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Abstract

Surface reconstruction from point clouds is a widely explored problem in geometry process-
ing. Although a high number of reliable methods have been developped over the last two
decades, they often require additional measurements such as normal vectors or visibility
information. Furthermore, robustness to defect-laden data is only achieved through strong
assumptions and remains a scientific challenge.

We focus on defect-laden, unoriented point clouds and propose two new reconstruction
approaches designed for two specific classes of output surfaces.

The first method is noise-adaptive and specialized to smooth, closed shapes. It takes
as input a point cloud with variable noise and outliers, and comprises three main steps.
First, we compute a novel noise-adaptive distance function to the inferred shape, which
relies on the assumption that the inferred shape is a smooth submanifold of known dimen-
sion. Second, we estimate the sign and confidence of the function at a set of seed points,
through minimizing a quadratic energy expressed on the edges of a uniform random graph.
Third, we compute a signed implicit function through a random walker approach with soft
constraints chosen as the most confident seed points computed in previous step.

The second method generates piecewise-planar surfaces, possibly non-manifold, repre-
sented by compact triangle meshes. Through multiscale region growing of Hausdorff-error-
bounded convex planar primitives, we infer both shape and connectivity of the input and
generate a simplicial complex that efficiently captures large flat regions as well as small
features and boundaries. Imposing convexity of primitives is shown to be crucial to both
the robustness and efficacy of our approach. We provide a variety of results from both
synthetic and real point clouds.
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Introduction (français)

Au cours des vingt dernières années, de nombreux algorithmes de reconstruction de surface
ont été développés. Néanmoins, des données additionnelles telles que les normales orientées
sont souvent requises et la robustesse aux données imparfaites est encore un vrai défi.

Dans cette thèse, nous traitons de nuages de points non-orientés et imparfaits, et pro-
posons deux nouvelles méthodes gérant deux différents types de surfaces.

La première méthode, adaptée au bruit, s’applique aux surfaces lisses et fermées. Elle
prend en entrée un nuage de points avec du bruit variable et des données aberrantes,
et comporte trois grandes étapes. Premièrement, en supposant que la surface est lisse
et de dimension connue, nous calculons une fonction distance adaptée au bruit. Puis
nous estimons le signe et l’incertitude de la fonction sur un ensemble de points-sources, en
minimisant une énergie quadratique exprimée sur les arêtes d’un graphe uniforme aléatoire.
Enfin, nous calculons une fonction implicite signée par une approche dite random walker
avec des contraintes molles choisies aux points-sources de faible incertitude.

La seconde méthode génère des surfaces planaires par morceaux, potentiellement non-
variétés, représentées par des maillages triangulaires simples. En faisant croitre des prim-
itives planaires convexes sous une erreur de Hausdorff bornée, nous déduisons à la fois la
surface et sa connectivité et générons un complexe simplicial qui représente efficacement
les grandes régions planaires, les petits éléments et les bords. La convexité des primitives
est essentielle pour la robustesse et l’efficacité de notre approche.

v



vi



Résumé (français)

Nous présentons deux nouveaux algorithmes de reconstruction de formes à partir de nuages
de points bruts. Le premier est adaptatif au bruit et s’applique aux surfaces lisses fermées,
tandis que le second produit des surfaces planes par morceaux avec bords en décomposant
le nuage de points en primitives convexes et planes.

Reconstruction adaptative au bruit

Fonction distance adaptative au bruit

Mullen et al. [64] ont proposé un algorithme de reconstruction de forme basé sur cette
fonction distance robuste [23] :

d2
µ,m0(x) = 1

m0

�

B(x,rµ,m0 (x))
�x − y�2dµ(y).

où µ est une mesure de second moment fini, i.e., avec un support fini sur son domaine
de définition, w est un point de requête et m0 est un paramètre d’échelle.

Nous étudions le comportement de cette fonction dans deux cas particuliers. Dans le
cas d’un bruit ambiant dans un espace de dimension d, cette fonction se simplifie :

d2
µ,m0 = c1m

2/d
0 .

Pour un point de requête fixé, dµ,m0 est proportionnel à m
1/d
0 . Pour un paramètre

α > 1/d, dµ,m0
mα

0
est donc décroissant avec m0. Cette fonction atteint son minimum quand

toute la masse de µ est incluse dans m0.
Considérons maintenant le cas d’une mesure uniforme sur un sous-espace de dimension
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k dans un espace de dimension d. La fonction distance dépend de la distance h entre un
point de requête x et ce sous-espace :

d2
µ,m0 = h2 + c2m

2/k
0 .

Pour un point de requête fixé, dµ,m0 est proportionnel à m
1/k
0 . Pour un paramètre

α < 1/k, dµ,m0
mα

0
est donc croissant avec m0.

Un cas réaliste est un mélange de ces deux cas particuliers :

• lorsque l’échelle m est plus faible que la dimension apparente, dµ,m

mα se comporte de
la même manière que dans un bruit ambiant et est décroissant avec m ;

• lorsque l’échelle m est plus grande que la dimension apparente, dµ,m

mα se comporte de
la même manière qu’avec un sous-espace de dimension k et est croissant avec m.

L’échelle m où dµ,m

mα atteint son minimum est l’échelle locale, et dµ,m

mα est alors la valeur
de la fonction adaptative au bruit. Plus précisément, cette fonction adaptative est définie
de cette manière :

δµ,α = inf
m0>0

dµ,m0

mα
0

,

où α est un paramètre dépendant uniquement de la dimension (3/4 pour une courbe
en 2D ou 5/12 pour une surface en 3D).

La fonction dµ,m étant 1√
mO

-robuste, cette fonction δµ,α conserve les propriétés ro-
bustesse à condition d’imposer une borne inférieure à m0 (6 points en pratique). Elle est
calculée rapidement à l’aide d’une approche multiéchelle et est stockée sur une triangulation
de Delaunay adaptée.

Suppositions de signes

Afin de signer la fonction adaptative au bruit, il est nécessaire d’effectuer des suppositions
de signes. Nous proposons une généralisation de la méthode consistant à tirer des rayons
en utilisant des segments.

Considérons un segment entre deux points arbitraires de l’espace. Pour estimer s’ils
sont du même côté de la forme (à l’extérieur ou à l’intérieur), il faut calculer la parité du
nombre de fois que la forme est croisée. Les valeurs de la fonction adaptative dépendant
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du niveau local de bruit, il est impossible d’utiliser un seuil. Au lieu de cela, nous utilisons
l’hypothèse que la fonction signée doit être la plus lisse possible : en essayant d’inverser
le sens de variation de la fonction à chaque minimum local le long d’un segment, nous
choisissons la solution la plus lisse.

Ces hypothèses de signe sont locales et relative. Afin d’obtenir une solution globale
et absolue, nous utilisons un graphe définie sur une grille régulière couvrant l’espace. Des
arêtes (i, j) sont tirées aléatoirement et signées avec la méthode décrite ci-dessus. L’énergie
suivante est minimisée :

EG(f) =
�

(i,j)∈G

(si + εi,jsj)2,

où εi,j sont les hypothèses de signe sur les arêtes et si les signes des nœuds du graphe.
Un solveur linéaire permet de minimiser EG(f) et de signer les nœuds du graphe.

Signer la fonction distance

Grâce aux suppositions de signes calculées précédemment, nous signons la fonction adapta-
tive δµ,α. Nous utilisons une approche de marche aléatoire ([40]) afin de minimiser l’énergie
suivante :

Eg,T =
�

Ω
w(x)|∇g(x)|2dx,

avec g la fonction implicite signée et

w(x) =





δµ,α(x) si K(x) < Kmax

+∞ sinon

Cette énergie est également minimisée grâce à un solveur linéaire.

Résultats & conclusion

Les résultats sont visibles Section 5.4. Cette méthode ne nécessite aucune information
supplémentaire (vecteurs normaux...), est robuste au bruit, aux données aberrantes, aux
données manquantes et s’adapte automatiquement à de multiples niveaux de bruits. Elle
passe à l’échelle, ne nécessitant que deux solveurs linéaires sur des matrices creuses.
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Les deux contributions principales sont la fonction adaptative au bruit et la méthode
de signature de la fonction basée sur des segments.

Reconstruction plane par morceaux

Approximation

Cette seconde méthode utilise une approximation du nuage d’entrée à l’aide de primitives
convexes planes. Une primitive Πi est définie par :

• son sous-ensemble d’inliers Pi ;

• son plan support Si calculé par analyse en composante principale de Pi ;

• l’enveloppe convexe 2D des projections de Pi sur Si.

Afin de quantifier la qualité de l’approximation offerte par ces primitives, nous utilisons
une distance de Hausdorff symétrique :

dH(Πi, Pi) = max{ sup
a∈Πi

�
inf

b∈Pi

d(a, b)
�
, sup

b∈Pi

�
inf

a∈Πi

d(a, b)
�

},

où d(a, b) est la distance euclidienne. Cette métrique peut-être décomposée en deux :

• H(Pi, Πi) = supb∈Pi
infa∈Πi d(a, b) est la distance maximale depuis Pi vers sa primi-

tive associée : elle mesure un niveau de bruit ;

• H(Πi, Pi) = supa∈Πi
infb∈Pi

d(a, b) est la distance maximale depuis une primitive vers
ses inliers : elle est liée à la densité d’échantillonnage.

Cette distance de Hausdorff est calculée par division récursive de la triangulation de
Delaunay d’une primitive.
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Algorithme grossier vers fin

Nous proposons un algorithme de construction de ces primitives efficace du grossier vers
le fin. Le nuage de points d’entrée est pré-traité avec un algorithme de partition hiérar-
chique [68] : plusieurs échelles sont stockées, l’indice i = 0 correspond à l’échelle la plus
fine (nuage d’entrée). Chaque point d’une échelle supérieure est associé à une mesure de
planarité basé sur l’analyse en composante principale de son sous-ensemble de points :

sv(c) = λ0
λ0 + λ1 + λ2

.

Construction de primitives

L’algorithme de construction des primitives peut être résumé de cette manière :

1. initialiser Πi sur l’échelle non-vide la plus grossière ;

2. aller à l’échelle immédiatement plus fine ;

3. trouver les inliers du plan support de Πi à cette échelle ;

4. faire grossir Πi en se basant sur ces inliers ;

5. retirer tous les inliers de Πi trouvé à l’échelle courante ;

6. revenir à l’étape 2 s’il reste des points.

Détection d’adjacences

Les adjacences entre primitives sont détectées en échantillonnant leurs bords et en insérant
des coins lorsque des échantillons deviennent proches d’autres primitives. Afin de gérer
les cas non-variétés, des échantillons additionnels peuvent être insérés à l’intérieur des
primitives.

Les coins sont ensuite fusionnés s’ils sont plus proches que la tolérance d’échantillonnage
donnée. Les positions des sommets obtenus sont optimisés au sens des moindres carrés avec
les bords des primitives.
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Maillage

Le maillage des primitives est réalisé à l’aide de triangulation de Delaunay contraintes
2D. Les bords des primitives deviennent des bords contraints, et les cas non-variétés sont
insérés comme sommets internes et comme arêtes internes contraintes.

Résultats & conclusion

Les résultats sont donnés Section 9.7. Cette méthode est robuste au bruit et à un échan-
tillonnage non-uniforme, tant que ces deux défauts restent en-dessous des tolérances Haus-
dorff données.

Nos contributions sont un algorithme d’approximation de nuage de point avec bornes
d’erreur globales garanties ainsi qu’un algorithme de reconstruction basé sur cette décom-
position convexe efficace du nuage de points d’entrée.
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Notations

Input
d Dimension of the space (in our context, d = 2 or 3).
k Dimension of the inferred shape (in our context, d = 1 or 2).
n Number of points in the point cloud.
P = {pi}i∈[1:n] Point cloud.
Pi Point subset.
N = {ni}i∈[1:n] Set of normal vectors (pi has normal vector ni).
V = {vi}i∈[1:n] Set of visibility vector (pi has visibility vector vi).
µ Discrete measure

Scale
s Global scale.
s(q) Local scale at query point q.
m0 Global scale in the sense of a subset of distribution µ.
m(q) Local scale in the sense of a subset of distribution µ at query point q.
K Global scale in the sense of a number of nearest neighbors.
K(q) Local scale in the sense of a number of nearest neighbors at query point q.
NK(q) Set of K nearest neighbors of query point q.
εS Sampling tolerance.
εN Noise level tolerance.

Data structures
CH(P) Convex hull of P.
Del(P) Delaunay triangulation of P.
Vor(P) Voronoi diagram of P.
Πi Primitive associated to point subset Pi.
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1
Introduction

1.1 Shape Reconstruction

1.1.1 Motivation

Initially tackled in computational geometry, the shape reconstruction problem has spread
to a wider diversity of communities over the last two decades. As the number of applications
increases, so do the scientific challenges raised by the digitization of the world.

One motivating application depicted by Figure 1.1 is cultural heritage: scanning and
reconstructing pieces of art, antiques or historical monuments, for the sake of archives
and collective memory. For this class of application, the reconstruction pipeline must be
accurate and reliable, the same way a photography should provide a faithful representation
of a painting.

The scope of shape reconstruction is wider than archiving. It also significantly helps
reverse engineering processes, where the quality of the reconstruction is a strong require-
ment. Such quality requirement becomes crucial for medical simulation, for example with
patient-specific anatomical modeling.

Finally, the automatic modeling of urban scenes from acquired geometric data sets is
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Figure 1.1: Cultural heritage [48]. Reconstruction of Michelangelo’s David.

used for an increasingly wide range of applications. For example, Google Earth has included
for a few versions now automatically reconstructed 3D models of some big cities as shown
on Figure 1.2.

Shape reconstruction is still a scientific challenge as it raises a number of open problems
relating to geometric modeling and information processing. The problem of converting dis-
crete samples to a continuous shape cannot be handled directly and has to be considered
with specific a priori and assumptions. Furthermore, the need for efficient shape recon-
struction dealing with massive data sets grows stronger.

Finally, it is still a topic of interest as it relates to many other scientific challenges, such
as shape detection, dimension and topology detection, object classification and information
theory.

1.1.2 Wide Context

The literature on the topic is wide. The keywords “surface reconstruction” are found in the
title of around 7, 300 articles indexed on Google Scholar. This is a consequence of the wide
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Figure 1.2: Google Earth. Screenshot from the Google Earth software of a reconstructed
scan of Place Massena in Nice, France.

range diversity of use cases: from organic to man-made point clouds, through architectural,
urban or indoor environment and computer-aided design (CAD).

The range of defects in the measurement data is also wide: noise, outliers and non-
uniform sampling. Solutions to handle one or several of these defects have been contributed
in the past decade often at the cost of some additional requirements: normal vectors,
visibility information or color attributes.

The output reconstruction may also have to fulfill a set of specific requirements: cultural
heritage requires high fidelity to the scanned object, whereas large scale urban scenes should
be reconstructed with some level of abstraction in the form of a low number of primitives.
If reconstruction is a first step for medical simulation, emphasis is put on the faithfulness
of to the geometric properties such as topology or watertightness.

1.1.3 New Context

Over the last few years, the context of shape reconstruction has changed. Although sensors
are constantly evolving and technical advances are regularly made in acquisition devices,
the proliferation of low-cost various sources has led to novel challenges.

The Microsoft Kinect is a typical example: a cheap device accessible to general audience
(part of a video game console) that acquires point clouds with very particular defects. These
point clouds contain for instance noise depending on the materials of the scanned objects,
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and growing rapidly with depth.
Point clouds acquired from various sensors can be merged to produce a single larger

point cloud, resulting in scenes with heterogeneous defects and major registration problems.
Super-resolution is the research field that tackles these issues.

With the booming of social networks, community data is also becoming a facet of the
problem that cannot be ignored, providing huge databases of point clouds with no control
on the acquisition process.

This new context also brings new directions to shape reconstruction. Because of the
loss of control of the acquisition process and the growth of disseminated sensor, interest for
online reconstruction is increasing. For example, efficiently handling sensor networks may
turn out to be crucial for helping authorities during natural disasters: there is a need of
up-to-date and quickly reconstructed data.

The time require to perform reconstruction is expected to decrease even if the com-
plexity of the point clouds grows. At the same time, the increasing variety of sensors and
of acquired scenes has lead to a need for a higher robustness to defects with as little
requirements on the input as possible.

1.2 Input

1.2.1 Sensors

The input of shape reconstruction is usually a point cloud, possibly provided with additional
information as we shall discuss later.

The main target of shape reconstruction is digitizing the real world: the input point
clouds are not generated but acquired. Several different devices may be used for acquiring
these input clouds. The variety of types of sensors is the very first reason of the hetero-
geneity of point clouds.

We have already mentioned the Microsoft Kinect, which is a fixed sensor used to scan a
scene through infrared structured lighting, recording depth in addition to color. The scans
of such a device are generally of mediocre quality, tampered by many different defects, but
acquired in real-time.

Optical laser-based range scanners and LiDAR scanners are more common devices.
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They for example rely on the bouncing of a ray of light shot on the surface. Usually, the
scanner automatically rotates and sweeps the surface. Complex scenes may be acquired by
fusing several scans (registration markers are a way to make this process easier).

Figure 1.3: Point cloud acquired by photogrammetry. About 30 photos of the owl
statue from the EPFL Repository [2] have been taken to produce the point cloud shown
on the right (displayed in MeshLab).

Another interesting approach is photogrammetry. A standard camera is used to take
usual matricial pictures of an object from several points of view. Algorithms can then be
applied to the set of photographs in order to recover the 3D positions of corresponding sets
of pixels in space. Figure 1.3 is an example of such an acquisition. This method is popular
as it does not require any specific device apart from a common camera, the main drawback
being the unusual defects produced, such as structured outliers.

1.2.2 Measurements

Depending on the type of sensor used, some additional information can also be acquired.
These measurements are useful for retrieving the surface information on the neighborhood
of data point.

The most common measurement is normal vectors: a normal vector is an estimation
of the supporting plane of the infinitesimal surface beneath the point. It may or may not
be oriented, depending on whether the relative position of the surface (behind or before
the point) is known. Although many reconstruction techniques require normal vectors, not
all scanners can provide reliable information on them. Therefore, normal vectors are often
estimated through local analysis of the point cloud. Unfortunately, normal estimation is a
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problem almost as hard as reconstruction itself, especially in the case of oriented normal
vectors.

A sensor can also give a measure of visibility. If a sensor is based on ray shooting, for
example, an acquired point was by definition visible from the sensor. Thus, the segment
between a point and the sensor position is known to be outside of the surface, which can
be a very useful hint for reconstruction.

Some material-aware sensors give measurements about confidence: according to the
reflectivity of an object, for example, an estimated potential error of measurement may
be computed. A statistical estimator may therefore adapt to the local confidence of the
considered points to perform a reconstruction with variable precision.

Finally, color measurement can enrich the point cloud. Photogrammetry typically han-
dles this: pixels are given a 3D position but still provide a color information. At first sight,
this seems to be only useful for texturing and not reconstruction, but local color consis-
tency may help segmenting the point cloud or consolidate the confidence of a reconstructed
shape.

1.2.3 Defects

We saw that the input of reconstruction are point clouds that can be acquired by a large
variety of sensors and that may embed different kinds of additional measurements. This
diversity of input types results also in a variety of potential defects that are clarified in this
section.

Inferred
shape NoisePerfect

point set Outliers Non-uniform
sampling density

Missing
data

Variable
noise

Figure 1.4: Different types of defects of a point cloud.
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Noise

Because all sensors have physical limitations, they cannot provide perfectly accurate ac-
quisition: as a consequence, all acquired point clouds are noisy, although this noise may be
close to imperceptible for high-precision sensors.

The points are thus not located exactly on the inferred shape but on a neighborhood
of it. The width of this neighborhood is called the level of noise and strongly relates to the
scale of reconstruction as we shall discuss later.

Notable levels of noise can arise from registration of multiple scans or from a low-
precision scanner or perturbations during acquisition (for example, moving).

Outliers

The term outliers comes from statistical analysis, as opposed to inliers. Outliers are points
that do not relate to any part of the shape. They differ from noise in the sense that they
can appear anywhere in space, potentially far away from the inferred shape, as can be seen
on Figure 1.5.

Outliers can be produces by parasite shapes during the acquisition process (such as
rain or dust) or false detection in photogrammetry. Figure 1.6 is an example of a point
cloud with structured outliers produced by photogrammetry artifacts.

Non-Uniform Sampling Density

The density of points may not be constant throughout the acquired scene: according to
many parameters, two objects of the same size might be sampled with a distinct number
of points.

For instance, if the acquisition is performed from a single fixed sensor, surfaces facing
perpendicularly the sensor are densely sampled whereas surfaces with a very low angle to
the sensor are sampled with very few points.

As shown on Figure 1.7, density can also decrease with the distance to the sensor.

Missing Data

This defect can be seen as an extreme case of non-uniform sampling density: density might
drop to zero in some parts of a scene. Therefore, parts of the inferred shape may not be
represented at all by a subset of the point cloud.

7
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Figure 1.5: Underwater point cloud ([39, 19]). Acquired on a sunk ship, ridden with
high noise and outliers.

This is the result of incomplete scans, happening for example with statues on the ground
(Figure 1.8): the bottom of the statue can never be acquired by a vision-based sensor.

Variable Noise

In our study, we deliberately separate variable noise from regular noise as it raises very
different problems: constant noise has been handled for a long time in the field of shape
reconstruction through global approaches. Variable noise, on the contrary, requires local
estimations of scale and the ability of adapting a fitting method to local levels of noise.

As we already saw, the Kinect device produces this kind of defect.

8
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Figure 1.6: Cluny Abbey with structured outliers.

1.3 Output

The output of a shape reconstruction algorithm can take several different forms. They are
classified here in three general denominations: explicit, implicit and semantic.

1.3.1 Explicit

The most natural way of representing a shape is an explicit formulation. Splats is a first
approach to describe a reconstructed surface in 3D: atomic surface elements are grown
around points. An example is given on Figure 1.9.

In the case of curve in 2D, a reconstruction may simply be a set of points, the vertices,
and a set of segment, the edges, joining pairs of those points.

The equivalent for surface reconstruction is a 3D mesh. The principle remains the same
while adding the third dimension: a mesh is a collection of vertices, edges and facets with
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Figure 1.7: Trianon point cloud. Sensors were in the center of the black circles. Density
is very high close to the center of those circles.

connectivity relationships. Facets are 2D polygons embedded in 3D space: triangles and
quadrangles are the most commonly used.

The case of triangle mesh is an interestingly simple explicit formulation of a recon-
structed shape. It is easily described through an indexed format and uses only simplices of
each dimension. It takes advantage of a wide literature on the subject and relates to simple
geometric objects: for instance, it can be a subset of a 3D Delaunay tetrahedralization.

If the triangle mesh does not contain any self-intersection, it correspond to a simplicial
complex structure. Allowing for isolated simplices, this last explicit formulation allows for
reconstruction of shapes with heterogeneous dimensions (3D scenes with surfaces, edges
and isolated points, for example).
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Figure 1.8: Owl point cloud with missing data on the bottom (courtesy EPFL
Computer Graphics and Geometry Laboratory [2])

1.3.2 Implicit

Although less intuitive, the implicit formulation has many advantages over explicit ones.
It separates the reconstruction computation from the representation of the output shape
in itself and can be post-processed with more flexibility than meshes.

An implicit formulation is a description of where the shape is or where it is not. It can
take the form an indicator function defined on the whole space. In this case, the shape is
located on a isolevel of the function (see Figure 1.10).

In the case of point set surfaces, an operator of projection is defined according to the
input point cloud. The surface in this case is implicitly defined as the stationary points of
the projection operator.

Explicit representations of the surface are derived from these, using meshing algorithms

11
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Figure 1.9: Splat representation of the Stanford Bunny point cloud.

such as marching cubes [60] that takes the implicit formulation as an oracle. An interesting
point here is that the explicit representation is not unique: it depends on the meshing
algorithm. This allows for a fine control of the output shape in terms of precision or iso-
and anisotropy.

1.3.3 Semantic

Lastly, a shape can be described by a semantic formulation. This is an even higher level of
abstraction than implicit surfaces.

Some methods recover collections of shape primitives. Identifying a simple shape sam-
pled by a subset of the input is a shape detection problem. Reconstruction can be a post-
processed version of a shape detection algorithm, adding connectivity and spatial coherence.

Using a predefined collection of complex shapes allows to simplify drastically the space
of solutions: fitting segmented parts of the scene to a set of complex objects (chairs, ta-
bles, etc.) with some degrees of freedom in deformation. Although this can bring a high
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Figure 1.10: Point cloud and implicit function on a slice. The surface is defined by
the black isovalue.

robustness to highly altered point clouds, it also narrows the types of input that can be
handled.

This field of research also relates to shape recognition and with the problem of reliably
labeling a complex scene with simple object descriptors.

1.4 Scientific Challenges

1.4.1 Complexity

With the increase of storage memory and of the broadband of sensors, the complexity of
input point clouds has boomed in the last decade. Although reconstruction methods from
the 90’s could focus on input sets of a few thousands of points, we now have to take into
account very large scans. Entire parts of cities can be digitized using up to billions of points.

If the available storage memory is still regularly increasing, the speed of CPU has
reached a bound. This lead to a subtle transformation of the general behavior of algo-
rithms nowadays: the main need becomes time efficiency, even at the cost of storing lots of
additional variables or preprocessed information.

This context of high input complexity calls for methods with a low time dependence
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on the size of the input. Emphasis is put on multiscale and parallel approaches.

1.4.2 Details

The complexity of the input point clouds is often the expression of a high level of details.
Not only a scene can be described with several billions of points, but it can embed very
small features of a few dozens of points only, for example.

While it seems easy to handle simple figure regardless of the number of points (a plane
remains a simple plane whether it is defined by 3 points or by 3 billions of points), the
extent of the range of possible scales on a single scene remains one of the main challenges
in shape reconstruction.

More specifically, there is a huge gap of difficulty between reconstructing a building
only defined by its walls and another containing windows and balconies.

1.4.3 Robustness

The last challenge which seems interdependant from the previous one is the presence of a
large variety of defects, as described in Section 1.2.3: the problem of reconstructing details
reliably is even more of a challenge when the local level of noise compares to the scale of
details.

Their exists many very specific methods focusing on point clouds with particular de-
fects, as we discuss in Section 2.3. Unfortunately, they often take advantage of additional
measurement and very few can handle a point cloud with little assumption on its properties.

Although it seems impossible to handle every possible defects at once, their is still a
need for a general framework to achieve robustness with as little a prioris as possible on
the input point cloud.

1.5 Focus

As we discussed on this section, shape reconstruction is very wide and diversified topic.
Consequently, this thesis is only focused on a specific part of the problem.

14
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Our main focus is robustness, using as little assumptions as possible. First, reconstruc-
tion is taken on its most general meaning: we do not focus on specific point clouds such
as urban or indoor scenes. Secondly, we only require raw point clouds with no additional
measurements (no normal vector or visibility information).

Furthermore, we do not have any requirement about the defects of the point clouds: it
can be ridden with noise, outliers, missing data, etc. The only defect we choose to ignore
is widely variable sampling density, as it does not seem possible to handle this altogether
with outliers.

We reconstruct both implicit (Part I) and explicit (Part II) shapes. Part I is about
smooth closed shapes whereas Part II describes a method to handle piecewise-planar shapes
with boundaries.

1.6 Publications

This thesis has led to the publication of the following articles:

• [37] Simon Giraudot, David Cohen-Steiner, and Pierre Alliez. Noise-adaptive shape
reconstruction from raw point sets. In Computer Graphics Forum, volume 32, pages
229–238. Wiley Online Library, 2013

• [4] Pierre Alliez, Simon Giraudot, and David Cohen-Steiner. Robust shape recon-
struction and optimal transportation. In Courbure discrète: théorie et applications,
volume 3, 2014

• [Submitted] Simon Giraudot, Mathieu Desbrun, David Cohen-Steiner, and Pierre Al-
liez. Piecewise-Planar Surface Reconstruction via Convex Decomposition. 2015

Note that Chapters 9.2 presents a transitional work that was not published as it did
not provide satisfactory results. However, we include it in this document for its scientific
interest and for the intuition it gave for the following developments.
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2
State of the Art

2.1 Main Approaches

There is a vast literature on smooth closed shape reconstruction from unorganized point
clouds. In order to get a meaningful overview, we propose next a taxonomy which distin-
guishes between the main approaches for tackling the reconstruction problem.

Interpolant

Going back to the initial research on shape reconstruction, the first approaches were
mostly interpolant: in this view, reconstruction is formulated as the problem of “connecting
the dots”. These approaches, pioneered by researchers in Computational Geometry, produce
output shapes based on common geometric data structures. The Delaunay triangulation
is a relevant example as it is related to the Voronoi diagram which encodes neighboring
points. Hence, if the sampling is dense enough and with the assumption that the shape is
“simple”, then a subset of the Delaunay simplices provides a plausible reconstruction.

The main advantage of such methods is to provide proven guarantees to recover the
correct topology and geometry. However, these guarantees rely upon ideal assumptions
such as dense sampling and absence of noise, that are rarely met in practice. Point clouds
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acquired from measurements are often sampled with variable density and are hampered
with a wide range of defects that cannot be dealt with by these interpolant methods. If the
input point cloud is hampered by uncertainty, there is no reason to interpolate the points
anymore.

Variational

Robustness to variable sampling and noise has motivated another line of approaches,
referred to as variational. These approaches take advantage of global solves, the output
surface passing near the input points instead of interpolating them. The problem of “con-
necting the dots” is not relevant anymore: the input points are only considered as witnesses
that provide information on the shape location with a certain level of confidence.

The main idea behind these approaches is to search, in the space of functions defined
from Rn to R, a so-called indicator function. This function usually applies to closed shapes
and distinguishes the inside from the outside of the shape. The output shape is often defined
by contouring an isovalue of the function, which is possible if this function is well-behaved
with a non-zero gradient.

One interesting property is that when such a function is defined everywhere, even away
from the shape: it provides a suitable input for meshing and contouring algorithms. The
smoothness of the function is also suited to match the common assumption that the inferred
shape is smooth.

This usually provides a fair level of robustness to noise and sometimes to outliers. As
many of these approaches further constrain the output to be a closed smooth shape, they
are to some extend also robust to missing data: by construction, they remain hole-free and
also intersection-free.

Point Set Surfaces

Shapes may also be reconstructed through so-called point set surfaces. As for variational
approaches, the input points are seen as witnesses, but the computed function differs: point
set surfaces are defined as the fixed point of a projection operator.

Intuitively, it can be seen as a search for a stable function close to the input points.
For this reason, the function of a usual point set surface is only defined on the close
neighborhood of the inferred shape, although some methods extended this definition to the
whole domain.
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Note that the projection operator is defined by the input data, whereas variational
approaches define arbitrary functions where input points are only used to estimate the
functions.

This offers a finer control over the role played by the input points: point set surfaces
have been initially devised to deal with noise and non-uniform sampling.

Volumetric

Some variational approaches differ slightly from the ones we already presented, and can
be classifies as volumetric. The inferred shape is assumed to bound a solid object (a surface
in 2D or a volume in 3D, hence the term “volumetric”).

This assumption yields further refinement of the surrounded volume (or surface). For
example, volumetric consistency can be taken into account to estimate the probability that
two surface sheets surround the same volumetric part. This provides additional knowledge
on the adjacency relationships among the reconstructed surface.

These approaches often outperform on input point clouds where parts of the data is
missing. Nearby surface sheets that are difficult to separate in a variational sense can be
better handled.

Primitives Fitting

As mentioned in the introduction, an input scene can be considered as made up of
canonical primitives with specific relationships: structural such as adjacency, or geometric
such as regularities. In some cases, reconstruction is a post-processing of a shape detection
algorithm. A family of reconstruction methods focus on this primitive fitting point of view.

In this view, the input point cloud is studied at a more global level. The non-local
regularity yields a higher resilience to defects such as missing data, non-uniform sampling
density or noise.

This however comes at the cost of strong constraints for the output and of a high
dependency on the quality of the shape detection.

Complex Object Fitting

One step forward to a semantic assumption is the use of dictionaries of precomputed
complex shapes to perform reconstruction: man-made shapes, furnitures, architectural
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parts, etc.
This family of methods usually provides a high robustness to many defects but the

assumptions on the input point clouds are very domain-specific. For example, indoor scenes
are well reconstructed using a dictionary of usual apartment furnitures.

Although these algorithms have many applications to high-level semantic algorithms
such as shape recognition and labeling, their narrow scope only partially relates to some
extend to general reconstruction, and touches the topic of object recognition.

Focus

In our review of the state-of-the-art, we focus on reconstruction of smooth closed shapes
from point clouds. Instead of targeting completeness, we describe the main rationale behind
the various approaches devised to handle specific properties of point clouds.

We first review the methods designed for perfect point clouds, then review the different
approaches devised to deal with various types of defects. Note that we provide another
review on Part II, focused on piecewise-planar reconstruction.
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2.2 Perfect Data

With the increasing range and amount of defects in input point clouds, al-
gorithms designed to reconstruct from defect-free input point clouds have
become less satisfactory. Nevertheless, their scientific value is high as they
often provide mathematically proven guarantees.

These methods are said interpolant, which means that the output surface passes through
the input points.

Crust

The crust algorithm was proposed by Amenta et al. [6] for curve reconstruction in 2D.
It relies on the observation that a subset of the edges of Del(P) is a valid reconstruction

and that the vertices of the Voronoi diagram Vor(P) can be seen as a discrete approximation
of the continuous medial axis of the inferred shape.

Because they are located close to the medial axis, adding the vertices of Vor(P) to
Del(P) removes the edges of this triangulation that are not part of the reconstruction.

The pseudo-code of the algorithm reads (see also Figure 2.1):

1. Compute the Voronoi diagram of the input point cloud P.

2. Compute the Delaunay triangulation of the combination of the point cloud and of
the Voronoi vertices.

3. The edges of this triangulation connecting two input points are the reconstructed
curve.

Beyond the noise-free assumption, this algorithm is valid and proven only under an
assumption on sampling density. In this case, it consists in an upper-bound on the distance
between two input points. One remarkable property is that this upper-bound is a function
of the local feature size, that captures curvature, thickness and separation altogether. The
inferred shape does not need to be sampled densely everywhere: it only needs to be densely
sampled on areas with a high local shape complexity (with small local feature size) whereas
fewer sample points are required in areas with large local feature size.
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Figure 2.1: Crust algorithm [6]. From left to right: input point cloud; Voronoi diagram;
Delaunay triangulation of input points + Voronoi vertices; edges between two input points
(in red) form the reconstructed curve.

This algorithm was later extended to the reconstruction of surfaces in 3D [5]. However,
it does not generalize directly due to a different behavior of Vor(P) in 3D: some Voronoi
vertices might be located too close to the surface and “break” edges and facets of Del(P)
that should belong to the reconstruction. This problem is answered by observing that a
subset of the vertices of Vor(P) provide an approximation of the medial axis. An additional
filtering step is therefore required before applying an algorithm similar to the one in 2D.

From a more general point of view, algorithms in 2D rarely generalize in 3D without
further processing. Attali [9] propose a shape reconstruction using a subset of the Delaunay
graph with a proven exact solution in 2D. However, 3D reconstruction requires additional
heuristics, such as triangulating the borders of the Delaunay graph subset or inferring the
volume enclosed by the inferred surface.

Ball pivoting

The ball pivoting method was proposed by Bernardini et al. [13] for surface reconstruc-
tion.

Its advantage is a linear time complexity, making it suited to large input point clouds.
The main idea is to simulate a ball of a certain radius ρ pivoting around the input points
and generating an output triangle every time three points are simultaneously touched by
the ball.

In practice, this strongly relates to α-shapes [34]: an α-shape is a subset of Del(P) where
the simplices have a circumscribing sphere of radius r ≤ α. More intuitively, considering
the space as “filled with matter”, the α-ball can be seen as an eraser that cannot cross a
point of P. The only remaining parts are thus around points that are closer to each other
than α, giving an approximation of the shape for a properly chosen value of α.
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The ball pivoting algorithm relies upon the same principle with the major advantage
of not having to compute Del(P):

1. A ρ-ball is initialized on a seed triangle.

2. It pivots around two of the triangle points until another point is hit, producing a new
triangle (Figure 2.2).

3. This is repeated until every pivot has been tested, producing an output 3D triangle
mesh.

Figure 2.2: Ball pivoting algorithm [13]. From left to right: algorithm on a perfect
point cloud; point cloud with lower sampling density; point cloud sampled on a shape with
higher curvature.

The possibility for the user to adjust a scale parameter definition is one improvement
compared to the Crust algorithm. It means that the radius of the ball ρ can be adjusted
to handle different densities of sampling and, to a small extend, noise.

Overview

Interpolating methods often rely on data structures that are common in computational
geometry. Using the properties of simplicial complexes based on the input point cloud,
guarantees are proven on the validity of the output reconstructions.

The initial approaches use constructions that are uniquely defined for a given point
cloud, such as Delaunay triangulations or Voronoi diagrams. Addressing the absence of
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user-control on the output seen as major limitation, some methods derived parameter-
dependent methods, such as α-shape and ρ-ball pivoting. These approaches pioneered the
use of a user-specified scale in order to handle different types of input with low noise.

Note that some interpolant methods are robust to noise. They are based on a prepro-
cessing of the input and will be treated in Section 2.3.1. However, as these methods remain
interpolant, robustness to defects cannot be fully achieved as an uncertain input de facto
produces an output hampered by a similar uncertainty. This is the main motivation for
devising methods that are non-interpolant and that we present next.
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2.3 Dealing with Defects

In this thesis the heart of the problem is to deal with imperfect point clouds. Robustness
to defect-laden point clouds has been a topic of increasing interest in recent years.

We propose a taxonomy centered on the the main type of defects dealt with by the
methods described. Our terminology in terms of defects matches the one provided in Sec-
tion 1.2.3.

2.3.1 Noise

Because acquisition devices can only provide finite precision, noise is un-
avoidable when dealing with acquired point clouds. This is why most recon-
struction methods can at least handle moderate levels of noise. We review
next the main reconstruction approaches together with some intuition on
how the noise is handled.

Point Set Surfaces

The notion of point set surfaces (PSS) is by itself a topic in shape reconstruction. It
was first defined by Alexa et al. [3] who introduced an operator that project points on a
approximated moving least squares (MLS) surface.

The main idea behind MLS can be summarized as follows: a local fit is computed at
each query point in a local frame; then, a function of the distance to each query point is
defined to weight its contribution; the local fits are finally put together by minimizing an
energy measuring the approximation error.

The MLS projection proceeds as follows:

1. Reference domain: a local reference domain is computed (a plane for now). The
local plane H = {x|�n, x� − D = 0, x ∈ R3}, n ∈ R3, �n� = 1 minimizes a local
weighted sum of square distances from the points of P to the plane. At query point
q, H minimizes the following expression:
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N�

i=1
(�n, pi� − D)2θ(�pi − qH�),

where qH denotes the projection of q on H and θ is a smooth, radial, monotone
decreasing function, positive on the whole space. An approximation of the tangent
plane to S near the point q is used as the local reference domain at point q.

2. Local map: a local bivariate polynomial approximation of the surface in a neigh-
borhood of q is computed on this reference domain. The polynomial approximation
g minimizes the following weighted least squares error:

n�

i=1
(g(xi, yi) − fi)2θ(�pi − q�),

where (xi, yi) denotes the coordinates of the projection of pi in the local coordinate
system of H, and fi denotes the distance of pi from H.

Levin [56] proved that the surface defined by the stationary points of the projection
operator is a two-dimensional manifold and that the resulting surface is infinitely smooth
if θ ∈ C∞.

The main limitation is that the projection operator is only valid near the surface and
that a reliable initial guess of the surface location is needed. In the case of a noisy point
cloud, using a random input point may not provide reliable result as a point can lie at an
arbitrary large distance from the inferred surface.

Amenta and Kil [7] studied the domain of a point set surface to provide a reliable
starting point. They showed that a Gaussian function for θ provides robustness to noise:
the intuition is to grow the size of the Gaussian function until the noise level is captured.
Figure 2.3 shows the quality of plane-fitting for a noisy point cloud using this method.

Many variants of PSS have been developed such as progressive PSS for increasing
precision on noise-free parts with small details [36]. Other variants are presented in the
following chapters, related to other defects (Section 2.3.3).

Poisson Reconstruction

Variational approaches are another very prolific field of research. Among them, the
Poisson Reconstruction [48] is popular, and has been extended and improved over the
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Figure 2.3: The domain of a point set surface [7]. The background intensity depicts
the MLS energy function defined on the domain. The gray lines are the local best fitting
lines H found.
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years.
The Poisson reconstruction consists in computing an indicator function f whose gradi-

ent accurately fits the normal vector field n of the oriented point cloud, i.e., minf �∇f −n�.
Applying the divergence operator, this boils down to a Poisson problem: Δf = ∇n.

The indicator function f is piecewise constant with opposite signs inside and outside the
inferred shape, its gradient is not well defined on the shape. The goal is thus to compute
an approximated smoothed version of the ideal indicator function, using a smoothing filter
θ:

Δ(f ∗ θ)(q) =
�

∂M
θ(q)n∂M (p)dp,

where ∂M denotes the boundary of the solid M .
Note that using this filter θ favors the smoothness of the estimated indicator function

f .
To compute the indicator function, the space is discretized using an octree with a user-

specified maximum depth: varying this parameter provides the user with control on the
level of details of the output reconstruction as shown by Figure 2.4.

Further improvements have been proposed. For example, a streaming variant can deal
with massive data sets [14]. A GPU variant has also been devised to speed up the compu-
tations [83].

Finally, a recent improvement is the Screen Poisson Reconstruction [49]. The original
Poisson reconstruction is robust to noise at the cost of oversmoothing. This is addressed
by providing the user with soft control over a parameter to favor data fidelity. Introducing
a new parameter λ that trades interpolation for approximation, the minimized energy
becomes:

E(f) =
�

�n(p) − ∇f(p)�2dp + λ
�

pi∈P
�f(pi) − 0�2.

Introducing a two-terms energy may be seen as a new step forward in the quest for noise-
adaptive approaches: a trade-off between smoothing and interpolating the input points.

Robust Cocone & Scale Space

A few interpolating methods have been devised to yield noise robustness. The main
rationale is to make the interpolation a better-posed problem.

30



CHAPTER 2. STATE OF THE ART 2.3. DEALING WITH DEFECTS

Figure 2.4: Poisson reconstruction [48]. The proper level of noise can be captured by
selecting the octree depth (from top to bottom, 6, 8 and 10).
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Dey et al. [29] introduced the notion of “robust cocone”. The properties of the Delaunay
triangulation and more specifically of the Delaunay balls are used to distinguish which input
points are in the internal part of the noise of the point cloud.

It is proven that, given a certain noise model, the union of large Delaunay balls is
homeomorphic to the underlying surface (Figure 2.5 provides a visual depiction).

Figure 2.5: Robust cocone [29]. On a noisy point cloud, points inside the noise band
have small Delaunay balls compared to points on the border.

Digne [30] starts by preprocessing the input point cloud through the use of a scale
space. First, the noise is removed through a series of smoothing operators to make the
problem better-posed: the input points are connected via the ball pivoting algorithm on
the smoothest version of the point cloud. The connectivity of this reconstruction is then
propagated to the less smooth levels in order to recover small features until the desired
level of details is reached. This is shown on Figure 2.6.

Overview

Dealing with noise is a requirement for most reconstruction methods. The initial idea is
to select a scale parameter according to the level of noise. Note however that this parameter
is often a variable of the reconstruction method and not specifically designed for handling
noise.

Because the noise and the level of details of a shape are not always correlated, some
methods have evolved to provide a finer control over the handling of noise to the user,
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Figure 2.6: Scale space [30]. The shape is correctly reconstructed by transiting through
a smoothed version of the point cloud.

independently of the scale of details. This raises a question of noise robustness: how to
reliably smooth the noise without altering the small details of a shape?

In previous work, dealing with noise often requires adjusting a parameter. A principled
way to select these parameters is not always well defined and often require a trial-and-error
process. Automatic parameter selection is an open problem. We discuss this specific issue
along with the problem of variable noise in Section 2.3.5.

2.3.2 Outliers

Robustness to outliers is quite different from noise robustness as some points
of the input must be discarded or ignored. Some methods aim at explicitly re-
moving outliers through filtering or data clustering [77]. Other use statistical
tools or metrics that are implicitly robust to outliers.

Local Outlier Factor

Outliers are an obvious non-relevant part of the input point cloud. A first rationale
may be to detect and remove them explicitly.
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Sotoodeh [78] set up an outlier detection algorithm based on density analysis [18]. It
uses some distance functions known to be robust to outliers under some conditions:

• The K-distance: the distance from the K th nearest neighbor to a query point q;

• The K-distance neighborhood: the size of the minimal ball containing the K-nearest
neighbors of a query point q.

• The reachability distance between 2 points a and b: the maximum value between the
K-distance from b and the usual Euclidean distance, reach − distK(a, b) = max{K −
distance(b), d(a, b)}.

This last distance has the advantage of being more stable. The reachability distance
from two far away objects is simply their actual Euclidean distance whereas objects in a
K-distance neighborhood have a constant value that is K − distance(b).

The statistical fluctuations of the Euclidean distance for all points close to the query is
therefore significantly reduced, with a magnitude controlled by the parameter K.

The local reachability density at query point q, which can be seen as the average reach-
ability distance based on the K-nearest neighbors of q, is defined this way:

lrdK(q) = 1/

��
p∈NK(q) reach − distK(q, p)

|NK(q)|

�
.

Finally, the local outlier factor (LOF) is defined as:

LOFK(q) =
�

p∈NK(q)
lrdK(p)
lrdK(q)

|NK(q)| .

This function of a point q is the average of the ratio between the local reachability
density of q and those of its K-nearest neighbors. It captures the degree to which this
point is called an outlier.

A point located in a high density area – supposedly where the inferred shape lies – has
a value of LOF close to 1, whereas outliers are associated to larger values.

Computing this function for every input point and applying a threshold yields an ex-
plicit binary partition of the input between inliers and outliers (see Figure 2.7). Note that
this method requires a user-defined parameter K relating to the outlier density. This pa-
rameter is adjusted through a trial-and-error process.
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Figure 2.7: Outliers filtered by LOF [78]. Detected outliers depicted in white, relevant
data in black. K = 10 on this example.

Locally Optimal Projection

Lipman et al. [59] contributed the so-called locally optimal projection approach.
An arbitrary point set is projected onto the input point cloud: the goal is to find

the set of projected points q that minimizes a sum of weighted distances to the points
pi of the input P, with respect to radial weights centered at the points in q. They are
defined as the stationary points of the projection operator Q = G(Q) where G(C) =
arg minX E1(X, P, C) + E2(X, C).

E1 denotes an energy term that drives the points of q to approximate the geometry of
P while E2 favors a fair distribution of the points of q all over the inferred shape.

In order to discard outliers, the chosen function for E1 is closely related to the multi-
variate median, which minimizes the sum of Euclidean distances to a data set S:

q = arg min
X

{
n�

i=1
�si − x�}.

This median has proven robust to outliers, compared to the standard “mean” average
(L1 median). Figure 2.8 depicts a visual comparison of this method with the common MLS.

A point set Q is sought after to represent the geometry of the point cloud using this
median on local subsets of the point cloud with a fast-decaying weight function θ: while
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Figure 2.8: Locally optimal projection [59]. Left: input point cloud with ghost-geometry
noise on the side. Middle: MLS. Right: locally optimal projection.

averaging on a sufficiently large support allows for noise robustness, using the median
operator allows for outlier robustness.

L1-norms have been used in wide ranges of algorithms ([53, 50, 62]) for their ability to
deal with noise and outliers. A feature-preserving variant is detailed in Section 6.4.

Signing the Unsigned

Mullen et al. [64] tackle outlier robustness through a robust distance function based on
optimal transportation theory.

Instead of using a standard distance function to a point cloud, the robust variant
computes the average of the square distances to the K nearest neighbors. This implicitly
makes outliers irrelevant for well suited value for K. Figure 2.9 depicts a reconstruction
from a point cloud hampered with structured outliers.

This approach is detailed in Chapter 4.

Overview

Handling outliers calls for specific metrics and analysis tools. Noise is commonly handled
through smoothing and averaging on small neighborhood, but reconstruction of outlier-
ridden data requires different tools to avoid generating reconstruction with many artifacts.

Averaging is not sufficient to deal with outliers, as far away points may lead to significant
distortions. This motivates the use of robust norms such as the L1-norm or robust distances
such as the K-distance or the average distance to the K-nearest neighbors.
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Figure 2.9: “Signing the unsigned” algorithm [64]. Left: input point cloud and photo.
Middle: estimation of the inferred surface. Right: reconstructed surface.

Removing outliers as a preprocessing step of reconstruction is another option but re-
quires a trial-and-error process to adjust the parameters. Research has lately focused on
specific distances both robust to outliers and suitable for reconstruction.

2.3.3 Non-Uniform Sampling Density

Isolated points may not be outliers but instead belong to a very low sampled
surface: dealing with these points calls for different approaches.

Radial Basis Functions

Radial Basis Function (RBF) is one of the few reconstruction approaches
with low dependence to the sampling density. A RBF is a radially symmetric
function whose value depends on the distance from a given origin. A weighted sum of m

RBF with centers ci is used to define a function f at query point q:
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f(q) =
m�

i=1
wiθ(�q − ci�).

Considering the input point cloud as discrete realizations of an implicit function, the
reconstruction problem boils down to finding a set of primitive RBF and their associated
weights. Carr et al. [21] consider the input as a set of RBF centers and search for an implicit
function that is zero at the input points. The variables solved for are the weights of the
RBF. To avoid the trivial solution of an implicit function that is zero everywhere, some
points with non-zero values are added both inside and outside of the inferred shape, in
accordance to to the oriented normals provided as input.

A formulation of the RBF system of equations is given:
�

A P

P T 0

� �
λ

c

�
=

�
f

0

�
,

where Ai,j = θ(�pi −pj�) and Pi,j are low degree polynomials. Common RBF functions
Ai,j are biharmonic splines θ(r) = r (where r is the radius) or triharmonic functions
θ(r) = r3.

Reconstruction from a point cloud with non-uniform sampling density is depicted by
Figure 2.10.

Figure 2.10: Radial basis functions [21]. Left: photo of asteroid Eros. Middle: input
point cloud with variable sampling density. Right: reconstruction using RBF.

One limitation of this method is its computational complexity: all the input points are
taken into account when computing a single RBF value, resulting in a dense system of
equations.
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To overcome this limitation, variants have been proposed such as Compactly Supported
RBFs [66], trading a loss of globality for an increased efficiency. However, the size of the
supports of these CSRBF must be user-specified, which makes this approach ill suited to
deal with widely variable sampling.

In order to remain robust to imperfect sampling while decreasing the overly high com-
plexity, RBF can be handled through Multilevel Partition of Unity (MPU) [65]. A fitting
function is associated to each RBF computed on a space subdivided by an octree structure.
Separated contributions of RBFs with compact support are blended on local neighborhoods
of the octree to compensate for the loss of globality.

Algebraic Point Set Surfaces

A variant of the Point Set Surfaces discussed in Section 2.3.1 has been contributed by
Guennebaud and Gross [41]. It extends the PSS framework by replacing planar fitting by
algebraic sphere fitting.

An algebraic sphere is defined as the 0-isosurface of the scalar field su(x) = [1, xT , xT x]u,
where u ∈ Rd+2 denotes the vector of scalar coefficients describing the sphere. For ud+1 �= 0,
the center c and radius r of the sphere is given by:

c = 1
2ud+2

[u0, ..., ud]T ,

r =
�

cT c − u0/ud+1.

The algebraic sphere fit at query point q minimizes the following energy:

E(q) = �W 1
2 (x)Du�2,

where:

• W is a n × n weight matrix;

• D is the n × d + 2 matrix with its ith line being [1, pT
i , pT

i pi].

• u is constrained to avoid the trivial solution.

Note that this fitting step does not require any normal vector information, while another
energy formulation deals with normal vectors ([41], section 4.3).
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The Algebraic PSS is defined as the zero set of the implicit scalar field representing the
algebraic distances between a query point q and its fitting sphere u(x).

Algebraic sphere fitting has proven extremely robust to low sampling rate compared to
plane fitting which requires a large and consistent neighborhood. A comparison is provided
by Figure 2.11.

Figure 2.11: Algebraic point set surfaces [41]. a. Undersampled input. b. Plane fitting
PSS. c. Sphere fitting PSS.

GlobFit

The approaches relying upon primitives robust to variable sampling density.
As discussed in Section 2.1, these methods take advantage of strong assumptions made

for the output. It may consist in a set of simple canonical primitives (planes, balls, cylinders,
etc.), but can also be constrained to a collection of complex shapes (urban furnitures,
mechanical pieces, etc.).

The method called GlobFit [57] is based on the RANSAC algorithm [74] for shape
detection: planes, cylinders and balls are robustly detected inside the point cloud and their
mutual relations are then estimated.

Each point pi of the input point cloud P is equipped with a normal ni and a confidence
score wi computed by local covariance analysis. The algorithm is initialized by partitioning
the input into small subsets with associated primitives and some remaining isolated points.

A relationship graph is then constructed by estimating orthogonal or parallel relations:
this is achieved by comparing the normals of pairs of primitives. Then, a maximal subset
of relations is extracted, without any redundant constraint and any conflict.

In order to minimize the approximation error while conforming to the constraints ex-
tracted, a nonlinear optimization is performed over the parameters of the primitives. The
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input points that are inliers of the current set of optimized primitives are identified and
the algorithm is repeated for the remaining isolated points.

This algorithm has shown to be robust to noise, outliers and non-uniform sampling
density (Figure 2.12). Robustness to variable sampling density mainly comes from the
RANSAC algorithm: in this framework, the confidence of a primitive is evaluated by com-
puting the approximation errors from the estimated inliers to the primitive, with no depen-
dence to the local density. Primitives such as plane have infinite area, a measure of density
of a plane is therefore meaningless.

Figure 2.12: GlobFit algorithm [57]. Primitives are fit to a point cloud with non-uniform
sampling density.

Overview

Because shapes cannot always be sampled with a constant regularity, the sampling
density of acquired point clouds is rarely uniform. On some cases, this non-uniformity
can become significant enough so that usual methods that assume regular sampling fail in
producing a reliable reconstruction.

There are several ways to achieve robustness to non-uniform sampling density: primitive-
based reconstruction methods, for example, use strong assumptions on the output shape
so that the quality of a fit does not depend on the sampling density.

From a more computational point of view, their exists metrics that are able to variably
weight the contribution of points according to their local density. In the RBF framework,
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the sizes of the functions centered on the input points are unknown: they are computed to
minimize a spline energy.

Finally, some methods like APSS derive from other usual reconstruction methods, and
extend them to metrics that are more stable when density decreases significantly. This is
very effective even in the case of very sparse sampling.

2.3.4 Missing Data

The ways of handling missing data strongly depend on the purpose of recon-
struction: it can be considered as an extreme case of non-uniform sampling,
where some parts of the scene have zero density. In this case, a surface may
still be produced by interpolating from the non-empty areas of the scene
while matching a regularization assumption such as smoothness, minimal
area, etc.

Cone Carving

One relevant information to reconstruct a shape in the presence of missing data is
visibility. Missing data is often produced by occlusions where an object hides a part of
another one, and visibility vectors may help distinguish missing data from actually empty
parts of the scene.

Shalom et al. [75] introduced the notion of “cone carving”. Cones of visibility, estimated
to not intersect the inferred surface, are computed from each point. In 2D, a visibility cone
is computed as the largest section of the domain defined by two rays originated at input
point pi which does not contain any input point. In 3D, it is an empty generalized cone
with apex at input point pi and formed by all the rays oriented outward from the shape.

In 3D, a coarse approximation of the surfaces is needed to estimate the visibility cones.
A silhouette is computed by connecting splats computed around the input points so that
thin cones between neighbor sample points are discarded. The union of the cones is an
estimation of the outside of the shape as depicted by Figure 2.13.

This method outperforms for example in the case of a surface parallel to the line of
sight of the scanner and thus sparsely sampled. Most variational methods would create a
bump near the boundary of missing data (minimizing, for instance, the global curvature).
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Figure 2.13: Cone carving algorithm [75]. Left: input with missing data. Middle: one
visibility cone depicted. Right: union of visibility cones.

Cone carving instead infers the correct plane by using the visibility of the points on the
boundary of missing data.

For shape reconstruction purposes, a union of cones may be combined with the RBF
approximation: it strongly constraints the inside and outside of the inferred shape. The
main weakness of this method is that it requires a splatting step: a local neighborhood
must be selected, which requires a trial-and-error process.

Visibility-Aware Surface Evolution

To achieve robustness to missing data, Tagliasacchi et al. [79] seek for a trade-off be-
tween visibility and some smoothness parameters. The “VASE” approach (Volume-Aware
Surface Evolution) initializes a 2-manifold surface S as a scaled bounding box of the input
point cloud. The surface then evolves according to the following energy:

E = ω1Efit + ω2Esmooth + ω3Evol,

where:

• Efit measures data fidelity while respecting the visibility vectors vi at points pi;

• Esmooth favors surface smoothness;

• Evol favors volumetric smoothness;

• ω1,2,3 are relative weights for each energy.
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When defining the evolving implicit surface St
φ with φ a signed distance field and t the

iteration count, the energy is reformulated through level-sets:

φ̌ + ω1Ffit + ω2Fsmooth + ω3Fvol.

The energy terms become forces and are defined as follows:

Ffit = δ(φ)
n�

i=1
�(v�

i )v�
i f(v⊥

i ) ; Fsmooth = −ΔSκ ; Fvol = −ΔM R ;

where:

• δ(φ) denotes the Dirac function.

• f denotes a Gaussian function with kernel width proportional to sampling density.

• v
�
i and v⊥

i are the parallel and normal components of vi with respect to the normal
vector of S at this location.

• � is a function controlling the depth of the region behind the sample where the
visibility vector impacts the surface.

• Δ is the standard Laplacian operator.

• κ is the mean curvature of the surface.

• M is a structure representing the surface (Medial Axis Transform [76]).

• R is a radius function defined on M , providing a volumetric representation of the
surface: variations of R along M indicates variations in the local volume of the shape.

The rationale behind this trade-off between 3 forces is that each sample point is visible
from the scanner and that the volume of a shape varies smoothly. Figure 2.14 shows a
sum-up of this algorithm.

This method provides a smoother control of the visibility weight through the use of the
scalars ω1,2,3. It can also be noted that the information about the volume that is surrounded
by the inferred surface is a noticeable help for reconstruction.
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Figure 2.14: VASE algorithm [79]. From left to right: initialization; reconstruction using
only smoothness and point constraints; impact of adding visibility direction constraint;
VASE reconstruction.

Medial Kernels

The main challenge posed by missing data is the estimation of the shape of a missing
part of the scene.

Berger et Silva [12] estimate it by using medial balls. A medial ball is a ball which is
equidistant and tangential to at least two surface points, maximally empty and inside of
the shape. They aim at computing maximal connected components from a set of estimated
medial balls.

Given two points pi and pj in the input P with associated normals ni and nj , a
candidate ball is generated, equidistant to pi and pj and whose normals at the points are
similar to ni and nj .

The center ci,j of the ball lies on the bisecting plane of the two points. For the normals
to coincide with ni and nj , lines formed by them with the points are intersected with the
bisecting planes at points xi and xj . To avoid arbitrary large balls that can be produced
around sharp features, the center ci,j is chosen, between xi, xj and their midpoint, to be
the one producing the minimal radius ri,j .

If either intersection is along the positive direction of their normals, the ball is lying
in the exterior of the shape and is discarded: such idea leads to major improvement when
dealing with missing data close to thin holes and nearby surface sheets, as shown on
Figure 2.15.

To compute the deviation of the candidate ball from a medial ball, two measures are
defined:
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Figure 2.15: Medial kernels [12]. Left: input point cloud. Middle: medial kernels recon-
struction. Right: RBF reconstruction [66].

γ(pi, pj) =
�

p∈P
µ(ci,j , ri,j , p),

τ(pi, pj) = |ni − si| + |nj − sj |,

where si and sj denote the normals of the candidate ball at points pi and pj and µ

is a function measuring how close a point p lies from the center of the ball ci,j . Here, γ

measures the emptiness of the ball whereas τ measures how tangential it is.
From these two measures, a similarity measure is defined:

φ(pi, pj) = exp
�

−
�

γ(pi, pj)
σe

�2
−

�
τ(pi, pj)

σt

�2�
,

where σe and σt define bandwidths for the emptiness and tangential measures.
This measure is computed for each pair of points to fill a similarity matrix M : Mi,j =

φ(pi, pj). Each cell encodes the likelihood of two points to belong to the same medial ball.
Most coefficients being close to zero, the matrix is quite sparse.

Performing spectral analysis of this matrix allows for volume-aware segmentation and
reconstruction by parts.
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Overview

Missing data is an enduring problem in shape reconstruction. Reconstruction is ill-posed
and multi-faceted: should we only reconstruct the scanned part of a shape or should we
compensate for the lost information? To what extend? Based on which assumptions?

Primitive-based method usually handle it the same way they handle variable sampling,
that is to say by only measuring data fidelity to a predefined shape. In general, variational
methods handle it via their smooth closed prior. As the output is by definition a closed
shape, a hole in the data is filled to close the reconstructed shape. Albeit robust, this
approach is naive as the mathematical assumption used to fill the holes (minimal surface
or curvature, for instance) does not necessarily match the ground truth. To provide better
guidelines to fit reality, some techniques were devised, taking for example visibility into
account. This prevents the shape from crossing parts of the scene that are known to be
empty because of the relative positions of the acquisition device and of the input points.

Visibility provides crucial knowledge about what belongs to the outside of the shape.
Other approaches such as medial kernels [12] increase knowledge about the inside by the
means of statistics, computing the relative probabilities that points belong to the same
local part of the shape.

This recent class of methods are a significant improvement in robustness to missing
data, but can only handle point clouds with oriented normal vectors, which is a strong
requirement for the input.

2.3.5 Variable Noise

Handling variable noise is substantially different from handling a constant
level of noise, because it cannot be done through a global analysis of the scale.
The automatic handling of noise is commonly achieved through bandwidth
selection, which means adapting a scale parameter to the level of noise.

Bandwidth Selection for MLS

Wang et al. [82] extend the use of MLS by computing optimal bandwidths.
As detailed in Section 2.3.1, the MLS framework requires a local reference domain

usually defined as a plane:
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H = arg min
n�

i=1
(�n, pi� − D)2θ(�pi − qH�).

The weight function θ is the scale of the MLS, referred to as bandwidth.
When H is found, a polynomial approximation of the surface is sought after:

g = arg min
n�

i=1
(g(xi, yi) − fi)2θ(�pi − q�),

where (xi, yi) denote the coordinates of the projection of pi in the local coordinate
system of H, and fi is the distance of pi from H.

A commonly used scale function is the Gaussian, possibly truncated θ(r) = e− r2
h2 ϕ(r),

where ϕ is a windowing function used to increase computational efficiency.
The bandwidth is set by the parameter h. A kernel regression is performed to automat-

ically select it. The optimal bandwidth is defined as the one minimizing the mean squared
error between a point and the projection operator. This leads to the following expression:

hopt = C

�
v

nρ(q)(f ��(q))2

�1/5
,

where:

• C is a constant dependent on the kernel.

• v is the variance of the noise.

• ρ(q) is the local density of points at query point q.

• f(q) is the projection operator applied at query point q.

The optimal scale is selected as the one minimizing the error of a kernel regression
problem, allowing for reconstruction of both noise-free and noisy point clouds without any
user-defined setting (Figure 2.16).

Note that even though automatic, this scale selection remains global hence non-adaptive.

Statistical Estimator

Inferring the scale of a point cloud is commonly handled through minimizing an ap-
proximation error.
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Figure 2.16: Optimal bandwidth selection [82]. A kernel regression is performed on
each point cloud. The associated functional (and minimum chosen) is given under each
example.

Unnikrishnan et al. [80] investigate the variation of a statistical estimator where an
input point is considered as a noisy observation of a real point lying on the inferred shape.
A semi-parametric model is used: the shape is smooth with parameters κ (curvature) and τ

(torsion), both close to constant on a small neighborhood. The noise is assumed Gaussian
with a variance of σ2.

The estimator for sample covariance matrix can be expressed as the sum of the matrix
of its expected value and a matrix of random variables M̂n = M̄ + Q, where Q denotes
a symmetric perturbation matrix. The impacts of varying Q over principal eigenvector of
M̂n are computed and analyzed. The support radius size is adjusted to estimate the most
reliable model parameters.

As depicted by Figure 2.17, the optimal scale can for example be considered as the one
minimizing the error on the estimated tangent plane of a local subset of the input point
cloud.

The statistical analysis of variable noise models provides satisfying results but requires
strong assumptions on the input (noise model, smoothness).

Growing Least Squares

Mellado et al. [61] tackled the problem of variable noise by defining an adaptive band-
width. A random point q at any scale s is characterized by a low-degree algebraic surface
that best approximates its neighborhood Qs = {pi; �pi − q� ≤ s}. Each input point pi is
equipped with a normal vector ni.
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Figure 2.17: Statistical estimator [80]. Left: scale is too small, the plane is randomly
tangent to the noise. Middle: correct scale, the plane is close to the real tangent plane.
Right: scale is too large, the curvature enters into play and deviates the plane.

The Algebraic PSS framework is used (2.3.3): algebraic spheres are fitted as 0-isosurfaces
of the scalar field su(x) = [1, xT , xT x]u with u = [uc ul uq]T a vector of parameters.

ul and uq are computed by minimizing �
i wi(s)�Δsu(pi) − ni�2. Then, the constant

coefficient uc is obtained by minimizing �
i wi(s)�su(pi)�2.

The weights wi are scale-dependent:

wi(s) =
�

�pi − q�2

s2 − 1
�2

.

A geometric scale-invariant descriptor D = [τ, η, κ] = is defined for a query point q and
a scale s:

τ = sû(q) ; η = ∇sû(q)
�∇sû(q)� ; κ = 2ûq.

This three measures represent respectively the algebraic offset distance, the unit normal
of scalar field and the signed curvature of the hyper-sphere. The main rationale behind the
automatic bandwidth selection is to analyze the variation of the geometric parameter:

ν(q, s) =
�dτ

ds

�2
+

�
s

dη

ds

�2
+

�
s2 dκ

ds

�2
.

At query point q, the scale s is decreased until this variation ν(q, s) exceeds a user-
defined threshold (Figure 2.18). This pioneered the problem of multiple levels of noise on
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a single scene, by defining a scale as a function of the position q in space.

1

2
3

1

2
3

Figure 2.18: Adaptive bandwidth selection. Multiple scales can be selected by the
analysis of ν, a geometric variation function.

Overview

Robustness to variable noise is still an open problem and a recent topic of interest in
shape reconstruction from measurement data.

Automatically selecting the scale is a significant step towards these goal. Adapting
automatically to noise to is commonly achieved through varying the scale and analyzing
its impact over one or several measurements: for example, the quality of the fit of a tangent
plane is more likely to be high if the scale does not exceed the local planarity of a point
cloud.

Such notion of a scale that locally adapts to the properties of input subsets is ill-posed:
the analysis of the scale is performed on a local subset whose size depend on the local scale.

the scale must be put to the test on a local subset, but the size of this local subset
depends on the chosen scale.

The rationale of the adaptive bandwidth is to lower the scale away from the global one
until the subset geometric properties lose stability.
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2.4 Conclusion

The state of the art in smooth closed shape reconstruction is as wide and diverse as the input
point clouds and requirements for the output shapes. Methods designed to handle perfect
data sets often provide proven mathematical guarantees. Approaches seeking robustness to
defects, on the other hand, often approximate the point cloud under specific requirements.

Noise robustness has been tackled from a variety of viewpoints but has become, in the
last few years, more focused on automatic scale selection, motivated by the need to get rid
of the user-defined parameters which often require a trial-and-error process. Robustness
to variable levels of noise remains an open problem and the selection of adaptive scales a
recent topic of interest.

Outliers and non-uniform sampling density are different but not unrelated defects. Iso-
lated points are a product of both of these two defects, and it seems difficult to automati-
cally distinguish them. While a series of approaches initially tackled this problem through
explicit formulations like outlier filtering, the recent trend is to use metrics or operators
that are inherently robust to these defects.

Missing data can be seen as a specific case of variable sampling. Many methods handle
it implicitly by “filling the holes” as they only produce closed shapes. Robustness to missing
data has become a topic of interest as it touches the even more ill-posed problem of data
completion. Estimating the shape of a missing part of a scene calls for specific ways of
considering the input point cloud, from a visibility point of view for example.
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3
Problem Statement

We consider an input point cloud with no additional measurement: neither normal vector,
nor scale or visibility information. It might be ridden with the following defects: noise
(possibly with variable magnitude), outliers and missing data.

Points in undersampled regions being not distinguishable from outliers, our method is
not robust to variable density.

In this part, we focus on a specific subset of possible output shapes.

Smooth

The output shape does not contain any sharp feature and is smooth everywhere. A
scanned shape with sharp features is handled with this method, at the cost of a loss of
sharpness of its features (rounded corners, for example).

Closed

The output shape is defined as the interface between an inside domain and an outside
domain. It surrounds a 2D domain, in the case of curve reconstruction in 2D, or a volume,
in the case of surface reconstruction in 3D.

This requirement also applies to the input to some extend. A point cloud sampling
an opened shape may be reconstructed as a closed shape if the inferred shape contains
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a strong concavity, that is to say if an inside can still be clearly distinguished from an
outside. Likewise, a closed shape scanned with missing data is also handled.

Figure 3.1 shows plausible reconstruction from a variety of input point clouds.

Figure 3.1: Plausible reconstructions. Left column: input point cloud. Right column:
plausible smooth closed reconstruction. The last point cloud does not sample the border
of a domain and cannot be reconstructed.
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4
Background

4.1 A priori Knowledge

4.1.1 Dimension

Shape reconstruction from raw point clouds is an ill-posed problem. First, the dimension
of input an output differ. An infinity of smooth curves of surfaces could “fit” the input
point cloud. As no additional measurements are given, we need to regularize the problem
by relying upon one or several assumptions about the inferred shape.

We denotes by s the global scale of the scene, used to match a subset of the input
subset of specific size with a part of the output. This scale is correlated to the level of
noise of the scene. It is usually defined either by setting the cardinality or the volume of a
neighborhood of a subset:

• A number of points K: from a query point q, the K nearest neighbors are consid-
ered as witnesses of the inferred shape close to q.

• A radius σ: from a query point q, the points lying inside a ball B(q, σ) of radius σ

are considered witnesses of the inferred shape close to this point.
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In our context, the scale refers to the number of neighbor points. Our a priori knowledge
about dimension is that a subset of size K of the input point cloud should have an apparent
dimension of a curve in 2D or a surface in 3D, depending on the inferred object.

4.1.2 Geometry

To make the problem better-posed, we assume that the inferred shape can be represented
as an isolevel of an implicit function f defined all over the domain. Adding such implicit
formulation, the problem is subdivided in two steps:

1. Compute an implicit function from a set of points.

2. Extract a curve in 2D or a surface in 3D from an isovalue of this function.

The second step, going from a function f to a reconstruction is commonly handled
by extracting an isolevel of the function. More specifically, the output shape is defined
by f−1(c), i.e., the locus where the function evaluates to a constant c. This constant is
commonly chosen be chosen to be 0 for a signed implicit function or the mean value of f

at the input points. We choose to use the median value that the function f takes on the
input points for outlier robustness.

The first step, computing the implicit function is our core problem. As we saw in
Section 2.3.1, implicit functions are widely used for reconstruction: the Poisson reconstruc-
tion [48] approach solves for an indicator function whose gradient best fits, in the least
square sense, the normal vectors provided as attributes to the input points. We only re-
quire raw point clouds and wish to offer robustness to noise and outliers. We describe next
a robust distance function that matches these requirements.

4.2 Optimal Transportation

4.2.1 Formulation

The transportation theory tackles the problems of optimal transportation and allocation of
resources. The transportation problem can be intuitively described as follows. Considering
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a pile of sand on a domain µ and a hole of the same volume in a domain ν, what is the
most effective way to move the sand so as to fill the hole?

If we assume the sand is moved one infinitesimal unit of volume at a time, we can define
a point-to-point mapping referred to as the transport plan. The effectiveness of a transport
plan is measured as the sum of the distances for each grain of sand.

This formulation is referred to as Monge’s variational formulation. It was extended by
Kantorovich to transport plans between probability measures. Considering two probability
measures µ and ν, the transport plan is a probability measure π on X ×Y whose marginals
are µ and X and ν on Y . For probabilities with finite support, π(x, y) corresponds to the
amount of mass transferred from x to y.

This problem strongly depends on the definition of “effectiveness”, that is to say the
transport cost. A standard cost function is the q-Wasserstein metric wq defined as:

wq(µ, ν) =
�

inf
π

�

Rd×Rd
�x − y�qdπ(x, y)

� 1
q

.

In the context of the sand transportation problem, this is the cost of moving the sand
to the hole with the Lq distance. In our context, optimal transport formulation has two
main advantages:

• It is applicable to point clouds, by considering a point as a Dirac mass.

• A distance function can be defined everywhere: this is a first step towards an implicit
function.

4.2.2 Robust Distance Function

Definition

Chazal et al. [23] introduced the notion of a robust distance function to a measure.
Consider a measure µ with finite second moment, i.e., with finite support on its domain

of definition. The distance function from a query point x to µ with parameter m0 is defined
as the transport cost in the 2-Wasserstein sense:

d2
µ,m0 : Rd → R, x �→ 1

m0

� m0

0
δµ,m(x)2dm.
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q

B(q,rµ,m(q))

m

||q-y||2

µ

rµ,m(q)

Figure 4.1: Robust Distance Function from a query point q to a measure µ.

Taking for δµ,m(x) the Euclidean distance from x to its nearest point in µ, the distance
evaluates to:

d2
µ,m0 : Rd → R, x �→ 1

m0

�

B(x,rµ,m0 (x))
�x − y�2dµ(y),

where rµ,m0(x) is the minimal radius r such that the ball centered at x with radius r

encloses a mass of at least m0. This is illustrated in Figure 4.1.
A point cloud may be seen as a distribution of Dirac masses. The robust distance

function then simplifies to:

d2
µ,K/n : Rd → R, x �→ n

K

K−1�

i=0
�x − xi�2,

where K is the number of nearest neighbors of x such that m0 = K/n and xi is the ith

nearest neighbor of x.

Properties

• Regularity: a function f : Rd → R is said to be L − concave if the function x �→
L�x�2 − f(x) is convex.

The square of the distance function is 1-semiconcave. It is differentiable almost ev-
erywhere in Rd and its gradient is:

Δxd2
µ,m0 = 2

m0

�

h∈Rd
[x − h]dµx,m0(h).
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• Stability: the map µ → dµ,m0 is m
−1/2
0 -Lipschitz. This means that for two probability

measures µ and ν on Rd and for m0 > 0:

�dµ,m0 − dν,m0� ≤ 1√
m0

W2(µ, ν).

• Convergence: let µ be a probability measure with compact support S and m0 > 0.
The distance function dµ,m0 converges uniformly to the distance to S as m0 goes to
0.

Reconstruction

From the three properties listed above, it has been shown that the sublevel sets of the
distance function of a point cloud ridden with noise and outliers converges uniformly to its
support ([23], Section IV.1). We detail next a shape reconstruction algorithm which takes
advantage of this property.

4.2.3 Shape Reconstruction

Mullen et al. [64] proposed a shape reconstruction algorithm based on the robust distance
function:

dK : Rd → R, x �→
���� 1

K

�

p∈NK(x)
�x − p�2,

where NK(x) is the set of K nearest neighbors to x.
The algorithm consists in signing the robust distance function in order to define an

implicit signed distance function whose 0-isovalue is a reconstruction of the inferred shape.
Note that signing the robust distance function offers robustness to missing data by esti-
mating the inside from the outside of the inferred shape. We summarize below the main
steps of this approach.

Scale Estimation

To compute the distance function, the user specifies a number of nearest neighbors K.
As the sublevel sets of the distance function are known to provide a good approximation
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of the shape, a band defined by the domain where dK(x) < ε is assumed to contain the
inferred shape.

To estimate an adapted isovalue, an empirical function of ε is defined to analyze both
the topology of the ε-band and the density of input points inside of this band:

M(ε) = C(ε) + H(ε) + G(ε)
D(ε) ,

where C, H and G denote the number of components, cavities and tunnels in the
ε-band, and D is the density of input points in the ε-band.

The value for ε is empirically chosen as the first local minima reached by M(ε after the
first peak in the curve. The first peak reflects the high complexity of the ε-band topology
when ε is too small. This value of ε allows to capture the correct topology while keeping
the band thin and dense with points, as shown in Figure 4.2.

Figure 4.2: Automatic ε-band width selection. M(ε) is plotted with corresponding
bands shown underneath. The first local minimum after the first peak is the chosen ε
value.

Function Computation

The robust distance function is computed on an octree covering the domain.
For quick nearest neighbors query, a k-d tree of the input point cloud is computed. The

complexity of a query of K nearest neighbors in a point cloud of size n is O(K log(n)).

60



CHAPTER 4. BACKGROUND 4.2. OPTIMAL TRANSPORTATION

Sign Guess

A parity test is perform in order to estimate whether a point lies inside or outside the
shape. First, a ray is shot from the query point. Then, the unsigned distance function is
computed along this ray. From this, we compute the parity of intersection between the ray
and the ε-band. As the band is assumed surround the inferred shape, this provides a good
estimate of the number of times the ray crosses the inferred shape. The point is estimated
to be inside if the number of band-crossings is odd, outside otherwise.

Nevertheless, counting the number of band-crossing of a ray can lead to wrong estima-
tion of the sign:

• Missing data: if the ray crosses a part of the shape missing from the input data,
then the parity test is wrong;

• Tangential ray: as the ε-band has a non-zero width, a tangential ray might cross it
but remain on the same side of the inferred shape. In this case, the parity test also
fails (see Figure 4.3).

# = 1

# = 5

# = 3

# = 0

# = 2

# = 4

# = 1

# = 2

Figure 4.3: Ray shooting. Rays with correct parity detection are in blue (even) and red
(odd). Tangential rays giving a wrong parity estimation are in green.

A stochastic approach is used to achieve both robustness to missing data and tangential
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rays. Several different rays are shot from a single query point. This provides a sign guess
with a certain confidence, from 1 if all parity tests agree to 0 if 50% of the rays are given
an odd parity and 50% an even one. The sign is estimated at every point of the octree. A
Laplacian operator is then applied to compute a smooth signed function, using both the
robust distance function and the sign guess.

This method provides a fair amount of robustness for noise, outliers and to some extend
missing data. One of its advantages is that it only requires raw point clouds, with neither
normal vectors or visibility lines.

Several limitations remain however. First, the scale K is not automatically selected
and thus must be user-defined. It is also global, hence non-adaptive. In addition, the sign
is guessed through ray-shooting which becomes unreliable as the complexity of the scene
increases and the number of potentially tangential rays grows.
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5
Contribution

We present a novel reconstruction algorithm from defect-laden point clouds with variable
noise and outliers. It comprises three main steps. First, we define and compute a noise-
adaptive distance function to the inferred shape, which relies on a dimension assumption.
We then estimate the sign and confidence of the function at a set of seed points. Finally,
we compute a signed implicit function based on the noise-adaptive distance function and
on the most confident seed points computed in previous steps.

5.1 Noise-Adaptive Distance Function

We propose a novel noise-adaptive distance function. For the sake of completeness, we go
back to the continuous formulation of the distance function, using a mass m as a scale
factor and a mass distribution µ to represent the input point cloud.

The noise-adaptive distance function is defined as follows:

δµ,α = inf
m0>0

dµ,m0

mα
0

,

where α denotes a parameter that only depends on the dimensions of the space and of
the inferred shape. The following subsection explains how this function is built.
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5.1.1 Non-Adaptive Function

We first analyze the behavior and properties of the non-adaptive distance function in some
ideal cases. Specifically, we analyze the effects of a change of scale m0 for a fixed query
point.

µ

x

m0

m0

h
x

µ

p

a. b.

Figure 5.1: Ideal cases for computing robust distance function. a. ambient noise in
3D, the distribution µ is uniform on space and the mass m0 is contained in a sphere.

b. uniform measure µ on a 2-submanifold in 3D, the mass m0 is contained in a disk on
the supporting plane of µ.

Ambient Noise

Consider the case of an ambient noise, i.e., a uniform measure µ on a d-dimensional
space, as shown on Figure 5.1-a. Remind that for any point x ∈ Rd, the robust distance
function define as:

d2
µ,m0(x) = 1

m0

�

B(x,rµ,m0 (x))
�x − y�2dµ(y).

In this case, this value is constant on the whole space and does not depend on x.
The function is an integral on a ball of constant radius. To simplify notations, we replace
rµ,m0(x) by R. The distance function simplifies to:
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d2
µ,m0 = 1

m0

� R

0
r2dµ(r).

The volume of a d-ball of radius R is CdRd with Cd a constant equal to πd/2

Γ( d
2 +1) . We call

ρd the d-density of µ with ρd = m0
CRd , and apply this change of variable:

dµ(r) = ρddCdrd−1dr.

The expression of the robust distance function becomes:

d2
µ,m0 = ρddCd

m0

� R

0
rd+1d(r) = d

d + 2
ρdCd

m0
Rd+2.

By definition of ρd, we have R =
�

m0
ρdCd

�1/d
. Thus:

d2
µ,m0 = d

d + 2
ρdCd

m0

�
m0

ρdCd

�1+(2/d)
= d

(d + 2)(ρdCd)2/d
m

2/d
0 = c1m

2/d
0 .

This means that for a fixed query point, dµ,m0 is varies proportionally to m
1/d
0 . For a

parameter α > 1/d, dµ,m0
mα

0
thus decreases with m0, as shown on Figure 5.2-a. It reaches its

minimum when all the mass of µ is included in m0.
In the discrete case, δ2

µ,α is the average squared distance to all data points.

dµ,m0
(q)

m0
α

m0

dµ,m0
(q)

m0
α

m0a. b.

Figure 5.2: Behavior of dµ,m0
mα

0
on ideal cases. a. Ambient noise in d-dimensional space,

α > 1/d. b. Uniform measure µ on a k-submanifold in d-space, α < 1/k.

Submanifold

Consider a uniform measure µ on a k-subspace in a d-dimensional space, as shown on
Figure 5.1-b. We denote by p the orthogonal projection of x on the k-subspace. The value
of the distance function only depends on the distance to the k-subspace h = �x − p� and

65



5.1. NOISE-ADAPTIVE DISTANCE FUNCTION CHAPTER 5. CONTRIBUTION

m0 is contained in a hypersphere of the k − subspace, of radius rµ,m0 and centered at p. A
simple calculation shows that:

d2
µ,m0 = 1

m0
h2

�

B(p,R)
dµ(r) + 1

m0

� R

0
r2dµ(r).

The integral of the first term simplifies to m0, which makes this term equal to h2. The
second term is similar to the calculation in the previous case with dimension k.

d2
µ,m0 = h2 + k

(k + 2)(ρkCk)2/k
m

2/k
0 = h2 + c2m

2/k
0 .

For α < 1/k, dµ,m0/mα is unimodal as a function of m0 as shown on Figure 5.2-b. Its
minimum is reached at m0 ∗ (h) = c2hk.

Note that in this case, the noise-adaptive function depends on the distance h from the
k-submanifold:

δµ,α(h) = c3h
1
k

−α.

While the non-adaptive function dµ,m0 is a smooth quadratic function that does not
reach 0 on the inferred shape, this modified distance does vanish on the shape and grows
quickly, with a vertical tangent, when moving away from it.

The level sets of this adaptive distance function are denser around the input points,
providing a more accurate inference of the underlying shape.

Realistic Case

Figure 5.3: Apparent dimension. Left: K = 10, the apparent dimension is 2 (a surface).
Right: K = 30, the apparent dimension is 1 (a curve).

Consider a k-submanifold sampled by a noisy point cloud. As shown in Figure 5.3, this
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can be seen as a mixture of the two ideal cases we just analyzed.
If the scale selected is smaller than the level of noise, then for a query point q located on

the inferred shape, the data has the appearance of an ambient noise in d-space as depicted
in Figure 5.1-a and dµ,m0/mα decreases the same way as in Figure 5.2-a (provided that
α > 1/d).

When the scale is large enough to exceed the level of noise, then the data appears as
a k-submanifold as depicted in Figure 5.1-b and dµ,m0/mα starts increasing as shown in
Figure 5.2-b (provided that α < 1/k).

This mixture of both behaviors is described in Figure 5.4.
Under these conditions, dµ,m0/mα reaches its minimum on the value of m0 that is

minimum yet large enough to capture the level of noise, providing a so-called “noise-
adaptive distance function”. It yields a faithful representation of the inferred shape on
noise-free parts while automatically adapting to the local level of noise on areas with poor
sampling quality.

δµ,

local scale

dµ,m0
(q)

m0
α

m0

α
(q)

Figure 5.4: Adaptive distance function. The minimum of dµ,m0/mα is the noise-adaptive
distance function. Its value is reached on a value of m0 that defines the local scale. This
curve can be seen as a composition of the two curves from Figure 5.2.

5.1.2 Definitions & Properties

Local Scale & Distance Function

The noise-adaptive distance function is defined this way:

δµ,α = inf
m0>0

dµ,m0

mα
0

.

The parameter α is fixed for a given dimension. More specifically, reconstructing a
shape of dimension k in a space of dimension dD implies selecting α in ] 1

d ; 1
k [. In practice,
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we set α to the midpoint of the corresponding interval.

• For curve reconstruction in 2D: 1/2 < α < 1, thus we select α = 3/4.

• For surface reconstruction in 3D: 1/3 < α < 1/2, so α = 5/12.

Note that δµ,α is defined as an infimum over the values of m0. The value of m0 cor-
responding to this infimum is the local scale at the considered query point q. On discrete
cases, this local scale can be referred to as K(q) (number K of nearest neighbors needed
to get the correct local scale at point q).

Figure 5.5 shows a comparison of the non-adaptive distance function to the noise-
adaptive one. It also depicts the scale function.

As explained above, this function detects the smallest scale such that the subset of
points selected matches the inferred dimension: in this sense, it follows our dimensional a
priori presented in Section 4.1.

Another noticeable property of this adaptive distance function appears when observing
points away from the inferred shape. The different relevant scales of a shape are detected
(Figure 5.6).

Like so, points located in the inside part of a 3D torus are local minima of the noise-
adaptive distance function: the smallest scale such that the object has the correct dimension
at these locations is the scale at which the torus is seen as a single very noisy circle.

This property can be used for the detection of different levels of details or for a multiscale
reconstruction. Our work focusing on the reconstruction that preserves as many details as
possible above the noise level, we focus on the smallest scale detected that matches the
dimension assumption (corresponding to the blue curve in Figure 5.6.

Guarantees

As discussed in Section 4.2.2, the non-adaptive distance function exhibits stability prop-
erty leading to reliable guarantees for topological inference [23]. We show that the novel
adaptive distance function may be modified so as to match similar properties.

For each value of m0, the distance dµ,m0 is 1√
m0

-robust: two measures µ and µ� that are
� away in the Wasserstein 2-distance sense have robust distances dµ,m0 and dµ�,m0 at most
�/

√
m away in the sup norm.
The square of the non-adaptive distance is also 1-semiconcave. All functions in the

infimum are m
−α−1/2
0 -robust and with m−2α

0 -semiconcave squares.
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Figure 5.5: Distance functions. Top: input point cloud and segment selected to depict
function values. Red curve: robust function dµ with K = 6: small details are captured
in noise-free area, but the function is noisy on noisy area. Green curve: robust function
dµ with K = 70: noisy areas are captured, but noise-free areas are over-smoothed and
the function first minimum has shifted to the right. Blue curve: adaptive function δµ: all
features are captured. Orange curve: selected value for K: notice the high dynamic of the
function (log vertical scale). The flat maximum appears when the total number of points
is reached.
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Figure 5.6: Adaptive function δU on a line segment and its scale decomposition.
Top: input point cloud and line segment chosen to depict the function values. Black
curve: δU : all features are captured. The curve may be seen as an infimum of the following
curves (corresponding scales shown right). Red curve: large scale (K equating the total
number of input points). Far from the points, the inferred shape is seen as a point object at
the center of mass of the points. Green curve: intermediate scale. Between the 2 circles
of the ring, the shape is seen as a single noisy circular shape. Blue curve: smallest scale.
The shape is seen as the noise-free ring sought after.
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Since these properties are preserved under taking infimum, so does the modified dis-
tance. As robustness weakens on very small values of m0, we limit the infimum search over
values of m0 that exceeds a lower bound mlimit.

In practice, considering discrete measures corresponding to point clouds, we enforce
such a lower bound on m0 by taking at least Klimit = 6 nearest neighbors.

5.1.3 Computation

Complexity Issue

The time complexity of computing the non-adaptive distance function dµ,K/n is in
O(K log(n)) using a k-d tree, with n the total size of the point cloud and K the number
of nearest neighbors (the scale).

Computing exactly the values of δµ,α raises a scalability issue, as it is defined as an
infimum search over all possibles values of K between Klimit = 6 and the number of input
points n. For a single query, the time complexity of such a computation using a k-d tree is
in O(n log(n)). Massive data sets make such complexity impractical for a large number of
distance queries.

Multiscale k-d tree

To alleviate this issue, we approximate the computation of the infimum through a
multiscale approach. The main rationale behind this step is that dµ,K/Kα highly varies on
small values of K but becomes more and more regular as K grows.

More specifically, the difference between averaging the square distances to the 2 nearest
neighbors and to the 3 nearest neighbors is in general larger than the difference between
1002 and 1003 nearest neighbors, for instance.

We compute dµ,K exactly for small values of K and rely upon far-field approximations
for larger values. We proceed as follows:

1. In addition to the original point cloud, we store clustered versions of it obtained
through hierarchical clustering [68]. Clusters are parameterized to be uniform, i.e.,
with no constraints on the local variation (Figure 5.7). We assign to these clusters
indices of level of detail i, with index 0 for the input point cloud. Denote by s the
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size of each cluster (set by default to 10 in all shown experiments). The size of the
ith clustered version of the point cloud is n

si .

2. We build a k-d tree for each of these point clouds, including the unaltered input point
cloud.

3. To evaluate the function dµ,K/Kα, we use in sequence these k-d trees with increasing
K until reaching the desired K. More specifically, we approximate the distance dµ,K

by increasing K and summing up squared distances to cluster points with appropriate
weights si. When K gets larger than si, we switch to the next k-d tree with index
i + 1.

Figure 5.7: Multiscale k-d tree. The input point cloud (1M points) is hierarchically
clustered with clusters of size 10.

The time complexity for a single query drops to O(log(n)2), which solves the scalability
issue while providing satisfactory approximations of δµ,α as shown by Figure 5.8.

5.1.4 Representation

For fast queries on δµ,α, we wish to compute it on an adapted representation of the domain
and to approximate it through piecewise-linear interpolation.

We compute a triangulation (tetrahedralization in 3D) through Delaunay refinement.
For scalability purpose, this triangulation is made adaptive, with smaller cells on areas
where the function gradient varies rapidly.
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Figure 5.8: Approximating δµ. The 3D point cloud (50K points) is sampling a torus with
variable noise. The functions are depicted on a planar slice. Left: exact computation (3
minutes). Right: approximation with a multi-scale k-d tree (1 second).

Delaunay Refinement

We refine a Delaunay tetrahedralization via Delaunay refinement [71]: starting with
a loose convex hull of the input point cloud, the tetrahedralization is greedily refined by
inserting Steiner vertices until the cells fulfill a shape criterion. The latter is based on the
radius-edge ratio, that is to say the circumradius of a cell divided by its shortest edge. A
cell is considered a bad tetrahedron if its radius-edge ratio is larger than a given threshold.
In this case, the circumcenter of this tetrahedron is added as a vertex of the triangulation.

Error Probing

After refinement, the triangulation must provide a faithful piecewise linear interpolation
of the distance function. We denote by δ̃µ,α(q) the interpolated value of δµ,α(q). We define
an interpolation error at point q ∈ R3:

e(q) = �δ̃µ,α(q) − δµ,α(q)�.

The refinement is guided by the error, keeping it under an error criterion. In addition
to checking the radius-edge ratio of a cell, we also pick a number p of random points on
the cell, the so-called probes. On each of these probes, we test the value of the error e(q):
as soon as one probe gives an error above a threshold emax, the cell is considered as bad
and we insert its Steiner vertex. If a user-defined maximum number of probes pmax return
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an error lower than emax, the cell is considered good and the refinement stops (provided
the radius-edge ratio criterion is also met).

Such refinement algorithm generates tetrahedralizations with a high density of vertices
in areas where the function δµ,α varies quickly and lower density elsewhere (see Figure 5.9).

Figure 5.9: Delaunay refinement. Left: input point cloud and distance function. Right:
tetrahedralization computed with pmax = 15 and emax = 0.001.
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5.2 Guessing the Sign

We now wish to compute a signed implicit function from the noise-adaptive distance func-
tion. We first guess the sign on a discrete set of points covering the scene. Our approach
is inspired by the ray shooting and parity test step performed by Mullen et al. [64] with
some differences an improvements.

Because of the high variations of the noise-adaptive distance close to the inferred shape,
we first want to guess the sign away from the input points, where confidence is higher.

5.2.1 Segment Picking

Limitation of Ray Shooting

One of the major problems of ray shooting arises from rays near tangent to the inferred
shape, as depicted by Figure 4.3. As the shape gets wider and more complex, the probability
of a wrongly estimated parity increases.

Note that when a parity test fails, it only means that the ray is aligned with the inferred
shape at some point or that it crosses a region with missing data. Other parts of the ray
might as well be valid, but as the parity test uses the whole ray, the whole ray becomes
useless.

Using Segments

Ray shooting may be seen as a very specific case of a more general process referred
to as “segment picking”. Indeed, when representing a scene on a computer, shooting a ray
is equivalent to picking a segment whose end points are the query point and a point at
infinity.

We generalize this idea by picking segments with end points sampled everywhere on the
domain. We use both small segments which have little probability of being tangent to the
shape, and long segments which provide a means to improve robustness to missing data.

Our approach randomly selects a large number of segments within the scene, the number
of segments selected being our means to trade robustness for computational time.
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5.2.2 Signing a Segment

Performing a parity test on a segment consists in estimating the number of times it crosses
the inferred shape. Mullen et al. [64] use the precomputed band where dµ,K < ε.

Although it also drops near the inferred shape, the noise-adaptive function δµ,α is not
suitable to such a constant thresholding: the range of values it takes near the inferred shape
depends on the local scale and point density, see Figure 5.5 (blue curve).

Smoothness Assumption

The noise-adaptive distance function drops near the inferred shape. These areas are in
general sharper than the other local minima found on a segment. Our rationale is that the
signed implicit function should be smoother after switching signs near the inferred shape.

Relying solely upon a smoothness assumption, we proceed as follows: among all possible
ways to sign the distance function on a segment, we select the one that generates the
smoothest signed function.

First, we compute the interpolated approximation of the function δ̃µ,α along the segment
and extract all the local minima. To reduce the number of local minima that can arise on
noisy areas, we first perform a light Gaussian filtering of this function.

As the function does not reach 0 on the inferred shape, we replace sign flips by local
flips: the function is mirrored with respect to the horizontal line located at each local
minimum for each segment. The local sign guess problem is formulated as a combinatorial
problem of complexity 2N , where N denotes the number of local minima.

We test all possible combinations of local flips. To evaluate the smoothness of each
solution, we use the squared norm of its second derivative, measured and summed up at
multiple scales and computed through finite differences after uniform discretization of δ̃µ,α

along the segment.
Figure 5.10 depicts the signing process for one segment.

5.2.3 Signing a Graph

From the signing process described above for one segment, we can perform both local and
non-local sign hypotheses via randomly picking short and long segments. We next wish to
consolidate these hypotheses via a global solve for signing the vertices of a graph.
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Figure 5.10: Signing through local flips at local minima. Top: 5 minima found on the
segment. Top curve (red): no flip and corresponding smoothness value (S). Bottom curve
(orange): the chosen combination of local flips corresponds to the smoothest curve.
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In the ray shooting approach, one of the end points of a ray is at infinity and therefore
known to be outside. The sign of the other end point can thus be directly determined by the
parity of the ray. This is not the case when using finite segments: a single sign hypothesis
provides only a means to estimate if the end vertices of an edge have similar or opposite
signs.

To determine the signs of end points from segment hypothesis, we propose a novel
approach based on a random graph.

Definition

We generate a random graph G as follows:

• Nodes are located on the vertices of a regular grid that covers the scene.

• Edges are created by randomly picking a large number of pairs of nodes. Using the
parity test previously described, each of them is assigned a sign hypothesis −1 when
the two end nodes are estimated to have the same sign, +1 otherwise.

The user must specify two parameters: a number of nodes and a number of edges
randomly picked. Large numbers provide a more reliable sign guess at the cost of longer
computation times.

Note that we also experimented with a non-regular graph with nodes placed on the
vertices of the adapted tetrahedralization. Many nodes are located near the inferred shape
which makes the parity test fail in most cases. The failures do not disappear even when
compensating for the variable density of nodes with appropriate weights.

Energy Minimization

The nodes are given indices i. An edge is denoted by the indices of its end points
(i, j). si denotes the unknown sign guess function at node i and εi,j = ±1 denotes the sign
hypothesis on the segment (i, j).

On the graph G, we define and minimize the following energy:

EG(f) =
�

(i,j)∈G

(si + εi,jsj)2.
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The goal of this minimization is to solve for a global consensus on the sign of nodes
based on the sign hypotheses found at each segments. To avoid the trivial solution where f

is 0 everywhere, we constrain the solution to have average value equal to 1: 1
|G|

�
i∈G si = 1.

Note that we could also constrain the nodes on the boundary of the scene to be 1,
relating to ray shooting where the points away from the shapes are assumed to be outside
of the inferred shape. Nevertheless, this is a poor constraint if a shape is partially scanned.
Another solution is imposing the solution to have unit L2 norm. However, this requires
solving for an eigenvalue problem with limited scalability.

The energy EG is minimized using a sparse linear solve: we use a conjugate gradient
algorithm applied to a sparse matrix, using a conjugate gradient algorithm provided by
the Eigen library [42]. Solving for a graph with 300K nodes and 20M edges takes about
10 seconds in our experiments (see Section 5.4). The random edge selections with sign
hypotheses tests are trivially parallelized.

A random graph is depicted by Figure 5.11.

Confidence on Solution

As some nodes may randomly lie on the inferred shape or on a part with missing data,
we identify the most confident nodes.

The confidence ci of a node i is defined as a ratio of match hypotheses:

c(i) = 1
N

N�

j=0
S(i, j),

where N denotes the number of edges adjacent to i and S(i, j) = 1 if si and εi, j × sj

have opposite signs, 0 otherwise. Figure 5.12 depicts three different confidences.
All nodes with confidence higher than a user-specified threshold (c > cmin with cmin =

0.75) are referred to as confident nodes and used in the next section. Figure 5.13 depicts
such a thresholding.
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Figure 5.11: Random graph. Top: input point cloud and edges of the graph (only 1% of
edges are shown for clarity, with blue for similar signs and red edges for different signs).
Bottom: 20% of the graph edges shown, and signed function at graph nodes after linear
solve (red for inside, blue for outside).
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Figure 5.12: Confidence of a node. The signs of the nodes are depicted in red and blue.
The hypotheses are written with the symbols = and �=.

Figure 5.13: Confidence filtering. Left: result of the sign guess. Right: sign guesses with
a confidence ≥ cmin = 0.75.
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5.3 Signing the Distance Function

We now detail the final step of the algorithm: converting the unsigned noise-adaptive
distance function to the signed implicit function using the pointwise sign guesses computing
in previous step (Figure 5.14).

+ →
Figure 5.14: Signing the distance function. From left to right: input distance function,
confident sign guesses and output implicit function.

5.3.1 Intuition

Given the set of most confident signed nodes computed in the previous step, we wish to
compute a global signed function whose 0-isolevel is a reliable reconstruction of the inferred
shape.

We denote by g the signed implicit function. It is defined on the adaptive tetrahedral-
ization T as for δµ,α.

Intuitively, we want the signed function to fulfill two constraints:

• Match the most confident sign guesses.

• Switch sign on the low values of δµ,α.

This idea is depicted on Figure 5.15. The rationale is that the inferred shape is located
in areas where δµ,α takes low values and where the sign is estimated to change.
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Figure 5.15: Signing step, input and output. Left: input distance function and sign
guesses. Right: output signed implicit function.

5.3.2 Energy Minimization

To compute the signed function, we propose a method inspired by the random walker
approach used for image segmentation [40]. It is primarily used to label specific parts of
an image, by identifying borders defined by pixels with high gradient value.

In our context, we define only two labels (inside and outside) and a set of seeds (the
signed nodes). We define a cost function:

w(x) =





δµ,α(x) if K(x) < Kmax

+∞ otherwise

We then search for a function g that minimizes the weighted Dirichlet energy:

Eg,T =
�

Ω
w(x)|∇g(x)|2dx.

The rationale is to compute an approximate indicator function of the inferred shape
where the function varies abruptly. The upper bound on the local scale Kmax prevents the
sign from switching inside thin features that can have a low local scale while irrelevant for
reconstruction. We set by default Kmax = 500.

A trivial constant solution would be found when no other constraints are defined: the
reliable sign guesses computed in previous step are used to avoid it. As the energy is
computed on the adapted tetrahedralization, we simply assign sign guesses of the confident
nodes to their closest vertices in T . These guesses are used as soft constraints by the
minimization step.
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Solving for this energy in the space of piecewise-linear functions defined on T boils
down to solving the linear system (L + αC)X = αB, where:

• L is a weighted Laplacian matrix of size V × V , V being the number of vertices of T .

• α is a user-specified coefficient used to weight the influence of constraints.

• C is a diagonal matrix with ci,i = 1 if vertex i is constrained, 0 otherwise.

• X is the solution vector solved for.

• B is the right hand side vector where bi = 0 if the vertex i is unconstrained, and
bi = ±1 depending on the sign constraint otherwise.

Parameter α is set empirically in the range of 10−3 × trace(L)
v .

Figure 5.16 summarizes the signing pipeline ranging from the noise-adaptive distance
function to the implicit function.

Figure 5.16: Signed implicit function. Top: unsigned function and sign guess on nodes
of uniform graph. Bottom: confident nodes used as soft constraints and signed implicit
function after linear solve.
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5.4 Results

The algorithm is implemented in C++ using the CGAL library [1] and the Eigen library [42]
for least squares fitting. All experiments are performed on an Intel 2.4GHz laptop with
8GB RAM.

Although the output of the algorithm is an implicit representation of the reconstructed
shape, we extract an isosurface by using the isolevel corresponding to the median value of
g(x) on the input points:

• In 2D, the curves are obtained through marching triangles on the 2D adaptive trian-
gulation.

• In 3D, the surface are obtained through Delaunay refinement [71]. Marching tetra-
hedra are another solution but generates overly complex meshes.

Timings and parameters are provided by Figure 5.17.

Point cloud Size Tdist Tguess Treco Ttotal Memory Specific
parameters

Figure 5.18 857.726 207 32 12 242 700 MB
Figure 5.21 50.000 52 25 4 82 300 MB
Figure 5.24 50.000 91 33 6 130 400 MB Kmax = 1000
Figure 5.25 419.488 181 155 6 342 1.6 GB emax = 0.003,

500K nodes,
15M edges,
l = 0.60

Figure 5.17: Timings. Timings in seconds. Default parameters: pmax = 10, emax = 0.004,
50K nodes, 1.5M edges, cmin = 0.75, Kmax = 500.

5.4.1 Perfect Data

Albeit our algorithm is designed to deal with variable noise, we first experiment with
defect-free point clouds.

Figure 5.18 shows a reconstruction of the genus point cloud. It is close to noise-free
with few holes due to missing data. It was generated by photogrammetry (courtesy EPFL
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Computer Graphics and Geometry Laboratory [2]). We compare our reconstruction to the
Poisson surface reconstruction [48]. Normal vectors provided with the original point cloud
are used by the Poisson reconstruction step.

Figure 5.18: Low noise. From left to right: raw point cloud; point cloud & reconstruction;
reconstruction only; Poisson reconstruction.

Our algorithm yields comparable results with some noticeable differences on missing
data.

5.4.2 Uniform Noise and Outliers

The primary added value of our approach is its robustness to both uniform noise and
outliers. Figure 5.19 depicts the stability of our approach against increasing amounts of
noise and outliers.

Note that a correct reconstruction is still obtained even when the estimation of oriented
normals is impossible. We also show some failure cases when the combined effects of noise
and high density of outliers challenges our local dimension assumption.
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Figure 5.19: Noise and outlier robustness. The noise increases from left to right. The
outliers increase from top to bottom, ranging from outlier-free to 60% through 20%. Input
point cloud in black, reconstructed curve in red.
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5.4.3 Variable Noise

Our algorithm outperforms on automatic and adaptive detection of local scales. As shown
by Figure 5.20, a constant scale parameter K fails in reconstructing shapes with variable
levels of noise: noise-free areas are oversmoothed when K is selected large enough to be
robust to the noisy area.

Figure 5.20: Reconstruction with a constant scale (K = 80). From left to right: input
point cloud with variable noise; unsigned distance function to the inferred shape; sign guess
and confidence; reconstructed shape, over-smoothed.

To challenge our algorithm, we generate a variety of variable noises on several point
clouds.

Gradually Variable Noise

We first generate a variable noise by increasing linearly the noise level.
Figure 5.21 illustrates a relevant case where small features in noise-free areas have sim-

ilar scale as the noise in difficult areas. Our approach smoothly approximates the inferred
shape on noisy area while providing high accuracy on noise-free areas.

The Poisson reconstruction, on the contrary, fails at dealing with variable noise: either
the scale is large enough to handle noise, and the detailed features are lost or the scale is
small enough to reconstruct the detailed features but gives poor results in noisy areas with
incorrect topology.

Another strength of our method is its capability to reduce shrinkage in curvy areas
(Figure 5.22).
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Figure 5.21: Gradually variable noise (generated). Top: raw point cloud, where noise
increases linearly from top to bottom; point cloud & our reconstruction; our reconstruction
only. Bottom: Poisson reconstruction with a constant octree depth of 4, 6 and 8.

Figure 5.22: Variable noise (generated). Left: input point cloud. Right: reconstructed
surface. Notice that the reconstructed surface exhibits no shrinkage.
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Abruptly Variable Noise

We now experiment with another type of variable noise, with a noise-free area clearly
separated from the noisy area. Such type of noise appear when heterogeneous devices or
acquisition conditions are used.

Half of the genus model is tampered by noise (Figure 5.23). Our algorithm yields a
valid reconstruction with a smooth transition at the interface between the two noise levels.
The noise-free part is not affected by this change compared to Figure 5.18.

Figure 5.23: Two levels of noise. Left: raw point cloud with additional noise on the top
half part. Middle: point cloud & reconstruction. Right: reconstruction only.

We furthermore generate a point cloud with two interlaced tori hampered by two levels
of noise (see Figure 5.24).
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Figure 5.24: Two levels of noise (generated). Left: raw point cloud containing a noise-
free and a noisy torus. Middle: point cloud & reconstruction. Right: reconstruction only.

5.4.4 Structured Outliers

The capitol model (Figure 5.25) challenges our algorithm. It was acquired through dense
photogrammetry and contains some artifacts in the form of structured outliers as well as
variable noise. All normal estimators fail on this point cloud.

Our algorithm reconstructs the inferred column capitol. While most of the details are
lost, it successfully locates the inside of the shape and is not fooled by the “ghost shape”
induced by structured outliers.

5.4.5 Failure Cases

We push our algorithm to its limits, up to failure cases.

Excessive Noise

When the noise level is extreme, the dimension assumption may not be valid anymore,
see Figure 5.26. The dimension of the underlying shape becomes ambiguous and our re-
construction algorithm fails in producing a reliable reconstruction. Note that the correct
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Figure 5.25: Noise and structured outliers. Left: raw point cloud. Middle: closeup on
point cloud. Right: closeup on point cloud & reconstruction.

topology is still captured even while the geometry of the object is poorly reconstructed.
Figure 5.27 illustrates a failure case with an extreme level of noise: the noisy part

of the torus has the same apparent dimension than a noisy circle embedded in 3D. The
reconstruction degrades rapidly on such areas.

Non-Uniform Sampling Density

We conjecture that robustness to outliers is not compatible with robustness to widely
variable sampling, as a very low sampled area can not be distinguished from a set of outliers.

Figure 5.28 illustrates our approach at work on such a point cloud.
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Figure 5.26: Noise almost beyond dimension assumption. Left: raw point cloud with
high noise on the top half part. Middle: point cloud & reconstruction. Right: reconstruction
only.

Figure 5.27: Noise beyond dimension assumption (generated). Left: raw point cloud.
Middle: point cloud & reconstruction. Right: reconstruction only.
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Figure 5.28: Variable density (generated). Left: raw point cloud. Middle: point cloud
& reconstruction. Right: reconstruction only. Our method fails in capturing the correct
dimension in the low density area.
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5.5 Conclusions

5.5.1 Technical Contribution

We have introduces a novel shape reconstruction algorithm for smooth closed shapes. Our
main contribution is a novel distance function that automatically and locally adapts to
variable levels of noise. The novel noise-adaptive distance function stems from a robust
distance function to a measure that provides resilience to noise and outliers. It involves
only two linear solves and relies solely on a dimension assumption.

Our approach handles some non-trivial point clouds that are not handled by other
methods, or poorly. Robustness to variable noise is achieved by assuming that the inferred
shape is a smooth submanifold of known dimension.

Our second contribution is a novel approach for guessing the sign of a finite set of points.
By extending the concept of ray shooting to segment picking, we increase the robustness
of the signing step on complex shapes with large amount of missing data.

The algorithm only involves solving two linear systems on sparse matrices, which scales
to large data sets.

Finally, the noise-adaptive distance function is sensitive to the different scales of a single
shape. In future work, we plan to devise an automated approach to select the intrinsic scales
for geometry processing or to perform multiscale or hierarchical shape reconstruction.

5.5.2 Limitations

The main limitation of our reconstruction pipeline is the need for a regular graph: this
hampers scalability in the presence of very many details. As the distance between two
nodes must be smaller than the smallest detail, this can yield a very large number of nodes
to cover the whole scene. It remains to find a principled way to generate a non-uniform
graph.

Another limitation lies in the parity test of an edge of the graph: the total number of
combinations (2N possible flips) increase rapidly with the amount of details in the scene.
In our experiment, this number is around 6 on average, but we can imagine a complex
shape with many surface sheets that would yield many more local minima.
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Finally, our signing approach proceeds in two steps: estimating the sign on a discrete set
of points and then solving for the implicit function. It would be more elegant to perform the
whole signing of the distance function in one single step without hampering the scalability.
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6
State of the Art

6.1 Introduction

Piecewise-planar reconstruction greatly differs from reconstruction of smooth closed shapes.
Although some methods presented in Chapter 2 can to some extended handle piecewise-
smooth surfaces, dealing with opened surfaces composed solely of planar sections has been
explored independently, for example in urban modeling from multi-view or laser data.

The scientific challenges induced by piecewise-planar reconstruction also differ. Recon-
struction of smooth closed shapes relies on strong assumptions on the output shape: noise
robustness can be achieved through smoothness assumptions while non-uniform sampling
or missing data are taken into account in the view of reconstructing a closed surface.

For piecewise-planar reconstruction, the assumptions on the output shape are relaxed.
The shape may include sharp features and is not bound to enclose an inside volume. To
some extend, smooth parts can also be approximated by tangential planar primitives.

The problem of reconstructing a surface with planar primitives can be tackled by several
approaches: planar parts need to be identified and their boundaries well defined. An adja-
cency graph between the different planar parts should also be found in order to properly
embed the output mesh.

Depending on whether one of these steps is performed first and whether it is done
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one way or another, the reconstruction methods differ. In this chapter, we first review the
methods based on primitive detection. We then review some feature-based techniques and
briefly review some variational approaches.
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6.2 Primitive-based reconstruction

Piecewise-planar reconstruction can be represented as a set of planar surface parts, along
with their boundaries and relative adjacencies. A first approach to produce a piecewise-
planar reconstruction from a point cloud is to first build planar primitives, then deduce
their boundaries and relative adjacencies afterwards. Robustness to noise and missing data
is also sought after.

RANSAC

The literature in shape detection is vast. The output differs in the sense that it does not
represent the shape as a global object (mesh, implicit function, etc.) but as a disconnected
set of primitives.

Random Sample Consensus [35] (referred as RANSAC) is a popular shape detection
approach that handles different types of primitives: planes, but also canonical primitives
such as spheres and cylinders. In this review, we focus on plane detection. The original
RANSAC algorithm repeats the following process:

1. Select a random subset of the input point cloud (hypothetical inliers).

2. Fit a plane to these inliers.

3. Find all inliers of the plane from the input point cloud.

4. Consider the plane correct if sufficiently many points are inliers.

5. If it is correct, re-estimate the plane for inliers and remove these inliers from the
input point cloud.

The process is repeated in order to find the best planes.
The RANSAC algorithm has been extended in many ways and efficient variants are

available: Schnabel et al. [74], for example, improved the original algorithm via hierarchi-
cal structuring and using normal attributes. Figure 6.1 shows examples of output of the
RANSAC algorithm.
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Figure 6.1: RANSAC algorithm [74]. Original point clouds in blue, detected shapes in
random colors.

Hough Transform

Some approaches based on planarity detection use accumulation spaces [15] or region
growing for data sets containing a notion of connectivity, such as depth images [45]. Boulch
and Marlet [17] use a Hough transform to estimate the planarity, with a discrete probability
distribution of possible normals.

Their rationale is that the tangent plane – and therefore the normal vector – at a data
point p can be well defined by a triplet of points in its neighborhood NK(p), but that
picking all possible triplets would be unfeasible because of the huge complexity (on the
order of |NK(p)|3). Therefore, only a subset is considered, and the sampling of triplets
stops as soon as a confident decision can be made based on the empirical distribution in
an accumulator.

Figure 6.2: Robust normal estimation [17]. Normal estimation with least squares re-
gression (left) and with the robust normal estimation (right).

The output is depicted by Figure 6.2. Note that only large planar regions are typically
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detected, as small scales cannot be reliably found through stochastic sampling.

Connecting the Primitives

Finding large planar regions is a “shape detection” problem. Reconstruction requires
additional information such as adjacency relationships between primitives. Reconstruction
algorithms typically constrain the planar regions to be simply connected [46], smooth [70],
or globally regular [57, 84] to better capture the local geometry.

In order to perform reconstruction from a set of detected planar primitives, Jenke et
al. [46] proceed by aligning and connecting the boundaries of adjacent primitives, while
Schnabel et al. [73] extrapolate the primitives in order to reconstruct plausible surfaces on
areas with missing data.

Reconstruction can also be formulated as an inside/outside cell labeling problem within
a 3D adaptive space decomposition [22]. The use of space decomposition is usually robust
and yields a valid embedding, but its complexity is high and the output meshes often
unnecessarily complex.

Boulch et al. [16] introduce a regularization energy taking into account feature edges
and corners during the process [16]:

Eregul = λareaEarea(x) + λedgeEedge(x) + λcornerEcorner(x),

where the scalars λ are relative weights. The three terms of the energy provide the user
with fine control over the output reconstruction:

• Earea(x) penalizes the area of the reconstructed surface relatively to a scale s.

• Eedge(x) penalizes the length of edges in the reconstructed surface.

• Ecorner(x) penalizes the number of corners in the reconstructed surface.

Note that the main objective is to provide trade simplicity of the output for fidelity
to the input. This provides robustness to occlusions and missing data, putting a strong
bound on the complexity of the output shape. An output of this algorithm is depicted by
Figure 6.3.

Van Lankveld et al. [81] propose another constrained processing of primitives, extending
the algorithm of Labatut et al. [54]. The rationale is to use a 3D constrained Delaunay
tetrahedralization as a space decomposition, using the detected planes as constraints.
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Figure 6.3: Regularized algorithm [16]. The output of this algorithm is a coarse
piecewise-planar mesh thanks to the regularization energy penalizing overly complex
shapes.

Hybrid approaches have also been devised [55] to deal with both planar and free-
form surfaces. The detected primitives are used to structure the point cloud via adjacency
detection and are resampled within a Delaunay tetrahedralization.

Optimization

Finally, the connection between the primitives can be found through an optimization
step. Schnabel et al. [73] propose an approach using the output of a shape detection algo-
rithm such as RANSAC. They define a surface energy functional with the primitives shapes
used as a guiding vector field, and minimize this energy with a graph-cut algorithm.

A similar rationale is used for the O-Snap [8] algorithm (Figure 6.4). Adjacency relation-
ships among a set of primitives obtained through RANSAC are iteratively computed and
enforced through a non-linear optimization. Using the set of adjacency relationships along
with the positions of the boundaries of each primitive, an optimization step is performed
to snap the polygons through an energy minimization. This method takes advantage of a
combination of interactive modeling and automated algorithms: user interaction is crucial
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Figure 6.4: O-Snap algorithm [8]. Planes are detected via RANSAC; adjacencies are
detected; polygons are snapped; the final reconstruction is user-assisted.

to generate satisfactory output from sparse input, as reconstruction from missing data is
extremely ill-posed.
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6.3 Feature-based reconstruction

Primitive-based methods often comprise a step of primitive connection to recover the
features. Reconstruction of piecewise-planar surfaces can also be achieved the other way
around, by detecting first the sharp features of the input (boundaries, sharp creases, cor-
ners) before deducing planar regions connecting these features.

Detection of sharp features is a separate topic of interest that can also be applied as
a post-process of a smooth reconstruction algorithm. As a consequence, many approaches
have been proposed over the years [43, 69, 27, 25, 63].

Feature Detection

The basic feature elements for piecewise-planar surfaces are represented by edges and
vertices, although all vertices and edges are not necessarily related to sharp features. The
first approach for reconstructing a shape from sharp features is to detect the main feature
lines of a scene.

From a set of detected feature lines, Jenke et al. [47] reconstruct a feature-aware surface
triangle mesh. More specifically, they represent the surface with a graph of local patches
and mesh the union of all patches. The mesh is optimized via an energy function trading
data fitting for smoothness while preserving the feature lines.

A variant of point set surfaces has been proposed by Oztierli et al. [67], using non-linear
kernel regression. Local kernel regression (LKR) is a supervised regression method that
approximates an unknown function f(qi) : Rd �→ R at the neighborhood of an evaluation
point q by the terms of a Taylor expansion:

f(q) ≈ f(q) + (qi − q)T Δf(q) + 1
2(qi − q)T Hf(q)(qi − q) + ... ,

where Hf(q) denotes the Hessian matrix of f(q). Using a normal constraint Δf(pi) =
ni, the first order LKR minimization leads to the following function:

f(q) =
�

ni
T (q − pi)θ(q)�

θ(q) ,

where θ denotes a scale-dependent weight function. This is the definition of Implicit
Moving Least Squares [52].
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This formulation assumes the data to follow a smooth model and is thus not robust
to sharp features. A robust LKR is devised using an outlier-robust estimator. The main
rationale is to consider the sharp features as outliers in the sense of the normal vectors
distribution and to detect the corresponding feature points. An iterative minimization of
a Robust Implicit MLS is deduced:

fk(q) =
�

nT
i (q − pi)θi(q)w(rk−1

i )wn(Δnk−1
i )

�
θi(q)w(rk−1

i )wn(Δnk−1
i )

,

where wn measures the difference between a predicted gradient and a sample normal,
rk−

i the residuals of the previous iteration and w a weight function.

Figure 6.5: Non-linear kernel regression [67]. The feature-aware version of MLS is
given in red. IMLS is given as comparison in blue.

Figure 6.5 depicts a comparison of this type of MLS with the common IMLS.

Salman et al. [72] first detect feature points and then convert them into feature lines.
Reconstruction is achieved through the combination of a weighted Delaunay triangulation
to preserve features and an implicit surface reconstruction over smooth areas.

Finally, Dey et al. [28] propose a unified approach to handle all kinds of features in-
cluding non-manifolds, via a combination of the Gaussian weighted graph Laplacian and
the Reeb graph. A feature-preserving variant of the Cocone reconstruction method is then
applied to produce the output shape.
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Optimal Transportation

Low polygon-count reconstructions are also devised through feature-aware mesh simpli-
fication. A robust approach to reconstruct shapes with sharp features is to define a robust
and two-sided error metric that preserves boundaries and sharp features.

De Goes et al. [26] take advantage of optimal transportation distances to robustly
reconstruct curves with sharp angles. Edges of the Delaunay triangulation of the input
point cloud are iteratively collapsed as long as the transport cost from the points to their
support edges remains under a user-specified threshold. The position of sharp features is
optimized using the same optimal transportation based metric (see Figure 6.6).

Figure 6.6: Optimal transportation. Left: input point set. Right: reconstruction with
sharp features.

Digne et al. [31] extended this method to surfaces in 3D. The rationale is to simplify
an initial 3D tetrahedralization of the input point cloud, guided by a similar optimal
mass transport error metric. This approach is robust to both noise and outliers. Feature
preservation is achieved by transporting the input points onto vertices, edges or faces.
Although this approach is promising, solving for the optimal transport plan in 3D is too
computationally expensive to obtain a practical algorithm.
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6.4 Variational methods

Variational methods are devised using robust norms. The use of the L1-sparse norm was
proposed by Avron et al. [11]. It consists in finding a linear combination of basis functions
through L1 minimization. The problem is considered as a signal reconstruction process: a
signal u is reconstructed using a linear combination of basis functions phii ∈ Rn, i = 1, ..., m

with m > n the number of points. This boils down to finding coefficients αi such that:

u =
m�

i=1
αiφi.

From the Nyquist sampling theorem, it is known that the density of samples depends
on the bandwidth. Inside the bandwidth, it can be dense and contain information in all
frequencies. It has been proven since then [20, 33] that when only a small set of frequencies
are present, as a result of a smoothness assumption, the number of samples required can
decrease using L1 minimization. This leads to a sparse representation:

min
α

�α�0 s.t. u(tj) =
m�

i=1
αiφi(tj),

where samples are given at times tj and the zero norm �.�0 measures the number of
non-zero elements of a vector. Because solving this problem is highly non-convex, a common
approximation is to replace the norm L0 by the convex L1 norm. In a similar way that
a median operator is more robust to outliers than an averaging operator, the L1 norm
handles sharp features more robustly than the L2 norm that produces smooth solutions.

From a geometric point of view, a point cloud with normals is reconstructed in a
piecewise smooth fashion with a sparse set of singularities at sharp edges. A pairwise
normal difference is computed to estimate shape smoothness: at crease angles, the distance
between the normals of two distinct smooth subparts ni and nj is above a small threshold
τ . Therefore, the normal field should have only a small number of local normal differences
that are large.

The angle between the average normal of two points and their support line is computed:
nij ·(pi −pj). It is expected to be close to zero in general and non-zero near sharp features.

The normal field of the inferred shape is consistently estimated by minimizing a global
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weighted L1 penalty function CN :

CN (N , W, E) =
�

(pi,pj)∈E

wijcN
ij (N ),

where W = {wij} denotes a set of weights defined to achieve sparsity, E an adjacency
set and N the set of normal vectors.

Figure 6.7: Comparison of the L1-sparse method [11]. (a) Input point cloud. (b)
LOP [59] (c) DDMLS [58] (d) RIMLS [67] (e) L1-sparse method.

This method robustly detects sharp features as discontinuities in the normal field by
assuming the sparsity of these discontinuities. A comparison with other methods is depicted
by Figure 6.7.

Note that the sparsity of the L0 norm has also been applied to denoising [44, 24].
However, these robust norms often imply numeric-intensive methods and are thus not
scalable. In addition, output shapes cannot represent non-manifold features, which makes
these approaches not suited to capture more general shapes.
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6.5 Conclusion

Reconstruction of piecewise-planar surfaces cannot be tackled using the same assumptions
used for smooth reconstruction. The output of these two classes of method differ both in
nature and purpose. The apparent simpler nature of the output – a set of connected planes
– implies in fact a wider range of scientific challenges and is still an open problem.

Piecewise-planar reconstruction requires finding a balance between feature detection,
conforming meshing and fidelity to the data. Some methods take advantage of the strong
reliability of shape detection algorithms such as RANSAC as a first processing step: the
problem boils down to connecting the detected planar primitives. This step can be achieved
through minimizing energies that regularize the output mesh. In most cases, additional con-
straints are added to the output shape in order to reduce the space of solution (smoothness,
low complexity first, etc.).

Some methods have also been devised to tackle the problem by detecting sharp features
then building a mesh around them. This is achieved through metrics sensitive to discon-
tinuities of the normal vector field or through graph-based approaches. Reconstruction is
also achieved through simplifying a mesh with respect to these estimated constraints, using
e.g., Delaunay triangulations.

Finally, some variational methods take advantage of the robustness of some specific
norms to sharp features, but are often limited by the high computational complexity.

Most methods use strong assumptions on the inferred shape at the cost of a loss of
generality: for instance, only few methods handle non-manifold surfaces. Although shape
detection algorithms offer a solid ground to reconstruction of piecewise-planar surfaces,
they are not always adapted to scenes containing both large planar shapes and many small
details.
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7
Problem Statement

We now consider input point clouds with no additional measurement and possibly ridden
with noise and outliers. Several assumptions are made for the inferred surface.

Boundaries

The inferred shape is not required to separate an outside from an inside volume. It can
furthermore contain an arbitrary number of boundaries.

Our algorithm is to some extend robust to variable sampling density under a user-
specified threshold. However, data completion is not achieved and the boundaries near
missing data result in boundaries on the output shape.

Piecewise-planar

The inferred shape is assumed to be planar almost everywhere and may contain sharp
features. Input point clouds sampled on a piecewise-smooth surface are approximated by
piecewise-planar reconstruction.

Figure 7.1 shows plausible reconstructions from a variety of input point clouds.
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Figure 7.1: Plausible reconstructions. Left column: input point clouyd. Right column:
plausible piecewise-planar reconstruction. Comprehensiveness is gained at the cost of losing
resilience to missing data (compared with Figure 3.1).
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8
Background

8.1 A priori Knowledge

8.1.1 Dimension

Our dimension a priori differs from Section 4.1 as we wish to reconstruct surfaces with
non-manifold features and boundaries. The main assumption is that the inferred shape is
formed by a connected set of planar regions.

Our geometry assumption is that every atomic part of the inferred shape is either a
plane or has a sufficiently low curvature so to be decomposed as a set of planes.

8.1.2 Geometry

We do not rely on an implicit function to reconstruct a closed object but reconstruct instead
multiple primitives with adjacency information. To make the problem better-posed, we thus
need another transient representation. We make the assumption that the input point cloud
can be effectively approximated by a sparse union of primitives matching subsets of the
input.
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Consider a subset Pi of the input point cloud P. As discussed above, the surface is
assumed to be decomposable into planar subparts. We thus define a planar property: a
primitive lies on a support plane Si formed by the two largest eigenvectors of the principal
component analysis (PCA) of its associated point subset Pi.

A plane only reflects the general orientation of the subset, but is by definition infinite.
To further localize the subset in space, we add a property of convexity. Convexity offers
stability and simplification. It has been thus largely discussed in literature, whether for
efficient region selection [10] or for form feature recognition [51]. In our context, we compute
the 2D convex hull CHS,i of the orthogonal projection of the points of Pi onto the support
plane Si. This hull is stored as a cyclic list of extreme points, where each pair of consecutive
extreme points is a hull edge.

The resulting planar convex primitive, denoted Πi ≡ {Si, CHS,i}, is made statistically
reliable through PCA. Moreover, it offers a clear delineation of the convex region covered
by the samples Pi, which are now, by construction, inliers of Πi.

This combination of planarity and convexity properties is crucial to both the efficacy
and robustness of our algorithm. Using convex primitives allows for simple data structures
and fast computations, and the potential adjacencies between primitives are by default
simply connected.

8.2 Approximation Metric

We defined above a primitive associated to a point subset. We wish to measure the faith-
fulness of this primitive to the input point cloud and to define the approximation error
between the reconstructed surface and the input.

8.2.1 Symmetric Hausdorff Distance

The Hausdorff distance is a convenient means to enforce a symmetric and well-posed ge-
ometric measure of reconstruction. Computing it exactly is hower difficult and time con-
suming, which is why it is often abandoned to the profit of relaxed metrics. We contribute
an algorithmically efficient approach to its computation and adopt this Hausdorff metric,
as it provides us with a reliable quality measure of the approximation.
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We define the symmetric Hausdorff error metric between a primitive Πi and its inliers
Pi as:

dH(Πi, Pi) = max{ sup
a∈Πi

�
inf

b∈Pi

d(a, b)
�
, sup

b∈Pi

�
inf

a∈Πi

d(a, b)
�

},

where d(a, b) denotes the Euclidean distance.

8.2.2 Properties

This metric is the maximum of two distinct quality criteria of the match between points
in Pi and the primitive:

• H(Pi, Πi) = supb∈Pi
infa∈Πi d(a, b) is the maximum distance from Pi to its associated

primitive: it measures a level of noise.

• H(Πi, Pi) = supa∈Πi
infb∈Pi

d(a, b) is the maximum distance from the primitive to its
inliers: it this sense, it is related to the sampling density.

Selecting upper bounds on these two criteria thus provides control over the maximum
level of noise a primitive tolerates, and over the minimum density of points required for
the point subset to be geometrically relevant.

We assume that knowledge on the acquired point cloud is sufficient to estimate a bound
εN on noise, and a bound εS on sampling density.
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9
Contribution

9.1 Approximations

Our algorithm relies on both the primitives and their approximation error. We define
approximations that guarantee a reasonable computation complexity while keeping the
algorithm reliable.

9.1.1 Convex Hull

Although the convex hull is conceptually simple, its computational complexity is dependent
on the associated point subset it matches: a set of aligned points on a segment are for
example enclosed in a convex hull with 2 extreme points: the end points of the segment.
If this point set is noisy, a potentially high number of additional extreme points may be
required.

In order to provide the user with better control over the complexity of the approximation
and to speed up the computations, we approximate the convex hull by discretizing the space
of directions. Consider a point subset Pi and a random direction d on space. We denote
by pmin and pmax the two extreme points of Pi along this direction.

Using the definition of a convex hull, we make the following observations:
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1. The segment joining pmin and pmax is inside the convex hull of Pi.

2. The convex hull of Pi is located between the planes Pmin and Pmax, orthogonal to d

and passing respectively through pmin and pmax.

The segment {pmin; pmax} is a lower approximation of the convex hull while the half-
space between Pmin and Pmax is an upper approximation. Using d directions dj , we get d

pairs of points pj
min and pj

max and d pairs of planes P j
min and P j

max. We make the following
observations:

1. The convex hull of the union of all points pj
min and pj

max is included in the convex
hull of Pi.

2. The convex hull of Pi is located in the intersection of all half-spaces between all pairs
of planes {P j

min; P j
max}.

Figure 9.1: Convex hull approximation. Evolution of the lower and upper bounds of
the approximated convex hull for 1 to 5 directions.

Figure 9.1 depicts how these lower and upper approximations evolve when increasing
the number of directions.

This method allows for fast computation of convex hulls. Moreover, it limits the number
of extreme points of the approximated hulls: using d direction, the lower approximation of
the convex hull of a random point subset has at most 2d distinct extreme points. In our
experiments, we found that 50 directions are sufficient to approximate convex hulls while
keeping the most significant details.
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9.1.2 Error Computation

We contribute an algorithm to efficiently compute the Hausdorff distance. Using convex
primitives allows for efficient computation through a decomposition of the primitives into
triangles.

We enforce a limit on H(Pi, Πi) on each primitive by construction: the inliers Pi of a
primitive Πi are restricted to the points from P that are within a εN -thickened version of
the 2D convex hull CHS,i of this primitive.

Since points from P\Pi are necessarily further than εN -away from Πi, we replace the
evaluation of H(Πi, Pi) by:

H(Πi, P) = sup
a∈Πi

inf
b∈P

d(a, b).

We thus compute the maximum distance from the primitive to the whole input point
cloud P. The problem boils down to finding the point of the convex hull CHS,i that is the
farthest away from P.

Bounds

Each primitive Πi is represented as a 2D Delaunay triangulation embedded in 3D space
on the support plane Si. We reformulate the Hausdorff distance as:

H(Πi, P) = max
T

H(T , P),

where T denotes a cell of the triangulation.
The problem hence reduces to computing the Hausdorff distance from each triangle T

partitioning the convex hull CHi to the point cloud P. For each such triangle T , we store
precomputed values dk =d(vk, P), k =0, 1, 2 on its vertices, using a precomputed k-d tree
data structure over P for efficient closest point queries.

By definition of the Hausdorff distance, a lower bound of H(T , P) is defined as follows:

H(T , P) = max
k∈0,1,2

{dk}.

Since the Euclidean distance is 1-Lipschitz, an upper bound is also computed:
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H(T , P)=max
p∈T

min
k∈0,1,2

{dk + d(vk, p)}.

This upper bound is reached at a specific point p: the solution to the Apollonius prob-
lem [38] that coincides with the center of the circle internally tangent to the 3 circles
centered at vertices vk and with respective radius rk = dk − mink∈0,1,2{dk}.

When this Apollonius center lies outside T , we instead bisect T by inserting a vertex
on the edge of T visible from the Apollonius center. These two cases are depicted by
Figure 9.2.

Figure 9.2: Apollonius center. Optimal upper bound locations depicted with d0 =
mink∈0,1,2{dk}. r1 = d1 − d0 and r2 = d2 − d0. Left: Apollonius center a inside the triangle.
Right: when the Apollonius center a lies outside the triangle, the middle m of the red
segment is taken instead.

From the two bounds H and H, we define the approximated value of H(T , P):

H̃(T , P)=(H(T , P)+H(T , P))/2,

and the maximum error of approximation:

eH(T , P)=H(T , P)−H(T , P).
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Recursive Subdivision

Recursively subdividing T reduces the approximation error, either via trisection by
inserting the Apollonius center inside the triangle and connecting it to the triangle vertices,
or via bisection by inserting the corresponding point on an edge and connecting it to the
facing vertex (see Figure 9.2). The error is now defined as H(T , P) = maxj{H(Tj , P)},

where Tj denotes a subdivided triangle, and therefore: H(Πi, P) = maxj{H(Tj , P)}.

Consequently, by recursively subdividing the triangulation of CHi until all triangles have
eH(Tj , P) under a specified maximum tolerance error, we approximate H(Πi, P) within the
tolerance. Each triangle Tj is stored in a priority queue sorted by H(Tj , P). We iteratively
pop triangles from the queue and subdivide them while eH(Πi, P) < elimit as described
above; dk is computed only for the new vertices inserted by subdivision.

Given a user-specified error tolerance εS on the Hausdorff distance H(Tj , P), this algo-
rithm takes advantage of early ending cases.
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9.2 Fine-to-Coarse Algorithm

We first detail a preliminary approach where planar primitives are grown hierarchically
using a dynamic priority queue. The algorithm is initialized with a trivial solution: each
point of the input point cloud generates a pointwise primitive with a zero Hausdorff dis-
tance. The rationale is to simulate primitive merging operation and iteratively applying
the operation that increases the least the Hausdorff distance, as long as the distance is
lower than a user-specified error tolerance.

9.2.1 Atomic Operations

We devise a fine-to-coarse algorithm by successive primitive merging, starting with point-
wise primitives. A primitive may end up covering large areas of the scene, resulting in a very
large amount of operations. We discuss next an efficient way to compute these operations.

Merging Support Planes

The support plane Si of a primitive Πi is computed through principal component anal-
ysis (PCA). PCA is based on an eigendecomposition of the covariance matrix of the con-
sidered point subset Pi:

M =




�(px − cx)2 �((px − cx) · (py − cy)) �((px − cx) · (pz − cz))
�((px − cx) · (py − cy)) �(py − cy)2 �((py − cy) · (pz − cz))
�((px − cx) · (pz − cz)) �((py − cy) · (pz − cz)) �(pz − cz)2


 ,

where c denotes the centroid of Pi.
Computing the PCA of a point subset Pi of size ni has a complexity of O(ni). The

complexity for computing the PCA of two merged point subsets Pi and Pj is thus O(ni+nj).
As we already computed the respective PCAs of Pi and Pj , we can avoid recomputing

the covariance matrix of the merged point subset Pk. Using polynomial expansions, we
decompose the covariance matrix M as follows:
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M=




�
p2

x

�
px · py

�
px · pz�

py · px
�

p2
y

�
py · pz�

pz · px
�

pz · py
�

p2
z


+




�
px�
py�
pz


·




cx

cy

cz




T

−




cx

cy

cz


·




�
px�
py�
pz




T

+Ni




cx

cy

cz


·




cx

cy

cz




T

We define matrices A, P and C as follows:

M = A + P · CT − C · P T + Ni · C · CT .

The respective matrices Ai, Pi and Ci are stored with their respective primitive Πi.
We want to find the support plane of Πk obtained by merging Πi with Πj . Computing the
new centroid Ck from Ci and Cj is straightforward, using a sum weighted by the respective
number of points ni and nj of the primitives. The other two matrices are obtained by
Ak = Ai + Aj and Pk = Pi + Pj .

Therefore, by storing the matrices Ai, Pi and Ci of each primitive Πi, the complexity
for computing the PCA of a primitive Πk obtained by merging Πi with Πj drops to O(1).

Merging Convex Hulls

As presented in Section 9.1.1, convex hulls are approximated by intervals on a set of
discrete directions. Note that this gives an approximation of the 3D convex hull CH3D that
is projected onto the support plane Si of primitive Πi to compute the 2D convex hull CHi.

For simplicity, we use the lower approximation of the convex hull, i.e., the set of at
most 2 extreme points per direction. Using n directions, the approximated 3D convex hull
is represented as follows:

˜CH3D
i = {p0

i,min, p0
i,max, p1

i,min, p1
i,max, ..., pn−1

i,min, pn−1
i,max}.

Consider two approximated convex hulls ˜CH3D
i and ˜CH3D

j . The convex hull ˜CH3D
k

obtained by merging ˜CH3D
i with ˜CH3D

j is found through a comparison of extreme points
direction by direction:

˜CH3D
k =

�
min

�
pm

i,min, pm
j,min

�
, max

�
pm

i,max, pm
j,max

��
m∈[0,n−1]

.

This drastically reduces the computational complexity of the merging operations. More
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specifically, the complexity is O(d) where d denotes the number of directions. The output
of the merging operation is the set of extreme points of the 3D convex hull of the union of
the points covered by Πi and Πj . Projecting these points onto the merged support plane
and computing the 2D convex hull of the resulting point set completes the primitive’s
construction.

9.2.2 Priority Queue

Now that we can efficiently merge primitives and compute the Hausdorff error (see Sec-
tion 9.1.2), we define a fine-to-coarse algorithm that relies on a dynamic priority queue.

We initialize the algorithm with a trivial solution using one primitive per point. The
initial error of approximation error is 0. An adjacency graph is built using a 3D Delaunay
tetrahedralization of the input point cloud. For each edge between two primitives, we
simulate the merging operations of the two primitives and use the resulting Hausdorff error
as a priority criterion. More specifically, we give a higher priority to operations inducing
low error.

Operations are stored in a modifiable priority queue. We pop the highest priority op-
eration and apply it. When merging two primitives Πi and Πj , all the other operations
involving one of these two primitives are invalid. We therefore keep track of all operations
involving which primitive and discard them when two primitive are merged.

Having discarded all invalid operations, we also compute all newly possible merging
operations. We update the adjacency graph and simulate merging the newly created prim-
itive with its neighbor primitives. The algorithm stops when no more primitives can be
merged without violating the user-specified tolerances εS or εN .

Figure 9.3 illustrates this algorithm at work on a synthetic point cloud.

9.2.3 Discussion

Although the set of primitives offers a sparse representation of the input scene with a
significant gain in terms of data compression, several artifacts appear, as depicted by
Figure 9.4. We now review these artifacts.
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Figure 9.3: Fine-to-coarse algorithm. Bounds εS and εN are given the same value. Top:
the algorithm iteratively merges primitives while increasing the error until 5 primitives
remain. Bottom: we plot the symmetric Hausdorff error against the number of primitives.
The input point cloud contains 50K points.
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Figure 9.4: Fine-to-coarse algorithm. Point cloud & set of 364 primitives (εS = εN =
0.010).
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Badly Placed Primitives

When a primitive is small, i.e., under the noise level, there is no way to distinguish
if it covers a planar region or a sharp feature. As the algorithm is purely hierarchical,
early errors are not fixed later on. Badly placed primitives may never grow larger than the
feature they cover, producing a suboptimal set of primitives.

A first observation is that primitive should be initialized on planar parts and not on
sharp features. In order to get a well-behaved set of adjacencies between primitives, sharp
features should instead be the location of one or several primitives boundaries. This is
consistent from a dimensional point of view: primitives are 2D objects and should therefore
favor coverage of 2D parts of the surface, not of 1D features such as edges or of 0D features
such as vertices.

Overlaps

The Hausdorff metric ensures that the data points are less than εN -away from the set
of primitives and that no part of a primitive is more than εS-away from a data point.
There is however no restriction on the number of times a data point can be covered. As
a result, primitives may overlap on some parts of the shape, leading to an overlapping
decomposition instead of partitioning.

Overlaps are an issue, as the primitive creation step should make the reconstruction a
better-posed problem, and thus make it easier to generate an output mesh from the input
point cloud. In addition, and although the primitives approximate well their associated
point subset, the set of primitives is hardly usable for adjacency recovery.

Complexity

The algorithm is fully hierarchical and its complexity depends, among other things,
on the number of points of the input point cloud. The same shape sampled with a higher
density thus requires longer computation times, even if the total amount of details is low.

Note also that a large number of operations are simulated every time a primitive is
created compared to the number of operations applied. Experimentally, less than 10% of
the computed operations are applied.
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Figure 9.5: Overview. From left to right: input point cloud, multiscale point cloud, prim-
itive decomposition, adjacency and output mesh.

9.3 Coarse-to-Fine Approach

Although the fine-to-coarse approach above described does not produce reliable results, we
observed two important rationale:

• Overlaps: adjacency is hard to compute when subsets of the input point cloud are
covered with overlaps. In order to facilitate adjacency recovery, primitives should
overlap not more than the error tolerance. Ideally, the primitives should partition the
input point cloud.

• Sharp features: primitives initialized close from sharp features exhibit lower ro-
bustness. Conversely, primitives initialized on large planar parts are more reliable
and improve efficiency as they cover large parts of the input point cloud.

We next devise a coarse-to-fine approach.

Hierarchical Clustering

Similarly to Section 5.1.3, we generate multiple scales of the input point cloud P through
hierarchical clustering [68]. Each cluster representative is chosen as the closest point to the
cluster centroid among P.

Scales are given indices i where index 0 refers to the input point cloud (finest scale).
Denoting by s the size of each cluster (set by default to 5 in all shown experiments), the
size of the ith scale is n

si .
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We denote by C be the covariance matrix of a cluster c and λ0, λ1 and λ2 its three
eigenvalues sorted in decreasing order. Pauly et al. [68] define a measure of surface variation
for a cluster c:

sv(c) = λ0
λ0 + λ1 + λ2

.

This measure ranges from 0 when all points of c are coplanar to 1/3 if points of c are
isotropically distributed. We can thus detect the most planar clusters across scales.

Note that all Hausdorff error measures are performed with respect to the finest scale,
as we only want to approximate the original point cloud. A single k-d tree is thus kept
in memory for this particular scale. The multiscale representation is used as a support for
primitive building.

The last preprocessing step if the computation of a 3D Delaunay tetrahedralization for
the coarsest non-empty scale, used for adjacency purposes as in Section 9.2.
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9.4 Constructing Primitives

We want to construct primitives both efficiently and reliably, starting on large planar parts
and ending on smaller features. Each primitive is initialized from the coarsest scale and
grown throughout all scales until the input point cloud (scale 0) is reached. As we want
to partition the point cloud with our primitive set, each point or cluster representative
covered by the primitive is removed from its scale. The k-d tree is updated every time
points are removed from the input point cloud.

We proceed as follows until all scales are empty. For each primitive Πi the region-growing
algorithm proceeds as follows:

1. Initialize Πi from the coarsest non-empty scale;

2. Go to the immediately finer scale (if any);

3. Find inliers of the supporting plane of Πi at current scale;

4. Grow Πi based on these inliers;

5. Remove all inliers of primitive Πi found at current scale;

6. Go back to step 2 if points remain.

Figure 9.6: Primitive construction. Input point cloud; first primitive constructed
throughout 4 scales; second primitive constructed throughout 4 scales; final set of primi-
tives.
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9.4.1 Initialization

Consider the coarsest non-empty scale of the multiscale representation of the input point
cloud. A primitive Πi is initialized using the point p of this scale, representative of the
cluster of smallest surface variation sv(p), i.e., the most planar cluster.

When a primitive is reduced to a single point, we define dH(Πi, Pi) = 0. The rationale is
to add points in Πi as long as its sampling error remains under the user-defined threshold
εS . To this end, we simulate the addition of each unused neighbor point of Πi in the
precomputed 3D Delaunay tetrahedralization of the coarsest scale. We estimate the new
best fitting plane of Pi, compute the 2D convex hull and estimate dH(Πi, Pi). At each step
we grow Πi if and only if dH(Πi, Pi) < εS , by adding the neighbor inducing the smallest
error dH(Πi, Pi).

When no more point can be added in Πi without dH(Πi, Pi) becoming higher than εS ,
the initialization is over. All points that are current inliers of Πi are removed from the
coarsest scale and the primitive goes to the immediately finer scale as we detail next.

Note that the removal of inliers may cause the 3D Delaunay tetrahedralization of this
scale to become empty: this case triggers the construction of a 3D Delaunay tetrahedral-
ization of the next coarsest non-empty scale.

9.4.2 Growing Within a Scale

We now consider the immediately finer scale. We want to grow Πi further by including finer
details of the inferred shape. For efficiency purpose, we consider in this step of computation
that the support plane of Πi is fixed: adding points to it only triggers an update of the 2D
convex hull.

Inliers and Candidates

We identify the inliers of Πi of this scale, i.e., all the points that are less than εN -away
from the support plane Si of Πi and whose projection onto Si lies within the 2D convex
hull CHS,i. These inliers are covered by Πi and therefore removed from the current scale.

We also seek points in the current scale that are candidates to the expansion of Πi.
As we consider Si fixed, we only consider points that are less than εN -away from the
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support plane Si. We also use a simpler adjacency structure by computing a 2D Delaunay
triangulation restricted to the projections of these candidate points.

Growing

Growing the primitives is performed in a similar way than during the initialization stage,
with the significant difference that the plane is fixed and that the adjacency structure is
a 2D Delaunay triangulation restricted to the candidate points instead of a 3D Delaunay
tetrahedralization of the whole scale.

This allows for a faster computation of the new error dH(Πi, Pi). Adding the projection
onto Si of a candidate point to the 2D convex hull CHS,i only creates a few triangles in
this hull. We can therefore limit the Hausdorff computation described in Section 9.1.2 to
these new triangles. A candidate is included if the new error dH(Πi, Pi) is lower than εS .
Upon termination (i.e., when no candidates remain), we update the fitting plane Si.

All points covered by Πi are removed from the current scale. This growing process is
then repeated throughout all scales. When scale 0 is reached, removing inliers triggers an
update of the k-d tree used to compute Hausdorff distances.

9.4.3 Output

This initialization followed by the region-growing phase results in the construction of a
convex primitive with its support plane, convex hull, and inliers. Repeating this process
until all scales are empty produces an output primitive set that approximates the input
point cloud under the given tolerances.

The input point cloud is segmented into non-overlapping primitives by construction.
Figure 9.6 illustrates the growing process.
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9.5 Detecting Adjacency

The output from previous step is a set of disconnected primitive that are both convex and
planar. Some adjacency relationship must be inferred before generating a conforming mesh.

9.5.1 Sampling Hull Boundaries

Remind that a primitive Πi is a 2D convex hull embedded in a supporting plane. We define
the boundary of this primitive as the set of segments joining two consecutive extreme points
of CHS,i.

We densely sample this boundary with an ordered cyclic list of witness points. These
witnesses are spaced out by a distance of at most εS . The nth witness of primitive Πi is
denoted by wi

n, see Figure 9.7, top left.

9.5.2 Detecting Adjacency

A witness wi
n of primitive Πi is labeled inlier of another primitive Πj if it is closer than

εS from primitive Πj . Each primitive being bounded and planar, a primitive Πi can only
be adjacent to another primitive Πj if at least one of its witness points is an inlier of the
other primitive, or if a witness point of the other primitive is one of its inliers.

We compute adjacency relationships between all primitives by iterating over each prim-
itive Πi and over each of its witnesses wi

n. A witness is tagged as part of a primitive when
listed as one of its inliers.

Figure 9.7 (middle top) shows the adjacency detection step.

9.5.3 Inserting Corners

As a consequence of convexity, the intersection between 2 primitives is simply connected.
Estimating the shape of the adjacencies between primitives from the set of witness-adjacencies
is therefore facilitated.

We observe two cases, depicted by Figure 9.8:
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Figure 9.7: Detecting adjacencies. We recover the adjacency relationships between prim-
itives A, B and C (focusing on A). (a) Sampling hull boundaries. (b) Detecting adjacency.
(c) Corner placement. (d) Corner clustering. (e) Snapping. (f) Optimization.
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Figure 9.8: Intersections between primitives. Primitives A and B will be connected
by a non-manifold edge joining two witness points belonging to each of them. Primitives
B and C will be connected by a manifold edge. Primitives C and D will be connected by
a non-manifold edge joining 2 clusters of witness points of both primitives.

• Boundary adjacency: primitives Πi and Πj share a simply-connected set of adjacent
witness points.

• Transverse adjacency: Πi can also cross Πj transversely or simply intersect it at one
point. In this case, the witness points wi

n of Πi that are both in primitive i and j

form either one or two simply connected sets.

Note that in the presence of a primitive thinner than the tolerance, several sets of
witnesses may appear. These cases are dealt with by the clustering phase (see Section 9.5.4).

Outer Corners

We define a notion of corner associated to a primitive. Although this notion is purely
topological so far, it corresponds to the presence of a vertex in the meshing stage (see
Section 9.6).

Considering a primitive Πi, we generate corners by visiting the list of its witnesses
wi

n. When two consecutive witnesses wi
n and wi

n+1 are not tagged with the same set of
primitives, a corner is inserted between them in the cyclic list of Πi.

We tag this corner based on the primitives that are adjacent to only one of the two
witness points that triggered its creation. The ordered sequence of corners placed along
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the hull boundary will be connected by a set of constrained edges during meshing (see
Section 9.6). Figure 9.7 (top right) depicts the corner generation.

Inner Corners

Generating corners on the boundaries of the primitives is not sufficient in the presence
of non-manifold features.

To keep consistency between adjacencies, if a witness point of Πi is in Πj , we generate
an inner corner in Πj . Because of the convexity property, any segment connecting two of its
inliers is entirely contained in the primitive. Two inner corners in Πi linked to a common
primitive are later connected by a constrained edge during meshing, while an isolated inner
corner will be inserted as a vertex into the triangulation (see Section 9.6).

Boundary Corners

When the inferred shape contains open boundaries (edges that do not connect two
primitives), an additional set of corners must be generated to properly approximate these
boundaries. To this end, additional corners are greedily inserted between the witnesses
wi

n tagged with the corresponding primitive. More specifically, witnesses inserted one at a
time until all witness points are well approximated by the set of boundary edges under the
tolerance εS .

9.5.4 Embedding

In order to compute a 3D geometric vertex from the topological information of the corners
previously computed, we define a cluster CN that contains several corners ci

n associated
to different primitives.

Corner Clustering

First, a transitive closure of the adjacencies of corners is performed: the combinatorial
information of the corners (their tags) is used to propagate them to other primitives.

Consider a corner ci
n of Πi that is adjacent to Πj . We repeatedly merge this corner with

the closest corner cj
m of Πj that is less than εS-away. These merged corners form clusters

CN which now represent the confluence of several primitives.
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Because adjacencies with high degrees unnecessarily increase the complexity of the
output, we also cluster the corners spatially: corners less than εS-away from each other are
merged in the same cluster.

Once this clustering process is achieved, a unique topological vertex is generated per
cluster of corners.

Figure 9.9: Recovering adjacency on a generated point cloud. Top: primitive set &
witness points. Bottom: contouring of primitive & output after clustering and optimizing.

Embedding

Each primitive’s boundary is defined by an ordered set of topological clusters CN . In
order to get vertices defined in R3, we need to properly locate these clusters based on the
geometrical information of their support primitives.

As a corner ci
n is part of an ordered list of witness points, we can identify two adjacent

edges on its primitive Πi: suppose the next corner in the list is at position n + δ, then
the succeeding edge of ci

n contains witnesses between wi
n+1 and wi

n+δ−1. We compute the
position of the line which minimizes the error to these witness points through principal
component analysis, and proceed similarly for the preceding edge.

For a cluster CN containing m corners, we therefore get a set of 2m support lines li.
The position of the corresponding 3D vertex v is defined as the point that minimizes the
distances to these 2m lines in the least squares sense: v = arg minv

�2m
i=1 d(v, li)2.

In some degenerate cases (lines close to parallel, for example), this least squares ap-
proach is not reliable, leading to strong distortions. When the vertex location is more than
εS-away from all the corners of CN , we use a simple average of the corner points positions
as the vertex location instead.

Figure 9.9 depicts an example of the adjacency algorithm.
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9.6 Meshing

With the set of primitive {Πi} computed in Section 9.4 and their geometric adjacency
relationships computed in Section 9.5, we now have all information required to generate a
conforming mesh.

9.6.1 Facet Creation

The boundaries of each primitive Πi is well-defined as an ordered set of corners ci
n poten-

tially embedded in clusters CN shared with some other primitives.
In order to create well-shaped facets out of one primitive Πi, we use the supporting

plane Si as a reference domain and compute a 2D constrained Delaunay triangulation of the
primitive. Specifically, we project the corners ci

n of Πi on Si and set a constraint between
each pair of consecutive corners. This guarantees the preservation of edges and potential
concavities created by the 3D embedding of vertices associated to the corner clusters.

Keeping the combinatorial information of vertices and facets from the 2D triangulation,
we then map the Delaunay vertices back to their corresponding 3D vertices.

Each primitive is dealt with similarly while making sure that shared corners and shared
edges are instantiated once in the final 3D surface mesh.

9.6.2 Non-Manifold Features

Handling non-manifold features is also made possible by the use of 2D constrained Delau-
nay triangulations. After building the associated constrained triangulation of a primitive
Πi, we identify the facets inside the boundary constraints. We can now set additional inter-
nal constraints that correspond to the non-manifold features. Specifically, we distinguish
between four cases:

• Isolated vertex: primitive(s) adjacent to Πi by a single isolated point located inside
Πi.

• Internal edge: primitive(s) adjacent to Πi by an edge connecting 2 points located
inside Πi.
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Figure 9.10: Meshing of a non-manifold surface. Top: input point cloud & primitive
set. Middle: adjacencies with close-ups on two primitives. Bottom: conforming mesh with
close-ups on two primitives.
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• Transverse edge: primitive(s) adjacent to Πi by an edge connecting 2 non-consecutive
boundary vertices Πi.

• Semi-transverse edge: primitive(s) adjacent to Πi by an edge connecting a bound-
ary vertex of Πi to a point located inside Πi.

Figure 9.10 depicts several non-manifold features.
Our output mesh is by construction a surface triangle mesh, but we can also visualized

it as a polygon mesh, each primitive being mapped to a set of adjacent facets defining
a close-to-planar polygon. We show our results either using colors to indicate the convex
decomposition formed by the primitives, or through a simplicial complex where each edge
is drawn for clarity.
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9.7 Results

The algorithm is implemented in C++ using the CGAL library [1] and the Eigen library [42]
for least squares fitting. All experiments are performed on an Intel 2.4GHz laptop with
8GB RAM.

Fig. #Points εN εS Time (s) #Primitives #Facets
9.5 50K 0.005 0.025 8 25 84
9.10 50K 0.005 0.015 7 7 27
9.12 582K 0.001 0.003 340 814 3, 420
9.13 2.0M 0.002 0.002 1, 872 3, 488 7, 533
9.14 1.2M 0.004 0.008 266 131 1, 080
9.15 1.3M 0.001 0.002 523 625 2, 706
9.17a 224K 0.018 0.010 48 84 329
9.17b 1.2M 0.008 0.004 435 1, 569 3, 003

Figure 9.11: Timings. Point clouds with number of points, timing in seconds, bounds εN

and εS , number of primitives generated and number of triangle facets in the output mesh.

Timings and parameter settings of the presented reconstructions are detailed on Fig-
ure 9.11. Note that the total computation time depends more on the amount of details in
the scene than on the total number of points. Most of the time (95%) is spent generating
the primitives.

9.7.1 Checking Validity

We first perform some tests on simple generate data to estimate the validity of our algo-
rithm. As expected, it performs well on a synthetic piecewise-planar surface as shown in
Figure 9.5, producing a coarse and boundary-preserving triangle mesh.

One strength of our algorithm is its ability to conform even to non-manifold features,
which is demonstrated by Figure 9.10.

The core targets of our algorithm are measurement data sets: piecewise-planar recon-
struction is particularly well suited to man-made shapes such as urban scenes.

Figure 9.12 illustrates our algorithm at work on a dense LIDAR point cloud sampled
on the outside of a building (582, 582 points), using thresholds εS = 0.001 and εN = 0.003
(found automatically). The primitives generated during the reconstruction form a convex
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Figure 9.12: Building. Input LIDAR point cloud (top), colored primitives, output simpli-
cial mesh, and two close-ups (bottom).
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decomposition of the point cloud. The output mesh (3, 420 triangle facets) is conforming
to the facade and to the orthogonal window frames acquired by the LIDAR sensor. Note
that it also adapts well to missing data.

Another example of a LIDAR point cloud is given in Figure 9.13. This one contains a
wide range of details and large regions of missing data. When setting a small approximation
parameter εS , the primitives locally adapt to the geometry of the fine details (roof tiles,
small shutters). While it efficiently captures the neighboring large walls, the connection of
widely different sized primitives yields skinny triangles.

9.7.2 Comparisons

As discussed in Section 6, literature in piecewise-planar reconstruction is vast and diverse.
We compare our approach to several of these reconstruction methods in Figure 9.14, using
a challenging example of a scanned church as input point cloud:

• Poisson reconstruction [48]: since this approach was devised to reconstruct smooth
closed surfaces from point clouds with oriented normals, we simplify their output
mesh via QEM-based decimation to obtain a mesh with the same complexity as ours.

• Scale space [32]: this approach generates a dense mesh that we also simplify to the
same complexity as ours. Note that the fine details of the tiles hamper the feature-
preserving decimation phase.

• Point cloud structuring [55]: this method is hybrid in the sense that it deals with
both planar and free-form surfaces; we use the recommended parameters to generate
as output a (mostly) piecewise-planar mesh. The dense mesh near boundaries is a
consequence of the boundary preserving property of the algorithm (edges were not
shown in the original paper).

• O-Snap algorithm [8]: this approach computes adjacency relations after performing
RANSAC for planar primitive detection. We compare our results only to the auto-
matic part of the algorithm (image taken from the original paper). As our approach
is based on the Hausdorff distance to the input point cloud, our results tend to better
preserve the details and boundaries (see circular roof and tower windows), while their
approach excels at performing abstraction with a handful of planar polygons.
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Figure 9.13: House. Input LIDAR point cloud (2M points, top left), 1.8K colored primi-
tives (top right), and output mesh (3.4K facets, bottom).
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Figure 9.14: Comparisons. Input point cloud acquired on the church of Lans le Villar
(1.2M points).
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9.7.3 Robustness

We now challenge the robustness of our algorithm with complex point clouds.
We perform a stress test using an indoor low-quality LIDAR point cloud with noise

and variable density, shown on Figure 9.15. The scene is a mixture of large planar surfaces,
cluttered geometry, and complex boundaries due to many occlusions. Because the primitives
are bound to approximate the surface with a sampling rate of εS , multiple connected
components are generated due to the many invisible areas. Nevertheless, the algorithm is
reliable, and each parts with sufficient sampling density is properly captured.

We then run our algorithm on different levels of noise until failure case (Figure 9.16).
Robustness to noise is achieved through the single parameter εN from which a tight control
over the Hausdorff distance between primitives and point cloud is enforced. This parameter
is evaluated from the input data by analyzing the Hausdorff distances of primitives built
from the most planar clusters of the coarsest scale. Note that our algorithm is not outlier
robust: we cannot distinguish features from outliers.

Finally, Figure 9.17 shows the output of our algorithm on piecewise-smooth surfaces.
On the mechanical part, the spherical cap is approximated by isotropic primitives and
the mesh is watertight. The convexity and planarity properties of the primitives lead to a
suboptimal meshing of the elliptic regions.

The last point cloud (Bimba) is smooth everywhere except on the bottom. Where the
curvature of the inferred surface is high compared to the tolerance error (see left side of
the hair), our algorithm fails in recovering a surface as the local planarity assumption is
not met locally.
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Figure 9.15: Indoor scene. Input LIDAR point cloud (1.3M points), 625 colored primi-
tives, and the output mesh (2.7K facets).
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Figure 9.16: Noise robustness. Top: input point cloud with increasing level of noise.
Bottom: output mesh using a noise threshold εN of respectively 0.005, 0.050 and 0.200.
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Figure 9.17: Piecewise-smooth cases. Input point clouds, primitives & output meshes.
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9.8 Conclusions

We presented a novel approach to perform piecewise-planar reconstruction from raw point
clouds. It uses convex, planar primitives with bounded Hausdorff error with respect to the
input. An adjacency graph between the primitives is computed by leveraging the convexity
of the primitives. A coarse mesh is finally extracted, reliably inferring the geometry of the
shape.

9.8.1 Contribution

The main strength of our algorithm is the preservation of boundaries and sharp features.
Even in the cases of non-manifold features, we generate coarse conforming meshes.

In addition, our approach is also reliable and guaranteed to terminate. It relies only on
simple and mature algorithms from computational geometry: point cloud clustering, 2D
convex hull, 2D Delaunay triangulation and 3D Delaunay tetrahedralization.

Finally, our implementation scales well, in particular our multiscale framework yields
a computational complexity that depends more on the total amount of details in the scene
than on the cardinality of the input point cloud.

9.8.2 Limitations

Our approach aims at faithfully approximating the input point cloud with a strong re-
quirement on the sampling density. This becomes a limitation in the sense that no data
completion can be performed. Instead, missing data is an area with an additional set of
sharp boundaries reconstructed.

Although the embedding of the vertices of the output mesh is optimized in a least
squares fashion, the positions of the edges are only enforced topologically depending on
their end point vertices. Edge locations could also be optimized with respect to their
adjacent primitives planes.

152



III
Conclusion

153





We have contributed two novel shape reconstruction approaches designed for two spe-
cific classes of output. Both algorithms take raw point clouds as input, possibly ridden with
defects such as noise and outliers.

The first approach focuses on smooth, closed shapes and addresses the problem of
robustness to variable noise. The second approach reconstructs piecewise-planar surfaces
through an efficient convex decomposition with global error bounds.

Both approaches mainly rely on a dimension assumption. More specifically, the recon-
struction should match the one of the inferred shape, a curve in 2D or a surface in 3D.
For the first approach, the dimension assumption is used via computing a noise-adaptive
distance function that selects the smallest scale that matches the dimension of the inferred
shape. For the second approach, the dimension assumption triggered the construction of
planar, convex primitives that match the dimension of the inferred surface with bounds on
the two-sided Hausdorff distance.

Robustness

Our main focus is the robustness to various defects.

Robustness to noise is achieved through two robust metrics. First, the noise-adaptive
distance function is robust to both outliers and variable levels of noise. Furthermore, the
isolevels of this function are converging uniformly to the inferred shape. Second, the two-
sided Hausdorff distance provides global error bounds between the set of convex primitives
and the input point cloud, and is robust to noise with lower magnitude than the tolerance
error.

Robustness to missing data is dealt with in two different ways. For smooth closed
surfaces, data completion is achieved through signing the robust distance function. We
consolidate sign guesses through local and non-local hypotheses represented on a random
graph. For piecewise-planar surfaces, no data completion is performed and hence missing
data translate into a larger number of boundaries.
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Outlook

Albeit this thesis focuses on the shape reconstruction problem, we touched other related
scientific challenges. We now provide an outlook on some of these challenges.

Multiscale reconstruction

As discussed in Part I, the noise-adaptive distance function not only localizes the in-
ferred shape, but also provides knowledge on higher scales where, for instance, two nearby
surface sheets appear as only one noisy surface. Our choice is to rely upon the assumption
that the finest scale should be reconstructed in order to faithfully recover the details of
the inferred shape. However, several surfaces can be reconstructed when considering the
multiple scales of a scene. Such multi-scale viewpoint is relevant for scenes comprising a
wide range of levels of details. In future work we plan to investigate a hierarchical or a
progressive reconstruction approach via scale decomposition.

Compression

Our approach to convex decomposition of point clouds (Part II) may be seen as a
lossy data compression approach for point clouds. A sparse set of primitives is sufficient to
reconstruct massive point clouds, and each convex primitive is represented by a bounded
number of extreme points through discretization of the orientations. The total number of
extreme points is substantially lower than the total number of input points. As future work
we plan to devise an approach for encoding these extreme points, progressive or single-rate,
which may be seen as one step toward effective point cloud compression algorithm.

Global error bounds

Our piecewise-planar reconstruction approach (Part II) starts with a convex decompo-
sition. It relies on the reliably of the Hausdorff distance to faithfully approximate the input
point cloud with global error bounds. However, when the adjacencies are computed and
the mesh is generated, the validity of the global error bound may be violated. Although
our embedding algorithm for vertex placement ensures that the distortion of the corners
of the primitives does not exceed the global error bounds, we cannot guarantee that these
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bounds are not violated by the facets. In future work we plan to preserve these global error
bounds even after meshing. One direction is to constrain all facets of each primitive to be
strictly coplanar, but this substantially increases the complexity of the output mesh.
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Conclusion (français)

Notre contribution se compose de deux nouvelles approches de reconstruction de formes
dédiées à deux catégories spécifiques de données. Chaque algorithme prend un nuage de
points brut en entrée, potentiellement accompagné de défauts tels que du bruit ou des
données aberrantes.

La première approche se concentre sur les formes lisses fermées et répond au problème
de la robustesse au bruit variable. La seconde approche reconstruit des surfaces planes par
morceaux en utilisant une décomposition convexe efficace avec des bornes d’erreur globales.

Chacune des deux approches repose principalement sur une hypothèse de dimension.
Plus précisément, la reconstruction doit satisfaire la dimension de la forme recherchée, une
courbe en 2D ou une surface en 3D. Pour la première approche, cette hypothèse de di-
mension est utilisée en calculant une fonction distance adaptative au bruit qui sélectionne
la plus petite échelle qui correspond à la dimension de la forme recherchée. Pour la se-
conde approche, l’hypothèse de dimension motive la construction de primitives convexes et
planes qui approchent la surface recherchée avec des bornes sur la distance de Hausdorff
symmétrique.

Robustesse

Le cœur de notre problème est la robustesse à divers défauts.
La robustesse au bruit est atteinte à travers deux métriques robustes. Premièrement,

la fonction distance adaptative au bruit est robuste à la fois aux données aberrantes et à
des niveaux variables de bruit. De plus, les iso-niveaux de cette fonction convergent uni-
formément vers la forme recherchée. Deuxièmement, la distance de Hausdorff symmétrique
procure des bornes d’erreur globales entre l’ensemble de primitives convexes et le nuage
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de points d’entrée, et elle est robuste au bruit de magnitude plus faible que la tolérance
d’erreur.

La robustesse aux données manquantes est traitée de deux manières différentes. Pour
les surfaces lisses fermées, signer la fonction distance robuste permet de compléter les
données. Les signes supposés sont consolidés par des hypothèses à la fois locales et non-
locales représentées sur un graphe aléatoire. Pour les surfaces planes par morceaux, les
données ne sont pas complétées et, de fait, des données manquantes se traduisent par un
plus grand nombre de bords.

Perspectives

Bien que cette thèse se concentre sur le problème de la reconstruction de formes, nous
avons effleuré d’autres défi scientifiques liés. Nous présentons maintenant des perspectives
sur certains de ces défis.

Reconstruction multi-échelle

Comme cela est évoqué dans la Partie I, la fonction distance adaptative au bruit localise
non seulement la forme recherchée, mais elle offre aussi des informations sur les échelles plus
larges où, par exemple, deux feuilles de la surface proches apparaissent comme une unique
surface bruitée. Notre choix est de reposer sur l’hypothèse que l’échelle la plus fine est celle
à reconstruire pour retrouver les détails de la forme recherchée avec fidélité. Cependant,
plusieurs surfaces peuvent être reconstruites si l’on considère les multiples échelles d’une
scène. Ce point de vue multi-échelle a du sens pour les scènes qui comprennent un large
panel de niveaux de détails. Dans de prochains travaux, nous avons l’intention d’étudier
des approches de reconstruction hiérarchiques ou progressives à travers cette décomposition
des échelles.

Compression

Notre approche de décomposition convexe de nuages de points (Partie II) peut être vue
comme une méthode de compression de données pour des nuages de points. Un petit en-
semble de primitives est suffisant pour reconstruire d’immenses nuages de points et chaque
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primitive convexe est représentée par un nombre borné de points extrêmes calculés par di-
crétisation des orientations. Le nombre total de points extrêmes est considérablement plus
faible que le nombre total de points de donnée. Dans de prochains travaux, nous avons l’in-
tention de concevoir une méthode pour encoder ces points extrêmes de manière progressive
ou à taux constant, ce qui peut être vu comme un premier pas vers un algorithme efficace
de compression de nuages de points.

Bornes d’erreur globales

Notre méthode de reconstruction plane par morceaux (Partie II) se base sur une décom-
position convexe. Elle repose sur la fiabilité de la distance de Hausdorff pour approcher de
manière fidèle le nuage de points d’entrée avec des bornes d’erreur globales. Cependant, lors
du calcul des adjacences et lors de la génération de maillage, ces bornes d’erreur globales
peuvent être dépassées. Bien que notre algorithme de placement des sommets s’assure que
la distorsion des coins des primitives ne dépasse pas les bornes d’erreur globales, nous ne
pouvons garantir que ces bornes sont encore respectées sur les facettes. Dans de futurs tra-
vaux, nous comptons préserver ces bornes d’erreur globales jusqu’à la phase de maillage.
Une solution serait de contraindre les facettes de chaque primitive à rester strictement
coplanaires, mais cela augmenterait considérablement la complexité du maillage de sortie.
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