
HAL Id: tel-01169720
https://theses.hal.science/tel-01169720v1

Submitted on 30 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Implementations of Timed
Component-based Systems

Ahlem Triki

To cite this version:
Ahlem Triki. Distributed Implementations of Timed Component-based Systems. Other [cs.OH].
Université Grenoble Alpes, 2015. English. �NNT : 2015GREAM014�. �tel-01169720�

https://theses.hal.science/tel-01169720v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Ahlem Triki

Thèse dirigée par Saddek Bensalem
et codirigée par Jacques Combaz

préparée au sein VERIMAG, UMR5104
et de MSTII

Distributed Implementations of
Timed Component-based Sys-
tems.

Thèse soutenue publiquement le 9 juin 2015,
devant le jury composé de :

Marie-Laure Potet
Professeur, Grenoble INP, Présidente

Eugene Asarin
Professeur, Université Paris Diderot - Paris 7, Rapporteur

Kamel Barkaoui
Professeur, Cnam Paris, Rapporteur

Félix Ingrand
Chargé de Recherche, LAAS, Examinateur

Jean-Pierre Talpin
Directeur de Recherche, INRIA, Examinateur

Saddek Bensalem
Professeur, Université Joseph Fourier, Examinateur

Jacques Combaz
Ingénieur de Recherche, CNRS, Examinateur

2

Acknowledgments

First of all, I would like to thank the jury members, Prof Eugene Asarin and Prof Kamel
Barkaoui for the time and effort taken to review my manuscript and Prof Jean Pierre Talpin,
Dr Félix Ingrand and Prof Marie Laure Potet for examining my work and for their valuable
remarks.

I wish to express my greatest thank to my advisor Prof Saddek Bensalem for giving me
the chance to do my PhD in Verimag. His encouragement and trust in the hardest moments
helped me a lot to accomplish this work.

My thanks go also to my co-advisor Dr Jacques Combaz for his time and his availability.
I thank him for the fruitful discussions we had and for his great help in both theoretical and
technical aspects.

I would like to thank D. Marius Bozga for his precious remarks and help, Dr Jean Quil-
beuf and Dr Borzoo Bonakdarpoor for their collaborations.

I want to thank all Verimag’s members and DCS team for the great working environment.
My special thanks go to my colleagues and friends Najah, Souha, Ayoub from Verimag and
Molka, Wijdene, Yassine and Oussama from CEA for the special moments we had and for
the time we were talking in the CTL’s caffet.

Finally, I want to express my infinite gratitude and thank to my family, my parents and
my brother for unconditionally providing their love, guidance and encouragement. A special
thank to my husband Wael for his support and for being by my side all the time.

1

2

Abstract

Correct distributed implementation of real-time systems has always been a challenging task.
The coordination of components executing on a distributed platform has to be ensured by
complex communication protocols taking into account their timing constraints.

In this thesis, we propose rigorous design flow starting from a high-level model of an
application software in BIP (Behavior, Interaction, Priority) and leading to a distributed
implementation. The design flow involves the use of model transformations while preserving
the functional properties of the original BIP models. A BIP model consists of a set of compo-
nents synchronizing through multiparty interactions and priorities. Our method transforms
high-level BIP models into Send/Receive models that operate using asynchronous message
passing. The obtained models are directly implementable on a given platform.

We present three solutions for obtaining Send/Receive BIP models. In the first solution,
we propose Send/Receive models with a centralized scheduler that implements interactions
and priorities. Atomic components of the original models are transformed into Send/Receive
components that communicate with the centralized scheduler via Send/Receive interactions.
The centralized scheduler is required to schedule interactions under some conditions defined
by partial state models. Those models represent high-level representation of parallel execution
of BIP models.

In the second solution, we propose to decentralize the scheduler. The obtained Send/Receive
models are structured in 3 layers: (1) Send/Receive atomic components, (2) a set of sched-
ulers each one handling a subset of interactions, and (3) a set of components implementing a
conflict resolution protocol.

With the above solutions, we assume that communication latencies are negligible so that
there is no delay between the decision to execute an interaction in a scheduler and its execution
in the participating components. In the third solution, we propose Send/Receive models that
execute correctly even in presence of slow communications. This solution is based on the fact
that schedulers plan interactions execution and notify components in advance. In order to
plan correctly the interactions, we show that the schedulers are required to observe additional
components, besides the ones participating in the interactions. We present also a method to
optimize the number of observed components, based on the use of static analysis techniques.

From a given Send/Receive model, we generate a distributed implementation where
Send/Receive interactions are implemented by TCP sockets. The experimental results on
non trivial examples and case studies show the efficiency of our method.

3

4

Résumé

L’implémentation distribuée des systèmes temps-réel a été toujours une tâche non-triviale. La
coordination des composants s’exécutant sur une plateforme distribuée doit être assurée par
des protocoles de communication complexes en tenant compte de leurs contraintes de temps.
Dans cette thèse, nous proposons un flot de conception rigoureux à partir d’un modèle de
haut niveau d’un logiciel d’application décrit en BIP (Behavior, Interaction, Priority) et
conduisant à une implémentation distribuée. Le flot de conception implique l’utilisation de
transformations de modèles tout en conservant les propriétés fonctionnelles des modèles orig-
inaux de BIP. Un modèle BIP se compose d’un ensemble de composants qui se synchronisent
à travers des interactions et des priorités. Notre méthode transforme les modèles BIP en un
modèle Send/Receive qui fonctionnent en utilisant le passage de messages asynchrones. Les
modèles obtenus sont directement implémentés sur une plate-forme donnée. Nous présentons
trois solutions pour obtenir un modéle Send/Receive. Dans la première solution, nous pro-
posons des modèles Send/Receive qui fonctionnent avec un ordonnanceur centralisé qui
implémente les interactions et les priorités. Les composants atomiques des modèles orig-
inaux sont transformés en composants Send/Receive qui communiquent avec l’ordonnanceur
centralisé via des interactions de type Send/Receive. L’ordonnanceur centralisé exécute
les interactions sous certaines conditions définies par les modèles à états partiels. Ces
modèles représentent une description haut niveau de l’exécution parallèle de modèles BIP.
Dans la deuxième solution, nous proposons de décentraliser l’ordonnanceur. Les modèles
Send/Receive obtenus sont structurées en trois couches: (1) les composants Send/Receive
(2) un ensemble d’ordonnanceurs, chacun exécutant un sous-ensemble d’interactions, et (3)
un ensemble de composants implémentant un protocole de résolution des conflits. Avec les
solutions décrites ci-dessus, nous supposons que les latences de communication entre les com-
posants sont négligeables. Ceci est du au fait que les modèles Send/Receive sont conçus de
telle sorte qu’il n’y ait pas retard entre la décision d’exécuter une interaction dans un ordon-
nanceur et son exécution dans les composants participants. Dans la troisième solution, nous
proposons des modéles Send/Receive qui exécutent correctement même en présence de la-
tences de communication. Cette solution est basée sur le fait que les ordonnanceurs planifient
l’exécution des interactions et notifient les composants à l’avance. Afin de planifier correcte-
ment les interactions, nous montrons que les ordonnanceurs sont tenus à observer des com-
posants supplémentaires, en plus de ceux qui participent aux interactions. Nous présentons
également une méthode pour optimiser le nombre de composants observés, en se basant sur
l’utilisation de techniques d’analyse statique. A partir d’un modèle Send/Receive donné,
nous générons une application distribuée où les interactions Send/Receive sont implémentées
par les sockets TCP. Les résultats expérimentaux sur des exemples non triviaux et des études
de cas montrent l’efficacité de notre méthode.

5

6

Contents

List of Figures 11

List of Tables 15

1 Introduction 17

1.1 Context . 17

1.1.1 Modeling . 18

1.1.2 Implementation . 18

1.2 Existing Protocols for Distributed Implementation of Multiparty Interactions 19

1.2.1 α-core Protocol . 20

1.2.2 Kumar’s Token . 21

1.2.3 Bagrodia’s protocols . 22

1.3 Existing Approaches for Modeling and the Implementation of Real-Time Systems 22

1.3.1 Time-Triggered Approach . 22

1.3.2 Event-Triggered Approach . 28

1.3.3 Synchronous Systems . 30

1.3.4 Component-based Frameworks . 33

1.3.5 Discussion . 35

1.4 Rigorous Design Flow . 35

1.5 Our Contributions . 36

1.6 Organization of the Thesis . 39

2 High-Level BIP Models 41

2.1 Abstract Models of BIP . 42

2.1.1 Preliminary Definitions . 42

2.1.2 Modeling Behavior . 44

2.1.3 Modeling Interactions . 46

2.1.4 Modeling Priorities . 46

2.1.5 Composition of Atomic Components 47

2.2 Concrete Models of BIP . 48

2.2.1 Preliminary definitions . 49

2.2.2 Atomic Components . 50

2.2.3 Interactions and Connectors . 52

2.2.4 Priority rules . 56

2.2.5 Composition of components . 56

7

8 Contents

2.3 Conclusion . 58

3 Partial State Models 59
3.1 Partial State Semantics . 59

3.1.1 Atomic Components. 59
3.1.2 Composition using Interaction . 61
3.1.3 Adding Priority . 64
3.1.4 Notion of Correctness . 64

3.2 Enforcing Correctness . 66
3.3 Conclusion . 69

4 Parallel Real-Time Systems Design with Centralized Scheduler 71
4.1 Target Models . 72

4.1.1 Send/Receive BIP models Architecture 73
4.1.2 Expressing Timing Constraints and Time Progress Conditions Using a

Global Clock . 73
4.2 Transformations . 74

4.2.1 Transformation of Atomic Components 75
4.2.2 Building the Scheduler in BIP . 82
4.2.3 Connections Between Send/Receive Atomic Components and the Sched-

uler . 87
4.3 Correctness . 88
4.4 Conclusion . 92

5 Decentralizing the Scheduler 95
5.1 Conflicting Interactions . 96
5.2 Interactions Partitioning . 97
5.3 3-Layer Send/Receive Models . 99

5.3.1 Send/Receive Atomic Components . 100
5.3.2 Building Schedulers in BIP . 102
5.3.3 Conflict Resolution Protocol . 106
5.3.4 Send/Receive Interactions . 113

5.4 Correctness of the Proposed Model . 114
5.5 Conclusion . 119

6 Taking Decision Earlier 121
6.1 Model Restrictions . 122
6.2 Scheduling Issue of Earlier Decision Making Approach 125

6.2.1 Problem Formulation . 126
6.2.2 Proposed Solution For Send/Receive BIP Models 127

6.3 Transformations . 128
6.3.1 Transformation of Atomic components 128
6.3.2 Building Distributed Schedulers . 131
6.3.3 Conflict Resolution Protocol . 136
6.3.4 Connections Between Layers . 142

Contents 9

6.4 Correctness . 144
6.5 Optimizations . 148

6.5.1 Minimizing Cancel Requests . 148
6.5.2 Refining Send/Receive Models . 149
6.5.3 Reducing the Number of Observed Components 150

6.6 Conclusion . 154

7 Implementation 155
7.1 The Real-Time BIP Language . 155
7.2 The BIP Toolbox . 158

7.2.1 Language Factory . 158
7.2.2 Verification . 159
7.2.3 Source-to-Source Decentralization . 159
7.2.4 Execution/Simulation . 161

7.3 Tools Developed in this Thesis . 161
7.3.1 Multi-threaded Real-Time Scheduler 162
7.3.2 Tools for Generating Send/Receive BIP models 163
7.3.3 Code generation for Send/Receive BIP models 164

8 Experimental Results 167
8.1 Multi-Thread Application: Avoidance obstacle 167

8.1.1 MarXbot Robot . 168
8.1.2 Modeling obstacle avoidance application using BIP 170
8.1.3 Results . 170

8.2 Multi-Process Application: Democising . 171
8.2.1 Demosaicing Algorithm . 172
8.2.2 Modeling Demosaicing Application in BIP 173
8.2.3 Results . 174

8.3 Distributed Applications . 174
8.3.1 Dining ”professors” . 175
8.3.2 Collaborating Robots . 180

9 Conclusions 187
9.1 Achievements . 187
9.2 Perspectives . 189

A From models with time progress cnditions to urgency-based models 191
A.1 Urgency-based Abstract Models . 191

References 195

10 Contents

List of Figures

1.1 Example of clocks definition in Oasis. 24

1.2 Elementary instruction and the associated time intervals. 24

1.3 Communication mechanism in Oasis. 25

1.4 Example of PBO execution. 27

1.5 Example of Giotto execution. 27

1.6 Distributed Embedded System. 29

1.7 An integrator in Lustre. 31

1.8 A design Flow. 36

2.1 BIP model structure. 41

2.2 An example of Abstract Behavior. 46

2.3 Example of abstract composition of 3 components 48

2.4 A simple Petri net . 50

2.5 An example of atomic component . 51

2.6 Transformation of Petri net transitions into automaton transitions. 53

2.7 Examples of connectors and theirs interactions in BIP. 54

2.8 A example of connector computing the maximum of exported values. 55

2.9 Examples of Hierarchical connectors and their interactions in BIP. 55

2.10 A composite component. 57

3.1 Transformation of transitions of the atomic component. 60

3.2 Execution of interaction a in the global state model and a corresponding exe-
cution in the partial state model. 62

3.3 Illustrative example for delay step execution from partial states. 63

3.4 Illustrative example for interaction execution from partial states. 65

3.5 Partial state model of Example 2.3. 65

4.1 Send/Receive BIP model architecture of Figure 2.10. 73

4.2 Atomic component transformation. 75

4.3 Illustrative Example. 77

4.4 Illustrative Example. 78

4.5 Send/Receive version of the Setter1 atomic component from Figure 2.10. . . 81

4.6 Circuit of a single token corresponding to component B. 83

4.7 Petri net of the scheduler component of Figure 4.1. 88

5.1 Example of BIP model meeting all restrictions. 96

11

12 List of Figures

5.2 Conflicting interactions. 97

5.3 Issue of conflicting interactions when handled in different schedulers. 98

5.4 Example of the architecture of Send/Receive BIP model obtained from a
conflict-free partition for the example from Figure 5.1. 99

5.5 Send/Receive version of the setter1 component from Figure 5.1. 101

5.6 Mechanisms for Interactions Execution. 102

5.7 Distributed scheduler handling the class of interactions {a1, a2}. 105

5.8 The centralized version of conflict resolution protocol for the BIP model of
Figure 5.1 considering the partition γ1 = {a1, a2} and γ2 = {a3}. 107

5.9 Conflict resolution component in the token ring protocol handling reservation
of interaction a2 of the example from Figure 5.1 considering the partition
γ1 = {a1, a2} and γ2 = {a3}. 109

5.10 Global view of the token ring conflict resolution protocol for the example from
Figure 5.1 . 110

5.11 Components in the dining philosophers protocol handling reservation of inter-
action a2 of the example from Figure 5.1 considering the partition γ1 = {a1, a2}
and γ2 = {a3}. 112

5.12 Global view of the dining philosophers conflict resolution protocol for the ex-
ample from Figure 5.1. 113

6.1 Earlier Decision Making Approach . 122

6.2 Example of atomic component having non-decreasing deadlines if D ≤ E + P . 124

6.3 Example of BIP model that meets all restrictions. 125

6.4 Scheduling Issue . 126

6.5 3-layer distributed model of the example from Figure 6.3. 128

6.6 Example of transitions transformation. 128

6.7 Transformation of component of Figure 6.2. 130

6.8 Mechanisms for Interactions Scheduling. 132

6.9 Decentralized Scheduler S2 of Figure 6.5 . 135

6.10 Fragment of the centralized version of conflict resolution protocol for handling
interaction g1. 137

6.11 Conflict resolution protocol component of interaction g1 in the token ring pro-
tocol. 139

6.12 Component of the dining philosophers protocol handling interaction g1 of Figure.143

6.13 From BSR
CP to BSR∗

CP . 145

6.14 Reducing Messages fro Cancel Mechanism . 149

6.15 Improving Scheduling Policy. 150

6.16 Illustrative example. 151

7.1 Overview of the BIP toolbox . 158

7.2 Source-to-Source Decentralization design flow for untimed BIP models 160

7.3 Multi-Threaded Real-time Scheduler . 162

7.4 Source-to-Source Decentralization of timed BIP 164

8.1 The hardware architecture of the MarXbot robot. 168

List of Figures 13

8.2 The Marxbot robot. 169
8.3 The obstacle avoidance application. 171
8.4 Time-safety violations for an execution of the obstacle avoidance applica-

tion with the multi-thread real-time Scheduler and the single-thread real-time
scheduler. 172

8.5 Demosaicing raw data to RGB image. 172
8.6 BIP model for demosaicing. 173
8.7 Detail of the Cij and Dij components. 173
8.8 Time needed to process a 25MP image. 175
8.9 Time needed to process a 6MP image. 175
8.10 Eating points of professors with odd and even numbers. 176
8.11 Fragment of the BIP model of dining professors application. 177
8.12 Simulation For 4 professors. 178
8.13 Simulation For 50 professors. 178
8.14 Number of messages exchanged for optimized and non-optimized implementa-

tions for the dining professors example. 179
8.15 Collaborating Robot application scenario. 180
8.16 Model of a single robot. 181
8.17 The BIP model of the application with 4 robots 182
8.18 Simulation Results for the application with 4 robots 183
8.19 Simulation for 4 robots. 185
8.20 Simulation for 10 robots. 185
8.21 Number of exchanged messages needed or the execution of the application

during 10s. 186

A.1 Example of transitions with urgency. 193

14 List of Figures

List of Tables

1.1 Instants of a possible execution of the example of Figure1.7 32
1.2 Examples of using when and current operators 33

8.1 Send/Receive components code distribution on 4 machines 183

A.1 Time progress conditions of ℓ for different types of urgency 193

15

16 List of Tables

1
Introduction

1.1 Context

Nowadays, computer systems are becoming widely pervasive. They are touching different
type of application domains such as automotive, avionics, air traffic control, smart home,
telecommunications, etc. Despite of the existence of some techniques such as formal verifica-
tion, simulation and testing, used to improve system performance, reliability, and correctness,
systems meeting desired properties is still time-consuming and non trivial task due do their
increasing complexity.

Component-based approach is established as the most fundamental technique to cope
with complexity of systems. The principle of this approach is to build complex systems by
assembling smaller components (building blocks) characterized by their interface, an abstrac-
tion that is adequate for composition and reuse. Composition of components is achieved
with respect to a notion of ”glue” operator. ”Gluing” can be seen as an operation that takes
input components and their constraints, and that outputs a complex system. Component-
based systems provide clear descriptions of their behaviors which make them adequate for
a correct-by-construction process. In addition, they allow incremental modification of com-
ponents without requiring global changes, which may significantly simplify the verification
process.

Real-time systems [1] are systems that are subject to ”real-time constraints”. The cor-
rectness of such systems depends not only on the logical results of the actions, but also on
the physical instants at which these results are produced. Correctness of real-time system
includes the satisfaction of its timing constraints, that is, the instants at which actions are
produced have to meet specific conditions. Timing constraints are usually expressed by user-
defined bounds in which the system has to react (i.e. executing actions), e.g. deadlines.
There are two main classes of real-time systems: hard real-time systems where it is abso-
lutely imperative that the system react within the specified bounds; and soft real-time where

17

18 Introduction

response times are important but the system can still function if the constraints are occasion-
ally violated. Meeting timing constraints depends on features of the execution platform such
as its speed. For instance, when the platform is not speed enough, the timing constraints
may be violated. Worst Case Execution Time (WCET) can be performed in order to verify
whether the target platform is fast enough to respect the timing constraints.

The building process of real-time systems includes in general two essential phases, mod-
eling and implementation.

1.1.1 Modeling

In the modeling phase, the real-time system specifications are transformed into a model.
This phase is very beneficial as it deals with the complexity of real-time systems at a high-
level layer where implementation details are omitted. The high-level model abstracts the
system behavior and the interaction between components. For instance, abstractions assume
instantaneous execution of actions, and zero-delay communication between components.

Modeling provides advantages such as:

• construction ease;

• integrating models of heterogeneous components;

• introducing nondeterminism behaviors, and

• analysis using formal methods.

In practice, high-level models are written in high-level programming languages, sometimes
with formal semantics. Those languages provides high-level primitives used for components
coordination. In this thesis, we consider high-level models consisting of sets of components,
subject to timing constraints and coordinating their actions through multiparty interactions
[2], that is strong synchronizations between possibly more than two components.

1.1.2 Implementation

The second phase towards building a real-time system is to derive the implementation from
its high-level model. Implementation compromises the abstractions of the high-level model.
For instance, in high-level models, actions are assumed to take zero time. Nonetheless, in
the implementation actions may take arbitrary execution times. This may lead the system
to not meet the timing constraints specified in the high-level model.

The implementation could be either centralized or distributed. This depends on the
topology of the underlying architecture on which the real-time system will be deployed. In
this thesis, we are interested in distributed implementation of real-time systems.

Distributed implementation assumes that components are located on networked comput-
ers and communicate by exchanging messages. One reason for considering distributed im-
plementations could be the physical locations of components that constitute the considered
systems. For instance, processing sensor data and controlling actuators requires dedicated
computing units in specific locations. A distributed system [3] consists of a set of autonomous
and independent components. At each step, a component executes one of three different types

1.2 Existing Protocols for Distributed Implementation of Multiparty
Interactions 19

of action: sending a message, performing a local computation and waiting for an incoming
message. The decision of the next action to execute is taken locally by the components,
depending on the messages received so far and the computation results. Distributed imple-
mentation requires the use of low-level primitives for communication between components.
This may be a real issue for deriving distributed implementations from high-level models
as high-level synchronization primitives could not be easily expressed by low-level commu-
nication primitives. This requires the use of protocols to ensure correct implementation of
high-level primitives. As already stated, we consider multiparty interactions as high-level
primitives for our models. Distributed implementation of multiparty interactions is not triv-
ial. The difficulty resides in ensuring globally consistent decisions in the components while
each one is running independently. In the literature, many protocols have been proposed for
distributed implementation of multiparty interactions. In Section 1.2, we present some of
these protocols.

Distributed implementation of systems is even more challenging and complex when sys-
tems are subject to timing constraints, that is, for real-time systems. This is due to the fact
that one not only has to consider typical problems of distributed systems, but also should
ensure that all subtle interleavings of the system meet the timing constraints. In addition,
distributed implementation of real-time systems has to cope with specific issues such as clocks
drift [4]. In fact, components are deployed on distributed machines having local clocks that
generally cannot be perfectly synchronized. Thus, components may not have the same refer-
ence of time, which may discard system consistency, e.g. strict ordering of operations may
be compromised. To overcome this problem, usual solutions rely on clock synchronization
protocols [5, 6] that guarantee the synchronization of clocks up to given precision. In this
thesis, we do not address the issue of clock drifts. We assume that distributed machines share
a common clock, or equivalently that a clock synchronization protocol is already established.

Building correct and efficient distributed implementations of real-time systems is a real
challenge. The implemented system must meet the specifications described by the high-level
model such as timing constraints. However, it is still unclear how to transform a high-level
model where atomicity is assumed and implementation details are omitted by the use of
high-level primitives into a correct distributed implementation.

1.2 Existing Protocols for Distributed Implementation of Mul-
tiparty Interactions

Multiparty interactions provide a high-level description of a distributed system in terms of
components and interactions. An action of the system is an interaction, which is a coordinated
operation between an arbitrary number of components. Consider n components Bi, i ∈
{1 . . . n} and a set of multiparty interactions γ. An interaction a ∈ γ is a synchronization of
a subset of components {Bi}i∈I , I ⊂ {1 . . . n}. Two interactions a and b are conflicting if they
share a common component. Correct distributed implementation of multiparty interactions
ensure mutual exclusion of conflicting interactions. That is, if two conflicting interactions are
possible from a given state of the system, only one of them can execute.

Distributed implementation of a multiparty interactions results in solving the committee

20 Introduction

coordination problem [7], where a set of professors are organized in a set of committees and
two committees can meet concurrently only if they have no professor in common; i.e., they
are not conflicting. Conflict resolution is the main obstacle in distributed implementation of
multiparty interactions.

The problem of distributed implementation of multiparty interactions has been studied
extensively in [8–14]. These papers proposed protocols for multiparty interaction implemen-
tation and established their correctness. In this section we present an overview of some of
these protocols.

1.2.1 α-core Protocol

The α-core protocol [15] provides a fully distributed solution where each multiparty interac-
tion is handled by a separate coordinator. The α-core protocol specify two different behaviors
for participants and coordinators. Communications between participants and coordinators is
done by exchanging messages.

• Participants send to coordinators the following messages.

PARTICIPATE This message indicates that the participant is interested in a single
particular interaction (hence it can commit to it).

OFFER This message indicates that the participant is interested in one out of several
potentially available interactions (a non-deterministic choice).

OK This message is a response to a LOCK message sent from a coordinator (described
below) to indicate that the participant is willing to commit on the interaction.

REFUSE This messages is a response to an OFFERmessage to indicate that the latter
is not valid anymore or also a response to LOCK message from the coordinator.

• Coordinators send to participants the following messages.

LOCK This message is response to an OFFER message from a participant, that
requests the participant to commit to the interaction.

UNLOCK This message is sent to a locked participant, indicating that the current
interaction is canceled.

START This message notifies a participant that it can start the interaction.

ACKREF This message is an acknowledgment to a REFUSE message from a partic-
ipant.

Initially, each participant computes its available interactions. If there is only one inter-
action available, then the participant sends a PARTICIPATE message to the corresponding
coordinator. Otherwise, it sends an OFFER message to each coordinator handling available
interactions and waits for LOCK messages. For the coordinator side, whenever all OFFER

or PARTICIPATE messages have been received from the participants, the interaction is en-
abled. In the case where all participants have sent a PARTICIPATE message, a START

message can be directly sent by the coordinator. Otherwise, the coordinator sends LOCK

1.2 Existing Protocols for Distributed Implementation of Multiparty
Interactions 21

messages to the participants that have sent OFFER to lock them, according to the global or-
der on the participants. The LOCK message could be granted by the participant by sending
an OK message to the coordinator or rejected by sending REFUSE. If all participants have
been locked, the coordinator sends START messages to all participants. If the case where
a REFUSE message has been received before the locking phase completes, the coordinator
acknowledges receiving this message by sending ACKREF to the REFUSE message sender
and sends UNLOCK messages to locked participants.

1.2.2 Kumar’s Token

In [13], Kumar presented another solution for implementing multiparty interactions. The
proposed solution does not require additional components, but rather it embeds a protocol in
the original components. The protocol requires a token for each interaction. This token tries
to progress from least to greatest component of the interaction, according to a fixed global
order on the components.

Intuitively, a token can progress only if the visited process can commit to the correspond-
ing interaction. If the token goes through all components participating in the interaction, then
the interaction is safely executed. The last component that receives the token is responsible
for notifying all other participating components to execute the interaction.

The component can propagate the token if:

• it can execute the interaction corresponding to the token, and

• it has not yet committed to another interaction.

When the component commits to an interaction, it propagates its corresponding token
and waits until the latter succeeds of fails.

In the case where the component receives a token of an interaction that it cannot execute,
the latter is canceled. Canceling an interaction corresponds to sending a cancel message to
each component that already propagated the token. After receiving a cancel message, a
component is not committed to the interaction anymore.

In the case where the component has already committed to an interaction and receives
tokens for other interactions, it holds these tokens until the committed interaction succeeds
or fails. If the committed interaction fails, one of the held tokens is propagated. Otherwise,
that is, if the committed interaction succeeds, each interaction of the held tokens is canceled.

Note that even when the interaction is canceled, the token remains in the process it was
visiting. When the process finishes its local computation and reaches a stable state, it sends
backs each token corresponding to an enabled interaction to the first process of its path.

Intuitively, the correctness of this protocol comes from the following facts:

• Mutual exclusion is ensured by the fact that each component allows only one token to
traverse at a time, then waits until the corresponding interaction succeeds or fails. In
particular, conflicting interactions involve at least one common process and this process
ensures their mutual exclusion.

• Synchronization comes from the fact that the start message is sent by the last process
on the interaction path to all the other involved processes.

22 Introduction

• If an interaction is enabled, then either the corresponding token can travel along the
whole path and the interaction executes, or the token is blocked at the first process
shared with a conflicting interaction. The global order ensures that the first conflicting
component is the same for both interactions. Progress is ensured by the fact that either
the conflicting interaction succeeds or a cancel message allows the token to go further
along the path.

1.2.3 Bagrodia’s protocols

Bagrodia proposes three protocols for distributed implementation of multiparty interactions
[9, 16] namely, centralized implementation, token-ring based implementation and dining
philosophers based implementation. These protocols are hand-shake-like protocols between
components and several entities called managers. The first step of these protocols is initiated
by components by sending offers containing available interactions to managers. Managers are
required then to select one of the enabled interactions and send a message to participating
components to notify them for the interaction execution.

In order to ensure mutual exclusion of conflicting interactions, managers rely on counters
that count the number of offers sent by each component. Indeed, counters ensure that each
offer cannot be consumed by more than one interaction.

In this thesis, we are using Bagrodia’s protocols as conflict resolution protocols for our
distributed implementation of multiparty interactions. We give details on these protocols in
Subsection 5.3.3.

1.3 Existing Approaches for Modeling and the Implementa-
tion of Real-Time Systems

When developing real-time systems, it is important to make a clear distinction between
physical and logical time. The notion of time serves two purposes. Firstly, it is used to
specify the order of execution of individual actions of systems applications. Secondly, it
can be used to specify durations. In one hand, the logical time can be used in both cases,
especially in the design phase. In the other hand specifying the order of execution based on
the physical time leads to the non-determinism of execution, since physical time is not known
at the design stage. Existing rigorous implementation techniques use specific programming
models. We present the time triggered and even-triggered approaches, and the synchounous
paradigm. Finally, we present some component-based frameworks that allow the design and
the implementation of real-time systems.

1.3.1 Time-Triggered Approach

The time-triggered approach [17] is dedicated for the implementation of safety-critical appli-
cations whose behavior needs to be certified. It addresses the fundamental issues of real-time
systems by treating time as a first class quantity. It is based on a two-phased design method-
ology including an architecture design phase and a component design phase. The architecture

1.3 Existing Approaches for Modeling and the Implementation of Real-Time
Systems 23

design phase specifies essentially the interactions between components as well as the compo-
nents interfaces in the value and the temporal domains, which makes the system fully time
deterministic. The component design phase takes these interface specifications as constraints
for building components.

The time-triggered systems rely on a notion of Logical Execution Time (LET) [18–20]
which corresponds to the difference between the release time and the due time of an action,
defined in the program using an abstract notion of time. To cope with uncertainty of the
underlying platform, a program behaves as if its actions consume exactly their LET: even if
they start after their release time and complete before their due time, their effect is visible
exactly at these times. This is achieved by reading input of actions exactly at their release
time, and by producing output of actions exactly at their due time. The time-triggered
approach consists in assigning to each action its desired execution time guaranteeing by
construction the end-to-end constraints. The system is then implemented over an execution
kernel running on the platform and ensuring the following.

1. An action must not start before the real time date of the corresponding logical instant,
as this could compromise data coherence among components guided by the logical time.

2. An action being executing should not exceed the duration specified by its LET.

In order to prove correctness of safety critical systems, one approach could be an a-
priori Worst Case Execution Time (WCET) analysis that verifies whether execution time
requirements are respected by a given target platform. The non safety critical systems can
occasionally violate the timing constraints. In case of violation there exists mechanisms for
keeping the system in a consistent state (skip job execution, degraded mode, skip execution
of less important tasks, etc.)

In the following we present three models based on the time-triggered approach, namely
Oasis, Port-based Object and Giotto.

Oasis

Oasis [21–24] is a framework for safety-critical real-time systems, based on a time-triggered
architecture. Oasis is a framework encompassing models, methodologies, and tools for the
development of embedded critical software exhibiting completely deterministic temporal be-
havior. Oasis implementation comprises a programming language PsyC (Parallel synchronous
C), which is an extension of C. This extension allows one to specify tasks and their temporal
constraints as well as their interfaces. An Oasis application is composed of a set of com-
municating and interacting tasks called agents. Agents perform computation in parallel on
private data, and communicate only using dedicated mechanisms namely temporal variables
and message box. The processing of each task is synchronous at predefined time instants: at
each end of the logical execution time, variables are made visible to other tasks.

Each task T in the system S is associated with a real-time clock HT representing the set
of physical instants at which input and output data are (or can be) observed. The system S
defined a global and periodic real-time clock HS which includes all observable instants of the
system. It represents the smallest clock from which all clocks are derived, i.e. HS exhibits a
factor KT and an offset δT such as HT = KT * HS + δT . Figure 1.1 shows the global clock

24 Introduction

HS and two other clocks HT1
and HT2

deriving from HS as follows: HT1
= 2 ∗HS + 1 and

HT2
= 3 ∗HS .

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7

1 2 3 4

HS

HT1

HT2

Figure 1.1: Example of clocks definition in Oasis.

In Oasis, tasks manipulate time through an instruction called ”advance”. An advance
instruction splits the task code into two parts: the part of code (a processing) before and the
part of code after the advance instruction. The instruction advance(k) sets both a deadline
for the first part of code and a next activation instant for the second one. It is computed
from the current instant of clock HT plus k ∗HT . Thus, agent’s future instants are declared
(i.e. activation instants) and both earliest start date and latest end date of each processing.
Such specific temporal dates are called temporal synchronization points. Figure 1.2 shows
elementary instructions in an Oasis application and the associated time intervals. processing1
has a deadline defined by sta defined by the instruction advance(k1) which corresponds to the
activation date of processing2. The deadline of processing2 is end defined by advance(k2).

actual duration of execution

processing1

processing1

advance(k1) /* sta= k1+... */

processing2

advance(k2) /* end= sta + k2 */

processing2

sta

k2 time units

end

H1

Figure 1.2: Elementary instruction and the associated time intervals.

There are two modes of communication between tasks. The first mode uses the shared
variables, also called temporal variables, the second is by sending messages. Modifications
of temporal variables are made visible at synchronization points only, while messages has
explicit definition of visibility dates.

Each temporal variable defines a real-time data flow: its values, available to any agent that
consults them, are stored and updated by a single writer, the owner agent, at a predetermined
temporal rhythm. This rhythm is expressed in the source code as a regular time period
parameter and allows computation of a periodic updating date. Based on the example given
in Figure 1.2, at each physical instant between the two dates sta and end, the agent is
logically considered at sta date. Assume that the agent has a temporal variable x whose
value is modified by processing2, and that another agent ”observes” the value of x, the last

1.3 Existing Approaches for Modeling and the Implementation of Real-Time
Systems 25

activation date of observer agent is t0 between sta and end. At this date, the agent ”observes”
the past value of x corresponding to the date sta, i.e. x(t0) = x(sta) (see Figure 1.3(a)).

(a) Value of a temporal variable (b) Sending message

M

processing1 processing2

sta end

H1

H2
t0

processing3

x(t0) = x(sta)

processing2

sta end

H1

H2
processing3

t1

processing1

Figure 1.3: Communication mechanism in Oasis.

For the sending message mechanism, each message defines a visibility date specified by the
sender. This date specifies the date beyond which a message can be observed by the recipient
agent. The latter has queues for receiving messages that are sorted by their visibility. As an
example, consider an agent sending a message M with visibility date t1 to the agent from
Figure 1.2. The message cannot be observed before the sta date, since t1 > sta (see Figure
22 (b)).

Oasis provides an off-line tool chain responsible for extracting the application’s temporal
behavior in order to generate a runtime. More precisely, it computes all the possible temporal
behavior from which they can size communication buffers and analyze the timing constraints
on the execution times. At runtime, Oasis relies on an Early Deadline First (EDF) algorithm
[25], for dynamically scheduling elementary instructions of agents based on their temporal
synchronization points and on monoprocessor architectures.

Oasis-D

Oasis-D [26–28] is an extension of the Oasis approach towards distributed architectures. It
is based on TDMA-like protocol used to manage network accesses. TDMA (Time Division
Multiple Access) [29] divides the global time into a sequence of time slots, each of them is
assigned to an unique CPU. TDMA guarantees the absence of network interference in the
slots. Such approach allows a safe and deterministic use of the network. Bounds on data
transfers can be computed and taken into account as constraints to verify the schedulability
of network accesses. In Oasis-D, network runtimes encapsulate the static TDMA schedule of
network accesses.

The Oasis-D provides a tool chain that is responsible for:

1. extracting the network communication needs from the PsyC source code of a given
application, and

2. computing the communication load of a given application over the network.

26 Introduction

If this load is within the network capacity, it generates inside network runtimes:

1. the structure of each Oasis packet,

2. the required size for TDMA slots based on the network capacity, as well as the appli-
cation communication needs, and

3. the schedule of network accesses.

The TDMA approach assumes the use of a global clock, so that each CPU can correctly
use the network following the time-triggered paradigm. However, because each CPU has a
local clock that can drift, a clock synchronization protocol between CPUs is required. Oasis-
D currently uses a dedicated CPU which periodically sends correction values that each CPU
of the distributed system needs to apply to its local clock.

Port-Based Object

The port-based object (PBO) [30] provides a software framework to program reconfigurable
robots. A PBO model is composed of a set of tasks called PBO. Each PBO has input and
output ports. PBOs are activated periodically and communicate through input and output
ports via state variables that are stored in a global table. Indeed, each PBO stores in its
own local table a subset of the data that is needed from the global table. Before executing a
PBO, the state variables corresponding to its input ports stored in its local table are updated
from the global table. After the execution completes, the state variables corresponding to its
output ports are copied from its local table to the global table.

The access to the same state variable in the global table by two PBOs must be mutually
exclusive. To ensure this, the PBO framework provides a mechanism based on spin-locks
[31]. When a PBO needs to access the global table, it first locks the processor on which it is
executing, and then waits to obtain the global lock for the global table. The global lock has
the highest priority of all the PBOs. When holding the global lock, the PBO accesses the
global table and exchanges data.

The amount of communication between a PBO and the global table varies from time to
time depending on the size of exchanged data. As a result, if another PBO wants to read
the output ports, it may or may not get the results obtained from the current cycle. For
example, consider two PBOs, PBO1 and PBO2, where PBO2 reads the output of PBO1.
Suppose that PBO1 and PBO2 are running on different CPUs and PBO1 is activated at
every instant t = 2k and PBO2 is activated at every intant t = 4k + 2, where k = 0, 1, 2....
Figure 1.4 depicts a possible execution trace of PBO1 and PBO2. Remark that the output
of PBO1 has not been produced in the first period of PBO2. Therefore, PBO2 reads the last
value of the state variable corresponding to the output of PBO1. However, in the second
period of PBO1, PBO2 reads the fresh output of PBO1.

Giotto

Giotto [20] is a programming methodology for embedded control systems running on possibly
distributed platforms. It provides a time-triggered programming model for periodic, hard

1.3 Existing Approaches for Modeling and the Implementation of Real-Time
Systems 27

�
�
�
�
�
�

�
�
�
�
�
�

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�
�
�
�
�
�

�
�
�
�
�
�

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

time
2 6 8

PBO1

PBO2

4

read input produce outputexecution

Figure 1.4: Example of PBO execution.

real-time systems. In this model, the execution of tasks is triggered by periodic clocks. Each
task has a start time and an end time. The start time corresponds to the starting time instant
when the execution period starts. The end time corresponds to the end time instance when
the execution period ends. A task reads all its inputs at the start time and makes its outputs
available to other tasks at its end time. For example, consider a task that is activated every
2 ms as shown in Figure 1.5. The input data is consumed at the beginning of the 2 ms, the
execution is performed within the period, and the output is made available at the end of the
period. Thus no matter how quickly or slowly the controller executes, as long as it can finish
in 2 ms, the outputs will be produced at the exact time instants.

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Task

2 4

Read Inputs Write Outputs

Execution

time

Figure 1.5: Example of Giotto execution.

In Giotto all data is communicated through ports. A port represents a typed variable
with a unique location in a globally shared name space. There are three types of ports in
a Giotto program: sensor ports, actuator ports, and task ports. The task ports are used
to communicate data between concurrent tasks. The communication between tasks is well
defined and deterministic. It is computed from the worst case communication time, which
represents an upper bound on the time required for broadcasting the value of task port over
the network [20].

28 Introduction

1.3.2 Event-Triggered Approach

The event-triggered approach [32] is adopted for the design of systems reacting to unpre-
dictable events. In the following , we present two even-triggered models, namely Timed
Multitasking and Ptides.

Timed Multitasking

The Timed Multitasking (TM) model assumes that a system is composed of a set of compo-
nents called actors [33]. An actor has an interface that consists of input/output ports and
parameters. An actor can specify its execution requirements, including priority, execution
times, and deadlines, through its parameters.

There are two types of actors in TM which are:

• actors that handle external events called interrupt service routines (ISRs), and

• actors that are triggered internally by messages generated by other actors, called regular
tasks.

An ISR actor converts external events from the environment into events that triggers other
actors. It does not specify deadlines and trigger conditions in its interface. A regular task
actor has a much richer interface (including priorities, execution times and deadlines) than an
ISR actor. It is triggered by events at its input ports. Communications between regular actors
is done through sending/receiving events through their ports. A regular actor is allowed
to execute only if there is an input event that triggers it. Output events are produced
only when the deadline is reached. By controlling when output events are produced, TM
controls both the starting time and stopping time of each task, thus obtaining deterministic
timing properties [34]. TM assumes sequential execution of actors as there is only a single
computation resource shared by all the task actors. The execution of ISR actors is managed
by an independent thread and is triggered chronologically based on the timestamp of the
external events. The execution of regular task actors is handled by a priority-based event
handler, which sorts events based on their priorities. If preemption is allowed, then the
execution of a lower priority task can by preempted by higher priority tasks. For example,
when task A is running, an ISR actor produces an event that triggers task B which has a
higher priority than A, then A will be preempted by B. The runtime environment of TM
tracks when an output event can be produced. If the task can finish its execution before its
deadline, the output is made available to its downstream tasks when the deadline is reached.
In case a task misses its deadline, TM uses overrun handlers to complete the current execution
of the task quickly to preserve time determinism as much as possible.

Ptides

Ptides [35] is a concurrent event-triggered model for distributed real-time systems. It uses a
discrete-event (DE) model [36] as the underlying formal semantics to achieve deterministic
behavior in both time and value. DE models consists of a set of concurrent components
interacting via events. Each event has an associated time value called timestamp. Correct
execution of these models requires respecting the order of timestamped events.

1.3 Existing Approaches for Modeling and the Implementation of Real-Time
Systems 29

Merge

Clock

Network Communication

trigger

Sensor1
Computation1

Sensor2 Computation2

Platform3

Computation3

Platform1

Platform2

Computation4

Actuator1

Figure 1.6: Distributed Embedded System.

Figure 1.6 (taken from [37]) depicts a model a simple embedded system distributed over
3 platforms. Each of its components produces and consumes events through event ports.
These events cannot be produced/consumed at arbitrary times. For instance, an output
event of Sensor1 component of Figure 1.6 is timestamped by the local time at which the
sensor reading is taken. Thus, the real time at which the output event is produced is larger
than its timestamp. Conversely, an input event of Actuator1 component is timestamped by
the lastest real time at which the actuator is allowed to execute. Thus, the local real time
at which the input event is produced is smaller than or equal to its timestamp. In fact, this
timestamp can be considered as a deadline for the delivery of the event to the actuator.

For network interfaces, Ptides assumes that platforms use a local network to communicate
timestamped events. Moreover, it assumes that the network delay is bounded and known
in advance [37]. The timing constraint and the bounded delay guarantee an upper bound,
relative to the timestamp, of the real time at which a timestamped event is received at its
destination.

Ptides binds timestamps to real time only at sensors, actuators and network interfaces.
For all other components, Ptides requires that input events are processed in timestamp order,
but before or after real time reaches timestamps.

Ptides relies on static causality analysis techniques to check whether an event can be
processed safely. It also enables independent events to be processed out of timestamp order.
For dependent events, the technique requires local clocks to be synchronized with a bounded
and known precision. To this end, Ptides relies on network time synchronization, where the
computing nodes on the network share a common notion of time with a known precision.
Thanks to time synchronization and real-time constraints, checking if an event is safe to
process or not is done by simply letting time progress. For instance, an output event from
component Computation4 of Figure 1.6 could be processed after the local clock reaches a
predetermined real-time value.

The execution strategy of Ptides models is based on two layers: global coordination,

30 Introduction

and local resource scheduling. The global coordination layer determines whether an arriving
event from the network can be processed immediately or if it has to wait for other potentially
preceding events. As soon as the current event can be safely processed according to DE
semantics, it hands the event over to local resource scheduler, which may use existing real-
time scheduling algorithms, such as earliest deadline first (EDF) to prioritize the processing
of all pending events [38].

1.3.3 Synchronous Systems

Synchronous programming is a design method for modeling, specifying, validating and im-
plementing safety critical applications [39–43]. The synchronous paradigm considers systems
designed as the parallel composition of strongly synchronized components. It defines a set
of primitives that allows a program to be considered as instantaneously reacting to external
events [44]. Synchrony is achieved by considering that the system’s reaction is fast enough
with respect to the environment. Responsiveness and precision are limited by step duration.
The interaction with the environment is performed in global computation steps. In each step,
all the system components perform some quantum of computation. The components execu-
tion constitutes a sequence of non-interruptible steps that define a logical notion of time. One
of the fundamental characteristics of synchronous languages resides in the use of clocks that
specify the synchronization points between components. A clock is an infinite subset of the
natural numbers. A simple example of a synchronous system consists of a number of compo-
nents that share a single periodic clock. The operational semantics of such a system is defined
as a sequence of cycles executed at each tick of the shared clock. A cycle consists of three
phases: acquisition of inputs, computation and publication of outputs. The actual duration
of computations is then irrelevant. The synchrony hypothesis assumes that computations
duration is negligible compared to that of communication among components. Correctness
(i.e. validity of the synchrony hypothesis) is evaluated by first computing the bounds or
estimates of worst-case execution time (WCET) of each computations, then performing an
end-to-end delay analysis for the entire system [45].

There exist many hardware description languages such as Lustre [40], Signal [39] and
Esterel [46], adopting the synchronous paradigm. These languages are used, among others,
in signal processing and automatic control applications. In the following, we present (only)
Lustre to illustrate synchronous languages.

Lustre

Lustre [40, 47] is a data-flow synchronous language with formal semantics developed at the
VERIMAG laboratory for the past 25 years. On the top of the language, there are a number
of tools, like code generator, model checker, tool for simulation of the system on design, etc.,
that constitute the Lustre platform. Lustre has been industrialized by Esterel Technologies
in the SCADE tool. SCADE has been used by several companies in the area of aeronautics
and automotive. It has been recently used for the development of the latest project of Airbus,
the A380 carrier airplane.

In Lustre, a program operates based on flows of values, which are infinite sequences

1.3 Existing Approaches for Modeling and the Implementation of Real-Time
Systems 31

(x0, x1, . . . , xn, . . .) of values at logical time instants (0, 1 . . . , n, . . .). A Lustre program con-
sists of a set of nodes. Each node defines a set of inputs and outputs. The outputs flows are
computed by the node from input flows. An abstract syntax of a Lustre program is presented
below.

program ::= node+

node ::= node N (In) (Out) equation+

equation ::= x =E | x,. . ., x = N(E, . . . ,E)
E :: =x | v | op(E, . . . ,E) | pre(E,v) | E when b | current E

In (resp. Out) denotes input (resp. output) of a node. Symbols N , E, x, v, b denote
respectively node names, expressions, flows, constant values and Boolean values. Each flow
(and expression) is associated with a logical clock. Implicitly, there exist a unique and basic
clock which defines the logical time instants (or basic clock cycle) of a synchronous program.
This clock has the finest grain among the clocks defined in the program. A program clock
is derived from the basic clock using a flow of Boolean values, that is, it corresponds to
the sequence of instants at which this flow takes the value true. In Luste, there are few
elementary basic types which are Boolean, integer and one type constructor which is tuple.
Complex types can be imported from a host language. Usual operators such as arithmetic,
boolean, relational and conditional are available. Functions can be imported from the host
language. Lustre defines operators that apply either on single clock or on multiple clocks.
The combinatorial operator op and the unit delay pre operator are defined as single-clock
operators. The when and current operators are defined to operate on multi clocks.

Single-clock operators include constants, basic and combinatorial operators and the unit
delay operator. Flows of values that correspond to constants are constant sequences of values.
Combinatorial operators include usual boolean, arithmetic and relational operators. The
unit delay pre operator gives access to the value of its argument at the previous time instant.
For example, the expression E = pre(E, v) means that for an initial value E0 = v of E, the
value of E at instant i is Ei = Ei+1 for all i > 0.

+

pre

oi

Figure 1.7: An integrator in Lustre.

Figure 1.7 shows a graphical representation of a discrete integrator. Its corresponding
Lustre program is written as follows:

node Integrator(i: int)
returns o: int;

32 Introduction

let o = i + pre(o,0); tel

In this example, two single-clock operators are defined namely ”+” and pre. An input
flow i and an output flow o are also defined. The expression pre(o, 0) gives access to the
value of the output flow o at the previous time instant which is initialized to zero. The output
flow o is obtained by adding the input flow i to its previous value pre(o, 0). The equation of
the integrator is the arithmetic operation ”+” between a flow and the expression pre. Table
1.1 shows the instants of a possible execution for the first six clock cycles.

Table 1.1: Instants of a possible execution of the example of Figure1.7

basic clock 1 2 3 4 5 6

i 2 5 -1 3 1 2
pre 0 2 7 6 9 10
o 2 7 6 9 10 12

Lustre defines also multi-clocks operators which are the following.

• The sampling operator when samples a flow depending on a Boolean flow. The ex-
pression E′ = E when b corresponds to the sequence of values E when the Boolean
flow b is true. The expression E and the Boolean flow b have the same clock, while the
expression E′ operates on a slower clock defined by the instants at which b is true.

• The interpolation operator current interpolates an expression on the clock which is
faster than its own clock. The expression E′ = current E, takes the value of E at the
last instant when b was true, where b is the Boolean flow defining the slower clock of
E.

Table 1.2 shows examples of using when and current operators. The basic clock defines six
clock cycles. The Boolean flow b and the flow x operate on the basic clock. The flow b defines
a slower clock operating at the cycles 3, 5 and 6 of the basic clock. These are the instants
such that the value of b is true. The sampling operator when defines the flow y that operates
on the slower clock b. The flow y is evaluated when b is defined, that is, at the clock cycles
3, 5 and 6. The interpolation operator current produces the flow z on the basic clock. For
the first two instances, the value of z is undefined because y is evaluated for first time at the
clock cycle 3. For any other instant, if b is true, the value of z is evaluated to y. Otherwise,
it takes the value of y at the last instant when b was true. For instance, at the clock cycle
3, the slower clock b is defined and the value of z is evaluated to the current value of y, that
is x3. For clock cycle 4, the slower clock b is not defined and the value of z takes x3, that is
the value of z at the last instant b was true.

The Lustre compiler guarantees that the system under design is deterministic and con-
forms to the properties defined by the synchronous hypothesis [48]. It accomplishes this task
thanks to static verification which is summarized in the following steps:

• Definition checking: every local and output variable should have one and only one
definition;

1.3 Existing Approaches for Modeling and the Implementation of Real-Time
Systems 33

Table 1.2: Examples of using when and current operators

basic clock 1 2 3 4 5 6

b false true true false true false
x x1 x2 x3 x4 x5 x6
y = x when b x2 x3 x5
z = current y nil x2 x3 x3 x4 x4

• Clock consistency: every operator is applied to operands on suitable clocks;

• Absence of cycles: any cycle should use at least one pre operator.

For the mono-processor and mono-thread implementation, the compiler generates monolithic
endless single loop C code. The body of this code implements the inputs to outputs transfor-
mations of one clock cycle. The generation of C code is done in two steps. First, it introduces
variables for implementing the memory needed by the pre operators and then it stores the
equations in order to respect data-dependencies.

1.3.4 Component-based Frameworks

Component-based design techniques are used to cope with the complexity of the systems. The
idea is that complex systems can be obtained by assembling components. This is essential for
the development of large-scale, evolvable systems in a timely and affordable manner. It offers
flexibility in the construction phase of systems by supporting the addition, removal or modi-
fication of components without any or very little impact on other components. Components
are usually characterized by abstractions that ignore implementation details and describe
relevant properties to their composition, e.g. transfer functions, interfaces. The main feature
of component-based design frameworks is allowing composition. This composition is used
to build complex components from simpler ones. It can be formalized as an operation that
takes, as input, a set of components and their integration constraints and provides, as output,
the description of a new more complex component. This approach allows to cope with the
complexity of systems by offering incrementality in the construction phase. In the following,
we give an overview of two component-based frameworks, namely Marte and AADL, which
allow building real-time systems.

Marte

Marte [49] extends the Unified Modeling Language (UML) [50] with concepts required to
model real-time embedded systems. The Marte specification consists of the following main
packages[51].

• Foundations: This package provides basic model constructs for non-functional prop-
erties, time and time-related concepts, allocation mechanisms and generic resources,
including concurrent resources. These foundational concepts are then refined in two

34 Introduction

other packages to respectively support modeling and analysis concerns of real-time em-
bedded systems.

• Model-based design: This package provides high-level model constructs to depict real-
time embedded features of applications, but also for enabling the description of detailed
software and hardware execution platforms.

• Model-based analysis: This package provides a generic basis for quantitative analysis
of sub-domains. This basis has been refined for both schedulability and performance
analysis.

In Marte, the application model is defined by its repetitive structures, interaction ports
and the communication between them. Tasks and their interaction are defined at data com-
munication level [52].

The time model in Marte is heavily inspired by the Tagged Signal Model [53], synchronous
languages [54], and the Globally Asynchronous and Locally Synchronous (GALS) architec-
ture. Clocks can be defined independently and can be progressively composed with a family
of possible time evolutions [55]. The time model in Marte is associated with the Clock Con-
straint Specification Language (CCSL)[56]. A CCSL specification consists of clock relations
and clock expressions. For example, alternatesWith and isPeriodicOn are instances of clock
relations, delayedFor and sampledOn are clock expressions.

AADL

AADL (Architecture Analysis and Design Language) [57, 58] is an architecture description
language for model-based engineering of embedded real-time systems. It is used to design
and analyze the software and hardware architectures of embedded real-time systems.

A system in AADL is described as a hierarchy of software and hardware components.
There are three distinct sets of component categories:

• software components: thread, thread group, subprogram, data and process.

• hardware components: processor, memory, bus, device, virtual processor and virtual
bus.

• composite system which represents composite sets of software and hardware. compo-
nents.

An AADL component is defined by its type ans its implementation. The type specifies the
component’s visible characteristics (e.g. ports). The implementation specifies the internal
structure of the component such as its subcomponents, interactions and the flows across a
sequence of subcomponents.

AADL lacks a formal semantics. This lack is particularly important for real-time embed-
ded systems as many of them are safety-critical systems which usually needs formal semantics
to prove their correctness.

1.4 Rigorous Design Flow 35

1.3.5 Discussion

We have presented some existing approaches for modeling and implementation of real-time
systems. The time-triggered approach rely on a notion of logical execution time (LET) which
corresponds to the difference between the release time and the due time of an action, defined in
the program using an abstract notion of time. Time-safety is violated if an action takes more
than its LET to execute. One drawback of time-triggered approach is the lack on flexibility
and the restrictive design process. This approach considers fixed LET for actions, that is,
time-deterministic abstract models. In addition, their models are action-deterministic, that
is, only one action is enabled at a given state. Our work is more general as we consider
more general models by considering more general timing constraints which allow the design
of non-deterministic systems

Even-triggered approach is suitable for the design of systems where actions or events are
unpredictable. The main advantage of event-triggered systems is their ability to react to
asynchronous external events which are not known in advance.

Synchronous programs can be considered as a network of strongly synchronized compo-
nents. Their execution is a sequence of non-interruptible steps that define a logical notion
of time. In a step each component performs a quantum of computation. An implementation
is correct if the worst-case execution times (WCET) for steps are less than the requested re-
sponse time for the system. One of the difficulties in the synchronous paradigm is to meet the
synchrony assumption, in particular when high responsiveness to the environment is required.

There exist many component-based frameworks without rigorous semantics. They use
ad-hoc mechanisms for building systems from components and offer syntax level concepts
only. In this case, using ad-hoc transformations, may easily lead to inconsistencies e.g. trans-
formations may not be confluent. Generally, component-based frameworks can be divided in
two categories. The first category provides high-level design and modeling, however it is still
unclear how to derive correct and efficient implementation from the high-level models. In
contrast, the second category provides efficient implementation, however the design process
is either based on low-level primitives, or not expressive enough. In our work, we rely on BIP
framework that provides rigorous semantics and allows building correct systems.

1.4 Rigorous Design Flow

In order to obtain correct distributed implementations of real-time systems, one has to con-
sider a rigorous design flow that starts by an application software and leads to a distributed
implementation. The design flow involves the use of model transformations for progressively
deriving distributed implementation by making adequate design choices. Each transforma-
tion preserves the functional properties of the original model. The design flow should rely on
a single semantics. That is, models are written in the same language with the same semantics.

Figure 1.8 shows a design flow that involves n model transformations. Intermediate
models have different levels of abstraction. Each of these models could be dedicated to
perform various tasks such as verification, performance analysis and code generation.

The last model before code generation represents exactly the software to be implemented.
Code generation only implements the semantics of this model using a low-level programming

36 Introduction

Model 1

Application software

T
ra

ns
fo

rm
at

io
ns

Implementation

Model n

Figure 1.8: A design Flow.

language such as C++. The obtained code is correct-by-construction. This is due the fact
that intermediate models are functionally equivalent to the application software.

The design flow is implemented through a set of tools automatically performing the dif-
ferent transformations. The designer provides a high-level model of the system from which
the implementation is generated. In particular, the mechanisms to handle messages are gen-
erated automatically during the transformations. Human intervention is required to choose
the parameters of the transformations.

1.5 Our Contributions

We present a method that allows deriving automatically distributed implementations from
a high-level model of application software in BIP. BIP (Behavior, Interaction, Priority) is a
component-based framework with formal semantics that rely on multiparty interactions for
synchronizing components and priorities for scheduling between interactions. The key idea of
our method is the use of transformations that preserve functional properties for progressively
deriving distributed implementations.

Input models

Our input models are described in BIP. A BIP model consists of a set of components whose
behavior is modeled using timed automata [59] extended with data. The components model
takes into account only platform-independent timing constraints expressing user require-
ments. Transitions are labeled by ports and are assumed to be timeless. Components are
composed using two operators, namely Interaction and Priority. The Interaction operator is
parameterized by a set of interactions that are synchronizations of components’s transitions.
The Priority operator is parameterized by a partial order on the interactions. The global
state semantics of such models is defined by a labeled transition systems LTS defining when
the system can wait (i.e. when time may progress) and when it can execute the interactions.
Time can progress from a global state if all components allow it from their local states. An
interaction can execute from a global state (1) if all its participant components are ready to

1.5 Our Contributions 37

execute that interaction, and (2) if there is no higher priority interaction enabled from that
state.

Breaking Atomicity

The semantic model of BIP is based on the notion of global states. That is, the system states
considered by the standard semantics are such that all the components are not executing
and ready to synchronize on interactions. The execution of an interaction is defined by the
atomic execution of corresponding transitions of the participating components, transforming
the current global state into a new global state.

In real systems, transitions in components could not be instantaneous. They are nec-
essarily subject to execution times when transitions correspond to computations, or also
communication delays when the transitions correspond to sending messages. During the
transition execution, the component state becomes unknown. In order to model these un-
known states, we derive the partial state model from the BIP model where the components
can be either in regular states when they are ready to interact, as in the global state seman-
tics, or in busy states when they executes. Ensuring parallelism bowls down to executing
interactions from states where some components are still busy. We identify conditions for
which the partial state model is observationally equivalent to the original BIP model (global
state model). Observational equivalence can be enforced by strengthening the premises of
the operational semantics rules by a predicate called safe that ensure safe execution from
partial states. The computation of this predicate requires to know the future state reached
by components after execution. However, this cannot be computed in practice. Instead, we
propose other alternative predicates safe∗ that can be operationally computed, in particular
whose are based on approximations of reached states.

Building Send/Receive Models with Centralized Scheduler

Partial state models correspond to a high-level representation for parallel execution of BIP
models. Those models cannot be directly implemented since, in general, distributed platforms
do not offer direct support for multiparty interactions an priorities, but rather allow compo-
nents to communicate using lower level primitives such as asynchronous message passing. In
this thesis, we assume that (distributed) components can send messages, wait for messages
or execute internal computation.

Our first solution is to transform BIP models into Send/Receive BIP models that in-
volve only Send/Receive interactions. In Send/receive models, the distributed components
exchange messages with a coordinator called scheduler (constructed as a BIP component)
responsible for executing interactions and for notifying components to execute corresponding
transitions. With this version of Send/Receive models, we assume that there is no delay
between the decision to execute an interaction in the scheduler and the execution in par-
ticipating components. Therefore, we assume that this version of Send/Receive models are
implemented on platforms that provides fast communications (e.g. multi-process platforms)
to meet perfect synchronization in components.

In order to evaluate the enabled interactions at a given state, the distributed components
are required to send information about their current states to the scheduler component.

38 Introduction

Regarding the scheduler, it is required to listen to the distributed components and decides
the execution of interactions on-line. To maximize progress in the system, the scheduler
may not have a global knowledge about system to decide the execution of an interaction. In
this case, the scheduling decision is based on a partial knowledge of the system state, which
corresponds precisely to an execution from a partial state in the partial state semantics. Safe
executions from partial states are ensured using the predicate safe. Any execution decided by
the scheduler should also agree with the predicate safe in order to produce correct executions.
In practice we are using safe∗ based on approximations of reachable states.

Decentralizing the scheduler

Send/Receive models with centralized scheduler allow parallelism between components. How-
ever, parallelism between interactions is not maximal since the execution of interactions is
decided by a single scheduler.

We propose a solution to obtain Send/Receive models with decentralized schedulers. Each
decentralized scheduler is responsible for executing a subset of interactions. Thus, our decen-
tralization method is parametrized by an interactions partition. Each partition class defines
a set of interactions handled in a dedicated scheduler.

Adding multiple schedulers in a Send/Receive model introduces conflicts between them.
A conflict between schedulers occurs when they try to execute interactions involving the same
component, which may lead to violate the semantics of the centralized model.

We propose a solution to resolve dynamically conflicts between interactions. The solution
is based on the incorporation of a conflict resolution protocol. Before executing a conflicting
interaction, the scheduler has to ask the conflict resolution protocol. The latter grants the
execution by sending an ok message if it does not break the semantics or rejects the execution
by sending a fail message otherwise. Our solution incorporates several implementations of
the conflict resolution protocol. In this thesis we consider the three different implementations
of conflict resolution protocol proposed by Bagrodia [60].

In this version of decentralized schedulers, we assume again that communication latencies
are negligible so that there is no delay between the decision to execute an interaction in a
scheduler and its execution in the participating components. We explain below how to handle
non negligible communication latencies.

Taking Decision Earlier

The assumption of instantaneous communication restricts the applicability of the approach to
platforms having communication means that are fast enough so that communication delays
can be neglected.

We propose a method to obtain Send/Receive models that execute correctly even in
presence of slow communications. To cope with communication delays, instead of notifying
components at the very last moment, we propose a method where schedulers plan interactions
execution and notify components in advance. With this approach, schedulers choose as
soon as possible a date for executing a selected interaction and send it immediately to the
participating components. Once received, the components wait for this date and then execute.
The scheduling decisions are taken according to a scheduling policy which is considered as a

1.6 Organization of the Thesis 39

parameter of the approach. Any scheduling policy meeting conditions for correct execution
can be considered here. The study of scheduling policies is beyond the scope of the present
thesis.

In order to ensure the correct scheduling of an interaction based on this approach, we
show that the schedulers need to observe additional components besides the components
participating to the interactions. As in the previous version, conflicts between schedulers
are referred to the conflict resolution protocol. However, with this approach, it may happen
that the conflict resolution protocol confirms (through an ok message) the execution of an
interaction while the scheduler cannot find a valid date to execute it. Such situation may
introduce deadlocks in the system. To avoid this, we integrate a cancel execution mechanism
between the schedulers and the conflict resolution protocol to cancel the execution of inter-
actions. To do so, when such situation occurs, the schedulers send cancel requests to the
conflict resolution protocol, which are acknowleged.

In order to correctly schedule an interaction, the scheduler has to know the state of ob-
served components, and therefore to receive messages from them. We propose an optimization
method that aims at minimizing the number of observed components when possible, which
minimizes the number of messages exchange for executing an interactions. In fact, we define
for each interaction a predicate on global states that characterizes components that could
not be observed by the interaction. The satisfiability of this predicate is checked using static
analysis techniques such as the technique presented in [61].

Implementation

Send/Receive BIP models with a centralized scheduler corresponds to an implementation of
partial state models. In practice, this model is never built, but is used for sake of clarity.
Instead, we developed a multi-thread real-time scheduler that implements interactions and
priorities of partial state models. A code generator has been also developed to generate C++
code for atomic components that execute each one in separate thread that communicate with
the multi-thred real-time scheduler. The communication between the multi-thread real-time
scheduler and the atomic components is ensured by message passing through FIFO channels.

In order to generate distributed implementations for Send/Receive BIP models with mul-
tiple schedulers, we developed a code generator that takes a Send/Receive model as input
and outputs a distributed implementation. We generate C++ code for each component in the
Send/Receive BIP model where Send/Receive interactions are implemented by TCP sockets.
The generated code scheme is the same for each component regardless its role (Send/Receive
atomic component, scheduler, conflict resolution protocol component).

1.6 Organization of the Thesis

This thesis is structured as follows:

• In Chapter 2 we provide the abstract and concrete models of the BIP framework. The
BIP framework provide a single semantics used consistently throughout this thesis.

40 Introduction

• In Chapter 3, we preset partial state models that correspond to a high-level representa-
tion for parallel execution of BIP models. We identify conditions for which the partial
state model is observationally equivalent to the global state model.

• In Chapter 4, we present our first solution for implementing multiparty interactions and
priorities. The solution relies on a centralized scheduler for executing all interactions.

• In Chapter 5, we propose a solution for decentralizing the centralized scheduler. The
solution consists in splitting the centralized scheduler into several distributed sched-
ulers, each one handling a subset of interactions. The obtained models are augmented
by a conflict resolution protocol in order to resolve conflicts between interactions. Dis-
tributed models of Chapter 4 and Chapter 5 are assumed to be implemented on plat-
forms providing fast communications.

• In Chapter 6, we propose a solution to build distributed models that execute correctly
even if communications are not instantaneous.

• In Chapter 7, we present an overview of the tools involved in the BIP framework. We
focus on the tools related to this thesis. More precisely, we present the multi-threaded
real-time scheduler that implements directly partial state models. Also, we present the
method for generating distributed code from Send/Receive BIP models.

• In Chapter 8, we evaluate the performance of our tools. Finally, we conclude and outline
some future work in Chapter 9.

2
High-Level BIP Models

Component-based design is a paradigm that allows construction of complex systems by as-
sembling components. Components models are described by abstract platform-independent
models where implementation details are completely ignored. Components are composed in
order to build complex components.

BIP [62–64] is a framework for the construction of complex, heterogeneous embedded
applications. BIP is highly expressive [65], component-based framework with formal seman-
tics. A BIP model is described using the superposition of three layers: Behavior, Interaction,
Priorities (see Figure 2.1).

B E H A V I O R

Priorities

Interactions

Figure 2.1: BIP model structure.

BIP allows the construction of complex, hierarchically structured models from atomic
components characterized by their behavior and their interfaces (ports). An atomic compo-
nent behavior is described using a transition system whose transitions are labeled by ports.
Atomic components are composed using glue operators consisting of Interactions and Pri-
orities. Interactions are used to specify multiparty synchronizations between atomic compo-
nents. Priorities are used to filter amongst possible interactions and to steer system evolution
so as to meet performance requirements ,e.g. to express scheduling policies. Priorities define
partial orders between interactions that can change dynamically.

41

42 High-Level BIP Models

This chapter is structured as follows. The abstract model of BIP is described in Sec-
tion 2.1. It gives an abstract formalization of the layers Behavior, Interaction, Priority. Sec-
tion 2.2 describes the concrete model of BIP. In this model, atomic components are described
using Perti Nets extended with data and clocks.

2.1 Abstract Models of BIP

We provide a formalization of BIP framework focusing on each layer of BIP models. In this
section, we introduce the model corresponding to each layer.

2.1.1 Preliminary Definitions

We use timed automata [59, 66, 67] to model the behavior of real-time systems. A timed
automaton is basically an automaton equipped with clocks. Its transitions are annotated
with timing constraints and its states are annotated with time progress conditions. In the
following, we give definitions of each of these elements.

Automaton

Definition 1 (Automaton). An automaton A is defined by a tuple (L,P, T), where:

• L is a finite set of control locations.

• P is a finite set of ports.

• T ⊆ L× P × L is a set of finite transitions.

We say that a port in enabled at location ℓ if there exists a transition labeled by p outgoing
from location ℓ. Throughout this thesis, we consider deterministic automata which means
that at a given location ℓ there is at most one outgoing transition from ℓ labeled by p.

Clocks

We consider discrete-time models, that is, time is represented using the set of non-negative
integers denoted by Z≥0. We assume that time progress is measured by clocks. Clocks are
non-negative integer variables increasing synchronously. A clock can be reset (i.e. set to 0)
independently of other clocks. That is, clocks keep track of the time elapsed since their last
reset.

We denote by T (C) the set of all possible values of clocks in C. As we consider discrete-
time models, T (C) corresponds to Zn

≥0, where n is the number of clocks in C .

Definition 2 (clocks valuation). Given a set of clocks C, a clocks valuation t : C → Z≥0 is
a function associating with each clock c its value t(c). Given a subset of clocks C′ ⊆ C and a
clock value l ∈ Z≥0, we denote by t[C′ 7→ l] the clocks valuation that coincides with t for all
clocks c ∈ C \ C′, and that associates l with all clocks c ∈ C′. It is defined by:

t[C′ 7→ l](c) =

{
l if c ∈ C′

t(c) otherwise.

2.1 Abstract Models of BIP 43

Timing Constraints

Timing constraints are used to specify when actions are enabled. Given a set of clocks C,
we consider simple constraints on clocks which are atomic formulas of the form c ∼ ct,
where c ∈ C is a clock , ct ∈ Z≥0 is a constant, and ∼ is a comparison operator such that
∼∈ {≤,=,≥}. They are used to build general timing constraints defined by the following
grammar:

tc := true | false | c ∼ ct | tc ∧ tc | tc ∨ tc | ¬tc.

We simplify ¬(c ≤ ct) into c ≥ ct+ 1, and ¬(c ≥ ct) into c ≤ ct− 1. This allows putting any
timing constraint tc into the following disjunctive form:

tc =
m∨

k=1

tck

such that expressions tck are conjunctions of simple constraints and for each k1 and k2
tck1 ∧ tck2 = false. Any conjunction of simple constraints tck can be put into an interval
conjunction:

tck =
∧

c∈C

lkc ≤ c ≤ ukc

such that for all c ∈ C, lkc ∈ Z≥0 and ukc ∈ Z≥0 ∪ {+∞}. Thus, any timing constraint tc can
be put into the following form:

tc =
m∨

k=1

∧

c∈C

lkc ≤ c ≤ ukc (2.1)

We denote by TC(C) the set of timing constraints over a set of clocks C. The evaluation of
a timing constraint tc for a valuation t is the Boolean value tc(t) obtained by replacing each
clock c by its value t(c).

Time Progress Conditions

Time progress conditions are used to specify whether time can progress at a given state of
the system. They are a special case of timing constraints where ∼ is restricted to {≤} and
operators ¬ and ∨ are disallowed. Formally, time progress conditions are defined by the
following grammar:

tpc := true | false | c ≤ ct | tpc ∧ tpc.

where c ∈ C, ct ∈ Z≥0. Note that any time progress condition tpc can be put into a
conjunctive form:

tpc =
∧

c∈C

c ≤ uc (2.2)

such that for all c ∈ C, uc ∈ Z≥0 ∪ {+∞}. We denote by TPC(C) the set of time progress
conditions over a set of clocks C.

44 High-Level BIP Models

2.1.2 Modeling Behavior

An atomic component is the most basic entity of BIP models that represents Behavior. A
formal definition for an atomic BIP component is given below:

Definition 3. An atomic component B is a timed automaton represented by the tuple (L,
P , T , C,tpc), where:

• L is a finite set of locations,

• P is a finite set of communication ports,

• C is a finite set of clocks,

• T ⊆ L × (P × TC(C) × 2C) × L is a finite set of labeled transitions. A transition τ is
a tuple (ℓ, p, tc, r, ℓ′) where p is a communication port, tc is a timing constraint over C
and r is a subset of clocks that are reset by the transition τ .

• tpc is a time progress condition function assigning to each location ℓ ∈ L a time progress
condition tpcℓ ∈ TPC(C), that is, tpc: L −→ TPC(C).

The semantics of an atomic component B is a Timed Transition System (TTS) in which
there are two types of steps: discrete steps and delay steps. A discrete step corresponds
to firing a labeled transition of B. A delay step corresponds to letting time progress on a
given state. An execution sequence of B is a sequence of such transitions with an alternance
between discrete and delay steps. The definition of the semantics of B is given below.

Definition 4. The semantics of an atomic component B = (L,P, T,C, tpc) is a transition
system SB = (Q,Σ,−→) where:

• Q = L× T (C) is the set of states,

• Σ = P ∪ Z≥0 is the set of labels: ports or time values,

• −→ is the set of labeled transitions defined as follows:

– Discrete seps. Let (ℓ, t) and (ℓ′, t′) be two state and p ∈ P . We have (ℓ, t)
p
−→ (ℓ′, t′)

where t′ = t[r 7→ 0] if transition τ = (ℓ, p, tc, r, ℓ′) is in T and tc(t) evaluates to
true. Notice that the execution of a discrete step is timeless.

– Delay steps. Let (ℓ, t) be a state and δ ∈ Z≥0 be a delay. We have (ℓ, t)
δ
−→ (ℓ, t+δ)

if tpcℓ(t+ δ) evaluates to true, where t+ δ is the usual notation for the valuation
defined by (t+ δ)(c) = t(c) + δ for any c ∈ C.

A transition τ = (ℓ, p, tc, r, ℓ′) can be fired from state (ℓ, t) if its corresponding timing
constraint tc evaluates to true with respect to the clocks valuation t, i.e. tc(t) = true.

Time can progress by δ from state (ℓ, t) only if it is allowed by the time progress condition
of ℓ, i.e. tpcℓ evaluates to true for the valuation t+ δ.

The definition of an execution sequence of B is as follows:

2.1 Abstract Models of BIP 45

Definition 5. A finite (resp. infinite) execution sequence of B = (L,P, T,C, tpc) from an
initial state (ℓ0, t0) is a sequence that alterns discrete and time steps:

(ℓi, ti)
σi−→ (ℓi+1, ti+1)

where σi ∈ P ∪ Z≥0 and i ∈ {0, 1, . . . , n}.

Remark. The semantics of timed automata presented here is slightly different from the
one found in [59], as we consider time progress conditions instead of invariants. In contrast
to invariant, an atomic component B may reach a state (ℓ, t) violating the corresponding
time progress condition tpcℓ. In this case B cannot wait and is forced to execute a transi-
tion from (ℓ, t). In this thesis, we consider systems that cannot reach states violating time
progress conditions. A state (ℓ, t) from which B can neither execute a transition nor wait is
a timelock [68]. In this thesis, we also consider systems that cannot reach timelocks.

Example 1. Figure 2.2 depicts a graphical representation of an atomic component setter =
(L,P, T,C, tpc), where L = {ℓ1, ℓ2}, P = {sync, set}, C = {c}, T = { τ1=(ℓ1, sync, true,
{c}, ℓ2), τ2=(ℓ2, set, c ≥ l, ∅, ℓ1)} where l ∈ Z≥0, and tpc is defined as follows:

• tpc(ℓ1) = true.

• tpc(ℓ2) = c ≤ u, u ∈ Z≥0 such that l ≤ u.

Notice that when a time progress condition (resp. timing constraint) is not shown on the
graphical representation of a location (resp. transition), we consider true as default value.

Consider an execution sequence from state (ℓ1, 0):

• Since the time progress condition of location ℓ1 is true, B can wait infinitely at this loca-

tion. Thus, any delay transition δ1 ∈ Z≥0 is possible from (ℓ1, 0) ,i.e. (ℓ1, 0)
δ1−→ (ℓ1, δ1).

Since the only transition issued from ℓ1 is τ1 with label port sync and with timing con-
straint true, the discrete step sync is possible from state (ℓ1, δ1), i.e. (ℓ

1, δ1)
sync
−→ (ℓ2, 0).

This discrete step is always possible from (ℓ1, δ1), and it is the only one possible from
this state. However, any delay step is also possible from (ℓ1, δ1).

• From state (ℓ2, 0), time cannot progress more than u time units due to the time progress
condition of location ℓ2. Thus, any delay step δ2 ≤ u is possible from (ℓ2, 0). Since the
only transition issued from ℓ2 is τ2 with labeled port set and a timing constraint c ≥ l,
the discrete transition set is possible if δ2 satisfies l ≤ δ2.

To summarize the execution sequences of the abstract behavior B from the initial state (ℓ1, 0)
can be written in following form:

(ℓ1, 0)
δ1−→ (ℓ1, δ1)

sync
−−−→ (ℓ2, 0)

δ2−→ (ℓ2, δ2)
set
−−→ (ℓ1, δ2)

46 High-Level BIP Models

ℓ1

ℓ2

set

{c}

syncset

c ≤ u

c ≥ l

sync

setter

Figure 2.2: An example of Abstract Behavior.

2.1.3 Modeling Interactions

We compose a set of n components behaviors {Bi = (Li, Pi, Ti,Ci, tpci)}
n
i=1 by using inter-

actions. We assume that their sets of ports and clocks are disjoint, i.e. for all i 6= j we have
Pi ∩ Pj = ∅ and Ci ∩ Cj = ∅. We define the set P =

⋃n
i=1 Pi of all ports in the composition.

Interactions are explicitly defined as subsets of ports.

Definition 6. An interaction a is a non-empty subset a ⊆ P of ports, such that ∀i ∈
{1, . . . , n}, |a ∩ Pi| ≤ 1. We often denote a = {pi}i∈I , where I ⊆ {1, . . . , n} contains the
indexes of components participating in a and pi is the only port in Pi ∩ a.

We denote by part(a) the set of components that have ports participating in a. The set
part(a) is formally defined as:

part(a) = {Bi | Pi ∩ a 6= ∅}

The interaction model is specified by a set of interactions γ ⊆ 2P . Interactions of γ can
be enabled or disabled. An interaction a is enabled iff, for all i ∈ {1, . . . , n}, the port a ∩ Pi

is enabled in Bi. That is, an interaction is enabled if each port that is participating in this
interaction is enabled. An interaction is disabled if there exist i ∈ {1, . . . , n} for which the
port a∩Pi is disabled in Bi. That is, an interaction is disabled if there exists at least a port,
participating in this interaction, that is disabled.

2.1.4 Modeling Priorities

In a behavior, more than one interaction can be enabled at the same time, introducing a
degree of non-determinism. This can be restricted with priorities by filtering the possible
interactions enabled at a given state. The formal definition for a priority is given below.

Definition 7. A priority is defined by a relation π ⊆ γ× γ. where γ is a set of interactions.
We write aπa′ for (a, a′) ∈ π to express the fact that a has weaker priority than a′.

Note that Definition7 defines static priorities. This definition could be extended to dy-
namic priorities that depend on the system state as presented in [63]. In this thesis, we focus
only on static priorities.

2.1 Abstract Models of BIP 47

2.1.5 Composition of Atomic Components

Given a set of component {B1, . . . , Bn}, an interaction model γ and a priority model π,
a composite component denoted by GL(B1, . . . Bn) is obtained by applying a glue GL to
components B1, . . . , Bn where GL is limited to interactions (i.e. GL = γ), or can correspond
to interactions subject to priorities (i.e. GL = γπ). For each of them we define the semantics
below.

Definition 8. The semantics of the composite component γ(Bn, . . . , Bn), where Bi=(Li,Pi,
Ti, Ci, tpci) are atomic components with semantics SBi

= (Qi,Σi,−→i), is the transition
system Sγ = (Q,Σ,−→γ) where:

• Q = L× T (C), where L = L1 × . . .× Ln is the set of global locations and C =
⋃n

i=1 Ci

is the global set of clocks. We write a global location as ℓ = (ℓ1, . . . , ℓn) where ℓi ∈ Li

for all i, and a global clocks valuation as t = (t1, . . . , tn) where ti is a valuation of the
clocks Ci for all i.

• Σ = γ ∪ Z≥0.

• −→γ is the set of labeled transitions defined by the following rules:

– Discrete steps:

Interaction
a = {pi}i∈I ∈ γ ∀i ∈ I (ℓi, ti)

pi−→i (ℓ
′
i, t

′
i) ∀i 6∈ I (ℓ′i, t

′
i) = (ℓi, ti)

(ℓ, t)
a
−→γ (ℓ′, t′)

– Delay steps:

Delay
δ ∈ Z≥0 ∀i ∈ {1, . . . , n} tpcℓi(t+ δ)

(ℓ, t)
δ
−→γ (ℓ, t+ δ)

In Definition 8, discrete steps correspond to the execution of interactions. An interaction
a = {pi}i∈I ∈ γ can execute from a global state (ℓ, t), where ℓ = (ℓ1, . . . , ℓn) and t =
(t1, ..., tn), if for each i ∈ I the corresponding component Bi can execute a transition labeled
by pi from its local state (ℓi, ti). That is, from state (ℓi, ti) there exists a transition τi =
(ℓi, pi, tci, ri, ℓ

′
i) ∈ Ti where the timing constraint tci evaluates to true at the clocks valuation

ti.
From global state (ℓ, t), a delay transition corresponds to letting time progress by δ at

location ℓ. Time is allowed to progress by δ if it is allowed by the time progress condition
tpcℓi of each component Bi, i ∈ {1, . . . , n}.

Definition 9. Let Sγ(Q,Σ,−→γ) be the semantics of γ(Bn, . . . , Bn). We define the seman-
tics of πγ(Bn, . . . , Bn) as the labeled transition system Sπ=(Q,Σ,−→π) where −→π restricts
discrete steps defined by −→γ as follows:

Prio
(ℓ, t)

a
−→γ (ℓ′, t′) ∀a′ ∈ γ aπa′ ⇒ (ℓ, t) 6

a′
−→π

(ℓ, t)
a
−→π (ℓ′, t′)

48 High-Level BIP Models

From a state (ℓ, t), an interaction a ∈ γ can execute if (1) a is enabled at (ℓ, t) (i.e.such
that (ℓ, t)

a
−→γ (ℓ′, t′)) and (2) each interaction a′ that has higher priority (i.e. aπa′) is not

enabled at state (ℓ, t) (i.e. (ℓ, t) 6
a′
−→γ).

Example 2. Figure 2.3 presents a composite component πγ(setter1, getter1, setter2) where:

• setter1, getter1, and setter2 are atomic components where setter1 and setter2 are in-
stances of setter atomic component shown Figure 2.2 with l = 10 and u = 20 for
setter1, and l = u = 5 for setter2,

• interactions γ = {a1, a2, a3} are defined by a1 = {sync1, sync2, sync3}, a2 = {set1, get1}
and a3 = {set2, get2}, and

• priority π is such that a2πa3.

From the initial location ((ℓ11, ℓ
1, ℓ12), 0), it can be easily shown that the execution sequences of

the system have the following form: ((ℓ11, ℓ
1, ℓ12), 0)

a1−→π ((ℓ21, ℓ
2, ℓ22), 0)

5
−→π ((ℓ21, ℓ

2, ℓ22), 5)
a3−→π

((ℓ21, ℓ
3, ℓ12), 5)

δ
−→π ((ℓ21, ℓ

3, ℓ12), 5 + δ)
a2−→π ((ℓ11, ℓ

1, ℓ12), 5 + δ)
a1−→π ((ℓ21, ℓ

2, ℓ22), 0), where
5 ≤ δ ≤ 15. Notice that control location err cannot be reached in getter1 due to the applica-
tion of priority a2πa3.

ℓ11 ℓ12

a2πa3

sync1
{c1}

syncℓ3

ℓ2

sync2
{c2}

ℓ21 ℓ22get2
err

get1

c2 ≤ 5c1 ≤ 20

set1 set2

c2 ≥ 5c1 ≥ 10

getter setter2setter1

ℓ1get1

γ = {a1 = {sync1, sync, sync2}, a2 = {set1, get1}, a3 = {set2, get2}}

Figure 2.3: Example of abstract composition of 3 components

2.2 Concrete Models of BIP

Abstract models from the previous section focus on control. We now present how data is han-
dled in BIP. Data allows representation of complex behavior using Boolean guards expressed
over variables to prevent transitions and interactions. Data is modified through update func-
tions. The mechanisms to handle data added on top of the abstract model constitute the
concrete model of BIP.

2.2 Concrete Models of BIP 49

2.2.1 Preliminary definitions

Petri Nets

In concrete models, atomic components are described using Perti Nets. The definition of
Petni Nets is given below.

Definition 10. A Petri net is defined by a triple S = (L,P, T), where L is a finite set of
places, P is a finite set of ports, and T ⊆ 2L × P × 2L is a set of transitions. A transition
τ is a triple (•τ, p, τ•), where •τ is the set of input places of τ and τ• is the set of output
places of τ .

A Petri net is often modeled as a directed bipartite graph G = (L ∪ T,E). Places are
represented by circular vertices and transitions are represented by rectangular vertices (see
Figure 2.4). The set of directed edges E is the union of the sets {(ℓ, τ) ∈ L × T | ℓ ∈ •τ}
and {(τ, ℓ) ∈ T × L | ℓ ∈ τ•}. We depict the state of a Petri net by marking its places with
tokens [69]. We say that a place is marked if it contains a token. Formally, a marking is an
application m : L → N that indicates how many tokens are in each place. A transition τ is
enabled at a state if all its input places •τ are marked. Formally, τ is enabled if wor each
ℓ ∈ •τ we have m(ℓ) > 0. Upon the execution of τ at marking m, one token is removed in
each place of τ and one token is added to each output place of τ . Formally, by executing τ
at marking m, one reaches the marking m′ characterized by:

∀ℓ ∈ L m′(ℓ) = m(ℓ)− τ−(ℓ) + τ+(ℓ) (2.3)

where

τ−(ℓ) =

{
1 if ℓ ∈ •τ
0 otherwise

and τ+(ℓ) =

{
1 if ℓ ∈ τ•

0 otherwise.

In this thesis, we focus on 1-Safe Petri nets. Given an initial statem0, a Petri net (L,P, T)
is 1-Safe (also commonly referred as 1-bounded or simply safe) if for any execution from m0

output places of enabled transitions are never marked. The behavior of a 1-Safe Petri net
(L,P, T) is defined as a finite labeled transition system (2L, P,→), where 2L is the set of
states, P is the set of ports, and →⊆ 2L × P × 2L is the set of transitions defined as follows.
We have (m, a,m′) ∈→, denoted by m

a
→ m′, if there exists τ = (•τ, a, τ•) ∈ T such that

•τ ⊆ m and m′ = (m\•τ) ∪ τ•. In this case, we say that a is enabled at m. We say that
the Petri net (L,P, T) is deterministic for initial state m0 if for any execution from m0 two
transitions τ1 6= τ2 labeled by same port p are not enabled at the state.

Example 3. Figure 2.4 illustrates the execution of a transition on the marking in a Petri net
which has five places {ℓ1, . . . , ℓ5} and three transitions {p1, p2, p3}. The places containing a
token are depicted with gray background. The marking on the right shows the resulting state
after executing transition p2 from the marking giving on the left.

Variables

Given a variable x, the domain of x is the set D(x) of all values possibly taken by x. For
example, if x is an integer variable then D(x) = Z≥0. Given a set of variables X, a valuation

50 High-Level BIP Models

ℓ1

ℓ2

ℓ4

ℓ3

ℓ5
p1

p2

p3

ℓ1

ℓ2

ℓ4

ℓ3

ℓ5
p1

p2

p3

Figure 2.4: A simple Petri net

of X is a function v : X →
⋃

x∈X D(x) assigning a value to each variable of X, that is,
such that for all variable x we have v(x) ∈ D(x). We denote by V(X) the set of all possible
valuations of X. The restriction of v ∈ V(X) to a subset of variables X ′ ⊆ X is the valuation
v|X′ ∈ V(X ′) that coincides with v on X ′, that is, v|X′(x) = v(x) for all x ∈ X ′. When it is
not ambiguous, we write v also for v|X′ .

Given valuations v ∈ V(X) and v′ ∈ V(X ′) of variables X and X ′ such that X ′ ⊆ X, we
denote by v[X ′ ← v′] the variables valuation of X that coincides with v′ for all variables of
X ′, and with v for all variables of X \X ′. It is defined by:

v[X ′ ← v′](x) =

{
v′(x) if x ∈ X ′

v(x) otherwise.

Guard

A guard is a predicate on a set of variables X. Given a guard g on X and a valuation
v ∈ V(X), we denote by g(v) ∈ {false, true} the evaluation of g for v.

Update function

An update function f : V(X) → V(X) for variables X is used to assign new values f(v) to
variables in X from their current values v. It extends to any larger set of variables X ′ ⊇ X
considering that extra variables X ′ \ X are unchanged, i.e., f transforms v ∈ V(X ′) into
v[X ← f(v)].

2.2.2 Atomic Components

In concrete BIP models, atomic components are Petri nets extended with a set of variables
and clocks. Ports are associated with some variables and are used for communication among
different components. Each transition of the Petri nets:

• is labeled by a port,

• is guarded by a predicate on variables and a timing constraint on clocks whose bounds
may be arbitrary expressions1 on variables in addition to constant values (for example,
c ≥ f(v) is a timing constraint on clock c that depends of variable v),

• and triggers an update function that modifies a subset of variables and resets a subset
of clocks.

1The only restriction for expressions involved in timing constraints is that they must evaluate to an integer
value.

2.2 Concrete Models of BIP 51

Each place of the Petri net defines a time progress condition on clocks whose bounds may
also be arbitrary expressions on variables.

Definition 11. An atomic component B is defined by B = (L, P , T , C, X, {Xp}p∈P ,
{gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {rτ}τ∈T , {tpcℓ}ℓ∈L)

where:

• (L,P, T) is a deterministic 1-Safe Petri net.

• C is a finite set of clocks.

• X is a finite set of discrete variables.

• For each port p ∈ P , Xp ⊆ X is the set of variables exported by p (i.e., variables visible
from outside the component through port p).

• For each transition τ ∈ T , gτ is a guard on X, tcτ is a timing constraint over C, fτ :
V(X) −→ V(X) is a function that updates the set of variables X and rτ ⊆ C is a subset
of clocks that are reset by the transition τ .

• For each place ℓ ∈ L, tpcℓ is a time progress condition over C.

x

x:=x+1

sync

ℓ2

syncset

set

ℓ1

c ≤ u
setter

c ≥ l c := 0

Figure 2.5: An example of atomic component

Example 4. Figure 2.5 presents a concrete atomic component. Its 1-safe Petri net is actually
an automaton namely the one shown in Figure 2.2. It has been extended with variable x. The
variable x is associated to port set, that is, the variable x can be read and written when an
interaction involving port set takes place. The update function associated to transition labeled
by sync is a pseudo code that increments the value of x by 1.

Definition 12. The semantics of an atomic component B = (L, P , T , C, X, {Xp}p∈P ,
{gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {rτ}τ∈T , {tpcℓ}ℓ∈L) is defined as the labeled transition system
SB=(Q,Σ,−→), where:

• Q = 2L × V(X)× T (C) is the set of states,

• Σ = P ∪ Z≥0 is set of labels: ports or time values.

• −→ is the set of labeled transitions defined as follows.

52 High-Level BIP Models

– Discrete steps: Let (m, v, t) and (m′, v′, t′) be two states and p ∈ P be a port. We

have (m, v, t)
p(v′′)
−−−→ (m′, v′, t′), if (1) transition τ = (•τ, p, τ•) is enabled at m in

the Petri net (L,P, T), (2) gτ (v)∧ tcτ (t) is true, (3) v
′ = fτ (v[Xp ← v′′]) and (4)

t′ = t[rτ 7→ 0], where rτ is the set of clocks reset by τ . In this case, we say that p
is enabled from (m, v, t).

– Delay steps: Let (m, v, t) be a state and δ ∈ Z≥0 be a delay. We have (m, v, t)
δ
−→

(m, v, t+ δ) if
∧

ℓ∈m tpcℓ(t+ δ) is true.

An atomic component B can execute a transition τ = (m, p,m′) from a state (m, v, t)
if its Boolean guard is met by the valuation of variables v and its timing constraint is met
by the valuation t. The execution of τ moves tokens of places •τ to τ•, updates a subset of
variables in X and resets clocks in rτ . From state (m, v, t), time can progress by δ > 0 if time
progress conditions of places belonging to m stays true at t+ δ i.e.

∧
ℓ∈m tpcℓ(t+ δ) = true.

Petri nets are a well suited formalism for encoding parallel and concurrent execution.
As we will see in the next chapters, we use 1-safe Petri nets in order to express schedulers
introduced by our method. Any 1-safe Petri net (L,P, T) can be transformed into an equiv-
alent automaton (2L, P, T) where 2L is the set of locations [70]. In particular, an atomic
component whose behavior is described by a Petri net could transformed into an equiva-
lent atomic component whose behavior is described by a timed automaton. In fact, each
transition τ = (m1, p,m2) in the atomic component with Petri net is transformed into a
transition τ ′ = (ℓ1, p, ℓ2) in the equivalent atomic component with timed automaton where
ℓ1 =

⊗
ℓ∈m1|m1(ℓ>0) ℓ and ℓ2 =

⊗
{ℓ∈m2|m2(ℓ)>0} ℓ. The time progress condition of locations

ℓ1 and ℓ2 are defined by
∧

{ℓ∈m1|m1(ℓ)>0} tpcℓ and
∧

{ℓ∈m2|m2(ℓ)>0} tpcℓ, respectively. Transi-

tion τ ′ has the same Boolean guard, timing constraint, clocks reset and update function as
transition τ .

Example 5. Figure 2.6 depicts a transformation of two Petri net transitions (a) into two
automaton transitions (b). For instance, consider transition τ1 = (m1, p1,m2) in the Petri
net, where m1 and m2 are defined such that:

• m1(ℓ1) = m1(ℓ2) = m1(ℓ3) = 1, m1(ℓ4) = m1(ℓ5) = m1(ℓ6) = 0 and

• m1(ℓ4) = m1(ℓ5) = m1(ℓ3) = 1, m1(ℓ1) = m1(ℓ2) = m1(ℓ6) = 0.

The transformation of this transition in the automaton gives transition τ ′1 = (ℓ1 × ℓ2 ×
ℓ3, p1, ℓ4 × ℓ5 × ℓ3).

In the sequel, we consider atomic components involving simple automata instead of gen-
eral Petri nets, that is, in which transitions of components have a single input place and a
single output place. Petri nets will only be used for new components introduced by model
transformations needed by our method and presented in Chapters 4, 5 and 6

2.2.3 Interactions and Connectors

Similarly to atomic components, interactions are also taking into account variables. An
interaction consists of a set of ports, each one exporting a set of variables. The set of these

2.2 Concrete Models of BIP 53

(a) Equivalent automaton transitions

(a) Petri net transitions

ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6 ℓ7

tpc1 tpc2 tpc3

p1

r1
timec1
g1

p2

g2
timec2
r2

tpc1 ∧ tpc2 ∧ tpc3ℓ1 × ℓ2 × ℓ3

ℓ4 × ℓ5 × ℓ3 ℓ1 × ℓ6 × ℓ7

p1

g1
tc1
r1

p2

g2
tc2
r2

Figure 2.6: Transformation of Petri net transitions into automaton transitions.

variables can be accessed by the interaction. More precisely, a predicate on variables called
guard, has to be true to enable the interaction. A data transfer function modifies the variables
upon the execution of the interaction.

Consider a set of atomic component {B1, . . . , Bn}, where for each i ∈ {1, . . . , n} Bi is
defined as (Li, Pi, Ti, Ci, Xi, {Xp}p∈Pi

, {gτ}τ∈Ti
, {tcτ}τ∈Ti

, {rτ}τ∈Ti
,{fτ}τ∈Ti

, {tpcℓ}ℓ∈Li
).

We require that the sets of locations, ports, clocks, and variables of these components are
pairwise disjoint i.e., for any two i 6= j from {1, . . . , n}, we have Li ∩ Lj = ∅, Pi ∩ Pj = ∅,
Ci∩Cj = ∅, and Xi∩Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the ports in the composite

component.

Definition 13. An interaction a is a triple (Pa, Ga, Fa), where:

• Pa is a set of ports such that ∀i ∈ {1, . . . , n} |Pa ∩ Pi| ≤ 1. We denote Pa = {pi}i∈I ,
where I ⊆ {1, . . . , n} is the set of indices of participants in a and pi is the only port in
Pa ∩ Pi,

• Ga is a predicate defined over the set Xa =
⋃n

i=1Xpi of variables involved in a,

• Fa is a data transfer function that modifies the variables Xa, that is, Fa : V(Xa) −→
V(Xa).

Connectors In BIP, connectors are used to represent sets of related interactions in a com-
pact manner. A connector is defined over a set of ports P that forms its support and, defines
a subset of interactions, which is, a subset of 2P . A connector may export a port that is used
for the construction of hierarchical connectors.

54 High-Level BIP Models

Definition 14. A connector γ is a triple (Pγ , Aγ , p), where:

• Pγ is the support set of γ, that is, the set of ports that γ synchronizes,

• Aγ is the set of interactions,

• p is the exported port by the connector γ.

There are two types of ports (trigger or synchron) which define interactions of a connector.
A trigger (denoted by a triangle) is an active port that can initiate an interaction without
synchronizing with other ports. A synchron (denoted by a circle) is a passive port that needs
synchronization with other ports.

(a) Rendez−vous (b) Broadcast

p1 p2 p3 p1 p2 p3

γ = {p1p2p3} γ = {p1, p1p2, p1p2p3}

Figure 2.7: Examples of connectors and theirs interactions in BIP.

In BIP, we distinguish between two types of models for synchronization on connectors.

• Strong synchronization or Rendez-vous : The only feasible interaction is the maximal
one, i.e. it contains all the ports of γ. This corresponds to the case where all the ports
of the support set are synchrons. Figure 2.7 (a) depicts an example of Rendez-vous
connector. This connector defines only one interaction γ = {p1p2p3}.

• Weak synchronization or Broadcast : All feasible interactions are those containing at
least one trigger port. This port ”initiates” the interaction even if all other ports are
disabled. Figure 2.7 (b) depicts an example of Broadcast connector including one trigger
port p1. This connector contains the set of all interactions involving port p1, that is,
γ = {p1, p1p2, p1p2p3}.

Connectors provide mechanisms for handling data. For each connector, the data transfer
function Fa of an interaction a is specified by an up and down actions. The action up
updates local variables of the connector, from the values of variables exported by the ports.
Conversely, the action down updates the variables exported by the ports, from the values of
the connector variables. The guard Ga of the interaction a is a Boolean expression.

Example 6. Figure 2.8 shows a rendez-vous connector. The connector involves three ports
p1, p2 and p3 exporting variables x1, x2 and x3, respectively. The only feasible interaction is
p1p2p3 that takes place only if the guard x1 > 0 ∧ x2 > 0 ∧ x13 > 0 evaluates to true. If the
interaction is selected for execution, the action up computes the maximum of the variables
associated to the ports and stores it in the connector variable y. The action down sets the
variables associated to the ports to the maximum values that is stored in y.

2.2 Concrete Models of BIP 55

p1 p2 p3
x1 x2 x3

G : x1 > 0 ∧ x2 > 0 ∧ x3 > 0

up : y:=max{x1, x2, x3}

down : x1 := y; x2 := y; x3 := y

Figure 2.8: A example of connector computing the maximum of exported values.

Hierarchical connectors A hierarchical connector is obtained by combining simple con-
nectors to form a structure of connectors acting as a single connector. This is achieved by
including in the support (set of ports that forms the connector) of a top level connector the
exported port of a low level connector. Hierarchical connectors are formalized using the al-
gebra of connectors defined in [71]. In this thesis, we do not consider hierarchical connectors.
Therefore, we do not formalize here the construction of hierarchical connectors. Interested
readers may refer to [72] for more details. Instead, we give two simple examples as shown in
Figure 2.9.

(a) Atomic Broadcast (b) Causality Chain

p1 p2 p3p1 p2 p3

γ = {p1, p1p2p3} γ = {p1, p1p2, p1p2p3}

u
u

Figure 2.9: Examples of Hierarchical connectors and their interactions in BIP.

• The connector (a) is called Atomic Broadcast [71]. The bottom connector is a rendez-
vous synchronizing ports p2 and p3 and exporting the port u. This connector defines
only interaction p1p2. The top connector is a broadcast synchronizing ports p1 and u.
Thus, it allows interactions p1 and p1u. Therefore, the feasible interactions defined by
this connector are given by γ = {p1, p1p2p3}.

• The connector (b) is called Causality Chain [71]. The bottom connector is a broadcast
synchronizing ports p1 and p2 and exporting the port u. This connector allows inter-
actions p2 and p2p3. The top connector is similar to the bottom connector, allowing
interactions: p1 and p1u. Therefore, the feasible interactions defined by this connector
are given by γ = {p1, p1p2, p1p2p3}.

Notice that hierarchical connectors can be transformed into ”flat” connectors as defined
in Definition 14 using the transformation method described in [73].

56 High-Level BIP Models

2.2.4 Priority rules

Priorities are defined in order to reduce non-determinism in the system, that is, they are used
to filter interactions among enabled ones. As already mentioned, in this thesis, we use static
priorities that does not depend on system states. Therefore, Definition 7 remains unchanged
for concrete BIP models.

2.2.5 Composition of components

We compose the atomic components using interactions and priorities. Given a set of com-
ponents {B1, . . . , Bn} and a set of interactions γ, we denote by γ(B1, . . . , Bn) the composite
component resulting from the composition of these components using interactions γ. Sim-
ilarly, given a priority π, we denote by πγ(B1, . . . , Bn) the behavior obtained by applying
both interactions γ and priority π. Below, we define the semantics of the two models.

Definition 15. The semantics of the composite component γ(Bn, . . . , Bn), where Bi = (Li,
Pi, Ti, Ci, Xi, {Xp}p∈Pi

, {gτ}τ∈Ti
, {tcτ}τ∈Ti

, {rτ}τ∈Ti
,{fτ}τ∈Ti

, {tpcℓ}ℓ∈Li
) are atomic com-

ponents, is the transition system Sγ = (Q,Σ,−→γ) where:

• Q = L×V(X)×T (C) is the set of global states, where L = L1× . . .×Ln, X =
⋃n

i=1Xi

and C =
⋃n

i=1 Ci. We write a state q = (ℓ, v, t) ∈ Q where ℓ = (ℓ1, . . . , ℓn) ∈ L is a global
location, v = (v1, . . . , vn) ∈ V(X) is a global variables valuation and t = (t1, . . . , tn) ∈
T (C) is a global clocks valuation.

• Σ = γ ∪ Z≥0 is the set of labels,

• −→γ is the set of labeled transitions defined by the following rule:

– Discrete steps:

Interaction

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({vi}i∈I) {v′′i }i∈I = Fa({vi}i∈I)

∀i ∈ I (ℓi, vi, ti)
pi(v”i)
−→ i (ℓ

′
i, v

′
i, t

′
i) ∀i 6∈ I (ℓ′i, v

′
i, t

′
i) = (ℓi, vi, ti)

(ℓ, v, t)
a
−→γ (ℓ′, v′, t′)

– Delay steps:

Delay
δ ∈ Z≥0 ∀i ∈ {1, . . . , n} tpcℓiδ(ti + δ)

(ℓ, v, t)
δ
−→γ (ℓ, v, t+ δ)

An interaction a = {{pi}i∈I , Ga, Fa} can execute from state (ℓ, v, t) if (1) for each port
pi, the corresponding atomic component Bi can execute a transition labeled by pi from the
projection (ℓi, vi, ti) of (ℓ, v, t) on Bi, and (2) the guard Ga of the interaction evaluates
to true on the variables exported by the ports participating in interaction a. Execution of
interaction a triggers the function Fa which modifies the variables of the components exported
by ports pi. The new values obtained, encoded in the valuations v′′i are then processed by the
components’ transitions. The clocks valuation t′ is obtained when components reset clocks

2.2 Concrete Models of BIP 57

according to the set of clocks reset associated to their transitions. The states of components
that do not participate in the interaction remain unchanged.

A delay transition δ can execute from a state (ℓ, v, t) if it is allowed by the time progress
condition tpcℓi of each component Bi, i ∈ {1, . . . , n}.

Definition 16. Let Sγ = (Q,Σ,−→γ) be the semantics of γ(Bn, . . . , Bn). The semantics
of πγ(Bn, . . . , Bn), is the transition system Sπ = (Q,Σ,−→π) where −→π restricts discrete
transitions of −→γ as follows:

Prio
(ℓ, v, t)

a
−→γ (ℓ′, v′, t′) ∀a′ ∈ γ aπa′ ⇒ (ℓ, v, t) 6

a′
−→γ

(ℓ, v, t)
a
−→π (ℓ′, v′, t′)

The application of priority π filters out the interactions which are not maximal. An
interaction a = ({pi}i∈I , Ga, Fa) executes from state q = (ℓ, v, t) if any other interaction a′

having higher priority is disabled from that state.

ℓ22

sync3

set2

ℓ12

c2 ≥ 5 c2 := 0

x2

f1(y, y1)

get1

get2

sync

ℓ1

ℓ2 err

ℓ3

y2
y1

sync1

c1 := 0

ℓ21

set1

ℓ11

x1 := x1 + 1

sync1

x1

a1

syncset1 set2

y1 := x1
y2 := x2

a3

y

a2

c1 ≥ 10
get2

y = f2(y2)
Setter1 Setter2Getter

get1

get1

c2 ≤ 20

sync2

x2 := x2 + 1

a2πa3

c1 ≤ 20

Figure 2.10: A composite component.

Example 7. Figure 2.10 depicts a composition of three components setter1, setter2 and
getter1. It corresponds to an extension of the example from Figure 2.3 with variables. Com-
ponents setteri have variables xi associated to ports seti. Whenever interaction a1 occurs,
transitions synci of components setteri increments variable xi by one. Interactions a2 and
a3 transmits the value of variables xi of components setteri to component getter1 that stores
them in variables yi. Component getter1 computes f2(y2) whenever interaction a3 occurs.
The result is stored in variable y. Then, it computes f1(y, y1) whenever interaction a2 oc-
curs. The timing constraints in setter1 and setter2 imposes that a2 executes after a3. Thus
a correct execution of the model does not lead to location err in component getter1.

58 High-Level BIP Models

2.3 Conclusion

In this chapter, we presented the component framework BIP which is a formalism for mod-
eling heterogeneous component-based system. The description of systems is allowed through
the composition of atomic components characterized by their behavior and their interfaces
(communication ports). BIP relies on two operators for the composition: Interaction and
Priority. Interactions are used to specify multiparty synchronizations between components.
Priorities are used to restrict the system behavior in order to reduce non-determinism.

The BIP semantics presented in this chapter assumes atomic execution of interactions.
This semantics is called global state semantics. It assumes that the system moves from
a global state to another global state. Implementing such semantics provides sequential
execution of the system.

In the next chapter, we present partial state models which represent high-level represen-
tation for parallel execution of BIP models. We study conditions for partial state models to
be observationally equivalent to original BIP models.

3
Partial State Models

The semantic model of BIP presented in the previous chapter is based on the notion of global
states. That is, at each state of the system, a complete information about components states
is available and the execution of transitions is atomic. These models are called global state
models. In this chapter, we present partial state models in which the assumption of atomic
execution of transitions is discarded. In fact, in real systems, transitions in components
could not be instantaneous. They are necessarily subject to execution times when transitions
correspond to computations, or also communication delays when the transitions correspond to
sending messages. During the transition execution, the component state becomes unknown.
In order to model these unknown states, we derive the partial state model from the atomic
component where we distinguish between global states where the component is ready to
interact and partial states where the component is busy by the execution.

The main objective of this chapter is to identify conditions for which the partial state
model is observationally equivalent to the global state model. Preservation can be achieved
by strengthening the premises of the operational semantics rules by a predicate called safe

that ensure safe execution from partial states. This predicate depends on the future state
reached by components after execution.

3.1 Partial State Semantics

3.1.1 Atomic Components.

In order to obtain an atomic component with partial states B⊥ from the corresponding atomic
component B, we follow the approach presented in [74]. We split each transition τ = (ℓ, p, ℓ′)
of B into two transitions: (1) a visible transition labeled by p indicating the beginning of
the execution of transition τ (2) and an internal transition labeled by β indicating the end
of the execution of transition τ . These transitions are separated by a busy location added in

59

60 Partial State Models

the atomic component, modeling the fact that the components is in unknown state when it
executes (see Figure 3.1).

ℓ

ℓ′

p

tc

g

r

f

⊥
−→ ⊥τ

ℓ′

ℓ
p

tc
g
r

β

f

Transition τ = (ℓ, p, ℓ′) in the
atomic component.

Corresponding sequences of
transitions in the partial state

model.

Figure 3.1: Transformation of transitions of the atomic component.

Definition 17. Given an atomic component B = (L, P , T , C, X,{Xp}p∈P , {gτ}τ∈T ,
{tcτ}τ∈T , {rτ}τ∈T ,{fτ}τ∈T , {tpcℓ}ℓ∈L). the corresponding atomic component with partial
state is defined by B⊥ = (L ∪ L⊥, P ∪ {β}, T⊥, C, X, {Xp}p∈P , {gτ}τ∈T⊥, {tcτ}τ∈T⊥,
{rτ}τ∈T⊥,{fτ}τ∈T⊥, {tpcℓ}ℓ∈L∪L⊥) where:

• L⊥ = {⊥τ | τ ∈ T} is the set of busy locations.

• β is an additional port.

• T⊥ ⊆ (L ∪ L⊥)× (P ∪ {β})× (L ∪ L⊥) where if τ = (ℓ, p, ℓ′) is a transition in T , then
the corresponding transitions in T⊥ are τp = (ℓ, p,⊥τ) and τβ = (⊥τ , β, ℓ

′). Transition
τp has a Boolean guard gτp = gτ , a timing constraint tcτp = tcτ , reset clocks rτp = rτ ,
and no update function. Transition τβ has an update function fτp = fτ .

• The time progress condition on locations L⊥ are true.

Note that B⊥ is an atomic component whose semantics is given by Definition 12.
The execution of a transition τ = (ℓ, p, ℓ′) of B corresponds to executing two transitions

in the corresponding partial state model B⊥. First, a visible (observable) transition τp =
(ℓ, p,⊥τ) marks the beginning of the execution of τ . This transition defines the same timing
constraint, Boolean guard and clocks reset defined in τ . Second, an internal (unobservable)
transition τβ = (⊥τ , β, ℓ

′) marks the end of the execution of τ . It defines the same update
function of τ .

The time progress condition of the busy location ⊥τ is true. The latter models the fact
that transition τ may take arbitrary time to execute.

In the partial state model B⊥, we assume arbitrary execution times for transitions, ranging
from 0 to +∞, which is modeled by the time progress condition true for busy states. Notice
that B⊥ can be further constrained if bounds of the execution times of transitions are known.
For instance, if we know an estimate of the worst-case execution time of a transition τ ,
denoted by WCET (τ), the associated time progress condition of location ⊥τ is replaced by

3.1 Partial State Semantics 61

xτ ≤WCET (τ) instead of true, where xτ is a clock that is reset whenever τ is started. This
allows us to statically check the correctness of the application running on the platform, but
this is beyond the scope of this thesis.

In a partial state model B⊥, the execution of a transition τ = (ℓ, p, tc, r, ℓ′) is followed by
a lapse of time δ(τ) ∈ Z≥0 at the partial state ⊥τ , before a β-transition is executed:

(ℓ, v, t)
p
−→ (⊥τ , t[r 7→ 0])

δ(τ)
−→ (ℓ′, v′, t[r 7→ 0] + δ(τ)). (3.1)

This corresponds to the following execution sequence in the atomic component B, if such a
sequence is feasible:

(ℓ, v, t)
p
−→ (q′, t[r 7→ 0])

δ(τ)
; (ℓ′, t[r 7→ 0] + δ(τ)). (3.2)

Notice that the time step δ(τ) of B⊥ in (3.1) may not be a time step of B in (3.2) if δ(p)
is not allowed by the time pogress condition of location ℓ′, meaning that the partial state
model violates time progress conditions defined in the corresponding atomic component. In
this case, we say that the considered execution sequence is not time-safe.

A correct implementation must execute only time-safe sequences. Time-safety violations
occur in a partial state model when the execution time of an transitions is larger than what
is allowed by the time progress conditions of the corresponding atomic component. Correct
implementations are obtained for platforms that are sufficiently fast for executing the ap-
plication without violating time-safety. When this cannot be ensured for a given platform,
we propose to detect time-safety violations at run-time and to stop the system in order to
prevent the application from incorrect executions.

3.1.2 Composition using Interaction

Let γ(B1, . . . , Bn) be a composition of n atomic components {B1, . . . , Bn} with semantics
(Qg,Σ,−→γ). The corresponding partial state model is γ(B⊥

1 , . . . , B
⊥
n) where B⊥

i are the
corresponding atomic components with partial states of Bi. The semantics of γ(B⊥

1 , . . . , B
⊥
n)

is the transition system (Qg ∪Qp,Σ ∪ {β},;γ) where:

• Qp is the set of partial states where at least one component is at a busy location.

• ;γ is the set of labeled transitions defined as follows.

– Discrete steps:

a = {{pi}i∈I , Ga, Fa} ∈ γ Ga({vi}i∈I) {v′′i }i∈I = Fa({vi}i∈I)

∀i ∈ I(ℓi, vi, ti)
pi(v”i)
−→ i (ℓ

′
i, v

′
i, t

′
i) ∀i 6∈ I(ℓ′i, v

′
i, t

′
i) = (ℓi, vi, ti)

(ℓ, v, t)
a
;γ (ℓ′, v′, t′)

– Internal steps:

∃i ∈ {1, . . . , n} (ℓi, vi, ti)
β
−→ (ℓ′i, v

′
i, ti) ∀j 6= i (ℓ′j , v

′
j , tj) = (ℓj , vj , tj)

(ℓ, v, t)
β
;γ (ℓ′, v′, t)

62 Partial State Models

– Delay steps:

δ ∈ Z≥0 ∀i ∈ {1, . . . , n} tpcℓi(ti+δ)

(ℓ, v, t)
δ
;γ (ℓ, v, t+ δ)

Note that the first and the third inference rules (discrete and delay steps) are the same
as for the composition rule in the global sate semantics (Definition 15). The second rule
corresponds to the completion of a busy component.

a

a

B⊥

1 B⊥

2B⊥

1 B⊥

2B⊥

1 B⊥

2
B⊥

1 B⊥

2

β β

ℓ1 ℓ2

ℓ′1 ℓ′2

β β

ℓ1 ℓ2

ℓ′1 ℓ′2

β β

ℓ1 ℓ2

ℓ′1 ℓ′2

p1 p2

β β

ℓ1 ℓ2

ℓ′1 ℓ′2

ββ⊥τ1
⊥τ2

⊥τ1
⊥τ2

⊥τ1
⊥τ2 ⊥τ1

⊥τ2

p1 p2 p1 p2p2p1

(b) Execution of interaction a in the corresponding partial state model

p2p1

ℓ1 ℓ2

ℓ′1 ℓ′2

(a) Execution of interaction a an abstract model

B1 B1 B2B2

p2p1

ℓ1 ℓ2

ℓ′2ℓ′1

Figure 3.2: Execution of interaction a in the global state model and a corresponding execution in
the partial state model.

In the partial state model γ(B⊥
1 , . . . , B

⊥
n), the execution of an interaction a={{pi}i∈I ,Ga,Fa}

of γ(B1, . . . , Bn) can be decomposed as follows. First, the beginning of the execution of a
represented in a single transition in γ(B⊥

1 , . . . , B
⊥
n). Second, each component B⊥

i completes
by executing its internal β transition.

Figure 3.2 shows the execution of an interaction a = {{p1, p2},−,−} in the global state
semantics (a) and its corresponding execution in the partial state semantics (b). In (a) the ex-
ecution of the interaction a is atomic. That is, components B1 and B2 move instantaneously
from the global state ((ℓ1, ℓ2), v, t) to the global state ((ℓ′1, ℓ

′
2), v

′, t′). Whereas, firing interac-
tion a in the partial state model moves the components from global state ((ℓ1, ℓ2), v, t) to the
partial state ((⊥τ1 ,⊥τ2), v, t

′). Then, each component B⊥
1 and B⊥

2 completes by executing
its β transition independently, leading to the global state ((ℓ′1, ℓ

′
2), v

′, t′).

As explained in [74], the relation
β
;γ is terminating and confluent. This property leads

to the following definition.

3.1 Partial State Semantics 63

Definition 18. Let γ(B⊥
1 , . . . , B

⊥
n) be a partial state model. Given a partial state q =

(ℓ, v, t) ∈ Qp, we define qg = (ℓg, vg, t) ∈ Qg, the corresponding global state reached by
executing β transitions only (in particular without delay).

Note that qg is unique. This comes from the fact that we consider only deterministic
automata for components.

As already explained, the executions of the partial state model B⊥ corresponding to the
atomic component B⊥ may be not time-safe, due to the execution of disallowed delay steps
from busy states. When composing B⊥

i , the execution of the obtained partial state model
γ(B⊥

1 , . . . , B
⊥
n) may be also not time-safe. This is because for each component B⊥

i that is
in a partial location, its time progress condition is true. Thus, from partial state q, time
progress is constrained only by time progress conditions of components that are in a stable
location.

Example 8. Let γ(B1, B2, B3) be the composition of two components B1, B2 and B3 and let
γ(B⊥

1 , B
⊥
2 , B

⊥
3) be its corresponding partial state model. Suppose that B⊥

1 , B
⊥
2 and B⊥

3 be at
locations ⊥τ1 ,⊥τ1 and ℓ′3, respectively (see Figure 3.3(a)). The delay allowed from the partial
state ((⊥τ1 ,⊥τ1 , ℓ

′
3), v, 0) is δ ∈ [0,∞[. This is because all time progress conditions of locations

⊥τ1, ⊥τ1 and ℓ3 are true. However, for the corresponding global state ((ℓ′1, ℓ
′
2, ℓ

′
3), v, 0) the

allowed delay is restricted only to δ ∈ [0, 5] due to the time progress condition of location
ℓ′1(see Figure 3.3(b)).

ℓ′2ℓ′1 ℓ′3

⊥τ1
⊥τ3

ℓ1 ℓ2

ℓ′2ℓ′1 ℓ′3

ℓ3

⊥τ2

ℓ1 ℓ2 ℓ3

p3p1

c1 := 0

p2

c2 := 0 c3 := 0

ββ β

p3

c3 := 0

p2

c2 := 0

p1

c1 := 0

(a) Delay allowed at the partial state ((⊥τ1 ,⊥τ2 , ℓ3), v, 0) is δ ∈ [0,∞[.

(b) Delay allowed at the corresponding global state ((ℓ1, ℓ2, ℓ3), v, 0) is δ ∈ [0, 5].

c1 ≤ 5

c1 ≤ 5

B⊥

3B⊥

2B⊥

1

B1 B2 B3

Figure 3.3: Illustrative example for delay step execution from partial states.

64 Partial State Models

3.1.3 Adding Priority

The behavior of the partial state model πγ(B⊥
1 , . . . , B

⊥
n) is a restriction of γ(B⊥

1 , . . . , B
⊥
n)

with respect to the priority π. Its semantics is given by the labeled transition system (Qg ∪
Qp,Σ ∪ {β},;π) where ;π restricts the discrete steps of ;γ as shown follows:

Prio
(ℓ, v, t)

a
;γ (ℓ′, v′, t′) ∀a′ ∈ γ aπa′ ⇒ (ℓ, v, t) 6

a′
;γ

(ℓ, v, t)
a
;π (ℓ′, v′, t′)

Let a and a′ ∈ γ be to interactions such that aπa′, and let q ∈ Qp be a partial state of
πγ(B⊥

1 , . . . , B
⊥
n). Clearly, if interaction a′ is not enabled at q, interaction a can execute from

the partial state q if it is enabled. However, it is possible that the interaction a′ is enabled
at the corresponding global state qg ∈ Qg, which disallows the execution of a from qg. Thus,
the partial state model πγ(B⊥

1 , . . . , B
⊥
n) may execute interactions from partial states q that

are not allowed by πγ(B1, . . . , Bn) from the corresponding global states qg according to the
priority π.

Example 9. Let πγ(B1, B2, B3, B4) be a composition of four components. Let a = {{p1, p2},true,−}
and a′={{p3,p4},true,−} be two interactions in γ such that aπa′. Suppose that timing con-
straints of p1, p2, p3 and p4 are true Figure 3.4 (a) shows that interaction a is enabled from
the partial state q = ((ℓ1, ℓ2,⊥3,⊥4), v, t). This is because ports p1 and p2 are enabled from
partial state q. Due to the disabledness of a′ at partial state q, the priority aπa′ does not
apply and thus, a may execute from q. However, Figure 3.4 (b) shows that a′ in enabled in
the corresponding global state qg = ((ℓ1, ℓ2, ℓ3, ℓ4), v, t), since p3 and p4 are enabled at this
state. This prevent a from executing at global state qg.

Example 10. Consider the composite component πγ(B1, B2, B3) of Example 2.3. Figure 3.5
shows the corresponding partial state model πγ(B⊥

1 , B
⊥
2 , B

⊥
3). The execution of interaction a1

requires that all components B⊥
1 , B

⊥
2 and B⊥

2 be in global locations ℓ11, ℓ
1
2 and ℓ13 respectively.

After executing a1, it is possible, due to the integration of partial states, to reach a (partial)
state where B⊥

1 is at ℓ12, B
⊥
2 is at ℓ22 and B⊥

3 is at ⊥τ13
. At this partial state, time progress is

constrained only by the time progress condition of ℓ12, i.e. c1 ≤ 20, as time progress condition
of ℓ22 and ⊥τ13

are true. In addition, a3 is disabled and the priority cannot apply to a2.

As a result, it is possible that interaction a2 executes after a delay δ ∈ [10, 20] and leads
to location err in B2 which is not a reachable location in the composition πγ(B1, B2, B3).
That is, the execution sequences of the partial state model πγ(B⊥

1 , B
⊥
2 , B

⊥
3) differ from the

execution sequences of global state model πγ(B1, B2, B3).

3.1.4 Notion of Correctness

Let πγ(B1 . . . , Bn) be a composition, and let πγ(B⊥
1 , . . . , B

⊥
n) be its corresponding partial

state model. Informally, we say that πγ(B⊥
1 , . . . , B

⊥
n) is correct if each execution (delay or

interaction) from a given partial state q, is allowed from the corresponding global state qg.
Below, we define correct execution of partial state models.

3.1 Partial State Semantics 65

p3

⊥

p4

β

ℓ3

⊥⊥

ℓ4

β

ℓ2ℓ1

p1

⊥⊥

β

⊥ℓ′2
ℓ′1

B⊥

3 B⊥

4
B⊥

2B⊥

1

β

p3

⊥

p4

β

ℓ3

⊥⊥

ℓ4

β

ℓ2

p2

ℓ1

p1

⊥⊥

β β

⊥ℓ′2
ℓ′1

B⊥

3 B⊥

4
B⊥

2B⊥

1

p2

(b) Interaction a is disallowed from the corresponding global state because a′ is enabled.

(a) Interaction a = {p1, p2} may execute from the partial state q = ((ℓ1, ℓ2,⊥,⊥), v, t)

due to the disabledness of a′ = {p3, p4} at q.

Figure 3.4: Illustrative example for interaction execution from partial states.

a2πa3

x2

get2

ℓ1 y2
y1

sync1

x1

a1

syncget1set1 set2

y1 := x1
y2 := x2

a3

y

a2

sync

ℓ2

err

β β

get1

get2

⊥
τ1

⊥
τ4⊥

τ2

⊥
τ3

ℓ3

sync1
ℓ11

set3
⊥

τ2
1

⊥
τ1
1

c1 := 0

c1 ≤ 20ℓ21

sync2

c2 := 0
ℓ12

set2

c2 ≥ 5

⊥
τ1
2

⊥
τ2
2

Setter⊥1 Getter⊥ Setter⊥2

β

c1 ≥ 10

β

sync2

ℓ22 c2 ≤ 5

β
x1 := x1 + 1

f1(y, y1)

β

get1

β
y = f2(y2)

β
x2 := x2 + 1

Figure 3.5: Partial state model of Example 2.3.

66 Partial State Models

Definition 19. Let πγ(B1 . . . , Bn) be a composition, and let πγ(B⊥
1 , . . . , B

⊥
n) be its corre-

sponding partial state model. Let (Qg,Σ,−→π) and (Qp∪Qg,Σ∪{β},;π) be their semantics
respectively. Let q = (ℓ, v, t) ∈ Qp be a partial state, and let qg ∈ Qg be its corresponding
global state. Let δ ∈ Z≥0 be a delay and a ∈ γ be an interaction.

• We say that the time step q
δ
;π is correct in the partial state model πγ(B⊥

1 , . . . , B
⊥
n),

if the time step qg
δ
−→π is allowed in the composition πγ(B1, . . . , Bn).

• We say that the discrete step q
a
;π is correct in the partial state model πγ(B⊥

1 , . . . , B
⊥
n),

if the discrete step qg
a
−→π is allowed in the composition πγ(B1, . . . , Bn).

Our notion of correctness is derived from observational equivalence [75] between partial
state models and global state models by considering that β transitions are not observable.

In general, observational equivalence of two transition systems A = (QA,ΣA ∪ {β},→A)
and B = (QB,ΣB ∪{β},→B) is based on the usual definition of weak bisimilarity [75], where
β transitions are considered unobservable.

Definition 20. A weak simulation from A to B, denoted A ⊂ B, is a relation R ⊆ QA×QB,

such that ∀(q, r) ∈ R, a ∈ P : q
a
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗aβ∗

→ B r′ and

∀(q, r) ∈ R : q
β
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗

→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are both weak
simulations. We say that A and B are observationally equivalent and we write A ∼ B if for
each state of A there is a weakly bisimilar state of B and conversely.

We use observational equivalence to prove the correctness of the partial state models, as
it has a direct effect on the correctness of execution sequences. In fact, when the partial
state model and the global state model are observationally equivalent, both have the same
execution sequences by considering only observable steps (interactions and delay steps).

As already explained through the examples, the partial state model does not provide the
same execution sequences as the global state model. Thus, in general, the two models are not
observationally equivalent. In the next section, we study sufficient conditions for the partial
state model to be observationally equivalent to the global state model.

3.2 Enforcing Correctness

As it is shown in example 10, the partial state models may provide incorrect executions with
respect to the global state models. In order to obtain correct execution, we require that
partial state models be observationally equivalent to the global state models. In this section,
we study conditions for the partial state models to be observationally equivalent to the global
state models.

Let πγ(B1, . . . , Bn) be a composition and let πγ(B⊥
1 , . . . , B

⊥
n) be its corresponding partial

state model. From global states, the transitions executed in πγ(B1, . . . , Bn) and πγ(B⊥
1 ,. . . ,B

⊥
n)

are the same. Consider the execution of an interaction a in πγ(B⊥
1 , . . . , B

⊥
n) from the partial

state q = (ℓ, v, t), and the corresponding global state qg = (ℓg, vg, t) in πγ(B1, . . . , Bn). As
explained in [74], if a is enabled at q, it is also enabled at qg. However, in order to respect

3.2 Enforcing Correctness 67

the semantics of the composite model πγ(B1, . . . , Bn), a should be disabled due to priority
π if there exists an interaction a′ enabled at state qg such that (a, a′) ∈ π. Thus, a should
be blocked if enabledness of interaction a′ cannot be decided at q.

In a similar way, a delay transition δ enabled in πγ(B⊥
1 , . . . , B

⊥
n) at partial state q can be

disallowed in πγ(B1, . . . , Bn) at the corresponding global state qg if there exists at least one
component Bi having as time progress condition tpcℓgi that does not allow the time step δ,

that is, such that tpcℓgi (t+ δ) evaluates to false.

To prevent πγ(B⊥
1 , . . . , B

⊥
n) from incorrect execution, we define a predicate safe(q, σ) on

Qg ∪ Qp × γ ∪ Z≥0 indicating whether the execution of an interaction σ ∈ γ or the time
step σ ∈ Z≥0 violates the global state semantics. Clearly, the behavior of πγ(B⊥

1 , . . . , B
⊥
n) is

already safe for global states. In the following, we define conditions that should be satisfied
by any predicate safe.

• For an interaction a, a partial state q = (ℓ, v, t) and its corresponding global state
qg = (ℓg, vg, t), the predicate safe satisfies:

safe((ℓ, v, t), a) ⇒ ∄b ∈ γ . aπb ∧ (ℓg, vg, t)
b

;γ (3.3)

• For a time step δ, safe also satisfies:

safe((ℓ, v, t), δ) ⇒ ∀i ∈ {1, . . . , n}tpcℓgi (t+ δ) (3.4)

The following definition defines the safe partial state model.

Definition 21. Given a predicate safe on Qg ∪Qp× γ ∪Z≥0 satisfying conditions(3.3) and
(3.4), we define the safe partial state model denoted by safe[πγ(B⊥

1 , . . . , B
⊥
n)]. Its semantics

is defined by the labeled transition system (Qg ∪Qp,Σ ∪ {β},−−−→
safe

) where Σ = γ ∪ Z≥0 and

−−−→
safe

is the set of labeled transitions defined as follows:

• Discrete steps:

(ℓ, v, t)
a
; (ℓ′, v′, t′) safe((ℓ, v, t), a)

(ℓ, v, t)
a
−−−→
safe

(ℓ′, v′, t′)

• Internal steps:

(ℓ, v, t)
β
; (ℓ′, v′, t)

(ℓ, v, t)
β
−−−→
safe

(ℓ′, v′, t)

• Delay steps :

(ℓ, v, t)
δ
; (ℓ, v, t+ δ) safe((ℓ, v, t), δ)

(ℓ, v, t)
δ
−−−→
safe

(ℓ, v, t+ δ)

68 Partial State Models

Theorem 1. safe[πγ(B⊥
1 , . . . , B

⊥
n)] ∼ πγ(B1, . . . , Bn).

Proof. We denote by QU the set of states of πγ(B1, . . . , Bn) and QV the set of states of

safe[γ⊥(B⊥
1 , . . . , B

⊥
n)]. Let R = {(qg, q) ∈ QU ×QV ∧ q

β∗

−−−→
safe

qg}. We show that it is a weak

bisimulation. Since the BIP model πγ(B1, . . . , Bn) does not have β transition, it is enough
to prove that:

(i) For each (qg, q) ∈ R such that q
β
−−−→
safe

q′, (qg, q′) ∈ R.

(ii) For all (qg, q) ∈ R and σ ∈ γ∪Z≥0 such that qg
σ
→ q′g, there is q′ such that (q′g, q′) ∈ R

and q
β∗σβ∗

−−−−→
safe

q′.

(iii) For each (qg, q) ∈ R and σ ∈ γ ∪ Z≥0 such that q
σ
−−−→
safe

q′, there is q′g such that

(q′g, q′) ∈ R and qg
σ
→ q′g.

(i) Consequence of Definition 18.

(ii) If σ is an interaction a ∈ γ. Suppose that (qg, q) ∈ R and qg
a
−→ q′g. We have q

β∗

−−−→
safe

qg

by definition of R. Then, by definition of −−−→
safe

, we have qg
a
−−−→
safe

q′
β∗

−−−→
safe

q′g. We

conclude by remarking that (q′g, q′) ∈ R. The same reasoning applies if σ is a time step
δ ∈ Z≥0.

(iii) If σ is an interaction a ∈ γ. Suppose that (qg, q) ∈ R and q
a
−−−→
safe

q′. According to

the definition of −−−→
safe

, safe(q, a) holds. That is, there is no interaction b having higher

priority that is enabled from state qg. That is, a can execute from qg according to
the global state semantics i.e., qg

a
−→ q′g. According to Definition 18, from q′ there

exists a unique state q′g reachable by doing β transitions, that is q′
β∗

−−−→
safe

q′g. Thus, we

conclude that (q′g, q′) ∈ R.

The same reasoning applies if we consider that σ is a time step and the fact that
safe(q, δ) holds.

Ideally, safe should be obtained by using equivalence instead of implication in (3.3)
and (3.4), corresponding to the less restrictive predicate allowing the maximal parallelism
in the system. However, its computation requires the knowledge of the reachable global
state (ℓg, vg, t) from any partial state (ℓ, v, t). This requires to guess what will be the timing
constraints, guards and time progress conditions after the completion of all busy components.
In general, it is not possible to compute ideally the predicate safe, since it may depend on
the future values of the variables of the busy components. Nonetheless, we can always over-
approximate it [76]. To this end, we define safe∗ an over-approximation of safe such that:

safe∗ ⇒ safe. (3.5)

This predicate will be used for the implementation of real systems.

3.3 Conclusion 69

3.3 Conclusion

In this chapter, we defined partial state models that correspond to a high-level representation
for parallel execution of BIP models. We defined conditions for which partial state models
are observationally equivalent to global state models. However, partial state models do not
provide details on how to implement multiparty interactions. In the next chapter we present
a solution to implement multiparty interactions based on a centralized scheduler.

70 Partial State Models

4
Parallel Real-Time Systems Design with Centralized

Scheduler

In the previous chapter, we defined partial state models that correspond to high-level repre-
sentation for parallel execution of BIP models. Those models cannot be directly implemented
since they do not provide details on how to implement multiparty interactions and priorities
in distributed settings.

In a distributed context, we assume that components communicate through asynchronous
message-passing. Thus, each component becomes a distributed component that is able either
to send a message, to wait for a message or to execute an internal computation. Our solu-
tion to implement multiparty interactions is based on two-way handshake protocol. Indeed,
distributed components exchange messages with a coordinator called scheduler (built as a
BIP component) responsible for triggering interactions. In order to evaluate the enabled
interactions at a given state, the distributed components are required to send their current
states (e.g. enabled ports, time progress condition, timing constraints, etc.) to the scheduler
component. This is realized by splitting each component transition into two transitions: one
transition to send its current state to the scheduler in a message called offer and another
transition to receive notification from the scheduler triggering the port to be executed. Re-
garding the scheduler, it is required to accumulate offers from distributed components and
decides the execution of interactions on-line. As offers are sent asynchronously, the scheduler
may not have a global knowledge about system and it may decide to execute an interaction
based on a partial knowledge. This corresponds to an execution from a partial state of the
partial state models presented in the previous chapter. As explained in Subsection 3.2, safe
interactions executions from partial states are ensured using the predicate safe. Thus, any
execution decided by the scheduler should also agree with the predicate safe. As explained
in 3.2, in practice we are using safe∗ based on over-approximations of reached states.

71

72 Parallel Real-Time Systems Design with Centralized Scheduler

In this chapter,we describe in Section 4.1 the class of BIP models that allows the construc-
tion of our target Send/Receive models. In Section 4.2, we define formally the transformation
from the centralized to Send/Receive BIP models. Finally, in Section 4.3, we prove the cor-
rectness of our obtained models.

4.1 Target Models

We target models that could be directly implementable using basic message-passing prim-
itives. We consider three types of elementary actions: message sending, message receiving
and internal computation. Thus, our target models include three types of ports: unary ports,
send ports and receive ports. Unary ports are used when components have to execute in-
dependently from each others, which are formally expressed using unary interactions (i.e.
an interaction consisting of a single port). Such unary interactions correspond to internal
computation in components. Send and receive ports participate in message-passing interac-
tions which are interactions between a single send port and one or more receive ports. We
call those interactions Send/Receive interactions. When such an interaction executes, the
variables exported by the send port are copied in the variables exported by the receive port.
We require that send port cannot be blocked by corresponding receive ports. That is, each
time a send port is enabled, its corresponding Send/Receive interaction has to be enabled too
so that every Send/Receive interaction can take place whenever the send port is enabled.We
denote this class of BIP models by Send/Receive models. The definition of such models is
given below.

Definition 22. We say that BSR = γSR(BSR
1 , . . . , BSR

n) is a Send/Receive BIP model iff
we can partition the set of ports of BSR into three sets Ps, Pr, and Pu that are respectively
the set of send-ports, receive-ports, and unary ports, such that:

• Each interaction a ∈ γSR, is either (1) a Send/Receive interaction with a = (s, r1, r2, . . . , rk),
s ∈ Ps, r1, . . . , rk ∈ Pr, Ga = true and Fa copies the variables exported by port s to
the variables exported by ports r1, r2, . . . , rk, or, (2) a unary interaction a = {p} with
p ∈ Pu, Ga = true, Fa is the identity function.

• If s is a port in Ps, then there exists one and only one Send/Receive interaction a ∈
γSR with a = (s, r1, r2, . . . , rk) and all ports r1, . . . , rk are receive-ports. We say that
r1, r2, . . . , rk are the receive-ports associated with s.

• If a = (s, r1, . . . , rk) is a Send/Receive interaction in γSR and s is enabled at some
global state of BSR, then all its associated receive-ports r1, . . . , rk are also enabled at
that state.

Definition 22 defines a class of BIP models for distributed implementation based on asyn-
chronous message passing. In such systems, communication is sender-triggered, where a
message can be emitted by the sender regardless of the availability of receivers. The third
property of the definition requires that all receivers are ready to receive whenever the sender
may send a message. This ensures that the sender is never blocked and can trigger the

4.1 Target Models 73

Send/Receive interaction. Intuitively, a model that meets properties of Definition 22 can be
seen as a set of independent processes communicating through asynchronous message passing.

4.1.1 Send/Receive BIP models Architecture

Let B = πγ(B1, . . . , Bn) be an input BIP model of the proposed transformation. The
Send/Receive BIP model corresponding to B is based two layers.

• The Atomic Component Layer consists of a transformation of atomic components Bi

into Send/Receive atomic component BSR
i . Components BSR

i send asynchronously
offer messages to notify the scheduler about their current state.

• The Scheduler Layer deals with execution of interactions. Based on offers sent by
atomic components, the scheduler may decide the execution of an interaction at a given
time and send back notifications to participating components specifying which port has
to be executed.

o2o1 sync1

BSR
1

get2get1 o3 set2

BSR
3BSR

2

set1 o2 sync get1 get2 o3

set1 sync

sync1o1 set2

sync2

sync2

Scheduler

Figure 4.1: Send/Receive BIP model architecture of Figure 2.10.

Example 11. Figure 4.1 presents the Send/Receive BIP model obtained from the model of
Figure 2.10. Note that we assume that B1=setter1, B2=getter1 and B3=setter2.

Communications between atomic components and the centralized scheduler are repre-
sented by Send/Receive interactions whose execution is instantaneous according to the se-
mantics of BIP, which is not realistic for all kind of systems. In this chapter, we consider
systems that provide fast communications. We will see that this assumption is an important
requirement for the correctness of the implementation of our Send/Receive models. We will
see in Chapter 6 how to deal with non instantaneous communications.

4.1.2 Expressing Timing Constraints and Time Progress Conditions Using
a Global Clock

Every atomic component can define a set of local clocks. They can be reset at any time and
are involved in timing constraints and time progress conditions. In this thesis, we make use
of a global clock in Send/Receive models. In fact, a global clock allows a common time scale
among components and the scheduler. It reduces the effort of the scheduler when keeping

74 Parallel Real-Time Systems Design with Centralized Scheduler

track of the actual progress of time, since it needs to maintain (update) only one clock.
Any component clock c is obtained by simply shifting the global clock g by an amount of
time that is constant as soon as the clock c is not reset, which is very efficient. The clock
g is initialized to 0 and is never reset, and measures the absolute time elapsed since the
system started executing. It is used when atomic components inform the scheduler about
their timing constraints and time progress conditions. Therefore, we follow the approach
of [77]: for each clock c of an atomic component Bi we introduce a variable ρc that stores the
absolute time of the last reset c. This variable is updated whenever the component executes
a transition resetting clock c. In fact, when the scheduler executes an interaction a, its stores
its execution date in a variable texa . The value of this variable is sent by the scheduler to
participating components when notifying them. Each participating component executes then
the corresponding transition according to the received notification, and updates each variable
ρc to texa if the transition resets clock c in the original model. Notice that the value of c can
be computed from the current value of g and ρc by using the equality c = g− ρc. This allows
to entirely get rid of clocks of components Bi, keeping only the clock g and variables ρc,
c ∈ Ci. Using ρc, any timing constraint tc involved in a component B can be expressed using
the clock g instead of clocks C. Using (2.1), we transform tc as follows:

tc =
m∨

k=1

∧

c∈C

lkc ≤ c ≤ ukc =
m∨

k=1

∧

c∈C

lkc + ρc ≤ g ≤ ukc + ρc.

That is, tc is a disjunction of interval constraints on g of the form:

tc =

m∨

k=1

max{lkc + ρc}c∈C ≤ g ≤ min{ukc + ρc}c∈C. (4.1)

Similarly, any time progress condition tpc involved in component B is transformed using
the clock g. Using (2.2), we transform tpc as follows:

tpc =
∧

c∈C

c ≤ uc =
∧

c∈C

g ≤ uc + ρc.

That is, tpc is an interval constraint on g of the form:

tpc = g ≤ min{uc + ρc}c∈C. (4.2)

4.2 Transformations

In this section, we present the formal definition of our transformation from BIP models into
Send/Receive BIP models. First, we explain in Subsection 4.2.1 how to transform an atomic
component of the original model into a Send/Receive atomic component. Then, we explain
in Subsection 4.2.2 how to build the centralized scheduler component. Finally, we define the
interactions between Send/Receive atomic components and the scheduler in Subsection 4.2.3.

4.2 Transformations 75

4.2.1 Transformation of Atomic Components

The transformation of an atomic BIP component B into a Send/Receive atomic component
BSR is as follows. It relies on decomposing each atomic transition of B into a send and a
receive transition. As already said, the idea is to create a protocol between atomic components
and the scheduler. The protocol’s first step is initiated by the atomic component BSR by
sending an offer to the scheduler through a dedicated send port. Then, the second step
consists on waiting a notification from the scheduler arriving on a receive port. The offers
contain necessary information to determine whether an interaction can be safely executed.

Since each offer sent by a component is followed by a notification from the scheduler, we
split each location ℓ into two locations, namely ℓ itself and ⊥ℓ as shown in Figure 4.2.

tpcℓ

q

tpcℓ

tpcℓ
p

p q

ℓ

⊥ℓ

ℓ

o

Figure 4.2: Atomic component transformation.

From location ⊥ℓ, the Send/Receive atomic component is not at a stable location and is
able to send an offer to the scheduler. By introducing ⊥ℓ, atomicity of original transition is
broken. Thus, this location could be seen as a busy location in the partial state model.

According to condition (3.4) of Subsection 3.2, time is allowed to progress from a par-
tial state of a partial state model only if it is allowed by its corresponding next reached
global state. This condition could be satisfied by enforcing each atomic component to re-
spect, at each busy location, the time progress condition of each next stable location. To
satisfy this condition in the Send/Receive atomic component, we put at location ⊥ℓ the time
progress condition tpcℓ originally defined in the atomic component. That is, we enforce the
Send/Receive atomic component to complete its internal computation and to send its offer
to the scheduler from location ⊥ℓ before the time progress conditions tpcℓ becomes false.

Send/Receive atomic components sends offers to the scheduler to inform about their
states. Based on the offers received, the scheduler decides the execution of interactions. As
offers are sent asynchronously, the scheduler may not have a global knowledge about system
and it may decide to execute an interaction based on a partial knowledge. This corresponds
to an execution from a partial state of the partial state models. According to condition (3.3)
of Subsection 3.2, an interaction a is allowed to execute from a partial state only if there is no
enabled interaction b having higher priority than a and enabled from the corresponding global
state. To compute the enabledness of a the scheduler needs information about the current
states of components participating in a. Thus, we require that the offers includes information
about their current states. In order to safely execute a, the scheduler is required to compute
the enabledness of each interaction b, such that aπb to ensure safe execution of a. As the

76 Parallel Real-Time Systems Design with Centralized Scheduler

computation of interaction b requires waiting fresh offers from components participating in
b, the scheduler may use information of the last received offers from these components to
approximate the enabledness of b from the next reached state. To this end, we require that
components includes also in their offers information containing approximations of their next
reached states.

Offer Construction

An offer contains exact variables that encode the current state, and approximated variables
that encode an approximation of the next reached state.

We include the following variables to inform about the current state of the component:

• an exact time progress condition variable tpc that stores the time progress condition of
the current location of the component.

• for each port p, an exact timing constraint variable tcp that is set to the timing con-
straint of the transition labeled by p and enabled at the current location if exists, or is
set to false otherwise.

• for each port p, an exact Boolean guard variable gp that is set to the evaluation of
the Boolean guard of the transition labeled by p and enabled at the current location if
exists, or is set to false otherwise.

We also include variables that stores the approximations of next reached states of the
component. At this step, we dot not provide how to compute these approximations, but
we define only variables needed to store approximations. The next paragraph discusses how
these approximations are computed.

• For each port p, an approximated timing constraint variable tc∗p that is set to the
disjunction of the timing constraints approximations of transitions labeled by p and
enabled from next locations if exist, or and is set to false otherwise.

• For each port p, we include an approximated Boolean guard variable g∗p. This variable
stores the disjunction of approximated evaluation of Boolean guard of transitions labeled
by p and enabled from next locations if exists, or and is set false otherwise.

Note that approximations involve only timing constraints and Boolean guards of ports
enabled from the next reached location of the component. These approximations are needed
to approximate the enabledness (timing constraint and Boolean guard) of higher priority
interactions when the scheduler wants to execute a lower priority interaction.

Example 12. Consider an atomic component as depicted in Figure 4.3. It contains three
ports namely p, p1 and p2. In the corresponding Send/Receive atomic component, an offer
includes the following variables: the exact time progress condition variable tpc, the exact
timing constraint variables tcp1, tcp2 and tcp, the exact Boolean guard variables gp1 and gp2,
the approximated timing constraint variables tc∗p1, tc

∗
p2

and tc∗p and the approximated Boolean

4.2 Transformations 77

ℓ1 ℓ2

tc1 tc2

ℓ

p

tpcℓ

tc3 tc4

p

p2p1

p1 p2 p

Figure 4.3: Illustrative Example.

guard variables g∗p1 and g∗p2. We denote by x̃, the approximation value of x, where x could be
either a timing constraint or a Boolean guard.

At location ⊥ℓ in the corresponding Send/Receive atomic component, the values of these
variables are the following.

• tpc is set to the time progress condition of location ℓ,i.e. tpc := tpcℓ

• Since transitions labeled by p1 and p2 are enabled from location ℓ, the variables tcp1 and
tcp2 are set to the timing constraint of these transitions i.e. tcp1 := tc1 and tcp2 := tc2.
tcp is set to false since there is no transition enabled from ℓ and labeled by p.

• Since the enabled transitions from ℓ1 and ℓ2 are labeled by p, the variable tc∗p is set to the

disjunction of approximated timing constraints of these transitions .i.e. tc∗p := t̃c3∨ t̃c4.
The approximated timing constraint variables tc∗p1 and tc∗p2 are set to false since there
is no transition enabled from locations ℓ1 and ℓ2 and labeled by p1 or p2.

• Since there is no guard (true by default), on all transitions labeled by p and enabled
from ℓ1 and ℓ2, the variable g∗p is set to true. g∗p1 and g∗p2 are set to false since there
is no transition enabled from locations ℓ1 and ℓ2 and labeled by p1 or p2

Remark . Note that the information about approximation of reached state could be more
precise, in particular for timing constraints. In fact, the approximated timing constraint
variable tc∗p contains disjunction of approximated timing constraints of each transition enabled
from a next location reached by executing a transition from current location and labeled by
p. That is, we consider all possible timing constraints of transitions enabled from a next
location regardless the transition (port execution) leading to that location. This can be
improved by computing each possible timing constraint of p separately, depending on the
port execution that leads to the timing constraint of p. To do that, we define for each pair
of ports p, p′, such that p′ is enabled from a location reached by executing port p, the refined
approximated timing constraint variable tc∗p(p

′). This variable is set to the approximation
of timing constraint of transition labeled by p and enabled from location reached from the
current location by executing a transition labeled by port p′. Then, the scheduler selects
the right approximation depending on what port it chooses for execution. This method for

78 Parallel Real-Time Systems Design with Centralized Scheduler

computing approximations involves a lot of variables which may be in the detriment of clarity
and simplicity. Therefore, we do not consider this method.

Computing approximations

Consider a location ℓ. Let tc and g be a timing constraint and a Boolean guard to be
approximated from ℓ, respectively. We denote by t̃c the approximation of tc, and g̃ the
approximation of g.

Computation of t̃c. As explained in Subsection 4.1.2, we transform the timing constraint
tc into a timing constraint expressed on clock g of the form tc =

∨m
k=1max{lkc +ρc}c∈C ≤ g ≤

min{ukc + ρc}c∈C. In order to compute t̃c we need to approximate the bounds ukc + ρc, l
k
c + ρc

of each clock c. Let ũkc+ ρ̃lc and l̃kc + ρ̃uc be the approximations of the bounds ukc+ρc and lkc +ρc
respectively. As t̃c is an-over approximation of tc, the values of l̃kc and ρ̃lc correspond to the
minimal possible values of lkc and ρc respectively, and the values of ũkc and ρ̃uc correspond to
the maximal possible values of lkc and ρc, respectively. These values are computed as follows.

• If lkc (resp. ukc) involves expressions containing non-constant variables, then l̃kc is set
to 0 (resp. +∞), otherwise l̃kc (ũkc , resp.) is set to lkc (resp. ukc). That is, the bounds
a timing constraint are over-approximated to the extreme values if they can not be
evaluated statically.

• If clock c is not reset by any transition τ enabled from ℓ, then ρ̃lc and ρ̃uc are set to ρc.
Otherwise, ρ̃lc is set to tex where tex stores the last execution of the component and ρ̃uc
is set to +∞. That is, the minimal possible value of ρc corresponds exactly to the last
execution date of the component, which means that for the best case, the component
resets c at the date of its last execution. For the maximal values, we put +∞ as default
value.

Computation of g̃. g̃ is set to g if variables involved in g are constant. Otherwise, g̃ is
set to true.

ℓ

ℓ1

ℓ2 ℓ3

c2 ≤ g(x)

p

c1 := 0

p2p1

p2p1p

c1 ≤ 5 ∧ c2 ≥ 3

Figure 4.4: Illustrative Example.

4.2 Transformations 79

Example 13. Consider an atomic component as shown in Figure 4.4. The atomic component
includes two clocks. Suppose that the component is at location ℓ, and that the clocks reset
dates ρc1 and ρc2 at this location are set to 0. At this location, we need to approximate the
timing constraints tcτ1 and tcτ2 of transitions τ1 = (ℓ1, p1, ℓ2) and τ2 = (ℓ1, p2, ℓ3), since ℓ1 is
the reached location from ℓ. Let t̃cτ1 and t̃cτ2 be the approximation values of tpcℓ1, tcτ1 and
tcτ2 respectively. These values are computed as follows.

• Since the timing constraint tcτ2 = c2 ≤ g(x) has only an upper bound that involves
non-constant values, then its approximation t̃c2 is set to g ≤ +∞ which is simplified to
true.

• The timing constraint tcτ1 = c1 ≤ 5 ∧ c2 ≥ 3 is expressed on two clocks c1 and c2 and
involves constant values, which is expressed on clock g as follows: tcτ1 = g ≤ 5+ρc1∧g ≥
3+ρc2. In order to compute t̃cτ1, we have to approximate reset dates ρc1 and ρc2. First,
as ρc1 is involved in the upper bound of the timing constraint g ≤ 5+ ρc1, then we have
to compute its maximal value ρ̃uc1. As c1 is reset by the transition leading to ℓ1, ρ̃

u
c1

is set
to +∞. Second, as ρc2 is involved in the lower bound of timing constraint g ≥ 3 + ρc2,
we have to compute its minimal possible value ρ̃lc2. As c2 is not reset by the transition
leading to ℓ1, ρ̃

u
c1

is set to the last reset date of clock c1 which is 0. To summarize, t̃cτ1
is set to g ≥ 3.

Definition of Send/Receive Atomic Component

As already explained, Send/Receive components express timing constraint and times progress
conditions using the global clock g. The translation of such constraints is done through the
use of reset dates variables ρc of each clock c. These variables are updated whenever the
scheduler sends notifications for execution to the component. These notifications bring the
execution date of the component. We define in the Send/Receive atomic component the
variable tex that stores the execution date of the component. The value of ρc is set to the
execution date tex, whenever the component of the original model resets clock c.

We are now ready to define the transformation of B into BSR.

Definition 23. Let B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {rτ}τ∈T ,
{tpcℓ}ℓ∈L) be an atomic component. The corresponding Send/Receive component is BSR =
(LSR, PSR, TSR, CSR, XSR,{XSR

p }p∈PSR , {gτ}τ∈TSR , {tcτ}τ∈TSR , {fτ}τ∈TSR ,{rτ}τ∈TSR ,
{tpcℓ}ℓ∈LSR) such that:

• LSR = L ∪ {⊥ℓ | ℓ ∈ L}. The time progress conditions of locations ⊥ℓ and ℓ are equal
to tpcℓ expressed on clock g.

• XSR = Xp∈P ∪ {tcp}p∈P ∪ {gp}p∈P ∪ {tpc} ∪ {t̃cp}p∈P ∪ {g̃p}p∈P ∪ {ρc}c∈C ∪ {t
ex}

where tcp and t̃cp are exact and approximated timing constraint variables, gp and g̃p
are exact and approximated Boolean variables, tpc is the exact time progress condition
variable, ρc are clock reset date variables, and tex is the execution date variable.

• CSR = {g}

80 Parallel Real-Time Systems Design with Centralized Scheduler

• PSR = P ∪ {o} where o is a send-port and p ∈ P is a receive-port. The port
o is associated with the set of variables XSR

o = X ∪ {tcp}p∈P ∪ {gp}p∈P ∪ {tpc} ∪
t̃cp}p∈P ∪ g̃p}p∈P , that is, variables needed to compute the current state, as well as
the approximations of the next reached states. For all other ports p ∈ P , we have
XSR

p = Xp ∪ {t
ex}.

• For each place ℓ ∈ L, we include an intermediate place ⊥ℓ and an offer transition
τℓ = (⊥ℓ, o, ℓ) in TSR. The guard gτℓ and the timing constraint tcτℓ are true, and the
update function fτℓ is the identity function.

• For each transition τ = (ℓ, p, ℓ′) ∈ T , we include in TSR a notification transition
τp = (⊥ℓ, p, ℓ

′). The guard gτp is true. The function fτp applies first the original
update function fτ , then updates the variables needed to compute the current state as
follows:

– ∀c ∈ rτ ρc := tex,

– tpc := tpcℓ′ ,

– ∀p′ ∈ P tcp′ :=

{
tcτ ′ if τ ′ = (ℓ′, p′, ℓ′′) ∈ T

false otherwise.

– ∀p′ ∈ P gp′ :=

{
gτ ′ if τ ′ = (ℓ′, p′, ℓ′′) ∈ T

false otherwise.

and updates variables needed to approximate next reached state as follows.

Let T ′ = {τ ′ | τ ′ = (ℓ′, p′, ℓ′′) ∈ T} be the set of transitions enabled from location ℓ′.
Let L′′ = {ℓ′′ | τ ′ = (ℓ′, p′, ℓ′′) ∈ T} be the set of locations reachable after executing a
transition from the location ℓ′. For each port p′′ ∈ P , let Tp′′ = {τ

′′ = (ℓ′′, p′′, ℓ′′′) | ℓ′′ ∈
L′′ ∧ τ ′′ ∈ T} be the set of possible transitions at location ℓ′′ ∈ L′′ and labeled by port
p′′. For each port p′′ ∈ P , the approximated timing constraints variables tc∗p′′ and the
approximated Boolean guards variables g̃∗p′′ are updated as follows:

– ∀p′′ ∈ P tc∗p′′ :=

{∨
τ ′′∈Tp′′

t̃cτ ′′ if Tp′′ 6= ∅

false otherwise.

– ∀p′′ ∈ P g∗p′′ :=

{∨
τ ′′∈Tp′′

g̃τ ′′ if Tp′′ 6= ∅

false otherwise.

In the above definition, the execution of a transition τ = (ℓ, p, ℓ′) of a component B
corresponds to the following two execution steps in BSR. Firstly, an offer transition τℓ = (⊥ℓ

, o, ℓ) is used to transmit information about the current state of component B which is of two
types::

• information needed by the scheduler to compute enabled interactions involving B, that
is:

4.2 Transformations 81

– for each port p′ ∈ P , the values of its variables Xp′ . Note that the values of these
variables are also needed for implementing transfer data functions.

– for each port p′ ∈ P , the exact timing constraint variable tcp′ corresponding to
the enabledness of p′ at ℓ with respect to time.

– for each port p′ ∈ P , the exact Boolean guard variable gp′ corresponding to the
enabledness of p′ at ℓ with respect to the actual valuation of variables.

– the exact time progress condition variable tpc corresponding to the current time
progress condition at ℓ.

• information needed by the scheduler to restrict enabled interactions into safe ones, that
is:

– for port p′′ ∈ P , the approximated timing constraint variable tc∗p′′ corresponding
to the potential enabledness of p′′ reached after the execution of a single transition
from ℓ. The timing constraint tc∗p′′ corresponds to the disjunction of approximated
timing constraints of transitions enabled from ℓ′ and labeled by p′′.

– for port p′′ ∈ P , the approximated Boolean guard variable g∗p′′ corresponding
to the enabledness of p′′ after the execution of a transition enabled from ℓ. The
Boolean guard g∗p′′ corresponds to the disjunction of approximated Boolean guards
of transitions enabled from ℓ′ and labeled by p′′.

Secondly, a response transition τp = (ℓ, p,⊥ℓ′) is executed once the scheduler decides to
execute an interaction involving port p. Similar to τ in B, τp updates values of variables X
according to fτ . It also updates variables tpc, tcp′ , gp′ , tc

∗
p′′ and g∗p′ to set up-to-date values

for the next offer (i.e. starting from ℓ′).

g̃sync1

g̃set1

t̃cset1

o1

x1

tpc1

tcset1

tcsync1

set1sync1

ℓ11ℓ21

x1 := x1 + 1

o1

o1
⊥ℓ21

u1

u2

sync1

set1

tex

ρc

gsync1

gset1

g ≤ 20 + ρc1

g ≤ 20 + ρc1

t̃csync1

⊥ℓ11

Figure 4.5: Send/Receive version of the Setter1 atomic component from Figure 2.10.

Example 14. Figure 4.5 shows the transformed version of the atomic component Setter1
from Figure 2.10. For each original location ℓ, a busy control location ⊥ℓ has been added,

82 Parallel Real-Time Systems Design with Centralized Scheduler

with a transition labeled by the offer port o1 from ⊥ℓ to ℓ. Before executing these transitions
the update functions u1 or u2 are called. They are defined as follows:

u1 =

ρc1 = tex

tpc1 := g ≤ 20 + ρc1
tcsync1 := false

tcset1 := g ≥ 10 + ρc1
gsync1 := false

gset1 := true

tc∗sync1 := true

tc∗set1 := false

g∗sync1 := true

g∗set1 := false

u2 =

tpc1 := true

tcsync1 := true

tcset1 := false

gsync1 := true

gset1 := false

tc∗sync1 := false

tc∗set1 := g ≥ 10 + tex

g∗sync1 := false

g∗set1 := true

For instance, when reaching ⊥ℓ11
, the variable tcsync1 is set to the timing constraint of the

transition enabled from ℓ11 and labeled by sync1. The variable tcset1 is set to false since there
is no enabled transition labeled by port set1 from location ℓ11. Moreover, the variable tpc1 is
set to the time progress condition of ℓ11. Regarding approximations, we look at location ℓ21
which is the only reached location from ℓ11 in the atomic component Setter1. We approximate
the timing constraint g ≥ 10 + ρc of transition labeled by set1. Since the clock c1 is reset by
the transition labeled by sync1 and is involved in the lower bound of the timing constraint
g ≥ 10 + ρc, then, the variable tc∗set1 is set to g ≥ 10 + tex. The variable tc∗sync1 is set to
false since there is no enabled transition labeled by sync1 from location ℓ21.

4.2.2 Building the Scheduler in BIP

We present now how to implement the scheduler component in BIP. The scheduler works
with a partial view of the global state. Information about components states is given to the
scheduler through offers. To maintain a safe approximation of system state at any moment,
the scheduler uses the approximated values delivered by offers for components that are exe-
cuting. Indeed, when the scheduler receives an offer from a Send/Receive component, its uses
the variables corresponding to its current state until it executes. Once the scheduler notifies
a component for executing on a selected port, it uses the approximated values of its last
offer, until a new offer is received from the component informing about its new current state.
Based on received offers, the scheduler computes enabled interactions and takes decision by
either executing one interaction or waiting for receiving more offers.

4.2 Transformations 83

The behavior of the scheduler is described as a Petri net in which there is a token for each
component circulating between three different types of places as shown in Figure 4.6:

execute interaction

send notification

receive offer

from component Bi

involving Bi

to Bi on port pi

ri

wi

spi

Figure 4.6: Circuit of a single token corresponding to component B.

• waiting place: there is one waiting place for each component. In Figure 4.6, the place
labeled by wi is a waiting place corresponding to component Bi. At this place the
scheduler waits for a fresh offer from the corresponding component.

• received place: there is one received place for each component. In Figure 4.6, the place
labeled by ri is a received place corresponding to component Bi. Such place is marked
once the scheduler has received a fresh offer from the corresponding component until
an interaction involving that component is selected for execution.

• sending place: there is one sending place for each port of each component. In Figure 4.6,
the place labeled by spi is a sending place corresponding to port pi of component Bi. At
this place, the scheduler has selected an interaction and is willing to send a notification
to one of the participating component in order to execute on the selected port.

Initially, tokens are in waiting places. Once an offer is received the corresponding token
moves from the waiting place to the received place. The scheduler copies then the values
of variables contained in the offer in its local variables. When all offers from components
involved in an interaction have been received, the scheduler computes its timing constraint
and its Boolean guard. If the guard evaluates to true and when the timing constraint
becomes true with respect to current valuation of g, the scheduler executes the interaction
and moves the tokens from received to sending places corresponding to the ports involved
in the interaction. Finally, from the sending places, the scheduler sends notifications to the
involved components and puts back tokens to waiting places.

84 Parallel Real-Time Systems Design with Centralized Scheduler

Computing timing constraints and Boolean guards of interactions

Let a = ({pi}i∈I , Ga, Fa) be an interaction. The scheduler computes the Boolean guard of a
denoted by ga as follows:

ga = Ga

∧

p∈a

gpi (4.3)

Where gpi are exact Boolean guard variables of ports pi. That is, the Boolean guard of a
corresponds to the conjunction of Ga with the Boolean guards of each port pi participating
in a.

It computes the timing constraint of a denoted by tca as follows:

tca =
∧

p∈a

tcpi (4.4)

Where tcpi are exact timing constraint variables of port pi. That is, the timing constraint of
a corresponds to the conjunction of timing constraints of each port pi participating in a.

In order to enable only safe execution of a, the scheduler removes from tca each date at
which there is an interaction a′ that has higher priority than a and is potentially enabled.

Let a′ be an interaction such that aπa′. Interaction a′ is enabled if tca′ ∧ ga′ , where
tcb =

∧
pj∈b

tcpj and gb = Gb

∧
pj∈a

gpj , evaluates to true. That is, if its timing constraint
tca′ and its Boolean guard ga′ are true. The expression tca′ ∧ ga′ could be seen as a timing
constraint as the evaluation of ga′ could be either true or false (these values are included
in the grammar of timing constraints). The interaction a′ is then disabled if the timing
constraint ¬(tca′ ∧ ga′) is true.

We define Ka the timing constraint at which a is allowed to execute according to the
priority. Informally, Ka is a timing constraint containing dates at which each interaction a′

having higher priority than a is disabled. Formally, Ka is defined as follows:

Ka =
∧

aπa′

¬(tca′ ∧ ga′) (4.5)

The computation of Ka requires receiving fresh offers from each component participating
in each interaction b such that aπb. As offers contains approximations of reached states,
the scheduler may over-approximate Ka when the offers of one or more components are not
fresh. We denote by K∗

a the over-approximation of Ka. For offers of components that are
not fresh, the scheduler uses the approximated values when computing K∗

a . To keep track
of the freshness of offers, we include in the scheduler a Boolean variable rcvi associated with
components Bi indicating whether offers corresponding to components are fresh. The variable
rcvi is useful for the scheduler to decide whether it uses the approximated or the exact values
received in the last offer of component Bi. More precisely if rcvi is evaluated to true, then the
scheduler uses the exact values received in the last offer. Otherwise, it uses approximations.
The variable rcvi is updated as follows: it is set to true whenever the scheduler receives an
offer from the component Bi and set to false whenever the scheduler ”consumes” the offer
by executing an interaction involving component Bi.

K∗
a is obtained from Ka by replacing each occurrence of a timing constraint tcpj or a

Boolean guard gpj by either its exact value or its approximation depending on the freshness

4.2 Transformations 85

of the corresponding offer . We denote by tc+pj the occurrence of the timing constraint tcpj ,

g+pj the occurrence of Boolean guard gpj in Ka. The value of tc+pj and g+pj are computed as
follows:

tc+pj =

tcpj if rcvj = true

tc∗pj otherwise.

g+pj =

gpj if rcvj = true

g∗pj otherwise.

For the Boolean guard Ga′ , it can be computed only if all offers from components par-
ticipating in a′ are fresh. We approximate it to true if one of these offers are not fresh. We
denote by G+

a′ the occurrence of Ga′ in Ka. It is computed as follows:

G+
a′ =

Ga′ if ∀ pj ∈ a′ rcvj = true

true otherwise.

To sum up, K∗
a has the following expression:

K∗
a =

∧

aπa′

¬(
∧

pj∈a′

tc+pj ∧G+
a′

∧

pj∈a

g+pj) (4.6)

To enable only safe execution of interaction a, the scheduler restricts tca to tca ∧K∗
a . The

timing constraint tca ∧K∗
a contains dates at which a is enabled and safe to execute.

We are now ready to define the centralized scheduler.

Definition 24. Let πγ(B1, . . . , Bn) be a BIP model. The centralized scheduler for this
model is defined as the Send/Receive BIP component S = (LS, PS, TS, CS, XS,{XS

p }p∈PS ,
{gτ}τ∈TS , {tcτ}τ∈TS , {fτ}τ∈TS , {rτ}τ∈TS , {tpcℓ}ℓ∈LS) where:

• The set of variables XS contains a copy of each variable exported by an offer port. They
consist of the following.

– For each component Bi, we include an exact time progress condition variable tpci.

– For each port p, we include an exact and approximated timing constraint variables
tcp and tc∗p

– For each port p, we include an exact and approximated Boolean variables gp and
g∗p

– For each port p we include a copy of each variable xp exported by p.

XS includes also the following additional variables.

– For each component Bi, we include a Boolean variable rcvi that indicates whether
ri place is marked or not (that is, the offer from component Bi is fresh or not).

86 Parallel Real-Time Systems Design with Centralized Scheduler

– For each interaction a ∈ γ, we include an execution date variable texa that stores
the execution date of the last occurrence of interaction a.

– For each component Bi, we include an execution date variable texi that stores the
last execution date of component Bi.

• The set of places LS consists of the following.

– For each component Bi, we include waiting and received places wi and ri, re-
spectively. WThe place wi does not have time progress condition (i.e. it defaults
to true). The time progress condition of place ri is tpci. That is, after receiving
an offer from component Bi, we require that the scheduler executes an interaction
involving component Bi before its current time progress condition becomes false.

– For each port p ∈ P where P is the set of all ports exported by B1, . . . , Bn, we
include a sending place sp. The notification to an offer of a component BSR

i is
sent from this place to port p of BSR

i . The time progress condition of sp is false.
That is, when an interaction is selected for execution, we require that the scheduler
notifies the participating components immediately (without any delay).

• CS ={g}.

• The set of ports PS is the following.

– For each component Bi, we include an offer port oi to receive offers from Bi. Each
port oi is associated with variables Xoi .

– For each port p of a component Bi, we include a send-port p. The variables
associated with port p are XS

p = {Xp} ∪ {t
ex
i } where i is the index of component

Bi that includes port p. The port p is used to notify component BSR
i to execute on

port p.

– For each interaction a ∈ γ, we include a unary port. Unary ports do not have any
associated variables.

The set of transitions consists of the following.

– In order to receive offers from a component Bi, we include an offer transition
(wi, oi, ri). This transition has no guard nor timing constraint (i.e. they default
to true). The update function of this transition sets the variable rcvi to true.

– For each port p ∈ P of component Bi, we include a transition (sp, p, wi). This
transition notifies the corresponding component to execute the transition labeled by
p. This transition has no guard, no timing constraint and no update function.

– For each interaction a = (Pa, Ga, Fa) ∈ γ , we include the transition τa = ({ri |
Bi ∈ part(a)}, a, {spi | pi ∈ a}). This transition has a Boolean guard gτa = ga
where ga is computed as in (4.3). The timing constraint of τa is:

tcτa = tca ∧K∗
a

where tca is computed as in (4.4) and K∗
a is computed as in (4.6).The associated

update function fτa applies first the following updates:

4.2 Transformations 87

∗ texa := t(g),

∗ ∀ Bi ∈ part(a), texi := texa ,

∗ ∀ Bi ∈ part(a), rcvi := false,

and then applies the the data transfer function Fa. The execution of τa moves the
tokens from receiving to sending places.

Note that when an interaction a is executed, the current valuation of g is assigned to
variable texa , i.e. the scheduler performs texa := t(g). This value is sent by the scheduler to
the components involved in a along with notifications for execution. By construction, the
component involved in a executes at the global date texa and the notification triggers the
execution in the components at that date which ensures synchronization of components. In
the implementation, we require that these models are implemented on platforms that provide
fast communications (e.g. multi-process) to ensure perfect synchronization of components
when the scheduler notifies them for execution.

Example 15. Figure 4.7 presents the Petri net of the scheduler component of Figure 4.1.
The execution of transition labeled oi, i ∈ {1, 2, 3} indicates that an offer from component Bi

has been received. This transition updates the Boolean variable rcvi to true.

Consider the interaction a1 = ({sync1, sync2, sync3}, true,−). In Figure 4.1, the execu-
tion of the transition labeled a1 indicates the execution of interaction a1. The execution of
this transition requires that offers from components B1, B2 and B3 have been received. The
timing constraint of this transition is:

tcτa1 = tcsync1 ∧ tcsync2 ∧ tcsync3 .

The interaction a2 has originally less priority than a3. Therefore, the timing constraint
of transition a2 is restricted by disabling a2 when a3 is potentially enabled (i.e. when both
ports set2 and get2 are potentially enabled). That is,

tcτa2 = tcset1 ∧ tcget1 ∧ ¬(tc
+
set2
∧ tc+get2).

4.2.3 Connections Between Send/Receive Atomic Components and the
Scheduler

In this section, we define the Send/Receive interactions between the transformed atomic
components and the scheduler. Given a component B and a port p, we denote by B.p the
port p involved in component B.

Definition 25. Given a BIP model πγ(B1, ..., Bn), we define a Send/Receive model γSR(BSR
1 ,...,BSR

n , S)
where BSR

i , i ∈ {1, . . . , n} are Send/Receive atomic components, S is the scheduler and γSR

is the set of Send/Receive interactions defined as follows:

• For each Send/Receive component BSR
i , we include in γSR the Send/Receive interaction

(BSR
i .oi, S.oi) where BSR

i .oi is a send port and S.oi is a receive port.

88 Parallel Real-Time Systems Design with Centralized Scheduler

r3

w3

o1 set1 sync1 o2 get1 get2sync

r2

w2

sync1 get1 get2sync sync2 set2

w1 w2
w3

tcτa2

a3

r1

w1

o3o2o1

a1

tcτa1

tcτa2

a2

set1

sync2set2o3

sget2
ssync1

ssyncsget1 ssync2 sset2

sset1

tpc1
tpc2

tpc3

false
false false

falsefalse falsefalse

Figure 4.7: Petri net of the scheduler component of Figure 4.1.

• For each port p ∈ P of a component BSR
i , we include in γSR the Send/Receive interac-

tion (S.p,BSR
i .p) where S.p is a send port and BSR

i .p is a receive port.

• For each interaction a ∈ γ, we add in γSR the unary interaction (S.a) where S.a is a
unary port.

Example 16. The Send/Receive interactions of the Send/Receive model of Figure 4.1 link
each send port with its corresponding receive port.

4.3 Correctness

In this section we show that the obtained Send/Receive model is observationally equivalent
to the original model. First, we show that the transformed model meet the properties of
Definition 22. Then we prove observational equivalence of the original and the transformed
model.

Validity of the Transformed Model

We need to show that when a receive-port of γSR(BSR
1 , ..., BSR

n , S) is enabled, the correspond-
ing send-port is also enabled. This holds since communications between atomic components
and the scheduler follow a request/acknowledgement pattern. Whenever an atomic compo-
nent sends an offer, it enables the receive-port to receive a response and no new offer is sent
until the first one is acknowledged.

4.3 Correctness 89

Lemma 1. Given a BIP model πγ(B1, ..., Bn), the model γSR(BSR
1 , ..., BSR

n , S) obtained by
transformation of Section 4.2 meets the properties of Definition 22.

Proof. The first two constraints of Definition 22 are trivially met by construction. This is
because (1) each interaction has only one send-port and multiple receive-ports, and (2) each
send-port is associated with one and only Send/Receive interaction.

We now prove that the third constraint also holds; i.e, whenever a send-port is enabled,
all its associated receive-ports are enabled as well. Between components and the scheduler,
for all interactions involving a component Bi, we distinguish between 3 classes of states:

• The first class contains all states where all the places wi in the scheduler component
contain a token, and BSR

i is in a busy location ⊥ℓ. This class contains the initial state.
From that class, the only enabled send-port involved in an interaction with BSR

i is the
port oi. By definition of the class, all associated receive-ports are also enabled, and the
Send/Receive interaction can take place to reach a state of the second class.

• In the second class, the component BSR
i is in a place ℓ that is not a busy location, and in

the scheduler component, the ri place contains a token. From that configuration, there
is no enabled send-port involved in an interaction with BSR

i . The next class of states
is reached when the scheduler executes a transition corresponding to an interaction
involving Bi.

• In the remaining one, there is a token in a place sp where p is a port of Bi. The port
p of this scheduler is enabled. By construction, the component BSR

i sends an offer
from ⊥ℓ for port p only if the receive port p is enabled from place ℓ in BSR

i . Thus the
Send/Receive interaction can take place to reach back the first class of states.

The proof of Lemma 1 ensures that any component ready to perform a transition labeled
by a send-port will not be blocked by waiting for the corresponding receive-ports. In other
terms, it proves that any Send/Receive interaction is initiated by the sender.

Observational Equivalence between Original and Transformed BIP Models

In this subsection, our goal is to show that γ(B1, ..., Bn) and γSR(BSR
1 , ..., BSR

n , S) are ob-
servationally equivalent. We consider the correspondence between actions of γ(B1, ..., Bn)
and γSR(BSR

1 , ..., BSR
n , S) as follows. To each discrete step a ∈ γ of πγ(B1, ..., Bn), we asso-

ciate the unary interaction a of γSR(BSR
1 , ..., BSR

n , S). To each delay transition δ ∈ Z≥0 of
πγ(B1, ..., Bn), we associate the same delay transition δ of γSR(BSR

1 , ..., BSR
n , S). All other in-

teractions of γSR(BSR
1 , ..., BSR

n , S) (i.e., offer and notification) are unobservable and denoted
by β.

We proceed as follows to complete the proof of observational equivalence. We denote by
qSR a state of γSR(BSR

1 ,...,BSR
n , S) and q a state of πγ(B1, ..., Bn). A state of γSR(BSR

1 , ..., BSR
n , S)

from where no β transition is possible is called a stable state, in the sense that any β transition
from this state does not change the state of the atomic components layer.

90 Parallel Real-Time Systems Design with Centralized Scheduler

Lemma 2. From any state qSR, there exists a unique stable state [qSR] such that qSR
β∗

−→
[qSR].

Proof. The state [qSR] exists since each Send/Receive component BSR
i can do at most two

β transitions: receive a response and send an offer. Since two β transitions involving two
different components are independent (i.e. do not change the same variable or the same
place), the same final state is reached independently of the order of execution of β actions.
Thus [qSR] is unique.

The above lemma proves the existence of a well-defined stable state for any of the transient
states reachable by the Send/Receive model γSR(BSR

1 , ..., BSR
n , S). This stable state will be

used later to define our observational equivalence. Furthermore, combining this lemma with
Lemma 1, we obtain the following property.

Lemma 3. At a stable state [qSR], the Send/Receive model verifies the following properties.

• All atomic components are in a non busy place ℓ.

• All tokens in the scheduler component are in receive places ri.

• The clock g and all variables in the atomic components have the same value than their
copies in the scheduler component.

Proof. The two first points comes from the Lemma 1 that guarantees possible execution of a
Send/Receive interaction if its send-port is enabled. Therefore no place sp in the scheduler
component (respectively ⊥ℓ in atomic components) can be active at [qSR], otherwise the
answer p (respectively the offer from ⊥ℓ) could occur. Furthermore, since all offers have been
sent, no token can be in a wi place.

The last point can be proven as follows. From each variable x of the scheduler, the last
modifying transition is the offer transition from the corresponding atomic component Bi.
Thus, the value of x in the scheduler is the same in the atomic components that sent the offer
modifying x. The clock g has the same value in the atomic components and the scheduler as
it corresponds to a global clock which is never reset.

We are now ready to state and prove our central result.

Theorem 2. γSR(BSR
1 , ..., BSR

n , S) ∼ πγ(B1, ..., Bn).

Proof. We define a relation between the set of states QSR of γSR(BSR
1 , ..., BSR

n , S) and the
set of states Q of πγ(B1, ..., Bn) as follows. For each state qSR ∈ QSR, we build an equivalent
state equ(qSR) by

1. considering the unique stable state [qSR] reachable by doing β transitions,

2. taking the control location ℓ of BSR
i as control location for Bi in equ(qSR) (Lemma 3

ensures that it is a valid control state for Bi),

3. restricting the valuation of variables of BSR
i to a valuation of variables in Bi, and

4. talking the valuation of original clock ci in Bi to the valuation of g − ρci .

4.3 Correctness 91

We then define the equivalence relation R by taking:

R = {(qSR, q) ∈ QSR ×Q | q = equ(qSR)}

The three next assertions prove that R is a weak bisimulation:

(i) If (qSR, q) ∈ R and qSR
β
−→γSR rSR then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR
σ
−→γSR rSR then ∃r ∈ Q : q

a
−→ r and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q
σ
−→π r then ∃rSR ∈ QSR : qSR

β∗σ
−→ rSR and (rSR, r) ∈ R.

(i) If qSR
β
−→γSR rSR, then [qSR] = [rSR], and we have by definition equ(qSR) = equ(rSR).

(ii) The action σ in γSR(BSR
1 , ..., BSR

n , S) is either an interaction a or a delay step δ.

– If a is an interaction, it corresponds to executing a transition labeled by a unary
port a in the scheduler. By construction of the scheduler, this transition has the
Boolean guard ga = Ga

∧
p∈a gp where gp are Boolean guards sent by the atomic

components for each port p ∈ a. By Lemma 3, the values involved in ga are the
same in atomic components, and by extension in q = equ(qSR). Thus, the Boolean
guard of Ga and all the Boolean guard of transitions labeled by p ∈ a from state
q are true. The transition labeled by a is the scheduler has the timing constraint
tca ∧K∗

a .

∗ The timing constraint tca is defined by tca =
∧

p∈a tcp where tcp are timing
constraints sent by the atomic components for each port p ∈ a. By Lemma 3,
the values involved in tca are the same in atomic components, and by ex-
tension in q = equ(qSR). By construction of the atomic components, the
timing constraints sent from ⊥ℓ in BSR

i are timing constraints at state ℓ in
Bi. Therefore, the timing constraints tca is met at state q.

∗ The timing constraint K∗
a =

∧
aπa′ ¬(tc

∗
a′∧g

∗
a′) where the evaluation of tc∗a′ and

g∗a′ at state qSR are an over approximated evaluation of tca′ and ga′ at state
[qSR]. That is, if ¬(tc∗a′ ∧ g

∗
a′) evaluates to true at state qSR, then ¬(tca′ ∧ ga′)

evaluates to true at state [qSR]. Recall that, the timing constraint ¬(tca′∧ga′)
characterizes dates where interaction a′ is disabled at [qSR]. By Lemma 3, the
values involved in ¬(tca′ ∧ ga′) are the same in atomic components, and by
extension in q = equ(qSR).

The last two points state that equ(qSR)
a
−→π r. Finally, executing a in BSR

triggers the execution of the data transfer function Fa, followed by the computation
in atomic components upon reception of the response. Thus at [rSR] the values in
atomic components are the same as in r, which yields (rSR, r) ∈ R.

– If a is a delay step, it corresponds to letting time progress by either in busy
locations ⊥ℓi or in ℓi of atomic components BSR

i . Location ⊥ℓi and ℓi has the
time progress condition tpcℓi . All these time progress conditions are not false,
otherwise the δ delay step would not be allowed. Those time pogress conditions

92 Parallel Real-Time Systems Design with Centralized Scheduler

are expressed on clock g which could be expressed equiventely on clocks ci of

component Bi Therefore q
δ
−→ r. Executing δ from state qSR increases clock

g by δ which has the same effect on the clocks of the original model, therefore
(rSR, r) ∈ R.

(iii) If σ can be executed in πγ(B1, . . . , Bn) at state q, then from an equivalent state qSR,
one can reach the state [qSR] where the state, the valuation of clocks, and data of
send/receive atomic atomic components coincide with those of q. Recall clocks c of the
original model could be deduced from clock g as follows c = g−ρc By Lemma 3, clocks,
ports, timing constraints and data values are the same in atomic components and the
scheduler. Furthermore, all ri places are active. As previously, we distinguish the cases
where σ is an interaciton a or a delay step δ.

– If σ is a an interaction a from q, then (1) the timing constraint and guard of
a are true and (2) for each interaction a′ such that aπa′ is not enabled from
q thus Ka =

∧
aπa′ ¬(tca′ ∧ ga′) is evaluated to true. As in the previous case,

Lemma 3 ensures that if the interaction a is possible in the original model at state
q = equ(qSR), then the transition a is also possible in the scheduler at state [qSR].

Therefore we have qSR
β∗

−→ [qSR]
a
−→ rSR. As previously, the execution of a in

both models leads to equivalent states. Thus we have qSR
β∗

−→ [qSR]
a
−→ rSR with

(rSR, r) ∈ R.

– If σ is a delay step δ, then from state [qSR], time can progress also by δ as at this
state all places ri are marked and have the time progress condition tpci sent by
BSR

i which is the same as the time progress condition of Bi at q. Also, at state
[qSR], each atomic component BSR

i is in location ⊥ℓi which has the time pogress

condition tpcℓi . Thus we have qSR
β∗

−→ [qSR]
δ
−→ rSR with (rSR, r) ∈ R.

4.4 Conclusion

In this chapter, we proposed a method for building Send/Receive models from given BIP
models using model-to-model transformations. The obtained models consists of transformed
atomic components of original models with a centralized scheduler. The scheduler compo-
nent is modeled such that the decision for scheduling an interaction is taken at the date of its
execution. In other words, it implicitly assumes that there is no delay between the decision to
schedule an interaction and its execution in the corresponding components. Such an assump-
tion is only valid if the communication delays between the scheduler and the components are
small enough to be neglected. Therefore, we assume that those models are implemented on
platforms providing fast communications (e.g multi process platforms).

The solution based on a centralized scheduler allows parallelism between components.
However, it restricts the parallelism between interactions. In the next chapter, we present
a method to decentralize the scheduler. The idea is to split the scheduler into a set of

4.4 Conclusion 93

schedulers, each one handling a subset of interactions. We show that such decentralization
creates conflicts, that need a conflict resolution protocol to be resolved.

94 Parallel Real-Time Systems Design with Centralized Scheduler

5
Decentralizing the Scheduler

In the previous chapter, we proposed Send/Receive models relying on centralized scheduler
for interactions execution. Those models allow parallelism between components. However,
parallelism between interactions is restricted as the scheduler is defined as a single entity
(component).

In this chapter, we propose a method for decentralizing the scheduler into a set of decen-
tralized schedulers. Each scheduler is responsible of executing a subset of interactions. Thus,
our decentralization method is parametrized by an interactions partition. Each partition
class defines a set of interactions handled in a dedicated scheduler.

Introducing concurrency between interactions by adding schedulers introduces conflict
between schedulers. A conflict between schedulers occurs when they try to execute multiple
interactions involving the same component. A solution to avoid such conflict is to provide a
particular partition of interactions consisting in grouping all conflicting interactions together
in the same class as explained in Section 5.1. The obtained schedulers are then conflict-
free by construction. For the more general case of partition, we propose in Section 5.3 a
solution to resolve dynamically conflicts between interactions. The solution is based on the
incorporation of a conflict resolution protocol. More precisely, we refer to the three different
conflict resolution protocols proposed by Bagrodia [60].

The Send/Receive models are dedicated to be implemented on platforms that provide fast
communications (e.g. multi-process platforms) as we assume that communication latencies
are negligible so that there is no delay between the decision to execute an interaction in a
scheduler and its execution in the participating components. Such assumption was considered
also in the previous chapter. In the next Chapter, we will see how to build Send/Receive
models that deals with communications delays.

95

96 Decentralizing the Scheduler

Model Restrictions

We consider input models that meet the restrictions of the previous chapter. In addition, we
also consider models that have no priorities. In this chapter, we consider the example from
Figure 5.1 as running example. It corresponds to the same example of Figure 2.10 where

err

sync3

set2

ℓ12

sync2

c2 ≥ 5 c2 := 0

x3

x2 := x2 + 1

f1(y, y1)

get1

get2

sync2

ℓ1

ℓ2

ℓ3

y2
y1

sync1

c1 := 0

ℓ21

set1

ℓ11

c ≤ 20

x1 := x1 + 1

sync1

x1

a1

sync2set1 set3

y1 := x1
y2 := x2

a3

y

a2

c1 ≥ 10
get2

y = f2(y2)
setter1 setter2getter

get1

c2 ≤ 5 ℓ22

get1

Figure 5.1: Example of BIP model meeting all restrictions.

the priority rule a2πa3 is not considered. Note that both examples from Figure 2.10 and
Figure 5.1 have the same execution sequences.

5.1 Conflicting Interactions

Intuitively, two interactions are conflicting at a given state of the system if both are enabled,
but it is not possible to execute both from that state (i.e. the execution of one of them discards
the enabledness of the other). In systems without priorities, two interactions may conflict
only if they involve a shared component. Figure 5.2 depicts examples of two conflicting
interactions a and b. In Figure 5.2 (a), the conflict comes from the fact that a and b involve
two ports p and q of the same component labeling two transitions enabled from the same
location ℓ. When reaching location ℓ, the component can execute either transition labeled by
p or the one labeled by q but not both. This implies that when a and b are enabled, only one
of them should execute. Figure 5.2 (b) depicts a special case of conflict where interactions a
and b share a common port p.

Below, we define formally conflicting interactions. Recall that we denote by part(a) the
set of components participating in interaction a.

Definition 26. Let γ(B1, . . . , Bn) be a BIP model. We say that two interactions a and b of γ
are conflicting denoted by a#b, iff , there exists an atomic component Bi ∈ part(a)∩ part(b)
that has two transitions τ1 = (ℓ, p, ℓ′1) and τ2 = (ℓ, q, ℓ′2) from the same control location ℓ such
that p ∈ a and q ∈ b, if a and b are not conflicting we say that they are conflict-free.

Note that conflicts as defined in Definition 26 are an over approximation of conflicts since
some conflicts may not be reachable due to system dynamics.

5.2 Interactions Partitioning 97

qp

qp

(a) (b)

ℓ

a b

p

a b

Figure 5.2: Conflicting interactions.

Consider the example from Figure 5.1. Interaction a1 is conflicting with neither a2 nor
a3 because a1 is enabled from a state where a2 ad a3 are disabled. However, a2 and a3 are
conflicting because port get1 involved in a2 and port get2 involved in a3 are both enabled
from place ℓ22 of component getter.

5.2 Interactions Partitioning

As said before, the decentralization is parametrized by a partition of interactions. Below, we
define formally partition of interactions.

Definition 27. Given a BIP model γ(B1, . . . , Bn), a partition of γ is a set of subsets {γk}
m
k=1

such that :

• γ = γ1 ∪ . . . ∪ γm and

• ∀i, j ∈ {1, . . . ,m} such that i 6= j we have γi ∩ γj = ∅.

The partition {γk}
m
k=1 is conflict-free if each for any i 6= j, no interaction of γi is conflicting

with an interaction of γj.

Given a partition of interactions {γj}
m
j=1, and two conflicting interactions a and b such

that a ∈ γj and b ∈ γk, we distinguish between two types of conflict for a and b, according to
the partition {γj}

m
j=1.

• A conflict is internal if a and b belong to the same class of the partition, i.e. j = k. In
this case, we say that a and b are internally conflicting .

• A conflict is external if a and b belong to different classes of the partition, i.e. j 6= k.
In this case, we say that a and b are externally conflicting.

Consider a BIP model γ(B1 · · ·Bn) and a partition of interactions {γj}
m
j=1. Each class of

interactions γj is handled by a single scheduler Sj . Introducing concurrency by adding multi-
ple schedulers could violate the BIP semantics due to conflicting interactions as explained as
follows. Consider two different schedulers for handling interactions a and b of the model from
Figure 5.2 (a), S1 being responsible for interaction a and S2 being responsible for interaction

98 Decentralizing the Scheduler

b (see Figure 5.3). In the obtained Send/Receive model, the shared component is required to
send offers to both S1 and S2. In order to respect the BIP semantics, these schedulers should
ensure that only a or b is executed from a state enabling both a and b.. That is, at most one
of the two schedulers may respond to an offer from the shared component.

o

p q

o
q p

handling handling

⊥ℓ

ℓ

a b

S2S1

Figure 5.3: Issue of conflicting interactions when handled in different schedulers.

A solution to avoid the problem of conflicting interactions is to impose them to be in-
ternally conflicting. That is, two conflicting interactions are never handled by two different
schedulers. The obtained model is called conflict-free. In this case, conflicts are resolved lo-
cally by schedulers as in the centralized scheduler described in the previous chapter. Indeed,
when two conflicting interactions belong to the same scheduler, the corresponding transi-
tions of its Petri net share a common input place (corresponding to received place of shared
component). Thanks to the Petri net semantics, when one interaction transition executes, it
consumes the shared input place and disables the other interaction transition. This ensures
that, from a given state, at most one interaction is selected amongst a set of conflicting
interactions. Obtaining conflict-free Send/Receive model depends on the input partition of
interactions. A version of this solution has been presented in [78].

Consider again the example from Figure 5.1. In order to obtain a conflict-free partition,
we group a2 and a3 in the same class of interactions as these interactions are conflicting.
Interaction a1 can be separated in an other class of interactions as a1 is conflict-free with a2
and a3. Thus, we obtain the following conflict-free partition: γ1 = {a1} and γ2 = {a2, a3}.

We do not detail here the construction of Send/Receive BIP models with conflict-free
schedulers. However, we give in Figure 5.4 an example of Send/Receive BIP model of the
example from Figure 5.1 obtained from the conflict-free partition γ1 = {a1}, γ2 = {a2, a3}.
This version contains two schedulers: S1 for handling interaction in γ1 and S2 for handling
interactions in γ2. The three components send offers to both schedulers since each one
participates in one interaction handled by each scheduler.

Generally, conflict-free partition is not the optimal choice for decentralizing BIP models.
Indeed, one may end up with a centralized scheduler if the BIP model has a chain of conflicting
interactions. Therefore, a general method should incorporate a conflict resolution protocol.

5.3 3-Layer Send/Receive Models 99

o2o1 sync1

BSR
1

get2get1 o3 set2

BSR
3BSR

2

set1 sync

o1

sync2

get2get1o2set1o1o2 o3 sync2sync1 sync o3 set2

S2S1

Figure 5.4: Example of the architecture of Send/Receive BIP model obtained from a conflict-free
partition for the example from Figure 5.1.

In the following, we present our general method for decentralizing BIP models.

5.3 3-Layer Send/Receive Models

Our target Send/Receive model is based on three layers. The first layer contains Send/Receive
atomic components which are obtained by transforming original atomic components defined in
the BIP model. The second layer contains schedulers, each one handling a class of interactions
defined by the partition of interactions. The third layer contains conflict resolution protocol
components responsible for conflict resolution.

Similarly to what we proposed in the previous chapter, Send/Receive atomic components
communicate with schedulers through offers. The schedulers notify the components when
they are part of an interaction selected for execution. Conflicts between two interactions of
the same scheduler (i.e. of the same class in the considered partition of interactions) are
resolved locally in the scheduler as in the case of centralized scheduler. Conflicts between
interactions handled by two different schedulers are arbitrated outside the schedulers in the
conflict resolution protocol to decide their execution. That is, before executing interactions
involved in such conflicts, schedulers send requests to the conflict resolution protocol. The
latter decides to grant or to reject the execution of the requested interaction depending on
whether conflicting interactions have already been executed or not.

The conflict resolution protocol is based on the idea of message-count technique presented
in[60]. This technique is based on counting the number of times that a component participates
in an interaction. Conflicts are then resolved by ensuring that each participation number is
used only once. In Send/Receive models, components send new offers to schedulers each time
they participate in an interaction. Counting the number of times a component participates in
interactions bowls down to counting its offers. By numbering offers of the component, conflict
resolution is simply achieved by comparing the offer numbers of participating components
with numbers of their last execution.

From the implementation point of view, we use an integer variable ni called participation
number to count offers in each Send/Receive component BSR

i . The participation number of
a component BSR

i is included in its offers, and is incremented whenever BSR
i receives notifi-

cation for execution from a scheduler, that is, whenever BSR
i participates in an interaction.

Participation numbers are included in requests send by schedulers so that reservation

100 Decentralizing the Scheduler

components can arbiter conflicts. As already said, reservation requests are sent by a scheduler
to the conflict resolution protocol only for interactions conflicting with other interactions not
handled by the same scheduler. The conflict resolution protocol has variables Ni that store
the last value of the participation number of each component BSR

i . A reservation request for
an interaction a contains the participation numbers ni of each component BSR

i participating
in a. If for each component BSR

i the participation number ni is greater than Ni, then the
conflict resolution protocol grant the execution and updates Ni to the values of ni. On the
contrary, if there exists a component Bi whose participation number ni is less or equal to
what the conflict resolution protocol has recorded, then the conflict resolution component
replies a failure since BSR

i has already participated in an interaction with the participation
number ni.

Now, we are ready to detail the construction of the three layers of our Send/Receive
model.

5.3.1 Send/Receive Atomic Components

In this subsection, we define the transformed Send/Receive atomic component BSR that
is capable of communicating with the scheduler component(s). This definition differs from
Definition 28 in the fact that Send/Receive components do not compute approximations as
we do not consider priorities. In addition, Send/Receive components defined here include the
participation number needed for conflict resolution.

Definition 28. Let B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {rτ}τ∈T ,
{tpcℓ}ℓ∈L) be an atomic component. The corresponding Send/Receive atomic component is
BSR = (LSR, PSR, TSR, CSR, XSR, {XSR

p }p∈P , {gτ}τ∈TSR , {tcτ}τ∈TSR , {fτ}τ∈TSR ,{rτ}τ∈TSR ,
{tpcℓ}ℓ∈LSR), such that:

• LSR = L ∪ {⊥ℓ| ℓ ∈ L}. The time progress conditions of locations ⊥ℓ and ℓ are equal
to tpcℓ expressed on clock g.

• XSR = X ∪ {tcp}p∈P ∪ {gp}p∈P ∪ {tpc} ∪ {ρc}c∈C ∪{t
ex} ∪ {n} where tcp are timing

constraint variables, gp are Boolean guard variables, tpc is time progress condition vari-
able, ρc are reset date variables, t

ex is an execution date variable and n is a participation
number variable.

• PSR = P ∪ {o}, where the offer port o exports the variables XSR
o = {n, tpc} ∪⋃

p∈P (Xp ∪ {tcp} ∪ gp), that is, the participation number variable , the time progress
condition variable, the timing constraints variables and Boolean guards variables and
variables originally exported by each port. For all other ports p ∈ P , we define XSR

p =
Xp ∪ {t

ex}.

• For each place ℓ ∈ L, we include an offer transition τℓ = (⊥ℓ, o, ℓ) in TSR with no
Boolean guard, no timing constraint and no update function.

• For each transition τ = (ℓ, p, ℓ′) ∈ T , we include a notification transition τp = (ℓ, p,⊥ℓ′)
in TSR with no guard, no timing constraint. The update function fτp first applies the
original update function fτ of τ , and then updates, clock reset date variables, time

5.3 3-Layer Send/Receive Models 101

progress condition variables, timing constraint variables, Boolean guard variables and
participation number as follows:

– ∀c ∈ rτ ρc = tex,

– tpc := tpcℓ′ ,

– ∀p′ ∈ P tcp′ :=

{
tcτ ′ if τ ′ = (ℓ′, p′, ℓ′′) ∈ T

false otherwise.

– ∀p′ ∈ P gp′ :=

{
gτ ′ if τ ′ = (ℓ′, p′, ℓ′′) ∈ T

false otherwise.

– n := n+ 1

We recall that ρc variables are used to transform the timing constraints and the time
progress conditions to be expressed on clock g using the transformations explained in Sub-
section 4.1.2.

o1

x1

tpc1

tcset1

tcsync1

set1sync1

⊥ℓ11

ℓ11ℓ21

x1 := x1 + 1

o1

o1
⊥ℓ21

u1

u2

sync1

set1

tex

ρc1

gsync1

gset1

g ≤ 20 + ρc1

g ≤ 20 + ρc1

n1

Figure 5.5: Send/Receive version of the setter1 component from Figure 5.1.

Example 17. Figure 5.5 depicts the Send/Receive version of the Setter1 component from
Figure 5.1. The update functions u1 and u2 are defined as follows:

u1 =

ρc1 = tex

tpc1 = g ≤ 20 + ρc
tcsync1 = false

tcset1 = g ≥ 10 + ρc1
gsync1 = false

tcset1 = true

u2 =

tpc1 = true

tcsync1 = true

tcset1 = false

gsync1 = true

gset1 = false

102 Decentralizing the Scheduler

5.3.2 Building Schedulers in BIP

Consider a BIP model γ(B1 · · ·Bn) and a partition of interactions {γj}
m
j=1. Each class of inter-

actions γj is handled by a single scheduler component Sj . As explained in Subsection 5.2, two
conflicting interactions a and b could be either internally or externally conflicting according
to the partition {γj}

m
j=1.

r1 r2

trya faila

oka
sp1

sp2

o1
o2

o2o1
r2r1

sp2sp1

rsva

a

(a) Execution mechanism for the
case where a is internally or not

conflicting.

(b) Execution mechanism for the
case where a is externally

conflicting.

Figure 5.6: Mechanisms for Interactions Execution.

In the case where a and b are internally conflicting, their execution is done without
requesting the conflict resolution protocol as conflicts are resolved locally. Similarly to the
centralized scheduler presented in Chapter 4, the arbitration between two interactions that
are internally conflicting is simply achieved by the Petri net of the corresponding scheduler:
offers correspond to tokens which are ”consumed” when one of the two conflicting interactions
is selected. Figure 5.6 (a) shows such mechanism for the execution of interaction a involving
ports p1 and p2. Note that such mechanism is also applied for not conflicting interactions.

In the case where a and b are externally conflicting, their execution is done through a
reservation mechanism. Figure 5.6 (b) shows such mechanism for the execution of interaction
a = ({p1, p2}, Ga, Fa). Before executing interaction a, the scheduler sends a request to the
conflict resolution protocol to reserve an interaction by executing transition rsva. This tran-
sition exectes only if interaction a is enabled, that is, received places r1 and r2 are marked
(offers from participating components B1 and B2 are received). The execution of this tran-
sition removes tokens from received places and moves them to trya place. Indeed, removing
tokens from received places disables any other internally conflicting interaction with a to
execute thanks to the Petri net semantics. Upon execution of transition rsva, a reservation
request is sent to the conflict resolution protocol. The reservation request contains the partic-
ipation numbers of the participating components. The conflict resolution protocol responds
either positively on port oka if the reservation succeed or negatively on port faila if the
reservation cannot be granted. In the first case, the scheduler executes transition oka by
moving token from trya place to sending places sp1 and sp2 from which it sends notification

5.3 3-Layer Send/Receive Models 103

to the components. In the second case, transition labeled faila executes and token moves
from trya places to received places r1 and r2.

When components take part in an external interactions, they send new offers to the
schedulers. Thus, the schedulers may receive successive offers from components. In order to
take into account these offers, loop transitions are added in received and trying places. These
loops are added to match Definition 22 of Send/Receive interactions: each time a send (of
an offer) is enabled, corresponding receives must be enabled too. Figure 5.6 (b) shows this
kind of loop transitions. For instance, suppose that the scheduler of Figure 5.6 (b) receive an
offer from component B1. Token moves then from waiting place w1 to received place r1. As
this offer is sent to other schedulers, an external interaction can execute and consume that
offer. The component is then required to send new offer to the schedulers. The scheduler of
Figure 5.6 (b) is then able to receive this offer due to the loop transition from received place
r1.

We are now ready to define the scheduler component Sj handling a subset of interactions
γj ⊂ γ.

Definition 29. Let γ(B1, . . . , Bn) be a BIP model and γj ⊂ γ be a subset of interactions.
The corresponding scheduler Sj handling interactions of γj is defined as the Send/Receive BIP
component Sj = (LSj , PSj , TSj , CSj , XSj , {Xp}p∈PSj , {gτ}τ∈TSj , {tcτ}τ∈TSj , {fτ}τ∈TSj ,

{rτ}τ∈TSj , {tpcℓ}ℓ∈LSj) where:

• The set of variables XSj contains the following variables.

– Variables updated whenever an offer from component Bi participating in an inter-
action belonging to γj is received. They consist of the following: timing constraint
variable tcp, Boolean variable gp and a local copy of the variables Xp for each port
p involved in an interaction belonging to γj, a time progress condition variable tpci
and a participation number variable ni for each component Bi participating in an
interaction belonging to γj.

– Variables updated whenever interaction a is scheduled. They consist of the fol-
lowing: execution date variable texa for each interaction a ∈ γj, that stores the
last execution date of interaction a and, an execution date variable texi for each
component Bi participating in an interaction belonging to γj.

• CSj = {g}.

• LSj includes two types of places.

– For each component Bi involved in interactions of γj, we include waiting and
received places wi and ri, respectively. Place ri has a time progress condition
defined by the variable tpci.

– For each port p involved in interactions of γj, we include a sending place sp. The
time progress condition of sp is false.

– For each interaction a ∈ γj that is in external conflict with another interaction,
we include a trying place trya.

104 Decentralizing the Scheduler

• The set of ports PSj consists of the following.

– For each component Bi involved in an interaction of γj, P
Sj includes a receive-port

oi, to receive offers. Each port oi is associated with the variables tcp, gp,and Xp

for each port p of Bi as well as the variable tpci and ni of Bi.

– For each port p involved in interactions γj, PSj includes a send-port p, which
exports the set of variables Xp ∪ {t

ex
i } where i is the index of component Bi that

exports port p.

– For each interaction a ∈ γj that is externally conflicting, PSj includes ports rsva
(reserve a, send-port), oka (success in reserving a, receive-port), and faila (failure
to reserve a, receive-port). The port rsva exports the variables {ni}Bi∈part(a).

– For each interaction a ∈ γj that is internally conflicting, PSj include a unary port
a.

• The set TSj of transitions consists of the following.

– In order to receive offers from a component Bi, T
Sj includes transition (wi, oi, ri).

TSj also includes transitions (ri, oi, ri) and {(trya, oi, trya), Bi ∈ part(a)} to re-
ceive new offers when Bi takes part in an external interaction. These transitions
have no Boolean guards, no timing constraints and no update functions.

– For each port p involved in interactions γj, TSj includes a transition (sp, p, wi)
where i corresponds to the index of component exporting port p. This transition
has no Boolean guard, no timing constraint and no update function. This transition
is used to notify the corresponding component to execute the transition labeled by
p.

– For each interaction a = ({pi}i∈I , Ga, Fa) ∈ γj, that is internally conflicting with
an other interaction or is not conflicting with any interaction, TSj includes the
transition τa = ({ri}Bi∈part(a), a, {spi}pi∈a), guarded by the Boolean guard gτa =
Ga

∧
pi∈a

gpi and having the timing constraint tcτa =
∧

pi∈a
tcpi . This transition

updates the following variables.

∗ texa := t(g)

∗ ∀ Bi ∈ part(a), texi := ta

then triggers the data transfer function Fa.

– For each interaction a = ({pi}i∈I , Ga, Fa) ∈ γj, that is externally conflicting with
another interaction, TSj includes the following three transitions:

∗ τrsva = ({ri}Bi∈part(a), rsva, trya) guarded by the Boolean guard gτrsva = Ga

∧
pi∈a

gpi
and the timing constraint tcτrsva =

∧
pi∈a

tcpi.

∗ τoka = (trya, oka, {spi}pi∈a) with no guard nor timing constraint. This transi-
tion updates the following variables:

· texa := t(g),

· ∀ Bi ∈ part(a), texi := texa
then triggers the data transfer function Fa

5.3 3-Layer Send/Receive Models 105

∗ τfaila = (trya, faila, {ri}Bi∈part(a)) with no guard, no timing constraint and
nor update function.

r2

w2

r1

o3o2o1

ssyncssync1

get1 sync1

w1

get2 sync2

w2

o2
o1

r3 tpc3tpc2tpc1

a1

tca1

o1

o2

tca1

rsva2

false false

oka2

faila2

false sset1 false sget1 false

sync3

w3

trya2

ssync3

w1 w3

rsva2

set1 sync1o1 o2 get1 sync sync3o3

oka2 faila2

Figure 5.7: Distributed scheduler handling the class of interactions {a1, a2}.

Example 18. Consider again the example from Figure 5.1. We consider the following par-
tition of interactions γ1 = {a1, a2} and γ2 = {a3}. Figure 5.7 shows the scheduler handling
partition γ1. Since interaction a1 in not conflicting with any interaction, its execution is done
through the unary interaction a1. Since interaction a2 is conflicting with the external inter-
action a3, its execution requires reservation from conflict resolution protocol. The reservation
can be performed only at time instants meeting the timing constraint tca3 (expressed on clock
g), that is, for values of the global clock for which tca3 evaluates to true. Note that the
interaction guard of a3 is true and thus it is not shown on the figure. The reservation request
sends the participation numbers n1 and n2. These values are used by the conflict resolution
protocol to check the validity of the offers sent by B1 and B2. The execution of interaction
a2 is triggered when the conflict resolution protocol responds positively on port oka3.

106 Decentralizing the Scheduler

5.3.3 Conflict Resolution Protocol

In this subsection, we present three implementations of the conflict resolution protocol in-
spired from [9]. Intuitively, the main role of the conflict resolution protocol is to check the
freshness of offers received for an interaction, that is, to check that no externally conflicting
interactions has been already executed using the same offers. This ensures that two conflicting
interactions cannot execute with the same offers, that is, with the same participation num-
bers. Mutual exclusion is ensured using participation numbers associated to offers. Indeed,
the conflict resolution protocol keeps the last participation number of each component and
compares it with the participation number provided along with the reservation request from
the schedulers. If each participation number from the request is greater than the one recorded
by the conflict resolution protocol, the interaction is then granted to execute. Otherwise, the
interaction execution is disallowed.

Centralized Protocol

We present here the first version of the proposed Bagrodia’s implementations in BIP. It
corresponds to a centralized Send/Receive component denoted by CP .

Definition 30. Let γ(B1, . . . , Bn) be a BIP model and {γj}
m
j=1 be a partition of interactions.

The corresponding centralized conflict resolution protocol component CP is defined by the
Send/Receive BIP component CP = (LCP , PCP , TCP , CCP , XCP , {Xp}p∈PCP , {gτ}τ∈TCP ,
{tcτ}τ∈TCP , {fτ}τ∈TCP , {rτ}τ∈TCP , {tpcℓ}ℓ∈LCP)

• LCP contains for each externally conflicting interaction a the waiting place wa and
receive place ra. Place wa has no time progress condition. Place ra has a time progress
condition tpcra = false.

• XCP contains for each component Bi the last participation number Ni. In addition
XCP contains for each externally conflicting interaction a and for each component
Bi ∈ part(a), the participation number na

i .

• CCP = {g}.

• PCP contains for each externally conflicting interaction a the reservation ports rsva,
oka and faila. The port rsva exports variables Xrsva = {na

i | Bi ∈ part(a)}. The ports
oka and faila do not have exported variables.

• TCP contains for each externally conflicting interaction a the following transitions.

– τrsva = (wa, rsva, ra) with no guard, no timing constraint and no update function.

– τoka = (ra, oka, wa) guarded by the guard Gτoka
=

∧
Bi∈part(a)

na
i > Ni and having

no timing constraint. The update function of this transition sets the variables Ni

of each component Bi ∈ part(a) to the value of na
i . That is, for all Bi ∈ part(a)

it performs Ni := na
i .

– τfaila = (ra, faila, wa) with no guard, no timing constraint and no update function.

5.3 3-Layer Send/Receive Models 107

falsefalse

oka2
faila2

oka3
faila3

rsva3
rsva2

wa2 wa3

faila2
oka2 faila3rsva2

n
a2
1 > N1

∧na2
2 > N2

N1 := n
a2
1

N2 := n
a2
2 N3 := n

a3
3

N2 := n
a3
2

∧na3
3 > N3

oka3
rsva3

n
a3
2 > N2

ra2 ra3

n
a3
2 ≤ N2

∨na3
3 ≤ N3

Figure 5.8: The centralized version of conflict resolution protocol for the BIP model of Figure 5.1
considering the partition γ1 = {a1, a2} and γ2 = {a3}.

In the centralized conflict resolution protocol CP, the time progress conditions of received
places ensure that each request is treated immediately (no delay is allowed between the
receiption of a request from a scheduler and the corresponding response of CP).

Notice that two conflicting interactions a and b with the same participation numbers for
shared components cannot be both granted by the conflict resolution protocol CP , that is,
CP correctly implements conflict resolution, which is explained as follows. Assume that CP
has received requests for both a and b enabling both transitions labeled by oka and okb in
CP . Due to atomic execution of transitions in CP , the execution oka (resp. okb) updates
(in particular) the values of participation numbers Ni components shared between a and b
which disables transition okb (resp. oka) leaving only the failb transition.

Example 19. Figure 5.8 presents CP component corresponding to the centralized version
of conflict resolution protocol for the BIP model of Figure 5.1 considering the partition of
interactions γ1 = {a1, a2} and γ2 = {a3}. It handles only interactions a2 and a3 as these
are externally conflicting interactions with respect to the partition of interactions. Initially,
tokens of CP component remain at waiting places until a reservation request of a2 or a3 is
received. For instance, when a reservation request for interaction a2 arrives, the token moves
to receive place ra2. The request provides the participation numbers of components B1 and
B2 participating in a2, stored in na2

1 and na2
1 respectively. If for each component Bi, i = 1, 2,

the variable na2
i is greater than variable Ni, then the transition labeled oka2 takes place. The

transition labeled faila2 takes place regardless the value of these variables.

In the centralized protocol, atomic access to Ni variables is ensured through the Petri
net semantics. The two remaining protocols are actually protocols to ensure atomicity for
accessing the Ni variables.

Token Ring Protocol

The second implementation of the conflict resolution protocol is inspired from the token-
based algorithm provided by Bagrodia [9]. This version presents a more distributed protocol
as it includes one component for each externally conflicting interaction. A token carrying
variables Ni circulates between all these components. Conflict resolution is ensured by the

108 Decentralizing the Scheduler

fact that only the component holding the token can decide to execute an interaction, based
on participation numbers as in the centralized conflict resolution protocol.

We denote by TRa the token ring component handling reservation of the externally con-
flicting interaction a.

Definition 31. Let γ(B1, . . . , Bn) be a BIP model and {γj}
m
j=1 be a partition of interactions.

Given an externally conflicting interaction a, the corresponding conflict resolution protocol
component TRa is defined as the Send/Receive BIP component TRa = (LTRa , P TRa , T TRa,
CTRa, XTRa , {Xp}p∈PTRa , {gτ}τ∈TTRa , {tcτ}τ∈TTRa , {fτ}τ∈TTRa , {rτ}τ∈TTRa , {tpcℓ}ℓ∈LTRa)
where:

• LTRa includes the waiting place wa, the receive place ra, the receiving token place rta
and the sending token place sta. The time progress conditions of places ra and sta are
false. The other places do not have time progress conditions.

• XTRa includes for each component Bi the last participation number Ni. In addition, it
includes, for each component Bi ∈ part(a), the participation number na

i .

• P TRa contains the reservation ports rsva, oka and faila as well as the sending and
receiving token ports RT a, ST a.

• T TRa includes the following transitions:

– transitions for interaction reservation:

∗ τrsva = (wa, rsva, ra), with no guard, no timing constraint and no update
function.

∗ τoka = ({ra, rta}, oka, wa) guarded by Gτoka
=

∧
Bi∈part(a)

na
i > Ni, having no

timing constraint, and updating variables Ni of each component Bi ∈ part(a)
as follows: for all Bi ∈ part(a), it performs Ni := na

i .

∗ τfaila = (ra, faila, wa) guarded by Gτfaila
=

∨
Bi∈part(a)

na
i ≤ Ni and having

no timing constraint and no update function.

– transitions for sending and receiving token:

∗ τSTa = ({sta, wa}, ST a, rta) with Boolean guard, no timing constraint and no
update function.

∗ τRTa = (wa, RT a, sta) with no Boolean guard, no timing constraint and no
update function.

As in the case of centralized conflict resolution protocol, the time progress conditions of
receive request place ra is false. This is to ensure that the response to a request is sent
immediately without any delay. When the component has a reservation request, it can send a
fail message even if it does not hold the token. However, it has to wait to receive the token to
send an ok message. To enforce immediate responses to requests, we also need that the token
circulates instantaneously between conflict resolution protocol components. To do that, we
put false as time progress condition of place sta, which imposes the component holding the
token to send it immediately without any delay.

5.3 3-Layer Send/Receive Models 109

rsva2
faila2

oka2

false
sta2

falsera2

rsva2

∨n
a2
2 ≤ N2

n
a2
1 ≤ N1

faila2

rta2

wa2

RTa2
RTa2

STa2

n
a2
1 > N1

∧n
a2
2 > N2

oka2

N2 := n
a2
2

N1 := n
a2
1

STa2

Figure 5.9: Conflict resolution component in the token ring protocol handling reservation of inter-
action a2 of the example from Figure 5.1 considering the partition γ1 = {a1, a2} and γ2 = {a3}.

Example 20. Figure 5.9 presents the reservation component TRa2 that handles interaction
a2 in the conflict resolution protocol. Initially, the component is at states wa2 and sta2. From
those states it can either receive the token via port RTa2 or receive a reservation request via
port rsva2. If a reservation request is received, a fail message is sent if the values of variables
Ni discard the request. Otherwise, an ok message is sent only if the component holds the token
and if the participation number are fresh.

The component sends back the token immediately if no reservation request is received, that
is if the component is in location wa2. Otherwise, the token is sent back after responding to
the request.

Send/Receive interactions between components of token ring protocol. Given a
set of externally conflicting interactions {a1, . . . , am}, the token ring protocol is obtained by
building one component TRaj for each externally conflicting interaction. These components
communicate through Send/Receive interactions given by the set γTR. This set includes
Send/Receive interactions that connect each component TRaj to its neighbor TRaj+1. That
is, γTR includes for two sucessive externally conflicting interactions aj , aj+1, the Send/Receive
interaction (TRaj .ST aj , TRaj+1

.RTaj+1
).

Figure 5.10 shows the connections between components in the token ring protocol layer
for the example from Figure 5.1.

110 Decentralizing the Scheduler

TRa3

RTa1
RTa2

STa1
STa2

TRa2

oka1
faila1

rsva1
rsva2

faila2
oka2

Figure 5.10: Global view of the token ring conflict resolution protocol for the example from Fig-
ure 5.1

Dining Philosophers Protocol

The third implementation of conflict resolution protocol corresponds to an adaption of the
solution to the dining philosophers problem [10]. As in the token-ring version, there is
one conflict resolution protocol component for each externally conflicting interaction. We
denote by DPa the dining philosophers component corresponding to an interaction a. If two
interactions a and b are externally conflicting, the corresponding conflict resolution protocol
components DPa and DPb share a fork carrying Ni variables corresponding to the latest
participation numbers of components involved in both interactions. In order to respond to
a reserve request sent by a scheduler, each component must obtain all forks shared with
other components. The fork brings the latest participation numbers Ni recorded by its last
owner. Once obtained, the component compares the participation numbers received from
the reservation request sent by the scheduler and from the forks, and responds accordingly.
Whenever a component responds to a reservation request, the fork becomes ”dirty”. In such
case, the component may send the fork when it is requested to do so.

Given two interactions a and b, we denote by conf(a, b) = part(a) ∩ part(b) the set of
components participating in both interactions. We denote also by extconf(a) the set of
interactions that are externally conflicting with a.

Definition 32. Let γ(B1, . . . , Bn) be a BIP model and {γj}
m
j=1 be a partition of interac-

tions. Given an externally conflicting interaction a, the corresponding conflict resolution
protocol component DPa is defined as the Send/Receive BIP component DPa = (LDPa,
PDPa , TDPa , CDPa, XDPa , {Xp}p∈PDPa , {gτ}τ∈TDPa , {tcτ}τ∈TDPa , {fτ}τ∈TDPa , {rτ}τ∈TDPa ,
{tpcℓ}ℓ∈LDPa), where:

• LDPa contains waiting place wa, and the received place ra. Moreover, for each interac-
tion b ∈ extconf(a), LDPa includes the sending and received request places srb and wrb
as well as sending, waiting and received fork places sfb, wfb and rfb. The time progress
condition of places ra, srb, rfb and sfb are false. The other places do not have time
progress conditions.

• XDPa includes the variables {Ni | Bi ∈ part(a)} and the variables {na
i | Bi ∈ part(a)} .

Moreover, for each interaction b ∈ extconf(a), XDPa includes the additional variables
{N b

i | Bi ∈ conf(a, b)}, and the Boolean variables forkb and dirtyb.

5.3 3-Layer Send/Receive Models 111

• PDPa includes the ports rsva, oka, faila, and the unary port ua. Port rsva exports
variables {na

i | Bi ∈ part(a)}. Ports oka and faila do not have exported variables.
Moreover, for each interaction b ∈ extconf(a), PDPa includes the sending and receiving
request ports SRa

b and RRa
b as well as sending and receiving fork ports SF a

b and RF a
b .

Ports SF a
b and RF a

b exports variables {N b
i | Bi ∈ conf(a, b)}. Ports SRa

b and RRa
b do

not have exported variables.

• TDPa contains the following transitions:

– τrsva = (wa, rsva, ra) with no guard, no timing constraint and no update function.

– τoka = ({rfb|b ∈ extconf(a)}, oka, wa) guarded by Gτoka
=
∧

b∈extconf(a) forkb
∧

Bi∈part(a)

na
i > Ni, having no timing constraint and updating the following variables:

∗ ∀ Bi ∈ part(a) Ni := na
i

∗ ∀ b ∈ extconf(a) dirtyb := true

∀ Bi ∈ conf(a, b)
N b

i := Ni

– τchecka = (ra, ua, {srb | b ∈ extconf(a)}) guarded by Gτchecka
=

∧
Bi∈part(a)

na
i >

Ni, having no timing constraint and no update function.

– τ1faila = (ra, faila, wa) and τ2faila = ({rfb|b ∈ extconf(a)}, faila, wa) guarded

by
∨

Bi∈part(a)
na
i ≤ Ni and having no timing constraint. Transition τ1faila has

no update function. Transition τ2faila has the following update function: ∀ b ∈

extconf(a) dirtyb := true.

– For each interaction b ∈ extconf(a), TDPa includes also the following transitions.

∗ τSRa
b
=(srb, SR

a
b , wfb), with Boolean guard GτSRa

b
=¬forkb, no timing constraint

and no update function.

∗ τRRa
b
=(wrb, RRa

b , sfb) with no guard, no timing constraint and no update func-
tion.

∗ τSFa
b
=(sfb, SF

a
b , wra) with Boolean guard GτSFa

b
=dirtyb, no timing constraint

and forkb := false as update function.

∗ τRFa
b
=(wfb, RF a

b , rfb), with no guard and no timing constraint and updating
the following variables:

· dirtyb := false

· forkb := true

· ∀ Bi ∈ conf(a, b) Ni := max(Ni, N
b
i)

· ∀ c ∈ extconf(a) ∀ Bi ∈ conf(a, c) N c
i := Ni

∗ τhasforkb=(srb, ua, rfb) guarded by Gτhasforkb
=forkb and having no timing con-

straint and no update function.

∗ τhasnotforkb=(rf, ua, srb) guarded by Gτhasnotforkb
=¬forkb and having no tim-

ing constraint and no update function.

112 Decentralizing the Scheduler

Note that there is no delay allowed between the reception of the reservation request and
the response. The reservation component DPa should react immediately and responds to the
reservation request. This is ensured by the time progress conditions of places separating the
reception of request reception and the response.Although waiting fork places wfb do not have
time progress condition, time is not allowed to progress at these places. This is because each
reservation component DPb is required to send immediately the fork due to the time progress
condition of place sfa.

ra2

SRa2
a3

rsva2
faila2

∨na2
2 ≤ N2

n
a2
1 ≤ N1

n
a2
1 > N1

∧na2
2 > N2

oka2

false

SRa2
a3

RFa2
a3

RRa2
a3

SFa2
a3

dirtya3

wa2

false
sfa3

wra3

SFa2
a3

dirtya3
:= true

ua2

forka3
= false

RRa2
a3

¬forka3

wa2

wfa3

sra3

rfa3

rsva2
faila2

oka2

forka3

ua2

RFa2
a3

dirtya3
:= false

∧na2
1 > N1

∧na2
2 > N2

N1 := n
a2
1

N2 := n
a2
2

N2 := max(N2, N
a3
2)

dirtya3
:= true

faila2

∨na2
2 ≤ N2

n
a2
1 ≤ N1

N
a3
2 := N2

ua2

¬forka3

forka3

false

false

Figure 5.11: Components in the dining philosophers protocol handling reservation of interaction a2
of the example from Figure 5.1 considering the partition γ1 = {a1, a2} and γ2 = {a3}.

Example 21. Figure 5.11 presents the reservation component DPa2 that handles interaction
a2 in the conflict resolution protocol. Since interaction a2 is externally conflicting with a3,
there is a fork shared between components DPa2 and DPa3 where DPa3 is the component
handling interaction a3. Thus, DPa2 has to obtain the fork before deciding the execution of
a2.

Initially, the DPa2 component is at places wa2 and wra3. From place wa2, it can receive
a reservation request rsva2 indicating that interaction a2 wants to execute. Upon reception

5.3 3-Layer Send/Receive Models 113

of this request, the token moves to ra3 place. From this place, a fail message is sent if the
variables Ni discard the request. Otherwise the token moves to place sra3 to start negotiating
the fork with component DPa3. If component DPa2 already holds the fork, token move directly
to place rfa3. Otherwise, it sends a fork request to DPa3 component in order to receive the
fork. Upon receiving the fork, DPa2 updates variables Ni as the fork brings the latest values.
A newly received fork is always considered as clean. Receiving the fork moves the token to
rfa2 place. From this place, DPa2 responds by either ok or fail according to the values of
Ni and na2

i . Responding to a reservation request makes the fork dirty. DPa2 may reuse the
dirty fork as long as no fork request from DPa3 is received. From place wra3, DPa2 waits for
receiving fork request from component DPa3. Upon reception of this request, DPa2 sends the
fork if it is dirty.

Send/Receive interactions between components of the dining philosophers pro-
tocol. Given a set of externally conflicting interactions {a1, . . . , am}. The dining philoso-
phers protocol is obtained by building one component DPaj for each externally conflicting
interaction. These components communicate through Send/Receive interactions given by the
set γDP . This set includes Send/Receive interactions to send and receive forks and requests
between conflict resolution protocol components. More precisely, for any two externally con-
flicting interactions a and b, γDP contains:

• (DPb.SF
b
a , DPa.RF a

b) and,

• (DPb.SR
b
a,DPa.RRa

b).

Figure 5.12 shows a global view of the dining philosophers conflict resolution protocol for the
example from Figure 5.1.

oka2
faila2

rsva2
rsva3

faila3
oka3

RFa2
a3

SRa3
a2

RRa3
a2

SFa3
a2

RFa3
a2

RRa2
a3

SRa2
a3

SFa2
a3

DPa3
DPa2

Figure 5.12: Global view of the dining philosophers conflict resolution protocol for the example
from Figure 5.1.

5.3.4 Send/Receive Interactions

To complete the description of the 3-layer BIP models, we have to define the interactions
between the distributed components. Between the components layer and the schedulers
, offers and notifications are exchanged. Communication between the schedulers and the
conflict resolution protocol involves rsv, ok and fail messages transmission.

114 Decentralizing the Scheduler

Definition 33. Let B = γ(B1 · · ·Bn) be a BIP model and {γj}
k
j=1 be a partition of inter-

actions. We denote by {a1, . . . , am} the set of externally conflicting interactions. We define
for each conflict resolution protocol the following Send/Receive model:

• BSR
CP=γSR(BSR

1 , . . . , BSR
n , S1, . . . , Sk, CP), implementing the centralized conflict resolu-

tion protocol,

• BSR
TR=γSR ∪ γTP (BSR

1 , . . . , BSR
n , S1, . . . , Sk, TRa1 , . . . , TRam), implementing the token

ring protocol,

• BSR
DP=γSR ∪ γTP (BSR

1 , . . . , BSR
n , S1, . . . , Sk, DPa1 , . . . , DPam), implementing the dining

philosophers protocol.

The Send/Receive interactions γSR are defined as follows.

• For each component BSR
i , let Sj1 , . . . , Sjl be the scheduler components handling inter-

actions involving BSR
i . γSR includes the offer interaction (BSR

i .o, Sj1 .oi, . . . , Sjl .oi).

• For each port p in component BSR
i and for each scheduler component Sj handling an

interaction involving p, γSR includes the notification interaction (Sj .p, B
SR
i .p).

• For each internally conflicting interaction a ∈ γ, γSR includes the unary interaction
(Sj .a), where Sj is the scheduler component handling the interaction a.

• For each externally conflicting interaction a, γSR includes the following interactions:

– (rsva.Sj , rsva.CCRP), and

– (oka.Sj , oka.CCRP), and

– (faila.Sj , faila.CCRP),

where CCRP is either CP , or TRa, or DPa depending on the implemented conflict
resolution protocol.

5.4 Correctness of the Proposed Model

In this section, we first show that the 3-layer model BSR
CP is indeed a Send/Receive model.

We then prove that the initial BIP model B is observationally equivalent to BSR
CP . Finally,

we prove weak simulation between BSR
TR(resp. B

SR
DP) and B.

Compliance with Send/Receive Model

We need to show that receive ports of BSR
CP will unconditionally become enabled whenever

one of the corresponding send ports is enabled. Intuitively, this holds since communications
between two successive layers follow a request/acknowledgement pattern. Whenever a layer
sends a request, it enables the receive port to receive acknowledgement and no new request
is sent until the first one is acknowledged.

5.4 Correctness of the Proposed Model 115

Lemma 4. Given a BIP model B = γ(B1, . . . , Bn) and a partition of interactions {γj}
k
j=1, the

model BSR
CP = γSR(BSR

1 , . . . , BSR
n , S1, . . . , Sk, CP) obtained by transformation of Section 5.3

meets the properties of Definition 22.

Proof. The first two constraints of Definition 22 are trivially met by construction. We now
prove that the third constraint also holds; i.e, whenever a send-port is enabled, all its asso-
ciated receive-ports are enabled as well.

• Between a Send/Receive component BSR
i and a scheduler Sj , we consider the places

wi, ri and sp for each port p exported by Bi. If there is no token in sp place, then, it
is easy to see that from this configuration, only interactions oi is enabled. If there is a
token at place sp, it results from the execution of transition a or oka in the scheduler.
In the first case, a is internally or not conflicting interaction. This case is similar to the
centralized scheduler. In the second case, the interaction a is externally conflicting and
is refereed to the conflict resolution protocol. The latter uses the current participation
number of Bi for the execution of a and no other interaction is granted using the same
participation number. Thus, sp is the only active place, from which a notification could
be sent.

• Between the scheduler Sj and the conflict resolution protocol, we consider the places
trya in the scheduler Sj , wa and ra in the conflict resolution protocol. If trya is empty,
and wa is active, only reservation request through port rsva is enabled. When the rsva
request is sent, the place trya and ra become active. From this configuration, only send
ports oka and faila are enabled in the conflict resolution protocol, and the associated
ports are also enabled in the scheduler.

This proof ensures that any component ready to perform a transition labeled by a send-
port will not be blocked by waiting for the corresponding receive-ports.

Observational Equivalence between Original and Transformed Models

We show that B and BSR
CP are observationally equivalent. We consider the correspondence

between actions of B and BSR
CP as follows. To each interaction a ∈ γ of B, we associate

either the binary interaction oka or the unary interaction a of BSR
CP , depending on whether

a is externally conflicting. All other interactions of BSR
CP (offer, notification, reserve, fail) are

unobservable and denoted by β.

We proceed as follows to complete the proof of observational equivalence. Among un-
observable actions β, we distinguish between β1 actions, that are interactions between the
atomic components and the schedulers (namely offer and notification), and β2 actions that
are interactions between the schedulers and the conflict resolution protocol (namely reserve
and fail). We denote by qSR a state of BSR

CP and q a state of B. A state of BSR
CP from where

no β1 action is possible is called a stable state, in the sense that any β action from this state
does not change the state of the atomic components.

116 Decentralizing the Scheduler

Lemma 5. From any state qSR, there exists a unique stable state [qSR] such that qSR
β∗
1−→γSR

[qSR].

Proof. The state [qSR] exists since each Send/Receive component BSR
i can do at most two

β1 transitions: receive a notification and send an offer. Since two β1 transitions involving two
different components are independent (i.e. modify distinct variables and places), the same
final state is reached independently of the order of execution of β1 actions. Thus [qSR] is
unique.
The above lemma proves the existence of a well-defined stable state for any of the transient
states reachable by the Send/Receive model BSR

CP . The state [qSR] verifies the property

qSR
β∗
1−→γSR [qSR] and [qSR]

β1

6→γSR . Furthermore, Lemma 5 asserts that, at state [qSR],
atomic components are in a stable state, and variables and clock g in the scheduler have the
same value as in atomic components.

Lemma 6. At a stable state [qSR], the Send/Receive model verifies the following properties.

• All atomic components are in a non busy place ℓ.

• All tokens in the scheduler components are in receive places ri.

• The clock g and all variables in the atomic components have the same value than their
copies in the scheduler components.

Proof. The two first points come from Lemma 4 that guarantees possible execution of a
Send/Receive interaction if its send-port is enabled. Therefore no place sp in the scheduler
components (respectively ⊥ℓ in atomic components) can be active at [qSR], otherwise the
answer p (respectively the offer from ⊥ℓ) could occur. Furthermore, since all offers have been
sent, no token can be in a wi place.

In each scheduler Sj , when all ri are marked, the last transition executed is either an
offer or a fail message reception. The latter does not modify variables in the scheduler Sj .
For each variable x in the scheduler Sj , the last modifying transition is the offer from the
corresponding atomic component Bi, which ensures that each variable in the scheduler has
the same value as the corresponding atomic component. The clock g has the same value in
the atomic components and the schedulers as it is never reset.

Lemma 7. When BSR
CP is in a stable state, for each i ∈ {1, . . . , n}, we have ni > Ni.

Proof. Initially, for each component Bi, Ni = 0 and ni = 1. By letting all components
sending offers to all schedulers, we reach the first stable state where the property holds, since
β1 actions do not modify the Ni variables.

The variables Ni in the conflict resolution protocol are updated upon execution of an oka
transition, using values provided by the scheduler, that are values from components according
to Lemma 6. Thus, in the unstable state reached immediately after an oka transition, we
have ni = Ni for each component BSR

i participant in a. Then, the notification transition
increments participation numbers in components so that in the next stable state ni > Ni.
For components Bi′ not participating in a, by induction on the number of ok interactions,
we have ni′ > Ni′ .

5.4 Correctness of the Proposed Model 117

Lemma 7 shows that the participation numbers propagate in a correct manner. In partic-
ular, at any stable state the conflict resolution protocol has only previously used values and
schedulers have the freshest values, that is the same as in the atomic components.

We define a relation between the set of states QSR of BSR
CP and the set of states Q of B

as follows. For each state qSR ∈ QSR, we build an equivalent state equ(qSR) by:

1. considering the unique stable state [qSR] reachable by doing β transitions,

2. taking the control location ℓ of BSR
i as control location for Bi in equ(qSR), Lemma 6

ensures that it is a valid control state for Bi,

3. restricting the valuation of variables of BSR
i to a valuation of variables in Bi, and

4. taking the valuation of original clock ci in Bi as the valuation of g − ρci .

Theorem 3. B ∼ BSR
CP .

Proof. We define the equivalence R by taking:

R = {(qSR, q) ∈ QSR ×Q | q = equ(qSR)}

The three next assertions prove that R is a weak bisimulation:

(i) If (qSR, q) ∈ R and qSR
β
−→γSR rSR then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR
σ
−→γSR rSR then ∃r ∈ Q : q

σ
−→ r and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q
σ
−→γ r then ∃rSR ∈ QSR : qSR

β∗σ
−→ rSR and (rSR, r) ∈ R.

(i) If qSR
β
−→γSR rSR, then β is either β1 action, thus by definition [qSR] = [rSR], or β is β2

action which does not change the state of the atomic components, thus [qSR] = [rSR].
Thus, we have equ(qSR) = equ(rSR).

(ii) The action σ in BSR
CP is either an interaction a or a delay step δ.

– If a is an interaction, it corresponds to executing a transition labeled by a unary
port a in the scheduler handing a or a transition labeled by oka in CP . These
transitions are enabled according to valuations of variables and clock g in the
scheduler handling a.

If a is not externally conflicting, by construction of the scheduler, the transition
labeled by a has the conjunction of timing constraints tcp sent by the atomic
components for each port p ∈ a. The Boolean guard of this transition isGa

∧
p∈a gp,

where gp are boolean guards sent by the atomic components for each port p ∈ a.
By Lemma 6, these values are the same in atomic components, and by extension
in q = equ(qSR). Thus the guard of a evaluates to true at q = equ(qSR). By
construction of the atomic components, the timing constraints tcp are sent from
⊥ℓ in BSR

i are the timing constraints at state ℓ in Bi. These timing constraints

118 Decentralizing the Scheduler

are expressed on clock g which could be equivalently expressed on original clocks
c involved in the original timing constraints of Bi. The valuation of each clock c
involved in the timing constraint of a is computed from the valuation of g − ρc
where ρc is the last clock reset date of c. Therefore, at state q the timing constraint
of a expressed on its original clocks are also met.

If a is externally conflicting, the transition labeled oka in CP is possible only
if the transition rsva executes in the scheduler. This transition has the guard
Ga

∧
p∈a gp and timing constraint

∧
p∈a tcp. Thus, if this transition is possible in

the scheduler, then the timing constraint and the Boolean guard of a are met at q.
Moreover, if transition labeled oka is enabled, this means that for each component
Bi involved in a, ni > Ni. In particular, for each involved component Bi, the offer
corresponding to the number ni has not been consumed yet.

We conclude that in both cases, we have q
a
−→ r. Finally, executing a in BSR

triggers the execution of the data transfer function Fa, followed by the computation
in atomic component upon reception of the response. Thus at [rSR] the values in
atomic components are the same as in r, which yields (rSR, r) ∈ R.

– If a is a delay step, it corresponds by letting time progress by δ in either busy
locations ⊥ℓi or in places ri of the schedulers, corresponding to atomic components
Bi. Location ⊥ℓi has the time progress condition tpcℓi and ri has the time progress
condition tpci sent from the atomic components and corresponding to time progress
condition of location ℓi. Thus, all these time progress conditions are not false,
otherwise the δ delay step would not be allowed. By Lemma 6, the values involved
in time progress condition and sent from ⊥ℓ in BSR

i are the values of time progress
condition at state ℓ in Bi. These time progress conditions are expressed on clock g
which could be equivalently expressed on original clocks c involved in the original
time progress conditions Bi. The valuation of each clock c involved in the time
progress condition of Bi is computed from the valuation of g − ρc where ρc is the
last clock reset date of c. If the time progress condition tpci expressed on clock g
allows the time step δ in the scheduler, thus, δ is also allowed by the time progress

condition tpcℓi expressed on original clocks of Bi. Therefore q
δ
−→ r. Executing δ

has the same effect on clocks in both models, therefore (rSR, r) ∈ R.

(iii) If σ can be executed in B at state q, then from an equivalent state qSR, one can
reach the state [qSR] where the state, the clock g, and data of send/receive atomic
atomic components coincide with those of q. Recall clocks c of the original model could
be deduced from clock g as follows c = g − ρc By Lemma 6, clock g, ports, timing
constraints and data values are the same in atomic components and the schedulers. As
previously, we distinguish the cases where σ is an interaction a or a delay step δ.

– If σ is a an interaction a from q, then the timing constraint and guard of a are
true. By executing all possible fail interactions (which correspond to β2 actions),
all tokens return back in ri places in schedulers. Then, if a is not externally
conflicting, it can be executed directly. Otherwise, the sequence rsvaoka executes,

since Lemma 7 ensures that oka is enabled. In both cases, we have qSR
β∗
1−→

5.5 Conclusion 119

[qSR]
β∗
2−→

a
−→ rSR. As previously, the execution of a in both models leads to

equivalent states, thus (rSR, r) ∈ R.

– If σ is a delay step δ, then from state [qSR], time can progress also by δ as at this
state all places ri are marked and having the time progress condition tpci sent by

BSR
i which is the same as the time progress condition of Bi at q. q

SR
β∗
1−→ [qSR]

δ
−→

r′SR. From state r′SR, some fail interactions are possible (which correspond to β2
actions) with zero delay, due to the time progress conditions that are equal to
false in ra places int the conflict resolution protocol. That is, even if some β2
actions is possible from state r′SR, no delay is allowed at this state. Thus we have

qSR
β∗
1−→ [qSR]

δ
−→ r′SR

β2
−→ rSR with (rSR, r) ∈ R.

Interoperability of Conflict Resolution Protocol

The centralized implementation CP of the conflict resolution protocol can be seen as a
specification. Two other implementations, namely token ring and dining philosophers, can be
used as conflict resolution protocol. However, these implementations are not observationally
equivalent with the centralized implementation. The centralized version defines the most
liberal implementation: if two reservation requests rsva and rsvb are received, the protocol
may acknowledge them in any order. This general behavior is not implemented neither by
the token ring nor by the dining philosophers implementations, which are focused on ensuring
progress. In the case of token ring, the response may depend on the order the token travels
through the components. In the case of dining philosophers, the order may depend on places
and the current status of forks.

Proposition 1. BSR
TR ⊂ B and BSR

DP ⊂ B.

Proof. As B is observationnally equivalent to BSR
CP , it is equivalent to prove that BSR

TR ⊂
BSR

CP and BSR
DP ⊂ BSR

CP . As the behaviors BSR
DP and BSR

TR differ from BSR
CP only in the conflict

resolution protocol components, thus it is sufficient to prove that TR ⊂ CP and DP ⊂ CP .

The observable actions are requests rsva, oka and faila messages or a δ step. The
unobservable actions are token passings for TR and forks exchange for DP . It is clear that
whenever an action (either oka, faila or rsva) is possible from a given state of TR (resp.
DP) by moving the token (resp. the forks), then we can always reach a state of CP where
this action is possible as well. δ steps are not allowed in the three implementations of the
conflict resolution protocol due to the time progress conditions on sending places. That is, a
request, token or forks are required to be sent without any delay.

5.5 Conclusion

In this chapter, we proposed a method to decentralize the scheduler. The obtained models
consist of (1) transformed atomic components of the original model, (2) a set of schedulers,
each one handling a subset of interactions and (3) a conflict resolution protocol component(s)

120 Decentralizing the Scheduler

responsible for resolving conflict between schedulers. The obtained models are dedicated to be
implemented on platforms that provide fast communications, as in the schedulers, interactions
scheduling dates correspond to execution dates in the components.

In the next chapter, we propose a method to obtain Send/Receive models that are dedi-
cated to be implemented on platforms that provide slow communications. The idea in based
on taking earlier the decision for executing an interaction. Indeed, the scheduler chooses
earlier (as soon as possible) a date for executing an interaction and sends it to participating
components so as they execute later at this date. However, deciding earlier the execution of
an interaction may block components participating conflicting interaction. We will see in the
next chapter how to avoid such blocking.

6
Taking Decision Earlier

In the previous chapter, we proposed a method for the generation of Send/Receive models
with decentralized scheduling. Such models implicitly make the assumption that communica-
tions between components are instantaneous. This restricts the applicability of the approach
to platforms having communication means that are fast enough so that communication delays
can be neglected. In this chapter, we propose a method to obtain Send/Receive models that
execute correctly even if communications are not instantaneous. To cope with communica-
tion delays, instead of notifying components at the very last moment (scheduing date), the
schedulers have to plan interactions execution and to notify components in advance. In the
proposed model, the schedulers choose as soon as possible a date for executing a selected
interaction and send it to the participating components. Once received, the components wait
for this date and then execute.

In order to ensure correct scheduling of interactions based on this approach, we show that
the schedulers need to observe additional components not participating in the scheduled in-
teractions. These components correspond to the ones participating in conflicting interactions
(see Figure 6.1).

This chapter is structured as follows. In Section 6.1, we start by describing the restric-
tions that we impose on the original model. Then, we explain in Section 6.2 scheduling issue
when considering earlier decision making approach. In Section 6.3, we define formally the
transformation from the centralized BIP models into Send/Receive BIP models. As we will
explain later in the chapter, scheduling interactions in advance may require to observe time
progress conditions of additional components, in addition to the participating components.
This is needed for checking that scheduling decisions will not block components if the schedul-
ing date is not compatible with their time progress conditions. We will explain also how to
minimize the number of observed components by applying static analysis techniques.

121

122 Taking Decision Earlier

decentralization

BSR
1

Offer

B1 B2

ba

OfferNotif(texa)

BSR
3

BSR
2

B3

Notif(texa) Observation

a and b are conflicting

scheduler handling a
texa =choose date for a()

Figure 6.1: Earlier Decision Making Approach

6.1 Model Restrictions

We consider the same model restrictions of the previous chapter. In addition, we consider
the following restrictions.

• We consider the following restricted grammar for timing constraints tc:

tc := true | false | c ≤ ct | c ≥ ct | tc ∧ tc.

where c ∈ C is a clock, ct ∈ Z≥0 is a constant. Any timing constraint tc can then be
put into a conjunction of intervals as follows:

tc =
∧

c∈C

lc ≤ c ≤ uc (6.1)

such that for all c ∈ C, lc ∈ Z≥0 and uc ∈ Z≥0 ∪ {+∞}.

• We consider also atomic components that satisfy the following non-decreasing deadlines
property, which is defined below.

Definition 34. Let B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T ,
{rτ}τ∈T ,{tpcℓ}ℓ∈L) be an atomic component with a semantics (Q,Σ,−→). We say that

B has non-decreasing deadlines if for any state (ℓ, v, t) such that port p is enabled from
state (ℓ, v, t), we have:

∀δ ∈ Z≥0 . (ℓ, v, t)
δ
−→ (ℓ, v, t+ δ)⇒ (ℓ, v, t)

p
−→ (ℓ′, v′, t′)

δ
−→ (ℓ′, v′, t′ + δ)

Intuitively, an atomic component satisfies the non-decreasing deadlines property if the fol-
lowing condition is satisfied: if time can progress by δ from a given state (ℓ, v, t) it can also
progress from state (ℓ′, v′, t′) reached by executing port p from (ℓ, v, t).

6.1 Model Restrictions 123

Sufficient conditions for satisfaction of non-decreasing deadlines property. Given
a timing constraint tc defined as in (6.1), we denote by L[tc](c) = lc and U [tc](c) = uc the
lower bound and the upper bound of tc over clock c respectively.

Example 22. Consider the timing constraint tc = 3 ≤ c1 ≤ 4 ∧ 5 ≤ c2 ≤ 7. We have
L[tc](c1) = 3, L[tc](c2) = 5, U [tc](c1) = 4 and U [tc](c2) = 7.

The following proposition gives sufficient conditions on time progress conditions and tim-
ing constraints that ensure satisfaction of the non-decreasing deadlines property. They are
simple syntactic conditions that can be checked statically on transitions of atomic compo-
nents.

Proposition 2. An atomic component B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T ,
{fτ}τ∈T , {rτ}τ∈T ,{tpcℓ}ℓ∈L) such that all its transitions τ = (ℓ, p, ℓ′) ∈ T satisfy the following
syntactic conditions

{
U [tpcℓ](c) ≤ U [tpcℓ′](c) if c 6∈ rτ
U [tpcℓ](c) ≤ U [tpcℓ′](c) + L[tcτ](c) if c ∈ rτ

has non-decreasing deadlines.

Proof. Given a transition τ = (ℓ, p, ℓ′) enabled from state (ℓ, v, t), we have to prove that if a
time step δ is enabled from (ℓ, v, t) then it is also enabled from state (ℓ′, v′, t′) reached after
executing transition τ .

First, as we suppose that transition τ is enabled from state (ℓ, v, t), this means that tcτ (t)
must be true. Thus, the valuation of each clock c is greater than or equal to the lower bound
specified by the timing constraint tcτ over c. Formally we have:

∀c ∈ C, t(c) ≥ L[tcτ](c) (6.2)

Second, as we suppose that δ is allowed from state (ℓ, v, t), then for each clock c the valuation
t(c) + δ must be less than or equal to the upper bound specified by tpcℓ for c. Formally, we
have:

∀c ∈ C, t(c) + δ ≤ U [tpcℓ](c) (6.3)

Inequations (6.2) and (6.3) gives the following inequation:

∀c ∈ C, δ ≤ U [tpcℓ](c)− L[tcτ](c). (6.4)

Now, we prove that δ is enabled from state (ℓ′, v′, t′) by considering the syntactic condi-
tions of Proposition 2. This boils down to prove that for each clock c the valuation t′(c) + δ
is less than or equel to the upper bound of the time progress condition tpcℓ′ , That is:

∀c ∈ C, t′(c) + δ ≤ U [tpcℓ′](c).

To prove that, we consider the following two cases.

• If c is not reset by transition τ , i.e. c 6∈ rτ , then at state (ℓ′, v′, t′), the valuation of c
remains the same as at state (ℓ, v, t), i.e. t(c) = t(′c). According to the first syntactic
condition of Proposition 2 and (6.3), we prove that t′(c) + δ ≤ U [tpcℓ′](c).

124 Taking Decision Earlier

• If c is reset by transition τ , i.e. c ∈ rτ , then at state (ℓ′, v′, t′) the valuation of c is 0,
i.e. t′(c) = 0. Thus, we need to prove that δ ≤ U [tpcℓ′](c). According to the second
syntactic conditions of Proposition 2, we have [tpcℓ](c) − L[tcτ](c) ≤ U [tpcℓ′](c). By
using (6.4), we prove that δ ≤ U [tpcℓ′](c).

ℓ1

ℓ2 c ≤ D

give

B

take

c := 0

c = P
E ≤ c ≤ D

c := 0

c ≤ Pgive take

Figure 6.2: Example of atomic component having non-decreasing deadlines if D ≤ E + P .

Example 23. Figure 6.2 shows an atomic component B corresponding to a task that is
processing items cyclically. It takes a new item to process via port take, and give it back after
processing via port give. Transition τ1 = (ℓ1, take, ℓ2) resets the clock c so as to measure the
time it takes to give back an item after taking it. The time progress condition c ≤ P of ℓ1
and the timing constraint c = P of τ1 ensures that τ1 executes when c reaches P . We assume
that B takes exactly E time units to process an item once it is taken. We also assume that
once an item is processed, it can be kept by B for at most K time units before giving it back.
For instance, B is a machine that is processing items at room temperature and they need
to be kept cold or hot. This is represented by timing constraint E ≤ c ≤ D for transition
τ2 = (ℓ2, give, ℓ1), where D = E +K. To enforce the execution of τ2 before c reaches D, we
also consider the time progress condition tpcℓ2 = c ≤ D for ℓ2. According to conditions given
in Proposition 2, component B satisfies the non-decreasing property only if D ≤ E + P .

Running Example

Figure 6.3 illustrates a BIP model γ(B1, B2, B3, B4, B5), which is the running example used
throughout this chapter. Components B2 and B4 are instances of the component B of
Figure 6.2, with E=3, D=P=5 for B2 and E=6, D=P=8 for B4. The set of interactions
γ is {t1, t2, g1, g2}, where t1 = {new1, take1}, t2 = {new2, take2}, g1 = {give1, free} and
g2 = {give2, free}. Note that all components B1, . . . , B5 have non-decreasing deadlines since
they satisfy the syntactic conditions given in Proposition 2.

Initially, the system is at state (ℓ, 0, 0) where ℓ = (ℓ11, ℓ
2
1, ℓ

3
1, ℓ

4
1, ℓ

5
1). At this state, the time

progress condition and the timing constraint in B1 impose that the interaction t1 executes
after a delay of 5 time units. Then due to the time progress condition and the timing
constraint in B2, t2 executes after a delay of 3 time units. The interaction g1 executes then
after a delay δ1 ∈ [0, 2] then g2 after a delay δ2 such that δ1 + δ2 ∈ [6, 8].

6.2 Scheduling Issue of Earlier Decision Making Approach 125

free

ℓ31

free

B3

take1

B2

take1

c1 := 0

give2

give1

ℓ11

new2

ℓ51

new2

B1

B5

ℓ41

ℓ42
B4

c2 := 0

take2

take2
g2

g1

t1

t2

ℓ22

c2 = 8

give1

c1 := 0

give2

c2 := 0

c2 ≤ 8

c2 ≤ 8

c1 ≤ 5

c1 ≤ 5

new1

ℓ21

new1

3 ≤ c1 ≤ 5

6 ≤ c2 ≤ 8

c1 = 5

Figure 6.3: Example of BIP model that meets all restrictions.

6.2 Scheduling Issue of Earlier Decision Making Approach

Let a = {{pi | i ∈ I}, Ga, Fa} and b = {{p′j | j ∈ J}, Ga, Fa} be two conflicting interactions
(i.e. such that a#b) where part(a) = {Bi}i∈I and part(b) = {Bj}j∈J . When interaction a is
planned, the scheduling of interaction b needs to be blocked until a executes. If a is planed
in δa time units, any component Bi ∈ part(a) can only participate to a and is forced to wait
for δa time units, which needs to be allowed by its corresponding time progress condition.
Moreover, any component Bj ∈ part(b) may participate to any interaction other than b.
However, when the only enabled interaction is b, Bj cannot execute before the execution of
a, that is, it is forced to wait for δa. In this case and if the time progress condition of Bj does
not allow to wait for δa time units, scheduling a in δa introduces a timelock in Bj . That is,
Bj cannot execute during δa time units but at the same time cannot wait for δa time units.

Note that such blocking situations cannot be reached when considering the approach of
the last chapter. This is because the decision of executing a is taken at the very last moment
i.e., its execution date. Before the decision for executing a is taken, there is no component
”reserved” for executing a, in particular the components participating in conflicting interac-
tions.

Example 24. Figure 6.4 shows a BIP model composed of three components B1, B2 and B3

with two conflicting interactions a and b. Suppose that initially the system is at state ((ℓ1,
ℓ2,ℓ3), 0, 0). From this state, the schedulers may plan the execution of either interaction a or
b, but not both, since interactions a and b are conflicting and both are enabled. Suppose that
a is planed to execute in 5 time units. This means that components B1 and B2 are ”reserved”
and cannot participate in any other interaction before the execution of a. In particular, B2

can not participate to interaction b for 5 time units. As a result, component B3 is blocked

126 Taking Decision Earlier

p′3

p1 p2 p′2

p2 p′2

p′3
ℓ1 ℓ2 ℓ3 c3 ≤ 2c1 ≤ 10

B2 B3B1

a b

ℓ′1 ℓ′2 ℓ′′2 ℓ′3

c3 ≤ 2

p1
c1 ≤ 10

Figure 6.4: Scheduling Issue

for 5 time units too as it can progress only by participating in interaction b through port p′3.
However, the time progress condition c3 ≤ 2 of component B3 does not allow to wait for 5
time units for the initial state. Thus, scheduling a in 5 time units introduces a timelock in
B3 after 2 time units.

6.2.1 Problem Formulation

We denote by Lpi the set of locations of component Bi enabling port pi, defined as follows:
Lpi = {ℓi | ∧τi = (ℓi, pi, ℓ

′
i) ∈ Ti}. Let a = {pi}i∈I be an interaction. We denote by La the

set of locations configurations enabling interaction a defined as follows: La =
⊗

pi∈a
Lpi .

When scheduling a in δa time units from a location configuration ℓa ∈ La, it should be
allowed by the timing constraint of transitions τi = (ℓi, pi, ℓ

′
i) of Bi ∈ part(a) where ℓi ∈ ℓa

as well as the time progress conditions of locations ℓi. We define the predicate sched-tca[ℓa]
characterizing clocks valuations for which a could be scheduled from the configuration ℓa ∈ La
as follows:

sched-tca[ℓa] =
∧

{ℓi∈ℓa|τi=(ℓi,pi,ℓ′i)∈Ti}

tcτi ∧ tpcℓi .

In order to plan a from the configuration ℓa in δa time units, we have to verify that
sched-tca[ℓa](t+ δa) is true. Also, as explained in the previous section, we have to verify that
each component Bj participating in a conflicting interaction b is allowed to wait for δa. As we
consider components that satisfy the non-decreasing deadline property, we need only to check
the time progress condition of the current state of Bj : if Bj can wait for δa from the current
state, it will be able to do so even if it changes its state by executing other interactions.

We call observed components of an interaction a, denoted by obs(a), the components that
are not participating in a but that need to be observed in order to plan a. It is defined as
follows:

obs(a) =
⋃

a#b

part(b) \ part(a).

We denote by safe-tca[ℓa] the predicate characterizing the valuations of clocks for which

6.3 Transformations 127

a could be safely scheduled from the configuration ℓa. It is defined as follows:

safe-tca[ℓa] = sched-tca[ℓa]
∧

Bj∈obs(a)

tpcℓj .

In order to plan safely interaction a in δa from a state (ℓ, v, t) where the location ℓ enables
a from configuration ℓa, we have to check that safe-tca[ℓa](t+ δa) evaluates to true.

6.2.2 Proposed Solution For Send/Receive BIP Models

Let a = ({pi}i∈I , Ga, Fa) be an interaction and let Sa be the scheduler handling a. In the
Send/Receive BIP model proposed in the previous chapter, when scheduling an interaction
a, Sa needs to receive offers only from components participating in a. However, this is
not sufficient when considering the earlier decision making approach as Sa needs to observe
components in obs(a) to safely plan interaction a. In the Send/Receive BIP model presented
in this chapter, we propose that the scheduler Sa receives not only offers from components
participating in a but also observed components in obs(a), that is components participating
in conflicting interactions. The offers of observed components are used to observe their time
progress conditions of components. Thanks to the non-decreasing deadlines assumption, the
scheduler can safely use outdated offers of observed components to check their time progress
conditions.

From offers received from participating components Bi ∈ part(a), the scheduler Sa com-
putes the scheduling timing constraint sched-tca of a as follows:

sched-tca =
∧

pi∈a

tcpi ∧ tpci

where tcpi and tpci are timing constraints and time progress conditions variables received in
the offers of participating components Bi.

From offers received from observed components Bj ∈ obs(a), the scheduler Sa restricts
the scheduling timing constraint sched-tca into a safe scheduling timing constraint safe-tca as
follows:

safe-tca = sched-tca
∧

Bj∈obs(a)

tpcj

where tpcj are time progress conditions variables received in the offers of observed components
Bj .

Consider again the example from Figure 6.3. Since g1 and g2 are conflicting, they observe
the components of each others ,i.e. obs(g1) = {B4} and obs(g2) = {B2}. Figure 6.5 shows the
overall architecture of the Send/Receive distributed model of the example from Figure 6.3
considering the partition of interactions γ1 = {t1, g1} and γ2 = {t2, g2}. As the component B4

needs to be observed for interaction g1, the corresponding Send/Receive atomic component
BSR

4 sends offers to scheduler S1 handling g1. Similarly, Send/Receive atomic component
BSR

2 sends offers to Scheduler S2 as component B4 needs to be observed for interaction g2.

128 Taking Decision Earlier

nfreeo3nnew1
o1 o5

S1{t1, g1} S2{t2, g2}

okg2
rg1

rg1

rg2

rg2 okg2
failg2

failg2

failg1okg1

okg1

o2

o 1 nn
ew

1

o3 o5
o 2

failg1

n
g
iv
e
1

n ta
ke

1

o2

BSR
1 BSR

2 BSR
3 BSR

4 BSR
5

nnew2
o4

n
g
iv
e
2

n
ta

k
e
2

n
ta

k
e
1

nn
ew

2

o3 n f
re

e

o 4 n ta
k
e 2

n ta
k
e 2

o4
n f

re
e

CRP

Figure 6.5: 3-layer distributed model of the example from Figure 6.3.

6.3 Transformations

6.3.1 Transformation of Atomic components

The transformation proposed here differs from the one of Definition 28 in the fact that it
decouples notifications of components and their actual executions. Each notification brings
the execution date chosen for the port participating in the interaction planed for execution by
the scheduler. Once notified, a component wait for the corresponding date and then execute
on the corresponding port.

 Transitions in the Send/Receive modelTransitions in the original model

ℓ

ℓ1

p1
p2

ℓ2

⊥ℓ

ℓ

⊥τ1
⊥τ2

⊥ℓ1
⊥ℓ2

p2
p1

o

np2np1

Figure 6.6: Example of transitions transformation.

Figure 6.6 shows the transformation of transitions labeled p1 and p2 enabled from location
ℓ. In the transformed Send/Receive atomic component, we add the busy location ⊥ℓ from

6.3 Transformations 129

which transition offer executes. Also, we add for transitions τ1 = (ℓ, p1, ℓ1) and τ2 = (ℓ, p2, ℓ2),
busy locations ⊥τ1 and ⊥τ2 respectively. Transitions (ℓ, np1 ,⊥τ1) and (ℓ, np2 ,⊥τ2) correspond
to the reception of notifications from the schedulers, regarding the execution of port p1 and
p2 respectively. Notifications contain the date chosen for the execution of the selected port.
Transitions (⊥τ1 , p1,⊥ℓ1) and (⊥τ2 , p2,⊥ℓ2) executes ports p1 and p2 respectively at the date
received with the notification. In the following, we define formally the transformation of an
atomic component into a Send/Receive atomic component.

Definition 35. Let B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {rτ}τ∈T ,{tpcℓ}ℓ∈L)
be an atomic component. The corresponding Send/Receive atomic component is BSR = (LSR,
PSR, TSR,CSR , XSR, {XSR

p }p∈P , {gτ}τ∈TSR , {tcτ}τ∈TSR , {fτ}τ∈TSR , {rτ}τ∈TSR , {tpcℓ}ℓ∈LSR)
such that:

• LSR = L∪{⊥ℓ | ℓ ∈ L}∪ {⊥τ | τ ∈ T}. The time progress condition of location ⊥ℓ and
ℓ are equal to tpcℓ expressed on clock g and the time progress condition of location ⊥τ

is g ≤ tex.

• XSR = X ∪ {tcp}p∈P ∪ {gp}p∈P ∪ {tpc} ∪ {ρc}c∈C ∪ {t
ex} ∪ {n}.

• CSR = {g}.

• PSR = P ∪ {o}∪ {np}p∈P where o is a an offer port, np is a notification port and p is
a unary port. The offer port o exports variables XSR

o = {n, tpc} ∪
⋃

p∈P (Xp ∪ {tcp} ∪
{gp}), that is, the participation number variable, the time progress condition variable,
the timing constraints, guard variables, and variables associated with each port. Each
notification port np exports the variables XSR

np
= Xp ∪ {t

ex}.

• For each location ℓ ∈ L, TSR includes an offer transition τℓ = (⊥ℓ, o, ℓ). This transition
has no Boolean guard, no timing constraints and no update function.

• For each transition τ ∈ T , TSR includes a notification transition τnp = (ℓ, np,⊥τ)
having no Boolean guard, no timing constraint and no update function, and an execution
transition τp = (⊥τ , p,⊥ℓ′). having no Boolean guard and a timing constraint g = tex.
The update function fτp first applies the original update function fτ of τ , and updates
the following variables:

– ∀c ∈ rτ ρc = tex,

– tpc := tpcℓ′ ,

– ∀p′ ∈ P tcp′ :=

{
tcτ ′ if τ ′ = (ℓ′, p′, ℓ′′) ∈ T

false otherwise.

– ∀p′ ∈ P gp′ :=

{
gτ ′ if τ ′ = (ℓ′, p′, ℓ′′) ∈ T

false otherwise.

– n := n+ 1

130 Taking Decision Earlier

Note that the time progress condition of location ⊥τ and the timing constraint of τp
ensures the execution of port p at the chosen date tex. We recall that tcp′ and tpc are
expressed using clock g and are computed using ρc as explained in Section 4.1.2.

In the above definition, the execution of a transition τ = (ℓ, p, ℓ′) of a component B
corresponds to the following three steps in BSR. Firstly, an offer transition τℓ transmits
necessary information used by the schedulers for computing enabled interactions involving
BSR. Secondly, a notification transition τnp is executed once the scheduler plans the execution
of an interaction involving port p. The notification contains the date tex chosen by the
scheduler for its execution. Finally, the execution transition τp executes the port p at the
chosen date tex.

o

o

ℓ1

u1

g = tex

o ngive

⊥τ1
⊥ℓ2

take

g ≤ P + ρc

g ≤ tex

g ≤ D + ρc

g ≤ tex

ntake

g = tex

⊥ℓ1

ngive

⊥τ2

ℓ2

u2

give

ntake

tpc1

tcgive1

tctake1

tex

BSR

ggive1

gtake1

ρc

g ≤ D + ρc

g ≤ P + ρc

Figure 6.7: Transformation of component of Figure 6.2.

Figure 6.7 illustrates the transformation of the component B of Figure 6.2 into its corre-
sponding Send/Receive component BSR. Consider an execution in BSR starting from location
⊥ℓ1 . First, B

SR sends offers to the schedulers, containing the time progress condition of loca-
tion ℓ1, the timing constraints of ports give and take as well as their Boolean guard variables,
and the participation number variable n1. It receives then a notification from the schedulers
specifying that the component should execute port take at date tex. Note that the time
progress condition of location ℓ1 forces BSR to be notified and to leave ℓ1 before the value of
clock g exceeds P +ρc, or equivalently clock c exceeds P . After receiving notification on port
ntake, the transition labeled by take executes at the chosen date tex and executes the update

6.3 Transformations 131

function u2 defined as follows.

u2 =

ρc := tex

tctake := false

tcgive := E + ρc ≤ g ≤ D + ρc
gtake := false

ggive := true

tpc =: g ≤ D + ρc
n++
tex := +∞

The update function u1 of transition labeled by give is defined as follows.

u1 :=

ρc := tex

tctake := g = P + ρc
tcgive := false

tpc := g ≤ P + ρc
gtake := true

ggive := false

tpc := g ≤ P + ρc
n++
tex := +∞

6.3.2 Building Distributed Schedulers

Given a BIP model γ(B1, . . . , Bn) and a partition of interactions {γj}
m
j=1, we explain in this

section how to build for each class γj the scheduler component Sj .

Let a = {{pi | i ∈ I}, Ga, Fa} be an interaction belonging to γj . Scheduling a needs
receiving offers from components in part(a) and obs(a). Only offers from the participants
need to be acknowledged by a response whenever the interaction a is planned. Regarding
offers from observed components, they are used to compute a safe date for scheduling a. Note
that only time progress conditions are used from offers received from observed components.
In order to choose a safe date, Sj computes the safe timing constraint safe-tca that corre-
sponds to the conjunction of timing constraints and time progress conditions of components
participating in a with the time progress conditions of components observed by a. Given a
scheduling policy P, the safe timing constraint safe-tca and the actual valuation of clock g,
Sj computes the set of safe dates P(t(g), safe-tca). If this set is not empty, Sj chooses a safe
date ta for scheduling a. Otherwise, a could not be scheduled since there is no safe date for
its execution. We distinguish between the case where interaction a is internally or externally
conflicting.

Figure 6.8 shows scheduling mechanisms of interaction a involving components B1 and
B2 and observing component B3.

132 Taking Decision Earlier

• In the case where interaction a is internally or not conflicting, the scheduler executes
transition scheda if the set P(t(g), safe-tca) is not empty. In this case, the scheduler
chooses one safe date texa from the set P(t(g), safe-tca), such that safe-tca(t

exa) is true,
and sends it to participating components B1 and B2.

• In the case where interaction a is externally conflict, the scheduler starts the reservation
mechanism if the set P(t(g), safe-tca) is not empty. In the case where the conflict
resolution protocol responds by fail the scheduler returns back to received places. In
the case where the conflict resolution protocol responds by ok, the scheduler checks
again the set P(t(g), safe-tca). This check is necessary to ensure finding a valid date
for scheduling interaction a. Indeed, if ok message from the conflict resolution protocol
takes a long time to be received, it would be possible that the set P(t(g), safe-tca)
becomes empty (e.g. safe-tca evaluates to false) which forbids the scheduler to find a
valid date for scheduling a. In the case where the set P(t(g), safe-tca) is not empty,
the scheduler proceeds to schedule interaction a by executing transition scheda. In the
other case, the scheduler sends a cancel request to the conflict resolution protocol on
port cancela. This request is acknowledged by a message sent by the conflict resolution
protocol on port acka.

sp2sp1

r1 r2

sp1
sp2

r3

r2r1r3

o3

faila

o1 o2
o3

acka

trya

o1
o2

oka

sda cla

P(t(g), safe-tca) = ∅

cancelascheda

scheda

texa := choose(P(t(g), safe-tca))

Ga ∧ P(t(g), safe-tca) 6= ∅

Ga ∧ P(t(g), safe-tca) 6= ∅

rsva

texa := choose(P(t(g), safe-tca))

P(t(g), safe-tca) = ∅

(a) Scheduling mechanism in the case
where a is internally or not conflicting.

(b) Scheduling mechanism for the case
where a is externally conflicting.

Figure 6.8: Mechanisms for Interactions Scheduling.

Definition 36. Let γ(B1, . . . , Bn) be a BIP model and γj ⊂ γ be a subset of interactions.
The corresponding scheduler Sj handling interactions of γj is defined as the Send/Receive BIP

6.3 Transformations 133

component Sj = (LSj , PSj , TSj , CSj , XSj , {Xp}p∈PSj , {gτ}τ∈TSj , {tcτ}τ∈TSj , {fτ}τ∈TSj ,

{rτ}τ∈TSj , {tpcℓ}ℓ∈LSj) where:

• The set of variables XSj consists of the following.

– Variables updated whenever an offer from component Bi that is participating in or
observed by an interaction in γj is received. They consist of the following:

∗ a timing constraint variable tcp, a guard variable gp and a local copy of the
variables Xp for each port p of Bi.

∗ a time progress condition variable tpci and a participation number variable ni

for each component Bi.

Note that for observed components, tcp, gp, Xp and ni are not used by Sj.

– Variables updated whenever interaction a is scheduled. They consist of the follow-
ing:

∗ an execution date variable texa for each interaction a ∈ γj, that stores the last
execution date of interaction a,

∗ an execution date variable texi for each component Bi participating in an in-
teraction belonging to γj.

• CSj = {g}.

• The set of LSj contains the following places.

– For each component Bi involved in interactions of γj, L
Sj includes waiting and

received places wi and ri, respectively. Place ri has a time progress condition
defined by the variable tpci.

– For each port p of component Bi participating in interactions of γj, L
Sj includes

a sending place sp. The time progress condition of this place is g ≤ texi .

– For each interaction a ∈ γj that is externally conflicting, LSj includes a trying
place trya, scheduling place sda and a cancel place cla. The time progress condition
of trya and sda is defined by

∧
Bi∈part(a)

tpci. The other places have no time
progress condition.

• The set of ports PSj consists of the following:

– For each component Bi, P
Sj includes an offer port oi. Each port oi is associated

with the variables tcp, gp and Xp for each port p of Bi as well as the variable tpci
and ni of Bi.

– For each port p of component Bi participating in interactions γj, P
Sj includes a

send-port np, which exports the set of variables Xp ∪ {t
ex
i }.

– We include a unary port scheda for each interaction a ∈ γj.

– For each interaction a ∈ γj that is externally conflicting, PSj includes ports rsva,
oka, faila, cancela and acka. The port rsva exports the variables {ni}Bi∈part(a).
The other ports do not export any variable.

134 Taking Decision Earlier

• The set of transitions TSj consists of the following:

– In order to receive offers from a component Bi participating in or observed by
an interaction of γj, T

Sj includes an offer transition (wi, oi, ri). It includes also
transitions (ri, oi, ri) and {(trya, oi, trya) | Bi ∈ part(a) ∪ obs(a)} to receive new
offers when Bi takes part in other conflicting interaction not handled by Sj. These
transitions have no Boolean guards, no timing constraints and no update functions.

– In order to send notification, TSj includes for each port p of component Bi partic-
ipating in an interaction belonging to γj, a notification transition (sp, np, wi) with
no Boolean guard, no timing constraint and no update function.

– For each interaction a = {{pi | i ∈ I}, Ga, Fa} ∈ γj that is internally or not con-
flicting, TSj includes transition τscheda = ({ri | Bi ∈ part(a)∪obs(a)}, scheda, {spi |
Bi ∈ part(a)}∪{ri | Bi ∈ obs(a)}) guarded by Ga∧P(t(g), safe-tca) 6= ∅ and having
no timing constraint. The update function fτscheda updates the following variables.

∗ texa := choose(P(t(g), safe-tca)), such that safe-tca(t
exa)

∗ ∀ Bi ∈ part(a) texi := texa and applies the data tansfer function Fa.

– For each interaction a = {{pi | i ∈ I}, Ga, Fa} ∈ γj that is externally conflicting,
TSj includes the following transitions

∗ τ rsva = ({ri | Bi ∈ part(a)∪ obs(a)}, rsva, {trya}∪{ri | Bi ∈ obs(a)}) guarded
by Ga ∧ P(safe-tca, t(g)) 6= ∅ and having no timing constraint and no update
function.

∗ τ oka = (trya, oka, sda) with no Boolean guard, no timing constraint and no
update function.

∗ τfaila = (trya, faila, {ri | Bi ∈ part(a)}) with no guard, no timing constraint
and no update function.

∗ τcancela = (sda, cancela, cla) guarded by P(t(g), safe-tca) = ∅ and having no
timing constraint and no update function.

∗ τacka = (sda, acka, {ri | Bi ∈ part(a)}) with no Boolean guard, no timing
constraint and no update function.

∗ τscheda = (sda, scheda, {spi | Bi ∈ part(a)}) guarded by P(t(g), safe-tca) 6= ∅,
having no timing constraint. The update function fτscheda updates the following
variables

· texa := choose(P(t(g), safe-tca)), such that safe-tca(t
exa)

· ∀ Bi ∈ part(a) texi := texa and applies the data tansfer function Fa.

Note that the time progress conditions of place trya (
∧

Bi∈part(a)
tpci) ensures that the

response from the conflict resolution protocol is received before that one of the time progress
conditions of components participating in a becomes. Also, the time progress conditions of
place sda (

∧
Bi∈part(a)

tpci) ensures that scheduling a is done before that one of the time
progress conditions of components participating in a becomes false. The time progress con-
dition of place sp (g ≤ texi), where p is a port of component Bi, ensures that the scheduler
sends the notification to component Bi before the execution date texi expiration.

6.3 Transformations 135

nnew1o1

r1

w1

o2o1

tpc2

w2

r2

o4

o4

w4

o2

tryg1
o3

r3

o3

o3
tpc3

w3

o2

okg1

sdg1

schedt1

failg1

cancelg1

w3
w2

ngive1ntake1

sfree

nfree

w1

nnew1

o2 ntake1 ngive1 nfree
o3 o4

ackg1

rsvg1

clg1

schedg1

rsvg2 okg2
failg2 cancelg2 ackg2

r4 tpc4tpc1

snew1
sgive1stake1

tpc2 ∧ tpc3

tpc2 ∧ tpc3

Figure 6.9: Decentralized Scheduler S2 of Figure 6.5

Figure 6.9 shows the scheduler component S1 of Figure 6.5. S1 handles interactions t1
and g1. For sake of readability, the guards and update functions of transitions are hidden.
As t1 is not conflicting with any other interaction, it is handled locally in S1. Interaction
g1 is in external conflict with g2. To schedule interaction g1, S1 has to receive offers from
participating components B2 and B3 as well as offers from observed component B4. Its
scheduling requires requesting reservation from the conflict resolution protocol through port
rsvg1 . If the reservation of interaction g1 succeeds (transition labeled by ok executes) and if
there is no safe date for its scheduling, S1 cancel the interaction by sending a cancel request
to the conflict resolution protocol. An acknowledgment from the conflict resolution protocol
is sent on port ack to confirm the cancel. In the case where S1 succeed to find a date for
scheduling g1, it executes the transition labeled by scheda and then notifies components B2

and B3.

136 Taking Decision Earlier

6.3.3 Conflict Resolution Protocol

As explained in Subsection 5.3.3, the main role of the conflict resolution protocol is to check
the validity of offers received for the execution of interaction a. This is done by comparing for
each component Bi the last participation numbers Ni that is recorded by the conflict resolu-
tion protocol and the participation number ni arriving along with the reservation request. In
addition to that, the conflict resolution protocol has to acknowledge cancel requests sent by
the schedulers. The cancel request returns back the value of variables Ni of each component
Bi participating in a to the last value before sending an oka message. This allows each other
conflicting interaction b that fails because of interaction a, to succeed when the scheduler
handling b sends an other reservation request. To do this, we define new variable N cl

i that
stores the last values of variables Ni when an oka message is sent. When a cancel request for
interaction a is received, the conflict resolution protocol puts backs the values of Ni to the
values of N cl

i .

In the following we show how to adapt the different implementations of the conflict reso-
lution protocol presented in Subsection 5.3.3 in order to integrate the cancel mechanism.

Centralized Protocol

We adapt Definition 37 in order to integrate cancel mechanism in CP component.

Definition 37. Let γ(B1, . . . , Bn) be a BIP model and γj ⊂ γ be a subset of partition of
interactions. The corresponding centralized conflict resolution protocol CP is defined as the
Send/Receive BIP component CP = (LCP , PCP , TCP , CCP , XCP , {Xp}p∈PCP , {gτ}τ∈TCP ,
{tcτ}τ∈TCP , {fτ}τ∈TCP , {rτ}τ∈TCP , {tpcℓ}ℓ∈LCP)

• LCP contains for each externally interactions the waiting place wa, receive place ra and
cancel place cla.

• XCP contains for each component Bi the variable Ni. In addition XCP contains for
each externally conflicting interaction a and for each component Bi ∈ part(a), the
variable na

i and the variables N cl
i where N cl

i are cancel variables needed to cancel the
reservation of interaction a.

• CCP = {g}.

• PCP contains for each externally conflicting interaction a the reservation ports rsva,
oka and faila. The port rsva exports variables Xrsva = {na

i | Bi ∈ part(a)}. The ports
oka and faila do not have exported variables. In addition, PCP contains the cancel
reservation ports cancela and acka. These ports do no export variables.

• TCP contains for each externally conflicting interaction a the following transitions:

– τrsva = (wa, rsva, ra) with no Boolean guard, no timing constraint and no update
function.

– τoka = (ra, oka, wa) guarded by gτoka =
∧

Bi∈part(a)
na
i > Ni and having no timing

constraint. The update function of this transition updates the variables N cl
i of each

6.3 Transformations 137

wg1

failg1

∧ng1
3 > N3

rsvg1

n
g1
2 > N2

okg1

ackg1

cancelg1

rg1

clg1

N2 := N
clg1
2

N3 := N
clg1
3

N
clg1
2 := N2

N
clg1
3 := N3

N2 := n
a3
2

N3 := n
a3
3

rsvg1 okg1 failg1 cancelg1 ackg1

Figure 6.10: Fragment of the centralized version of conflict resolution protocol for handling inter-
action g1.

component Bi ∈ part(a) to Ni, and then updates variables Ni of each component
Bi ∈ part(a) to the value of na

i .

– τfaila = (ra, faila, wa) having no guard, no timing constraint and no update func-
tion.

– τcancela = (wa, cancela, cla) with no Boolean guard and no timing constraint. This
transition updates variables Ni to N cl

i of each component Bi ∈ part(a).

– τacka = (cla, acka, wa) with no guard, no timing constraint and no update function.

Note that in contrast to Definition 37, we do not put false as time progress condition
in place ra. This is to model the fact that the centralized protocol component may take
arbitrary time to send a response to the scheduler. For the implementation point of view,
this means that the communication delay between the centralized protocol component and
the scheduler could be non-null.

Example 25. Figure 6.10 presents a fragment of the centralized version of conflict resolution
protocol for handling interaction g1 of the model from Figure 6.3. Initially, there is a token
in waiting place wg1. Upon receiving a reservation request, the token moves to rg1 place.
The transition labeled by okg1 can take place only if the freshness offers condition is true
(ng1

2 > N2∧n
g1
3 > N3). This transition updates the variables N cl

2 and N cl
3 to the actual values

of N2 and N3 respectively, and then updates variables N2 and N3 to the value of variables
ng1
2 and ng1

3 . When one of these transition (ok or fail) executes, the token returns back to
wg1 place. From this place, the transition labeled by cancelg1 takes place when receiving a
cancel request from the scheduler. This transition updates variables N2 and N3 to the values
of variables N cl

2 and N cl
3 respectively. That is, the variables N2 and N3 returns back to their

values before sending an oka message. Upon execution of this transition, the token moves to
clg1 place. As a cancel request has to be acknowledged, there is only a transition labeled by

138 Taking Decision Earlier

ackg1 enabled from clg1 place. The execution of this transition returns back the token to wg1

place.

Token Ring Protocol

We adapt Definition 38 in order to integrate cancel mechanism in the components of the
token ring protocol.

Let TRa be a component of the token ring protocol handling interaction a. As in the
case of centralized protocol component CP , TRa component stores the values of variables
Ni in N cl

i variables when sending an oka message. When a cancel request is received, TRa

component puts back the values of variables Ni to the values of variables N cl
i . The cancel

request is acknowledged by an ack message.

Definition 38. Let γ(B1, . . . , Bn) be a BIP model and γj ⊂ γ be a subset of partition of
interactions. Given an externally conflicting interaction a, the corresponding conflict resolu-
tion protocol component TRa is defined as the Send/Receive BIP component TRa = (LTRa,
P TRa , T TRa , CTRa, XTRa, {Xp}p∈PTRa , {gτ}τ∈TTRa , {tcτ}τ∈TTRa , {τ}τ∈TTRa , {rτ}τ∈TTRa ,
{tpcℓ}ℓ∈LTRa) where:

• LTRa includes the waiting place wa, the receiving place ra, the receiving token place
rta, the sending token place sta and cancel place cla. All places have not time progress
conditions.

• XTRa includes the variables {Ni}
n
i=1, the variables {n

a
i | Bi ∈ part(a)} and the variables

{N cl
i | Bi ∈ part(a)}.

• P TRa contains the reservation ports rsva, oka, faila and cancela as well as the sending
and receiving token ports RT a, ST a.

• T TRa includes the following transitions:

– transitions for reserving and cancelling interaction a:

∗ τrsva = (wa, rsva, ra), with no guard, no timing constraint and no update
function.

∗ τoka = ({ra, rta}, oka, wa) guarded by
∧

Bi∈part(a)
na
i > Ni and having no tim-

ing constraint. The update function of this transition sets the variables N cl
i

of each component Bi ∈ part(a) to Ni and, then updates variables Ni of each
component Bi ∈ part(a) to the value of na

i .

∗ τfaila = (ra, faila, wa) guarded by
∨

Bi∈part(a)
na
i ≤ Ni, having no timing con-

straint and no update function.

∗ τcancela = (wa, cancela, clcla) with no guard and no timing constraint. This
transition updates variables Ni to N cl

i of each component Bi ∈ part(a).

∗ τacka = (cla, acka, wa) with no guard, no timing constraint and no update
function.

– transitions for sending and receiving token:

6.3 Transformations 139

stg1

STg1

rg1

rsvg1

∨n
g1
3 ≤ N3

n
g1
2 ≤ N2

failg1

RTg1

clg1

cancelg1
N2 := Ncl

2
N3 := Ncl

3

ackg1

RTg1

rtg1

STg1

cancelg1 ackg1

wg1

n
g1
2 > N2

∧n
g1
3 > N3

okg1

N3 := n
g1
3

Ncl
3 := N3

Ncl
2 := N2

N2 := n
g1
2

failg1 okg1
rsvg1

Figure 6.11: Conflict resolution protocol component of interaction g1 in the token ring protocol.

∗ τSTa = ({sta, wa}, ST a, rta) with no guard, no timing constraint and no update
function.

∗ τRTa = (wa, RT a, sta) having no guard, no timing constraint and no update
function.

In order to model the fact that communications may take arbitrarily delays, we do not
put a time progress condition on places ra and sta. That is, the component TRa may take
arbitrary time to either send are response to the scheduler or to send the token.

Example 26. Figure 6.11 depicts the conflict resolution protocol component handling inter-
action g1. The component is initially at waiting and receiving token places, i.e. wg1 and stg1.
Upon receiving a reservation request, the token moves to rg1 place. The transition labeled by
okg1 is executed only if the offers validity condition is true and the component holds the token.
This transition updates variables N cl

2 and N cl
2 to the current values of N2 and N3 and then

updates variables N2 and N3 to ng1
2 and ng1

3 respectively. The transition labeled by failg1 and
executes if one of the offers is not fresh. From place wg1, the transition labeled cancelg1 can
execute if the component receives a cancel request from the scheduler. This transition returns
back the values of N2 and N3 to the values of N cl

2 and N cl
3 . The execution of this transition

enables the execution of transition labeled by ackg1 so as the component may acknowledge the
cancel request.

140 Taking Decision Earlier

Note that the interactions γTR between components of the token ring protocol is the same
as in the version described in Subsection 5.3.3.

Dining philosophers Protocol

We adapt Definition 32 in order to integrate cancel mechanism in the components of dining
philosophers protocol. Let DPa be the conflict resolution protocol component handling inter-
action a. Component DPa defines variables N cl

i and updates them in the same way as in the
centralized and the token ring protocol. When receiving a cancel request for interaction a its
puts back the values of variables Ni to the values of variables N cl

i s.t. Bi ∈ part(a). Then,
it collects all forks shared with all components DPb such that b is an externally conflicting
interaction with a in order to update their associated variables N b

i s.t. Bi ∈ conf(a, b). Re-
call that conf(a, b) = part(a) ∩ part(b) and extconf(a) is the set of interactions externally
conflicting with a.

Definition 39. Let γ(B1, . . . , Bn) be a BIP model and {γj}
m
j=1 be a partition of interactions.

Given an externally conflicting interaction a, the corresponding conflict resolution component
DPa is defined as the Send/Receive BIP component DPa = (LDPa , PDPa , TDPa , CDPa , XDPa,
{Xp}p∈PDPa , {gτ}τ∈TDPa , {tcτ}τ∈TDPa , {fτ}τ∈TDPa , {rτ}τ∈TDPa , {tpcℓ}ℓ∈LDPa), where:

• LDPa contains waiting place wa, and the received place ra. Moreover, for each interac-
tion b in extconf(a), LDPa includes places for fork negotiation: srb, wrb, sfb, wfb, and
rfb. For canceling interaction a, LDPa includes, for each interaction b in extconf(a),
places srclb , wf

cl
b , rf cl

b . All places do not have time progress conditions.

• XDPaincludes the variables {Ni | Bi ∈ part(a)}, the variables {N cl
i | Bi ∈ part(a)}, the

variables {na
i | Bi ∈ part(a)}. Moreover, for each interaction b ∈ extconf(a), XDPa

includes the additional variables {N b
i | Bi ∈ conf(a, b)}, and the Boolean variables

forkb, dirtyb, clb.

• PDPa includes the reservation ports rsva, oka, faila and the unary port ua. Moreover,
PDPa includes, for each interaction b ∈ extconf(a), the ports SRa

b , RRa
b , SF a

b and
RF a

b . Port rsva exports variables {na
i | Bi ∈ part(a)}. Port SF a

b exports variables
{clb} ∪ {Ni | Bi ∈ conf(a, b)} and port RF a

b exports variables {clb} ∪ {Ni | Bi ∈
conf(a, b)}. The other ports do not have exported variables.

• TDPa contains the following transitions:

– transitions for scheduling interaction a.

∗ τrsva = (wa, rsva, ra) with no guard, no timing constraint and no update func-
tion.

∗ τoka = ({rfb|b ∈ extconf(a)}, oka, wa) guarded by
∧

b∈extconfa forkb
∧

Bi∈part(a)
na
i >

Ni, having no timing constraint and updating the following variables:
∀ Bi ∈ part(a) Ni := na

i

∀ Bi ∈ conf(a, b) N b
i := Ni

∀ b ∈ extconf(a) dirtyb := true

6.3 Transformations 141

∗ τchecka = (ra, ua, {srb | b ∈ extconf(a)}) guarded by
∧

Bi∈part(a)
na
i > Ni and

having no timing constraint and no update function

∗ τfail1a = (ra, faila, wa) and τ2faila = ({rfb|b ∈ extconf(a)}, faila, wa) both
guarded by

∨
Bi∈part(a)

na
i ≤ Ni and having no timing constraint. Transition

τfail1a has no update function. Transition τ2faila has the following update func-

tion: ∀ b ∈ extconf(a) dirtyb := true.

∗ For each interaction b ∈ extconf(a),

· τSRa
b
=(srb, SR

a
b , wfb), with Boolean guard ¬forkb, no timing constraint

and clb := false as update function.

· τRRa
b
=(wrb, RRa

b , sfb) with no guard, no timing constraint and no update
function.

· τSFa
b
=(sfb, SF

a
b , wra) with Boolean guard dirtyb, no timing constraint and

having the following update function:
forkb := false

if (clb) then clb := false.

· τRFa
b
=(wfb, RF a

b , rfb) with no guard, no timing constraint and updating
the following variables:
dirtyb := false

forkb := true

if(
∧

c∈extconf(a) ¬clc) then ∀ Bi ∈ conf(a, b) Ni := max(Ni, N
b
i)

if(clb) then ∀ Bi ∈ conf(a, b) Ni := N b
i

∀ c ∈ extconf(a) ∀ Bi ∈ conf(a, c) N c
i := Ni

· τhasforkb=(srb, ua, rfb) guarded by forkb and having no timing constraint
and no update function.

· τhasnotforkb=(rfb, ua, srb) guarded by ¬forkb and having no timing con-
straint and no update function.

– Transitions for canceling interaction a:

∗ τcancela = (wa, cancela, sr
a
b) having no guard, no timing constraint and having

the following update function:
∀ Bi ∈ part(a) Ni := N cl

i

∀ b ∈ extconf(a) dirtyb := false clb := true.

∗ For each interaction b ∈ extconf(a):

· τSRa
b
=(srab , SR

a
b , wf

a
b) guarded by ¬forkb, having no timing constraint and

no update function.

· τRFa
b
=(wfa

b , RF a
b , rf

a
b) having no guard, no timing constraint and having

the following update function:
forkb := true

∀ c ∈ extconf(a) ∀ Bi ∈ conf(a, c) N c
i := Ni.

142 Taking Decision Earlier

· τhasforkclb
=(srclb , ua, rf

cl
b) guarded by forkb, and having no timing con-

straint and dirtyb := false as update function.

· τacka = ({rf cl
b |b ∈ extconf(a)}, acka, wa) with no guard, no timing con-

straint and having the following update function:
∀ b ∈ extconf(a) dirtyb := true

Example 27. Similarly to the case of token ring protocol, we model the fact that communi-
cations may take arbitrarily delays, we do not put a time progress condition on places ra and
sta. That is, the component DPa may take arbitrary time to either send are response to the
scheduler or to send the forks.

Figure 6.12 shows the conflict resolution component DPg1 handling interaction g1. Ini-
tially, there are tokens at places wg1 and wrg2. When receiving a reservation request, the
component DPg1 requests the fork from DPg2 if it does not hold it. The fork brings the last
value of Ng2

3 and the Boolean variable clg2. Note that only variable Ng2
3 is associated with the

fork as the only shared component between g1 and g2 is B3. The Boolean variable clg2 is used
to inform DPg1 whether interaction g2 was canceled or not. If g2 was not canceled (clg2 is
false), then DPg1 updates its local variables N3 to the maximum value between N3 and Ng2

3 .
In the other case, DPg1 updated N3 to Ng2

3 .
If the freshness condition is true (that is, N2 ≤ ng1

2 ∧ N3 ≤ ng1
3), the transition labeled

by okg1 executes. By executing this transition, DPg1 stores the last values of N2 and N3 in
variables N cl

2 and N cl
3 respectively. The latters are used to put back the values of Ni when a

cancel request is received from the scheduler. Upon receiving a cancel request, the transition
labeled by cancelg1 executes and the variables N2 and N3 are set to the values of variables N cl

2

and N cl
3 respectively. In order to propagate these new values, the component DPg1 requests

the fork from DPg2. This transition executes only if DPg1 does not hold the fork. When
receiving the fork, the variable Ng2

3 , associated with the fork, is updated to the new value of
N3.

The set of interactions γDP between components of the dining philosophers protocol
includes the same interactions as in the version described in Subsection 5.3.3.

6.3.4 Connections Between Layers

The set of Send/Receive interactions γSR of the obtained Send/Receive model includes the
same interactions between the layers as described in Subsection 5.3.4 expect for notification
interactions between schedulers S1, . . . , Sm and Send/Receive atomic components BSR

i that
are defined as follows:

• For each port p of Bi and for each scheduler component Sj handling an interaction
involving p, γSR includes the notification interaction (Sj .np, B

SR
i .np).

The set γSR includes also for each externally conflicting interaction a, the interactions between
schedulers S1, . . . , Sm and the conflict resolution protocol CRP defined as follows:

• (cancela.Sj , cancela.CCRP), and

6.3 Transformations 143

RRg1
g2

rg1

n
g1
2 > N2

∧ng1
3 > N3

SRg1
g2

wg1

ug1

wg1

wfg2

rfg2

srg2

rsva2
oka2 faila2

cancela2
acka2

SRg1
g2

SF g1
g2

RF g1
g2

ackg1

SF g1
g2

forkg2
:= false

dirtyg2

sfg2

wrg2

RRg1
g2

N3 := n
g1
3

N2 := n
g1
2

Ncl
3 := N3

okg1

∧ng1
3 > N3

∧ng1
2 > N2

rsvg1

n
a3
2 ≤ N2

∨ng1
3 ≤ N3

failg1

N3 := Ncl
3

cancelg1

¬forkg1

forkg2

ug1

rf
clg1
g2

sr
clg1
g2

ug1

¬forkg2

forkg2

if(clg2)
clg2 := false

wf
clg1
g2

RF g1
g2

dirtyg2
:= false

forkg2
:= true

SRg1
g2

¬forkg1

clg2 := true

if(¬clg2)

clg1 := false

ug1

forkg2

dirtyg2
:= false

N
g2
3 := N3

dirtyg2
:= true

Ncl
2 := N2

N2 := Ncl
2

N3 := max(N3, N
g2
3)

if(clg2)
N3 := N

g2
3

N
g2
3 := N3

∨ng1
3 ≤ N3

failg1
dirtyg2

:= true

n
g1
2 ≤ N2

RF g1
g2

forkg2
:= true

N
g2
3 := N3

dirtyg2
:= true

Figure 6.12: Component of the dining philosophers protocol handling interaction g1 of Figure.

144 Taking Decision Earlier

• (acka.Sj , acka.CCRP). where CCRP is either CP , or TRa, or DPa depending on the
implemented conflict resolution protocol.

6.4 Correctness

In this section we prove the correctness of our Send/Receive model. First, we show that the
obtained model is indeed a Send/receive model. Second, we show that the original model
weakly simulates a new versions of our obtained Send/Receive models.

Compliance with Send/Receive Model

We need to show that receive ports of BSR
CP will unconditionally become enabled whenever

one of the corresponding send ports is enabled. Intuitively, this holds since communications
between two successive layers follow a request/acknowledgment pattern. Whenever a layer
sends a request, it enables the receive port to receive acknowledgment and no new request is
sent until the first one is acknowledged.

Lemma 8. Given a BIP model B = γ(B1, . . . , Bn) and a partition of interactions {γj}
k
j=1, the

model BSR
CP = γSR(BSR

1 , . . . , BSR
n , S1, . . . , Sk, CP) obtained by transformation of Section 6.3

meets the properties of Definition 22.

Proof. The first two constraints of Definition 22 are trivially met by construction. We now
prove that the third constraint also holds, i.e, whenever a send-port is enabled, all its asso-
ciated receive-ports are enabled as well.

For offer/notifications interactions between Send/Receive components and the schedulers
and for reservation/ok/fail interactions between schedulers and the conflict resolution proto-
col, the proof is similar to the proof of Lemma 4. We only need to prove that the property also
holds for cancel/ack interactions between the schedulers and the conflict resolution protocol.
By construction of the scheduler a cancel message cancela is possible only after receiving an
oka message from the conflict resolution protocol. The latter is being in wa place where a
cancel message could be received. Thus, whenever the send port cancela in the scheduler is
enabled, the corresponding receive port is also enabled. By construction of the conflict res-
olution protocol and the schedulers, the transition labeled by acka is a successive transition
of the one labeled cancela. Thus, by construction, when the send port acka is enabled in the
conflict resolution protocol, its corresponding receive port is also enabled in the scheduler.

Weak simulation between Original and Transformed Models

Remark that the interactions execution are hidden in the obtained Send/Receive model BSR
CP .

In fact, in this model there are only transitions for planning interactions, bur no transitions
for their executions. In order to make interactions execution visible in the Send/Receive
model, we consider a new version of BSR

CP denoted by BSR∗
CP where for each scheduler Sj in

BSR
CP we add the following (see Figure 6.13).

• we add for each port p, the place wp with time progress condition g ≤ texi where i is
the index of component Bi of port p.

6.4 Correctness 145

• We add for each interaction a, the transition τa = ({wp}p∈a, a, {wi}Bi∈part(a)) .

• We modify for each port p, the output places of transition τnp to wp.

• We add the unary interaction (Sj .a).

(b) Transitions in BSR∗
CP

sp1 sp2

wp1

np1
np2

wp2

(a) Transitions in BSR
CP

sp1 sp2

w1

a
g = texa

np1
np2

w2

wp1
wp2

Figure 6.13: From BSR
CP to BSR∗

CP

We show that the initial model B weakly simulates the model BSR∗
CP . The observational

equivalence cannot be proven since we lose fairness with BSR∗
CP . In fact, the execution of

conflicting interactions depend on the order of their scheduling. Thus an interaction executed
in the original model, could be executed in the Send/Receive model with a particular order
of scheduling. Nonetheless, we can prove that any interaction executed in the Send/Receive
model, can be executed in the original model.

We consider the correspondence between actions of B and BSR∗
CP as follows. To each

interaction a ∈ γ of B, we associate the unary interaction a of BSR∗
CP . All other interactions

of BSR∗
CP (offer, notification, reserve, ok, fail, cancel, ack) are unobservable and denoted by β.

We proceed as follows to complete the proof of weak simulation. Among unobservable
actions β, we distinguish between β1 actions, that are interactions between the atomic com-
ponents and the schedulers (namely offer and notification) and the scheduling transition, and
β2 actions that are interactions between the schedulers and the conflict resolution protocol
(namely reserve, ok, fail, cancel, ack). We denote by qSR a state of BSR

CP and q a state of B.
A state of BSR∗

CP from where no β1 action is possible is called a stable state, in the sense that
any β action from this state does not change the state of the atomic components.

Lemma 9. From any state qSR, there exists a stable state [qSR] such that qSR
β∗
1−→γSR [qSR].

Proof. The state [qSR] exists since each Send/Receive component BSR
i can do at most two

β1 transitions: receive a notification and send an offer.

146 Taking Decision Earlier

Note that the state [qSR] is not unique, since it depends on the order of scheduling

transitions. The state [qSR] verifies the property qSR
β∗
1−→γSR [qSR] and [qSR]

β1

6→γSR .

Lemma 10. At a stable state [qSR], the Send/Receive model verifies the following properties:

• All atomic components are in ℓ or ⊥τ places.

• Tokens in the scheduler components are either in place wp or ri.

• The clock g and variables in the atomic components have the same value than their
copies in the scheduler components.

Proof. The two first points come from Lemma 8 that guarantees possible execution of a
Send/Receive interaction if its send-port is enabled. Therefore no place sp in the scheduler
components (respectively ⊥ℓ in atomic components) can be active at [qSR], otherwise the
answer np (respectively the offer from ⊥ℓ) could occur. Furthermore, since all offers have
been sent, no token can be in wi place.

In each scheduler Sj , when a ri is marked, the last transition executed is either an offer,
fail or ack messages reception, which does not modify variables in the scheduler Sj . When
wp is marked, the last transition executed is the notification which is resulted of scheduling
an interaction that modifies the variables in the schedulers. By sending notifications, the
scheduler sends updated variables to the components. Thus, each variable in the scheduler
has the same value as the corresponding atomic component. The clock g has the same value
in the atomic components and the schedulers as it is never reset.

Lemma 11. When BSR∗
CP is in a stable state, for each i ∈ {1, . . . , n}, we have ni > Ni.

Proof. If the place ri is marked, then the proof is similar to the proof of 7. If the place wp

is marked, the last transition executed is the notification which increments the variable ni is
the corresponding atomic component.

We define a relation between the set of states QSR of BSR∗
CP and the set of states Q of B

as follows. For each state qSR ∈ QSR, we build a state corr(qSR) by:

1. considering all possible stable states [qSR] reachable by doing β transitions,

2. considering the control location ℓ or ⊥τ where τ = (ℓ, p, ℓ′) of BSR
i as the control

location ℓ for Bi in equ(qSR),

3. restricting the valuation of variables of BSR
i to a valuation of variables in Bi,

4. taking the valuation of original clock c in Bi as the valuation of g − ρc.

Theorem 4. BSR∗
CP ⊂ B .

Proof. We define the weak simulation relation R by taking:

R = {(qSR, q) ∈ QSR ×Q | q = corr(qSR)}

The three next assertions prove that R is a weak simulation:

6.4 Correctness 147

(i) If (qSR, q) ∈ R and qSR
β
−→γSR rSR then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR
σ
−→γSR rSR then ∃r ∈ Q : q

σ
−→ r and (rSR, r) ∈ R.

(i) If qSR
β
−→γSR rSR, then β is either β2 action which does not change the state of

the atomic components, thus all possible reachable state [qSR] are the same possible
reachable state [rSR], or β is β1 action, thus by definition all possible reachable state
[qSR] are the same possible reachable state [rSR]. Thus, we have corr(qSR) = corr(rSR).

(ii) The action σ in BSR∗
CP is either an interaction a or a delay step δ.

– If a is an interaction, it corresponds to executing a transition labeled by a unary
port a in the scheduler handling interaction a. This transition is enabled only if
scheduling interaction a is done through transition scheda. If a is not externally
conflicting, by construction of the scheduler, the transition labeled by scheda has
the Boolean guard Ga

∧
p∈a gp, where gp are Boolean guards sent by the atomic

components for each port p ∈ a. By Lemma 10, the values involved in ga are
the same in atomic components, and by extension in q = corr(qSR). Thus the
guard of a evaluates to true at q = corr(qSR). Also, by construction the transition
labeled by a has the timing constraint g = texa where texa satisfies safe-tc(texa). By
Lemma 10, the values involved in safe-tc are the same in the atomic components
and by extension in q = corr(qSR). These timing constraints are expressed on
clock g which could be equivalently expressed on original clocks c involved in the
original timing constraints of Bi. The valuation of each clock c involved in the
timing constraint of a is computed from the valuation of g−ρc where ρc is the last
clock reset date of c. Therefore, at state q the timing constraint of a expressed on
its original clocks are also met at texa − ρc.

If a is externally conflicting, the transition labeled by a in CP is possible only if
the transitions rsva and oka are executed in the scheduler. The transition labeled
by rsva has the guard Ga

∧
p∈a gp. Similarly to the previous case, if this transition

is possible in the scheduler, the Boolean guard of a is met at q. Moreover, if
transition labeled oka is enabled, this means that for each component Bi involved in
a, ni > Ni. In particular, for each involved component Bi, the offer corresponding
to the number ni has not been consumed yet. The transition labeled by ok chooses
texa where texa satisfies safe-tc(texa). By Lemma 10, the values involved in safe-tc
are the same in the atomic components and by extension in q = corr(qSR). We
conclude that in both cases, we have q

a
−→ r.

Finally, if a is executed in BSR, this is resulted from the execution of transition
scheda which triggers the execution of the data transfer function Fa, followed by
the computation in atomic component upon reception of the response. Thus at
[rSR] the values in atomic components are the same as in r, which yields (rSR, r) ∈
R.

– If a is a delay step δ, it is sufficient to consider only locations ⊥ℓi and ℓi and ⊥τi

of BSR
i . The time progress condition of these location are expressed on clock g.

148 Taking Decision Earlier

These time progress conditions are expressed on clock g which could be equivalently
expressed on original clocks ci involved in the original time progress conditions Bi.
The valuation of each clock c involved in the time progress condition of Bi is
computed from the valuation of g − ρc where ρc is the last clock reset date of
c. The time progress conditions of ⊥ℓi and ℓi are defined by the time progress
condition tpcℓi of the original model. Thus at this location, if δ is allowed then
it is also allowed in the original model. The time progress conditions of ⊥τi is
defined by g ≤ texi . By construction, texi satisfies tpci as the latter is involved in
the timing constraint of an interaction a involving Bi. As tpci corresponds to the
time progress condition of location ℓi, thus t

ex
i satisfies also tpcℓi Thus, at location

⊥τi , if δ is allowed then it is also allowed in the original model. Therefore q
δ
−→ r.

Executing δ has the same effect on clocks in both models, therefore (rSR, r) ∈ R.

Similarly to BSR∗
CP , we consider new versions of BSR

TR and BSR
DP denoted by BSR∗

TR and BSR∗
DP

where interactions appears in the scheduler components.

Proposition 3. BSR∗
TR ⊂ B and BSR∗

DP ⊂ B

Proof. The proof is similar to the proof of Proposition 1. That is, we prove that DP ⊂ CP
and TR ⊂ CP .

6.5 Optimizations

6.5.1 Minimizing Cancel Requests

Let a be an externally conflicting interaction handled by a scheduler Sa. In order to plan
interaction a, Sa has to send a reservation request to the conflict resolution protocol. This
request contains the participation numbers of components participating in a. In the case
where the conflict resolution protocol succeeds to grant interaction a, it sends an ok message
to Sa. In order to plan interaction a, the scheduler Sa has to choose a safe date from
the set P(t, (g)safe-tca) to be sent to participating components. In the case where the set
P(t(g), safe-tca) is empty, Sa sends a cancel request to the conflict resolution protocol which
is acknowledged by an ack message. Figure 6.14(a) shows such mechanism.

In order to minimize cancel requests, the conflict resolution protocol (CRP) may send
a fail message directly if it finds out that the set P(t(g), safe-tca) is already empty. Fig-
ure6.14(b) shows such optimization.

In order to implement this optimization, we need to:

• include the safe timing constraint safe-tca of a in the reservation request.

• add in the conflict resolution protocol transitions labeled by fail guarded by P(t(g), safe-tca) =
∅.

• add the guard P(t(g), safe-tca) 6= ∅ in each ok transitions of the conflict resolution
protocol.

6.5 Optimizations 149

(a) Unoptimized version (b) Optimized version

Sa CRP

reserve

fail

Sa CRP

reserve

ok

cancel

ack

P(t(g), safe-tca)) = ∅

P(t(g), safe-tca)) = ∅

Figure 6.14: Reducing Messages fro Cancel Mechanism

6.5.2 Refining Send/Receive Models

In the proposed Send/Receive model presented in this chapter, we suppose that communi-
cation delays between components are unknown which makes our proposed model general.
The implementation of such models may lead to failure if the communication delays are too
large. For instance, when a scheduler sends notifications to components participating in an
interaction, the communication delays between the scheduler and those components should
be short enough to meet the execution date and ensure the perfect synchronization of the
components. If one of these components receives the notification message too late, it may
miss the date for execution which lead to an error (some components executes at the execu-
tion date, and some others misses the date). In the implementation, we propose to detect
such errors and stop the system execution.

A more specific Send/Receive model could be proposed if the communication delays worst-
case estimation of the target platform are known. The adopted scheduling policy takes
into account communication delays worst-case estimation between the scheduler and the
Send/Receive atomic components.

Let ∆j
i be the communication delay worst-case estimation of the Send/Receive atomic

component BSR
i and scheduler Sj . Let a be an interaction handled in the scheduler Sj , and

let safe-tca its safe timing constraint. The set of safe dates for scheduling a could be the
following:

P(t(g), safe-tca, {∆
j
i}Bi∈part(a)) = {t | safe-tca(t) ∧ t− t(g) ≥max ({∆j

i}Bi∈part(a))} (6.5)

Choosing a date t that satisfy t− t(g) ≥max ({∆j
i}Bi∈part(a))} ensures that each component

Bi ∈ part(a) receives the notification from the scheduler before the date expiration.

Example 28. Figure 6.15(a) depicts an interaction a involving three components, B1, B2

and B3. The communication delays worst-case estimation between the scheduler handling
interaction a and the Send/Receive atomic components are shown in Figure 6.15(b). Suppose
that the safe timing constraint of a is safe-tca = 10 ≤ g ≤ 20 and the valuation of clock g
is t(g) = 8. According to the scheduling policy given in (6.5), the dates that could be chosen

150 Taking Decision Earlier

time

2010 13

S

B3B2B1

a

t(g) = 8

max(∆1,∆2,∆3)=5

(a) interaction a involving components B1, B2 and B3

send/receive components and the scheduler handling a.

(b) Communication delays estimation between

BSR
1 BSR

2 BSR
3

∆3 =5∆2 =1∆1 =2

(c) Scheduling policy taking into account communication delays

dates satisfiying safe-tca

dates that could be chosen according
to the scheduling policy

safe-tca = [10, 20]

Figure 6.15: Improving Scheduling Policy.

to execute a should satisfy 13 ≤ g ≤ 20. The dates satisfying 10 ≤ g < 13 could lead to a
system error because component B3 could miss its execution date due to the communication
delay between the scheduler and component B3.

6.5.3 Reducing the Number of Observed Components

In order to plan an interaction a, the scheduler handling a has to wait to receive offers from
components participating in a as well as offers from components observed by a. Since the
execution of interaction a changes the state of the participant components, receiving their
offers is mandatory for scheduling interaction a. However, receiving offers from observed
components could be avoided. For instance, consider the example of Figure 6.4. Interactions
a and b are conflicting, then obs(a) = B3 and obs(a) = B1. Consider interaction b. The
scheduling timing constraint of b is sched-tcb = c3 ≤ 2 (or equivalently g ≤ 2 − ρc2). In the
observed component B1, location ℓ1 with time progress condition tpcℓ1 = c1 ≤ 10, is the
only location where the port p1 involved in interaction a is enabled. Remark that for each
valuation of clock c2 that satisfies sched-tcb we have c1 ≤ 10 as c1 and c2 have the same
valuations in components B1 and B3 at locations ℓ1 and ℓ3 respectively. That is, each date
for scheduling b satisfies the time progress condition of location ℓ1 of component B1. In this
case, it is unnecessary for interaction b to observe component B1. For interaction a, the
scheduling timing constraint of a is sched-tca = c1 ≤ 10. Remark that there exists valuations
of clock c1 that satisfies sched-tca = c1 ≤ 10 but not the time progress condition c3 ≤ 2 of ℓ3
of component B3 where ℓ3 is the location in the observed component B3 from which port p′3
is enabled. Thus, it is mandatory for interaction a to observe component B3.

6.5 Optimizations 151

In this section, we propose to use static analysis techniques in order to detect such sit-
uations and then, to reduce the number of observed components. For an interaction a, we
define the predicate reducea characterizing the components that can be removed from the set
of observed components obs(a).It is fully defined in the following.

Observed Components Reduction Predicate

Let γ(B1, . . . , Bn) be a BIP model, and let a = ({pi}i∈I , Ga, Fa) be an interaction in γ.
Recall that the predicate sched-tca[ℓa] characterizing clocks valuations for which a could be
scheduled from the configuration ℓa ∈ La is defined as follows:

sched-tca[ℓa] =
∧

ℓi∈ℓa|τi=({ℓi,pi,ℓ′i)∈Ti}

tcτi ∧ tpcℓi

We denote by confintera(Bj) the set of interactions that are conflicting with a and involv-
ing component Bj . Formally, it is defined as follows:

confintera(Bj) = {b ∈ γ | b#a ∧Bj ∈ part(b)}

Intuitively, the componentBj could be reduced from the set obs(a) if for each configuration
from which a is enabled, each valuation of clocks that satisfies sched-tca[ℓa], satisfies also each
time progress condition of locations enabling a port participating in each interaction b that
is conflicting with a (see Figure 6.16).

��

Each valuation of clocks that satisfies

tpcℓj

sched-tca[ℓa]

tpcℓj

sched-tca[ℓa]

stimeca[ℓa] does not satisfy tpcℓjstimeca[ℓa] satisfies also tpcℓj

There esist valuation of clocks that satisfies

Figure 6.16: Illustrative example.

Definition 40. Let γ(B1, . . . , Bn) be a BIP model. We denote by C be the set of clocks in
the BIP model. Consider an interaction a in γ and an observed component Bj in obs(a).
We define reducea(Bj) the predicate indicating whether Bj could be reduced from obs(a). It
is defined as follows:

reducea(Bj)

≡

∀ ℓa ∈ La, ∀pj ∈ b | b ∈ confintera(Bj), ∀ ℓj ∈ Lpj , ∀t ∈ T (C), ∀δ > 0

sched-tca[ℓa](t+ δ)⇒ tpcℓj (t+ δ)

152 Taking Decision Earlier

According to Definition 40, interaction a reduces the observation of component Bj , if
for each configuration of locations ℓa ∈ La enabling interaction a, for each location ℓj of
component Bj enabling port pj participating in interaction b such that b#a, for each clocks
valuation t ∈ T (C) and for each time step δ > 0, we have sched-tca(ℓa)(t+ δ)⇒ tpcℓj (t+ δ).
The latter implication specifies that there is no clocks valuation t ∈ T (C) that satisfies
sched-tca[ℓa] and not tpcℓj .

Rewriting reducea(Bj)

The predicate reducea(Bj) involves a non-constant variable δ and the clocks valuation t.
Thus, static analysis techniques cannot be used at this step.

In order to obtain a static expression of reducea(Bj), we use explicit expressions of
sched-tca[ℓa] and tpcℓj to rewrite reducea(Bj).

Using (6.1), sched-tca[ℓa] can be written into the following form: sched-tca[ℓa] =
∧

ca∈Ca
lℓaca ≤

ca ≤ uℓaca , where Ca is the set of all clocks involved in sched-tca[ℓa], and lℓaca (resp. uℓaca) is the
lower (resp. upper) bound value involving clock ca in sched-tca[ℓa]. Similarly, tpcℓj can

be written in the following form: tpcℓj =
∧

cj∈Cj
cj ≤ d

ℓj
cj , where Cj is the set of clocks of

component Bj .

Proposition 4. Given an interaction a and a component Bj ∈ obs(a), the predicate reducea(Bj)
can be rewritten in the following form:

reducea(Bj)

≡

∀ ℓa ∈ La, ∀ℓj ∈ Lpj | pj ∈ b ∧ b ∈ confintera(Bj)∧

cj∈Cj

∨

ca∈Ca

cj − ca ≤ d
ℓj
cj − uℓaca

∨

ca∈Ca

∨

c′a∈Ca

ca − c′a < lℓaca − uℓac′a

Proof. We have to prove that:

∀t ∈ T (C), ∀δ > 0

sched-tca(ℓa)(t+ δ)⇒ tpcℓj (t+ δ)

⇔
∧

cj∈Cj

∨

ca∈Ca

cj − ca ≤ d
ℓj
cj − uℓaca

∨

ca∈Ca

∨

c′a∈Ca

ca − c′a < lℓaca − Uc′a

sched-tca[ℓa](t+ δ)⇒ tpcℓj (t+ δ)

⇔ tpcℓj (t+ δ) ∨ ¬sched-tca(ℓa)(t+ δ)

⇔
[∧

cj∈Cj
t(cj) ≤ d

ℓj
cj − δ

]
∨
[∨

ca∈Ca
t(ca) > lℓaca − δ

]
∨
[∨

ca∈Ca
t(ca) > uℓaca − δ

]

⇔
[∧

cj∈Cj
t(cj) ≤ d

ℓj
cj − δ

∨
ca∈Ca

t(ca) > uℓaca − δ
]
∨
[∨

ca∈Ca
t(ca) < lℓaca − δ

∨
ca∈Ca

t(ca) >

uℓaca − δ
]

6.5 Optimizations 153

⇔
[∧

cj∈Cj

∨
ca∈Ca

t(cj)− t(ca) ≤ d
ℓj
cj − uℓaca − δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

t(ca) < lℓaca − δ ∨ t(c′a) >

uc′a − δ
]

⇔
[∧

cj∈Cj

∨
ca∈Ca

t(cj)− t(ca) ≤ d
ℓj
cj −uℓaca − δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

¬[t(ca) ≥ lℓaca − δ ∧ t(c′a) ≤

Uc′a
− δ]

]

⇔
[∧

cj∈Cj

∨
ca∈Ca

t(cj)−t(ca) ≤ d
ℓj
cj−u

ℓa
ca−δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

¬[t(ca)−t(c
′
a) ≥ lℓaca−u

ella
c′a

]
]

⇔
[∧

cj∈Cj

∨
ca∈Ca

cj − tca ≤ d
ℓj
cj − uℓaca − δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

¬[ca − c′a ≥ lℓaca − uc′a]
]
.

We use static analysis techniques to check the satisfiability of reduceaBi as defined in
Proposition 4, for each interaction a and for each for each component Bj ∈ obs(a). In the
following, we present one of these techniques.

Use of Static Analysis Techniques

There exist several static analysis techniques for the verification of timed systems. The basic
idea is to characterize the set reachable states of the system. This set is exactly computed
or approximated. Computing the exact set of reachable state is done using state space
exploration techniques, like in [79, 80] Approximating the set of reachable states is provided
using invariants computation. Invariants are obtained with much lower complexity than
computing the exact set of reachable states. We are interested in the use of invariants to
approximate the set of reachable states. In particular, we focus on the method presented in
[61], for compositional verification of BIP models.

Consider a BIP model γ(B1, . . . , Bn). Let Ψ be a property of interest. Assume that
the system could be characterized by the global invariant GI. That is, GI characterizing
an over-approximation of reachable states of the system. The following inference rule (VR)
summarizes the verification rule of the method.

⊢ GI ⇒ Ψ

γ(B1, . . . , Bn) |= 2 Ψ

Intuitively, VR can be understood as follows: if Ψ can be proved to be a logical conse-
quence of the global invariant GI, then Ψ holds for the system.

GI is computed from invariants characterizing the components behaviors called compo-
nent invariants, and also from the invariants characterizing the interactions between compo-
nents called interaction invariant. We do not detail here how to compute exactly the global
invariant, but we provide here a brief description. Interested readers may refer to [61], for
more details.

A component invariant is characterized by its reachable symbolic set which consists of
the finite symbolic reachable states of the component computed from its zone graph [81]. A
symbolic state of a component Bi in a zone graph is the pair (ℓi, ζi) where ℓi is a location of

154 Taking Decision Earlier

Bi and ζi is a zone which is a set of clocks valuations computed from the timing constraints
and time progress conditions of Bi. A component invariant of Bi is the disjunction of (ℓi∧ζi)
for all symbolic states (ℓi, ζi).

The interaction invariant are over-approximation of the global state space. It involves
only locations of components and does not capture any global timing of interactions. They
are computed by the method explained in [82].

To better track global timing of interactions between components, the considered method
makes use of auxiliary clocks called history clocks. Each component Bi is equipped with
history clocks, a clock per port. When an interaction takes place, the clocks corresponding
to the ports participating in that interaction are reset, and thus are equal. All remaining
clocks values are then greater than those being reset. The relations between history clocks
are defined allow to relate local clocks of components.

Recently, a tool called RTD-Finder [83] implementing this method has been developed.
We are using this tool to check the satisfiability of reducea(Bj) predicate.

6.6 Conclusion

In this chapter, we proposed method for obtaining Send/Receive models dedicated to be
implemented on platforms that do not provide fast communication delays. Optimization for
reducing the number of messages could are proposed. In particular, we proposed to minimize
observed components number using static analysis techniques.

In the next chapter we give an overview on the tools that are implemented in order to
generate distributed real-time implementations

7
Implementation

This chapter discusses the implementation methods for generating distributed real-time im-
plementations. First, we present in Section 7.1 the BIP language that provides a textual
representation of BIP models. Then, we present in Section 7.2 the existing BIP tools. Fi-
nally, we present in Section 7.3 the different tools developed within this thesis.

7.1 The Real-Time BIP Language

The Real-Time BIP language is used to represent concrete models presented in Section 2.2.
It provides syntactic constructs for describing composition of components with respect to
interactions and priorities. In practice, variables, data type declarations, expressions, update
functions and data transfer functions are written in C. The Real-Time BIP language incor-
porate a set of structural syntactic constructs for defining component behavior, specifying
the coordination through connectors and describing the priorities. The basic constructs of
the BIP language are the following:

• atomic component: to specify behavior, with an interface consisting of ports. Behavior
is described as a set of transitions labeled by ports names.

• connector: to specify the synchronization between the ports of components.

• priority: to restrict the possible interactions, based on conditions depending on the
state of the integrated components.

• composite component: to specify systems hierarchically, from other atoms or com-
pounds, with connectors and priorities.

• model: to specify the entire system, encapsulating the definition of components and
specify the top level instance of the system.

155

156 Implementation

Existing Real-Time BIP Language. Previous work on Real-Time BIP [84] proposed a
BIP model that describes timing constraints on transitions as time intervals with urgencies.
In such models, time progress depends on the presence of transitions urgent at the current
state. That is, time is not allowed to progress from a given state if there exists an urgent
transition enabled from that state. In Appendix A, we present a high level description of such
models as well as its semantics. In addition, we present the transformation of models with
urgencies into models with time progress conditions. The actual version of Real-Time BIP
language describes BIP models with urgencies. In this thesis, we developed a new version of
Real-Time BIP language that describes BIP models with time progress conditions.

In the following, we present different elements of BIP models described using the Real-
Time BIP language. We rely on the example from Figure 2.10 to detail some elements of
the Real-Time BIP language. In the Real-Time BIP language, we start by defining types
(components, ports, connectors) which are instantiated later. For instance, in Figure 2.10,
setter1 and setter2 components are instances of the same atomic component type setter
shown in Figure 2.5. The latter is parametrized by the bound l of timing constraints of
transition set and the bound u of time progress condition of location ℓ2. The description of
the setter atomic component type is illustrated as follows:

port type IntPort (int i)

port type EventPort

atomic type setter (int u, int l)

data int x

export port EventPort sync

export port IntPort set(x)

clock c unit 1 second

place ℓ1

place ℓ2 while c in [0 , u]

initial to ℓ1 do { x = 0 ; }

on sync from ℓ1 to ℓ2

provided true

reset {c}

do {x = x+1 ;}

on set from ℓ2 to ℓ1

provided true

when c in [l , -]

end

In the above example, two types of ports are defined, namely EventPort and IntPort.
The port type EventPort is an event port and it is not associated with any variable. The
port type IntPort associates to a port an integer variable i. The description of the atomic
type setter starts with describing variables, ports and locations. A location may define

7.1 The Real-Time BIP Language 157

a time progress condition (after while). The variables that are associated with the port
are explicitly given, and their types need to match those in the port type definition. The
construct initial to specifies the initial location, and possibly some initial update function to
execute. Each transition of the behavior is declared with a port (after on), a (set of) input
and output place(s) (after from and to respectively), a Boolean guard (after provided), a
timing constraint (after when) and an update function (after do). The update functions
and the Boolean guards are written in C-like syntax.

As said before, components are composed using connectors. As an example, we present
the connector type used to describe a2 and a3 interactions from Figure 2.10.

connector type SetGet(IntPort set, IntPort get)

define set get

on set get

provided true

down { get.i = set.i }

end

A connector type is parameterized by a list of port that describes its support. The con-
struct define defines the type of ports, trigger of synchron, as explained in Subsection 2.2.3.
For each interaction, a guard and a data transfer function can be defined. In the above exam-
ple, SetGet connector defines a strong synchronization between two ports of type IntPort.
The guard associated to the interaction is true and the data trasfer function is provided
with the down construct. The notation get.i (resp. set.i) is used to access the variable i

associated to the port get (resp. set), as defined in the port type declaration IntPort.

A compound component is a new component type defined by creating instances of existing
components types which are glued by instantiating connectors and by specifying the priorities.
We define below the compound type that corresponds to Figure 2.10, assuming that the
atomic type Getter has been aleady defined.

compound type Compound

component setter setter1

component setter setter2

component getter getter1

connector SyncEvents a1 (setter1.sync1,getter.sync,setter2.sync2)

connector SetGet a2 (setter1.set1, setter.get1)

connector SetGet a2 (setter2.set2, setter.get2)

priority prio a2 < a3

end

When Compound type is instantiated, the compound instance creates first the three com-
ponents that constitute the system. For instance, ”component Getter getter” creates an
instance of Getter atomic component type, named getter. Second, the compound instance

158 Implementation

creates connectors, associating the ports of instantiated components through the interac-
tions defined by the connector type. For instance, ”connector SetGet a2 (setter1.set1,
getter.get1)” creates an instance of SetGet connector type, named a2. The dotted notation
setter1.set1 is used to denote the port set of the component instance setter1. Finally, the
priority rule ” priority prio a2 < a3” specifies that interaction a2 has lower priority than
interaction a3.

7.2 The BIP Toolbox

This section presents the toolbox available with the BIP framework. It consists of a rich set
of tools for modeling, executing and verifying BIP models.

C nesC Lustre Simulink AADL DOL
BIP

BIP parser

Code generator
Distributed

Code generator
Centralized

C++ C++ C++

Distributed Platform

C++

Engine

Execution

Simulation

BIP model
(EMF)

BIP Compiler

safety
property

property
stochastic

OK / NOT OK

OK / NOT OK

Language Factory
BIP Language

Verification

DFinder

Validation

Model Cheking
Statistical

Transformors

Source−to−Source
transformations

Figure 7.1: Overview of the BIP toolbox

Figure 7.1 shows an overview of the BIP toolbox. Mainly, there are four types of
tools, namely Language Factory, Source-To-Source Transformations, Verification and Exe-
cution/Simulation. Below, we detail each of these types.

7.2.1 Language Factory

These tools are used to transform various programming models, using different languages,
into BIP models. The translation allows representing different programming models in a BIP

7.2 The BIP Toolbox 159

model with a rigorous semantics. There exist different transformations including transforma-
tions from synchronous languages, i.e. transformations from Lustre [85] and Simulink [86].
These transformations target synchronous BIP [87], that is an extension of BIP dealing effi-
ciently with synchronous models.

Other transformations target languages model that mix both the application software
and the hardware architecture. These models can be transformed either into two separate
models: one for the software and the other for the architecture or into a single model including
both of them, called system model. Transformations to hardware model often rely on a
library of hardware components such as memories, buses, processors, that are modeled in BIP.
For instance, these transformations target the Architecture Analysis and Design Language
(AADL) [88], nesC/TinyOS [89] and the Distributed Operation Layer (DOL) [90].

7.2.2 Verification

The BIP toolbox is completed by verification and validation tools for both checking system
correctness and performance evaluation.

D-Finder [82, 91] is a verification tool targeting safety properties, e.g. deadlock freedom
or mutual exclusion of untimed BIP models. Note that untimed BP models are models
that have not timing features (clocks, timing constraints, time progress conditions). The
verification method implemented by D-Finder is based on the computation of invariants
used to approximate the set of reachable states of the target system, hence the method is
sound but not complete: it may not be able to prove a property even if it is satisfied by the
system. Invariants are computed following the architecture of the system, that is, it generates
invariants for components and for interactions. The approach is compositional and can be
applied incrementally, allowing to better scale to large systems than traditional verification
techniques.

RT-DFinder [61] is an extension of D-finder tool for the verification of BIP models. RT-
DFinder is based on the approach of D-Finder with the use of auxiliary clocks that help
to capture the constraints induced by the time synchronizations between components. The
generated invariant for timed models using RT-DFinder proved to be accurate enough to
capture non trivial properties of several case studies, as shown in [92].

In addition to the verification tools, the BIP toolbox includes the statistical model-checker
SMC-BIP [93] for checking stochastic properties expressed as probabilistic bounded linear
temporal logic (PBLTL) formulas. Given a stochastic BIP model, a PBLTL formula and
confidence parameters, SMC-BIP computes execution sequences until the formula can be
proven with the target degree of confidence. Such a tool is particularly suited for evaluating
quantitative properties including system performance related metrics.

7.2.3 Source-to-Source Decentralization

In this thesis, we presented method for decentralizing BIP models into 3-layer Send/Receive
BIP models. Actually, the 3-layer design was considered also for decentralizing untimed BIP
models. Figure 7.2 shows the tools for obtaining Send/Receive untimed BIP models from
untimed BIP models with and without priorities. They consist of the following.

160 Implementation

protocol

partition

untimed BIP
no priority Bip2Bic

Bip2srBip Bic2srBip

untimed BIC

untimed BIP
with priority

Send/Receive untimed BIP

Figure 7.2: Source-to-Source Decentralization design flow for untimed BIP models

• Bip2SrBip: This tool generates an untimed BIP model into a 3-layer Send/Receive
untimed BIP model. Priority is not supported. The 3-layer Send/Receive untimed
BIP model architecture is the same as described in this thesis. That is, it consists
of transformed atomic components, a set of schedulers and a conflict resolution pro-
tocol. However, timing features are not supported. This tool is parametrized by an
interactions partition.

• Bip2Bic: This tool transforms an untimed BIP model into a untimed BIC model.
Untimed BIC is an untimed BIP model where priorities are rewritten as Condition
predicates [94]. Condition associates a predicate to each interaction. This predicate
characterizes the system state where an interaction could execute. That is, states where
there is no higher priority interaction is enabled. This predicate depends on the global
state of the system and not only on the states of the participants in the interaction.
Thus, instead of writing explicit priority, BIC transforms priorities into ”guards” on
interactions.

• Bic2SrBip This tool is obtained by extending Bip2srBip tool to support Condition.
Given a BIC model and an interactions partition, this tool generates a Send/Receive
untimed BIP model.

7.3 Tools Developed in this Thesis 161

7.2.4 Execution/Simulation

Execution/Simulation of Untimed BIP models

BIP toolbox provides code generators for execution/simulation of untimed BIP models on
target platforms. One option is to execute the generated C++ code using a centralized
scheduler, implemented in C++ as well, that enforces the BIP operational semantics. The
scheduler plays the role of the coordinator between components. Executing an untimed BIP
model using a centralized scheduler can be done in a single thread or multi-thread mode.

For single-thread mode, the scheduler as well as the atomic components executes in a
single thread. The execution cycle of single thread scheduler executes an interaction, moving
the system from a global state to another global state. This ensures sequential execution of
BIP models.

For multi-thread mode, each atomic component is assigned to a different thread, the
scheduler being assigned a thread as well. Contrarily to the single-thread version, the global
state is not known to the scheduler as an atomic component performing an internal compu-
tation has an undefined state. Therefore the scheduler executes according to the partial state
semantics for untimed BIP modeols [74]. When an atomic component completes and reaches
a stable state, it notifies the scheduler about the ports on which it is willing to interact. The
scheduler is parametrized by an oracle. The oracle allows the execution of an interaction
from a given partial state, only if there is no interaction with higher priority that could be
enabled from the corresponding global state.

For distributed implementations of untimed BIP models, the BIP tool-box provides a
code generator for generating C++ for each Send/Receive component of the Send/Receive
untimed BIP models.

Execution/Simulation of BIP models

Regarding BIP models with timing features, the BIP tool-box provides a single-thread real-
time scheduler allowing sequential execution [84].

7.3 Tools Developed in this Thesis

We developed tools that implements method described in this thesis. In Chapter 4, we
presented Send/Receive BIP models with a centralized scheduler. It corresponds to an im-
plementation of partial state models presented in Chapter 3. In practice, this model is never
built, but has been used for sake of clarity. Instead, we have developed a multi-thread real-
time scheduler that implements interactions and priorities of partial state models. A code
generator has been also developed to generate C++ code for atomic components. Each
atomic component as well as the scheduler execute each one in a separate thread.

Regarding 3-layer BIP models presented in Chapter 5 and Chapter 6, we developed tools
for generating such models from given BIP models. These tools are parametrized by the in-
teractions partition and the protocol for conflict resolution. For distributed implementations,
we have developed a common code generator that generates C++ code for each component
of the 3-layer BIP models.

162 Implementation

In the following, we give details of the implementation of these tools.

7.3.1 Multi-threaded Real-Time Scheduler

We implemented a multi-thread real-time scheduler that implements interactions and priori-
ties of the partial state models presented in Chapter 3 (this work appears in [95]). Unlike the
centralized scheduler component presented in Chapter 4, the multi-thread real-time sched-
uler is not specific to a given BIP model. It corresponds to a general implementation of a
scheduler for any BIP model for parallel execution.

We developed a compiler to generate C++ code from a given BIP model. This code is
compiled to run with the multi-thread real-time scheduler Each atomic component is assigned
to a thread, the multi-thread real-time scheduler being a thread itself. Communication be-
tween the scheduler and the atomic components is ensured using message passing through
FIFO channel.s

The multi-thread real-time scheduler coordinates between atomic components and com-
putes enabled interactions on-line. The protocol between the atomic components and the
multi-thread real-time scheduler is similar to the one presented in Chapter 4. That is, atomic
components sends offers to the scheduler which are acknowledged by notifications.

1. 2.

no safe interaction

send offer
when one component
completes

next activation not reached

Stop

(Time−safety violated)

4.

next activation reached

3.

(scheduling policy e.g. EDF)

Wait

or for next activation

for offers

Compute Restrict
safeenabled

interactions

Check
Time-safety components

actual time g

B1 B1 Bn

Application Software
. . .

Platform

Multi-thread Real-Time Scheduler

Notify

notify

components

Schedule
interaction

Figure 7.3: Multi-Threaded Real-time Scheduler

Figure 7.3 shows the execution cycle of the multi-thread real-time scheduler. Given a
state q, the scheduler computes the next enabled interaction as follows:

1. It waits for offers from components finishing their execution or also for next activation
date of a scheduled interaction. When the scheduler receives an offer from a component

7.3 Tools Developed in this Thesis 163

Bi, it checks its next deadline Di(q) = max {t > g | tpci(t)} with respect to the
current value of clock g. If g > Di(q) its stops the execution and reports a deadline
miss. Otherwise it continues the execution.

2. It computes the set of enabled interactions γq based on the received offers. Notice that
they involve only ready components. It restricts the enabled interactions into safe ones.
As explained in Section 4.2.2, in order to enable only safe execution, the scheduler
restricts each timing constraint tca of each interaction a in γq into tca ∧ K∗

a . Details
on how to compute tca and K∗

a are presented in Section 4.2.2. If no such interaction
exists, the scheduler goes to step 1.

3. It chooses a safe interaction among the enabled ones as follows. It computes for each
interaction a its next activation Na(q) that corresponds to the next valuation of lock g
where a is enabled. It is computed as follows: Na(q)=min {t > g | tca(t) ∧K∗

a(t)} ∪
{+∞}. It chooses an enabled interaction a, that is, such that its next activation
date is less than all Deadlines Di(q) of participating components Bi ∈ part(a) that is,
Na(q) ≤ min {Di(q) | Bi ∈ part(a)}. The chosen interaction a is executed as soon as
possible, i.e. at the global time Na(q). If Na(q) is not reached by the global clock g,
the scheduler goes to step 1 to wait for the next activation of the selected interaction.
Otherwise it goes to the next step.

4. When the next activation of the selected interaction is reached, the scheduler notify the
components participating in the selected interaction to execute.

7.3.2 Tools for Generating Send/Receive BIP models

The methods presented in Chapter 5 and Chapter 6 have been implemented through a set
of tools that we present here. Figure 7.4 presents an overview of the different tools used to
generate 3-layer BIP models from a BIP models. These tools are the following:

• timedBip2SrBip Given a BIP model and a partition of interaction, this tool generates
a timed Send/Receive BIP model as described in Section 5.3.

• Check Non-Decreasing Deadlines. It checks whether the input BIP model satisfies
the non-decreasing deadline property. More precisely, this tool checks conditions of
Proposition 2.

• Observed Components Reduction(under construction). It implements the tech-
nique presented in Section6.5.3. Given an interaction a and an observed component
Bj , this tool generates the property reducea(Bj) as defined in Proposition4. This prop-
erty is then checked using RTD-Finder tool presented in Section7.2.2.

• Earlier Decision Making timedBip2SrBip Given a BIP model and a partition of
interaction, this tool generates a Send/Receive BIP model as described in Section 6.3.

164 Implementation

protocol

partition

Observed Components
Reduction

no priority

timedBip2srBip
Earlier Decision Making

timedBip2srBip

BIP

Send/Receive BIP

no priority
BIP

check non−decreasing
deadlines

Figure 7.4: Source-to-Source Decentralization of timed BIP

7.3.3 Code generation for Send/Receive BIP models

In order to generate distributed implementations from Send/Receive BIP models, we devel-
oped a code generator that takes a Send/Receive model as input and outputs a distributed
implementation. Our implementation automatically generates C++ code for each component
in the Send/Receive BIP model where Send/Receive interactions are implemented by TCP
sockets. Each component has access to a clock g giving access to the actual time.

Consider a Send/Receive BIP model. Each component is a Petri net whose transitions
are labeled by ports. According to Definition 22, there are three types of ports in each
component in a Send/Receive BIP model: send ports, receive ports and unary ports. A send
port is used to trigger the emission of a message to the receive ports. The code generated
from a transition labeled by a send port p includes a call to a send(p) function. This function
sends the set of variables associated with port p to receive ports.

Unary ports correspond to computation actions in which only the component is involved.
They may involve timing constraints. Therefore, in the generated code they are executed
only when the corresponding timing constraint is true with respect to global clock g.

Receive ports are executed only if there are incoming messages corresponding to that
ports. Therefore, if there is an enabled transition labeled by a receive port, the component
has to wait for an incoming message that matches with that port.

In the generated code, we assume minimal waiting for the execution of ports. That is, we
execute a port as soon as it is enabled. In addition, we give priority to execute send ports

7.3 Tools Developed in this Thesis 165

Algorithm 1: Code generated for SR-BIP components.

1 Initialize() // initialize the Petri net and connections

2 g := 0 // reset real-time clock

3 while true do
4 while Ps ∩ enabledq 6= ∅ do // send messages

5 choose p ∈ Ps ∩ enabledq
6 send(p)
7 s:=NextState()

8

9 D :=nextDeadline(q)
10 N := min p∈Pu{nextEnabledq(p)}
11

12 if N > g ∧D ≥ g then
13 wait newMessage() ∨ g ≥min(N,D)
14 if newMessage() then // received message

15 recv(message())
16 q:=NextState()
17 continue

18

19 else
20 if g ≥ N ∧D ≥ g then
21 choose p ∈ Pu such that nextEnabled(p) = N
22 DoInternalComputation(p) // internal transition

23 q:=NextState()
24

25 else
26 exit(DEADLINE MISS)

27

over receive and unary ports.

Recall that we assume that components of the original BIP models can not reach states
where their time progress conditions are false. In the implementation of Send/Receive models,
we propose to check only the time progress conditions of the original models and to stop the
execution if a deadline is missed, i.e., if there is a time progress condition (of the original
model) that is evaluated to false.

Generated Code Description

The generated C++ code for each component in the Send/Receive model is shown in Algo-
rithm 1. The function NextState() returns the state q of the component upon execution of
a transition. We denote by enabledq the set of enabled ports at the current state q. Given
a port p in enabledq, we denote by nextEnabledq(p) the next global time value at which the

166 Implementation

port p is enabled at state q. This value is computed from the timing constraint tcp of p as
follows: nextEnabledq(p)=min {t > g | tcp(t)} ∪ {+∞}. We denote by nextDeadline(q) the
maximal global time value until which the component is allowed to stay at q. It is computed
as follows: nextDeadline(q)=max {t > g |

∧
ℓ∈q tpcℓ(t)} ∪ {g}

First, the component is initialized (Lines 1 to 2). Then, it enters an infinite loop that
executes the transitions of the component. It scans the list of enabled ports and and executes
one of them, considering that send-ports have more priority (Lines 4 to 7). Unary ports Pu

may have timing constraints, and have to be executed in real-time. To this end, it computes
the next activation date N corresponding to the minimal value of nextEnabledq(p) for each
port p ∈ Pu, and the next deadline D corresponding to the value of nextDeadline(q) (Lines 9
to 10). If no unary port can be executed at the current value of g (i.e. N > g), its waits for
a unary port to be enabled (i.e. g reaches N), for the deadline to expire (i.e. g reaches D) or
for a message to be received (Line 13). In the later case, it executes the corresponding port
to take the message into account (Lines 14 to 17). If no message has been received until N
(i.e g ≥ N) and the deadline did not expire (g ≤ D), it executes a unary port enabled at N
(Lines 10 to 23). Otherwise, it reports a deadline miss if g > D (Line 26).

8
Experimental Results

In this chapter, we present our experimental results to show how our implementations behave.
We consider 3 type of applications: multi-thread, multi-process and distributed applications.

In Section 8.1, we consider a muli-thread application consisting on an obstacle avoidance
application running on a MarXbot platform. With this application we compare the perfor-
mance of the multi-threaded real-time scheduler against the single-thread real-time scheduler.

In Section 8.2, we consider a multi-process application consisting on an implementation
of demosaicing algorithm. In order to implement this application, we use the transformations
presented in Chapter 5. We compare the performance of an implementation with a centralized
scheduler against the one with conflict-free schedulers.

In Section 8.3, we consider two distributed applications. The first consists on an im-
plementation of the dining philosophers application. The second is a robotic application
consisting of a set of robots that collaborate to perform a given task. Both applications are
implemented using the approach presented in Chapter 6. We show the influence of the choice
of the conflict resolution protocol for the implementation of such applications. Also, we show
how to improve performance by using our method for optimizing observed components.

8.1 Multi-Thread Application: Avoidance obstacle

This case study evaluates the performance of the multi-thread real-time scheduler proposed
in Section 7.3.1. Recall that the multi-thread real-time scheduler implements interactions
and priorities of the partial state models presented in Chapter 3. The objective of this
experiment is to show how preferment our proposed scheduler is, against the single-thread
real-time scheduler proposed in [77].

167

168 Experimental Results

8.1.1 MarXbot Robot

We made experiments on the marXbot platform [96], a miniature mobile robot embedding
a multitude of sensors and actuators. The management of sensors and actuators is ensured
via a network of distributed microcontrollers communicating through CAN bus. These mi-
crocontrollers communicate also with a central computer via CAN bus (see Figure 8.1).

central
computer

sensor actuator sensor actuator

microcontroller microcontroller microcontroller microcontroller

Figure 8.1: The hardware architecture of the MarXbot robot.

Mainly, the marXbot robot (see Figure 8.2) is composed of the following modules.

• The base module providing rough-terrain mobility thanks to treels (combination of
tracks and wheels). It embeds also 16 infrared proximity sensors for detection of obsta-
cles. In addition, the base module contains a slot for a swappable battery that powers
the robot.

• A range and bearing module allows the robot to compute a rough estimate of the
direction and the distance of the neighboring robots.

• A rotating distance scanner module including 4 infrared long range sensors is used to
build 2D map of its environment.

• An attachment module provides self-assembling capabilities with peer marXbots. This
module allows the docking of the other robots and can feel the force they apply.

• A main processor module which is an ARM11 running Linux-based operating system
and communicating through CAN bus with 10 micro-controllers (dsPIC33) managing
sensors and actuators. It drives also two cameras, one looking front and one oriented
towards an omnidirectional hyperbolic mirror.

The main processor polls the microcontrollers at regular intervals to read the sensor values and
to set the actuator commands. These read and write operations transit through the CAN bus.
An event-based architecture, called ASEBA [97], is implemented to make the main computer
communicate with the micro-controllers. ASEBA is a scripting language used to program

8.1 Multi-Thread Application: Avoidance obstacle 169

Figure 8.2: The Marxbot robot.

micro-controllers so that they are able to emit and receive events. The microcontrollers
communicate through events thanks to the asynchronous communication capabilities of the
CAN bus. When an event is detected by a sensor, the information is dispatched by its
manager microcontroller to the rest of the robot. This is done only if the information is
relevant to the application. In ASEBA, the description of the robot behavior and the events
emission and reception policy is described in a scripting language. The language is a simple
imperative programming language with a single basic data type (16 bit signed integers) and
arrays. ASEBA provides also an IDE that provides each microcontroller a tab with the list
of variables for the real-time edition of the values of the sensors, the actuators and the user-
defined variables, a script editor and debug controls. The IDE compiles scripts into bytecodes
and loads them to the microcontrollers, through the communication bus, to be executed in a
lightweight virtual machine.

The inconvenient of ASEBA is that it does not enable the writing of complex applications

170 Experimental Results

and memory allocations are limited in the micro-controllers. The ASEBA scripting language
cannot provide for instance the use of 32-bits integers since it has 16-bits signed integers as
its only data type. The central computer that has a Linux-based operating system, commu-
nicates with the microcontrollers via a software switch, that extends the communication bus
to local TCP/IP connections. With ASEBA, it is not possible to perform complex compu-
tations or construct a big application. Thus, we use the BIP framework in order to build
applications running on the centralized computer of the robot.

8.1.2 Modeling obstacle avoidance application using BIP

We consider an experimental setup for an obstacle avoidance scenario. Initially, the robot
moves straight and turns whenever it detects an obstacle. Turning the robot is ensured
by updating its direction and its speed. In our experiments, we make use of the three
modules provided by the robot. We use the base module that contains the wheels and the
proximity sensors. Also, we use the scanner module including long range sensors. Reading
sensors values is ensured using predefined functions that call their manager microcontrollers.
The third module that we use is the computer module running on Linux that executes the
application. The BIP model of the application is composed of the following components (see
Figure 8.3):

• Components AvoidObstProxy and AvoidObstLRang responsible for reading the values
of the proximity and long range sensors. If one of these components detects the presence
of an obstacle, it transmits its direction to component Arbiter through interaction obs.
Otherwise, it sends message free indicating the absence of obstacle.

• From messages received from AvoidObstProxy and AvoidObstLRang, Arbiter com-
putes the new direction of the robot, which is sent to components CtrlMotorLeft and
CtrlMototRight which are the controllers of the motors

• CtrlMotorLeft and CtrlMototRight determine the speed to apply to the left and right
treels, based on the direction received from Arbiter. To avoid collisions, we give priority
to obstacles detected by AvoidObstProxy over the ones detected by AvoidObstLRang,
which is implemented by rule obsL π obsP . We also give priority to presence of obstacles
over than their absence, corresponding to rules freeP π obsL and freeL π obsP .

8.1.3 Results

Using BIP, we generated C++ code for the main processor. We compared the application
running with the Multi-threaded Real-time scheduler proposed in Section 7.3.1 allowing par-
allel execution, with the same application running with the Single-thread Real-time scheduler
of [77] allowing sequential execution. Its performance is measured by varying the period used
for reading sensors in AvoidObstProxy and AvoidObstLRang. For each tested period, we
ran the application 5 times under similar conditions. As shown in Figure 8.4, with the single-
thread real-time scheduler the minimal period for a correct operation of the robot is 130 ms.
For smaller periods time-safety may be violated which stops the application. The minimal

8.2 Multi-Process Application: Democising 171

free obstacle free obstacle

newValues newValues

freeP obstacleP AvoidObstProxy

free

obstacle

obstacleL

obstacle

obstacleP

freeL

obstacleL

freeP

freeP

free

obstaclePfreeP freeL obstacleLArbiter

AvoidObstLRange

freePobstacleP freeLobstacleL

obstacleLfreeL

newValues

obsPfreeP freeL obsL

freeobstacle

freeobstacle

CtrlMotorLeft

speed

freeobstacle

CtrlMotorRight

speed

obs
free

speed

speed

Priorities :

c = P

c := 0
c = P

c := 0

freeL

αP ≤tPαP ≥tP αL≤tLαL≥tL

newValues

c ≤ P
c ≤ P

c ≤ P
c ≤ P

freeP obsL freeL obsL obsPπ obsP ππ

Figure 8.3: The obstacle avoidance application.

period with the multi-thread real-time scheduler is 60 ms, which drastically improved the
reactivity of the robot.

The multi-thread real-time scheduler executes each component in a thread, allowing
AvoidObstProxy and AvoidObstLRang to wait in parallel for new values of the sensors
sent by the microcontrollers. In contrast, the single-thread real-time scheduler treats the in-
teraction with the microcontrollers sequentially leading to the addition of the waiting times.

8.2 Multi-Process Application: Democising

This use case evaluates the framework described in Chapter 5. Recall that in Chapter 5, we
transform BIP models into Send/Receive BIP models implementable on platforms providing
fast communications.

172 Experimental Results

40 60 8020 100 160

100

80

60

40

20

Period P in ms

T
im

e−
sa

fe
ty

 v
io

la
tio

n
ra

te
 in

 %

Sequential
Parallel

140120

Figure 8.4: Time-safety violations for an execution of the obstacle avoidance application with the
multi-thread real-time Scheduler and the single-thread real-time scheduler.

Multi-process platforms are adequate for the implementation of such models. Indeed,
processes are a useful choice for parallel application with workloads where tasks take signif-
icant computing power. For that, we consider an application that implements demosaising
algorithm which provides intensive parallel computation.

8.2.1 Demosaicing Algorithm

R G R G R

G B G B G

R G R G R

G B G B G

R G R G R

Raw image:

1 color component

per pixel

Interpolation

RGB image:

3 color components

per pixel

Figure 8.5: Demosaicing raw data to RGB image.

A demosaicing algorithm [98] transforms the raw data from a camera sensor into an actual
image. A camera sensor is an array of light sensors, each of them outputting a single value. A
color filter placed over the sensor array ensures that each sensor receives either red, green, or
blue light. The filtering is done according to the pattern presented on the left of Figure 8.5.
The obtained raw image contains a single color component for each pixel. Demosaicing
yields an RGB image by interpolating for each pixel the missing color components from the
values of the neighbor pixels. In Figure 8.5, the neighborhood contains only adjacent pixels.
Depending upon the interpolation algorithm used, this neighborhood may change. In our

8.2 Multi-Process Application: Democising 173

I
split

L1

L2

D11

D21

C11

C21

D12

D22

C12

C22

split line 1

split line 2

J1

J2

O

trans 1

tra
ns

2

trans 12

trans 11

trans 22

trans 21

Figure 8.6: BIP model for demosaicing.

0

2

1g start

c := 0

finish

[c ≤ k]

timeout

[c = k]cancel

finish g start

cancel

timeout Cij

c≤ k0 1get block

demosaicing()

cancel

transmit

get block transmit

cancel

Dij

split line i
trans ij

global start

Figure 8.7: Detail of the Cij and Dij components.

case, we use a neighborhood of size 5 × 5, centered on the interpolated pixel. We do not
detail here the interpolation function used.

8.2.2 Modeling Demosaicing Application in BIP

Figure 8.6 shows the BIP model of demosaicing for 4 parallel blocks. Initially, the image is
loaded by the component I, which trigger a global start interaction (not shown on the Figure)
between components Dij , Ji, I and O. These components reset their respective clocks upon
execution of global start.

This algorithm is parallelized by cutting the raw image into blocks, each being demosaiced
concurrently. The image is first split into lines by the interaction named split, then each line i
is split into blocks by the interaction named split line i. The detailed behavior of components
Dij and Cij is depicted in Figure 8.7.

Component Dij performs actual demosaicing of the image block located at i, j, whenever
it receives an image block through its port get block. Component Cij controls timing of the
component Dij . We use timing constraints and time progress conditions to enforce delivery
of a RGB image within a given amount of time after the raw image has been provided.

174 Experimental Results

The parameter k allows to control the time to demosaice a block. When Dij finishes the
demosacing of a block, if less time than k elapsed since the last global start, Cij allows
interaction trans ij that transmits the demosaiced block to Ji. Otherwise, the block is not
transmitted, Cij declares a timeout through unary interaction timeout and returns with Dij

to the initial state through interaction cancel. The component Ji joins blocks to form the line
i and transmits it through trans i. Its transition from the receiving state to the transmitting
state is triggered if all blocks are received or if too much time elapsed since global start.

Finally, component O merges received lines and outputs the image. The image is out-
putted either if all lines are received or if too much time elapsed since global start. If some
blocks or lines were not transmitted, the outputted image is incorrect on the corresponding
blocks.

8.2.3 Results

We consider two different partitions for generating the Send/Receive model. The first one,
called centralized partition puts all interactions in the same partition class. The second one
is called conflict-free partition, and is such that:

• Interaction split, start and all interactions split line i define the first class of the partition.

• For each i, the interactions trans ij are grouped in the same class, together with reset
interactions.

• The interactions trans i form the last class.

We demosaice raw images of size 25×106 pixels and 6×106 pixels. The BIP model splits
each image into 9 blocks, that are demosaiced concurrently. We generate distributed code for
both the centralized and the conflict-free versions. We run the code on a UltraSparc T1 that
allows parallel execution of 24 processes. The parameter k in the component Cij controls the
amount of time after which the image must be outputted.

Figures 8.8 and 8.9 show the number of blocks processed depending on the amount of time
allowed k, respectively for 25M pixels and 6M pixels raw images, for both centralized and
conflict-free partition. With the centralized partition, to treat all nine blocks of the 25MP
image is 29s, whereas it reduces to 17s for the conflict-free partition. Similarly, treating all
nine blocks of the 6MP image requires a time budget of 7s, against 4.5s for the conflict-free
partition. The conflict-free partition exhibits a speedup ranging between 1.5 to 2 compara-
tively to the centralized partition. The conflict-free partition allows more parallelism between
interactions, for instance, interactions split line i can be executed in parallel, where the cen-
tralized does not. Since demosaicing components run concurrently in both implementations,
the speedup stems solely from the possible parallelism between interactions.

8.3 Distributed Applications

In this section, we experiment the framework presented in Chapter 6. Recall that in Chap-
ter 6, we transform BIP models into Send/Receive BIP models that could be implemented
on distributed platforms providing slow communications.

8.3 Distributed Applications 175

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 14 16 18 20 22 24 26 28 30N
um

be
r

of
 b

lo
ck

s
de

m
os

ai
ce

d

Time allocated (in s)

Centralized
Conflict-free

Figure 8.8: Time needed to process a 25MP image.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 3 3.5 4 4.5 5 5.5 6 6.5 7N
um

be
r

of
 b

lo
ck

s
de

m
os

ai
ce

d

Time allocated (in s)

Centralized
Conflict-free

Figure 8.9: Time needed to process a 6MP image.

8.3.1 Dining ”professors”

We consider a variation of the well-known dining philosophers problem. To avoid ambiguity
with the dining philosophers protocol used in our design, we call this application dining
professors. The scenario is described as follows: N professors sit at a round table with bowls
of spaghetti. Forks are placed between each pair of adjacent philosophers. Each professor
must alternately think, eat and clean. A professor can eat only when he has both left and
right forks. Each fork can be held by only one professor and so a professor can use the fork
only if it is not being used by another professor. After he finishes eating, he needs to clean
both forks so they become available to others. The problem to solve is to design the system
such that no professor will starve.

In our setting, we consider that the professors are numbered from 1 to N. In addition,
we consider that the professors are sit such that each two neighbors have successive numbers
(professors 1 and N are neighbors). We suppose that each professor can eat with a period
P . In order to avoid starvation, we suppose that professors having odd numbers can eat at
the same time (similarly for even numbers). To do so, we shift the eating starting date of
professors with odd numbers by P/2. This ensures that two neighbors are not able to eat at
the same time. Figure 8.10 shows the eating points of professors with odd and even numbers.

176 Experimental Results

Eating period of even philosophers

Eating period of even philosophers

2P 5P 6PP 3P 4P

9P/27P/23P/2P/2 5P/2 11P/2

Figure 8.10: Eating points of professors with odd and even numbers.

Modeling Dining professors Application in BIP

Figure 8.11 shows a fragment of the BIP model of dining professors application. Components
Pi−1 and Pi+1 are professors having odd numbers (i.e. i-1 and i+1 are odd numbers). These
components have transition labeled delay needed to shift their starting eating date with even
professors by P/2. Interaction eati involves even professor Pi and the adjacent forks. This
interaction executes when the clock ci of professor component Pi reaches the period P . When
executing interaction eati, the clock ci of the professor component Pi is reset. After eating,
Pi has to clean the forks Fi, Fi+1. The time for cleaning the forks should not exceed P/2
units time. This is because odd professors Pi−1 and Pi+1 reach their periods for eating after
P/2 units time. That is, Pi should clean the forks before that professor components Pi−1 and
Pi+1 become ready to eat.

Notice that all components in the dining professors example have non-decreasing deadlines
since they satisfy the conditions of Proposition 2.

Results

Using the transformations presented in Section 6.3, we obtain a Send/Receive BIP model
of the dining professors application. As already explained, our Send/Receive BIP model is
structured into 3 layers. The second layer is parametrized by a partition of interactions. In
this dining professors example, we consider the following partition.

• Each interaction eati forms a partition class.

• Each pair of interactions clnRi−1 and clnLi forms a partition class.

Influence of the conflict resolution protocol choice.

We study the influence of the conflict resolution protocol choice for the construction of the
Send/Receive BIP model. We simulate the environment by adding communication delays.
We consider the following communications delays values between the different components of
the Send/Receive BIP model.

• The communication delay between the atomic components and the schedulers is 10 ms.

8.3 Distributed Applications 177

clnRi

clnLi eat clnRi

ci = P
ci := 0

eati

ci ≤ P/2

eati+1
clni+1

eat clnclni eati

clnLi

eaticlni

ci ≤ P/2

Pi−1
Pi Pi+1

Fi Fi+1

eati eati−1
eati−1

clnRi+1
clnLi+1

delay
ci+1 = P/2
ci+1 := 0

ci+1 ≤ P/2

ci+1 ≤ P

eati+1

ci+1 = P
ci+1 := 0

ci+1 ≤ P/2

clnLi+1 clnRi+1

ci+1 ≤ P/2

clnRi+1

clnLi+1

delay
ci−1 = P/2
ci−1 := 0

eati−1

ci−1 := 0
ci−1 = P

c ≤ P/2

c ≤ P

clnLi−1 eati−1

clnRi−1

clnLi1

clnRi−1

ci ≤ P

ci−1 ≤ P/2

ci−1 ≤ P/2

Figure 8.11: Fragment of the BIP model of dining professors application.

• The communication delay between the schedulers and the conflict resolution protocol
is 10ms.

• The communication delay between different components of the conflict resolution pro-
tocol is 2ms.

We simulate communication delays by temporarily suspending the communicating com-
ponents. We measure the minimum period P that allows correct execution of the application,
i.e. without time-safety violation. Figure 8.12 and Figure 8.13 shows simulation results for
the application with 4 and 50 professors respectively. Recall that we denote by RP the
centralized implementation of the conflict resolution protocol , by TR token ring based im-
plementation and by DP the dining philosophers based implementation. For 4 professors,
the RP outperforms TP and DP. The latters show comparable performance. This is because
for TP and DP, the conflict resolution protocol requires a similar amount of communication
for acquiring either the fork or the token. Indeed, for 4 professors, we have 4 conflicting
interactions and therefore, 4 components inside the conflict resolution protocol for TR and
DP. For TR, the token has to travel through all these 4 components. For DP, each conflict
resolution component acts in their local neighborhood, by sending requests for acquiring the
fork. This has a similar effect in terms of communications. Although RP schedules inter-
actions sequentially, this has less impact regarding the effect of communications in DP and

178 Experimental Results

RP. For 50 philosophers, the DP outperforms TP and RP. In fact, increasing the number of

40

80

340

300

260

240

200

160

140

120

RP TR DP

M
in

im
um

 p
er

io
d

fo
r

co
rr

ec
t e

xe
cu

tio
n

(m
s)

Conflict Resolution Protocol

Figure 8.12: Simulation For 4 professors.

RP TR DP

M
in

im
um

 p
er

io
d

fo
r

co
rr

ec
t e

xe
cu

tio
n

(m
s)

Conflict Resolution Protocol

1000

900

800

700

600

500

400

300

200

100

Figure 8.13: Simulation For 50 professors.

professors and thus increasing the number of conflicting interactions, does not affect so much
the performance of the DP based implementation. This is because, for DP, each conflict res-
olution component acts always in their local neighborhood components, regardless the total
number of components in the conflict resolution protocol. However, for TR, the communica-
tions amount required for circulating the token depends on the number of component in the
conflict resolution protocol, which corresponds to the total number of conflicting interactions.
For RP implementation, scheduling interactions sequentially slows down the application ex-
ecution, but still, this has not the same effect compared to communication required for TR

8.3 Distributed Applications 179

implementation.

Optimizing Observed Components.

As explained in Subsection 6.2.1, in order to schedule correctly an interaction, each interaction
should observe components participating in conflicting interactions. In the dining professors
example, each interaction eati is in conflict with its neighbor interactions eati−1 and eati+1.
Therefore, interaction eati has to observe components components professor components Pi−1

and Pi+1 and fork components Fi−1 and Fi+1.

N
um

be
r

of
 m

es
sa

ge
s

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

Number of philosophers
4 50

Opt
No opt

Figure 8.14: Number of messages exchanged for optimized and non-optimized implementations for
the dining professors example.

In order to optimize the number of observed components of interaction eati, we check for
each component Bi ∈ {Pi−1 , Pi+1, Fi−1 , Fi+1} the satisfiability of reduceeati(Bi) property
defined in Definition 40. We report the following results. Fork components Fi−1, Fi+1 satisfy
the property and thus, they could not to observed by eati interaction. However, professor
components Pi−1, Pi+1 do not satisfy the property, and thus, they have to be observed
by eati. Indeed, the property checks if there is clocks valuation that satisfy eati timing
constraint and do not satisfy time progress conditions of observed components when being
in a location enabling conflicting interactions. Since fork components have true as time
progress conditions on their locations, in particular on locations enabling eat transition, then
any valuation of clocks satisfying the timing constraint of interaction eati satisfy necessarily
time progress conditions of Fork components Fi−1 and Fi+1.

For the experimentations, we measure the number of messages needed to let each pro-
fessors eat 10 times, for both optimized and non optimized version of the application for 4
and 50 philosophers. Figure 8.14 shows the simulation results. We remark an improvement
of performance for the optimized version of the application with both 4 and 50 professors.
This is explained by the fact that for unoptimized version, the scheduler handling eati should
receive observation messages (offers) from fork components Fi−1 and Fi+1 and professor

180 Experimental Results

step1: search step2:find 3 close robots

step3: group 3 robots step4: push ball

Figure 8.15: Collaborating Robot application scenario.

componentsPi−1 and Pi+1. Whereas, for the optimized version the scheduler handling eati
should receive observation messages only from professor components Pi−1 and Pi+1. This
explains the decrease of the number of exchanged messages for optimized version.

8.3.2 Collaborating Robots

We consider a robotic application that consists ofN communicating robots that collaborate to
perform a given task. The scenario is described as follows (see Figure 8.15 for the description
of the scenario with 4 robots): initially, the robots (red circles) are randomly distributed over
arena. They start by exploring the arena in order to find each others. When 3 robots become
sufficiently close, they group themselves by forming ”V” shape. Then, they go towards a
ball (black circle) which is positioned at the center of the arena, and push it. The number of
combination for ”grouping” 3 robots from a set of N robots is given by the binomial coefficient(
N
3

)
. We denote by P3(N) the set of 3-combinations from the set of N robots.

We assume that the robots are equipped with proximity sensors to detect obstacles

8.3 Distributed Applications 181

(arena’s walls and the ball) and a camera to detect the robots. Moreover, we assume that
the robots can communicate with each others at any time (e.g. using wireless communi-
cations). This robotic application could be implemented on a set of marXbot robots (see
Subsection 8.1.1 for the description of such platform) since these robots provide all features
(proximity sensors, camera, wifi communication) required to implement the application. In
this work, we rely on simulations as we do not have sufficient number of robots to implement
the application.

Modeling the application in BIP

Figure 8.16 shows the BIP model of a single robot. We use timing constraints and time
progress conditions to express a periodic reading sensors. Notice that such a component
has non-decreasing deadlines since it satisfies the conditions of Proposition 2. Note that
transitions turn, continue and group have mutually exclusive guards. Therefore, they cannot
be enabled at the same time.

Figure 8.17 shows the BIP model of the application composed of 4 robots. The grouping
action is modeled by an interaction that synchronizes group transitions of any 3 robots. The
”grouping” interaction is enabled only if there are 3 robots which are sufficiently close to
each others. Similarly, ”pushing” action is modeled by an interaction that synchronizes push
transitions of any group of 3 robots. By construction, this interaction is enabled only if the
corresponding robots successfully grouped themselves.

Generally, there are
(
N
3

)
”grouping” interactions gk and

(
N
3

)
”pushing” interactions pk

where k ∈ P3(N) is the robots group identifier. These interactions are pairwise conflicting
as for any two interactions there is at least one shared port. In Figure 8.17, there are 4
”grouping” interactions and 4 ”pushing” interactions as the number of 3-combinations from
a set of 4 robots is 4. Note that for each robot, there are 3 unary interactions which are
sensei, continuei and turni. Note that interaction continuei and turni are not conflicting
with interaction gk due to their mutually exclusive guards.

group

push

turn
sense

continue

push

group

c ≤ P

c1 ≤ P

∃ obstacle

c := 0
[c = P]

∃ 2 close robots

∧ 6 ∃ obstacle

∧ 6 ∃ 2 close robots

6 ∃ obstacle

Figure 8.16: Model of a single robot.

182 Experimental Results

R4

R1

R2
R3

p234

p123

p124

p134

group1

push1

group3

push3push2

push4

group4

group2 g
2
3
4

g
1
2
3

g12
4

g13
4

Figure 8.17: The BIP model of the application with 4 robots

Results

Using the transformations described in Section 6.3, we transform the BIP model of our
application into Send/Receive BIP where:

• all unary interactions of robot Ri, i ∈ {1 . . . N} are handled by a single scheduler Si

• ”grouping” and ”pushing” interactions of the same group k ∈ P3(N) are handled by a
single scheduler Sk

In this example, we use DP and TR implementation of the conflict resolution protocol.

We simulate the robots platform by considering that each robot is running on a dedicated
machine. The number of machines corresponds to the number of robots used in the appli-
cation. We generate C++ code corresponding to each component of the Send/Receive BIP
model and we embedded each C++ executable on each machine. We distribute the C++
code as follows: each machine i hosts a robot’s code RSR

i , its corresponding scheduler Si and
one scheduler Sk and conflict resolution protocol components CRPgk and CRPpk such that
the robot Ri is participating in interactions managed by Sk. Table A.1 shows the distribution
of the C++ code corresponding to the application with 4 robots.

In order to make simulations as realistic as possible, we also modeled robot’s behavior,
such as robot’s movement, sensor’s reading and camera image processing. Figure 8.18 presents

8.3 Distributed Applications 183

Figure 8.18: Simulation Results for the application with 4 robots

the simulation results for P=200 ms. The red circles represent the final positions of the robots
and the black one represents the ball. It shows that the robots effectively managed to group
themselves and push the ball.

Influence of the conflict resolution protocol choice.

We study the impact of communications delays and the choice of the conflict resolution
protocol on time-safety. We simulate communication delays by temporarily suspending the
communicating components. We assume that between any two machines i and j, we have
the same communication delay K. We set the sensing period P to 200 and we vary the
communication delays between machines. We measure the maximum value of communication
delays that allows correct execution of the application.

Figure 8.19 and Figure 8.20 shows the simulation results for the application with 4 and
10 robots. For 4 robots, TR (Token Ring) outperforms DP (dining philosophers). This is
because for few number of conflicting interactions, TR requires less communication than DP.
Indeed, in DP, each conflict resolution protocol component has to negotiate the forks with
all other components in DP which requires more communications than required for traveling
the token in TR. However, for 10 robots, DP outperforms TR. Indeed, for a large number

Table 8.1: Send/Receive components code distribution on 4 machines

machine#1 machine#2 machine#3 machine#4

RSR
1 RSR

2 RSR
3 RSR

4

S1 S2 S3 S4

S123 S124 S134 S234

CRPg123 CRPg124 CRPg134 CRPg234

CRPp123 CRPp124 CRPp134 CRPp234

184 Experimental Results

of conflicting interactions, TR requires lot of communications as the token has to travel in
all conflict resolution components sequentially before arriving to the component that takes
the decision to execute the interaction. That is, the time required for the token to arrive
corresponds to the sum of communications delays between components in TR. Whereas in DP,
the forks negotiation is done in parallel. That is each conflict resolution protocol component
sends fork requests to all other components almost at the same time.

Optimizing Observed Components

In our example, each two ”group” interactions gk and gk′ are in conflict. Therefore, each gk
interaction involves its participant components and observes all remaining components. Our
method for optimization allows removing all observed components for each gk interaction.
Indeed, in the BIP model, the robots have the same behavior and the same period for sensing
which make the robots having the same deadline when searching for each others. Thus, when
3 robots try to group themselves, they have to do it before the expiration of their periods of
sensing, which is the same for the other (observed) robots.

We measure the number of exchanged messages needed or the execution of the application
during 10s. We require that the robot remains at searching phase during the execution. To
do so, we put false as guard on each gk interaction in order to forbid robots grouping them
selves. Figure 8.21 shows the number of exchanged messages needed or the execution of
the application with 4 and 10 robots. We remark that the performance is improved in the
optimized version especially for the application with 10 robots. For instance, in the non
optimized version with 10 robots, the scheduler Sk handling gk interaction have to receive
messages from all robots: 3 participating in the interaction and 7 other observed. In the
optimized version, Sk receives only messages from the participant robots.

8.3 Distributed Applications 185

DP

Conflict Resolution Protocol
TR

10

5

15

20

25

30

35

40

45

50

M
a
x
im

u
m

v
a
lu
e
o
f
K

(m
s)

Figure 8.19: Simulation for 4 robots.

DPTR

Conflict Resolution Protocol

5

25

30

35

40

45

50

20

15

10

M
a
x
im

u
m

v
a
lu
e
o
f
K

(m
s)

Figure 8.20: Simulation for 10 robots.

186 Experimental Results

40000

36000

32000

28000

24000

8000

4000

4 10

Opt
No opt

12000

16000

20000

Number of robots

N
um

be
r

of
 e

xc
ha

ng
ed

 m
es

sa
ge

s

Figure 8.21: Number of exchanged messages needed or the execution of the application during 10s.

9
Conclusions

In this chapter, we conclude the thesis by describing the main achievements and the future
work directions and its perspectives.

9.1 Achievements

Rigorous Design Flow

In this thesis, we presented a rigorous design flow starting by a centralized high-level BIP
models and leading to Send/Receive BIP models that can be directly implementable on a
given platform. The design flow involves the use of model transformations, each one takes into
account a particular aspect of the decentralization while preserving the functional properties
of the original BIP model.

We presented three solutions for obtaining Send/Receive BIP models.

• In the first solution, we propose Send/Receive models with a centralized scheduler
that implements interactions and priorities. Atomic components of the original models
are transformed into Send/Receive components that communicate with the centralized
scheduler via Send/Receive interactions. We showed that the centralized scheduler
should satisfy some conditions to ensure safe interactions execution. These conditions
was identified in the partial state models to be observationally equivalent to original
BIP models. Recall that partial state models are high level-representation for parallel
execution of BIP models in which the assumption of atomic execution of transitions is
discarded.

• In the second solution, we proposed Send/Receive models with decentralized the sched-
ulers. With this solution, we considered BIP models without priorities. The solution is
based on transforming BIP models into 3-layer Send/Receive BIP models which consist

187

188 Conclusions

of Send/Receive atomic components, a set of schedulers each one handling a subset
of interactions, and a set of components implementing a conflict resolution protocol.
Components in the conflict resolution protocol are called by the schedulers only in case
of conflicting interactions execution.

With the above solutions, we assumed that the obtained/Send Receive models are imple-
mented on platforms that provide fast communications (e.g. multi-process platforms) to
meet perfect synchronization in components. This is because our obtained Send/Receive
model is modeled such that there is no delay between the decision to execute an interaction
in a scheduler and its execution in the participating components.

• In the third solution, we proposed Send/Receive models that execute correctly even if
communications are not fast enough. This method is based on the fact that schedulers
plan interactions execution and notify components in advance. In particular, the sched-
ulers choose as soon as possible, according to a scheduling policy, a date for executing
a selected interaction and send it to the participating components. We proposed also a
cancel mechanism whenever the scheduler is not able to find a valid date to execute a
conflicting interaction when the conflict resolution protocol confirms its execution.

We showed that with this solution, the scheduler needs to observe additional com-
ponents not participating in the scheduled interactions. In particular, the schedulers
observe time progress conditions of observed components to ensure safe interactions
scheduling. These time progress conditions represent deadlines of observed components.
In order to maintain valid observations of deadlines in the schedulers, we assumed that
the components have non-decreasing deadlines. That is, observations are valid even if
the components change their states by executing interactions.

We proposed an optimization method in order to minimize the number observed compo-
nents. In fact, we identified the condition for which a component could not be observed
by a given interaction. We expressed this condition in terms of a property of the system.
We used static analysis technique based of approximations of system’s reachable states
to verity satisfaction of the property.

Implementation and Results

Actually, our first solution consisting on the centralized scheduler that implements interac-
tions and priorities was presented only for sake of clarity and to make connections with the
rest of the thesis. Instead, we have developed a multi-thread real-time scheduler that imple-
ments interactions and priorities of partial state models. A code generator have been also
developed to generate C++ code for atomic components.

For distributed implementations, we developed tools for generating 3-layer Send/Receive
BIP models. We developed a code generator that takes a Send/Receive model as input and
outputs a distributed implementation. The code generator automatically generates C++
code for each component in the Send/Receive BIP model where Send/Receive interactions
are implemented by TCP sockets.

Regarding experiments, we considered three types of applications: multithreaded, multi-
process and distributed applications.

9.2 Perspectives 189

• With the multi-threaded application, we evaluated the performance of the multi-thread
real-scheduler. We showed that the latter outperforms the single-thread real time sched-
uler presented in [77].

• With multi-process application, we evaluated the method of our second solution. We
considered an application that needs intensive parallel computation. We compared
the application implementations obtained with a centralized scheduler against the one
obtained with conflict-free schedulers.

• With distributed applications, we evaluated the method of our third solution. We
studied the influence of the chosen conflict resolution protocol with different simulated
platforms. We showed that the best performance depends on the application size and
also on the chosen conflict resolution protocol.

Also, we studied the influence of optimizing the number of observed components in
Send/Receive models. We showed that this optimization allows reducing the number
of exchanged messages which increases performance.

9.2 Perspectives

For future work, we are considering several research directions.

• In this thesis, priorities are handled only in Send/Receive models with centralized sched-
uler. An important future direction is to handle priorities in the 3-layer Send/Receive
models. For the case of our 3-layer Send/Receive models implemented on fast platforms,
the solution is not very difficult. In fact, the schedulers may observe components par-
ticipating in higher priority interactions. As in the case of Send/Receive models with
centralized scheduler, the observation brings approximations of next reachable states.
Based on these approximations, the schedulers may decide the execution of a lower
priority interaction.

For the case of Send/Receive models with planning interactions, the problem is quiet
difficult. The problem resides in the fact interactions are planned in advance. In order
to plan correctly an interaction, one has to be sure that when the interaction executes
at the selected date, no higher interaction is enabled at that date.

• Our third solution for obtaining Send/Receive models with planing interactions is based
on components observation. This method is applied on BIP models whose components
provide non-decreasing deadlines. In fact, considering such models allows the schedulers
to maintain a valid observation of components deadlines. We are working on extend-
ing this method for more general models where components do not necessarily have
non-decreasing deadlines. This is not trivial since the scheduler cannot be sure that
its observation could be valid in the future. For example, assume that the scheduler
observes a component at its current state, indicating that the component’s deadline is
D. Based in this observation, the scheduler may schedule an interaction at a date less
or equal to than D. However, this is not safe since the component may change its state
providing a deadline less than D.

190 Conclusions

A pragmatic approach, where the scheduler blocks the execution of the observed com-
ponent until the date t of the selected interaction execution, is not safe. In fact, the
observed component may need to synchronize with other components having deadlines
less than t.

The solution could be the use of static analyses techniques to identify states where it
is safe to schedule a given interaction.

• Another research direction could be to propose a method for obtaining Send/Receive
BIP models that handle clocks drift. The problem of clocks drift may influence the
coherence of interactions execution. In particular, the interactions order could be in-
verted. For instance, consider two interactions a and b handled in different schedules
having access to drifted clocks. Suppose that a and b are scheduled to execute at date
ta and tb respectively . Here, ta and tb are computed based on different clocks. Log-
ically talking, if ta ≤ tb, a should be produced before b. However, in reality, it could
be possible that b executes before a. That is a and b executes at real date tra and trb
respectively, where trb ≤ tra. These real dates could be computed based on a reference
clock.

A solution to handle this problem is to introduce perturbations in the BIP models,
and then study implementability issues for these models. The perturbation consist on
enlarging the timing constraints. For timed automata, the model of timing constraint
enlargement has been studied in [99]. In this paper, it is proven that the model with
perturbation covers the issue of clocks drift, by reducing the implementability problem
to the analysis of the enlarged semantics.

• Another work direction is the issue of mixed critical systems [100]. A mixed critical
application allows different levels of criticality to interact on the same platform. How-
ever, those applications are very difficult to certificate. This is because mixed criticality
concept requires that even the components of less criticality be certified at the highest
criticality level. Thus, it is necessary to provide strong scheduling theories for real-time
and safety-critical system design and implementation.

A
From models with time progress cnditions to

urgency-based models

A.1 Urgency-based Abstract Models

Time progress conditions are used to enforce progress in the system. Indeed, time progress
conditions constraints the system to stay infinitely at a state without moving to another
one. There exists different manners to enforce progress in the system. In [101], the authors
consider abstract models with urgency types on transitions to enforce transitions execution.
Urgency types are used to specify the need for a transition to progress when it is enabled
(i.e. when its timing constraint is true) [102]. There are three urgency types that can be
used to specify urgency of transitions: Lazy transitions (i.e. non-urgent) are denoted by l,
delayable transitions (i.e. urgent just before they become disabled) are denoted by d, and
eager transitions (i.e. urgent whenever they are enabled) are denoted by e. A transition
urgency is computed from the timing constraint and the urgency type of the transition. We
define a time guard tg which corresponds to a combination of timing constraint tc with an
urgency type ν ∈ { l, d, e }, denoted by tg = [tc]ν . The predicate urg[tg] that characterizes
the valuations of clocks for which the time guard tg is urgent is defined by:

urg[tg](t) ⇐⇒

false if tg is lazy, i.e. if ν = l

tc(t) ∧ ¬tc(t+ 1) if tg is delayable, i.e. if ν = d

tc(t) if tg is eager, i.e. if ν = e.

Definition 41 (Urgency-based Abstract Model). An urgency-based abstract model is defined
by a labeled transition system B = (L,P, T,C), where:

• L is a finite set of control locations,

• P is a finite set of communication ports,

191

192 From models with time progress cnditions to urgency-based models

• C is a finite set of clocks,

• T ⊆ Q × P ×Q is a finite set of labeled transitions. A transition τ is a tuple (q, p, q′)
where p is a communication port. τ has a time guard over C tgτ and resets a subset of
clocks rτ .

Definition 42 (Semantics of Urgency-Based Abstract Model). An urgency-based abstract
Model B = (L,P, T,C) defines a transition system SB = (QB, PB,−→B) where:

• Q = L× T (C) is the set of states

• PB = P ∪ Z≥0

• −→
B
⊆ QB × PB × QB is the set of labeled transitions defined as follows: Let (ℓ, t) and

(ℓ′, t′) be two states, p ∈ P , and δ ∈ Z≥0 be a delay

– Jump transitions: We have (ℓ, t)
p
−→
B

(ℓ′, t′) where t′ = t[r 7→ 0] if τ = (q, p, q′) is

in T and its corresponding timing constraint is true with respect to the valuation
t, i.e. tcτ (t) = true.

– Delay transitions: We have (ℓ, t)
δ
−→ (ℓ, t + δ) if for all transitions τ = (ℓ, a, ℓ′)

∈ T and for all δ′ ∈ [0, δ[, ¬urg[tgτ](t+ δ′).

Compared to abstract models with time progress conditions, abstract models with urgency
differ in that the condition for time progress is given implicitly and rather derived from
time guards (combination of timing constraint and urgency) of transitions. Thus, abstract
models with urgency are subclass of Abstract Models with time progress condition [103]. The
transformation of an abstract model with urgency into an abstract model with time progress
condition could be done by deriving deadline formula from any time guard of transitions .
Given a time guard tg = [tc]ν where tc =

∨n
i=1

∧
c∈C l

i
c ≤ c ≤ uic is given by (2.1), we define

deadline d characterizing valuation of clocks for which time is enforced to stop progress. d is
defined as follows:

d(tg) =

false if tg is lazy, i.e. if ν = l∨n
i=1

∨
c∈C c = uic if tg is delayable, i.e. if ν = d

tc if tg is eager, i.e. if ν = e.

Let ℓ be a state in L and τk = {(q, pk, qk)}k∈K be the set of all transitions issued from ℓ.
The time progress condition associated to ℓ and derived from {tgτk}k∈K is:

tpcℓ = ¬
∨

k∈K

d(tgτk)

Example 29. Consider the abstract model with urgency in Figure A.1. In table 29, we give
the time progress condition associated to control location ℓ for different types of urgency ν1
and ν2.

A.1 Urgency-based Abstract Models 193

q1 q2

q

p2p1

[2 ≤ c1 ≤ 5]ν1 [4 ≤ c2 ≤ 7]ν2

Figure A.1: Example of transitions with urgency.

Table A.1: Time progress conditions of ℓ for different types of urgency

ν2, ν2 l d e

l false c1 = 5 2 ≤ c1 ≤ 5

d c2 = 7 c1 = 5 ∨ c2 = 7 2 ≤ c1 ≤ 5 ∨ c2 = 7

e 4 ≤ c2 ≤ 7 c1 = 5 ∨ 4 ≤ c2 ≤ 7 2 ≤ c1 ≤ 5 ∨ 4 ≤ c2 ≤ 7

194 From models with time progress cnditions to urgency-based models

References

[1] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Springer, 2011. ISBN 978-1-4419-8236-0. URL
http://dx.doi.org/10.1007/978-1-4419-8237-7.

[2] Yuh-Jzer Joung and Scott A Smolka. A comprehensive study of the complexity of
multiparty interaction. Journal of the ACM (JACM), 43(1):75–115, 1996.

[3] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems - concepts
and designs (3. ed.). International computer science series. Addison-Wesley-Longman,
2002. ISBN 978-0-201-61918-8.

[4] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–565, July 1978.

[5] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding time syn-
chronization protocol. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 39–49. ACM, 2004.

[6] K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. Ieee 1588-standard for a precision
clock synchronization protocol for networked measurement and control systems. In
Conference on IEEE, volume 1588, page 2, 2005.

[7] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988. ISBN 0-201-05866-9.

[8] Rajive Bagrodia. A distributed algorithm to implement n-party rendevouz. In Foun-
dations of Software Technology and Theoretical Computer Science, Seventh Conference
(FSTTCS), pages 138–152, 1987.

[9] R. Bagrodia. Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Transactions on Software Engineering (TSE), 15(9):1053–
1065, 1989.

[10] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems (TOPLAS), 6(4):632–646, 1984.

[11] K. Mani Chandy and Jayadev Misra. Parallel program design - a foundation. Addison-
Wesley, 1989. ISBN 978-0-201-05866-6. I-XXVIII, 1-516 pp.

195

196 References

[12] Marcin Jurdzinski. Small progress measures for solving parity games. In Symposium
on Theoretical Aspects of Computer Science (STACS), pages 290–301, 2000.

[13] D. Kumar. An implementation of n-party synchronization using tokens. In ICDCS,
pages 320–327, 1990.

[14] J. Parrow and P. Sjödin. Multiway synchronizaton verified with coupled simulation. In
International Conference on Concurrency Theory (CONCUR), pages 518–533, 1992.

[15] José A Pérez, Rafael Corchuelo, and Miguel Toro. An order-based algorithm for im-
plementing multiparty synchronization. Concurrency and Computation: Practice and
Experience, 16(12):1173–1206, 2004.

[16] O. Babaoglu. On the reliability of consensus-based fault-tolerant distributed computing
systems. ACM Transactions on Computer Systems, November 1987.

[17] Hermann Kopetz. Time-triggered real-time computing. Annual Reviews in Control, 27
(1):3–13, 2003. URL http://dx.doi.org/10.1016/S1367-5788(03)00002-6.

[18] Christophe Aussaguès and Vincent David. A method and a technique to model and
ensure timeliness in safety critical real-time systems. In 4th International Conference
on Engineering of Complex Computer Systems (ICECCS ’98), 10-14 August 1998,
Monterey, CA, USA, pages 2–12, 1998. URL http://doi.ieeecomputersociety.

org/10.1109/ICECCS.1998.706651.

[19] Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch, and Marco A. A.
Sanvido. Event-driven programming with logical execution times. In Hybrid Sys-
tems: Computation and Control, 7th International Workshop, HSCC 2004, Philadel-
phia, PA, USA, March 25-27, 2004, Proceedings, pages 357–371, 2004. URL http:

//dx.doi.org/10.1007/978-3-540-24743-2_24.

[20] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: a time-
triggered language for embedded programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[21] Damien Chabrol, Vincent David, Christophe Aussaguès, Stéphane Louise, and Frédéric
Daumas. Deterministic distributed safety-critical real-time systems within the oasis
approach. In International Conference on Parallel and Distributed Computing Systems,
PDCS 2005, November 14-16, 2005, Phoenix, AZ, USA, pages 260–268, 2005.

[22] Vincent David, Jean Delcoigne, Evelyne Leret, Alain Ourghanlian, Philippe Hilsenkopf,
and Philippe Paris. Safety properties ensured by the OASIS model for safety critical
real-time systems. In Computer Safety, Reliability and Security, 17th International
Conference, SAFECOMP’98, Heidelberg, Germany, October 5-7, 1998, Proceedings,
pages 45–59, 1998. URL http://dx.doi.org/10.1007/3-540-49646-7_4.

[23] Stéphane Louise, Vincent David, Jean Delcoigne, and Christophe Aussaguès. OASIS
project: deterministic real-time for safety critical embedded systems. In Proceedings

References 197

of the 10th ACM SIGOPS European Workshop, Saint-Emilion, France, July 1, 2002,
pages 223–226, 2002. URL http://doi.acm.org/10.1145/1133373.1133419.

[24] Stéphane Louise, Matthieu Lemerre, Christophe Aussaguès, and Vincent David. The
OASIS kernel: A framework for high dependability real-time systems. In 13th IEEE
International Symposium on High-Assurance Systems Engineering, HASE 2011, Boca
Raton, FL, USA, November 10-12, 2011, pages 95–103, 2011. URL http://dx.doi.

org/10.1109/HASE.2011.38.

[25] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[26] Mathieu Jan, Jean-Sylvain Camier, and Vincent David. The oasis-d transparent ap-
proach for safety-critical distributed real-time systems.

[27] Mathieu Jan, Jean-Sylvain Camier, and Vincent David. Scheduling safety-critical real-
time bus accesses using time-constrained automata. In RTNS, pages 87–96. Citeseer,
2011.

[28] Damien Chabrol, Vincent David, Christophe Aussaguès, Stéphane Louise, and Frédéric
Daumas. Deterministic distributed safety-critical real-time systems within the oasis
approach. In IASTED PDCS, pages 260–268, 2005.

[29] David D Falconer, Fumiyuki Adachi, and Bjorn Gudmundson. Time division multi-
ple access methods for wireless personal communications. Communications Magazine,
IEEE, 33(1):50–57, 1995.

[30] David B. Stewart, Richard Volpe, and Pradeep K. Khosla. Design of dynamically
reconfigurable real-time software using port-based objects. IEEE Trans. Software
Eng., 23(12):759–776, 1997. URL http://doi.ieeecomputersociety.org/10.1109/

32.637390.

[31] Lory D. Molesky, Chia Shen, and Goran Zlokapa. Predictable synchronization mech-
anisms for multiprocessor real-time systems. Real-Time Systems, 2(3):163–180, 1990.
URL http://dx.doi.org/10.1007/BF00365325.

[32] Jan Lunze and Daniel Lehmann. A state-feedback approach to event-based control.
Automatica, 46(1):211–215, 2010.

[33] Edward A Lee and II John. Overview of the ptolemy project, 1999.

[34] S. Tsang and E. Magill. Detecting feature interactions in the intelligent network. Feature
Interactions in Telecommunications Systems II, IOS Press, 1994.

[35] John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and Jia Zou. Dis-
tributed real-time software for cyber-physical systems. Proceedings of the IEEE, 100:
45 – 59, 2012.

198 References

[36] Edward A Lee. Modeling concurrent real-time processes using discrete events. Annals
of Software Engineering, 7(1-4):25–45, 1999.

[37] Patricia Derler, Edward A Lee, and Slobodan Matic. Simulation and implementation
of the ptides programming model. In Proceedings of the 2008 12th IEEE/ACM In-
ternational Symposium on Distributed Simulation and Real-Time Applications, pages
330–333. IEEE Computer Society, 2008.

[38] Yang Zhao, Jie Liu, and Edward A Lee. A programming model for time-synchronized
distributed real-time systems. In Real Time and Embedded Technology and Applications
Symposium, 2007. RTAS’07. 13th IEEE, pages 259–268. IEEE, 2007.

[39] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous program-
ming with events and relations: the signal language and its semantics. Science of
computer programming, 16(2):103–149, 1991.

[40] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
1991.

[41] Nicolas Halbwachs. About synchronous programming and abstract interpretation.
Sci. Comput. Program., 31(1):75–89, 1998. URL http://dx.doi.org/10.1016/

S0167-6423(96)00041-X.

[42] Nicolas Halbwachs. Synchronous programming of reactive systems. In Computer Aided
Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June
28 - July 2, 1998, Proceedings, pages 1–16, 1998. URL http://dx.doi.org/10.1007/

BFb0028726.

[43] Nicolas Halbwachs. About synchronous programming and abstract interpretation. In
SAS, pages 179–192, 1994. URL http://dx.doi.org/10.1007/3-540-58485-4_40.

[44] N. Halbwachs. Synchronous programming of reactive systems, a tutorial and com-
mented bibliography. In Tenth International Conference on Computer-Aided Verifica-
tion, CAV’98. LNCS 1427, Springer Verlag, Vancouver (B.C.), June 1998.

[45] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A compositional
framework for end-to-end path delay calculation of automotive systems under different
path semantics. In Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS), 2008.

[46] Gérard Berry and Georges Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Science of computer programming, 19(2):87–152,
1992.

[47] Daniel Pilaud, N Halbwachs, and JA Plaice. Lustre: A declarative language for pro-
gramming synchronous systems. In Proceedings of the 14th Annual ACM Symposium
on Principles of Programming Languages (14th POPL 1987). ACM, New York, NY,
volume 178, page 188, 1987.

References 199

[48] Christos Sofronis. Embedded Code Generation from High-level Heterogeneous Compo-
nents. PhD thesis, Université Joseph-Fourier-Grenoble I, 2006.

[49] Safouan Taha, Ansgar Radermacher, Sébastien Gérard, and Jean-Luc Dekeyser.
MARTE: uml-based hardware design from modelling to simulation. In Forum on spec-
ification and Design Languages, FDL 2007, September 18-20, 2007, Barcelona, Spain,
Proceedings, pages 274–279, 2007. URL http://www.ecsi-association.org/ecsi/

main.asp?l1=library&fn=def&id=269.

[50] OMG. Uml superstructure, v2.4.1. object management group. August 2011.

[51] Sébastien Demathieu, Frédéric Thomas, Charles André, Sébastien Gérard, and François
Terrier. First experiments using the uml profile for marte. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium on,
pages 50–57. IEEE, 2008.

[52] Antonio Wendell De Oliveira Rodrigues, Guyomarc’H Frédéric, and Jean-Luc Dekeyser.
An mde approach for automatic code generation from marte to opencl. 2011.

[53] Edward A Lee and Alberto Sangiovanni-Vincentelli. A framework for comparing models
of computation. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 17(12):1217–1229, 1998.

[54] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guer-
nic, and Robert de Simone. The synchronous languages 12 years later. Proceedings of
the IEEE, 91(1):64–83, 2003.

[55] Huafeng Yu, Jean-Pierre Talpin, Löıc Besnard, Thierry Gautier, Frédéric Mallet,
Charles André, and Robert De Simone. Polychronous analysis of timing constraints in
uml marte. In Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops (ISORCW), 2010 13th IEEE International Symposium on, pages 145–151.
IEEE, 2010.

[56] Charles André, Frédéric Mallet, and Robert De Simone. Modeling time (s). In Model
Driven Engineering Languages and Systems, pages 559–573. Springer, 2007.

[57] Peter H Feiler, David P Gluch, and John J Hudak. The architecture analysis & design
language (aadl): An introduction. Technical report, DTIC Document, 2006.

[58] Zhibin Yang, Kai Hu, Dianfu Ma, Jean-Paul Bodeveix, Lei Pi, and Jean-Pierre Talpin.
From AADL to timed abstract state machines: A verified model transformation. Jour-
nal of Systems and Software, 93:42–68, 2014. URL http://dx.doi.org/10.1016/j.

jss.2014.02.058.

[59] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126
(2):183–235, 1994.

200 References

[60] José Antonio Pérez, Rafael Corchuelo, and Miguel Toro. An order-based algorithm for
implementing multiparty synchronization. Concurrency - Practice and Experience, 16
(12):1173–1206, 2004.

[61] Lacramioara Astefanoaei, Souha Ben Rayana, Saddek Bensalem, Marius Bozga, and
Jacques Combaz. Compositional invariant generation for timed systems. In TACAS,
pages 263–278, 2014.

[62] Joseph Sifakis. A framework for component-based construction extended abstract. In
SEFM, pages 293–300, 2005.

[63] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in
BIP. In Software Engineering and Formal Methods (SEFM), pages 3–12, 2006.

[64] Joseph Sifakis. Component-based construction of real-time systems in bip. In CAV,
pages 33–34, 2009.

[65] S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based systems.
In Concurrency Theory (CONCUR), pages 508–522, 2008.

[66] R. Alur and D. Dill. Automata for modeling real-time systems. ICALP, 1990.

[67] Rajeev Alur and David L. Dill. The theory of timed automata. In REX Workshop,
pages 45–73, 1991.

[68] Stavros Tripakis. Verifying progress in timed systems. In Joost-Pieter Katoen, editor,
ARTS, volume 1601 of Lecture Notes in Computer Science, pages 299–314. Springer,
1999. ISBN 3-540-66010-0.

[69] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541 –580, apr 1989. ISSN 0018-9219.

[70] Manfred Droste and RM Shortt. From petri nets to automata with concurrency. Applied
Categorical Structures, 10(2):173–191, 2002.

[71] S. Bliudze and J. Sifakis. Causal semantics for the algebra of connectors. In Formal
Methods for Components and Objects (FMCO), pages 179–199, 2007.

[72] Mohamad Jaber. Implémentations Centralisée et Répartie de Systèmes Corrects par
construction á base des Composants par Transformations Source-á-source dans BIP.
PhD thesis, Université Joseph-Fourier - Grenoble I, 2010.

[73] M. Bozga, M. Jaber, and J. Sifakis. Source-to-source architecture transformation for
performance optimization in BIP. In Symposium on Industrial Embedded Systems
(SIES), pages 152–160, 2009.

[74] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed semantics and implemen-
tation for systems with interaction and priority. In FORTE, pages 116–133, 2008.

References 201

[75] R. Milner. Communication and concurrency. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, 1995.

[76] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[77] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based implementation
of real-time applications. In Luca P. Carloni and Stavros Tripakis, editors, EMSOFT,
pages 229–238. ACM, 2010. ISBN 978-1-60558-904-6.

[78] Jacques Combaz Ahlem Triki, Borzoo Bonakdarpoor. Automated conflict-free concur-
rent implementation of timed component-based models. Technical Report TR-2015-2,
Verimag Research Report.

[79] K. G. Larsen, P.Pattersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[80] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Ser-
gio Yovine. Kronos: A model-checking tool for real-time systems. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, pages 298–302. Springer, 1998.

[81] Thomas A Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Information and computation, 111(2):193–244,
1994.

[82] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen. Compo-
sitional verification for component-based systems and application. In ATVA, pages
64–79, 2008.

[83] RTD-Finder Tool. http://www-verimag.imag.fr/RTD-Finder.html?lang=. Ac-
cessed: 2015-04-09.

[84] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Rigorous implementa-
tion of real-time systems - from theory to application. Mathematical Structures
in Computer Science, 23(4):882–914, 2013. URL http://dx.doi.org/10.1017/

S096012951200028X.

[85] Marius Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling synchronous systems in
bip. In EMSOFT, pages 77–86, 2009.

[86] Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and Joseph Sifakis.
Compositional translation of simulink models into synchronous bip. In SIES, pages
217–220, 2010.

[87] Vassiliki Sfyrla. Modeling Synchronous Systems in BIP. PhD thesis, Université de
Grenoble, 2011.

[88] Mohamed Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis. Translat-
ing aadl into bip - application to the verification of real-time systems. In MoDELS
Workshops, pages 5–19, 2008.

202 References

[89] Ananda Basu, Laurent Mounier, Marc Poulhiès, Jacques Pulou, and Joseph Sifakis.
Using bip for modeling and verification of networked systems – a case study on tinyos-
based networks. In NCA, pages 257–260, 2007.

[90] Paraskevas Bourgos, Ananda Basu, Marius Bozga, Saddek Bensalem, Joseph Sifakis,
and Kai Huang. Rigorous system level modeling and analysis of mixed hw/sw systems.
In MEMOCODE, pages 11–20, 2011.

[91] T.H. Nguyen S. Bensalem, M. Bozga and J. Sifakis. D-finder: A tool for compositional
deadlock detection and verification. In Computer Aided Verification (CAV), pages 614–
619, 2009.

[92] Saddek Bensalem, Marius Bozga, Jacques Combaz, and Ahlem Triki. Rigorous sys-
tem design flow for autonomous systems. In Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change - 6th In-
ternational Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014,
Proceedings, Part I, pages 184–198, 2014. URL http://dx.doi.org/10.1007/

978-3-662-45234-9_13.

[93] Saddek Bensalem, Marius Bozga, Benôıt Delahaye, Cyrille Jégourel, Axel Legay, and
Ayoub Nouri. Statistical model checking qos properties of systems with sbip. In ISoLA
(1), pages 327–341, 2012.

[94] Borzoo Bonakdarpour, Marius Bozga, and Jean Quilbeuf. Model-based implementation
of distributed systems with priorities. Design Autom. for Emb. Sys., 17(2):251–276,
2013. URL http://dx.doi.org/10.1007/s10617-012-9091-0.

[95] Ahlem Triki, Jacques Combaz, Saddek Bensalem, and Joseph Sifakis. Model-based
implementation of parallel real-time systems. In Fundamental Approaches to Software
Engineering, pages 235–249. Springer, 2013.

[96] Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz, Daniel
Burnier, Gilles Roulet, Florian Vaussard, Hannes Bleuler, and Francesco Mondada.
The marxbot, a miniature mobile robot opening new perspectives for the collective-
robotic research. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, October 18-22, 2010, Taipei, Taiwan, pages 4187–4193, 2010. URL http:

//dx.doi.org/10.1109/IROS.2010.5649153.

[97] Stéphane Magnenat, Basilio Noris, and Francesco Mondada. Aseba-challenge: An
open-source multiplayer introduction to mobile robots programming. In Fun and
Games, Second International Conference, Eindhoven, The Netherlands, October 20-
21, 2008. Proceedings, pages 65–74, 2008. URL http://dx.doi.org/10.1007/

978-3-540-88322-7_7.

[98] Henrique S. Malvar, Li-wei He, and Ross Cutler. High-quality linear interpolation for
demosaicing of bayer-patterned color images. In 2004 IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP 2004, Montreal, Quebec, Canada,

References 203

May 17-21, 2004, pages 485–488, 2004. URL http://dx.doi.org/10.1109/ICASSP.

2004.1326587.

[99] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Systematic implementation
of real-time models. In FM 2005: Formal Methods, pages 139–156. Springer, 2005.

[100] Sanjoy K Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-
Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality scheduling
of sporadic task systems. In Algorithms–ESA 2011, pages 555–566. Springer, 2011.

[101] Tesnim Abdellatif. Rigorous Implementation of Real-Time Systems. PhD thesis, Uni-
versié de Grenoble, France, 2012.

[102] S. Bornot and Joseph Sifakis. An algebraic framework for urgency. Inf. Comput., 163
(1):172–202, 2000.

[103] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed
systems. In COMPOS, pages 103–129, 1997.

