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Oestrogen receptors can mediate rapid activation of cytoplasmic signalling

cascades by recruiting Src and PI3K. However, the involvement of this pathway

in breast cancer remains poorly defined. We have previously shown that

methylation of ERa is required for the formation of the ERa/Src/PI3K complex

and that ERa is hypermethylated in a subset of breast cancers. Here, we used

Proximity Ligation Assay to demonstrate that this complex is present in the

cytoplasm of breast cancer cell lines as well as formalin-fixed, paraffin-embedded

tumours. Of particular interest, the analysis of 175 breast tumours showed that

overexpression of this complex in a subset of breast tumours correlates to the

activation of the downstream effector Akt. Survival analysis revealed that high

expression of this complex is an independent marker of poor prognosis and

associated with reduced disease-free survival. Our data introduces the new

concept that the rapid oestrogen pathway is operative in vivo. It also provides

a rationale for patient stratification defined by the activation of this pathway and

the identification of target therapies.

INTRODUCTION

The existence of extranuclear steroid signalling has been known

for almost 40 years (Pietras & Szego, 1977), although the

molecular mechanisms involved still remain elusive. Oestrogen

mediates its effects through ERa and ERb, which function in the

nucleus as ligand-dependent transcription factors and stimulate

cell growth in various tissues, including breast epithelial cells

(Mangelsdorf et al, 1995; McKenna & O’Malley, 2002; Tsai &

O’Malley, 1994). Oestrogen receptor activity is also regulated by

a plethora of post-translational modifications including phos-

phorylation, acetylation and methylation (Le Romancer et al,

2011). In addition, accumulating evidence indicates that

oestrogens activate non-genomic pathways through a pool of

conventional ERa located in the cytoplasm and/or at the plasma

membrane (Hammes & Levin, 2007; Levin, 2009; Razandi et al,

2004). Although several partners for extranuclear ERa have

been described in different cell types, the most conserved

partners are PI3K and the tyrosine kinase Src (Castoria et al,

2001; Simoncini et al, 2000; Song et al, 2005). Besides this core

complex, several adaptor scaffold proteins such as p130Cas and

MNAR (modulator of non-genomic activity of the oestrogen

receptor) have also been found to be part of the complex

(Barletta et al, 2004; Cabodi et al, 2004; Shupnik, 2004). After

oestrogenic stimulation, the rapid formation of the protein

complex triggers the activation of downstream signalling

cascades involving the Ras/MAPK and Akt pathways (Castoria

et al, 2001; Hammes & Levin, 2007). Mechanistically, we

previously reported that methylation of ERa on arginine 260 by

the arginine methyltransferase PRMT1 is a prerequisite for its

association with Src, PI3K and the Focal Adhesion Kinase (FAK)
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as well as activation of its downstream effector Akt (Le

Romancer et al, 2008, 2010). Using an antibody that specifically

recognizes the methylated form of ERa (mERa), we have shown

that this modification occurs in the cytoplasm of normal breast

epithelial cells and is highly expressed in a subset of breast

tumours (Le Romancer et al, 2008). Of note, the presence of

mERa in the cytoplasm of tumour cells did not correlate with the

clinical classification of ERa-positive or -negative tumours. This

is because the population of ERa-positive cases included only

tumours, which exhibited ERa nuclear staining. Our results thus

suggested that oestrogen non-genomic signalling, which mirrors

ERa methylation, occurs in normal breast tissue and could be

deregulated in breast cancer. However, the existence of the

oestrogen-mediated signalling complex remains a fundamental

question to be clearly addressed.

For this purpose, we used Proximity Ligation Assay (PLA)

technology to detect both ERa/PI3K and ERa/Src interactions in

breast cancer specimens. Here, we show that the signalling

complex is present in the cytoplasm of normal epithelial cells

and highly expressed in some breast tumours. Of note, the

amount of ERa/PI3K/Src correlates with both the level of ERa

methylation and the activation of Akt, a crucial downstream

target of this complex. Finally, we show that overexpression of

the complex in a subset of invasive breast tumours is an

independent marker of poor prognosis and associated with

reduced disease-free survival (DFS). This opens new horizons

for breast cancer treatment.

RESULTS

Detection of endogenous ERa/PI3K and ERa/Src interactions

in human breast tumour cells

Castoria et al. reported that oestrogen rapidly triggers the

interaction of ERa with Src as well as PI3K in MCF-7 cells and

forming a complex involved in oestrogen non-genomic-induced

cell proliferation (Castoria et al, 2001). This result has largely

been confirmed by others in several breast cell lines (Cabodi

et al, 2004; Fernando & Wimalasena, 2004) as well as in other

tissues (Hisamoto et al, 2001). However, all of these results were

obtained by immunoprecipitation in cell lines that did not allow

the visualization of interactions between proteins. Therefore,

the physiological relevance of this signalling pathway remains

questionable. To date, immunofluorescence analysis of the

complex has been impeded by the fact that only a small

population of ERa interacts with Src and PI3K. To circumvent

this problem, we used a newly developed technique, PLA. Using

PLA, protein–protein interactions can be sensitively and

specifically identified using pairs of proximity probes

and detected by in situ circular amplification, with each red

dot representing an interaction (Soderberg et al, 2006). We

investigated the ERa/PI3K interaction in the human breast

tumour cell line MCF-7 using a rabbit anti-ERa together with a

mouse anti-p85 antibody. The ERa/Src interaction was detected

using the same anti-ERa together with a mouse anti-Src

antibody. Figure 1A shows that ERa interacted with PI3K and

Src in the cytoplasm of MCF-7 cells as indicated by the presence

of red dots for both antibody pairs (panels a,b). No dots were

detected using only one antibody (panels c–e) as confirmed by

counting dots per 100 cells (Fig 1B, around 50 dots/cell vs. <5).

Importantly, the number of red dots increased after 5min

of oestrogenic treatment, then decreased after 15min. This

confirmed that upon oestrogenic treatment, the formation of this

complex is rapid and transitory (Fig 1C: compare panels a,b to

panels c,d and e,f and Fig 1D). As expected, we observed a

decrease in the interaction between ERa/PI3K and ERa/Src in

MCF-7 cells upon tamoxifen treatment (Supporting Information

Fig S1A and S1B) and ERa knockdown (Fig 1E–G), validating

the specificity of the above results. In addition, we performed a

set of controls to further validate the specificity of the PLA

technology. We tested the interactions between ERa with two

known ERa nuclear co-activators, SRC3 and p300 (Acevedo &

Kraus, 2003). They were detected exclusively in the nucleus of

MCF-7 cells as expected (Supporting Information Fig S2). We

previously identified that FAK is also recruited into the complex

(Le Romancer et al, 2008) as confirmed by others (Sanchez et al,

2010). Therefore, we studied the interaction of FAKwith ERa by

PLA. As seen in Supporting Information Fig S3, although FAK

interacts with Src, we did not detect any red dots indicating an

ERa/FAK interaction. This result is concordant with our

previous data showing that the recruitment of FAK into the

complex is mediated by its interaction with Src.

We previously showed that the formation of the ERa/PI3K/

Src complex requires the methylation of ERa as well as the

kinase activity of Src and PI3K (Le Romancer et al, 2008).

Therefore, we performed PLA analysis either using PRMT1

knockdown cells or after the addition of PP1 (Src inhibitor) or

LY294002 (PI3K inhibitor). PLA analysis confirmed these results

with a significant decrease of red dots (Fig 2A–F). Furthermore,

the group of Aurricchio found that a six-amino acid peptide

(pYpep) that mimics the sequence around the phosphotyrosine

residue in position 537 of the human ERa disrupts ERa/Src

interaction and oestrogen-induced proliferation (Varricchio

et al, 2007). Indeed, treatment with the phosphorylated peptide

induced a notable disruption of the complex, visualized by both

immunoprecipitation (Fig 2G) and PLA analysis (Fig 2H and I).

Finally, we confirmed the interactions between ERa/PI3K

and ERa/Src using the ERa-positive cell lines CLB-SAV, ZR75.1

and Cama-1 as well as the ERa-negative cell line MDA-MB-231.

Supporting Information Fig S4 shows that both complexes

were present in the cytoplasm of CLB-SAV and ZR75.1

cells (panels a–d) but not in Cama-1 cells nor MDA-MB-231

cells (panels e–h). Formation of the complex was concordant

with the methylation of ERa as we did not detect any oestrogen-

induced methylation in either MDA-MB-231 or Cama-1 cells

(Supporting Information Figures S4B–D).

All these in vitro data clearly validate the PLA technology as a

powerful tool to analyse ERa/PI3K and ERa/Src interactions.

ERa interacts with PI3K and Src in normal breast samples

A crucial question about oestrogen non-genomic signalling

concerns its physiological relevance. To approach this issue,

we first investigated the presence of the ERa/Src/PI3K

complex in three human normal breast samples obtained after
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Figure 1. In situ PLA detection of endogenous ERa/PI3K and ERa/Src interactions in MCF-7 cells.

A. Oestrogen-deprived MCF-7 cells were incubated with E2 10
�8M for 5min. After fixation, in situ PLA for ERa/PI3K (panel a) and ERa/Src dimers (panel b) was

performed with ERa-, Src- and PI3K-specific antibodies. The detected dimers are represented by red dots. The nuclei were counterstained with DAPI (blue)

(Obj:X63). Control experiments were performed with single antibodies (panels c–e).

B. Quantification of the number of signals per cell was performed by computer-assisted analysis as reported in the Materials and Methods Section. The

mean� SEM of four experiments is shown. p-value was determined by Student’s t-test.

C. We analysed as in A the effect of E2 treatment on interactions between ERa/PI3K and ERa/Src using MCF-7 cells incubated with vehicle (panels a,b) or with

E2 10�8M for 5min (panels c,d) and for 15min (panels e,f).

D. Quantification of the number of signals per cell was performed as described. The mean� SEM of four experiments is shown. p-value was determined by

Student’s t-test.

E. MCF-7 cells transfected with control siRNA duplexes or with specific ERa siRNA duplexes were controlled for ERa expression by Western blot.

F. Then, ERa/PI3K and ERa/Src interactions were analysed by PLA. The nuclei were counterstained with DAPI (blue).

G. Quantification of the number of signals was performed as described above. The mean� SEM of four experiments is shown. p-value was determined by

Student’s t-test.

EMBO Mol Med (2012) 4, 1–14 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 3
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Figure 2.
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mammoplasty. Thus, we performed PLA experiments using

the two previously described pairs of antibodies to study the

ERa/Src and ERa/PI3K interactions. To correlate these

interactions with the presence of methylated ERa, we detected

mERa by PLA using rabbit anti-ERa together with the

mouse anti-mERa antibody (mERa/ERa). As shown in

Fig 3A, we detected ERa/PI3K (panel a), ERa/Src (panel b)

and mERa/ERa expression (panel c) in the cytoplasm of

epithelial but not myoepithelial cells. The quantification of red

dots revealed a low level expression of the complex. This was

expected as ERa is faintly expressed in normal breast epithelial

cells. We obtained similar results for all three mammary

samples (Fig 3B).

In human breast cancers, the interaction of ERa with both

PI3K and Src correlates with ERa methylation and Akt

activation

We next evaluated the presence of the ERa/PI3K and ERa/Src

complexes as well as mERa/ERa expression in invasive breast

tumours. The signal for each protein pair varied in intensity

from null to a very strong signal. Figure 4 shows two examples

of signals we obtained. Tumour #1 did not express the complex

whereas Tumour #2 expressed high levels of complex. Of

interest, mERa expression correlated with the presence of both

ERa/Src and ERa/PI3K complexes as visualized by red dots

localized in the cytoplasm of tumour cells.

Subsequently, the studywas extended to include 175 invasive

breast cancers in 5 tissue microarray blocks (TMA). To perform

these highly scaled experiments, we used a different PLA kit,

which allows the visualization of brown dots in bright field

microscope. We also performed immunohistochemistry analy-

sis using an anti-p-Akt antibody on the same tumour samples in

order to confirm that ERa methylation triggers Akt activation.

Results from these PLA experiments were quantified by

counting at least 400 cells and expressed as the mean number

of dots per cell as described in the Material and Methods Section

(see Supporting Information Table S1).

Interestingly, when we performed a correlation analysis

between the different markers, we found significant correlations

between ERa/PI3K, ERa/Src interactions and mERa expression

(p< 0.001; Table 1). This confirms our hypothesis that mERa

is responsible for forming the complex. We also discovered

statistically significant correlations between each protein pair

and P-Akt expression. Figure 5 illustrates representative results

showing the high correlation between the expression of this

signalling complex and the activation of its downstream effector

Akt.

These data consistently demonstrate that ERa methylation is

required for mediating the interaction of the oestrogen receptor

with Src and PI3K, which propagates the signal to downstream

www.embomolmed.org Research Article
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Figure 2. Regulation of ERa/PI3K and ERa/Src interactions in MCF-7 cells detected by PLA.

A. MCF-7 cells transfected with control siRNA duplexes or with specific PRMT1 siRNA duplexes were controlled for PRMT1 expression by Western blot.

B. We analysed by PLA ERa/PI3K (panels a,b) and ERa/Src dimers (panels c,d).

C. Quantification of the number of signals was performed as described. The mean� SEM of four experiments is shown. p-value was determined by Student’s

t-test.

D. MCF-7 cells, treated or not with PP1 (5mM) or LY294002 (20mM) 15min before E2 treatment, were incubated with the vehicle or with E2 for 5min. Cell lysates

were immunoprecipitated with anti-Src and blotted with indicated antibodies.

E. ERa/PI3K (panels a–c) and ERa/Src (panels d–f) interactions were analysed by PLA in cells treated as described above.

F. Quantification of the number of signals was performed for each couple as described. Themean� SEM of four experiments is shown. p-value was determined by

Student’s t-test.

G. MCF-7 cells were incubated with 1 nM of a peptide mimicking hERa 536–541 containing Y537 (Y-pep) or the corresponding phosphorylated peptide (pY-pep)

30min before E2 treatment. Then, cell lysates were immunoprecipitated with anti-Src and blotted with indicated antibodies.

H. From the same experiment, ERa/PI3K (panels a,b) and ERa/Src interactions (panels c,d) were analysed by PLA.

I. Quantification of the number of signals was performed as described. The mean� SEM of four experiments is shown. p-value was determined by Student’s t-test.

~

Figure 3. ERa/Src/PI3K complex expression in human normal breast

tissue.

A. ERa/PI3K, ERa/Src interactions and ERa/mERa were detected with PLA on

3 formalin-fixed human mammoplasty samples. Here is an example of the

results obtained on sample 1 for ERa/PI3K interaction (panel a), ERa/Src

interaction (panel b) and ERa methylation (mERa/ERa, panel c).

B. Quantification of the number of dots/cell was performed on the three

samples for each couple as described.

EMBO Mol Med (2012) 4, 1–14 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 5



transduction cascades. Overexpression of mERa and the

signalling complex can lead to the hyperactivation of Akt.

High ERa/Src and ERa/PI3K interactions are associated with

clinical factors of poor prognosis

Based on the quantification of dots per cell for each protein

couple, we analysed the association between their expression

and clinical parameters for 175 breast tumours.

For the expression of ERa/Src, we did not find any

association with the status of ERa, PR or HER2. However,

age >50 years and menopausal status were significantly

associated with a low expression of ERa/Src (respectively

80% and 76% vs. 58% and 55% of patients with a high

expression of ERa/Src, p¼ 0.003 and p¼ 0.006). ERa/Src

expression was also associated with lymph node involvement

(42% of patients with a low expression of ERa/Src had

lymph node involvement vs. 52% of patients with a high

expression of ERa/Src, p¼ 0.038; Table 2). Thus, a high

expression of ERa/Src was associated with less favourable

prognostic factors.

Regarding ERa/PI3K expression, we did not find any

association with ERa or PR expression. However, a high

expression of ERa/PI3K was associated with tumours over-

expressing HER2 (25% of tumours with a high expression of

ERa/PI3K overexpressed HER2 vs. 10% of tumours with a low

expression, p¼ 0.019). Moreover, high expression of ERa/PI3K

was associated with tumour grade, with more tumours

presenting grade 2 or 3 when ERa/PI3K was highly expressed

(p¼ 0.014; Table 3).

We found that high expression of mERa/ERa was signifi-

cantly associated with the youngest people (<50 years old),

premenopausal status, higher grade SBR and ERa expression

(Supporting Information Table S2).

Altogether, these data strongly suggest that oestrogen non-

genomic signalling is associated with common poor prognostic

factors for breast cancer patients (Weigel & Dowsett, 2010).

Research Article www.embomolmed.org
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Figure 4. ERa/Src/PI3K complex expression in human tumoral breast

samples. ERa/PI3K (panels a,b), ERa/Src (panels c,d) and ERa/mERa (panels

e,f) expression were detected with PLA on two formalin-fixed paraffin-

embedded breast tumours. The nuclei were counterstained with DAPI (blue).

The experiments were performed in three serial sections from the same

tumour (Obj X63).

Table 1. Correlation analysis between the different markers and p-Akt

ERa/PI3K 0.79��� 0.75��� 0.29���

ERa/Src 0.73��� 0.30���

ERa/mERa 0.33���

P-Akt

Correlation studies were performed using the Pearson’s coefficient between

the couples (ERa/PI3K, ERa/Src and ERa/mERa) and p-Akt. ���p< 0.001.

Figure 5. ERa/Src/PI3K complex and p-Akt expression in TMA revealed by

bright field PLA. For each tumour, we analysed by PLA the levels of ERa/PI3K

(panels a,b), ERa/Src complexes (panels c,d) ERa/mERa expression (panels e,f)

and P-Akt expression by immunohistochemistry (panels g,h). The experiments

were performed in four serial sections from the same tumour.

6 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. EMBO Mol Med (2012) 4, 1–14



Survival analysis and predictive value of ERa/Src and

ERa/PI3K interactions

We next investigated how ERa/Src and/or ERa/PI3K expression

was associated with patient outcomes. Regarding ERa/Src, high

expression of this pair was associated with a decreased DFS

(Log-Rank test, p¼ 0.044; Fig 6A). Furthermore, within the

subgroup of ERa-positive tumours, a high expression of ERa/

Src was still associated with a reduced DFS (p¼ 0.032; Fig 6B).

For ERa-negative tumours, the number of patients was likely not

sufficient to make solid conclusions (Fig 6C). In multivariate

analysis, high expression of ERa/Src remained an independent

prognostic factor [HR¼ 1.86, 95% CI (1.01–3.42), p¼ 0.046]

adjusted to lymph node involvement [HR¼ 1.93, 95% CI (1.05–

3.56), p¼ 0.035; Table 4]. Of note, parameters like SBR grade,

ERa expression and lymph node involvement were not kept as

independent prognostic factors in the final model. In terms of

overall survival, there was no statistical difference between

tumours with high and low expression of ERa/Src (p¼ 0.23;

Supporting Information Fig S5).

We made similar observations for the ERa/PI3K interaction.

For all patients, we found no statistical association with

either DFS or OS (p¼ 0.096 and p¼ 0.309, respectively), even

though a tendency can be observed regarding DFS (Fig 7A

and Supporting Information Fig S6). However, for patients

with ERa-positive tumours, expression of ERa/PI3K was a

prognostic factor for DFS, with a worse prognosis for patients

with tumours highly expressing ERa/PI3K, (Log-Rank test,

p¼ 0.049; Fig 7B). As for the ERa/Src interaction, the number

of patients with ERa-negative tumours was too small to allow

solid conclusions (Fig 7C). In multivariate analysis, high

expression of ERa/PI3K was found to be linked with DFS

[HR¼ 1.89, 95% CI (1.04–3.42), p¼ 0.037] adjusted to lymph

node involvement [HR¼ 2.07, 95% CI (1.15–3.72), p¼ 0.015;

Table 5].

www.embomolmed.org Research Article
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Table 2. Distribution of clinical parameters according to groups of ERa/Src expression

Duolink ERa/Src Test (p)

0–4 (N¼ 79) >4 (N¼ 96)

N % N %

Age at diagnosis (years) x2 (0.003)

<50 16 20.3 40 41.7

�50 63 79.7 56 58.3

Menopause x2 (0.006)

ND 1 2

No 19 24.4 42 44.7

1 Yes 59 75.6 52 55.3

Tumour size (mm) x2 (0.852)

<20mm 31 39.2 39 40.6

�20mm 48 60.8 57 59.4

Histological grade (SBR) x2 (0.505)

1 17 21.5 15 15.6

2 33 41.8 39 40.6

3 29 36.7 42 43.8

Lymph node involvement Fisher Exact (0.038)

N0 34 43.0 42 43.8

Micro metastasis 12 15.2 4 4.2

Macro metastasis 33 41.8 50 52.1

Lympho-vascular invasion x2 (0.119)

Yes 31 39.2 49 51.0

No 48 60.8 47 49.0

Oestrogen receptor: % marked cells x2 (0.824)

ND 1 0

<10% 19 24.4 22 22.9

�10% 59 75.6 74 77.1

Progesterone receptor: % marked cells x2 (0.834)

ND 1 0

<10% 28 35.9 33 34.4

�10% 50 64.1 63 65.6

HER2 status x2 (0.935)

ND 9 1

0/þ/þþFISH� 60 85.7 81 85.3

þþFISHþ/þþþ 10 14.3 14 14.7

Clinical parameters (age at diagnosis, tumour size, menopausal status, lymph node involvement, SBR grading and hormonal expression) were analysed for the

175 patients included in the TMA study. Association between clinical characteristics and the level of ERa/Src interaction (cut off at 4 dots/cell) was determined

using x2 test or Fisher’s exact test.

EMBO Mol Med (2012) 4, 1–14 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 7



We did not find an association between ERa methylation

and patient outcomes as measured by the pair mERa/ERa

(Supporting Information Fig S7).

DISCUSSION

Our results have enabled us to reach several relevant

conclusions. Firstly, we have formally demonstrated the

presence of the signalling complex described to mediate the

rapid action of oestrogen in breast cancer within human

breast tissues. This rules out any controversy surrounding

the physiological evidence of oestrogen extranuclear action

(Warner & Gustafsson, 2006). In fact, we have been able

to directly show the association of ERa with its complex

partners PI3K and Src in the cytoplasm of mammary epithelial

cells. Signals were faint in normal samples and strong in

some breast tumour cancers. Furthermore, we report that the

presence of methylated ERa statistically correlates with the

capacity of ERa to interact with both its partners, PI3K and

Src. The precise quantification of these in situ interactions

has been possible using PLA technology. This allowed the

detection and quantification of protein–protein interactions

by counting the discrete spot-like signals, each representing

one interaction. Since the first step of rapid oestrogen signalling

is the formation of a complex containing ERa/Src/PI3K,

we evaluated ERa/PI3K and ERa/Src interactions in situ.

We validated the specificity of this approach by setting up

experimental conditions in MCF-7 cells and confirmed by

PLA the in vitro data on the formation and regulation of

the complex ERa/Src/PI3K (Figs 1 and 2, Supporting Informa-

tion Figs S1–S4). Indeed, we confirmed that oestrogen

treatment triggers the rapid and transient interaction of ERa

with PI3K and Src. Both interactions increased significantly

after 5min, then decreased after 15min of E2 treatment (Fig 1C

and D).
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Table 3. Distribution of clinical parameters according to groups of ERa/PI3K expression

Duolink ERa/PI3K Test (p)

0–7 (N¼125) >7 (N¼50)

N % N %

Age at diagnosis (years) x2 (0.720)

<50 39 31.2 17 34.0

�50 86 68.8 33 66.0

Menopause x2 (0.925)

ND 3 0

No 43 35.2 18 36.0

Yes 79 64.8 32 64.0

Tumour size (mm) x2 (0.733)

<20 mm 49 39.2 21 42.0

�20mm 76 60.8 29 58.0

Histological grade (SBR) x2 (0.014)

1 29 23.2 3 6.0

2 45 36.0 27 54.0

3 51 40.8 20 40.0

Lymph node involvement Fisher exact (0.205)

N0 56 44.8 20 40.0

Micro metastasis 14 11.2 2 4.0

Macro metastasis 55 44.0 28 56.0

Lympho-vascular invasion x2 (0.195)

Yes 61 48.8 19 38.0

No 64 51.2 31 62.0

Oestrogen receptor: % marked cells x2 (0.758)

ND 1 0

<10% 30 24.2 11 22.0

�10% 94 75.8 39 78.0

Progesterone receptor: % marked cells x2 (0.386)

ND 1 0

<10% 41 33.1 20 40.0

�10% 83 66.9 30 60.0

HER2 status x2 (0.019)

ND 9 1

0/þ/þþFISH� 104 89.7 37 75.5

þþFISHþ/þþþ 12 10.3 12 24.5

Clinical parameters (age at diagnosis, tumour size, menopausal status, lymph node involvement, SBR grading and hormonal expression) were analysed for the

175 patients included in the TMA study. Association between clinical characteristics and the level of ERa/PI3K interaction (cut off at 7 dots/cell) was determined

using x2 test or Fisher’s exact test. Significant correlations are highlighted in bold characters.

8 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. EMBO Mol Med (2012) 4, 1–14



Subsequently, we analysed the expression of the complex in

several human breast cancer cell lines and demonstrated a

concordance between the levels of ERa methylation and both

ERa/PI3K and ERa/Src interactions (Supporting Information

Fig S4). This confirmed the data we obtained in MCF-7 cells

demonstrating that receptor methylation is a prerequisite for the

formation of the complex.

We have used PLA technology to confirm the presence of the

ERa/PI3K/Src complex in the cytoplasm of tumoral cells in a

cohort of 175 invasive breast cancers. The precise quantification

www.embomolmed.org Research Article
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Figure 6. Kaplan–Meier estimates of DFS by ERa/Src expression groups.

A. Global population (cut off at four dots per cell).

B. Sub-population of ER-positive cases.

C. Sub-population of ER-negative cases.

Table 4. Multivariate analysis of DFS integrating ERa/Src expression

Variables Hazard Ratio IC95% p-value

Duolink ERa/Src

0–4 1 –

>4 1.859 1.01–3.42 0.046

Lymph node involvement

No 1 –

Yes 1.929 1.05–3.56 0.035

Hazard ratios for high ERa/Src interaction (score: 0–4) relative to low ERa/Src

interaction (score: >4) are shown and for lymph node involvement.

Figure 7. Kaplan–Meier estimates of DFS by ERa/PI3K expression groups.

A. Global population (cut off at seven dots per cell).

B. Sub-population of ER-positive cases.

C. Sub-population of ER-negative cases.

Table 5. Multivariate analysis of DFS integrating ERa/PI3K expression

Variables Hazard ratio IC95% p-value

Duolink ERa/PI3K

0–7 1 –

>7 1.885 1.04–3.42 0.037

Lympho-vascular invasion

No 1 –

Yes 2.068 1.15–3.72 0.015

Hazard ratios for high ERa/PI3K interaction (score: 0–7) relative to low ERa/

PI3K interaction (score: >7) are shown and for lymph node involvement.

EMBO Mol Med (2012) 4, 1–14 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 9



of the signals obtained for each protein pair (ERa/Src, ERa/PI3K

and ERa/mERa) clearly shows that formation of the complex

was highly increased in a subset of breast cancers. For example,

we measured 0–3 dots per cell for the ERa/Src interaction in

normal cells, compared to up to 21 dots per cell in tumour

samples. We made the same observations for the other two

protein pairs (compare Fig 3B with Supporting Information

Table S1). The analysis of ERa/Src interaction in 175 breast

tumour samples showed that 55% of breast tumours highly

express this protein pair (Table 2). Our result is different from

those of Welsh et al (Welsh et al, 2012). They analysed ERa

cytoplasmic expression by quantitative immunofluorescence on

3200 tumour samples and found that only 1.5% of tumours

express cytoplasmic ERa. This discrepancy is probably due

to a lack of sensitivity and highlights the use of the PLA

technology as a powerful tool to measure oestrogen non-

genomic signalling.

Moreover, our work supports the concept that in breast

tumours, nuclear and non-nuclear oestrogen signalling can act

independently. In fact, we found the ERa/Src/PI3K complex in

tumours negative for nuclear ERa. In our cohort of 175 patients,

22 (54%) of the 41 ERa-negative tumours expressed a high level

of ERa/Src (Table 2). This is in agreement with our previous

analysis of ERa methylation in a different cohort of 164 breast

tumours where we found that 53% of ERa-negative tumours

expressed hypermethylated ERa (Le Romancer et al, 2008).

Kumar et al also found ERa expression in the cytoplasm of

tumours classified as ERa-negative. They explained this

unusual localization by the sequestration of ERa into the

cytoplasm through a natural variant of MTA1, MTA1s

(metastasis-associated antigen 1 short form; Kumar et al,

2002). However, they did not demonstrate that a cytoplasmic

pathway was activated in these tumours. We have confirmed

the association of ERamethylation and its interaction with PI3K

and Src in line with our previous results obtained in cellular

models. This suggests that ERa methylation is a key step for

ERa/Src/PI3K complex formation. Interestingly, the formation

of the complex correlates with the activation of Akt as measured

by the status of Akt phosphorylation. This strongly indicates

that in breast tissues, oestrogens activate cytoplasmic phos-

phorylation cascades by triggering the methylation of ERa and

the recruitment of Src and PI3K. This finding introduces a new

concept: the rapid oestrogen pathway is operative in vivo and

deregulated in a subset of breast cancers.

Our second important result shows that the association level

of ERa with both Src and PI3K correlates with other prognostic

factors, such as high SBR grade and lymph node involvement.

Thereby, this strongly suggests that activation of the cytoplas-

mic signalling pathway could constitute a marker of tumour

aggressiveness. The association between the ERa/Src interac-

tion and lymph node metastasis is particularly interesting and

could involve FAK activity as we have demonstrated that FAK is

also recruited with ERa/Src/PI3K upon oestrogenic stimulation

(Le Romancer et al, 2008).

Due to the major role that ERa plays in the development

and progression of breast cancer, the oestrogen signalling

pathway has been studied in depth. Current endocrine

therapies for breast cancer are mainly based on targeting the

ERa signalling pathway: reducing oestrogen abundance with

aromatase inhibitor (Baum et al, 2002; Johnston & Dowsett,

2003), antagonizing ERa function with tamoxifen and

raloxifene (Jensen & Jordan, 2003) or down-regulating ERa

expression with fulvestrant (MacGregor & Jordan, 1998).

However, resistance to endocrine therapies is one of the

major barriers to the successful treatment of breast cancer

(Musgrove & Sutherland, 2009; Yamashita, 2008). There is a real

need to find markers predicting resistance to treatment.

Currently, ERa expression in the nucleus is the only known

biomarker of response to endocrine therapy. As a consequence,

non-genomic ERa signalling has never been assessed in clinical

practice.

Aberrant activation of the PI3K/Akt/mTOR pathway has been

found in many types of cancer and thus plays a role in breast

cancer proliferation and anti-cancer resistance (Ghayad &

Cohen, 2010). It is clear that activation of this signalling

pathway triggers a cascade of biological events such as cell

growth, proliferation, survival and migration, which contribute

to tumour progression. Therefore, this pathway is an attractive

target for the development of anti-cancer molecules and several

kinase inhibitors have already been developed. Several of these

inhibitors are currently under clinical evaluation (Ghayad &

Cohen, 2010). The tyrosine kinase Src has also been considered

as a potential target and Src inhibitors like dasatinib or bosutinib

have been tested in phase II clinical trials (Araujo & Logothetis,

2010). However, so far, the effects have been quite disappoint-

ing. In fact, dasatinib used as a single agent has limited activity

in patients with triple-negative breast cancer (TNBC; Finn et al,

2011) or patients with heavily treated metastatic breast

cancer (Campone et al, 2012) and it advances ERa-positive

tumours. However, in vitro studies show that combining anti-

oestrogen and Src inhibitor enhances growth inhibition (Chen

et al, 2011). Moreover, clinical trials are ongoing to combine

dasatinib with other therapies (Mayer & Krop, 2010). However,

even if clinical studies give satisfactory results, there remains

a real need to identify biomarkers that will predict which

patients could benefit from these inhibitors either alone or in

combination.

We can speculate that the deregulation of oestrogen non-

genomic signalling may open up new perspectives for anti-

cancer treatment strategy. However, our patient population was

small and usual prognostic factors (such as tumour size) were

not found to be significant in the current retrospective analysis.

Independent validation is required and this can be done in the

context of randomized clinical trials with endocrine therapy

where the oestrogen non-genomic signalling can be assessed

retrospectively. Furthermore, our work suggests that the non-

genomic signalling pathway may be taken into account to

optimize targeted therapies. In the metastatic setting, as

described above, PI3K and/or Src appear to be promising

targets for treatment. We can thus imagine targeting the entire

ERa/Src/PI3K complexes. The disruption of the complex

containing mERa/Src/PI3K has already been shown to decrease

cell proliferation. Consistent with this hypothesis, the work

by Aurricchio et al has shown that disrupting the ERa/Src
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interaction with a peptide impairs complex formation and the

proliferation of tumour cells both in vitro and in xenografted

mice (Varricchio et al, 2007). We speculate that combining

endocrine therapies with Src inhibitors and/or PI3K inhibitors

based on the level of ERa/Src or ERa/PI3K interactions may be

clinically relevant. This concept has to be validated in large

prospective clinical studies.

For TNBC, which account for approximately 15% of all

breast cancers (Foulkes et al, 2010) and for which specific

targets are lacking, determining which pathways are activated

is important. When we analysed the DFS of patients with

ERa-negative tumours according to ERa/Src intensity staining

in a Duolink experiment (0 vs. 1–2), we identified a

subpopulation of patients that did not display oestrogen non-

genomic signalling and who did not relapse (Supporting

Information Fig S8). However, few patients do not express

ERa/Src (n¼ 10 vs. n¼ 31 patients with intensity >0) and

the difference is not statistically significant (p¼ 0.074). For

patients with tumours expressing ERa/Src, we assume that

this complex may become a new target for treatment. Again,

this assumption has to be validated in a prospective clinical

trial.

In summary, this work is proof of concept that the oestrogen

non-genomic pathway, represented by the formation of the

ERa/Src/PI3K protein complex, potentially constitutes a novel

tumour biomarker to predict survival and/or response to

targeted agents. These encouraging results raise the interest for

further clinical studies with large patient populations. We thus

planed to test the effects of combining endocrine therapy plus

kinase inhibitors such as PI3K/mTor inhibitors or Src inhibitors

in preclinical studies as well as in clinical trials.

MATERIALS AND METHODS

Cell Culture and Transfections

MCF-7, CLB-SAV, MDA-MB-231 and ZR75-1 cells were maintained at

378C in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented

with 10% fetal calf serum and 1% non-essential amino acids. Cama-1

cells were maintained at 378C in RPMI supplemented with 10%

serum. CLB-SAV is an epithelial cell line established by C. Caux (Centre

Leon Berard, Lyon, France) from ascitic fluid of a 58-year old patient

with lobular breast carcinoma. We have already shown that this cell

line expresses ERa and mERa (Le Romancer et al, 2008). ZR-75 and

Cama-1 express ERa although MDA-MB-231 does not express the

receptor (Supporting Information Fig S4C).

To study the effect of hormones on ERa methylation, the cells were

treated for different times with E2 or tamoxifen (Sigma). When stated,

MCF-7 cells were treated with Src inhibitors PP1 or with PI3K

inhibitor LY 294002 (Calbiochem).

The siRNA sequence targeting PRMT1 has already been described (Le

Romancer et al, 2008). The siRNA sequences targeting ERa correspond

to the coding regions 854–872 (siERa1) and 1137–1154 (siERa2)

and have been mixed before transfection.

Antibodies

Antibodies are listed in Table 6A and B.

Immunoprecipitation and Western blotting

After treatment, cells were lysed using RIPA buffer (50mM Tris–

HCl, pH 8, 150mM NaCl, 1mM EDTA, 1% NP-40, 0.25% deoxycho-

late) supplemented with protease inhibitor tablets (Roche Molecular

Biochemicals) and phosphatase inhibitors (1mM NaF, 1mM Na3VO4,

1mM b-glycerophosphate). Protein extracts were incubated with

primary antibodies overnight at 48C with shaking. Protein A-agarose

or Protein L-agarose beads were added and the mixture was incubated

2 h at 48C then washed three times with lysis buffer. After separation

on SDS–PAGE, proteins were analysed by Western blotting.

Human breast cancer samples collection

The tumours from 175 CLB patients with invasive non-metastatic

breast cancer whose clinical and biological data were available

from the regularly updated institutional database were analysed.

Written informed consent was obtained from each patient and the

study protocol was approved by the institutional ethics committee.

Patients’s characteristics are presented in Supporting Information

Table S3. Median age was 55 (range 27–87) and the majority of

patients were post-menopausal (65%). In our study, tumours

exhibiting less than 10% of ER positive cells qualify for ER negative

tumours. The patient follow up was performed as routine practice.

Immunohistochemistry

Paraffin embedded tumours tissue fixed in Formalin were used for

analysis. The pathologist selected representative areas from breast

invasive carcinomas. Triplicates from each tumour were inserted in a

TMA block which contained 40 tumours. Five TMA (200 tumours)

were analysed. The blocks containing invasive carcinoma were serially

sectioned at a thickness of 4mm. After deparaffinization and

rehydratation, tissue sections were boiled in 10mM citrate buffer

ph6 using a water bath at 978C for 40min.

For blocking endogenous peroxidases, the slides were incubated in 5%

hydrogen peroxide in sterile water. The slides were then incubated at
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Table 6. List of used antibodies

A: Antibodies for PLA analysis

Antibodies References Species Dilution

ERa (1D5) 7047 (Dako) Mouse 1/50

ERa (HC20) Sc-542 (Santa Cruz) Rabbit 1/75

PI3K p85 Ab22653 (Abcam) Mouse 1/30

Src (B12) Sc-8056 (Santa Cruz) Mouse 1/150

mERa Home made Mouse 1/50

p300 (NM11) Sc-32244 (Santa Cruz) Mouse 1/100

SRC3 Sc-13066 (Santa Cruz) Rabbit 1/50

FAK (A17) Sc-557 (Santa Cruz) Souris 1/50

B: Antibodies for immunoprecipitation and Western blotting

Antibodies References Species Dilution

Western

Blotting

IP

mERa Home made Mouse 1mg

ERa (60C) #04-820 (Millipore) Rabbit 1/1000

PRMT1 #24-333 (Upstate) Rabbit 1/4000

PI3K p85 #06-195 (Upstate) Rabbit 1/9000

c-Src (B12) Sc-8056 (Santa Cruz) Mouse 1mg

Src (36D10) #2109 (Cell signaling) Rabbit 1/1000
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room temperature for 1 h with the anti-p-Akt monoclonal rabbit

antibody (Ref: 2118.1, Epitomics, Burlingame, California) diluted at

1/50. After rinsing in Phosphate Buffer Saline, the slides were incubated

with a biotinylated secondary antibody bound to a streptavidin

peroxidase conjugate (Envision Flex kit Ref: K800021-2, Dako, Trappes,

France). Bound antibody was revealed by adding the substrate 3,3-

diamino benzidine. Sections were counterstained with hematoxylin.

Proximity ligation assay

This innovent technology developed by Olink Bioscience (Sweden)

allows visualizing protein/protein interactions in situ and has been

firstly published in 2006 (Soderberg et al, 2006).

Fluorescence revelation

MCF-7 cells (9.5�105), CLB-SAV cells (20�105), MDA-MB-231 cells

(10�105), Cama-1 cells (10�105) and ZR75-1 cells (10�105) were

grown on coverslips into 12-well plates. Cells were fixed in methanol

for 2min, washed twice in PBS. For tumours analysis, blocks

containing breast tumours of 4mm thick sections were cut,

deparaffinized and subjected to antigen retrieval by water bath in

citrate buffer (pH 6.0) during 40min, and at rest during 20min. Then,

the slides were treated according to the manufacturer’s instructions

(Duolink II Fluorescence, Olink Bioscience, Sweden). Firstly, the samples

were saturated using the blocking solution, then different couples of

primary antibodies (rabbit and mouse in our case) were incubated 1 h

at 378C. After two washes in PBS, the PLA minus and plus probes

(containing the secondary antibodies conjugated with complementary

oligonucleotides) were added and incubated 1 h at 378C. The next step

allows the ligation of oligonucleotides if the two proteins are in close

proximity thanks to the ligase during an incubation of 30min at 378C.

Then, after two washes, the addition of nucleotides and polymerase,

allows amplification by rolling-circle amplification (RCA) reaction

using the ligated circle as a template during an incubation of 100min

at 378C. The amplification solution also contains fluorescently labelled

oligonucleotides that hybridize to the RCA product. Then, the samples

were let drying at room temperature in the dark and were mounted

with Duolink II Mounting Medium containing Dapi, then analysed on

fluorescence microscope.

Bright field revelation

For TMA analysis, we used another revelation kit (Duolink II Brightfield)

that allows detecting the signal by colorimetry under visible light. The

first step is to avoid peroxidase quenching incubating the samples

5min at room temperature, with a hydrogene peroxide solution. The

following steps are identical to what was described before. For the

detection, the probes are labelled with horseradish peroxidase after two

washes in high purity water; nuclear staining solution is added on slides

and incubated 2min at room temperature. After washing the slides

10min on running tap water, the samples were dehydrated in ethanol,

then in Xylene solution. Samples were mounted in non-aqueous

mounting medium and then analysed with a Bright field microscope.

Image acquisition and analysis

The hybridized fluorescent slides were viewed under a Leica DM6000B

microscope. Images were acquired under identical conditions at

objective X63. On each samples, 100 cells were counted. Analyses

and quantifications of these samples were performed using Image J

software (free access). This software allows counting dots on 8 bits

image. The plugin ‘‘Counter cells’’ allows analyzing cells number.

The hybridized Bright field slides were viewed under a Leica DMLB

microscope. Images on three independent zones of each tumour on

TMA were acquired under identical conditions at objective X40. On

each tumour, 500 tumourous cells were counted. We have done the

analysis on TMAs blocks which include three cores of 600mm for each

tumour. In fact, each core is obtained in a different area of the tumour

so that we try to take in account tumour heterogeneity. For PLA

assessment, we make an average of the staining while counting the

three cores. We do not choose focal areas on the cores. In the vast

majority of our cases, a homogenous staining within the three cores

was observed except for ten tumours. In these cases, the average of

staining obtained from the three cores was used.

Thereafter, analyses and quantifications of these samples were

performed using Duolink ImageTool software (developed by Olink

Bioscience)

Statistical analysis

Correlation analysis

Correlations between the three biomarkers were studied. Furthermore,

correlations between each couple (ERa/Src, ERa/PI3K, ERa/mERa

expression) and p-Akt were also performed. The software produces a

graph which represents the correlation between each variable 2 by 2.

The Pearson’s correlation coefficient were presented and the stars

identify its significance threshold (�p<0.05; ��p<0.01; ���p<0.001).

Descriptive analysis

Thanks to concertation between clinicians and biologists, thresholds

were defined to distinguish in an optimal way high and low expression

of ERa/Src (�4/>4 dots per cells), ERa/PI3K (�7/>7) and ERa/mERa

(�3/>3). Distribution of clinical parameters (cancer subtype, clinical,

histological and immunohistochemical data) was compared between

ERa/Src, ERa/PI3K and ERa/mERa expression groups, using Pearson’s

x2 test or Fisher’s exact test. Same comparisons were made according

to intensity levels but only results about dots per cells are presented in

this article.

Survival analysis

Overall survival defined as time from diagnosis to death or date of

last follow-up and DFS defined as time from diagnosis to death

or relapse or date of last follow-up (for censored patients) were

studied.

Survival distributions were estimated by Kaplan–Meier method and

compared between expression’s level groups using the Log-Rank test.

To evaluate a possible relationship between DFS and ERa/Src

expression, univariate Cox proportional hazard regression models

were built by considering ERa/Src expression and some covariates,

approved to be prognostic of DFS (tumour size, lymph node status, RE,

RP, HER2 status and SBR grade). All interactions between variables

(significant at 20%) were tested and only significant ones (p�0.05)

were entered in the initial multivariate Cox model in addition to

variables statistically significant in univariate analysis at 20% level.

A backward manual selection procedure was used to lead to the final

model by removing non-significant variables (p>5%). Similar DFS

study was achieved with ERa/PI3K marker.
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All statistical analysis were performed using SAS1 software, v 9.3 (SAS

institute Inc, Cary, NC, USA) except the correlation study, carried out

with R software.
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The Paper explained

PROBLEM:

At breast cancer diagnosis, only patients expressing ERa in the

nucleus (classified ERa-positive) are treated by endocrine

therapy and unfortunately, some patients die after developing

resistance to the treatments. However, a few papers have shown

that ERa could be present in the cytoplasm of breast tumours.

Furthermore, in cellular models, it has been well established that

oestrogen activates extranuclear pathways through the

recruitment of ERa/Src/PI3K and activation of downstream

kinases as Akt. Our lab has shown that arginine methylation of

ERa is a prerequisite for non-genomic signalling triggering

association of ERa with Src and PI3K in breast cancer cells. The

aim of this work was to assess whether oestrogen non-genomic

signalling occurs in human breast tumours and if this signalling

pathway could constitute a new therapeutic target.

RESULTS:

To approach oestrogen non-genomic signalling in vivo, we

studied ERa interaction with Src and PI3K using the technology

of PLA that allows detecting protein–protein interactions in situ.

First, we were able to recapitulate the data about the complex

formation containing ERa/Src/PI3K that were obtained with

other techniques. We then investigated oestrogen non-genomic

signalling in breast tumours. We found that ERa interacts weakly

with Src and PI3K in human normal epithelial cells and strongly

in some tumour samples. These interactions are independent of

the presence of ERa in the nucleus but correlate with the level of

methylated ERa. The analysis of 175 tumours showed that ERa/

Src, ERa/PI3K and mERa expression is correlated with Akt

activation suggesting strongly that this pathway is operative

in vivo. Interestingly, we found that the high expression of ERa/

Src and ERa/PI3K is an independent poor prognostic marker

associated with reduced disease free survival

IMPACT:

This is the first evidence that oestrogen non-genomic signalling

occurs in breast tissue and is deregulated in a subset of breast

tumours. The analysis of ERa/Src and ERa/PI3K interactions could

be a new relevant tool for pathologist at diagnosis. We

hypothesize that, based on the level of ERa/Src and ERa/PI3K

interactions, the clinician could orientate the treatment towards

Src or PI3K inhibitor associated with classical treatment for

breast tumours.

EMBO Mol Med (2012) 4, 1–14 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 13



Fernando RI, Wimalasena J (2004) Estradiol abrogates apoptosis in breast

cancer cells through inactivation of BAD: Ras-dependent nongenomic

pathways requiring signaling through ERK and Akt. Mol Biol Cell 15:

3266-3284

Finn RS, Bengala C, Ibrahim N, Roche H, Sparano J, Strauss LC, Fairchild J, Sy O,

Goldstein LJ (2011) Dasatinib as a single agent in triple-negative breast

cancer: results of an open-label phase 2 study. Clin Cancer Res 17:

6905-6913

Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer.

N Engl J Med 363: 1938-1948

Ghayad SE, Cohen PA (2010) Inhibitors of the PI3K/Akt/mTOR pathway: new

hope for breast cancer patients. Recent Pat Anticancer Drug Discov 5: 29-57

Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and

actions. Endocr Rev 28: 726-741

Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, Nishio Y, Adachi K,

Tasaka K, Miyoshi E, Fujiwara N et al (2001) Estrogen induces the Akt-

dependent activation of endothelial nitric-oxide synthase in vascular

endothelial cells. J Biol Chem 276: 3459-3467

Jensen EV, Jordan VC (2003) The estrogen receptor: a model for molecular

medicine. Clin Cancer Res 9: 1980-1989

Johnston SR, Dowsett M (2003) Aromatase inhibitors for breast cancer: lessons

from the laboratory. Nat Rev Cancer 3: 821-831

Kumar R, Wang RA, Mazumdar A, Talukder AH, Mandal M, Yang Z, Bagheri-

Yarmand R, Sahin A, Hortobagyi G, Adam L, et al (2002) A naturally occurring

MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm.

Nature 418: 654-657

Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L (2011)

Cracking the estrogen receptor’s posttranslational code in breast tumors.

Endocr Rev 5: 597-622

Le Romancer M, Treilleux I, Bouchekioua-Bouzaghou K, Sentis S, Corbo L

(2010) Methylation, a key step for nongenomic estrogen signaling in breast

tumors. Steroids 75: 560-564

Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S,

Bouchekioua-Bouzaghou K, Goddard S, Gobert-Gosse S, Corbo L (2008)

Regulation of estrogen rapid signaling through arginine methylation by

PRMT1. Mol Cell 31: 212-221

Levin ER (2009) Plasma membrane estrogen receptors. Trends Endocrinol

Metab 20: 477-482

MacGregor JI, Jordan VC (1998) Basic guide to themechanisms of antiestrogen

action. Pharmacol Rev 50: 151-196

Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K,

Blumberg B, Kastner P, Mark M, Chambon P, et al (1995) The nuclear

receptor superfamily: the second decade. Cell 83: 835-839

Mayer EL, Krop IE (2010) Advances in targeting SRC in the treatment of breast

cancer and other solid malignancies. Clin Cancer Res 16: 3526-3532

McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by

nuclear receptors and coregulators. Cell 108: 465-474

Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine

resistance in breast cancer. Nat Rev Cancer 9: 631-643

Pietras RJ, Szego CM (1977) Specific binding sites for oestrogen at the outer

surfaces of isolated endometrial cells. Nature 265: 69-72

Razandi M, Pedram A, Merchenthaler I, Greene GL, Levin ER (2004) Plasma

membrane estrogen receptors exist and functions as dimers. Mol Endocrinol

18: 2854-2865

Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, Simoncini T

(2010) Estrogen receptor-alpha promotes breast cancer cell motility and

invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 24:

2114-2125

Shupnik MA (2004) Crosstalk between steroid receptors and the c-Src-

receptor tyrosine kinase pathways: implications for cell proliferation.

Oncogene 23: 7979-7989

Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000)

Interaction of oestrogen receptor with the regulatory subunit of

phosphatidylinositol-3-OH kinase. Nature 407: 538-541

Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J,

Wester K, Hydbring P, Bahram F, Larsson LG, et al (2006) Direct observation

of individual endogenous protein complexes in situ by proximity ligation.

Nat Methods 3: 995-1000

Song RX, Zhang Z, Santen RJ (2005) Estrogen rapid action via protein

complex formation involving ERalpha and Src. Trends Endocrinol Metab 16:

347-353

Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/

thyroid receptor superfamily members. Annu Rev Biochem 63: 451-486

Varricchio L, Migliaccio A, Castoria G, Yamaguchi H, de FA, Di DM, Giovannelli

P, Farrar W, Appella E, Auricchio F (2007) Inhibition of estradiol receptor/Src

association and cell growth by an estradiol receptor alpha tyrosine-

phosphorylated peptide. Mol Cancer Res 5: 1213-1221

Warner M, Gustafsson JA (2006) Nongenomic effects of estrogen: why all the

uncertainty? Steroids 71: 91-95

Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast

cancer: prognosis and prediction. Endocr Relat Cancer 17: R245-R262

Welsh AW, Lannin DR, Young GS, Sherman ME, Figueroa JD, Henry NL, Ryden L,

Kim C, Love RR, Schiff R, et al (2012) Cytoplasmic estrogen receptor in breast

cancer. Clin Cancer Res 18: 118-126

Yamashita H (2008) Current research topics in endocrine therapy for breast

cancer. Int J Clin Oncol 5: 380-383

Research Article www.embomolmed.org
Oestrogen non-genomic signalling in breast carcinoma

14 � 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. EMBO Mol Med (2012) 4, 1–14



Supplemental Data 

Activation of rapid estrogen signaling in aggressive human breast cancers  
Coralie Poulard, Isabelle Treilleux, Emilie Lavergne, Katia Bouchekioua-Bouzaghou, Sophie 
Goddard-Léon, Sylvie Chabaud, Olivier Trédan, Laura Corbo and Muriel Le Romancer 

 

Table of contents 

 
Figure S1: In Situ PLA detection of ERα/PI3K and ERα/Src interactions upon tamoxifen 
treatment 
 
Figure S2: Detection of endogenous interactions between ERα/SRC3 and ERα/p300. 
 
Figure S3: In Situ PLA detection of FAK/Src and FAK/ ERα interactions in MCF-7 cells 
 
Figure S4: In situ PLA detection of endogenous ERα/PI3K and ERα/Src interactions in 
human breast cancer cell lines 
 
Figure S5: Kaplan-Meier estimates of OS by ERα/Src expression groups. 
 
Figure S6: Kaplan-Meier estimates of OS by ERα/PI3K expression groups 
 
Figure S7: Kaplan-Meier estimates of patient’s outcome for mERα/ERα expression groups. 
 
Figure S8: Kaplan-Meier estimates of DFS by ERα/Src intensity groups 
 
Table S1: Distribution of ERα/Src, ERα/PI3K and ERα/mERα data 
 
Table S2: Distribution of clinical parameters according to groups of ERα/mERα expression 
 
Table S3: Sample description: Distribution of clinical parameters. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1: In Situ PLA detection of ERα/PI3K and ERα/Src interactions upon tamoxifen 
treatment. A. Estrogen-deprived MCF-7 cells were incubated with E2 (10-8M) or both E2 plus 
tamoxifen (5X10-6M) for 5 min. After fixation, in situ PLA for ERα/PI3K (panel a,b) and ERα/Src 
dimers (panel c,d) was performed with ERα-, Src-, and PI3K-specific antibodies. The nuclei were 
counterstained with DAPI (blue). B. Quantification of the number of signals per cell was performed 
by computer-assisted analysis as reported in the Materials and methods. The mean +/- s.e.m. of four 
experiments is shown. P-value was determined by Student’s t-test. 
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Figure S2: Detection of endogenous interactions between ERα/SRC3 and ERα/p300. PLA was 
performed on MCF-7 cells with two couples of antibodies: ERα/SRC3 (panel a) and ERα/p300 
(panel b). Control experiments were performed using only one primary antibody: anti-SRC3 (panel 
c) or anti-p300 (panel d). The nuclei were counterstained with DAPI (blue).  
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Figure S3: In Situ PLA detection of FAK/Src and FAK/ ERα interactions in MCF-7 cells 
A. Estrogen-deprived MCF-7 cells were incubated with E2 10-8M for 5 min. After fixation, in situ 
PLA for FAK/Src (panel a) and FAK/ERα dimers (panel b) was performed with indicated 
antibodies. B. Quantification of the number of signals was performed as described previously. . The 
mean +/- s.e.m. of four experiments is shown. P-value was determined by Student’s t-test. 
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Figure S4: In situ PLA detection of endogenous ERα/PI3K and ERα/Src interactions in 
human breast cancer cell lines. A. In situ PLA of ERα/PI3K and ERα/Src interactions were 
performed in several human breast tumor cell lines. CLB-SAV (panels a,b); ZR75-1 (panels c,d); 
Cama-1 (panels e,f); MDA-MB-231 (panels g,h). B. Quantification of the number of signals was 
performed as described previously. The mean +/- s.e.m. of four experiments is shown. P-value was 
determined by Student’s t-test. For PI3K/ER  : *1 p=0,0006 (CLB-Sav vs MDA-MB-231), 
p=0,0001 (ZR-75.1 vs MDA-MB-231), *3 p=1,6.10-5 (CLB-Sav vs Cama-1), p=0,0005 (ZR-75.1 vs 
Cama-1). For Src/ER  : *2 p=0,004 (CLB-Sav vs MDA-MB-231), p=0,0002 (ZR-75.1 vs MDA-
MB-231), *4 p=0,004 (CLB-Sav vs Cama-1), p=0,0002 (ZR-75.1 vs Cama-1) C. Lysates of CLB-
SAV, MDA-MB-231, ZR75-1 and Cama-1 cells were analyzed by western blot for ERα expression. 
D. Cells lysates were immunoprecipitated with anti-mERα and blotted with anti-ERα. 
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Figure S5: Kaplan-Meier estimates of OS by ERα/Src expression groups. Global population 
(with a cut off at 4 spots per cell). 
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Figure S6: Kaplan-Meier estimates of OS by ERα/PI3K expression groups. Global population 
(with a cut off at 7 spots per cell). 
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Figure S7: Kaplan-Meier estimates of patient’s outcome for mERα/ERα expression groups. 
Global population (with a cut off at 3 spots per cell) for DFS (A) and for OS (B). 
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Figure S8: Kaplan-Meier estimates of DFS by ERα/Src intensity groups. A) Global population 
(with a cut off at 0 versus 1, 2). B) ERα -positive cases. C) ERα -negative cases.  
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Table S1: Distribution of ERα/Src, ERα/PI3K and ERα/mERα data. This table shows the 
distribution of the number of dots/cell cfor each couple in the 175 breast tumors. 
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Table S2: Distribution of clinical parameters according to groups of ERα/mERα expression. 
Clinical parameters (age at diagnosis, tumor size, menopausal status, lymph node involvement, 
SBR grading and hormonal expression) were analyzed for the 175 patients included in the TMA 
study. Association between clinical characteristics and the level of ERα/mERα interaction was 
determined using χ² test or Fisher’s exact test. 
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Table S3: Sample description: Distribution of clinical parameters. 
Clinical parameters (age at diagnosis, tumor size, menopausal status, lymph node involvement, 
SBR grading and hormonal expression) were analyzed for the 175 patients included in the TMA 
study with a cut off at 3 dots/cell. 
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All 
N=154 

          N                     % 
Age at diagnosis (years) 
  Mean (Std) 56.79 (12.44) 

[27.30-87.40]   [Min-Max] 
Menopause 
   missing data 2 
   No 58 38.2 
   Yes 94 61.8 
Tumor size (mm) 
   < 30 mm  110 71.4 
   >=  30 mm 44 28.6 
Histological grade (SBR) 
   1 31 20.1 
   2 70 45.5 
   3 53 34.4 
Lymph node involvement 
   No 66 42.9 
   Yes 88 57.1 
Estrogen receptor : % marked cells 
   missing data 1 
   < 10% 19 12.4 
   >= 10% 134 87.6 
Progesterone receptor : % marked cells 
   missing data 1 
   < 10% 38 24.8 
   >= 10% 115 75.2 
HER2 status 
   missing data 2 
   0/+/++FISH- 133 87.5 
   ++FISH+/+++ 19 12.5 
 Luminale A 
   missing data 3 
   No 63 41.7 
   Yes 88 58.3 

Table S1 
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Table 1 

 

hnRNP  U-like protein 1  Q9BUJ2  mRNA processing DMA, MMA (Uhlmann et al., 2012) 

hnRNP K P61978  mRNA processing DMA, MMA (Kolbel et al., 
2009;Uhlmann et al., 
2012)  

hnRNP L P14866  mRNA processing MMA (Hornbeck et al., 2012) 

hnRNP Q O60506  mRNA processing MMA, DMA (Hornbeck et al., 2012) 
U1 snRNP 70 P08621  mRNA processing MMA (Hornbeck et al., 2012) 
RNA helicase (DDX3) O00571  mRNA processing DMA, MMA (Hornbeck et al., 2012) 
RNA helicase (DDX5) P17844  mRNA processing DMA, MMA (Uhlmann et al., 2012) 
RNA helicase (DDX17)* Q92841  mRNA processing MMA (Hornbeck et al., 2012) 
Paraspeckle protein 2 (PSP2) Q96PK6 mRNA processing MMA (Hornbeck et al., 2012) 
PTB-associated-splicing factor 
(SFPQ)  

P23246  mRNA processing DMA, MMA (Ong et al., 
2004;Uhlmann et al., 
2012) 

Non-POU domain-containing 
octamer-binding protein 

Q15233  mRNA processing MMA (Hornbeck et al., 2012) 

RNA-binding protein (FUS) P35637  mRNA processing DMA, MMA (Ong et al., 
2004;Uhlmann et al., 
2012) 

RNA-binding protein (EWS) Q01844  mRNA processing DMA, MMA (Belyanskaya et al., 
2001;Pahlich et al., 
2005)  

Splicing factor HCC1 * Q14498  mRNA processing DMA, MMA (Uhlmann et al., 2012) 

Poly(U)-binding-splicing 
factor(PUF60)* 

Q9UHX1  mRNA processing    

Paraspeckle component 1 (PSPC1) Q8WXF1  transcription DMA, MMA (Uhlmann et al., 2012) 

TATA-BP-associated factor 2N  
TAF15 

Q92804  transcription DMA, MMA (Ong et al., 
2004;Uhlmann et al., 
2012) 

Arg-methyltransferase (CARM1) Q86X55  transcription DMA, MMA (Jung et al., 2008) 

Poly(A)-binding protein 1 
(PABP1) 

P11940  translation DMA, MMA (Uhlmann et al., 2012) 

Poly(A)-binding protein 4 
(PABP4) 

Q13310  Translation DMA (Ong et al., 2004) 

Ras GTPase-activating BP1 Q13283  translation DMA, MMA (Uhlmann et al., 2012) 
SMARCD2 Q92925  Chromatin structure DMA (Hornbeck et al., 2012) 
nucleolin P19338 mRNA 

processing/nucleolus 
DMA (Lapeyre et al., 1986) 

Protein transport protein Sec23B  Q15437  Endosome trafficking     
TFG Q92734  unknown DMA, MMA (Uhlmann et al., 2012) 
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Lyon, France; Université Lyon 1 (P.C., S.S.), Institut des Sciences Pharmacologiques et Biologiques, Faculté de Pharmacie de Lyon,
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Institut Gustave Roussy, 94805 Villejuif Cedex, France; and Université Paris-Sud (J.-M.R.), Orsay, F-91405, France

Estrogen signaling pathways, because of their central role in regulating the growth and survival of breast tumor
cells, have been identified as suitable and efficient targets for cancer therapies. Agents blocking estrogen
activity are already widely used clinically, and many new molecules have entered clinical trials, but intrinsic or
acquired resistance to treatment limits their efficacy. The basic molecular studies underlying estrogen signaling
have defined the critical role of estrogen receptors (ER) in many aspects of breast tumorigenesis. However,
important knowledge gaps remain about the role of posttranslational modifications (PTM) of ER in initiation
and progression of breast carcinogenesis. Whereas major attention has been focused on the phosphorylation
of ER, many other PTM (such as acetylation, ubiquitination, sumoylation, methylation, and palmitoylation) have
been identified as events modifying ER expression and stability, subcellular localization, and sensitivity to
hormonal response. This article will provide an overview of the current and emerging knowledge on ER PTM,
with a particular focus on their deregulation in breast cancer. We also discuss their clinical relevance and
the functional relationship between PTM. A thorough understanding of the complete picture of these
modifications in ER carcinogenesis might not only open new avenues for identifying new markers for
prognosis or prediction of response to endocrine therapy but also could promote the development of novel
therapeutic strategies. (Endocrine Reviews 32: 597– 622, 2011)

I. Introduction
II. Biology of Estrogen Receptors and Breast Cancer

A. ER� and ER� subtypes
B. Genomic action of ER
C. Nongenomic action of ER
D. Endocrine therapies in breast cancer

III. Posttranslational Modifications of Estrogen Receptors
A. PTM involved in ER genomic signaling
B. PTM involved in ER nongenomic signaling
C. Molecular events affecting ER PTM
D. ER PTM deregulated in breast cancer

IV. Discussion
V. Future Directions

I. Introduction

The steroid hormone estrogens play a critical role in
various target tissues, including the reproductive

tract and the central nervous, vascular, and skeletal sys-

tems, as well as in normal mammary gland development
(1). This effect is mediated by two receptors, estrogen re-
ceptor (ER) � and ER�, which function in the nucleus as
ligand-dependent transcription factors. ER� is responsi-
ble for many of the effects of estrogens on normal and
malignant breast tissues. Lifetime exposure to 17�-estra-
diol (E2)or‘ estrogenic compounds constitutes amajor risk
factor for breast cancer development (2), through either
transcriptional regulation (genomic action) (3) or involve-
ment in membrane and cytoplasmic signaling cascades
(nongenomic action) (4). In normal breast, only 10 to 20%
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Abbreviations: AF-1, Activation function; AF-2, transactivation function; AI, aromatase
inhibitor; AP-1, activator protein-1; CBP, CREB binding protein; Cdk, cyclin-
dependent kinase; DBD, DNA-binding domain; E2, 17�-estradiol; E6-AP, E6-associated
protein; EGF, epidermal growth factor; EGFR, EGF receptor; ER, estrogen receptor;
ERE, estrogen response element; GSK3, glycogen synthase kinase-3; HAT, histone
acetyltransferase; HDAC, histone deacetylase; hER, human ER; IKK, IkB kinase;
LBD, ligand-binding domain; LMP2, low molecular mass polypeptide 2; mER, mouse ER;
PAK1, serine/threonine p21-activated kinase; PAT, palmitoyl acyltransferase;
PI3K, phosphatidylinositol 3-kinase; PKA, protein kinase A; PRMT1, protein arginine meth-
yltransferase 1; PTM, posttranslational modification; RSK, ribosomal S6 kinase; SDF-1,
stromal cell-derived factor-1; SERD, selective ER down-regulator; SERM, selective ER mod-
ulator; SRC, steroid receptor coactivator; SUMO, small ubiquitin-related modifier.

R E V I E W

Endocrine Reviews, October 2011, 32(5):597–622 edrv.endojournals.org 597



of epithelial cells express ER� (5), but ER�-null mice only
develop a rudimentary mammary gland, indicating that
ER� expression is essential to mammary development (1).
By contrast, the mammary glands of ER�-null mice de-
velop normally (1). Interestingly, in breast cells, ER�

seems to act as an antagonist of ER� activity, impairing the
ability of estrogen to stimulate proliferation (6–8). Thus,
ER� may play a protective role in breast tumors by inhib-
iting proliferation and invasion (9–11).

There is compelling clinical and experimental evidence
that sustained exposure to estrogens increases the breast
cancer risk and promotes cancer progression by stimulat-
ing malignant cell proliferation (12). Although in the nor-
mal breast ER� and ER� are expressed at low levels (13),
70% of breast cancers are ER� positive, underpinning the
use of agents that suppress receptor function (antiestro-
gens) or estrogen synthesis (aromatase inhibitors) in breast
cancer treatment (14). ER� is a well-established predictive
marker for hormone sensitivity and a good prognostic
marker in breast cancer; it helps identify tumors that are
likely to respond to endocrine treatment. Unfortunately,
about 40 to 50% of the women receiving endocrine ther-
apy fail to respond (de novo resistance) or become resis-
tant (acquired resistance) to the treatment (15). A focus on
estrogen signaling could help understand its deregulations
in patients prone to develop resistance to endocrine ther-
apy. Cellular responses to estrogens are complex and
highly controlled. They involve the regulation of ER func-
tions through coactivators that stabilize ER binding to
DNA, thus promoting gene transcription (genomic action)
and the direct activation of signaling cascades (non-
genomic action).

Further levels of complexity are added by the fact that
several isoforms have been identified for each receptor
(16), as well as mutations (17, 18) and numerous post-
translational modifications (PTM) (19) that regulate their
function by influencing a number of interactions with
other proteins including cytoplasmic signaling molecules
(20). In addition to the long-known phosphorylation of
ER�, other covalent additions such as acetylation, ubiq-
uitination, sumoylation, and methylation have been re-
cently described. The complexity of ER regulation is a
rapidly growing issue because new PTM are continuously
being identified. Reviews focusing on ER phosphorylation
(21, 22) or acetylation (23) have been published, but there
is a real need for more recent updated information about
other ER-targeting PTM. The aim of this article is to sum-
marize current and emerging knowledge on ER PTM, par-
ticularly on those that are deregulated in breast tumors;
this could help to identify new prognostic biomarkers or
biomarkers predictive of response to endocrine therapy
and/or to circumvent endocrine-resistant tumor growth.

II. Biology of Estrogen Receptors and
Breast Cancer

A. ER� and ER� subtypes
ER belong to the superfamily of ligand-activated tran-

scription factors (24). There are two known ER isoforms,
ER� and ER�. They arise from separate genes located on
different chromosomes, but they share a high degree of
overall homology, especially in their DNA binding do-
main (25), whereas they display different physiological
functions. Like other members of this class of transcrip-
tion factors, ER proteins have a characteristic modular
structure. They are organized into five main domains: an
N-terminal A/B region bearing the ligand-independent ac-
tivation function (AF-1), a DNA-binding domain (DBD)
composed of two zinc fingers, a hinge region containing
the nuclear localization signal, and a domain E harboring
the ligand-binding domain (LBD) and the ligand-depen-
dent transactivation function (AF-2). The adjacent region
F, located at the C terminus of the receptors, is a variable
domain whose specific function has not yet been fully clar-
ified (Fig. 1) (26). The classical 66-kDa ER� (27) and the
60-kDa ER� (28, 29) have similar structures in their cen-
tral DNA-binding region (98% identity), whereas they
largely differ in their activation domains (less than 15%
homology in their N termini), suggesting that they may
recruit different coactivator proteins, thereby altering
their specific transcriptional effects. Moreover, even if
ER�, like ER�, binds to E2, ER� has a markedly reduced
transcriptional activation partially due to the lack of AF-1
activity (30). The two receptors share little homology
(53%) in their LBD (31), which accounts for the differ-
ences in their affinity for various ligands. For example,
both full-length ER bind to E2 with high affinity, but they
differ in their ability to bind other natural and synthetic
ligands. In particular, ER� has higher affinity for phytoes-
trogens like genistein, quercetin, or coumestrol than ER�

(32, 33). Two distinct classes of synthetic ER ligands have
been developed; by binding to ER, they give rise to distinct
tissue-selective pharmacological profiles. Selective ER
modulators (SERM) are a class of ER ligands, exemplified
by tamoxifen and raloxifene, that inhibit AF-2 (but not
AF-1)-dependent activation of ER (34). Tamoxifen acts as
an antagonist in breast cells, in which ER activity is mainly
dependent on AF-2, and as an agonist mimicking the ac-
tion of estrogens in tissues like the uterus, where AF-1
activity is more important (35). Selective ER down-regu-
lators (SERD), including the pure ER antagonist ICI
182,780 or Faslodex (also called fulvestrant), are anties-
trogenic in all tissues (36, 37). They bind to ER� with
100-fold greater affinity than tamoxifen, thus inhibiting
receptor dimerization and abrogating estrogen signaling.
The development of knockout or transgenic mice with
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disruptions, mutations, or overexpression of ER has
increased our understanding of the relative roles and bi-
ological functions of ER� and ER� (38–41). ER� is es-
sential for proliferation, and in contrast, ER� has an anti-
proliferative role (40, 42–44). The two receptors regulate
different genes in response to E2 as well as antiestrogens (42,
43, 45). They can form heterodimers that may contribute to
differences in ER-dependent gene expression (46, 47). Fi-
nally,ER� isknownto inhibitbothER�-mediated transcrip-
tion and E2-induced proliferation in various cancer cells (6,
7, 48–51).

For both ER, the type of response elicited by ligand
binding also depends on the cell type and on the promoters
that “communicate” most of the mitogenic and survival
stimuli of estrogens through direct or indirect effects on
gene expression.

In addition to the classical transcripts of both receptors,
numerous mRNA splice variants arising from alternative
splicing or alternative promoters have been characterized.
The full-length ER�66 (named ER� in this review) is pro-
duced from an mRNA transcribed from the ER� gene that
contains at least seven upstream promoters (52). The
ER�46 variant lacking the AF-1 domain (Fig. 1A) has been
identified in MCF-7 breast cancer cells (53), osteoblasts
(54), human macrophages (55), and endothelial cells (56).
ER�46 represses the AF-1 activity of ER�66 (57) and in-
hibits the E2-induced transcription of the pS2 gene
through recruitment of corepressors (58). In breast cell
lines, this variant inhibits the action of wild-type ER in
terms of both E2 binding (59) and transcriptional response
(60, 61), thus participating in endocrine resistance. The

transfection of ER�46 in tamoxifen-re-
sistant breast cancer cells inhibits
ER�66 responses and enhances endo-
crine treatment (62). However, the ex-
pression of this isoform has not been
evaluated in breast tumor samples.

A 36-kDa variant (ER�36) lacking
both AF-1 and AF-2 domains has been
found in breast cancer cell lines (Fig.
1A) (63). This isoform transduces
membrane-initiated estrogen-depen-
dent activation of the MAPK pathway
in nongenomic E2-mediated signaling
(64, 65). Interestingly, patients who
express ER� and high levels of ER�36
are less likely to respond to tamoxifen
treatment (65, 66).

In addition to ER�1, the full-length
or wild-type receptor of ER�, other
variants resulting from differential
splicing, namely ER�2/cx (67, 68) and
ER�5 (25, 67, 69), have been identified

in breast tumors (Fig. 1B). Their precise role in breast
cancer is still poorly understood, but their implication in
various forms of resistance is strongly suspected (70).

B. Genomic action of ER

The classical model of ER activation implies that,
after ligand binding, a ligand-specific conformational
change of the receptor occurs, allowing its dissociation
from inhibitory heat shock protein complexes and sub-
sequent phosphorylation (71–73). These modifications
trigger homo- or heterodimerization of ER and binding
to specific estrogen response elements (ERE) in target
genes (Fig. 2, path A). The ligand-induced conformational
change of the receptor facilitates the association/dissoci-
ation of components of coregulator complexes associated
with enzymatic activities that regulate chromatin func-
tion, including nucleosome remodeling, histone acetyl-
transferase (HAT), or methyltransferase, as well as com-
munication with the transcriptional machinery (reviewed
in Refs. 74–76) (Fig. 2, path A).

In contrast to estrogens, the binding of estrogen antag-
onists from the SERM group induces a distinct conforma-
tion of ER that triggers their association with corepressors
like NCoR and SMRT, thereby shutting off gene tran-
scription (77). Tamoxifen, which aims to block ER� ac-
tion, has been the mainstay of hormonal therapy in both
early and advanced breast cancer patients for approxi-
mately three decades (78, 79). Interestingly, tamoxifen has
mixed agonist/antagonist activity and may either stimu-
late or antagonize ER function in tissues and genes (35). As

FIG. 1. Structure of ER isoforms for ER� (A) and ER� (B). ER, like other members of the
nuclear receptor family, display conserved functional domains: A/B, encompassing AF-1; C,
containing the DBD; D, called hinge domain contains nuclear localization signals; E,
containing the LDB and AF-2; and F, the agonist/antagonist regulator. A, ER�46, a truncated
form of ER� lacking AF-1 is also shown. Another spliced variant lacking the AF-1 and AF-2
domains, ER�36, has been cloned in breast cells. B, ER�2/cx and ER�5 are two spliced
variants of ER� lacking the F domain.
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previously demonstrated, the level of expression and/or ac-
tivity of coregulatory proteins can lead to alterations in ER
signaling. Several studies have reported that high expression
of the ER coactivator steroid receptor coactivator (SRC)-3/
AIB1 (for review, see Ref. 80) in patients receiving tamoxifen
adjuvant therapy is associated with poor clinical outcome,
which is indicative of tamoxifen resistance (81, 82).

ER can also regulate the activity of other transcrip-
tion factors through protein-protein interactions with
coactivator proteins (83). Via this so-called “nonclas-
sical” action, nuclear ER interact with specificity pro-
tein 1 (84, 85) or activator protein-1 (AP-1) (84, 86) or
nuclear factor-�B (87) through a process referred to as
transcription factor cross talk (84, 86) (Fig. 2, path B).
However, there is an interesting difference between
ER� and ER� at AP-1 sites. In the presence of estrogens,
ER� induces AP-1 driven reporter activity, whereas ER�

has no effect (88). Of interest, increased AP-1 and nuclear
factor-�B transcriptional activities have been shown to be
involved in endocrine resistance (89–91).

Finally, ER activities are also regulated by estrogen-
independent pathways involving kinases that are activated

through growth factor receptors like
epidermal growth factor receptor
(EGFR) (92, 93) (Fig. 2, path C). ER�

is also known to be phosphorylated by
the chemokine receptor CXCR4 after
its activation by binding to CXCL12/
stromal cell-derived factor-1 (SDF-1)
through Erk activation (94) (Fig. 2,
path C). Very recently, this pathway
has also been involved in acquired ta-
moxifen resistance (95).

C. Nongenomic action of ER
Estrogens also exert rapid stimu-

latory effects on a variety of signal
transduction proteins. This pathway,
largely studied for ER�, begins outside
the nucleus and is independent of gene
transcription.The identityof the recep-
tors mediating this rapid signaling is
still a matter of controversy (96–98).
However, there is clear evidence that
this activity is mediated, at least in part,
by a small fraction of ER� that is lo-
calized near or at the plasma mem-
brane (99). Dimers of ER� (100) ac-
tivate multiple signal transduction
cascades through direct interactions
of ER with various proteins, includ-
ing the tyrosine kinase Src, the phos-
phatidylinositol 3-kinase (PI3K), and

adaptor proteins (101–105) (Fig. 2, path D). ER� lo-
calization to the membrane can also be mediated by
interactions with the membrane adaptor protein Shc
(106) and with a variety of proximal signaling mole-
cules such as G proteins (107). ER� interactions with
Src and PI3K are also activated by other accessory proteins
such as the adaptor protein p130Cas, which regulates the
activation of Src kinase in T47D human breast carcinoma
cells (108).Otherpartnersmaybe involved, like thecaveolin-
binding protein striatin, which targets ER� to the plasma
membrane (109). Estradiol-dependent complex formation
of ER� with Src and the PI3K subunit p85 activates two
major pathways: the Src/ras/MAPK and the PI3K/Akt
pathways.

The activation of kinases triggers biological responses
that are either dependent or independent of transcription.
For example, the activation of Src and PI3K leads to in-
creased cell proliferation (103) and abrogation of apopto-
sis through inactivation of the proapoptotic protein BAD
via phosphorylation (110). More recently, nongenomic
signaling has been shown to be associated with other cel-

FIG. 2. ER signaling pathways. When pathways are common for ER� and ER�, we
designated ER; otherwise, ER subtype is specified. Four distinct pathways of estrogen
signaling through ER are shown. Pathway A is called the classical genomic pathway;
E2-bound ER dimerize and, after a change of conformation, go to the nucleus and bind
ERE and recruit coactivators that will activate the transcription of target genes. Pathway B,
the nonclassical genomic pathway, involves ER interactions with other transcription factors
like AP-1. Pathway C is E2-independent and activates ER through phosphorylation induced
by growth factors. Pathway D, the nongenomic pathway, involves a small pool of ER
located close to the membrane that, through recruitment of protein kinases (Src and
PI3K), activate signaling cascades (Akt, MAPK). All of these pathways converge to cell
proliferation and survival. RE, Response elements to other transcription factors; P,
phosphorylation; RTK, tyrosine kinase receptor; CoReg, coregulators; TF, transcription
factor; Hsp90, heat shock protein 90.
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lular processes. E2 activation of PI3K/Akt signaling, for
instance, inhibits the Ataxia Telangiectasia-mutated and
Rad3-related kinase pathway controlling cell cycle check-
points and DNA repair (111) and the interaction of his-
tone deacetylase (HDAC) 6 with membrane-localized
ER�, causing rapid deacetylation of tubulin that poten-
tially contributes to cell migration and to aggressiveness of
ER�-positive breast cancer cells (112). Catalano et al.
(113) have identified another role of nongenomic estrogen
signaling,namely thatE2-stimulatedSrc increasesaromatase
activity, revealing the existence of an autocrine loop between
E2 and aromatase possibly involved in breast tumorigenesis.
Even if little is known on ER� nongenomic signaling, the
presence of ER� at the plasma membrane suggests that it
must also be involved in extra nuclear actions (114) and
particularly through its association with Src (115).

For convenience, we present the genomic and non-
genomic pathways separately. However, these signaling
pathways are not mutually exclusive but rather comple-
mentary, with many interactions between them. The idea
is that nongenomic and genomic effects may integrate a
unique mode of action of estrogens in which the non-
genomic signaling pathways converge for transcriptional
regulation (116).

D. Endocrine therapies in breast cancer
Approximately 70% of all breast cancers are dependent

on estrogen and on a functional ER� for growth. Hence,
ER�-positive breast cancer is usually treated with hor-
mone reduction or antiestrogens (15). Treatment ap-
proaches include the blockade of ER� activity by SERM
like tamoxifen (117) or the destabilization and degrada-
tion of ER by SERD like fulvestrant (118–121). The an-
tineoplastic effects of endocrine drugs are largely mediated
by the inhibition of ER transcriptional effects on gene ex-
pression. Tamoxifen, which binds to and antagonizes ER,
only blocks the transcriptional activating function AF-2
and thus only partially inactivates ER-regulated transcrip-
tion (122, 123). Fulvestrant, which blocks both AF-1 and
AF-2 functions, induces complete abrogation of the tran-
scription of ER-regulated genes (36, 37). In the past two
decades, tamoxifen has been the mainstay of endocrine
therapy for both early and advanced breast cancers and
has significantly contributed to the decrease in breast mor-
tality (124). However, approximately 50% of patients
with advanced disease do not respond to first-line treat-
ment with tamoxifen, and almost all patients with metas-
tases relapse and die from the disease (15). A second en-
docrine therapy strategy has recently emerged. It consists
of reducing the production of estrogen in peripheral tis-
sues and within the tumor using aromatase inhibitors (AI)
like anastrozole, letrozole, or exemestane (125, 126). AI

inhibit tumor growth and have proven superior to tamox-
ifen in certain patient subsets (127).

However, whatever the endocrine treatment used, intrin-
sicoracquiredresistancemayoccur.Themolecularcausesof
endocrine resistance are multiple and not completely under-
stood. Several mechanisms have been described, including
the deregulation of ER expression and maturation, as well as
the deregulation of PTM for both receptors and their cofac-
tors. Moreover, increased Her2/NEU (Erb-B2) receptor ty-
rosine kinase signaling and deregulation of the cell cycle and
apoptosis machineries have also largely been associated with
resistance (for review, see Ref. 128).

Because only 1% of primary breast cancers carry ER�

mutations (129), it seems more relevant to focus on ER
signaling to elucidate the mechanisms responsible for re-
sistance, to develop more specific biomarkers predictive of
response to endocrine therapy, and to identify new ther-
apeutic targets for endocrine-resistant disease.

III. Posttranslational Modifications of
Estrogen Receptors

Because PTM are crucial to the physiological function of
proteins, understanding the coding of these modifications
is particularly important to elucidate the activity of a given
protein.

ER and their coregulators are targets for multiple PTM
(130). The synergic coupling between extranuclear and
genomic actions of hormones is accompanied by highly
specific PTM that serve not only as triggers but also as
mediators and promoters of the signaling cascades. De-
regulating both the phosphorylation cascades and the
acetylation process, for example, can dramatically affect
the fate of a number of factors involved in ER signaling
(121, 131, 132) and impact cell survival. The development
of site-specific antibodies recognizing only modified forms
of ER� has greatly simplified the analysis of PTM and has
led to rapid advances in mechanistic studies. More re-
cently, mass spectrometry has facilitated the identification
of additional PTM, and the catalog of ER� PTM now
comprises modifications of approximately 22 sites through-
out the molecule, including phosphorylation, methylation,
acetylation, sumoylation, and ubiquitination. Much less in-
formation is available for ER�. Most of our understanding
of ER� PTM is derived from the pioneering work of A.
Tremblay and relates to phosphorylation (133). However,
it seems that the phosphorylation of ER� by protein ki-
nases varies with the type of cell, the type of promoter, and
the identity of the effector.

In this section, we will focus on well-documented
PTM targeting ER (less well-documented PTM are de-
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scribed only in Table 1). These modifications influence ER
functions, integrating genomic and rapid action, as they act
on protein stability, subcellular localization, dimerization,
DNA binding, and interaction with coregulators. We will
also describe the known interplay between modifications as
well as their deregulation in breast cancer.

All modified residues and their functional data are
listed in Table 1 for ER� and in Table 2, for ER�. PTM are

also presented on ER sequences to permit visualization of
the domain where the modification occurs (Fig. 3).

A. PTM involved in ER genomic signaling

1. Phosphorylation of ER� on serine
It has been known since the early 1980s that ER� is a

phosphoprotein whose ligand-binding activity is en-
hanced by phosphorylation (134) through the activation

TABLE 1. Modified sites of human ER� and their function

Amino acid Modification Activator Enzyme involved Function Ref.

Y52 Phosphorylation Ligand independent c-Abl Activates stability, transcription 262
S102 Phosphorylation Constitutive, E2 GSK3 Activates transcription 137
S104/106 Phosphorylation Constitutive, E2 GSK3 Activates transcription 137

Constitutive, E2, Tam Cyclin A-Cdk2 Activates transcription 138
E2, Tam, ICI, PMA MAPK Activates transcription 136
E2 MAPK Dimerization 140

S118 Phosphorylation E2, Tam, ICI ND Activates transcription 145
EGF, IGF-I MAPK Activates transcription 92, 146
E2 Cdk7 Activates transcription 146, 263
ND MAPK Activates RNA splicing 139
E2 GSK3 Activates transcription 137
E2 IKK� Activates transcription 147, 148
Prolactin ND Activates transcription 149
ROS MAPK Down-regulation 264
E2 MAPK Dimerization 140

S154 Phosphorylation Constitutive, E2, EGF ND ND 265
S167 Phosphorylation Constitutive Akt Activates transcription 152

ROS Akt Down-regulation 264
EGF p90 RSK Activates transcription 151
Insulin, PMA S6K1 Activates transcription 153, 154
ND Akt Activates stability 266

S236 Phosphorylation Constitutive PKA Inhibits dimerization 155
Y219 Phosphorylation ND c-Abl Activates: dimerization, DNA binding, stability,

and transcription
262

R260 Methylation E2 PRMT1 Nongenomic signalling 227
K266 Acetylation E2 p300 Activates transcription 181

Sumoylation E2, Tam SUMO-1 Activates transcription, DNA binding, 206
K268 Acetylation E2 p300 Activates transcription 181

Sumoylation E2, Tam SUMO-1 Activates transcription, DNA binding 206
S282 Phosphorylation E2 CK2 Inhibits transcription 267
S294 Phosphorylation E2 ND Activates transcription 267
K299 Acetylation Constitutive p300 Inhibits transcription 182

Sumoylation E2, Tam SUMO-1 Activates transcription, DNA binding 206
K302 Acetylation Constitutive p300 Inhibits transcription 182

Sumoylation E2, Tam SUMO-1 Activates transcription, DNA binding 206
Ubiquitination Constitutive, E2, ICI Ubiquitin Proteasomal degradation 201
Methylation Constitutive SET7 Activates stability 208

K303 Acetylation Constitutive p300 Inhibits transcription 182
Sumoylation E2, Tam SUMO-1 Activates transcription, DNA binding 206
Ubiquitination Constitutive, E2, ICI ubiquitin Proteasomal degradation 201

S305 Phosphorylation ND PAK1 Activates transcription 158, 160
ND PKA Activates transcription 157
ND Akt Resistance to AI 163

T311 Phosphorylation E2 p38-MAPK Nuclear localization 268
C447 Palmitoylation Constitutive PAT Plasma membrane localization 215
Y537 Phosphorylation E2 Calf uterine kinase E2 binding 269

Constitutive Src Dimerization, DNA binding 223, 270
Constitutive Src E2 binding 271
EGF EGFR Proliferation 272

S559 Phosphorylation Constitutive CK2 Inhibits transcription 267

ND, Not determined; ICI, ICI 172 780; PAK1, p21-activated kinase-1; PMA, phorbol myristate acetate; ROS, reactive oxygen species; Tam, tamoxifen; CK2, casein kinase 2.
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of a Ca��-dependent calmodulin kinase (135) possibly
involved in ER nuclear translocation. Although pioneer
experiments were carried out with partially purified calf
uterine ER� and although they caused some controversy
at the time they were published, the concept of the rela-
tionship between a nuclear hormone receptor activity and
its phosphorylation-dependent activation was launched.

The target residues include serine, threonine, and ty-
rosine; phosphorylated serines are more concentrated
within the AF-1 domain, resulting in ligand-independent
regulation of receptor transactivation (21). There are so
many targets for phosphorylation that we have chosen to
focus on the most widely analyzed residues; for the others,
information can be found in Table 1.

a. S104/106. These two sites, when phosphorylated, are in-
volved inER�activitybecauseacidicaminoacidsubstitution
stimulates ER� activity as strongly as S118 substitution
(136). The particularity of S104/106 phosphorylation is that
it is inducedexclusivelybyestrogenandnotbygrowth factor
pathways. So far, both glycogen synthase kinase-3 (GSK3)
and cyclin-dependent kinase 2 (Cdk2) kinases were involved
in this modification (137, 138). More recently, MAPK has
also been shown to phosphorylate these residues (136). Of
note, the two residues are required for the agonist activity
of tamoxifen, in conjunction with S118, suggesting that
these sites might contribute to tamoxifen resistance in
breast cancer (136).

b. S118. S118 has been the most widely studied target site
and is a good example of the complexity of ER� phos-
phorylation. S118 has been reported to be important for
the dimerization of ER� and ER�-mediated RNA splicing
(139, 140). In addition, phosphorylation at this site is also
important for direct binding to and activation/repression
of several ER� target genes (141). S118 phosphorylation
facilitates ER� interactions with coactivators such as

CREB binding protein (CBP)/p300 (142) and SRC-1 (143)
and then mediates ligand-dependent as well as ligand-in-
dependent activation of the receptor (144, 145). In sup-
port of this statement, it has been documented that both
estrogens and growth factors such as epidermal growth
factor (EGF) and IGF-I can result in S118 phosphorylation
on ER� (146). Growth factors trigger S118 phosphoryla-
tion through Ras-MAPK cascades (92). The S118A mu-
tant is not activated by EGF because no enhancement of
E2-induced ERE reporter activity has been observed in
transfected cells (144), demonstrating the independence
from ligand and the phosphorylation requirement for ER�

transcriptional activity. Several different kinases are re-
sponsible for the estrogen-dependent phosphorylation of
S118. Cdk7 (146), IkB kinase (IKK)� (147), and GSK3
(137) have been identified as good candidates. However,
a recent study performed in MCF-7 cells using specific
inhibitors has shown that IKK�, but not Cdk7, is involved
in estrogen-mediated phosphorylation at S118 (148).
More recently, this residue has also been shown to be
phosphorylated upon prolactin treatment, but the kinase
responsible remains unidentified (149). This phosphory-
lation is also involved in ER�-mediated RNA splicing.
This effect is mediated by the binding of ER� with a com-
ponent of the spliceosome complex, the splicing factor
SF3a, which is dependent on the MAPK-mediated phos-
phorylation of ER� at S118 (139).

c. S167. S167 is a major multiregulated phosphorylated
residue in ER� (150). Mutation analysis of this site has
demonstrated its involvement in the transcriptional activ-
ity of the receptor (151). Its phosphorylation was previ-
ously attributed to Akt and p90RSK (p90 ribosomal S6
kinase) (151, 152), but recent convincing data have shown
that S6K1 is a physiological kinase for S167 that regulates
ER� transcriptional activity, thus contributing to the pro-

TABLE 2. Modified sites of mouse ER� and their function

Amino acid Modification Activator
Enzymes
involved Functions Ref.

S80 (S60) Glycosylation ND ND Inhibits ER� degradation 169
Phosphorylation ND ND Stimulates ER� degradation 169

S94 (S75) Phosphorylation Constitutive MAPK Stimulates ER� degradation 170
S106 (S87) Phosphorylation EGF, Ras MAPK Enhances the recruitment of SRC-1 93

Constitutive MAPK Stimulates ER� degradation 170
CXCR4/SDF-1 MAPK Activates transcription 94

S124 (S105) Phosphorylation EGF, Ras MAPK Enhances the recruitment of SRC-1 93
E2, DPN, genistein ND ND 261

S255 Phosphorylation Erb-B2, Erb-B3 Akt Inhibits transcription 173
(C399) Palmitoylation ND PAT Plasma membrane localization & activation of

proapoptotic cascades
219

Y507 Phosphorylation Constitutive Src Activates transcription 174

Most studies have been performed using mouse transfected HA-tagged ER�; residues in parentheses correspond to residues in human ER�. ND, Not determined;
CXCR4, (CXC motif) receptor 4; DPN, diarylpropionitrile.
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liferation of ER-positive breast cancer cells (153). In fact,
this phosphorylation is regulated by a temporal combina-
tion of two pathways: the MAPK/RSK and the mamma-
lian target of rapamycin 1/S6K1 pathways (154). Inter-
estingly, pS167 is associated with tamoxifen resistance
and agonist activity in endometrium cancer cells (143).

d. S236. In vitro, in the absence of estrogen, protein kinase
A (PKA) can phosphorylate S236, located in the DNA
binding domain. S236 phosphorylation participates in
ER� dimerization as a mutation of serine to glutamic acid

prevents DNA binding by inhibiting dimerization. In ad-
dition, this mutation reduces E2 and 4-hydroxy-tamoxifen
activity in both the presence and absence of PKA (155).
Other works have shown that S236 phosphorylation pro-
tects ER� from ligand-mediated proteasome degradation
(156). This is in agreement with previous data showing
that inhibition of PKA decreases ER� stability in both the
presence and absence of ligands (121).

e. S305. A large body of information on S305 phosphory-
lation in ER� has been gathered by Michalides et al. (157),

FIG. 3. Amino acids modified in ER are presented in panel A for ER� and in panel B for ER�. All modified residues and kinases implied are
represented on ER sequences. A, For ER�, the hinge domain was highly modified by PTM. B, For ER�, because most of the sites have been
described on the mouse receptor, we present both the human (hER�) and the mouse (mER�) isoforms. Modifications are designated as follows:
Me, methylation; P, phosphorylation; Ac, acetylation; Ub, ubiquitination; Sumo, sumoylation; Gly, glycosylation. Palmitoylated sites are represented
as . Functions of modifications are presented in green for activation and red for inhibition. *, Transcription activity. PTM involved in
nongenomic pathways are shaded in gray. ND, Not determined.
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who have shown that this site is phosphorylated by PKA
in vitro and thus participates in ER� transcriptional ac-
tivity. An ER� S305E mutant, mimicking constitutive
phosphorylation, has been shown to increase receptor
dimerization and fixation to promoters of target genes in
the presence of estrogen (158). Interestingly, ER� activa-
tion at S305 is sufficient to up-regulate the expression of
several ER-regulated genes like cyclin D1, a major ER-
regulated gene involved in the E2-induced progression of
breast cancer (159). S305 phosphorylation and activation
of ER� transcriptional activity have also been evidenced
in a murine model expressing a constitutively activated
serine/threonine p21-activated kinase (PAK1) (160).
These mice have developed mammary gland hyperplasia,
revealing a role for the PAK1-ER� pathway in promoting
tumorigenesis in mammary epithelium (160). Michalides’
team has shown that the down-regulation of PKA-RI�, a
negative regulator of PKA, triggers PKA hyperactivation
leading to S305 phosphorylation, converting tamoxifen
from an ER� inhibitor into a growth stimulator (157).
These authors have also pointed out the prime importance
of phosphorylation at S305 for interactions of ER� with
coactivators like SRC-1 and activation of gene transcrip-
tion upon tamoxifen treatment (161). Interestingly, de-
spite its ability to induce tamoxifen resistance, pS305 ER�

alone does not modify the response to another endocrine
molecule like the SERD fulvestrant, and the additional
overexpression of cofactors like cyclin D1 and SRC-1 is
required (157).

However, recent data obtained using an antibody spe-
cific for pS305 ER� have demonstrated that in a cellular
context, PKA (and not PAK1) can induce this phosphor-
ylation (162).

Recently, Fuqua’s team (163) has shown that this res-
idue is also phosphorylated by Akt through a cross talk
between the IGF-I and ER� pathways. They have also
demonstrated that when the K303R ER� mutant is over-
expressed in breast cancer cells, S305 is constitutively
phosphorylated, leading to resistance to tamoxifen (164)
but also to the AI anastrozole (163, 165).

2. Phosphorylation of ER�

Much less is known about the phosphorylation of ER�.
Although the intracellular kinases involved have not yet
been precisely identified, residues, mostly localized in the
AF-1 domain, have been observed, whether in the presence
or in the absence of ligand binding to the receptor. The
modulation of several kinase activities could activate un-
liganded ER�-mediated transcription (166).

Contrary to the situation for ER�, for ER� most of the
modified residues have been identified in the mouse re-

ceptor; the corresponding amino acids in human will be
given in parentheses. It appears that there is a discrepancy
in ER� amino acid nomenclature due to the discovery of
a longer transcript at the 5� end of the molecule (166, 167).

a. S80 (S60). The phosphorylation of mouse S80 has been
identified by mass spectrometry (168). The same study has
reported that this site could also be modified through O-
GlcNAcylation (Table 2). S80 is located in a PEST region
enriched with proline, glutamine, serine and threonine,
responsible for the rapid degradation of proteins, suggest-
ing that modification of this residue could be involved in
ER� stability (169). Studies using mutants of mouse ER�

(mER�) S80E mimicking phosphorylation have clearly
demonstrated that phosphorylation of S80 results in rapid
degradation of the receptor (169).

b. S94 (S75). In mouse, phosphorylated S94 regulates the
nuclear mobility of ER� through a proteasome-dependent
pathway implicating the E6-associated protein (E6-AP)
ubiquitin ligase (170). This observation suggests that the
AF-1 domain of ER� is involved not only in E6-AP-de-
pendent transactivation but also in ER� stability through
phosphorylations via MAPK pathways.

c. S106 (S87) and S124 (S105). Both EGF and the oncogene
Ras are also able to activate ER� through MAPK-directed
phosphorylation of mouse S106 and S124 (corresponding
to human S87 and S105), favoring the recruitment of
SRC-1 and HAT CBP to the AF-1 domain (93, 171). Ad-
ditionally, these two phosphorylated sites are partially re-
sponsible for the Erb-B2/Erb-B3-mediated inhibition of
liganded ER signaling (172).

Finally, mouse ER� S106 has been shown to be phos-
phorylated by MAPK in response to CXCL12/SDF-1, the
ligand of the chemokine receptor CXCR4. S106 phos-
phorylation leads to enhanced ER transcriptional activity
and expression of ER target genes involved in cancer cell
growth, including SDF-1 (94). This phosphorylation en-
ables ER� responsiveness at AP-1 sites in an autocrine/
paracrine feedback loop, even when the receptor is com-
plexed with a SERM like tamoxifen.

Other sites have been shown to be phosphorylated
(Table 2). S255 (equivalent to human S234), for in-
stance, is phosphorylated via the PI3K/Akt pathway
through the phosphorylation-dependent release of CBP
(173), whereas Y507 in mouse (corresponding to hu-
man Y488) is involved in the ligand-independent acti-
vation of ER� (174), which is suppressed by antiestro-
gens. Mutation of this Y488 [which corresponds to Y537
for human ER� (hER�)] in arginine is involved in the
ligand-independent activation of ER� (174).
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Although it has been shown that inhibitors of protein
phosphatases regulate ER� signaling (175, 176), little in-
formation is available regarding the identities of the ER
phosphatases involved. There is only one paper describing
that the serine/threonine phosphatase PP5 targets the de-
phosphorylation of S118 in ER�, mediating an inhibition
of its transcriptional activity (177). Efforts should be made
to identifymoreof thesephosphatases and tomodulate the
level of phosphorylation of ER�.

3. Acetylation of ER�

Acetylation of proteins plays an important role in the
regulation of their activity. In addition to histones, a broad
range of other proteins, including transcription factors,
are acetylated, resulting in enhanced or reduced activity
(23, 178). The HAT p300/CBP has been described as a
coactivator for ER� through interaction with proteins to
form “enhanceosomes” or acetylation of specific lysines in
the N terminus of histones (179, 180). ER� is acetylated
at multiple sites because five lysines have been reported to
be acetylated by p300: K266, K268, K299, K302, and
K303 (181, 182) (Table 1). Interestingly, the effect of acet-
ylation on ER� activity varies with the target lysine; acet-
ylation of K299, K302, and K303 inhibits the transcrip-
tional activity of the receptor (182), whereas acetylation of
K266 and K268 triggers a stimulatory effect (181). Acet-
ylation of K299, K302, and K303 is constitutive, whereas
acetylation of K266 and K268 is estrogen-dependent.
However, antibodies specific for acetylated lysines are not
available to address the relevance of this modification in
vivo. Little is known about the mechanisms regulating
ER� acetylation, but recent data show that BRCA1 could
be a potent inhibitor of ER� activity, partly through impair-
ment of p300-mediated ER� acetylation (183). The enzyme
responsible for the reversalof thismodificationremains tobe
identified, even if deacetylase sirtuin 1 has emerged as a good
candidate in in vitro experiments (181). For ER�, no acety-
lation has been described so far.

Interestingly, the degradation of native ER� after
HDAC inhibitor exposure of ER-positive breast cancer
cells has been shown to occur through the proteasome
pathway, an important tool to reduce estradiol-mediated
cell growth (132, 184). On the contrary, the stability of
ER� seems to be unaffected by HDAC inhibitors (185).

4. Ubiquitination of ER�

All steroid receptors are subjected to ubiquitination,
and several of the enzymes involved in this PTM have been
identified (19). In most cases, however, the exact site of
modification is uncertain, possibly due to the instability of
polyubiquitinated proteins.

It has long been known that the regulation of ER� cel-
lular level and transcriptional activity involves the ubiq-
uitin-26S proteasome system (118–120). Although both
basal (e.g., ligand-independent) and ligand-induced ER�

degradations are mediated by this proteolysis pathway
(121, 186), the regulation of receptor degradation at the
molecular level is highly dependent upon the physiological
state and nature of the cellular stimuli. Ubiquitin-depen-
dent degradation of E2-bound receptor is thought to be
critical for promoter clearance and additional rounds of
transcription (187). Distinct mechanisms are involved in
the down-regulation of ER� and the promotion of lysine
polyubiquitination and subsequent proteasome-mediated
receptor degradation. ER� is degraded via three distinct
pathways in breast cancer cells.

First, unliganded ER� is very stable, with a half-life of
up to 5 d (188), and it is targeted for degradation by dy-
namic interactions with heat-shock proteins, cochaper-
ones, and the ubiquitin E3 ligase carboxy terminus of
Hsp70-interacting protein (189). This degradation path-
way is important for the quality control of ER� because it
maintains appropriate steady-state receptor levels in the
cytoplasm and is responsible for the clearance of mis-
folded ER�. Recent data demonstrate that the oncogene
E3 ubiquitin ligase MDM2 (mouse double minute-2)
could be involved in this ligand-independent turnover of
ER� (190).

Second, in the presence of E2, the ER� half-life drops
dramatically to 3–5 h (188, 191), and the receptors are
targeted for degradation through a transcription-coupled
pathway requiring new protein synthesis. During each
binding cycle, ER� recruits specific ubiquitin-proteasome
components to the target gene promoter (118–120, 187,
192, 193). Evidence from several studies shows that the
inhibition of ubiquitin-proteasome activity blocks both
ER� cycling and the activation of target gene expression
despite increased ER� abundance obtained by immobiliz-
ing ER� on the nuclear matrix, as determined by fluores-
cence recovery after photobleaching (186). Métivier et al.
(194) report that the initial steps of transcription are
linked to monoubiquitination of the liganded ER�, and
this process may enhance receptor interaction with DNA
or coactivators. As transcription progresses, ER� is de-
graded as a consequence of the recruitment of several pro-
teins implicated in the proteasome system. The proteins
putatively involved are: 1) ER� E3 ubiquitin ligases like
E6-AP (118, 195), MDM2 (187, 190, 196), and EFP (es-
trogen-responsive finger protein) (197); 2) the low molec-
ular mass polypeptide 2 (LMP2) subunit of the 26S pro-
teasome (193) and the 26S protease regulatory subunit 8
(PRS8/SUG1) in the 19S regulatory cap of the proteasome
(187); and 3) the coactivators SRC-1 and SRC-3. SRC-1
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interacts directly with LMP2, and this recruitment of
LMP2 by SRC coactivators is necessary for cyclic associ-
ation of ER-regulated transcription complexes on ER tar-
gets (193). SRC-3 has been shown to be required for the
E2-dependent turnover of ER� through interaction with
the ubiquitin-E3 ligase EFP (198).

And third, in the presence of fulvestrant or other SERD
like RU58668, ER� is targeted to degradation indepen-
dently of transcriptional activity and new protein synthe-
sis (120, 121, 199). Fulvestrant induces ER� degradation
by dissociating the Hsp90-ER� complex and immobiliz-
ing ER� to the nuclear matrix by inducing its association
with CK8 and CK18, two members of the family of nu-
clear matrix intermediate filament structural proteins, for
subsequent degradation (200).

Although ER� ubiquitination was well documented,
the target K302 and K303 have only recently been iden-
tified. Both lysines protect ER� from basal degradation
and are necessary for efficient E2- and fulvestrant-induced
turnover in breast cancer cells (201). As previously dem-
onstrated by in vitro ubiquitination assays, in the presence
of E2, K302 and K303 are monoubiquitinated by the ubiq-
uitin ligase BRCA1/BARD1 (183, 202). But the impact of
K302 monoubiquitination on ER� stability is unknown,
and the possible existence of other ubiquitination sites has
not been ruled out.

A recent publication has shown that the protein OTU
domain-containing ubiquitin aldehyde-binding protein
1 (OTUB1) deubiquitinates the receptor and represses
its transcriptional activity. OTUB1 also regulates en-
dogenous ER� level by stabilizing the protein on the
chromatin (203).

5. Ubiquitination of ER�

The carboxy terminus of Hsp70-interacting protein
binds to the N-terminal domain of the receptor, which is
ubiquitinated to induce ER� degradation and the cessa-
tion of transcription (204). Suppressor of Gal 1, a regu-
latory subunit of the 26S proteasome, is also involved in
ER� degradation in a ligand-dependent manner (205), but
the target lysines have not been identified so far.

6. Sumoylation of ER�

Although other steroid receptors contain clearly iden-
tifiable �KXE small ubiquitin-related modifier (SUMO)
acceptor sites, neither ER� nor ER� matches this consen-
sus sequence (19). Nevertheless, ER� has been described
to be sumoylated by SUMO-1 (206). This sumoylation,
which occurs in overexpressed and endogenous ER� and
is dependent on the presence of ER� ligands like E2 or
tamoxifen, targets five lysines located in the hinge region:
K266, K268, K299, K302, and K303. In addition, ER�

sumoylation is stimulated in the presence of the SUMO E3
ligases PIAS1 and PIAS3 (protein inhibitor of activated
signal transducer and activator of transcription). Because
mutations that prevented SUMO modification impaired
ER�-induced transcription through decreased receptor
binding to DNA without affecting ER� nuclear localiza-
tion, ER� sumoylation results in enhanced ER� transcrip-
tional activity (206). The sumoylation of ER� has not yet
been described, but it would be of interest to determine
whether this modification could be involved in the regu-
lation of ER� activity.

7. Lysine methylation of ER�

Although lysine methylation is commonly attributed to
histones, methylation has recently been described in non-
histone proteins such as p53 or DNA methyltransferase.
Methylation on K residues is a complex process because a
lysine can be mono-, di-, or trimethylated (207). Monom-
ethylation of ER� at K302 is mediated by SET7 lysine
methyltransferase; this modification acts on ER� stability
and facilitates the recruitment of ER� to its target genes for
their transactivation (208). However, the timing of this
modification has not been studied in detail because the
endogenous modified form of ER� has been undetectable.

8. Other modifications
Other modifications have been identified in ER�, al-

though they have not been studied in details. These include
S-nitrosylation, which occurs in nonidentified ER cysteine
residues and results in inhibition of DNA binding at spe-
cific ERE (209). ER� glycosylation has also been reported,
but the targeted residues have been identified only for mu-
rine receptors (210, 211). Recently, a systematic study of
ER� PTM by tandem mass spectrometry has identified
new sites, but their function has not been clarified (212).

B. PTM involved in ER nongenomic signaling
Although E2 rapid effects are well documented, the mo-

lecular mechanisms involved remain elusive. It is not clear
how the signals are initiated. Recently, some ER� PTM
have been shown to be involved in nongenomic signaling,
which gives new insight into this pathway.

1. Palmitoylation of ER� and ER�

Palmitoylation is the attachment of a long chain of fatty
acids that targets proteins to membrane microdomains
(lipid rafts and caveolae). ER� was long ago reported to be
located at the plasma membrane (213). Cycles of palmi-
toylation and depalmitoylation affect protein activation
and allow protein movements within membrane sub-
domains. The small population of ER� localized at the
plasma membrane is known to be palmitoylated on
Cys447 by palmitoyl acyltransferase (PAT) (214). Upon
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E2 binding, ER� undergoes depalmitoylation and disso-
ciates from caveolin-1, which facilitates ER� association
with signaling molecules like Src and PI3K. S-Palmitoyla-
tion is a critical step for E2-induced rapid events because
the unpalmitoylable ER� mutant does not induce E2 pro-
liferative effects (106, 215). The plant-derived flavonoid
naringenin is known to inhibit estrogen nongenomic sig-
naling through a rapid depalmitoylation of the receptor
(216). Targeting this modification could be a good strat-
egy for antagonizing estrogen proliferative effects.

ER� has also been shown to localize at the plasma
membrane through palmitoylation (217). The site of pal-
mitoylation has not been clearly identified, but C399 is a
good candidate because it is conserved with ER� binding
(218). In ER�, contrary to observation in ER�, E2-de-
creased palmitoylation increases receptor association with
caveolin-1. The outcome effect is also totally different be-
cause ER� palmitoylation is necessary for the p38-depen-
dent activation of proapoptotic cascades (219).

2. Phosphorylation of ER� on tyrosine

The phosphorylation of Y537 was first reported to reg-
ulate E2 binding in MCF-7 cells and the ability of ER� to
interact with kinases containing SH2 domains (220–222).
In vitro data suggest that Src tyrosine kinases (p56lck and
p60c-src) could be responsible for this phosphorylation
(223). Auricchio et al. (224) recently obtained interesting
results using peptides containing phosphoY537. They
have shown that the phosphorylated peptide inhibits G1/S
transition by preventing ER�/Src interactions induced by
E2 in MCF-7 cells. This peptide also inhibits the growth of
mammary cancer cell xenografts, supporting its potential
therapeutic interest (224, 225).

Finally, in vitro results from Katzenellenbogen’s lab
(226) strongly indicate that Src phosphorylates ER� on
other tyrosine residues.

3. Arginine methylation of ER�

Recently, our team reported a novel paradigm of ER�

regulation through arginine methylation by protein argi-
nine methyltransferase 1 (PRMT1), which transiently
methylates R260 within the ER� DBD (227). The meth-
ylated ER� is localized exclusively in the cytoplasm of
breast epithelial cells. This methylation event is required
for mediating the extranuclear function of the receptor by
triggering its interaction with the p85 subunit of PI3K, Src,
and the focal adhesion kinase, and thereby propagating
the signal to downstream transduction cascades via Akt
activation (228). The transient methylation of the receptor
suggests that a putative arginine demethylase could be in-
volved in the regulation of this process.

Rapid down-regulation of ER� methylation and/or
Src activity may serve to control rapid physiological
responses to estrogen, inducing the dissociation of the
complex and ultimately the repression of downstream
kinase activation.

In conclusion, for ER�, although phosphorylation sites
are scattered throughout the protein, the other modifica-
tions are highly concentrated around the hinge region (Fig.
3) and sometimes even on the same residue (K302, for
instance, is targeted for multiple modifications), which
facilitates cross talks between modifications. It is impor-
tant to decipher the interplay between ER PTM and to
determine precisely which PTM will be impacted if a given
enzyme is targeted.

C. Molecular events affecting ER PTM

1. ER mutations
Although the number of mutations affecting ER� in

breast tumors is relatively low (129), the impact of PTM
on ER signaling is indirectly supported by ER� mutations
affecting PTM target sites of the receptor. For example, the
Y537N mutant (phosphorylated site) identified in tumors
of metastatic breast cancer patients has been shown to
confer a constitutive transactivation function to the re-
ceptor (229).

It has also been shown that the K303R mutation (a
multimodified residue) associated with breast cancer
modifies K302 methylation both in vitro and in vivo (208).
The K303R mutant leads to hyperphosphorylation of
ER� by PKA (230) and by Akt-dependent pathways (165)
at residue 305, suggesting a cross talk between ER� acet-
ylation and phosphorylation. Moreover, the K303R mu-
tation has been shown to result in altered recruitment of
coactivators or corepressors like calmodulin or BRCA1
(183, 231). Interestingly, the K303R mutation of ER� has
been found associated with predictors of unfavorable out-
come and poor prognosis like lymph node positivity or
enlarged tumor size (232). Altogether, these observations
suggest that events affecting K303 (PTM or mutations)
might seriously affect the functional role of ER� through
a deregulation of ER� PTM.

2. Cross talk between ER PTM
A protein can be modified by more than one type of

PTM or by the same PTM at different residues. The oc-
currence of several PTM, acting sequentially and/or in
concert, seems to be a very efficient mechanism to initiate,
terminate, or fine-tune the outcome of signaling pathways.

Although the implications of individual ER modifica-
tions such as phosphorylation, acetylation, and methyl-
ation have been relatively well documented, interactions
between these modifications remain to be elucidated. It
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appears that one modification may be coupled to the en-
hancement or suppression of another one at the same or a
nearby residue.

In this context, we will try to discuss the known inter-
play between PTM and to investigate other potential ones.

3. Phosphorylation and phosphorylation
The first cross talk between two phosphorylation sites,

S118 and S305, in ER� has been described by the group of
Kumar (233). They have found that ER� phosphorylation
by PAK1 on S305 influences the activation status of S118
and that the S305-associated ER� transactivation activity
requires a functional S118 (233). This cross talk has not
been analyzed in clinical studies, but it has been shown
that transgenic mice expressing a kinase-active PAK1 ex-
hibit both activated ER�-305 and ER�-S118.

Although less well-documented, a positive cross talk
also exists between S104, S106, and S118 (136).

4. Phosphorylation and acetylation
K303 resides adjacent to a phosphorylation site, S305,

and a negative cross talk has been found between S305
phosphorylation and K303 acetylation (230). Mutation of
S305 to E305 mimicking constitutive phosphorylation
blocks K303 acetylation and generates an enhanced tran-
scriptional response. This cross talk could partially ex-
plain the link between the phosphorylation of S305 and
tamoxifen resistance in breast tumors. On the contrary,
the phosphorylation of S118 and S167 positively regulates
ER acetylation (183).

5. Phosphorylation and ubiquitination
Multiple agents regulating phosphorylation also im-

pact ER� proteolysis (183, 234). A direct link between
ER� phosphorylation and ubiquitination has been estab-
lished. S118 plays an important role in E2-mediated ER�

degradation by regulating differential recruitment of fac-
tors mediating proteolysis (183, 235, 236).

A recent study by the group of Tremblay has shown that
ER� phosphorylation serves as a signal for receptor ubiq-
uitination and degradation (170). The recruitment of the
E3 ubiquitin ligase E6-AP to mouse ER� is induced by Erk
phosphorylation at S94 (conserved at S75 in hER�) and
S106 (equivalent to hS87), but the target lysines have not
been identified.

6. Phosphorylation and glycosylation
It appears that reciprocal occupancy of S80 (conserved

at S60 in hER�) by either O-phosphate or O-GlcNAc
modulates the degradation and activity of mER�. In fact,
the saccharide may act by blocking the addition of phos-
phate, which itself targets the protein for rapid degrada-
tion (169). This interplay is another good example of co-

ordinated modifications responsible for regulating ER�

activity.

7. Acetylation and methylation
Because ER� K302 can be either acetylated or methyl-

ated, one could imagine a competition between the two
modifications. In vitro experiments have shown that a
previously acetylated ER� peptide is a poor substrate for
SET7-induced methylation (208). Given the fact that
lysine methylation stabilizes ER�, this negative cross talk
may destabilize the receptor mediating the inhibitory ef-
fect of K303 acetylation on transcription.

8. Methylation and ubiquitination
Estrogen-stimulated ubiquitination and subsequent

degradation by the proteasome play an important role in
ER transcriptional activity (187). Given that K302 meth-
ylation can stabilize ER�, this modification could be an-
tagonistic to ubiquitination because of direct competition
for the same lysine residue. Because methylated lysine res-
idues can serve as docking sites for binding proteins
through bromo- or chromodomains, the formation of new
complexes would thereby limit ER� ubiquitination and
degradation. Calmodulin would be a good candidate be-
cause K302 falls within a calmodulin-binding motif, and
its binding to ER� prevents ubiquitination by E6-AP and
degradation of the receptor. Interestingly, K302 mutation
has been shown to reduce interactions between the two
proteins (237). As a consequence, targeting K302 meth-
ylation could help to increase the degradation of ER�. In
addition, K302 methylation could recruit a methyl lysine-
binding protein that would, in turn, modulate ER� deg-
radation through regulating the recruitment of E3 ubiq-
uitin ligases.

In conclusion, several interactions between PTM have
been described in vitro, but one must be careful in inter-
preting these results because most studies have been per-
formed with mutants. One cannot exclude that the ob-
served effects are due to conformational changes of the
receptors rather than to a change in the modification. To
integrate these findings for a better understanding of their
significance, the next step will be to study the correlations
between PTM in vivo (knock-in mice and patient tumors).

Finally, it is reasonable to assume that ongoing studies
should clarify the combinatorial relationships between the
different PTM and help to unravel ER-dependent gene
transcription and to improve response to endocrine
therapy.

D. ER PTM deregulated in breast cancer
The presence or absence of ER� is a well-established

prognostic marker in breast cancer (at least in the early
years after diagnosis) and a predictive marker for endo-
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crine therapy (238–240). Because ER PTM have been
shown to affect hormone sensitivity and localization, re-
ceptor stability, and/or ER transcription activity, it is
tempting to speculate that immunohistochemical detec-
tion and quantification of these PTM could be an impor-
tant new prognostic or predictive biomarker for tumor
evaluation. Studies with antibodies specific to PTM have
shown that several ER� modifications are deregulated in
breast tumors, although it is so far unclear whether these
deregulations are a cause or a consequence of the disease.
Three phosphorylation sites of ER� (S118, S167, and
S305) have received particular attention, especially be-
cause they have been implicated in ligand-independent ac-
tivation of ER�. This section will focus mainly on ER�

because almost nothing is known yet about ER� PTM in
breast tumors. A list of the PTM found to be deregulated
in breast tumors and the corresponding survival outcome
are given in Table 3.

1. S118 of ER�

Immunohistochemical studies of pS118-ER� expres-
sion have found a significant positive correlation with ac-
tive p-MAPK (241–245), active p-Akt (244, 246), and
p-p90-RSK (246), suggesting that these kinases may be
involved, directly or indirectly, in the S118 phosphoryla-
tion of ER� in vivo. High pS118-ER� expression levels
have been associated in breast tumors with more differ-
entiated phenotype, lower grade, and other markers of
good prognosis such as ER� or progesterone receptor
(241–244, 247–249). Concerning its predictive value for
response to tamoxifen, the clinical studies yielded con-
flicting results. In fact, four studies do not associate S118

phosphorylation with tamoxifen response (243, 244, 250,
251), although other groups found this phosphorylation
associated with better disease outcome in women treated
with tamoxifen (242, 248, 252), and higher levels are
found in ER�-positive cancer patients who respond to
tamoxifen than in those who progress. These discrepan-
cies probably result from the use of different antibodies in
small nonrandomized patient series. Recently, a random-
ized study of 239 patients has confirmed that pS118-ER�

is associated with tamoxifen response (248), and Generali
et al. (253) have described this modification as an inde-
pendent factor for endocrine responsiveness in patients
receiving AI (letrozole)-based treatment, confirming that
when this residue is phosphorylated, patients are more
likely to respond to endocrine therapy.

2. S167 of ER�

In ER-positive primary breast cancers, pS167-ER� has
been shown to be positively correlated with p-MAPK
(244, 246), p-p90-RSK (246), and p-Akt (244, 246).
pS167-ER� is also associated with good prognostic fac-
tors (such as lower tumor grade or lymph node negativity)
and with increased relapse-free and overall survival (246).
pS167-ER� has been found to be predictive of response to
endocrine therapy (250). These data strongly suggest that
phosphorylation of ER� at S167 could be a useful marker
for selecting the patients who are most likely to benefit
from endocrine therapy.

3. S305 of ER�

A number of in vitro studies have indicated that phos-
phorylation of S305 by PKA and/or PAK1 in ER� resulted

TABLE 3. ER PTM deregulated in breast cancer

Amino acid Status in breast tumors Survival outcome Marker References

ER�S104/106 Hyperphosphorylation Good ND 249
ER�S118 Hyperphosphorylation Good Tam response 242

Good Tam response 248
Poor Not for Tam response 250
Good ND 241
Good Good prognosis 243
Good ND 249

Hypophosphorylation Good Tam response 244
ER�S167 Hyperphosphorylation Good Good prognosis 246

Good Tam response 250
Good Good prognosis 244
Good ND 249

ER�R260 Hypermethylation ND ND 227
ER�S282 Hyperphosphorylation Good ND 249
ER�K303 Mutated to arginine Poor Poor prognosis 232
ER�S305 Hyperphosphorylation after PKA activation Poor Tam resistance 157

Hyperphosphorylation Poor Tam resistance 162, 257
ER�T311 Hyperphosphorylation Poor ND 249
ER�S559 Hyperphosphorylation Good ND 249
ER�S105 Hyperphosphorylation Good ND 261

ND, Not determined; Tam, tamoxifen.
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in enhanced transactivation of ER (158, 161) and was
associated with tamoxifen resistance (157, 161).

A link between PKA expression, ER� phosphorylation
on S305, and resistance to tamoxifen has been demon-
strated in breast cancer patients (157), consistent with
early data from clinical studies correlating deregulation of
PKA with tamoxifen resistance (254). Other studies have
associated tamoxifen resistance with nuclear expression
or amplification of PAK1 (255, 256).

A recent clinical study of a large series of tumors from
node-negative postmenopausal breast cancer patients has
established that the concomitant expression of nuclear
PAK1 and pS305ER� correlates with reduced response to
tamoxifen, suggesting a putative importance of this sig-
naling pathway for treatment prediction. Furthermore,
lack of nuclear pS305ER� or of nuclear PAK1 expression
results in tamoxifen-improved response in postmeno-
pausal breast cancers (257).

Although validating the correlation between PAK1 ex-
pression and tumor progression after tamoxifen treatment,
theworkbyMichalidesandcolleagues (162) showsnodirect
linkbetweenPAK1expressionandpS305ER�.This analysis
concludes that both PAK1 and PKA/pS305ER� levels are
associatedwithsensitivity totamoxifen inbreast tumors,and
the combination of these variables is predictive of tamoxifen
benefit (162). Furthermore, a gene expression analysis has
shown an enrichment of the PKA pathway in pS305ER�-
positive tumors, but not of the PAK1-related pathway.

The discrepancy between these studies can be explained
by the use of distinct anti-phosphoantibodies and differ-
ences between patients: premenopausal breast cancer
(257) vs. postmenopausal (162) patients.

In conclusion, phosphorylation of ER� at S305 could
be a new predictive marker for tamoxifen response, and
targeting PKA to block S305 ER� phosphorylation rep-
resents a promising new strategy to prevent or to reverse
endocrine resistance.

4. S282 and T311 of ER�

Phosphorylation of S282 is associated with better
disease outcome (longer relapse-free survival) and
phosphorylation of T311 with poor clinical outcome
(decreased relapse-free survival) in women treated with
tamoxifen (249).

5. R260 of ER�

The use of an antibody specific for ER� methylated on
R260 has shown that this modification is relatively rare in
normal epithelial breast tissue and that its expression is
deregulated in breast tumors. ER� methylation status var-
ies between tumors. In fact, ER� is hypermethylated in
about 55% of invasive breast tumors (227). This deregu-

lation could be due to an overexpression of the arginine
methyltransferase PRMT1 because isoforms of the en-
zyme have been shown to be overexpressed in breast tu-
mors (258). So far, no correlation with clinical outcome or
clinical parameters has been evidenced, and whether this
modification is a cause or a consequence of the disease is
still under investigation.

6. K303 of ER�

K303, a hot spot for PTM, was first shown to be mu-
tated to arginine in ductal hyperplasia (259) and more
recently in invasive breast tumors (232, 260). This muta-
tion has been significantly associated with aggressive bi-
ological behavior and has been shown to be a marker of
poor prognosis associated with reduced relapse-free sur-
vival (232). K303 mutation triggers ER� hypersensitivity
to estrogen and resistance to tamoxifen and aromatase
inhibitors (163). This hyperactivity is partly due to the
hyperphosphorylation of the adjacent S305. Given that
K303 can be modified by sumoylation, acetylation, or
ubiquitination, and that it regulates K302 lysine methyl-
ation (208), we can speculate that this mutation disrupts
one or more of these modifications, thereby inducing ER�

hypersensitivity. For example, the mutation impeding
acetylation triggers S305 phosphorylation and ER� hy-
peractivation. This is a striking example of the importance
of understanding the complex relationship between ER
PTM for deciphering the mechanisms of endocrine resis-
tance and circumventing this major problem in breast can-
cer treatment.

7. S105 of hER� (equivalent to S124 of mER�)
An antibody specific for ER� phosphorylated on the

S105 residue has been used to analyze its expression in
tamoxifen-treatedbreast tumors. S105 phosphorylation is
associated with better survival, even in tamoxifen-resis-
tant cases (261). However, these results need to be con-
firmed on other cohorts of patients before S105 can be
considered as a potential new marker.

IV. Discussion

Over the last several years, numerous studies have re-
ported that ER, particularly ER�, are subject to a plethora
of PTM in response to different stimuli and that these PTM
differentially regulate the functions of these receptors,
adding another layer of complexity to the regulation of
estrogen signaling.

Some of these PTM are deregulated in breast cancer,
even if we ignore whether they are just a consequence of
the disease or they actually play a role in breast tumori-
genesis. However, literature data show that they could at
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least constitute new prognosis and/or predictive markers
for the disease.

ER� phosphorylation, the most extensively studied
PTM to date, has been shown to play important roles in
most, if not all, estrogen-regulated pathways. In particu-
lar, a number of in vitro studies have shown that some ER�

phosphorylation sites are clearly involved in endocrine
therapy responsiveness. To validate the significance of
these observations, several groups have investigated the
relevance of various ER� phosphorylation sites by immu-
nohistochemical detection in breast tumors. Many studies
have focused on the phosphorylation of S118, S167, and
S305. The obtained results illustrate the complexity of
identifying a specific marker of the emergence of endo-
crine resistance. Indeed, contrary to what had been ex-
pected from in vitro observations, pS118-ER� and pS167-
ER� do not seem to be associated in vivo with de novo
endocrine resistance. Indeed the presence of pS118-ER�

or pS167-ER� has been associated with better outcome in
patients on endocrine therapy (162, 242, 245, 246, 252,
253), suggesting that these two ER� PTM could rather
indicate good prognosis and responsiveness to endocrine
therapy. Conversely, in vitro and clinical studies have val-
idated that pS305-ER� modification is strongly associated
with endocrine resistance because high pS305-ER� ex-
pression level is a predictive biomarker for endocrine ther-
apy responsiveness. However, contradictory in vivo data
from other groups (243, 244, 250, 251) have highlighted
the complexity of such evaluation. The controversial re-
sults published could reflect differences in the antibodies
used, in the stability of the phosphoepitopes during tumor
collection and storage, in the size of the study cohorts, in
the pre- or postmenopausal status of the patients, in the
type of molecule used (ER ligand or AI) for endocrine
therapy, and/or in the type of treatment (short-term neo-
adjuvant vs. long-term adjuvant endocrine therapy).

The limitation of the clinical studies described above
can arise from the analysis of a single biomarker to dis-
tinguish between responders and nonresponders to endo-
crine therapy. Indeed, each phosphorylation could alter
the receptor function in a distinctive manner, individually
or in combination. So, it would be important to develop
new scores combining several PTM and allowing more
accurate identification of the patients likely to benefit
from endocrine therapy.

In this context, recent studies from the laboratory of
L. C. Murphy (252) have demonstrated the presence of
multiple phosphorylated isoforms of ER� (S104/106,
S118, S167, S282, S294, T311, and S559) in breast tu-
mors. Interestingly, they have shown that any individual
phosphoepitope is positively correlated with at least two
others, and pS559 is positively correlated with all other

epitopes (252). They have also investigated the relation-
ship between these phosphorylated forms of ER� and clin-
ical outcome after tamoxifen therapy in 300 patients with
ER�-positive breast tumors (249). Interestingly, they have
found that phosphoepitopes clustered in the N terminus of
ER� (S104/106, S118, S167, S282, S294) are predictors of
good outcome, whereas other epitopes clustered toward
the C terminus (T311 and S559) are predictors of bad
outcome. Accordingly, the authors propose a “phospho-
score” that, by taking into account seven phospho-sites on
ER�, integrates both “good” and “bad” sites. This score
has been shown to be a statistically significant indepen-
dent predictor of overall survival and relapse-free survival
in tamoxifen-treated ER-positive patients (249). Along
this line, the FRET analysis published by Zwart et al. (30)
has illustrated that the combinations of ER� phospho-
modifications lead to different conformational changes
upon each antiestrogen treatment. In consequence, we can
speculate on the existence of a specific code for each type
of endocrine therapy.

Additional complexity has been introduced with a re-
cent study describing that the hyperphosphorylation of
ER� on the S105 residue is associated with improved dis-
ease-free and overall survivals in breast tumor samples
(261), suggesting that ER� modification should be in-
cluded in the “phospho-score.”

Investigations of the relationship between modifica-
tions of ER� and resistance to hormone therapy have
mainly focused on phosphorylation. As discussed above,
ER� also undergoes several other modifications affecting
multiple sites. However, these modifications are less well
characterized, and because of the unavailability of specific
antibodies, their in vivo significance is poorly understood.
Little or no in vivo studies have been published about other
ER PTM, and the preliminary data obtained need to be
validated on independent cohorts.

Given the complexity described above, assessing the
expression of the different molecules involved in ER mod-
ifications might allow more accurate selection of patients
with different responses to endocrine therapy. The en-
zymes triggering the PTM have not yet been clearly iden-
tified, and very little is known about the enzymes respon-
sible for reversing these modifications. Actually, in breast
tumor samples, a significant positive correlation has been
found between the expression of p-MAPK or p-Akt and
pS167- or pS118-ER� and between p-p90-RSK and
pS118-ER�, indicating that these kinases participate di-
rectly or indirectly in these modifications (241–246). In
addition, two recent studies have shown that combina-
tions of pS305ER� and nuclear PAK1 (257) or PKA/
pS305ER� and PAK1 are more powerful in predicting
response to tamoxifen (162).
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Altogether, these data suggest that assessing the PTM
code of ER�, either individually or in association with the
expression and/or activity of the enzymes responsible for
these PTM, could provide an efficient personalized anti-
estrogen therapy.

V. Future Directions

At present, ER� status is the only factor used routinely for
prediction of response to endocrine therapy and patient
selection in breast cancer. As we have largely discussed
above, PTM play a pivotal role in the regulation of ER�

functions, and their deregulation is clearly involved in phe-
nomena of resistance to endocrine therapies in breast can-
cer patients.

Before we can elucidate the mechanisms by which
breast cancers evade antiestrogen-mediated growth ar-
rest, we need to understand how PTM regulate ER ac-
tions. Undoubtedly, our understanding of these dy-
namic modifications is still at an early stage due to the
lack of appropriate tools to monitor modifications of
endogenous proteins. Future studies should investigate
how a specific modification regulates a subset of ER
target genes to determine specificity and how these dif-
ferent modifications act, sequentially and/or in concert,
under physiological and pathological conditions. Using
proteomic approaches, including developing site- and
modification-specific antibodies and employing mass
spectrometry techniques, would allow a better under-
standing of the regulation of these dynamic modifications
in vivo. Furthermore, genetic approaches, such as the gen-
eration of modification-deficient ER knock-in animals,
would provide new insights into the possible physiological
functions of these modifications. Important efforts should
also be made to better define the actors involved in PTM
regulation, notably the enzymes responsible for reversing
ER PTM.

New treatments targeting the molecules responsible for
modifying or reversing PTM could be used in combination
with endocrine therapies or after treatment failure or ac-
quired resistance. However, specifically targeting PTM in
breast cancer cells is a prerequisite to any efficient therapy
because most of the enzymes involved in such modifica-
tions are present in both the tumor and healthy tissues and
treatment may cause a wide range of unwanted side ef-
fects. Important advances have been made in this direction
with the development of nanocarriers loaded with cyto-
toxic drugs (stealth liposomes, for example) characterized
by a prolonged blood circulation time when injected iv [for
review, see Urbinati et al. (273)].

Many approaches and avenues remain unexplored in
developing targeted drugs for effective blockade of ER�

signaling. We can anticipate that in the future, thanks to
the ER posttranslational code, a molecular subtyping of
individual tumors will help to define the antihormonal
treatment for each patient.
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G, Umesono K, Blumberg B, Kastner P, Mark M, Cham-
bon P, Evans RM 1995 The nuclear receptor superfamily:
the second decade. Cell 83:835–839

25. Zhao C, Dahlman-Wright K, Gustafsson JA 2008 Estrogen
receptor �: an overview and update. Nucl Recept Signal
6:e003

26. Tsai MJ, O’Malley BW 1994 Molecular mechanisms of
action of steroid/thyroid receptor superfamily members.
Annu Rev Biochem 63:451–486

27. Tora L, White J, Brou C, Tasset D, Webster N, Scheer E,
Chambon P 1989 The human estrogen receptor has two
independent nonacidic transcriptional activation func-
tions. Cell 59:477–487

28. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S,
Gustafsson JA 1996 Cloning of a novel receptor expressed
in rat prostate and ovary. Proc Natl Acad Sci USA 93:
5925–5930

29. Mosselman S, Polman J, Dijkema R 1996 ER �: identifi-

cation and characterization of a novel human estrogen re-
ceptor. FEBS Lett 392:49–53

30. Zwart W, de Leeuw R, Rondaij M, Neefjes J, Mancini MA,
Michalides R 2010 The hinge region of the human estrogen
receptor determines functional synergy between AF-1 and
AF-2 in the quantitative response to estradiol and tamox-
ifen. J Cell Sci 123:1253–1261
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149. González L, Zambrano A, Lazaro-Trueba I, Lopéz E,
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La signalisation de ERa

L’action des œstrogènes s’exerce via la liaison à 
leur récepteur : le récepteur des œstrogènes de type 
alpha (ER ), auquel nous consacrons cette revue, et 
bêta (ER ). Le complexe ER /E2 (E2 désigne le 17 -
 œstradiol) joue un rôle essentiel dans la régulation 
de la prolifération et de la différenciation des cellules 
épithéliales mammaires normales et tumorales [1]. En 
effet, il a été montré que les œstrogènes interviennent 
dans l’initiation et le développement du cancer du 
sein et que ER  est surexprimé dans plus de 70 % de 
ces cancers, constituant donc une cible majeure de 
l’hormonothérapie [2]. Toutefois, certaines patientes 
développent des résistances aux traitements, aussi 
apparaît-il important de connaître la signalisation de 
ER  dans le détail. Dans la cellule, il existe plusieurs 
voies de signalisation de ER  (Figure 1) : une voie dite 
génomique où ER , après sa liaison aux œstrogènes, se 
dimérise et régule la transcription des gènes cibles soit 
directement en se fixant sur ses éléments de réponse 
(voie A), soit indirectement en interagissant avec des 
facteurs de transcription comme AP-1 et SP-1 (voie B). 

Ensuite, le recrutement de corégulateurs primaires 
puis secondaires permettra l’initiation de la transcrip-
tion des gènes cibles de ER . Parallèlement à cette 
voie, il existe une activation de ER  indépendante 
des œstrogènes (voie C), mais dépendante d’hormo-
nes, telles que l’EGF (epidermal growth factor), l’IGF 
(insulin growth factor) ou la prolactine qui activent 
des kinases qui elles-mêmes activent ER , en le phos-
phorylant. Il existe également une voie d’activation 
de ER  appelée voie non génomique (voie D) : les 
œstrogènes induisent alors une réponse cellulaire très 
rapide qui met en jeu un pool de molécules ER  locali-
sées près de la membrane plasmique [3]. Le complexe 
ER /E2 interagit avec la protéine tyrosine kinase Src, 
la sous-unité p85 de la PI3K et d’autres protéines 
accessoires, formant ainsi un macrocomplexe qui 
entraîne l’activation de cascades de signalisation, 
dont celle des voies MAPK et Akt. Ces voies de signali-
sation régulent la prolifération cellulaire, notamment 
par l’activation de la transcription de gènes comme 
celui qui code la cycline D1 [4].

> Il apparaît de plus en plus évident que les 
 modifications post-traductionnelles, par leur 
capacité à moduler de manière réversible les fonc-
tions des protéines modifiées, sont les acteurs 
majeurs de la plasticité fonctionnelle des protéi-
nes. Le récepteur des œstrogènes (ER ), large-
ment impliqué dans le développement du cancer 
mammaire, est également la cible de nombreuses 
modifications post- traductionnelles. Celles-ci 
modulent son activité en changeant sa localisa-
tion via la création de nouvelles surfaces d’inte-
raction ou le masquage de surfaces  existantes, 
modifiant ainsi la nature de ses partenaires. 
Certaines de ces modifications post-traduction-
nelles de ER  sont dérégulées dans les cancers 
mammaires et pourraient constituer de poten-
tielles cibles thérapeutiques. <
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dimérisation du récepteur [10]. En revanche, la phospho-
rylation basale de la tyrosine 537 régule la fixation de E2 
sur ER  [11]. La phosphorylation de la thréonine 311 par 
la p38-MAPK inhibe l’export nucléaire de ER  [12], toutes 
ces régulations convergeant vers la régulation de l’activité 
transcriptionnelle de ER .

Les autres modifications
ER  subit également des acétylations. La protéine histone 
acétyltransférase p300 acétyle les lysines 299, 302, 303 
et ces modifications ont un rôle répresseur sur l’activité 
transcriptionnelle de ER  [13]. En revanche, p300 acétyle 
également les lysines 266 et 268 de façon E2 dépendante, 
stimulant ainsi la liaison du récepteur à l’ADN et par 
 conséquent son activité transcriptionnelle [14].
De nombreuses études ont montré que l’activité trans-
criptionnelle de ER  est également régulée par la voie de 
dégradation ubiquitine/protéasome. Ce n’est qu’en 2008 
que les lysines 302 et 303 ont été identifiées comme des 
cibles de polyubiquitinylation régulant la stabilité de ER . 
La polyubiquitinylation de ER  sur ces lysines joue un 
rôle d’activateur de l’activité transcriptionnelle de ER  
 œstrogéno-dépendante [15].
Bien que ER  soit dépourvu de sites consensus de sumoy-
lation, notre équipe a montré que le récepteur était 
sumoylé dans la région charnière sur les lysines 266, 268, 
299, 302 et 303. La sumoylation de ER  est œstrogéno-
dépendante et implique les protéines E3 ligases PIAS1 
(protein inhibitor of activated STAT1) et PIAS3. La sumoy-
lation de ER  augmente son activité transcriptionnelle 
[16].

Nous nous proposons de répertorier les modifications post-
 traductionnelles de ER  et leurs fonctions ainsi que leur dérégulation 
dans les cancers mammaires.

Rôle des modifications post-traductionnelles 
de ERa dans la régulation de son activité

Modifications post-traductionnelles de ERa 
et voies d’activation génomique

Les phosphorylations
Les phosphorylations sont les premières modifications décrites et donc 
les plus étudiées (Tableau I). ER  comporte de nombreux sites phospho-
rylables en réponse aux œstrogènes et à d’autres hormones ou facteurs 
de croissance. La sérine 118, la plus étudiée, est un site actif de régula-
tion puisqu’elle est modifiée par de nombreuses kinases en réponse aux 
œstrogènes ou à d’autres facteurs. Par exemple, en réponse aux facteurs 
de croissance EGF et IGF-1, les MAPK induisent la phosphorylation de la 
sérine 118 [5]. Plus récemment, il a été montré que la prolactine induit 
également la phosphorylation de la sérine 118 mais la kinase impliquée 
n’a pas été identifiée [6]. Des expériences d’immunoprécipitation de la 
chromatine ont montré que ER  phosphorylé sur la sérine 118 se loca-
lise au niveau de plusieurs promoteurs de gènes cibles, ce qui démontre 
clairement son rôle dans la transcription [7]. Parmi les sérines activa-
trices de la transcription, on distingue également la sérine 167 ainsi que 
les sérines 104 et 106 (Tableau I). La sérine 305 est un site de phospho-
rylation pour Pak1 (p21-activated kinase) [8] et pour la PKA (protéine 
kinase dépendante de l’AMPc) [9]. Cette phosphorylation contribue aux 
fonctions transactivatrices du récepteur.
Les autres sérines phosphorylées régulent des propriétés de ER . Par 
exemple, la sérine 236, phosphorylée par la PKA, joue un rôle dans la 

Figure 1. Les voies de signalisation de ERa. Il 
existe 4 voies d’action de ER  : la voie A est la 
voie génomique directe où ER  fixé à son ligand et 
dimérisé se fixe sur l’ADN au niveau de ses éléments 
de réponse (ERE) puis recrute des corégulateurs 
primaires et secondaires qui vont permettre d’ac-
tiver la transcription des gènes cibles. La voie B 
est la voie génomique indirecte où le récepteur est 
un régulateur de facteur de transcription (FT). La 
voie C est indépendante des œstrogènes et active le 
récepteur par phosphorylation. La voie D est la voie 
non génomique où le récepteur recrute des protéine 
kinases qui activent différentes voies de signalisa-
tion. E2 : œstradiol ; ERE : éléments de réponse aux 
œstrogènes ; ER : éléments de réponse à d’autres 
facteurs de transcription ; P : phosphorylation ; RTK : 
récepteur à activité tyrosine kinase ; PRL : prolac-
tine ; RPRL : récepteur de la prolactine ; CoRegIR : 
corégulateurs primaires ; CoRegIIR : corégulateurs 
secondaires ; FT : facteur de transcription.
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Très récemment, il a été montré que la méthyltransfé-
rase SET7 méthyle la lysine 302 de la région charnière 
et stabilise le récepteur. Cette méthylation est néces-
saire au recrutement de ER  au niveau des promo-
teurs des gènes cibles et à l’activation de la réponse 
 transcriptionnelle induite par les œstrogènes [17].
L’ensemble de ces modifications étant réversible et très 
dynamique, celles-ci peuvent être un moyen de régu-
ler l’assemblage et le désassemblage des complexes 
 transcriptionnels liés à ER .

Modifications post-traductionnelles de ERa 
dans les voies d’activation non génomique
ER  est palmitoylé dans le domaine de liaison à l’hor-
mone sur la cystéine 447 par la palmitoyl acyl-trans-
férase (PAT). Cette modification permet de localiser 
ER  à la membrane plasmique au niveau des cavéoles 
grâce à son interaction avec la cavéoline. La liaison des 
œstrogènes à ER  empêche l’action de la PAT et permet 
au récepteur de s’associer à d’autres protéines dans 
d’autres microdomaines [18].
Récemment notre équipe a montré que la méthyla-
tion de ER  sur une arginine est une étape-clé dans 
l’activation des voies non génomiques induites par les 
œstrogènes. ER  est méthylé par l’arginine méthyl-
transférase PRMT1 sur l’arginine 260 localisée dans le 

domaine de liaison à l’ADN, et cette modification est essentielle à la 
formation d’un macrocomplexe qui contient ER /Src/PI3K/FAK (focal 
adhesion kinase). La méthylation de ER  est rapide et transitoire, ce 
qui suggère l’existence d’une  régulation fine de ce processus [19].
La cartographie des modifications post-traductionnelles de ER  
montre que ces modifications sont concentrées autour de la région 
charnière, ce qui laisse supposer des relations entre ces différentes 
modifications (Figure 2 A et B).

Les interrelations entre les modifications 
post-traductionnelles de ERa

De plus en plus d’études révèlent des connexions entre les différentes 
modifications post-traductionnelles d’une protéine. Ces crosstalks 
commencent également à être décrits pour ER . Par exemple, une 
relation fonctionnelle a été mise en évidence entre la phosphoryla-
tion de la sérine 305, celle de la sérine 118 et l’acétylation de la 
lysine 303. La mutation de la sérine 305 en acide glutamique, qui mime 
une phosphorylation constitutive, conduit à une augmentation de la 
phosphorylation de la sérine 118 et à une inhibition de l’acéty lation 
de la lysine 303 [20]. La phosphorylation de la sérine 305 par Pak1 est 
donc nécessaire au maintien de la phosphorylation de la sérine 118 
et à  l’inhibition de l’acétylation de la lysine 303, poten tialisant ainsi 
 l’activité  transcriptionnelle de ER  [21].
Récemment, il a été montré qu’un peptide de ER  acétylé sur le 
résidu 303 est un mauvais substrat pour la méthylation induite par 

Sites
de phosphorylation

Activation Kinases Fonctions Références

S104-106
ND

Œstrogènes

Cycline A/CDK2

GSK3
Activation de la transcription

[26]

[27]

S118

Œstrogènes
Œstrogènes
Œstrogènes

EGF et IGF-1

Prolactine

- Cdk7,
- IKK , GSK3

MAPK

ND

Activation de la transcription

[28], 
[27, 29]

[5]

[6]

S167 Insuline S6K1 Activation de la transcription [30]

S236 Absence d’œstrogènes PKA Inhibe la dimérisation du récepteur [10]

 
S305

ND

ND

Pak1

PKA

Activation de la transcription
Activation de la transcription en 

présence de Tam

[8]

[9]

T311 Œstrogènes p38-MAPK Inhibe l’export nucléaire de ER [12]

Y537 Basale p56lck, p60c-src Régule la fixation de l’E2 sur ER [11]

Tableau I. Les sites de phosphorylation de ERa et leur fonction. ND : non déterminé ; Tam : tamoxifène ; GSK3 : Glycogen-synthase kinase-3 ; IKK  : 
IkB kinase.
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SET7 sur la lysine 302 [17]. Sachant que la méthyla-
tion sur lysine stabilise ER , il semble donc probable 
que l’acétylation de la lysine 303 empêche la méthyla-
tion de ER  sur la lysine 302, déstabilisant ainsi ER , 
ce qui participerait à l’effet négatif de l’acétylation 
de la lysine 303 sur la  transcription.
L’ensemble de toutes ces modifications participe pro-
bablement à la régulation des différentes étapes du 
cycle transcriptionnel du récepteur ER

Les modifications post-traductionnelles de ERa 
sont dérégulées dans les tumeurs mammaires

Dans le cadre du traitement des cancers, le ciblage 
des modifications post-traductionnelles a déjà été 
entrepris. Par exemple, l’utilisation d’inhibiteurs des 
histones déacétylases dans certains cancers s’avère 
être une piste prometteuse [31]. Dans le cadre du 
cancer du sein, les voies de signalisation impliquées 
dans les modifications de ER  sont essentielles au 
maintien du fonctionnement normal de la cellule 
et peuvent aussi être impliquées dans le processus 
de tumorigenèse mammaire. Grâce à des anticorps 
reconnaissant spécifiquement les formes modifiées 
du récepteur, il a été possible de montrer que cer-
taines formes sont sur exprimées dans les cancers 
mammaires.
Des études ont ainsi montré que le niveau de phos-
phorylation de la sérine 118 de ER augmente dans 
ces tumeurs. Cependant, il existe une controverse 
quant à la valeur pronostique de cette phosphoryla-
tion [22] qu’une étude sur une plus grande cohorte de 
patientes permettra probablement de trancher.

Un anticorps spécifique d’une forme de ER  méthylée sur l’arginine 260 
a permis de montrer que ER  est faiblement méthylé dans les cellules 
épithéliales normales et hyperméthylé dans 55 % des tumeurs mammaires. 
Une étude pour déterminer si la méthylation de ER peut être considérée 
comme un marqueur diagnostique et/ou pronostique dans les cancers du 
sein est en cours [19].
Une étude réalisée sur 267 tumeurs du sein invasives a montré qu’une 
mutation somatique dans le gène ERa (A908G), conduisant à la substi-
tution de la lysine 303 en arginine, est présente dans 50 % des tumeurs et 
est associée à un mauvais pronostic. Cette mutation induit une hypersen-
sibilité des cellules aux œstrogènes. Cela suggère que cette lysine, dont 
les modifiations sont soumises à une très fine régulation (acétylation, 
sumoylation, ubiquitinylation), joue un rôle important dans la régulation 
de la fonction de ER  [23].
Il a aussi été montré que l’hyperexpression de formes modifiées de ER  
joue un rôle dans la résistance à l’hormonothérapie. Par exemple, la 
phospho rylation de la sérine 305 intervient dans le phénomène de résis-
tance au tamoxifène. En effet, les tumeurs de patientes résistantes au 
tamoxifène sont caractérisées par une hyperactivation de la PKA et donc 
une hyperphosphorylation de la sérine 305. Cette phosphorylation induit 
un changement conformationnel du récepteur qui lui permet, en présence 
de tamoxifène, de s’associer avec le coactivateur SRC-1 et d’induire la 
 transcription des gènes cibles [9, 24].

Conclusion

La régulation du protéome par des modifications post-traductionnelles 
est maintenant considérée comme un paramètre majeur qui contribue à 
la diversité structurale et fonctionnelle des mécanismes cellulaires. ER  
est un bon exemple de ces mécanismes de régulation. Ces modifications 
interviennent à chaque étape de la régulation de ER , que ce soit la 
 fixation du ligand, la localisation subcellulaire, la stabilité du récepteur 
ou le recrutement des corégulateurs, le tout convergeant vers la régulation 

Figure 2. Les modifications post-traductionnelles 
de ERa. A. Domaines fonctionnels de Er  : le 
domaine A/B contient le domaine de transcrip-
tion œstrogéno-indépendant : AF-1 (activation 
function-1). Le domaine C contient le domaine de 
liaison à l’ADN. Le domaine D est la région char-
nière qui contient les séquences de localisation 
nucléaire. Le domaine E contient le domaine de 
liaison du ligand (LBD) et AF-2 (activation func-
tion 2) qui active la transcription de façon œstro-
géno-dépendante. Le domaine F joue un rôle dans 
la spécificité du ligand. B. Sites des modifications 
de ER . Me : méthylation, P : phosphorylation ; 
Ac : acétylation ; Ub : ubiquitinylation ; Sumo : 
sumoylation.
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de la transcription génique. Le décryptage de tous les sites modifiés et 
des mécanismes qui antagonisent la formation des modifications post-
traductionnelles est important pour comprendre la régulation de ER  
et sa dérégulation dans les cancers mammaires. La situation est en fait 
plus  complexe puisque les corégulateurs de ER  subissent également des 
modifications post-traductionnelles. Par exemple, le coactivateur SRC-3 
(membre de la famille p160) peut être phosphorylé, méthylé, acétylé et 
ubiquitinylé en réponse aux œstrogènes [25]. Les combinaisons de toutes 
les modifications de ER  et de ses corégulateurs permettent une fine 
régulation spatiotemporelle de la signalisation œstrogénique. De plus, 
certaines de ces modifications sont dérégulées dans la tumorigenèse 
mammaire et les enzymes impliquées pourraient constituer de nouvelles 
cibles anticancéreuses. ‡

SUMMARY
Post-translational modifications modulate 
estrogen receptor alpha activity in breast tumors
Regulation of the proteome by post-translational modifications (PTM) emer-
ges as a major contributing factor to the functional diversity in biology regu-
lating cellular processes. Because PTM are key to the physiologic functions of 
the proteins involved, it is imperative that we understand the « coding » that 
these modifications impart to regulate diverse activities. As estrogen signal-
ling mediates a plethora of PTM not only on the receptors themselves but also 
on their coregulators, we investigate to « crack » the ER code. Besides the 
long-known phosphorylation, other covalent additions such as acetylation, 
ubiquitination, sumoylation and methylation have been described for estro-
gen receptors in recent years. These modifications affect receptor stability 
and activity, and provide potential mechanisms for cell- or-gene-specific 
regulation. A better understanding of the impact of these PTMs on estrogen 
receptor should help in the identification of new drugs for breast cancer 
treatments. ‡
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