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Abstracts

Abstract

This work studies the enhancement of the transverse magneto-optical Kerr effect
by exploiting extraordinary resonances occurring in 1D periodic grating. The 1D
periodic gold grating structure was designed, described, numerically simulated,
and fabricated. A rigorous Coupled Wave Algorithm (RCWA) developed for par-
allel computing is used for the theoretical study of resonant modes in magneto-
plasmonic gratings and for analysis of optical and magneto-optical data mea-
sured by Mueller matrix ellipsometry. The impact of coupling between Fabry-
Perot modes inside grating air-gaps and surface plasmon mode at the interface
between gold and MO garnet layer is studied via spectra of specular reflectiv-
ity and for the various angles of incidence. In a first step, the optical functions
of the (CaMgZr)-doped gallium-gadolinium garnet (sGGG) substrate and the Bi-
substituted gadolinium iron garnet (Bi:GIG) are obtained in the spectral range
from 0.73 eV to 6.42 eV (wavelength range 193 nm – 1.7 µm). Subsequently, the
spectra of the magneto-optical tensor components are obtained by applying an
external in-plane magnetic field in longitudinal and transverse geometry. The
obtained functions are then used for numerical simulations demonstrating that
by hybridization of surface and cavity resonances in this 1D plasmonic grating,
the transverse Kerr effect can be further enhanced, extinguished or even switched
in sign and that without inverting or modifying the film’s magnetization. To con-
firm theoretical results a set of samples, gratings with a different width of an air-
gap, was fabricated using electron beam lithography and liftoff technique. To be
able to reproduce Mueller matrix data from the samples, the models describing
realistic structures were further developed and optimized. Experimental mea-
surements of real structures confirm transverse MO effect enhancement using
magnetoplasmonic effects and prove applicability of numerical models.

Keywords: magneto-optic, optical isolation, transverse Kerr effect, gratings,
plasmonics, magnetoplasmonics, ellipsometry, RCWA
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Abstrakt

Tato práce je zaměřena na studium zesı́lenı́ transversánı́ho magnetooptikého
Kerrova jevu pomocı́ resonančnı́ch módů v jednodimenzionálnı́ (1D) periodické
mřı́žce. Studovaná struktura sestává ze zlaté mřı́žky na dielektrickém substrátu
tvořeném magnetooptickým granátem. Dva základnı́ typy resonančnı́ch módů,
resonance ve vzduchové kavitě mřı́žky a resonance povrchového plasmonu na
rozhranı́ mezi zlatem a magnetooptickýcm granátem, jsou studovány samostatně
a posléze je analyzován vliv jejich interakce na optickou a magnetooptickou ode-
zvu. Optická a magnetooptická odezva je studována pomoci spekter spekulárnı́
reflektivity pro p-polarizovanou vlnu. Magnetoplasmonická struktura byla teo-
reticky studována prostřednictvı́m numerických simulacı́ a posléze byl navrhnut
a vyroben soubor vzorků pro experimentálnı́ optická a magnetooptická měřenı́.
Pro numerické simulace byl implementován algoritmus vázaných vln (Rigorous
Coupled Wave Algorithm, RCWA) pro 1D periodické systémy, který byl paraleli-
zován pro spektrálnı́ úlohy. Experimentálnı́ optická a magnetooptická data byla
zı́skána pomocı́ spektroskopické elipsometrie Muellerových matic ve spektrálnı́m
rozsahu 0.73-6.42 eV (193 nm-1.7 µm). Elipsometrie Muellerových matic byla
rovněž použita pro určenı́ optických funkcı́ použitých materiálů. Pro substrát byl
použit galium-gadoliniový granát dopovaný pomoci Ca, Mg a Zr. Na substrátu
byla připravena vrstva magnetooptického, Bi-substituovaného gadolinium - žele-
zitého granátu (Bi:GIG). V dalšı́m kroce bylo na vrstvu magnetooptického granátu
(Bi:GIG) na sGGG substrátu aplikováno vnějšı́ magnetické pole v transvezálnı́ a
longitudinálnı́ magnetooptické konfiguraci a byly určeny magnetooptické funkce.
Takto zı́skané materiálové parametry jsou použity v numerických simulacı́ch. Po-
drobnou analýzou je předvedeno ovlivněnı́ interakce mezi plasmonovým módem
a módem v kavitě mřı́žky změnou geometrických parametrů mřı́žky. Následně
je analyzován vliv interakce na transversálnı́ magnetooptickou odezvu a je de-
monstrován proces zesı́lenı́, ztlumenı́ nebo dokonce změny znaménka Kerrova
transversálnı́ho magnetooptikého jevu aniž by byla změněna magnetizace. Pro
potvrzenı́ teoretických výsledků byl navrhnut soubor vzorků s rozdı́lnou šı́řkou
vzduchové mezery. Vzorky byly vyrobeny elektronovou litografiı́ a procesem lift-
off. Pro vyrobené vzorky byl vyvinut teoretický model, který byl následnou nu-
merickou optimalizacı́ fitován na experimentálnı́ optická data, čı́mž byl zı́skám
model věrně popisujı́cı́ optickou aktivitu vyrobených struktur. Shoda numerických
dat, zı́skaných pomocı́ optimalizovaného modelu, a změřených experimentálnı́ch
dat potvrdila dřı́věji zı́skané teoretické poznatky o zesı́lenı́ transversálnı́ho mag-
netooptického jevu pomocı́ magnetoplasmonické struktury a jeho ovlivněnı́ vzá-
jemnou interakcı́ resonančnı́ch módů.

Klı́čová slova: magnetooptika, optická isolace, tranversánı́ Kerrův jev, mřı́žka,
povrchový plasmon,magnetoplasmon, elipsometrie, RCWA
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Résumé

Ce travail porte sur l’exaltation de l’effet magnéto-optique (MO) Kerr transverse
induite par des résonances ≪ extraordinaires ≫ dans un réseau d’or périodique 1D
déposé sur un oxyde de grenat magnéto-optique. La structure complète incluant
le réseau métallique 1D a été conçue, simulée numériquement, dimensionnée, fa-
briquée puis caractérisée. Un algorithme de type RCWA (Rigorous Coupled Wave
Algorithm) adapté au calcul parallèle a été développé et utilisé d’une part pour
l’étude théorique des modes résonants dans les réseaux magnétoplasmoniques et
d’autre part pour l’analyse des données de mesures optiques et magnéto-optiques
d’ellipsométrie à base de matrices de Mueller. L’impact sur la réflectivité angulo-
spectrale du couplage entre les modes Fabry-Pérot des fentes du réseau et les
plasmons de surface à l’interface entre l’or et la couche de grenat MO est ainsi
étudié, en utilisant les paramètres optiques et magnéto-optiques réels des
matériaux. Pour cela, les caractéristiques optiques du substrat en sGGG (grenat
de gallium et gadolinium dopé CaMgZr) et du matériau Bi :GIG (grenat de fer et
de gadolinium substitué bismuth) sont au préalable déterminés dans la gamme
spectrale 0,73 - 6,42 eV (193 nm-1,7 µm) par ellipsométrie à base de matrices de
Mueller. Puis de même la dispersion des composantes magnéto-optiques du ten-
seur diélectrique est obtenue en appliquant un champ magnétique externe dans
le plan, en configuration longitudinale ou transverse. Ces données mesurées sont
alors utilisées dans les simulations. Il est ainsi démontré numériquement que
grâce à l’interaction des résonances de surface et de cavité dans le réseau 1D l’ef-
fet Kerr transverse peut être exalté, éteint ou même de signe inversé, et cela sans
renverser ou modifier l’aimantation de la couche magnéto-optique. Pour confir-
mer les résultats théoriques, une série d’échantillons comportant des réseaux
de fentes différentes a été fabriquée par lithographie électronique et procédé de
lift-off. Afin de reproduire les données des matrices de Mueller mesurées, les
modèles ont été adaptés et optimisés pour tenir compte des imperfections des
structures réelles. Les mesures expérimentales confirment l’exaltation de l’effet
Kerr magnéto-optique transverse due aux effets magnéto-plasmoniques et
prouvent la validité des modèles.

Mots clés: magnéto-optique, isolation optique, effect Kerr transverse, réseaux,
plasmonique, magnéto-plasmonique, ellipsométrie, RCWA
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Introduction

Dans ce travail intitulé Etude théorique et expérimentale de nanostructures
magnétoplasmoniques intégrées innovantes, je me suis concentré sur l’étude op-
tique et magnéto-optique de structures plasmoniques périodiques. La principale
motivation de mes recherches était l’étude de structures avec une résonance op-
tique non réciproque pour les télécoms optiques. Le domaine des fonctionnalités
optiques non réciproques a été l’objet d’une étude approfondie dès l’essor des
télécoms optiques

Les composants optiques non réciproques les plus connus sont les isolateurs
optiques, qui sont utilisés dans les télécoms optiques pour la protection des diodes
laser vis à vis de la rétroaction optique. Durant les dix dernières années ont été
étudiés plusieurs concepts de non-réciprocité optique basés sur la non-linéarité
optique [2–5], l’optomécanique [6] et l’optoacoustique [7]. Mais il est clair que la
manière la plus directe et la plus naturelle pour parvenir à une isolation optique
est l’utilisation d’un effet magnéto-optique.

Nous pourrions diviser les matériaux avec réponse magnéto-optique (MO) en
deux groupes, à savoir les métaux et les matériaux diélectriques. Les métaux se
distinguent par un effet MO plus grand, mais les pertes optiques y sont impor-
tantes. En revanche, les grenats substitués au bismuth sont transparents dans la
lumière infrarouge et une partie de la zone du spectre visible. Bien que ces grenats
se distinguent par une résonance MO moindre que les métaux, ils sont largement
utilisés dans les composants et structures magnéto-optiques à faibles pertes.

Motivation : isolation optique

Avant de nous orienter sur les structures intégrées non réciproques, nous
présentons une conception très simple, mais efficace de l’isolateur optique non
intégré. L’isolateur MO typique, qui repose sur l’effet Faraday, consiste en la com-
binaison d’un rotateur Faraday à 45◦ et de deux polariseurs linéaires positionnés
avec un angle relatif de 45◦. Dans le sens transparent (vers l’avant), la lumière
linéairement polarisée traverse le premier polariseur puis le matériau magnéto-
optique. Cela entraı̂ne du fait de l’effet Faraday une rotation de la polarisation
d’un angle de 45◦. Comme le deuxième polariseur est incliné par rapport au pre-
mier polariseur d’un angle de 45◦, il peut y avoir transmission de la lumière.
Dans le sens inverse, la non-réciprocité de l’effet Faraday entraı̂ne une rotation
de la polarisation d’un angle de -45◦, et donc la lumière ne peut pas être trans-
mise à travers le polariseur de sortie. Depuis les années 80 [28–30] la conception
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de l’isolateur optique Faraday non intégré pour les télécommunications optiques
est bien connue. Elle est couramment utilisée dans un vaste domaine du spectre,
des fréquences de la lumière infrarouge jusqu’au domaine de la lumière visible
et de la lumière UV.

En 1995, Yokoi du groupe Mizumuto a montré l’intégration des grenats sur un
substrat en InP [31] puis plus tard sur les alliages InGaAsP [32]. Le développement
des techniques d’intégration des grenats avec des matériaux standards III-V est
devenu un tournant dans le domaine de la conception de la photonique intégrée
et a apporté de nouvelles possibilités de conception. Ont été démontrées et pro-
duites plusieurs versions d’isolateurs optiques se basant sur l’interféromètre de
Mach-Zehnder (MZI) et utilisant le matériau InGaAsP, l’effet MO provenant de
la couche de grenat [33–36].

Wang et Fan [40, 41] ont conçu une autre classe d’isolateur optique à base de
grenat. Le composant est un cristal photonique 2D à symétrie triangulaire gravé
dans un matériau magnéto-optique, tel que le grenat de bismuth fer (BIG). L’ai-
mantation, normale au plan du composant, est orientée de manière opposée au
centre et dans la partie périphérique de la structure. Cela entraine une levée de
dégénérescence des modes contra-rotatifs de résonance de la cavité. W. Smigaj
et al. ont perfectionné la conception de cette cavité non réciproque résonante. La
cavité est alors constituée d’un réseau circulaire de Bragg, qui forme des cercles
concentriques intérrompus par les guides d’approche. Cela permet un fonction-
nement de la structure avec une aimantation uniforme [42, 43].

L. Bi [39] a présenté en 2011 une structure différente d’isolateur optique mo-
nolithiquement intégré sur une plate-forme ≪ Silicon-On-Insulator ≫ (SOI). Il a
conçu une structure de guide d’onde monomode en silicium et un résonateur en
anneau où l’épaisseur de la couche de SiO2 est de 1 µm. Avec un certain intervalle
de longueur d’onde (intervalle spectral libre), le couplage du guide d’onde et de
l’anneau entraı̂ne une excitation de la résonance de l’anneau. Il est important de
souligner ici que la résonance de l’anneau se manifeste en tant que minima dans
les spectres de transmission. En appliquant un champ magnétique, la fréquence
de résonance de l’anneau se déplace du fait de l’effet magnéto-optique.

Dans le contexte de ces résultats déjà prometteurs, nous nous sommes intéressés
au domaine des structures magnétoplasmoniques. Ces structures combinent la
non-réciprocité de l’effet MO avec une augmentation du champ local dû à l’exci-
tation des plasmons-polaritons de surface (SPP). L’augmentation locale du champ
électromagnétique implique une augmentation de l’effet MO dans la structure.

But de ce travail

Dans ce travail, nous nous sommes focalisés sur les structures et configura-
tions indiquées ci-dessous :
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- Nous appliquons un Effet magnéto-optique transversal. L’avantage de cette
configuration est que l’effet de non-réciprocité ne se manifeste qu’avec la
polarisation p. Par conséquent aucune conversion de mode ou de polarisa-
tion n’apparait, ce qui est important pour le fonctionnement du composant.

- Pour une augmentation de l’effet magnéto-optique par l’influence de la
concentration du champ local, nous avons utilisé des plasmons de surface.
Générer des plasmons dans les structures réclame une interface entre le
matériau diélectrique et le métal noble. Dans le cas de nos modèles, nous
avons utilisé du grenat magnéto-optique (avec absorption négligeable dans
la lumière infrarouge) et de l’or en tant que métal noble. Pour les modèles,
nous utilisons la fonction optique des matériaux, déterminée à l’aide de l’el-
lipsométrie spectroscopique de la matrice de Mueller.

- La génération d’un plasmon de surface demande une constante de propa-
gation élevée, qui est atteinte aux modes de diffraction d’ordre supérieur
dans le réseau périodique. Nous avons utilisé un système périodique 1D
(perpendiculaire au plan d’incidence) qui est efficace et optimal pour maxi-
miser l’interaction avec le matériau magnéto-optique.

Notre étude a concerné la réponse optique et magnéto-optique d’un réseau
périodique magnéto-plasmonique 1D (voir Figure 1). Le réseau en or est décrit
par sa période Λ, son épaisseur h1 et son ouverture r. Le réseau a été créé sur une
couche de grenat de gadolinium-fer bisubstitué (Bi :GIG). La couche de grenat
MO a été épitaxiée sur un substrat de grenat de gadolinium-gallium (sGGG) dopé
(CaMgZr).

Le principal objectif de ce travail est de présenter comment il est possible
d’ajuster l’effet transversal Kerr magnéto-optique (TMOKE) par l’intermédiaire
de la géométrie du réseau magnétoplasmonique. La démonstration théorique et
la preuve expérimentale montrent que l’amplitude et le signe de l’effet TMOKE
sont fortement influencés par l’interaction des modes de résonance dans la struc-
ture. En d’autres termes, le signe de l’effet TMOKE peut être modifié par optimi-
sation de la géométrie du réseau (sans modification de l’orientation de l’aimanta-
tion), du fait d’une petite modification de l’interaction entre des résonances SPP
(plasmons de surface) et FP (Fabry-Perot). Pour démontrer ce nouvel effet phy-
sique, nous avons dû résoudre les questions suivantes.

Dans la première partie, nous avons déterminé les fonctions optiques et magnéto-
optiques des matériaux utilisés. Elles ont été utilisées dans le cadre de l’étude
théorique des résonances dans le réseau magnétoplasmonique 1D. Des modèles
analytiques de modes de résonance (FP et SPP) ont été déduits. En outre, nous
présentons un modèle décrivant le décalage du mode SPP par l’effet TMOKE.
Les impacts sur l’effet TMOKE du changement de géométrie du réseau, à savoir
son épaisseur, sa période et son ouverture r ont été étudiés et analysés.
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Figure 1 – Illustration schématique de la structure étudiée : réseau en or avec
période Λ et épaisseur h1 sur substrat de grenat magnéto-optique pour une confi-
guration transversale avec onde au niveau de l’incidence au niveau y − z, avec
angle d’incidence ϕ0 et polarisation s- ou p-.

Les conceptions de réseaux avec différentes ouvertures r ont été réalisées par
lithographie électronique sur une surface de polyméthacrylate de méthyle (PMMA).
Après évaporation de l’or, les motifs ont été créés par la technique de ≪ lift-off ≫.
Afin de retrouver numériquement la résonance optique mesurée, un modèle de
structure de réseau a été développé et optimisé : les données de la matrice de
Mueller ont ainsi été reproduites par le modèle. Pour finir, nous avons comparé
le déplacement et la modification du signe des données calculées avec les données
obtenues à partir d’un ensemble de 15 échantillons ; un très bon accord théorie-
expérience a été obtenu.

Méthode numérique employée

Dans ce travail, nous avons utilisé pour toutes les simulations numériques et
le fit des données optiques et magnéto-optiques notre code basé sur la méthode
des modes couplés (RCWA, Rigorous Coupled Wave Algorithm). Ce code a été
élargi selon les règles de factorisation Li pour le calcul des structures périodiques
1D anisotropes. De plus, introduit dans le programme Matlab, il a été conçu pour
des simulations parallèles. Cela nous permet de procéder à des simulations de
réseaux et de reproduire les données expérimentales avec les modèles dans des
temps de calcul raisonnables. La RCWA découle des équations de Maxwell à
l’aide de l’approche de Yeh et Berreman.
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Préparation des échantillons et caractérisation

Nous décrivons ici le processus technologique de fabrication des échantillons
et la méthodologie de caractérisation optique et magnéto-optique. Pour le matériau
MO des réseaux magnétoplasmoniques, nous avons choisi du grenat d’yttrium
et de fer substitué au bismuth. Des films de cristal de grenats de fer bisubstitués
ont été réalisés par épitaxie en phase liquide (LPE, Liquid Phase Epitaxial) sur
des substrats orientés sGGG (111) dopés. La composition précise du substrat
sGGG est la suivante : Gd2.7Ca0.3Ga4.1Mg0.3Zr0.6O12. Dans le cas d’un composant
magnéto-optique la figure de mérite optique et les propriétés magnétiques, telles
que l’aimantation et l’anisotropie, doivent être contrôlées simultanément. Afin
d’incorporer une teneur en Bi élevée, et induire ainsi une grande rotation Fara-
day (ou une forte gyrotropie), les films réalisés sont constitués de combinaison
de Gd, Pr, Lu sur des substrats CaMgZr-GGG, dont le paramètre de maille est
élevé (aS = 12.498 Å) .Pour la conception de la structure, les connaissances des
fonctions optiques et magnéto-optiques des matériaux employés sont d’une très
grande importance. L’ellipsométrie spectroscopique de la matrice de Mueller a
été utilisée pour la caractérisation. Nous présentons ci-dessous le banc d’ellip-
sométrie de la matrice de Mueller et les grandeurs mesurées.

Ellipsométrie de la matrice de Mueller

L’ellipsomètre de la matrice de Mueller Woollam RC2-Di a été utilisé pour la
caractérisation optique et magnéto-optique des matériaux. Cet ellipsomètre uti-
lise comme source de lumière une combinaison d’ampoule halogène et de lampe
au deutérium qui couvre une zone spectrale de 0.74 eV to 6.42 eV (193-1700 nm).
Pour atteindre une matrice de Mueller pleine nous utilisons une configuration
PCSCA (Polarisateur-Compensateur-Echantillon-Compensateur-Analyseur) à deux
compensateurs rotatifs [99]. La matrice de Mueller décrit la transformation du
vecteur de Stokes lors d’une réflexion (ou transmission) sur l’échantillon, la définition
la plus souvent employée du vecteur de Stokes étant [90] :

S =




I
Q
U
V


 =




Ip + Is
Ip − Is

I45◦ − I−45◦

IL − IR


 (1)

Lors de l’interaction avec l’échantillon, le vecteur de Stokes est transformé par
la matrice de Mueller Sout = MSin. De manière générale, la matrice de Mueller
possède seize composantes indépendantes. Dans le cas d’une structure isotrope
sans effets dépolarisants, la matrice de Mueller lors d’une réflexion est diagonale
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en bloc :

M =




1 −N 0 0
−N 1 0 0
0 0 C −S
0 0 S C


 . (2)

La matrice de Mueller (2) est normalisée vis-à-vis de l’élément M11, qui décrit
l’intensité totale de réflexion.

sample

light source

polarizer analyzer

rotating
compensators

detector

ϕ0x
y

z MTML

Figure 2 – Illustration schématique de la configuration de l’ellipsomètre avec
deux compensateurs rotatifs et orientation des composantes extérieures d’aiman-
tation dans le plan.

La Figure 2 représente une illustration schématique de la configuration ellip-
sométrique. Pour une configuration en réflexion, l’angle d’incidence peut chan-
ger dans un intervalle de 19◦ jusqu’à 85◦.La transmission peut être mesurée pour
une configuration d’incidence normale, ou bien avec un échantillon incliné. Pour
la caractérisation optique des petits échantillons, tels que nos réseaux, il est pos-
sible d’installer une optique focalisée. La distance du foyer des lentilles est de 27
mm et le diamètre du foyer est de 150 µm.

Il est possible avec des sondes focalisées de changer l’angle d’incidence dans
un intervalle allant de 19◦ à 70◦ et jusqu’à 60◦ en utilisant un aimant fixe, générant
un champ magnétique au niveau de l’échantillon. Pour un alignement précis de
l’échantillon vis-à-vis de la surface du spot incident et de la cartographie de la
mesure une platine x− y motorisée a été utilisée.

Fonctions optiques des sGGG et Bi :GIG utilisés

Pour une analyse inverse (procédure de fit), la différence entre les données
expérimentales et simulées est minimisée par l’optimisation du modèle. Pour l’el-
lipsométrie, nous avons utilisé la représentation de la sphère de Poincaré [100].La
fonction optique a été ajustée à l’aide du modèle de Tauc-Lorentz avec queue
d’Urbach (Urbach tail) [108]. La Figure 3 illustre les fonctions optiques obte-
nues du substrat sGGG et de la couche Bi :GIG. L’étape suivante nous a per-
mis de déterminer les fonctions magnéto-optiques de la couche Bi :GIG. Pour
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Figure 3 – Fonction optique du substrat sGGG (graphique à gauche) et de la
couche Bi :GIG (graphique à droite). La composante réelle ℜ{ǫ11} et la compo-
sante imaginaire ℑ{ǫ11} de la fonction sont illustrées par une ligne pleine et poin-
tillée.

la mesure magnéto-optique un aimant commandé par servomoteur générant un
champ magnétique dans le plan de l’échantillon (in-plane) a été développé. L’ai-
mant est actionné par un servomoteur, qui est commandé par ordinateur à l’aide
de l’unité de commande T-Cube DC Servo Motor de la société Thorlabs. Cela
nous a permis de commander l’orientation du champ magnétique avec une haute
précision. L’aimant permanent fournit un volume suffisamment uniforme de champ
magnétique d’une intensité de 300 Oe ,qui entoure le support de l’échantillon,
l’écart des pôles de l’aimant étant de 20 mm. A l’aide de l’aimant, les confi-
gurations MO transverse (M sat.

T ) et longitudinale (M sat.
L )(voir ensemble de coor-

données sur la Figure 2) peuvent être obtenues. Après mesure de chaque spectre,
l’orientation de l’aimantation est retournée. Dans le but de diminuer le bruit
et d’accroı̂tre la sensibilité de la mesure, cinq mesures sont systématiquement
moyennées, dans le cas de chaque configuration MO (longitudinale ou trans-
verse, soit vers le, ≪ haut ≫ soit vers le ≪ bas ≫). La Figure 4 illustre les fonctions
magnetooptiques obtenues du substrat sGGG avec de la couche Bi :GIG.

Fabrication de structures de réseaux

Le réseau métallique est réalisé par évaporation d’Au sur un masque de résine
positive (polyméthacrylate de méthyle (PMMA)), préalablement structurée par
lithographie électronique. La résine PMMA appliquée à l’aide d’une tournette
est recuite pendant une durée de 10 min. à une température de 180◦ C. Pour
réaliser les différents rapports d’ouverture les réseaux ont été écrits par lithogra-
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Figure 4 – Dépendance spectrale ajustée de la composante off-diagonale du ten-
seur obtenue par la mesure ellipsométrique Bi :GIG pour une configuration MO
transverse et longitudinale.

phie électronique avec différentes doses d’exposition dans une étendue 890–1040
µC/cm2, sous forme de carrés de 300 × 300µm. La période du réseau est main-
tenue constante avec une valeur Λ = 500 nm. ne couche d’or d’une épaisseur
d’approximativement 100nm est évaporée sur la résine développée, la structure
du réseau ayant été réalisée par la technique de ≪ lift-off ≫.
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Simulations numériques et bases des structures

magnétoplasmoniques non réciproques

Dans cette partie nous présentons l’hybridation des plasmons polaritons de
surface (SPP) du réseau magnétoplasmonique Au/grenat et des résonances des
cavités (ou de Fabry-Perot, FP), nous procédons à son analyse et expliquons pour-
quoi elle a un impact considérable sur la réponse MO du réseau, notamment sur
l’effet Kerr transverse. Nous illustrons numériquement l’impact des variations
géométriques du réseau sur l’effet TMOKE via la réflexion des ondes p, son exal-
tation possible, son extinction, ou même, son inversion. Notre étude théorique qui
a été publiée dans Optics Express [66] , a été améliorée par l’introduction de la
dispersion des fonctions optiques et magnéto-optiques des matériaux employés,
déterminée de manière expérimentale.

Dans le cadre de nos simulations, nous avons examiné le comportement de
la structure à saturation de l’aimantation (MT = M sat

T ). Cette condition a été par-
faitement remplie dans le cas des couches Bi :GIG, qui ont été soumises à l’ac-
tion d’un champ magnétique externe de 300 Oe dans le plan. Dans notre cas,
la résonance optique non réciproque se traduit par le glissement spectral des
résonances et des anomalies de réflectivité. L’effet TMOKE est ensuite défini par
la différence de réflectivité lors du renversement d’aimantation

∆Rp = Rp

(
+M sat

T

)
−Rp

(
−M sat

T

)
. (3)

La réflectivité spéculaire de la structure (ligne rouge au milieu) et le spectre
TMOKE correspondant (courbe bleue en haut) de la lumière polarisée-p, tombant
sous un angle ϕ0 = 10◦ sur le réseau avec configuration typique (Λ = 500 nm, h1 =
150 nm, r = 20 nm) ont présentés sur la figure 5. En regardant la ligne verte en
bas, nous pouvons voir les résonances de la transmission optique extraordinaire
(EOT), qui correspondent aux minima de réflexion.

Sur la figure 6 sont illustrées les cartographies du champ magnétique Hx

(concrètement |Hx|2) , ayant été calculées pour les différentes résonances indiquées
dans le spectre EOT (voir figure 5). Ces cartographies confirment que les résonances
qui présentent un fort effet TMOKE (A) et (B) sont bien les SPP de l’interface Au/-
grenat, couplés aux ordres de diffraction ±1.

Formules analytiques des résonances du réseau

Après avoir rappelé les résonances typiques du spectre magnétoplasmonique
TMOKE, nous dirigeons notre attention sur leur dispersion, en fonction des pa-
ramètres géométriques du réseau. Le but est donc d’identifier si un (anti)croisement
des modes des cavités et des modes des SPP se produit.
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Figure 5 – Réflectivité spéculaire (ligne rouge au milieu), transmission spéculaire
(ligne verte en bas) et spectre TMOKE correspondant (ligne bleue en haut) lors
de l’incidence de la lumière polarisée-p sur la structure du réseau sur la Figure 1
où Λ = 500 nm, h1 = 150 nm et r = 20 nm.

Dispersion des modes des SPP

Les minima locaux dans le spectre de réflectivité correspondent aux modes de
résonance dans le réseau. Il ressort de l’illustration graphique des champs sur la
figure 6 qu’il est possible d’exciter les SPP tant sur l’interface air/or que sur l’in-
terface or/grenat. Les résonances résultent en bonne approximation de la combi-
naison de la courbe de dispersion des SPP sur une interface et de la diffraction
induite par le réseau.

En supposant que le matériau plasmonique est de l’or, et en notant ǫ2 la per-
mittivité de l’air (matériau diélectrique) et ǫ3 celle du Bi :GIG, les modes SPP de
notre système s’expriment à l’aide de la formule :

kSP (E) = ky = k0νy = k0neff =
2π

hc
E

√
ǫ2 (E) ǫi (E)

ǫ2 (E) + ǫi (E)
, i = 1, 3, (4)

où E est l’énergie des photons, ǫ2 (E) la permittivité de l’or, i = 1 s’appliquant
pour les SPP sur l’interface air/or, i = 3 s’appliquant pour les SPP sur l’interface
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Figure 6 – Cartographie du module de la composante du champ magnétique Hx

avec 0.973 eV (A), avec 1.097 eV (B), avec 1.403 eV (C), avec 1.683 eV (D), avec
2.053 eV (E), et avec 2.077 eV (F ). La répartition du champ se rapporte à un
réseau avec période Λ =500 nm, épaisseur h1 = 150 nm, largeur de l’ouverture
r = 20 nm et angle d’incidence avec polarisation-p ϕ0 = 10◦.

or/grenat. Dans le cas d’une structure périodique 1D, les SPP sont excités par
l’onde diffractée :

kW (E) = ±kSP (E) +m
2π

Λ
, with m ∈ Z, (5)

où kW indique le vecteur d’onde SPP. Cette excitation des SPP est déjà connue
comme le Plasmon de Wood, car elle a été observée à proximité des anomalies de
Wood-Rayleigh [125]. Si nous posons kW = 2π

hc
E sinϕ0 et résolvons l’équation (5)

pour E, nous obtenons une approximation numérique du premier ordre pour les
résonances SPP.

Dispersion des modes de cavités

Il est possible de prédire avec une bonne précision la position spectrale des
résonances des fentes (modes de cavité) sur la base de la réponse d’un résonateur
FP équivalent, constitué d’une couche d’indice de réfraction neff , de même épaisseur
que celle du réseau en or, insérée entre l’air et le substrat de grenat. L’indice
de réfraction effectif neff est celui du mode TM fondamental du guide d’onde
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Figure 7 – Indice effectif du guide d’onde or/air/or, λ = 884 nm.
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Figure 8 – A gauche : illustration schématique du guide d’onde ≪ or/air/or ≫ et
son insertion dans la cavité de résonance entre le grenat et l’air. A droite : Profil
du champ du mode du guide d’onde.

Au/air/Au. Si nous considérons seulement des modes polarisés p-, la condition
de guidage a la forme suivante [122] :

tanh

(
r

2

√
k20n

2
eff − k20

)
= −

√
k20n

2
eff − k20ε2

ε2
√
k20n

2
eff − k20

. (6)

La figure 7 illustre l’indice effectif ainsi obtenu en fonction de la largeur de la
fente.

La position des résonances de cavité est ensuite déterminée par l’expression
de la résonance bilatérale (round-trip) (voir schéma sur la figure 8) :

2k0neffh1 + φr1 + φr3 = 2nπ, n ∈ Z, (7)

où φri est le déphasage induit par la réflexion à chaque extrémité de la cavité. Le
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coefficient de réflexion peut être approximé par celui en incidence normale :

ri = |ri| exp [iφri ] =
neff −√

εi
neff +

√
εi
, (8)

où i = 1 s’applique pour une permittivité de l’air et i = 3 pour la permittivité du
grenat non aimanté. Cette approximation simple est suffisante pour le mode de
cavité dans les zones où ne se produit pas d’interaction avec les modes plasmo-
niques.

A partir des équations (6) et (7), nous pouvons constater qu’il est possible
d’ajuster la position spectrale du mode de cavité de deux façons. La première
possibilité est la modification de la largeur de l’ouverture du réseau, qui entraine
la modification de l’indice effectif lorsque la dispersion est suffisante (Figure 7).
La deuxième possibilité est un ajustement de l’épaisseur de réseau, la longueur
de résonance d’onde étant influencée par la condition d’accord de phase (7).

Impact du changement de l’ouverture du réseau sur TMOKE

Ici nous analysons l’impact de l’augmentation de la largeur des fentes du
réseau sur la réponse TMOKE. Sur la figure 9, le graphe de gauche montre la
réponse TMOKE en fonction de l’ouverture du réseau pour le −2nd mode SPP.
Il est possible d’observer un décalage important du mode couplé en fonction de
la largeur de l’ouverture. A partir du graphique à gauche, il est visible que le
TMOKE peut être maximisé (pour cette structure et le −2nd mode SPP) lorsque
l’ouverture du réseau varie dans un intervalle allant de 20 nm à 60 nm. Cette in-
formation est importante également pour le processus de fabrication. Le graphe
à droite illustre l’effet TMOKE à 1,74 eV en fonction de la largeur des fentes. Lors
du changement de la largeur de l’ouverture dans une gamme allant de 30 nm à
45 nm, il est possible d’observer un changement du signe TMOKE.

Proposition de structure du guide d’ondes avec dispersion

non réciproque des modes TM

La figure 10 illustre la structure d’un guide d’onde silicium avec réseau plas-
monique, où la couche MO, formée par le grenat BI :GIG, se trouve sur le réseau.
Les matériaux employés dans le cas de la structure, c’est-à-dire silicium et SiO2

,ont été choisis pour leur contraste diélectrique élevé. Par conséquent, il est pos-
sible de parvenir à un guidage dans la couche de silicium. Dans cette étude, nous
nous efforçons de déterminer le comportement non réciproque des modes du
guide d’onde. Le principal objet est l’analyse du lien éventuel entre les modes du
guide d’onde et les modes plasmoniques sur les interfaces du réseau. Le champ
évanescent du mode du guide d’onde dans le silicium est utilisé pour l’excitation
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Figure 9 – Le graphe de gauche illustre la dépendance spectrale TMOKE ∆Rp en
fonction de l’ouverture du réseau r dans un intervalle allant de 20 nm à 120 nm
et une période Λ = 500nm. A droite : changement du signe TMOKE pour une
énergie de photons fixée (1,74 eV) en fonction de la largeur de l’ouverture du
réseau.

du mode des plasmons de surface sur le réseau. Pour parvenir à un comporte-
ment non réciproque, du grenat Bi :GIG est placé sur le réseau. L’excitation SPP
et son contrôle à l’aide de l’aimantation entraı̂nent alors un comportement non
réciproque.
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Figure 10 – Schéma de la structure du guide d’onde silicium avec réseau d’or et
Bi :GIG.

La Figure 11 illustre les courbes de dispersion d’un indicateur de guidage
noté 1/σmax calculé pour les modes TM, où les lignes droites sombres corres-
pondent aux modes du guide d’onde. Le mode dominant avec νy = 2.86apparait
en tant que ligne verticale (le deuxième mode peut être observé avec νy = 3.34).
Le graphe de droite représente un agrandissement de la zone où le mode verti-
cal coupe divers modes de la structure et où se produit un intéressant compor-
tement d’anticroisement. Nous pouvons observer une transformation progres-
sive des modes. Les modes sont ensuite étudiés en utilisant des cartographies de
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Figure 11 – A gauche : Courbe de dispersion de l’indicateur de guidage 1/σmax

l’échelle logarithmique, calculé en fonction de l’indice effectif νy et période de
réseau Λ. A droite : Détail de la zone d’anticroisement du mode.

champ et sur la base d’une analyse de l’indice effectif des modes.
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Résultats expérimentaux

Nous présentons ici une analyse des données de la matrice de Mueller me-
surée sur les échantillons que nous avons réalisés. Dans la première partie est
décrit le développement du modèle de la structure. Ce modèle a été développé
pas à pas, avec d’abord une description simple de la structure parfaite puis l’in-
sertion dans le modèle de la rugosité de surface et de la présence de résine PMMA
résiduelle à l’intérieur des fentes du réseau. A chaque étape, le fit des données
expérimentales par le modèle est réalisé. La qualité du modèle développé est mise
en évidence par la comparaison directe des grandeurs ellipsométriques mesurées
et calculées N, C et S sur une large gamme d’angles d’incidence allant de 20◦ à
60◦.

Développement du modèle de structure

Pour être capables de reproduire les résultats expérimentaux, il faut développer
un modèle. Afin de parvenir aux meilleures données expérimentales a été ap-
pliquée pour le modèle une couche résiduelle de résine PMMA et une rugosité
de surface sur la partie supérieure du réseau. La dispersion de la résine PMMA a
été prise dans le lien [129]. La coupe du modèle est illustrée sur la Figure 12. Les
paramètres les plus adaptés sont résumés dans le tableau 1 (désignés en gras).
Nous avertissons du fait que l’épaisseur globale du réseau est indiquée en tant
que t1 +

1
2
t3 + t4 = 98.74 nm. En tant qu’épaisseur de la couche représentant la

dureté de la surface a été utilisée la valeur par rapport à la fraction volumique
dure 1

2
t3 due to the fixed volume fraction f = 0.5. La Figure 13 illustre la très

bonne conformité entre le modèle et les données. En outre a été atteinte une très
bonne conformité entre la polarisation calculée et mesurée.

t3t1
t4 t2

Au

50% Au/void PMMA

MO layer, Bi :GIG

substrate, sGGG

Λ r

Figure 12 – Coupe de la structure du réseau avec rugosité de surface et PMMA
résiduel.
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Table 1 – Paramètres les plus appropriés
χ2 = 0.0011

ϕ0 = 44.33◦ ϕs = 2.91◦

Λ = 502.6 nm r = 78.68 nm
t1 = 68.16 nm t2 = 3988.4 nm
t3 = 13.55 nm t4 = 23.8 nm
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Figure 13 – Comparaison entre le modèle avec rugosité de surface et PMMA
résiduel et les données expérimentales.

Réponse transversale magnéto-optique de l’échantillon

Pour une autre analyse de la réponse optique de la structure (3), nous définissons
la réflectivité relative Rp/Rs de la matrice de Mueller comme suit :

Rp

Rs

=
M11 +M12

M11 −M12

=
1− M12

M11

1 + M12

M11

=
1 +N

1−N
. (9)
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Pour que nous puissions quantifier la résonance MO pour la configuration trans-
versale, nous définissons la grandeur δR ainsi :

δR =
Rp

Rs

(
+M sat.

x

)
− Rp

Rs

(
−M sat.

x

)
, (10)

La Figure 14 (gauche) compare la réflectivité relative R/Rs des données me-
surées et du modèle. Les données MO ont été obtenues pour la même configura-
tion d’ellipsomètre, par conséquent nous pouvons utiliser les mêmes paramètres
de fit. Le spectre de réflectivité-s calculé (ligne verte) montre que les effets ca-
ractéristiques n’apparaissent que pour la polarisation –p. Le graphique à droite
illustre la grandeur MO calculée et mesurée δR. Cela illustre la façon dont le
modèle décrit la résonance MO avec une très bonne conformité. Nous pouvons
donc utiliser ce modèle pour déterminer l’origine de l’effet MO à l’aide de carto-
graphies de champ, pour le calcul de la résonance MO pour divers angles d’inci-
dence, etc.
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Figure 14 – A gauche : Comparaison de la réflectivité relative calculée et mesurée
Rp/Rs.A droite : Comparaison de l’effet MO mesuré et calculé.

Impact du couplage des modes sur la réponse optique et MO

Enfin est démontrée de manière expérimentale l’interaction du mode des plas-
mons de surface et des cavités. La figure 15 montre à gauche un zoom de la
réponse MO, calculée pour différentes largeurs de fentes. Un décalage des pics
vers le bleu avec l’augmentation de la largeur de la fente est clairement visible. Le
graphique de droite représente la réponse MO mesurée pour divers échantillons
(avec différentes largeurs de fente). Sur le graphique est clairement démontré le
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Figure 15 – Décalage spectral de la réponse MO, extraite des mesures réalisées
pour 15 échantillons avec différentes ouvertures r (droite), en comparaison avec
les résultats de simulation (gauche).
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décalage vers le bleu du pic MO en fonction d’un agrandissement de l’ouverture,
prévu théoriquement.

Cette observation confirme la théorie de l’accordabilité géométrique de l’effet
TMOKE dans le réseau magnétoplasmonique 1D, comme présenté précédemment.
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Conclusion et perspectives

Résultats atteints

Le but de ce travail était l’étude de la réponse TMOKE de réseaux
magnétoplasmoniques périodiques 1D, l’analyse des différents modes résonants
et l’impact de leur couplage sur l’augmentation de l’effet TMOKE. Le travail et
les résultats peuvent être divisés en quatre groupes :

1. Couplage des modes de cavités et plasmoniques dans la structure
magnétoplasmonique

– Le principal résultat de ce travail est l’explication et la confirmation
expérimentale de l’augmentation de l’effet TMOKE, et l’inversion du signe
de cet effet réalisable sans modification de l’aimantation. Cet effet a été
expliqué numériquement par l’interaction entre les résonances du réseau
(modes des cavités et modes des plasmons de surface). Il a également été
montré qu’il est possible de le modifier par un léger changement de la
géométrie du réseau – publié dans [65, 66].

– Afin de confirmer les résultats théoriques un ensemble de quinze réseaux
magnétoplasmoniques ont été fabriqués par lithographie électronique et
structuration du réseau par lift-off. La réponse magnéto-optique des
échantillons a été mesurée à l’aide de l’ellipsomètre de la matrice de Muel-
ler et les données expérimentales ont démontré l’effet prédit avec une très
bonne conformité.

2. Détermination du spectre optique et magnéto-optique des matériaux uti-
lisés :

– Les fonctions optiques du matériau employé pour la production des
échantillons ont été déduites de la réflexion et de l’intensité des spectres de
transmission de la matrice de Mueller – publié dans [130].

– UUne analyse des effets de dépolarisation provoqués par le réglage ellip-
sométrique, de la définition spectrale finale et de la focalisation du faisceau
a été réalisée.

– L’ellipsomètre de la matrice de Mueller a été complété par un aimant per-
manent générant un champ magnétique dans le plan (in-plane) et com-
mandé par ordinateur. L’aimant a été utilisé pour la caractérisation des
propriétés MO Bi :GIG et pour les expérimentations MO sur les réseaux
magnétoplasmoniques – publié dans [131].

3. Développement de modèles réalistes de structures magnétoplasmoniques :

– Un modèle de réseau plasmonique 1D, qui prend en compte les imperfec-
tions de fabrication, comme la rugosité de surface sur le réseau, la résine
PMMA résiduelle à l’intérieur des fentes du réseau et une divergence du
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rayon focalisé, a été développé. Le modèle développé conduit à un très bon
accord théorie-expérience des données MO mesurées et calculées – publié
dans [130].

– Le fit des résultats expérimentaux des 15 échantillons a été réalisé de manière
globale, avec des largeurs de fentes qui font apparaı̂tre la même tendance
que les fentes qui ont été observées avec un microscope électronique à ba-
layage (SEM).

4. Développement du logiciel pour la modélisation du réseau
– Pour la modélisation de la réponse optique du réseau périodique 1D un

nouveau logiciel a été développé dans MATLAB. Ce programme se base
sur la méthode RCWA (méthode de l’onde couplée) et est optimisé pour le
calcul parallèle des problèmes spectraux.

– Une optimisation de l’implémentation parallèle du code a été réalisée et des
simulations spectrales avec divergence intégrée du rayon focalisé ont été
effectuées (avec utilisation d’un centre de superinformatique IT4I), jusqu’à
256 cpus.
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Perspectives

Dans le cadre de ce travail nous avons réalisé la démonstration expérimentale
de plusieurs résultats prédits théoriquement. Une grande quantité d’études pour-
raient être menées dans le futur à partir de ces premiers résultats. Nous indi-
quons ici quelques unes de ces idées. Nous avons par exemple prédit au cha-
pitre 4 un lien entre les modes SPP et les modes des cavités par l’intermédiaire
d’un changement de l’épaisseur du réseau et de la largeur de l’ouverture. Mais
les échantillons expérimentaux produits par cette méthode, qui est décrite dans
le chapitre 3, ne confirment que les prédictions dans le cas d’un changement de
l’ouverture du réseau. Il serait pertinent de procéder à une analyse du couplage
et de comparer la réponse magnéto-optique atteinte en fonction de l’épaisseur
du réseau. Les échantillons pour ces expérimentations sont déjà disponibles. En
outre, les structures qui ont fait l’objet de ce travail sont unidimensionnelles, à
angles droits et ont été étudiées pour une configuration avec diffraction plane et
aimantation transversale. Des travaux futurs pourront s’orienter vers des confi-
gurations avec diffraction conique, sur les structures périodiques 2D et dans le
cas d’une aimantation longitudinale ou polaire. La configuration avec diffrac-
tion conique devrait permettre une caractérisation optique précise et l’étude de
la conversion non réciproque des modes. Ces structures 2D pourront faire ap-
paraı̂tre d’intéressantes propriétés optiques tant en réflexion qu’en transmission.
Leur étude pourra apporter de nouvelles possibilités d’ajustement des modes
des cavités, ainsi que des informations importantes sur le processus de fabrica-
tion. La proposition théorique de la structure du guide d’onde ouvre un nouvel
axe possible de recherche. Une autre étude et optimisation de la structure se-
ront alors nécessaires. La structure devra être conçue avec des matériaux com-
patibles (du point de vue de la fabrication) et pour le mode fondamental du
guide d’onde. Le composant intégré peut fonctionner en tant qu’isolateur op-
tique ou modulateur, selon que l’aimantation est constante ou modulée. Et en-
fin, les résultats théoriques et expérimentaux présentés concernant la structure
magnétoplasmonique pourront être transposés dans le domaine de l’IR lointain
et du THz, pour les utiliser lors de la conception de nouveaux composants op-
tiques.
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1 Introduction

In this thesis entitled Theoretical and experimental study of novel integrated mag-
netoplasmonics nanostructures I am focused on optical and magneto-optical study
of periodic plasmonic structures for applications in non-reciprocal optics.

Before giving a detailed presentation of the theoretical and experimental work,
the phenomena of optical non-reciprocity are introduced. Usual passive linear
optical systems obeys so called time reversal symmetry. Figure 1.1 shows an exam-
ple of such symmetrical system schematically - two silica prisms which couple
and decouple light from the single mode waveguide 1. A single mode waveg-
uide is used in order to avoid transmission into higher-orders modes, which
caused a lof of confusion during last years [1]. In such kind of linear passive
systems forward and backward modes inside the waveguide are equivalent. The
only difference is the sign of the wavevector k. A change of the sign of the
wavevector k → −k is equivalent to time reversal t → −t, this is consistent
with time-invariance of the Maxwell’s equations. System which allows prop-
agation of modes with the wavevector ±k are called reciprocal. Optoelectronic

Forward propagation

Backward propagation

n′

n′

n

Figure 1.1: Prism coupling and decoupling of guided forward and backward
modes is shown schematically.

structures with preferred propagation direction of guided modes (+k or −k) are
required. Optical isolators are typical non-reciprocal optical devices used in op-
tical telecommunication technology to protect laser diodes (with positive feed-
back) against spurious back reflections. During last decades several concepts for
optical non-reciprocity based on the optical nonlinearity [2–5], opto-mechanic [6]
and opto-acoustic [7] have been explored. Finally a lot of work was done on opti-
cal isolation using magneto-optic effects. But obviously the most straightforward
and natural way to obtain optical isolation is using magneto-optic effect.

The first observation of magneto-optic (MO) effect was done by Michael Fara-
day in 1845. For the propagation in parallel to magnetic field (H||k) through flint
glass rod, Faraday observed rotation of the plane of linearly polarized light. The

1. Considered refractive index of prisms is n′ and n < n′for surrounding medium.



2 CHAPTER 1. INTRODUCTION

azimuth of the rotation is linearly proportional to the applied magnetic field and
to the propagation length. The phenomenon is known as Faraday rotation [8]. In
1898 Woldemar Voigt discovered a magneto-optical effect in transmission with
magnetic field perpendicular to the propagation (H⊥k) [9]. The Voigt or Cot-
ton–Mouton effect is similar to the Faraday effect, but while the Faraday effect is
linear in the applied field, the Voigt effect is quadratic, i.e. effect is proportional
to the square of magnetization.

In reflection three magneto-optical configurations are distinguished according
to the orientation of the magnetization vector with respect to the interface plane
and the incident wave [10,11]. Magneto-optical effect upon the reflection of polar-
ized light from a perpendicularly (i.e. in the polar direction) magnetized air-iron
interface was proposed in 1877 by Reverend John Kerr [12]. The longitudinal
MO Kerr effect for magnetization parallel to both the plane of incidence and the
interface was described in 1878 [13]. Upon reflection in both cases, polar and lon-
gitudinal configuration, the linearly polarized incident light is transformed into
an elliptical one. The third magneto-optical effect when magnetization is perpen-
dicular to the plane of incidence and lies in plane of interface, i.e. transverse Kerr
effect, was observed by Peter Zeeman in 1898. The transverse Kerr effect change
both phase and amplitude only for TM (or p-) polarized mode.

The presence of magnetic field or magnetization inside the crystal breaks time-
symmetry of the crystal. As a consequence, material properties exhibit reduced
symmetry as well. In case of optical properties, the reduced crystal symmetry due
to magnetization gives rise to so-called magneto-optical (MO) effects. In general,
those effects can be linear, quadratic [14], etc. in magnetization. From the macro-
scopic point of view, the MO effects linear in magnetization provides non-zero
antisymmetric off-diagonal elements in the permittivity tensor. From microscopic
point of view the MO effect occurs due to different light absorption for different
magnetization directions. For example, when light propagates along magnetiza-
tion direction, than there is different absorption for circular left and circular right
polarizations [15]. The light absorption itself originates from probability of pho-
ton be absorbed by the matter, while exciting electron from the ground state to the
excited state. Note, that in the optical spectral range, the absorption is dominated
by electric dipole absorption (i.e. absorption is caused by electric part of the elec-
tromagnetic wave). Therefore, magnetic part of the electromagnetic-wave does
not interacts with spin of the electron at optical frequencies. Hence dependence
of absorption on magnetization direction (i.e. on spin of electrons) is provided
only indirectly, due to spin-orbit coupling. To avoid canceling of the effect due to
symmetry of the spin-orbit interaction, the electronics structure must be split by
magnetic field, either external or internal, in later case usually called as exchange
splitting. In following work, the linear transverse magneto-optical Kerr effect
(TMOKE) is used for its unique property: the polarization state does not change
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upon reflection. The linear TMOKE reflection coefficient for p-polarization can be
defined as:

r(M)
pp = r(0)pp + δrpp (M) , (1.1)

where r
(0)
pp is the Fresnel reflection coefficients from non-magnetized media and

δrpp (M) is the linear perturbation introduced by the transverse MO effect. Total
phase and amplitude changes upon reflection is given by both reflection with-
out magnetization and the MO contribution. The nonreciprocal phase shift and
absorption are then related to the perturbation δrpp (M).

Despite the fact that the family of MO active materials is very wide and al-
most each feromagnetic material which can sustain spontaneous magnetization
will have some magneto-optical response, two basic groups of MO materials can
be established. These are the ferromagnetic metals (and their alloys and com-
pounds) and the ferromagnetic garnets and oxides. Ferromagnetic metals (es-
pecially Co, Fe, and Ni), their alloys and compounds were studied for decades.
Their popularity comes from their large MO effect, well known properties (opti-
cal, magnetic) and relatively easy manipulation and fabrication (thin film depo-
sition). Moreover they can be mixed in binary or ternary compound with other
chemical elements {for example like a Heusler compounds [16]}, which makes
their MO response widely tunable. In the past, ferromagnetic metals were deeply
studied for magnetic recording [17–19]. Metals provide relatively strong MO re-
sponse, but they have also large optical losses, therefore they are hard to use for
waveguide configuration 2.

Second group of promising materials for magneto-optical applications are fer-
rimagnetic garnets. Those very complex cubic crystals with spinel-like structure
were discovered in 1959. First films of magnetic garnet were prepared in 70s
by liquid phase epitaxy (LPE) on gadolinium gallium garnet substrate. At that
time, magnetic garnets were studied for application in magnetic bubble memo-
ries [22–25]. Because of their unique combination of sufficiently strong magneto-
optical properties 3 and transparency in near-infrared region, MO garnets found
use in optical switching and modulation in waveguiding structures [26, 27].

1.1 Motivation: optical isolation

Before going into integrated non-reciprocal structures a very simple, but ef-
ficient, concept of non-integrated optical isolator should be introduced. Figure

2. But in a special configuration with active loss-compensation it is possible as was demon-
strated in work of M. Vanwolleghem [20, 21].

3. Of course, MO properties of transparent garnets are weaker than MO properties of metals
(Co, Fe, Ni)
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1.2 shows a typical MO isolator based on the Faraday effect. A free space opti-
cal isolator based on Faraday rotator is achieved by combination of 45◦ Faraday
rotator and two linear polarisers tilted by 45◦. In the transparent direction (for-

M

Forward propagation

Backward propagation

blocked mode

polarizer at α
polarizer at α + 45◦45◦ Faraday rotator

Figure 1.2: Basic principle of free space polarization-dependent optical isolator.

ward) a linearly polarized light passes through the first polarizer. Then the plane
of polarization is rotated by 45◦ by the Faraday effect. Because the second polar-
izer is tilted by 45◦ with respect to the first polarizer, the light can propagate. In
the opposite direction, the non-reciprocity of Faraday effect leads to a rotation of
the polarization plane by −45◦, therefore, in the ideal case, the backward propa-
gation mode is perfectly blocked. Free-standing (non-integrated) optical isolator
for optical telecomunication based on Faraday effect is well-known concept from
the 80s [28–30]. Till now, concept of optical isolator based on Faraday rotator is
commonly used in a wide spectral domain from infrared frequencies to visible
and UV light domain.

On the other hand, functionality of Faraday effect-based optical isolators is di-
rectly related to the propagation length through MO material. Therefore, simple
miniaturization of a device is not possible for design of on-chip integrable non-
reciprocal optical structures and advanced design of novel structures and new ap-
proaches are required. During last two decades several concept of waveguiding
structures based on garnets were proposed and experimentally demonstrated.
Moreover, bonding techniques for combination of garnets with standard silicon
or III-V semiconductor were developed. But due to fabrication difficulties, sensi-
tivity to precise dimension of fabricated structures, temperature of surrounding,
etc., it is hard to transfer laboratory devices into large-scale commercial produc-
tion.

In 1995 Yokoi, from group of Mizumuto, reported first successful results on
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boning of garnets onto InP substrate [31] and later on InGaAsP alloys [32]. De-
velopment of bonding techniques of garnets with standard III-V materials was
milestone in design of integrated photonic and it brings new design possibilities.
Several designs of optical isolators based on Mach-Zender interferometer (MZI)
developed in a InGaAsP material where the MO effect is introduced by MO gar-
net cladding were demonstrated and fabricated [33–36]. Figure 1.3 shows layout
of structure with Ce-substituted yttrium iron garnet (Ce:YIG) cladding proposed
by Sobu et. al. [37]. The optical isolator is composed of multi-mode interfer-
ence (MMI) couplers, a reciprocal phase shifter on one (upper) interferometer
arm, and nonreciprocal phase shifters on two arms. The reciprocal phase shift
is accomplished by the difference in optical path lengths between the two arms.
The nonreciprocal phase shifters are composed of a Ce:YIG upper cladding layer
magnetized transverse to the light propagation direction on film plane [38]. In
order to obtain non-reciprocal TMOKE phase shift, external magnetic fields are
applied to the two interferometer arms in anti-parallel directions. As a conse-
quence, the phase shift generated by the first-order MO effect becomes different
in the two arms. In the forward propagation, the phase difference, measured in
the upper arm with respect to the lower arm, is set to be −π/2 by proper ad-
justment of the length of the nonreciprocal phase shifters. When the reciprocal
phase shifter gives a phase shift of π/2, the phase difference is canceled. The light
waves propagating in the two waveguide arms become in-phase and interfere
constructively in the output of 1 × 2 MMI coupler. The forward light wave is
output from the central port of the MMI coupler. In the backward propagation,
the phase difference given by the nonreciprocal phase shifters changes its sign.
Namely, the phase difference of π/2 is given by the TMOKE, whereas the recipro-
cal phase shift remains giving a π/2 phase difference. As a result, the total phase
difference between the two arms becomes π. The light waves propagating in the
two waveguide arms emerge in anti-phase, and destructive interference occurs
in the 2× 3 MMI coupler. The light wave does not come out from the initial input
port, but is radiated from the side waveguides. In order to suppress the reflection
at the front edges of the side waveguides, a lateral taper is introduced at the ends
of side waveguides. The light wave is radiated to the substrate effectively. Thus,
the device exhibits direction-dependent and nonreciprocal transmission behavior
and works as an optical isolator.

Different design of monolithically integrated optical isolator on Silicon-On-
Insulator (SOI) platform was presented in 2011 by L. Bi [39]. Figure 1.4 shows
on the right subplot proposed structure of a single-mode silicon waveguide and
racetrack resonator fabricated on an SOI wafer with a top cladding of 1 µm thick
SiO2. Middle subplot shows SEM image of the part of the ring where cladding
was etched and Ce:YIG was deposited. At a certain wavelength the coupling be-
tween waveguide and the ring leads to the excitation of ring resonance. Here it is
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Figure 1.3: Schematic illustration of an integrated GaInAsP MZI optical isolator
developed by Sobu et. al. [37].

important to point out, that resonance of the ring appears as a dip in transmission
spectra. By application of transversal magnetic field, the resonant frequency of
the ring is shifted. The shift originates from the TMOKE non-reciprocal phase-
shift. Therefore under the fixed magnetization resonant frequency of the ring
modes propagating in a clockwise (CW) and counter clockwise (CCW) direction
are different. Right subplot of Fig. 1.4 shows operation principle for optical iso-
lation schematically. Maximum achieved isolation ratio was 19.2 dB.

Figure 1.4: Structure of the monolithic nonreciprocal optical-resonator-based iso-
lator introduced by L. Bi [39] (left subplot), transverse cross-sectional SEM image
of the resonator ring covered with MO garnet layer (middle subplot), and op-
eration principle for optical isolation. Maximum isolation ratio (19.2 dB), corre-
sponding insertion loss and operation wavelength range are shown.

Another class of garnet-based optical isolator was proposed by Wang and
Fan [40, 41]. The proposed device, shown in the left subplot of Fig. 1.5, consists
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of three branches of waveguides (ports S1,2,3) evanescently coupled to a resonant
cavity at the center. The device (inset in right subplot of Fig. 1.5) was considered
as 2D photonic crystal with triangular symmetry of air holes in gyrotropic mate-
rial, such a bismuth iron garnet (BIG). The right subplot shows transport proper-
ties of the structure. The magnetization was applied in normal direction with a
special profile. The magnetization in the center of the structure (dark grey) had
opposite orientation than magnetization in surrounding structure (light grey).
This leads to the splitting of resonant rotating modes inside the cavity. If the in-
put port (S1) and direction of magnetization are fixed, than the injected mode
is coupled to exactly one of the output (S3) waveguide and second port (S2) is
isolated. For the opposite orientation of magnetizations, the mode is coupled to
previously isolated port (which becomes to be output), and the previous output
port becomes isolated. The concept of the nonreciprocal resonant cavity was fur-
ther improved by W. Śmigaj, et. al. They surround the resonant cavity by the
circular Bragg grating formed by the concentric full and split rings. This lead to
functionality of the structure under uniform magnetization [42, 43].

Figure 1.5: Left: Schematic of a three-port Y-junction circulator. The straight ar-
rows indicate the incoming and outgoing waves. The curved arrows represent
the two counter-rotating modes in the resonator. Right: Transmission spectra at
the output and isolated ports of a three-port junction circulator.

In the text above we have summarized milestones in the designs of optical
structures with nonreciprocal optical behavior. Common factor of all mention
structures is that non-reciprocity has been achieved by the phase shift originating
from the linear MO transverse Kerr effect. Despite the fact, that the presented
functionality of different designs achieves very high efficiency, their operation
bandwidth is always limited by the resonant character of all discussed designs
or by MO effect of transparent MO dielectrics (i.e. MO garnets) itself. For that
reason it is very important to study structures, which can provide enhancement
of the MO effect and/or wider operational broadband, because it can lead to
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further increase of the efficiency of optical isolators. In this work we are focused
on enhancement of the transverse MO Kerr effect by the effect of surface plasmon
polaritons (SPP) excitation at the interface between noble metal (gold) and MO
garnet. Structures which combine plasmonic behavior with MO effect are call
magnetoplasmonic.
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1.2 State of the art in nonreciprocal plasmonics

Since about half a decade the rich variety of research activities in the field of
plasmonics has seen the addition of yet another interesting application, namely
magnetoplasmonics. In search of active functionality in plasmonic circuitry, the
use of an external magnetic control field and magneto-optic (MO) effects has
been proposed both in surface plasmon waveguide layouts as well as in grating
configurations [44, 45] and has been successfully verified experimentally [46, 47].
Moreover the inherent nonreciprocity of magneto-optical ferromagnetic metals
has been exploited to obtain ultracompact and integratable optical magnetoplas-
monic isolators [48–50]. The main focus of magnetoplasmonic research has been
on the enhancement of the magneto-optic response of a MO material via the ex-
citation of surface plasmon polaritons (SPP) [51]. Even though some interesting
results have been reported on Kerr effect enhancement in nanoparticles of pure
ferromagnetic metals [52, 53], by far the strongest MO Kerr effect enhancements
have been seen by combining the SPP resonance of a noble metal with the gy-
rotropy of a ferromagnetic metal [54].

The most spectacular effect however has been reported by Belotelov et al. [55,
56] where it was predicted and demonstrated that a very strong transverse MO
Kerr effect (TMOKE) of the order of 30% is induced by incorporating a nanos-
tructured Au grating on top of a dielectric transparent magnetic iron garnet that
is magnetized in plane and parallel to the gold stripes. TMOKE manifests itself
as the relative change of the reflected intensity of p-polarized light incident along
a plane perpendicular to the magnetization upon reversal of the latter. Magneto-
optics textbooks [57] show that TMOKE is only appreciable on lossy magnetic
materials, and that for smooth homogeneous ferromagnetic metal films it is only
of the order 0.1%. A TMOKE of 30% predicted and measured in a system where
the only magnetically active layer is transparent, is therefore a clear demonstra-
tion of the enhancement via plasmonic resonances. It was explained how the
nonreciprocal splitting of the dispersion of the SPP’s guided by the garnet/Au
grating interface causes a nonreciprocal shift of the Wood-plasmon resonances
in the extraordinary optical transmission (EOT) and reflection spectrum of this
structure, and hence is at the origin of the Kerr effect enhancement.

On the other hand, it has been known for some time now, that EOT effects
in 1D gratings are governed both by SPP resonances at the grating’s interfaces
and Fabry-Perot (FP) cavity resonances in its slits, and possibly even by their
mutual coupling [58, 59]. The latter hybridization of these resonances is strongly
dependent on the precise geometrical parameters of the grating and can greatly
influence the efficiency of the EOT effects at play [60, 61]. In EOT gratings on
MO substrates [62–64], the role of the FP cavity modes has commonly been ne-
glected in view of the limited interaction with the MO material until 2012, when
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we demonstrated how the FP cavity modes can play an important role in the
control of the TMOKE [65, 66].



1.3. OBJECTIVE OF THIS WORK AND USED APPROACHES 11

1.3 Objective of this work and used approaches

Objective of this thesis is study of structures for enhancement of the magneto-
optical effect. We combine a local field enhancement by surface plasmon res-
onance with magneto-optical properties of the garnet. We use the transverse
magneto-optical Kerr effect, because it does not provide mode conversion. For
the plasmon generation we used 1D periodic grating made of gold. The gold was
used as a well known and stable plasmonic metal. The 1D structure was chosen
for its tunability and effective surface plasmon generation.

Our study is focused on the optical and magneto-optical response of a mag-
netoplasmonic 1D periodic grating, shown on Fig. 1.6. The considered gold grat-
ing is parametrized by a period Λ, a thickness h1, and a width r for the air gap
. The grating was fabricated on a layer of Bi-substituted gadolinium iron gar-
net (Bi:GIG). The MO garnet layer was prepared on a (CaMgZr)-doped gallium-
gadolinium garnet (sGGG) substrate.

r

x

y

z

MTΛ

ε1

ε2

ε3

h1

ϕ0

p

s

Figure 1.6: Schematic representation of the studied structure: gold grating with
a period Λ and a thickness h1 on a magneto-optic garnet substrate in transversal
configuration with incident plane wave in y−z plane at the incident angle ϕ0 and
with s- or p-polarization.

It is the main issue of this work to present how the TMOKE in the magneto-
plasmonic grating can be tuned via the grating geometry. It is demonstrated the-
oretically and proved experimentally, that the amplitude and sign of the TMOKE
is strongly affected by the interaction of resonant modes in the structure. In other
words, it is shown that the sign of the TMOKE can be even switched by optimiza-
tion of grating geometry (without change of an orientation of magnetization),
i.e. by slight change of interaction between SPP and FP resonances. In order
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to demonstrate a new physical phenomena, we had to pass through following
issues.

In the first part we have determined optical and magneto-optical functions of
the used materials. The experimental data were measured by a Mueller matrix
Ellipsometer Woollam RC2 with dual-rotating compensators. For the MO charac-
terization the ellipsometer was extended with a PC controlled in-plane magnet.
Our parallel implementation of the fully vectorial anisotropic Rigorous Coupled
Wave Algorithm (RCWA) was used for simulations and analysis of data mea-
sured on the gratings .

Determined optical functions were used in the theoretical study of resonances
in 1D magnetoplasmonic gratings. The analytical models of resonant modes (FP
and SPP) were derived. Moreover, a model describing shift of the SPP mode by
TMOKE is presented. The impacts of a variation of the grating geometry, namely
its thickness, period, and width of the air-gap r to the TMOKE was studied and
analyzed.

Proposed designs of gratings with various width of the air gap r were fabri-
cated by electron beam writing into polymethyl-metacrylate photoresist. After
gold evaporation motives were fabricated by liftoff technique. To be able to re-
produce measured optical response, the model of the grating structure was de-
veloped and optimized: Mueller matrix data were fitted to the model. Finally we
have compared calculated shift and the sign change of calculated data and data
obtained from a set of 15 samples and a very good agreement was achieved.
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1.4 Organization of the thesis

This thesis is organized in four chapters.

Chapter 2 introduces the polarization properties of light and the formulation of
the Maxwell equations used in rest of text. The solution of the Maxwell’s equa-
tions in layered medium is introduced in two steps. First, the eigenmodes in
each medium are found, after that the boundary conditions are applied for the
interfaces. Then the Rigorous Coupled Wave Algorithm (RCWA) is introduced
as a solution of the Maxwell equations in 1D periodic media by its expansion into
Fourier series. The chapter is finished by the introduction of the Li-factorization
rules for 1D gratings and definition of the experimental observables.

Chapter 3 is devoted to the description of the methods used for the fabrication
and optical and magneto-optical characterization. We introduce the technique of
magneto-optical Bi:GIG garnet layer fabrication on the sGGG substrate. In the
next step, optical functions of the Bi:GIG, sGGG and the reference gold are deter-
mined using Mueller matrix ellipsometry. The characterization work is finished
by the determination of the magneto-optical functions of Bi:GIG. The chapter is
finished by the description of the fabrication of the magnetoplasmonic gratings.

Chapter 4 is focused on numerical simulations of the optical and magneto-optical
properties of the 1D periodic magnetoplasmonic grating. A detailed analysis of
resonant modes in the structure and analytical formulae describing these reso-
nances are introduced. The main part of the chapter is devoted to the analysis
of the geometrical dispersion of the resonant modes for various grating’s thick-
ness, fill-factor and period and to the analysis of impact of modes interaction to
the TMOKE response. The chapter is finished with proposition of waveguiding
structures based on magnetoplasmonics.

Chapter 5 is devoted to the experiments on fabricated magnetoplasmonic struc-
tures. In this chapter we will show experimental confirmation of the previous
theoretical results on the interaction of resonant modes. The chapter consist of
three main parts. In the first we are focused on the optical characterization of the
fabricated structure in order to develop a realistic model of the structure, which
can describe the measured data (optical and magneto-optical) with a good agree-
ment. In the second part the developed model is used to fit experimental data
measured on the set of 15 samples. Finally, the analysis of the TMOKE response
is presented and the experimental confirmation of previous theoretical results is
shown.
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2 Theoretical background

This chapter introduces numerical method, the Rigorous Coupled Wave Al-
gorithm (RCWA), used in the thesis for modeling and data analysis. The Berre-
man and Yeh formalism is used for solution of the Maxwell’s equations for plane
waves. By application of the boundary conditions of the Maxwell’s equations the
T-matrix algorithm is derived. For the 1D periodic gratings the Maxwell’s equa-
tions are solved in Fourier domain, the S-matrix algorithm, and the factorization
of the finite Fourier series are presented. Chapter is finished by definition of the
experimental observables.

2.1 Light polarization

Light in a general medium can be described as a solution of Maxwell equa-
tions [67]. In our approach we use the solution for monochromatic plane waves
which can describe far field physical processes, for instance the reflection, trans-
mission, and the polarization changes of the light after interactions with matter.

For the plane monochromatic waves we use the complex representation [67,
68]:

E(r, t) = E0e exp [i (k · r− ωt)] , (2.1a)

H(r, t) = H0h exp [i (k · r− ωt)] , (2.1b)

where E0 and H0 are the complex field amplitudes and the vectors e and h repre-
sent the polarization states of the field and they are independent on z-coordinate.
ω = 2π

λ
whrere λ is the wavelength, and k is the wavevector. Real (physical)

electric and magnetic fields are the real parts of the field vectors (2.1a) and (2.1b).
Considering propagation of the plane wave in z-direction, the endpoint of the

electric field vector traces in general an ellipse (Fig 2.1). The polarization ellipse
can be described by two parameters, the azimuth θ and the ellipticity ε. The
azimuth θ is the angle describing rotation of the major axis of the ellipse (in the
range from −π/2 to π/2) and tan ε is the ratio between major and minor axis of
the ellipse (in the range from −π/4 to π/4). With the rotation and ellipticity the
expression of the electric field component in Fig 2.1 leads to the relation:

[
ex
ey

]
=

[
cos θ − sin θ
sin θ cos θ

] [
cos ε
i sin ε

]
=

[
cos θ cos ε− i sin θ sin ε
sin θ cos ε+ i cos θ sin ε

]
, (2.2)

where ex, ey are the components of the polarization vector e. According to param-
eters θ and ε we can define two basic states of light polarization. If the transverse
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e

ex

ey

x

y

x′
y′

θ

ε

Figure 2.1: Real part of elliptically polarized vector e for propagation in z-axis
direction.

field components E0ex, E0ey have the same magnitude and the phase between
them is π/2 and −π/2, polarization states are referred as left and right circular
polarization respectively. Normalized electric field components of the left and
right circular polarization are in the following form:

eleft =
1√
2

[
1
i

]
, (2.3a)

eright =
1√
2

[
1
−i

]
. (2.3b)

If the polarization components are in phase (ε = 0) the polarization is linear.
In experiments and simulations we define the polarization with respect to the
plane of incidence. When the electric field vector is perpendicular to the plane
of incidence the polarization state is called transverse electric (TE) or s-polarized.
If the electric field vector is in the plane of incidence the polarization state is
transverse magnetic (TM) or p-polarized. Normalized field vectors for the linear
polarizations can be expressed in the form:

eTE =

[
1
0

]
, (2.4a)

eTM =

[
0
1

]
. (2.4b)
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2.2 Maxwell equations in general media

An electromagnetic field and its interactions with a medium is described by
the Maxwell equations defining relations between the electric field E (r, t), the
magnetic field H (r, t), the electric displacement D (r, t), the magnetic flux density
B (r, t), the volume density of the free charges ρ (r, t), and the current density
j (r, t) in the form:

∇×H(r, t) = j(r, t) +
∂D(r, t)

∂t
, (2.5a)

∇× E(r, t) = −∂B(r, t)

∂t
, (2.5b)

∇ ·D(r, t) = ρ(r, t), (2.5c)

∇ ·B(r, t) = 0. (2.5d)

An additional constitution relations between the polarization P (r, t) and the mag-
netization M (r, t) are expressed:

D(r, t) = ǫ0E(r, t) +P(r, t), (2.6a)

B(r, t) = µ0H(r, t) + µ0M(r, t), (2.6b)

where µ0 is the free space permeability and ǫ0 is the free space permittivity. In the
following calculations, let’s consider the magnetization for optical frequencies
M = 0 and linear material properties without free charges at the interfaces:

ρ (r, t) = 0. (2.7)

The charge volume density j can be expressed using the conductivity tensor σ̂ by
the relation:

j(r, t) = σ̂E(r, t). (2.8)

Using the electric susceptibility tensor χ̂e, defining the relation between the po-
larization density and the electric intensity:

P(r, t) = ǫ0χ̂eE (r, t) , (2.9)

the permittivity tensor ǫ̂ is defined as:

ǫ̂ = ǫ0

(
Î+ χ̂e

)
(2.10)

Those premises let us write Maxwell equations (2.5) in the new form:

∇×H(r, t) = ǫ̂
∂E(r, t)

∂t
+ σ̂E(r, t), (2.11a)

∇× E(r, t) = −µ0
∂H(r, t)

∂t
, (2.11b)

∇ · [ǫ̂E(r, t)] = 0, (2.11c)

∇ ·H(r, t) = 0. (2.11d)
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During following calculations let us consider only monochromatic plane waves
and restrict to harmonic solution exp (−iωt). Then the electric and magnetic field
vector can be expressed in the form:

E(r, t) = E(r)exp (−iωt) , (2.12a)

H(r, t) = H(r)exp (−iωt) , (2.12b)

where the complex amplitudes E(r), H(r) are time independent. Relations (2.11)
together with (2.12) lead to the final expression of Maxwell’s equations with elim-
inated time-dependency :

∇×H(r) = −iωǫ̂E(r) + σ̂E(r) = −iωǫ̂ ′E(r), (2.13a)

∇× E(r) = iωµ0H(r), (2.13b)

∇ · [ǫ̂ ′E(r)] = 0, (2.13c)

∇ ·H (r) = 0, (2.13d)

where ǫ̂ ′ is the complex permittivity tensor:

ǫ̂ ′ = ǫ0ǫ̂R = ǫ̂+
i

ω
σ̂. (2.14)

This tensor describes optical properties of both anisotropic and absorbing mate-
rials.

2.2.1 Material properties

The optical response of a material is affected by material parameters, which
are the permittivity ǫ̂ ′ and permeability µ. For optical frequencies the permeabil-
ity is assumed to be equal to the permeability of free space, µ = µ0. General
permittivity tensor in (2.13a) has the following form:

ǫ̂R =



ǫxx ǫxy ǫxz
ǫyx ǫyy ǫyz
ǫzx ǫzy ǫzz


 . (2.15)

The material tensor can be simplified, for special anisotropies and for special ori-
entations as follows:

– Isotropic material
An isotropic material has rotation symmetry around all exes:

ǫ̂R =



ǫxx 0 0
0 ǫxx 0
0 0 ǫxx


 . (2.16)



2.2. MAXWELL EQUATIONS IN GENERAL MEDIA 19

– Uniaxial anisotropy
An uniaxial anisotropic material has rotation symmetry around one sym-
metry axis (here the y-axis):

ǫ̂R =



ǫxx 0 0
0 ǫyy 0
0 0 ǫxx


 . (2.17)

– Biaxial anisotropy
The tensor of a biaxial anisotropic material with axes parallel to the coordi-
nate system axis has all diagonal elements different:

ǫ̂R =



ǫxx 0 0
0 ǫyy 0
0 0 ǫzz


 . (2.18)

2.2.2 Magneto-Optic anisotropy

Linear dependence of the components of the permittivity tensor on the mag-
netization vector M defines the linear magneto-optic effects. Using the Einstein
summation convention the dependence of the permittivity tensor components on
magnetization components can be expressed [69]:

ǫij = ε
(0)
ij +KijkMk, (2.19)

where Kijk represent the components of the linear magneto-optic tensor and ε
(0)
ij

denotes the permittivity tensor components without the effect of the magnetiza-
tion M. The permittivity has to fulfill Onsager symmetry [70, 71]:

ǫij (M) = ǫji (−M) . (2.20)

Considering M = 0 in (2.19) and (2.20) the following relations of symmetry are
obtained:

ε
(0)
ij = ε

(0)
ji , Kiik = 0, Kijk = −Kjik. (2.21)

Full linear magneto-optic permittivity tensor can be written in the form:

ǫ̂R =




ε
(0)
xx ε

(0)
xy −KxykMk ε

(0)
xz +KxzkMk

ε
(0)
xy +KxykMk ε

(0)
yy ε

(0)
yz −KyzkMk

ε
(0)
xz −KxzkMk ε

(0)
yz +KyzkMk ε

(0)
zz


 . (2.22)

Figure 2.2 shows system of coordinates and basic directions of the magneti-
zation vector. Plane y − z is chosen to be the plane of incidence. According to
orientation of the magnetization vector M with respect to the plane of incidence
three basic MO configurations are defined: polar, longitudinal, and transversal.
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x
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z

MP
ML MT

Polar Long. Transv.

Figure 2.2: Directions of magnetization for basic magneto-optic configurations:
polar, longitudinal, and transversal.

Polar magneto-optical configuration

In the polar magneto-optical configuration the magnetization is perpendicular
to the surface (first subplot of Fig. 2.2):

MP = [0, 0,Mz]
T . (2.23)

Considering isotropic material the permittivity tensor for polar magnetization is
obtained using relations (2.22):

ǫ̂RP =




ǫxx −KxyzMz 0
KxyzMz ǫxx 0

0 0 ǫxx


 , (2.24)

Longitudinal magneto-optical configuration

In the longitudinal magneto-optical configuration the magnetization is paral-
lel to the surface and to the plane of the incidence (second subplot on Fig. 2.2):

ML = [0,My, 0]
T . (2.25)

Permittivity tensor of isotropic media for longitudinal magnetization has follow-
ing form:

ǫ̂RL =




ǫxx 0 KxzyMy

0 ǫxx 0
−KxzyMy 0 ǫxx


 , (2.26)

Transversal magneto-optical configuration

In the transversal magneto-optical configuration the magnetization is parallel
to the surface and perpendicular to the plane of the incidence (third subplot on
Fig. 2.2):

MT = [Mx, 0, 0]
T . (2.27)
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Permittivity tensor of isotropic media for transverse magnetization has following
form:

ǫ̂RT =



ǫxx 0 0
0 ǫxx −KyzxMx

0 KyzxMx ǫxx


 , (2.28)

2.3 Solution of Maxwell’s equations in layered me-

dia

This section is focused on a description of the electromagnetic field in a lay-
ered structure. Plane wave solution simplifies the description of the field inside
the structure. Figure 2.3 shows the layered structure schematically. In the lay-
ered structure we are interested mostly in the tangential field components (here x
and y components) which are continuous at interfaces - the boundary conditions
can be directly applied [72–74] . There are two common approaches to solve the
Maxwell’s equations in layered media. Berreman’s approach uses plane wave
solution and transforms Maxwell equations into a set of four equations for tan-
gential field components [72]. In Yeh’s approach Maxwell’s equations are trans-
formed into a wave equation [73].

superstrate (0)

layer (1)

layer (2)

layer (N)

z = 0

x

y

z

substrate (N + 1)

Figure 2.3: System of coordinates for planar structure

2.3.1 Berreman approach for solving Maxwell’s equations

Berreman calculations starts from (2.13a,2.13b) and expand them into a system
of linear differential equations with constant coefficients. By this the Maxwell’s
equations can be easily solved in each layer of the system. To derive this Maxwell’s
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equations are first transformed as follows. The first step is applying the normal-
ization:

E′(r) = 4

√
µ−1
0 ǫ0E(r), (2.29a)

H′(r) = 4

√
ǫ−1
0 µ0H(r), (2.29b)

into (2.13a,2.13b):

∇×H′(r) = −ik0ǫ̂R E′(r), (2.30a)

∇× E′(r) = ik0H
′(r), (2.30b)

where k0 = ω
c

is the amplitude of the wave vector in free space. For the general
permittivity tensor (2.15), these equations can be written in matrix notation as
follows: 



0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z

0 − ∂
∂x

0 0 0 − ∂
∂y

∂
∂x

0

0 − ∂
∂z

∂
∂y

0 0 0
∂
∂z

0 − ∂
∂x

0 0 0
− ∂

∂y
∂
∂x

0 0 0 0







E ′
x(r)

E ′
y(r)

E ′
z(r)

H ′
x(r)

H ′
y(r)

H ′
z(r)



=

= ik0




−ǫxx −ǫxy −ǫxz 0 0 0
−ǫyx −ǫyy −ǫyz 0 0 0
−ǫzx −ǫzy −ǫzz 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







E ′
x(r)

E ′
y(r)

E ′
z(r)

H ′
x(r)

H ′
y(r)

H ′
z(r)



. (2.31)

Assuming plane wave solution:

E′(r) = E′(x, y, z) = E0
′e(z)exp [ik0 (νxx+ νyy)] , (2.32a)

H′(r) = H′(x, y, z) = H0
′h(z)exp [ik0 (νxx+ νyy)] . (2.32b)

tangential derivatives can be factored out and only the z-derivatives remain:




0 0 0 0 − ∂
∂z

ik0νy
0 0 0 ∂

∂z
0 −ik0νx

0 0 0 −ik0νy ik0νx 0
0 − ∂

∂z
ik0νy 0 0 0

∂
∂z

0 −ik0νx 0 0 0
−ik0νy ik0νx 0 0 0 0







e′x(z)
e′y(z)
e′z(z)
h′x(z)
h′y(z)
h′z(z)



=
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= ik0




−ǫxx −ǫxy −ǫxz 0 0 0
−ǫyx −ǫyy −ǫyz 0 0 0
−ǫzx −ǫzy −ǫzz 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







e′x(z)
e′y(z)
e′z(z)
h′x(z)
h′y(z)
h′z(z)



, (2.33)

where νx, νy are the components of the normalized wave vector N = k/k0. The
wavevector k is defined as:

k = k0 (ixνx + iyνy + izνz) . (2.34)

Let’s first introduce the vector of tangential components F (z) depending on z-
coordinate:

F (z) =
[
e′x (z) , h

′
y (z) , e

′
y (z) , h

′
x (z)

]T
, (2.35)

Using the F-vector it is possible to obtain explicit formulas for the normal com-
ponents e

′

z, h
′

z:

[
−ǫ−1

zz ǫzx −ǫ−1
zz νx −ǫ−1

zz ǫzy ǫ−1
zz νy

−νy 0 νx 0

]



e′x(z)
h′y(z)
e′y(z)
h′x(z)




︸ ︷︷ ︸
F(z)

=

[
e′z(z)
h′z(z)

]
. (2.36)

Separating the normal components one can write (2.33) as:




0 0 0 − ∂
∂z

0 0 ∂
∂z

0
0 − ∂

∂z
0 0

∂
∂z

0 0 0







e′x(z)
e′y(z)
h′x(z)
h′y(z)


+ ik0




νye
′
z(z)

−νxe′z(z)
νyh

′
z(z)

−νxh′z(z)


 =

= ik0




−ǫxx −ǫxy 0 0
−ǫyx −ǫyy 0 0
0 0 1 0
0 0 0 1







e′x(z)
e′y(z)
h′x(z)
h′y(z)


+

[
−ǫxze′z(z)
ǫyze

′
z(z)

]
. (2.37)

The system is reorganized with respect to the vector F(z) (2.35) and e′z(z), h
′
z(z)

are substituted according to (2.36):







0 − ∂
∂z

0 0
0 0 0 ∂

∂z

0 0 − ∂
∂z

0
∂
∂z

0 0 0


+ ik0




−ν2y 0 νyνx 0
νyνx 0 −ν2x 0

−νyǫ−1
zz ǫzx −νyǫ−1

zz νx −νyǫ−1
zz ǫzy νyǫ

−1
zz νy

νxǫ
−1
zz ǫzx νxǫ

−1
zz νx νxǫ

−1
zz ǫzy νxǫ

−1
zz νy





F (z) =
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=







−ǫxx 0 −ǫxy 0
−ǫyx 0 −ǫyy 0
0 0 0 1
0 1 0 0


+




ǫxzǫ
−1
zz ǫzx ǫxzǫ

−1
zz νx ǫxzǫ

−1
zz ǫzy −ǫxzǫ−1

zz νy
ǫyxǫ

−1
zz ǫzx ǫyzǫ

−1
zz νx ǫyzǫ

−1
zz ǫzx −ǫyzǫ−1

zz νy
0 0 0 0
0 0 0 0





 ik0F (z) .

(2.38)
From Eq. (2.33) we can derive a system of 4 equations for only the tangential
components of the fields. A system of four coupled differential equations is ob-
tained and it can be solved by different techniques. By proper reorganization it is
possible to transform this problem into an eigenvalue problem that can be solved
with high efficiency (in numerical simulations). The final form of the eigenvalue
problem is:

∂

∂z
F (z) = ik0CF(z), (2.39)

where the matrix C follows from (2.38):

C =




−νxǫ−1
zz ǫzx 1− νxǫ

−1
zz νx −νxǫ−1

zz ǫzy νxǫ
−1
zz νy

−ν2y + ǫxx − ǫxzǫ
−1
zz ǫzx −ǫxzǫ−1

zz νx νyνx + ǫxy − ǫxzǫ
−1
zz ǫzy ǫxzǫ

−1
zz νy

−νyǫ−1
zz ǫzx −νyǫ−1

zz νx −νyǫ−1
zz ǫzy νyǫ

−1
zz νy − 1

−νxνy − ǫyx + ǫyzǫ
−1
zz ǫzx ǫyzǫ

−1
zz νx ν2x − ǫyy + ǫyzǫ

−1
zz ǫzy −ǫyzǫ−1

zz νy


 .

(2.40)
Equation (2.39) is soluble as the eigenvalue problem of the C matrix.

Eigenvalue decomposition

The eigenvalue decomposition of the matrix C is defined as follows:

CT = TV, (2.41)

where T is a column matrix of eigenvectors and V is a diagonal matrix of eigen-
values, i.e. normal components of normalized wave vectors. Because of linear
independence of eigenvectors, any vector which is in conformity with Maxwell
equations (2.13) can be expressed as a linear combination of eigenvectors with
amplitudes g(z) :

F(z) = Tg(z). (2.42)

The final system of differential equations for the amplitudes is obtained by sub-
stituting (2.42) into (2.39):

∂

∂z
g(z) = ik0Vg(z), (2.43)

and the solution g(z) can be written:

g(z) = exp (ik0zV)A, (2.44)

where A is vector of the amplitudes of each mode.
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T and V matrices of isotropic homogeneous material

Let the plane of incident wave be identical with the y-z plane (according to
Fig. 2.3) and the medium be isotropic and homogeneous. Then the component
of normalized wave vector νx = 0, the permittivity tensor ǫ̂ is in the form of a
diagonal matrix, ǫ̂ = diag (ǫ, ǫ, ǫ) and the C matrix describing this medium can be
written in the form:

Ciso =




0 1 0 0
ǫ− ν2y 0 0 0

0 0 0 νyǫ
−1νy − 1

0 0 −ǫ 0


 . (2.45)

The next step is the calculation of the eigenvalues Viso of the Ciso matrix

Viso =




√
ǫ− ν2y 0 0 0
0 −

√
ǫ− ν2y 0 0

0 0
√
ǫ− ν2y 0

0 0 0 −
√
ǫ− ν2y


 , (2.46)

and its eigenvectors Tiso

Tiso =




1 1 0 0√
ǫ− ν2y −

√
ǫ− ν2y 0 0

0 0 (
√
ǫ)

−1√
ǫ− ν2y (

√
ǫ)

−1√
ǫ− ν2y

0 0 −√
ǫ

√
ǫ


 . (2.47)

At this point it is necessary to discuss ordering of columns and rows of the V and
T matrices (2.46), (2.47). The analytical expression of modes in the isotropic ho-
mogeneous material (2.47) represents tangential components of the the s-polarized
(first and second columns) and p-polarized modes (third and fourth columns).
The s- and p-polarized modes are further distinguished as up and/or down prop-
agating according to the related propagation constant. For straightforward calcu-
lation the flowing ordering of modes (columns) in the T is commonly used :

Tiso = [Sdown, Sup, Pdown, Pup] . (2.48)

The ordering was already used in construction of the Viso-matrix, where the signs
of the [Viso]11 and [Viso]22 are opposite (and [Viso]33, [Viso]44 as well). Columns of the
Tiso were ordered according to the propagation constants. The situations becomes
complicated when the T-matrix is calculated by the eigenvalue decomposition of
the C-matrix. Depending on algorithm, the arrangement of the eigenvalues and
eigenvectors may be different. Therefore ordering criteria has to be established.
For the chosen sign convention downward propagating waves have positive real
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part of the propagation constant and positive imaginary part if the wave is atten-
uated. Naturally, up and down modes can be distinguished according their real
or/and imaginary part. In our implementation we have used combined criteria
for ordering of modes. According to the numerical tests we have set threshold
for the absolute value of the propagation constant imaginary part as 0.05. If the
value is above the threshold, the mode is recognized as up or down according to
the sign of the imaginary part. If the value is under the threshold, the sign of the
real part is used for up and down ordering. This combined criteria is not necessary
for a layered structures, but it improves computing stability if the same code is
used for a grating calculation, which will be discussed further.

2.3.2 Yeh approach for solving Maxwell equations

Another way to solve the electromagnetic wave propagating in an anisotropic
layered medium has been introduced by Yeh [73, 75]. Instead of solving sys-
tem of linear first-order differential equations, the system is transformed into one
second-order equation. The equation has to be solved for each medium in a sin-
gle system separately. With the aid of Yeh’s approach it is easy to get analytical
formulas for some special media. For example isotropic homogeneous media or
media with a special anisotropy caused by an external magnetic field. Firstly the
Helmholtz wave equation is derived from Maxwell’s equations (2.11) and assum-
ing plane wave solution (2.1):

k× [k× E] +
ω2

c2
ǫ̂RE = 0, (2.49)

and equation for H:

H =

√
ǫ0
µ0

N× E, (2.50)

where N = k/k0 is normalized wavevector defined by (2.34).

Matrix of tangential component with Yeh approach applied to isotropic ho-
mogeneous material

Equation (2.49) is expanded and simplified as follows for an isotropic medium:



ǫ− ν2y − ν2z νyνx νzνx

νxνy ǫ− ν2x − ν2z νzνy
νxνz νyνz ǫ− ν2x − ν2y




︸ ︷︷ ︸
B

×



ex
ey
ez


 = 0 (2.51)
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The problem (2.51) is solved for nontrivial solutions νz assuming the tangential
νx and νy are given by the incident wave. The solutions νz are the solutions of the
det(B) = 0:

νz,1 = +
√
ǫ− ν2x − ν2y

νz,2 = −νz,1 = −
√
ǫ− ν2x − ν2y

νz,3 = +
√
ǫ− ν2x − ν2y

νz,4 = −νz,3 = −
√
ǫ− ν2x − ν2y

(2.52)

The propagation constants with positive real parts (νz,1, νz,3) represent down-propagating
modes, those with negative real part up-propagating modes (νz,2, νz,4). This prop-
agation constants are connected to two up- and two down-propagating plane
waves. Propagating modes are chosen as a s- and p-polarized waves, however
each wave satisfying wave equation (2.51) can be used.

e1 =




νy
−νx
0


 , h1 =




νxνz,1
νyνz,1

−
(
ν2x + ν2y

)


 ,

e2 =




νy
−νx
0


 , h2 =




−νxνz,1
νyνz,1

−
(
ν2x + ν2y

)


 ,

e3 =




νxνz,3
νyνz,3(
ν2x + ν2y

)


 , h3 =



νyν

−1
z,3

(
ν2x + ν2y − ν2z,3

)

νxν
−1
z,3

(
ν2x + ν2y − ν2z,3

)

0


 ,

e4 =




−νxνz,3
−νyνz,3(
ν2x + ν2y

)


 , h4 =




−νyν−1
z,3

(
ν2x + ν2y − ν2z,3

)

νxν
−1
z,3

(
ν2x + ν2y − ν2z,3

)

0


 .

(2.53)

Relation (2.50) has been used for calculation of magnetic fields. The atrix of the
tangential components T is assembled from the components of the field vectors
(2.53) according to the column vector F (2.35) and propagation direction (constant
νz).

Let the plane of incidence wave be in y − z plane (νx = 0 according to Figure.
2.3) and assume a isotropic homogeneous medium (ǫ̂ = diag (ǫ, ǫ, ǫ)). Then the
solution of the (2.53) is identical with (2.46) and (2.47).

2.3.3 Analytical formulae for magneto-optical media

Considering media with anisotropy induced only by linear magneto-optical
effect in an isotropic medium (i.e. ǫxx = ǫyy = ǫzz), the permittivity tensor (2.22) is
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defined as follows:

ǫ̂R = ǫ1




1 −iQP iQL

iQP 1 −iQT

iQL iQT 1


 , (2.54)

where parameters QP , QL, and QT are the linear magneto-optical parameters of
polar, longitudinal and transverse magneto-optical effect, respectively.

Polar magneto-optical effect

Here we consider the polar magneto-optical configuration (QL = QT = 0) and
the incident plane wave in y − z plane (νx = 0). The Helmholtz equation for the
plane waves 2.49 is expanded as follows:



ǫ1 − ν2y − ν2z −iǫ1QP 0

iǫ1QP ǫ1 − ν2z νzνy
0 νyνz ǫ1 − ν2y




︸ ︷︷ ︸
B

×



ex
ey
ez


 = 0. (2.55)

The problem (2.55) is solved for nontrivial solutions νz assuming the tangential νy
is given by the incident wave. The solutions νz are the solutions of the det(B)=0:

νz,1,3 = −νz,2,4 =
√
ǫ1 − ν2y ±QP

√
ǫ1
(
ǫ1 − ν2y

)
. (2.56)

Solution of the problem are the elliptically polarized plane waves and the matrix
of tangential fields is defined as:

Tpolar =




T11 T11 T11 T11
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44


 , (2.57)

where

T11 =ǫ1QP

(
ǫ1 − ν2y

)
,

T2,j =ǫ1QPνz,j
(
ǫ1 − ν2y

)
,

T3,j =iνyνz,j
(
ǫ1 − ν2y − ν2z,j

)
,

T4,j =iνyν
4
z,j − iνyǫ

2
1 + 2iǫ1ν

3
y − iν5y .

(2.58)
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Longitudinal magneto-optical effect

Here we consider the longitudinal magneto-optical configuration (QP = QT =
0) and the incident plane wave in y − z plane (νx = 0). The Helmholtz equation
for the plane waves 2.49 is expanded as follows:



ǫ1 − ν2y − ν2z 0 iǫ1QL

0 ǫ1 − ν2z νzνy
−iǫ1QL νyνz ǫ1 − ν2y




︸ ︷︷ ︸
B

×



ex
ey
ez


 = 0. (2.59)

The problem (2.59) is solved for nontrivial solutions νz assuming the tangential
νy is given by the incident wave. The solutions νz are the solutions of the det(B)
= 0:

νz,1,3 = −νz,2,4 =
√
ǫ1 − ν2y −

1

2
ǫ1Q2

L ± 1

2
QL

√
ǫ21Q

2
L + 4ǫ1ν2y . (2.60)

Solution of the problem are the elliptically polarized plane waves and the matrix
of tangential fields is defined as:

Tlong =




T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44


 , (2.61)

where

T1,j =iǫ1νyQLνz,j,

T2,j =iǫ1νyQLν
2
z,j,

T3,j =− νyνz,j
(
ǫ1 − ν2y − ν2z,j

)
,

T4,j =νyǫ
2
1 − 2ǫ1ν

3
y + ν5y − νyǫ

2
1Q

2
L − νyν

4
z,j.

(2.62)

Transverse magneto-optical effect

Considering the transverse magneto-optical configuration (QP = QT = 0) and
the incident plane wave in y−z plane (νx = 0). The Helmholtz equation for plane
waves (2.49) is expanded as follows:



ǫ1 − ν2y − ν2z 0 0

0 ǫ1 − ν2z −iǫ1QT + νyνz
0 iǫ1QT + νyνz ǫ1 − ν2y




︸ ︷︷ ︸
B

×



ex
ey
ez


 = 0. (2.63)
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The problem (2.63)) is solved for nontrivial solutions νz assuming the tangential
νy is given by the incident wave. The solutions νz are the solutions of the det(B)=0:

νz,1,2 = ±
√
ǫ1 − ν2y , νz,3,4 = ±

√
ǫ1 − ν2y − ǫ1Q2

T . (2.64)

Solution of the problem are the linear polarized plane waves and the matrix of
tangential fields is defined as:

Tlong =




T11 T11 0 0
T21 −T21 0 0
0 0 T33 T33
0 0 T43 T44


 , (2.65)

where

T1,1 =1,

T2,1 =
√
ǫ1 − ν2y ,

T3,3 =ǫ1 − ν2y ,

T4,3 =− iǫ1νyQT − ǫ1

√
ǫ1 − ν2y − ǫ1Q2

T ,

T4,4 =− iǫ1νyQT + ǫ1

√
ǫ1 − ν2y − ǫ1Q2

T ,

(2.66)

Note that from the (2.65) it is directly seen, that transverse MO Kerr effect affects
only p-polarization.

2.4 Boundary conditions - field matching at inter-

faces

In this section the theoretical results about solving of the Maxwell equations in
the medium based on the tangential components continuity (Sec. 2.3.) are applied
to the system of planar layers. Figure 2.4 shows the discussed case with the layer
[with index (i)] surrounded by a system of layers and the superstrate (0) and a
substrate (n + 1). Assuming homogeneous, isotropic substrate and superstrate
the eigenmodes in this semi-infinite media are given by analytical form of the
T-matrix (2.47). The eigenmodes in a homogeneous layer (i + 1) with a general
anisotropy are calculated as an eigenvector problem (2.43) of a general C(1) matrix
(2.40).
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T(i)A(i) (zi)

T(i+1)A(1) (zi)
zi

P(i+1)

T(i+1)A(i+1) (zi+1)

T(i+2)A(i+2) (zi+1)
zi+1

(i)

(i+ 1)

(i+ 2)

(0)

(z0)

(zn)

(zn+1)

T(0)A(0) (z0)

T(n+1)A(n+1) (zn)

Figure 2.4: Wave transformation in propagation through a system of planar lay-
ers.

The vector A(i) (zi) represents the vector of amplitudes of field components at
the interface zi. From the C-matrix of a general material (anisotropic, homoge-
neous), the eigenvector matrix T is obtained as follows:

T(i) =




e
(i)
1,x e

(i)
2,x e

(i)
3,x e

(i)
4,x

h
(i)
1,y h

(i)
2,y h

(i)
3,y h

(i)
4,y

e
(i)
1,y e

(i)
2,y e

(i)
3,y e

(i)
4,y

h
(i)
1,x h

(i)
2,x h

(i)
3,x h

(i)
4,x


 . (2.67)

The vector of amplitudes A(i) =
[
A

(i)
1down

, A
(i)
2up , A

(i)
3down

, A
(i)
4up

]T
is defined for each

mode in the structure. Therefore the product of T(i)A(i) represents total tangential
field components:




e
(i)
1,x e

(i)
2,x e

(i)
3,x e

(i)
4,x

h
(i)
1,y h

(i)
2,y h

(i)
3,y h

(i)
4,y

e
(i)
1,y e

(i)
2,y e

(i)
3,y e

(i)
4,y

h
(i)
1,x h

(i)
2,x h

(i)
3,x h

(i)
4,x




︸ ︷︷ ︸
T(i)




A
(i)
1down

A
(i)
2up

A
(i)
3down

A
(i)
4up


 =




e
(i)
x

h
(i)
y

e
(i)
y

h
(i)
x


 . (2.68)

Continuity of the tangential components at the interface leads to the following
relation for the top interface:

T(i)A(i) (zi) = T(i+1)A(i+1) (zi) , (2.69a)

(2.69b)

To be able to describe total optical response of the structure or to calculate field
distribution it is necessary to propagate fields through a media. This is described
with the following T-matrix algorithm.
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2.4.1 T-matrix algorithm

For description of the optical response of a multilayered structure it is nec-
essary to include field propagation through the system. The propagation from
interface (zi) to (zi+1) is described with propagation matrix P(i+1):

P
(i+1)

=























exp

[

ik0

[

V(i+1)
]

1,1
d(i+1)

]

0 0 0

0 exp

[

ik0

[

V(i+1)
]

2,2
d(i+1)

]

0 0

0 0 exp

[

ik0

[

V(i+1)
]

3,3
d(i+1)

]

0

0 0 0 exp

[

ik0

[

V(i+1)
]

4,4
d(i+1)

]























,

(2.70)

where [V]ii are the propagation constants from matrix V, i.e. propagation con-
stants νz,i, and di is the thickness of i + 1-th layer. The vector of amplitudes is
transformed according to the relation:

A(i+1) (zi+1) = P(i+1)A(i+1) (zi) . (2.71)

The relation between the wave A(i) (zi) and A(i+2) (zi+1) is given combining (2.69-
2.71):

A(i) (zi) =
(
T(i)
)−1

T(i+1)
(
P(i+1)

)−1 (
T(i+1)

)−1
T(i+2)A(i+2) (zi+1) . (2.72)

For a system with N planar layers the relation between the vector of the ampli-
tudes in the superstrate and the substrate has the following form 1:

A(0) =
(
T(0)

)−1

(
N∏

i=1

T(i)
(
P(i)
)−1 (

T(i)
)−1

)
T(N+1)A(N+1) = TA(N+1). (2.73)

The presented T-matrix algorithm is straightforward and effective approach
how to propagate field in a layered media. At this point it is time to point out,
that the algorithm propagates fields from the top to the bottom side. In means,
that back reflected waves from the bottom are propagated in opposite directions.
In other worlds, amplitude of the propagating mode is being exponentially in-
creased, because it is calculated in the opposite direction that it really propagates.
Despite this fact, the T-matrix algorithm is stable for calculation of layered struc-
tures. But it can becomes unstable when highly evanescent modes exists in a
structure.

1. It is not necessary to calculate inversion to matrix P(i) in numerical implementation, chang-
ing the sign in exponential factor reduces calculation time.
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2.5 Solution of the Maxwell equations in the 1D pe-

riodic media

This section deals with solution of Maxwell’s equations in a 1D periodic me-
dia, using rigorous coupled wave analysis (RCWA). Figure 2.5 schematically il-
lustrates 1D periodic structure. In the following calculations let’s assume the

x

y

z

MT

ML

MP

Λ

ǫ1

ǫ2

ϕ0

p

s

Figure 2.5: System of coordinates for 1D grating.

plane of incidence is parallel to the y-z plane, and it is perpendicular to the lamel-
las of the grating. Because the permittivity tensor of the periodic layer is a dis-
continuous function (in y-direction) it is necessary to use more advanced method
than the T-matrix algorithm (2.73). The algorithm discussed in this section is the
Rigorous Coupled Wave Analysis (RCWA) based on approximation of permittiv-
ity function and field components by their truncated Fourier series [76, 77].

2.5.1 Maxwell equation in Fourier domain

Starting from the normalized Maxwell equations defined in (2.30):

∇×H′(r) = −ik0ǫ̂R E′ (r) , (2.74a)

∇× E′(r) = ik0H
′ (r) , (2.74b)

in which the permittivity tensor ǫ̂R is a periodic function of the y coordinate,
ǫ̂R = ǫ̂ (y) with the period Λ. Components of the permittivity tensor are expanded
in a Fourier series:

ǫij(y) =
∞∑

n=−∞

ǫij,nexp

(
in

2π

Λ
y

)
, (2.75)
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where ǫij,n is n-th Fourier coefficient defined using the integral:

ǫij,n =
1

Λ

Λ∫

0

ǫij (y) exp

(
−in

2π

Λ
y

)
dy. (2.76)

Using the Floquet theorem, the electric and magnetic field components are also
expanded into Fourier series in each layer in the structure, including homoge-
neous layers [73, 77–79]:

E′ (r) =
∞∑

n=−∞

en(z)exp [ik0 (νxx+ νyy)] exp

(
in
2π

Λ
y

)
, (2.77a)

H′ (r) =
∞∑

n=−∞

hn(z)exp [ik0 (νxx+ νyy)] exp

(
in
2π

Λ
y

)
. (2.77b)

2.5.2 Solution in finite Fourier domain

For numerical implementation it is necessary to truncate the Fourier image
of the field components. Symmetrical truncation is given by 2N + 1 members
of infinite Fourier image. Putting of the equations (2.77a) and (2.77b) into the
Maxwell equation (2.30a) and (2.30b) the Fourier image has the form:

∇×
N∑

n=−N

hn(z)exp [ik0 (νxx+ νyy)] exp

(
in
2π

Λ
y

)
=

= −ik0

N∑

n=−N

N∑

m=−N

ǫ̂n−mem(z)exp [ik0 (νxx+ νyy)] exp

(
in
2π

Λ
y

)
, (2.78)

∇×
N∑

n=−N

en(z)exp [ik0 (νxx+ νyy)] exp

(
in
2π

Λ
y

)
=

= ik0

N∑

n=−N

hn(z)exp [ik0 (νxx+ νyy)] exp

(
in
2π

Λ
y

)
, (2.79)

where ǫ̂n is a tensor of n-th Fourier component. Following a compact notation,
Eq. (2.78) and (2.79) are further calculated and implemented in the form:

∇× {F ⌈h (z)⌉ exp [ik0 (νxx+ νyy)]} = −ik0F ⌈⌈ǫ̂⌉⌉ ⌈e (z)⌉ exp [ik0 (kxx+ kyy)] ,
(2.80a)

∇× {F ⌈e (z)⌉ exp [ik0 (νxx+ νyy)]} = F ⌈h (z)⌉ exp [ik0 (νxx+ νyy)] , (2.80b)
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where the matrix F is a matrix with the Fourier exponents on its diagonal and has
the size (2N + 1)× (2N + 1):

Fij = δijexp

[
i (j −N − 1)

2π

Λ
y

]
. (2.81)

The symbol ⌈.⌉ stands for the amplitudes vector of truncated Fourier expansion
(in the y direction) and symbol ⌈⌈.⌉⌉ stands for the Toeplitz amplitude matrix of
expanded permittivity tensor function ǫ̂ (y) . This notation helps to express oth-
erwise very complicated formulas in rather compact forms. In the following text
we will use these symbols in places, where we believe it could simplify equations
and clarify the used algorithms.

Using the same approach like in (2.31) we first evaluate the curl operator in
(2.80b). Then the matrix F is eliminated by multiplication of both sides of equa-
tions with F−1 from the left. This cancels out the exponential factors and equa-
tions are particularly derived with respect to tangential components:




0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z

0 − ∂
∂x

0 0 0 − ∂
∂y

∂
∂x

0

0 − ∂
∂z

∂
∂y

0 0 0
∂
∂z

0 − ∂
∂x

0 0 0
− ∂

∂y
∂
∂x

0 0 0 0







⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉



=

= ik0




⌈⌈−ǫxx⌉⌉ ⌈⌈−ǫxy⌉⌉ ⌈⌈−ǫxz⌉⌉ 0 0 0
⌈⌈−ǫyx⌉⌉ ⌈⌈−ǫyy⌉⌉ ⌈⌈−ǫyz⌉⌉ 0 0 0
⌈⌈−ǫzx⌉⌉ ⌈⌈−ǫzy⌉⌉ ⌈⌈−ǫzz⌉⌉ 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I







⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉



. (2.82)

And after derivation:




0 0 0 0 − ∂
∂z

ik0q
0 0 0 ∂

∂z
0 −ik0p

0 0 0 −ik0q ik0p 0
0 − ∂

∂z
ik0q 0 0 0

∂
∂z

0 −ik0p 0 0 0
−ik0q ik0p 0 0 0 0







⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉



=
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= ik0




⌈⌈−ǫxx⌉⌉ ⌈⌈−ǫxy⌉⌉ ⌈⌈−ǫxz⌉⌉ 0 0 0
⌈⌈−ǫyx⌉⌉ ⌈⌈−ǫyy⌉⌉ ⌈⌈−ǫyz⌉⌉ 0 0 0
⌈⌈−ǫzx⌉⌉ ⌈⌈−ǫzy⌉⌉ ⌈⌈−ǫzz⌉⌉ 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I







⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉



. (2.83)

The matrices p and q are diagonal with elements representing the tangential com-
ponent of the normalized wave vector, pij = δi,jνx and qij = δij

[
νy + (j −N − 1) λ

Λ

]
,

for i, j ∈ {1, 2, . . . , 2N + 1}. From the equation (2.83) the normal components can
be separated and expressed with the tangential components. Finally after some
calculation the vector of tangential components is defined as :

⌈ F (z)⌉ = [⌈ex (z)⌉ , ⌈hy (z)⌉ , ⌈ey (z)⌉ , ⌈hx (z)⌉]T , (2.84)

and the same type of eigenvalue problem is obtained:

∂

∂z
⌈F (z)⌉ = ik0C ⌈F (z)⌉ . (2.85)

The size of the matrix C is now 4 (2N + 1) × 4 (2N + 1) and has the following
form:




−p ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzx⌉⌉ I− p ⌈⌈ǫ−1

zz ⌉⌉
...

−q2 + ⌈⌈ǫxx⌉⌉ − ⌈⌈ǫxz⌉⌉ ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzx⌉⌉ − ⌈⌈ǫxz⌉⌉ ⌈⌈ǫ−1

zz ⌉⌉ p
...

−q ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzx⌉⌉ −q ⌈⌈ǫ−1

zz ⌉⌉ p
...

pq− ⌈⌈ǫyx⌉⌉+ ⌈⌈ǫyz⌉⌉ ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzx⌉⌉ ⌈⌈ǫyz⌉⌉ ⌈⌈ǫ−1

zz ⌉⌉ p
...

... −p ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzy⌉⌉ p ⌈⌈ǫ−1

zz ⌉⌉ q
... qp + ⌈⌈ǫxy⌉⌉ − ⌈⌈ǫxz⌉⌉ ⌈⌈ǫ−1

zz ⌉⌉ ⌈⌈ǫzy⌉⌉ ⌈⌈ǫxz⌉⌉ ⌈⌈ǫ−1
zz ⌉⌉ q

... −q ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzy⌉⌉ q ⌈⌈ǫ−1

zz ⌉⌉ q− I

... p2 − ⌈⌈ǫyy⌉⌉+ ⌈⌈ǫyz⌉⌉ ⌈⌈ǫ−1
zz ⌉⌉ ⌈⌈ǫzy⌉⌉ − ⌈⌈ǫyz⌉⌉ ⌈⌈ǫ−1

zz ⌉⌉ q




(2.86)

Resulting system is a set of coupled first degree differential equations with con-
stant coefficients and the solution g (z) can be written in the form:

⌈g (z)⌉ = exp [ik0ziV]A, (2.87)

where A is the vector of amplitudes of each wave mode and V denotes diagonal
matrix of the propagation constants.



2.5. MAXWELL EQUATIONS IN THE 1D PERIODIC MEDIA 37

2.5.3 S-Matrix algorithm

As was discussed at the end of Sec. 2.4.1 the T-matrix algorithm is not nu-
merically stable for grating calculations. The instability comes from the finite
numerical precision of computers. When highly evanescent modes is calculated
in the same direction as it propagates, amplitudes of its fields exponentially de-
creases. But in case of calculation in opposite direction that mode propagation,
field are exponentially increased. Total field in any point in the structure is a sum
of fields of all up an down modes, i.e. modes with large and low amplitudes. The
idea of the S-matrix algorithm is to separate up and down modes in the structure
and let them propagate in a direction of exponential damping.

A
(0)
down A

(0)
up

A
(n+1)
up

A
(n+1)
down

T-matrix algorithm

A
(0)
down A

(0)
up

A
(n+1)
up

A
(n+1)
down

S-matrix algorithm

Figure 2.6: Differences between input (solid red) and output (dashed blue) argu-
ments in T-matrix and S-matrix algorithms.

A
(i)
up

A
(i+1)
up

A
(i+2)
up

A
(i)
down

A
(i+1)
down

A
(i+2)
down

zi

zi+1

Figure 2.7: Separated up and down propagating modes in medium

Figure 2.6 shows different calculation approach in the T-matrix and S-matrix

algorithm. The T-matrix propagates the amplitude vector A
(0)
down through the

structure and relates amplitudes in the superstrate with amplitudes in the sub-
strate. The S-matrix algorithm on the other hand relates the amplitudes of incom-

ing waves (A
(0)
down,A

(n+1)
up ) to those of outgoing waves (A

(0)
up ,A

(n+1)
down ). The following

calculations show the basic steps of the S-matrix algorithm. the first step is the
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separation of the up and down modes. Starting from a known T-matrix descrip-
tion at a single interface, the relation between amplitudes A(i) (zi) and A(i+1) (zi)
is:

A(i) (zi) =
(
T(i)
)−1

T(i+1)

︸ ︷︷ ︸
T

A(i+1) (zi) , (2.88)

or in compact T-matrix notation:
[

A
(i)
up

A
(i)
down

]
=

[
T

(i)
11 T

(i)
12

T
(i)
21 T

(i)
22

][
A

(i+1)
up

A
(i+1)
down

]
. (2.89)

In the next step the up and down modes are separated:
[
A

(i)
up

A
(i+1)
down

]
= s(i)

[
A

(i+1)
up

A
(i)
down

]
, (2.90)

where the matrix s(i) comes from T matrix:

s(i) =

[
s
(i)
11 s

(i)
12

s
(i)
21 s

(i)
22

]
=

[
T

(i)
11 − T12

(i)
T

(i)
22

−1
T

(i)
21 T

(i)
12 T

(i)
22

−1

T
(i)
22

−1
T

(i)
21 T

(i)
22

−1

]
. (2.91)

The next step is the description of the field propagation through a layer. The
propagation matrix P(i+1) can be written separately for up and down modes:

A(i+1)
up (zi) = P(i+1)

up A(i+1)
up (zi+1) , (2.92a)

A
(i+1)
down (zi+1) = P

(i+1)
downA

(i+1)
down (zi) . (2.92b)

The propagation matrices are diagonal with the eigenvalues as arguments in the
exponential factors:

P(i+1)
up = exp

[
−ik0di+1V

(i+1)
up

]
, (2.93a)

P
(i+1)
down = exp

[
ik0di+1V

(i+1)
down

]
, (2.93b)

where di+1 is the thickness of a layer with index i + 1. The relations (2.93) used
in (2.90) lead to relation between waves in the upper medium and waves propa-
gated through the interface and a single layer:

[
A

(i)
up (zi)

A
(i+1)
down (zi+1)

]
= s̃(i)

[
A

(i+1)
up (zi+1)

A
(i)
down (zi)

]
, (2.94)

and s̃(i) is a matrix describing the continuity on interface and the propagation
through layer:

s̃(i) =

[
s̃
(i)
11 s̃

(i)
12

s̃
(i)
21 s̃

(i)
22

]
=

[
s
(i)
11P

(i+1)
up s

(i)
12

P
(i+1)
downs

(i)
21P

(i+1)
up P

(i+1)
downs

(i)
22

]
(2.95)
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If the structure has only one planar interface, the problem is solved with matrix
(2.95) for di+1 = 0. The matrix s̃(i+1) is calculated for all interfaces [for example
(zi+1), see Figure 2.7.]. In the next step all the s̃(k), k = 1, 2, · · · , n < N ma-
trices are recursively added. The result is the S(n)-matrix relating incoming and
outgoing waves:

[
A

(0)
up (z0)

A
(n+1)
down (zn+1)

]
= S(n)

[
A

(n+1)
up (zn+1)

A
(0)
down (z0)

]
, (2.96)

where matrix S(n):

S(n) =

[
S
(n)
11 S

(n)
12

S
(n)
21 S

(n)
22

]
. (2.97)

Components of S(n+1) are recurrently defined:

S
(n+1)
11 = S

(n)
11

[
I− s̃

(n+1)
12 S

(n)
21

]−1

s̃
(n+1)
11 ,

S
(n+1)
12 = S

(n)
12 + S

(n)
11

[
I− s̃

(n+1)
12 S

(n)
21

]−1

s̃
(n+1)
12 S

(n)
22 ,

S
(n+1)
21 = s̃

(n)
12 + s̃

(n+1)
22 S

(n)
21

[
I− s̃

(n+1)
12 S

(n)
21

]−1

s̃
(n+1)
11 ,

S
(n+1)
22 = S̃

(n)
22

[
S
(n)
21

[
I− s̃

(n+1)
12 S

(n)
21

]−1

s̃(n+1)

]
S
(n)
22 .

(2.98)

After applying recursive formula to all layers in structure one obtains the global
scattering matrix S:

[
A

(0)
up (z0)

A
(N)
down (zN)

]
= S

[
A

(N)
up (zN)

A
(0)
down (z0)

]
(2.99)

2.5.4 Condition for guided modes

Calculation of guided modes is an important issue in structure design and
optimization. A waveguiding structure could be for example a classical dielec-
tric waveguide where a high-refractive index material is surrounded by a low-
refractive index cladding. Advanced waveguiding structures can be bases on
guiding via excitation of surface plasmon resonance or by system periodicity, i.e.
photonic crystal waveguides [80, 81]. By the analysis of the S matrix it is possible
to distinguish between propagating guided modes and localized resonant modes.

The guided modes condition using the T-matrix algorithm (Sec. 2.4.1) has
been originally derived by Yeh [73, 82]. In the S-matrix notation resonant or
guided modes can be described as follows:

[
(A)

(0)
up

(A)
(N)
down

]
= S

[
0
0

]
, (2.100)
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where the left vector of outgoing amplitudes corresponds to evanescent waves
and right zero vector represent situation without incomming modes from sub-
and superstrate. The nontrivial solution for the inverse S-matrix needs to be find:

S−1

[
(A)

(0)
up

(A)
(N)
down

]
=

[
0
0

]
. (2.101)

Such a problem can easily be solved via the singular value decomposition (SVD) [83].
The S-matrix can be decomposed into product of three matrices:

S = UΣVT ⇒ S−1 = VΣ−1UH , (2.102)

where U is the matrix of the left singular vectors, V is the matrix of the right sin-
gular vectors, both are unitary matrices, and UH denotes the conjugate transpose
of the matrix. 2 The matrix Σ is a diagonal matrix of singular values. The SVD
can be rearranged according to ascending order of singular values:

σmax = [Σ]1,1 ≥ [Σ]2,2 ≥ . . . ≥ [Σ]n,n , (2.103)

then the problem of guided mode can be solved from relation:

S−1U = VΣ−1. (2.104)

Relation (2.104) represents a solution of the original problem (2.101). For the
[Σ−1]1,1 = 0 the first column of the matrix VT is the vector of outgoing modes[
A

(N+1)
up (zn+1) ,A

(0)
down (z0)

]T
.

In design and optimization of a wave-guiding structure the value 1/σmax is
minimized in order to optimize waveguiding properties. Numerical minimiza-
tion of 1/σmax together with condition (2.103) lead the diagonal matrix Σ−1 to be
zero. Therefore it leads to zero matrix on the right side of (2.104) and waveguid-
ing condition (2.101) is fulfilled.

The optimization procedure is done over free parameters (x), which typically
are the real and imaginary parts of the propagation constant, geometry, wave-
length, etc. [82]. The optimization process can be described:

1

σmax

→ 0 : x → xoptim,
[
VT
]
1,:

→
[

(A)
(0)
up

(A)
(N+1)
down

]
, (2.105)

or in the compact form:

xoptim. = argmin
x

1

σmax (x)
. (2.106)

2. A square complex matrix U is unitary if UUH = UHU = I.
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2.6 Li-Factorization rules for 1D gratings

The S-matrix algorithm presented in the previous section completely elimi-
nates problems with the numerical stability, theoretically for a infinite Fourier
series. But there is a problem with convergence for p-polarized waves, especially
for structures with high dielectric contrast (for instance metallic grating). For
truncated Fourier series the instability problem is a serious issue. Problem comes
from situation when the product of two discontinuous functions at the same point
is a continuous function, h (y) = f (y) g (y). In other words the problem is that the
tangential field components (x and y) are continuous at the plane interfaces, but
they are not continuous inside the periodical layer, Fig. 2.8. On the other hand,
the normal field components are continuous inside the grating layer. L. Li shows
how the Fourier image of the components of the permittivity tensor must be re-
arranged for sufficient convergence of the problem [76, 78, 79, 84].

x

y

z

(i)

(i+ 1)

(i+ 2)

zi

zi+1

E
(i)
y (zi)

E
(i+1)
y (zi)

E
(i+1)
y

D
(i+1)
y D

(i+1)
y

E
(i+1)
x (zi)

E
(i+1)
x (zi)

E
(i+1)
z E

(i+1)
z

ǫ1 ǫ2

Figure 2.8: Discontinuity of field component Ey and continuity of Dy in the peri-
odic layer is shown schematically as well as continuity of Ex and Ez fields.

If all functions have the same period Λ then the Fourier image of equation is
in the form h(y) = f(y) · g(y):

j=−∞∑

∞

hjexp

[
ij
2π

Λ
y

]
=

k=−∞∑

∞

fkexp

[
ik
2π

Λ
y

]
·
l=−∞∑

∞

glexp

[
il
2π

Λ
y

]
. (2.107)

The right hand side of the equation can be simplified using Laurent’s rule: prod-
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uct of two function is the discrete convolution of their Fourier images:

∀j ∈ Z : hj =
k=−∞∑

∞

fkgj−k =
k=−∞∑

∞

fj−kgj. (2.108)

The electric field and the electric displacement vectors are related by the permit-
tivity tensor: 


Dx

Dy

Dz


 =



ǫxx ǫxy ǫxz
ǫyx ǫyy ǫyz
ǫzx ǫzy ǫzz





Ex

Ey

Ez


 . (2.109)

This permittivity tensor is discontinuous and the field and flux components Ey,
Dx and Dz are discontinuous too. The components Ex, Ez and Dy are due to
boundary conditions continuous. For correct application of the Laurent rule it is
necessary to reorganize equation (2.109) into form discontinuous = discontinuous ×
continuous: 


Dx

Dz

Ey


 = B



Ex

Ez

Dy


 , (2.110)

where:

B =



ǫxx − ǫxyǫ

−1
yy ǫyx ǫxz − ǫxyǫ

−1
yy ǫyz ǫxyǫ

−1
yy

ǫzx − ǫzyǫ
−1
yy ǫyx ǫzz − ǫzyǫ

−1
yy ǫyz ǫzyǫ

−1
yy

−ǫ−1
yy ǫyx −ǫ−1

yy ǫyz ǫ−1
yy


 . (2.111)

At this point components of the matrix B (2.111) can be expanded into the finite
Fourier series (according to required number of the Fourier harmonics). Each
Fourier series of each component is transformed into Toeplitz matrix. Field com-
ponents are also expanded into finite Fourier series:




⌈Dx⌉
⌈Dz⌉
⌈Ey⌉


 =




⌈⌈
ǫxx − ǫxyǫ

−1
yy ǫyx

⌉⌉ ⌈⌈
ǫxz − ǫxyǫ

−1
yy ǫyz

⌉⌉ ⌈⌈
ǫxyǫ

−1
yy

⌉⌉
⌈⌈
ǫzx − ǫzyǫ

−1
yy ǫyx

⌉⌉ ⌈⌈
ǫzz − ǫzyǫ

−1
yy ǫyz

⌉⌉ ⌈⌈
ǫzyǫ

−1
yy

⌉⌉
⌈⌈
−ǫ−1

yy ǫyx
⌉⌉ ⌈⌈

−ǫ−1
yy ǫyz

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉






⌈Ex⌉
⌈Ez⌉
⌈Dz⌉


 ,

(2.112)

The next step is rearrangement of the system (2.112) into the form used in the
approach: D = ǫ̂E [Eq. (2.109)]. The system of equation (2.112) is reassembled
into previous form with the following result:




⌈Dx⌉
⌈Dy⌉
⌈Dz⌉


 = Q




⌈Ex⌉
⌈Ey⌉
⌈Ez⌉


 , (2.113)
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where:

Q =




⌈⌈
ǫxx − ǫxyǫ

−1
yy ǫyx

⌉⌉
−
⌈⌈
ǫxyǫ

−1
yy

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ⌈⌈
ǫ−1
yy ǫyx

⌉⌉ ⌈⌈
ǫxyǫ

−1
yy

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ...

−
⌈⌈
ǫ−1
yy

⌉⌉−1 ⌈⌈
ǫ−1
yy ǫyx

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ...
⌈⌈
ǫzx − ǫzyǫ

−1
yy ǫyx

⌉⌉
−
⌈⌈
ǫzyǫ

−1
yy

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ⌈⌈
ǫ−1
yy ǫyx

⌉⌉ ⌈⌈
ǫzyǫ

−1
yy

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ...
...
⌈⌈
ǫxz − ǫxyǫ

−1
yy ǫyz

⌉⌉
−
⌈⌈
ǫxyǫ

−1
yy

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ⌈⌈
ǫ−1
yy ǫyz

⌉⌉
... −

⌈⌈
ǫ−1
yy

⌉⌉−1 ⌈⌈
ǫ−1
yy ǫyz

⌉⌉
...
⌈⌈
ǫzz − ǫzyǫ

−1
yy ǫyz

⌉⌉
−
⌈⌈
ǫzyǫ

−1
yy

⌉⌉ ⌈⌈
ǫ−1
yy

⌉⌉−1 ⌈⌈
ǫ−1
yy ǫyz

⌉⌉




(2.114)
The matrix Q is now used instead of the Toeplitz permittivity tensor matrix with
significantly improved convergence as a result.

2.7 Experimental observables

2.7.1 Reflection and transmission coefficients

The elements in S-matrix (2.99) directly represent the transmission and the re-
flection coefficients. For the Fourier expansion of the field components into N
Fourier harmonics, each of the blocks S11 - S44 has the size (2N + 1) × (2N + 1).
The eigenmodes in the superstrate (0) and substrate (N + 1) are chosen to be s-
and p-polarized modes. The components in the block represent refection or trans-
mission coefficients for each Fourier order (diffracted radiative order, evanescent
modes). The global S-matrix is defined as:




A
(0)
Sup

A
(0)
Pup

A
(N+1)
Sdown

A
(N+1)
Pdown


 =




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44







A
(N+1)
Sup

A
(N !=)
Pup

A
(0)
Sdown

A
(0)
Pdown


 . (2.115)

which defines the following forward complex reflection and transmission coeffi-
cients:

rss = S13 tss = S33,
rps = S14 tps = S34,
rsp = S23 tsp = S43,
rpp = S24 tpp = S44,

(2.116)

and the backward complex reflection and transmission coefficients:

r̃ss = S31 t̃ss = S11,
r̃ps = S32 t̃ps = S12,
r̃sp = S41 t̃sp = S21,
r̃pp = S42 t̃pp = S22,

(2.117)
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The S matrix relation (2.115) can be also written in the block form as:

[
A

(0)
up

A(N + 1)down

]
=

[
T̃uu Rdu

R̃ud Tdd

] [
A

(N+1)
up

A(0)down

]
(2.118)

In most cases the specular reflection coefficients corresponding to zero diffrac-
tion order are needed. Their absolute position in the S-matrix is:

rss = [S]N+1,5N+3 , (2.119)

rps = [S]N+1,7N+4 , (2.120)

rsp = [S]3N+2,5N+3 , (2.121)

rpp = [S]3N+2,7N+4 . (2.122)

2.7.2 Ellipsometric angles

Ellipsometry is a powerful method for optical characterization. It brings im-
portant information about the amplitude and phase change upon reflection of a
polarized plane wave from a sample. Due to phase shift detection, ellipsome-
try is more sensitive to some geometrical properties (like layer thickness) than
reflectivity or transmission measurements. The measured quantities are the ellip-
sometric angles ψ and ∆ which are related to the complex ratio of the reflected
(or transmitted) TM and TE waves:

tanψ exp [i∆] =
rpp
rss
. (2.123)

Relation (2.123) is valid only for isotropic non-depolarizing structures. In case of
anisotropy the Jones matrix of a structure contains off-diagonal components:

J =

[
rss rps
rsp rpp

]
∝
[

1 rps
rss

rsp
rss

rpp
rss

]
. (2.124)

and for the ellipsometry it is necessary to introduce so called generalized ellipso-
metric angles ψsp, ψps,∆sp,∆ps, [85–89].

2.7.3 Mueller matrix

The interaction of a light beam with depolarizing sample cannot be fully de-
scribed by the Jones formalism and more general 4× 4 Mueller matrix formalism
has to be used. The Mueller matrix describes transformation of the Stokes vector
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upon reflection (or transmission) from a sample. Most widely used definition of
the Stokes vector is [90]:

S =




I
Q
U
V


 =




Ip + Is
Ip − Is

I45◦ − I−45◦

IL − IR


 (2.125)

The popularity of the four dimensional real Stokes vector is certainly due to its
immediate relationship with the directly measurable quantities Ip, Is, I+45◦ , I−45◦

i.e. the intensities which would be measured through ideal linear polarizers ori-
ented along the p, s, p+45◦5 and p−45◦ in the plane perpendicular to the direction
of propagation, while IL and IR would be the intensities transmitted by left and
right circular polarizers. Within the Stokes formalism, the degree of polarization ρs
related to a given Stokes vector S is defined as:

ρs =

√
Q2 + U2 + V 2

I
(2.126)

Upon interaction with a sample the Stokes vector is transformed by Mueller
the matrix:

Sout =




I
Q
U
V




out

= MSin =




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44







I
Q
U
V




in

(2.127)

The Mueller matrix has generally sixteen independent components, which is much
more than six independent parameters from the Jones matrix (or generalized
ellipsometry). On the other hand in the case of non-depolarizing systems the
Mueller matrix and Jones matrix formalism are equivalent [91] and the Mueller
matrix can be directly calculated from Jones matrix [92, 93]:




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44


 = A(J⊗ J∗) A−1, (2.128)

where the symbol ⊗ denotes the Kronecker product, matrix J ⊗ J∗ is called the
Coherence matrix, and A is defined as:

A =




1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0


 . (2.129)
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The full Jones-Mueller matrix of non-depolarizing structure is in the form:
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(2.130)
In the case of an isotropic structure without depolarization effects, the reflec-

tion Mueller matrix has a block-diagonal form:

M =




1 −N 0 0
−N 1 0 0
0 0 C −S
0 0 S C


 . (2.131)

The Mueller matrix (2.131) is normalized with respect to the element M11, which
describes the total reflected intensity. The elements N,C, and S are related to the
classical ellipsometric angles ψ and ∆:

N = cos 2ψ, C = sin 2ψ cos∆, S = sin 2ψ sin∆. (2.132)

For a totally polarized wave the projection of the endpoint of the electric field
E is an ellipse characterized by its azimuth θ and ellipticity ε. If for some rea-
son, this azimuth of ellipticity varies (spatially, spectrally and/or temporally), the
light become partially polarized. This is shown on Fig. 2.9 schematically [90]. In
such a case, the classical ellipsometric measurements [as defined by Eq. (2.123)]
looses their physical meaning and Mueller matrix approach is needed to charac-
terize and describe the depolarization phenomena. The depolarization index is
calculated from Mueller matrix as follows [94]:

Pq =

√√√√
∑
ij

M2
ij −M2

11

3M2
11

=

√
Tr (MTM)−M2

11

3M2
11

, (2.133)

where Tr indicates algebraic trace operator. The quadratic depolarization index
Pq varies from 0, for a perfect depolarizer (only M11 is nonzero) to 1, for non-
depolarizing matrices.
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Figure 2.9: Examples of electric field trajectories in the plane perpendicular to the
propagation direction for fully polarized (left) or partially polarized (right) light
waves.

2.8 Conclusion of the chapter

In the first part of this chapter we have introduced the fully anisotropic RCWA
approach for the modeling of optical response from 1D periodic layered struc-
tures. The second part was focused on definition of the experimental observables.
The RCWA method is further discussed in the Appendix A, where we introduce
our parallel implementation of the method for spectral simulations.
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3 Sample preparation and characterization

In this chapter we describe technological fabrication process of the samples
and the optical and magneto-optical characterization methodology, process of
samples fabrication and used method for optical and MO characterization. For
the MO activity of the plasmonic gratings we choose to work with garnet sub-
strate, namely a substitutes bismuth yttrium iron garnet.

In Sec. 3.1 the fabrication process of this Gd-Pr-Bi-Lu-substituted yttrium iron
aluminum garnet garnet (Bi:GIG) on a Ca, Mg and Zr doped gallium-gadolinium
garnet (CaMgZr-GGG or sGGG) substrate is described.

Knowledge of the optical functions of the used materials is essential for the de-
sign of structure. Mueller matrix spectroscopic ellipsometry was used for optical
characterization. In Sec. 3.2 the Mueller matrix ellipsometric setup and measured
quantities are introduced. In addition depolarization effects caused by the opti-
cal configuration of the apparatus are analyzed and discussed. The main part
of this chapter, the optical characterization of optical functions of the sGGG sub-
strate, the Bi:GIG layer, and the gold for the grating fabrication, is presented in
Sec. 3.2.3. Optical functions of sGGG and Bi:GIG were fitted from ellipsomet-
ric and transmission spectra. Optical functions of the gold were fitted using the
Kramers–Kronig consistent B-spline (basis spline) function. The magneto-optical
properties of Bi:GIG for in-plane magnetic field were fitted from the Mueller ma-
trix data. The process of MO characterization is presented in Sec. 3.3. At the
end, the fabrication of 1D periodic gold grating by electron-beam lithography is
described in Sec. 3.4.

3.1 Fabrication of MO Bi:GIG layer by liquid phase

epitaxy

Single crystal films of Bi-substituted iron garnets were grown by Liquid Phase
Epitaxial (LPE) procedures onto doped sGGG (111) oriented substrates. The exact
composition of the sGGG substrate is Gd2.7Ca0.3Ga4.1Mg0.3Zr0.6O12 . For magneto-
optical devices, both the optical figure of merit and the magnetic properties such
as magnetization and anisotropy must be controlled. We prepare rare earth (RE)
substituted films by combination of Gd, Pr, Lu on CaMgZr-GGG substrates with
large lattice parameter (aS = 12.498 Å) in order to incorporate a large content of
Bi and thus induce a large Faraday rotation. Low in-plane anisotropy is nec-
essary to obtain an easy switching of the magnetization. By the electron mi-
cro probe analysis (EPMA) the chemical composition of the Bi:GIG was deter-
mined as: Gd1.24Pr0.48Bi1.01Lu0.27Fe4.38Al0.6O12· The role of each ion is the follow-
ing: substituted-gadolinium garnet has been selected since large Bi content can
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be introduced in such a host [95–97]. Praseodymium ions have high contribution
to the Faraday rotation but their main contribution remains the reduction of the
anisotropy constant [98]. A similar result can be obtained with Nd3+ ions. The
saturation magnetization is reduced to the selected value by the substitution of
Fe3+ by non-magnetic ions. The best choice is obtained with Al3+ ions with a
smaller content compared to Ga3+ in order to match the lattice parameters of the
film and substrate. A perfect surface with a low roughness is obtained with this
substituted garnet grown at a low ∆T , where ∆T = Ts − Tg is the supercooling
temperature, Ts is the saturation temperature and Tg a growth temperature. For
good surface quality films, a low Tg and generally low growth rates are common
features of all melts for incorporation of larger Bi content.

3.2 Mueller matrix ellipsometry

The Mueller matrix ellipsometer Woollam RC2-Di was used for the optical
and magneto-optical characterization of raw materials and fabricated structures.
The ellipsometer uses a combination of a halogen bulb and deuterium lamp as
a light source and it operate in the spectral region from 0.74 eV to 6.42 eV (193-
1700 nm). The PCSCA (Polarizer-Compensator-Sample-Compensator-Analyzer)
configuration with dual rotating compersators is used to obtain the full Mueller
matrix [99]. Figure 3.1 shows the ellipsometric configuration schematically. In
reflection configuration the angle of incidence can be varied in a wide range, from
19◦ to 85◦. The transmission can be measured in normal incidence configuration
and with rotated sample as well. For optical characterization of small samples, as
our grating samples are, focusing optics can be installed. The focal length of the
lenses is 27 mm and the diameter of the spot is 150 µm. With the focusing probes
the angle of incidence can be varied from 19◦ to 70◦ and to 60◦ with installed in-
plane magnet. The x-y motorized mapping stage was used for precise aliment of
the sample to area of the beam spot and mapping measurements.

sample

light source

polarizer analyzer

rotating
compensators

detector

ϕ0x
y

z MTML

Figure 3.1: Dual-rotating compensator ellipsometer configuration and orientation
of external in-plane magnetization components are shown schematically.
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3.2.1 Analysis of spectroscopic data

In the inverse analysis (fitting procedure) a difference between experimental
and simulated data is minimize by a model optimization. Depending on the data,
the expression of the χ2 function is different. For ellipsometry we have used the
Poincaré sphere representation [100]:

χ2 =
1

K

K∑

i=1

[
arccos

(
sin 2ψC

i sin 2ψM
i cos

(
∆C

i −∆M
i

)
+ cos 2ψC

i cos 2ψM
i

)]2
, (3.1)

whereK is the number of spectral points, and the superscriptsC andM represent
the calculated and measured quantities. For normalized Mueller matrix data the
χ2 is defined as follows:

χ2 =
1

15K

K∑

k=1

∑

(i,j) 6=(1,1)

∣∣MC
ijk −MM

ijk

∣∣2 , (3.2)

where 15K denotes fifteen components on the Mueller matrix. A local mini-
mum of the differen χ2 functions is search for using a combination of Levenberg-
Marquardt least square algorithm [101] and SIMPLEX [102].

3.2.2 Depolarization effects due to focused beam and finite

spectral resolution

Depolarization originates from incoherent superposition of different polariza-
tion states transmitting or reflecting from the sample. The depolarization effects
could come from the apparatus itself or/and from a measured structure. We can
summarize the physical phenomena that generate partially polarized light as fol-
lows [103]:

(a) incident angle variation originating from focusing of the probe light,
(b) wavelength variation caused by the finite bandwidth of the monochroma-

tor,
(c) surface light scattering caused by a large surface roughness of a sample,
(d) thickness inhomogeneity of layers in the structure,
(e) backside reflection in a thick substrate.

In analysis of our experimental data we had to deal with depolarization origi-
nating from focusing of the incident light (a) and the finite spectral bandwidth
(b). To analyze and separate the origin of the depolarization we performed ex-
periments and data analysis measured on a reference sample of a 1000 nm thick
thermal SiO2 layer on a silicon substrate. To fit experimental data a model of the
sample containing surface roughness (air/SiO2), a SiO2 layer, and an intermixing
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layer (SiO2/Si) on a silicon substrate was used. Optical functions of these materi-
als were taken as constants [104]. Surface roughness and intermixing layer used
in models have been simulated using the Bruggeman effective medium approxi-
mation (BEMA) with the fixed volume fraction f = 0.5 [105].

Depolarization from finite bandwidth:

The light diffracted by a grating monochromator has a finite bandwidth and
thus different wavelengths are measured simultaneously by the single light de-
tector element. If the bandwidth of the monochromator is too broad, depolar-
ization occurs due to the wavelength dependence of the optical properties of the
sample. The normalized Gaussian distribution of the wavelengths around a cho-
sen spectral point λ0 with standard deviation σw is assumed [106]. Modeling of
the finite spectral resolution requires discretization of the spectral range around
λ0 and calculation of the optical response at all specific wavelengths weighted by
corresponding distribution function. For the tabulated optical functions of the
used materials we have used a linear spline to obtain proper values at any wave-
length. By numerical test we found, that the use of only three spectral points is
sufficient to describe depolarization effect from the finite bandwidth. The use of
only three spectral points, namely λ0 − σw, λ0, and λ0 + σw significantly reduces
calculation time.

To determine the bandwidth of our apparatus we perform Mueller matrix
measurement of the calibration sample of 1000 nm thick thermal SiO2 at the in-
cident angle of 60◦ and using collimated beam. In the model we fit the thickness
of the surface roughness tsurf , the thicknesses of the SiO2 layer tSiO2 , the thick-
ness of the intermixing layer tintermix together with the angle of incidence ϕ0 and
spectral bandwidth parameter σw. Table 3.1 summarizes the best-fit parameters.
The obtained thicknesses are in good agreement with the values provided by the
manufacturer. Figure 3.2 shows on the left subplot the comparison between mea-
sured and fitted depolarization. The right subplot shows very good agreement
between measured and modeled ellipsometric quantities ψ and ∆ [defined from
Mueller matrix (2.131) and relations (2.132)].

Table 3.1: Fitted parameters

tsurf = 6.2 nm ϕ0 = 60.017◦

tSiO2 = 1004.9 nm σw = 1.2 nm
tintermix = 1.1 nm
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Figure 3.2: Fit of SiO2 layer on Si substrate with simulation of the effect of finite
spectral bandwidth. Left subplot shows comparison between measured and cal-
culated depolarization after fit. Right subplot shows fit of ellipsometric quantities
ψ and ∆,

Depolarization from focused beam:

In the next step the depolarization effect caused by a focused incident beam
is analyzed. If a beam of the apparatus is focused, then the measured Mueller
matrix is a superposition of all angles of incidence around the central angle ϕ0

weighted by the spatial intensity distribution of the beam. In order to be able
to simulate the effect we assume discretization of partial angles of incidence
and weight by the normalized Gaussian distribution with standard deviation ϕs,
which is expected to be distribution of the light intensity. According to our nu-
merical experiments a assumption of 11 partial beams within the intervalϕ0−ϕsto
ϕ0 + ϕs is sufficient to describe depolarization effect from the focused beam. The
weight coefficients wi related to each partial perturbation of the incident angle
ϕi ∈ 〈−ϕs, ϕs〉 are defined as:

wi (ϕi) = exp
−ϕ2

i

2ϕs

. (3.3)

To determine the depolarization effect caused by a divergent incident beam,
the same calibration sample of 1000 nm thick SiO2 layer was measured with the
focusing optics with focal length of 27 mm and a spot size of 150µm. With the
focusing optics the central angle ϕ0 is not exactly defined and it had to be fitted
as well. Measured Mueller matrix data were fitted to the model containing previ-
ously determined finite bandwidth. Table 3.2 summarizes the fitted parameters.
The obtained values corresponds to values obtained with collimated beam (Tab.
3.1). The results of fitting procedure are shown on Fig. 3.3. The left subplot shows
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very good agreement between measured and calculated depolarization. Compar-
ing to the depolarization plot on Fig. 3.2, the assumption of depolarization from
angular spread can describe depolarization for lower photon energies.

Table 3.2: Fitted parameters

tsurf = 6.7 nm ϕ0 = 60.207◦

tSiO2 = 1004.2 nm ϕs = 2.577◦

tintermix = 1.5 nm
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Figure 3.3: Fit of SiO2 layer on Si substrate with simulation of the effect of finite
spectral bandwidth together with focused incident beam. Left subplot shows
comparison between measured and calculated depolarization after fit. Right sub-
plot shows fit of ellipsometric quantities ψ and ∆,

3.2.3 Optical functions of GGG substrate and Bi:GIG layer

In this section we show the procedure to obtain the optical functions (diagonal
permittivity tensor components) of the sGGG substrate and Bi:GIG layer using a
combination of the Mueller matrix ellipsometry and transmission spectroscopy.

The critical step involved in fitting spectroscopic ellipsometric data to a given
structural model is the proper parametrization of the dispersion of the unknown
optical functions. We have used a Kramers-Krönig (KK) consistent Tauc-Lorentz
(TL) model and its extension with an Urbach tail (TLU). The imaginary part of
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the complex dielectric function ǫ = ǫ1 − iǫ2 is defined:

ǫ2(E) =





1

E

AE0C(E − Eg)
2

(E2 − E2
0)

2 + C2E2
E ≥ Ec

Au

E
exp

(
E

Eu

)
0 ≤ E ≤ Ec

, (3.4)

where the first term (E ≥ Ec) is identical with Tauc-Lorentz function [107] and
the second term (0 ≤ E ≤ Ec) represents the exponential Urbach tail. Param-
eters Eg, A, E0, and C denote the band gap energy, the amplitude, the Lorentz
resonant frequency, and the broadening parameter, respectively. Parameters Au

and Eu are chosen with respect to continuity of first derivatives. The real part ǫ1
of the dielectric function is obtained using analytical integration of KK relations.
For more details of derivation of the TLU model see Ref. [108]. To fit the spectro-
scopic data of sGGG and Bi:GIG the combination of the TL and TLU model were
used to describe shape of absorptions near the band gap. The advantage of the
TLU model is, that it is parametrized by five parameters instead of seven as the
(common) Cody-Lorentz model [109].

In our work, the Bruggeman effective medium approximation (BEMA) of the
mixture of hosting material (ǫ) with void was used to simulate surface roughness
as a thin layer with effective permittivity ǫeff defined [105, 110]:

0 = (1− f)
ǫ− ǫeff
ǫ+ 2ǫeff

+ f
1− ǫeff
1 + 2ǫeff

, (3.5)

where f is the volume fraction.

Ellipsometric and transmission spectra on sGGG substrate

Figure 3.4 shows experimental data obtained on a 0.5 mm thick sGGG planar
substrate. For these measurements a collimated beam instead of a focussed beam
has been used. This is more suitable for the detection of fine spectral features in
the absorption of the bulk substrate. Both sides of the substrate have been pol-
ished, therefore incoherent reflections from the back-side of the substrate have
been included in the model. Ellipsometric data were measured at the incidence
angle of ϕ0 = 45◦, while the transmission was measured at normal incidence.
Surface roughness from both sides of the substrate was represented by a thin film
with thickness to be fitted and a permittivity given by the BEMA [Eq. (3.5)] with
a fixed volume fraction f = 0.5 (mixture of both media in ratio 50 %–50 %). The
optical functions of the sGGG were parametrized using two Tauc-Lorentz absorp-
tions [111] with the same band-gap energy Eg extended by Urbach absorption
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Figure 3.4: Measured spectra (dots) of ellipsometric angles ψ (top left), ∆ (bottom
left) and transmitance (right subplot) are compared with the model (lines).

tail [Eq. (3.4)] and one damped harmonic oscillator (DHO) as follows:

ǫsGGG = ǫTL + ǫTLU + ǫDHO, (3.6)

where ǫTL and ǫTLU are contributions from TL and TLU functions with common
band gap energy and ǫDHO is the damped harmonic oscillator defined :

ǫDHO(E) =
AE2

0

E2
0 − E2 + iCE

, (3.7)

where A is the amplitude, E0 is the central energy, and C is the damping param-
eter.

The best fit parameters are summarized in Table 3.3 and the modeled ellipso-
metric and transmission spectra are presented by solid lines in Fig. 3.4. Figure 3.5
shows resulting dielectric function of the sGGG substrate. Note that even the
very small contribution of the DHO at 4.49eV is visible in ellipsometric and trans-
mission spectra due to long propagation length in transparent material. Precise
knowledge of the substrate optical functions is crucial for precise characteriza-
tion of the MO Bi:GIG layer and the further data fit from the magnetoplasmonic
grating structure.

Table 3.3: Parameters of model of sGGG substrate
ε∞ Eg [eV] A E0 [eV] C [eV] Ec [eV]

TLU: 1.90 5.35 105.48 7.93 0.54 5.89
TL: 0 5.35 173.39 5.67 1.08

DHO: 2.52 · 10−6 4.49 0.0392

surf. roughness - BEMA: t = 2.89 nm f = 0.5
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Figure 3.5: Optical function of sGGG substrate. The real part ℜ{ǫ11} and the
imaginary part ℑ{ǫ11} of the function is plotted using solid and dashed lines,
respectively.

Ellipsometric spectra on Bi:GIG layer

Figure 3.6 shows the ellipsometric spectra (ϕ0 = 45◦) measured on an approx-
imately 4µm thick Bi:GIG layer, grown by LPE on a sGGG substrate as explained
in Sec. 3.1. The observed strong interference oscillations indicate the presence of
an absorption gap close to 2.5 eV. Because of these it is difficult to obtain a good
fit to an analytical material model over the whole measured spectrum. The opti-
cal functions of Bi:GIG were therefore determined in a two-step procedure. In the
first step, only the data in the range below 2.5 eV were fitted to a model describing
the dispersion of Bi:GIG using Tauc-Lorentz-Urbach parametrization. Again sur-
face roughness at the top of the epitaxial Bi:GIG layer and a possible intermixing
layer at the Bi:GIG/sGGG interface were included and described using BEMA
with a volume fraction f = 0.5 (mixture of both media in ratio 50%–50%) (3.5).
Using a focused beam, the sGGG substrate could be considered as a semi-infinite
substrate with a permittivity as determined in the previous section. The thickness
of the Bi:GIG layer was fitted. The focusing probes introduce a certain angular
spread on the incidence angle. In the transparent region this can have a profound
impact on the spectral position and the finesse of the interference fringes. This
spread ϕs was therefore also considered as a fitting parameter. Table 3.4 shows
the best fit parameters for this TLU model of the Bi:GIG film (below 2.5eV). In
the second step, the permittivity of Bi:GIG in the absorbing spectral range was
calculated by a point-by-point fitting procedure using the surface roughness and
the thickness obtained in the first step. Figure 3.7 shows total dielectric function
of Bi:GIG layer in the whole spectral range.
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Figure 3.6: Measured ellipsometric angles of Bi:GIG layer on sGGG substrate
(dots) are compared with model (lines).Upper and lower subplot corresponds
to ψ and ∆ respectively.

Table 3.4: Parameters of model of Bi:GIG layer on sGGG substrate, 0.74 - 2.5 eV.

ε∞ Eg [eV] A E0 [eV] C Ec [eV]
TLU: 3.39 0.21 8.62 3.64 0.48 3.39

surf. roughness - BEMA: t = 2.89 nm f = 0.5
Bi:GIG thickness: t = 3988.4 nm
sGGG/Bi:GIG intermix - BEMA: t = 3.94 nm f = 0.5
angular spread: ϕs = 1.70◦

3.2.4 Optical functions of gold

A Sample of reference gold from IEMN has been characterized by the Mueller
matrix ellipsometry. A Kramers–Kronig consistent B-spline (basis-function spline)
formulation, based on the standard B-spline recursion relation was used to de-
scribe optical function of gold [112]. Ellipsometric spectra obtained for 45◦ and
50◦ of incidence were fitted together using Woollam software CompleteEASE.
Figure 3.8 shows comparison between measured and calculated ellipsometric an-
gles ψ (left subplot) and ∆ (right subplot). Fits of optical functions are shown on
Fig. 3.9 and compared with the tabulated optica; functions presented in the Palik
handbook [113].
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Figure 3.7: Optical functions of Bi:GIG layer. The real part ℜ{ǫ11} and the imag-
inary part ℑ{ǫ11} of the function is plotted using solid and dashed lines, respec-
tively.
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Figure 3.8: Comparison between calculated and measured ellipsometric angles ψ
(left) and ∆ (right) at angles of incidence of 45◦ and 50◦.

3.2.5 Extension of Mueller matrix ellipsometer for magneto-

optical measurements

For magneto-optical measurements a servo motor controlled in-plane magnet
has been developed. Figure 3.10 shows the magnet and the focusing probes at-
tached to the ellipsometer. The magnet is driven by the servo motor controlled
from PC through Thorlabs T-Cube DC Servo Motor Controller. This allows us to
control orientation of the magnetic field with high precision and accuracy. For the
space width between poles of 20 nm we measured using Hall probe the magnetic
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Figure 3.9: Fitted optical functions of reference gold are compared with constants
from Palik’s Handbook of Optical Constants of Solids.

field H ≈ 300 Oe.

Figure 3.10: Left: Photography of developed in-plane permanent magnetic circuit
installed in ellipsometric setup. Right: Numerical simulation of magnetization
distribution.
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3.3 Magnetooptical properties of Bi:GIG in trans-

verse and longitudinal MO configuration

In this section we show a procedure to determine the magneto-optical prop-
erties of Bi:GIG layer by the Mueller matrix ellipsometer with focusing probes.
To be able to characterize MO properties of the Bi:GIG film, the instrument was
extended in-plane permanent magnet circuit. The permanent magnet delivered
a sufficiently uniform 300 Oe in a volume enclosing the sample holder, 20 mm
spacing between magnet poles. This is largely sufficient for in-plane magnetic
saturation of the Bi:GIG [114–117], as testified by the M − H hysteresis loop of
Faraday effect measured in transmission through the sample with in-plane ex-
ternal magnetic field and the angle of incidence of 45◦ shown in Fig. 3.11. This
underlines also the planar magnetic anisotropy and the softness of the elaborated
garnet material (Hc = 0.5 Oe). Figure shows, that magnetic field of 300 Oe used
in our MO analysis is high-enough for in-plane magnetic saturation.
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Figure 3.11: Hysteresis loop of Faraday effect measured in transmission through
the sample for in-plane external magnetic field and the angle of incidence of 45◦.

Because the thickness of the Bi:GIG layer is not perfectly uniform and because
the MO characterization was performed with focusing probes in different area
of the sample, the thickness of the Bi:GIG layer was re-fited from optical mea-
surement performed as the first step. The new obtained thickness of Bi:GIG layer
measured with focusing optics was 3973.6 nm. This is close to the previously fit-
ted thickness 3988.4 nm measured with collimated beam. This step was necessary
to perform, otherwise even a small difference between interference peaks in cal-
culation and measurement would introduce oscillations into fitted off-diagonal
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optical functions. In the model we have used the optical functions of Bi:GIG
and sGGG determined in Sec. 3.2.3. In the second step the in-plane magnet was
installed and the magnetization was applied both in the transverse (M sat.

T ) and
the longitudinal (M sat.

L ) MO configuration (see coordinate system on Fig. 3.1).
After each spectrum measurement the orientation of the magnetization was re-
versed. Each specific MO configuration (transverse or longitudinal, either “up”
or “down”) was averaged over five measurements in order to reduce random
noise and increase measurement sensitivity. Subtraction of the averaged data for
opposite magnetization then leads to the differential Mueller matrices:

Mdiff.
x = M

(
+M sat.

x

)
−M

(
−M sat.

x

)
, x = T, L. (3.8)

In the next step, the gyrotropy of Bi:GIG was calculated by a point-by-point
fitting procedure from the transverse and longitudinal spectra of the difference
Mueller matrices. Because the crystalline structure of Bi:GIG is cubic, the MO
parameters fitted from TMOKE ( Mdiff.

T ) and LMOKE ( Mdiff.
L ) difference Mueller

matrix spectra are equivalent [118, 119]. In order to increase the quality of the fit
the TMOKE and LMOKE data were used in the fitting procedure together.

Figure 3.12 shows comparison of the measured and calculated TMOKE differ-
ence data. The TMOKE affects only p-reflectivity and does not lead to a polariza-
tion conversion.Therefore the difference Mueller matrices must be block-diagonal
Mdiff.

T , since these elements contain only the signature of the diagonal Fresnel co-
efficients, rss, and rpp (Fig. 3.12). On the other hand, the LMOKE response is
detected only in off-diagonal blocks, namely the components M13,M14,M23,M24,
M31,M32,M41, andM42. This corresponds to conversion between s- and p-polarized
light. The block-diagonal elements are zero up to first order due to the substrac-
tion of the isotropic part of the LMOKE reflection (Fig. 3.13).

Figure 3.14 shows the obtained off-diagonal permittivity tensor component.
The microscopic origin of the off-diagonal permittivity functions is well discussed
in the paper of Wittekoek et. al. [117]. In our data shown on Fig. 3.14, the main
MO activity is connected with peaks at 2.7 eV and 3.2 eV. The peak at 2.7 eV
corresponds to the second type of transition (so called paramagnetic). The para-
magnetic peak is over-beaten by the first type of transition (diamagnetic) at 3.2 eV
{Chap. 2. in Sec. 2.6.5. in Ref [10]}. The obtained spectral function of MO ac-
tivity by the Mueller matrix ellipsometry is in very good agreement with results
obtained for fully bismuth substituted (x = 1) BIG presented by Wittekoek [117]
and with data presented in other papers [24,116,120]. It should also be noted that
the observed spectral behavior of the gyrotropy is in agreement with the dielec-
tric loss spectrum observed on the imaginary part of Fig. 3.7. Indeed, hermiticity
of the ǫ−tensor requires the real part of the off-diagonal permittivity elements to
be zero as long as the material is transparent. In accordance with the band gap
observed in Fig. 3.14 at around 2.5eV, the real part of off-diagonal permittivity is
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seen to be negligible below this photon energy.
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Figure 3.12: Measured differences of the Mueller matrix components obtained
from MO measurements in transverse MO configuration (blue dots) are com-
pared with the model (red lines).
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Figure 3.14: Fitted spectral dependence of off-diagonal tensor component from
ellipsometric measurement of Bi:GIG in transverse and longitudinal MO config-
uration.
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3.4 Fabrication of the gratings structures

This section describes the fabrication process of samples. The samples were
designed according to numerical simulations presented further in Chap. 4, where
we analyze optical and magneto-optical response of the structures with vari-
ous geometry. The result of simulations is need of, ideally identical, gratings
which differ only in one geometrical parameter: width of the air gap or thickness
of the gold grating. Moreover, the variable parameter should be varied in the
monotonous way for all the samples of the fabricated set. To obtain such a set we
decide to vary the width of the grating air gap and keep the thickness fixed. The
main advantage of this process is, that all the samples are made in one exposition
and the gold is evaporated to the whole area of the sample one time. Therefore
the gold thickness should be homogeneous around the sample.

The gold grating structure was fabricated by Au evaporation on a mask writ-
ten by e-beam lithography in the positive poly-methyl metacrylate (PMMA) re-
sist. The spin-coated PMMA resist has been baked for 10 min at 180◦ C. Instead
of conducting resist a 5 nm thick layer of germanium was used. 300×300µm rect-
angular patches of 1D gratings were written by electron beam lithography with a
varying exposure dose 890–1040 µC/cm2 in order to obtain different grating duty
cycles. The period of the grating was kept fixed at Λ = 500 nm. After e-beam
writing, the germanium layer was removed by a 1:1 solution of H2O2/H2O for 1
min. In the next step the sample was developed in MIBK/IPA (methyl isobutyl
ketone/isopropyl alcohol) in ratio 1:2, for 1 minute. Finally, the Au layer with a
thickness of approximately 100nm has been evaporated on the developed resist
and the grating structure was obtained by lift-off in an ultrasonic bath of SVC14
remover for 1 hour. The thickness of the gold was chosen according to numerical
simulations in Chap. 4 and with respect to required dimensions of the samples
(by the experimental setup) and fabrication technology (structural stability of the
developed photoresist).

Figure 3.16 shows layout of fabricated set of gratings. Scanning electron mi-
croscopy (SEM) was used for approximate estimation of the opening of gratings.

The air-gaps r estimated by SEM are compared with values obtained by fitting
of Mueller matrix data in Chapter 5.
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Figure 3.15: Fabrication process of gold grating using positive PMMA photo re-
sist, electron-beam lithography, gold evaporation and lift-off is shown schemati-
cally.

3.4.1 SEM images of fabricated samples

Figure 3.17 images of fabricated structures obtained with the scanning elec-
tron microscope. The sample was fabricated by the same process as was de-
scribed before. The purpose of the Figure 3.17 is to present quality of the grating
fabricated with introduced technology. One can see that quality of edges of the
grating is not perfect, therefore it should be taken in account in the modeling.
Moreover, the SEM estimation of width of gaps in grating varies and it has to be
estimated by numerical modeling.
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Figure 3.16: Layout of fabricated samples with opening determined from SEM.

Figure 3.17: Scanning electron microscopy of fabricated samples.
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3.5 Conclusion of the chapter

The main result of this chapter is characterization of optical and magneto-
optical functions materials used for design and fabrication of the magnetoplas-
monic gratings. The characterization was done by the Mueller matrix ellipsome-
ter. For the magneto-optical characterization the in-plane magnet was devel-
oped and installed to the experimental setup. We have describe process of the
magneto-optical garnet and grating samples fabrication. Depolarization effects
caused by the finite spectral resolution and focused incident beam were analyzed
and results will be used in further characterization of fabricated samples.
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4 Numerical simulation and fundamentals of non-

reciprocal magnetoplasmonic structures

In this chapter we are focused to the following structures and configurations:

We apply transverse magneto-optic effect. The advantage of this configuration
(discussed in Sec. 2.3.3) is that the nonreciprocal effect appears only in p-
polarization. Therefore no mode and polarization conversion is present,
which is important for further device functionality.

For the enhancement of the magneto-optical effect by the concentration of
the local field we attempt to use surface plasmons. Generation of plasmons
in the structure requires requires interface between dielectric material and
noble metal. In our models we use magnetic garnet (with negligible ab-
sorptions in infrared) and gold as a noble metal. In models we use optical
function of the materials determined in Chapter 3.

Generation of surface plasmon requires high propagation constant, which
is obtained as higher diffraction mode in periodic grating. We used 1D peri-
odic system (perpendicular to the plane of incidence), which is efficient and
optimal to maximize interaction with magneto-optical material.

We propose concept of the waveguiding structure which combines guided modes
in a silicon waveguide with magnetoplasmon excitation. The concept is pre-
sented in the following steps:

(i) First we study how the guided mode in the silicon waveguide could cou-
ple with the SPP mode via the evanescent field. Here we try to describe
different modes in the structure.

(ii) In the second step we investigate impact of the coupling to effective index
of the guided mode and to the shift of the effective index by MO effect.
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4.1 Simulated structure - 1D grating
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Figure 4.1: Coordinate system and schematic representation of the studied struc-
ture: gold grating with a period Λ and a thickness h1 on a magneto-optic garnet
substrate in transversal configuration with incident plane wave in y − z plane at
the incident angle ϕ0 and with s- or p-polarization.

Figure 4.1 shows the typical structure of a magnetoplasmonic TMOKE grat-
ing. The one-dimensional (1D) periodic gold grating is deposited on a trans-
versely magnetized magneto-optic dielectric substrate and illuminated by a p-
polarized beam. The transverse character refers to the orientation of the magne-
tization with respect to the plane of incidence [i.e. magnetized along the x−axis,
Eq. (2.28)]:

ǫ̂3 =



ǫxx 0 0
0 ǫyy ǫyz
0 −ǫyz ǫxx


 . (4.1)

As the magnetization is assumed to be parallel to the slits, the incidence plane
is perpendicular to the latter and only p-polarized light can generate SPP’s. In this
case of the incidence plane perpendicular to the grating slits, we speak about the
planar diffraction geometry. If the grating slits are not perpendicular to the plane
of incidence the diffraction on the grating is conical and the parallel component
of the wavevector ky is then defined by the incident wavevector and angle of the
grating rotation. As the result the conical diffraction also provides conversion
between s- and p- polarizations which affect possible excitation of SPPs modes.
The geometry of the grating is described by the period Λ, the air-slit width r, and
the thickness h1.
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In order to make a simple model only Bi:GIG was taken as a semi-infinite
substrate. This eliminates possible interferences in the Bi:GIG layer on the sGGG
substrate: the refractive index of Bi:GIG MO layer is higher than the refractive
index of the sGGG substrate (see optical function of the sGGG and Bi:GIG at
Figures 3.5 and 3.7 in Chapter 3). The effect of a finite thickness of the Bi:GIG
layer on the sGGG substrate is discussed further in Sec. 4.1.2.

Note also that from Eq. (4.1) it is clear that the s- and p- polarizations will not
couple as long as kinc ⊥ M and the response of the structure can therefore be
modeled for both polarizations separately. In case where kinc 6⊥ M or at conical
diffraction the MO response of the structure is given by the combination of the
transversal and longitudinal MO effect. In such a case conversion between s- and
p- polarizations appears and more advanced analysis of data is needed.

4.1.1 Operation principle

The transverse MO Kerr effect is usually defined as the relative change of re-
flected intensity of p-polarized light while the magnetization varies its amplitude
and orientation [from one saturated state (+M sat

T ) to opposite one (−M sat
T )]:

δRp =
Rp (+MT )−Rp (−MT )

Rp (MT = 0)
, (4.2)

In our simulations we investigate the behavior of the structure under saturated
magnetic state (MT = M sat

T ). This assumption is perfectly fulfilled, for the con-
sidered Bi:GIG layers, for an external in-plane magnetic field of 300 Oe (see hys-
teresis loop in Fig. 3.11) In our case the nonreciprocal optical response manifests
itself as a spectral shift of the reflectivity resonances and anomalies. Therefore
we do not normalize the difference of reflected intensity in order to avoid artifi-
cial enhancement of the TMOKE effect that can appear when Rp (MT = 0) → 0.
The TMOKE is then defined as the difference of reflectivity upon magnetization
reversal:

∆Rp = Rp

(
+M sat

T

)
−Rp

(
−M sat

T

)
. (4.3)

In other words, the presence of the transverse magnetization in the structure
breaks Lorentz reciprocity for the p-polarized waves (but it does not break the
symmetry for the s-polarization). The reciprocity of the system depends (among
others) on the symmetry of the reflection matrices upon reversal of the tangential
component of the incidence wavevector:

RT
ud(−kinc,y) = Rud(kinc,y), (4.4)

where the matrix of reflection coefficients Rud represents reflection in the super-
strate (see Eq. 2.118 for its definition). The change of sign of the wavevector is
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equivalent to mirroring the structure of Fig. 4.1 in a plane perpendicular to the
y-axis. Even though this is a geometrical symmetry of the system, it is not a sym-
metry of its permittivity profile as:

ǫ̂3 6= σ̂−1
y ǫ̂3σ̂y (4.5)

where:

σ̂y =




1 0 0
0 −1 0
0 0 1


 (4.6)

A strong TMOKE signature is thus expected for those p-polarized grating’s
resonances that have a pronounced nonreciprocal forward-backward shifting.
This is the basic idea behind the plasmonic enhancement of the TMOKE as pro-
posed by Belotelov [55]. As the noble metal/magnetic garnet supports strongly
confined p-polarized surface waves, these are expected to have a strongly non-
reciprocal modal spectrum and therefore a pronounced and enhanced TMOKE
response.
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Figure 4.2: Specular reflectivity (middle red line), specular transmission (bottom
green line) and associated TMOKE spectrum (top red line) of p-polarized light
incident on the grating structure in Fig. 4.1 with Λ = 500 nm, h1 = 150 nm and
r = 20 nm.
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In order to establish the main ideas Fig. 4.2 shows the specular reflectivity of
the structure (middle red line) and the corresponding TMOKE spectrum (upper,
blue curve) for p-polarized light impinging at ϕ0 = 10◦ on a typical EOT grat-
ing configuration (Λ = 500 nm, h1 = 150 nm, r = 20 nm). From the bottom
green line one can observe extra-ordinary optical transmission (EOT) resonances
as pronounced dips in the specular reflection peaks in the specular transmission.
It should also be noted that these reflection dips are not related to Wood-Rayleigh
(WR) anomalies. The positions of these are given by the crossings of the ϕ0−line
with the light cones of the sub- and superstrate shifted by multiples of the grating
wavenumber, 2π

Λ
:

Eph =
hc

Λ

m√
εi ± sinϕ0

i = 1, 3, m ∈ Z, (4.7)

where m is the diffraction order, and the plus resp. minus sign for the negative
resp. positive diffraction orders. The spectral position of the lowest order anoma-
lies are indicated by arrows in Fig. 4.2 as WR(m)

εi
. The observed dips in the reflec-

tion curve originate therefore from the grating’s own resonant modes, or in other
words its Bloch modes. Depending on their nature these resonances might expe-
rience a more or less important MO response (nonreciprocal spectral shift) upon
magnetization reversal, as can be seen from the magnitude of the corresponding
TMOKE signature for each EOT resonance (see top subplot in Fig. 4.2).

Collin has shown how for 1D metallic gratings (excited under a fixed inci-
dence angle) its high Q−resonances have in general a SPP character while the
Fabry-Perot resonances inside the grating slits have a much lower quality fac-
tor [121]. The latter, having a negligible interaction with the MO substrate and a
low Q−factor on top of that, will leave therefore very little trace in the TMOKE
spectrum. In Fig. 4.3 we have plotted field distributions in the grating (in par-
ticular |Hx|2) that have been calculated at the different indicated resonances in
the EOT spectrum of Fig. 4.2. This confirms that the high−Q resonances with
strong TMOKE effect (A) and (B) are indeed Au/MO substrate SPPs coupled to
±1 diffraction orders. The proximity of the first order substrate Rayleigh anoma-
lies also reveals their origin. It is also confirmed that (C) is indeed a low Q FP
slit resonance. The weaker resonances (D) and (E) close to 1.7 eV and 2.0 eV are
too low in energy to be higher order FP resonances. The first one is suspected
to be the minus 2nd order Au/BIG SPP. It has an extremely low quality factor (as
confirmed by intensities of an order in magnitude lower) but experiences a strong
enough MO shift to still leave a trace in the TMOKE spectrum. The complete ab-
sence of TMOKE for the resonance (F ) near 2.1eV and the closeness of WR(−1)

ε1

leaves little doubt that this is the minus 1st order Au/air SPP, having hardly any
overlap with the magnetic substrate. The field plots corresponding to (D), (F )
and (E) confirm these predictions.
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Figure 4.3: Field color map of the magnitude squared of the magnetic field com-
ponent Hx at 0.973 eV (A), at 1.097 eV (B), at 1.403 eV (C), at 1.683 eV (D), at
2.053 eV (E), and at 2.077 eV (F ). Field distribution is plotted for grating with
the period Λ =500 nm, the thickness h1 = 150 nm, the air-slit width r = 20 nm
and the incidence of p-polarization at ϕ0 = 10◦.

Dispersion diagrams of the optical and magneto-optical response are very
useful for a better understanding of the global behavior of the structure. Figure
4.4 shows the specular p- reflectivity (left subplot) and MO effect (right subplot)
as a function of photon energy and parallel component of the wavevector ky. On
the other hand, in such dispersion dispersion diagrams the strength of the effects
isn’t easily distinguished due to the reduced discretization and the limited con-
trasts of the used colormap. For that reason the Figure 4.2 showing the reflectivity
and the MO effect at a fixed angle of incidence of 10◦ is more useful. The angle of
incidence was chosen in order to illustrate the different types of resonant modes
without them interacting spectrally.
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Figure 4.4: Dispersion diagram photon energy vs. ky is shown for specular p-
reflectivity (left) and TMOKE response (right). The angle of incidence of 10 ◦ is
marked with a black line.

4.1.2 Effect of finite thickness of the Bi:GIG layer

In the model of the structure (Fig. 4.1), in the calculated optical and magne-
tooptical response (Fig 4.2) and in the field plots shown in Fig. 4.3 a semi-infinite
Bi:GIG was taken as a substrate. Figure 4.5 shows the optical and MO response
of the same structure as before but with a 3988.4 nm thick layer of Bi:GIG on
semi-infinite sGGG substrate. The thickness of the Bi:GIG layer was taken from
the optical characterization in Chapter 3, Table 3.4. Figure 4.5 shows that the
main SPP peaks [(A’), (B’)] are still present at the same photon energy. On the
other hand the cavity mode peak (C’) is strongly modulated. The field plots in
Fig. 4.6 show the distribution of the magnetic field intensity |Hx|2 related to the
peaks (A′),(B′), and (C ′) in the whole structure (top row) and a detailed zoom of it
near the grating (bottom row). The position of the grating and the Bi:GIG/sGGG
interface is marked by a dashed white line. All subplots show similar field distri-
butions as those obtained for a semi-infinite Bi:GIG substrate. This confirms that
the results obtained with a simplified model can be transferred to the structure
with a finite thickness of the Bi:GIG on the sGGG.

Figure 4.7 shows that more interesting field distributions appears at new peaks
close to main peaks [(A’), (B’), and (C’)]. Subplots (A’1,2) were calculated at the
position of two tiny peaks for photon energy 1.016 eV and 1.026 eV [close to orig-
inal peak (A’)]. In the same way subplots (B’1,2) were calculated for photon energy
1.078 eV and 1.130 eV. Subplots (C’1,2) were calculated in positions of strongest
peaks between (B’) and (C’) for photon energy 1.255 eV, and 1.282 eV. Subplots
show coupling between different grating modes with different orders of inter-
ference resonant modes in the Bi:GIG layer. From this small observation we can
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Figure 4.5: Specular reflectivity (middle red line), specular transmission (bottom
green line) and associated TMOKE spectrum (top red line) of p-polarized light
incident on the grating structure in Fig. 4.1 with Λ = 500 nm, h1 = 150 nm and
r = 20 nm and with the thickness of the Bi:GIG 3988.4 nm.

conclude that surface plasmon resonances in the periodic structure are not gen-
erally affected by this interference resonances in the Bi:GIG layer. However, we
have to take into account the finite thickness of the layer during interpretation of
experimental data from real prepared samples (discussed later in Chap. 5).
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Figure 4.6: Color maps of the magnetic field intensity |Hx|2 at 0.973 eV (A), at
1.097 eV (B), and at 1.403 eV (C). The field distribution is plotted for a grating
with period Λ =500 nm, thickness h1 = 150 nm and the air-slit width r = 20 nm.
The incidence angle of p-polarization was ϕ0 = 10◦ and a 3988.4 nm thick Bi:GIG
layer on sGGG substrate was considered. The top row shows the field distribu-
tion in the whole structure, while the bottom row zooms in on the grating region.
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Figure 4.7: Distribution of the square of the magnitude of the magnetic field com-
ponent (A’1,2), (B’1,2), and (C’1,2) calculated for photon energies 1.016, 1.026, 1.078,
1.130, 1.255, and 1.282 eV, respectively. The subplots show coupling between dif-
ferent grating’s modes with different orders of guided modes in the Bi:GIG layer.
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4.2 Analytical formulae of the grating’s resonances

Having reminded the typical resonances in magnetoplasmonic TMOKE spec-
tra, we now turn our attention to their dispersion, in particular as a function of
the geometrical parameters of the grating. The obvious aim is to identify whether
or not an (anti-)crossing of the cavity modes and the SPP modes occurs and how it
impacts the TMOKE response (this phenomena will be discussed in Section 4.5).
Even though it was argued before that the character of the resonances in an EOT
grating can hybridize via coupling [61], the impact of geometrical tuning to en-
hance the EOT levels has only recently been studied [60, 122, 123]. Of these only
d’Aguanno et al. [122] expand considerably on the physics of the coupling of the
FP slit resonances with the grating’s SPPs and its impact on EOT. Apart from
studying a hypothetical free standing Ag grating in air, they moreover study this
coupling by tuning the incidence angle rather than the geometry of the grating.

The aim of this section is to show how cavity-plasmon modes coupling oc-
curs in magnetoplasmonic gratings and in particular how it can be tuned geo-
metrically for any angle of incidence. For that purpose we consider the specular
reflection spectrum Rp as a function of the grating period Λ, the grating thick-
ness h1 and the grating opening r. A strong subwavelength slit (r = 20 nm)
ensures a monomodal regime for the Au/air/Au guide governing the FP reso-
nances. Moreover, as will be shown further down, a small slit ensures low energy
fundamental cavity resonances, allowing to study its interaction with plasmon
modes for reasonable thicknesses. In a last subsection the possiblity of geomet-
rical TMOKE tuning shall be studied for varying slit widths r. This configura-
tion has been chosen for the experimental demonstration of anomolous TMOKE
switching as will be explained in Chapter 5.

4.2.1 SPP mode dispersion

The loci of the minima in the reflectivity spectrum correspond to the reso-
nant modes in the grating. According to the field plots of Fig. 4.3 SPPs both on
the air/gold and on the gold/garnet interface can be excited. Intuitively, one
would assume the plasmon modes to be independent of the grating thickness
h1. Except for sufficiently thin metallic layers (i.e. < 50 nm for near-IR and op-
tical frequencies [124]), the grating interfaces can be considered decoupled and
the SPP resonance wavelengths become indeed independent of the grating thick-
ness. The resonances are in good approximation determined by the dispersion
relation of the SPP on a single interface. The dispersion of the SPP mode can
be easily derived using a T-matrix algorithm ( introduced in Sec. 2.4.1) as a so-
lution of the waveguiding condition on a single interface. Figure 4.8 shows the
situation schematically. The s- and p- polarization modes in an isotropic system
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z1

ǫ1

ǫ2

T(1)A(1)

T(2)A(2)

Figure 4.8: Single interface model for derivation of the dispersion relation of the
surface plasmon resonance.

can be described separately. Since the surface plasmon phenomena exist only for
p-polarization, the T-matrix of media with permittivity ǫ1, ǫ2 takes the form:

T(x) =

[ (√
ǫx
)−1√

ǫx − ν2y
(√

ǫx
)−1√

ǫx − ν2y
−√

ǫx
√
ǫx

]
, x = 1, 2. (4.8)

The single interface system is then described by:

[
A

(1)
Pdown

A
(1)
Pup

]
=

1

2




√
ǫ1

(√
ǫ1 − ν2y

)−1

−
(√

ǫ1
)
−1

√
ǫ1

(√
ǫ1 − ν2y

)−1 (√
ǫ1
)
−1



[ (√

ǫ2
)
−1
√
ǫ2 − ν2y

(√
ǫ2
)
−1
√

ǫ2 − ν2y

−√
ǫ2

√
ǫ2

][
A

(2)
Pdown

A
(2)
Pup

]
,

(4.9)

or in compact form:

A(1) =
(
T(1)

)−1
T(2)

︸ ︷︷ ︸
T

A(2). (4.10)

The final expression for SPP dispersion is then derived assuming a guided mode
on a single interface. As was discussed in Sec. 2.5.4, a guided mode is defined
as an eigenmode of the structure, i.e. mode that exists without incidence from

neither the substrate nor the superstrate, A
(2)
Pup = 0 and A

(1)
Pdown = 0. Using the

simple notation (4.10), the waveguiding condition is:

T11 = 0, (4.11)

or in expanded form:

T11 =

√
ǫ1
(
ǫ2 − ν2y

)

ǫ2
(
ǫ1 − ν2y

) +
√
ǫ2
ǫ1

= 0. (4.12)

Solution of the Eq. (4.12) for the effective index of guided mode neff = νy leads to
the well-known relation for surface plasmon resonance on a single interface. As-
suming the plasmonic material, gold, with permittivity ǫ2 and dielectrics materi-
als air (ǫ1) and Bi:GIG (ǫ3), the surface plasmon modes in our system are described
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by the relation in the form:

kSP (E) = ky = k0νy = k0neff =
2π

hc
E

√
ǫ2 (E) ǫi (E)

ǫ2 (E) + ǫi (E)
, i = 1, 3, (4.13)

where E is the photon energy and ǫ2 (E) represents the permittivity of gold char-
acterized in Sec. 3.2.4, i = 1 for the SPP on the air/gold and i = 3 for the SPP on
the gold/garnet interface. In the 1D periodic structure the SPP is excited by the
diffracted wave:

kW (E) = ±kSP (E) +m
2π

Λ
, with m ∈ Z, (4.14)

where kW denotes the wavevector of the SPP. This SPP excitation is historically
known as a Wood plasmon, because it was observed close to the Wood-Rayleigh
anomalies Eq. (4.7) [125]. Putting thus kW = 2π

hc
E sinϕ0 and solving Eq. (4.14) for

E gives us a first order numerical approximation for the height-independent loci
of the SPP resonances.

4.2.2 Cavity mode dispersion

The spectral position of the slit resonances can, with a good accuracy, be pre-
dicted by considering the response of an equivalent FP-like slab resonator: a layer
with an index neff , the same thickness as the gold grating and sandwiched be-
tween air and the garnet substrate. The effective index neff is given by the fun-
damental TM mode of the Au/air/Au guide. Figure 4.9 shows the symmetrical
guide schematically.

z1

z2
ǫ1

ǫ1

ǫ2

T(1)A(1)

T(2)

T(3)A(3)

P(2)

Figure 4.9: Symmetrical gold/air/gold waveguide is shown schematically.

The dispersion of the cavity mode is found as a solution of the gold/air/gold
sandwich structure described by the following T matrix:

A(1) =
(
T(1)

)−1
T(2)

(
P(2)

)−1 (
T(2)

)−1
T(3)

︸ ︷︷ ︸
T

A(3). (4.15)
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Figure 4.10: Left: gold/air/gold waveguide and its extension into a resonant
cavity by introduction of the garnet and air media is shown schematically. Right:
field profile of guided mode for thickness of the air gap r = 20 nm, the photon
energy 1.4 eV, and the effective index of guided mode neff = 1.7371 + 0.0250i.

Assuming only p-polarized modes and putting A
(1)
Pdown = 0 and A

(3)
Pup = 0, the

solution of the waveguiding condition T11 = 0 has the following form [122]:

tanh

(
r

2

√
k20n

2
eff − k20

)
= −

√
k20n

2
eff − k20ε2

ε2
√
k20n

2
eff − k20

. (4.16)

Figure 4.10 schematically shows the gold/air/gold waveguide and its trans-
formation into resonant cavity. The field plot on the right corresponds to a guide
width of 20 nm which is equivalent to the slit width in the grating. At 1.4 eV, i.e.
the FP resonance observed in Fig. 4.2, an effective index of neff = 1.7371+ 0.0250i,
is obtained for this mode. As known, this plasmonic slot waveguide has no cut-
off and this is independent on the slit width (see [126]). An extreme subwave-
length confinement and accompanying high effective index is therefore obtained
at very small slit widths, thereby allowing low energy FP resonances for moder-
ate thicknesses of the metal grating. Figure 4.11 shows the effective index of the
guided mode at 1.4 eV, i.e. the FP resonance observed in Fig. 4.2 as a function of
the air layer thickness. Complex effective index was calculated by the numerical
optimization introduced in Sec. 2.5.4. For spacing up to 40 nm the effective index
shows low dispersion. Note that the imaginary part of the effective index was
multiplied by a factor of 100.

The location of the cavity resonances is then found by expressing round-trip
resonance:

2k0neffh1 + φr1 + φr3 = 2nπ, n ∈ Z, (4.17)

where φri is the reflection phase shift of the slit mode at both ends of the cav-
ity. The reflection coefficient can be roughly approximated as a normal-incidence
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Figure 4.11: Effective index of guided mode in gold/air/gold at λ = 884 nm.

reflection:

ri = |ri| exp [iφri ] =
neff −√

εi
neff +

√
εi
, (4.18)

where i = 1 for the the permittivity of air and i = 3 for the permittivity of the non-
magnetized garnet [εyz = 0 in Eq. (4.1)]. Such a simple approximation is sufficient
for a cavity mode in regions where it doesn’t interact with the plasmon modes. In
case of interaction between modes, the reflection phase shift of the mode at both
ends of the cavity can be fitted and described in a more precise way [60].

According to (4.16) and (4.17) we can conclude that it is possible to tune the
spectral position of the cavity mode in two ways. The first option of variation of
the grating air gap width, when the sight dispersion of the mode effective index
(Fig. 4.11) plays the role. The second possible approach is to tune by the grat-
ing thickness, when the resonant wavelength is affected by the phase-matching
condition (4.17).
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4.3 Geometrical dispersion of resonant modes

Analytical description of resonant modes in the structure brings important
information about their dependence on the grating’s geometry. In summary the
dispersion relations Eq. (4.14,4.13) and Eq. (4.16,4.17) show that the plasmon reso-
nant modes depend on the grating period Λ and the cavity modes depend on the
grating thickness h1 and on the air-slit width r = fΛ. From Fig. 4.2 one can see
that the TMOKE spectrum achieves its extrema in the spectral range from 0.74 eV
to 2.5 eV for this particular angle ϕ0 = 10◦; it would change considerably with the
angle of incidence angle. Therefore, we present specular reflectivity spectra Rp

for various grating thicknesses h1, grating periodicities Λ, and air-gaps r in this
spectral range.

4.3.1 Grating thickness variation

Figure 4.12 shows the spectral dependence of the specular reflectivity Rp (E)
on grating thickness for a fixed grating period Λ = 500 nm and an incidence
angle of ϕ0 = 10◦. In this configuration, the −1st plasmon mode [m = −1 in
Eq. (4.13)] is excited at a photon energy of 0.97 eV which is close to the wavelength
1.3 µm commonly used in optical telecommunication. According to Eq. (4.14) and
Eq. (4.17) the plasmon modes (blue lines) are dispersion-less under fixed grat-
ing period and the cavity modes (red curves) are dispersive respectively. On the
left subplot it can be seen that the interaction of the cavity mode with the −1st

plasmon mode pushes the resonant energy from 1.13 eV (for grating thickness
h1 = 100 nm) to 0.99 eV (h1 = 330 nm), which corresponds to a smooth trans-
formation between −1st and +1st plasmon mode. A further increase of the grat-
ing thickness (up to 330 nm) leads to interaction between the SPP mode and the
higher-order cavity modes. A similar phenomenon appears at photon energies
from 1.7 eV to 2 eV where cavity modes interact with ±2nd SPP modes. Finally
the effect at 2.1 eV comes from the interaction between the cavity mode and SPP at
the gold/air interface (see field plot (E) on Fig. 4.3). The right subplot of Fig. 4.12
shows dispersion curves of four different orders of cavity modes, corresponding
to n = 1, 2, 3 and 4 in Eq. (4.17). One can see that relatively good agreement, even
from this simple approximation, is obtained.

Figure 4.13 shows dispersion maps of the p-reflectivity. The maps have been
calculated for a grating with period Λ = 500 nm and thicknesses 90, 105, 120,
135, 150, 165, 180, 195, 210, and 225 nm. These maps clearly show how the cavity
mode moves to lower energies with increasing grating thickness. For thicknesses
from 90 nm to 135 nm we can see, that interaction appears mainly for second
order SPP modes. With an additional increase of the thickness, the cavity mode
interacts with the first order of SPP modes.



4.3. GEOMETRICAL DISPERSION 87

rs(F )

1 1.5 2 2.5

100

200

300

400

500

600

Photon energy (eV)

G
ra

ti
n

g
 t

h
ic

k
n

es
s 

 h
1
 (

n
m

)
Cavity mode dispersion

 

 

+1
st

(ε
3
) −1

st
(ε

3
)

+2
nd

(ε
3
) −2

nd
(ε

3
)

+1
st

(ε
1
)

+1
st

(FP)

+2
nd

(FP)

+3
rd

(FP)

+4
th

(FP)

FP

SPP−ε
3

SPP−ε
1

rs (G)

Figure 4.12: Left: Simulated dispersion of the grating’s reflection for various
thicknesses h1 from 50 nm to 600 nm and a fixed periodicity Λ = 500nm. Right:
spectral position and geometrical dispersion of resonant modes calculated with
analytical dispersion models Eqs. (4.14,4.13) and Eqs. (4.16,4.17).
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Figure 4.13: Dispersion diagrams of specular reflectivity for grating thickness
from 90 nm to 225 nm in steps of 15nm. Note the drift of the flat cavity mode
towards lower photon energy for increasing thickness h1. The evolution of cou-
pling between modes is shown as bending of the SPPs by cavity modes.
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4.3.2 Grating period variation

Figure 4.14 shows the spectral dependence of Rp on the grating period Λ in a
range from 200 nm to 900 nm and for fixed grating thickness h1 = 150nm. In this
plot the cavity modes are nondispersive for constant thickness h1 and constant
air-slit width r = Λf = 20 nm (note that in our model the change of the filling
factor f compensates the change of the grating period Λ). On the other hand the
plasmon modes show clear dispersive behavior, that is compared with the simple
models of Eq. (4.13) and Eq. (4.14) on the right subplot. Following Eq. (4.14) we
have putm = ± 1, ±2, and ±3 for the plasmon modes at the gold-garnet interface
(SPP - ε3, blue curves) and m = ± 1 for plasmon modes at the gold-air interface
(SPP - ε1, green curves). The left subplot shows anticrossing behavior of modes.
The ±1st SPP modes and cavity mode are excited separately for a grating period
between 450 nm and 550 nm. For longer period the cavity mode is coupled into
the +2nd plasmon mode. For shorter grating periods (less than 300 nm) anticross-
ing of modes provides a smooth shift from the −1st plasmon mode to the +2nd

mode (Λ = 700 nm). This is accompanied by a full transformation of the +2nd

plasmon mode into the fundamental cavity mode. In addition, the cavity mode
at 1.5 eV is becomes less sharp for a grating period Λ < 500 nm. The fill-factor
of the air gap is higher (the fill-factor varies with the period) and the Q-factor of
the cavity mode is decreased. We suppose that this is a result from an increasing
diffractive coupling between the grating slits. For longer period the Q-factor of
the cavity mode increases due to coupling with hi-Q SPP mode which makes the
mode spread narrower.

Note finally, that up to a certain extent periodicity tuning for fixed slit width
r and grating height h1, allows to shift the mode coupling to higher incidence
angle. This is of course limited by the SPP gap forming at Eph = hc

2Λ
close to

which near grazing incidence would be required if the cavity resonance were to
be at this energy. A readjustment of the grating thickness is then necessary.

Figure 4.15 shows dispersion diagrams calculated for a grating with periods
from 400 to 850 nm (in steps of 50nm). These subplots show that the position
of the cavity mode is almost independent on the grating period. In addition,
they show how, at a given angle of incidence, the grating period can be used
to achieve coupling of the FP resonance with the desired order of SPP mode.
The right subplot of the Fig. 4.14 calculated with analytical models describing
Wood-plasmons and cavity modes (derived in Secs. 4.2.1 and 4.2.2) describes
positions of modes in good agreement with numerical simulations. Therefore we
can directly conclude that a shorter period is useful for the study of low order SPP
modes (first, second), hence for a long grating period higher SPP modes play a
role. Moreover in a long period domain it is possible to study interaction between
different orders of SPP modes.
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Figure 4.14: Left: Simulated dispersion of reflection for the grating with various
period Λ from 300 nm to 900 nm and fixed thickness h1 = 150nm,. Right: spectral
position and geometrical dispersion of resonant modes calculated with analytical
dispersion models Eq. (4.14,4.13) and Eq. (4.16,4.17).
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Figure 4.15: Dispersion diagrams of specular reflectivity are shown for grating
periods from 400 nm to 850 nm in steps of 50nm. Note that the cavity mode
keeps its spectral position.
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4.3.3 Grating air gap variation

The last group of simulations considers variations the grating air gap. Figure
4.16 shows on the left subplot the spectral dependence of Rp on the air gap in
the range from 20 nm to 120 nm. The right subplot shows calculated dispersion
curves of (dispersive) cavity and (nondispersive) SPPs modes. The calculated
map shows that for a wider opening of the air gap the cavity mode is slightly
shifted to higher photon energies and its quality factor drops. This observed be-
havior was used in design of experimental samples. In the design (Chap. 3) the
set of samples were fabricated by different exposition, but the gold was evap-
orated in one shot. Therefore the thickness of the gold is the same for all the
samples and only width of the air gap varies.

To complete the study of the geometrical dispersion of modes in a plasmonic
grating, Figure 4.17 shows dispersion diagrams calculated for gratings with dif-
ferent widths of air gaps. Gratings with a period Λ = 500 nm, a thickness h1 =
150 nm and an air gap width varying from 20 to 110 nm in steps of 10 nm were
simulated. For this particular grating the interaction between cavity and SPP
mode becomes stronger for increased air gap width, which is related to decrease
of the reflectivity.

The important information from those simulations is, that the coupling effect
appears for the second-order of SPP modes. This is given by the relatively low
thickness of the grating. The additional advantage of using second-order SPP
modes is large MO effect (see dispersion curve on Fig. 3.14 in Chap. 3). To obtain
interaction with the fist-order SPP modes, the thickness of the grating should
be increase to approximately 200-220 nm. In such a case it would be possible
to observe the interaction of the first-order cavity mode with the first-order SPP
and the second-order cavity mode with second-order SPP modes. Unfortunately,
requirement of strong sub-lambda air gaps and thick grating bring fabrication
complications.
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Figure 4.16: Left: Simulated dispersion of reflection for the grating with various
air-gap r from 20 nm to 120 nm and the fixed period Λ = 500nm and grating
thickness h1 = 150 nm. Right: spectral position and geometrical dispersion of
resonant modes calculated with analytical dispersion models Eqs. (4.14,4.13) and
Eqs. (4.16,4.17).
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Figure 4.17: Dispersion diagrams of specular reflectivity are shown for grating
air gaps from 20 nm to 110 nm (steps of 10nm). Note broadening of the cavity
mode.
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4.4 Anticrossing of resonant modes, field plots

Figure 4.18 shows the field distribution (of the transversal magnetic field com-
ponentHx) close to the points of modal anticrossing. Both field distributions were
calculated for the grating period Λ = 500 nm and the modes are marked in the
dispersion diagram (Figs. 4.12, 4.14). The left subplot shows the field distribution
of the +1st plasmon mode [m = +1 in Eq. (4.14)] coupled with the cavity mode at
a photon energy of 0.9 eV and a grating thickness h1 = 200 nm. The right subplot
shows field plot of the −1st plasmon mode coupled with the cavity mode at a
photon energy of 1 eV and a grating thickness h1 = 200 nm.

From both plots shown on Fig. 4.18 one can recognize that the field component
Hx is much more enhanced than in the case of single resonant mode excitation
(Fig. 4.3, note different color scale). In addition the modes coupling decreases re-
flection significantly. Decrease of reflectivity and strong field enhancement at the
interface with MO garnet cause significant increase of the transverse MO effect
discussed in the next section.

(F ) (G)

Figure 4.18: Distribution of square of the magnitude of the magnetic field compo-
nent Hx. Left subplot: coupled resonant mode of +1st plasmon and cavity mode
for the photon energy 0.89 eV and the grating thickness 200 nm. Right subplot:
coupled resonant mode of −1st plasmon and cavity mode for the photon energy
0.98 eV and the grating thickness 200 nm.
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4.5 Nonreciprocal optical response of grating’s res-

onant modes

Up till now we studied the impact of the grating geometry on the dispersion
of its EOT resonances. We now move on to see whether a similar impact can be
observed in the nonreciprocal response of this EOT system. In Section 4.1.1 it was
explained how the MO response of this structure can be easily understood at its
grating/garnet SPP resonances.

4.5.1 Dispersion of the magnetoplasmon

In order to describe the shift of the SPP by the transverse magnetooptic Kerr
effect we used Yeh’s matrix formalism to solve Maxwell’s equation for a single
interface between gold (ǫ2) and a MO garnet ǫ̂3 in transverse MO configuration
with gyrotropy q:

ǫ̂3 =



ǫ3 0 0
0 ǫ3 iq
0 −iq ǫ3


 (4.19)

The structure is shown on Figure 4.19 schematically.

z1

ǫ2

ǫ3

T(1)A(1)

T(2)A(2)

Figure 4.19: Layout of the structure for derivation of the magnetoplasmon dis-
persion.

To derive the dispersion of the magnetoplasmon the waveguiding problem
of a single interface needs to be solved. For p-polarization the matrix T(1) of the
semi-infinite gold has the following form:

T(1) =

[ (√
ǫ2
)−1√

ǫ2 − ν2y
(√

ǫ2
)−1√

ǫ2 − ν2y
−√

ǫ2
√
ǫ2

]
, (4.20)

The matrix T(2) of the transverse magnetic medium (introduced in Chap. 2 in Sec.
2.3.3) for p-polarization has the form:

T(2) =

[
ǫ3 − ν2y ǫ3 − ν2y

iqνy − ǫ3

√
ǫ3 − ν2y − q2

ǫ3
iqνy + ǫ3

√
ǫ3 − ν2y − q2

ǫ3

]
, (4.21)



4.5. NONRECIPROCAL OPTICAL RESPONSE 97

The single interface problem is then described in compact form by the relation:

A(1) =
(
T(1)

)−1
T(2)

︸ ︷︷ ︸
T

A(2). (4.22)

The dispersion of the magnetoplasmon is derived from the waveguiding condi-

tion for a single interface: A
(2)
Pup = 0 and A

(1)
Pdown = 0. Using the simple notation

(4.22), the waveguiding condition is:

T11 = 0. (4.23)

The expanded form of the waveguiding problem takes the following form:

T11 =
ǫ3 − ν2y
ǫ2 − ν2y

−
iqνy − ǫ3

√
ǫ3 − ν2y − q2

ǫ3

ǫ2
√
ǫ2 − ν2y

= 0, (4.24)

By multiplying by the wavenumber k0 and considering only linear terms in q,
Eq. (4.24) can be linearized as:

kSP = k0

[√
ε2ε3
ε2 + ε3

+
iqε22

(ε23 − ε22)
√
ε3 + ε2

]
, (4.25)

where the first term corresponds to the standard surface plasmon resonance Eq. (4.13)
and the second term represents the shift originating from the magneto-optical ef-
fect. Our model of the spectral shift of SPP by TMOKE is equivalent with the pre-
viously introduced model for the MO SPP shift [56,63]. Figure 4.20 compares the
MO SPP shift calculated (at a photon energy 1 eV) from the exact model Eq. (4.24)
with the linear approximation Eq. (4.25) for increasing gyrotropy q.

Together with the relation for the Wood plasmon anomalies (Eq. (4.14)), it de-
scribes the phenomena in good agreement with the RCWA calculation. The lin-
ear model of magnetoplasmon Eq. (4.25) together with the equation for the Wood
plasmon Eq. (4.14) describes the different shift of +1st and −1st SPP’s resonant
frequency. The total wavevector shift of the SPP anomalies in the spectra is then
given by two contributions: by multiples of wavevector of the grating [Eq. (4.14)]
and by the linear perturbation in Eq. (4.25).

4.5.2 TMOKE sign control by optimization of the interaction

between modes

We have already seen how MO response is obviously related to field confine-
ment in the MO material as shown in Fig. 4.2 and on the field plots in Fig. 4.3 (A)
and (B) (in Sec. 4.1.1). Moreover, the interaction between the plasmon and cavity
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Figure 4.20: Shift of SPP by TMOKE: comparison between the exact solution from
the Eq. (4.24) (circle dots) and the linear approximation model Eq. (4.25) (dashed
line) calculated at the photon energy 1eV. The green line represents pure SPP
mode.

mode provides strong field enhancement in the MO substrate (Fig. 4.18), which
provides a further enhancement of the MO effect. It is therefore expected that
in the previously indicated regions of specific modal crossing and anticrossing,
interesting MO responses will appear.

Grating thickness variation

Repeating the same simulations as in Sec. 4.3 we present analysis of the TMOKE
spectral dependence on the grating geometry. Figure 4.21 shows how the TMOKE
is affected by the interaction between the SPP and the cavity modes. Subplots in
the left column show details of the dependence of the TMOKE for various grating
thicknesses for ±1st (top subplot) and ±2nd (bottom) magnetoplasmon modes. It
is clearly visible that TMOKE keeps the same dispersive dependence as already
observed on the specular reflection in the non-magneto-optic case (Fig. 4.12). In
addition these subplots reveals the parameter combination where coupling oc-
curs efficiently. In this region the coupled modes have characteristic properties of
both SPP and cavity modes. The SPP contribution to the coupled mode behavior
is mainly responsible for the MO effect. In addition the cavity mode contribu-
tion gives the dependence on the grating thickness. Moreover, on the colormap
one can see that the modal interaction leads to an enhancement of the TMOKE.
This happens due to the fact that coupling of modes leads to an increase of the
electromagnetic field concentration in MO layer. The cavity mode in this case
contributes as electromagnetic field channel which corresponds to the extraordi-
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nary optical transmission (EOT). Because of TMOKE splitting of the SPP (and the
coupled mode as well), the increase is different for modes excited for different
orientation of the magnetization, +M and −M.

The subplots in the right column show TMOKE at a fixed photon energy as a
function of the grating thickness (the chosen energies are marked by colored lines
on the left subplots). These reveal an interesting new possibility of geometrical
switching of the TMOKE. At a photon energy of 0.97eV for instance, TMOKE
reaches its maximum for a grating thickness of 210 nm. If the thickness of the
grating is increased to 220 nm, the TMOKE is reduced to zero. Further increasing
of the thickness to 230 nm switches the sign of the TMOKE effect. The modal
anticrossing switches the sign of the TMOKE without change the orientation of
the magnetization. The same phenomenon appears for the ±2nd plasmon SPP
modes at 1.74 eV and 1.88 eV. The modes at 1.74 eV can be completely switched
by the change of the grating thickness from 100 nm to 107 nm. The effect is much
more sensitive for the mode at 1.88 eV, when only 3 nm difference in grating
thickness leads to the reversion (from 90 nm to 93 nm).

Grating air gap variation

In a second step we analyze the impact of increasing the slit openings on the
TMOKE response. In Section 4.3.3 we have already seen how “broadening” the
cavity mode affects −2nd SPP mode. This observation together with the following
MO analysis has been crucial in further design of samples for experimental ob-
servation of the phenomena. Figure 4.22 shows on the left subplot the detail on
TMOKE response of the −2nd SPP mode as a function of various grating air gap.
Significant shift of the coupled mode by the air gap width is observed. The left
subplot shows that the maximum of the TMOKE can be achieved (for this struc-
ture and −2nd SPP mode) for the grating opening from 20 nm to 60 nm. This infor-
mation was also very useful in the fabrication process. The right subplot shows
TMOKE at 1.74 eV as a function of the air gap width. Clear TMOKE switching
phenomena is observed with the air gap variation from 30 nm to 45 nm.
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Figure 4.21: Left column: detail of TMOKE spectral dependence ∆Rp for the grat-
ing thickness h1 from 50 nm to 600 nm and period Λ = 500nm. Right column:
switching of the TMOKE sign at fixed photon energy 0.97 eV, 1.11 eV, 1.74 eV, and
1.88 eV by variation of the thickness of the grating.
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Figure 4.22: Left detail of TMOKE spectral dependence ∆Rp for the grating air
gap h1 from 20 nm to 120 nm and period Λ = 500nm. Right: switching of the
TMOKE sign at fixed photon energy 1.74 eV by variation of the gratin air gap
width.
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4.6 Proposition of waveguiding structure with non-

reciprocal dispersion of TM modes

In this section a concept of TM-waveguiding structure is proposed. Figure
4.23 shows the proposed structure of silicon waveguide structure with plasmonic
grating and the MO Bi:GIG garnet layer is placed on a top of the grating. Ma-
terials used in the structure, namely silicon and SiO2, were taken for their high
dielectric contrast. Therefore is it possible to achieve waveguiding inside the sil-
icon layer. In this study we seek to determine the nonreciprocal behavior of the
guided modes. The main subject is the analysis of a possible coupling between
guided modes and plasmon modes on the grating interfaces. The evanescent
field of the guided mode in the silicon is used for the excitation of the surface
plasmon mode at the grating. To achieve nonreciprocal behavior the Bi:GIG gar-
net is placed on the top of the grating. Therefore excitation of the SPP and its
control by magnetization would lead to the nonreciprocal behavior.

In the following simulations we assume a wavelength λ = 1300 nm, refractive
indexes of the Bi:GIG layer n = 2.32+0.0001i, of Gold n = 0.63+10.96i, of Silicon
n = 3.5 and of the SiO2 n = 1.52. Considered parameters of the structure are the
grating thickness h1 = 100 nm, the air gap width r = 20 nm, the grating period
Λ, the thickness of the SiO2 tunneling layer h2 = 60 nm, and the thickness of the
silicon waveguide h3 = 600 nm. The thickness of the Si waveguide was chosen to
obtain multimodal behavior.

Sillica

Sillica

Au

νy

Λ r

h1

h2

h3

Bi:GIG

Si

M

Figure 4.23: Layout of the structure of silicon waveguide with gold grating and
Bi:GIG.

The numerical design was done as two step process of S-matrix waveguiding
calculation (see Sec. 4.1.2). In the first step the S-matrices calculated from struc-
ture with various parameters (grating period, propagation constant νy) are de-
composed using the singular value decomposition (SVD). 1 Local minima in plot
of 1/σmax (σmax is the largest singular value of S-matrix) represent positions of

1. Propagation constant νy is the y-component of the normalized wavevector, see Chap. 2, Sec.
2.3.1
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guided modes. In the second step the complex propagation constant νy is found
by the minimization of 1/σmax, [Eq. (2.106)].

The structure was studied for the following ranges of parameters. The pure
real propagation constant νy was varied from 2.32 to 3.5 in order to achieve waveg-
uiding primary in the silicon. Values 2.32 and 3.5 are the refractive indexes of
the Bi:GIG and silicon, respectively. The grating period was varied over a large
interval from 100 nm to 350 nm. It is important to point out that diffraction ef-
fects caused by the grating in the structure could occur. If the assumed parallel
wavevector component ky = k0νy is decreased by the grating parallel wavevector
kgrat = 2π/Λ, a diffracted mode may leak out of the structure which could repre-
sent losses. Taking in account the interval of propagation constant and refractive
indexes of surrounding media, the leakage into the Bi:GIG superstrate may ap-
pear for Λ > 223 nm, and into the SiO2 substrate for Λ > 258 nm. This effect has
to be considered in the analysis of modes in the structure.

Figure 4.24: Left:Dispersion map of guiding indicator 1/σmax in logarithmic scale
calculated as a function of the effective index νy and the grating period Λ. Right:
Detail on area of modes anticrossing.

Figure 4.24 shows dispersion map of the waveguiding indicator 1/σmax calcu-
lated for TM modes, dark lines represent guided modes. The map shows dom-
inant mode at νy = 2.86 as the vertical line (the second mode is observed for
νy = 3.34). The right subplot shows zoom of the area where the vertical mode
crosses different modes in the structure and interesting anticrossing behavior oc-
curs. A smooth transformation of the modes is observed. The modes are further
study via field plots and by analysis of the effective index of modes.

In the first step we analyze modes which appears as the vertical lines [modes
(A) and (B)]. Figure 4.25 shows field plots calculated in the points (A) and (B).
Both field plots were calculated for the period of the grating 140 nm, therefore
below the level of leakage to the substrate or to the superstrate caused by the
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Figure 4.25: Field plot distributions of fundamental and first-order guided modes
in the silicon. Field plots were calculated for the structure with grating period
140 nm.

grating. Moreover, both modes shows independence on the grating geometry.
Subplot (A) shows field distribution of fundamental guided mode and subplot
(B) shows second-order guided mode in the silicon waveguide. The better con-
finement of the fundamental mode (A), i.e. weaker evanescent field outside the
waveguide, leads to the weaker anticrossing effect. Therefore, in our geometry,
the anticrossing effect on the fundamental mode is hard to observe. On the other
hand, higher evanescent field of the second-order guided mode (B) provides an-
ticrossing as was shown on the right subplot of the Fig. 4.24.

In the second step we have focused on the area of modes anticrossing, points
(C) and (D) on the zoom of the Fig. 4.24. Figure 4.26 shows on the left sub-
plot (C) the mode, which is conformable with already discussed firs-order guide
mode (shown on subplot (B) on Fig. 4.25). But the observed field profile is being
modulated by the periodic grating on the top of the structure. Moreover, partial
field enhancement is observed at the top side of the grating, i.e. at the interface
between grating and MO Bi:GIG superstrate. The right subplot shows field dis-
tribution for the fixed y-coordinate at the middle of the grating lamela (marker
by vertical dashed line on the left subplot). The field confinement at the top side
of the gold is clearly visible. The bottom subplot (D) shows mode with he field
confined mostly on the top side of the grating. We can conclude that this mode is
a guided along the metal-dielectric interface, i.e. surface plasmon mode. The typ-
ical surface plasmon field distribution is present on the right subplot. From the
observed evanescent coupling between mode guided in the silicon waveguide
and SPP mode in MO BI:GIG material one can expect possible nonreciprocity of
guided mode in the silicon. The strength of coupling could be tuned by optimiza-
tion of the thickness of the SiO2 layer.

Figure 4.27 shows field plots (E) and (F) almost identical as were already pre-
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Figure 4.26: Field plot distributions calculated at the area of the modes interac-
tion.

Figure 4.27: Field plot distributions calculated at positions of expected leaky
modes.
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sented by Fig. 4.25. Moreover, dispersion of the guided modes shows obvious
difference. Modes (E) and (F) are dependent on the grating period and they exist
for the grating period above 223 nm, which is the limit of leakage into Bi:GIG su-
perstrate. This is related to remarkably low imaginary part of the effective index
(at the level of the guided modes in the Si waveguide), which is 2.509 + 0.00008i
and 2.53 + 0.0007i for modes (E) and (F), respectively.

Figure 4.28: Left: Magneto-optic dispersion map of guiding indicator 1/σmax in
logarithmic scale calculated as a function of the effective index νy and the grating
period Λ. Right: Detail on area of modes anticrossing.

Figure 4.28 shows magneto-optic image of a guiding indicator. The dispersion
map was calculated as the difference of between two dispersion maps calculated
for opposite magnetization: δ(1/σmax) = 1/σmax(+M)− 1/σmax(−M). The figure
shows how the main MO response is related to the SPP mode on the top side of
the grating, at grating/Bi:GIG interface. The right subplot shows zoom on area
of modes anticrossing. The subplot shows how the nonreciprocal dispersion of
mode guided in the silicon can be achieved by an appropriate grating geometry,
namely its period. Figure 4.29 shows how the effective index of mode guided in
the silicon waveguide is affected by coupling with the SPP mode near the anti-
crossing. Top row shows how coupling between modes, achieved by tuning of
the grating period, leads to increase of both real and imaginary part of the effec-
tive index of guided mode. Bottom subplot shows MO change of the effective
index (νy,opt.(+M)−νy,opt.(−M)) as a function of the grating period, i.e. quality of
coupling between modes. The bottom subplot shows, that the MO change of the
real part of the effective index can be enhanced while the imaginary part (which
is related to propagation losses) is unaffected. According to the bottom subplot
of Fig. 4.29 this happens for the gratin period around 240 nm.

Proposed theoretical concept of the waveguiding structure based on mate-
rial with high refractive index separated from magnetoplasmonic structure and
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Figure 4.29: Top: The Effective index of guided mode in silicon waveguide as a
function of the grating period Λ. Bottom: MO change of effective index.

based on the coupling between evanescent field with magnetoplasmon can be
further optimized. By optimization the isolation properties could be improved
and enhanced by the cavity mode resonance excitation.
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4.7 Conclusion of the chapter

In this chapter we have numerically analyzed via a rigorous anisotropic RCWA
method the electromagnetic response of a 1D gold grating on a transversely mag-
netized medium; Bi:GIG layer. In addition the effect of finite thickness of the
Bi:GIG layer and presence of the sGGG substrate was discussed. Using straight-
forward analytical models we have identified geometrical parameter regions where
its two basic modes — SPP and FP cavity modes — may potentially couple and
interact (Sec. 4.2). By variation of the grating geometry, namely its thickness, air
gap, and period, this interaction and anticrossing has been confirmed. In Sec. 4.5
it has been shown that this hybridization of SPP and cavity modes leads surpris-
ingly to significant changes in TMOKE amplitude as well as its spectral position.
Moreover, the sign of the TMOKE (under fixed magnetization) can be switched by
tuning of the grating thickness and air gap width. A linearized model of the MO
shift explains the opposite signs undergone by SPP modes of opposite diffractive
coupling. At the end we have proposed concept of the waveguiding structure
combined with the magnetoplasmonic grating. We have discuss the change of
the effective index of the guided modes and the MO change of the effective in-
dex, both introduced by the grating geometry.
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5 Experiments on real magnetoplasmonic structures

In this chapter we present analysis of the Mueller matrix data measured on
fabricated samples. In the first part a development of the structure model is pre-
sented. The model is developed in step-by-step process, from the simple de-
scription of a perfect structure to the model with surface roughness and residual
PMMA photo resist inside the gaps of the grating. The model is fitted to experi-
mental data in each step. Accuracy of each model is evaluated using χ2 parameter
(3.2). Quality of the developed model is presented in direct comparison between
measured and calculated ellipsometric quantities N,C, and S for a wide range of
angle of incidence from 20◦ to 60◦.

In the second step the set of 15 Mueller matrix data obtained on 15 different
samples is fitted together and the grating opening r of each grating is estimated
(for fabrication details see Sec. 3.4). The fitted width of the opening is compared
with values obtained by scanning electron microscopy (Fig. 3.16).

Third part is focused on analysis of magneto-optical response of the structure.
The measured MO effect is compared with MO response calculated using devel-
oped model at the angle of incidence of 45◦. To analyze global behavior of the
sample, the MO response is compared over the interval of the incidence angle
from 20◦ to 60◦.

A good agreement between experimental Mueller matrix magneto-optic spec-
troscopic data and the grating model increase credibility of the previous models
in Chapter 4 and enables us to trust the functionality of the designed magneto-
plasmonic structure.

5.1 Optical characterization of samples

5.1.1 Measured ellipsometric response of structures

The fabricated 1D periodic gratings were measured with the Mueller matrix
ellipsometer Woollam described in Sec. 3.2. The optical response of the samples
were measured in a configuration, where the plane of incidence was perpendic-
ular to the lamelas of the grating, the same configuration as was used in theo-
retical study in Sec. 4.1. This configuration avoid conversion between s- and
p-polarization. Moreover, the transverse MO configuration also do not induce
polarization conversion. Thus, Mueller matrix (2.130) is reduced into three pa-
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rameters: N , C, and S, [Chap. 2, Sec. 2.7.3, (2.131)]:

M =




1 −N 0 0
−N 1 0 0
0 0 C −S
0 0 S C


 , (5.1)

In a non depolarizing system, the elements N,C, and S are related to the classical
ellipsometric angles ψ and ∆:

N = cos 2ψ, C = sin 2ψ cos∆, S = sin 2ψ sin∆. (5.2)

For further analysis of the optical response of the structure (4.3) we define the
relative reflectivity Rp/Rs as follows:

Rp

Rs

= tanΨ, (5.3)

which is directly related to the measured data and will allow us to quantify the
MO response of the structures (see further in Sec. 5.3).

5.1.2 Development of the structure model

In the theoretical study of the magnetoplasmonic structure we already dis-
cussed the effect of a finite thickness of the MO Bi:GIG layer (Sec. 4.1.2), and the
depolarization effects due to beam focusing (Sec. 3.2.2). To be able to reproduce
the experimental results, a generalization of the model is needed. The step-by-
step process of model adjustment is described in this section. Quantities N , C, S,
and depolarization are used to compare models and experimental data. The χ2

value [defined by (3.2)] is used as an indicator of the fit quality.
To model optical response of the structures 30 Fourier harmonics (N = 30, see

Sec. 2.5.2) were assumed and the experimental data were fitted by our parallel
RCWA code described in Sec. 2.5.

In the following text we use sample code in the format p500 X, where p500
denotes the grating with period 500 nm fabricated and the electron exposition
dose equal to X . The dose varies from 900 to 1040 as was described in the Section
3.4 in Chapter 3.
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A. Model of expected structure vs. experimental data

In the firs step we compare simple model of the structure with the experi-
mental data. The cross section of the model is shown on Fig. 5.1. The nominal
parameters of the sample are: the grating period Λ = 500 nm, the grating thick-
ness t1 = 100 nm, the width of air-gap r = 63 nm, the dose of 1040 µC/cm2, and
the thickness of the Bi:GIG t2 = 3988.4 nm (from Tab. 3.4). In the model we use
the nominal parameters. Parameters used in model are summarized in tab. 5.1.
Figure 5.2 shows comparison between model and experimental data measured
on sample p500 1040 (Fig. 3.16). One can see, that model does not fit the data
well and more advanced model is needed.

Note that the simplest model does not describe attenuation of the interfer-
ences in Bi:GIG layer (at about 700 nm and 1400 nm), position of plasmon peaks
(at about 886 nm). The model does not describe depolarization at all. The origin
of the interference phenomena was already discussed in Sec. 4.1.2 in Chapter 4.

t1
t2

Au

MO layer, Bi:GIG

substrate, sGGG

Λ r

Figure 5.1: Cross-section of the grating structure.

Table 5.1: Nominal parameters of simple model
χ2 = 0.0103

ϕ0 = 45◦

Λ = 500 nm r = 63 nm
t1 = 100 nm t2 = 3988.4 nm
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Figure 5.2: Comparison between simple model with nominal parameters and ex-
perimental data.
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B. Model with focused beam

In the next step the divergence of the focused beam was introduced into the
model. As was discussed in Sec. 3.2.2 to model data obtained with focusing
probes, it is necessary to fit the angle of incidence ϕ0 and the beam divergence
ϕs. Moreover, we also allow the geometrical parameters of the grating, namely
the period Λ, the grating thickness h1, and the grating opening r, to be fitted. The
cross section of the model is shown on Fig. 5.3. Figure 5.4 shows fitted quanti-
ties N , C, S and comparison between measured and calculated depolarization.
Subplots show that the model matches significant peaks in data with sufficient
precision, but the amplitudes of peaks are not well modulated. The χ2 = 0.0053
is much better than for the previous model. Parameters obtained by the fit are
summed in Tab. 5.2, in which fitted parameters values are emphasized by bold
numbers.

t1
t2

Au

MO layer, Bi:GIG

substrate, sGGG

Λ r

Figure 5.3: Cross-section of the grating structure.

Table 5.2: Fitted parameters of simple model
χ2 = 0.0053

ϕ0 = 45.64◦ ϕs = 2.84◦

Λ = 506.94 nm r = 86.52 nm
t1 = 99.59 nm t2 = 3988.4 nm
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Figure 5.4: Comparison between simple model and experimental data.
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C. Model with surface roughness

In the next step of modeling, we have introduced a surface roughness on the
top of the gold grating. The roughness was simulated as a thin film on the top of
the gold with optical functions described using the Bruggeman effective medium
approximation (BEMA), see Sec. 3.2.3 for definition. We use fixed volume frac-
tion f = 0.5 [105, 127, 128] and the fitted thickness t3. The cross section of the
model is shown on Fig. 5.5. Parameters estimated by previous model were used
as initial values for the fit. Figure 5.6 shows comparison between experimen-
tal data and best fit model. Table 5.3 summarizes fitted parameters. Note that
χ2 = 0.0013 is much smaller than for previous model, which proves necessity to
include roughness.

t3

t1
t2

Au

MO layer, Bi:GIG

substrate, sGGG

Λ r
50% Au/void

Figure 5.5: Cross-section of the grating structure with surface roughness.

Table 5.3: Fitted parameters of model with roughness
χ2 = 0.0013

ϕ0 = 44.38◦ ϕs = 3.11◦

Λ = 502.19 nm r = 76.60 nm
t1 = 92.59 nm t2 = 3988.4 nm
t3 = 15.01 nm
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Figure 5.6: Comparison between model with surface roughness and experimental
data.



5.1. OPTICAL CHARACTERIZATION OF SAMPLES 117

D. Final model of the structure with the residual PMMA

To achieve the best fit of the experimental data, the residual layer of the PMMA
photo-resist was introduced in the model. The dispersion of PMMA resist was
taken from Ref. [129]. The assumption of residual PMMA leads to further re-
duction of χ2 from 0.0013 to 0.0011, therefore we found model good-enough to
describe our experimental data. From the χ2 reduction we can conclude, that
PMMA was really present. The cross section of the model is shown on Fig. 5.7.
Table 5.4 summarizes best-fit parameters (denoted as bold symbols). Note that
total thickness of the grating is given as t1 +

1
2
t3 + t4 = 98.74 nm. The thickness of

the layer representing the surface roughness was taken as the 1
2
t3 due to the fixed

volume fraction f = 0.5 (see Sec. 3.2.3). Figure 5.8 shows very good agreement
between model and data. Moreover, calculated and measured depolarization are
in very good agreement.

t3t1
t4 t2

Au

50% Au/void PMMA

MO layer, Bi:GIG

substrate, sGGG

Λ r

Figure 5.7: Cross-section of the grating structure with surface roughness and
residual PMMA.

Table 5.4: Parameters of the best-fit
χ2 = 0.0011

ϕ0 = 44.33◦ ϕs = 2.91◦

Λ = 502.6 nm r = 78.68 nm
t1 = 68.16 nm t2 = 3988.4 nm
t3 = 13.55 nm t4 = 23.8 nm
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Figure 5.8: Comparison between model with surface roughness and residual
PMMA and experimental data.
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Sensitivity on partial sample illumination

Since the size of the spot of the focused beam is approximately 150µm in di-
ameter and the size of the grating is 350× 350µm, the analysis of possible partial
illumination of the sample has to be done. In order to understand effects of par-
tial illumination of the sample we performed x − y scan over the surface of the
sample. It is known, that partial illumination of the sample and the substrate can
be observed in the Mueller matrix data as the depolarization [106]. Figure 5.9
shows image of fabricated structures (left subplot), and measured depolarization
over surface of the sample (right subplot). The right subplot directly shows, that
minimal depolarization is measured on the grating and on the pure substrate. In
case of partial illumination of the grating (or labels under gratings), the depolar-
ization increases.

Figure 5.9: Left: Photography of fabricated samples with marked area of x − y
scan. Right: measured depolarization at the photon energy of 2.149 eV.
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5.1.3 Comparison between simulated and measured optical

data

In this section we compare measured data on single grating with data cal-
culated from developed model (Fig. 5.7). Best-fit parameters of geometry and
angular spread ϕs were used for simulation and the angle of incidence ϕ0 was
varied from 20◦ to 60◦. Figure 5.10 shows a comparison of the calculated and
measured N , S, and C quantities.

From both measured and calculated data in Fig. 5.10 we can directly distin-
guish dispersive modes and dispersionless modes with respect to the angle of
incidence or thus parallel k vector (close to wavelength of 500 nm, Sec. 4.2.2).
This observation is further used in analysis and estimation of the operational
point of the structure; estimation of the angle of incidence where the coupling of
cavity and plasmon mode increases the MO effect. But before that, the analysis of
all samples and comparison between the measured and calculated MO response
should be done. Detailed description of dispersive and non-dispersive grating
modes is summarized and discussed in the Chapter 4 in the Sec. 4.2 and will be
discussed later in this chapter.
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Figure 5.10: Comparison between calculated (left column) and measured (right
column) quantities N,S,C.
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5.2 Global fit of fabricated samples

In Sec. 3.4 we have described the fabrication process of 15 samples (see sam-
ples layout on Fig. 3.16). Samples with different opening were fabricated by
variation the dose from 900 to 1040 µC/cm2 . The openings r were approximately
estimated from SEM observations. Best fit of the Mueller matrix data measured
on sample p500 1040 shows a difference between the gap estimated from the SEM
and from the model (63 nm vs. 77.4 nm), therefore it was necessary to perform a
fitting procedure of the gaps of all fabricated gratings. To eliminate possible cor-
relations between parameters of the model we performed a global fit. The same
parameter coupling approach was used for the angle of incidence, the angular
spread, the period, and the thickness of the layer representing surface roughness.

The coupling of parameters leads to increase uniqueness of parameters and
eliminates possible correlations between parameters. In the global fit we have
used model of the grating with surface roughness (see Sec. 5.1.2). Despite the
fact, that model with surface roughness and residual PMMA gives the best fit,
we have used model without residual PMMA, because it can describe the struc-
ture with good agreement with less free parameters. Assumption of the residual
PMMA inside the gap would lead to significant increase of free parameters be-
cause the thickness of the PMMA in each grating could be different (i.e. 15 extra
free parameters). Since the sample was fabricated at the same time and under the
same condition, we can expect the same thickness and period of the each partic-
ular grating. Moreover, the Mueller matrix data of all gratings were measured
using the x − y mapping stage, therefore the angle of incidence could be taken
as a common parameter for all spectra. Those preconditions leads to significant
reduction of free parameters. The total number of free parameters of the global
fit was 20. 1

The results of the fit are listed in Tab. 5.5. Fitted angle of incidence, angle of
angular spread, grating thickness and period are almost the same as the values
obtained by single spectra fits presented in the previous section. All fitted pa-
rameters are denoted as bold symbols. The χ2 was calculated separately for each
sample and it shows values comparable to single sample fits. the fitted air-gap
r is compared with SEM observation and comparison with nominal parameters
is included. Fitted air-gap shows the same trend as observed. Figure 5.11 shows
graphically comparison of air-gap r obtained on all samples by SEM and by the
global fit. Figure 5.12 shows the fitted ellipsometric quantity N to the experimen-
tal data. The difference of the air-gap width obtained by SEM and by the global fit
comes from the fact, that SEM observations are local, but the ellipsometric data
represents global response (averaged effect over the size of the spot). The key

1. Assuming N = 25 Fourier harmonics (see Sec. 2.5.2) the fitting procedure costs ≈ 18000
CPU hours, i.e. three day of parallel computing on 256 CPUs.
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information from global fit is, that it shows the same trend of change of the air-
gap as was observed by the SEM. Moreover, with the fitted parameters we can
reproduce each measured spectra as Fig. 5.12 shows.

Table 5.5: Parameters of the global fit
common fitted parameters: ϕ0 = 43.33◦ ϕs = 3.05◦ Λ = 502.4 nm

t1 = 95.3 nm t2 = 3988.4 nm t3 = 12.7 nm
nominal parameters: ϕ0 = 45◦ ϕs = 3◦ Λ = 500 nm

t1 = 100 nm t2 = 3988.4 nm t3 = 0 nm

sample: rSEM nm rfit nm χ2

1. p500 1040 63 77.4 0.002
2. p500 1030 66 78.4 0.0015
3. p500 1020 72 87.7 0.0016
4. p500 1010 96 115.1 0.0018
5. p500 1000 92 84.1 0.0020
6. p500 990 96 101.5 0.0013
7. p500 980 97 115.3 0.0016
8. p500 970 110 116.3 0.0014
9. p500 960 110 119.0 0.0016

10. p500 950 116 120.7 0.0017
11. p500 940 130 120.8 0.0016
12. p500 930 114 134.5 0.0014
13. p500 920 137 137.1 0.0016
14. p500 910 142 147.1 0.0017
15. p500 900 145 147.3 0.0016
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Figure 5.11: The openings r estimated by SEM and by global fitting procedure are
compared.
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Figure 5.12: Ellipsometric quantity N obtained by global fit procedure on 15 sam-
ples is compared with experimental data.
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5.3 Transverse magneto-optical response of the sam-

ple

This section is focused on the analysis of the magneto-optical response of the
structure. The magneto-optical response is calculated using the model with resid-
ual PMMA described in Sec. 5.1.2 and magnetooptical constants of Bi:GIG deter-
mined in Sec. 3.3 (Fig. 3.14). To quantify the MO response in the transverse
configuration, we define δR quantity as follows :

δR =
Rp

Rs

(
+M sat.

x

)
− Rp

Rs

(
−M sat.

x

)
, (5.4)

where ratio Rp/Rs is directly related to the ellipsometric angle ψ [Eq. (5.3)] and
±M sat.

x represents saturation magnetization in transverse magneto-optical config-
uration. For the MO measurements we have used the same in-plane magnet as
applied for the MO characterization of the Bi:GIG layer. In order to reduce noise
in the data, we averaged three spectra for each orientation of the same magneti-
zation.

5.3.1 Comparison between measured and simulated magneto-

optical response

In the first step the model is compared with measured MO data. The MO data
were obtained for the same configuration of the ellipsometer, therefore we can di-
rectly use the already fitted model 2. Figure 5.13 shows on the left subplot a com-
parison of the relative reflectivity Rp/Rs between measured data and model. The
calculated s-reflectivity flat specrum (green line) is included to demonstrate, that
all key-features appear for p-polarization. The right subplot shows the calculated
and the measured MO quantity δR. This illustrates how the model describes the
MO response in a very good agreement. Thus we can use the model to determine
the origin of the MO effect by field distribution plots, calculate MO response for
different angle of incidence, etc.

Figure 5.14 shows a comparison between measured and calculated MO effect
δR as a function of wavelength and incident angle. Experimental data were ob-
tained by a scan over the wide interval of the angle of incidence from 20◦ to 60◦

with the step of 0.5◦. The experimental data (right subplot) are compared with
the model (left subplot). Figure gives an important information about the ampli-
tude of the MO effect as a function of the angle of incidence. Maximal MO effect
was measured (right subplot) for the angle of incidence in interval from 40◦ to

2. In the first part of the experiment we performed optical measurements. After that the mag-
net was installed without any mechanical manipulation of the ellipsometer.
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Figure 5.13: Left: comparison between calculated and measured relative reflec-
tivity Rp/Rs. Right: Comparison between measured and calculated MO effect.

50◦ and close to 20◦. For further analysis both interesting points have pros and
cons. Disadvantage of the maximum of the MO effect around 45◦ is that different
plasmon modes interact at this point. Therefore the analysis of MO behavior is
not straightforward. Moreover, we have already noticed (in Sec. 5.1.3) that cavity
mode is excited in region of shorter wavelengths, around 500 nm. Thus the MO
data measured close to the angle of incidence of 20◦ represent the simple case
of this coupling just between the cavity mode with a single plasmon mode. The
analysis of coupling is presented in the next section.

Figure 5.14: Measured and calculated MO effect as a function of the wavelength
and the angle of incidence are compared.
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5.3.2 Incident angle estimation for the maximal coupling ef-

fect

In this work we are mainly interested in the coupling between the surface
plasmon and cavity mode and more importantly what impact this coupling has
on the MO effect. As was shown in the previous section (on the experimental and
the numerical data), the maximal MO response is achieved for angles of incidence
around 20◦ and around 45◦. Figure 5.15 shows the measured map of the relative
reflectivityRp/Rs and the MO effect δRp/Rs. On the left subplot we clearly recog-
nize curved dispersion curves of surface plasmons and flat (dispersionless) cavity
modes. The evolution of the relative reflectivity and the MO effect for angles of
incidence of 20◦, 30◦, and 45◦ is shown on Fig. 5.16 and the spectral position of
main peaks are marked.

Figure 5.15: Measured map of the relative reflectivity (left) and the MO effect
δRp/Rs for the angle of incidence from 20◦ to 60◦.

Figure 5.16 shows the different shape of two main MO peaks: blue (for 20◦),
red (45◦). At the 20◦ the MO effect switches sign from negative to positive when
increasing the wavelength starting at the plasmon resonance. For the SPP at
45◦ this switching behavior is reversed. This is explained by different order of
plasmon mode. The blue curve represents +2nd and the red one represents −1st

plasmon mode. For the definition of the order of plasmon mode see (4.14), the
opposite sign change is described by (4.25).

Figure 5.17 shows the distribution of the field components Hx calculated for
the three main peaks at 747 nm, 786 nm, 886 nm ( marked on Fig. 5.16). The first
subplot (left) shows field enhancement both at the grating-Bi:GIG interface and
inside the grating cavities. The second subplot shows relatively small field en-
hancement in Bi:GIG, which is in accordance with weak measured MO response.
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Figure 5.16: Relative reflectivity and MO effect measured at angles of incidence
of 20◦, 30◦, and 45◦.

Figure 5.17: Field component Hx distribution calculated at the wavelength of
741 nm, 786 nm, and 886 nm ad the angle of incidence of 20◦, 30◦, and 45◦, re-
spectively.

Finally, third subplot shows field enhancement at the Bi:GIG and inside the cav-
ity which also leads to significant MO response. Moreover, the fieldplot shows
field concentration on at the top side of the grating, which is related to the (par-
tial) plasmon excitation at the top of the grating at the gold-air interface. Thus
the field enhancement inside the cavity is not given as resonant cavity mode it-
self, but as an energy channel. Because of the complicated behavior for 45◦, we
have decided to study the less complicated situation of two modes coupling at
the angle of incidence of 20◦.
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5.4 Impact of modes coupling to optical and MO re-

sponse

In this section the impact of interaction between surface plasmon and cavity
mode is analyzed. In the first part we experimentally confirm previous theoretical
results on coupling between SPP and cavity modes. We demonstrate both exper-
imentally and by the model how the position of the plasmon peak is affected by
variation of the width of the air-gap r. The same procedure is then repeated for
the analysis of the MO response. The model used for the simulations was based
on the real structure parameters obtained from the global fit in Sec. 5.2. Only the
angle of incidence ϕ0 = 20◦ was used instead of fitted one and the opening r was
varied. By the global fitting procedure we have obtained systematic change of
the grating air gap with a good armament with the SEM observation (Fig. 5.11
and Tab. 5.5). Therefore in following simulations we use equidistant change of
the value and compare the result with the measured drift of the peaks. As was
mentioned in previous section, for the incident angle of 20◦ (and principally be-
low) only single surface plasmon mode and cavity mode interacts, which makes
analysis less complicated.

5.4.1 Effect of modes coupling observed in relative reflectiv-

ity spectra

Figure 5.18 shows a zoom of the relative reflectivity Rp/Rs near the +2nd plas-
mon peak at 730 nm. A blue shift of the plasmon peak for increasing width of
the air gap r. Obtained experimental data are compared with simulations on the
right subplot and the same shift is observed. Therefore we can conclude that the
shift originates from the change of the grating’s geometry and it is not artificial
effect from experiment (system alignment etc.).
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Figure 5.18: Zoom of the plasmon peak at ϕ0 = 20◦. Experimental data obtained
on samples with different dose (left subplot) are compared with numerical data
obtained for different opening r. Measured systematic change of the peak width,
amplitude, and a blue-shift of spectral position of the plasmon peak is in good
agreement with a numerical data (right subplot).

5.4.2 Experimental observation of TMOKE switching

In Chapter 4 in Sec. 4.5 we have predicted possible switching of the TMOKE
by optimization of the grating air gap. This was predicted Fig 4.22 (which is re-
peated below and was calculated for the ϕ0 = 10◦). At this point we prove the
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Figure 5.19: Left: Detail of the TMOKE spectral dependence ∆Rp for the grating
air gap h1 from 20 nm to 120 nm and period Λ = 500nm. Right: Switching of the
TMOKE sign at fixed photon energy 1.74 eV (712 nm) by variation of the gratin
air gap width.
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Figure 5.20: Trend of the MO peak shift measured on 15 samples with various
opening r is compared with systematic shift obtained by simulations.

predicted phenomena by the experimental observations. As the firs step we have
used developed the model of the structure (described in Sec. 5.1.2) and recal-
culate MO response as the function of the grating air gap. For the experimental
confirmation we have measured MO response of fifteen samples, analyze the drift
of the MO peak, and compared with the numerical data. Moreover, the bottom
subplot shows the measures switching phenomena at the fixed photon energy
1.68 eV.

Figure 5.21 shows on the left subplot zoom on MO peaks calculated for dif-
ferent widths of the air gap. The blue shift of the MO peak is clearly visible. The
right subplot shows zoom on measured MO peaks on different samples (with
different width of the air gap). The subplot clearly demonstrate the blue shift
of the MO peak by the increasing air gap, which is in good agreement with the
predictions.
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Figure 5.21: Detail on MO peak at ϕ0 = 20◦. The numerical data obtained for
different opening r (right subplot) are compared with the experimental data ob-
tained on samples with different dose. Measured systematic change of the peak
width, amplitude, and a blue-shift of spectral position of the plasmon peak are in
good agreement with a numerical data (right subplot).

These magneto-optical observations confirm the presented theory of the TMOKE
geometrical tuning in the 1D magnetoplasmonic grating.
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5.5 Conclusion of the chapter

The main result of this chapter and the main result of this thesis is experi-
mental confirmation of previously predicted TMOKE tuning or even inverting
(without magnetization inverting) by a proper adjusting of the grating geome-
try. For conclusive demonstration of the phenomena we have presented detailed
process of optical characterization of the fabricated structures. The developed ad-
vanced model assuming the experimental angular spread of the incidence Gaus-
sian beam also contributed to this and allowed to explain the presence of interfer-
ence fringes in the Mueller spectra. The described technique is a generic tool that
can be used to study magneto-optic structures in many different configurations
or geometries.
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Achieved results and Perspectives

Achieved results

Objective of this work was the study of TMOKE response of the 1D periodic
magnetoplasmonic gratings, analysis of resonant modes, and impact of their cou-
pling to the enhancement of the TMOKE. Achieved work and results can be sum-
marized in four groups:

1. Coupling of cavity and plasmon modes in magnetoplasmonic structure
– The main result of this work is explanation and experimental confirma-

tion of new observed phenomena of the TMOKE enhancement and it was
demonstrated how the sign of the TMOKE can be reversed without change
in magnetization. Numerically this phenomena was explained as the ef-
fect of interaction between grating resonances (cavity and surface plasmon
modes) and it was demonstrated how the TMOKE can be tuned via slight
adjustment of the grating geometry (Chapter 4, Section 4.3) – published
in [65, 66].

– To confirm theoretical results a set of fifteen real magnetoplasmonic grating
was fabricated by electron beam lithography and lift off technique. Magneto-
optic response of the samples was measured with Mueller matrix ellipsome-
ter and the experimental data prove predicted effect with very good agree-
ment (Chapter 5, Section 5.4).

2. Determination of optical and magneto-optical spectra of used materials:
– Optical functions of material used for fabrication of samples were fitted

from Mueller matrix reflection and intensity transmission spectra (Chapter
3, Sections 3.2.3 - 3.2.4 ) – published in [130].

– Depolarization effects introduced by ellipsometric setup, finite spectral res-
olution, and focusing of the beam were analyzed (Chapter 3, Section 3.2.2).

– Mueller matrix ellipsometer was extended with in-plane permanent magnet
controlled by PC. The magnet was used for characterization of MO prop-
erties of Bi:GIG and for MO experiments on magnetoplasmonic gratings
(Chapter 3, Section 3.2.5 – published in [131].

3. Development of advanced models of real fabricated magnetoplasmonic
structures:

– Model of the 1D plasmonic grating assuming fabrication imperfections, like
a surface roughness on a top of the grating and residual PMMA photo resist
inside the grating air gaps and divergence of the focused beam, was devel-
oped. The developed model gives very good agreement between measured
and calculated MO data (Chapter 5, Section 5.1.2), – published in [131]

– To characterize widths of air gaps over whole set of fifteen fabricated sam-
ples, a global fit with coupled common geometrical parameters was per-
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formed. Obtained air gaps by fitting show the same trend as air gaps deter-
mined by the SEM observations (Chapter 5, Section 5.2).

4. Development of software for modeling of grating
– New software program for modeling optical response of the one-dimensional

periodic grating based on RCWA was developed in MATLAB and opti-
mized for parallel solution of spectral problems.

– The parallel implementation of the code was optimized and linear scalabil-
ity up to 256 cpus was achieved for problems of spectral simulations with
included divergence of focused beam (using supercomputing center IT4I).
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Perspectives

Though in this thesis we have successfully designed some experiments to con-
firm aspects of some predicted results, there are indeed a large number of poten-
tially interesting future studies. Here only a small selection of ideas is listed.

For example, in the Chapter 4 we have predicted the coupling between SPP
and cavity modes via the grating thickness and air gap width variation. However
experimental samples fabricated by method described in Chapter 3 confirm only
predictions on grating air gap variation. It would be great to analyze the cou-
pling and compare the magneto-optical response obtained by the grating thick-
ness variation. Samples for this experiments were already fabricated.

In addition the structures studied in this thesis are one dimensional, per-
fectly rectangular and were studied in the planar diffraction configuration and
the transverse magnetization. The most obvious future work is to extend to the
conical diffraction configuration, to the 2D periodic structures and to the study of
effects for the longitudinal or polar magnetization. The conical diffraction config-
uration should be promising for precise optical characterization and for study of
nonreciprocal mode-conversion. These 2D structures should also have interest-
ing optical properties in both the reflection and the transmission configuration.
Study of the structures with conical profile could bring new effects in tuning of
the cavity modes and an important information about fabrication process itself.

The next direction of research was opened by the theoretical proposition of
the waveguide structure. Further study and optimization of the structure is ob-
vious. The structure should be designed from compatible (from fabrication point
of view) materials and it should operate for the fundamental guided mode. The
integrated device may operate as an optical isolator or modulator, depending on
fixed or modulated magnetization.

At last but not least the transfer of the presented theoretical and experimental
results on magnetoplasmonic structures into far infrared and THz domain could
be useful in the design of new optical components.
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A Parallel implementation of the RCWA

Our implementation of the RCWA was done in MATLAB software. For paral-
lelization we have used the Matlab Distributed Computing Engine, Matlab Dis-
tributed Computing toolbox and OPEN MPI library for communication between
nodes over InfiniBand network. The code was optimized for supercomputing
cluster Anselm in the frame of software resources of IT4Innovation National Su-
percomputing Center.

Efficiency of our parallel implementation of the RCWA is demonstrated on
the developed model of the plasmonic grating in Chapter 5. Figure A.1 shows the
cross-section for the structure used for testing of the code efficiency. In the testing
we have consider model with the following parameters: Λ = 500 nm, r = 75 nm,
t1 = 90 nm, t2 = 4000 nm, t3 = 15 nm, φ0 = 45◦, 30 Fourier harmonics (N = 30,
see Sec. 2.5.2), and for the spectral domain with 1088 points of wavelength range
from 210 nm to 1700 nm. 1

t3

t1
t2

Au

MO layer, Bi:GIG

substrate, sGGG

Λ r
50% Au/void

Figure A.1: Cross-section of the grating structure with surface roughness used for
analysis of the parallelization efficiency.

A.1 Parallelization and scalability

In the spectral simulations each spectral point represents individual and in-
dependent eigenvalue problem. Than a proper parallelization of the code may
strongly reduce required computing time. Our implementation of the parallel
RCWA was done in the sense divide et impera, when the spectral problem is split
into set of spectral subploblems. Each of subploblems represents a few individ-
ual eigenvalue problems which are solved one-by-one on a single core. Figure A.2
shows the parallelization approach schematically. The method of parallelization
based on splitting into subproblems reduces required communication time be-
tween computing nodes significantly. This approach gives better efficiency than
method when each of spectral points is solved separately as a subproblem. We

1. Number of the spectral points corresponds to spectral resolution of the used Mueller matrix
ellipsometer.
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Figure A.2: Single spectrum parallelization.

have test the code for the introduced structure and for spectral domain contain-
ing 1088 points. By the numerical testing we found almost linear reduction of
computing time up to 64 parallel jobs, i.e. 64 cores. Figure A.3 shows comparison
of ideal linear scaling (red line) when computation on 64 cores need 1/64 comput-
ing time of a single-core simulation, and measured scaling of our code. Further
increase of number of parallel jobs decrease ration between communication and
calculation time and the efficiency decreases.
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Figure A.3: Scalability of single spectra problem.

In the next step of the code parallelization we have use an advantage of the
Mueller matrix simulations of the divergent incident beam described in Sec. 3.2.2.
For this type of simulation, the spectrum of Mueller matrix needs to be recalcu-
lated for each partial angle from the interval of incident angles. According to
our numerical experiments the assumption of 11 partial beams within the inter-
val ϕ0 − ϕsto ϕ0 + ϕs is sufficient to describe the depolarization effect originating
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from the focused beam. The benefit on the Mueller matrix simulations of the di-
vergent beam comes from the fact, that the result is achieved as a weighted sum
of a partial Mueller matrix spectra.

Figure A.4 shows used parallelization approach schematically. In the first
step, 11 partial spectral problems are defined. In the second step each spectral
problem is split into set of the subproblems. Each subproblem represents part
individual part of whole spectrum and one partial angle of incidence. All sub-
problem sets are collected and in the next step distributed for parallel execution.
With described approach we have improved scalability of our code up to 256

Parent problem:
Splitting into individual spectral
problems according to angular
spred, bandwidth, etc.

individual spectral
problem

individual spectral
problem

subproblem

subproblem

subproblem

subproblem

subproblem

subproblem

subproblem

subproblem subproblem

Parallel execution of partial spectral subproblems

Figure A.4: Multiple spectra parallelization.

cores. Figure A.5 shows comparison between ideal linear and measured scaling
of our code.
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Figure A.5: Scalability of spectral problem assuming beam divergence.
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Used abbreviations and symbols

RCWA Rigorous Coupled Waves Analysis
MO Magneto-Optical
TMOKE Transverse Magneto-optical Kerr Effect
LPE Liquid Phase Epitaxy
MZI Mach-Zender Interferometer
MMI Multi-Mode Interference
SOI Silicon-On-Insulator
SEM Scanning Electron Microscopy
SPP Surface Plasmon Polarion
FP Fabry-Perot
TE Transversal Electric polarization
TM Transversal Magnetic polarization
KK Kramers-Krönig
BEMA Bruggeman Effective Medium Approximation
MIBK Methyl Isobutyl Ketone
IPA Isopropyl Alcohol

× cross product
∇· divergence operator
∇× curl operator
⌈.⌉ Fourier coefficients vector with respect to y axis
⌈⌈.⌉⌉ Toeplitz matrix of Fourier coefficients respect to y axis
ℜ real part
ℑ imaginary part
δij Kroenecker symbol
⊗ Kronecker product
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E(r, t) electric field vector
H(r, t) magnetic field vector
D(r, t) electric displacement
B(r, t) magnetic flux density
ρ(r, t) charge density
j(r, t) current density vector
P(r, t) polarization volume density vector
M(r, t) magnetization volume density vector
E′(r, t) normalized electric field vector
H′(r, t) normalized magnetic field vector
e electric field polarization vector
h magnetic field polarization vector
e′ normalized electric field polarization vector
h′ normalized magnetic field polarization vector
E0 electric field vector amplitude
H0 magnetic field vector amplitude
E0

′ normalized electric field vector amplitude
H0

′ normalized magnetic field vector amplitude
ǫ̂ electric permittivity tensor
ǫ̂′ complex electric permittivity tensor
χ̂e electric susceptibility tensor
σ̂ electric conductivity tensor
ǫ̂R relative permittivity
ǫi,j components of permittivity tensor
ǫ0 free space electric permittivity
µ0 free space magnetic permeability
M magnetization vector
Kijk components of linear magneto-optic tensor
r space position vector
x, y, z space coordinates
t time
i imaginary unit
k wavevector
k0 free space wave vector amplitude
ν normalized wave vector
ω angular frequency
λ wavelength
f fill factor
Λ grating period
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Q vector of linear magneto-optical parameters
d(n) thickness of the n-th layer
ϕ0 angle of incidence
σmax maximal singular value
ψ ellipsometric amplitude angle
∆ ellipsometric phase angle
rij reflection coefficient
tij transmission coefficient
Rij reflectivity matrix components
T total transfer matrix
S total scattering matrix
I unity matrix
C matrix of eigenvalues problem
V eigenvalue matrix
V(n) eigenvalue matrix in n-th medium
T eigenvectors matrix
T(n) eigenvectors matrix in n-th medium
F Fourier base vectors diagonal matrix
P propagation matrix
Pup upwards propagating modes propagation matrix

P
(n)
down

downwards propagating modes propagation matrix

p
matrix of normalized wave vectors x axis tangential
components

q
matrix of normalized wave vectors y axis tangential
components

B
matrix relating continuous and discontinuous components
of electric field and electric displacement

Q
matrix representing permittivity of the grating after FF
applied in y direction

A amplitudes vector
Aup upwards propagating modes amplitudes vector
Adown downwards propagating modes amplitudes vector
M Mueller matrix
Mij Mueller matrix components
Pq depolarization index
Mdiff. differential Mueller matrix
Eph photon energy
neff effective index
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alized ellipsometry of anisotropic samples”. In: Annual Proceedings of Science
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L. Halagačka, K. Postava, F. Vaurette, J. Ben Youssef, B. Dagens, and J. Pištora,
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González, J. B. González-Dı́az, E. Ferreiro-Vila, and J. F. Torrado, “Magne-
toplasmonic nanostructures: systems supporting both plasmonic and mag-
netic properties,” J. Opt. A: Pure Appl. Opt. 11, 1464–4258 (2009).

[55] V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K.
Zvezdin, “Extraordinary transmission and giant magneto-optical trans-
verse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B
26, 1594–1598 (2009).

[56] V. Belotelov, I. Akimov, M. Pohl, V. Kotov, S. Kasture, A. Vengurlekar,
A. Gopal, D. Yakovlev, A. Zvezdin, and M. Bayer, “Enhanced magneto-
optical effect in magnetoplasmonic crystal,” Nat. Nanotechnol. 6, 370–376
(2011).

[57] A. K. Zvezdin and V. A. Kotov, “Modern magnetooptics and magnetoopti-
cal materials.” (Institute of Physics pub., 1997).

[58] S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface res-
onances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4,
S154–S160 (2002).

[59] F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through
subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).

[60] Y. Ding, J. Yoon, M. Javed, S. Song, and R. Magnusson, “Mapping surface-
plasmon polaritons and cavity modes in extraordinary optical transmis-
sion,” Photonics Journal, IEEE 3, 365 –374 (2011).

[61] F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant trans-
mission through a metallic film due to coupled modes,” Opt. Express 13,
70–76 (2005).

[62] H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission
through subwavelength slits in metallic film,” Opt. Lett. 36, 1308–1310
(2011).

[63] I. A. Akimov, V. I. Belotelov, A. V. Scherbakov, and M. Pohl, “Hybrid struc-
tures of magnetic semiconductors and plasmonic crystals: a novel concept
for magneto-optical devices.” J. Opt. Soc. Am. B 29, A103–A118 (2012).

[64] V. I. Belotelov, D. Bykov, L. L. Doskolovich, N. Kalish, V. Kotov, and
K. Zvezdin, “Giant magneto-optical orientational effect in plasmonic het-
erostructures.” Opt. Lett. 34, 398–400 (2009).
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B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical
characterization of bi-substituted gadolinium iron garnet for application
in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
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