p, ℓ ′ ) of B corresponds to executing two transitions in the corresponding partial state model B ⊥ . First, a visible (observable) transition τ p = (ℓ, p, ⊥ τ ) marks the beginning of the execution of τ . This transition defines the same timing constraint, Boolean guard and clocks reset defined in τ . Second, an internal (unobservable) transition τ β = (⊥ τ , β, ℓ ′ ) marks the end of the execution of τ . It defines the same update function of τ .

The time progress condition of the busy location ⊥ τ is true. The latter models the fact that transition τ may take arbitrary time to execute.

In the partial state model B ⊥ , we assume arbitrary execution times for transitions, ranging from 0 to +∞, which is modeled by the time progress condition true for busy states. Notice that B ⊥ can be further constrained if bounds of the execution times of transitions are known. For instance, if we know an estimate of the worst-case execution time of a transition τ , denoted by W CET (τ ), the associated time progress condition of location ⊥ τ is replaced by x τ ≤ W CET (τ ) instead of true, where x τ is a clock that is reset whenever τ is started. This allows us to statically check the correctness of the application running on the platform, but this is beyond the scope of this thesis.

In a partial state model B ⊥ , the execution of a transition τ = (ℓ, p, tc, r, ℓ ′ ) is followed by a lapse of time δ(τ ) ∈ Z ≥0 at the partial state ⊥ τ , before a β-transition is executed:

(ℓ, v, t) p -→ (⊥ τ , t[r → 0]) δ(τ ) -→ (ℓ ′ , v ′ , t[r → 0] + δ(τ )). (3.1)
This corresponds to the following execution sequence in the atomic component B, if such a sequence is feasible:

(ℓ, v, t) p -→ (q ′ , t[r → 0]) δ(τ ) (ℓ ′ , t[r → 0] + δ(τ )). (3.2)
Notice that the time step δ(τ

) of B ⊥ in (3.1) may not be a time step of B in (3.2) if δ(p)
is not allowed by the time pogress condition of location ℓ ′ , meaning that the partial state model violates time progress conditions defined in the corresponding atomic component. In this case, we say that the considered execution sequence is not time-safe.

A correct implementation must execute only time-safe sequences. Time-safety violations occur in a partial state model when the execution time of an transitions is larger than what is allowed by the time progress conditions of the corresponding atomic component. Correct implementations are obtained for platforms that are sufficiently fast for executing the application without violating time-safety. When this cannot be ensured for a given platform, we propose to detect time-safety violations at run-time and to stop the system in order to prevent the application from incorrect executions.

Composition using Interaction

Let γ(B 1 , . . . , B n ) be a composition of n atomic components {B 1 , . . . , B n } with semantics (Q g , Σ, -→ γ ). The corresponding partial state model is γ(B ⊥ 1 , . . . , B ⊥ n ) where B ⊥ i are the corresponding atomic components with partial states of B i . The semantics of γ(B ⊥ 1 , . . . , B ⊥ n ) is the transition system (Q g ∪ Q p , Σ ∪ {β}, γ ) where:

• Q p is the set of partial states where at least one component is at a busy location.

•

γ is the set of labeled transitions defined as follows.

-Discrete steps:

a = {{p i } i∈I , G a , F a } ∈ γ G a ({v i } i∈I ) {v ′′ i } i∈I = F a ({v i } i∈I ) ∀i ∈ I(ℓ i , v i , t i ) p i (v" i ) -→ i (ℓ ′ i , v ′ i , t ′ i ) ∀i ∈ I(ℓ ′ i , v ′ i , t ′ i ) = (ℓ i , v i , t i ) (ℓ, v, t) a γ (ℓ ′ , v ′ , t ′ ) -Internal steps: ∃i ∈ {1, . . . , n} (ℓ i , v i , t i ) β -→ (ℓ ′ i , v ′ i , t i ) ∀j = i (ℓ ′ j , v ′ j , t j ) = (ℓ j , v j , t j ) (ℓ, v, t) β γ (ℓ ′ , v ′ , t) Partial State Models -Delay steps: δ ∈ Z ≥0 ∀i ∈ {1, . . . , n} tpc ℓ i (t i +δ) (ℓ, v, t) δ γ (ℓ, v, t + δ)
Note that the first and the third inference rules (discrete and delay steps) are the same as for the composition rule in the global sate semantics (Definition 15). The second rule corresponds to the completion of a busy component.

a a B ⊥ 1 B ⊥ 2 B ⊥ 1 B ⊥ 2 B ⊥ 1 B ⊥ 2 B ⊥ 1 B ⊥ 2 β β ℓ 1 ℓ 2 ℓ ′ 1 ℓ ′ 2 β β ℓ 1 ℓ 2 ℓ ′ 1 ℓ ′ 2 β β ℓ 1 ℓ 2 ℓ ′ 1 ℓ ′ 2 p 1 p 2 β β ℓ 1 ℓ 2 ℓ ′ 1 ℓ ′ 2 β β ⊥τ 1 ⊥τ 2 ⊥τ 1 ⊥τ 2 ⊥τ 1 ⊥τ 2 ⊥τ 1 ⊥τ 2 p 1 p 2 p 1 p 2 p 2 p 1
(b) Execution of interaction a in the corresponding partial state model

p 2 p 1 ℓ 1 ℓ 2 ℓ ′ 1 ℓ ′ 2 (a) Execution of interaction a an abstract model B1 B1 B2 B2 p 2 p 1 ℓ 1 ℓ 2 ℓ ′ 2 ℓ ′ 1 Figure 3.2:
Execution of interaction a in the global state model and a corresponding execution in the partial state model.

In the partial state model γ(B ⊥ 1 , . . . , B ⊥ n ), the execution of an interaction a={{p i } i∈I ,G a ,F a } of γ(B 1 , . . . , B n ) can be decomposed as follows. First, the beginning of the execution of a represented in a single transition in γ(B ⊥ 1 , . . . , B ⊥ n ). Second, each component B ⊥ i completes by executing its internal β transition.

Figure 3.2 shows the execution of an interaction a = {{p 1 , p 2 }, -, -} in the global state semantics (a) and its corresponding execution in the partial state semantics (b). In (a) the execution of the interaction a is atomic. That is, components B 1 and B 2 move instantaneously from the global state ((ℓ 1 , ℓ 2 ), v, t) to the global state ((ℓ ′ 1 , ℓ ′ 2 ), v ′ , t ′ ). Whereas, firing interaction a in the partial state model moves the components from global state ((ℓ 1 , ℓ 2 ), v, t) to the partial state ((⊥ τ 1 , ⊥ τ 2 ), v, t ′ ). Then, each component B ⊥ 1 and B ⊥ 2 completes by executing its β transition independently, leading to the global state ((ℓ ′ 1 , ℓ ′ 2 ), v ′ , t ′ ). As explained in [START_REF] Basu | Distributed semantics and implementation for systems with interaction and priority[END_REF], the relation β γ is terminating and confluent. This property leads to the following definition. Definition 18. Let γ(B ⊥ 1 , . . . , B ⊥ n ) be a partial state model. Given a partial state q = (ℓ, v, t) ∈ Q p , we define q g = (ℓ g , v g , t) ∈ Q g , the corresponding global state reached by executing β transitions only (in particular without delay).

Note that q g is unique. This comes from the fact that we consider only deterministic automata for components.

As already explained, the executions of the partial state model B ⊥ corresponding to the atomic component B ⊥ may be not time-safe, due to the execution of disallowed delay steps from busy states. When composing B ⊥ i , the execution of the obtained partial state model γ(B ⊥ 1 , . . . , B ⊥ n ) may be also not time-safe. This is because for each component B ⊥ i that is in a partial location, its time progress condition is true. Thus, from partial state q, time progress is constrained only by time progress conditions of components that are in a stable location.

Example 8. Let γ(B 1 , B 2 , B 3 ) be the composition of two components B 1 , B 2 and B 3 and let γ(B ⊥ 1 , B ⊥ 2 , B ⊥ 
3 ) be its corresponding partial state model. Suppose that B ⊥ 1 , B ⊥ 2 and B ⊥ 3 be at locations ⊥ τ 1 , ⊥ τ 1 and ℓ ′ 3 , respectively (see Figure 3.3(a)). The delay allowed from the partial state

((⊥ τ 1 , ⊥ τ 1 , ℓ ′ 3 ), v, 0) is δ ∈ [0, ∞[.
This is because all time progress conditions of locations ⊥ τ 1 , ⊥ τ 1 and ℓ 3 are true. However, for the corresponding global state Partial State Models

((ℓ ′ 1 , ℓ ′ 2 , ℓ ′ 3 ), v, 0) the allowed delay is restricted only to δ ∈ [0, 5] due to the time progress condition of location ℓ ′ 1 (see Figure 3.3(b)). ℓ ′ 2 ℓ ′ 1 ℓ ′ 3 ⊥τ 1 ⊥τ 3 ℓ 1 ℓ 2 ℓ ′ 2 ℓ ′ 1 ℓ ′ 3 ℓ 3 ⊥τ 2 ℓ 1 ℓ 2 ℓ 3 p 3 p 1 c 1 := 0 p 2 c 2 := 0 c 3 := 0 β β β p 3 c 3 := 0 p 2 c 2 := 0 p 1 c 1 := 0 (a) Delay allowed at the partial state ((⊥τ 1 , ⊥τ 2 , ℓ 3 ), v, 0) is δ ∈ [0, ∞[. (b) Delay allowed at the corresponding global state ((ℓ 1 , ℓ 2 , ℓ 3 ), v, 0) is δ ∈ [0, 5]. c 1 ≤ 5 c 1 ≤ 5 B ⊥ 3 B ⊥ 2 B ⊥ 1 B1 B2 B3

Adding Priority

The behavior of the partial state model πγ(B ⊥ 1 , . . . , B ⊥ n ) is a restriction of γ(B ⊥ 1 , . . . , B ⊥ n ) with respect to the priority π. Its semantics is given by the labeled transition system (Q g ∪ Q p , Σ ∪ {β}, π ) where π restricts the discrete steps of γ as shown follows:

Prio (ℓ, v, t) a γ (ℓ ′ , v ′ , t ′ ) ∀a ′ ∈ γ aπa ′ ⇒ (ℓ, v, t) a ′ γ (ℓ, v, t) a π (ℓ ′ , v ′ , t ′ )
Let a and a ′ ∈ γ be to interactions such that aπa ′ , and let q ∈ Q p be a partial state of πγ(B ⊥ 1 , . . . , B ⊥ n ). Clearly, if interaction a ′ is not enabled at q, interaction a can execute from the partial state q if it is enabled. However, it is possible that the interaction a ′ is enabled at the corresponding global state q g ∈ Q g , which disallows the execution of a from q g . Thus, the partial state model πγ(B ⊥ 1 , . . . , B ⊥ n ) may execute interactions from partial states q that are not allowed by πγ(B 1 , . . . , B n ) from the corresponding global states q g according to the priority π.

Example 9. Let πγ(B 1 , B 2 , B 3 , B 4 ) be a composition of four components. Let a = {{p 1 , p 2 },true,-} and a ′ ={{p 3 ,p 4 },true, -} be two interactions in γ such that aπa ′ . Suppose that timing constraints of p 1 , p 2 , p 3 and p 4 are true Figure 3.4 (a) shows that interaction a is enabled from the partial state q = ((ℓ 1 , ℓ 2 , ⊥ 3 , ⊥ 4 ), v, t). This is because ports p 1 and p 2 are enabled from partial state q. Due to the disabledness of a ′ at partial state q, the priority aπa ′ does not apply and thus, a may execute from q. However, Figure 3.4 (b) shows that a ′ in enabled in the corresponding global state q g = ((ℓ 1 , ℓ 2 , ℓ 3 , ℓ 4 ), v, t), since p 3 and p 4 are enabled at this state. This prevent a from executing at global state q g . Example 10. Consider the composite component πγ(B 1 , B 2 , B 3 ) of Example 2.3. Figure 3.5 shows the corresponding partial state model πγ(B ⊥ 1 , B ⊥ 2 , B ⊥ 3 ). The execution of interaction a 1 requires that all components B ⊥ 1 , B ⊥ 2 and B ⊥ 2 be in global locations ℓ 1 1 , ℓ 1 2 and ℓ 1 3 respectively. After executing a 1 , it is possible, due to the integration of partial states, to reach a (partial) state where

B ⊥ 1 is at ℓ 1 2 , B ⊥ 2 is at ℓ 2 2 and B ⊥ 3 is at ⊥ τ 1 3
. At this partial state, time progress is constrained only by the time progress condition of ℓ 1 2 , i.e. c 1 ≤ 20, as time progress condition of ℓ 2 2 and ⊥ τ 1 3 are true. In addition, a 3 is disabled and the priority cannot apply to a 2 . As a result, it is possible that interaction a 2 executes after a delay δ ∈ [START_REF] Chandy | The drinking philosophers problem[END_REF][START_REF] Henzinger | Giotto: a timetriggered language for embedded programming[END_REF] and leads to location err in B 2 which is not a reachable location in the composition πγ(B 1 , B 2 , B 3 ). That is, the execution sequences of the partial state model πγ(B ⊥ 1 , B ⊥ 2 , B ⊥ 3 ) differ from the execution sequences of global state model πγ(B 1 , B 2 , B 3 ).

Notion of Correctness

Let πγ(B 1 . . . , B n ) be a composition, and let πγ(B ⊥ 1 , . . . , B ⊥ n ) be its corresponding partial state model. Informally, we say that πγ(B ⊥ 1 , . . . , B ⊥ n ) is correct if each execution (delay or interaction) from a given partial state q, is allowed from the corresponding global state q g . Below, we define correct execution of partial state models.

p 3 ⊥ p 4 β ℓ 3 ⊥ ⊥ ℓ 4 β ℓ 2 ℓ 1 p 1 ⊥ ⊥ β ⊥ ℓ ′ 2 ℓ ′ 1 B ⊥ 3 B ⊥ 4 B ⊥ 2 B ⊥ 1 β p 3 ⊥ p 4 β ℓ 3 ⊥ ⊥ ℓ 4 β ℓ 2 p 2 ℓ 1 p 1 ⊥ ⊥ β β ⊥ ℓ ′ 2 ℓ ′ 1 B ⊥ 3 B ⊥ 4 B ⊥ 2 B ⊥ 1 p 2 (b) Interaction a is disallowed from the corresponding global state because a ′ is enabled. (a) Interaction a = {p 1 , p 2 } may execute from the partial state q = ((ℓ 1 , ℓ 2 , ⊥, ⊥), v, t)
due to the disabledness of a ′ = {p 3 , p 4 } at q. 

⊥ τ 1 ⊥ τ 4 ⊥ τ 2 ⊥ τ 3 ℓ 3 sync 1 ℓ 1 1 set 3 ⊥ τ 2 1 ⊥ τ 1 1 c 1 := 0 c 1 ≤ 20 ℓ 2 1 sync 2 c 2 := 0 ℓ 1 2 set 2 c 2 ≥ 5 ⊥ τ 1 2 ⊥ τ 2 2 Setter ⊥ 1 Getter ⊥ Setter ⊥ 2 β c 1 ≥ 10 β sync 2 ℓ 2 2 c 2 ≤ 5 β x1 := x1 + 1 f1(y, y1) β get1 β y = f2(y2) β x2 := x2 + 1

Partial State Models

Definition 19. Let πγ(B 1 . . . , B n ) be a composition, and let πγ(B ⊥ 1 , . . . , B ⊥ n ) be its corresponding partial state model. Let (Q g , Σ, -→ π ) and (Q p ∪ Q g , Σ ∪ {β}, π ) be their semantics respectively. Let q = (ℓ, v, t) ∈ Q p be a partial state, and let q g ∈ Q g be its corresponding global state. Let δ ∈ Z ≥0 be a delay and a ∈ γ be an interaction.

• We say that the time step

q δ π is correct in the partial state model πγ(B ⊥ 1 , . . . , B ⊥ n ), if the time step q g δ -→ π is allowed in the composition πγ(B 1 , . . . , B n ).
• We say that the discrete step

q a π is correct in the partial state model πγ(B ⊥ 1 , . . . , B ⊥ n ), if the discrete step q g a -→ π is allowed in the composition πγ(B 1 , . . . , B n ).
Our notion of correctness is derived from observational equivalence [START_REF] Milner | Communication and concurrency[END_REF] between partial state models and global state models by considering that β transitions are not observable.

In general, observational equivalence of two transition systems

A = (Q A , Σ A ∪ {β}, → A ) and B = (Q B , Σ B ∪ {β}, → B
) is based on the usual definition of weak bisimilarity [START_REF] Milner | Communication and concurrency[END_REF], where β transitions are considered unobservable.

Definition 20. A weak simulation from A to B, denoted A ⊂ B, is a relation R ⊆ Q A × Q B , such that ∀(q, r) ∈ R, a ∈ P : q a → A q ′ =⇒ ∃r ′ : (q ′ , r ′ ) ∈ R ∧ r β * aβ * → B r ′ and ∀(q, r) ∈ R : q β → A q ′ =⇒ ∃r ′ : (q ′ , r ′ ) ∈ R ∧ r β * → B r ′
A weak bisimulation over A and B is a relation R such that R and R -1 are both weak simulations. We say that A and B are observationally equivalent and we write A ∼ B if for each state of A there is a weakly bisimilar state of B and conversely.

We use observational equivalence to prove the correctness of the partial state models, as it has a direct effect on the correctness of execution sequences. In fact, when the partial state model and the global state model are observationally equivalent, both have the same execution sequences by considering only observable steps (interactions and delay steps).

As already explained through the examples, the partial state model does not provide the same execution sequences as the global state model. Thus, in general, the two models are not observationally equivalent. In the next section, we study sufficient conditions for the partial state model to be observationally equivalent to the global state model.

Enforcing Correctness

As it is shown in example 10, the partial state models may provide incorrect executions with respect to the global state models. In order to obtain correct execution, we require that partial state models be observationally equivalent to the global state models. In this section, we study conditions for the partial state models to be observationally equivalent to the global state models.

Let πγ(B 1 , . . . , B n ) be a composition and let πγ(B ⊥ 1 , . . . , B ⊥ n ) be its corresponding partial state model. From global states, the transitions executed in πγ(B 1 , . . . , B n ) and πγ(B ⊥ 1 ,. . . ,B ⊥ n ) are the same. Consider the execution of an interaction a in πγ(B ⊥ 1 , . . . , B ⊥ n ) from the partial state q = (ℓ, v, t), and the corresponding global state q g = (ℓ g , v g , t) in πγ(B 1 , . . . , B n ). As explained in [START_REF] Basu | Distributed semantics and implementation for systems with interaction and priority[END_REF], if a is enabled at q, it is also enabled at q g . However, in order to respect
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the semantics of the composite model πγ(B 1 , . . . , B n ), a should be disabled due to priority π if there exists an interaction a ′ enabled at state q g such that (a, a ′ ) ∈ π. Thus, a should be blocked if enabledness of interaction a ′ cannot be decided at q.

In a similar way, a delay transition δ enabled in πγ(B ⊥ 1 , . . . , B ⊥ n ) at partial state q can be disallowed in πγ(B 1 , . . . , B n ) at the corresponding global state q g if there exists at least one component B i having as time progress condition tpc ℓ g i that does not allow the time step δ, that is, such that tpc ℓ g i (t + δ) evaluates to false. To prevent πγ(B ⊥ 1 , . . . , B ⊥ n ) from incorrect execution, we define a predicate safe(q, σ) on

Q g ∪ Q p × γ ∪ Z ≥0
indicating whether the execution of an interaction σ ∈ γ or the time step σ ∈ Z ≥0 violates the global state semantics. Clearly, the behavior of πγ(B ⊥ 1 , . . . , B ⊥ n ) is already safe for global states. In the following, we define conditions that should be satisfied by any predicate safe.

• For an interaction a, a partial state q = (ℓ, v, t) and its corresponding global state q g = (ℓ g , v g , t), the predicate safe satisfies:

safe((ℓ, v, t), a) ⇒ ∄b ∈ γ . aπb ∧ (ℓ g , v g , t) b γ (3.3)
• For a time step δ, safe also satisfies:

safe((ℓ, v, t), δ) ⇒ ∀i ∈ {1, . . . , n}tpc ℓ g i (t + δ) (3.4) 
The following definition defines the safe partial state model. • Discrete steps:

(ℓ, v, t) a (ℓ ′ , v ′ , t ′ ) safe((ℓ, v, t), a) (ℓ, v, t) a ---→ safe (ℓ ′ , v ′ , t ′ ) • Internal steps: (ℓ, v, t) β (ℓ ′ , v ′ , t) (ℓ, v, t) β ---→ safe (ℓ ′ , v ′ , t)
• Delay steps :

(ℓ, v, t) δ (ℓ, v, t + δ) safe((ℓ, v, t), δ) (ℓ, v, t) δ ---→ safe (ℓ, v, t + δ) Partial State Models Theorem 1. safe[πγ(B ⊥ 1 , . . . , B ⊥ n )] ∼ πγ(B 1 , . . . , B n ). Proof. We denote by Q U the set of states of πγ(B 1 , . . . , B n ) and Q V the set of states of safe[γ ⊥ (B ⊥ 1 , . . . , B ⊥ n )]. Let R = {(q g , q) ∈ Q U × Q V ∧ q β * ---→ safe q g }.
We show that it is a weak bisimulation. Since the BIP model πγ(B 1 , . . . , B n ) does not have β transition, it is enough to prove that:

(i) For each (q g , q) ∈ R such that q β ---→ safe q ′ , (q g , q ′ ) ∈ R.

(ii) For all (q g , q) ∈ R and σ ∈ γ ∪ Z ≥0 such that q g σ → q ′g , there is q ′ such that (q ′g , q ′ ) ∈ R and q

β * σβ * ----→ safe q ′ .
(iii) For each (q g , q) ∈ R and σ ∈ γ ∪ Z ≥0 such that q σ ---→ safe q ′ , there is q ′g such that (q ′g , q ′ ) ∈ R and q g σ → q ′g .

(i) Consequence of Definition 18.

(ii) If σ is an interaction a ∈ γ. Suppose that (q g , q) ∈ R and q g a -→ q ′g . We have q

β * ---→ safe q g
by definition of R. Then, by definition of ---→ safe , we have q g a ---→ safe q ′ β * ---→ safe q ′g . We conclude by remarking that (q ′g , q ′ ) ∈ R. The same reasoning applies if σ is a time step δ ∈ Z ≥0 .

(iii) If σ is an interaction a ∈ γ. Suppose that (q g , q) ∈ R and q a ---→ safe q ′ . According to the definition of ---→ safe , safe(q, a) holds. That is, there is no interaction b having higher priority that is enabled from state q g . That is, a can execute from q g according to the global state semantics i.e., q g a -→ q ′g . According to Definition 18, from q ′ there exists a unique state q ′g reachable by doing β transitions, that is q ′ β * ---→ safe q ′g . Thus, we conclude that (q ′g , q ′ ) ∈ R.

The same reasoning applies if we consider that σ is a time step and the fact that safe(q, δ) holds.

Ideally, safe should be obtained by using equivalence instead of implication in (3.3) and (3.4), corresponding to the less restrictive predicate allowing the maximal parallelism in the system. However, its computation requires the knowledge of the reachable global state (ℓ g , v g , t) from any partial state (ℓ, v, t). This requires to guess what will be the timing constraints, guards and time progress conditions after the completion of all busy components. In general, it is not possible to compute ideally the predicate safe, since it may depend on the future values of the variables of the busy components. Nonetheless, we can always overapproximate it [START_REF] Chandy | Distributed snapshots: Determining global states of distributed systems[END_REF]. To this end, we define safe * an over-approximation of safe such that: safe * ⇒ safe.

(3.5) This predicate will be used for the implementation of real systems.

Conclusion
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Conclusion

In this chapter, we defined partial state models that correspond to a high-level representation for parallel execution of BIP models. We defined conditions for which partial state models are observationally equivalent to global state models. However, partial state models do not provide details on how to implement multiparty interactions. In the next chapter we present a solution to implement multiparty interactions based on a centralized scheduler.

Parallel Real-Time Systems Design with Centralized Scheduler

In the previous chapter, we defined partial state models that correspond to high-level representation for parallel execution of BIP models. Those models cannot be directly implemented since they do not provide details on how to implement multiparty interactions and priorities in distributed settings.

In a distributed context, we assume that components communicate through asynchronous message-passing. Thus, each component becomes a distributed component that is able either to send a message, to wait for a message or to execute an internal computation. Our solution to implement multiparty interactions is based on two-way handshake protocol. Indeed, distributed components exchange messages with a coordinator called scheduler (built as a BIP component) responsible for triggering interactions. In order to evaluate the enabled interactions at a given state, the distributed components are required to send their current states (e.g. enabled ports, time progress condition, timing constraints, etc.) to the scheduler component. This is realized by splitting each component transition into two transitions: one transition to send its current state to the scheduler in a message called offer and another transition to receive notification from the scheduler triggering the port to be executed. Regarding the scheduler, it is required to accumulate offers from distributed components and decides the execution of interactions on-line. As offers are sent asynchronously, the scheduler may not have a global knowledge about system and it may decide to execute an interaction based on a partial knowledge. This corresponds to an execution from a partial state of the partial state models presented in the previous chapter. As explained in Subsection 3.2, safe interactions executions from partial states are ensured using the predicate safe. Thus, any execution decided by the scheduler should also agree with the predicate safe. As explained in 3.2, in practice we are using safe * based on over-approximations of reached states.

Parallel Real-Time Systems Design with Centralized Scheduler

In this chapter,we describe in Section 4.1 the class of BIP models that allows the construction of our target Send/Receive models. In Section 4.2, we define formally the transformation from the centralized to Send/Receive BIP models. Finally, in Section 4.3, we prove the correctness of our obtained models.

Target Models

We target models that could be directly implementable using basic message-passing primitives. We consider three types of elementary actions: message sending, message receiving and internal computation. Thus, our target models include three types of ports: unary ports, send ports and receive ports. Unary ports are used when components have to execute independently from each others, which are formally expressed using unary interactions (i.e. an interaction consisting of a single port). Such unary interactions correspond to internal computation in components. Send and receive ports participate in message-passing interactions which are interactions between a single send port and one or more receive ports. We call those interactions Send/Receive interactions. When such an interaction executes, the variables exported by the send port are copied in the variables exported by the receive port. We require that send port cannot be blocked by corresponding receive ports. That is, each time a send port is enabled, its corresponding Send/Receive interaction has to be enabled too so that every Send/Receive interaction can take place whenever the send port is enabled.We denote this class of BIP models by Send/Receive models. The definition of such models is given below. Definition 22. We say that B SR = γ SR (B SR 1 , . . . , B SR n ) is a Send/Receive BIP model iff we can partition the set of ports of B SR into three sets P s , P r , and P u that are respectively the set of send-ports, receive-ports, and unary ports, such that:

• Each interaction a ∈ γ SR , is either (1) a Send/Receive interaction with a = (s, r 1 , r 2 , . . . , r k ), s ∈ P s , r 1 , . . . , r k ∈ P r , G a = true and F a copies the variables exported by port s to the variables exported by ports r 1 , r 2 , . . . , r k , or, (2) a unary interaction a = {p} with p ∈ P u , G a = true, F a is the identity function.

• If s is a port in P s , then there exists one and only one Send/Receive interaction a ∈ γ SR with a = (s, r 1 , r 2 , . . . , r k ) and all ports r 1 , . . . , r k are receive-ports. We say that r 1 , r 2 , . . . , r k are the receive-ports associated with s.

• If a = (s, r 1 , . . . , r k ) is a Send/Receive interaction in γ SR and s is enabled at some global state of B SR , then all its associated receive-ports r 1 , . . . , r k are also enabled at that state.

Definition 22 defines a class of BIP models for distributed implementation based on asynchronous message passing. In such systems, communication is sender-triggered, where a message can be emitted by the sender regardless of the availability of receivers. The third property of the definition requires that all receivers are ready to receive whenever the sender may send a message. This ensures that the sender is never blocked and can trigger the • The Scheduler Layer deals with execution of interactions. Based on offers sent by atomic components, the scheduler may decide the execution of an interaction at a given time and send back notifications to participating components specifying which port has to be executed. Communications between atomic components and the centralized scheduler are represented by Send/Receive interactions whose execution is instantaneous according to the semantics of BIP, which is not realistic for all kind of systems. In this chapter, we consider systems that provide fast communications. We will see that this assumption is an important requirement for the correctness of the implementation of our Send/Receive models. We will see in Chapter 6 how to deal with non instantaneous communications. Any component clock c is obtained by simply shifting the global clock g by an amount of time that is constant as soon as the clock c is not reset, which is very efficient. The clock g is initialized to 0 and is never reset, and measures the absolute time elapsed since the system started executing. It is used when atomic components inform the scheduler about their timing constraints and time progress conditions. Therefore, we follow the approach of [START_REF] Abdellatif | Model-based implementation of real-time applications[END_REF]: for each clock c of an atomic component B i we introduce a variable ρ c that stores the absolute time of the last reset c. This variable is updated whenever the component executes a transition resetting clock c. In fact, when the scheduler executes an interaction a, its stores its execution date in a variable t ex a . The value of this variable is sent by the scheduler to participating components when notifying them. Each participating component executes then the corresponding transition according to the received notification, and updates each variable ρ c to t ex a if the transition resets clock c in the original model. Notice that the value of c can be computed from the current value of g and ρ c by using the equality c = gρ c . This allows to entirely get rid of clocks of components B i , keeping only the clock g and variables ρ c , c ∈ C i . Using ρ c , any timing constraint tc involved in a component B can be expressed using the clock g instead of clocks C. Using (2.1), we transform tc as follows:
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tc = m k=1 c∈C l k c ≤ c ≤ u k c = m k=1 c∈C l k c + ρ c ≤ g ≤ u k c + ρ c .
That is, tc is a disjunction of interval constraints on g of the form:

tc = m k=1 max{l k c + ρ c } c∈C ≤ g ≤ min{u k c + ρ c } c∈C . (4.1)
Similarly, any time progress condition tpc involved in component B is transformed using the clock g. Using (2.2), we transform tpc as follows:

tpc = c∈C c ≤ u c = c∈C g ≤ u c + ρ c .
That is, tpc is an interval constraint on g of the form:

tpc = g ≤ min{u c + ρ c } c∈C . (4.2)

Transformations

In this section, we present the formal definition of our transformation from BIP models into Send/Receive BIP models. First, we explain in Subsection 4. 

Transformation of Atomic Components

The transformation of an atomic BIP component B into a Send/Receive atomic component B SR is as follows. It relies on decomposing each atomic transition of B into a send and a receive transition. As already said, the idea is to create a protocol between atomic components and the scheduler. The protocol's first step is initiated by the atomic component B SR by sending an offer to the scheduler through a dedicated send port. Then, the second step consists on waiting a notification from the scheduler arriving on a receive port. The offers contain necessary information to determine whether an interaction can be safely executed.

Since each offer sent by a component is followed by a notification from the scheduler, we split each location ℓ into two locations, namely ℓ itself and ⊥ ℓ as shown in Figure 4.2.

tpc ℓ q tpc ℓ tpc ℓ p p q ℓ ⊥ ℓ ℓ o Figure 4.2: Atomic component transformation.
From location ⊥ ℓ , the Send/Receive atomic component is not at a stable location and is able to send an offer to the scheduler. By introducing ⊥ ℓ , atomicity of original transition is broken. Thus, this location could be seen as a busy location in the partial state model.

According to condition (3.4) of Subsection 3.2, time is allowed to progress from a partial state of a partial state model only if it is allowed by its corresponding next reached global state. This condition could be satisfied by enforcing each atomic component to respect, at each busy location, the time progress condition of each next stable location. To satisfy this condition in the Send/Receive atomic component, we put at location ⊥ ℓ the time progress condition tpc ℓ originally defined in the atomic component. That is, we enforce the Send/Receive atomic component to complete its internal computation and to send its offer to the scheduler from location ⊥ ℓ before the time progress conditions tpc ℓ becomes false.

Send/Receive atomic components sends offers to the scheduler to inform about their states. Based on the offers received, the scheduler decides the execution of interactions. As offers are sent asynchronously, the scheduler may not have a global knowledge about system and it may decide to execute an interaction based on a partial knowledge. This corresponds to an execution from a partial state of the partial state models. According to condition (3.3) of Subsection 3.2, an interaction a is allowed to execute from a partial state only if there is no enabled interaction b having higher priority than a and enabled from the corresponding global state. To compute the enabledness of a the scheduler needs information about the current states of components participating in a. Thus, we require that the offers includes information about their current states. In order to safely execute a, the scheduler is required to compute the enabledness of each interaction b, such that aπb to ensure safe execution of a. As the Parallel Real-Time Systems Design with Centralized Scheduler computation of interaction b requires waiting fresh offers from components participating in b, the scheduler may use information of the last received offers from these components to approximate the enabledness of b from the next reached state. To this end, we require that components includes also in their offers information containing approximations of their next reached states.

Offer Construction

An offer contains exact variables that encode the current state, and approximated variables that encode an approximation of the next reached state.

We include the following variables to inform about the current state of the component:

• an exact time progress condition variable tpc that stores the time progress condition of the current location of the component.

• for each port p, an exact timing constraint variable tc p that is set to the timing constraint of the transition labeled by p and enabled at the current location if exists, or is set to false otherwise.

• for each port p, an exact Boolean guard variable g p that is set to the evaluation of the Boolean guard of the transition labeled by p and enabled at the current location if exists, or is set to false otherwise.

We also include variables that stores the approximations of next reached states of the component. At this step, we dot not provide how to compute these approximations, but we define only variables needed to store approximations. The next paragraph discusses how these approximations are computed.

• For each port p, an approximated timing constraint variable tc * p that is set to the disjunction of the timing constraints approximations of transitions labeled by p and enabled from next locations if exist, or and is set to false otherwise.

• For each port p, we include an approximated Boolean guard variable g * p . This variable stores the disjunction of approximated evaluation of Boolean guard of transitions labeled by p and enabled from next locations if exists, or and is set false otherwise.

Note that approximations involve only timing constraints and Boolean guards of ports enabled from the next reached location of the component. These approximations are needed to approximate the enabledness (timing constraint and Boolean guard) of higher priority interactions when the scheduler wants to execute a lower priority interaction.

Example 12. Consider an atomic component as depicted in Figure 4.3. It contains three ports namely p, p 1 and p 2 . In the corresponding Send/Receive atomic component, an offer includes the following variables: the exact time progress condition variable tpc, the exact timing constraint variables tc p 1 , tc p 2 and tc p , the exact Boolean guard variables g p 1 and g p 2 , the approximated timing constraint variables tc * p 1 , tc * p 2 and tc * p and the approximated Boolean guard variables g * p 1 and g * p 2 . We denote by x, the approximation value of x, where x could be either a timing constraint or a Boolean guard.

At location ⊥ ℓ in the corresponding Send/Receive atomic component, the values of these variables are the following.

• tpc is set to the time progress condition of location ℓ,i.e. tpc := tpc ℓ • Since transitions labeled by p 1 and p 2 are enabled from location ℓ, the variables tc p 1 and tc p 2 are set to the timing constraint of these transitions i.e. tc p 1 := tc 1 and tc p 2 := tc 2 . tc p is set to false since there is no transition enabled from ℓ and labeled by p.

• Since the enabled transitions from ℓ 1 and ℓ 2 are labeled by p, the variable tc * p is set to the disjunction of approximated timing constraints of these transitions .i.e. tc * p := tc 3 ∨ tc 4 . The approximated timing constraint variables tc * p 1 and tc * p 2 are set to false since there is no transition enabled from locations ℓ 1 and ℓ 2 and labeled by p 1 or p 2 .

• Since there is no guard (true by default ), on all transitions labeled by p and enabled from ℓ 1 and ℓ 2 , the variable g * p is set to true. g * p 1 and g * p 2 are set to false since there is no transition enabled from locations ℓ 1 and ℓ 2 and labeled by p 1 or p 2

Remark . Note that the information about approximation of reached state could be more precise, in particular for timing constraints. In fact, the approximated timing constraint variable tc * p contains disjunction of approximated timing constraints of each transition enabled from a next location reached by executing a transition from current location and labeled by p. That is, we consider all possible timing constraints of transitions enabled from a next location regardless the transition (port execution) leading to that location. This can be improved by computing each possible timing constraint of p separately, depending on the port execution that leads to the timing constraint of p. To do that, we define for each pair of ports p, p ′ , such that p ′ is enabled from a location reached by executing port p, the refined approximated timing constraint variable tc * p (p ′ ). This variable is set to the approximation of timing constraint of transition labeled by p and enabled from location reached from the current location by executing a transition labeled by port p ′ . Then, the scheduler selects the right approximation depending on what port it chooses for execution. This method for Parallel Real-Time Systems Design with Centralized Scheduler computing approximations involves a lot of variables which may be in the detriment of clarity and simplicity. Therefore, we do not consider this method.

Computing approximations

Consider a location ℓ. Let tc and g be a timing constraint and a Boolean guard to be approximated from ℓ, respectively. We denote by tc the approximation of tc, and g the approximation of g.

Computation of tc. As explained in Subsection 4.1.2, we transform the timing constraint tc into a timing constraint expressed on clock g of the form tc

= m k=1 max{l k c + ρ c } c∈C ≤ g ≤ min{u k c + ρ c } c∈C .
In order to compute tc we need to approximate the bounds

u k c + ρ c , l k c + ρ c of each clock c. Let u k c + ρ l c and l k c + ρ u c
be the approximations of the bounds u k c +ρ c and l k c +ρ c respectively. As tc is an-over approximation of tc, the values of l k c and ρ l c correspond to the minimal possible values of l k c and ρ c respectively, and the values of u k c and ρ u c correspond to the maximal possible values of l k c and ρ c , respectively. These values are computed as follows.

• If l k c (resp. u k c ) involves expressions containing non-constant variables, then l k c is set to 0 (resp. +∞), otherwise l k c ( u k c , resp.) is set to l k c (resp. u k c ).
That is, the bounds a timing constraint are over-approximated to the extreme values if they can not be evaluated statically.

• If clock c is not reset by any transition τ enabled from ℓ, then ρ l c and ρ u c are set to ρ c . Otherwise, ρ l c is set to t ex where t ex stores the last execution of the component and ρ u c is set to +∞. That is, the minimal possible value of ρ c corresponds exactly to the last execution date of the component, which means that for the best case, the component resets c at the date of its last execution. For the maximal values, we put +∞ as default value.

Computation of g. g is set to g if variables involved in g are constant. Otherwise, g is set to true. Example 13. Consider an atomic component as shown in Figure 4.4. The atomic component includes two clocks. Suppose that the component is at location ℓ, and that the clocks reset dates ρ c 1 and ρ c 2 at this location are set to 0. At this location, we need to approximate the timing constraints tc τ 1 and tc τ 2 of transitions τ 1 = (ℓ 1 , p 1 , ℓ 2 ) and τ 2 = (ℓ 1 , p 2 , ℓ 3 ), since ℓ 1 is the reached location from ℓ. Let tc τ 1 and tc τ 2 be the approximation values of tpc ℓ 1 , tc τ 1 and tc τ 2 respectively. These values are computed as follows.

ℓ ℓ 1 ℓ 2 ℓ 3 c 2 ≤ g(x) p c 1 := 0 p 2 p 1 p 2 p 1 p c 1 ≤ 5 ∧ c 2 ≥ 3
• Since the timing constraint tc τ 2 = c 2 ≤ g(x) has only an upper bound that involves non-constant values, then its approximation tc 2 is set to g ≤ +∞ which is simplified to true.

• The timing constraint tc τ 1 = c 1 ≤ 5 ∧ c 2 ≥ 3 is expressed on two clocks c 1 and c 2 and involves constant values, which is expressed on clock g as follows:

tc τ 1 = g ≤ 5+ρ c 1 ∧g ≥ 3 + ρ c 2 .
In order to compute tc τ 1 , we have to approximate reset dates ρ c 1 and ρ c 2 . First, as ρ c 1 is involved in the upper bound of the timing constraint g ≤ 5 + ρ c 1 , then we have to compute its maximal value ρ u c 1 . As c 1 is reset by the transition leading to ℓ 1 , ρ u c 1 is set to +∞. Second, as ρ c 2 is involved in the lower bound of timing constraint g ≥ 3 + ρ c 2 , we have to compute its minimal possible value ρ l c 2 . As c 2 is not reset by the transition leading to ℓ 1 , ρ u c 1 is set to the last reset date of clock c 1 which is 0. To summarize, tc τ 1 is set to g ≥ 3.

Definition of Send/Receive Atomic Component

As already explained, Send/Receive components express timing constraint and times progress conditions using the global clock g. The translation of such constraints is done through the use of reset dates variables ρ c of each clock c. These variables are updated whenever the scheduler sends notifications for execution to the component. These notifications bring the execution date of the component. We define in the Send/Receive atomic component the variable t ex that stores the execution date of the component. The value of ρ c is set to the execution date t ex , whenever the component of the original model resets clock c.

We are now ready to define the transformation of B into B SR .

Definition 23. Let B = (L, P , T , C, X, {X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T , {tpc ℓ } ℓ∈L ) be an atomic component. The corresponding Send/Receive component is B SR = (L SR , P SR , T SR , C SR , X SR ,{X SR p } p∈P SR , {g τ } τ ∈T SR , {tc τ } τ ∈T SR , {f τ } τ ∈T SR ,{r τ } τ ∈T SR , {tpc ℓ } ℓ∈L SR ) such that: • L SR = L ∪ {⊥ ℓ | ℓ ∈ L}.
The time progress conditions of locations ⊥ ℓ and ℓ are equal to tpc ℓ expressed on clock g.

• X SR = X p∈P ∪ {tc p } p∈P ∪ {g p } p∈P ∪ {tpc} ∪ { tc p } p∈P ∪ { g p } p∈P ∪ {ρ c } c∈C ∪ {t ex }
where tc p and tc p are exact and approximated timing constraint variables, g p and g p are exact and approximated Boolean variables, tpc is the exact time progress condition variable, ρ c are clock reset date variables, and t ex is the execution date variable.

• C SR = {g} Parallel Real-Time Systems Design with Centralized Scheduler

• P SR = P ∪ {o} where o is a send-port and p ∈ P is a receive-port. The port o is associated with the set of variables

X SR o = X ∪ {tc p } p∈P ∪ {g p } p∈P ∪ {tpc} ∪ tc p } p∈P ∪ g p } p∈P ,
that is, variables needed to compute the current state, as well as the approximations of the next reached states. For all other ports p ∈ P , we have

X SR p = X p ∪ {t ex }.
• For each place ℓ ∈ L, we include an intermediate place ⊥ ℓ and an offer transition

τ ℓ = (⊥ ℓ , o, ℓ) in T SR .
The guard g τ ℓ and the timing constraint tc τ ℓ are true, and the update function f τ ℓ is the identity function.

• For each transition τ = (ℓ, p, ℓ ′ ) ∈ T , we include in T SR a notification transition τ p = (⊥ ℓ , p, ℓ ′ ). The guard g τp is true. The function f τp applies first the original update function f τ , then updates the variables needed to compute the current state as follows:

-∀c ∈ r τ ρ c := t ex ,

-tpc := tpc ℓ ′ , -∀p ′ ∈ P tc p ′ := tc τ ′ if τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T false otherwise. -∀p ′ ∈ P g p ′ := g τ ′ if τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T false otherwise.
and updates variables needed to approximate next reached state as follows.

Let T ′ = {τ ′ | τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T } be the set of transitions enabled from location ℓ ′ . Let L ′′ = {ℓ ′′ | τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T } be the set of locations reachable after executing a transition from the location ℓ ′ . For each port p ′′ ∈ P , let T p ′′ = {τ ′′ = (ℓ ′′ , p ′′ , ℓ ′′′ ) | ℓ ′′ ∈ L ′′ ∧ τ ′′ ∈ T } be the set of possible transitions at location ℓ ′′ ∈ L ′′ and labeled by port p ′′ . For each port p ′′ ∈ P , the approximated timing constraints variables tc * p ′′ and the approximated Boolean guards variables g * p ′′ are updated as follows:

-

∀p ′′ ∈ P tc * p ′′ := τ ′′ ∈T p ′′ tc τ ′′ if T p ′′ = ∅ false otherwise.
-

∀p ′′ ∈ P g * p ′′ := τ ′′ ∈T p ′′ g τ ′′ if T p ′′ = ∅ false otherwise.
In the above definition, the execution of a transition τ = (ℓ, p, ℓ ′ ) of a component B corresponds to the following two execution steps in B SR . Firstly, an offer transition τ ℓ = (⊥ ℓ , o, ℓ) is used to transmit information about the current state of component B which is of two types::

• information needed by the scheduler to compute enabled interactions involving B, that is:
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-for each port p ′ ∈ P , the values of its variables X p ′ . Note that the values of these variables are also needed for implementing transfer data functions.

-for each port p ′ ∈ P , the exact timing constraint variable tc p ′ corresponding to the enabledness of p ′ at ℓ with respect to time.

-for each port p ′ ∈ P , the exact Boolean guard variable g p ′ corresponding to the enabledness of p ′ at ℓ with respect to the actual valuation of variables.

-the exact time progress condition variable tpc corresponding to the current time progress condition at ℓ.

• information needed by the scheduler to restrict enabled interactions into safe ones, that is:

-for port p ′′ ∈ P , the approximated timing constraint variable tc * p ′′ corresponding to the potential enabledness of p ′′ reached after the execution of a single transition from ℓ. The timing constraint tc * p ′′ corresponds to the disjunction of approximated timing constraints of transitions enabled from ℓ ′ and labeled by p ′′ .

-for port p ′′ ∈ P , the approximated Boolean guard variable g * p ′′ corresponding to the enabledness of p ′′ after the execution of a transition enabled from ℓ. The Boolean guard g * p ′′ corresponds to the disjunction of approximated Boolean guards of transitions enabled from ℓ ′ and labeled by p ′′ . Secondly, a response transition τ p = (ℓ, p, ⊥ ℓ ′ ) is executed once the scheduler decides to execute an interaction involving port p. Similar to τ in B, τ p updates values of variables X according to f τ . It also updates variables tpc, tc p ′ , g p ′ , tc * p ′′ and g * p ′ to set up-to-date values for the next offer (i.e. starting from ℓ ′ ). with a transition labeled by the offer port o 1 from ⊥ ℓ to ℓ. Before executing these transitions the update functions u 1 or u 2 are called. They are defined as follows:

gsync 1 gset 1 tcset 1 o1 x1 tpc 1 tcset 1 tcsync 1 set 1 sync 1 ℓ 1 1 ℓ 2 1 x1 := x1 + 1 o1 o1 ⊥ ℓ 2 1 u1 u2 sync 1 set 1 t ex ρc gsync 1 gset 1 g ≤ 20 + ρc 1 g ≤ 20 + ρc 1 tcsync 1 ⊥ ℓ 1 1
u 1 =                                ρ c 1 = t ex tpc 1 := g ≤ 20 + ρ c 1 tc sync 1 := false tc set 1 := g ≥ 10 + ρ c 1 g sync 1 := false g set 1 := true tc * sync 1 := true tc * set 1 := false g * sync 1 := true g * set 1 := false u 2 =                            tpc 1 := true tc sync 1 := true tc set 1 := false g sync 1 := true g set 1 := false tc * sync 1 := false tc * set 1 := g ≥ 10 + t ex g * sync 1 := false g *
set 1 := true For instance, when reaching ⊥ ℓ 1 1 , the variable tc sync 1 is set to the timing constraint of the transition enabled from ℓ 1 1 and labeled by sync 1 . The variable tc set 1 is set to false since there is no enabled transition labeled by port set 1 from location ℓ 1 1 . Moreover, the variable tpc 1 is set to the time progress condition of ℓ 1 1 . Regarding approximations, we look at location ℓ 2 1 which is the only reached location from ℓ 1 1 in the atomic component Setter 1 . We approximate the timing constraint g ≥ 10 + ρ c of transition labeled by set 1 . Since the clock c 1 is reset by the transition labeled by sync 1 and is involved in the lower bound of the timing constraint g ≥ 10 + ρ c , then, the variable tc * set 1 is set to g ≥ 10 + t ex . The variable tc * sync 1 is set to false since there is no enabled transition labeled by sync 1 from location ℓ 2 1 .

Building the Scheduler in BIP

We present now how to implement the scheduler component in BIP. The scheduler works with a partial view of the global state. Information about components states is given to the scheduler through offers. To maintain a safe approximation of system state at any moment, the scheduler uses the approximated values delivered by offers for components that are executing. Indeed, when the scheduler receives an offer from a Send/Receive component, its uses the variables corresponding to its current state until it executes. Once the scheduler notifies a component for executing on a selected port, it uses the approximated values of its last offer, until a new offer is received from the component informing about its new current state.

Based on received offers, the scheduler computes enabled interactions and takes decision by either executing one interaction or waiting for receiving more offers.

The behavior of the scheduler is described as a Petri net in which there is a token for each component circulating between three different types of places as shown in Figure 4 • waiting place: there is one waiting place for each component. In Figure 4.6, the place labeled by w i is a waiting place corresponding to component B i . At this place the scheduler waits for a fresh offer from the corresponding component.

• received place: there is one received place for each component. In Figure 4.6, the place labeled by r i is a received place corresponding to component B i . Such place is marked once the scheduler has received a fresh offer from the corresponding component until an interaction involving that component is selected for execution.

• sending place: there is one sending place for each port of each component. In Figure 4.6, the place labeled by s p i is a sending place corresponding to port p i of component B i . At this place, the scheduler has selected an interaction and is willing to send a notification to one of the participating component in order to execute on the selected port.

Initially, tokens are in waiting places. Once an offer is received the corresponding token moves from the waiting place to the received place. The scheduler copies then the values of variables contained in the offer in its local variables. When all offers from components involved in an interaction have been received, the scheduler computes its timing constraint and its Boolean guard. If the guard evaluates to true and when the timing constraint becomes true with respect to current valuation of g, the scheduler executes the interaction and moves the tokens from received to sending places corresponding to the ports involved in the interaction. Finally, from the sending places, the scheduler sends notifications to the involved components and puts back tokens to waiting places.
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Computing timing constraints and Boolean guards of interactions Let a = ({p i } i∈I , G a , F a ) be an interaction. The scheduler computes the Boolean guard of a denoted by g a as follows:

g a = G a p∈a g p i (4.3)
Where g p i are exact Boolean guard variables of ports p i . That is, the Boolean guard of a corresponds to the conjunction of G a with the Boolean guards of each port p i participating in a.

It computes the timing constraint of a denoted by tc a as follows:

tc a = p∈a tc p i (4.4)
Where tc p i are exact timing constraint variables of port p i . That is, the timing constraint of a corresponds to the conjunction of timing constraints of each port p i participating in a.

In order to enable only safe execution of a, the scheduler removes from tc a each date at which there is an interaction a ′ that has higher priority than a and is potentially enabled.

Let a ′ be an interaction such that aπa ′ . Interaction a ′ is enabled if tc a ′ ∧ g a ′ , where tc b = p j ∈b tc p j and g b = G b p j ∈a g p j , evaluates to true. That is, if its timing constraint tc a ′ and its Boolean guard g a ′ are true. The expression tc a ′ ∧ g a ′ could be seen as a timing constraint as the evaluation of g a ′ could be either true or false (these values are included in the grammar of timing constraints). The interaction a ′ is then disabled if the timing constraint ¬(tc a ′ ∧ g a ′ ) is true.

We define K a the timing constraint at which a is allowed to execute according to the priority. Informally, K a is a timing constraint containing dates at which each interaction a ′ having higher priority than a is disabled. Formally, K a is defined as follows:

K a = aπa ′ ¬(tc a ′ ∧ g a ′ ) (4.5)
The computation of K a requires receiving fresh offers from each component participating in each interaction b such that aπb. As offers contains approximations of reached states, the scheduler may over-approximate K a when the offers of one or more components are not fresh. We denote by K * a the over-approximation of K a . For offers of components that are not fresh, the scheduler uses the approximated values when computing K * a . To keep track of the freshness of offers, we include in the scheduler a Boolean variable rcv i associated with components B i indicating whether offers corresponding to components are fresh. The variable rcv i is useful for the scheduler to decide whether it uses the approximated or the exact values received in the last offer of component B i . More precisely if rcv i is evaluated to true, then the scheduler uses the exact values received in the last offer. Otherwise, it uses approximations. The variable rcv i is updated as follows: it is set to true whenever the scheduler receives an offer from the component B i and set to false whenever the scheduler "consumes" the offer by executing an interaction involving component B i .

K * a is obtained from K a by replacing each occurrence of a timing constraint tc p j or a Boolean guard g p j by either its exact value or its approximation depending on the freshness

Transformations
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of the corresponding offer . We denote by tc + p j the occurrence of the timing constraint tc p j , g + p j the occurrence of Boolean guard g p j in K a . The value of tc + p j and g + p j are computed as follows:

tc + p j =    tc p j if rcv j = true tc * p j otherwise. g + p j =    g p j if rcv j = true g * p j
otherwise.

For the Boolean guard G a ′ , it can be computed only if all offers from components participating in a ′ are fresh. We approximate it to true if one of these offers are not fresh. We denote by G + a ′ the occurrence of G a ′ in K a . It is computed as follows:

G + a ′ =    G a ′ if ∀ p j ∈ a ′ rcv j = true true otherwise.
To sum up, K * a has the following expression:

K * a = aπa ′ ¬( p j ∈a ′ tc + p j ∧ G + a ′ p j ∈a g + p j ) (4.6) 
To enable only safe execution of interaction a, the scheduler restricts tc a to tc a ∧ K * a . The timing constraint tc a ∧ K * a contains dates at which a is enabled and safe to execute. We are now ready to define the centralized scheduler.

Definition 24. Let πγ(B 1 , . . . , B n ) be a BIP model. The centralized scheduler for this model is defined as the Send/Receive BIP component S = (L S , P S , T S , C S , X S ,{X S p } p∈P S , {g τ } τ ∈T S , {tc τ } τ ∈T S , {f τ } τ ∈T S , {r τ } τ ∈T S , {tpc ℓ } ℓ∈L S ) where:

• The set of variables X S contains a copy of each variable exported by an offer port. They consist of the following.

-For each component B i , we include an exact time progress condition variable tpc i .

-For each port p, we include an exact and approximated timing constraint variables tc p and tc * p -For each port p, we include an exact and approximated Boolean variables g p and g * p -For each port p we include a copy of each variable x p exported by p.

X S includes also the following additional variables.

-For each component B i , we include a Boolean variable rcv i that indicates whether r i place is marked or not (that is, the offer from component B i is fresh or not).
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-For each interaction a ∈ γ, we include an execution date variable t ex a that stores the execution date of the last occurrence of interaction a. -For each component B i , we include an execution date variable t ex i that stores the last execution date of component B i .

• The set of places L S consists of the following.

-For each component B i , we include waiting and received places w i and r i , respectively. WThe place w i does not have time progress condition (i.e. it defaults to true). The time progress condition of place r i is tpc i . That is, after receiving an offer from component B i , we require that the scheduler executes an interaction involving component B i before its current time progress condition becomes false. -For each port p ∈ P where P is the set of all ports exported by B 1 , . . . , B n , we include a sending place s p . The notification to an offer of a component B SR i is sent from this place to port p of B SR i . The time progress condition of s p is false. That is, when an interaction is selected for execution, we require that the scheduler notifies the participating components immediately (without any delay).

• C S ={g}.

• The set of ports P S is the following.

-For each component B i , we include an offer port o i to receive offers from B i . Each port o i is associated with variables X o i . -For each port p of a component B i , we include a send-port p. The variables associated with port p are X S p = {X p } ∪ {t ex i } where i is the index of component B i that includes port p. The port p is used to notify component B SR i to execute on port p.

-For each interaction a ∈ γ, we include a unary port. Unary ports do not have any associated variables.

The set of transitions consists of the following.

-In order to receive offers from a component B i , we include an offer transition (w i , o i , r i ). This transition has no guard nor timing constraint (i.e. they default to true). The update function of this transition sets the variable rcv i to true. -For each port p ∈ P of component B i , we include a transition (s p , p, w i ). This transition notifies the corresponding component to execute the transition labeled by p. This transition has no guard, no timing constraint and no update function. -For each interaction a = (P a , G a , F a ) ∈ γ , we include the transition τ a = ({r i | B i ∈ part(a)}, a, {s p i | p i ∈ a}). This transition has a Boolean guard g τa = g a where g a is computed as in (4.3). The timing constraint of τ a is:

tc τa = tc a ∧ K * a
where tc a is computed as in (4.4) and K * a is computed as in (4.6).The associated update function f τa applies first the following updates: * t ex a := t(g), * ∀ B i ∈ part(a), t ex i := t ex a , * ∀ B i ∈ part(a), rcv i := false, and then applies the the data transfer function F a . The execution of τ a moves the tokens from receiving to sending places.

Note that when an interaction a is executed, the current valuation of g is assigned to variable t ex a , i.e. the scheduler performs t ex a := t(g). This value is sent by the scheduler to the components involved in a along with notifications for execution. By construction, the component involved in a executes at the global date t ex a and the notification triggers the execution in the components at that date which ensures synchronization of components. In the implementation, we require that these models are implemented on platforms that provide fast communications (e.g. multi-process) to ensure perfect synchronization of components when the scheduler notifies them for execution. Consider the interaction a 1 = ({sync 1 , sync 2 , sync 3 }, true, -). In Figure 4.1, the execution of the transition labeled a 1 indicates the execution of interaction a 1 . The execution of this transition requires that offers from components B 1 , B 2 and B 3 have been received. The timing constraint of this transition is:

tc τa 1 = tc sync 1 ∧ tc sync 2 ∧ tc sync 3 .
The interaction a 2 has originally less priority than a 3 . Therefore, the timing constraint of transition a 2 is restricted by disabling a 2 when a 3 is potentially enabled (i.e. when both ports set 2 and get 2 are potentially enabled). That is,

tc τa 2 = tc set 1 ∧ tc get 1 ∧ ¬(tc + set 2 ∧ tc + get 2 ).

Connections Between Send/Receive Atomic Components and the Scheduler

In this section, we define the Send/Receive interactions between the transformed atomic components and the scheduler. • For each port p ∈ P of a component B SR i , we include in γ SR the Send/Receive interaction (S.p, B SR i .p) where S.p is a send port and B SR i .p is a receive port.

• For each interaction a ∈ γ, we add in γ SR the unary interaction (S.a) where S.a is a unary port.

Example 16. The Send/Receive interactions of the Send/Receive model of Figure 4.1 link each send port with its corresponding receive port.

Correctness

In this section we show that the obtained Send/Receive model is observationally equivalent to the original model. First, we show that the transformed model meet the properties of Definition 22. Then we prove observational equivalence of the original and the transformed model.

Validity of the Transformed Model

We need to show that when a receive-port of γ SR (B SR 1 , ..., B SR n , S) is enabled, the corresponding send-port is also enabled. This holds since communications between atomic components and the scheduler follow a request/acknowledgement pattern. Whenever an atomic component sends an offer, it enables the receive-port to receive a response and no new offer is sent until the first one is acknowledged. Proof. The first two constraints of Definition 22 are trivially met by construction. This is because (1) each interaction has only one send-port and multiple receive-ports, and (2) each send-port is associated with one and only Send/Receive interaction.

We now prove that the third constraint also holds; i.e, whenever a send-port is enabled, all its associated receive-ports are enabled as well. Between components and the scheduler, for all interactions involving a component B i , we distinguish between 3 classes of states:

• The first class contains all states where all the places w i in the scheduler component contain a token, and B SR i is in a busy location ⊥ ℓ . This class contains the initial state. From that class, the only enabled send-port involved in an interaction with B SR i is the port o i . By definition of the class, all associated receive-ports are also enabled, and the Send/Receive interaction can take place to reach a state of the second class.

• In the second class, the component B SR i is in a place ℓ that is not a busy location, and in the scheduler component, the r i place contains a token. From that configuration, there is no enabled send-port involved in an interaction with B SR i . The next class of states is reached when the scheduler executes a transition corresponding to an interaction involving B i .

• In the remaining one, there is a token in a place s p where p is a port of B i . The port p of this scheduler is enabled. By construction, the component B SR i sends an offer from ⊥ ℓ for port p only if the receive port p is enabled from place ℓ in B SR i . Thus the Send/Receive interaction can take place to reach back the first class of states.

The proof of Lemma 1 ensures that any component ready to perform a transition labeled by a send-port will not be blocked by waiting for the corresponding receive-ports. In other terms, it proves that any Send/Receive interaction is initiated by the sender.
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Proof. The state [q SR ] exists since each Send/Receive component B SR i can do at most two β transitions: receive a response and send an offer. Since two β transitions involving two different components are independent (i.e. do not change the same variable or the same place), the same final state is reached independently of the order of execution of β actions. Thus [q SR ] is unique.

The above lemma proves the existence of a well-defined stable state for any of the transient states reachable by the Send/Receive model γ SR (B SR 1 , ..., B SR n , S). This stable state will be used later to define our observational equivalence. Furthermore, combining this lemma with Lemma 1, we obtain the following property.

Lemma 3. At a stable state [q SR ], the Send/Receive model verifies the following properties.

• All atomic components are in a non busy place ℓ.

• All tokens in the scheduler component are in receive places r i .

• The clock g and all variables in the atomic components have the same value than their copies in the scheduler component.

Proof. The two first points comes from the Lemma 1 that guarantees possible execution of a Send/Receive interaction if its send-port is enabled. Therefore no place s p in the scheduler component (respectively ⊥ ℓ in atomic components) can be active at [q SR ], otherwise the answer p (respectively the offer from ⊥ ℓ ) could occur. Furthermore, since all offers have been sent, no token can be in a w i place.

The last point can be proven as follows. From each variable x of the scheduler, the last modifying transition is the offer transition from the corresponding atomic component B i . Thus, the value of x in the scheduler is the same in the atomic components that sent the offer modifying x. The clock g has the same value in the atomic components and the scheduler as it corresponds to a global clock which is never reset.

We are now ready to state and prove our central result.

Theorem 2. γ SR (B SR 1 , ..., B SR n , S) ∼ πγ(B 1 , ..., B n ).
Proof. We define a relation between the set of states Q SR of γ SR (B SR 1 , ..., B SR n , S) and the set of states Q of πγ(B 1 , ..., B n ) as follows. For each state q SR ∈ Q SR , we build an equivalent state equ(q SR ) by 1. considering the unique stable state [q SR ] reachable by doing β transitions, 2. taking the control location ℓ of B SR i as control location for B i in equ(q SR ) (Lemma 3 ensures that it is a valid control state for B i ), 3. restricting the valuation of variables of B SR i to a valuation of variables in B i , and 4. talking the valuation of original clock c i in B i to the valuation of gρ c i .
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We then define the equivalence relation R by taking:

R = {(q SR , q) ∈ Q SR × Q | q = equ(q SR )}
The three next assertions prove that R is a weak bisimulation: (i) If (q SR , q) ∈ R and q SR β -→ γ SR r SR then (r SR , q) ∈ R.

(ii) If (q SR , q) ∈ R and q SR σ -→ γ SR r SR then ∃r ∈ Q : q a -→ r and (r SR , r) ∈ R.

(iii) If (q SR , q) ∈ R and q σ -→ π r then ∃r SR ∈ Q SR : q SR β * σ -→ r SR and (r SR , r) ∈ R.

(i) If q SR β -→ γ SR r SR , then [q SR ] = [r SR ],
and we have by definition equ(q SR ) = equ(r SR ).

(ii) The action σ in γ SR (B SR 1 , ..., B SR n , S) is either an interaction a or a delay step δ.

-If a is an interaction, it corresponds to executing a transition labeled by a unary port a in the scheduler. By construction of the scheduler, this transition has the Boolean guard g a = G a p∈a g p where g p are Boolean guards sent by the atomic components for each port p ∈ a. By Lemma 3, the values involved in g a are the same in atomic components, and by extension in q = equ(q SR ). Thus, the Boolean guard of G a and all the Boolean guard of transitions labeled by p ∈ a from state q are true. The transition labeled by a is the scheduler has the timing constraint tc a ∧ K * a . * The timing constraint tc a is defined by tc a = p∈a tc p where tc p are timing constraints sent by the atomic components for each port p ∈ a. By Lemma 3, the values involved in tc a are the same in atomic components, and by extension in q = equ(q SR ). By construction of the atomic components, the timing constraints sent from ⊥ ℓ in B SR i are timing constraints at state ℓ in B i . Therefore, the timing constraints tc a is met at state q. * The timing constraint K * a = aπa ′ ¬(tc * a ′ ∧g * a ′ ) where the evaluation of tc * a ′ and g * a ′ at state q SR are an over approximated evaluation of tc a ′ and g a ′ at state

[q SR ]. That is, if ¬(tc * a ′ ∧ g * a ′
) evaluates to true at state q SR , then ¬(tc a ′ ∧ g a ′ ) evaluates to true at state [q SR ]. Recall that, the timing constraint ¬(tc a ′ ∧ g a ′ ) characterizes dates where interaction a ′ is disabled at [q SR ]. By Lemma 3, the values involved in ¬(tc a ′ ∧ g a ′ ) are the same in atomic components, and by extension in q = equ(q SR ).

The last two points state that equ(q SR ) a -→ π r. Finally, executing a in B SR triggers the execution of the data transfer function F a , followed by the computation in atomic components upon reception of the response. Thus at [r SR ] the values in atomic components are the same as in r, which yields (r SR , r) ∈ R.

-If a is a delay step, it corresponds to letting time progress by either in busy locations ⊥ ℓ i or in ℓ i of atomic components B SR i . Location ⊥ ℓ i and ℓ i has the time progress condition tpc ℓ i . All these time progress conditions are not false, otherwise the δ delay step would not be allowed. Those time pogress conditions Parallel Real-Time Systems Design with Centralized Scheduler are expressed on clock g which could be expressed equiventely on clocks c i of component B i Therefore q δ -→ r. Executing δ from state q SR increases clock g by δ which has the same effect on the clocks of the original model, therefore (r SR , r) ∈ R.

(iii) If σ can be executed in πγ(B 1 , . . . , B n ) at state q, then from an equivalent state q SR , one can reach the state [q SR ] where the state, the valuation of clocks, and data of send/receive atomic atomic components coincide with those of q. Recall clocks c of the original model could be deduced from clock g as follows c = gρ c By Lemma 3, clocks, ports, timing constraints and data values are the same in atomic components and the scheduler. Furthermore, all r i places are active. As previously, we distinguish the cases where σ is an interaciton a or a delay step δ.

-If σ is a an interaction a from q, then (1) the timing constraint and guard of a are true and (2) for each interaction a ′ such that aπa ′ is not enabled from q thus K a = aπa ′ ¬(tc a ′ ∧ g a ′ ) is evaluated to true. As in the previous case, Lemma 3 ensures that if the interaction a is possible in the original model at state q = equ(q SR ), then the transition a is also possible in the scheduler at state [q SR ].

Therefore we have

q SR β * -→ [q SR ] a -→ r SR .
As previously, the execution of a in both models leads to equivalent states. Thus we have

q SR β * -→ [q SR ] a -→ r SR with (r SR , r) ∈ R.
-If σ is a delay step δ, then from state [q SR ], time can progress also by δ as at this state all places r i are marked and have the time progress condition tpc i sent by B SR i which is the same as the time progress condition of B i at q. Also, at state [q SR ], each atomic component B SR i is in location ⊥ ℓ i which has the time pogress condition tpc ℓ i . Thus we have q SR β * -→ [q SR ] δ -→ r SR with (r SR , r) ∈ R.

Conclusion

In this chapter, we proposed a method for building Send/Receive models from given BIP models using model-to-model transformations. The obtained models consists of transformed atomic components of original models with a centralized scheduler. The scheduler component is modeled such that the decision for scheduling an interaction is taken at the date of its execution. In other words, it implicitly assumes that there is no delay between the decision to schedule an interaction and its execution in the corresponding components. Such an assumption is only valid if the communication delays between the scheduler and the components are small enough to be neglected. Therefore, we assume that those models are implemented on platforms providing fast communications (e.g multi process platforms).

The solution based on a centralized scheduler allows parallelism between components. However, it restricts the parallelism between interactions. In the next chapter, we present a method to decentralize the scheduler. The idea is to split the scheduler into a set of

Decentralizing the Scheduler

In the previous chapter, we proposed Send/Receive models relying on centralized scheduler for interactions execution. Those models allow parallelism between components. However, parallelism between interactions is restricted as the scheduler is defined as a single entity (component).

In this chapter, we propose a method for decentralizing the scheduler into a set of decentralized schedulers. Each scheduler is responsible of executing a subset of interactions. Thus, our decentralization method is parametrized by an interactions partition. Each partition class defines a set of interactions handled in a dedicated scheduler.

Introducing concurrency between interactions by adding schedulers introduces conflict between schedulers. A conflict between schedulers occurs when they try to execute multiple interactions involving the same component. A solution to avoid such conflict is to provide a particular partition of interactions consisting in grouping all conflicting interactions together in the same class as explained in Section 5.1. The obtained schedulers are then conflictfree by construction. For the more general case of partition, we propose in Section 5.3 a solution to resolve dynamically conflicts between interactions. The solution is based on the incorporation of a conflict resolution protocol. More precisely, we refer to the three different conflict resolution protocols proposed by Bagrodia [START_REF] Antonio Pérez | An order-based algorithm for implementing multiparty synchronization[END_REF].

The Send/Receive models are dedicated to be implemented on platforms that provide fast communications (e.g. multi-process platforms) as we assume that communication latencies are negligible so that there is no delay between the decision to execute an interaction in a scheduler and its execution in the participating components. Such assumption was considered also in the previous chapter. In the next Chapter, we will see how to build Send/Receive models that deals with communications delays.
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Decentralizing the Scheduler

Model Restrictions

We consider input models that meet the restrictions of the previous chapter. In addition, we also consider models that have no priorities. In this chapter, we consider the example from the priority rule a 2 πa 3 is not considered. Note that both examples from Figure 2.10 and Figure 5.1 have the same execution sequences.

Conflicting Interactions

Intuitively, two interactions are conflicting at a given state of the system if both are enabled, but it is not possible to execute both from that state (i.e. the execution of one of them discards the enabledness of the other). In systems without priorities, two interactions may conflict only if they involve a shared component. Figure 5.2 depicts examples of two conflicting interactions a and b. In Figure 5.2 (a), the conflict comes from the fact that a and b involve two ports p and q of the same component labeling two transitions enabled from the same location ℓ. When reaching location ℓ, the component can execute either transition labeled by p or the one labeled by q but not both. This implies that when a and b are enabled, only one of them should execute. ) and τ 2 = (ℓ, q, ℓ ′ 2 ) from the same control location ℓ such that p ∈ a and q ∈ b, if a and b are not conflicting we say that they are conflict-free.

Note that conflicts as defined in Definition 26 are an over approximation of conflicts since some conflicts may not be reachable due to system dynamics. Consider the example from Figure 5.1. Interaction a 1 is conflicting with neither a 2 nor a 3 because a 1 is enabled from a state where a 2 ad a 3 are disabled. However, a 2 and a 3 are conflicting because port get 1 involved in a 2 and port get 2 involved in a 3 are both enabled from place ℓ 2 2 of component getter.

Interactions Partitioning

Interactions Partitioning

As said before, the decentralization is parametrized by a partition of interactions. Below, we define formally partition of interactions.

Definition 27. Given a BIP model γ(B 1 , . . . , B n ), a partition of γ is a set of subsets {γ k } m k=1 such that :

• γ = γ 1 ∪ . . . ∪ γ m and
• ∀i, j ∈ {1, . . . , m} such that i = j we have γ i ∩ γ j = ∅.

The partition {γ k } m k=1 is conflict-free if each for any i = j, no interaction of γ i is conflicting with an interaction of γ j .

Given a partition of interactions {γ j } m j=1 , and two conflicting interactions a and b such that a ∈ γ j and b ∈ γ k , we distinguish between two types of conflict for a and b, according to the partition {γ j } m j=1 .

• A conflict is internal if a and b belong to the same class of the partition, i.e. j = k. In this case, we say that a and b are internally conflicting .

• A conflict is external if a and b belong to different classes of the partition, i.e. j = k.

In this case, we say that a and b are externally conflicting.

Consider a BIP model γ(B 1 • • • B n ) and a partition of interactions {γ j } m j=1 . Each class of interactions γ j is handled by a single scheduler S j . Introducing concurrency by adding multiple schedulers could violate the BIP semantics due to conflicting interactions as explained as follows. Consider two different schedulers for handling interactions a and b of the model from Figure 5.2 (a), S 1 being responsible for interaction a and S 2 being responsible for interaction Decentralizing the Scheduler b (see Figure 5.3). In the obtained Send/Receive model, the shared component is required to send offers to both S 1 and S 2 . In order to respect the BIP semantics, these schedulers should ensure that only a or b is executed from a state enabling both a and b.. That is, at most one of the two schedulers may respond to an offer from the shared component. A solution to avoid the problem of conflicting interactions is to impose them to be internally conflicting. That is, two conflicting interactions are never handled by two different schedulers. The obtained model is called conflict-free. In this case, conflicts are resolved locally by schedulers as in the centralized scheduler described in the previous chapter. Indeed, when two conflicting interactions belong to the same scheduler, the corresponding transitions of its Petri net share a common input place (corresponding to received place of shared component). Thanks to the Petri net semantics, when one interaction transition executes, it consumes the shared input place and disables the other interaction transition. This ensures that, from a given state, at most one interaction is selected amongst a set of conflicting interactions. Obtaining conflict-free Send/Receive model depends on the input partition of interactions. A version of this solution has been presented in [START_REF] Combaz | Automated conflict-free concurrent implementation of timed component-based models[END_REF].

Consider again the example from Figure 5.1. In order to obtain a conflict-free partition, we group a 2 and a 3 in the same class of interactions as these interactions are conflicting. Interaction a 1 can be separated in an other class of interactions as a 1 is conflict-free with a 2 and a 3 . Thus, we obtain the following conflict-free partition: γ 1 = {a 1 } and γ 2 = {a 2 , a 3 }.

We do not detail here the construction of Send/Receive BIP models with conflict-free schedulers. However, we give in Figure 5.4 an example of Send/Receive BIP model of the example from Figure 5.1 obtained from the conflict-free partition γ 1 = {a 1 }, γ 2 = {a 2 , a 3 }. This version contains two schedulers: S 1 for handling interaction in γ 1 and S 2 for handling interactions in γ 2 . The three components send offers to both schedulers since each one participates in one interaction handled by each scheduler.

Generally, conflict-free partition is not the optimal choice for decentralizing BIP models. Indeed, one may end up with a centralized scheduler if the BIP model has a chain of conflicting interactions. Therefore, a general method should incorporate a conflict resolution protocol. In the following, we present our general method for decentralizing BIP models.
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3-Layer Send/Receive Models

Our target Send/Receive model is based on three layers. The first layer contains Send/Receive atomic components which are obtained by transforming original atomic components defined in the BIP model. The second layer contains schedulers, each one handling a class of interactions defined by the partition of interactions. The third layer contains conflict resolution protocol components responsible for conflict resolution.

Similarly to what we proposed in the previous chapter, Send/Receive atomic components communicate with schedulers through offers. The schedulers notify the components when they are part of an interaction selected for execution. Conflicts between two interactions of the same scheduler (i.e. of the same class in the considered partition of interactions) are resolved locally in the scheduler as in the case of centralized scheduler. Conflicts between interactions handled by two different schedulers are arbitrated outside the schedulers in the conflict resolution protocol to decide their execution. That is, before executing interactions involved in such conflicts, schedulers send requests to the conflict resolution protocol. The latter decides to grant or to reject the execution of the requested interaction depending on whether conflicting interactions have already been executed or not.

The conflict resolution protocol is based on the idea of message-count technique presented in [START_REF] Antonio Pérez | An order-based algorithm for implementing multiparty synchronization[END_REF]. This technique is based on counting the number of times that a component participates in an interaction. Conflicts are then resolved by ensuring that each participation number is used only once. In Send/Receive models, components send new offers to schedulers each time they participate in an interaction. Counting the number of times a component participates in interactions bowls down to counting its offers. By numbering offers of the component, conflict resolution is simply achieved by comparing the offer numbers of participating components with numbers of their last execution.

From the implementation point of view, we use an integer variable n i called participation number to count offers in each Send/Receive component B SR i . The participation number of a component B SR i is included in its offers, and is incremented whenever B SR i receives notification for execution from a scheduler, that is, whenever B SR i participates in an interaction. Participation numbers are included in requests send by schedulers so that reservation Decentralizing the Scheduler components can arbiter conflicts. As already said, reservation requests are sent by a scheduler to the conflict resolution protocol only for interactions conflicting with other interactions not handled by the same scheduler. The conflict resolution protocol has variables N i that store the last value of the participation number of each component B SR i . A reservation request for an interaction a contains the participation numbers n i of each component B SR i participating in a. If for each component B SR i the participation number n i is greater than N i , then the conflict resolution protocol grant the execution and updates N i to the values of n i . On the contrary, if there exists a component B i whose participation number n i is less or equal to what the conflict resolution protocol has recorded, then the conflict resolution component replies a failure since B SR i has already participated in an interaction with the participation number n i . Now, we are ready to detail the construction of the three layers of our Send/Receive model.

Send/Receive Atomic Components

In this subsection, we define the transformed Send/Receive atomic component B SR that is capable of communicating with the scheduler component(s). This definition differs from Definition 28 in the fact that Send/Receive components do not compute approximations as we do not consider priorities. In addition, Send/Receive components defined here include the participation number needed for conflict resolution. Definition 28. Let B = (L, P , T , C, X, {X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T , {tpc ℓ } ℓ∈L ) be an atomic component. The corresponding Send/Receive atomic component is

B SR = (L SR , P SR , T SR , C SR , X SR , {X SR p } p∈P , {g τ } τ ∈T SR , {tc τ } τ ∈T SR , {f τ } τ ∈T SR ,{r τ } τ ∈T SR , {tpc ℓ } ℓ∈L SR ), such that: • L SR = L ∪ {⊥ ℓ | ℓ ∈ L}.
The time progress conditions of locations ⊥ ℓ and ℓ are equal to tpc ℓ expressed on clock g.

• X SR = X ∪ {tc p } p∈P ∪ {g p } p∈P ∪ {tpc} ∪ {ρ c } c∈C ∪ {t ex } ∪ {n} where tc p are timing constraint variables, g p are Boolean guard variables, tpc is time progress condition variable, ρ c are reset date variables, t ex is an execution date variable and n is a participation number variable.

• P SR = P ∪ {o}, where the offer port o exports the variables

X SR o = {n, tpc} ∪ p∈P (X p ∪ {tc p } ∪ g p ),
that is, the participation number variable , the time progress condition variable, the timing constraints variables and Boolean guards variables and variables originally exported by each port. For all other ports p ∈ P , we define X SR p = X p ∪ {t ex }.

• For each place ℓ ∈ L, we include an offer transition τ ℓ = (⊥ ℓ , o, ℓ) in T SR with no Boolean guard, no timing constraint and no update function.

• For each transition τ = (ℓ, p, ℓ ′ ) ∈ T , we include a notification transition τ p = (ℓ, p, ⊥ ℓ ′ ) in T SR with no guard, no timing constraint. The update function f τp first applies the original update function f τ of τ , and then updates, clock reset date variables, time progress condition variables, timing constraint variables, Boolean guard variables and participation number as follows:

-∀c ∈ r τ ρ c = t ex ,

-tpc := tpc ℓ ′ , -∀p ′ ∈ P tc p ′ := tc τ ′ if τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T false otherwise. -∀p ′ ∈ P g p ′ := g τ ′ if τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T false otherwise. -n := n + 1
We recall that ρ c variables are used to transform the timing constraints and the time progress conditions to be expressed on clock g using the transformations explained in Subsection 4.1.2. 
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Building Schedulers in BIP

Consider a BIP model γ(B 1 • • • B n ) and a partition of interactions {γ j } m j=1 . Each class of interactions γ j is handled by a single scheduler component S j . As explained in Subsection 5.2, two conflicting interactions a and b could be either internally or externally conflicting according to the partition {γ j } m j=1 .
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(a) Execution mechanism for the case where a is internally or not conflicting.

(b) Execution mechanism for the case where a is externally conflicting. In the case where a and b are internally conflicting, their execution is done without requesting the conflict resolution protocol as conflicts are resolved locally. Similarly to the centralized scheduler presented in Chapter 4, the arbitration between two interactions that are internally conflicting is simply achieved by the Petri net of the corresponding scheduler: offers correspond to tokens which are "consumed" when one of the two conflicting interactions is selected. Figure 5.6 (a) shows such mechanism for the execution of interaction a involving ports p 1 and p 2 . Note that such mechanism is also applied for not conflicting interactions.

In the case where a and b are externally conflicting, their execution is done through a reservation mechanism. Figure 5.6 (b) shows such mechanism for the execution of interaction a = ({p 1 , p 2 }, G a , F a ). Before executing interaction a, the scheduler sends a request to the conflict resolution protocol to reserve an interaction by executing transition rsv a . This transition exectes only if interaction a is enabled, that is, received places r 1 and r 2 are marked (offers from participating components B 1 and B 2 are received). The execution of this transition removes tokens from received places and moves them to try a place. Indeed, removing tokens from received places disables any other internally conflicting interaction with a to execute thanks to the Petri net semantics. Upon execution of transition rsv a , a reservation request is sent to the conflict resolution protocol. The reservation request contains the participation numbers of the participating components. The conflict resolution protocol responds either positively on port ok a if the reservation succeed or negatively on port f ail a if the reservation cannot be granted. In the first case, the scheduler executes transition ok a by moving token from try a place to sending places s p 1 and s p 2 from which it sends notification to the components. In the second case, transition labeled f ail a executes and token moves from try a places to received places r 1 and r 2 .

When components take part in an external interactions, they send new offers to the schedulers. Thus, the schedulers may receive successive offers from components. In order to take into account these offers, loop transitions are added in received and trying places. These loops are added to match Definition 22 of Send/Receive interactions: each time a send (of an offer) is enabled, corresponding receives must be enabled too. Figure 5.6 (b) shows this kind of loop transitions. For instance, suppose that the scheduler of Figure 5.6 (b) receive an offer from component B 1 . Token moves then from waiting place w 1 to received place r 1 . As this offer is sent to other schedulers, an external interaction can execute and consume that offer. The component is then required to send new offer to the schedulers. The scheduler of Figure 5.6 (b) is then able to receive this offer due to the loop transition from received place r 1 .

We are now ready to define the scheduler component S j handling a subset of interactions γ j ⊂ γ. Definition 29. Let γ(B 1 , . . . , B n ) be a BIP model and γ j ⊂ γ be a subset of interactions. The corresponding scheduler S j handling interactions of γ j is defined as the Send/Receive BIP component S j = (L S j , P S j , T S j , C S j , X S j , {X p } p∈P S j , {g τ } τ ∈T S j , {tc τ } τ ∈T S j , {f τ } τ ∈T S j , {r τ } τ ∈T S j , {tpc ℓ } ℓ∈L S j ) where:

• The set of variables X S j contains the following variables.

-Variables updated whenever an offer from component B i participating in an interaction belonging to γ j is received. They consist of the following: timing constraint variable tc p , Boolean variable g p and a local copy of the variables X p for each port p involved in an interaction belonging to γ j , a time progress condition variable tpc i and a participation number variable n i for each component B i participating in an interaction belonging to γ j .

-Variables updated whenever interaction a is scheduled. They consist of the following: execution date variable t ex a for each interaction a ∈ γ j , that stores the last execution date of interaction a and, an execution date variable t ex i for each component B i participating in an interaction belonging to γ j .

• C S j = {g}.

• L S j includes two types of places.

-For each component B i involved in interactions of γ j , we include waiting and received places w i and r i , respectively. Place r i has a time progress condition defined by the variable tpc i .

-For each port p involved in interactions of γ j , we include a sending place s p . The time progress condition of s p is false.

-For each interaction a ∈ γ j that is in external conflict with another interaction, we include a trying place try a .

• The set of ports P S j consists of the following.

-For each component B i involved in an interaction of γ j , P S j includes a receive-port o i , to receive offers. Each port o i is associated with the variables tc p , g p ,and X p for each port p of B i as well as the variable tpc i and n i of B i .

-For each port p involved in interactions γ j , P S j includes a send-port p, which exports the set of variables X p ∪ {t ex i } where i is the index of component B i that exports port p.

-For each interaction a ∈ γ j that is externally conflicting, P S j includes ports rsv a (reserve a, send-port), ok a (success in reserving a, receive-port), and f ail a (failure to reserve a, receive-port). The port rsv a exports the variables {n i } B i ∈part(a) .

-For each interaction a ∈ γ j that is internally conflicting, P S j include a unary port a.

• The set T S j of transitions consists of the following.

-In order to receive offers from a component B i , T S j includes transition (w i , o i , r i ). T S j also includes transitions (r i , o i , r i ) and {(try a , o i , try a ), B i ∈ part(a)} to receive new offers when B i takes part in an external interaction. These transitions have no Boolean guards, no timing constraints and no update functions.

-For each port p involved in interactions γ j , T S j includes a transition (s p , p, w i ) where i corresponds to the index of component exporting port p. This transition has no Boolean guard, no timing constraint and no update function. This transition is used to notify the corresponding component to execute the transition labeled by p.

-For each interaction a = ({p i } i∈I , G a , F a ) ∈ γ j , that is internally conflicting with an other interaction or is not conflicting with any interaction, T S j includes the transition τ a = ({r i } B i ∈part(a) , a, {s p i } p i ∈a ), guarded by the Boolean guard g τa = G a p i ∈a g p i and having the timing constraint tc τa = p i ∈a tc p i . This transition updates the following variables. * t ex a := t(g) * ∀ B i ∈ part(a), t ex i := t a then triggers the data transfer function F a .

-For each interaction a = ({p i } i∈I , G a , F a ) ∈ γ j , that is externally conflicting with another interaction, T S j includes the following three transitions: * τ rsva = ({r i } B i ∈part(a) , rsv a , try a ) guarded by the Boolean guard g τrsv a = G a p i ∈a g p i and the timing constraint tc τrsv a = p i ∈a tc p i . * τ oka = (try a , ok a , {s p i } p i ∈a ) with no guard nor timing constraint. This transition updates the following variables: Example 18. Consider again the example from Figure 5.1. We consider the following partition of interactions γ 1 = {a 1 , a 2 } and γ 2 = {a 3 }. Figure 5.7 shows the scheduler handling partition γ 1 . Since interaction a 1 in not conflicting with any interaction, its execution is done through the unary interaction a 1 . Since interaction a 2 is conflicting with the external interaction a 3 , its execution requires reservation from conflict resolution protocol. The reservation can be performed only at time instants meeting the timing constraint tc a 3 (expressed on clock g ), that is, for values of the global clock for which tc a 3 evaluates to true. Note that the interaction guard of a 3 is true and thus it is not shown on the figure. The reservation request sends the participation numbers n 1 and n 2 . These values are used by the conflict resolution protocol to check the validity of the offers sent by B 1 and B 2 . The execution of interaction a 2 is triggered when the conflict resolution protocol responds positively on port ok a 3 .

• t ex a := t(g), • ∀ B i ∈ part(a),

Conflict Resolution Protocol

In this subsection, we present three implementations of the conflict resolution protocol inspired from [START_REF] Bagrodia | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF]. Intuitively, the main role of the conflict resolution protocol is to check the freshness of offers received for an interaction, that is, to check that no externally conflicting interactions has been already executed using the same offers. This ensures that two conflicting interactions cannot execute with the same offers, that is, with the same participation numbers. Mutual exclusion is ensured using participation numbers associated to offers. Indeed, the conflict resolution protocol keeps the last participation number of each component and compares it with the participation number provided along with the reservation request from the schedulers. If each participation number from the request is greater than the one recorded by the conflict resolution protocol, the interaction is then granted to execute. Otherwise, the interaction execution is disallowed.

Centralized Protocol

We 

= (L CP , P CP , T CP , C CP , X CP , {X p } p∈P CP , {g τ } τ ∈T CP , {tc τ } τ ∈T CP , {f τ } τ ∈T CP , {r τ } τ ∈T CP , {tpc ℓ } ℓ∈L CP )
• L CP contains for each externally conflicting interaction a the waiting place w a and receive place r a . Place w a has no time progress condition. Place r a has a time progress condition tpc ra = false.

• X CP contains for each component B i the last participation number N i . In addition X CP contains for each externally conflicting interaction a and for each component B i ∈ part(a), the participation number n a i .

• C CP = {g}.

• P CP contains for each externally conflicting interaction a the reservation ports rsv a , ok a and f ail a . The port rsv a exports variables X rsva = {n a i | B i ∈ part(a)}. The ports ok a and f ail a do not have exported variables.

• T CP contains for each externally conflicting interaction a the following transitions.

-τ rsva = (w a , rsv a , r a ) with no guard, no timing constraint and no update function.

-τ oka = (r a , ok a , w a ) guarded by the guard G τ oka = B i ∈part(a) n a i > N i and having no timing constraint. The update function of this transition sets the variables N i of each component B i ∈ part(a) to the value of n a i . That is, for all B i ∈ part(a) it performs N i := n a i . -τ f ail a = (r a , f ail a , w a ) with no guard, no timing constraint and no update function. In the centralized conflict resolution protocol CP, the time progress conditions of received places ensure that each request is treated immediately (no delay is allowed between the receiption of a request from a scheduler and the corresponding response of CP).

n a 2 1 > N 1 ∧n a 2 2 > N 2 N 1 := n a 2 1 N 2 := n a 2 2 N 3 := n a 3 3 N 2 := n a 3 2 ∧n a 3 3 > N 3 ok a3 rsv a3 n a 3 2 > N 2 r a2 r a3 n a 3 2 ≤ N 2 ∨n a 3 3 ≤ N 3
Notice that two conflicting interactions a and b with the same participation numbers for shared components cannot be both granted by the conflict resolution protocol CP , that is, CP correctly implements conflict resolution, which is explained as follows. Assume that CP has received requests for both a and b enabling both transitions labeled by ok a and ok b in CP . Due to atomic execution of transitions in CP , the execution ok a (resp. It handles only interactions a 2 and a 3 as these are externally conflicting interactions with respect to the partition of interactions. Initially, tokens of CP component remain at waiting places until a reservation request of a 2 or a 3 is received. For instance, when a reservation request for interaction a 2 arrives, the token moves to receive place r a 2 . The request provides the participation numbers of components B 1 and B 2 participating in a 2 , stored in n a 2 1 and n a 2 1 respectively. If for each component B i , i = 1, 2, the variable n a 2 i is greater than variable N i , then the transition labeled ok a 2 takes place. The transition labeled f ail a 2 takes place regardless the value of these variables.

In the centralized protocol, atomic access to N i variables is ensured through the Petri net semantics. The two remaining protocols are actually protocols to ensure atomicity for accessing the N i variables.

Token Ring Protocol

The second implementation of the conflict resolution protocol is inspired from the tokenbased algorithm provided by Bagrodia [9]. This version presents a more distributed protocol as it includes one component for each externally conflicting interaction. A token carrying variables N i circulates between all these components. Conflict resolution is ensured by the fact that only the component holding the token can decide to execute an interaction, based on participation numbers as in the centralized conflict resolution protocol.

We denote by T R a the token ring component handling reservation of the externally conflicting interaction a. Definition 31. Let γ(B 1 , . . . , B n ) be a BIP model and {γ j } m j=1 be a partition of interactions. Given an externally conflicting interaction a, the corresponding conflict resolution protocol component T R a is defined as the Send/Receive BIP component T R a = (L T Ra , P T Ra , T T Ra ,

C T Ra , X T Ra , {X p } p∈P T Ra , {g τ } τ ∈T T Ra , {tc τ } τ ∈T T Ra , {f τ } τ ∈T T Ra , {r τ } τ ∈T T Ra , {tpc ℓ } ℓ∈L T Ra )
where:

• L T Ra includes the waiting place w a , the receive place r a , the receiving token place rt a and the sending token place st a . The time progress conditions of places r a and st a are false. The other places do not have time progress conditions.

• X T Ra includes for each component B i the last participation number N i . In addition, it includes, for each component B i ∈ part(a), the participation number n a i .

• P T Ra contains the reservation ports rsv a , ok a and f ail a as well as the sending and receiving token ports RT a , ST a .

• T T Ra includes the following transitions:

-transitions for interaction reservation: * τ rsva = (w a , rsv a , r a ), with no guard, no timing constraint and no update function. * τ oka = ({r a , rt a }, ok a , w a ) guarded by G τ oka = B i ∈part(a) n a i > N i , having no timing constraint, and updating variables N i of each component B i ∈ part(a) as follows: for all B i ∈ part(a), it performs N i := n a i . * τ f ail a = (r a , f ail a , w a ) guarded by G τ f ail a = B i ∈part(a) n a i ≤ N i and having no timing constraint and no update function.

-transitions for sending and receiving token: * τ ST a = ({st a , w a }, ST a , rt a ) with Boolean guard, no timing constraint and no update function. * τ RT a = (w a , RT a , st a ) with no Boolean guard, no timing constraint and no update function.

As in the case of centralized conflict resolution protocol, the time progress conditions of receive request place r a is false. This is to ensure that the response to a request is sent immediately without any delay. When the component has a reservation request, it can send a fail message even if it does not hold the token. However, it has to wait to receive the token to send an ok message. To enforce immediate responses to requests, we also need that the token circulates instantaneously between conflict resolution protocol components. To do that, we put false as time progress condition of place st a , which imposes the component holding the token to send it immediately without any delay. Example 20. Figure 5.9 presents the reservation component T R a 2 that handles interaction a 2 in the conflict resolution protocol. Initially, the component is at states w a 2 and st a 2 . From those states it can either receive the token via port RT a 2 or receive a reservation request via port rsv a 2 . If a reservation request is received, a f ail message is sent if the values of variables N i discard the request. Otherwise, an ok message is sent only if the component holds the token and if the participation number are fresh.

rsva 2 f aila 2 oka 2 false sta 2 false ra 2 rsva 2 ∨n a 2 2 ≤ N2 n a 2 1 ≤ N1 f aila 2 rta 2 wa 2 RTa 2 RTa 2 STa 2 n a 2 1 > N1 ∧n a 2 2 > N2 oka 2 N2 := n a 2 2 N1 := n a 2 1
The component sends back the token immediately if no reservation request is received, that is if the component is in location w a 2 . Otherwise, the token is sent back after responding to the request.

Send/Receive interactions between components of token ring protocol.

Given a set of externally conflicting interactions {a 1 , . . . , a m }, the token ring protocol is obtained by building one component T R a j for each externally conflicting interaction. These components communicate through Send/Receive interactions given by the set γ T R . This set includes Send/Receive interactions that connect each component T R a j to its neighbor T R a j +1 . That is, γ T R includes for two sucessive externally conflicting interactions a j , a j+1 , the Send/Receive interaction (T R a j .ST a j , T R a j+1 .RT a j+1 ). Figure 5.10 shows the connections between components in the token ring protocol layer for the example from Figure 5.1. 
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Dining Philosophers Protocol

The third implementation of conflict resolution protocol corresponds to an adaption of the solution to the dining philosophers problem [START_REF] Chandy | The drinking philosophers problem[END_REF]. As in the token-ring version, there is one conflict resolution protocol component for each externally conflicting interaction. We denote by DP a the dining philosophers component corresponding to an interaction a. If two interactions a and b are externally conflicting, the corresponding conflict resolution protocol components DP a and DP b share a fork carrying N i variables corresponding to the latest participation numbers of components involved in both interactions. In order to respond to a reserve request sent by a scheduler, each component must obtain all forks shared with other components. The fork brings the latest participation numbers N i recorded by its last owner. Once obtained, the component compares the participation numbers received from the reservation request sent by the scheduler and from the forks, and responds accordingly. Whenever a component responds to a reservation request, the fork becomes "dirty". In such case, the component may send the fork when it is requested to do so.

Given two interactions a and b, we denote by conf (a, b) = part(a) ∩ part(b) the set of components participating in both interactions. We denote also by extconf (a) the set of interactions that are externally conflicting with a. Definition 32. Let γ(B 1 , . . . , B n ) be a BIP model and {γ j } m j=1 be a partition of interactions. Given an externally conflicting interaction a, the corresponding conflict resolution protocol component DP a is defined as the Send/Receive BIP component • T DPa contains the following transitions:

DP a = (L DPa , P DPa , T DPa , C DPa , X DPa , {X p } p∈P DPa , {g τ } τ ∈T DPa , {tc τ } τ ∈T DPa , {f τ } τ ∈T DPa , {r τ } τ ∈T DPa , {tpc ℓ } ℓ∈L
-τ rsva = (w a , rsv a , r a ) with no guard, no timing constraint and no update function.

-

τ oka = ({rf b |b ∈ extconf (a)}, ok a , w a ) guarded by G τ oka = b∈extconf (a) f ork b B i ∈part(a)
n a i > N i , having no timing constraint and updating the following variables: 

* ∀ B i ∈ part(a) N i := n a i * ∀ b ∈ extconf (a) dirty b := true ∀ B i ∈ conf (a, b) N b i := N i -τ checka = (r a , u a , {sr b | b ∈ extconf (a)}) guarded by G τ checka = B i ∈part(a) n a i > N i ,
• dirty b := false • f ork b := true • ∀ B i ∈ conf (a, b) N i := max(N i , N b i ) • ∀ c ∈ extconf (a) ∀ B i ∈ conf (a, c) N c i := N i * τ hasf ork b =(sr b , u a ,

Decentralizing the Scheduler

Note that there is no delay allowed between the reception of the reservation request and the response. The reservation component DP a should react immediately and responds to the reservation request. This is ensured by the time progress conditions of places separating the reception of request reception and the response.Although waiting fork places wf b do not have time progress condition, time is not allowed to progress at these places. This is because each reservation component DP b is required to send immediately the fork due to the time progress condition of place sf a . Example 21. Figure 5.11 presents the reservation component DP a 2 that handles interaction a 2 in the conflict resolution protocol. Since interaction a 2 is externally conflicting with a 3 , there is a fork shared between components DP a 2 and DP a 3 where DP a 3 is the component handling interaction a 3 . Thus, DP a 2 has to obtain the fork before deciding the execution of a 2 .
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Initially, the DP a 2 component is at places w a 2 and wr a 3 . From place w a 2 , it can receive a reservation request rsv a 2 indicating that interaction a 2 wants to execute. Upon reception of this request, the token moves to r a 3 place. From this place, a f ail message is sent if the variables N i discard the request. Otherwise the token moves to place sr a 3 to start negotiating the fork with component DP a 3 . If component DP a 2 already holds the fork, token move directly to place rf a 3 . Otherwise, it sends a fork request to DP a 3 component in order to receive the fork. Upon receiving the fork, DP a 2 updates variables N i as the fork brings the latest values. A newly received fork is always considered as clean. Receiving the fork moves the token to rf a 2 place. From this place, DP a 2 responds by either ok or f ail according to the values of N i and n a 2 i . Responding to a reservation request makes the fork dirty. DP a 2 may reuse the dirty fork as long as no fork request from DP a 3 is received. From place wr a 3 , DP a 2 waits for receiving fork request from component DP a 3 . Upon reception of this request, DP a 2 sends the fork if it is dirty.

Send/Receive interactions between components of the dining philosophers protocol.

Given a set of externally conflicting interactions {a 1 , . . . , a m }. The dining philosophers protocol is obtained by building one component DP a j for each externally conflicting interaction. These components communicate through Send/Receive interactions given by the set γ DP . This set includes Send/Receive interactions to send and receive forks and requests between conflict resolution protocol components. More precisely, for any two externally conflicting interactions a and b, γ DP contains:

• (DP b .SF b a , DP a .RF a b
) and,

• (DP b .SR b a ,DP a .RR a b ).

Figure 5.12 shows a global view of the dining philosophers conflict resolution protocol for the example from Figure 5.1. 
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Send/Receive Interactions

To complete the description of the 3-layer BIP models, we have to define the interactions between the distributed components. Between the components layer and the schedulers , offers and notifications are exchanged. Communication between the schedulers and the conflict resolution protocol involves rsv, ok and f ail messages transmission. Proof. The first two constraints of Definition 22 are trivially met by construction. We now prove that the third constraint also holds; i.e, whenever a send-port is enabled, all its associated receive-ports are enabled as well.

• Between a Send/Receive component B SR i and a scheduler S j , we consider the places w i , r i and s p for each port p exported by B i . If there is no token in s p place, then, it is easy to see that from this configuration, only interactions o i is enabled. If there is a token at place s p , it results from the execution of transition a or ok a in the scheduler. In the first case, a is internally or not conflicting interaction. This case is similar to the centralized scheduler. In the second case, the interaction a is externally conflicting and is refereed to the conflict resolution protocol. The latter uses the current participation number of B i for the execution of a and no other interaction is granted using the same participation number. Thus, s p is the only active place, from which a notification could be sent.

• Between the scheduler S j and the conflict resolution protocol, we consider the places try a in the scheduler S j , w a and r a in the conflict resolution protocol. If try a is empty, and w a is active, only reservation request through port rsv a is enabled. When the rsv a request is sent, the place try a and r a become active. From this configuration, only send ports ok a and f ail a are enabled in the conflict resolution protocol, and the associated ports are also enabled in the scheduler.

This proof ensures that any component ready to perform a transition labeled by a sendport will not be blocked by waiting for the corresponding receive-ports.

Observational Equivalence between Original and Transformed Models

We show that B and B SR CP are observationally equivalent. We consider the correspondence between actions of B and B SR CP as follows. To each interaction a ∈ γ of B, we associate either the binary interaction ok a or the unary interaction a of B SR CP , depending on whether a is externally conflicting. All other interactions of B SR CP (offer, notification, reserve, fail) are unobservable and denoted by β.

We proceed as follows to complete the proof of observational equivalence. Among unobservable actions β, we distinguish between β 1 actions, that are interactions between the atomic components and the schedulers (namely offer and notification), and β 2 actions that are interactions between the schedulers and the conflict resolution protocol (namely reserve and fail). We denote by q SR a state of B SR CP and q a state of B. A state of B SR CP from where no β 1 action is possible is called a stable state, in the sense that any β action from this state does not change the state of the atomic components.

Decentralizing the Scheduler

Lemma 5. From any state q SR , there exists a unique stable state [q SR ] such that q

SR β * 1 -→ γ SR [q SR ].
Proof. The state [q SR ] exists since each Send/Receive component B SR i can do at most two β 1 transitions: receive a notification and send an offer. Since two β 1 transitions involving two different components are independent (i.e. modify distinct variables and places), the same final state is reached independently of the order of execution of β 1 actions. Thus [q SR ] is unique. The above lemma proves the existence of a well-defined stable state for any of the transient states reachable by the Send/Receive model B SR CP . The state [q SR ] verifies the property

q SR β * 1 -→ γ SR [q SR ] and [q SR ] β 1
→ γ SR . Furthermore, Lemma 5 asserts that, at state [q SR ], atomic components are in a stable state, and variables and clock g in the scheduler have the same value as in atomic components. Lemma 6. At a stable state [q SR ], the Send/Receive model verifies the following properties.

• All atomic components are in a non busy place ℓ.

• All tokens in the scheduler components are in receive places r i .

• The clock g and all variables in the atomic components have the same value than their copies in the scheduler components.

Proof. The two first points come from Lemma 4 that guarantees possible execution of a Send/Receive interaction if its send-port is enabled. Therefore no place s p in the scheduler components (respectively ⊥ ℓ in atomic components) can be active at [q SR ], otherwise the answer p (respectively the offer from ⊥ ℓ ) could occur. Furthermore, since all offers have been sent, no token can be in a w i place.

In each scheduler S j , when all r i are marked, the last transition executed is either an offer or a f ail message reception. The latter does not modify variables in the scheduler S j . For each variable x in the scheduler S j , the last modifying transition is the offer from the corresponding atomic component B i , which ensures that each variable in the scheduler has the same value as the corresponding atomic component. The clock g has the same value in the atomic components and the schedulers as it is never reset.

Lemma 7. When B SR

CP is in a stable state, for each i ∈ {1, . . . , n}, we have n i > N i .

Proof. Initially, for each component B i , N i = 0 and n i = 1. By letting all components sending offers to all schedulers, we reach the first stable state where the property holds, since β 1 actions do not modify the N i variables.

The variables N i in the conflict resolution protocol are updated upon execution of an ok a transition, using values provided by the scheduler, that are values from components according to Lemma 6. Thus, in the unstable state reached immediately after an ok a transition, we have n i = N i for each component B SR i participant in a. Then, the notification transition increments participation numbers in components so that in the next stable state n i > N i . For components B i ′ not participating in a, by induction on the number of ok interactions, we have n i ′ > N i ′ .

Correctness of the Proposed Model 117

Lemma 7 shows that the participation numbers propagate in a correct manner. In particular, at any stable state the conflict resolution protocol has only previously used values and schedulers have the freshest values, that is the same as in the atomic components.

We define a relation between the set of states Q SR of B SR CP and the set of states Q of B as follows. For each state q SR ∈ Q SR , we build an equivalent state equ(q SR ) by: 1. considering the unique stable state [q SR ] reachable by doing β transitions, 2. taking the control location ℓ of B SR i as control location for B i in equ(q SR ), Lemma 6 ensures that it is a valid control state for B i , Proof. We define the equivalence R by taking:

R = {(q SR , q) ∈ Q SR × Q | q = equ(q SR )}
The three next assertions prove that R is a weak bisimulation:

(i) If (q SR , q) ∈ R and q SR β -→ γ SR r SR then (r SR , q) ∈ R.

(ii) If (q SR , q) ∈ R and q SR σ -→ γ SR r SR then ∃r ∈ Q : q σ -→ r and (r SR , r) ∈ R.

(iii) If (q SR , q) ∈ R and q σ -→ γ r then ∃r SR ∈ Q SR : q SR β * σ -→ r SR and (r SR , r) ∈ R.

(i) If q SR β -→ γ SR r SR , then β is either β 1 action, thus by definition [q SR ] = [r SR ],
or β is β 2 action which does not change the state of the atomic components, thus [q SR ] = [r SR ]. Thus, we have equ(q SR ) = equ(r SR ).

(ii) The action σ in B SR CP is either an interaction a or a delay step δ.

-If a is an interaction, it corresponds to executing a transition labeled by a unary port a in the scheduler handing a or a transition labeled by ok a in CP . These transitions are enabled according to valuations of variables and clock g in the scheduler handling a. If a is not externally conflicting, by construction of the scheduler, the transition labeled by a has the conjunction of timing constraints tc p sent by the atomic components for each port p ∈ a. The Boolean guard of this transition is G a p∈a g p , where g p are boolean guards sent by the atomic components for each port p ∈ a. By Lemma 6, these values are the same in atomic components, and by extension in q = equ(q SR ). Thus the guard of a evaluates to true at q = equ(q SR ). By construction of the atomic components, the timing constraints tc p are sent from ⊥ ℓ in B SR i are the timing constraints at state ℓ in B i . These timing constraints are expressed on clock g which could be equivalently expressed on original clocks c involved in the original timing constraints of B i . The valuation of each clock c involved in the timing constraint of a is computed from the valuation of gρ c where ρ c is the last clock reset date of c. Therefore, at state q the timing constraint of a expressed on its original clocks are also met. If a is externally conflicting, the transition labeled ok a in CP is possible only if the transition rsv a executes in the scheduler. This transition has the guard G a p∈a g p and timing constraint p∈a tc p . Thus, if this transition is possible in the scheduler, then the timing constraint and the Boolean guard of a are met at q. Moreover, if transition labeled ok a is enabled, this means that for each component B i involved in a, n i > N i . In particular, for each involved component B i , the offer corresponding to the number n i has not been consumed yet. We conclude that in both cases, we have q a -→ r. Finally, executing a in B SR triggers the execution of the data transfer function F a , followed by the computation in atomic component upon reception of the response. Thus at [r SR ] the values in atomic components are the same as in r, which yields (r SR , r) ∈ R.

-If a is a delay step, it corresponds by letting time progress by δ in either busy locations ⊥ ℓ i or in places r i of the schedulers, corresponding to atomic components B i . Location ⊥ ℓ i has the time progress condition tpc ℓ i and r i has the time progress condition tpc i sent from the atomic components and corresponding to time progress condition of location ℓ i . Thus, all these time progress conditions are not false, otherwise the δ delay step would not be allowed. By Lemma 6, the values involved in time progress condition and sent from ⊥ ℓ in B SR i are the values of time progress condition at state ℓ in B i . These time progress conditions are expressed on clock g which could be equivalently expressed on original clocks c involved in the original time progress conditions B i . The valuation of each clock c involved in the time progress condition of B i is computed from the valuation of gρ c where ρ c is the last clock reset date of c. If the time progress condition tpc i expressed on clock g allows the time step δ in the scheduler, thus, δ is also allowed by the time progress condition tpc ℓ i expressed on original clocks of B i . Therefore q δ -→ r. Executing δ has the same effect on clocks in both models, therefore (r SR , r) ∈ R.

(iii) If σ can be executed in B at state q, then from an equivalent state q SR , one can reach the state [q SR ] where the state, the clock g, and data of send/receive atomic atomic components coincide with those of q. Recall clocks c of the original model could be deduced from clock g as follows c = gρ c By Lemma 6, clock g, ports, timing constraints and data values are the same in atomic components and the schedulers. As previously, we distinguish the cases where σ is an interaction a or a delay step δ.

-If σ is a an interaction a from q, then the timing constraint and guard of a are true. By executing all possible f ail interactions (which correspond to β 2 actions), all tokens return back in r i places in schedulers. Then, if a is not externally conflicting, it can be executed directly. Otherwise, the sequence rsv a ok a executes, since Lemma 7 ensures that ok a is enabled. In both cases, we have

q SR β * 1 -→ 5.5 Conclusion 119 [q SR ] β * 2 -→ a -→ r SR .
As previously, the execution of a in both models leads to equivalent states, thus (r SR , r) ∈ R.

-If σ is a delay step δ, then from state [q SR ], time can progress also by δ as at this state all places r i are marked and having the time progress condition tpc i sent by

B SR i
which is the same as the time progress condition of B i at q. q SR β *

1

-→ [q SR ] δ -→ r ′SR . From state r ′SR , some fail interactions are possible (which correspond to β 2 actions) with zero delay, due to the time progress conditions that are equal to false in r a places int the conflict resolution protocol. That is, even if some β 2 actions is possible from state r ′SR , no delay is allowed at this state. Thus we have

q SR β * 1 -→ [q SR ] δ -→ r ′SR β 2 -→ r SR with (r SR , r) ∈ R.

Interoperability of Conflict Resolution Protocol

The centralized implementation CP of the conflict resolution protocol can be seen as a specification. Two other implementations, namely token ring and dining philosophers, can be used as conflict resolution protocol. However, these implementations are not observationally equivalent with the centralized implementation. The centralized version defines the most liberal implementation: if two reservation requests rsv a and rsv b are received, the protocol may acknowledge them in any order. This general behavior is not implemented neither by the token ring nor by the dining philosophers implementations, which are focused on ensuring progress. In the case of token ring, the response may depend on the order the token travels through the components. In the case of dining philosophers, the order may depend on places and the current status of forks. The observable actions are requests rsv a , ok a and f ail a messages or a δ step. The unobservable actions are token passings for T R and forks exchange for DP . It is clear that whenever an action (either ok a , f ail a or rsv a ) is possible from a given state of T R (resp. DP) by moving the token (resp. the forks), then we can always reach a state of CP where this action is possible as well. δ steps are not allowed in the three implementations of the conflict resolution protocol due to the time progress conditions on sending places. That is, a request, token or forks are required to be sent without any delay.

Conclusion

In this chapter, we proposed a method to decentralize the scheduler. The obtained models consist of (1) transformed atomic components of the original model, (2) a set of schedulers, each one handling a subset of interactions and (3) a conflict resolution protocol component(s)

Decentralizing the Scheduler responsible for resolving conflict between schedulers. The obtained models are dedicated to be implemented on platforms that provide fast communications, as in the schedulers, interactions scheduling dates correspond to execution dates in the components.

In the next chapter, we propose a method to obtain Send/Receive models that are dedicated to be implemented on platforms that provide slow communications. The idea in based on taking earlier the decision for executing an interaction. Indeed, the scheduler chooses earlier (as soon as possible) a date for executing an interaction and sends it to participating components so as they execute later at this date. However, deciding earlier the execution of an interaction may block components participating conflicting interaction. We will see in the next chapter how to avoid such blocking.

Taking Decision Earlier

In the previous chapter, we proposed a method for the generation of Send/Receive models with decentralized scheduling. Such models implicitly make the assumption that communications between components are instantaneous. This restricts the applicability of the approach to platforms having communication means that are fast enough so that communication delays can be neglected. In this chapter, we propose a method to obtain Send/Receive models that execute correctly even if communications are not instantaneous. To cope with communication delays, instead of notifying components at the very last moment (scheduing date), the schedulers have to plan interactions execution and to notify components in advance. In the proposed model, the schedulers choose as soon as possible a date for executing a selected interaction and send it to the participating components. Once received, the components wait for this date and then execute.

In order to ensure correct scheduling of interactions based on this approach, we show that the schedulers need to observe additional components not participating in the scheduled interactions. These components correspond to the ones participating in conflicting interactions (see Figure 6.1). This chapter is structured as follows. In Section 6.1, we start by describing the restrictions that we impose on the original model. Then, we explain in Section 6.2 scheduling issue when considering earlier decision making approach. In Section 6.3, we define formally the transformation from the centralized BIP models into Send/Receive BIP models. As we will explain later in the chapter, scheduling interactions in advance may require to observe time progress conditions of additional components, in addition to the participating components. This is needed for checking that scheduling decisions will not block components if the scheduling date is not compatible with their time progress conditions. We will explain also how to minimize the number of observed components by applying static analysis techniques. 

Model Restrictions

We consider the same model restrictions of the previous chapter. In addition, we consider the following restrictions.

• We consider the following restricted grammar for timing constraints tc:

tc := true | false | c ≤ ct | c ≥ ct | tc ∧ tc.
where c ∈ C is a clock, ct ∈ Z ≥0 is a constant. Any timing constraint tc can then be put into a conjunction of intervals as follows:

tc = c∈C l c ≤ c ≤ u c (6.1)
such that for all c ∈ C, l c ∈ Z ≥0 and u c ∈ Z ≥0 ∪ {+∞}.

• We consider also atomic components that satisfy the following non-decreasing deadlines property, which is defined below.

Definition 34. Let B = (L, P , T , C, X, {X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T ,{tpc ℓ } ℓ∈L
) be an atomic component with a semantics (Q, Σ, -→). We say that B has non-decreasing deadlines if for any state (ℓ, v, t) such that port p is enabled from state (ℓ, v, t), we have:

∀δ ∈ Z ≥0 . (ℓ, v, t) δ -→ (ℓ, v, t + δ) ⇒ (ℓ, v, t) p -→ (ℓ ′ , v ′ , t ′ ) δ -→ (ℓ ′ , v ′ , t ′ + δ)
Intuitively, an atomic component satisfies the non-decreasing deadlines property if the following condition is satisfied: if time can progress by δ from a given state (ℓ, v, t) it can also progress from state (ℓ ′ , v ′ , t ′ ) reached by executing port p from (ℓ, v, t). The following proposition gives sufficient conditions on time progress conditions and timing constraints that ensure satisfaction of the non-decreasing deadlines property. They are simple syntactic conditions that can be checked statically on transitions of atomic components.

Proposition 2. An atomic component B = (L, P , T , C, X, {X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T ,{tpc ℓ } ℓ∈L
) such that all its transitions τ = (ℓ, p, ℓ ′ ) ∈ T satisfy the following syntactic conditions

U [tpc ℓ ](c) ≤ U [tpc ℓ ′ ](c) if c ∈ r τ U [tpc ℓ ](c) ≤ U [tpc ℓ ′ ](c) + L[tc τ ](c) if c ∈ r τ has non-decreasing deadlines.
Proof. Given a transition τ = (ℓ, p, ℓ ′ ) enabled from state (ℓ, v, t), we have to prove that if a time step δ is enabled from (ℓ, v, t) then it is also enabled from state (ℓ ′ , v ′ , t ′ ) reached after executing transition τ .

First, as we suppose that transition τ is enabled from state (ℓ, v, t), this means that tc τ (t) must be true. Thus, the valuation of each clock c is greater than or equal to the lower bound specified by the timing constraint tc τ over c. Formally we have:

∀c ∈ C, t(c) ≥ L[tc τ ](c) (6.2)
Second, as we suppose that δ is allowed from state (ℓ, v, t), then for each clock c the valuation t(c) + δ must be less than or equal to the upper bound specified by tpc ℓ for c. Formally, we have:

∀c ∈ C, t(c) + δ ≤ U [tpc ℓ ](c) (6.3)
Inequations (6.2) and ( 6.3) gives the following inequation:

∀c ∈ C, δ ≤ U [tpc ℓ ](c) -L[tc τ ](c). (6.4)
Now, we prove that δ is enabled from state (ℓ ′ , v ′ , t ′ ) by considering the syntactic conditions of Proposition 2. This boils down to prove that for each clock c the valuation t ′ (c) + δ is less than or equel to the upper bound of the time progress condition tpc ℓ ′ , That is:

∀c ∈ C, t ′ (c) + δ ≤ U [tpc ℓ ′ ](c).
To prove that, we consider the following two cases.

• If c is not reset by transition τ , i.e. c ∈ r τ , then at state (ℓ ′ , v ′ , t ′ ), the valuation of c remains the same as at state (ℓ, v, t), i.e. t(c) = t( ′ c). According to the first syntactic condition of Proposition 2 and (6.3), we prove that t ′ (c) + δ ≤ U [tpc ℓ ′ ](c).

• If c is reset by transition τ , i.e. c ∈ r τ , then at state (ℓ ′ , v ′ , t ′ ) the valuation of c is 0, i.e. t ′ (c) = 0. Thus, we need to prove that δ ≤ U [tpc ℓ ′ ](c). According to the second syntactic conditions of Proposition 2, we have

[tpc ℓ ](c) -L[tc τ ](c) ≤ U [tpc ℓ ′ ](c)
. By using (6.4), we prove that δ ≤ U [tpc ℓ ′ ](c). Example 23. Figure 6.2 shows an atomic component B corresponding to a task that is processing items cyclically. It takes a new item to process via port take, and give it back after processing via port give. Transition τ 1 = (ℓ 1 , take, ℓ 2 ) resets the clock c so as to measure the time it takes to give back an item after taking it. The time progress condition c ≤ P of ℓ 1 and the timing constraint c = P of τ 1 ensures that τ 1 executes when c reaches P . We assume that B takes exactly E time units to process an item once it is taken. We also assume that once an item is processed, it can be kept by B for at most K time units before giving it back. For instance, B is a machine that is processing items at room temperature and they need to be kept cold or hot. This is represented by timing constraint E ≤ c ≤ D for transition τ 2 = (ℓ 2 , give, ℓ 1 ), where D = E + K. Initially, the system is at state (ℓ, 0, 0) where ℓ = (ℓ 1 1 , ℓ 2 1 , ℓ 3 1 , ℓ 4 1 , ℓ 5 1 ). At this state, the time progress condition and the timing constraint in B 1 impose that the interaction t 1 executes after a delay of 5 time units. Then due to the time progress condition and the timing constraint in B 2 , t 2 executes after a delay of 3 time units. The interaction g 1 executes then after a delay δ 1 ∈ [0, 2] then g 2 after a delay δ 2 such that δ 1 + δ 2 ∈ [6, 8]. 

Scheduling Issue of Earlier Decision Making Approach
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Scheduling Issue of Earlier Decision Making Approach

Let a = {{p i | i ∈ I}, G a , F a } and b = {{p ′ j | j ∈ J}, G a , F a } be two conflicting interactions (i.e. such that a#b) where part(a) = {B i } i∈I and part(b) = {B j } j∈J . When interaction a is planned, the scheduling of interaction b needs to be blocked until a executes. If a is planed in δ a time units, any component B i ∈ part(a) can only participate to a and is forced to wait for δ a time units, which needs to be allowed by its corresponding time progress condition. Moreover, any component B j ∈ part(b) may participate to any interaction other than b. However, when the only enabled interaction is b, B j cannot execute before the execution of a, that is, it is forced to wait for δ a . In this case and if the time progress condition of B j does not allow to wait for δ a time units, scheduling a in δ a introduces a timelock in B j . That is, B j cannot execute during δ a time units but at the same time cannot wait for δ a time units.

Note that such blocking situations cannot be reached when considering the approach of the last chapter. This is because the decision of executing a is taken at the very last moment i.e., its execution date. Before the decision for executing a is taken, there is no component "reserved" for executing a, in particular the components participating in conflicting interactions.

Example 24. Figure 6.4 shows a BIP model composed of three components B 1 , B 2 and B 3 with two conflicting interactions a and b. Suppose that initially the system is at state ((ℓ 1 , ℓ 2 ,ℓ 3 ), 0, 0). From this state, the schedulers may plan the execution of either interaction a or b, but not both, since interactions a and b are conflicting and both are enabled. Suppose that a is planed to execute in 5 time units. This means that components B 1 and B 2 are "reserved" and cannot participate in any other interaction before the execution of a. In particular, B 2 can not participate to interaction b for 5 time units. As a result, component B 3 is blocked for 5 time units too as it can progress only by participating in interaction b through port p ′ 3 . However, the time progress condition c 3 ≤ 2 of component B 3 does not allow to wait for 5 time units for the initial state. Thus, scheduling a in 5 time units introduces a timelock in B 3 after 2 time units.

p 1 p 2 p ′ 2 p 2 p ′ 2 p ′ 3 ℓ1 ℓ2 ℓ3 c3 ≤ 2 c1 ≤ 10 B2 B3 B1 a b ℓ ′ 1 ℓ ′ 2 ℓ ′′ 2 ℓ ′ 3 c3 ≤ 2 p 1 c1 ≤ 10

Problem Formulation

We denote by L p i the set of locations of component B i enabling port p i , defined as follows:

L p i = {ℓ i | ∧τ i = (ℓ i , p i , ℓ ′ i ) ∈ T i }.
Let a = {p i } i∈I be an interaction. We denote by L a the set of locations configurations enabling interaction a defined as follows: L a = p i ∈a L p i .

When scheduling a in δ a time units from a location configuration ℓ a ∈ L a , it should be allowed by the timing constraint of transitions τ i = (ℓ i , p i , ℓ ′ i ) of B i ∈ part(a) where ℓ i ∈ ℓ a as well as the time progress conditions of locations ℓ i . We define the predicate sched-tc a [ℓ a ] characterizing clocks valuations for which a could be scheduled from the configuration ℓ a ∈ L a as follows:

sched-tc a [ℓ a ] = {ℓ i ∈ℓa|τ i =(ℓ i ,p i ,ℓ ′ i )∈T i } tc τ i ∧ tpc ℓ i .
In order to plan a from the configuration ℓ a in δ a time units, we have to verify that sched-tc a [ℓ a ](t + δ a ) is true. Also, as explained in the previous section, we have to verify that each component B j participating in a conflicting interaction b is allowed to wait for δ a . As we consider components that satisfy the non-decreasing deadline property, we need only to check the time progress condition of the current state of B j : if B j can wait for δ a from the current state, it will be able to do so even if it changes its state by executing other interactions.

We call observed components of an interaction a, denoted by obs(a), the components that are not participating in a but that need to be observed in order to plan a. It is defined as follows:

obs(a) = a#b part(b) \ part(a).
We denote by safe-tc a [ℓ a ] the predicate characterizing the valuations of clocks for which 6.3 Transformations 127 a could be safely scheduled from the configuration ℓ a . It is defined as follows:

safe-tc a [ℓ a ] = sched-tc a [ℓ a ] B j ∈obs(a) tpc ℓ j .
In order to plan safely interaction a in δ a from a state (ℓ, v, t) where the location ℓ enables a from configuration ℓ a , we have to check that safe-tc a [ℓ a ](t + δ a ) evaluates to true.

Proposed Solution For Send/Receive BIP Models

Let a = ({p i } i∈I , G a , F a ) be an interaction and let S a be the scheduler handling a. In the Send/Receive BIP model proposed in the previous chapter, when scheduling an interaction a, S a needs to receive offers only from components participating in a. However, this is not sufficient when considering the earlier decision making approach as S a needs to observe components in obs(a) to safely plan interaction a. In the Send/Receive BIP model presented in this chapter, we propose that the scheduler S a receives not only offers from components participating in a but also observed components in obs(a), that is components participating in conflicting interactions. The offers of observed components are used to observe their time progress conditions of components. Thanks to the non-decreasing deadlines assumption, the scheduler can safely use outdated offers of observed components to check their time progress conditions.

From offers received from participating components B i ∈ part(a), the scheduler S a computes the scheduling timing constraint sched-tc a of a as follows:

sched-tc a = p i ∈a tc p i ∧ tpc i
where tc p i and tpc i are timing constraints and time progress conditions variables received in the offers of participating components B i .

From offers received from observed components B j ∈ obs(a), the scheduler S a restricts the scheduling timing constraint sched-tc a into a safe scheduling timing constraint safe-tc a as follows:

safe-tc a = sched-tc a B j ∈obs(a) tpc j where tpc j are time progress conditions variables received in the offers of observed components B j .

Consider again the example from Figure 6.3. Since g 1 and g 2 are conflicting, they observe the components of each others ,i.e. obs(g 1 ) = {B 4 } and obs(g 2 ) = {B 2 }. 
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Transformations

Transformation of Atomic components

The transformation proposed here differs from the one of Definition 28 in the fact that it decouples notifications of components and their actual executions. Each notification brings the execution date chosen for the port participating in the interaction planed for execution by the scheduler. Once notified, a component wait for the corresponding date and then execute on the corresponding port. Figure 6.6 shows the transformation of transitions labeled p 1 and p 2 enabled from location ℓ. In the transformed Send/Receive atomic component, we add the busy location ⊥ ℓ from which transition offer executes. Also, we add for transitions τ 1 = (ℓ, p 1 , ℓ 1 ) and τ 2 = (ℓ, p 2 , ℓ 2 ), busy locations ⊥ τ 1 and ⊥ τ 2 respectively. Transitions (ℓ, n p 1 , ⊥ τ 1 ) and (ℓ, n p 2 , ⊥ τ 2 ) correspond to the reception of notifications from the schedulers, regarding the execution of port p 1 and p 2 respectively. Notifications contain the date chosen for the execution of the selected port. Transitions (⊥ τ 1 , p 1 , ⊥ ℓ 1 ) and (⊥ τ 2 , p 2 , ⊥ ℓ 2 ) executes ports p 1 and p 2 respectively at the date received with the notification. In the following, we define formally the transformation of an atomic component into a Send/Receive atomic component.

⊥ ℓ ℓ ⊥τ 1 ⊥τ 2 ⊥ ℓ 1 ⊥ ℓ 2 p2 p1 o np 2 np 1
Definition 35. Let B = (L, P , T , C, X, {X p } p∈P , {g τ } τ ∈T , {tc τ } τ ∈T , {f τ } τ ∈T , {r τ } τ ∈T ,{tpc ℓ } ℓ∈L ) be an atomic component. The corresponding Send/Receive atomic component is B SR = (L SR , P SR , T SR ,C SR , X SR , {X SR p } p∈P , {g τ } τ ∈T SR , {tc τ } τ ∈T SR , {f τ } τ ∈T SR , {r τ } τ ∈T SR , {tpc ℓ } ℓ∈L SR ) such that: • L SR = L ∪ {⊥ ℓ | ℓ ∈ L} ∪ {⊥ τ | τ ∈ T }.
The time progress condition of location ⊥ ℓ and ℓ are equal to tpc ℓ expressed on clock g and the time progress condition of location ⊥ τ is g ≤ t ex .

• X SR = X ∪ {tc p } p∈P ∪ {g p } p∈P ∪ {tpc} ∪ {ρ c } c∈C ∪ {t ex } ∪ {n}.
• C SR = {g}.

• P SR = P ∪ {o} ∪ {n p } p∈P where o is a an offer port, n p is a notification port and p is a unary port. The offer port o exports variables X SR o = {n, tpc} ∪ p∈P (X p ∪ {tc p } ∪ {g p }), that is, the participation number variable, the time progress condition variable, the timing constraints, guard variables, and variables associated with each port. Each notification port n p exports the variables X SR np = X p ∪ {t ex }.

• For each location ℓ ∈ L, T SR includes an offer transition τ ℓ = (⊥ ℓ , o, ℓ). This transition has no Boolean guard, no timing constraints and no update function.

• For each transition τ ∈ T , T SR includes a notification transition τ np = (ℓ, n p , ⊥ τ ) having no Boolean guard, no timing constraint and no update function, and an execution transition τ p = (⊥ τ , p, ⊥ ℓ ′ ). having no Boolean guard and a timing constraint g = t ex . The update function f τp first applies the original update function f τ of τ , and updates the following variables:

-∀c ∈ r τ ρ c = t ex , -tpc := tpc ℓ ′ , -∀p ′ ∈ P tc p ′ := tc τ ′ if τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T false otherwise. -∀p ′ ∈ P g p ′ := g τ ′ if τ ′ = (ℓ ′ , p ′ , ℓ ′′ ) ∈ T false otherwise.
-n := n + 1
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Note that the time progress condition of location ⊥ τ and the timing constraint of τ p ensures the execution of port p at the chosen date t ex . We recall that tc p ′ and tpc are expressed using clock g and are computed using ρ c as explained in Section 4.1.2.

In the above definition, the execution of a transition τ = (ℓ, p, ℓ ′ ) of a component B corresponds to the following three steps in B SR . Firstly, an offer transition τ ℓ transmits necessary information used by the schedulers for computing enabled interactions involving B SR . Secondly, a notification transition τ np is executed once the scheduler plans the execution of an interaction involving port p. The notification contains the date t ex chosen by the scheduler for its execution. Finally, the execution transition τ p executes the port p at the chosen date t ex . First, B SR sends offers to the schedulers, containing the time progress condition of location ℓ 1 , the timing constraints of ports give and take as well as their Boolean guard variables, and the participation number variable n 1 . It receives then a notification from the schedulers specifying that the component should execute port take at date t ex . Note that the time progress condition of location ℓ 1 forces B SR to be notified and to leave ℓ 1 before the value of clock g exceeds P + ρ c , or equivalently clock c exceeds P . After receiving notification on port n take , the transition labeled by take executes at the chosen date t ex and executes the update 

o o ℓ 1 u 1 g = t ex o n give ⊥τ 1 ⊥ ℓ 2 take g ≤ P + ρc g ≤ t ex g ≤ D + ρc g ≤ t ex n take g = t ex ⊥ ℓ 1 n give ⊥τ 2 ℓ 2 u 2 give n take tpc 1 tcgive 1 tc take 1 t ex B SR ggive 1 g take 1 ρc g ≤ D + ρc g ≤ P + ρc
u 2 =                        ρ c := t ex tc take := false tc give := E + ρ c ≤ g ≤ D + ρ c g take := false g give := true tpc =: g ≤ D + ρ c n + + t ex := +∞
The update function u 1 of transition labeled by give is defined as follows.

u 1 :=                            ρ c := t ex tc take := g = P + ρ c tc give := false tpc := g ≤ P + ρ c g take := true g give := false tpc := g ≤ P + ρ c n + + t ex := +∞

Building Distributed Schedulers

Given a BIP model γ(B 1 , . . . , B n ) and a partition of interactions {γ j } m j=1 , we explain in this section how to build for each class γ j the scheduler component S j .

Let a = {{p i | i ∈ I}, G a , F a } be an interaction belonging to γ j . Scheduling a needs receiving offers from components in part(a) and obs(a). Only offers from the participants need to be acknowledged by a response whenever the interaction a is planned. Regarding offers from observed components, they are used to compute a safe date for scheduling a. Note that only time progress conditions are used from offers received from observed components. In order to choose a safe date, S j computes the safe timing constraint safe-tc a that corresponds to the conjunction of timing constraints and time progress conditions of components participating in a with the time progress conditions of components observed by a. Given a scheduling policy P, the safe timing constraint safe-tc a and the actual valuation of clock g, S j computes the set of safe dates P(t(g), safe-tc a ). If this set is not empty, S j chooses a safe date t a for scheduling a. Otherwise, a could not be scheduled since there is no safe date for its execution. We distinguish between the case where interaction a is internally or externally conflicting.

Figure 6.8 shows scheduling mechanisms of interaction a involving components B 1 and B 2 and observing component B 3 .
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• In the case where interaction a is internally or not conflicting, the scheduler executes transition sched a if the set P(t(g), safe-tc a ) is not empty. In this case, the scheduler chooses one safe date t ex a from the set P(t(g), safe-tc a ), such that safe-tc a (t e x a ) is true, and sends it to participating components B 1 and B 2 .

• In the case where interaction a is externally conflict, the scheduler starts the reservation mechanism if the set P(t(g), safe-tc a ) is not empty. In the case where the conflict resolution protocol responds by f ail the scheduler returns back to received places. In the case where the conflict resolution protocol responds by ok, the scheduler checks again the set P(t(g), safe-tc a ). This check is necessary to ensure finding a valid date for scheduling interaction a. Indeed, if ok message from the conflict resolution protocol takes a long time to be received, it would be possible that the set P(t(g), safe-tc a ) becomes empty (e.g. safe-tc a evaluates to false) which forbids the scheduler to find a valid date for scheduling a. In the case where the set P(t(g), safe-tc a ) is not empty, the scheduler proceeds to schedule interaction a by executing transition sched a . In the other case, the scheduler sends a cancel request to the conflict resolution protocol on port cancel a . This request is acknowledged by a message sent by the conflict resolution protocol on port ack a .

sp 2 sp 1 r 1 r 2 sp 1 sp 2 r 3 r 2 r 1 r 3 o 3 f aila o 1 o 2 o 3 acka trya o 1 o 2 oka sda cla P(t(g), safe-tca) = ∅ cancela scheda scheda t ex a := choose(P(t(g), safe-tca))
Ga ∧ P(t(g), safe-tca) = ∅ Ga ∧ P(t(g), safe-tca) = ∅ rsva t ex a := choose(P(t(g), safe-tca))

P(t(g), safe-tca) = ∅ (a) Scheduling mechanism in the case where a is internally or not conflicting.

(b) Scheduling mechanism for the case where a is externally conflicting. Definition 36. Let γ(B 1 , . . . , B n ) be a BIP model and γ j ⊂ γ be a subset of interactions. The corresponding scheduler S j handling interactions of γ j is defined as the Send/Receive BIP component S j = (L S j , P S j , T S j , C S j , X S j , {X p } p∈P S j , {g τ } τ ∈T S j , {tc τ } τ ∈T S j , {f τ } τ ∈T S j , {r τ } τ ∈T S j , {tpc ℓ } ℓ∈L S j ) where:

• The set of variables X S j consists of the following.

-Variables updated whenever an offer from component B i that is participating in or observed by an interaction in γ j is received. They consist of the following: * a timing constraint variable tc p , a guard variable g p and a local copy of the variables X p for each port p of B i . * a time progress condition variable tpc i and a participation number variable n i for each component B i .

Note that for observed components, tc p , g p , X p and n i are not used by S j .

-Variables updated whenever interaction a is scheduled. They consist of the following: * an execution date variable t ex a for each interaction a ∈ γ j , that stores the last execution date of interaction a, * an execution date variable t ex i for each component B i participating in an interaction belonging to γ j .

• C S j = {g}.

• The set of L S j contains the following places.

-For each component B i involved in interactions of γ j , L S j includes waiting and received places w i and r i , respectively. Place r i has a time progress condition defined by the variable tpc i .

-For each port p of component B i participating in interactions of γ j , L S j includes a sending place s p . The time progress condition of this place is g ≤ t ex i . -For each interaction a ∈ γ j that is externally conflicting, L S j includes a trying place try a , scheduling place sd a and a cancel place cl a . The time progress condition of try a and sd a is defined by B i ∈part(a) tpc i . The other places have no time progress condition.

• The set of ports P S j consists of the following:

-For each component B i , P S j includes an offer port o i . Each port o i is associated with the variables tc p , g p and X p for each port p of B i as well as the variable tpc i and n i of B i .

-For each port p of component B i participating in interactions γ j , P S j includes a send-port n p , which exports the set of variables X p ∪ {t ex i }. -We include a unary port sched a for each interaction a ∈ γ j .

-For each interaction a ∈ γ j that is externally conflicting, P S j includes ports rsv a , ok a , f ail a , cancel a and ack a . The port rsv a exports the variables {n i } B i ∈part(a) . The other ports do not export any variable.

• The set of transitions T S j consists of the following:

-In order to receive offers from a component B i participating in or observed by an interaction of γ j , T S j includes an offer transition (w i , o i , r i ). It includes also transitions (r i , o i , r i ) and {(try a , o i , try a ) | B i ∈ part(a) ∪ obs(a)} to receive new offers when B i takes part in other conflicting interaction not handled by S j . These transitions have no Boolean guards, no timing constraints and no update functions.

-In order to send notification, T S j includes for each port p of component B i participating in an interaction belonging to γ j , a notification transition (s p , n p , w i ) with no Boolean guard, no timing constraint and no update function.

-For each interaction a = {{p i | i ∈ I}, G a , F a } ∈ γ j that is internally or not conflicting, T S j includes transition

τ scheda = ({r i | B i ∈ part(a)∪obs(a)}, sched a , {s p i | B i ∈ part(a)}∪{r i | B i ∈ obs(a)})
guarded by G a ∧P(t(g), safe-tc a ) = ∅ and having no timing constraint. The update function f τ scheda updates the following variables. * t ex a := choose(P(t(g), safe-tc a )), such that safe-tc a (t e x a ) * ∀ B i ∈ part(a) t ex i := t ex a and applies the data tansfer function • t ex a := choose(P(t(g), safe-tc a )), such that safe-tc a (t e x a ) • ∀ B i ∈ part(a) t ex i := t ex a and applies the data tansfer function F a .

F a . -For each interaction a = {{p i | i ∈ I}, G a , F a } ∈ γ j that is externally conflicting, T S j includes the following transitions * τ rsva = ({r i | B i ∈ part(a) ∪ obs(a)}, rsv a , {try a } ∪ {r i | B i ∈ obs(a)}) guarded by G a ∧ P(safe-tc a , t (g) 
Note that the time progress conditions of place try a ( B i ∈part(a) tpc i ) ensures that the response from the conflict resolution protocol is received before that one of the time progress conditions of components participating in a becomes. Also, the time progress conditions of place sd a ( B i ∈part(a) tpc i ) ensures that scheduling a is done before that one of the time progress conditions of components participating in a becomes false. The time progress condition of place s p (g ≤ t ex i ), where p is a port of component B i , ensures that the scheduler sends the notification to component B i before the execution date t ex i expiration. Figure 6.9 shows the scheduler component S 1 of Figure 6.5. S 1 handles interactions t 1 and g 1 . For sake of readability, the guards and update functions of transitions are hidden. As t 1 is not conflicting with any other interaction, it is handled locally in S 1 . Interaction g 1 is in external conflict with g 2 . To schedule interaction g 1 , S 1 has to receive offers from participating components B 2 and B 3 as well as offers from observed component B 4 . Its scheduling requires requesting reservation from the conflict resolution protocol through port rsv g 1 . If the reservation of interaction g 1 succeeds (transition labeled by ok executes) and if there is no safe date for its scheduling, S 1 cancel the interaction by sending a cancel request to the conflict resolution protocol. An acknowledgment from the conflict resolution protocol is sent on port ack to confirm the cancel. In the case where S 1 succeed to find a date for scheduling g 1 , it executes the transition labeled by sched a and then notifies components B 2 and B 3 .
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Conflict Resolution Protocol

As explained in Subsection 5.3.3, the main role of the conflict resolution protocol is to check the validity of offers received for the execution of interaction a. This is done by comparing for each component B i the last participation numbers N i that is recorded by the conflict resolution protocol and the participation number n i arriving along with the reservation request. In addition to that, the conflict resolution protocol has to acknowledge cancel requests sent by the schedulers. The cancel request returns back the value of variables N i of each component B i participating in a to the last value before sending an ok a message. This allows each other conflicting interaction b that fails because of interaction a, to succeed when the scheduler handling b sends an other reservation request. To do this, we define new variable N cl i that stores the last values of variables N i when an ok a message is sent. When a cancel request for interaction a is received, the conflict resolution protocol puts backs the values of N i to the values of N cl i . In the following we show how to adapt the different implementations of the conflict resolution protocol presented in Subsection 5.3.3 in order to integrate the cancel mechanism.

Centralized Protocol

We adapt Definition 37 in order to integrate cancel mechanism in CP component. Definition 37. Let γ(B 1 , . . . , B n ) be a BIP model and γ j ⊂ γ be a subset of partition of interactions. The corresponding centralized conflict resolution protocol CP is defined as the Send/Receive BIP component CP = (L CP , P CP ,

T CP , C CP , X CP , {X p } p∈P CP , {g τ } τ ∈T CP , {tc τ } τ ∈T CP , {f τ } τ ∈T CP , {r τ } τ ∈T CP , {tpc ℓ } ℓ∈L CP )
• L CP contains for each externally interactions the waiting place w a , receive place r a and cancel place cl a .

• X CP contains for each component B i the variable N i . In addition X CP contains for each externally conflicting interaction a and for each component B i ∈ part(a), the variable n a i and the variables N cl i where N cl i are cancel variables needed to cancel the reservation of interaction a.

• C CP = {g}.

• P CP contains for each externally conflicting interaction a the reservation ports rsv a , ok a and f ail a . The port rsv a exports variables

X rsva = {n a i | B i ∈ part(a)}.
The ports ok a and f ail a do not have exported variables. In addition, P CP contains the cancel reservation ports cancel a and ack a . These ports do no export variables.

• T CP contains for each externally conflicting interaction a the following transitions:

-τ rsva = (w a , rsv a , r a ) with no Boolean guard, no timing constraint and no update function.

-τ oka = (r a , ok a , w a ) guarded by g τ oka = B i ∈part(a) n a i > N i and having no timing constraint. The update function of this transition updates the variables N cl i of each component B i ∈ part(a) to N i , and then updates variables N i of each component B i ∈ part(a) to the value of n a i . -τ f ail a = (r a , f ail a , w a ) having no guard, no timing constraint and no update function.

w g1 f ail g1 ∧n g 1 3 > N 3 rsv g1 n g 1 2 > N 2 ok g1 ack g1 cancel g1 r g1 clg 1 N 2 := N clg 1 2 N 3 := N clg 1 3 N clg 1 2 := N 2 N clg 1 3 := N 3 N 2 := n a 3 2 N 3 := n a 3 3 rsv g1 ok g1 f ail g1 cancel g1 ack g1
-τ cancela = (w a , cancel a , cl a ) with no Boolean guard and no timing constraint. This transition updates variables N i to N cl i of each component B i ∈ part(a). -τ acka = (cl a , ack a , w a ) with no guard, no timing constraint and no update function.

Note that in contrast to Definition 37, we do not put false as time progress condition in place r a . This is to model the fact that the centralized protocol component may take arbitrary time to send a response to the scheduler. For the implementation point of view, this means that the communication delay between the centralized protocol component and the scheduler could be non-null.

Example 25. Figure 6.10 presents a fragment of the centralized version of conflict resolution protocol for handling interaction g 1 of the model from Figure 6.3. Initially, there is a token in waiting place w g 1 . Upon receiving a reservation request, the token moves to r g 1 place. The transition labeled by ok g 1 can take place only if the freshness offers condition is true

(n g 1 2 > N 2 ∧ n g 1 3 > N 3
). This transition updates the variables N cl 2 and N cl 3 to the actual values of N 2 and N 3 respectively, and then updates variables N 2 and N 3 to the value of variables n g 1 2 and n g 1 3 . When one of these transition (ok or f ail) executes, the token returns back to w g 1 place. From this place, the transition labeled by cancel g 1 takes place when receiving a cancel request from the scheduler. This transition updates variables N 2 and N 3 to the values of variables N cl 2 and N cl 3 respectively. That is, the variables N 2 and N 3 returns back to their values before sending an ok a message. Upon execution of this transition, the token moves to cl g 1 place. As a cancel request has to be acknowledged, there is only a transition labeled by Taking Decision Earlier ack g 1 enabled from cl g 1 place. The execution of this transition returns back the token to w g 1 place.

Token Ring Protocol

We adapt Definition 38 in order to integrate cancel mechanism in the components of the token ring protocol.

Let T R a be a component of the token ring protocol handling interaction a. As in the case of centralized protocol component CP , T R a component stores the values of variables N i in N cl i variables when sending an ok a message. When a cancel request is received, T R a component puts back the values of variables N i to the values of variables N cl i . The cancel request is acknowledged by an ack message. Definition 38. Let γ(B 1 , . . . , B n ) be a BIP model and γ j ⊂ γ be a subset of partition of interactions. Given an externally conflicting interaction a, the corresponding conflict resolution protocol component T R a is defined as the Send/Receive BIP component T R a = (L T Ra ,

P T Ra , T T Ra , C T Ra , X T Ra , {X p } p∈P T Ra , {g τ } τ ∈T T Ra , {tc τ } τ ∈T T Ra , {τ } τ ∈T T Ra , {r τ } τ ∈T T Ra , {tpc ℓ } ℓ∈L T Ra ) where:
• L T Ra includes the waiting place w a , the receiving place r a , the receiving token place rt a , the sending token place st a and cancel place cl a . All places have not time progress conditions.

• X T Ra includes the variables {N i } n i=1 , the variables {n a i | B i ∈ part(a)} and the variables {N cl i | B i ∈ part(a)}.

• P T Ra contains the reservation ports rsv a , ok a , f ail a and cancel a as well as the sending and receiving token ports RT a , ST a .

• T T Ra includes the following transitions:

-transitions for reserving and cancelling interaction a: * τ rsva = (w a , rsv a , r a ), with no guard, no timing constraint and no update function. * τ oka = ({r a , rt a }, ok a , w a ) guarded by B i ∈part(a) n a i > N i and having no timing constraint. The update function of this transition sets the variables N cl i of each component B i ∈ part(a) to N i and, then updates variables N i of each component B i ∈ part(a) to the value of n a i . * τ f ail a = (r a , f ail a , w a ) guarded by B i ∈part(a) n a i ≤ N i , having no timing constraint and no update function. * τ cancela = (w a , cancel a , clcl a ) with no guard and no timing constraint. This transition updates variables N i to N cl i of each component B i ∈ part(a). * τ acka = (cl a , ack a , w a ) with no guard, no timing constraint and no update function.

-transitions for sending and receiving token: In order to model the fact that communications may take arbitrarily delays, we do not put a time progress condition on places r a and st a . That is, the component T R a may take arbitrary time to either send are response to the scheduler or to send the token.

stg 1 STg 1 rg 1 rsvg 1 ∨n g 1 3 ≤ N3 n g 1 2 ≤ N2 f ailg 1 RTg 1 clg 1 cancelg 1 N 2 := N cl 2 N 3 := N cl 3 ackg 1 RTg 1 rtg 1 STg 1 cancelg 1 ackg 1 wg 1 n g 1 2 > N2 ∧n g 1 3 > N3 okg 1 N3 := n g 1 3 N cl 3 := N3 N cl 2 := N2 N2 := n g 1 2 f ailg 1 okg 1 rsvg 1
Example 26. Figure 6.11 depicts the conflict resolution protocol component handling interaction g 1 . The component is initially at waiting and receiving token places, i.e. w g 1 and st g 1 . Upon receiving a reservation request, the token moves to r g 1 place. The transition labeled by ok g 1 is executed only if the offers validity condition is true and the component holds the token. This transition updates variables N cl 2 and N cl 2 to the current values of N 2 and N 3 and then updates variables N 2 and N 3 to n g 1 2 and n g 1 3 respectively. The transition labeled by f ail g 1 and executes if one of the offers is not fresh. From place w g 1 , the transition labeled cancel g 1 can execute if the component receives a cancel request from the scheduler. This transition returns back the values of N 2 and N 3 to the values of N cl 2 and N cl 3 . The execution of this transition enables the execution of transition labeled by ack g 1 so as the component may acknowledge the cancel request.
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Note that the interactions γ T R between components of the token ring protocol is the same as in the version described in Subsection 5.3.3.

Dining philosophers Protocol

We adapt Definition 32 in order to integrate cancel mechanism in the components of dining philosophers protocol. Let DP a be the conflict resolution protocol component handling interaction a. Component DP a defines variables N cl i and updates them in the same way as in the centralized and the token ring protocol. When receiving a cancel request for interaction a its puts back the values of variables N i to the values of variables N cl i s.t. B i ∈ part(a). Then, it collects all forks shared with all components DP b such that b is an externally conflicting interaction with a in order to update their associated variables Similarly to the case of token ring protocol, we model the fact that communications may take arbitrarily delays, we do not put a time progress condition on places r a and st a . That is, the component DP a may take arbitrary time to either send are response to the scheduler or to send the forks. Figure 6.12 shows the conflict resolution component DP g 1 handling interaction g 1 . Initially, there are tokens at places w g 1 and wr g 2 . When receiving a reservation request, the component DP g 1 requests the fork from DP g 2 if it does not hold it. The fork brings the last value of N g 2 3 and the Boolean variable cl g 2 . Note that only variable N g 2 3 is associated with the fork as the only shared component between g 1 and g 2 is B 3 . The Boolean variable cl g 2 is used to inform DP g 1 whether interaction g 2 was canceled or not. If g 2 was not canceled (cl g 2 is false), then DP g 1 updates its local variables N 3 to the maximum value between N 3 and N g 2 3 . In the other case, DP g

1 updated N 3 to N g 2 3 . If the freshness condition is true (that is, N 2 ≤ n g 1 2 ∧ N 3 ≤ n g 1 3
), the transition labeled by ok g 1 executes. By executing this transition, DP g 1 stores the last values of N 2 and N 3 in variables N cl 2 and N cl 3 respectively. The latters are used to put back the values of N i when a cancel request is received from the scheduler. Upon receiving a cancel request, the transition labeled by cancel g 1 executes and the variables N 2 and N 3 are set to the values of variables N cl 2 and N cl 3 respectively. In order to propagate these new values, the component DP g 1 requests the fork from DP g 2 . This transition executes only if DP g 1 does not hold the fork. When receiving the fork, the variable N g 2 3 , associated with the fork, is updated to the new value of N 3 .

The set of interactions γ DP between components of the dining philosophers protocol includes the same interactions as in the version described in Subsection 5.3.3.

Connections Between Layers

The set of Send/Receive interactions γ SR of the obtained Send/Receive model includes the same interactions between the layers as described in Subsection 5.3.4 expect for notification interactions between schedulers S 1 , . . . , S m and Send/Receive atomic components B SR i that are defined as follows:

• For each port p of B i and for each scheduler component S j handling an interaction involving p, γ SR includes the notification interaction (S j .n p , B SR i .n p ).

The set γ SR includes also for each externally conflicting interaction a, the interactions between schedulers S 1 , . . . , S m and the conflict resolution protocol CRP defined as follows:

• (cancel a .S j , cancel a .C CRP ), and • (ack a .S j , ack a .C CRP ). where C CRP is either CP , or T R a , or DP a depending on the implemented conflict resolution protocol.

6.3 Transformations 143 RR g 1 g 2 rg 1 n g 1 2 > N 2 ∧n g 1 3 > N 3 SR g 1 g 2 wg 1 ug 1 wg 1 wfg 2 rfg 2 srg 2 rsva 2 oka 2 f aila 2 cancela 2 acka 2 SR g 1 g 2 SF g 1 g 2 RF g 1 g 2 ackg 1 SF g 1 g 2 f orkg 2 := false dirtyg 2 sfg 2 wrg 2 RR g 1 g 2 N 3 := n g 1 3 N 2 := n g 1 2 N cl 3 := N 3 okg 1 ∧n g 1 3 > N 3 ∧n g 1 2 > N 2 rsvg 1 n a 3 2 ≤ N 2 ∨n g 1 3 ≤ N 3 f ailg 1 N 3 := N cl 3 cancelg 1 ¬f orkg 1 f orkg 2 ug 1 rf clg 1 g 2 sr clg 1 g 2 ug 1 ¬f orkg 2 f orkg 2 if (clg 2 ) clg 2 := false wf clg 1 g 2 RF g 1 g 2 dirtyg 2 := false f orkg 2 := true SR g 1 g 2 ¬f orkg 1 clg 2 := true if (¬clg 2 ) clg 1 := false ug 1 f orkg 2 dirtyg 2 := false N g 2 3 := N3 dirtyg 2 := true N cl 2 := N 2 N 2 := N cl 2 N3 := max(N3, N g 2 3 ) if (clg 2 ) N3 := N g 2 3 N g 2 3 := N3 ∨n g 1 3 ≤ N 3 f ailg 1 dirtyg 2 := true n g 1 2 ≤ N 2 RF g 1 g 2 f orkg 2 := true N g 2 3 := N3 dirtyg 2 := true

Correctness

In this section we prove the correctness of our Send/Receive model. First, we show that the obtained model is indeed a Send/receive model. Second, we show that the original model weakly simulates a new versions of our obtained Send/Receive models.

Compliance with Send/Receive Model

We need to show that receive ports of B SR CP will unconditionally become enabled whenever one of the corresponding send ports is enabled. Intuitively, this holds since communications between two successive layers follow a request/acknowledgment pattern. Whenever a layer sends a request, it enables the receive port to receive acknowledgment and no new request is sent until the first one is acknowledged. Proof. The first two constraints of Definition 22 are trivially met by construction. We now prove that the third constraint also holds, i.e, whenever a send-port is enabled, all its associated receive-ports are enabled as well.

For offer/notifications interactions between Send/Receive components and the schedulers and for reservation/ok/fail interactions between schedulers and the conflict resolution protocol, the proof is similar to the proof of Lemma 4. We only need to prove that the property also holds for cancel/ack interactions between the schedulers and the conflict resolution protocol. By construction of the scheduler a cancel message cancel a is possible only after receiving an ok a message from the conflict resolution protocol. The latter is being in w a place where a cancel message could be received. Thus, whenever the send port cancel a in the scheduler is enabled, the corresponding receive port is also enabled. By construction of the conflict resolution protocol and the schedulers, the transition labeled by ack a is a successive transition of the one labeled cancel a . Thus, by construction, when the send port ack a is enabled in the conflict resolution protocol, its corresponding receive port is also enabled in the scheduler.

Weak simulation between Original and Transformed Models

Remark that the interactions execution are hidden in the obtained Send/Receive model B SR CP . In fact, in this model there are only transitions for planning interactions, bur no transitions for their executions. In order to make interactions execution visible in the Send/Receive model, we consider a new version of B SR CP denoted by B SR * CP where for each scheduler S j in B SR CP we add the following (see Figure 6.13).

• we add for each port p, the place w p with time progress condition g ≤ t ex i where i is the index of component B i of port p.

• We add for each interaction a, the transition τ a = ({w p } p∈a , a, {w i } B i ∈part(a) ) .

• We modify for each port p, the output places of transition τ np to w p .

• We add the unary interaction (S j .a). CP . In fact, the execution of conflicting interactions depend on the order of their scheduling. Thus an interaction executed in the original model, could be executed in the Send/Receive model with a particular order of scheduling. Nonetheless, we can prove that any interaction executed in the Send/Receive model, can be executed in the original model.

We consider the correspondence between actions of B and B SR * CP as follows. To each interaction a ∈ γ of B, we associate the unary interaction a of B SR * CP . All other interactions of B SR * CP (offer, notification, reserve, ok, fail, cancel, ack) are unobservable and denoted by β.

We proceed as follows to complete the proof of weak simulation. Among unobservable actions β, we distinguish between β 1 actions, that are interactions between the atomic components and the schedulers (namely offer and notification) and the scheduling transition, and β 2 actions that are interactions between the schedulers and the conflict resolution protocol (namely reserve, ok, fail, cancel, ack). We denote by q SR a state of B SR CP and q a state of B. A state of B SR * CP from where no β 1 action is possible is called a stable state, in the sense that any β action from this state does not change the state of the atomic components. Lemma 9. From any state q SR , there exists a stable state [q SR ] such that q

SR β * 1 -→ γ SR [q SR ].
Proof. The state [q SR ] exists since each Send/Receive component B SR i can do at most two β 1 transitions: receive a notification and send an offer.

(i) If (q SR , q) ∈ R and q SR β -→ γ SR r SR then (r SR , q) ∈ R.

(ii) If (q SR , q) ∈ R and q SR σ -→ γ SR r SR then ∃r ∈ Q : q σ -→ r and (r SR , r) ∈ R.

(i) If q SR β -→ γ SR r SR , then β is either β 2 action which does not change the state of the atomic components, thus all possible reachable state [q SR ] are the same possible reachable state [r SR ], or β is β 1 action, thus by definition all possible reachable state [q SR ] are the same possible reachable state [r SR ]. Thus, we have corr(q SR ) = corr(r SR ).

(ii) The action σ in B SR * CP is either an interaction a or a delay step δ.

-If a is an interaction, it corresponds to executing a transition labeled by a unary port a in the scheduler handling interaction a. This transition is enabled only if scheduling interaction a is done through transition sched a . If a is not externally conflicting, by construction of the scheduler, the transition labeled by sched a has the Boolean guard G a p∈a g p , where g p are Boolean guards sent by the atomic components for each port p ∈ a. By Lemma 10, the values involved in g a are the same in atomic components, and by extension in q = corr (q SR ). Thus the guard of a evaluates to true at q = corr (q SR ). Also, by construction the transition labeled by a has the timing constraint g = t ex a where t ex a satisfies safe-tc(t ex a ). By Lemma 10, the values involved in safe-tc are the same in the atomic components and by extension in q = corr (q SR ). These timing constraints are expressed on clock g which could be equivalently expressed on original clocks c involved in the original timing constraints of B i . The valuation of each clock c involved in the timing constraint of a is computed from the valuation of gρ c where ρ c is the last clock reset date of c. Therefore, at state q the timing constraint of a expressed on its original clocks are also met at t ex aρ c . If a is externally conflicting, the transition labeled by a in CP is possible only if the transitions rsv a and ok a are executed in the scheduler. The transition labeled by rsv a has the guard G a p∈a g p . Similarly to the previous case, if this transition is possible in the scheduler, the Boolean guard of a is met at q. Moreover, if transition labeled ok a is enabled, this means that for each component B i involved in a, n i > N i . In particular, for each involved component B i , the offer corresponding to the number n i has not been consumed yet. The transition labeled by ok chooses t ex a where t ex a satisfies safe-tc(t ex a ). By Lemma 10, the values involved in safe-tc are the same in the atomic components and by extension in q = corr (q SR ). We conclude that in both cases, we have q a -→ r. Finally, if a is executed in B SR , this is resulted from the execution of transition sched a which triggers the execution of the data transfer function F a , followed by the computation in atomic component upon reception of the response. Thus at [r SR ] the values in atomic components are the same as in r, which yields (r SR , r) ∈ R.

-If a is a delay step δ, it is sufficient to consider only locations ⊥ ℓ i and ℓ i and ⊥ τ i of B SR i . The time progress condition of these location are expressed on clock g.

Taking Decision Earlier

These time progress conditions are expressed on clock g which could be equivalently expressed on original clocks c i involved in the original time progress conditions B i . The valuation of each clock c involved in the time progress condition of B i is computed from the valuation of gρ c where ρ c is the last clock reset date of c. The time progress conditions of ⊥ ℓ i and ℓ i are defined by the time progress condition tpc ℓ i of the original model. Thus at this location, if δ is allowed then it is also allowed in the original model. The time progress conditions of ⊥ τ i is defined by g ≤ t ex i . By construction, t ex i satisfies tpc i as the latter is involved in the timing constraint of an interaction a involving B i . As tpc i corresponds to the time progress condition of location ℓ i , thus t ex i satisfies also tpc ℓ i Thus, at location ⊥ τ i , if δ is allowed then it is also allowed in the original model. Therefore q δ -→ r. Executing δ has the same effect on clocks in both models, therefore (r SR , r) ∈ R. Proof. The proof is similar to the proof of Proposition 1. That is, we prove that DP ⊂ CP and T R ⊂ CP .

6.5 Optimizations

Minimizing Cancel Requests

Let a be an externally conflicting interaction handled by a scheduler S a . In order to plan interaction a, S a has to send a reservation request to the conflict resolution protocol. This request contains the participation numbers of components participating in a. In the case where the conflict resolution protocol succeeds to grant interaction a, it sends an ok message to S a . In order to plan interaction a, the scheduler S a has to choose a safe date from the set P(t, (g)safe-tc a ) to be sent to participating components. In the case where the set P(t(g), safe-tc a ) is empty, S a sends a cancel request to the conflict resolution protocol which is acknowledged by an ack message. Figure 6.14(a) shows such mechanism.

In order to minimize cancel requests, the conflict resolution protocol (CRP ) may send a f ail message directly if it finds out that the set P(t(g), safe-tc a ) is already empty. In order to implement this optimization, we need to:

• include the safe timing constraint safe-tc a of a in the reservation request.

• add in the conflict resolution protocol transitions labeled by f ail guarded by P(t(g), safe-tc a ) = ∅.

• add the guard P(t(g), safe-tc a ) = ∅ in each ok transitions of the conflict resolution protocol. In the proposed Send/Receive model presented in this chapter, we suppose that communication delays between components are unknown which makes our proposed model general.

The implementation of such models may lead to failure if the communication delays are too large. For instance, when a scheduler sends notifications to components participating in an interaction, the communication delays between the scheduler and those components should be short enough to meet the execution date and ensure the perfect synchronization of the components. If one of these components receives the notification message too late, it may miss the date for execution which lead to an error (some components executes at the execution date, and some others misses the date). In the implementation, we propose to detect such errors and stop the system execution.

A more specific Send/Receive model could be proposed if the communication delays worstcase estimation of the target platform are known. The adopted scheduling policy takes into account communication delays worst-case estimation between the scheduler and the Send/Receive atomic components.

Let ∆ j i be the communication delay worst-case estimation of the Send/Receive atomic component B SR i and scheduler S j . Let a be an interaction handled in the scheduler S j , and let safe-tc a its safe timing constraint. The set of safe dates for scheduling a could be the following:

P(t(g), safe-tc a , {∆ j i } B i ∈part(a) ) = {t | safe-tc a (t) ∧ t -t(g) ≥ max ({∆ j i } B i ∈part(a) )} (6.5)
Choosing a date t that satisfy tt(g) ≥ max ({∆ j i } B i ∈part(a) )} ensures that each component B i ∈ part(a) receives the notification from the scheduler before the date expiration.

Example 28. Figure 6.15(a) depicts an interaction a involving three components, B 1 , B 2 and B 3 . The communication delays worst-case estimation between the scheduler handling interaction a and the Send/Receive atomic components are shown in Figure 6. 15(b). Suppose that the safe timing constraint of a is safe-tc a = 10 ≤ g ≤ 20 and the valuation of clock g is t(g) = 8. According to the scheduling policy given in (6.5), the dates that could be chosen to execute a should satisfy 13 ≤ g ≤ 20. The dates satisfying 10 ≤ g < 13 could lead to a system error because component B 3 could miss its execution date due to the communication delay between the scheduler and component B 3 .
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Reducing the Number of Observed Components

In order to plan an interaction a, the scheduler handling a has to wait to receive offers from components participating in a as well as offers from components observed by a. Since the execution of interaction a changes the state of the participant components, receiving their offers is mandatory for scheduling interaction a. However, receiving offers from observed components could be avoided. For instance, consider the example of Figure 6 In this section, we propose to use static analysis techniques in order to detect such situations and then, to reduce the number of observed components. For an interaction a, we define the predicate reduce a characterizing the components that can be removed from the set of observed components obs(a).It is fully defined in the following.

Observed Components Reduction Predicate

Let γ(B 1 , . . . , B n ) be a BIP model, and let a = ({p i } i∈I , G a , F a ) be an interaction in γ.

Recall that the predicate sched-tc a [ℓ a ] characterizing clocks valuations for which a could be scheduled from the configuration ℓ a ∈ L a is defined as follows:

sched-tc a [ℓ a ] = ℓ i ∈ℓa|τ i =({ℓ i ,p i ,ℓ ′ i )∈T i } tc τ i ∧ tpc ℓ i
We denote by confinter a (B j ) the set of interactions that are conflicting with a and involving component B j . Formally, it is defined as follows:

confinter a (B j ) = {b ∈ γ | b#a ∧ B j ∈ part(b)}
Intuitively, the component B j could be reduced from the set obs(a) if for each configuration from which a is enabled, each valuation of clocks that satisfies sched-tc a [ℓ a ], satisfies also each time progress condition of locations enabling a port participating in each interaction b that is conflicting with a (see Figure 6 We define reduce a (B j ) the predicate indicating whether B j could be reduced from obs(a). It is defined as follows:

reduce a (B j )

≡ ∀ ℓ a ∈ L a , ∀p j ∈ b | b ∈ confinter a (B j ), ∀ ℓ j ∈ L p j , ∀t ∈ T (C), ∀δ > 0 sched-tc a [ℓ a ](t + δ) ⇒ tpc ℓ j (t + δ)

Taking Decision Earlier

According to Definition 40, interaction a reduces the observation of component B j , if for each configuration of locations ℓ a ∈ L a enabling interaction a, for each location ℓ j of component B j enabling port p j participating in interaction b such that b#a, for each clocks valuation t ∈ T (C) and for each time step δ > 0, we have sched-tc a (ℓ a )(t + δ) ⇒ tpc ℓ j (t + δ). The latter implication specifies that there is no clocks valuation t ∈ T (C) that satisfies sched-tc a [ℓ a ] and not tpc ℓ j .

Rewriting reduce a (B j )

The predicate reduce a (B j ) involves a non-constant variable δ and the clocks valuation t. Thus, static analysis techniques cannot be used at this step.

In order to obtain a static expression of reduce a (B j ), we use explicit expressions of sched-tc a [ℓ a ] and tpc ℓ j to rewrite reduce a (B j ).

Using (6.1), sched-tc a [ℓ a ] can be written into the following form: sched-tc a [ℓ a ] = ca∈Ca l ℓa ca ≤ c a ≤ u ℓa ca , where C a is the set of all clocks involved in sched-tc a [ℓ a ], and l ℓa ca (resp. u ℓa ca ) is the lower (resp. upper ) bound value involving clock c a in sched-tc a [ℓ a ]. Similarly, tpc ℓ j can be written in the following form: tpc ℓ j = c j ∈C j c j ≤ d ℓ j c j , where C j is the set of clocks of component B j .

Proposition 4. Given an interaction a and a component B j ∈ obs(a), the predicate reduce a (B j ) can be rewritten in the following form:

reduce a (B j ) ≡ ∀ ℓ a ∈ L a , ∀ℓ j ∈ L p j | p j ∈ b ∧ b ∈ confinter a (B j ) c j ∈C j ca∈Ca c j -c a ≤ d ℓ j c j -u ℓa ca ca∈Ca c ′ a ∈Ca c a -c ′ a < l ℓa ca -u ℓa c ′ a
Proof. We have to prove that:

∀t ∈ T (C), ∀δ > 0 sched-tc a (ℓ a )(t + δ) ⇒ tpc ℓ j (t + δ) ⇔ c j ∈C j ca∈Ca c j -c a ≤ d ℓ j c j -u ℓa ca ca∈Ca c ′ a ∈Ca c a -c ′ a < l ℓa ca -U c ′ a sched-tc a [ℓ a ](t + δ) ⇒ tpc ℓ j (t + δ) ⇔ tpc ℓ j (t + δ) ∨ ¬sched-tc a (ℓ a )(t + δ) ⇔ c j ∈C j t(c j ) ≤ d ℓ j c j -δ ∨ ca∈Ca t(c a ) > l ℓa ca -δ ∨ ca∈Ca t(c a ) > u ℓa ca -δ ⇔ c j ∈C j t(c j ) ≤ d ℓ j c j -δ ca∈Ca t(c a ) > u ℓa ca -δ ∨ ca∈Ca t(c a ) < l ℓa ca -δ ca∈Ca t(c a ) > u ℓa ca -δ ⇔ c j ∈C j ca∈Ca t(c j ) -t(c a ) ≤ d ℓ j c j -u ℓa ca -δ ∨ ca∈Ca c ′ a ∈Ca t(c a ) < l ℓa ca -δ ∨ t(c ′ a ) > u c ′ a -δ ⇔ c j ∈C j ca∈Ca t(c j ) -t(c a ) ≤ d ℓ j c j -u ℓa ca -δ ∨ ca∈Ca c ′ a ∈Ca ¬[t(c a ) ≥ l ℓa ca -δ ∧ t(c ′ a ) ≤ U c ′ a -δ] ⇔ c j ∈C j ca∈Ca t(c j )-t(c a ) ≤ d ℓ j c j -u ℓa ca -δ ∨ ca∈Ca c ′ a ∈Ca ¬[t(c a )-t(c ′ a ) ≥ l ℓa ca -u ella c ′ a ] ⇔ c j ∈C j ca∈Ca c j -tc a ≤ d ℓ j c j -u ℓa ca -δ ∨ ca∈Ca c ′ a ∈Ca ¬[c a -c ′ a ≥ l ℓa ca -u c ′ a ] .
We use static analysis techniques to check the satisfiability of reduce a B i as defined in Proposition 4, for each interaction a and for each for each component B j ∈ obs(a). In the following, we present one of these techniques.

Use of Static Analysis Techniques

There exist several static analysis techniques for the verification of timed systems. The basic idea is to characterize the set reachable states of the system. This set is exactly computed or approximated. Computing the exact set of reachable state is done using state space exploration techniques, like in [START_REF] Larsen | UPPAAL in a nutshell[END_REF][START_REF] Bozga | Kronos: A model-checking tool for real-time systems[END_REF] Approximating the set of reachable states is provided using invariants computation. Invariants are obtained with much lower complexity than computing the exact set of reachable states. We are interested in the use of invariants to approximate the set of reachable states. In particular, we focus on the method presented in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF], for compositional verification of BIP models.

Consider a BIP model γ(B 1 , . . . , B n ). Let Ψ be a property of interest. Assume that the system could be characterized by the global invariant GI. That is, GI characterizing an over-approximation of reachable states of the system. The following inference rule (VR) summarizes the verification rule of the method.

⊢ GI ⇒ Ψ γ(B 1 , . . . , B n ) |= Ψ
Intuitively, VR can be understood as follows: if Ψ can be proved to be a logical consequence of the global invariant GI, then Ψ holds for the system.

GI is computed from invariants characterizing the components behaviors called component invariants, and also from the invariants characterizing the interactions between components called interaction invariant. We do not detail here how to compute exactly the global invariant, but we provide here a brief description. Interested readers may refer to [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF], for more details.

A component invariant is characterized by its reachable symbolic set which consists of the finite symbolic reachable states of the component computed from its zone graph [START_REF] Thomas A Henzinger | Symbolic model checking for real-time systems[END_REF]. A symbolic state of a component B i in a zone graph is the pair (ℓ i , ζ i ) where ℓ i is a location of Taking Decision Earlier B i and ζ i is a zone which is a set of clocks valuations computed from the timing constraints and time progress conditions of B i . A component invariant of B i is the disjunction of (ℓ i ∧ ζ i ) for all symbolic states (ℓ i , ζ i ).

The interaction invariant are over-approximation of the global state space. It involves only locations of components and does not capture any global timing of interactions. They are computed by the method explained in [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF].

To better track global timing of interactions between components, the considered method makes use of auxiliary clocks called history clocks. Each component B i is equipped with history clocks, a clock per port. When an interaction takes place, the clocks corresponding to the ports participating in that interaction are reset, and thus are equal. All remaining clocks values are then greater than those being reset. The relations between history clocks are defined allow to relate local clocks of components.

Recently, a tool called RTD-Finder [START_REF]RTD-Finder Tool[END_REF] implementing this method has been developed. We are using this tool to check the satisfiability of reduce a (B j ) predicate.

Conclusion

In this chapter, we proposed method for obtaining Send/Receive models dedicated to be implemented on platforms that do not provide fast communication delays. Optimization for reducing the number of messages could are proposed. In particular, we proposed to minimize observed components number using static analysis techniques.

In the next chapter we give an overview on the tools that are implemented in order to generate distributed real-time implementations

Implementation

This chapter discusses the implementation methods for generating distributed real-time implementations. First, we present in Section 7.1 the BIP language that provides a textual representation of BIP models. Then, we present in Section 7.2 the existing BIP tools. Finally, we present in Section 7.3 the different tools developed within this thesis.

The Real-Time BIP Language

The Real-Time BIP language is used to represent concrete models presented in Section 2.2. It provides syntactic constructs for describing composition of components with respect to interactions and priorities. In practice, variables, data type declarations, expressions, update functions and data transfer functions are written in C. The Real-Time BIP language incorporate a set of structural syntactic constructs for defining component behavior, specifying the coordination through connectors and describing the priorities. The basic constructs of the BIP language are the following:

• atomic component: to specify behavior, with an interface consisting of ports. Behavior is described as a set of transitions labeled by ports names.

• connector: to specify the synchronization between the ports of components.

• priority: to restrict the possible interactions, based on conditions depending on the state of the integrated components.

• composite component: to specify systems hierarchically, from other atoms or compounds, with connectors and priorities.

• model: to specify the entire system, encapsulating the definition of components and specify the top level instance of the system.

Implementation

Existing Real-Time BIP Language. Previous work on Real-Time BIP [START_REF] Abdellatif | Rigorous implementation of real-time systems -from theory to application[END_REF] proposed a BIP model that describes timing constraints on transitions as time intervals with urgencies. In such models, time progress depends on the presence of transitions urgent at the current state. That is, time is not allowed to progress from a given state if there exists an urgent transition enabled from that state. In Appendix A, we present a high level description of such models as well as its semantics. In addition, we present the transformation of models with urgencies into models with time progress conditions. The actual version of Real-Time BIP language describes BIP models with urgencies. In this thesis, we developed a new version of Real-Time BIP language that describes BIP models with time progress conditions.

In the following, we present different elements of BIP models described using the Real-Time BIP language. We rely on the example from Figure 2.10 to detail some elements of the Real-Time BIP language. In the Real-Time BIP language, we start by defining types (components, ports, connectors) which are instantiated later. For instance, in Figure 2 In the above example, two types of ports are defined, namely EventPort and IntPort. The port type EventPort is an event port and it is not associated with any variable. The port type IntPort associates to a port an integer variable i. The description of the atomic type setter starts with describing variables, ports and locations. A location may define 7.1 The Real-Time BIP Language 157 a time progress condition (after while). The variables that are associated with the port are explicitly given, and their types need to match those in the port type definition. The construct initial to specifies the initial location, and possibly some initial update function to execute. Each transition of the behavior is declared with a port (after on), a (set of) input and output place(s) (after from and to respectively), a Boolean guard (after provided), a timing constraint (after when) and an update function (after do). The update functions and the Boolean guards are written in C-like syntax.

As said before, components are composed using connectors. As an example, we present the connector type used to describe a 2 and a 3 interactions from Figure 2 A connector type is parameterized by a list of port that describes its support. The construct define defines the type of ports, trigger of synchron, as explained in Subsection 2.2.3. For each interaction, a guard and a data transfer function can be defined. In the above example, SetGet connector defines a strong synchronization between two ports of type IntPort. The guard associated to the interaction is true and the data trasfer function is provided with the down construct. The notation get.i (resp. set.i) is used to access the variable i associated to the port get (resp. set ), as defined in the port type declaration IntPort.

A compound component is a new component type defined by creating instances of existing components types which are glued by instantiating connectors and by specifying the priorities. We define below the compound type that corresponds to Figure 2.10, assuming that the atomic type Getter has been aleady defined. priority prio a 2 < a 3 end When Compound type is instantiated, the compound instance creates first the three components that constitute the system. For instance, "component Getter getter" creates an instance of Getter atomic component type, named getter. Second, the compound instance creates connectors, associating the ports of instantiated components through the interactions defined by the connector type. For instance, "connector SetGet a 2 (setter 1 .set 1 , getter.get 1 )" creates an instance of SetGet connector type, named a 2 . The dotted notation setter 1 .set 1 is used to denote the port set of the component instance setter 1 . Finally, the priority rule " priority prio a 2 < a 3 " specifies that interaction a 2 has lower priority than interaction a 3 .

The BIP Toolbox

This section presents the toolbox available with the BIP framework. It consists of a rich set of tools for modeling, executing and verifying BIP models. 

Language Factory

These tools are used to transform various programming models, using different languages, into BIP models. The translation allows representing different programming models in a BIP
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The BIP Toolbox 159 model with a rigorous semantics. There exist different transformations including transformations from synchronous languages, i.e. transformations from Lustre [START_REF] Bozga | Modeling synchronous systems in bip[END_REF] and Simulink [START_REF] Sfyrla | Compositional translation of simulink models into synchronous bip[END_REF]. These transformations target synchronous BIP [START_REF] Sfyrla | Modeling Synchronous Systems in BIP[END_REF], that is an extension of BIP dealing efficiently with synchronous models.

Other transformations target languages model that mix both the application software and the hardware architecture. These models can be transformed either into two separate models: one for the software and the other for the architecture or into a single model including both of them, called system model. Transformations to hardware model often rely on a library of hardware components such as memories, buses, processors, that are modeled in BIP. For instance, these transformations target the Architecture Analysis and Design Language (AADL) [START_REF] Yassin Chkouri | Translating aadl into bip -application to the verification of real-time systems[END_REF], nesC/TinyOS [START_REF] Basu | Using bip for modeling and verification of networked systems -a case study on tinyosbased networks[END_REF] and the Distributed Operation Layer (DOL) [START_REF] Bourgos | Rigorous system level modeling and analysis of mixed hw/sw systems[END_REF].

Verification

The BIP toolbox is completed by verification and validation tools for both checking system correctness and performance evaluation.

D-Finder [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF][START_REF] Nguyen | D-finder: A tool for compositional deadlock detection and verification[END_REF] is a verification tool targeting safety properties, e.g. deadlock freedom or mutual exclusion of untimed BIP models. Note that untimed BP models are models that have not timing features (clocks, timing constraints, time progress conditions ). The verification method implemented by D-Finder is based on the computation of invariants used to approximate the set of reachable states of the target system, hence the method is sound but not complete: it may not be able to prove a property even if it is satisfied by the system. Invariants are computed following the architecture of the system, that is, it generates invariants for components and for interactions. The approach is compositional and can be applied incrementally, allowing to better scale to large systems than traditional verification techniques.

RT-DFinder [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF] is an extension of D-finder tool for the verification of BIP models. RT-DFinder is based on the approach of D-Finder with the use of auxiliary clocks that help to capture the constraints induced by the time synchronizations between components. The generated invariant for timed models using RT-DFinder proved to be accurate enough to capture non trivial properties of several case studies, as shown in [START_REF] Bensalem | Rigorous system design flow for autonomous systems[END_REF].

In addition to the verification tools, the BIP toolbox includes the statistical model-checker SMC-BIP [START_REF] Bensalem | Statistical model checking qos properties of systems with sbip[END_REF] for checking stochastic properties expressed as probabilistic bounded linear temporal logic (PBLTL) formulas. Given a stochastic BIP model, a PBLTL formula and confidence parameters, SMC-BIP computes execution sequences until the formula can be proven with the target degree of confidence. Such a tool is particularly suited for evaluating quantitative properties including system performance related metrics.

Source-to-Source Decentralization

In this thesis, we presented method for decentralizing BIP models into 3-layer Send/Receive BIP models. Actually, the 3-layer design was considered also for decentralizing untimed BIP models. Figure 7.2 shows the tools for obtaining Send/Receive untimed BIP models from untimed BIP models with and without priorities. They consist of the following. • Bip2SrBip: This tool generates an untimed BIP model into a 3-layer Send/Receive untimed BIP model. Priority is not supported. The 3-layer Send/Receive untimed BIP model architecture is the same as described in this thesis. That is, it consists of transformed atomic components, a set of schedulers and a conflict resolution protocol. However, timing features are not supported. This tool is parametrized by an interactions partition.

• Bip2Bic: This tool transforms an untimed BIP model into a untimed BIC model. Untimed BIC is an untimed BIP model where priorities are rewritten as Condition predicates [START_REF] Bonakdarpour | Model-based implementation of distributed systems with priorities[END_REF]. Condition associates a predicate to each interaction. This predicate characterizes the system state where an interaction could execute. That is, states where there is no higher priority interaction is enabled. This predicate depends on the global state of the system and not only on the states of the participants in the interaction. Thus, instead of writing explicit priority, BIC transforms priorities into "guards" on interactions.

• Bic2SrBip This tool is obtained by extending Bip2srBip tool to support Condition. Given a BIC model and an interactions partition, this tool generates a Send/Receive untimed BIP model.

Execution/Simulation

Execution/Simulation of Untimed BIP models BIP toolbox provides code generators for execution/simulation of untimed BIP models on target platforms. One option is to execute the generated C++ code using a centralized scheduler, implemented in C++ as well, that enforces the BIP operational semantics. The scheduler plays the role of the coordinator between components. Executing an untimed BIP model using a centralized scheduler can be done in a single thread or multi-thread mode.

For single-thread mode, the scheduler as well as the atomic components executes in a single thread. The execution cycle of single thread scheduler executes an interaction, moving the system from a global state to another global state. This ensures sequential execution of BIP models.

For multi-thread mode, each atomic component is assigned to a different thread, the scheduler being assigned a thread as well. Contrarily to the single-thread version, the global state is not known to the scheduler as an atomic component performing an internal computation has an undefined state. Therefore the scheduler executes according to the partial state semantics for untimed BIP modeols [START_REF] Basu | Distributed semantics and implementation for systems with interaction and priority[END_REF]. When an atomic component completes and reaches a stable state, it notifies the scheduler about the ports on which it is willing to interact. The scheduler is parametrized by an oracle. The oracle allows the execution of an interaction from a given partial state, only if there is no interaction with higher priority that could be enabled from the corresponding global state.

For distributed implementations of untimed BIP models, the BIP tool-box provides a code generator for generating C++ for each Send/Receive component of the Send/Receive untimed BIP models.

Execution/Simulation of BIP models

Regarding BIP models with timing features, the BIP tool-box provides a single-thread realtime scheduler allowing sequential execution [START_REF] Abdellatif | Rigorous implementation of real-time systems -from theory to application[END_REF].

Tools Developed in this Thesis

We developed tools that implements method described in this thesis. In Chapter 4, we presented Send/Receive BIP models with a centralized scheduler. It corresponds to an implementation of partial state models presented in Chapter 3. In practice, this model is never built, but has been used for sake of clarity. Instead, we have developed a multi-thread realtime scheduler that implements interactions and priorities of partial state models. A code generator has been also developed to generate C++ code for atomic components. Each atomic component as well as the scheduler execute each one in a separate thread.

Regarding 3-layer BIP models presented in Chapter 5 and Chapter 6, we developed tools for generating such models from given BIP models. These tools are parametrized by the interactions partition and the protocol for conflict resolution. For distributed implementations, we have developed a common code generator that generates C++ code for each component of the 3-layer BIP models.

Implementation

In the following, we give details of the implementation of these tools.

Multi-threaded Real-Time Scheduler

We implemented a multi-thread real-time scheduler that implements interactions and priorities of the partial state models presented in Chapter 3 (this work appears in [START_REF] Triki | Model-based implementation of parallel real-time systems[END_REF]). Unlike the centralized scheduler component presented in Chapter 4, the multi-thread real-time scheduler is not specific to a given BIP model. It corresponds to a general implementation of a scheduler for any BIP model for parallel execution.

We developed a compiler to generate C++ code from a given BIP model. This code is compiled to run with the multi-thread real-time scheduler Each atomic component is assigned to a thread, the multi-thread real-time scheduler being a thread itself. Communication between the scheduler and the atomic components is ensured using message passing through FIFO channel.s

The multi-thread real-time scheduler coordinates between atomic components and computes enabled interactions on-line. The protocol between the atomic components and the multi-thread real-time scheduler is similar to the one presented in Chapter 4. That is, atomic components sends offers to the scheduler which are acknowledged by notifications. 7.3 shows the execution cycle of the multi-thread real-time scheduler. Given a state q, the scheduler computes the next enabled interaction as follows:

1. It waits for offers from components finishing their execution or also for next activation date of a scheduled interaction. When the scheduler receives an offer from a component B i , it checks its next deadline D i (q) = max {t > g | tpc i (t)} with respect to the current value of clock g. If g > D i (q) its stops the execution and reports a deadline miss. Otherwise it continues the execution.

2. It computes the set of enabled interactions γ q based on the received offers. Notice that they involve only ready components. It restricts the enabled interactions into safe ones. As explained in Section 4.2.2, in order to enable only safe execution, the scheduler restricts each timing constraint tc a of each interaction a in γ q into tc a ∧ K * a . Details on how to compute tc a and K * a are presented in Section 4.2.2. If no such interaction exists, the scheduler goes to step 1.

3. It chooses a safe interaction among the enabled ones as follows. It computes for each interaction a its next activation N a (q) that corresponds to the next valuation of lock g where a is enabled. It is computed as follows: N a (q)=min {t > g | tc a (t) ∧ K * a (t)} ∪ {+∞}. It chooses an enabled interaction a, that is, such that its next activation date is less than all Deadlines D i (q) of participating components B i ∈ part(a) that is, N a (q) ≤ min {D i (q) | B i ∈ part(a)}. The chosen interaction a is executed as soon as possible, i.e. at the global time N a (q). If N a (q) is not reached by the global clock g, the scheduler goes to step 1 to wait for the next activation of the selected interaction. Otherwise it goes to the next step.

4. When the next activation of the selected interaction is reached, the scheduler notify the components participating in the selected interaction to execute.

Tools for Generating Send/Receive BIP models

The methods presented in Chapter 5 and Chapter 6 have been implemented through a set of tools that we present here. Figure 7.4 presents an overview of the different tools used to generate 3-layer BIP models from a BIP models. These tools are the following:

• timedBip2SrBip Given a BIP model and a partition of interaction, this tool generates a timed Send/Receive BIP model as described in Section 5.3.

• Check Non-Decreasing Deadlines. It checks whether the input BIP model satisfies the non-decreasing deadline property. More precisely, this tool checks conditions of Proposition 2.

• Observed Components Reduction(under construction). It implements the technique presented in Section6.5.3. Given an interaction a and an observed component B j , this tool generates the property reduce a (B j ) as defined in Proposition4. This property is then checked using RTD-Finder tool presented in Section7.2.2.

• Earlier Decision Making timedBip2SrBip Given a BIP model and a partition of interaction, this tool generates a Send/Receive BIP model as described in Section 6.3. Unary ports correspond to computation actions in which only the component is involved. They may involve timing constraints. Therefore, in the generated code they are executed only when the corresponding timing constraint is true with respect to global clock g.

Receive ports are executed only if there are incoming messages corresponding to that ports. Therefore, if there is an enabled transition labeled by a receive port, the component has to wait for an incoming message that matches with that port.

In the generated code, we assume minimal waiting for the execution of ports. That is, we execute a port as soon as it is enabled. In addition, we give priority to execute send ports Recall that we assume that components of the original BIP models can not reach states where their time progress conditions are false. In the implementation of Send/Receive models, we propose to check only the time progress conditions of the original models and to stop the execution if a deadline is missed, i.e., if there is a time progress condition (of the original model) that is evaluated to false.

Generated Code Description

The generated C++ code for each component in the Send/Receive model is shown in Algorithm 1. The function NextState() returns the state q of the component upon execution of a transition. We denote by enabled q the set of enabled ports at the current state q. Given a port p in enabled q , we denote by nextEnabled q (p) the next global time value at which the Implementation port p is enabled at state q. This value is computed from the timing constraint tc p of p as follows: nextEnabled q (p)=min {t > g | tc p (t)} ∪ {+∞}. We denote by nextDeadline(q) the maximal global time value until which the component is allowed to stay at q. It is computed as follows: nextDeadline(q)=max {t > g | ℓ∈q tpc ℓ (t)} ∪ {g} First, the component is initialized (Lines 1 to 2). Then, it enters an infinite loop that executes the transitions of the component. It scans the list of enabled ports and and executes one of them, considering that send-ports have more priority (Lines 4 to 7). Unary ports P u may have timing constraints, and have to be executed in real-time. To this end, it computes the next activation date N corresponding to the minimal value of nextEnabled q (p) for each port p ∈ P u , and the next deadline D corresponding to the value of nextDeadline(q) (Lines 9 to 10). If no unary port can be executed at the current value of g (i.e. N > g), its waits for a unary port to be enabled (i.e. g reaches N ), for the deadline to expire (i.e. g reaches D) or for a message to be received (Line 13). In the later case, it executes the corresponding port to take the message into account (Lines 14 to 17). If no message has been received until N (i.e g ≥ N ) and the deadline did not expire (g ≤ D), it executes a unary port enabled at N (Lines 10 to 23). Otherwise, it reports a deadline miss if g > D (Line 26).

Experimental Results

In this chapter, we present our experimental results to show how our implementations behave. We consider 3 type of applications: multi-thread, multi-process and distributed applications.

In Section 8.1, we consider a muli-thread application consisting on an obstacle avoidance application running on a MarXbot platform. With this application we compare the performance of the multi-threaded real-time scheduler against the single-thread real-time scheduler.

In Section 8.2, we consider a multi-process application consisting on an implementation of demosaicing algorithm. In order to implement this application, we use the transformations presented in Chapter 5. We compare the performance of an implementation with a centralized scheduler against the one with conflict-free schedulers.

In Section 8.3, we consider two distributed applications. The first consists on an implementation of the dining philosophers application. The second is a robotic application consisting of a set of robots that collaborate to perform a given task. Both applications are implemented using the approach presented in Chapter 6. We show the influence of the choice of the conflict resolution protocol for the implementation of such applications. Also, we show how to improve performance by using our method for optimizing observed components.

Multi-Thread Application: Avoidance obstacle

This case study evaluates the performance of the multi-thread real-time scheduler proposed in Section 7.3.1. Recall that the multi-thread real-time scheduler implements interactions and priorities of the partial state models presented in Chapter 3. The objective of this experiment is to show how preferment our proposed scheduler is, against the single-thread real-time scheduler proposed in [START_REF] Abdellatif | Model-based implementation of real-time applications[END_REF]. 168 Experimental Results

MarXbot Robot

We made experiments on the marXbot platform [START_REF] Bonani | The marxbot, a miniature mobile robot opening new perspectives for the collectiverobotic research[END_REF], a miniature mobile robot embedding a multitude of sensors and actuators. The management of sensors and actuators is ensured via a network of distributed microcontrollers communicating through CAN bus. These microcontrollers communicate also with a central computer via CAN bus (see Figure 8.1). Mainly, the marXbot robot (see Figure 8.2) is composed of the following modules.

• The base module providing rough-terrain mobility thanks to treels (combination of tracks and wheels). It embeds also 16 infrared proximity sensors for detection of obstacles. In addition, the base module contains a slot for a swappable battery that powers the robot.

• A range and bearing module allows the robot to compute a rough estimate of the direction and the distance of the neighboring robots.

• A rotating distance scanner module including 4 infrared long range sensors is used to build 2D map of its environment.

• An attachment module provides self-assembling capabilities with peer marXbots. This module allows the docking of the other robots and can feel the force they apply.

• A main processor module which is an ARM11 running Linux-based operating system and communicating through CAN bus with 10 micro-controllers (dsPIC33) managing sensors and actuators. It drives also two cameras, one looking front and one oriented towards an omnidirectional hyperbolic mirror.

The main processor polls the microcontrollers at regular intervals to read the sensor values and to set the actuator commands. These read and write operations transit through the CAN bus. An event-based architecture, called ASEBA [START_REF] Magnenat | Aseba-challenge: An open-source multiplayer introduction to mobile robots programming[END_REF], is implemented to make the main computer communicate with the micro-controllers. ASEBA is a scripting language used to program micro-controllers so that they are able to emit and receive events. The microcontrollers communicate through events thanks to the asynchronous communication capabilities of the CAN bus. When an event is detected by a sensor, the information is dispatched by its manager microcontroller to the rest of the robot. This is done only if the information is relevant to the application. In ASEBA, the description of the robot behavior and the events emission and reception policy is described in a scripting language. The language is a simple imperative programming language with a single basic data type (16 bit signed integers) and arrays. ASEBA provides also an IDE that provides each microcontroller a tab with the list of variables for the real-time edition of the values of the sensors, the actuators and the userdefined variables, a script editor and debug controls. The IDE compiles scripts into bytecodes and loads them to the microcontrollers, through the communication bus, to be executed in a lightweight virtual machine. The inconvenient of ASEBA is that it does not enable the writing of complex applications
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and memory allocations are limited in the micro-controllers. The ASEBA scripting language cannot provide for instance the use of 32-bits integers since it has 16-bits signed integers as its only data type. The central computer that has a Linux-based operating system, communicates with the microcontrollers via a software switch, that extends the communication bus to local TCP/IP connections. With ASEBA, it is not possible to perform complex computations or construct a big application. Thus, we use the BIP framework in order to build applications running on the centralized computer of the robot.

Modeling obstacle avoidance application using BIP

We consider an experimental setup for an obstacle avoidance scenario. Initially, the robot moves straight and turns whenever it detects an obstacle. Turning the robot is ensured by updating its direction and its speed. In our experiments, we make use of the three modules provided by the robot. We use the base module that contains the wheels and the proximity sensors. Also, we use the scanner module including long range sensors. Reading sensors values is ensured using predefined functions that call their manager microcontrollers.

The third module that we use is the computer module running on Linux that executes the application. The BIP model of the application is composed of the following components (see Figure 8.3):

• Components AvoidObstP roxy and AvoidObstLRang responsible for reading the values of the proximity and long range sensors. If one of these components detects the presence of an obstacle, it transmits its direction to component Arbiter through interaction obs.

Otherwise, it sends message f ree indicating the absence of obstacle.

• From messages received from AvoidObstP roxy and AvoidObstLRang, Arbiter computes the new direction of the robot, which is sent to components CtrlM otorLef t and CtrlM ototRight which are the controllers of the motors

• CtrlM otorLef t and CtrlM ototRight determine the speed to apply to the left and right treels, based on the direction received from Arbiter. To avoid collisions, we give priority to obstacles detected by AvoidObstP roxy over the ones detected by AvoidObstLRang, which is implemented by rule obsL π obsP . We also give priority to presence of obstacles over than their absence, corresponding to rules f reeP π obsL and f reeL π obsP .

Results

Using BIP, we generated C++ code for the main processor. We compared the application running with the Multi-threaded Real-time scheduler proposed in Section 7.3.1 allowing parallel execution, with the same application running with the Single-thread Real-time scheduler of [START_REF] Abdellatif | Model-based implementation of real-time applications[END_REF] allowing sequential execution. Its performance is measured by varying the period used for reading sensors in AvoidObstP roxy and AvoidObstLRang. For each tested period, we ran the application 5 times under similar conditions. As shown in Figure 8.4, with the singlethread real-time scheduler the minimal period for a correct operation of the robot is 130 ms. For smaller periods time-safety may be violated which stops the application. The minimal period with the multi-thread real-time scheduler is 60 ms, which drastically improved the reactivity of the robot.

The multi-thread real-time scheduler executes each component in a thread, allowing AvoidObstP roxy and AvoidObstLRang to wait in parallel for new values of the sensors sent by the microcontrollers. In contrast, the single-thread real-time scheduler treats the interaction with the microcontrollers sequentially leading to the addition of the waiting times.

Multi-Process Application: Democising

This use case evaluates the framework described in Chapter 5. Recall that in Chapter 5, we transform BIP models into Send/Receive BIP models implementable on platforms providing fast communications. case, we use a neighborhood of size 5 × 5, centered on the interpolated pixel. We do not detail here the interpolation function used. Component D ij performs actual demosaicing of the image block located at i, j, whenever it receives an image block through its port get block. Component C ij controls timing of the component D ij . We use timing constraints and time progress conditions to enforce delivery of a RGB image within a given amount of time after the raw image has been provided.

Modeling Demosaicing Application in BIP
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The parameter k allows to control the time to demosaice a block. When D ij finishes the demosacing of a block, if less time than k elapsed since the last global start, C ij allows interaction trans ij that transmits the demosaiced block to J i . Otherwise, the block is not transmitted, C ij declares a timeout through unary interaction timeout and returns with D ij to the initial state through interaction cancel. The component J i joins blocks to form the line i and transmits it through trans i. Its transition from the receiving state to the transmitting state is triggered if all blocks are received or if too much time elapsed since global start.

Finally, component O merges received lines and outputs the image. The image is outputted either if all lines are received or if too much time elapsed since global start. If some blocks or lines were not transmitted, the outputted image is incorrect on the corresponding blocks.

Results

We consider two different partitions for generating the Send/Receive model. The first one, called centralized partition puts all interactions in the same partition class. The second one is called conflict-free partition, and is such that:

• Interaction split, start and all interactions split line i define the first class of the partition.

• For each i, the interactions trans ij are grouped in the same class, together with reset interactions.

• The interactions trans i form the last class.

We demosaice raw images of size 25 × 10 6 pixels and 6 × 10 6 pixels. The BIP model splits each image into 9 blocks, that are demosaiced concurrently. We generate distributed code for both the centralized and the conflict-free versions. We run the code on a UltraSparc T1 that allows parallel execution of 24 processes. The parameter k in the component C ij controls the amount of time after which the image must be outputted. Figures 8.8 and 8.9 show the number of blocks processed depending on the amount of time allowed k, respectively for 25M pixels and 6M pixels raw images, for both centralized and conflict-free partition. With the centralized partition, to treat all nine blocks of the 25MP image is 29s, whereas it reduces to 17s for the conflict-free partition. Similarly, treating all nine blocks of the 6MP image requires a time budget of 7s, against 4.5s for the conflict-free partition. The conflict-free partition exhibits a speedup ranging between 1.5 to 2 comparatively to the centralized partition. The conflict-free partition allows more parallelism between interactions, for instance, interactions split line i can be executed in parallel, where the centralized does not. Since demosaicing components run concurrently in both implementations, the speedup stems solely from the possible parallelism between interactions.

Distributed Applications

In this section, we experiment the framework presented in Chapter 6. Recall that in Chapter 6, we transform BIP models into Send/Receive BIP models that could be implemented on distributed platforms providing slow communications. 

Dining "professors"

We consider a variation of the well-known dining philosophers problem. To avoid ambiguity with the dining philosophers protocol used in our design, we call this application dining professors. The scenario is described as follows: N professors sit at a round table with bowls of spaghetti. Forks are placed between each pair of adjacent philosophers. Each professor must alternately think, eat and clean. A professor can eat only when he has both left and right forks. Each fork can be held by only one professor and so a professor can use the fork only if it is not being used by another professor. After he finishes eating, he needs to clean both forks so they become available to others. The problem to solve is to design the system such that no professor will starve.

In our setting, we consider that the professors are numbered from 1 to N. In addition, we consider that the professors are sit such that each two neighbors have successive numbers (professors 1 and N are neighbors). We suppose that each professor can eat with a period P . In order to avoid starvation, we suppose that professors having odd numbers can eat at the same time (similarly for even numbers). To do so, we shift the eating starting date of professors with odd numbers by P/2. This ensures that two neighbors are not able to eat at the same time. Figure 8.10 shows the eating points of professors with odd and even numbers.
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Eating period of even philosophers Eating period of even philosophers Modeling Dining professors Application in BIP Figure 8.11 shows a fragment of the BIP model of dining professors application. Components P i-1 and P i+1 are professors having odd numbers (i.e. i-1 and i+1 are odd numbers). These components have transition labeled delay needed to shift their starting eating date with even professors by P/2. Interaction eat i involves even professor P i and the adjacent forks. This interaction executes when the clock c i of professor component P i reaches the period P . When executing interaction eat i , the clock c i of the professor component P i is reset. After eating, P i has to clean the forks F i , F i+1 . The time for cleaning the forks should not exceed P/2 units time. This is because odd professors P i-1 and P i+1 reach their periods for eating after P/2 units time. That is, P i should clean the forks before that professor components P i-1 and P i+1 become ready to eat. Notice that all components in the dining professors example have non-decreasing deadlines since they satisfy the conditions of Proposition 2.

Results

Using the transformations presented in Section 6.3, we obtain a Send/Receive BIP model of the dining professors application. As already explained, our Send/Receive BIP model is structured into 3 layers. The second layer is parametrized by a partition of interactions. In this dining professors example, we consider the following partition.

• Each interaction eat i forms a partition class.

• Each pair of interactions clnR i-1 and clnL i forms a partition class.

Influence of the conflict resolution protocol choice.

We study the influence of the conflict resolution protocol choice for the construction of the Send/Receive BIP model. We simulate the environment by adding communication delays. We consider the following communications delays values between the different components of the Send/Receive BIP model.

• The communication delay between the atomic components and the schedulers is 10 ms. • The communication delay between the schedulers and the conflict resolution protocol is 10ms.

• The communication delay between different components of the conflict resolution protocol is 2ms.

We simulate communication delays by temporarily suspending the communicating components. We measure the minimum period P that allows correct execution of the application, i.e. without time-safety violation. Figure 8.12 and Figure 8.13 shows simulation results for the application with 4 and 50 professors respectively. Recall that we denote by RP the centralized implementation of the conflict resolution protocol , by TR token ring based implementation and by DP the dining philosophers based implementation. For 4 professors, the RP outperforms TP and DP. The latters show comparable performance. This is because for TP and DP, the conflict resolution protocol requires a similar amount of communication for acquiring either the fork or the token. Indeed, for 4 professors, we have 4 conflicting interactions and therefore, 4 components inside the conflict resolution protocol for TR and DP. For TR, the token has to travel through all these 4 components. For DP, each conflict resolution component acts in their local neighborhood, by sending requests for acquiring the fork. This has a similar effect in terms of communications. Although RP schedules interactions sequentially, this has less impact regarding the effect of communications in DP and
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RP. For 50 philosophers, the DP outperforms TP and RP. In fact, increasing the number of professors and thus increasing the number of conflicting interactions, does not affect so much the performance of the DP based implementation. This is because, for DP, each conflict resolution component acts always in their local neighborhood components, regardless the total number of components in the conflict resolution protocol. However, for TR, the communications amount required for circulating the token depends on the number of component in the conflict resolution protocol, which corresponds to the total number of conflicting interactions.

For RP implementation, scheduling interactions sequentially slows down the application execution, but still, this has not the same effect compared to communication required for TR implementation.

Optimizing Observed Components.

As explained in Subsection 6.2.1, in order to schedule correctly an interaction, each interaction should observe components participating in conflicting interactions. In the dining professors example, each interaction eat i is in conflict with its neighbor interactions eat i-1 and eat i+1 . Therefore, interaction eat i has to observe components components professor components P i-1 and P i+1 and fork components F i-1 and F i+1 . In order to optimize the number of observed components of interaction eat i , we check for each component B i ∈ {P i-1 , P i+1 , F i-1 , F i+1 } the satisfiability of reduce eat i (B i ) property defined in Definition 40. We report the following results. Fork components F i-1 , F i+1 satisfy the property and thus, they could not to observed by eat i interaction. However, professor components P i-1 , P i+1 do not satisfy the property, and thus, they have to be observed by eat i . Indeed, the property checks if there is clocks valuation that satisfy eat i timing constraint and do not satisfy time progress conditions of observed components when being in a location enabling conflicting interactions. Since fork components have true as time progress conditions on their locations, in particular on locations enabling eat transition, then any valuation of clocks satisfying the timing constraint of interaction eat i satisfy necessarily time progress conditions of Fork components F i-1 and F i+1 .

For the experimentations, we measure the number of messages needed to let each professors eat 10 times, for both optimized and non optimized version of the application for 4 and 50 philosophers. Figure 8.14 shows the simulation results. We remark an improvement of performance for the optimized version of the application with both 4 and 50 professors. This is explained by the fact that for unoptimized version, the scheduler handling eat i should receive observation messages (offers) from fork components F i-1 and F i+1 and professor componentsP i-1 and P i+1 . Whereas, for the optimized version the scheduler handling eat i should receive observation messages only from professor components P i-1 and P i+1 . This explains the decrease of the number of exchanged messages for optimized version.
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Collaborating Robots

We consider a robotic application that consists of N communicating robots that collaborate to perform a given task. The scenario is described as follows (see Figure 8.15 for the description of the scenario with 4 robots): initially, the robots (red circles) are randomly distributed over arena. They start by exploring the arena in order to find each others. When 3 robots become sufficiently close, they group themselves by forming "V" shape. Then, they go towards a ball (black circle) which is positioned at the center of the arena, and push it. The number of combination for "grouping" 3 robots from a set of N robots is given by the binomial coefficient N 3 . We denote by P 3 (N ) the set of 3-combinations from the set of N robots. We assume that the robots are equipped with proximity sensors to detect obstacles 8.3 Distributed Applications 181 (arena's walls and the ball) and a camera to detect the robots. Moreover, we assume that the robots can communicate with each others at any time (e.g. using wireless communications). This robotic application could be implemented on a set of marXbot robots (see Subsection 8.1.1 for the description of such platform) since these robots provide all features (proximity sensors, camera, wifi communication) required to implement the application. In this work, we rely on simulations as we do not have sufficient number of robots to implement the application.

Modeling the application in BIP Figure 8.16 shows the BIP model of a single robot. We use timing constraints and time progress conditions to express a periodic reading sensors. Notice that such a component has non-decreasing deadlines since it satisfies the conditions of Proposition 2. Note that transitions turn, continue and group have mutually exclusive guards. Therefore, they cannot be enabled at the same time.

Figure 8.17 shows the BIP model of the application composed of 4 robots. The grouping action is modeled by an interaction that synchronizes group transitions of any 3 robots. The "grouping" interaction is enabled only if there are 3 robots which are sufficiently close to each others. Similarly, "pushing" action is modeled by an interaction that synchronizes push transitions of any group of 3 robots. By construction, this interaction is enabled only if the corresponding robots successfully grouped themselves.

Generally, there are N 3 "grouping" interactions g k and N 3 "pushing" interactions p k where k ∈ P 3 (N ) is the robots group identifier. These interactions are pairwise conflicting as for any two interactions there is at least one shared port. In Figure 8.17, there are 4 "grouping" interactions and 4 "pushing" interactions as the number of 3-combinations from a set of 4 robots is 4. Note that for each robot, there are 3 unary interactions which are sense i , continue i and turn i . Note that interaction continue i and turn i are not conflicting with interaction g k due to their mutually exclusive guards. 

Results

Using the transformations described in Section 6.3, we transform the BIP model of our application into Send/Receive BIP where:

• all unary interactions of robot R i , i ∈ {1 . . . N } are handled by a single scheduler S i • "grouping" and "pushing" interactions of the same group k ∈ P 3 (N ) are handled by a single scheduler S k

In this example, we use DP and TR implementation of the conflict resolution protocol. We simulate the robots platform by considering that each robot is running on a dedicated machine. The number of machines corresponds to the number of robots used in the application. We generate C++ code corresponding to each component of the Send/Receive BIP model and we embedded each C++ executable on each machine. We distribute the C++ code as follows: each machine i hosts a robot's code R SR i , its corresponding scheduler S i and one scheduler S k and conflict resolution protocol components CRP g k and CRP p k such that the robot R i is participating in interactions managed by S k . Table A.1 shows the distribution of the C++ code corresponding to the application with 4 robots.

In order to make simulations as realistic as possible, we also modeled robot's behavior, such as robot's movement, sensor's reading and camera image processing. Influence of the conflict resolution protocol choice.

We study the impact of communications delays and the choice of the conflict resolution protocol on time-safety. We simulate communication delays by temporarily suspending the communicating components. We assume that between any two machines i and j, we have the same communication delay K. We set the sensing period P to 200 and we vary the communication delays between machines. We measure the maximum value of communication delays that allows correct execution of the application.

Figure 8.19 and Figure 8.20 shows the simulation results for the application with 4 and 10 robots. For 4 robots, TR (Token Ring) outperforms DP (dining philosophers). This is because for few number of conflicting interactions, TR requires less communication than DP. Indeed, in DP, each conflict resolution protocol component has to negotiate the forks with all other components in DP which requires more communications than required for traveling the token in TR. However, for 10 robots, DP outperforms TR. Indeed, for a large number 
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of conflicting interactions, TR requires lot of communications as the token has to travel in all conflict resolution components sequentially before arriving to the component that takes the decision to execute the interaction. That is, the time required for the token to arrive corresponds to the sum of communications delays between components in TR. Whereas in DP, the forks negotiation is done in parallel. That is each conflict resolution protocol component sends fork requests to all other components almost at the same time.

Optimizing Observed Components

In our example, each two "group" interactions g k and g k ′ are in conflict. Therefore, each g k interaction involves its participant components and observes all remaining components. Our method for optimization allows removing all observed components for each g k interaction.

Indeed, in the BIP model, the robots have the same behavior and the same period for sensing which make the robots having the same deadline when searching for each others. Thus, when 3 robots try to group themselves, they have to do it before the expiration of their periods of sensing, which is the same for the other (observed) robots.

We measure the number of exchanged messages needed or the execution of the application during 10s. We require that the robot remains at searching phase during the execution. To do so, we put false as guard on each g k interaction in order to forbid robots grouping them selves. Figure 8.21 shows the number of exchanged messages needed or the execution of the application with 4 and 10 robots. We remark that the performance is improved in the optimized version especially for the application with 10 robots. For instance, in the non optimized version with 10 robots, the scheduler S k handling g k interaction have to receive messages from all robots: 3 participating in the interaction and 7 other observed. In the optimized version, S k receives only messages from the participant robots. of Send/Receive atomic components, a set of schedulers each one handling a subset of interactions, and a set of components implementing a conflict resolution protocol. Components in the conflict resolution protocol are called by the schedulers only in case of conflicting interactions execution.

With the above solutions, we assumed that the obtained/Send Receive models are implemented on platforms that provide fast communications (e.g. multi-process platforms) to meet perfect synchronization in components. This is because our obtained Send/Receive model is modeled such that there is no delay between the decision to execute an interaction in a scheduler and its execution in the participating components.

• In the third solution, we proposed Send/Receive models that execute correctly even if communications are not fast enough. This method is based on the fact that schedulers plan interactions execution and notify components in advance. In particular, the schedulers choose as soon as possible, according to a scheduling policy, a date for executing a selected interaction and send it to the participating components. We proposed also a cancel mechanism whenever the scheduler is not able to find a valid date to execute a conflicting interaction when the conflict resolution protocol confirms its execution.

We showed that with this solution, the scheduler needs to observe additional components not participating in the scheduled interactions. In particular, the schedulers observe time progress conditions of observed components to ensure safe interactions scheduling. These time progress conditions represent deadlines of observed components. In order to maintain valid observations of deadlines in the schedulers, we assumed that the components have non-decreasing deadlines. That is, observations are valid even if the components change their states by executing interactions.

We proposed an optimization method in order to minimize the number observed components. In fact, we identified the condition for which a component could not be observed by a given interaction. We expressed this condition in terms of a property of the system. We used static analysis technique based of approximations of system's reachable states to verity satisfaction of the property.

Implementation and Results

Actually, our first solution consisting on the centralized scheduler that implements interactions and priorities was presented only for sake of clarity and to make connections with the rest of the thesis. Instead, we have developed a multi-thread real-time scheduler that implements interactions and priorities of partial state models. A code generator have been also developed to generate C++ code for atomic components.

For distributed implementations, we developed tools for generating 3-layer Send/Receive BIP models. We developed a code generator that takes a Send/Receive model as input and outputs a distributed implementation. The code generator automatically generates C++ code for each component in the Send/Receive BIP model where Send/Receive interactions are implemented by TCP sockets.

Regarding experiments, we considered three types of applications: multithreaded, multiprocess and distributed applications.
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• With the multi-threaded application, we evaluated the performance of the multi-thread real-scheduler. We showed that the latter outperforms the single-thread real time scheduler presented in [START_REF] Abdellatif | Model-based implementation of real-time applications[END_REF].

• With multi-process application, we evaluated the method of our second solution. We considered an application that needs intensive parallel computation. We compared the application implementations obtained with a centralized scheduler against the one obtained with conflict-free schedulers.

• With distributed applications, we evaluated the method of our third solution. We studied the influence of the chosen conflict resolution protocol with different simulated platforms. We showed that the best performance depends on the application size and also on the chosen conflict resolution protocol.

Also, we studied the influence of optimizing the number of observed components in Send/Receive models. We showed that this optimization allows reducing the number of exchanged messages which increases performance.

Perspectives

For future work, we are considering several research directions.

• In this thesis, priorities are handled only in Send/Receive models with centralized scheduler. An important future direction is to handle priorities in the 3-layer Send/Receive models. For the case of our 3-layer Send/Receive models implemented on fast platforms, the solution is not very difficult. In fact, the schedulers may observe components participating in higher priority interactions. As in the case of Send/Receive models with centralized scheduler, the observation brings approximations of next reachable states.

Based on these approximations, the schedulers may decide the execution of a lower priority interaction.

For the case of Send/Receive models with planning interactions, the problem is quiet difficult. The problem resides in the fact interactions are planned in advance. In order to plan correctly an interaction, one has to be sure that when the interaction executes at the selected date, no higher interaction is enabled at that date.

• Our third solution for obtaining Send/Receive models with planing interactions is based on components observation. This method is applied on BIP models whose components provide non-decreasing deadlines. In fact, considering such models allows the schedulers to maintain a valid observation of components deadlines. We are working on extending this method for more general models where components do not necessarily have non-decreasing deadlines. This is not trivial since the scheduler cannot be sure that its observation could be valid in the future. For example, assume that the scheduler observes a component at its current state, indicating that the component's deadline is D. Based in this observation, the scheduler may schedule an interaction at a date less or equal to than D. However, this is not safe since the component may change its state providing a deadline less than D.

A pragmatic approach, where the scheduler blocks the execution of the observed component until the date t of the selected interaction execution, is not safe. In fact, the observed component may need to synchronize with other components having deadlines less than t.

The solution could be the use of static analyses techniques to identify states where it is safe to schedule a given interaction.

• Another research direction could be to propose a method for obtaining Send/Receive BIP models that handle clocks drift. The problem of clocks drift may influence the coherence of interactions execution. In particular, the interactions order could be inverted. For instance, consider two interactions a and b handled in different schedules having access to drifted clocks. Suppose that a and b are scheduled to execute at date t a and t b respectively . Here, t a and t b are computed based on different clocks. Logically talking, if t a ≤ t b , a should be produced before b. However, in reality, it could be possible that b executes before a. That is a and b executes at real date t r a and t r b respectively, where t r b ≤ t r a . These real dates could be computed based on a reference clock.

A solution to handle this problem is to introduce perturbations in the BIP models, and then study implementability issues for these models. The perturbation consist on enlarging the timing constraints. For timed automata, the model of timing constraint enlargement has been studied in [START_REF] De Wulf | Systematic implementation of real-time models[END_REF]. In this paper, it is proven that the model with perturbation covers the issue of clocks drift, by reducing the implementability problem to the analysis of the enlarged semantics.

• Another work direction is the issue of mixed critical systems [START_REF] Sanjoy K Baruah | Mixed-criticality scheduling of sporadic task systems[END_REF]. A mixed critical application allows different levels of criticality to interact on the same platform. However, those applications are very difficult to certificate. This is because mixed criticality concept requires that even the components of less criticality be certified at the highest criticality level. Thus, it is necessary to provide strong scheduling theories for real-time and safety-critical system design and implementation. 
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 4 7 presents the Petri net of the scheduler component of Figure 4.1. The execution of transition labeled o i , i ∈ {1, 2, 3} indicates that an offer from component B i has been received. This transition updates the Boolean variable rcv i to true.
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 1 Given a BIP model πγ(B 1 , ..., B n ), the model γ SR (B SR 1 , ..., B SR n , S) obtained by transformation of Section 4.2 meets the properties of Definition 22.
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 259 Figure 5.9: Conflict resolution component in the token ring protocol handling reservation of interaction a 2 of the example from Figure 5.1 considering the partition γ 1 = {a 1 , a 2 } and γ 2 = {a 3 }.
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  DPa ), where: • L DPa contains waiting place w a , and the received place r a . Moreover, for each interaction b ∈ extconf (a), L DPa includes the sending and received request places sr b and wr b as well as sending, waiting and received fork places sf b , wf b and rf b . The time progress condition of places r a , sr b , rf b and sf b are false. The other places do not have time progress conditions. • X DPa includes the variables {N i | B i ∈ part(a)} and the variables {n a i | B i ∈ part(a)} . Moreover, for each interaction b ∈ extconf (a), X DPa includes the additional variables {N b i | B i ∈ conf (a, b)}, and the Boolean variables f ork b and dirty b . • P DPa includes the ports rsv a , ok a , f ail a , and the unary port u a . Port rsv a exports variables {n a i | B i ∈ part(a)}. Ports ok a and f ail a do not have exported variables. Moreover, for each interaction b ∈ extconf (a), P DPa includes the sending and receiving request ports SR a b and RR a b as well as sending and receiving fork ports SF a b and RF a b . Ports SF a b and RF a b exports variables {N b i | B i ∈ conf (a, b)}. Ports SR a b and RR a b do not have exported variables.

  having no timing constraint and no update function. -τ 1 f ail a = (r a , f ail a , w a ) and τ 2 f aila = ({rf b |b ∈ extconf (a)}, f ail a , w a ) guarded by B i ∈part(a) n a i ≤ N i and having no timing constraint. Transition τ 1 f ail a has no update function. Transition τ 2 f ail a has the following update function: ∀ b ∈ extconf (a) dirty b := true. -For each interaction b ∈ extconf (a), T DPa includes also the following transitions. * τ SR a b =(sr b , SR a b , wf b ), with Boolean guard G τ SR a b =¬f ork b , no timing constraint and no update function. * τ RR a b =(wr b , RR a b , sf b ) with no guard, no timing constraint and no update function. * τ SF a b =(sf b , SF a b , wr a ) with Boolean guard G τ SF a b =dirty b , no timing constraint and f ork b := false as update function. * τ RF a b =(wf b , RF a b , rf b ), with no guard and no timing constraint and updating the following variables:

  rf b ) guarded by G τ hasf ork b =f ork b and having no timing constraint and no update function. * τ hasnotf ork b =(rf, u a , sr b ) guarded by G τ hasnotf ork b =¬f ork b and having no timing constraint and no update function.
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 512 Figure 5.12: Global view of the dining philosophers conflict resolution protocol for the example from Figure 5.1.
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 4 Given a BIP model B = γ(B 1 , . . . , B n ) and a partition of interactions {γ j } k j=1 , the model B SR CP = γ SR (B SR 1 , . . . , B SR n , S 1 , . . . , S k , CP ) obtained by transformation of Section 5.3 meets the properties of Definition 22.

3 .

 3 restricting the valuation of variables of B SR i to a valuation of variables in B i , and 4. taking the valuation of original clock c i in B i as the valuation of gρ c i . Theorem 3. B ∼ B SR CP .
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 122 Model Restrictions 123 Sufficient conditions for satisfaction of non-decreasing deadlines property. Given a timing constraint tc defined as in (6.1), we denote by L[tc](c) = l c and U [tc](c) = u c the lower bound and the upper bound of tc over clock c respectively. Consider the timing constraint tc = 3 ≤ c 1 ≤ 4 ∧ 5 ≤ c 2 ≤ 7. We have L[tc](c 1 ) = 3, L[tc](c 2 ) = 5, U [tc](c 1 ) = 4 and U [tc](c 2 ) = 7.
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 64 Figure 6.4: Scheduling Issue

Figure 6 .

 6 5 shows the overall architecture of the Send/Receive distributed model of the example from Figure 6.3 considering the partition of interactions γ 1 = {t 1 , g 1 } and γ 2 = {t 2 , g 2 }. As the component B 4 needs to be observed for interaction g 1 , the corresponding Send/Receive atomic component B SR 4 sends offers to scheduler S 1 handling g 1 . Similarly, Send/Receive atomic component B SR
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 14e653 Figure 6.5: 3-layer distributed model of the example from Figure 6.3.
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Figure 6 .

 6 Figure 6.7 illustrates the transformation of the component B of Figure 6.2 into its corresponding Send/Receive component B SR . Consider an execution in B SR starting from location ⊥ ℓ 1 .First, B SR sends offers to the schedulers, containing the time progress condition of location ℓ 1 , the timing constraints of ports give and take as well as their Boolean guard variables, and the participation number variable n 1 . It receives then a notification from the schedulers specifying that the component should execute port take at date t ex . Note that the time progress condition of location ℓ 1 forces B SR to be notified and to leave ℓ 1 before the value of clock g exceeds P + ρ c , or equivalently clock c exceeds P . After receiving notification on port n take , the transition labeled by take executes at the chosen date t ex and executes the update

6. 3

 3 Transformations 131 function u 2 defined as follows.

Figure 6 . 8 :

 68 Figure 6.8: Mechanisms for Interactions Scheduling.

  ) = ∅ and having no timing constraint and no update function. * τ oka = (try a , ok a , sd a ) with no Boolean guard, no timing constraint and no update function. * τ f aila = (try a , f ail a , {r i | B i ∈ part(a)}) with no guard, no timing constraint and no update function. * τ cancela = (sd a , cancel a , cl a ) guarded by P(t(g), safe-tc a ) = ∅ and having no timing constraint and no update function. * τ acka = (sd a , ack a , {r i | B i ∈ part(a)}) with no Boolean guard, no timing constraint and no update function. * τ scheda = (sd a , sched a , {s p i | B i ∈ part(a)}) guarded by P(t(g), safe-tc a ) = ∅, having no timing constraint. The update function f τ scheda updates the following variables

Figure 6 . 9 :

 69 Figure 6.9: Decentralized Scheduler S 2 of Figure 6.5

Figure 6 . 10 :

 610 Figure 6.10: Fragment of the centralized version of conflict resolution protocol for handling interaction g 1 .

Figure 6 . 11 :

 611 Figure 6.11: Conflict resolution protocol component of interaction g 1 in the token ring protocol.

  N b i s.t. B i ∈ conf (a, b). Recall that conf (a, b) = part(a) ∩ part(b) and extconf (a) is the set of interactions externally conflicting with a.Definition 39. Let γ(B 1 , . . . , B n ) be a BIP model and {γ j } m j=1 be a partition of interactions. Given an externally conflicting interaction a, the corresponding conflict resolution component DP a is defined as the Send/Receive BIP componentDP a = (L DPa , P DPa , T DPa , C DPa , X DPa , {X p } p∈P DPa , {g τ } τ ∈T DPa , {tc τ } τ ∈T DPa , {f τ } τ ∈T DPa , {r τ } τ ∈T DPa , {tpc ℓ } ℓ∈L DPa), where: • L DPa contains waiting place w a , and the received place r a . Moreover, for each interaction b in extconf (a), L DPa includes places for fork negotiation: sr b , wr b , sf b , wf b , and rf b . For canceling interaction a, L DPa includes, for each interaction b in extconf (a), places sr cl b , wf cl b , rf cl b . All places do not have time progress conditions. • X DPa includes the variables {N i | B i ∈ part(a)}, the variables {N cl i | B i ∈ part(a)}, the variables {n a i | B i ∈ part(a)}. Moreover, for each interaction b ∈ extconf (a), X DPa includes the additional variables {N b i | B i ∈ conf (a, b)}, and the Boolean variables f ork b , dirty b , cl b .• P DPa includes the reservation ports rsv a , ok a , f ail a and the unary port u a . Moreover, P DPa includes, for each interaction b ∈ extconf (a), the ports SR a b , RR a b , SF a b and RF a b . Port rsv a exports variables{n a i | B i ∈ part(a)}. Port SF a b exports variables {cl b } ∪ {N i | B i ∈ conf (a, b)} and port RF a b exports variables {cl b } ∪ {N i | B i ∈ conf (a, b)}.The other ports do not have exported variables.• T DPa contains the following transitions:-transitions for scheduling interaction a. * τ rsva = (w a , rsv a , r a ) with no guard, no timing constraint and no update function. * τ oka = ({rf b |b ∈ extconf (a)}, ok a , w a ) guarded by b∈extconf a f ork b B i ∈part(a) n a i > N i , having no timing constraint and updating the following variables:∀ B i ∈ part(a) N i := n a i ∀ B i ∈ conf (a, b) N b i := N i ∀ b ∈ extconf (a) dirty b := true Taking Decision Earlier • τ hasf ork cl b =(sr cl b , u a , rf cl b ) guarded by f ork b , and having no timing constraint and dirty b := false as update function. • τ acka = ({rf cl b |b ∈ extconf (a)}, ack a , w a ) with no guard, no timing constraint and having the following update function: ∀ b ∈ extconf (a) dirty b := true Example 27.
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 612 Figure 6.12: Component of the dining philosophers protocol handling interaction g 1 of Figure.

Lemma 8 .

 8 Given a BIP model B = γ(B 1 , . . . , B n ) and a partition of interactions {γ j } k j=1 , the model B SR CP = γ SR (B SR 1 , . . . , B SR n , S 1 , . . . , S k , CP ) obtained by transformation of Section 6.3 meets the properties of Definition 22.

2 Figure 6 . 13 :

 2613 Figure 6.13: From B SR CP to B SR * CP We show that the initial model B weakly simulates the model B SR * CP . The observational equivalence cannot be proven since we lose fairness with B SR *CP . In fact, the execution of conflicting interactions depend on the order of their scheduling. Thus an interaction executed in the original model, could be executed in the Send/Receive model with a particular order of scheduling. Nonetheless, we can prove that any interaction executed in the Send/Receive model, can be executed in the original model.We consider the correspondence between actions of B and B SR * CP as follows. To each interaction a ∈ γ of B, we associate the unary interaction a of B SR * CP . All other interactions of B SR * CP (offer, notification, reserve, ok, fail, cancel, ack) are unobservable and denoted by β.We proceed as follows to complete the proof of weak simulation. Among unobservable actions β, we distinguish between β 1 actions, that are interactions between the atomic components and the schedulers (namely offer and notification) and the scheduling transition, and β 2 actions that are interactions between the schedulers and the conflict resolution protocol (namely reserve, ok, fail, cancel, ack). We denote by q SR a state of B SR CP and q a state of B. A state of B SR * CP from where no β 1 action is possible is called a stable state, in the sense that any β action from this state does not change the state of the atomic components.

  Similarly to B SR * CP , we consider new versions of B SR T R and B SR DP denoted by B SR * T R and B SR * DP where interactions appears in the scheduler components. Proposition 3. B SR * T R ⊂ B and B SR * DP ⊂ B

  Fig-ure6.14(b) shows such optimization.

Figure 6 . 14 :

 614 Figure 6.14: Reducing Messages fro Cancel Mechanism

  ) = 8 max(∆1, ∆2, ∆3)=5 (a) interaction a involving components B1, B2 and B3 send/receive components and the scheduler handling a. Scheduling policy taking into account communication delays dates satisfiying safe-tca dates that could be chosen according to the scheduling policy safe-tca =[START_REF] Chandy | The drinking philosophers problem[END_REF][START_REF] Henzinger | Giotto: a timetriggered language for embedded programming[END_REF] 

Figure 6 . 15 :

 615 Figure 6.15: Improving Scheduling Policy.

  .4. Interactions a and b are conflicting, then obs(a) = B 3 and obs(a) = B 1 . Consider interaction b. The scheduling timing constraint of b is sched-tc b = c 3 ≤ 2 (or equivalently g ≤ 2ρ c 2 ). In the observed component B 1 , location ℓ 1 with time progress condition tpc ℓ 1 = c 1 ≤ 10, is the only location where the port p 1 involved in interaction a is enabled. Remark that for each valuation of clock c 2 that satisfies sched-tc b we have c 1 ≤ 10 as c 1 and c 2 have the same valuations in components B 1 and B 3 at locations ℓ 1 and ℓ 3 respectively. That is, each date for scheduling b satisfies the time progress condition of location ℓ 1 of component B 1 . In this case, it is unnecessary for interaction b to observe component B 1 . For interaction a, the scheduling timing constraint of a is sched-tc a = c 1 ≤ 10. Remark that there exists valuations of clock c 1 that satisfies sched-tc a = c 1 ≤ 10 but not the time progress condition c 3 ≤ 2 of ℓ 3 of component B 3 where ℓ 3 is the location in the observed component B 3 from which port p ′

  Each valuation of clocks that satisfiestpc ℓ j sched-tca[ℓa] tpc ℓ j sched-tca[ℓa]stimeca[ℓa] does not satisfy tpc ℓ j stimeca[ℓa] satisfies also tpc ℓ j There esist valuation of clocks that satisfies

Figure 6 . 16 :

 616 Figure 6.16: Illustrative example.

  .10, setter 1 and setter 2 components are instances of the same atomic component type setter shown in Figure 2.5. The latter is parametrized by the bound l of timing constraints of transition set and the bound u of time progress condition of location ℓ 2 . The description of the setter atomic component type is illustrated as follows: port type IntPort (int i ) port type EventPort atomic type setter (int u, int l ) data int x export port EventPort sync export port IntPort set(x) clock c unit 1 second place ℓ 1 place ℓ 2 while c in [0 , u] initial to ℓ 1 do { x = 0 ; } on sync from ℓ 1 to ℓ 2 provided true reset {c} do {x = x+1 ;} on set from ℓ 2 to ℓ 1 provided true when c in [l , -] end

Figure 7 . 1 :

 71 Figure 7.1: Overview of the BIP toolbox

Figure 7 .

 7 Figure 7.1 shows an overview of the BIP toolbox. Mainly, there are four types of tools, namely Language Factory, Source-To-Source Transformations, Verification and Execution/Simulation. Below, we detail each of these types.
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 72 Figure 7.2: Source-to-Source Decentralization design flow for untimed BIP models

Figure 7 . 3 :

 73 Figure 7.3: Multi-Threaded Real-time Scheduler

Figure

  Figure 7.3 shows the execution cycle of the multi-thread real-time scheduler. Given a state q, the scheduler computes the next enabled interaction as follows:

Algorithm 1 : 5 choose p ∈ P s ∩ enabled q 6 send 10 N 15 recv 20 if 22 DoInternalComputation

 15610152022 Code generated for SR-BIP components.1 Initialize() // initialize the Petri net and connections 2 g := 0 // reset real-time clock 3 while true do 4 while P s ∩ enabled q = ∅ do // send messages := min p∈Pu {nextEnabled q (p)} 11 12 if N > g ∧ D ≥ g then 13 wait newMessage() ∨ g ≥ min(N, D) 14 if newMessage() then // received message g ≥ N ∧ D ≥ g then 21 choose p ∈ P u such that nextEnabled(p) = N

Figure 8 . 1 :

 81 Figure 8.1: The hardware architecture of the MarXbot robot.

8. 1 Figure 8 . 2 :

 182 Figure 8.2: The Marxbot robot.
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 83 Figure 8.3: The obstacle avoidance application.

Figure 8 . 6 :Figure 8 . 7 :

 8687 Figure 8.6: BIP model for demosaicing.

Figure 8 .

 8 Figure 8.6 shows the BIP model of demosaicing for 4 parallel blocks. Initially, the image is loaded by the component I, which trigger a global start interaction (not shown on the Figure) between components D ij , J i , I and O. These components reset their respective clocks upon execution of global start.This algorithm is parallelized by cutting the raw image into blocks, each being demosaiced concurrently. The image is first split into lines by the interaction named split, then each line i is split into blocks by the interaction named split line i. The detailed behavior of components D ij and C ij is depicted in Figure8.7.Component D ij performs actual demosaicing of the image block located at i, j, whenever it receives an image block through its port get block. Component C ij controls timing of the component D ij . We use timing constraints and time progress conditions to enforce delivery of a RGB image within a given amount of time after the raw image has been provided.
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 88 Figure 8.8: Time needed to process a 25MP image.

Figure 8 . 9 :

 89 Figure 8.9: Time needed to process a 6MP image.

1 ≤ P/ 2 ci- 1 ≤ P/ 2 Figure 8 . 11 :

 1212811 Figure 8.11: Fragment of the BIP model of dining professors application.
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 812813 Figure 8.12: Simulation For 4 professors.
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 814 Figure 8.14: Number of messages exchanged for optimized and non-optimized implementations for the dining professors example.
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 815 Figure 8.15: Collaborating Robot application scenario.
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 816 Figure 8.16: Model of a single robot.

Figure 8 . 17 :

 817 Figure 8.17: The BIP model of the application with 4 robots

  Figure 8.18 presents 

Figure 8 .

 8 Figure 8.18: Simulation Results for the application with 4 robots

Figure 8 . 19 :

 819 Figure 8.19: Simulation for 4 robots.

Figure 8 . 20 :

 820 Figure 8.20: Simulation for 10 robots.

Figure A. 1 : 2 , ν 2 l d e l false c 1 = 5 2 ≤ c 1 ≤ 5 d c 2 = 7 c 1 = 5 ∨ c 2 = 7 2 ≤ c 1 ≤ 5 ∨ c 2 = 7 e 4 ≤ c 2 ≤ 7 c 1 = 5 ∨ 4 ≤ c 2 ≤ 7 2 ≤ c 1 ≤ 5 ∨ 4 ≤

 122152154215422154 Figure A.1: Example of transitions with urgency.

  .1 shows the global clock Introduction H S and two other clocks H T 1 and H T 2 deriving from H S as follows: H T 1 = 2 * H S + 1 and H T 2 = 3 * H S .

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
														H S
		1		2		3		4		5		6		7
														H T 1
				1			2			3			4	

H T 2

Figure 1.1: Example of clocks definition in Oasis.
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	PBO2		00 00 00 00 00 00 11 11 11 11 11 11 0000000 0000000 0000000 0000000 0000000 0000000 1111111 1111111 1111111 1111111 1111111 1111111 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 1 1 1 1 1 1 0000000 0000000 0000000 0000000 0000000 0000000 1111111 1111111 1111111 1111111 1111111 1111111 0 0 0 0 0 0 1 1 1 1 1 1
	PBO1	0 0 0 0 0 0 1 1 1 1 1 1 000000 000000 000000 000000 000000 000000 111111 111111 111111 111111 111111 111111 00 00 00 00 00 00 11 11 11 11 11 11	00 00 00 00 00 00 11 11 11 11 11 11 000 000 000 000 000 000 111 111 111 111 111 111 00 00 00 00 00 00 11 11 11 11 11 11	
			2	4		6	8	time
	00 00 00 00 00 00 11 11 11 11 11 11	read input	0 0 0 0 0 0 1 1 1 1 1 1	execution		0 0 0 0 0 0 1 1 1 1 1 1	produce output

  1.3 Existing Approaches for Modeling and the Implementation of Real-Time Systems 31 (x 0 , x 1 , . . . , x n , . . .) of values at logical time instants (0, 1 . . . , n, . . .). A Lustre program consists of a set of nodes. Each node defines a set of inputs and outputs. The outputs flows are computed by the node from input flows. An abstract syntax of a Lustre program is presented below. =E | x,. . ., x = N (E, . . . ,E)

program ::= node + node ::= node N (In) (Out) equation + equation ::

= x E :: =x | v | op(E, . . . ,E) | pre(E,v) | E when b | current E

In (resp. Out) denotes input (resp. output) of a node. Symbols N , E, x, v, b denote respectively node names, expressions, flows, constant values and Boolean values. Each flow (and expression) is associated with a logical clock. Implicitly, there exist a unique and basic clock which defines the logical time instants (or basic clock cycle) of a synchronous program. This clock has the finest grain among the clocks defined in the program. A program clock is derived from the basic clock using a flow of Boolean values, that is, it corresponds to the sequence of instants at which this flow takes the value true. In Luste, there are few elementary basic types which are Boolean, integer and one type constructor which is tuple.

Table 1 .

 1 1: Instants of a possible execution of the example of Figure1.7

	basic clock 1 2 3 4 5	6
	i	2 5 -1 3 1	2
	pre	0 2 7 6 9	10
	o	2 7 6 9 10 12

•

  Def inition checking: every local and output variable should have one and only one definition; 1.3 Existing Approaches for Modeling and the Implementation of Real-Time Systems 33

Table 1 .

 1 2: Examples of using when and current operators

	basic clock	1	2	3	4	5	6
	b	f alse true true f alse true f alse
	x	x 1	x 2	x 3	x 4	x 5	x 6

  Parallel Real-Time Systems Design with Centralized Scheduler track of the actual progress of time, since it needs to maintain (update) only one clock.

	4.1.2 Expressing Timing Constraints and Time Progress Conditions Using
	a Global Clock

Every atomic component can define a set of local clocks. They can be reset at any time and are involved in timing constraints and time progress conditions. In this thesis, we make use of a global clock in Send/Receive models. In fact, a global clock allows a common time scale among components and the scheduler. It reduces the effort of the scheduler when keeping

  .6:

		w i
		receive offer
		from component B i
	send notification to B i on port p i	r i
		execute interaction
		involving B i
		s p i

  Given a component B and a port p, we denote by B.p the port p involved in component B. Definition 25. Given a BIP model πγ(B 1 , ..., B n ), we define a Send/Receive model γ SR (B SR 1 ,...,B SR n , S) where B SR i , i ∈ {1, . . . , n} are Send/Receive atomic components, S is the scheduler and γ SR is the set of Send/Receive interactions defined as follows:

	Parallel Real-Time Systems Design with Centralized Scheduler
		w 1				w 2		w 3
		o 1					o 2		o 3
	tpc 1	r 1		tpc 2	r 2			tpc 3	r 3
	a 2					a 1		a 3
	tc τa 2					tc τa 1		tc τa 2
	false	false		false	false	false	false	false
	s set 1	ssync 1	sget 1		ssync	sget 2	ssync 2	s set 2
	set 1	sync 1	get 1		sync	get 2	sync 2	set 2
		w 1				w 2		w 3
	o 1 set 1 sync 1	o 2	sync	get 1	get 2	o 3	set 2	sync 2

• For each Send/Receive component B SR i , we include in γ SR the Send/Receive interaction (B SR i .o i , S.o i ) where B SR i .o i is a send port and S.o i is a receive port.

  Layer Send/Receive Models 105 * τ f aila = (try a , f ail a , {r i } B i ∈part(a) ) with no guard, no timing constraint and nor update function.

		rsva 2				oka 2		f aila 2
		w1				w2			w3
			o 1				o 2		o 3
	o 1	r1	tpc 1	tpc 2	r2	o 2		r3 tpc 3
		rsva 2					
	f aila 2	tca 1	trya 2	o 1 o 2				a 1 tca 1
					oka 2			
	false sset 1	false	ssync 1	sget 1 false	ssync	false	ssync 3	false
	get1			sync1	get2		sync2	sync3
		w1					w2		w3
	o1	set1		sync1		o2	get1	sync	o3	sync3

t ex i := t ex a then triggers the data transfer function F a 5.3 3-

  SR CP only in the conflict resolution protocol components, thus it is sufficient to prove that T R ⊂ CP and DP ⊂ CP .

Proposition 1. B SR T R ⊂ B and B SR DP ⊂ B. Proof. As B is observationnally equivalent to B SR CP , it is equivalent to prove that B SR T R ⊂ B SR CP and B SR DP ⊂ B SR CP . As the behaviors B SR DP and B SR T R differ from B

  BIP model γ(B 1 , B 2 , B 3 , B 4 , B 5 ), which is the running example used throughout this chapter. Components B 2 and B 4 are instances of the component B of Figure6.2, with E=3, D=P=5 for B 2 and E=6, D=P=8 for B 4 . The set of interactions γ is {t 1 , t 2 , g 1 , g 2 }, where t 1 = {new 1 , take 1 }, t 2 = {new 2 , take 2 }, g 1 = {give 1 , free} and g 2 = {give 2 , free}. Note that all components B 1 , . . . , B 5 have non-decreasing deadlines since they satisfy the syntactic conditions given in Proposition 2.

	Running Example
	Figure 6.3 illustrates a

To enforce the execution of τ 2 before c reaches D, we also consider the time progress condition tpc ℓ 2 = c ≤ D for ℓ 2 . According to conditions given in Proposition 2, component B satisfies the non-decreasing property only if D ≤ E + P .

  .10.

	connector type SetGet(IntPort set, IntPort get)
	define set get
	on set get
	provided true
	down { get.i = set.i }
	end

  connector SyncEvents a 1 (setter 1 .sync 1 ,getter.sync,setter 2 .sync 2 ) connector SetGet a 2 (setter 1 .set 1 , setter.get 1 ) connector SetGet a 2 (setter 2 .set 2 , setter.get 2 )

	compound type Compound
	component setter setter 1
	component setter setter 2
	component getter getter 1

  In order to generate distributed implementations from Send/Receive BIP models, we developed a code generator that takes a Send/Receive model as input and outputs a distributed implementation. Our implementation automatically generates C++ code for each component in the Send/Receive BIP model where Send/Receive interactions are implemented by TCP sockets. Each component has access to a clock g giving access to the actual time.Consider a Send/Receive BIP model. Each component is a Petri net whose transitions are labeled by ports. According to Definition 22, there are three types of ports in each component in a Send/Receive BIP model: send ports, receive ports and unary ports. A send port is used to trigger the emission of a message to the receive ports. The code generated from a transition labeled by a send port p includes a call to a send(p) function. This function sends the set of variables associated with port p to receive ports.

		check non-decreasing	
		deadlines	
	BIP		
	no priority	no priority BIP	Observed Components Reduction
	protocol		
	partition		
		Earlier Decision Making	
	timedBip2srBip	timedBip2srBip	
	Send/Receive BIP		
	Figure 7.4: Source-to-Source Decentralization of timed BIP
	7.3.3 Code generation for Send/Receive BIP models	

  Figure 8.10: Eating points of professors with odd and even numbers.

	P	2P	3P	4P	5P	6P
	P/2	3P/2	5P/2	7P/2	9P/2	11P/2

Table 8 .

 8 1: Send/Receive components code distribution on 4 machines

	machine#1 machine#2 machine#3 machine#4
	R SR 1	R SR 2	R SR 3	R SR 4
	S 1	S 2	S 3	S 4
	S 123	S 124	S 134	S 234
	CRP g 123	CRP g 124	CRP g 134	CRP g 234
	CRP p 123	CRP p 124	CRP p 134	CRP p 234

The only restriction for expressions involved in timing constraints is that they must evaluate to an integer value.

schedulers, each one handling a subset of interactions. We show that such decentralization creates conflicts, that need a conflict resolution protocol to be resolved.

Parallel Real-Time Systems Design with Centralized Scheduler

sends offers to Scheduler S 2 as component B 4 needs to be observed for interaction g 2 .

is enabled. Thus, it is mandatory for interaction a to observe component B 3 .
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From models with time progress cnditions to urgency-based models

Observational Equivalence between Original and Transformed BIP Models

In this subsection, our goal is to show that γ(B 1 , ..., B n ) and γ SR (B SR 1 , ..., B SR n , S) are observationally equivalent. We consider the correspondence between actions of γ(B 1 , ..., B n ) and γ SR (B SR 1 , ..., B SR n , S) as follows. To each discrete step a ∈ γ of πγ(B 1 , ..., B n ), we associate the unary interaction a of γ SR (B SR 1 , ..., B SR n , S). To each delay transition δ ∈ Z ≥0 of πγ(B 1 , ..., B n ), we associate the same delay transition δ of γ SR (B SR 1 , ..., B SR n , S). All other interactions of γ SR (B SR 1 , ..., B SR n , S) (i.e., offer and notification) are unobservable and denoted by β.

We proceed as follows to complete the proof of observational equivalence. We denote by q SR a state of γ SR (B SR 1 ,...,B SR n , S) and q a state of πγ(B 1 , ..., B n ). A state of γ SR (B SR 1 , ..., B SR n , S) from where no β transition is possible is called a stable state, in the sense that any β transition from this state does not change the state of the atomic components layer.

Decentralizing the Scheduler

Definition 33. Let B = γ(B 1 • • • B n ) be a BIP model and {γ j } k j=1 be a partition of interactions. We denote by {a 1 , . . . , a m } the set of externally conflicting interactions. We define for each conflict resolution protocol the following Send/Receive model: • For each port p in component B SR i and for each scheduler component S j handling an interaction involving p, γ SR includes the notification interaction (S j .p, B SR i .p).

• For each internally conflicting interaction a ∈ γ, γ SR includes the unary interaction (S j .a), where S j is the scheduler component handling the interaction a.

• For each externally conflicting interaction a, γ SR includes the following interactions:

-(rsv a .S j , rsv a .C CRP ), and -(ok a .S j , ok a .C CRP ), and

where C CRP is either CP , or T R a , or DP a depending on the implemented conflict resolution protocol.

Correctness of the Proposed Model

In this section, we first show that the 3-layer model B SR CP is indeed a Send/Receive model. We then prove that the initial BIP model B is observationally equivalent to B SR CP . Finally, we prove weak simulation between B SR T R (resp. B SR DP ) and B.

Compliance with Send/Receive Model

We need to show that receive ports of B SR CP will unconditionally become enabled whenever one of the corresponding send ports is enabled. Intuitively, this holds since communications between two successive layers follow a request/acknowledgement pattern. Whenever a layer sends a request, it enables the receive port to receive acknowledgement and no new request is sent until the first one is acknowledged. • τ RR a b =(wr b , RR a b , sf b ) with no guard, no timing constraint and no update function.

• τ SF a b =(sf b , SF a b , wr a ) with Boolean guard dirty b , no timing constraint and having the following update function:

with no guard, no timing constraint and updating the following variables:

guarded by f ork b and having no timing constraint and no update function.

• τ hasnotf ork b =(rf b , u a , sr b ) guarded by ¬f ork b and having no timing constraint and no update function.

-Transitions for canceling interaction a: * τ cancela = (w a , cancel a , sr a b ) having no guard, no timing constraint and having the following update function:

• τ SR a b =(sr a b , SR a b , wf a b ) guarded by ¬f ork b , having no timing constraint and no update function.

• τ RF a b =(wf a b , RF a b , rf a b ) having no guard, no timing constraint and having the following update function:

Taking Decision Earlier

Note that the state [q SR ] is not unique, since it depends on the order of scheduling transitions. The state [q SR ] verifies the property

Lemma 10. At a stable state [q SR ], the Send/Receive model verifies the following properties:

• All atomic components are in ℓ or ⊥ τ places.

• Tokens in the scheduler components are either in place w p or r i .

• The clock g and variables in the atomic components have the same value than their copies in the scheduler components.

Proof. The two first points come from Lemma 8 that guarantees possible execution of a Send/Receive interaction if its send-port is enabled. Therefore no place s p in the scheduler components (respectively ⊥ ℓ in atomic components) can be active at [q SR ], otherwise the answer n p (respectively the offer from ⊥ ℓ ) could occur. Furthermore, since all offers have been sent, no token can be in w i place.

In each scheduler S j , when a r i is marked, the last transition executed is either an offer, f ail or ack messages reception, which does not modify variables in the scheduler S j . When w p is marked, the last transition executed is the notification which is resulted of scheduling an interaction that modifies the variables in the schedulers. By sending notifications, the scheduler sends updated variables to the components. Thus, each variable in the scheduler has the same value as the corresponding atomic component. The clock g has the same value in the atomic components and the schedulers as it is never reset.

Lemma 11. When B SR *

CP is in a stable state, for each i ∈ {1, . . . , n}, we have n i > N i .

Proof. If the place r i is marked, then the proof is similar to the proof of 7. If the place w p is marked, the last transition executed is the notification which increments the variable n i is the corresponding atomic component. We define a relation between the set of states Q SR of B SR * CP and the set of states Q of B as follows. For each state q SR ∈ Q SR , we build a state corr (q SR ) by: 1. considering all possible stable states [q SR ] reachable by doing β transitions, 2. considering the control location ℓ or ⊥ τ where τ = (ℓ, p, ℓ ′ ) of B SR i as the control location ℓ for B i in equ(q SR ), Proof. We define the weak simulation relation R by taking:

restricting the valuation of variables of B SR

The three next assertions prove that R is a weak simulation: Multi-process platforms are adequate for the implementation of such models. Indeed, processes are a useful choice for parallel application with workloads where tasks take significant computing power. For that, we consider an application that implements demosaising algorithm which provides intensive parallel computation.

8.2.1

Demosaicing Algorithm A demosaicing algorithm [START_REF] Malvar | High-quality linear interpolation for demosaicing of bayer-patterned color images[END_REF] transforms the raw data from a camera sensor into an actual image. A camera sensor is an array of light sensors, each of them outputting a single value. A color filter placed over the sensor array ensures that each sensor receives either red, green, or blue light. The filtering is done according to the pattern presented on the left of 

Conclusions

In this chapter, we conclude the thesis by describing the main achievements and the future work directions and its perspectives.

Achievements

Rigorous Design Flow

In this thesis, we presented a rigorous design flow starting by a centralized high-level BIP models and leading to Send/Receive BIP models that can be directly implementable on a given platform. The design flow involves the use of model transformations, each one takes into account a particular aspect of the decentralization while preserving the functional properties of the original BIP model.

We presented three solutions for obtaining Send/Receive BIP models.

• In the first solution, we propose Send/Receive models with a centralized scheduler that implements interactions and priorities. Atomic components of the original models are transformed into Send/Receive components that communicate with the centralized scheduler via Send/Receive interactions. We showed that the centralized scheduler should satisfy some conditions to ensure safe interactions execution. These conditions was identified in the partial state models to be observationally equivalent to original BIP models. Recall that partial state models are high level-representation for parallel execution of BIP models in which the assumption of atomic execution of transitions is discarded.

• In the second solution, we proposed Send/Receive models with decentralized the schedulers. With this solution, we considered BIP models without priorities. The solution is based on transforming BIP models into 3-layer Send/Receive BIP models which consist

A

From models with time progress cnditions to urgency-based models

A.1 Urgency-based Abstract Models

Time progress conditions are used to enforce progress in the system. Indeed, time progress conditions constraints the system to stay infinitely at a state without moving to another one. There exists different manners to enforce progress in the system. In [START_REF] Abdellatif | Rigorous Implementation of Real-Time Systems[END_REF], the authors consider abstract models with urgency types on transitions to enforce transitions execution. Urgency types are used to specify the need for a transition to progress when it is enabled (i.e. when its timing constraint is true) [START_REF] Bornot | An algebraic framework for urgency[END_REF]. There are three urgency types that can be used to specify urgency of transitions: Lazy transitions (i.e. non-urgent) are denoted by l, delayable transitions (i.e. urgent just before they become disabled) are denoted by d, and eager transitions (i.e. urgent whenever they are enabled) are denoted by e. A transition urgency is computed from the timing constraint and the urgency type of the transition. We define a time guard tg which corresponds to a combination of timing constraint tc with an urgency type ν ∈ { l, d, e }, denoted by tg = [tc] ν . The predicate urg[tg] that characterizes the valuations of clocks for which the time guard tg is urgent is defined by:

Definition 41 (Urgency-based Abstract Model). An urgency-based abstract model is defined by a labeled transition system B = (L, P, T, C), where:

• L is a finite set of control locations,

• P is a finite set of communication ports,

From models with time progress cnditions to urgency-based models

• C is a finite set of clocks,

• T ⊆ Q × P × Q is a finite set of labeled transitions. A transition τ is a tuple (q, p, q ′ ) where p is a communication port. τ has a time guard over C tg τ and resets a subset of clocks r τ .

Definition 42 (Semantics of Urgency-Based Abstract Model). An urgency-based abstract Model B = (L, P, T, C) defines a transition system S B = (Q B , P B , -→ B ) where:

is the set of states 

in T and its corresponding timing constraint is true with respect to the valuation t, i.e. tc τ (t) = true.

-Delay transitions: We have (ℓ, t)

Compared to abstract models with time progress conditions, abstract models with urgency differ in that the condition for time progress is given implicitly and rather derived from time guards (combination of timing constraint and urgency) of transitions. Thus, abstract models with urgency are subclass of Abstract Models with time progress condition [START_REF] Bornot | Modeling urgency in timed systems[END_REF]. The transformation of an abstract model with urgency into an abstract model with time progress condition could be done by deriving deadline formula from any time guard of transitions . Given a time guard tg = [tc] ν where tc = n i=1 c∈C l i c ≤ c ≤ u i c is given by (2.1), we define deadline d characterizing valuation of clocks for which time is enforced to stop progress. d is defined as follows: Let ℓ be a state in L and τ k = {(q, p k , q k )} k∈K be the set of all transitions issued from ℓ. The time progress condition associated to ℓ and derived from {tg τ k } k∈K is: