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Théorie ergodique des actions de
groupes et algèbres de von Neumann

Résumé

Dans cette thèse, on s’intéresse à la théorie mesurée des groupes, à l’entropie sofique et aux
algèbres d’opérateurs ; plus précisément, on étudie les actions des groupes sur des espaces
de probabilités, des propriétés fondamentales de leur entropie sofique (pour des groupes
discrets), leurs groupes pleins (pour des groupes Polonais), et les algèbres de von Neumann
et leurs sous-algèbres moyennables (pour des groupes à caractère hyperbolique et des réseaux
de groupes de Lie). Cette thèse est constituée de trois parties.

Dans une première partie j’étudie l’entropie sofique des actions profinies. L’entropie so-
fique est un invariant des actions mesurées des groupes sofiques défini par L. Bowen qui
généralise la notion d’entropie introduite par Kolmogorov. La définition d’entropie sofique
nécessite de fixer une approximation sofique du groupe. Nous montrons que l’entropie so-
fique des actions profinies est effectivement dépendante de l’approximation sofique choisie
dans le cas des groupes libres et certains réseaux de groupes de Lie.

La deuxième partie est un travail en collaboration avec François Le Maître. Elle est consti-
tuée d’un article prépublié dans lequel nous généralisons la notion de groupe plein aux actions
préservant une mesure de probabilité des groupes polonais, et en particulier, des groupes lo-
calement compacts. On définit une topologie polonaise sur ces groupes pleins et on étudie
leurs propriétés topologiques fondamentales, notamment leur rang topologique et la densité
des éléments apériodiques.

La troisième partie est un travail en collaboration avec Rémi Boutonnet. Elle est consti-
tuée de deux articles prépubliés dans lesquels nous considérons la question de la maximalité
de la sous-algèbre de von Neumann d’un sous-groupe moyennable maximal, dans celle du
groupe ambiant. Nous résolvons la question dans le cas des groupes à caractère hyperbolique
en utilisant les techniques de Sorin Popa. Puis, nous introduisons un critère dynamique à
la Furstenberg, permettant de résoudre la question pour des sous-groupes moyennables de
réseaux des groupes de Lie en rang supérieur.

Mots-clés

Théorie ergodique, algèbres de von Neumann, groupes polonais, groupes sofiques, groupes
pleins, maximale moyennabilité.





Groups, Actions and von Neumann
algebras

Abstract

This dissertation is about measured group theory, sofic entropy and operator algebras.
More precisely, we will study actions of groups on probability spaces, some fundamental
properties of their sofic entropy (for countable groups), their full groups (for Polish groups)
and the amenable subalgebras of von Neumann algebras associated with hyperbolic groups
and lattices of Lie groups. This dissertation is composed of three parts.

The first part is devoted to the study of sofic entropy of profinite actions. Sofic entropy
is an invariant for actions of sofic groups defined by L. Bowen that generalize Kolmogorov’s
entropy. The definition of sofic entropy makes use of a fixed sofic approximation of the group.
We will show that the sofic entropy of profinite actions does depend on the chosen sofic
approximation for free groups and some lattices of Lie groups.

The second part is based on a joint work with François Le Maître. The content of this part
is based on a prepublication in which we generalize the notion of full group to probability
measure preserving actions of Polish groups, and in particular, of locally compact groups. We
define a Polish topology on these full groups and we study their basic topological properties,
such as the topological rank and the density of aperiodic elements.

The third part is based on a joint work with Rémi Boutonnet. The content of this part is
based on two prepublications in which we try to understand when the von Neumann algebra
of a maximal amenable subgroup of a countable group is itself maximal amenable. We solve
the question for hyperbolic and relatively hyperbolic groups using techniques due to Popa.
With different techniques, we will then present a dynamical criterion which allow us to answer
the question for some amenable subgroups of lattices of Lie groups of higher rank.

Key-words

Ergodic Theory, von Neumann algebras, Polish groups, sofic groups, full groups, maximal
amenability.
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Introduction

By a probability measure preserving action of a countable group Γ on the standard prob-
ability space (X, µ), we mean an action of Γ on X such that every element of Γ induces a
measurable bijection of X which preserves the measure. We will say that the action of Γ on
X is free if the set of fixed points of each element of Γ has measure zero. We will say that
the action is aperiodic if almost every orbit is infinite and we will say that the action is ergodic
if every Γ-invariant measurable subset of X has measure zero or one. Ergodic actions are
the fundamental pieces of measure preserving actions, every probability measure preserving
action admits a unique decomposition (up to measure zero) into ergodic actions.

Every measure preserving action of a countable group Γ gives rise to a unitary represen-
tation on a Hilbert space: the Koopman representation. In fact, if Γ acts on the probability space
(X, µ) preserving the measure, then we can define a unitary representation κ of Γ on L2(X, µ)
by κγ f (x) = f (γ−1x).

Let us give some examples of free, ergodic and probability measure preserving actions.

• Every countable infinite group Γ admits a free, ergodic and probability measure preserv-
ing action: the Bernoulli shift. Let (Y, ν) be a probability space and set (X, µ) = (YΓ, νΓ).
The group Γ acts on X by shifting the sequences γ0(yγ)γ = (yγ−1

0 γ)γ and this action
preserves the measure. It is easy to observe that the action is free and ergodic.

• Let K be a compact group and let Γ < K be a countable subgroup. The action induced by
the multiplication on the left of Γ on K is free and preserves the Haar measure. Moreover
if the group Γ is dense in K, then the action is also ergodic.

• Let Γ > Γ1 > Γ2 > . . . be a chain of finite index subgroups. The group Γ acts on the
finite quotients Γ/Γn and hence it acts on the profinite limit of the sequence {Γ/Γn}n.
The profinite limit can be identified with the space of ends of a tree and therefore it
has a natural topology which makes it homeomorphic to a Cantor space. If we equip
the finite spaces Γ/Γn with the renormalized uniform counting measure, then we obtain
a measure on the profinite limit which is Γ-invariant. The action of Γ on this space is
called the profinite action of Γ with respect to the chain {Γn}n and it is always ergodic.
If the subgroups Γn are normal in Γ and their intersection is trivial, then the profinite
action is free.

We will now briefly describe some important notions related to actions of groups. Our pur-
pose is not to give an overview of the theory, which the interested reader can find in the
surveys of Furman [Fur11] and Gaboriau [Gab10]. We just want to recall the basic definitions
and some important theorems that one should have in mind before reading this dissertation.
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Introduction

Conjugacy and entropy

Two measure preserving actions of a countable group Γ on the probability spaces (X, µ)
and (Y, ν) are conjugate if there are Γ-invariant full measure subsets A ⊂ X and B ⊂ Y and a
measure preserving isomorphism ϕ : A → B such that ϕ(γx) = γϕ(x) for every x ∈ A and
γ ∈ Γ.

It is straightforward to check that if two actions of Γ are conjugate, then their Koopman
representations are isomorphic, so any spectral invariant of the representation is a conjugacy
invariant. However Koopman representations are not complete invariants, for example all
Bernoulli shifts over a finite base are associated to the same unitary representation. However
these actions are not conjugate, Bernoulli shifts may have different entropy.

Entropy for measure preserving actions of the integer group has been defined by Kol-
mogorov in the fifties. One of the first striking application is that entropy can be used to
classify Bernoulli shifts. In fact, the entropy of a Bernoulli shift over a finite base is equal to
the Shannon entropy of the base, namely −∑y∈Y ν({y}) log(ν({y})) and a deep theorem of
Ornstein tells us that this non-negative number is in fact a complete invariant. The classifica-
tion of Bernoulli shifts is only one of the many applications of entropy, which gives rise to a
fascinating theory, outlined for example in Katok’s survey [Kat07].

In order to classify Bernoulli shifts of more general groups, one is led to generalize the
concept of entropy. This has been done in the context of amenable groups by Ornstein and
Weiss, using the notion of tilings and quasi tilings. Using this new entropy, Ornstein and
Weiss were able to completely classify Bernoulli shifts exactly as for actions of Z, [OW87].

While the entropy of actions of amenable groups was widely studied, there were some
evidences pointing out that it would not have been possible to extend the definition to non
amenable groups: some of the crucial properties of the entropy can not be true in the more
general setting. In particular the question about Bernoulli shifts was unsolved. Several years
later in 2008, Bowen introduced a new concept of entropy for actions of sofic groups which
extends the previous definition, see [Bow10a] and [Bow10b]. He was able to classify Bernoulli
shifts of a large class of sofic groups as for amenable groups: the entropy of the base space
is an invariant. This classification was extended to all sofic groups shortly later by Kerr and
Li in [KL11], where they also proposed a definition of sofic topological entropy and stated a
variational principle.

Weak containment

Weak containment in the context of measure preserving actions was introduced by Kechris
in [Kec10]. An action of the countable group Γ on the probability space (X, µ) is weakly
contained in an action of Γ on the probability space (Y, ν) if for every ε > 0, for every finite
partition α = {A1, . . . , An} of X and for every finite subset F ⊂ Γ, there is a finite partition
β = {B1, . . . , Bn} of Y such that

∑
i,j≤n

∑
f∈F

|µ(Ai ∩ f Aj)− ν(Bi ∩ f Bj)| < ε.

The definition is inspired by the notion of weak containment for representations and it is
in fact stronger. If an action a is weakly contained in an action b, then the Koopman repre-
sentation of a is weakly contained in the Koopman representation of b, [Kec10, Proposition
10.5].
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We say that two actions are weakly equivalent if they are weakly contained one into the
other. By definition, if two actions are conjugate, then they are weakly equivalent. Note
however that weak equivalence is weaker than conjugacy. For example ergodicity is not an
invariant of weak equivalence: every ergodic, non strongly ergodic action of a countable group
is weakly equivalent to the product of the action with the trivial action.

Even though weak containment is a relatively new concept, in the last few years there has
been a big interest around it and several results were obtained.

• All free and ergodic actions of an amenable group are weakly equivalent, [FW04] and
[Kec10].

• Every free action of a countable group weakly contains the Bernoulli shift of the group
with respect to any base, [AW13].

• More generally, every free action is weakly equivalent to the product of itself with a
Bernoulli shift [TD12].

Abért and Elek studied deeply weak containment and weak equivalence for profinite ac-
tions in [AE12]. In particular, they proved that free groups, SLn(Z) and many other groups
admit an uncountable family of weakly inequivalent actions. It is still unknown whether the
result holds for every non-amenable group.

Orbit equivalence

Two measure preserving actions of the countable groups Γ and Λ on the probability spaces
(X, µ) and (Y, ν) are orbit equivalent if there are invariant full measure subsets A ⊂ X and
B ⊂ Y and a measure preserving isomorphism S : A → B such that for every x, y ∈ A we have
that x ∈ Γy if and only if S(x) ∈ ΛS(y). Orbit equivalence is clearly weaker than conjugacy,
we do not even ask Γ and Λ to be isomorphic. We will say that two groups are orbit equivalent
if they admit free, ergodic actions which are orbit equivalent.

• A pionier result of Dye [Dye59] states that all ergodic, free and probability measure pre-
serving actions of the integer group Z on a standard probability space are orbit equiva-
lent. Moreover all free, ergodic actions of all locally finite groups are orbit equivalent to
an action (and hence all) of Z.

• Ornstein-Weiss in [OW80] were able to describe the class of groups that are orbit equiva-
lent to the integers: it is the class of amenable groups. They proved that all free, ergodic
actions of an amenable group are orbit equivalent to an action (and hence all) of Z. The
result was shortly later generalized in [CFW81].

• Gaboriau proved that probability measure preserving actions of free groups of differ-
ent rank are not orbit equivalent, [Gab00]. By a result of Hjorth, [Hjo06], the class of
groups that are orbit equivalent to a free group is the class of treeable groups. This class
contains various surface groups but it is still unclear how to characterize it in more
group-theoretical terms, see [Gab05]. For example, it is unknown whether limit groups
are treeable.

• All non-amenable groups admit a continuum of orbit inequivalent actions see [Ioa11]
and [Eps07] which is based on [GL09].

3



Introduction

Even though orbit equivalence is a weak notion, orbit equivalent groups share many prop-
erties. For example amenability, property (T) ([Zim81], [AD05]) and Haageroup’s property
([Jol05]) are invariants of orbit equivalence and two orbit equivalent groups have the same !2

Betti numbers ([Gab02]).
In some cases, orbit equivalence turns out to be equivalent to conjugacy. Furman proved

in [Fur99] that any action which is orbit equivalent to the standard action of SLn(Z) on the
torus for n ≥ 3 is essentially conjugated to it. Actions which satisfy this property are often
called rigid actions. Since Furman’s result, there have been several results of rigidity which
culminated in Popa’s cocycle superrigidity theorems [Pop07], [Pop08].

von Neumann algebras

A von Neumann algebra is a weakly closed ∗-subalgebra of the bounded operators on a
Hilbert space. For a countable group Γ, we denote by λ the left-regular representation of Γ on
!2(Γ). The von Neumann algebra of Γ, denoted LΓ, is the weak closure of the linear span of the
unitary operators {λ(γ)}γ∈Γ.

In a similar manner, one can also define the von Neumann algebra of an action. Suppose
that the countable group Γ acts on the probability space (X, µ) freely and preserving the
measure. Denote by λX the diagonal representation of Γ on L2(X, µ) ⊗ !2(Γ) and we let
L∞(X, µ) act on L2(X, µ). The von Neumann algebra of the action L∞(X, µ)! Γ, called group
measure space construction, is the weak closure of the linear span of {λX(γ)}γ∈Γ and L∞(X, µ).

Orbit equivalence has its roots in the theory of von Neumann algebras. Murray and von
Neumann used probability measure preserving actions as a source of examples of von Neu-
mann algebras. Singer proved in [Sin55] that the group measure space construction depends
only on the orbit-equivalence class of the action. Feldmann and Moore then generalized
Singer’s theorem to the context of equivalence relations [FM77b].

The group measure space construction is not a complete invariant of orbit equivalence
[CJ82]. By [Sin55] and [FM77b], we know exactly which isomorphisms of von Neumann al-
gebras are induced by orbit equivalence relations: those that respect the inclusion L∞(X, µ) <
L∞(X, µ)! Γ.

The subalgebra L∞(X, µ) < L∞(X, µ)! Γ is a Cartan subalgebra, that is a maximal abelian
subalgebra whose normalizer generates the von Neumann algebra. By [Sin55] and [FM77b] a
von Neumann algebra that has a unique Cartan subalgebra (up to conjugation), is canonically
attached to the orbit equivalence class and a series of remarkable theorems shows that there
are several von Neumann algebras with this property, see [OP10a], [PV14a] and [PV14b]. In
particular, all group measure space constructions associated to actions of free (non-abelian)
groups have a unique Cartan, [PV14a] and hence these von Neumann algebras remember the
rank of the group.

Von Neumann algebras arising from groups are far less understood, even in the case of
free groups. Let us state two well-known open problems.

• Does the von Neumann algebra associated to a free group remember the rank of the
group?

• Is every amenable subalgebra of the von Neumann algebra associated to a free group
contained in a unique maximal amenable subalgebra?

4



The second question is known under the name of Peterson-Thom conjecture, [PT11] and
it will be the main motivation for the study of amenable subalgebras of the fourth and fifth
chapter.

Ultraproducts, weak containment and sofic entropy

Measure preserving actions of countable groups on standard probability spaces have been
studied for more than a century. Recently there has been some interest in ultraproduct of
actions and their connection with sofic groups, see for example [CKTD13], [AE11], [Pes08],
[ES05] and [KL13]. Ultraproducts are a natural limit procedure and the measure preserving
actions constructed in this way, remember many properties of the sequences of actions used
in their construction. One of the main difficulties of this construction, is that ultraproduct
actions are defined on the Loeb probability space, which as measure space is isomorphic to
{0, 1}R equipped with the product measure (Theorem 1.1.10).

Some of the theory of measure preserving actions easily generalizes to general measure
spaces. For example Dye worked without any assumption on the probability space in [Dye59].
Anyway not much is known in the general setting. In the first chapter, we will try to under-
stand actions on general probability space under the point of view of weak containment. We
will prove the following.

Theorem 1. Every probability measure preserving action of a countable group on a diffuse space is
weakly equivalent to an action on a standard probability space.

More precisely, we will prove in Theorem 1.2.15 that every probability measure preserving
action on a diffuse space has a standard diffuse factor which is weakly equivalent to the action.

The family of all actions of G on finite or diffuse probability spaces is to big to be a set.
But the above theorem implies that the family of weakly equivalence classes of actions is a set
and it is isomorphic to the set of classes of actions on {1, . . . , n} for n ∈ N and on a fixed
standard probability space, say [0, 1] with respect to the Lebesgue measure. Let us denote
the set of classes by Act(G). One of the avantages of working with Act(G) is that it is closed
under ultraproducts: for every sequence of (classes of) actions (an)n of Act(G) and for every
ultrafilter u, the (class of the) action on the ultraproduct space au is still an element of Act(G).

Abért and Elek defined in [AE11] a compact, metric topology on the space of weak equiv-
alence classes of actions on a standard Borel space which, by Theorem 1, is isomorphic to
Act(G). Once we identify these two spaces, it is not hard to see that every converging se-
quence converges to the class of its ultraproduct (with respect to any ultrafilter). Since ul-
traproducts of sequences of actions always exist, the topology is necessarily compact and it
is completely determined by this property. This compact space was later studied in [TD12],
[Bur15b] and [Bur15a].

We introduce in Definition 1.2.9 a compact, metric topology on Act(G), which is equivalent
to the topology of Abért and Elek. This metric is essentially the metric used in [Bur15b].
A sequence is converging for this topology if the asymptotic of the statistics of the actions
converges to the statistics of the limit action and as in the case of Abért and Elek’s topology,
every converging sequence converges to its ultraproduct, see Theorem 1.2.22.

The aim of Chapter 2 is to give a concise, simple and self-contained proof of the compact-
ness of the space, Theorem 1 of [AE11]. We will then analyse limits of finite actions and we
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will obtain an interesting corollary in the context of sofic entropy.
It will follow easily from the definition of the topology on Act(G), that if {Hn}n is a de-

scending chain of finite index subgroups of G, then the limit of the sequence of the finite
actions G/Hn is the (class of the) profinite action a(Hn). Since limits are always weakly equiv-
alent to the ultraproducts of the sequences, we get the following interesting corollary.

Corollary 2. Let G be a countable group and let (Hn) be a chain of finite index subgroups. Then the
profinite action a(Hn) associated to the sequence (Hn)n is weakly equivalent to the ultraproduct of the
sequence of finite actions on the quotients (G/Hn) with respect to any ultrafilter.

We will give an application of Corollary 2 in the context of sofic entropy.

Sofic Entropy

A sofic approximation of a countable group G is given by sequence of natural numbers (nk)k
and a sequence of maps {θk : G → Snk}k which is asymptotically multiplicative and free in
the sense that and for all g, h ∈ G

lim
k→∞

1
nk

|{i ∈ {1, . . . , nk} : θk(g)θk(h)i = θk(gh)i}| = 1

and for every g, h ∈ G with g *= h,

lim
k→∞

1
nk

|{i ∈ {1, . . . , nk} : θk(g)i *= θk(h)i}| = 1.

A group is sofic if it admits a sofic approximation. The class of sofic groups is a large
class of groups and at the time of writing there is no group which is known to be non
sofic. For example, all residually finite groups are sofic, in fact every chain of finite in-
dex normal subgroups {Hn}n of G such that ∩nHn = {1G} gives a sofic approximation
{θn : G → Sym(G/Hn)}n, where each θn is induced by the left multiplication of G on the
quotients. Sofic groups also include amenable groups and is stable under various operations,
see [Pes08] and [ES05].

On the other hand, many conjectures are known to hold for sofic groups, for example sofic
groups are hyperlinear [ES05], they satisfy the Gottschak Surjunctivity conjecture [Gro99],
Kaplansky’s Direct Finitness conjecture [ES04], the Determinant conjecture [ES05] and others.
We invite the interested reader to look at Pestov’s survey [Pes08] and references therein.

Sofic entropy is a conjugacy invariant for actions of a sofic group G which is built using a
fixed sofic approximation of G. This invariant depends on the sofic approximation and once
the approximation is fixed, the entropy is only defined (as a non-negative number) for some
actions, which we will call its domain of definition. For the others the entropy is just declared
to be −∞. This means that each sofic approximation gives us a possibly different notion
of entropy which has its proper domain. Bowen proved in [Bow10b], see also [Ker13], that
for Bernoulli shifts the entropy is always defined and its value does not depend on the sofic
approximation. This phenomenon was later extended to algebraic actions see [Bow11], [KL11]
and [Hay14].

At the end of the first chapter, we will try to clarify how the domain of definition of sofic
entropy depends on the sofic approximation. The answer appears extremely simple when the
sofic entropy is defined using a sofic approximation which comes from a chain of finite index
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subgroups. In fact if G is a residually finite group and (Hn)n is a chain of subgroups such that
the associated profinite action is free, then the sequence of actions of G on the finite quotients
is a sofic approximation of G, which we will denote by Σ(Hn). The following proposition is a
consequence of Corollary 2.

Proposition 3. Let G be a residually finite group and let (Hn)n be a chain of finite index subgroups
such that the associated profinite action a(Hn) is free. Then for every measure preserving action b of
G on a standard probability space (X, µ), we have that hΣ(Hn)

(b) > −∞ if and only if the action b is
weakly contained in the profinite action a(Hn).

The proposition tells us that the domains of definition depend on the sofic approximation
and there are actions that are in some domains but not in others. Abért and Elek in [AE12]
proved an interesting result about rigidity of weak equivalence for profinite actions, which we
can combine with the previous proposition to get the following result.

Theorem 4. Let G be a countable free group or PSLk(Z) for k ≥ 2. Then there is a continuum of
normal chains {(Hr

n)n}r∈R such that hΣ(Hr
n)
(a(Hs

n)) > −∞ if and only if r = s.

Observe that the entropy of profinite actions has been calculated in [CZ14] and it is always
0, when it is defined. Since profinite actions have a generating partition with finite (actually
arbitrarily small) entropy (Lemma 1.3.13 ), we can use Bowen’s computation of entropy for
products of actions with Bernoulli shifts [Bow10b] to get actions which have positive entropy
with respect to some sofic approximations and −∞ with respect to others, see Theorem 1.3.12.

We do not know any action for which the sofic entropy can have two different non-negative
values.

More Polish full groups

The second chapter of this dissertation is based on a joint work with François Le Maître.

For every action of a countable group Γ on the standard probability space (X, µ), the orbit
equivalence relation of the action RΓ on X is defined by

RΓ = {(x, y) ∈ X × X : there is γ ∈ Γ such that γx = y}.

It is easy to observe that two actions are orbit equivalent if and only if their equivalence
relations are isomorphic up to measure zero. The equivalence relations arising in this way
are called countable pmp (probability measure preserving) equivalence relations. They have
geometric and cohomogical interpretations as well as fruitful relations with von Neumann
algebras. We refer the interested reader to the survey of Gaboriau [Gab10].

Another way of formulating orbit equivalence is due to Dye. Suppose that Γ acts on the
standard probability space (X, µ). The full group induced by the Γ-action, is the group of all
T ∈ Aut(X, µ) such that for almost every x ∈ X, we have T(x) ∈ Γ · x. This group still encodes
orbit equivalence in the following sense: two actions are orbit equivalent if and only if their
full groups are conjugate in Aut(X, µ) and a theorem of Dye (see Theorem 2.2.31) implies that
two actions are orbit equivalent if and only if their full groups are abstractly isomorphic.

As a consequence, one should be able to understand all the invariants of orbit equivalence
in terms of full groups. This works well for ergodicity: an action is ergodic if and only if the
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associated full group is a simple group. Another example is given by aperiodicity: an action
is aperiodic if and only if the full group contains an element which induces a free action of Z.

In order to understand finer orbit equivalence invariants in terms of properties of full
groups, one is led to introduce a Polish group topology on them. This topology is called the
uniform topology, and it is induced by the uniform metric du defined on Aut(X, µ) by

du(T, S) = µ ({x ∈ X : Tx *= Sx}) .

For example, Giordano and Pestov proved in [GP07] that if Γ acts freely on (X, µ), then Γ is
amenable if and only if the full group of the action is extremely amenable for the uniform
topology. Another example is given by the topological rank, that is the minimal number of
elements needed to generate a dense subgroup. Le Maître showed in [LM14a] that the topo-
logical rank of a full group can be expressed in terms of a fundamental invariant of orbit
equivalence: the cost.

The aim of Chapter 2 is to generalize the notion of full groups to actions of arbitrary Polish
groups. Given a measure preserving action of the Polish group G on the standard probability
space (X, µ), we define the orbit full group of the action exactly as before: it is the set of
T ∈ Aut(X, µ) such that for almost every x ∈ X, we have T(x) ∈ G · x. We will denote this
full group by [RG] to remember that it is the full group of the equivalence relation induced
by the action of G. We should warn the reader that our definition needs a concrete action of
G on X, and not just a morphism G → Aut(X, µ).

As we said before, in order to understand deeper orbit full groups, we have to introduce
a Polish topology on them. All the orbit full groups are closed for the uniform topology,
but they are separable if and only if they arise as full groups of countable pmp equivalence
relations. This does not rule out the existence of a Polish topology on them, for instance a
compact group acting on itself by translation generates the transitive equivalence relation, so
the associated orbit full group is Aut(X, µ), which is a Polish group for the weak topology.

The aim of Chapter 2 is to define a Polish group topology on all orbit full groups, which
will not be in general the restriction to [RG] of a topology on Aut(X, µ). We will call this
topology the topology of convergence in measure. When the action of G on X is free, we can
associate to any element T ∈ [RG] the function f : X → G uniquely defined by T(x) =
f (x) · x. Doing so, we embed [RG] in the space of measurable functions from X to G, and the
Polish topology we will define coincides with the restriction of the topology of convergence
in measure.

Theorem 5. Let G be a Polish group acting in a measure preserving Borel manner on a standard
probability space (X, µ). Then the associated orbit full group

[RG] = {T ∈ Aut(X, µ) : ∀x ∈ X, T(x) ∈ G · x}

is a Polish group for the topology of convergence in measure.
Moreover, if the action is ergodic, then [RG ] has a unique Polish group topology, and if the action

is free, then G embeds into [RG ].

Every locally compact group G admits a free ergodic measure-preserving action, [AEG94,
Proposition 1.2]. Given a free, ergodic and measure preserving action of a locally compact,
non-discrete and non-compact group on the probability space (X, µ), we remark that the
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topology of convergence in measure of [RG] is neither the uniform topology nor the weak
topology. In fact whenever G acts freely, G seen as a subset of Aut(X, µ) is discrete for the
uniform topology, hence [RG] can not be separable for the uniform topology. Moreover we
show in Corollary 2.2.28 that if G is not compact, then [RG] *= Aut(X, µ), so the topology of
convergence in measure is not the weak topology either, by Corollary 2.2.14.

Dye in [Dye59] gave an abstract definition of full groups: a subgroup G ≤ Aut(X, µ) is full
if for every countable subgroup Γ ≤ G, the full group generated by Γ is still a subgroup of G.
Clearly the orbit full groups we have defined are full groups in the sense of Dye’s definition.

We remark that not all full groups can have a Polish topology. In fact we show that if
an ergodic full group admits a Polish topology, then such a topology is unique, refines the
weak topology and is weaker than the uniform topology (Theorem 2.3.8). It follows that if an
ergodic full group admits a Polish topology, then it is a Borel subset of Aut(X, µ) (Corollary
2.3.9). This allows us to give examples of full groups which cannot carry a Polish group topol-
ogy (Corollary 2.3.19). Note that such a phenomenon is actually common for topological full
groups, as was recently shown by Ibarlucias and Melleray [IM13].

One of the main interests of full groups induced by actions of countable groups is that they
are complete invariants of orbit equivalence. Similarly to the case of countable groups, we say
that two actions of two Polish groups G and H on the standard probability spaces (X, µ) and
(Y, ν) are orbit equivalent if there are full measure subsets A ⊆ X and B ⊂ Y and a measure
preserving bijection S : A → b such that for all x ∈ A,

S(G · x) ∩ A = (H · S(x)) ∩ B.

It is clear from this definition that if two actions are orbit equivalent, then their orbit full
groups are conjugate in Aut(X, µ) and in particular they are isomorphic. The converse is
however more complicated. Dye’s Reconstruction Theorem (see Theorem 2.2.31) still holds, so
any isomorphism of full groups is given by the conjugation by some S ∈ Aut(X, µ). However
this does not imply that the orbit equivalence of the groups are orbit equivalent. We will show
in Theorem 2.2.30 that this is the case for locally compact groups.

Theorem 6. Let G and H be two locally compact second countable groups acting in a Borel measure
preserving ergodic manner on a standard probability space (X, µ). Suppose that ψ : [RG] → [RH ] is
an abstract group isomorphism. Then there is an orbit equivalence S between RG and RH such that
for all T ∈ [RG],

ψ(T) = S−1TS.

Orbit full groups arise as intermediate examples between full groups of countable pmp
equivalence relations and Aut(X, µ), so they should share the topological properties which
are satisfied by both. One of the simplest of such properties is contractibility, and indeed it is
not hard to see that orbit full groups are contractible using the same approach of Keane for
Aut(X, µ) in [Kea70] (see Corollary 2.3.3).

However Aut(X, µ) and full groups of countable pmp equivalence relations have many
opposite properties. For example, any aperiodic element has a dense conjugacy class in
Aut(X, µ), while in the full group of a countable pmp equivalence relation, the identity cannot
be approximated by aperiodic elements. We can characterize which group actions induce an
orbit full group for which the aperiodic elements have dense conjugacy classes.
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Theorem 7. For a Borel, measure preserving action of the Polish group G on the probability space
(X, µ), the following are equivalent:

(i) the set of aperiodic elements is dense in [RG ];

(ii) the conjugacy class of any aperiodic element of [RG] is dense in [RG];

(iii) for every free measure preserving action of a countable discrete group Γ on the probability space
(X, µ), there is a dense Gδ in [RG] of elements inducing a free action of Γ ∗ Z;

(iv) for all neighborhood of the identity U in G, the set of x ∈ X such that U · x *= {x} has full
measure.

Note that condition (iii) is inspired by results that Törnquist obtained for [RG] = Aut(X, µ)
[Tör06]. Using condition (iv), we get a nice dichotomy for measure-preserving ergodic actions
of locally compact groups: either they generate a countable pmp equivalence relation, or all
the above conditions are satisfied (see Corollary 2.3.6).

Characters of full groups

In the last section of Chapter 2 we classify character representations of ergodic orbit full
groups.

Every unitary representation of a group G splits as direct sum of cyclic representations.
These representations are encoded by positive type functions, that are the functions f : G →
C such that for all finite tuple (g1, ..., gn) of elements of G, the matrix ( f (gi g−1

j ))i,j=1,...,n is
positive semi-definite.

A positive type function χ : G → C is a character if it satisfies the following conditions:

• it is conjugacy-invariant: for all g, h ∈ G, we have χ(g−1hg) = χ(h) and

• it is normalized: χ(1G) = 1.

A character representation is a unitary representation of G which splits as a direct sum of cyclic
representations whose corresponding positive definite functions are characters. Character
representations are the representations into the unitary groups of finite von Neumann algebras,
see [DM13, Section 2.3] for more details.

Every discrete group Γ has a faithful character representation, namely the regular represen-
tation. It is associated to the regular character χr defined by χr(γ) = 0 if γ *= 1Γ and χr(1Γ) = 1.
The set of characters of Γ is convex and compact for the pointwise topology. Moreover, it is a
Choquet simplex, meaning that every character can be written in a unique way as an integral of
extremal characters. The problem of classifying extremal characters has a long history, start-
ing with the work of Thoma who classified extremal characters of the group of permutations
of the integers with finite support [Tho64]. Since then, many examples were studied, see for
instance [PT13] and references therein.

The set of continuous characters of a locally compact group is again a Choquet simplex,
but locally compact groups do not necessarily have a faithful character representation. For
example, all the continuous character representations of connected semi-simple Lie groups
are trivial by a result of Segal and von Neumann [SvN50]. Recently Creutz and Peterson
have shown that the same is true for non discrete totally disconnected simple locally compact
groups having the Howe-Moore property [CP13, Theorem. 4.2].

For Polish groups, the situation is more complicated. The set of continuous characters may
cease to form a Choquet simplex. For example, the abelian group of measurable maps into the
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circle L0(X, µ, S1) has no continuous extremal character, although it has continuous characters
(see [BdlHV08, Example C.5.10]). However, if the Polish group G contains a countable dense
subgroup Γ which has only countably many extremal characters, then the continuous extremal
characters of G are given by the extremal characters of Γ which extend continuously to G. It
is then easy to see that the continuous characters of G form a Choquet subsimplex of the
characters of Γ. This remark has been crucial for the understanding of continuous characters
of several Polish groups. In particular, it was used by Dudko to give a complete description
of the characters of the full group of the hyperfinite ergodic equivalence relation [Dud11]. We
extend his result and classify all the characters of an arbitrary ergodic orbit full group which
are continuous for the uniform topology.

Theorem 8. For a Borel, measure preserving action of the Polish group G on the probability space
(X, µ), we have the following dichotomy:

1. Either [RG] is the full group of a countable pmp equivalence relation, and then all its continuous
characters are (possibly infinite) convex combinations of the characters χk given by

χk(g) = µ({x ∈ X : g · x = x})k

for k ∈ N and the constant character χ0 ≡ 1.

2. or [RG] does not have any nontrivial continuous character representation.

Orbit full groups of locally compact groups

The third chapter of this dissertation is devoted to the study of orbit full groups of free
actions of locally compact second countable unimodular groups. As for the second chapter,
Chapter 3 is based on a joint work with François Le Maître.

Measure preserving actions of Polish groups can have some strange properties. For ex-
ample Kolmogorov found an essentially transitive action which is not ergodic, see Example
2.2.15. These strange properties reflect to strange properties of the associated full groups.
Indeed, suppose that the Polish group G acts on the probability space (X, µ) preserving the
measure. One could hope that for every dense subgroup H ⊂ G, the orbit full group [RH ] is
dense in [RG ]. Similarly one could hope that the set of elements in [RG] that can be written
using only countably many elements of G is dense in [RG ]. But both properties are false for
the full group associated to the action of Example 2.2.15.

However, if we suppose that the acting group is locally compact, the above properties are
always true.

Theorem 9. For every ergodic, measure preserving action of a locally compact Polish group G on a
probability space (X, µ) and for every dense subgroup H ⊂ G, the orbit full group [RH ] is dense in
[RG].

We will show Theorem 9 under a more general assumption. Becker in [Bec13], defined the
notion of suitable action of a Polish group. These are the actions that, in some sense, behave
nicely and we will prove that Theorem 9 holds for every suitable action of a Polish group G.
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Measure preserving actions of locally compact Polish groups can be, in some sense, re-
duced to actions of countable groups. For this, we need the notion of cross-section defined by
Forrest in [For74] and shortly later generalized in [FHM78]. The following theorem is essen-
tially a version of Proposition 2.13 of [For74] in our context, which we will prove for sake of
completeness.

Theorem 10. Let G be a unimodular locally compact non-compact and non-discrete Polish group. For
a measure preserving, essentially free and ergodic action of G on the probability space (X, µ), there exist
a countable group Γ and a probability measure preserving action of Γ on (Y, ν) such that the action of
G is orbit equivalent to the product action S1 × Γ on S1 × Y, where S1 acts on itself by translation.

Moreover, G is amenable if and only if the orbit equivalence relation induced by Γ on (Y, ν) is
amenable.

Using Theorem 9 and Theorem 10, we can now compute the topological rank of orbit full
groups associated to actions of locally compact non-compact and non-discrete Polish groups.
In fact, by Theorem 10, we can suppose that G = S1 × Γ and that the action of S1 is free (but
not the action of Γ). Now take a dense subgroup Z ⊂ S1 and consider the dense subgroup
Z × Γ ⊂ S1 × Γ. By Theorem 9, we know that [Z × Γ] is dense in [RG] and by [LM14a], the
topological rank of [Z × Γ] is 2.

Theorem 11. Let G be a locally compact unimodular non-compact and non-discrete Polish group. For
every measure preserving, essentially free and ergodic action of G, there is a dense Gδ of couples (T, U)
in [RG]2 which generate a dense free subgroup of [RG] acting freely. In particular, the topological rank
of [RG ] is 2.

We remark that the result is already known for compact groups. In fact if G is compact
and the action is ergodic, then the action is transitive and [RG] = Aut(X, µ), hence we can
apply Prasad’s result [Pra81]. We do not know whether the result holds for Polish groups,
even in the case of suitable actions.

Maximal amenable subalgebras of von Neumann algebras associated
with hyperbolic groups

The forth chapter of this dissertation is based on a joint work with Rémi Boutonnet.

A (separable) finite von Neumann algebra A ⊂ B(H) is said to be amenable if there is
a state ϕ on B(H), which is A-central, meaning that ϕ(xT) = ϕ(Tx) for all x ∈ A and all
T ∈ B(H). Moreover, this definition does not depend on the choice of the Hilbert space H on
which A is represented.

Amenability has always played a central role in the study of von Neumann algebras. First
it is a source of isomorphism, via the fundamental result of Connes [Con76] that amenable
implies hyperfinite, and the uniqueness of the hyperfinite II1-factor. This characterization
implies in particular that all von Neumann subalgebras of an amenable tracial von Neumann
algebra are completely described: they are hyperfinite. Amenability is also at the core of the
concepts of solidity and strong solidity defined in [Oza04, OP10a]. It is hence very natural to
try to understand the maximal amenable subalgebras of a given finite von Neumann algebra.
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In this direction, Kadison asked in the 1960’s the following question: is any maximal
amenable subalgebra of a II1-factor necessarily a factor? Popa solved this problem in [Pop83],
producing an example of a maximal amenable subalgebra of the free group factor LFn which
is abelian. The subalgebra in question is generated by one of the free generators of the free
group Fn. This striking result led to more questions, refining Kadison’s question: what if
the ambient II1-factor is McDuff? has property (T)? More generally can one provide concrete
examples of maximal amenable subalgebras in a given II1-factor? Some progress on this topic
have been made recently.

By considering infinite tensor products of free group factors, Shen constructed in [She06]
an abelian, maximal amenable subalgebra in a McDuff II1-factor. In [CFRW10], it is proved
that the subalgebra of the free group factor generated by the symmetric laplacian operator
(the radial subalgebra) is maximal amenable. In [Hou14a], Houdayer provided uncountably
many non-isomorphic examples of abelian maximal amenable subalgebras in II1-factors. In
2010, Jolissaint [Jol10] extended Popa’s result, providing examples of maximal amenable sub-
algebras in factors associated to amalgamated free-product groups, over finite subgroups.

In Chapter 4, we intend to provide examples of maximal amenable subalgebras of factors
associated with hyperbolic groups. At the group level, amenable subgroups of hyperbolic
groups are completely understood: they are virtually cyclic, and they act in a nice way on
the Gromov boundary of the group. At the level of von Neumann algebras, we can show the
following, generalizing the main result of [Pop83].

Theorem 12. Consider a hyperbolic group G and an infinite, maximal amenable subgroup H < G.
Then the group von Neumann algebra LH is maximal amenable inside LG.

This answers a question of Cyril Houdayer [Hou13, Problème 3.13].
Every maximal amenable subgroup H of a hyperbolic group is virtually cyclic, so the

associated von Neumann algebra LH is far from being a factor. By Remark 4.2.6, we obtain
many counterexamples to Kadison’s question, even in property (T) factors. For instance factors
of the form LΓ, with Γ a cocompact lattice in Sp(n, 1), are counterexamples with property (T).

The proof of Theorem 12 is in the spirit of Popa’s asymptotic orthogonality property
[Pop83]. It relies on an analysis of LH-central sequences and property Gamma. By defini-
tion, a diffuse finite von Neumann algebra M has property Gamma if it admits a sequence of
unitaries (un)n ⊂ M which tends weakly to 0 such that for every x ∈ M,

lim
n

‖xun − unx‖2 = 0.

By [Con76], diffuse finite amenable von Neumann algebras have property Gamma. What
we really show is that LH ⊂ LG is maximal Gamma, that is, it is maximal among von Neu-
mann subalgebras of LG with property Gamma. However amenability and property Gamma
coincide for subalgebras of solid von Neumann algebras ([Oza04, Proposition 7]) and the main
result of [Oza04] shows that LG is solid, whenever G is hyperbolic.

Using similar techniques, we can prove the following result for relatively hyperbolic groups.

Theorem 13. Let G be a group which is hyperbolic relative to a family G of subgroups of G and consider
an infinite subgroup H ∈ G such that LH has property Gamma. Then the group von Neumann algebra
LH is maximal Gamma inside LG.

Using results of Osin [Osi06b, Osi06a], we obtain the following corollary, which generalizes
Theorem 12 and the main result of [Jol10].
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Corollary 14. Let G be a group which is hyperbolic relative to a family G of amenable subgroups
and H be an infinite maximal amenable subgroup of G. Then the group von Neumann algebra LH is
maximal amenable inside LG.

By the comments after Proposition 12 in [Oza06], LG is solid for G as in Corollary 14, so
maximal amenable is equivalent to maximal Gamma.

Limit groups are examples of groups G covered by this corollary.
It is also possible to prove similar results in the context of hyperbolically embedded sub-

groups, in the sense of [DGO11]: generalizing our techniques one can show that if H < G is an
infinite amenable subgroup which is hyperbolically embedded then LH is maximal amenable
inside LG.

Finally, we extend our results to products of groups as above. We also allow the groups
to act on an amenable von Neumann algebra, and we get a similar result about the crossed
product von Neumann algebra. Such a product situation were already investigated in [She06]
and [CFRW10]. We thank Stuart White for suggesting us to study this case.

Theorem 15. Let n ≥ 1, and consider for all i = 1, . . . , n an inclusion of groups Hi < Gi as in
Theorem 13. Put G = G1 × · · ·× Gn and H = H1 × · · ·× Hn.

Then for any trace-preserving action of G on a finite amenable von Neumann algebra (Q, τ), the
crossed-product Q ! H is maximal amenable inside Q ! G.

In particular, when G and H are as above, for any free measure preserving action on a
probability space G " (X, µ), the equivalence relation on (X, µ) given by the H-orbits is
maximal hyperfinite inside the equivalence relation given by the G-orbits.

In Theorem 15, note that Q ! H ⊂ Q ! G is not maximal Gamma in general. We will
in fact use Houdayer’s relative version of the asymptotic orthogonality property to conclude
([Hou14b]). The argument relies on the same analysis of LH-central sequences.

Maximal amenable von Neumann subalgebras arising from maximal
amenable subgroups

The last chapter of this dissertation is also based on a join work with Rémi Boutonnet.

In Chapter 4, we showed that any infinite maximal amenable subgroup in a hyperbolic
group Γ gives rise to a maximal amenable von Neumann subalgebra of LΓ.

Question. Assume that Λ < Γ is a maximal amenable subgroup. Under which conditions is
LΛ maximal amenable inside LΓ?

In Chapter 5, we will provide a general sufficient condition ensuring this rigidity phe-
nomenon.

Definition. Consider an amenable subgroup Λ of a discrete countable group Γ. Suppose that
Γ acts continuously on the compact space X. We say that Λ is singular in Γ (with respect to X)
if for any Λ-invariant probability measure µ on X and for every g ∈ Γ \ Λ, we have that the
measure g · µ is singular with respect to the measure µ.
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Theorem 16. Let Γ be a countable group and Λ < Γ be an amenable singular subgroup as in the pre-
vious definition. Then for any trace preserving action Γ " (Q, τ) on a finite amenable von Neumann
algebra, Q ! Λ is maximal amenable inside Q ! Γ.

The conclusion of the above theorem implies in particular that

• LΛ is maximal amenable inside LΓ (case where Q = C);

• for any free measure preserving action on a probability space Γ " (Y, ν), the orbit
equivalence relation R(Λ " (Y, ν)) is maximal hyperfinite inside R(Γ " (Y, ν)) (case
where Q = L∞(Y, ν)).

Corollary 17. In the following examples, Λ is singular inside Γ, so that the conclusion of Theorem 16
holds.

(i) Γ is a hyperbolic group and Λ is an infinite maximal amenable subgroup;

(ii) Λ is any amenable group with an infinite index subgroup Λ0, and Γ = Λ ∗Λ0 Λ′, for some other
group Λ′ containing Λ0;

(iii) Γ = SLn(Z) and Λ is the subgroup of upper triangular matrices.

Point (ii) above was proved independently by B. Leary [Leaon] for more general von Neu-
mann algebras (not only group algebras).

Regarding the question of providing abelian, maximal amenable subalgebras in a given
von Neumann algebra, we can prove the following. The result is not as explicit as the above
examples, but it is quite general. We are grateful to Jesse Peterson for stimulating our interest
in this question in the setting of lattices in Lie groups.

Theorem 18. Consider a lattice Γ in a connected semi-simple real Lie group G with finite center. Then
Γ admits a singular subgroup which is virtually abelian.

As we explain in Remark 5.2.6, if moreover G has no compact factors and Γ is torsion free
and co-compact in G, then Γ admits an abelian singular subgroup.

At this point, let us mention that all the former results on maximal amenability followed
Popa’s strategy of proving the maximal amenability of Q ⊂ M by studying Q-central se-
quences in M. Namely the inclusion Q ⊂ M was usually shown to satisfy the so-called
“asymptotic orthogonality property”. In contrast, our result relies on a new strategy, more
specific to group von Neumann algebras, and completely different from Popa’s approach.

The general idea in our approach is the following. Assume that Γ acts on some compact
space X. Then the maximal amenable subgroups of Γ are stabilizers of probability measures
on X. In non-commutative terms, one can more generally say that amenable subalgebras of
LΓ centralize states on the reduced C∗-algebraic crossed-product C(X)!r Γ. The advantage of
focusing our study on this crossed-product C∗-algebra is that it allows concrete computations.
We will see at the end of this paper that this point of view also has a theoretical interest,
providing new insight on solidity and strong solidity.

Finally, let us mention nice characterizations of singularity communicated to us by Naru-
taka Ozawa.

Theorem 19 (Ozawa). Consider an amenable subgroup Λ of a discrete countable group Γ. The
following are equivalent.
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Introduction

1. Λ is a singular subgroup of Γ;

2. Every Λ-invariant state on C∗
r (Γ) vanishes on Γ \ Λ;

3. For every g ∈ Γ \ Λ, we have that 0 ∈ conv‖·‖({λ(tgt−1) , t ∈ Λ}) ⊂ B(!2Γ);

4. For any net (ξn) of almost Λ-invariant unit vectors in !2Γ and all g ∈ Γ \ Λ, the inner product
〈λgξn , ξn〉 goes to 0.

Note that the last characterization is in the spirit of Popa’s Asymptotic Orthogonality
Property.

Chapter 5 was originally born as an attempt to give a geometric proof of the maximality
of the radial subalgebra in the free group factor [CFRW10]. We wanted to apply the theory of
entropy of random walks developed in [KV83] and [Kai00]. In fact using this entropy, one can
well understand the action of !1Γ on the space of measure on the boundary of the group by
convolution. This action has some hyberbolic behavior, so one could hope to use it to prove
the maximality of the radial subalgebra.

Question. Is it possible to give a geometric proof of [CFRW10] in the spirit of Chapter 4 and
5?
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Chapter 1

Ultraproducts, weak equivalence and
sofic entropy

Abért and Elek defined a metrizable and compact topology on the space of weakly
equivalence classes of probability measure preserving actions of a countable group.
We propose here an equivalent metric and we will give a simple proof of the compact-
ness of the space. We will prove that any probability measure preserving action of a
countable group on any diffuse space is weakly equivalent to an action on a standard
diffuse space. We will analyse ultraproduct of finite actions. For a residually finite
group, we will show that the profinite action associated to a sequence of finite index
subgroups is weakly equivalent to the ultraproduct action of the sequence of actions
on the quotients. Finally, we will obtain a corollary about sofic entropy, we will show
that for free groups and some property (T) groups, sofic entropy of profinite actions
depends crucially on the sofic approximation used for computing the sofic entropy.
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

1.1 Ultrapoducts of probability spaces

In this section, we describe the ultraproduct of probability measure spaces. These prob-
ability spaces were introduced by Loeb in [Loe75] in the language of non-standard analysis
and they are often called Loeb spaces. All the material presented here is well-known and a
recent exposition can be found in [CKTD13] and [ES12].

Let us fix a non-principal ultrafilter u on N.

1.1.1 Set-theoretic ultraproducts

Definition 1.1.1. Let {Xn}n∈N be a family of sets and let X be their product X := ∏n∈N Xn.
We define the ultraproduct of the family {Xn}n to be the following quotient of X

Xu := X/ ∼u where (xn)n ∼u (yn)n if {n : xn = yn} ∈ u.

We will denote by xu and Au elements and subsets of Xu. For a sequence (xn)n ∈ X, we
will denote by [xn]u its class in Xu and similarly for a sequence of subsets {An ⊂ Xn}n, we
will denote by [An]u the class of (An)n.

It is easy to observe that

[An]u ∩ [Bn]u = [An ∩ Bn]u, [An]u ∪ [Bn]u = [An ∪ Bn]u.

Remark 1.1.2. We remark that if {Xn}n is a sequence of finite sets such that limu |Xn| = ∞ or
if it is a sequence of countable non-finite sets, the ultraproduct Xu has the cardinality of the
continuum.

In fact, it is easy to construct a surjective map from Xu to interval [0, 1]. For example, if
Xn = {1, . . . , n} then the map can be defined as

ϕ : Xu → [0, 1], ϕ([an]n) =: lim
n∈u

an

n
,

where the limit on the right is the limit with respect to the Euclidean topology. Since the
rationals are dense in the interval, the map ϕ has to be surjective and a similar argument
works for the general case.

1.1.2 Metric ultraproducts

Definition 1.1.3. Let {(Mn, dn)}n∈N be a family of uniformly bounded metric spaces. We
define the pseudo-metric du on M := ∏n∈N Mn by

du((xn)n, (yn)n) := lim
n∈u

dn(xn, yn).

We define the metric ultraproduct of the family {(Mn, dn)}n with respect to the ultrafilter
u to be the metric space associated to the pseudo-metric du, that is Mu := M/{du = 0}.

Remark 1.1.4. Let {Gn}n be a sequence of groups and let dn be a bounded bi-invariant metric
on Gn. It is easy to check that the subgroup

Ku :=

{

(gn)n ∈ ∏
n

Gn : du((gn)n, (1G)n) = 0

}

is normal, so the metric ultraproduct Gu is a topological group and the metric du is bi-invariant.
For more on ultraproduct of groups, see [Pes08].
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1.1. Ultrapoducts of probability spaces

1.1.3 Measure Spaces

We will now define the ultraproduct of a sequence of probability spaces using Carathéodory’s
method. Let {(Xn, Bn, µn)}n∈N be a family of probability spaces and let Xu be their ultraprod-
uct. We define

θ : P(Xu) → [0, ∞],

θ(Au) := inf

{

∑
i∈N

lim
n∈u

µn(Bi
n) : Au ⊂

⋃

i∈N

[Bi
n]u, Bi

n ∈ Bn ∀n, i ∈ N

}

.

Proposition 1.1.5. The function θ defined above is an outer measure.

Proof. For this, we have to check that θ(∅) = 0, that if Au ⊂ Cu then θ(Au) ≤ θ(Cu) and that
for every sequence {Aj

u ⊂ Xu}j we have θ(∪j A
j
u) ≤ ∑j θ(Aj

u). This can be done exactly as for
the Lebesgue measure, see [Fre04a, 114D].

• Since ∅ ⊂ [∅]u, we must have that θ(∅) = 0.

• Suppose Au ⊂ Cu. For every family {Bi
n ∈ Bn}i,n such that Cu ⊂ ∪i[Bi

n]u, we have that
Au ⊂ ∪i[Bi

n]u so that θ(Au) ≤ θ(Cu).

• Let {Aj
u}j∈N be a sequence of subsets of Xu and fix ε > 0. For every j ∈ N, fix a family

{Bj,i
n ∈ Bn}i,n such that

Aj
u ⊂

⋃

i∈N

[Bj,i
n ]u and ∑

i∈N

lim
n∈u

µn(Bj,i
n ) ≤ θ(Aj

u) + 2−jε.

Then ∪j A
j
u ⊂ ∪j,i[B

j,i
n ]u, so

θ(∪j A
j
u) ≤ ∑

i,j
lim
n∈u

µn(Bj,i
n ) ≤ ∑

j
θ(Aj

u) + ε.

Whenever we have an outer measure, Carathéodory’s Theorem gives us a way of con-
structing a measure.

Definition 1.1.6. The measure ultraproduct of a family of probability spaces {(Xn , Bn, µn)}n∈N

is the probability space (Xu, Bu, µu), where

Bu :={Au ⊂ Xu : θ(Bu) ≥ θ(Bu ∩ Au) + θ(Bu \ Au) for every Bu ⊂ Xu}

µu(Au) :=θ(Au) for every Au ∈ Bu.

Carathéodory’s Theorem, see for example [Fre04a, 113C], tells us that (Xu, Bu, µu) is a
measure space. In the following proposition we describe which subsets of the ultraproduct
are measurable and we show how to compute their measure.

Proposition 1.1.7. Let {(Xn , Bn, µn)}n∈N be a family of probability spaces and let (Xu, Bu, µu) be
the measure space associated to θ via the Carathéodory’s method, that is the measure ultraproduct of the
family of probability spaces.

1. For every sequence {An ∈ Bn}n we have [An]u ∈ Bu and µu([An]u) = limn∈u µn(An).

2. For every Au ∈ Bu there is a sequence {Bn ∈ Bn}n such that µu(Au∆[Bn]u) = 0.
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

Proof. (1) Let us prove that for every family {An ∈ Bn}n, we have that [An]u ∈ Bu. Consider
a subset Bu ⊂ Xu, a real number ε > 0 and a family Ci

n ∈ Bn such that

Bu ⊂ ∪i[Ci
n]u and ∑

i
θ([Ci

n]u) ≤ θ(Bu) + ε.

So we have

θ(Bu ∩ [An]u) + θ(Bu \ [An]u) ≤θ(∪i([Ci
n]u ∩ [An]u)) + θ(∪i([Ci

n]u \ [An]))

=θ(∪i[Ci
n ∩ An]u) + θ(∪i[Ci

n \ An])

≤∑
i

lim
n∈u

(
µn(Ci

n ∩ An) + µn(Ci
n \ An)

)

=∑
i

lim
n∈u

µn(Ci
n)

≤θ(Bu) + ε.

As ε is arbitrary, [An]u is µu-measurable.
As we have observed before, given two subsets [A1

n]u and [A2
n]u of Xu, we have that [A1

n]u ∪
[A2

n]u = [A1
n ∪ A2

n]u. We remark that the same property does not hold for countable unions
but the following lemma shows that a similar property holds in the measurable setting.

Lemma 1.1.8. For every countable family {Bi
n ∈ Bn}i,n∈N there is a family {Cn ∈ Bn}n∈N such

that
∪i[Bi

n]u ⊂ [Cn]u and lim
n∈u

µn(Cn) = lim
i→∞

lim
n∈u

µn(∪i
j=1Bj

n).

Proof. The proof is a standard diagonal argument for ultraproducts. For every n and i, we set
Di

n := ∪i
j=1Bj

n. For i ≥ 1, put

Li :=
{

m ∈ {i, i + 1, . . .} :
∣∣∣lim

n∈u
µn(Di

n)− µm(Di
m)
∣∣∣ ≤

1
2i

}
.

Observe that Li ∈ u. We define the function

f : N → N as f (n) :=
{

max{i : n ∈ Li} for n ∈ ∪iLi

f (n) := 1 otherwise

By construction f (n) ≤ n, f (n) tends to infinity as n → u and, for every m in a subset
I0 ∈ u, we have | limn∈u µn(D f (m)

n )− µm(D f (m)
m )| ≤ 2− f (m).

We set Cn := D f (n)
n . For every i ∈ N and for every n ∈ Li, we have that f (n) ≥ i, hence

Cn ⊃ Di
n. Since this is true for every i, we obtain that [Cn]u ⊃ ∪i[Di

n]u = ∪i[Bi
n]u which implies

that
lim
n∈u

µn(Cn) ≥ lim
i→∞

lim
n∈u

µn(∪i
j=1Bj

n).

Finally

µm(Cm) = µm(D f (m)
m ) ≤ lim

n∈u
µn(D f (m)

n ) +
1

2 f (m)
≤ lim

i→∞
lim
n∈u

µn(∪
i
j=1Bj

n) +
1

2 f (m)
.
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1.1. Ultrapoducts of probability spaces

Let us now compute the measure of [An]u. By the definition of θ, we must have θ([An]u) ≤
limu µn(An). For the reverse inequality, fix ε > 0 and consider a countable family {Bi

n ∈ Bn}i,n
such that ∣∣∣∣∣θ([An]u)− ∑

i∈N

lim
n∈u

µn(Bi
n)

∣∣∣∣∣ < ε.

By Lemma 1.1.8, there is a family {Cn ∈ Bn}n such that [Cn]u ⊃ ∪i[Bi
n]u ⊃ [An]u which

satisfies

lim
n∈u

µn(An) ≤ lim
n∈u

µn(Cn) ≤ lim
i→∞

lim
n∈u

µn(∪
i
j=1Bj

n) ≤
∞

∑
j=0

lim
n∈u

µn(Bj
n) ≤ θ([An]u) + ε.

Since ε is arbitrary, we obtain that θ([An]u) = limu µn(An).

(2) Let Au ∈ Bu be a measurable subset. By definition of θ, for every j ∈ N, there is a
countable family {Bi,j

n ∈ Bn}n,i such that

Au ⊂ ∪i[B
i,j
n ]u and ∑

i∈N

lim
u

µn(Bi,j
n )− µu(Au) ≤ 2−j.

By Lemma 1.1.8, for every j ∈ N, there is a family {Cj
n ∈ Bn}n such that

Au ⊂ ∪i[B
i,j
n ]u ⊂ [Cj

n]u and µu([C
j
n]u)− µu(Au) ≤ 2−j.

Observe that
Xu \

⋂

j∈N

[Cj
n]u =

⋃

j∈N

Xu \ [C
j
n]u =

⋃

j∈N

[Xn \ Cj
n]u,

so again by Lemma 1.1.8, there is a family {Dn ∈ Bn}n such that

µu

(
[Dn]u∆(∪j[Xn \ Cj

n]u)
)
= 0.

Hence if we define Bn := Xn \ Dn, we have µu([Bn]u∆(∩j[C
j
n]u)) = 0 and

µu(Au∆[Bn]u) ≤ lim
i

µu(∩
i
j=1[C

j
n]u \ Au) = 0.

Remark 1.1.9. Proposition 1.1.7 implies that the measure algebra of the ultraproduct of a
family of probability spaces is the metric ultraproduct of their measure algebras. See [Fre04b,
Section 328].

1.1.4 Maharam-type

We now prove that the ultraproduct of a family of finite or standard probability spaces
is a nice, homogeneous probability space. The following theorem is a special case of [JK00]
(which is written in the language of non-standard analysis).

Theorem 1.1.10. Let {(Xn , Bn, µn)} be a sequence of diffuse standard probability spaces or a se-
quence of finite spaces equipped with their uniform counting measure such that limn∈u |Xn| = ∞.
Then the measure ultraproduct (Xu, Bu, µu) is measurably isomorphic to ({0, 1}R , νR) where ν is the
normalized counting measure on {0, 1} and νR is the product measure. That is, the measure algebras
MAlg(Xu, µu) and MAlg({0, 1}R , νR) are isomorphic.
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

Observe that Xu and {0, 1}R are not isomorphic as sets: they do not have the same cardi-
nality. To prove the theorem, we recall the notion of Maharam type, see [Fre04b, 331F].

Definition 1.1.11. Let (X, µ) be a probability space and let us denote by A = MAlg(X, µ) its
measure algebra.

• A subset A ⊂ A σ-generates, if A is the smallest σ-subalgebra of A containing A.

• The Maharam type of the measure algebra A is the smallest cardinal of any subset of A
which σ-generates A.

• A measure algebra A is homogeneous if the Maharam type of A is equal to the Maharam
type of MAlg(A, µ/µ(A)) for every A ∈ A.

All the probability measure algebras which have the same Maharam type are isomorphic,
see [Fre04b, 331L].

Theorem 1.1.12. Every homogeneous probability measure algebra A is isomorphic to the measure
algebra of ({0, 1}Z , νZ) for a set Z which has the cardinality of the Maharam type of A.

We can now prove the theorem.

Proof of Theorem 1.1.10. First observe that MAlg(Xu, µu) has at most the cardinality of the con-
tinuum, because by Remark 1.1.9, MAlg(Xu, µu) is the metric ultraproduct of a family of
separable metric spaces. So we have to show that the Maharam type of MAlg(Au, µu/µu(A))
is at least the continuum for every Au ⊂ Xu measurable and non negligible.

We start showing the result when (Xn, Bn, µn) is a diffuse standard probability space for
every n. By Proposition 1.1.7, there is a sequence {An ∈ Bn}n such that Au = [An]u up to
measure 0. Since for every n, the measure space (An, Bn

∣∣
An

, µn/µn(An)) is also a standard
probability space, it is enough to show that the Maharam type of MAlg(Xu, µu) is at least the
continuum. For this we will use the following standard result, which is proved in [Fre04b,
331J].

Lemma 1.1.13. Let A be a measure algebra and let Z be a set. Suppose that there is a family {Az}z∈Z

of measurable mutually independent sets of measure µ(Az) = 1/2. Then the Maharam type of A is
greater or equal to the cardinality of Z.

We now exhibit a continuum family of independent sets of (Xu, Bu, µu). For every n, take
a countable family Bn = {Bi

n}i of measurable mutually independent set of Xn of measure 1/2.
For every function f : N → N, put B f

u := [B f (n)
n ]u. If we denote with Nu the ultraproduct

of {N, N, . . .}, then for every f ∈ Nu the measurable subset B f
u is well-defined, since it does

not depend on the values of f on subsets outside u. Observe also that if f1, . . . , fk differ u-
almost always, then B f1

u , . . . , B fk
u are independent. Therefore the family {B f

u} f∈Nu
is a family

of measurable mutually independent sets of measure 1/2. The cardinality of this family is the
cardinality of Nu which is the continuum by Remark 1.1.2. Hence Lemma 1.1.13 concludes
the proof of the theorem in the diffuse case.

The same strategy works for finite uniform spaces. Suppose that for every n, the measure
space (Xn , µn) is a finite uniform space and suppose that limn∈u |Xn| = ∞. For every Au ∈ Bu,
by Proposition 1.1.7, there is a sequence {An}n such that Au = [An]u up to measure 0. Let us
denote by g : N → N the function such that 2g(n) ≤ |An| ≤ 2g(n)+1. For every n, consider
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1.1. Ultrapoducts of probability spaces

Cn ⊂ An a subset of 2g(n)-elements. Observe that limn∈u g(n) = ∞ and µu([Cn]u) ≥ µu(Au)/2.
For every n, there is a family Bn = {B1

n, . . . , Bg(n)
n } of mutually independent sets such that

|Bi
n| = |Cn|/2 for every n and i ≤ g(n). As before, for every function f : N → N such that

f (n) ≤ g(n), we can define B f
u := [B f (n)

n ]u. If we denote with Zu the ultraproduct of Zn =

{1, . . . , g(n)}, then, as before, for every f ∈ Zu the subset is well defined B f
u and if f1, . . . , fk

differ u-almost always, then B f1
u , . . . , B fk

u are independent. Hence the family {B f
u} f∈Zu

is a
family of measurable mutually independent sets. Again by Remark 1.1.2, the cardinality of Zu

is the continuum, so Lemma 1.1.13 implies that the Maharam type of [Cn]u is the continuum.
Observe that the Maharam type is monotone under taking ideals [Fre04b, 331H(c)], hence
also the Maharam type of MAlg(Au, µu/µu(A)) is the continuum. So the proof theorem is
concluded.

1.1.5 Automorphisms

Let (X, µ) be a probability space and let Aut(X, µ) be its group of measure preserving
automorphisms.

• The uniform topology on Aut(X, µ) is the topology defined by the metric

δ(S, T) := µ({x ∈ X : Tx *= Sx}).

• The weak topology on Aut(X, µ) is the topology for which Tn tends to T if

µ(Tn(A)∆T(A)) → 0, ∀A ⊂ X measurable.

Example 1.1.14. Let X = {1, . . . , n} and let µn be the normalized counting measure on X.
The group Aut(X, µn) is the symmetric group over n elements Sn. The uniform topology is
induced by the metric

δ(σ, τ) =
1
n
|{i : σ(i) *= τ(i)}| .

The metric δ is also called the Hamming distance.

Proposition 1.1.15. Let {(Xn, µn)}n∈N be a family of probability spaces. Then the metric-ultraproduct
of the family {(Aut(Xn, µn), δn)}n embeds isometrically in (Aut(Xu, µu), δu).

Proof. Set G := ∏n Aut(Xn, µn) and define

T : G → Aut(Xu) as T(gn)n[xn]u := [gnxn]u.

Given (gn)n and (hn)n in G, we have

δu(T(gn)n, T(hn)n) = lim
n∈u

µn({x ∈ Xn : gnx *= hnx}) = lim
n∈u

δn(gn, hn),

hence T factorizes to an isometry from the metric ultraproduct of {(Aut(Xn , µn), δn)}n to
Aut(Xu, µu).
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

1.2 Limit of actions

In this section we will study measure preserving actions on general probability spaces
under the point of view of weak containment. We will prove that any measure preserving ac-
tion on a diffuse probability space is weakly equivalent to an action on a standard probability
space. This will be the key tool for understanding ultraproducts of sequences of probability
measure preserving actions of a countable group G. We will introduce a compact, metric
topology on the space of weak equivalence classes of actions which is equivalent to the topol-
ogy defined in [AE11], a sequence of (classes of) actions converges if all its ultraproducts are
weakly equivalent and in this case, the ultraproduct is the limit.

We will denote by a, b and c the probability measure preserving actions (pmp) of G on
a probability space, denoted by (Xa, µa), (Xb , µb) and (Xc, µc) (which will not be standard in
general). We will denote by Actd(G) the set of the pmp actions of G on a (fixed) standard
diffuse probability space and with Act f (G) the set of actions of G on the finite sets {1, . . . , n}
for n ∈ N, which we equip with their counting measure. We set Act(G) := Actd(G)6Act f (G).

Definition 1.2.1. Let a be a pmp action of G on the probability space (Xa, µa). An action b of
G is a factor of a, denoted b 7 a, if there is a G-invariant isometric embedding of σ-algebras
MAlg(Xb, µb) ↪→ MAlg(Xa, µa).

More concretely factors of a are exactly the restriction of a to G-invariant σ-subalgebras of
MAlg(Xa, µa).

Remark 1.2.2. By Theorem 343B of [Fre04b], if b is a pmp action of G on the standard Borel
probability space (Xb, µb) and b is a factor of a, then there is a G-invariant measure preserving
map π : Xa → Xb. However, we will never use this theorem.

Let (X, µ) be a probability space. We denote by Partk(X) the set of partitions of X with
k atoms and by Part f (X) the set of finite partitions of X (in what follows, f will never be a
natural number). For α ∈ Part f (X), we will denote by |α| the number of atoms of α.

Given a pmp action a of G, a finite subset F ⊂ G and a partition α ∈ Part f (Xa), we set

c(a, F, α) := (µ(Ai ∩ gAj))i,j≤|α|,g∈F.

Given two pmp actions of G (on the probability spaces (Xa, µa), (Xb, µb)), a finite subset
F ⊂ G and two finite partitions α = {A1, . . . , Ak} ∈ Part f (Xa) and β = {B1, . . . , Bk} ∈
Part|α|(Xb), we put

‖c(a, F, α) − c(b, F, β)‖1 := ∑
i,j≤|α|

∑
f∈F

|µa(Ai ∩ f Aj)− µb(Bi ∩ f Bj)|.

The following definition is due to Kechris, [Kec10].

Definition 1.2.3. Let a, b two pmp actions of G. We say that a is weakly contained in b, and
we will write a ≺ b, if for every ε > 0, for every finite subset F ⊂ G and for every finite
partition α ∈ Part f (Xa) there is β ∈ Part|α|(Xb) such that

‖c(a, F, α) − c(b, F, β)‖1 ≤ ε.

Two actions a and b are weakly equivalent, denoted by a ∼ b, if a ≺ b and b ≺ a.
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1.2. Limit of actions

Definition 1.2.4. The weak topology on Actd(G) is the weakest topology for which the fol-
lowing sets form a base of open neighborhoods of a ∈ Actd(G):

{b ∈ Actd(G) : ‖c(a, F, α) − c(b, F, α)‖1 < ε}

for α ∈ Part f (Xa), F ⊂ G finite and ε > 0.

For a standard probability space (X, µ), we have an injective map Actd(G) ↪→ Aut(X, µ)G.
The weak topology of Actd(G) corresponds to the product topology of the weak topology of
Aut(X, µ).

1.2.1 WC topology

We now define a topology equivalent to the topology defined in [AE11]. This topology
will play a central role in the understanding of ultraproducts of actions.

Definition 1.2.5. Given two pmp actions a, b of G, a finite subset F ⊂ G and k ∈ N, we define

dF,α(a, b) := inf
β∈Partk(Xb)

‖c(a, F, α) − c(b, F, β)‖1 for every α ∈ Partk(Xa),

dF,k(a, b) := sup
α∈Partk(Xa)

dF,α(a, b).

Clearly a ≺ b if and only if for every finite subset F ⊂ G and k ∈ N, we have dF,k(a, b) = 0.

Remark 1.2.6. Given two partitions α and β of the probability space (X, µ), we say that α
refines β if each atom of β is (up to measure 0) a union of atoms of α. For every pmp actions
a, b of G, for every finite subset F ⊂ G and finite partitions α, β ∈ Part f (Xa)

if α refines β then dF,α(a, b) ≥ dF,β(a, b).

Remark 1.2.7. Let a and b be two pmp actions of G. Let αn ∈ Part f (Xa) be an increasing
sequence of partitions such that the algebra generated by ∪nαn is dense in MAlg(Xa, µa).
Then a ≺ b if and only if for every F ⊂ G and n ∈ N, we have dF,αn(a, b) = 0.

In fact, we have to show that for every finite partition α ∈ Part f (Xa) and finite subset
F ⊂ G we have dF,α(a, b) = 0. Once α and F are fixed, for every ε > 0 there are n ≥ 0 and a
partition β ∈ Part|α|(Xa) refined by αn such that ‖c(a, F, α) − c(a, F, β)‖1 < ε. So

dF,α(a, b) = inf
γ∈Part|α|(Xb)

‖c(a, F, α) − c(b, F, γ)‖1

≤ inf
γ∈Part|α|(Xb)

‖c(a, F, β) − c(b, F, γ)‖1 + ε

≤dF,β(a, b) + ε

≤dF,αn(a, b) + ε = ε.

Proposition 1.2.8. Given three pmp actions a, b and c of G for every α ∈ Part f (Xa), we have
dF,α(a, c) ≤ dF,α(a, b) + dF,|α|(b, c).

25
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Proof. Put k = |α|. The proof is a straightforward computation:

dF,α(a, c) = inf
γ∈Partk(Xc)

‖c(a, F, α) − c(c, F, γ)‖1

≤ inf
β∈Partk(Xb)

inf
γ∈Partk(Xc)

(‖c(a, F, α) − c(b, F, β)‖1 + ‖c(b, F, β) − c(c, F, γ)‖1)

≤ inf
β∈Partk(Xb)

(
‖c(a, F, α) − c(b, F, β)‖1 + inf

γ∈Partk(Xc)
‖c(b, F, β) − c(c, F, γ)‖1

)

≤dF,α(a, b) + sup
β∈Partk(Xb)

inf
γ∈Partk(Xc)

‖c(b, F, β) − c(c, F, γ)‖1

≤dF,α(a, b) + dF,|α|(b, c).

Definition 1.2.9. The WC-topology on Act(G) is the topology generated by the family of
pseudo-metrics dF,k(a, b) := dF,k(a, b) + dF,k(b, a), where F ⊂ G is any finite subset and k ∈ N.

The topology is not T1 and two actions have the same closure if and only if they are weakly
equivalent. We denote by Act(G) the space of weakly-equivalent classes of actions. The WC-
topology descends to a metric topology on Act(G). The definition of the WC-topology is
similar to the definition given by Burton in [Bur15b]. In the same paper he proved that the
topology is equivalent to the topology of [AE11] and we will give a simpler and different
proof in Theorem 1.2.22.

The following proposition will be crucial to understand limits for the WC-topology.

Proposition 1.2.10. Let {a, a1 , a2, . . .} be a family of actions of G. Then for every finite subset F ⊂ G,
the following conditions are equivalent

1. for every finite partition α ∈ Part f (Xa), we have limn dF,α(a, an) = 0,

2. for every k ∈ N, we have limn dF,k(a, an) = 0.

Proof. Condition (2) is by definition stronger than condition (1), so let us suppose that (1)
holds. Fix ε > 0. For k ∈ N set

C := {c(β, F, a) : β ∈ Partk(Xa)} ⊆ [0, 1]|F|k
2
.

By compactness, there are partitions α1, . . . , αj ∈ Partk(Xa) such that

∀x ∈ C there is i ≤ j such that ‖c(αi , F, a)− x‖1 ≤ ε.

Consider the finite partition α generated by α1, . . . , αj. By hypothesis there is N ∈ N such
that for every n ≥ N, we have that dF,α(a, an) < ε. Since α refines αi for every i, we also have
that dF,αi(a, an) < ε for every i ≤ j and n ≥ N. So for n ≥ N and for every β ∈ Part f (Xa),
there is i ≤ j such that ‖c(β, F, a) − c(αi, F, a)‖1 ≤ ε, therefore

dF,β(a, an) ≤ ‖c(β, F, a) − c(αi, F, a)‖1 + dF,αi(a, an) ≤ 2ε.

The following proposition is inspired by Theorem 5.3 of [CKTD13].

Proposition 1.2.11. For a sequence of actions an ∈ Actd(G), the following are equivalent:

1. for every finite subset F ⊂ G and α ∈ Part f (Xa), we have dF,α(a, an) → 0,
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1.2. Limit of actions

2. there is a family of automorphisms Tn ∈ Aut(Xan) such that TnanT−1
n converges to the action a

in the weak topology.

Proof. The fact that (2) implies (1) follows directly from the definitions, so we can sup-
pose that (1) holds. By a diagonal argument, we can find an increasing sequence of finite
partitions (αn)n = ({An

1 , . . . , An
kn
})n and an increasing sequence of finite subsets Fn of G

such that dFn ,αn(a, an) tends to 0, ∪nFn = G and the algebra generated by ∪nαn is dense in
MAlg(X, µ). By (1), there is a sequence of partitions (βn)n = ({Bn

1 , . . . , Bn
kn
})n such that

‖c(a, Fn , αn)− c(an , Fn, βn)‖1 tends to 0, which we can choose to satisfy µ(An
i ) = µ(Bn

i ). For
every n, there is Tn ∈ Aut(X, µ) such that αn = Tnβn. Now observe that c(TnanT−1

n , Fn, Tnβn) =
c(an , Fn, βn), so (2) holds.

The following corollary is well-known (in the standard setting).

Corollary 1.2.12. For every pmp action b on any probability space, the set of {a ∈ Actd(G) : a ≺ b}
is weakly closed.

Proof. We use Proposition 1.2.8. Let (an)n be a sequence which converges weakly to a such
that an ≺ b for every n. By the (easy part of the) previous proposition, for every α ∈ Part f (Xa)
and F ⊂ G finite, we have that dF,α(a, an) → 0. Hence

dF,α(a, b) ≤ dF,α(a, an) + dF,k(an, b) = dF,α(a, an) → 0.

Definition 1.2.13. For every pmp action a of G and for every g ∈ G, we set

Fixg(a) :={x ∈ Xa : gx = x},

| Fixg(a)| :=µa(Fixg(a)).

Proposition 1.2.14. For every g ∈ G, the map | Fixg(·)| : Act(G) → [0, 1] is well-defined and
continuous.

Proof. Let a, b ∈ Act(G). By Rokhlin Lemma, for every ε > 0, there are Aε, Bε ⊂ Xa and
N ≥ 1, such that α := {Fixg(a), Aε, gAε, . . . , gN Aε, Bε} is a partition of Xa and µ(Bε) ≤ ε. Put
F := {1G , g, . . . , gN} and observe that if dF,α(a, b) ≤ η, then

| Fixg(b)| ≤ | Fixg(a)|+ η + ε.

1.2.2 Every action is weakly equivalent to a standard one

Theorem 1.2.15. Every pmp action a of the countable group G on a diffuse space has a standard factor
which is weakly equivalent to a. In particular every pmp action of G is weakly equivalent to an action
on a standard Borel probability space.

We remark that the theorem was also essentially proved for ultraproduct actions in the
proof of the main theorem of [AE11]. We start showing that any pmp actions has at least a
diffuse standard factor.

Lemma 1.2.16. Every pmp action a of G on a diffuse space has a standard diffuse factor.

27
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Proof. If (Xa, µa) does not have any atom, we can find an increasing sequence of finite parti-
tions (αn)n ⊂ Part f (Xa) such that the measure of each atom in αn is less than 1/n for every n.
Then observe that the G-invariant σ-algebra generated by ∪nGαn is a separable measure alge-
bra without atoms, so the factor associated is a factor of a on a diffuse, standard probability
space.

The theorem follows from two facts: the weak topology on Actd(G) is separable and the
following easy lemma.

Lemma 1.2.17. For two pmp actions a and b, the following are equivalent.

1. The action a is weakly contained in b, a ≺ b.

2. We have {c ∈ Act(G) : c ≺ a} ⊆ {c ∈ Act(G) : c ≺ b}.

Moreover if (Xa, µa) does not have any atom, then we can take c in (2) to be in Actd(G).

Proof. The fact that (1) implies (2) follows from the transitivity of the weak containment. For
the converse take a finite partition α ∈ Part f (Xa) and a finite subset F ⊂ G. The σ-closure of
the G-invariant algebra generated by α is a factor of a which we denote by c ∈ Act(G). By
construction dF,α(a, c) = 0 and by (2), we have c ≺ b. So dF,α(a, b) ≤ dF,α(a, c) + dF,|α|(c, b) = 0.
For the moreover part, we can consider the factor c′ associated to the σ-closure of the G-
invariant algebra generated by α and the standard factor constructed in Lemma 1.2.16.

Proof of Theorem 1.2.15. By Corollary 1.2.12, the set A := {c ∈ Actd(G) : c ≺ a} is weakly
closed. Let {bn}n∈N be a countable weakly-dense subset of A. For every n, let {βk

n}k∈N be an
increasing sequence of finite partitions of Xbn which generate the σ-algebra. Let {Fn}n be an
increasing sequence of finite subsets of G. For every n, m, k ∈ N, let αk,m

n be a partition of Xa

such that
‖c(bn , Fm, βk

n)− c(a, Fm , αk,m
n )‖1 ≤

1
m

.

Consider the G-invariant σ-algebra A generated by the partitions {αk,m
n }n,k,m. Then A is

separable, since it is generated by finite partitions and G is countable, so the associated factor
b is a factor of a on a standard diffuse probability space which by construction weakly contains
bn for every n. Corollary 1.2.12 implies that

{c ∈ Actd(G) : c ≺ a} = {bn}n ⊆ {c ∈ Actd(G) : c < b}

therefore (2) of Lemma 1.2.17 holds, hence a ≺ b.

From now on, we will identify Act(G) with the set of weak equivalence classes of actions
of G on any diffuse of finite uniform probability space.

1.2.3 Ultraproduct and weak equivalence

Given a pmp action a of G, a partition α ∈ Part f (Xa) and a finite subset F ⊂ G we denote
by αF the partition generated by the F-translates of α.

Definition 1.2.18. Consider two pmp actions a and b of G and let us fix a partition α ∈
Part f (Xa), a finite subset F ⊂ G and δ > 0. A (α, δ, F)-homomorphism ϕ from a to b, is a
homomorphism from the measure algebra of αF, to the measure algebra MAlg(Xb, µb), which
satisfies
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1.2. Limit of actions

• µb( f ϕ(A)∆ϕ( f (A))) < δ for every A ∈ α and f ∈ F,

• ∑A∈αF
|µb(ϕ(A))− µa(A)| < δ.

We denote by Hom(a, α, F, δ, b) the set of (α, δ, F)-homomorphisms from a to b

Proposition 1.2.19. An action a is weakly contained in b if and only if for every α ∈ Part f (Xa), for
every finite subset F ⊂ G and for every δ > 0, the set Hom(a, α, F, δ, b) is not empty.

Proof. Suppose that a ≺ b. Given α ∈ Partk(Xa), a finite subset F ⊂ G which contains the
identity and ε > 0, we consider αF = {A1, . . . , Ak}. By hypothesis there is a partition β =
{B1, . . . , Bk} ∈ Partk(Xb) such that ‖c(a, F, αF)− c(b, F, β)‖1 < ε. Set ϕ(Ai) = Bi. Given A ∈ α
and f ∈ F there are I, J ⊂ {1, . . . , k} such that A = 6i∈I Ai and f A = 6j∈J Aj. Then

µb( f ϕ(A)∆ϕ( f A)) =µb(ϕ(A)) + µb(ϕ( f A))− 2µb(( f (6i∈I Bi)) ∩ (6j∈J Bj))

≤µb(6i∈I Bi) + µb(6j∈J Bj)− 2 ∑
i∈I

∑
j∈J

µb( f Bi ∩ Bj)

≤µa(6i∈I Ai) + µa(6j∈J Aj)− 2 ∑
i∈I

∑
j∈J

µa( f Ai ∩ Aj) + 4ε

≤2µa(A)− 2µa( f A ∩ f A) + 4ε = 4ε.

For the converse fix α = {A1, . . . , Ak} ∈ Partk(Xa), a finite subset F ⊂ G which contains
the identity and δ > 0. Take ϕ ∈ Hom(a, α, F, δ, b). Define Bi = ϕ(Ai) and β = ϕ(α). For
i, j ∈ {1, . . . , k} and f ∈ F, we have

|µa(Ai ∩ f Aj)− µb(Bi ∩ f Bj)| =|µa(Ai ∩ f Aj)− µb(ϕ(Ai) ∩ f ϕ(Aj))|

≤|µa(Ai ∩ f Aj)− µb(ϕ(Ai ∩ f Aj))|+ δ

≤|µa(Ai ∩ f Aj)− µa(Ai ∩ f Aj)|+ 2δ = 2δ.

Definition 1.2.20. Let (an)n be a sequence of pmp actions of G. The ultraproduct of the se-
quence (an)n is the action of G on the ultraproduct measure space of the sequence {(Xan , µan)}n

given by g[xn]u := [gxn ]u, see Proposition 1.1.15.

Proposition 1.2.21 (Theorem 5.3 of [CKTD13]). Let a ∈ Act(G), let (bn)n be a sequence of actions
of G and let bu be its ultraproduct. Then a ≺ bu if and only if a 7 bu.

Proof. Let us suppose that a ≺ bu. Let (αn)n be an increasing sequence of partitions of Xa,
such that the algebra generated by them A is a dense G-invariant subalgebra of MAlg(Xa, µa).
Let Fn ⊂ G be an increasing sequence of finite subsets which contain the identity and such
that ∪nFn = G. By Proposition 1.2.19, for every n we can take ϕn ∈ Hom(a, αn , Fn, 1/n, b).
We denote by ϕu : A → MAlg(Xu, µu) the map defined by ϕu(A) := [ϕn(A)]u. It is clear that
ϕu is a G-invariant homomorphism which respect the measure, hence it is an isometry with
respect to the natural metric on MAlg. Therefore we can extend ϕu to a G-invariant isometric
embedding of σ-algebras MAlg(Xa, µa) to MAlg(Xu, µu).

1.2.4 WC-compactness

We now show that the ultraproduct of a sequence of actions defined in Definition 1.2.20 is
the limit with respect to the ultrafilter u for the WC-topology. Observe that the ultraproduct
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of a sequence of actions always exists, so Theorem 1.2.22 implies that the topology is sequen-
tially compact. Since the topology is metrizable, the topology is also compact, so we obtain
Theorem 1 of [AE11]. On the other hand the theorem characterizes the topology in terms
of ultraproducts of actions, and the same characterization holds for the topology in [AE11].
Therefore the two topology are equivalent.

Theorem 1.2.22. For every sequence of actions (an)n ⊂ Act(G) the u-WC-limit of the sequence exists
and is weakly equivalent to au. In particular a sequence (an)n WC-converges to a if and only if a is
weakly equivalent to the ultraproduct action au with respect to every ultrafilter u.

Proof. Let (an)n be a sequence in Act(G). By Theorem 1.2.15, and a little abuse of notations,
we have that the ultraproduct of the sequence au is an element of Act(G). We want to show
that the u-WC-limit of the sequence (an)n is au, so by Proposition 1.2.10, we have to show that
for every α ∈ Part f (Xau), for every finite subset F ⊂ G and k ∈ N, we have

lim
n∈u

dF,k(an, au) = lim
n∈u

dF,α(au, an) = 0.

For every finite partition αu = {[A1
n]u, . . . , [Ak

n]u} ∈ Partk(Xau), consider the family of
partitions αn := {A1

n, . . . , Ak
n} ∈ Part f (Xan). Then for every finite subset F ⊂ G, we have

lim
n∈u

‖c(an , F, αn)− c(au, F, αu)‖1 = 0,

and hence limn∈u dF,αu
(au, an) = 0. On the other hand, suppose that there are a finite subset

F ⊂ G, an integer k ∈ N and ε > 0 such that limn∈u dF,k(an , au) > ε. Then for every n in a set
I ∈ u, there is a partition αn = {A1

n, . . . , Ak
n} ∈ Partk(Xan) such that dF,αn(an , au) > ε. So if we

take the partition αu := {[A1
n]u, . . . , [Ak

n]u} we observe that

lim
n∈u

‖c(an , F, αn)− c(au, F, αu)‖1 ≥ ε,

which is a contradiction.

The following interesting corollary was remarked in both [AE11, Corollary 3.1] and [CKTD13,
Proposition 5.7].

Corollary 1.2.23. Let a be a pmp action of G and let b ∈ Act(G) be an action which is weakly
contained in a. Then there is an action a′ weakly equivalent to a such that b is a factor of a′.

Increasing sequences of actions always admit limits and such limits are easily described.

Proposition 1.2.24. Let (an)n be an upward directed sequence of actions in Act(G).

(1) The sequence converges to an action a ∈ Act(G).

(2) For every n ∈ N, we have an ≺ a.

(3) If b ∈ Act(G) satisfies that an ≺ b for every n ∈ N, then a ≺ b.

Proof. By compactness, there is a WC-converging subsequence (ank)k and let a be its limit. We
claim that (2) and (3) holds for a. For this fix n > 0, a finite subset F ⊂ G and α ∈ Part f (Xan).
Since (ank)k WC-converges to a,

dF,α(an , a) ≤ dF,α(an , ank) + dF,|α|(ank , a) = dF,|α|(ank , a) k
→ 0
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hence an ≺ a for every n. Let b ∈ Act(G) an action such that an ≺ b for every n ∈ N. Then for
every partition α ∈ Part f (Xa) and finite subset F ⊂ G,

dF,α(a, b) ≤ dF,α(a, ank ) + dF,|α|(ank , b) = dF,α(a, ank )
k
→ 0,

hence dF,α(a, b) = 0 for every α and F, which implies a ≺ b.
Let a′ and a′′ two different cluster points of (an)n. Then by (2) we have that an ≺ a′ and

an ≺ a′′ for every n and by (3) we get that a′ ≺ a′′ and a′′ ≺ a′, that is a′ is weakly equivalent
to a′′ and hence they represent the same element of Act(G).

Corollary 1.2.25. Let (an)n be an increasing sequence of finite actions and let a be the associated
profinite action. Then (an)n WC-converges to a. In particular the profinite action a is weakly equivalent
to the ultraproduct action au.

Proof. By Proposition 1.2.24, it is enough to show that for every action b ∈ Act(G) such that
an ≺ b for every n, we have that a ≺ b. Fix such an action b. For every n, we denote by
αn ∈ Part f (Xa) the partition on clopen sets such that a

∣∣
αn

= an. By Remark 1.2.7, it is enough
to show that for every finite subset F ⊂ G and n ∈ N, we have dF,αn(a, b) = 0. This is
straightforward

dF,αn(a, b) ≤ dF,αn(a, an) + dF,|αn|(an , b) = 0.

1.3 Sofic entropy

In this section we will show that for free groups and PSLk(Z) the sofic entropy of profinite
actions depends on the sofic approximation.

1.3.1 Sofic actions

Let G be a countable group, let F be a countable free group and let π : F → G be a
surjective homomorphism. Let us fix a section ρ : G → F which maps the identity to the
identity. Given any action a of G, we denote by aF the action of F defined by aF(g) := a(π(g)).
For an action a, recall that | Fixg(a)| is the measure of the fixed point of g, (Definition 1.2.13).

Definition 1.3.1. A sofic approximation Σ = (an)n of G is a sequence of finite actions an ∈
Act f (F) such that

• for every g ∈ ker π, we have that limn | Fixg(an)| = 1,

• for every g /∈ ker π, we have that limn | Fixg(an)| = 0.

A group is sofic if it has a sofic approximation.

Definition 1.3.2. Given a sofic approximation Σ = (an)n of G, the ultraproduct action au of
the sequence (an) is an action of F for which ker π acts trivially. Hence we can see the action
au as a G-action, which we will denote by aΣ

u and we will call it the sofic action associated to
Σ.

Definition 1.3.3. An action a of the group G is sofic if there exists a sequence of finite actions
(an)n ⊂ Act f (F) such that
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• for every α ∈ Part f (Xa) and F ⊂ G finite, we have limn dρ(F),α(aF , an) = 0,

• for every g ∈ ker π, we have limn | Fixg(an)| = 1.

We observe that the definition does not depend on the choice of ρ. Moreover we could also
ask that dF,α(aF , an) → 0 for every finite subset F of the free group F. Observe also that if an
action a of G is sofic, then the sequence (an)n as in Definition 1.3.3 is a sofic approximation,
so any group which admits a sofic free action is sofic.

Proposition 1.3.4. An action a ∈ Act(G) of the countable group G is sofic if and only if there is a
sofic approximation Σ of G such that a is a factor of the sofic action aΣ

u .

Proof. If the action a is sofic, then by construction aF is weakly contained in au and hence by
Proposition 1.2.21, we have that a is a factor of aΣ

u . On the other hand, if a is a factor of aΣ
u ,

then dρ(F),α(aF, an) = dρ(F),α(au, an), which tends to zero by Theorem 1.2.22.

Remark 1.3.5. It is not known whether every sofic action of a sofic group is of the form aΣ
u for

a sofic approximation Σ of G. The question is even open for Bernoulli shifts. They are sofic by
[EL10] but we do not know if for non-amenable groups they are of the form aΣ

u .

One can show that Definition 1.3.3 is equivalent to the definition of Elek and Lippner
[EL10] in terms of colored graphs and to the (unpublished) definition of Ozawa of soficity of
pseudo full groups, see Definition 10.1 in [CKTD13]. Remark that the authors in [CKTD13]
prove that Definition 1.3.3 implies the soficity of the pseudo full group in the proof of Theorem
10.7.

1.3.2 Sofic entropy

In what follows, we use the definitions and notations of Kerr [Ker13] with the only excep-
tion that we will use ultralimits instead of limsup in the definition.

Let G be a countable sofic group and let a ∈ Act(G) be an action of G on a standard
probability space. Let F be a free group, let π : F → G be a surjective homomorphism
and let ρ : G → F be a section of π which maps the identity to the identity. Fix a sofic
approximation Σ = (an)n as in Definition 1.3.1. Consider two partitions ξ ≤ α ∈ Part f (Xa),
a finite subset F ⊂ G and δ > 0. We put Hom(a, α, F, δ, an) := Hom(aF , α, ρ(F), δ, an) (see
Definition 1.2.18), where aF(g) = a(π(g)). We denote by |Hom(a, α, F, δ, an)|ξ the cardinality
of the set of (α, δ, ρ(F))-homomorphisms from a to an restricted to ξ, as explained in [Ker13].

We can now define the entropy of a with respect to Σ

hξ
Σ(α, F, δ, a) := lim

n∈u

1
|Xan |

log
(
|Hom(a, α, F, δ, an)|ξ

)
,

hξ
Σ(α, F, a) := inf

δ>0
hξ

Σ(α, F, δ, a),

hξ
Σ(α, a) := inf

F⊂G
hξ

Σ(α, F, a),

hξ
Σ(a) := inf

α>ξ
hξ

Σ(α, a),

hΣ(a) := sup
ξ

hξ
Σ(a).
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where ξ and α are finite partitions of Xa with ξ < α, F ⊂ G is a finite subset and δ > 0 is a real
number. Observe that the definition does not depend on the section ρ : G → F, since for every
g ∈ ker π, we have that limn | Fixg(an)| = 1. If for some α, δ, F and n the set Hom(α, F, δ, an) is
empty, we will set hξ

Σ(α, F, δ, a) = −∞.

Proposition 1.3.6. Let G be a countable sofic group and let a ∈ Act(G) be an action of G. Fix a sofic
approximation Σ and let aΣ

u be the sofic action as in Definition 1.3.2. Then hΣ(a) > −∞ if and only if
a ≺ aΣ

u .

This proposition is a corollary of Proposition 1.2.19. We observe that it is also a special
case of Proposition 6 of [GP14].

Proof. Let F be a free group, let π : F → G be a surjective homomorphism, let ρ : G → F be a
section and let Σ = (an)n be a sofic approximation.

Suppose that hΣ(a) > −∞. Then there is a finite partition ξ ∈ Part f (Xa) such that for
every α ∈ Part f (Xa) with α > ξ, for every finite subset F ⊂ G and for every δ > 0, we have

{
n ∈ N : Hom(aF, α, ρ(F), δ, an) *= ∅

}
∈ u.

Take ϕn ∈ Hom(aF, α, ρ(F), δ, an) and define ϕu(A) := [ϕn(A)]u. By construction we have that
ϕu ∈ Hom(a, α, F, δ, aΣ

u ) and hence the set is not empty. Therefore Proposition 1.2.19 implies
that a ≺ aΣ

u .
Conversely, if we suppose that a ≺ aΣ

u , Proposition 1.2.19 tells us that for every finite
partition α = {A1, . . . , Ak} ∈ Part f (Xa), for every finite subset F ⊂ G and for every δ > 0
the set Hom(a, α, F, δ, aΣ

u ) is not empty. Take an element ϕu ∈ Hom(aF , α, ρ(F), au). Choose a
family of subsets {Bi

n}i,n such that ϕu(Ai) = [Bi
n]u and set ϕn(Ai) := Bi

n. Then, we observe
that for every ε > 0, the set of n ∈ N such that ϕn ∈ Hom(a, α, F, δ + ε, an) is in u, hence
hΣ(a) > −∞.

Let G be a residually finite group and let (Hn)n be a chain of finite index subgroups of
G. We denote by a(Hn) the profinite action associated to the sequence which we will always
assume to be free. If the profinite action a(Hn) is free, then the sequence of finite actions gives
us a sofic approximation of the group which we will denote by Σ(Hn).

Combining Proposition 1.3.6 with Corollary 1.2.25, we get the following interesting result.

Corollary 1.3.7. Let G be a residually finite group and let (Hn)n be a chain of finite index subgroups
of G such that the associated profinite action is free. Then for every action a ∈ Act(G) we have that
hΣ(Hn)

(a) > −∞ if and only if a ≺ a(Hn).

Since the corollary holds for every ultrafilter, it is still true for the usual definition of
entropy with lim sup. In particular the sofic entropy of a non-strongly ergodic action with
respect to a sofic approximation given by expanders is always −∞.

Corollary 1.3.8. Let G be a residually finite group let (Kn)n be a chain of finite index subgroups of G
which has property (τ). For every non-strongly ergodic action a of G, we have hΣ(Kn)

(a) = −∞.

Proof. It is enough to observe that if (Kn)n has property (τ), then a(Kn) is strongly ergodic, as
explained for example in Lemma 2.2 of [AE12], and an action weakly contained in a strongly
ergodic action is also strongly ergodic (cf Lemma 5.1 [AE12]).
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1.3.3 Sofic entropy of profinite actions

Combining Corollary 1.3.7 with [AE12], we can now show that for some groups sofic
entropy of profinite actions crucially depends on the sofic approximation.

Theorem 1.3.9. Let G be a countable free group or PSLk(Z) for k ≥ 2. Then there is a continuum of
normal chains {(Hr

n)n}r∈R such that hΣ(Hr
n)
(a(Hs

n)) > −∞ if and only if r = s.

Note that the sofic entropy of profinite actions is either 0 or −∞ as shown in Section 4 of
[CZ14], see also Lemma 1.3.13. Theorem 1.3.9 follows from Corollary 1.3.7 and the following
theorem.

Theorem 1.3.10 (Abért-Elek, [AE12]). Let G be a countable free group or PSLk(Z) for k ≥ 2. Then
there is a continuum of normal chains {(Hr

n)n}r∈R such that a(Hs
n) ≺ a(Hr

n) if and only if r = s.

Sketch of the Proof for G = PSLk(Z), k ≥ 3. Let (Hn)n be the sequence of congruence subgroups
of G, so that the family {G/Hn} is a family of pairwise-non isomorphic finite non Abelian
simple groups. For I = {i1, i2, i3, . . .} ⊂ N infinite, we denote by aI the profinite action
associated to the normal chain (∩i≤nHi)n. Observe that for an infinite I, the profinite action
aI is free and moreover, by property (T), it is strongly ergodic. Therefore we can apply
Lemma 5.2 of [AE12] to get that aI ≺ aJ if and only if I ⊂ J. So if we take any continuum
of incomparable infinite subset of N, then the associated profinite actions {aI}I are weakly
incomparable.

In order to see that Theorem 1.3.10 holds for PSL2(Z) and for free groups, we can use that
the congruence subgroups in PSL2(Z) have property (τ) and that the proof above passes to
finite index subgroups, see the proof of Theorem 3 in [AE12].

Remark 1.3.11. Theorem 1.3.10 holds for a large variety of groups. In fact the Strong Approx-
imation Property claims that any Zariski dense subgroup of the rational point of a rational
algebraic linear group, has infinitely many pairwise non-isomorphic simple non-Abelian finite
quotients, see [LS03, Window 9]. This was used in [AE12] to find family of pairwise inequiva-
lent free actions of linear property (T) groups. One can then combine this fact with Margulis
normal subgroup theorem to show that Theorem 1.3.9 holds for many lattices of higher rank
algebraic linear groups.

We know give an example of an action which has positive entropy with respect to a sofic
approximation and −∞ with respect to another. We will do this considering the examples of
Theorem 1.3.9 and taking the diagonal product with respect to a Bernoulli shift. Then Bowen’s
computation for such actions will allow us to conclude.

Theorem 1.3.12. Let G be a countable free group or PSLk(Z) for k ≥ 2. For every r ≥ 0, there is an
action a of G and two sofic approximations Σ1 and Σ2 such that hΣ1(a) = r and hΣ2(a) = −∞.

In the proof of the theorem, we will need the following easy lemma which was point out
to us by L. Bowen.

Lemma 1.3.13. Let (Hn)n be a chain of finite index subgroups of G and denote by a = a(Hn) the
associated profinite action of G. For every ε > 0, there is a generating partition α of Xa with H(α) ≤ ε.
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Proof. Put i0 := [G : H1] and in := [Hn : Hn+1], without lost of generality we can suppose that
in ≥ 2 for every n ≥ 0. Let us fix ε > 0 and take N ∈ N such that 2−(N−1) +∑n≥N n2−(n−1) < ε.
For every n ≥ N, take a clopen An ⊂ Xn such that

• An ∩ Am = ∅ if n *= m,

• An is a clopen set associated to a conjugate Hg
n of Hn, that is it has measure 1/[G : Hn]

and it is Hg
n-invariant.

Set A0 := X \ ∪n≥N An and α := {A0, AN , AN+1, . . .}. The partition α is generating and
observe that µ(An) ≤ 2−n and µ(A0) ≥ 1 − 2−(N−1). We now compute the entropy of α,

H(α) =− µ(A0) log(µ(A0))− ∑
n≥N

µ(An) log(µ(An))

≤− log(1 − 2−(N−1)) + ∑
n≥N

log(i1 . . . in)
i1 . . . in

≤2−(N−1) + ∑
n≥N

2−(n−1)
n

∑
j=1

log(ij)

ij

≤2−(N−1) + ∑
n≥N

n2−(n−1) < ε.

Proof of Theorem 1.3.12. Let (X, µ) be a finite probability space with H(µ) = r and denote
by b the Bernoulli shift of G on (XG , µG). By Theorem 1.3.10, there are two normal chains
of finite index subgroups (Hn)n and (Kn)n such that the actions a(Hn) and a(Kn) are weakly
incomparable and so the diagonal action a(Hn) × b is not weakly contained in a(Kn). Lemma
1.3.13 and Bowen’s Theorem [Bow10b, Theorem 8.1] tell us that hΣ(Hn)

(a(Hn) × b) = H(µ) = r
and by Corollary 1.3.7 we have that hΣ(Kn)

(a(Hn) × b) = −∞.
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Chapter 2

More full groups

The following chapter is based on a joint work with François Le Maître.

We associate to every action of a Polish group on a standard probability space a Polish
group that we call the orbit full group. For discrete groups, we recover the well-known
full groups of pmp equivalence relations equipped with the uniform topology. How-
ever, there are many new examples, such as orbit full groups associated to measure
preserving actions of locally compact groups. We also show that such full groups are
complete invariants of orbit equivalence.
We give various characterizations of the existence of a dense conjugacy class for orbit
full groups, and we show that the ergodic ones actually have a unique Polish group
topology. Furthermore, we characterize ergodic full groups of countable pmp equiva-
lence relations as those admitting non-trivial continuous character representations.

Contents

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Polish spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.2 Polish groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.3 The Polish group Aut(X, µ) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.4 Spaces of measurable maps . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Full groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Definition and fundamental facts . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Orbit full groups have a Polish group topology . . . . . . . . . . . . . . 43
2.2.3 Full groups of measurable equivalence relations . . . . . . . . . . . . . . 47
2.2.4 Orbit equivalence and full groups . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Topological properties of full groups . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 Aperiodic elements and free actions . . . . . . . . . . . . . . . . . . . . . 50
2.3.2 Uniqueness of the Polish topology . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 More (non) Borel full groups . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Character rigidity for full groups . . . . . . . . . . . . . . . . . . . . . . . . . . 57

37



Chapter 2. More full groups

2.1 Preliminaries

2.1.1 Polish spaces

A Polish space is a separable topological space which admits a compatible complete met-
ric. A countable intersection of open subsets of a topological spaces is called a Gδ.

Proposition 2.1.1 ([Kec95, Theorem 3.11]). Let (X, τ) be a Polish space. A subset Y ⊂ X is Polish
for the induced topology if and only if Y is a Gδ.

A standard Borel space is an uncountable set X equipped with a σ-algebra B such that
there exists a Polish topology on X for which B is the σ-algebra of Borel subsets. A funda-
mental fact is that all the standard Borel spaces are isomorphic [Kec95, Theorem 15.6], and
that every uncountable Borel subset of a standard Borel space is a standard Borel space when
equipped with the induced σ-algebra [Kec95, Corollary 13.4].

Theorem 2.1.2 (Luzin-Suslin, see [Kec95, Theorem 15.1]). Let X and Y be two standard Borel
spaces and let f : X → Y be an injective Borel map. Then for every Borel subset A of X, f (A) is Borel.

A subset A of a Polish space X is analytic if there is a standard Borel space Y, a Borel
subset B of Y and a Borel function f : Y → X such that A = f (B). In general, analytic sets are
not Borel, however they are Lebesgue-measurable (see Theorem 4.3.1 in [Sri98]). If X and Y
are two Polish spaces, a map f : X → Y will be called analytic if the preimage of any open set
is analytic. Note that analytic maps are Lebesgue-measurable by the aforementioned result.

2.1.2 Polish groups

A topological group whose topology is Polish is called a Polish group. Polish groups have
several good properties. We list three of them, for proofs see Section 1.2 of [BK96].

Properties 2.1.3.

(α) Let G be a Polish group, and let H be a subgroup of G. Then H is Polish for the induced topology
if and only if H is closed in G.

(β) Let G be a Polish group, and let H # G be a closed normal subgroup. Then G/H is a Polish group
for the quotient topology.

(γ) Let ϕ : G → H be an analytic homomorphism between two Polish groups G and H. Then ϕ
is continuous. If moreover ϕ is surjective, then ϕ induces a topological isomorphism between
G/ ker(ϕ) and H.

Let us end this section by citing a deep result of Becker and Kechris, which will be crucial
in the proof of our main theorem.

Theorem 2.1.4 ([BK93]). Let a Polish group G act in a Borel manner on a standard Borel space X.
Then there is a Polish topology τ on X inducing its Borel structure such that the action of G on (X, τ)
is continuous.
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2.1.3 The Polish group Aut(X, µ)

A standard probability space is a standard Borel space equipped with a non atomic prob-
ability measure. All standard probability spaces are isomorphic (see [Kec95, Theorem 17.41]).
The measure algebra of the standard probability space (X, µ) is the σ-algebra of measur-
able subsets of X, where two such subsets are identified if their symmetric difference has
measure zero. We will denote the measure algebra with MAlg(X, µ) and recall that it is a
Polish space when equipped with the topology induced by the complete metric d9 defined
by d9(A, B) = µ(A 9 B).

Definition 2.1.5. Let (X, µ) be a standard probability space. The group Aut(X, µ) of mea-
sure preserving Borel bijections of (X, µ), identified up to measure zero, carries two natural
metrizable topologies :

• the weak topology, for which a sequence (Tn)n converges to T if for every measurable
subset A ⊂ X, we have µ(Tn(A)∆T(A)) → 0.

• the uniform topology, induced by the uniform metric du defined by

du(T, S) := µ ({x ∈ X : Tx *= Sx}) .

Proposition 2.1.6 ([Hal60]). The group Aut(X, µ) is a Polish group with respect to the weak topology,
and the uniform metric du is complete.

2.1.4 Spaces of measurable maps

Definition 2.1.7. Let (X, µ) be a standard probability space, and let (Y, τ) be a Polish space.
We denote by L0(X, µ, (Y, τ)) (and by L0(X, µ, Y) whenever it is clear which topology we fix
on Y) the space of Lebesgue-measurable maps from X to Y, identified up to measure 0. Any
compatible bounded metric d on (Y, τ) induces a metric d̃ on L0(X, µ, (Y, τ)) defined by

d̃( f , g) :=
∫

X
d( f (x), g(x))dµ(x).

The topology induced by d̃ is called the topology of convergence in measure.

This topology only depends on the topology of Y by the following proposition.

Proposition 2.1.8 ([Moo76, Proposition 6]). Let ( fn) be a sequence of elements of L0(X, µ, (Y, τ))
and f ∈ L0(X, µ, (Y, τ)). Then the following are equivalent:

(a) the sequence ( fn)n converges to f , that is d̃( fn , f ) → 0,

(b) for all ε > 0, µ({x ∈ X : d( f (x), fn(x)) > ε}) → 0,

(c) every subsequence of ( fn)n∈N admits a subsequence ( fnk)k∈N such that for almost all x ∈ X we
have

fnk(x) → f (x).

Remark 2.1.9. In a topological space, a sequence converges to a point if and only if all its
subsequences have a subsequence converging to this point, so item (c) of the previous propo-
sition implies that the topology of convergence in measure is the coarsest metrizable topology
τ for which fn → f a.s. implies that fn → f with respect to τ.
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The topology of convergence in measure on L0(X, µ, Y) is a Polish topology. A dense
countable subset is constructed as follows. Fix a dense countable subset D ⊂ Y and a dense
countable subalgebra A of MAlg(X, µ). Then, the family of A-measurable functions from X
to D that take only finitely many values is dense in L0(X, µ, Y).

When Y = G is a Polish group, we equip L0(X, µ, G) with the group structure given by
the pointwise product, that is for f , g ∈ L0(X, µ, G) we put

f · g(x) := f (x)g(x).

Proposition 2.1.10. The Polish space L0(X, µ, G) is a Polish group for the topology of convergence in
measure and the pointwise product.

Let (Y, τ) be a Polish space. Then Aut(X, µ) acts on the right on L0(X, µ, (X, τ)) by pre-
composition:

for T ∈ Aut(X, µ) and f ∈ L0(X, µ, (Y, τ)) we define ( f · T)(x) := f (Tx).

Note that this is an action by isometries. Moreover, when Y = X, we may view Aut(X, µ) as
a subset of L0(X, µ, (X, τ)) identifying a transformation T with the function fT(x) := T(x),
which corresponds to identify Aut(X, µ) with the orbit of idX ∈ L0(X, µ, (X, τ).

Proposition 2.1.11. Let (X, µ) be a standard probability space equipped with a compatible Polish
topology τX, and let (Y, τY) be a Polish space.

(1) The action of Aut(X, µ) on L0(X, µ, (Y, τY)) is continuous.

(2) The inclusion Aut(X, µ) ↪→ L0(X, µ, (X, τX)) is an embedding.

Proof. (1). Fix a compatible complete bounded metric dY on Y. Suppose now that Tn → T and
fn → f , we want to prove that d̃Y( fnTn, f T) → 0. Since each Tn is an isometry,

d̃Y( fnTn, f T) = d̃Y( fn , f TT−1
n ) ≤ d̃Y( fn, f ) + d̃Y( f , f TT−1

n ),

hence it is enough to show that if Tn → idX in Aut(X, µ), then for every f ∈ L0(X, µ, (Y, τ)) we
have f Tn → f in measure. Moreover we can suppose that f has finite range, because the set of
such functions is dense. For such a function f , we can consider the finite partition of the space
given by { f−1(a)}a∈ f (X) and by definition of weak convergence µ(Tn f−1(a)∆ f−1(a)) → 0 for
every a ∈ f (X). So µ({x ∈ X : f Tn(x) *= f (x)}) → 0, in particular f Tn → f in measure.

(2). Fix a Polish topology on X induced by the complete metric dX . Since Aut(X, µ) can
be identified with the orbit of idX in L0(X, µ, X), the first part implies that the inclusion is
continuous.

To see that it is an embedding, we first note that since Aut(X, µ) acts by homeomorphisms
on L0(X, µ, τ), a sequence (Tn)n converges to T in measure if and only if TnT−1 → idX in
measure. So it is enough to show that every weak neighborhood of the identity contains a
neighborhood of the identity for the topology of convergence in measure.

Given r > 0 and a subset A of X, we let (A)r := {y ∈ X : ∃x ∈ A, dr(x, y) < r} be its
r-neighborhood. Since the measure µ is regular, a pre-basis of neighborhoods of the identity
for the weak topology on Aut(X, µ) is given by the sets

VF,ε = {T ∈ Aut(X, µ) : µ(F 9 T(F)) < ε},
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where F is closed and ε is positive. So fix such a closed set F and ε > 0. Since F is closed, we
have that F =

⋂
n∈N(F) 1

n
, so there is δ > 0 with δ < ε, such that µ((F)δ \ F) < ε.

Now suppose that d̃X(T, idX) ≤ δ2, which implies that µ ({x ∈ X : dX(Tx, x) > δ}) < δ.
Then µ(T(F) \ (F)δ) < δ < ε and since T preserves the measure,

µ(T(F)∆F) ≤ µ(T(F)∆(F)δ) + µ((F)δ∆F) ≤ 3ε.

We conclude that T ∈ VF,3ε, and so the topology of convergence in measure refines the
weak topology.

Combining the above proposition and Proposition 2.1.1, we deduce that Aut(X, µ) is a
Gδ in L0(X, µ, (X, τ)). However, it is not closed, and one can actually show that its closure
consists in the monoid of all measure preserving maps (X, µ) → (X, µ).

2.2 Full groups

2.2.1 Definition and fundamental facts

Let us start by recalling the original definition of full groups introduced by Dye in his
pioneering work [Dye59], which is the starting point of our paper.

Definition 2.2.1. Let (Tn)n∈N be a sequence of elements of Aut(X, µ). We say that T ∈
Aut(X, µ) is obtained by cutting and pasting the sequence (Tn)n if there is a partition (An)n∈N

of X such that for every n ∈ N,
T!An = Tn!An .

We will also say that T is obtained by cutting and pasting (Tn)n∈N along (An)n∈N.

Definition 2.2.2 (Dye). A subgroup G of Aut(X, µ) is a full group if it is stable under cutting
and pasting along any sequence of elements of G.

Let us point out a fundamental fact.

Proposition 2.2.3 ([Dye59, Lemma 5.4]). The restriction of the uniform metric du to any full group
is complete.

Definition 2.2.4. Suppose R is an equivalence relation on a standard probability space (X, µ).
The full group of the equivalence relation R, denoted by [R], is the set of all T ∈ Aut(X, µ)
such that for all x ∈ X, (x, T(x)) ∈ R.

Remark 2.2.5. In the previous definition, we require that (x, T(x)) ∈ R for all x ∈ X, but
up to modifying T on a measure zero set we could as well ask that this holds for almost all
x ∈ X. Indeed, if T satisfies the latter condition, let A be the full measure set of x ∈ X such
that (x, T(x)) ∈ R. Then A contains the full measure T-invariant set B :=

⋂
n∈Z Tn(A) and T

coincides up to measure zero with the bijection T′ defined by

T′(x) :=
{

T(x) if x ∈ B,
x else.

It is then clear that for all x ∈ X, we have (x, T′(x)) ∈ R.
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A special and important case of the previous definition is when the equivalence relation is
given by the action of a group.

Definition 2.2.6. Let G be a Polish group acting in a Borel manner on a standard probability
space (X, µ). The associated orbit full group is the set of all

T ∈ Aut(X, µ) such that T(x) ∈ G · x, for all x ∈ X.

In other words, it is the full group of the orbit equivalence relation RG defined by (x, y) ∈
RG whenever ∃g ∈ G : g · x = y, and we will accordingly denote it by [RG].

We want to stress that the previous definition makes sense only for spatial G-actions:
we need a genuine G-action on X in order to define [RG], and not just a morphism G →
Aut(X, µ). The orbit full group should not be confused with the following one.

Definition 2.2.7. Let G be a subgroup of Aut(X, µ). There is a smallest full group containing
G, whose elements are obtained by cutting and pasting elements of G. This is the full group
generated by G, denoted by [G]D.

If G acts faithfully on (X, µ) and preserves the probability measure µ, then we have an
injective map G ↪→ Aut(X, µ) and we clearly have [G]D ⊂ [RG]. The inclusion is in general
strict, as shown in Example 2.2.10 and Example 2.2.15.

Let us now give some concrete examples. We start with full groups of countable measure
preserving equivalence relations, which are exactly the countably generated full groups.

Example 2.2.8. If Γ is a countable group acting on the standard probability space (X, µ) by
measure preserving automorphisms, then one can easily check that the two full groups de-
fined above coincide: [Γ]D = [RΓ]. Moreover, the orbit full group [RΓ] is separable (see [Kec10,
Proposition 3.2]) and hence it is Polish with respect to the uniform topology by Proposition
2.2.3 (this follows also from the proof of Theorem 2.2.18).

As a matter of fact, the full groups given by the previous example are the only full groups
that are Polish for the uniform topology.

Proposition 2.2.9. A full group G < Aut(X, µ) is Polish with respect to the uniform topology if and
only if it is the full group of a countable probability measure preserving equivalence relation.

Proof. If G ≤ Aut(X, µ) is a full group separable for the uniform topology, we can choose a
dense countable subgroup Λ ⊂ G so that [Λ] is a closed subgroup of G that contains Λ, hence
it has to be equal to G. On the other hand, any countable pmp equivalence relation comes
from the action of a countable group by a result of Feldman and Moore [FM77a], hence it is
Polish for the uniform topology.

Example 2.2.10. Let G be an infinite compact group and denote its Haar measure by µ. The
action of G on itself by left translation generates the transitive equivalence relation on G, so
its orbit full group is by definition [RG] = Aut(G, µ). In particular, it is Polish for the weak
topology.

We remark now that the full group [G]D generated by G may be strictly smaller than [RG].
Indeed, let us consider the circle group G = S1 acting on itself by translation, and suppose
that the map T : g ;→ g−1 was obtained by cutting and pasting the translations by some gi

along Ai. Fix an index i and h, h′ ∈ Ai such that h2 *= h′2. Since h ∈ Ai, we have that h−1 = gih
and since h′ ∈ Ai, we also get h′−1 = gih′, hence h2 = g−1

i = h′2, a contradiction.

42



2.2. Full groups

We say that a subgroup G of Aut(X, µ) is ergodic if for every A ⊂ X such that µ(A∆gA) =
0 for every g ∈ G, we have that A has either measure zero or full measure. This is equivalent
to say that the only G-invariant elements of MAlg(X, µ) are X and ∅. Note that G is ergodic
if and only if [G]D is. Ergodic full groups have the following very useful property.

Proposition 2.2.11. Let G be an ergodic full group and let A, B ∈ MAlg(X, µ) such that µ(A) =
µ(B). Then there is an involution T ∈ G such that T(A) = B.

This proposition was used used by Fathi to show the following result (see [Fat78]; he
proves this for Aut(X, µ), but the same argument works for any ergodic full group).

Theorem 2.2.12. A full group is ergodic if and only if it is simple.

Proposition 2.2.11 can also be used to show the following (see [Kec10, Proposition 3.1]).

Proposition 2.2.13. A full group is weakly dense in Aut(X, µ) if and only if it is ergodic.

The following result is a consequence of Property 2.1.3 (α) and the above proposition.

Corollary 2.2.14. The group Aut(X, µ) is the unique ergodic full group that is Polish for the weak
topology.

The previous corollary may be extended to the non ergodic case (see [LM14b, Proposition
1.17 and Theorem D.6]), which yields a complete description of the full groups which are
Polish for the weak topology.

Let us now give a pathological example.

Example 2.2.15. Let G = S∞ be the Polish group of all permutations of the natural numbers.
The action of S∞ on X = {0, 1}N is faithful, has only countably many orbits and all the orbits
but one are countable. Kolmogorov observed, see [Dan00, Example 9], that there is a measure
µ on X for which the action of G is not ergodic. This implies that [G]D is not ergodic and by
Proposition 2.2.13, [G]D is not weakly dense in [RG] = Aut(X, µ).

2.2.2 Orbit full groups have a Polish group topology

So far, the examples of Polish full groups that we have seen are full groups of countable
pmp equivalence relations, which are exactly the full groups for which the uniform topology
is Polish by Proposition 2.2.9, and Aut(X, µ), which is the unique ergodic Polish full group
for the weak topology by Corollary 2.2.14. Note that both are instances of orbit full groups.
Our main result is that all orbit full groups carry a natural Polish group topology.

Before defining this topology, we need a different description of orbit full groups. So we
start with a Polish group G acting in a Borel manner on a standard probability space (X, µ).

Consider the Polish space L0(X, µ, G) endowed with the topology of convergence in mea-
sure, and define Φ : L0(X, µ, G) → L0(X, µ, X) by

Φ( f )(x) := f (x) · x.

In what follows, we will always see the group Aut(X, µ) as a subspace of L0(X, µ, X), see
Proposition 2.1.11. Put [̃RG] := Φ−1(Aut(X, µ)).
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Lemma 2.2.16. We have the equality Φ
(
[̃RG]

)
= [RG ].

Proof. The inclusion Φ
(
[̃RG]

)
⊆ [RG] follows directly from the definition. For the reverse

inclusion, take T ∈ [RG] and consider the Borel set

A := {(x, g) ∈ X × G : gx = Tx} .

By the Jankov-von Neumann Uniformisation Theorem (see [Kec95, Theorem 18.1]), we
can find an analytic uniformisation of A, i.e. an analytic, hence Lebesgue-measurable, map
f : X → G such that for every x ∈ X, we have T(x) = f (x)x. In other words, we can find
f ∈ L0(X, µ, G) such that T = Φ( f ), so [RG] ⊆ Φ([̃RG ]).

Definition 2.2.17. The topology of convergence in measure on an orbit full group [RG] is the
quotient topology induced by [̃RG] ⊆ L0(X, µ, G), where we put on L0(X, µ, G) the topology
of convergence in measure (see Section 2.1.4).

We say that the action of G is essentially free if there is a full measure G-invariant subset
A of X such that for every g ∈ G \ {1G} and every x ∈ A, gx *= x. Note that this is stronger
than asking that all elements of G \ {1G} have a set of fixed points of measure zero, even when
G is locally compact.

Whenever the G action is essentially free, Φ : [̃RG] → [RG] is a bijection and the topology
on the orbit full group is just the topology induced by the topology of convergence in measure
on L0(X, µ, G). We will give later a more precise description of the topology of convergence
in measure on [RG ] when the action is non free (see Corollary 2.2.23).

Theorem 2.2.18. Let G be a Polish group acting in a Borel manner on a standard probability space
(X, µ). Then the associated orbit full group

[RG] = {T ∈ Aut(X, µ) : ∀x ∈ X, T(x) ∈ G · x}

is a Polish group for the topology of convergence in measure. This topology is weaker than the uniform
topology and refines the weak topology.

Moreover if the G-action is essentially free and measure preserving, then G embeds into [RG].

Proof. We start by showing that the topology of convergence in measure on [RG] is a Polish
group topology.

By Theorem 2.1.4, we may and do fix a Polish topology τ on X such that G " (X, τ) is a
continuous action. Now, the characterization of the convergence in measure in terms of point-
wise converging subsequences (cf. ((c)) in Proposition 2.1.8) yields that Φ is continuous. Then,
combining Proposition 2.1.11 and Proposition 2.1.1, we get that Aut(X, µ) ⊆ L0(X, µ, (X, τ))

is a Gδ and so [̃RG] = Φ−1(Aut(X, µ)) is also a Gδ. Therefore using again Proposition 2.1.1
we see that [̃RG] is Polish.

We now equip [̃RG] with the group operation ∗ defined by

( f ∗ g)(x) := f (Φ(g)(x))g(x).

The inverse is given by f−1(x) := f (Φ( f )−1x)−1. These group operations are continuous by
Proposition 2.1.11, Proposition 2.1.10 and the fact that Φ is continuous. So ([̃RG], ∗) is a Polish
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group and it is easy to check that the restriction Φ
![̃RG ]

is a group homomorphism. Hence we
deduce that

[RG ] = Φ([̃RG]) ∼= [̃RG ]/ ker(Φ),

is itself a Polish group for the quotient topology by Property 2.1.3 (β).

Remark 2.2.19. The Polish group [̃RG ] can be thought of as the full group of the groupoid
associated to the action.

Let us now check the that the topology of convergence in measure is intermediate between
the uniform and the weak topology. Since Φ is continuous, clearly we have that the topology
on the orbit full group refines the weak topology, which also yields that [RG] is a Borel
subgroup of Aut(X, µ) by Theorem 2.1.2.

If the action of G is essentially free, then Φ( fn) → idX uniformly implies that µ( f−1
n (1G)) →

1 and hence the topology of convergence in measure is weaker than the uniform topology. The
proof for non-free actions follows the same lines. We postpone the proof, because it will be
a more direct consequence of the description of the quotient topology that we will give in
Proposition 2.2.22.

Finally, when the G-action is essentially free, Φ restricts to a topological isomorphism
between [̃RG] and [RG]. The “moreover” part of the theorem then follows from the fact that
G embeds into [̃RG] ⊆ L0(X, µ, G) by identifying G with the set of constant maps.

Remark 2.2.20. We point out that we will show in Theorem 2.3.8 that the topology we have
defined is the unique possible Polish group topology for every ergodic orbit full group.

Topology for non-free actions

Let G be a Polish group acting on (X, µ) as in Theorem 2.3.8.
Recall that every Polish group admits a compatible right-invariant metric (see for instance

[Gao09, Theorem 2.1.1]). The proof of the following proposition can be found in [Gao09,
Lemma 2.2.8].

Proposition 2.2.21. Let G be a Polish group, and let dG be a compatible right-invariant metric on G.
Suppose that H ≤ G is a closed subgroup, then the quotient metric dG/H on G/H defined by, for
gH, g′H ∈ G/H,

dG/H(gH, g′H) := inf
h∈H

dG(gh, g′)

induces the quotient topology on G/H.

For x ∈ X, let Gx := StabG(x). Then Gx is a closed subgroup of G by a result of Miller (see
[Kec95, Theorem 9.17]; this also follows from Theorem 2.1.4). We now prove an analogous
statement of the previous proposition for orbit full groups.

Proposition 2.2.22. Let G be a Polish group acting in a Borel manner on a standard probability space
(X, µ). Let dG be a compatible bounded right-invariant metric on G. Then the quotient metric d[RG ]

induced by d̃G on [RG] = [̃RG]/ ker Φ is given by

d[RG ](T, U) =
∫

X
dx(T(x), U(x))dµ(x),
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where for all x ∈ X, we identify the G-orbit of x to the homogenous space G/Gx, equipped with the
quotient metric dx defined by dx(gGx, g′Gx) := infh∈Gx dG(gh, g′).

Before proving the proposition, we state the following corollary. Its proof is analogous to
the proof of Proposition 2.1.8, hence we omit it.

Corollary 2.2.23. Let (Tn) be a sequence of elements of an orbit full group [RG], and let T ∈ [RG].
Then the following are equivalent:

(a) Tn → T in measure,

(b) for all ε > 0, µ({x ∈ X : dx(T(x), Tn(x)) > ε}) → 0,

(c) every subsequence of (Tn)n∈N admits a subsequence (Tnk)k∈N such that for almost all x ∈ X we
have Tnk(x) → T(x), where the convergence holds in the orbit of x, identified to the homogeneous
space G/Gx.

Proof of Proposition 2.2.22. Let K be the subgroup of L0(X, µ, G) consisting of all f : X → G
such that for all x ∈ X, f (x) ∈ Gx. It is clear that K is the kernel of the restriction of Φ to
([̃RG ], ∗). Moreover, for all f ∈ [̃RG ] and g ∈ K,

( f ∗ g)(x) = f (Φ(g)(x))g(x) = f (x)g(x).

So two elements of [̃RG] are in the same right K-coset for the group operation ∗ in [̃RG ] if and
only if they are in the same right K-coset with respect to the pointwise multiplication. This
implies that the quotient metric induced by d̃G on [̃RG ]/K and the quotient metric induced
by d̃G on L0(X, µ, G)/K agree on [RG].

The latter metric comes from the pseudo-metric ρ on L0(X, µ, G) defined by ρ(g, g′) :=
infk∈K d̃G(gk, g′). In order to establish the proposition, we need to show that

ρ(g, g′) =
∫

X
dx(g(x), g′(x))dµ(x).

Note that the integral is well-defined because the function (x, g, g′) ;→ dx(g, g′) is analytic,
hence Lebesgue-measurable. Fix g, g′ ∈ L0(X, µ, G). For every ε > 0, we apply the Jankov-
von Neumann Uniformisation Theorem (see [Kec95, Theorem 18.1]) to the set

{(x, h) ∈ X × G : dG(g(x)h, g′(x) < dx(g(x), g′(x)) + ε and h · x = x}

and we get a function k ∈ K such that for all x ∈ X,

dG
(

g(x)k(x), g′(x)
)
< dx(g(x), g′(x)) + ε.

This implies that ρ(g, g′) ≤
∫

X dx(g(x), g′(x))dµ(x). The reverse inequality is a direct conse-
quence of the fact that for all k ∈ K and all x ∈ X,

dG(g(x)k(x), g′(x)) ≥ dx(g(x), g′(x)).
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2.2.3 Full groups of measurable equivalence relations

In this section, we study full groups of measurable equivalence relations, which will lead
us to a simple criterion for distinguishing the orbit full groups of the previous section from
Aut(X, µ) (see Corollary 2.2.28).

Proposition 2.2.24. Let (X, µ) be a standard probability space, and A be a Borel subset of X × X.
Then the set

[A] := {T ∈ Aut(X, µ) : ∀x ∈ X, (x, T(x)) ∈ A}

is a Borel subset of Aut(X, µ).

Proof. We may suppose that (X, d) is a Cantor set. By Proposition 2.1.11, the weak topology on
Aut(X, µ) is the same as the topology of convergence in measure induced by L0(X, µ, (X, d)).
We will show that given a Borel subset A of X × X, the function ΦA : L0(X, µ, (X, d)) →
MAlg(X, µ) defined by

ΦA( f ) := {x ∈ X : (x, f (x)) ∈ A}

is Borel. This will be enough because [A] = Φ−1
A ({X}). Let F be the class of subsets of X × X

for which ΦA is Borel. Because X × X is again a Cantor set, we only need to show that F is a
σ-algebra containing the clopen sets.

So suppose that A is a clopen subset of X×X. We will actually show that ΦA is continuous.
Fix f ∈ L0(X, µ, (X, d)) and ε > 0. Since A and X2 \ A are open, there is δ > 0 smaller

than ε/2 and a set B of measure less than ε/2 such that for all x ∈ X \ B and y ∈ X such that
d(y, f (x)) ≤ δ, we have

(x, f (x)) ∈ A ⇔ (x, y) ∈ A.

It is then clear that for every g in the open neighborhood U of f given by

Uδ( f ) =
{

g ∈ L0(X, µ, X) : µ {x ∈ X : d( f (x), g(x)) > δ}) < δ
}

,

we have µ(ΦA( f )∆ΦA(g)) < ε.
So the class F contains the clopen sets, and we now have to show that it is a σ-algebra.

First, F is stable under complementation, since given T ∈ Aut(X, µ), we have that ΦX2\A(T) =
X \ ΦA(T). Moreover if (An) is a countable family of elements of F , then

Φ∪n An(T) =
⋃

n∈N

ΦAn(T),

and since taking a countable union is a Borel operation on MAlg(X, µ), we get that
⋃

n∈N An

belongs to F .

Corollary 2.2.25. Let R be a Borel equivalence relation on a standard probability space (X, µ). Then
its full group

[R] = {T ∈ Aut(X, µ) : ∀x ∈ X, (x, T(x)) ∈ R}

is a Borel group for the Borel structure induced by the weak topology on Aut(X, µ).

In the previous section, we saw that the orbit full group of a Borel action of Polish group is
also Borel. Note however that there are actions of Polish groups inducing analytic, non Borel
equivalence relations, so there are non Borel analytic equivalence relations whose full group

47



Chapter 2. More full groups

is Borel. Using Theorem 2.3.16, one can show that there also are analytic equivalence relations
whose full group is not Borel.

Let us now give a general criterion which allows us to distinguish full groups of measur-
able equivalence relations and Aut(X, µ).

Proposition 2.2.26. Let R be a Lebesgue-measurable equivalence relation on a standard probability
space. Then the following are equivalent:

(i) [R] = Aut(X, µ),

(ii) R has full measure in X × X,

(iii) R has an equivalence class of full measure.

Proof. Both implications (iii)⇒(i) and (iii)⇒(ii) are obvious.
The implication (ii)⇒ (iii) is also easy: suppose that R has full measure, then by Fubini’s

Theorem for almost all x ∈ X, the R-equivalence class of x has full measure, so that in
particular there is one equivalence class of full measure.

For the remaining implication (i)⇒(iii), assume that [R] = Aut(X, µ). We may suppose
that X is a compact group equipped with the Haar measure. By assumption, for all z ∈ X the
left multiplication by z is in the full group [R], which means that for all z ∈ X and almost
x ∈ X, (zx, x) ∈ R. Again by Fubini’s theorem, we deduce that there exists x ∈ X such that
for almost all z ∈ X, (zx, x) ∈ R, hence (iii) holds.

Remark 2.2.27. The arguments used in the previous proof shows that the full group generate
by the circle group acting on itself by left translation [S1]D cannot be the full group of any
Lebesgue-measurable equivalence relation. Indeed, such an equivalence relation would have
to be transitive by the previous proof, so that [S1]D would be equal to Aut(X, µ), contradicting
Example 2.2.10.

Corollary 2.2.28. Suppose a Polish group G acts essentially freely on (X, µ), and that [RG] =
Aut(X, µ). Then G is compact.

Proof. If [RG] = Aut(X, µ), then by the previous proposition there is a G-orbit of full measure.
The freeness of the G-action allow us to identify such an orbit to G, which then carries a left-
invariant Borel probability measure, hence G is compact by Ulam’s Theorem (see [GTW05,
Theorem B.1]).

2.2.4 Orbit equivalence and full groups

Let R and R′ be two equivalence relations on a standard probability spaces (X, µ). We
say that R and R′ are orbit equivalent if there are a full measure subset A ⊆ X and a Borel
measure preserving bijection S : A → A such that for all (x, y) ∈ A2, (x, y) ∈ R if and only if
(S(x), S(y)) ∈ R′. We also say that such an S is an orbit equivalence between R and R′. It
is easy to see that if S is an orbit equivalence, then it conjugates the full groups [R] and [R′],
that is, we have the relation S[R]S−1 = [R′]. In the case of orbit full groups, one can say a bit
more.

Lemma 2.2.29. Let G and H be two Polish groups acting in a Borel manner on (X, µ). Let S ∈
Aut(X, µ) is an orbit equivalence between RG and RH. Then the conjugation by S is a group homeo-
morphism between the orbit full groups [RG] and [RH ].
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Proof. By Theorem 2.2.18, [RG] and [RH] are Borel subgroups of Aut(X, µ) and the conju-
gation by S induces a Borel isomorphism between [RG] and [RH ]. This isomorphism is a
homeomorphism by Property 2.1.3 (γ).

A fancier restatement of the previous lemma is that orbit full groups, seen as topological
groups, are invariants of orbit equivalence. Now, we show that for ergodic measure preserving
actions of locally compact groups, the orbit full groups are complete invariants.

Theorem 2.2.30. Let G and H be two Polish locally compact groups acting in a Borel measure pre-
serving ergodic manner on a standard probability space (X, µ). Suppose that ψ : [RG] → [RH] is an
abstract group isomorphism. Then there exists an orbit equivalence S between RG and RH such that
for all T ∈ [RG],

ψ(T) = S−1TS.

Dye’s Reconstruction Theorem plays a fundamental role in our proof.

Theorem 2.2.31 ([Dye63, Theorem 2]). Suppose G1 and G2 are two ergodic full groups on a standard
probability space (X, µ). Then for every abstract group isomorphism ψ : G1 → G2, there exists
S ∈ Aut(X, µ) such that for all T ∈ G1, we have ψ(T) = STS−1.

The theorem also uses the following proposition, whose proof is inspired by Proposition
B.2 of [Zim84].

Proposition 2.2.32. Let G and H be two Polish locally compact groups acting in a Borel measure
preserving manner on a standard probability space (X, µ), and suppose that [RG] ⊆ [RH ]. Then there
exists a full measure subset X0 ⊆ X such that

RG ∩ (X0 × X0) ⊆ RH.

Proof. Let ν be the Haar measure on G. The fact that [RG] ⊆ [RH ] implies that for all g ∈ G
and almost all x ∈ X, we have gx ∈ Hx. By Fubini’s Theorem, this implies that the set

X0 := {x ∈ X : for ν-almost all g ∈ G, we have gx ∈ Hx}

has full measure. Now let x ∈ X0, and let g1 ∈ G be such that g1x ∈ X0. We want to show
that g1x ∈ Hx.

Since x and g1x are in X0, the sets A := {g ∈ G : gx ∈ Hx} and B := {g ∈ G : gx ∈ Hg1x}
have full measure and so A ∩ B has full measure. Take g ∈ A−1 ∩ B, then gx ∈ Hx ∩ Hg1x, so
the two orbits Hx and Hg1x intersect, hence g1x ∈ Hx.

Proof of Theorem 2.2.30. By Dye’s Reconstruction Theorem, ψ is the conjugation by some S ∈
Aut(X, µ) and by the previous proposition applied two times, such an S has to be an orbit
equivalence.

Question 2.2.33. Can the previous theorem be extended to (some) non locally compact Polish
groups?
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2.3 Topological properties of full groups

2.3.1 Aperiodic elements and free actions

Now we study some topological properties of orbit full groups. Let us fix a Polish group
G acting on a Borel manner on the standard probability space (X, µ). We will denote by
G = [RG] the associated orbit full group. Recall that its Polish topology is weaker than the
uniform topology and refines the weak topology.

We will first prove that orbit full groups are contractible using the continuity of the first
return map.

Definition 2.3.1. Let T ∈ Aut(X, µ) and A ∈ MAlg(X, µ), Poincaré’s Recurrence Theorem
states that for almost every x ∈ A there is a smaller nx ∈ N such that Tnx(x) ∈ A. The first
return map TA is then defined by TA(x) = x for all x *∈ A, and by TA(x) = Tnx(x) for all
x ∈ A.

Proposition 2.3.2 and Corollary 2.3.3 are straightforward generalizations of Keane’s results
for Aut(X, µ), [Kea70]. We will however give a detailed proof to show how the compatible
metric on orbit full groups defined in Proposition 2.2.22 can be used.

Proposition 2.3.2. Let G be an orbit full group. Then the function which maps (T, A) ∈ G ×
MAlg(X, µ) to the first return map TA ∈ G is continuous.

Proof. Given T ∈ Aut(X, µ), A ∈ MAlg(X, µ) and n > 0, we let

Cn(T, A) := {x ∈ X : Tn(x) ∈ A},

we put Bn(T, A) := Cn(T, A) \
⋃

m<n Cm(T, A) and B0(T, A) := X \ A. Then (Bn(T, A))n≥0

is a partition of X and TA(x) = Tn(x) for all x ∈ Bn(T, A). Note that Bn(T, A) depends
continuously on (T, A) ∈ Aut(X, µ) × MAlg(X, µ), where Aut(X, µ) is equipped with the
weak topology.

Now, let ε > 0, and fix (T̃, Ã) ∈ G × MAlg(X, µ). Since (Bn(T̃, Ã))n≥0 is a partition of
X, we may find N > 0 such that µ(X \

⋃
m<N Bm(T̃, Ã)) < ε. Let U be the set of couples

(T, A) ∈ G × MAlg(X, µ) such that

(1) ∑
N
m=0 d[RG ](T̃

m, Tm) < ε and

(2) ∑
N
m=0 µ(Bm(T, A)∆Bn(T̃, Ã)) < ε.

By continuity of T ;→ Tm and of Bm(·, ·), the set U is open. Let (T, A) ∈ U , we now compute
the distance between T̃Ã and TA.

d[RG ](T̃Ã , TA) =
∫

X
dx(T̃Ã(x), TA(x))dµ(x)

≤
N

∑
m=0

∫

Bm(T̃,Ã)∆Bm(T,A)
dx(T̃Ã(x), TA(x))dµ(x)

+
n

∑
m=0

∫

Bm(T̃,Ã)∩Bm(T,A)
dx(T̃Ã(x), TA(x))dµ(x)

+
∫

⋃
m>N Bm(T̃,Ã)

dx(T̃Ã(x), TA(x))dµ(x).
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Since the metric dx is bounded by 1, we then get the following inequality:

d[RG ](T̃Ã, TA) <
N

∑
m=0

∫

Bm(T̃,Ã)∩Bm(T,A)
dx(T̃Ã(x), TA(x))dµ(x) + 2ε

<

N

∑
m=0

∫

Bm(T̃,Ã)∩Bm(T,A)
dx(T̃m(x), Tm(x))dµ(x) + 2ε

< 3ε.

Corollary 2.3.3. Orbit full groups are contractible.

Proof. We may suppose that X = [0, 1] and that µ is the Lebesgue measure. The continuous
map H : [0, 1] × G → G defined by H(s, T) := T[s,1] is a homotopy between the identity
function T ;→ T and the constant function T ;→ idX.

The support of T : X → X, denoted by supp T, is defined by

supp T := {x ∈ X : T(x) *= x}.

We now state the main theorem of this section. Note that condition (v) is a generalization of
[Tör06, The Category Lemma] to the case of orbit full groups.

Theorem 2.3.4. For a Borel, measure preserving action of the Polish group G on the probability space
(X, µ), we denote by G = [RG]. The following are equivalent:

(i) the set of aperiodic elements is dense in G;

(ii) the conjugacy class of any aperiodic element of G is dense in G;

(iii) there is a sequence (Tn) of aperiodic elements of G such that Tn → idX;

(iv) for all A ∈ MAlg(X, µ), there is a sequence (Tn) of elements of G such that Tn → idX and for
all n ∈ N, A = supp Tn;

(v) whenever Γ " (X, µ) is a free measure preserving action of a countable discrete group Γ, there
is a dense Gδ in G of elements inducing a free action of Γ ∗ Z;

(vi) for all n ∈ N, there is a dense Gδ of (T1, ..., Tn) in Gn which induce a free action of Fn.

(vii) for all neighborhood of the identity U in G, ∪g∈U supp g has full measure.

Proof. Let us first prove that (i) implies (ii), using the same argument of the case of Aut(X, µ)
(see [Kec10, Theorem 2.4]). By Rokhlin’s Lemma, the conjugacy class of any aperiodic element
of G is dense in the set of aperiodic elements of G for the uniform topology (see [LM14b,
Corollary 5.11] for details). Since the topology of G is weaker than the uniform topology, we
get that (i) implies that the conjugacy class of any aperiodic element is dense in G, in other
words (i)⇒(ii). Clearly (ii) implies (iii) and the continuity of the first-return map (Proposition
2.3.2) yields that (iii) implies (iv).

Törnquist proved in [Tör06, The Category Lemma] that (v) holds for G = Aut(X, µ), and
the only topological fact he used was precisely (iv) so we can repeat his entire argument to
get (iv)⇒(v) (see the observation before the proof of Lemma 2 in [Tör06]; the fact that P is an
involution is not relevant here).
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The implication (v)⇒(vi) is proven by induction, and (i) is a reformulation of (vi) for n = 1,
so the implication (vi)⇒(i) also holds.

So all the statements from (i) to (vi) are equivalent, and we now only have to prove that
(vii) is equivalent to them. For this, we will prove that (iii) implies (vii), and then that (vii)
implies (iv).

Let us show that (iii) implies (vii). Assuming that (vii) is not satisfied, we can find an open
neighborhood of the identity U in G such that µ(

⋃
g∈U supp g) = 1 − δ for some δ > 0. We

define a neighborhood of the identity U in [̃RG] by

U := { f ∈ [̃RG] : µ({x ∈ X : f (x) *∈ U}) < δ/2}.

For every f ∈ U , we have du(Φ( f ), idX) < 1, hence Φ( f ) is not aperiodic. The projection
of U on [RG] is a neighborhood of the identity in [RG] consisting of non-aperiodic elements,
contradicting (iii).

For the remaining implication (vii)⇒(iv), we first use Theorem 2.1.4 and fix a topology τ
on X such that the action of G on (X, τ) is continuous.

Let V be a neighborhood of the identity in G. We say that T ∈ [RG ] is uniformly small if
there is f ∈ L0(X, µ, G) such that f (X) ⊂ V and T(x) = f (x)x for every x ∈ X. Observe
that if we prove that for every A ∈ MAlg(X, µ) there is a uniformly small T ∈ [RG] such that
supp(T) ⊂ A, then by a maximality argument we would get that for every A ∈ MAlg(X, µ)
there is a uniformly small T ∈ [RG] such that supp(T) = A. And so condition (iv) would be
satisfied.

Let us fix an open set B ⊇ A such that µ(B \ A) < µ(A) and an open neighborhood of the
identity U ⊆ G such that U−1 = U and U2 ⊆ V.

Claim. There exists a countable family (gi)i∈N of elements of U and an a.e. partition (Ai)i∈N

of A such that for all i ∈ N, gi(Ai) is a subset of B which is disjoint from Ai.

Proof of the claim. Let (Un)n∈N be a countable basis of open neighborhoods of the identity in
G, and let

S :=
⋂

n∈N

⋃

g∈Un

supp g.

By hypothesis, S has full measure. Moreover since the action is continuous, for all x ∈ S ∩ B
there is a g ∈ U such that g · x ∈ B and g · x *= x. Always by continuity we can also find an
open neighborhood Wx ⊆ B of x such that g(Wx) and Wx are disjoint. We can now define
the partition {An} to be a countable open subcover of (Wx)x∈S∩B which exists by Lindelöf’s
Theorem.

We now have two possible cases.

• If for some i ∈ N, gi(Ai) is not disjoint from A, then we set C := Ai ∩ g−1
i (gi(Ai) ∩ A)

and the element T of [RG] defined by

T(x) :=






gi · x if x ∈ C
g−1

i · x if x ∈ g(C)
x otherwise

is uniformly small, non trivial, and supported in A.
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• If for all i ∈ N, gi(Ai) is disjoint from A, then since µ(B \ A) < µ(A) and {Ai}i is
a partition of A, there are two distinct indices i, j ∈ N such that gi(Ai) ∩ gj(Aj) has
positive measure. Letting C := g−1

i (gi(Ai) ∩ gj(Aj)), we see that the element T of [RG ]
defined by

T(x) :=






gigj · x if x ∈ C
gjg−1

i · x if x ∈ gig−1
j (C)

x otherwise

is uniformly small, non trivial, and supported in A.

Remark 2.3.5. Condition (vii) is always satisfied as soon as G is non discrete and acts essen-
tially freely and is never satisfied for countable discrete groups. In fact, it easy to see that the
aperiodic elements form a closed proper subset of full groups of countable pmp equivalence
relations.

Corollary 2.3.6. Let G be a locally compact group acting ergodically and in a Borel measure preserving
manner on (X, µ). Then we have the following dichotomy:

(1) either RG is a countable pmp equivalence relation,

(2) or the set of aperiodic elements is dense in [RG].

Proof. Let {Un}n be a sequence of open neighborhoods of the identity in G such that ∩nUn =
{1G}. We define the core of the action to be the intersection

⋂

n∈N

⋃

g∈Un

supp g.

Note that the core is a Borel set by Theorem 2.1.4. Moreover the core is G-invariant be-
cause for all g, h ∈ G, h(supp g) = supp(hgh−1) and the conjugation by h is a continuous
isomorphism of G. By ergodicity, either the core has measure one, in which case (2) holds by
a direct application of condition (vii) of the previous theorem, or the core has measure zero.

If the core has measure zero, then it is easy to check that the G-action yields a uniformly
continuous morphism G → (Aut(X, µ), du). By separability of the group G, we can conclude
from Proposition 2.2.9 that [G]D is the full group of a countable pmp equivalence relation
and hence [G]D = [RG]. Moreover G is locally compact, so we can apply Proposition 2.2.32
to deduce that the equivalence relation RG is countable up to a measure zero set, that is (1)
holds.

Let us give a non-trivial example where condition (1) of the previous corollary is satisfied.

Example 2.3.7. Let (Γn)n∈N be a sequence of finite groups and let G := ∏n∈N Γn be their
product. Let (X, µ) be a standard probability space, and fix a partition (An) of X such that
each An has positive measure. For every n ∈ N, we then fix a measure preserving action αn

of the finite group Γn which is free when restricted to An, and which is trivial outside of it.
We can now define an action of the group G on X by (γn)n · x = αm(γm)x whenever

x ∈ Am. This action is faithful and its core is trivial. Note also that we can embed in this way
any profinite group into any ergodic full group G. It is in fact sufficient to take the actions αn

such that αn(Gn) ⊂ G.
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2.3.2 Uniqueness of the Polish topology

We now show that the topology of convergence in measure is the unique possible Polish
group topology for ergodic orbit full groups.

Theorem 2.3.8. Let G be an ergodic full group.

(1) Any Polish group topology on G is weaker than the uniform topology .

(2) Any Polish group topology on G refines the weak topology.

(3) The group G carries at most one Polish group topology.

Item (1) was shown to hold by Kittrell and Tsankov for the full group of an ergodic count-
able pmp equivalence relation [KT10, Theorem 3.1], while item (2) was proven by Kallman for
G = Aut(X, µ) in [Kal85]. We will not give a detailed proof of these points, but we will just
indicate how to adapt the previous results to our broader setting.

Proof. (1) The proof of Theorem 3.1 in [KT10] only makes use of ergodicity via Proposition
2.2.11, and of the fact that in any full group, every element may be written as the product of at
most three involutions [Ryz93]. So it adapts verbatim to obtain that (G, du) has the automatic
continuity property 1. We deduce that the identity map (G, du) → (G, τ) is continuous, in
other words the uniform topology refines τ.

(2) The arguments in [Kal85] also use only Proposition 2.2.11 and they adapt verbatim to
obtain that the subsets of the form {g ∈ G : µ(A 9 gA) < ε} are analytic for any Polish group
topology τ on G. In particular, the identity map (G, τ) → (Aut(X, µ), w) is Baire-measurable,
hence continuous by Property 2.1.3 (γ), so that τ refines w.

(3) Let τ and τ′ be two Polish group topologies on G. By (2), both topologies have to refine
the weak topology, so the inclusion map G ↪→ (Aut(X, µ), w) is Borel for both topologies. By
Theorem 2.1.2, the Borel σ-algebras of G for τ and τ′ are both equal to the Borel σ-algebra
induced by the weak topology. So τ = τ′ by Property 2.1.3 (γ).

We note that the proof of (3) yields the following corollary.

Corollary 2.3.9. Let G be an ergodic full group admitting a Polish topology. Then it is a Borel subset
of Aut(X, µ) for the weak topology.

We do not know whether the full group generated by the circle acting on itself by trans-
lation [S1]D is Polishable. Note however that this full group is Borel by Corollary 2.3.17. The
following question has a positive answer when G is either Aut(X, µ) ([BYBM13]), or the full
group of a countable pmp ergodic equivalence relation [KT10].

Question 2.3.10. Let G be an ergodic orbit full group, then does it have the automatic conti-
nuity property?

Let us now observe that the third point of Theorem 2.3.8 still holds in the case of a full
group with a countable ergodic decomposition, using a simple result from Le Maître’s thesis
[LM14b], which we prove for the reader’s convenience.

1. A topological group G has the automatic continuity property if every morphism from G into a separable
group H is continuous.
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Lemma 2.3.11. Let (Gi)i∈N be a countable family of groups with trivial center admitting at most one
Polish group topology. Then ∏i∈N Gi has at most one Polish topology.

Proof. Fix a Polish group topology on ∏i∈N Gi, and for i ∈ N denote by πi the projection on
Gi. Let n ∈ N, set

G′
n := {g ∈ ∏

i∈N

Gi : ∀k *= n, πk(g) = e}.

Because each Gi has trivial center, G′
n is the commutator of Hn := {g ∈ ∏i∈N Gi : πn(g) =

e}, hence G′
n is closed in ∏i∈N Gi. Since Gn is isomorphic to G′

n, the induced topology on G′
n

is the unique Polish group topology on Gn. In particular, for every open subset U of Gn, the
set

Ũ := {e}× · · ·× {e}× U × {e}× · · · ⊂ ∏
i∈N

Gi

is a Gδ.
Observe that Hn is closed, since it is the commutator of G′

n. So for any open subset U of
Gn, the set

Ũ · Hn = G1 × · · ·× Gn−1 × U × Gn+1 × · · ·

is analytic, which implies by Property 2.1.3 (γ) the uniqueness of the Polish topology of
∏i∈N Gi.

A full group with countably many ergodic components is isomorphic to the product of the
full groups of its restrictions to these ergodic components, so we can combine Theorem 2.3.8
(3) with the previous lemma to get the following corollary.

Corollary 2.3.12. Let G be a full group with countably many ergodic components. Then it carries at
most one Polish group topology.

2.3.3 More (non) Borel full groups

In this section, we give more examples of Borel full groups, as well as examples of non
Borel ones. But first, we need some background on the space of probability measures.

Let (Y, τ) be a Polish space. We equip the space P(Y) of probability measures on Y with
the weak-* topology, that is, the coarsest topology making the maps

µ ∈ P(Y) ;→
∫

X
f dµ

continuous for all bounded continuous functions f : Y → R. This is a Polish topology (see
e.g. [Kec95, Section 17.E]).

Lemma 2.3.13. Let (X, µ) be a standard probability space, and (Y, τ) be a Polish space. Then the
following map

L0(X, µ, Y) → P(Y)
f ;→ f∗µ

is continuous.
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Proof. If a sequence ( fn)n converges to f in measure, then for almost every x ∈ X, we have
that fn(x) → f (x). For every continuous and bounded function g : Y → R by Lebesgue
Dominated Convergence Theorem we have,

∫

X
gd fn∗µ =

∫

X
g( fn(x))dµ(x) →

∫

X
g( f (x))dµ(x) =

∫

X
gd f∗µ,

and hence the map is continuous.

Proposition 2.3.14. The set of completely atomic probability measures of a Polish space Y is a Borel
subset of P(Y).

Proof. We first note that whenever U is an open subset of Y, then the set

Atom(U) := {µ ∈ P(Y) : there exists a ∈ U such that µ(U) = µ({a})}

is closed in P(Y). Indeed if µ /∈ Atm(U), then there are two positive functions f and g
supported in U with disjoint supports such that

∫
X f dµ and

∫
X gdµ are strictly positive.

Let (Un)n∈N be a countable basis of open subsets of Y. Let J be the set of finite subsets
I ⊂ N such that (Ui)i∈I is a disjoint family of open sets. Since a measure µ is atomic if and
only if for all ε > 0, there is an open set U of X of measure greater than 1 − ε containing
finitely many atoms, the set of atomic measure is exactly

⋂

n∈N

⋃

I∈J

({

µ ∈ P(Y) : µ

(
⋃

i∈I

Ui

)

> 1 −
1
n

}

∩
⋂

i∈I

Atom(Ui)

)

,

and so it is Borel.

Corollary 2.3.15. Let (X, µ) be a standard probability space and (Y, τ) be a Polish space. Then the set
L0

D(X, µ, Y) of elements of L0(X, µ, Y) with countable range is Borel.

Proof. Observe that f ∈ L0(X, µ, Y) has countable range if and only if f∗µ is completely atomic.
So L0

D(X, µ, Y) is the pre-image of a Borel set by a continuous function, hence it is Borel.

The next theorem is a Borel version of Theorem 2.2.18. The proof in the Borel case is easier
because we will not use a continuous model, that is, Theorem 2.1.4.

Theorem 2.3.16. Let G be a Polish group acting in a Borel way by measure preserving transformations
on a standard probability space (X, µ). Suppose that the action is essentially free, and let H ≤ G be a
subgroup of G. Then the following are equivalent:

1. H is a Borel subgroup of G;

2. [H]D is a Borel subgroup of Aut(X, µ);

3. [RH ] is a Borel subgroup of Aut(X, µ).

Proof. As we did for the proof of Theorem 2.2.18, we will consider the Polish space L0(X, µ, G),
and we use the fact that the map Φ : L0(X, µ, G) → L0(X, µ, X) defined by

Φ( f )(x) := f (x) · x
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is Borel 2. The homomorphism Φ is injective because the action is essentially free. Set [̃H]D :=
Φ−1([H]D) and [̃RH ] := Φ−1([RH ]). Theorem 2.1.2 implies that [̃H]D is Borel if and only if
[H]D is, and that [̃RH ] is Borel if and only if [RH ] is.

If we identify G with the Borel subset of constant maps in L0(X, µ, G), we have that H =

G ∩ [̃H]D = G ∩ [̃RH ] and so 2⇒1 and 3⇒1. For the converse, first note that L0(X, µ, H) is
a Borel subset of L0(X, µ, G), as shown in the corollary after Proposition 8 in [Moo76]. By
Corollary 2.3.15, L0

D(X, µ, G) is also a Borel subset of L0(X, µ, G) and the implications 1⇒2
and 1⇒3 hold because

[̃RH ] = [̃RG] ∩ L0(X, µ, H)

[̃H]D = [̃RH ] ∩ L0
D(X, µ, G).

Let us now point out two important consequences of the previous theorem. The first one
is straightforward.

Corollary 2.3.17. Suppose that G is a Polish group acting essentially freely and in a measure preserv-
ing Borel way on (X, µ). Then [G]D is Borel.

Question 2.3.18. Can one remove the freeness assumption from the previous corollary?

Corollary 2.3.19. There exists non Polishable ergodic full groups.

Proof. Consider the free action of the circle S1 onto itself by translation. Let H ≤ S1 be a non
Borel subgroup which still acts ergodically. Then by Theorem 2.3.16 both [H]D and [RH ] will
be non Borel full groups, and so by Corollary 2.3.9, they cannot have a Polish group topology.

The existence of such an H is a well-known consequence of the axiom of choice. Consider
R as a Q-vector space, and let H̃ be a hyperplane containing Q. The subgroup H := H̃/Z ≤
R/Z = S1 is a proper subgroup of S1 with countable infinite index, which acts ergodically
because it contains an irrational. Such a subgroup H can not be Lebesgue-measurable. Indeed,
since S1 is covered by countably many translates of H, H has non zero-measure. But then, H
must have finite-index, a contradiction.

2.4 Character rigidity for full groups

In this section, we use a result of Dudko concerning characters of the full group of the
hyperfinite equivalence relation R0 to classify characters of ergodic full groups admitting a
Polish group topology. Recall that R0 is the countable pmp equivalence relation on X =
{0, 1}N equipped with the product measure µ = (1/2δ0 + 1/2δ1)⊗N, defined by

(xn)R0(yn) ⇐⇒ ∃p ∈ N | ∀n ≥ p, xn = yn.

Theorem 2.4.1. For an ergodic Polish full group G we have the following dichotomy:

1. either G is the full group of a countable pmp equivalence relation, and all its continuous characters
are (possibly infinite) convex combinations of the trivial character χ0 ≡ 1 and the characters
{χk}k≥1 given by

χk(g) := µ({x ∈ X : g · x = x})k,

2. Note that L0(X, µ, X) is a standard Borel space, whose Borel structure does not depend on the Polish topol-
ogy we put on X by [Moo76, Proposition 8].
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2. or G does not have any non trivial continuous character.

The result of Dudko that we use may be stated as follows.

Theorem 2.4.2 ([Dud11]). Let χ be a continuous character of the full group of the hyperfinite equiv-
alence relation R0. Then there is a unique sequence non negative coefficients (αk)k≥0 such that
∑

+∞
k=0 αk = 1 and χ = ∑

+∞
k=0 αkχk.

Our result will follow from the description of the uniformly continuous characters of any
ergodic full group, which was also observed by Gaboriau and Medynets (private communica-
tion).

Proposition 2.4.3. Let G be an ergodic full group and let χ be a character of G, continuous for
the uniform topology. Then there is a unique sequence of non negative coefficients (αk)k≥0 such that
χ = ∑

+∞
k=0 αkχk.

Proof. It is a standard fact that up to conjugating, we may assume that [R0] ⊂ G (for a proof in
the general setting of ergodic full groups, see [LM14b, Theorem 2.19]). Let χ be a character of
G continuous for the uniform topology. By Theorem 2.4.2, there is a sequence of non negative
coefficients (αk)k≥0 such that χ(g) = ∑

+∞
k=0 αkχk(g) for all g ∈ [R0]. By Rokhlin’s Lemma, the

set F of elements of finite order of G is uniformly dense in G. Since G is ergodic, every element
of F is conjugate inside G to an element of [R0]. By definition χ is conjugacy-invariant, so
χ(g) = ∑

+∞
k=0 αkχk(g) for all g ∈ F and hence for any g ∈ G by continuity.

Proof of theorem 2.4.1. Let G be an ergodic full group equipped with a Polish topology τ, and
let χ be a τ-continuous non-trivial character of G. By Theorem 2.3.8, τ is weaker than the
uniform topology. So the character χ is continuous for the uniform topology and, by the
previous proposition, there is a sequence of non negative coefficients (αk)k≥0 such that χ =
∑

+∞
k=0 αkχk.

For all T ∈ Aut(X, µ) and all k ≥ 1, we have χk(T) = (1 − du(T, idX))k, so χk(Tn) → 1 if
and only if du(Tn, idX) → 0. Since χ is not the trivial character, we deduce that χ(Tn) → 1
if and only if du(Tn, idX) → 0. When Tn converges to idX for τ, we have χ(Tn) → 1, which
implies that Tn converges to idX in the uniform topology. We deduce that τ refines the uniform
topology, hence they are equal. Since τ is Polish, we can conclude from Proposition 2.2.9 that
G is the full group of a countable pmp equivalence relation.
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Chapter 3

Full groups of locally compact groups

The following chapter is based on a joint work with François Le Maître.

We show that the topological rank of a full group generated by an ergodic, probability
measure preserving action of a locally compact Polish group is two. For this, we will
use the existence of a cross section and we will prove that for a locally compact Polish
group, the full group generated by every dense subgroup is dense in the full group of
the action of the group.
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Chapter 3. Full groups of locally compact groups

3.1 Preliminaries

Every measure preserving action α of a Polish group G on a probability space (X, µ)
induces a homomorphism ρα : G → Aut(X, µ). This homomorphism is always continuous
with respect to the weak topology on Aut(X, µ). For locally compact Polish 3 groups, measure
preserving actions and weakly continuous homomorphisms from G to Aut(X, µ) are the same
in the following sense.

Theorem 3.1.1 (Mackey, [Mac62]). Let G be a locally compact Polish group and let (X, µ) be a
standard probability space. Then for every weakly continuous homomorphism ρ : G → Aut(X, µ)
there exists a measure preserving action α of G on (X, µ) such that the induced homomorphism ρα :
G → Aut(X, µ) is equal to ρ. Moreover if α and β are two measure preserving actions of G such that
the induced homomorphisms ρα and ρβ are equal, then there is a Borel subset A ⊂ G of full measure
such that α

∣∣
A = β

∣∣
A.

If G is locally compact and Polish, then we will call the measure preserving action asso-
ciated to a homomorphism ρ : G → Aut(X, µ) a realization of the action. Let us recall two
important definitions.

Definition 3.1.2. A measure preserving action of a Polish group G on the probability measure
space (X, µ) is

• essentially free if there is a subset of full measure A ⊂ X such that for every x ∈ A and
every g ∈ G, we have that gx *= x;

• ergodic if every Borel subset A ⊂ X which is almost G-invariant (i.e. for all g ∈ G we
have µ(A 9 g(A)) = 0) has measure 0 or 1.

Remark 3.1.3. • In the definition of freeness, we do not require A to be G-invariant. How-
ever for any such A, we can consider the measurable subset A′ := GA. Then A′ is clearly
G-invariant and it satisfies the same condition.

• There are actions of compact groups such that for every g ∈ G, the set {x ∈ X : gx = x}
has measure 0 but which are not essentially free.

• Mackey’s Theorem implies that if G is locally compact and separable then if a realization
of an action is essentially free, then all Borel realizations are essentially free.

• Another easy consequence of Mackey’s Theorem (see [Mac62, Theorem 3]) is that a
measurable action of a locally compact Polish group is ergodic if and only if every Borel
subset A ⊂ X which is G-invariant (i.e. for all g ∈ G, we have g(A) = A) has measure 0
or 1. This is not true for general Polish groups, see Example 2.2.15

Every locally compact Polish group admits an essentially free measure preserving action
(see e.g. Proposition 1.2 in [AEG94]). We will give now two concrete examples of actions.

Example 3.1.4. Suppose that G is totally disconnected. By van Dantzig’s theorem, there exists
a chain (Kn)n∈N of compact open subgroups of G such that ∩nKn = {1G}. The action of G
on the countable set 6nG/Kn gives a continuous injective embedding of G into the group of
permutation of N. So for each chain {Kn}, we can associate a Bernoulli shift on [0, 1]N , which
is ergodic and essentially free.

3. Recall that a locally compact group is Polish if and only if it is second-countable (see [Kec95, Theorem 5.3]).
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Example 3.1.5. Suppose that G has a lattice Γ < G, let λ be a Haar measure on G and let D be
a fundamental domain of the right Γ-action on G. Then any probability measure preserving
action of Γ on (X, µ) induces a measure preserving action of G on (X × D, µ × λ|D), see
Definition 4.2.21 in [Zim84].

Observe that for the second example, the equivalence relation RG is equal to the product
equivalence relation RΓ × (D× D). This property is actually shared by all measure preserving
actions of locally compact Polish groups.

3.1.1 Cross-sections and product decomposition

We present now the most important property of measure preserving actions of locally
compact Polish groups: the existence of a cross-section.

Definition 3.1.6. Consider an essentially free, measure preserving action of the locally com-
pact Polish group G on the probability space (X, µ). A Borel subset Y ⊂ X is a cross-
section of the action if there exists a neighborhood of the identity U ⊂ G such that the
map θ : U × Y → X defined by θ(u, y) := uy is injective and such that µ(X \ GY) = 0.

The existence of cross section was proved by Forrest in [For74, Proposition 2.10] in the more
general context of non-singular actions. For a more recent proof, we invite the reader to check
Theorem 4.2 of [KPV13]. The following theorem is essentially a version of [For74, Proposition
2.13] in the context of a measure preserving action of a unimodular locally compact group.

Theorem 3.1.7. Let G be a unimodular, locally compact, non-compact and non-discrete Polish group.
For a measure preserving, essentially free and ergodic action of G on the probability space (X, µ), there
exists a countable group Γ and a probability measure preserving action of Γ on (Y, ν) such that the
action of G is orbit equivalent to the product action S1 × Γ on S1 × Y, where S1 acts on itself by
translation.

Moreover, G is amenable if and only if the orbit equivalence relation induced by Γ on (Y, ν) is
amenable.

Proof. Fix a Haar measure λ on G. Let Y ⊂ X be a cross section and let U ⊂ G be a neighbor-
hood of the identity as in Definition 3.1.6. We consider the restriction of RG to Y,

R := {(y, y′) ∈ Y × Y : ∃g ∈ G, y′ = gy}.

We state here some well-known facts about the equivalence relation R. For a proof of
these properties, see Proposition 4.2 in [KPV13].

(1) R is a Borel, countable equivalence relation on Y,

(2) there exist a (unique) R-invariant Borel probability measure ν on Y and a real number
0 < covol(Y) < +∞ such that θ∗(λ

∣∣
U × ν) = covol(Y)µ,

(3) (R, ν) is ergodic if and only if the action of G is ergodic,

(4) (R, ν) has infinite orbits almost everywhere if and only if G is non-compact,

(5) (R, ν) is amenable if and only if G is amenable.
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By property (4) above, we deduce that (Y, ν) is diffuse. Since R is countable and measure
preserving, Feldman and Moore’s result ([FM77a, Theorem 1]) gives us a measure preserving
action of a countable group Γ on (Y, ν) which induces the equivalence relation R.

Up to taking a open subset of U, we may assume that µ(U · Y) = 1
K for some K ∈ N. Set

A = U · Y.
By ergodicity of G, we can find T ∈ [RG] of order K such that {A, T(A), ..., TK−1(A)} is a

partition of a full measure subset of X. Let us denote by c the counting measure on Z/KZ

and consider the equivalence relation S on (Z/KZ × U × Y, c × λ × ν) defined by

(k, u, y)S(k′ , u′, y′) if yRy′ .

Observe that for every y ∈ Y the equivalence relation S restricted to Z/KZ × U × {y} is
transitive, so S is orbit equivalent to the product action S1 × Γ on S1 × Y, where S1 acts on
itself by translation. Moreover the measure preserving map

Θ : (Z/KZ × U × Y, c × λ × ν) → (X, µ)

Θ(k, u, y) := Tk(u · y),

defines an orbit equivalence between S and RG.

3.2 Dense subgroups in orbit full groups

The aim of this chapter is to describe some dense subgroups of the full group. We will
prove the following theorem.

Theorem 3.2.1. Let G be a locally compact Polish group. For every ergodic, measure preserving action
of G on the probability space (X, µ) and for every dense subgroup H ⊂ G, we have that [RH] is dense
in [RG].

Let us show how we can compute the topological rank of a full group using Theorem 3.2.1.

Theorem 3.2.2. Let G be a locally compact unimodular non-discrete and non-compact Polish group.
For every measure preserving, essentially free and ergodic action of G, there is a dense Gδ of cou-
ples (T, U) in [RG]2 which generate a dense free subgroup of [RG] acting freely. In particular, the
topological rank of [RG] is 2.

Proof. Let G be a locally compact unimodular, non-discrete and non-compact Polish group.
Suppose that G acts on the probability space (X, µ) preserving the measure, essentially freely
and ergodically. Let us denote by F2 the free group on two generators and observe that

{
(T, U) ∈ [RG]

2 : 〈T, U〉 = [RG] and 〈T, U〉 ∼= F2

}
,

is a Gδ, so we have only to prove that it is dense.
By Theorem 3.1.7, there exists a (not necessarily free) action of a countable group Γ on

a measure space (Y, ν), such that RG is orbit equivalent to the product action of S1 × Γ on
S1 ×Y. Fix a copy of Z in S1 generated by an irrational rotation; then Z × Γ is dense in S1 × Γ.
By Theorem 3.2.1, we have that [RZ×Γ] is dense in [RG ].
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The equivalence relation RZ×Γ has cost 1, by Proposition VI.23 of [Gab00] (note that the
proof only uses that Γ1 acts freely). So we can apply Theorem 1.7 in [LM15] to get the existence
of an aperiodic T ∈ [RZ×Γ] such that

{
U ∈ [RZ×Γ] : 〈T, U〉

du
= [RZ×Γ] and 〈T, U〉 ∼= F2

}
⊂ [RZ×Γ]

is a dense subset of [RZ×Γ] with respect to the uniform topology. This concludes the proof
since by Theorem 2.3.4, the conjugacy class of T is dense in [RG] for the topology of conver-
gence in measure.

3.2.1 Suitable Actions

We will prove Theorem 3.2.1 under a weaker hypothesis in the context of Polish group
actions. Recall however, that we have already discussed a counterexample of Theorem 3.2.1
in Example 2.2.15. Indeed there is a Borel probability measure on {0, 1}N such that the full
group generated by the finitely supported permutations is not dense in the orbit full group
of the Polish group of all permutations of N acting by shift on {0, 1}N . The fact is that this
action is not suitable.

Definition 3.2.3 (Becker, [Bec13, Definition 1.2.7]). Let G be a Polish group. A Borel, measure
preserving action of G on the probability space (X, µ) is suitable if for all Borel subsets A, B ⊂
X, one of the following two conditions holds:

(1) for any open neighborhood of the identity O ⊂ G, there is g ∈ O such that µ(A ∩ gB) >
0;

(2) there are Borel subsets A′ ⊂ A and B′ ⊂ B of full measure in A and B and an open
neighborhood O of the identity in G such that (OA′) ∩ B′ = ∅.

We will prove the following.

Theorem 3.2.4. Let G be a Polish group. For every Borel, measure preserving, ergodic suitable action
of G on the probability space (X, µ) and for every dense subgroup H ⊂ G, the orbit full group [RH] is
dense in [RG].

Becker proved in Theorem 1.2.9 of [Bec13], that all measure preserving actions of locally
compact Polish groups are suitable, so Theorem 3.2.4 implies Theorem 3.2.1

3.2.2 An equivalent statement

From now on, we will use the notations of Section 2.2.2. For every Borel, measure pre-
serving action of G on the probability space (X, µ), we denote by [̃RG]D ⊂ [̃RG] the subset of
function with countable (essential) image and we put [RG]D := Φ([̃RG ]D), which is just [G]D
of Definition 2.2.7.

Theorem 3.2.4 follows form the following weaker theorem.

Theorem 3.2.5. Let G be a Polish group. For every Borel, measure preserving ergodic suitable action
of G on the probability space (X, µ), we have that [̃RG ]D ⊂ [̃RG] is a dense subgroup.
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In order to show that Theorem 3.2.5 implies Theorem 3.2.4, we will need the following
proposition.

Proposition 3.2.6. Consider an ergodic, measure preserving action of a Polish group G on the prob-
ability space (X, µ). Let A be a measurable subset and let f : A → G be a measurable function such
that the map Φ( f ) : A → X defined by Φ( f )(x) := f (x)x is a measure preserving injective map.
Then there exists a function f ′ ∈ [̃RG] such that

• f ′
∣∣

A = f almost everywhere,

• f ′(X \ A) is countable.

Proof. Let Γ ≤ G be a countable dense subgroup of G. Since Γ and G have the same weak
closure in Aut(X, µ), it follows that Γ also acts ergodically. So one can find an element of the
pseudo-full group [[RΓ]] which maps X \ A to X \ B (see [KM04, Lemma 7.10]). This element
defines a map f̃ : X \ A → G which has countable range and by gluing this map together with
f , we obtain a function f ′ satisfying the desired assumptions.

Proof of Theorem 3.2.4. Let G be a Polish group and let H be a dense subgroup. Consider a
Borel, measure preserving suitable action of G on the probability space (X, µ). We will prove
that [̃RH]D ⊂ [̃RG]D is dense. Then we can use Theorem 3.2.5 to end the proof.

Fix a compatible, right-invariant metric dG on G bounded by 1, fix ε > 0 and take f ∈

[̃RG ]D. There are k ∈ N, a finite subset {g1, . . . , gk} ⊂ G and a finite partition {A0, . . . , Ak}
of X such that µ(A0) ≤ ε/2 and for every i ≥ 1, we have f (Ai) = {gi}. By density and
weak-continuity of the action, there exists {h1, . . . , hk} ⊂ H such that for every i ∈ {1, . . . , k},
we have that dG(gi, hi) ≤ ε and µ(gi(Ai)∆hi(Ai)) ≤ ε/2k. Put

Bi := h−1
i (gi(Ai) ∩ hi(Ai)) ⊂ Ai,

and observe that µ(∪k
i=1Bi) ≥ 1 − ε. Since the subsets {hiBi} are disjoint, Proposition 3.2.6

implies that there is f ′ ∈ [̃RH ] with countable image such that d̃G( f , f ′) ≤ 2ε.

3.2.3 Proof of Theorem 3.2.5

Definition 3.2.7. Fix f ∈ [̃RG] and a neighborhood of the identity N ⊂ G. We say that a
couple (A, g) is (N-)good if

1. A ⊂ X is a measurable subset of positive measure and g : A → G is a measurable
function with countable image,

2. for every x ∈ A, we have f (x)g(x)−1 ∈ N,

3. the map Φ(g) : A → X defined by Φ(g)(x) = g(x)x is injective and measure preserving.

We note that for a fixed f ∈ [̃RG] the existence of a good couple is not a trivial fact and it
is exactly where we will use the hypothesis that the action is suitable.

The proof of the theorem will be a measurable version of the Hall’s marriage theorem
and it will follow the same strategy of Hudson in [Hud93]. For a fixed f as in Definition
3.2.7, using Zorn’s lemma, we will construct for every ε > 0 and neighborhood of the identity
N ⊂ G a good couple such that µ(A) > 1 − ε in three steps.
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Step 1

In the first step, we will use the hypothesis that the action is suitable.

Proposition 3.2.8. Let f ∈ [̃RG ] and let N ⊂ G be a neighborhood of the identity. For every
B ⊂ X of positive measure, there is a good couple (A, g) such that A ⊂ B has positive measure and
Φ(g)(A) ⊂ Φ( f )(B).

Proof. Consider a neighborhood of the identity O ⊂ G such that O = O−1 and O2 ⊂ N.
Let f (x0) be an element of the support of the pushforward measure f∗µ

∣∣
B and put A :=

B∩ f−1(O f (x0)). For every neighborhood of the identity O′ in G, set CO′ := f−1(O′ f (x0))∩ B.
Note that CO′ ⊂ A, whenever O′ ⊂ O. By definition of the support of f∗µ

∣∣
B the Borel set CO′

has positive measure.
Let us show that condition (2) of Definition 3.2.3 is not satisfied for the two Borel sets

Φ( f )(A) and f (x0)A. Indeed, Φ( f )−1 and f (x0)−1 are measure preserving so if condition
(2) holds, then there is a full measure subset A′ ⊆ A such that Φ( f )(A′) and O′ f (x0)A′

are disjoint. This is a contradiction because Φ( f )(A′) and O′ f (x0)A′ contain Φ( f )(A′ ∩ CO′)
which has positive measure.

Since the action is suitable, (1) (of Definition 3.2.3) has to hold. So there is h ∈ O such that

µ(Φ( f )(A) ∩ h f (x0)A) > 0.

Set A := A ∩ f (x0)−1h−1Φ( f )(A) and for every x ∈ A put g(x) := h f (x0). The couple (A, g)
is good, because for every x ∈ A we have that f (x) f (x0)−1 ∈ O and

f (x)g(x)−1 = f (x) f (x0)
−1h ∈ O2 ⊂ N.

Step 2

For a neighborhood N of the identity in G and ε > 0, we now define the order on the family
of N-good couples associated to a function f ∈ [̃RG].

Definition 3.2.9. Let (A1, g1) and (A2, g2) be two good couples. We say that (A1, g1) ≺
(A2, g2) if A2 ⊇ A1 almost everywhere and if

µ({x ∈ A1 : g1(x) *= g2(x)}) ≤
1
ε
(µ(A2)− µ(A1)).

Lemma 3.2.10. The relation ≺ is an order relation on the set of good couples.

Proof. The only non-trivial fact to prove is that ≺ is transitive. For this suppose that

(A1, g1) ≺ (A2, g2) ≺ (A3, g3),

then

{x ∈ A1 : g1(x) *= g3(x)} ⊂ {x ∈ A1 : g1(x) *= g2(x)} ∪ {x ∈ A2 : g2(x) *= g3(x)},
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so we get

µ({x ∈ A1 : g1(x) *= g3(x)})

≤µ({x ∈ A1 : g1(x) *= g2(x)}) + µ({x ∈ A2 : g2(x) *= g3(x)})

≤
1
ε
(µ(A2)− µ(A1)) +

1
ε
(µ(A3)− µ(A2))

=
1
ε
(µ(A3)− µ(A1)).

The following proposition is the core of the proof of Theorem 3.2.5.

Proposition 3.2.11. For every good couple (A, g) with µ(A) < 1 − ε, there exists a good couple
(A′, g′) such that (A, g) ≺ (A′, g′) and µ(A′ \ A) > 0.

We would like to say that for every good couple (A, g) there is B ⊂ X \ A such that
Φ( f )(B) ∩ Φ(g)(A) = ∅. When this is the case, we can conclude using Proposition 3.2.8. The
problem is that this is not always possible, but it is possible in a finite number of steps.

Φ( f ) Φ( f ) Φ( f )
Φ(g) Φ(g)

AD1 D2 D3

E1 E2 E3Φ(g)(A)

In the figure Φ( f ) acts vertically and Φ(g) acts diagonally.
Since Φ( f )(X \ A) ⊂ Φ(g)(A), we can not use Proposition 3.2.8 directly.

Lemma 3.2.12. There are k ∈ N with k ≤ 1/ε and two sequences {Di}i≤k and {Ei}i≤k of measurable
subsets of X of positive measure such that

(a) the {Di}i≤k are pairwise disjoint as are the {Ei}i≤k,

(b) D1 ⊂ X \ A and Di ⊂ A for i > 1,

(c) Ek ⊂ X \ Φ(g)(A) and Ei ⊂ Φ(g)(A) for i < k,

(d) Φ( f )(Dk) = Ek and Ek−1 = Φ(g)(Dk).

Proof. Set B1 := X \ A and C1 := Φ( f )(B1). For i ≥ 2 define recursively

Bi := Φ(g)−1(Ci−1 ∩ Φ(g)(A)) and Ci := Φ( f )(Bi).

Observe that {Bi}i are pairwise disjoint as are the {Ci}i. Suppose now that for l ≥ 1, we
have that Ci ⊂ Φ(g)(A) for all i ≤ l. Since Φ(g) and Φ( f ) preserve the measure, we have
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that µ(Ci) = µ(B1) for all i ≤ l and hence we have that lµ(B1) ≤ 1 − µ(B1). By hypothesis
µ(B1) ≥ ε, so l ≤ 1/ε − 1. Therefore there exists k ≤ 1/ε, such that Ck is not contained in
Φ(g)(A) and Ci ⊂ Φ(g)(A) for every i < k.

Put Ek := Ck \ Φ(g)(A) and set Dk := Φ( f )−1(Ek). Observe that Dk ⊂ Bk and define
recursively Ei := Φ(g)(Di+1) and Di := Φ( f )−1(Ei).

Proof of Proposition 3.2.11. Consider the families {Di}i≤k and {Ei}i≤k defined in the previous
lemma. By Proposition 3.2.8, there exists a good couple (A1, g1) such that A1 ⊂ D1 and
Φ(g1)(A1) ⊂ Φ( f )(A1) ⊂ E1. For i ∈ {2, . . . , k}, whenever Ai−1 is defined, we set

A′
i := Φ(g)−1(Φ(gi−1)(Ai−1)) ⊂ Di.

For every i such that A′
i is defined, Proposition 3.2.8 implies that there is a good couple

(Ai, gi) such that Ai ⊂ A′
i is non-negligible and Φ(gi)(Ai) ⊂ Φ( f )(Ai) ⊂ Ei. Put Bk := Ak.

For i ∈ {1, . . . , k − 1}, we define recursively Bi := Φ(gi)−1(Φ(g)(Bi+1)).
Set A′ := A ∪ B1 and define

g′(x) :=
{

g(x) if x ∈ A \ ∪i≥2Bi,
gi(x) if x ∈ Bi.

By construction, Φ(g′) : A′ → X is injective and preserves the measure. Moreover (A′, g′)
is obtained cutting and pasting N-good couples, so it is a N-good couple. Let us finally check
that (A, g) ≺ (A′, g′). Clearly we have A′ ⊃ A and µ(A′ \ A) = µ(B1) > 0. Moreover

µ({x ∈ A : g(x) *= g′(x)}) ≤ µ (∪i≥2Bi) ≤ kµ(B1) ≤
1
ε
(µ(A′)− µ(A)).

Step 3

We verify now that we can apply Zorn’s Lemma to the set of good couples.

Proposition 3.2.13. Every chain for ≺ has an upper bound.

Proof. Let us assume for the moment that {(An, gn)}n is a countable chain of good couples.
For every n ∈ N set

Bn := {x ∈ An : gn(x) = gn+1(x)}, Cn := ∩k≥nBn and A := ∪nCn.

Clearly A ⊂ ∪n An and we now check that the two measurable subsets have the same
measure. In fact, since {An}n and {Cn}n are increasing sequences, for every η > 0, there is
K ∈ N such that

µ(∪n An)− µ(AK) < η and µ(∪nCn)− µ(CK) < η,

hence we have

µ(∪n An)− µ(A) ≤2η + µ(AK)− µ(CK) = 2η + µ(AK \ CK)

=2η + µ(AK ∩ (∪k≥KX \ Bk)) = 2η + µ(∪k≥K AK \ Bk)

≤2η + ∑
k≥K

µ(Ak \ Bk) ≤ 2η +
1
ε ∑

k≥K
µ(Ak+1 \ Ak)

≤2η +
1
ε

µ(∪k≥K+1 Ak \ AK) ≤ 2η +
η

ε
.
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As η is arbitrarily small, we get that A = ∪n An almost everywhere. For x ∈ Cn, observe
that gn(x) = gn+j(x) for every j ≥ 0. We define

g(x) := gn(x) if x ∈ Cn.

The couple (A, g) is obtained by cutting and pasting N-good couples so the couple is N-good.
Moreover A ⊇ ∪n An almost everywhere and for every n ∈ N, we have

µ(x ∈ An : gn(x) *= g(x)) ≤ µ(An \ Cn) ≤
1
ε ∑

k≥n
µ(Ak+1 − Ak) =

1
ε
(µ(A)− µ(An)).

Therefore the couple (A, g) is an upper bound for the countable chain. Consider now an
arbitrary chain {(Ac, gc)}c∈C and set λ = supc∈C µ(Ac). If there is a good couple (Ac, gc) such
that µ(Ac) = λ, then this couple is an upper bound of the chain and there is nothing to prove.
Suppose that this is not the case and consider a subsequence {(An, gn)}n∈N of the chain such
that limn µ(An) = λ. Let (A, g) be an upper bound for this sequence. Given any element of
the chain (Ac, gc) there exists n such that µ(Ac) ≤ µ(An) and hence (Ac, gc) ≺ (An, gn) ≺
(A, ϕ).

End of the proof of Theorem 3.2.5

Let f ∈ [̃RG]. By definition of the topology of convergence in measure, a base of neigh-
borhoods of f is given by the open sets

Uε,N :=
{

g ∈ [̃RG] : µ ({x ∈ X : g(x) ∈ N f (x)}) > 1 − ε
}

,

where ε > 0 and N ⊂ G is a neighborhood of the identity. For every neighborhood of the
identity N ⊂ G, Proposition 3.2.8 implies that the set of good couples for f is not empty. For
ε > 0, Proposition 3.2.13 tells us that there is a maximal good couple (A, g). The maximality
of the couple and Proposition 3.2.11 imply that µ(A) > 1 − ε. Hence we can use Proposition
3.2.6 to obtain an element g′ ∈ [̃RG]D ∩ Uε,N.
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Chapter 4

Maximal amenable subalgebras of von
Neumann algebras associated with

hyperbolic groups

The following chapter is based on a joint work with Rémi Boutonnet.

We prove that for any infinite, maximal amenable subgroup H in a hyperbolic group
G, the von Neumann subalgebra LH is maximal amenable inside LG. It provides
many new, explicit examples of maximal amenable subalgebras in II1 factors. We
also prove similar maximal amenability results for direct products of relatively hyper-
bolic groups and orbit equivalence relations arising from measure-preserving actions
of such groups.
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Notations and conventions

All von Neumann algebras considered in the dissertion will be assumed to be separable.
When a finite von Neumann algebra M is being considered, we will denote by τ a faithful
normal trace on it. In this case we denote by ‖x‖2 = τ(x∗x)1/2 the 2-norm of an element
x ∈ M. In contrast, we denote by ‖x‖∞ the operator norm of x. Also we denote by L2(M, τ)
(or sometimes just L2(M)) the Hilbert space obtained by completion of M with respect to
the 2-norm. The left multiplication of M on itself extends to an action of M on L2(M). This
representation is normal and often we will represent M ⊂ B(L2M) in this manner.

If M is a finite von Neumann algebra, and N is a von Neumann subalgebra of M, we
denote by EN the trace preserving conditional expectation.

If G is a discrete countable group, we denote by LG the associated von Neumann algebra;
that is, the von Neumann subalgebra in B(!2G) generated by the left regular representation
of G. We also denote by RG is commutant, which is also the von Neumann algebra generated
by the right regular representation. Both LG and RG are finite and we choose τ to be the
canonical trace on them, defined by τ(x) = 〈xδe, δe〉 for all x ∈ LG ⊂ B(!2G) (here δe ∈ !2G
denotes the Dirac function at the identity element e of the group G). In this case, we have that
L2(LΓ, τ) @ !2(Γ).

4.1 Preliminaries

4.1.1 Central sequences and group von Neumann algebras

In this section, we consider an inclusion of two countable discrete groups H < G. We
denote by LH ⊂ LG the associated von Neumann algebras and by ug the canonical unitaries
in LG that correspond to elements g ∈ G.

For a set F ⊂ G, we will by denote PF : !2(G) → !2(F) the orthogonal projection onto
!2(F).

As explained in the introduction, the proofs of our main results rely on an analysis of
LH-central sequences. We describe here how the H-conjugacy action on G allows localizing
the Fourier coefficients of LH-central sequences in terms of projections PF, F ⊂ G.

Definition 4.1.1. Let H < G be an inclusion of two countable groups. A set F ⊂ G \ H is said
to be H-roaming if there is an infinite sequence (hk)k≥0 of elements in H such that

hkFh−1
k ∩ hk′ Fh−1

k′ = ∅ for all k *= k′.

Such a sequence (hk)k is called a disjoining sequence.

The following standard lemma is the key of our proofs.

Lemma 4.1.2. Let H < G be an inclusion of two countable groups and denote by LH ⊂ LG the
associated von Neumann algebras. Assume that (xn)n is a bounded LH-central sequence in LG.

Then for any H-roaming set F we have that limn ‖PF(xn)‖2 = 0.

Proof. Assume that F is an H-roaming set and consider a disjoining sequence (hk)k ⊂ H for F.
Since (xn)n is LH-central, we have for all k

lim sup
n

‖PF(xn)‖2 = lim sup
n

‖PF(uhk xnu∗
hk
)‖2 = lim sup

n
‖Ph−1

k Fhk
(xn)‖2. (4.1)
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But Ph−1
k Fhk

(xn) ⊥ Ph−1
k′

Fhk′
(xn) for all k *= k′ and all n. Thus we get that for any N ≥ 0 and

n ≥ 0,
‖xn‖

2
∞ ≥ ‖xn‖

2
2 ≥ ∑

k≤N
‖Ph−1

k Fhk
(xn)‖

2
2.

Applying (4.1), we deduce that supn ‖xn‖2
∞ ≥ N lim supn ‖PF(xn)‖2

2. Since N can be arbitrarily
large, we get the result.

Proposition 4.1.3. Let H < G be an inclusion of two infinite countable groups. Assume that for any
s, t ∈ G \ H, there is an H-roaming set F ⊂ G \ H such that sFct ∩ Fc is finite.

If LH has property Gamma, then it is maximal Gamma inside LG.

Proof. Assume that there is an intermediate von Neumann algebra P with property Gamma:
LH ⊂ P ⊂ LG and consider a central sequence (vn)n ⊂ P of unitary elements which tends
weakly to 0.

We have to show that any a ∈ P B LH is equal to 0. On the one hand, we have that
limn〈avna∗, vn〉 = ‖a‖2

2 because the unitaries vn asymptotically commute with a. On the other
hand we claim that this limit is 0.

Indeed, by a standard linearity/density argument, it is sufficient to check that for all
s, t /∈ H, we have limn〈usvnut, vn〉 = 0.

So fix s, t ∈ G \ H. By assumption there is an H-roaming set F such that K := sFct ∩ Fc is
finite. Since (vn)n is LH-central and bounded, Lemma 4.1.2 implies that limn ‖PF(vn)‖2 = 0.
Noting that usPFc(vn)ut is in the range of PsFct for all n, we obtain

lim sup
n

|〈usvnut, vn〉| = lim sup
n

|〈usPFc(vn)ut, PFc(vn)〉|

= lim sup
n

|〈usPFc(vn)ut, PsFctS
1PFc(vn)〉|

≤ lim sup
n

‖PK(vn)‖2 = 0,

because (vn)n tends weakly to 0 and K is finite.

If H < G is an inclusion satisfying the assumption of Proposition 4.1.3, then H is almost
malnormal in G in the sense that sHs−1 ∩ H is finite for all s /∈ H (or equivalently sHt ∩ H is
finite for all s, t /∈ H). In terms of von Neumann algebras this translates as follows.

Proposition 4.1.4. A subgroup H of a group G is almost malnormal if and only if the von Neumann
subalgebra LH ⊂ LG is mixing, meaning that limn ‖ELH(avnb)‖2 = 0, for all a, b ∈ LG B LH and
for any sequence (vn)n ⊂ U(LH) which tends weakly to 0.

Proof. Assume that H is not almost malnormal inside G: there is s ∈ G \ H such that sHs−1 ∩ H
contains a sequence going to infinity (hn)n. For all n put vn := uhn ∈ U(LH) and put a∗ =
b = us ∈ LG B LH. Then LH ⊂ LG is not mixing, because the sequence (vn) goes weakly to
0, whereas

lim sup
n

‖ELH(avnb)‖2 = lim sup
n

‖ELH(us−1hns)‖2 = lim sup
n

‖us−1hns‖2 = 1 *= 0.

Conversely assume that H is almost malnormal inside G. Take a sequence (vn)n ⊂ U(LH)
which tends weakly to 0. If s, t ∈ G \ H, then K := s−1Ht−1 ∩ H is finite. Hence

lim sup
n

‖ELH(usvnut)‖2 = lim sup
n

‖Ps−1 Ht−1(vn)‖2 = lim sup
n

‖PK(vn)‖2 = 0.
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This implies the mixing property, because {us , s ∈ G \ H} spans a ‖ · ‖2-dense subset of
LG B LH.

4.1.2 Relatively hyperbolic groups and their boundary

The contents of this section is taken from Bowditch [Bow12]. Let us fix first some termi-
nology and notations about graphs.

Let K be a connected graph. Its vertex set and edge set are denoted by V(K) and E(K)
respectively. A path of length n between two vertices x and y is a sequence (x0, x1, . . . , xn) of
vertices such that x0 = x and xn = y, and (xi, xi+1) ∈ E(K) for all i = 0, . . . , n − 1. The path
(x0, . . . , xn) is a loop if x0 = xn and if x0, x1, . . . , xn are distinct. For a path α = (x0, x1, . . . , xn),
we put α(k) = xk, k = 0, . . . , n.

We endow K with the distance d given by the length of a shortest path between two points.
A path α between two vertices x and y is a geodesic if its length equals to d(x, y). We denote
by F(x, y) the set of all geodesics between x and y.

More generally, for r ≥ 0, a path α is an r-quasi-geodesic if all its vertices are distinct, and if
for any finite subpath β = (x0, . . . , xn) of α, the length of β is smaller than d(x0, xn) + r. Note
that the geodesics are exactly the 0-quasi-geodesics. For x, y ∈ V(K), denote by Fr(x, y) the
set of r-quasi-geodesics between x and y.

We will also consider infinite paths (x0, x1, . . . ) or bi-infinite paths (. . . , x−1, x0, x1, . . . ).
For r ≥ 0, such an infinite or bi-infinite path will be called r-quasi-geodesic if all its finite
subpaths are r-quasi-geodesics.

In a graph K, a geodesic triangle is a set of three vertices x, y, z ∈ V(K), together with
geodesic paths [x, y] ∈ F(x, y), [y, z] ∈ F(y, z) and [z, x] ∈ F(z, x) connecting them. These
paths are called the sides of the triangle.

Definition 4.1.5 (Gromov [Gro87]). A connected graph K is called hyperbolic if there is a con-
stant δ > 0 such that every geodesic triangle in K is δ-thin: each side of the triangle is contained
in the δ-neighbourhood of the union of the other two, namely [x, y] ⊂ B([y, z] ∪ [z, x], δ), and
similarly for the other two sides.

Two infinite quasi-geodesics in a hyperbolic graph K are equivalent if their Hausdorff dis-
tance is finite. The Gromov boundary ∂K of K is the set of equivalence classes of infinite quasi-
geodesics. The endpoints of a path α = (x0, x1, . . . ) in a class x of ∂K are defined to be x0 and x.
Similarly, a bi-infinite path α = (. . . , x−1, x0, x1, . . . ) has endpoints α− := [(x0, x−1, . . . )] ∈ ∂K
and α+ := [(x0, x1, . . . )] ∈ ∂K. It turns out that for any two points x, y ∈ K ∪ ∂K, for any r ≥ 0,
the set Fr(x, y) of r-quasi-geodesics connecting them is non-empty.

Recall that a hyperbolic group is a finitely generated group which admits a hyperbolic Cay-
ley graph (this implies that all its Cayley graphs are hyperbolic). We will define similarly
relatively hyperbolic groups, but we have to replace the Cayley graph by a graph in which
some subgroups are “collapsed" to points.

Definition 4.1.6 ([Far98]). Consider a group G, with finite generating set S and denote by
Γ := Cay(G, S) the associated Cayley graph. Let G be a collection of subgroups of G. The
coned-off graph of Γ with respect to G is the graph Γ̂ with:

• vertex set V(Γ̂) := V(Γ) 6
⊔

H∈G G/H;

• edge set E(Γ̂) := E(Γ) 6 {(gh, [gH]) | H ∈ G , [gH] ∈ G/H, h ∈ H}.
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In the sequel, we will identify V(Γ) with G. The action of G on itself by left multiplication
extends to an isometric action on Γ̂. The stabilizer of the vertex [gH] is equal to gHg−1.

Note that in the coned-off graph Γ̂, the distance between two elements g and gh is at most
2 whenever h ∈ H for some H ∈ G . Note also that this coned-off graph will not be locally
finite in general. But it will sometimes satisfy the following fineness condition.

Definition 4.1.7 ([Bow12]). A graph Γ is called fine if each edge of Γ is contained in only
finitely many loops of length n, for any given integer n.

Definition 4.1.8 ([Bow12]). A group G is said to be hyperbolic relative to the family G if there is a
finite generating set S of G such that the coned-off graph Γ̂ is fine and δ-hyperbolic (for some
δ ≥ 0).

From this definition, usual hyperbolic groups appear as hyperbolic relative to the empty
family. For any relatively hyperbolic group G with Cayley graph Γ, let us define a topology
on ∆Γ := Γ̂ ∪ ∂Γ̂.

Definition 4.1.9. Given x ∈ ∆Γ and a finite set A ⊂ V(Γ̂) such that x /∈ A, we define

M(x, A) := {y ∈ ∆Γ : A ∩ α = ∅, ∀α ∈ F(x, y)} .

Theorem 4.1.10 ([Bow12], section 8). The family {M(x, A)}x,A is a basis for a Hausdorff compact
topology on ∆Γ such that G ⊂ ∆Γ is a dense subset, and every graph automorphism of Γ̂ extends to a
homeomorphism of ∆Γ.

Actually, we will not use the fact that ∆Γ is compact. The proof of Theorem 4.1.10 relies
on the following lemma, which will be our main tool in order to manipulate neighbourhoods
in ∆Γ.

Lemma 4.1.11 ([Bow12], Section 8). Let r ≥ 0. The following facts are true.

1. For every x, y ∈ ∆Γ, the graph
⋃

α∈Fr(x,y) α is locally finite.

2. For every edge e ∈ E(Γ̂), there is a finite set Er(e) ⊂ E(Γ̂) such that for all x, y ∈ ∆Γ, and all
α, β ∈ Fr(x, y) with e ∈ α, we have that Er(e) ∩ β contains at least one edge.

3. For every a ∈ V(Γ̂), x ∈ ∆Γ, with x *= a, there is a finite set Vr,x(a) ⊂ V(Γ̂) \ {x} such that
for all y ∈ ∆Γ, and all α, β ∈ Fr(x, y) with a ∈ α, we have that β ∩ Vr,x(a) *= ∅.

Proof. The first two facts are Lemma 8.2 and Lemma 8.3 in [Bow12]. To derive the third
fact from the others, fix a ∈ V(Γ̂) and x ∈ ∆Γ. Denote by E0 the set of edges e in the graph
⋃

α∈Fr(a,x) α such that a is an endpoint of e. By (1), the set E0 is finite. Now put E :=
⋃

e∈E0
Er(e),

and define Vr,x(a) to be the set of endpoints of E, from which we remove x if necessary. This
is a finite set.

Now if α ∈ Fr(x, y) goes through a, then it will contain an edge in E0. Thus any β ∈
Fr(x, y) contains an edge in E, and we are done by the definition of Vr,x(a).

Lemma 4.1.11 will always be used via the following easy corollary.

Corollary 4.1.12. Let r > 0, x ∈ ∆Γ and A ⊂ V(Γ̂) \ {x} finite. Then there is a set Vr,x(A)
containing A such that,
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1. if y /∈ M(x, A), then any r-quasi-geodesic α ∈ Fr(x, y) intersects Vr,x(A),

2. if y ∈ M(x, Vr,x(A)), then no r-quasi-geodesic from y to x intersect A.

Proof. The set Vr,x(A) := A ∪
⋃

a∈A Vr,x(a) does the job.

Now we describe a way of constructing quasi-geodesic paths. The following lemma is well
known but we include a proof for convenience.

Lemma 4.1.13. There is a constant r0 ≥ 0, only depending on the hyperbolicity constant of the graph
Γ̂, with the following property: for any geodesic paths α, β sharing exactly one endpoint a, if a is the
closest point of α to each point of β, then α ∪ β is an r0-quasi-geodesic.

Proof. We can take r0 = 8δ + 8. Indeed, given x ∈ α and y ∈ β, we denote with [x, y] ∈ F(x, y)
a geodesic between x and y. Since the triangle {x, y, a} is δ-thin, there is z ∈ [x, y] and u ∈ α,
v ∈ β such that d(z, u) ≤ δ + 1 and d(z, v) ≤ δ + 1. By hypothesis on a, we have that
d(u, a) ≤ 2δ + 2 and hence d(v, a) ≤ 4δ + 4. Finally,

d(x, a) + d(y, b) ≤(d(x, z) + d(z, u) + d(u, a)) + (d(a, v) + d(v, z) + d(z, y))

≤d(x, z) + d(y, z) + 8δ + 8 = d(x, y) + 8δ + 8.

Definition 4.1.14. Consider x, y, z ∈ ∆Γ and let α ∈ F(x, y) be a geodesic. A point z0 ∈ α
which minimizes the distance from z to α, is called a projection of z on α. Such a z0 splits
the path α into two geodesic paths αx ∈ F(x, z0) and αy ∈ F(z0, y). Given any geodesic
β ∈ F(z, z0), we can join β and αx or αy to get two paths that are r0-quasi geodesic by Lemma
4.1.13.

We end this section with a lemma that we will need later and which is essentially contained
Section 8 of [Bow12]. Its proof illustrates well how to use the tools introduced above.

Lemma 4.1.15. For every x ∈ ∆Γ and for every finite subset A ⊂ V(Γ̂) \ {x}, there is a finite subset
C ⊂ V(Γ̂) \ {x} such that for every y ∈ M(x, C),

M(y, C) ⊂ M(x, A).

Proof. Let r0 ≥ 0 be given by Lemma 4.1.13, and set C := Vr0,x(Vr0,x(A)) (see Corollary 4.1.12).
We will show that the conclusion of the lemma holds for this C.

If y = x, we see that M(x, C) ⊂ M(x, A) because A ⊂ Vr0,x(A) ⊂ C. Now let y ∈ M(x, C),
with y *= x, and take z /∈ M(x, A). We will show that z /∈ M(y, C).

Let α be a geodesic between y and z. Consider a projection x0 of x on α as in Definition
4.1.14 and let β ∈ F(x, x0). We denote with αy (resp. αz) the subgeodesic of α between x0 and
y (resp. x0 and z). Then, by Lemma 4.1.13 the paths β ∪ αy ∈ Fr0(x, y) and β ∪ αz ∈ Fr0(x, z)
are r0-quasi-geodesics.

Since z /∈ M(x, A), Corollary 4.1.12(1) implies that β ∪ αz intersects Vr0,x(A). If the inter-
section point lied on β ∪ αy, then Corollary 4.1.12(2) would contradict our assumption that
y ∈ M(x, C). Hence the intersection point lies on αz ⊂ α. We have found a geodesic between
z and y which intersects a point of Vr0,x(A) ⊂ C, which means precisely that z /∈ M(y, C).
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4.2 Hyperbolic case

Suppose that G is a hyperbolic group and that H is an infinite maximal amenable subgroup
of G. We want to apply Proposition 4.1.3 to prove the following theorem.

Theorem 4.2.1. Consider a hyperbolic group G and an infinite, maximal amenable subgroup H < G.
Then the group von Neumann algebra LH is maximal amenable inside LG.

As mentioned in Section 4.1.2, G is hyperbolic relative to the empty family and Γ̂ = Γ, for
any Cayley graph Γ of G. Thus ∆Γ := Γ ∪ ∂Γ is the usual Gromov compactification of Γ, with
boundary ∂Γ, endowed with the topology generated by the sets {M(x, A)}x,A. As before, we
identify G with V(Γ).

Recall that the action of G by left multiplication on itself extends to a continuous action on
∆Γ. The amenable subgroup H has a particular form by [GdlH90, Théorème 8.29, Théorème
8.37].

Lemma 4.2.2. Let H < G be an infinite maximal amenable subgroup. The following facts are true.

(i) there are two points a, b ∈ ∂Γ such that H is the stabiliser of the couple {a, b}, that is H =
StabG({a, b}).

(ii) Any H-invariant probability measure on ∂Γ is of the form tδa + (1 − t)δb for some t ∈ [0, 1].

(iii) Any element g ∈ G \ H is such that g · {a, b} ∩ {a, b} = ∅.

Proof. By [GdlH90, Théorème 8.37], H is virtually cyclic. Denote by h ∈ H an element of
infinite order. Then by [GdlH90, Théorème 8.29], h is a hyperbolic element: h acts on ∂Γ with
a north-south dynamics. Denote by a and b the attractive and repulsive points of h.

(i) Take s ∈ H. Then shs−1 is a hyperbolic element with fixed points s · a and s · b. If
{a, b} ∩ {a · a, s · b} = ∅, then by the ping-pong lemma, the group generated by h and shs−1

contains a free group. Since H is amenable, this is not possible and hence h and shs−1 have at
least a fixed point in common, say a. By [GdlH90, Théorème 8.30] they also both fix b. Hence
{s · a, s · b} = {a, b} and so H ⊂ StabG({a, b}). The action of G on the boundary is amenable
[Ada94], so the equality follows from maximal amenability.

(ii) This is a consequence of the north-south dynamics action of h ∈ H.
(iii) The key result is [GdlH90, Théorème 8.30], which implies that any element which fixes

one of the points a or b is in H. Take g ∈ G such that g · a = b. Assume first that there is
s ∈ H which exchanges a and b. Then sg fixes a and so g ∈ H. If all elements in H fix a and
b, then gsg−1 fixes b and g−1sg fixes a (so they both belong to H), for all s ∈ H. In that case, g
normalizes H so g ∈ H by maximal amenability.

For an amenable subgroup H ⊂ G, we will denote by a± ∈ ∂Γ the two fixed point of H. Up
to relabeling, we can suppose that limn→+∞ anx = a+ and limn→−∞ anx = a−, for any x ∈ ∆Γ

(so in particular a+ is the unique cluster point of the sequence {an}n≥0).
The action of G on itself by right multiplication also extends to a continuous action on ∆Γ,

in such a way that any element g ∈ G acts trivially on ∂Γ (see for instance [BO08, Proposition
5.3.18]).

In order to find an H-roaming set as in Proposition 4.1.3, we need to understand geometri-
cally the conjugacy action of H on G. We start by collecting properties of left and right actions
of H on ∆Γ separately, in the following two lemmas. Combining these lemmas, we will see
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that the conjugacy action of H has a uniform “north-south dynamics” out of H, as shown in
Figure 4.1a.

a+ a−HH

FV V

hFh−1

h · h−1

h · h−1

(a) Conjugacy action of H on G.

a+ a−
idH

s·

s
sH

sa−sa+

sVt sVt

VV

(b) The subsets V and sVt are disjoint.

Figure 4.1 – The action of G and a good neighborhood V of {a+ , a−}.

The following fact is certainly known, but we include a proof for the sake of completeness.
Let us recall that the sets M(a±, A) are neighbourhoods of a±.

Lemma 4.2.3. For any finite sets A, B ⊂ V(Γ), there is n ∈ Z such that

G ∩ (an ·M(a− , B)c) ⊂ M(a+, A).

Proof. First note that we can (and we will) assume that a− /∈ M(a+, A). By Lemma 4.1.15
there is a finite set C ⊂ V(Γ) such that for all y ∈ M(a+, C) we have M(y, C) ⊂ M(a+, A). In
particular, for all y ∈ M(a+, C) and z /∈ M(a+, A) there is a geodesic between y and z which
intersects C.

Choose n ∈ Z such that anB ⊂ M(a+ , C) and such that the distance between points of C
and anB is larger than the diameter D of V0,a−(C). We claim that this n satisfies the conclusion
of the lemma.

Assume by contradiction that there is z ∈ G = V(Γ) such that z /∈ an M(a−, B) and z /∈
M(a+ , A). Since z /∈ an M(a−, B) = M(a− , anB), there is a geodesic α ∈ F(a− , z) which
contains a point y ∈ anB ⊂ M(a+, C). Let us denote αa− the sub-geodesic of α between a− and
y and with αz the sub-geodesic between y and z.

Since a− /∈ M(a+ , A), there is a geodesic between a− and y which intersects C. By Corol-
lary 4.1.12, the geodesic αa− meets V0,a−(C) at a vertex x1. Moreover z /∈ M(a+ , A), so replacing
αz by another geodesic between y and z if necessary, we can assume that αz meets C ⊂ V0,a−(C)
at a vertex x2 (while α = αa− ∪ αz is still a geodesic). But then

d(x1, x2) ≤ diam(V0,a−(C)) = D.

On the other hand, the length of α between these two points is equal to d(x1, y) + d(y, x2),
while d(x1, y) > D because x1 ∈ C and y ∈ anB. This is absurd.
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Lemma 4.2.4. For any A ⊂ V(Γ) finite, there is a finite B ⊂ V(Γ) such that for any k ∈ Z,

(M(a+ , B) ∩ (G \ H))ak ⊂ M(a+, A).

Proof. We want to construct a neighbourhood M(a+, B) such that for any y ∈ M(a+, B), the
sequence (yak)k stays inside M(a+, A). It is helpful to think about (yak)k as a quasi-geodesic,
from ya− to ya+.

The proof goes in two steps. We firstly find an intermediate neighbourhood M(a+ , B′)
such that if the sequence (yak)k leaves M(a+, A) for some y ∈ M(a+, B′), then it has to go
through a fixed finite set, which we can assume to be B′. We will conclude by choosing
M(a+, B) ⊂ M(a+, B′) which does not intersects the sequences (yak)k for y ∈ B′.

Step 1. there is a finite set B′ ⊂ V(Γ) such that if y ∈ M(a+ , B′) ∩ G is such that yak /∈
M(a+, A) for some k ∈ Z, then there is m ∈ Z such that yam ∈ B′.

By [GdlH90, Proposition 8.21], there is a finite constant r > 0 such that for any p ∈ Z, all
geodesics between the neutral element e and ap are contained in the r-neighbourhood of the
sequence {ak , k ∈ Z}.

By Lemma 4.1.15 there is a finite set C ⊂ V(Γ) such that for all y ∈ M(a+ , C) we have
M(y, C) ⊂ M(a+, A). Put B′ := B(C, r), the r-neighbourhood of C.

Take y ∈ M(a+, B′) ∩ G ⊂ M(a+, C) such that yak /∈ M(a+, A) for some k ∈ Z . Then
yak /∈ M(y, C), so there is a geodesic α between y and yak which meets C at a point c. Then
y−1c belongs to a geodesic between e and ak, so it is at distance less than r to some am. In
other words, yam ∈ B(C, r) = B′, which proves Step 1.

Step 2. Choice of B.
Observe that the set of cluster points of the sequences (yak)k, with y ∈ B′ \ H is finite and

contained in ∂Γ \ {a+ , a−}. So there is B such that

M(a+, B) ⊂ M(a+ , B′) and M(a+, B) ∩ {bak | b ∈ B′ \ H, k ∈ Z} = ∅.

The subset B satisfies the conclusion of the lemma. Indeed, if y ∈ M(a+, B) ∩ (G \ H) is such
that yak /∈ M(a+, A) for some k ∈ Z, then by the claim there is h such that y ∈ B′a−h. But in
this case we would have y ∈ M(a+, B) ∩ {bap | b ∈ B′ \ H, p ∈ Z}, which was assumed to be
empty. Therefore yak ∈ M(a+, A) for any k.

Now we can deduce a relevant property of the conjugacy action of H, as shown in Figure
4.1a.

Proposition 4.2.5. For every s, t ∈ G \ H, there is an H-roaming set F ⊂ G \ H such that sFct ∩ Fc

is finite.

Proof. Choose a neighbourhood V0 of {a+ , a−} such that V0 is disjoint from sV0. Since the
right action of t on ∆Γ is continuous, we can find a V ⊂ V0 such that V and sVt are disjoint
(see Figure 4.1b). We observe that sVt ∩ H, sHt ∩ V and sHt ∩ H are finite because the only
cluster points of H are in V and the only cluster points of sHt are in sVt.

Therefore the set F := Vc ∩ (G \ H) is such that sFct ∩ Fc is finite. To prove that it is
H-roaming, let us construct a disjoining sequence (hk)k inductively. First put h0 := e.

Now assume that h0, . . . , hn−1 have been constructed, for some n ≥ 1. We will construct
hn. Denote by Vn :=

⋂n
i=0 hiVh−1

i . It is a neighbourhood of {a− , a+}, by continuity of left and
right actions of H. Now put Fn := Vc

n ∩ (G \ H).
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Recall that the family {M(a± , A)}A forms a basis of neighbourhoods of a±. By Lemma
4.2.4, there is a neighbourhood V ′ of a+ such that (V ′ ∩ (G \ H))ak ⊂ Vn for all k ∈ Z. By
Lemma 4.2.3, there is kn ∈ Z such that G ∩ akn Vc ⊂ V ′ and in particular akn F ⊂ V ′. Note also
that (akn F) ∩ H = ∅.

Altogether, we get that akn Fa−kn ⊂ Vn is disjoint from Fn. But Fn contains all the hiFh−1
i ,

i ≤ n − 1. So we can define hn = akn .

Now Theorem 4.2.1 follows from Proposition 4.1.3.

Remark 4.2.6. Note that in the proof of Proposition 4.2.5 the disjoining sequence that we
construct is contained in the subgroup H0 := 〈a〉 ⊂ H. Then the proof of Theorem 4.2.1
actually shows that if P ⊂ LG is an algebra with property Gamma such that LH0 ⊂ P, then
P ⊂ LH. Hence ua is contained in a unique maximal amenable von Neumann subalgebra of
M.

4.3 Relatively hyperbolic case

We now prove a more general version of Theorem 4.2.1 in the context of relatively hyper-
bolic groups.

Theorem 4.3.1. Let G be a group which is hyperbolic relative to a family G of subgroups of G and
consider an infinite subgroup H ∈ G such that LH has property Gamma. Then the group von Neumann
algebra LH is maximal Gamma inside LG.

Let G be a hyperbolic group relative to a family G of subgroups of G, and let H ∈ G be an
infinite subgroup.

Consider a Cayley graph Γ of G such that the coned-off graph Γ̂ of Γ with respect to G is
fine and hyperbolic. Denote by ∆Γ its Gromov compactification, endowed with the topology
generated by the sets {M(x, A)}x,A. We still identify G with V(Γ) ⊂ V(Γ̂).

Now denote by c = [H] ∈ V(Γ̂) the vertex associated with [H] ∈ G/H. This point is not in
the boundary ∂Γ, but it is represented out of Γ, as in Figure 4.1.

We will show that for any neighbourhood V of c, the set F := Vc ∩ (G \ H) (Figure 4.2a)
is H-roaming in the sense of Definition 4.1.1. Then we will show that if V is small enough
(Figure 4.2b), F satisfies the condition of Proposition 4.1.3, hence proving Theorem 4.3.1.

In this section, we will write Vr instead of Vr,c, r ≥ 0 (see Lemma 4.1.11).
Remark that since c shares an edge with all the points in H (and only with them), any

geodesic between c and a point x ∈ ∆Γ contains exactly one element in H. In particular one
has the following simple lemma.

Lemma 4.3.2. The family {M(c, A)}A⊂H is a basis of neighbourhoods of c.

Proof. Let B ⊂ V(Γ̂) be a finite subset, for every b ∈ B choose a geodesic αb from c to b. Set
A := {αb(1)}b∈B and observe that M(c, A) ⊂ M(c, B).

Remark 4.3.3. In the same way, if A ⊂ H is finite and r ≥ 0, the set Vr(A) from Corollary
4.1.12 can be assumed to be contained in H. Indeed one can replace Vr(A) by the finite set of
points in H which lie on an r quasi-geodesic from Vr(A) to c.
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c = [H]

H

F

hFh−1

h · h−1

V V

(a) Conjugacy action of H on G.

VV

sVtsVt

c = [H]

H

sH

sc = s[H]

(b) The subsets V and sVt are disjoint.

Figure 4.2 – The action of G and a good neighborhood V of c = [H].

To give an idea about the topology near c, let us mention that any sequence (hn)n in H
which goes to infinity converges to c.

As in the hyperbolic case, we will study geometrically the conjugacy action of H on G. We
will treat left and right actions separately. First, the left multiplication of G on itself extends
to an isometric action on Γ̂, and hence extends to a continuous action on ΔΓ. Let us extend
also the right action.

Definition 4.3.4. The right action of G on ΔΓ is the action whose restriction to G is equal to the
right multiplication by G on itself, and which is trivial on ΔΓ \ G. This action is a priori not
continuous, and it clearly commutes with the left action.

The following lemma is contained in Proposition 12 of [Oza06], which actually shows the
continuity of the right action on ΔΓ.

Lemma 4.3.5. The right action of G on ΔΓ is continuous at c.

Proof. Let g ∈ G, and let (xn) be a sequence converging to c. We want to prove that (xng)
converges to c. Since the right action is trivial on ΔΓ \ G, we can assume that xn ∈ G for all n.
Fix a finite set A ⊂ H. We will show that xng ∈ M(c, A) for n large enough.

By Lemma 4.1.15, there is a finite set C ⊂ V(Γ̂) \ {c} such that for all y ∈ M(c, C) we have
M(y, C) ⊂ M(c, A). So if y ∈ M(c, C) and z /∈ M(c, A), then there is a geodesic between y
and z which intersects C.

Assume by contradiction that there are infinitely many indices n for which xng /∈ M(c, A).
By assumption xn ∈ M(c, C) for n large enough, which implies that there is a geodesic αn ∈
F(xn, xng) which intersects C for infinitely many n’s. Then x−1

n αn belongs to F(e, g) and the
set X :=

⋃
α∈F (e,g) V(α) is finite by Lemma 4.1.11(1). Altogether we get that x−1

n C ∩ X 
= ∅ for
infinitely many n’s. Taking a subsequence if necessary, we find an element c′ ∈ C and x ∈ X
such that x−1

n c′ = x for all n.
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This implies that x−1
p xn ∈ StabG(x) for all p, n ∈ N. Since there are infinitely many distinct

elements xn, we get that x has to be a conic point, and for all fixed p, the sequence (x−1
p xn)n

converges to x. But by continuity of the left action, the sequence also converges to x−1
p c.

Therefore c = xpx = c′. This contradicts our assumption that c /∈ C.

We now collect properties of left and right actions of H on ∆Γ. Note that the left action of
H stabilizes c (and H = Stab(c)).

Lemma 4.3.6. For any finite subsets A, B ⊂ H, there is h ∈ H such that

hM(c, A)c ⊂ M(c, B).

Proof. By Remark 4.3.3, we may assume that V0(A) ⊂ H. Let h ∈ H be such that hV0(A)∩ B =
∅. Let x ∈ M(c, A)c and let α be any geodesic between c and hx, α ∈ F(c, hx) . By Corollary
4.1.12(1), h−1α ∈ F(c, x) contains a point a ∈ V0(A). Thus ha is the unique point of H which
is on α. In particular α contains no point of B.

Lemma 4.3.7. For any A ⊂ V(Γ̂) finite, there is a finite B ⊂ V(Γ̂) such that for any h ∈ H,

(M(c, B) ∩ (G \ H))h ⊂ M(c, A).

Proof. By Lemma 4.3.2, we can assume that A ⊂ H. Consider an element x ∈ G \ H such that
x /∈ M(c, A) and take h ∈ H. We will show that xh /∈ M(c, V2(A)).

Let α be a geodesic from c to x that meets A and put a := α(1) ∈ α ∩ A. Note that since
xh /∈ H, we have d(xh, c) ≥ 2, and at the same time d(xh, x) ≤ 2, because xh and x lie in the
same coset xH. Hence one can choose a projection z0 of xh on α to be different from c. Thus
the path from xh to c through z0 constructed as in Definition 4.1.14 is a 2-quasi-geodesic and
it contains a = α(1) ∈ A. By Corollary 4.1.12(2), this implies that xh /∈ M(c, V2(A)). Thus
B := V2(A) satisfies the conclusion of the lemma.

As in the hyperbolic case, we deduce the following property of the conjugacy action of H
on G, see Figure 4.2a.

Proposition 4.3.8. For every s, t ∈ G \ H, there is an H-roaming set F ⊂ G \ H such that sFct ∩ Fc

is finite.

Proof. We proceed as in Proposition 4.2.5. By continuity of left and right action at c (Lemma
4.3.5), there is a neighbourhood V of c such that V and sVt are disjoint (see Figure 4.2b). We
observe that sVt ∩ H, sHt ∩ V and sHt ∩ H are finite because the cluster point of H lies in V
and the cluster point of sHt lies in sVt.

Therefore, the set F := Vc ∩ (G \ H) is such that sFct ∩ Fc is finite. One can deduce that
this set is H-roaming from Lemma 4.3.7 and Lemma 4.3.6, as in Proposition 4.2.5.

Now Theorem 4.3.1 follows from Proposition 4.1.3.

Remark 4.3.9. For later use, note that the set F in Proposition 4.3.8 can be chosen such that
sFct ∩ Fc ⊂ H and hence s(F ∪ H)ct ⊂ F ∪ H.
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4.3.1 Hyperbolic groups relative to a family of amenable groups

We will now show how the following corollary can be deduced from Theorem 4.3.1.

Corollary 4.3.10. Let G be a group which is hyperbolic relative to a family G of amenable subgroups
and H be an infinite maximal amenable subgroup of G. Then the group von Neumann algebra LH is
maximal amenable inside LG.

Assume that G is hyperbolic relative to a family G of amenable subgroups, and consider
an infinite maximal amenable subgroup H < G. We will show that G is hyperbolic relative to
G ∪ {H}. Then Theorem 4.3.1 will directly allow to conclude that LH is maximal amenable
inside LG.

The argument relies on Osin’s work [Osi06b, Osi06a].

Definition 4.3.11. An element g ∈ G is said to be hyperbolic if it has infinite order and is not
contained in a conjugate of a group in G .

Definition 4.3.12. A subgroup K of G is said to be elementary if it is either finite, or contained
in a conjugate of a group in G , or if it contains a finite index cyclic subgroup 〈g〉, for some
hyperbolic element g.

The (Gromov-)Tukia’s strong Tits alternative (see [Tuk94, Theorem 2T, Theorem 3A] using
[Bow12, Definition 1]) states that a non-elementary subgroup K of G contains a copy of the
free group on two generators.

In particular, our amenable subgroup H is elementary. If it is contained in a conjugate
aHia−1 of a group in G , then it is equal to aHia−1 by maximal amenability, and Theorem 4.3.1
gives the result.

Now assume that H contains a finite index cyclic subgroup 〈g〉, for some hyperbolic el-
ement g. Osin showed in [Osi06a, Section 3] that such a hyperbolic element g is contained
in a unique maximal elementary subgroup E(g) (thus H = E(g), by maximal amenability).
Moreover he showed [Osi06a, Corollary 1.7] that G is hyperbolic relative to G ∪ {E(g)}. This
is what we wanted to show.

4.4 Product case

We will now prove the following theorem.

Theorem 4.4.1. Let n ≥ 1, and consider for all i = 1, . . . , n an inclusion of groups Hi < Gi as in
Theorem 13. Put G := G1 × · · ·× Gn and H := H1 × · · ·× Hn.

Then for any trace-preserving action of G on a finite amenable von Neumann algebra (Q, τ), the
crossed-product Q ! H is maximal amenable inside Q ! G.

Observe that if Hi < Gi, for i = 1, 2, are infinite maximal amenable subgroups, then the
von Neumann subalgebra L(H1 × H2) < L(G1 × G2) is neither maximal Gamma nor mixing
as soon as H1 *= G1.

Therefore to treat the product case, we will have to deal with relative notions. We could
consider a relative notion of property Gamma and proceed as in Section 4.1.1. We choose
instead to apply directly the work of C. Houdayer and the relative asymptotic orthogonality
property, [Hou14b]. Note that in the case of virtually abelian subgroups H1, H2 we could also
use [CFRW10, Theorem 2.8].
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Definition 4.4.2. Let A ⊂ N ⊂ (M, τ) be finite von Neumann algebras. The inclusion N ⊂ M
is said to be weakly mixing through A if there is a sequence of unitaries (vn)n ⊂ U(A) such that

lim
n

‖EN(xvny)‖2 = 0, ∀x, y ∈ M B N.

Example 4.4.3. If H < G is an inclusion of groups satisfying the assumption of Proposition
4.1.3 (e.g. if H and G are as in Theorem 4.3.1), then for any trace-preserving action G " (Q, τ)
on a finite von Neumann algebra, the inclusion Q ! H ⊂ Q ! G is weakly mixing through
LH. The proof is the same as the proof of Proposition 4.1.4.

Definition 4.4.4 ([Hou14b], Definition 5.1). Let A ⊂ N ⊂ (M, τ) be an inclusion of finite von
Neumann algebras. We say that N ⊂ M has the asymptotic orthogonality property relative to A if
for every ‖ · ‖∞-bounded sequences (xn)n and (yn)n in M B N which asymptotically commute
with A in the ‖ · ‖2-norm, we have that

lim
n
〈axnb, yn〉 = 0, for all a, b ∈ M B N.

Theorem 4.4.5 ([Hou14b], Theorem 8.1). Let A ⊂ N ⊂ (M, τ) be an inclusion of finite von
Neumann algebras. Assume the following:

1. A is amenable.

2. The inclusion N ⊂ M is weakly mixing through A.

3. The inclusion N ⊂ M has the relative asymptotic orthogonality property relative to A.

Then any amenable von Neumann subalgebra of M containing A is automatically contained in N.

From now on, we consider the crossed-product von Neumann algebras Q ! G associated
to a trace-preserving actions G " (Q, τ). As for group von Neumann algebras, denote by
ug the unitaries of Q ! G corresponding to elements g ∈ G and for any set F ⊂ G denote by
PF : L2(Q, τ)⊗ !2(G) → L2(Q, τ)⊗ !2(F) the orthogonal projection.

Proposition 4.4.6. Let H < G be an inclusion of two infinite groups, with H amenable. Consider an
action G " (Q, τ) of G on a tracial von Neumann algebra, and assume that for any s, t ∈ G \ H,
there is an H-roaming set F ⊂ G \ H such that s(F ∪ H)ct ⊂ F ∪ H.

Then the inclusion Q ! H ⊂ Q ! G has the asymptotic orthogonality property relative to LH.

Proof. Consider two ‖ · ‖∞-bounded sequences (xn)n and (yn)n in (Q ! G)B (Q ! H) which
asymptotically commute with LH. By linearity and density it is sufficient to check that for
any s, t /∈ H,

lim
n
〈usxnut, yn〉 = 0.

Fix s, t ∈ G \ H. There exists an H-roaming set F such that s(F ∪ H)ct ⊂ F ∪ H. Proceeding
as in the proof of Lemma 4.1.2, it is easy to show that limn ‖PF(xn)‖2 = limn ‖PF(yn)‖2 = 0.
Note also that for all n, we have xn = PHc(xn) and yn = PHc(yn). Therefore

lim
n
〈usxnut, yn〉 = lim

n
〈usPFc(xn)ut, PFc(yn)〉

= lim
n
〈usP(F∪H)c(xn)ut, P(F∪H)c(yn)〉 = 0,

because s(F ∪ H)ct ⊂ F ∪ H. This ends the proof of the proposition.

82



4.4. Product case

Proof of Theorem 4.4.1. For i = 1, . . . , n, let Gi be a hyperbolic group relative to a family Gi of
subgroups and let Hi ∈ Gi be an infinite amenable group. Consider the inclusion

H := H1 × · · ·× Hn < G := G1 × · · ·× Gn.

Let (Q, τ) be a finite amenable von Neumann algebra and consider a trace-preserving action
G " (Q, τ) of G. Put N := Q ! H and M := Q ! G.

Assume that P is an intermediate amenable von Neumann subalgebra: N ⊂ P ⊂ M. We
have to show that P = N. In order to do so, we will show that for all i = 1, . . . , n, we have

P ⊂ Ni := Q ! (G1 × · · ·× Gi−1 × Hi × Gi+1 × · · ·× Gn).

This is enough to conclude, because N = ∩n
i=1Ni.

For i ∈ {1, . . . , n}, we set Ai := LHi and Qi := Q! Ĝi, where Ĝi is the direct product of all
Gj, j *= i. Then we have Ni @ Qi ! Hi and M @ Qi ! Gi.

By Proposition 4.3.8 (and Remark 4.3.9), we see that Hi ⊂ Gi satisfies the assumptions of
Proposition 4.4.6 so that Ni ⊂ M has the asymptotic orthogonality property relative to Ai.
Moreover the Example 4.4.3 tells us that Ni ⊂ M is (weakly) mixing through Ai.

By Theorem 4.4.5, one concludes that the amenable algebra P, which contains Ai, is con-
tained in Ni. This ends the proof of Theorem 4.4.1.
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Chapter 5

Maximal amenable von Neumann
subalgebras arising from maximal

amenable subgroups

The following chapter is based on a joint work with Rémi Boutonnet.

We provide a general criterion to deduce maximal amenability of von Neumann sub-
algebras LΛ ⊂ LΓ arising from amenable subgroups Λ of discrete countable groups
Γ. The criterion is expressed in terms of Λ-invariant measures on some compact Γ-
space. The strategy of proof is different from Popa’s approach to maximal amenability
via central sequences [Pop83], and relies on elementary computations in a crossed-
product C∗-algebra.
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Chapter 5. Maximal amenable subalgebras from maximal amenable subgroups

5.1 Singular subgroups

In this chapter we will use the same notations and conventions of the previous chapter.
We will however use Λ and Γ for discrete groups and we will use G for Lie groups.

Definition 5.1.1. Consider an amenable subgroup Λ of a discrete countable group Γ. Suppose
that Γ acts continuously on the compact space X. We say that Λ is singular in Γ (with respect
to X) if for any µ ∈ ProbΛ(X) and g ∈ Γ \ Λ, we have g · µ ⊥ µ.

To illustrate this definition, let us mention the following trivial observation.

Lemma 5.1.2. Consider a subgroup Λ of a discrete countable group Γ. Then Λ is maximal amenable
inside Γ if and only if there is a continuous action Γ " X on a compact space X such that for any
µ ∈ ProbΛ(X) and g ∈ Γ \ Λ, we have g · µ *= µ.

Proof. If such a space X exists, then Λ is clearly maximal amenable.
Conversely, assume that Λ is maximal amenable. For any g ∈ Γ \ Λ, the group 〈Λ, g〉 is

not amenable: there is a compact Γ-space Xg such that Prob〈Λ,g〉(Xg) = ∅. Replacing Xg by
a minimal Γ-invariant subset if necessary, we can assume that Xg is a quotient of the Stone-
Czech compactification βΓ of Γ.

Then we see that X = βΓ does the job: if µ ∈ ProbΛ(X) then its push forward on Xg is
Λ-invariant, so it is not g-invariant by definition of Xg. Therefore µ is not g-invariant.

Remark 5.1.3. Observe that if Λ is singular in Γ with respect to the compact space X, then it
is singular with respect to any closed Γ-invariant subset of X. Hence if Λ is singular in Γ, it
is also singular with respect to a minimal compact space. Therefore, arguing as in the above
proof, we can see that an amenable group Λ is singular inside Γ with respect to some compact
Γ-space X if and only if it is singular with respect to the Stone-Czech compactification βΓ of
Γ.

Theorem 5.1.4. Suppose that Γ is a discrete countable group admitting an amenable, singular sub-
group Λ. Then for any trace preserving action Γ " (Q, τ) on a finite amenable von Neumann algebra,
Q ! Λ is maximal amenable inside Q ! Γ.

Proof. We will denote by M := Q ! Γ ⊂ B(L2(Q)⊗ !2Γ) and by N := Q ! Λ. Consider an
intermediate amenable von Neumann algebra N ⊂ A ⊂ M. We will show that A = N.

Suppose that Λ is singular in Γ. Since A is amenable, there is an A-central state ϕ :
B(L2(Q)⊗ !2Γ) → C whose restriction to M coincides with the trace.

Take a unitary u ∈ U(A). Using the fact that u centralizes the state ϕ, we will show that
u ∈ N.

Fix ε > 0. We denote by {vg}g∈Γ the canonical unitaries implementing the action. Then
by density, one can find u0 ∈ M of the form u0 = ∑g∈F agvg, with F ⊂ Γ finite and non-zero
elements ag ∈ Q for all g ∈ F, such that ‖u∗ − u0‖2 < ε.

We observe that 1 ⊗ !∞(Γ) @ C(βΓ). With this identification, any element f ∈ C(βΓ)
commutes with Q, and we have that vg f v∗g = σg( f ) for all g ∈ Γ, where we denote by σg the
action induced by the canonical action of Γ on βΓ. Since ϕ is Λ-central, its restriction to C(βΓ)
is given by a Λ-invariant regular Borel probability measure µ on βΓ such that ϕ( f ) =

∫
βΓ

f dµ,
for all f ∈ C(βΓ). By hypothesis Λ is singular in Γ and hence by Remark 5.1.3, it is singular
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with respect to βΓ, hence for all g ∈ F \ Λ, the measures µ and (g−1 · µ) are singular with
respect to each other.

So there are a compact set K ⊂ βΓ and an open set V ⊂ βΓ containing K such that:

• µ(K) > 1 − ε;

• µ(gV) < (ε/(|F|‖ag‖∞))2, for all g ∈ F \ Λ.

Urysohn’s Lemma gives us a continuous function f ∈ C(βΓ) supported on V such that 0 ≤
f ≤ 1 and f = 1 on K.

On the one hand, since ϕ is u-central, one derives

|ϕ(u0 f u)| = |ϕ(uu0 f )|

≥ |ϕ( f )|− |ϕ((uu0 − 1) f )|

≥ µ(K)− ‖u0 − u∗‖2

> 1 − 2ε.

For the third line above we used Cauchy-Schwarz inequality and the fact that ϕ|M = τ.
On the other hand, one computes

|ϕ(u0 f u)| ≤

∣∣∣∣∣ ∑
g∈F∩Λ

ϕ(agvg f u)

∣∣∣∣∣+ ∑
g∈F\Λ

|ϕ(agσg( f )vgu)|

≤ |ϕ(EN(u0) f u)|+ ∑
g∈F\Λ

ϕ(agσg( f f ∗)a∗g)
1/2

≤ ‖EN(u0)‖2 + ∑
g∈F\Λ

‖ag‖∞µ(gV)1/2

< (‖EN(u)‖2 + ε) + ε.

Altogether, we get
1 − 2ε < |ϕ(u0 f u)| < ‖EN(u)‖2 + 2ε,

so that ‖EN(u)‖2 ≥ 1 − 4ε. Since ε was arbitrary, this implies that u ∈ N.

Remark 5.1.5. The above proof actually shows that any unitary u ∈ LΓ which centralizes the
C∗-algebra generated by Q !r Γ and 1 ⊗ !∞(Γ) has to be contained in N. Note that this C∗-
algebra is isomorphic to the crossed-product (Q ⊗r C(βΓ))!r Γ (where Γ acts diagonally on
Q ⊗r C(βΓ)). We will present several applications of this point of view in Section 5.3.

Before actually providing examples of singular subgroups, let us prove Ozawa’s charac-
terization of singular subgroups.

Theorem 5.1.6 (Ozawa). Consider an amenable subgroup Λ of a discrete countable group Γ. The
following are equivalent.

(1) Λ is a singular subgroup of Γ;

(2) Every Λ-invariant state on C∗
r (Γ) vanishes on λ(Γ \ Λ);

(3) For every g ∈ Γ \ Λ, we have that 0 ∈ conv‖·‖({λ(tgt−1) , t ∈ Λ}) ⊂ B(!2Γ);

(4) For any net (ξn) of almost Λ-invariant unit vectors in !2Γ and all g ∈ Γ \ Λ, the inner product
〈λgξn, ξn〉 goes to 0.
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Proof. (1) ⇒ (2). Assume that Λ is singular inside Γ and take a Λ-invariant state ϕ on C∗
r (Γ).

Fix g ∈ G \ Λ and ε > 0. Since Λ is amenable there is a Λ-invariant state (also denoted by ϕ)
on B(!2Γ) which extends ϕ. The restriction of ϕ to !∞(Γ) is a Λ-invariant state. By singularity,
proceeding as in the proof of Theorem 5.1.4, we find f ∈ !∞(Γ) such that 0 ≤ f ≤ 1 and
ϕ(1 − f ) ≤ ε2 while ϕ(g · f ) ≤ ε2. Using Cauchy-Schwarz inequality, we get

|ϕ(λg)| ≤ |ϕ(λg f )|+ ε ≤ ϕ(λg f λ∗
g)

1/2 ϕ( f )1/2 + ε ≤ 2ε.

As ε was arbitrary, we indeed see that ϕ(λg) = 0.
(2) ⇒ (3). Assume that there is a g ∈ Γ \ Λ for which the conclusion of (3) does not hold.

By Hahn–Banach, there is ϕ ∈ C∗
r (Γ)

∗ such that inft∈Λ C(ϕ(λtgt−1)) > 0. By taking an average
over {ϕS1 Ad(λt) , t ∈ Λ}, we may assume that ϕ is Λ-invariant. Jordan decomposition now
gives a Λ-invariant state on C∗

r (Γ) such that ϕ(g) *= 0. This violates (3).
(3) ⇒ (4). Take a net (ξn) of almost Λ-invariant unit vectors in !2Γ and g ∈ Γ \ Λ. Fix

ε > 0. Assuming (3), we find x ∈ conv({λ(tgt−1) , t ∈ Λ}) such that ‖x‖ ≤ ε. By almost
Λ-invariance, we get

lim sup
n

|〈λgξn , ξn〉| = lim sup
n

|〈xξn , ξn〉| ≤ ε.

(4) ⇒ (1). Suppose that Λ is not singular inside Γ. Then we get a Λ-invariant state ϕ on
!∞(Γ) and g ∈ Γ \ Λ such that ϕ is not singular with respect to g · ϕ. Equivalently, this means
that ‖ϕ − g · ϕ‖1 < 2. Approximating ϕ with normal states and using Hahn-Banach Theorem,
we find a net of positive, norm one elements ηn ∈ !1(Γ) which is asymptotically Λ-invariant
and satisfies ‖ηn − g · ηn‖1 → ‖ϕ − g · ϕ‖1 < 2.

Define now ξn = η1/2
n ∈ !2(Γ). Then these unit vectors are asymptotically Λ-invariant and

yet we have the following fact showing that (4) does not hold.

〈λgξn , ξn〉 =
1
2
(2 − ‖ξn − λgξn‖

2
2) ≥

1
2
(2 − ‖ηn − g · ηn‖1) *→ 0.

5.2 Examples

As a first application of our criterion, we observe that Theorem 4.2.1 is now a direct conse-
quence of Lemma 4.2.2. Note that one can also recover the results about relatively hyperbolic
groups.

5.2.1 Amalgamated free products and HNN extensions

Using Bass-Serre theory, our criterion also applies to amalgamated free products.

Proposition 5.2.1. Let Λ1 and Λ2 be discrete groups (not necessarily finitely generated) with a com-
mon subgroup Λ0. Put Γ := Λ1 ∗Λ0 Λ2. If Λ1 is amenable and the index [Λ1 : Λ0] = ∞ then Λ1 is
singular in Γ. In particular LΛ1 is maximal amenable inside LΓ.

Proof. Let us first construct the compact Γ-space X for which we will verify the singularity
property of Λ1 < Γ. Assume that Γ is as in the statement of Proposition 5.2.1 and consider the
Bass-Serre tree T of Γ. By definition the vertex set of T equals to V(T) := Γ/Λ1 6 Γ/Λ2 and
its edge set equals to E(T) := Γ/Λ0, where the edge gΛ0 relates gΛ1 to gΛ2. By assumption
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the vertex Λ1 has infinitely many neighbours. In particular this tree is not locally finite.
However every tree is by definition a uniformly fine hyperbolic graph in the sense of [Bow12,
Section 8], so one can still consider its visual boundary ∂T and define a compact topology on
X := V(T) ∪ ∂T as in the previous chapter. Let us recall the notations.

For x, y ∈ X denote by [x, y] the unique geodesic path between x and y. If x ∈ X and
A ⊂ V(T) is finite set of vertices, define

M(x, A) := {y ∈ X | [x, y] ∩ A = ∅}.

Then the family of sets M(x, A) with x ∈ X, A ⊂ V(T) finite, forms an open basis of
a compact (Hausdorff) topology on X. Note that the action Γ " X is continuous for this
topology.

To prove Proposition 5.2.1, it is enough to show that the only Λ1-invariant probability
measure on X is the Dirac measure δΛ1.

To that aim, assume that µ is a Λ1-invariant probability measure on X. Note that since Λ0
has infinite index in Λ1, the vertex Λ1 has infinitely many neighbors {gΛ2}g∈R, where R ⊂ Λ

is a section for the onto map Λ1 → Λ1/Λ0. Since T is a tree, the open sets {M(gΛ2, {Λ1})}g∈R

are disjoint and moreover Λ1 acts transitively on these open sets. Hence they must have
measure 0 and therefore the probability measure µ has to be supported on their complement,
namely {Λ1}.

With the same proof we also get the following result.

Proposition 5.2.2. Assume that Γ = HNN(Λ, Λ0, θ) is an HNN extension, where Λ0 < Λ and
θ : Λ0 ↪→ Λ is an injective morphism. If Λ is amenable and [Λ : Λ0] = [Λ : θ(Λ0)] = ∞ then Λ is
singular in Γ.

Sketch of the proof. Assume that Γ = 〈Λ, t|t−1gt = θ(g) for g ∈ Λ0〉. As before, we will show
that Λ is singular in Γ with respect to the compactification of the Bass-Serre tree T of Λ. Let
us describe the Bass-Serre tree, by definition the vertex set of T equals to V(T) := Γ/Λ and
the vertex set equals to E(T) := Γ/Λ0, where the edge gΛ0 connects gΛ to gtΛ. The vertex Λ

has for neighbors all the vertices in one of the two families:

• The collection {gtΛ}g∈R1 , where R1 ⊂ Λ is a section for the onto map Λ → Λ/Λ0;

• The collection {gt−1Λ}g∈R2 , where R2 ⊂ Λ is a section for the map Λ → Λ/θ(Λ0).

These two families are infinite by our index assumptions. Moreover, Λ acts transitively on
each of these two families. So one can proceed exactly as in the previous proposition to
deduce that any Λ-invariant probability measure on the compactification has to be supported
on the vertex Λ.

In the finite index setting the result is false in general and the condition of Theorem 5.1.4
is never satisfied. For instance assume that Γ = BS(m, n) = 〈a, t | tant−1 = am〉 with m, n ≥ 2,
and that Λ = 〈a〉. Then the conjugacy action of Λ on Γ \ Λ admits a finite orbit. Namely, tat−1

has an orbit with m elements, and so the element x := ∑
m−1
k=0 aktat−1a−k ∈ CΓ commutes with

LΛ. In this case, LΛ is not even maximal abelian in LΓ. However, one can check using Lemma
5.1.2 that Λ is maximal amenable inside Γ as soon as |m|, |n| ≥ 3 (but it is not true for |n| = 2
or |m| = 2).
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5.2.2 Lattices in semi-simple groups

Finally, our criterion also allows to produce examples of a different kind, out of the
(relatively)-hyperbolic world.

Proposition 5.2.3. For n ≥ 2, put Γ := SLn(Z) and denote by Λ the subgroup of upper triangular
matrices in Γ. Then Λ is singular in Γ. Moreover, LΛ has a diffuse center.

Proof. Put G = SLn(R) and denote by P < G be the subgroup of upper triangular matrices,
so that Λ = Γ ∩ P. We will show that Λ < Γ is singular with respect to the action on the
homogeneous space B = G/P. It is enough to prove that the unique Λ-invariant probability
measure on B is the Dirac mass on [P]. Fix µ ∈ ProbΛ(B).

Denote by N < P the subgroup of unipotent matrices and put Λ0 := Γ ∩ N. Then [Moo79,
Proposition 2.6] implies that the support of µ is pointwise fixed by the Zariski closure of Λ0,
namely N. So we are left to check that N has only one fixed point on B. Note that a point
g[P] ∈ B is fixed by N if and only if g−1Ng ⊂ P. So let us take g ∈ G such that g−1Ng ⊂ P
and show that g ∈ P.

For a matrix h ∈ G, we denote with σ(h) the spectrum of h. Observe that given p ∈ P we
have

p ∈ N if and only if σ(p) = {1}.

Since the spectrum is conjugacy invariant and g−1ng ∈ P for all n ∈ N, we have that g−1ng ∈
N. Hence g−1Ng ⊂ N, and this is even an equality because the nilpotent groups N and g−1Ng
have the same dimension. But a simple induction shows that the normalizer of N in G is P,
so g ∈ P, as wanted.

For the moreover part, denote by I the identity matrix and by E1,n the matrix with 0 entries
except for the entry row 1/column n which is equal to 1. A simple calculation shows that the
Λ-conjugacy class of I + E1,n is contained in {I ± E1,n}. Therefore the center of LΛ contains
the element u + u∗, where u is the unitary in LΛ corresponding to the element I + E1,n ∈ Λ.
Note that I + E1,n has infinite order, so u generates a copy of LZ. Finally u + u∗ generates a
subalgebra of index 2, which implies that LΛ has diffuse center.

Of course, the example given in the above proposition is not abelian (unless n = 2).
We now turn to the question of existence of abelian, maximal amenable subalgebras in von
Neumann algebras associated with lattices in semi-simple Lie groups.

Proposition 5.2.4. Consider a lattice Γ in a connected semi-simple real algebraic Lie group G with
finite center. Then there is a virtually abelian subgroup Λ in Γ which is singular in Γ.

Proof. Before starting the proof, let us fix some notation. Denote with d the real rank of G and
let G = KAN be an Iwasawa decomposition of G, so that K is a maximal compact subgroup,
A ∼= Rd and N is nilpotent. Denote with M the centralizer of A in K. By [PR72, Theorem
2.8], replacing Γ by one of its conjugates if necessary, there is an abelian subgroup H ⊂ MA
(a so-called Cartan subgroup) such that H ∩ Γ is cocompact in H. Moreover H contains A, so it
is co-compact in MA. Therefore Λ0 := MA ∩ Γ is a co-compact lattice in MA and it contains
the abelian subgroup Γ ∩ H as a finite index subgroup.

Let P = MAN be a minimal parabolic subgroup. We will show that the normalizer
Λ := NΓ(Λ0) is singular in Γ with respect to the action Γ " G/P. Consider a measure
µ ∈ ProbΛ(G/P).
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Claim 1. µ is supported on the set F := {x ∈ G/P | ax = x, ∀a ∈ A}.
The measure µ is Λ0-invariant. Put µ̃ :=

∫
M(g · µ)dg, where dg denotes the Haar probabil-

ity measure on M. Given an element ma ∈ Λ0, with m ∈ M, a ∈ A, we see that

a · µ̃ =
∫

M
(ag · µ)dg =

∫

M
(ga · µ)dg =

∫
(gma · µ)dg = µ̃

Hence µ̃ is invariant under the projection of Λ0 on A. But this projection is a lattice in A.
Applying [Moo79, Proposition 2.6], we deduce that µ̃ is supported on F. Since M commutes
with A, the set F is globally M-invariant: g · µ(F) = µ(F) for all g ∈ M. Hence 1 = µ̃(F) =
µ(F), as claimed.

Claim 2. For all x ∈ F, we have StabG(x) ∩ Γ = Λ0.
To prove this claim take x ∈ F, written x = gP ∈ G/P. Note that StabG(x) = gPg−1, so

that A ⊂ gPg−1. By [BT65, Theorem 4.15], it follows that gPg−1 = MAgNg−1. In particular
MA (and Λ0) fixes x.

Take now γ ∈ Γ ∩ StabG(x) = Γ ∩ gPg−1. Write γ = man with m ∈ M, a ∈ A and
n ∈ gNg−1. By [Zim84, Proposition 8.2.4] there is a sequence (bk)k in MA such that bknb−1

k
converges to the identity element 1G. Since Λ0 is a uniform lattice in MA, there is a sub-
sequence (bkj)j and a sequence (cj)j ⊂ Λ0 such that bkj c

−1
j converges in MA. It is easy to

conclude that cjnc−1
j converges to the identity. Now, cjγc−1

j lies in Γ and we have

cjγc−1
j = cj(man)c−1

j = (cjmc−1
j )a(cjnc−1

j ), for all j.

But cjmc−1
j belongs to the compact set M, so taking a subsequence if necessary, we see that

cjγc−1
j converges to an element in MA. By discreteness of Γ, this implies that cjγc−1

j ∈ MA
for j large enough. Therefore γ ∈ MA ∩ Γ = Λ0 which proves Claim 2.

To prove that Λ is singular in Γ, consider an element g ∈ Γ such that g · µ is not singular
with respect to µ. Then g · F ∩ F *= ∅, so there are two points x, y ∈ F such that y = gx. This
implies that gΛ0g−1 fixes y, while g−1Λ0g fixes x. From Claim 2 we deduce that g normalizes
Λ0, so that Λ is indeed singular in Γ.

To complete the proof of the proposition, it remains to show that Λ0 has finite index inside
Λ, which will ensure that Λ is virtually abelian.

Assume that g ∈ Γ normalizes Λ0. Since A lies in the Zariski closure of Λ0, we have
gAg−1 ⊂ MA. But MA has a unique maximal R-split torus, A. So gAg−1 = A and g
normalizes A. Moreover MA coincides with the centralizer ZG(A) of A in G. Now we have
only to observe that the Weyl group NG(A)/ZG(A) is finite, see [Kna02, Section VII.7, item
7.84] for instance.

Remark 5.2.5. For SL3(Z), let Λ0 be the group generated by the following two commuting
matrices: 


0 0 1
1 0 −16
0 1 8



 and




81 4 −4
−36 17 68

4 −4 −15



 .

Then Λ0 has finite index in a singular subgroup of SL3(Z). We do not know whether Λ0

itself is singular in SL3(Z).
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Remark 5.2.6. We remark here that whenever Γ is a co-compact and torsion free lattice of a
real algebraic group G without compact factors, there is a free abelian subgroup of Γ that is
singular in Γ. In fact the authors in [RS10] proved that under these hypothesis, the Cartan
subgroup constructed in [PR03] H ⊂ G is such that Λ0 := Γ ∩ H is isomorphic to ZrkR(G) and
Λ0 is malnormal in Γ. So we can use this Cartan subgroup in the proof of the above proposition
to get that Λ0 has finite index in a singular subgroup of Γ and since Λ0 is malnormal in Γ,
then we must have that Λ0 is singular in Γ.

Question 5.2.7. If Γ is a lattice of a simple Lie group, is it true that every maximal amenable
subgroup of Γ is singular in Γ with respect to G/P?

Note that we showed that it is the case for the two extreme cases:

• if the maximal amenable subgroup is a lattice of a parabolic subgroups, (we proved this
fact only for SLn(Z) but the same proof works in the general setting),

• if the maximal amenable subgroup is a lattice of a Cartan subgroup.

5.3 Amenable subalgebras as stabilizers of measures on some com-
pact space

As explained in the introduction, the key of the above results is to view maximal amenable
subalgebras of a group von Neumann algebra LΓ as centralizers of states on some reduced
crossed-product C∗-algebra C(X)!r Γ. In this section we further develop this point of view
and explain its link with more theoretical questions. What follows is largely inspired from the
work of N. Ozawa on solidity [Oza04, Oza10].

Let us fix some notations. For a von Neumann algebra M, we denote by J : L2(M) →
L2(M), the canonical anti-unitary that extends the map x ∈ M ;→ x∗ ∈ M. Note that if Γ is
a countable group, then we have that RΓ = JLΓJ. When we want to view an element x of M
inside L2(M), we will write x̂.

The following proposition is the main ingredient. Our initial argument for (iii) relied on
[Oza04, Lemma 5] and used exactness of the group in a redundant way. We are grateful to
S. Vaes for suggesting to us a cleaner approach and to one of the referees (of the submited
paper) for emphasizing and correcting a gap in an earlier version.

Proposition 5.3.1. Assume that Γ is a countable discrete group which acts continuously on a compact
space X. Denote by B := C(X)!r Γ the reduced crossed-product C∗-algebra. Consider a state ϕ on B
which coincides on C∗

r (Γ) with the canonical trace τ. The following are true.

(i) Given x ∈ LΓ and T ∈ B, for every bounded sequence (xn)n in C∗
r (Γ) ⊂ B which converges

strongly to x, the sequence (ϕ(xnT))n converges and the limit depends only on x and T. There-
fore one can define ϕ(xT) = limn ϕ(xnT) and similarly ϕ(Tx).

(ii) The set Aϕ := {x ∈ LΓ | ϕ(xT) = ϕ(Tx), ∀T ∈ B} is a von Neumann subalgebra of LΓ.

(iii) If the action is topologically amenable in the sense of [AD87] (see also [BO08, Section 4.3] for
more on this), then Aϕ is amenable. Of course, every maximal amenable subalgebra of LΓ arises
this way.
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Proof. Before proceeding to the proof of (i)-(iii), let us fix some notations. Denote by (πϕ, Hϕ , ξϕ)
the GNS triplet associated with B and ϕ. Extend the state ϕ to a normal state ϕ̃ on B̃ := πϕ(B)′′

by the formula ϕ̃(x) = 〈xξϕ , ξϕ〉. Denote also by C̃ := πϕ(C∗
r (Γ))

′′ ⊂ B̃. Note that ϕ̃ is a nor-
mal trace on C̃. Consider the central projection p ∈ C̃ that supports this trace, so that ϕ̃
is a faithful normal trace on pC̃. Then we see that the map σ0 : C∗

r (Γ) → pC̃ defined by
σ0(x) = pπϕ(x) for all x ∈ C∗

r (Γ) is a trace-preserving ∗-morphism. Hence it extends to a
normal ∗-isomorphism σ : LΓ → pC̃ ⊂ pB̃p.

(i) Take x ∈ LΓ and a sequence xn ∈ C that converges strongly to x, then we have that
limn ϕ(xnT) = ϕ̃(σ(x)πϕ(T)), which does not depend on the choice of the sequence (xn)n.
Indeed, since ϕ̃(p) = 1, we see that for all n,

ϕ(xnT) = ϕ̃(πϕ(xnT)) = ϕ̃(pπϕ(xn)πϕ(T)) = ϕ̃(σ(xn)πϕ(T)).

So the desired convergence is a consequence of the normality of σ and ϕ̃.
(ii) From the formula obtained in (i), we see that

Aϕ = {x ∈ LΓ | ϕ̃(σ(x)πϕ(T)) = ϕ̃(πϕ(T)σ(x)), ∀T ∈ B}.

Thus σ(Aϕ) is the intersection of σ(LΓ) = pC̃ with the centralizer of ϕ̃ in pB̃p. In particular
σ(Aϕ) is a von Neumann algebra and so is Aϕ.

(iii) Assume that the action is amenable. Then B is nuclear, and so B̃ = πϕ(B)′′ is injective.
In particular pB̃p is injective as well. Moreover, there is a ϕ̃-preserving conditional expectation
E : pB̃p → σ(Aϕ), because σ(Aϕ) centralizes ϕ̃. Hence Aϕ is amenable. The existence of E
follows from a standard argument that we include in the lemma below, for completeness.

Lemma 5.3.2. Consider a von Neumann algebra M with a state ϕ on it (not necessarily faithful). Take
a von Neumann subalgebra Q ⊂ M that centralizes ϕ and assume that ϕ is faithful and normal on
Q (so that it is a faithful normal trace on Q). Then there is a ϕ-preserving conditional expectation
E : M → Q.

Proof. Given x ∈ M, define a sesquilinear form Bx on Q × Q by the formula Bx(a, b) =
ϕ̃(b∗xa).

Then the Cauchy-Schwarz inequality gives |Bx(a, b)| ≤ ‖x‖‖a‖2‖b‖2. In particular Bx

induces a sesquilinear form on L2(Q, ϕ) × L2(Q, ϕ) and there is a unique operator Tx ∈
B(L2(Q, ϕ)) such that

Bx(ξ, η) = 〈Tx(ξ), η〉, ∀ξ, η ∈ L2(Q, ϕ) and ‖Tx‖ ≤ ‖x‖.

Now we check that Tx ∈ Q. Take y ∈ Q and a, b ∈ Q. We have

〈Tx(ay), b〉 = ϕ(b∗xay) = ϕ(yb∗xa) = 〈Tx(a), by∗〉 = 〈Tx(a)y, b〉.

Therefore Tx commutes with the right action of y. Since y ∈ Q is arbitrary, we deduce that
Tx ∈ Q. The desired conditional expectation is then defined by the formula E(x) := Tx, for all
x ∈ M.

Let us provide some applications of Proposition 5.3.1 to solidity and strong solidity for
bi-exact groups [Oza04, OP10a, OP10b, CS13].
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Definition 5.3.3 ([BO08], Section 15.2). A discrete group Γ is bi-exact if there is a compactifica-
tion X of Γ such that

(1) the left translation action of Γ on itself extends to a continuous action Γ " X which is
topologically amenable;

(2) the right translation action of Γ on itself extends continuously to an action on X which
is trivial on the boundary X \ Γ.

For instance any hyperbolic group is bi-exact (because the Gromov compactification ∆Γ

satisfies the above conditions).
Given a bi-exact group Γ, choose a compactification X as in Definition 5.3.3. Since it is a

compactification, we have inclusions c0(Γ) ⊂ C(X) ⊂ !∞(Γ). Denote by λ and ρ respectively
the left and right regular representations of Γ on !2Γ, and define

BΓ := C∗(C(X) ∪ λ(Γ)) ⊂ B(!2Γ).

By [BO08, Proposition 5.1.3], BΓ is isomorphic to the reduced crossed product C(X)!r Γ

by the left action of Γ. Moreover condition 5.3.3.(2) implies that BΓ commutes with C∗
ρ(Γ)

modulo compact operators:

[BΓ, C∗
ρ(Γ)] ⊂ C∗(λ(Γ) · [C(X), ρ(Γ)]) ⊂ C∗(λ(Γ) · c0(Γ)) ⊂ K(!2(Γ)). (5.1)

We now show how solidity and strong solidity results can be deduced from Proposition
5.3.1.

Theorem 5.3.4 ([Oza04]). If Γ is bi-exact, then LΓ is solid, meaning that the relative commutant of
any diffuse subalgebra of LΓ is amenable.

Proof. Consider a sequence of unitaries (un) ⊂ U(LΓ) which tends weakly to 0. We will show
that the von Neumann algebra A of elements x ∈ LΓ satisfying ‖[x, un]‖2 → 0 is amenable.

Consider the state ϕ on B(!2Γ) defined by

ϕ(T) := lim
n→ω

〈Tûn, ûn〉,

where ω is a free ultrafilter on N. Note that ϕ|LΓ = τ = ϕ|RΓ and that ϕ vanishes on the
compact operators because un tends weakly to 0. Applying Proposition 5.3.1, we get that
Aϕ = {x ∈ LΓ | ϕ(xT) = ϕ(Tx), ∀T ∈ BΓ} is an amenable von Neumann algebra. Let us show
that A ⊂ Aϕ.

Take u ∈ U(A). By definition of A, we have for any T ∈ B(H)

ϕ(Tu) = lim
n→ω

〈T(uun), un〉 = lim
n→ω

〈T(unu), un〉 = ϕ(TJu∗ J).

Similarly, we have ϕ(uT) = ϕ(Ju∗ JT).
Fix a bounded sequence (xk) ⊂ C∗

ρ(Γ) which converges strongly to Ju∗ J. Since ϕ|RΓ is
normal, the Cauchy-Schwarz inequality implies that

• limk ϕ(Txk) = ϕ(TJu∗ J) and

• limk ϕ(xkT) = ϕ(Ju∗ JT).
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Now for each k, the operator [T, xk ] is compact thanks to (5.1). Since ϕ vanishes on compact
operators we get

ϕ(uT) = ϕ(Ju∗ JT) = lim
k

ϕ(xkT) = lim
k

ϕ(Txk) = ϕ(TJu∗ J) = ϕ(Tu).

Theorem 5.3.5 ([OP10a, CS13]). If Γ is bi-exact and weakly amenable (this is the case if Γ is hy-
perbolic, [Oza08]) then LΓ is strongly solid, in the sense that the normalizer of a diffuse amenable
subalgebra of LΓ is amenable.

Our proof still relies on the following weak compactness property due to Ozawa and Popa.
The formulation is a combination of [OP10a, Theorem 3.5] and [Oza12, Theorem B] with the
characterization of weak compactness given in [OP10a, Proposition 3.2(4)].

Theorem 5.3.6 ([OP10a, Oza12]). Assume that Γ is weakly amenable. Then for any amenable subal-
gebra A of LΓ, there is a state ϕ on B(!2Γ) such that

(i) ϕ(xT) = ϕ(Tx) for every T ∈ B(!2Γ) and x ∈ A;

(ii) ϕ(uJuJT) = ϕ(TuJuJ) for every T ∈ B(!2Γ) and u ∈ NLΓ(A);

(iii) ϕ(x) = τ(x) = ϕ(Jx∗ J) for every x ∈ LΓ.

The new part of the proof is the conclusion of strong solidity from the existence of such a
state. It becomes extremely simple.

Proof of Theorem 5.3.5. Assume that A is a diffuse amenable subalgebra and consider a state ϕ
on B(!2Γ) as in Theorem 5.3.6. By Proposition 5.3.1, it suffices to show that NLΓ(A) ⊂ Aϕ =
{x ∈ LΓ | ϕ(xT) = ϕ(Tx), ∀T ∈ BΓ}.

First note that [OP10b, Lemma 3.3] implies that ϕ vanishes on compact operators because
A is diffuse.

Take u ∈ NLΓ(A) and T ∈ BΓ. By definition of ϕ, we have ϕ(uJuJTJu∗ J) = ϕ(Tu).
Fix a bounded sequence (xk) ⊂ C∗

ρ(Γ) which converges strongly to Ju∗ J. Since ϕ|RΓ is
normal, the Cauchy-Schwarz inequality implies that

• limk ϕ(uJuJTxk) = ϕ(uJuJTJu∗ J) and

• limk ϕ(uJuJxkT) = ϕ(uT).

Now for each k, the operator uJuJ[T, xk ] is compact thanks to (5.1). Since ϕ vanishes on
compact operators we get

ϕ(uT) = lim
k

ϕ(uJuJxkT) = lim
k

ϕ(uJuJTxk) = ϕ(uJuJTJu∗ J) = ϕ(Tu).

Let us mention that one could also do a relative version of this strategy to prose relative
strong solidity results. In particular, one could recover some of the results in [PV14a, PV14b].
Note that the proof given in [PV14b] also relies on bi-exactness explicitly.
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