List of Figures

List of Tables

 Table 2.1
Abstract

Digitalized music production exploded in the past decade. Huge amount of data drives the development of effective and efficient methods for automatic music analysis and retrieval. This thesis focuses on performing semantic analysis of music, in particular mood and genre classification, with low level and mid level features since the mood and genre are among the most natural semantic concepts expressed by music perceivable by audiences. In order to delve semantics from low level features, feature modeling techniques like K-means and GMM based BoW and Gaussian super vector have to be applied. In this big data era, the time and accuracy efficiency becomes a main issue in the low level feature modeling. Our first contribution thus focuses on accelerating k-means, GMM and UBM-MAP frameworks, involving the acceleration on single machine and on cluster of workstations. To achieve the maximum speed on single machine, we show that dictionary learning procedures can elegantly be rewritten in matrix format that can be accelerated efficiently by high performance parallel computational infrastructures like multi-core CPU, GPU.

In particular with GPU support and careful tuning, we have achieved two magnitudes speed up compared with single thread implementation. Regarding data set which cannot fit into the memory of individual computer, we show that the k-means and GMM training procedures can be divided into map-reduce pattern which can be executed on Hadoop and Spark cluster. Our matrix format version executes 5 to 10 times faster on Hadoop and Spark clusters than the state-of-the-art libraries.

Beside signal level features, mid-level features like harmony of music, the most natural semantic given by the composer, are also important since it contains higher level of abstraction of meaning beyond physical oscillation. Our second contribution thus focuses on recovering note information from music signal with musical knowledge. This contribution relies on two levels of musical knowledge: instrument note sound and note co-occurrence/transition statistics. In the instrument note sound level, a note dictionary is firstly built i from Logic Pro 9. With the musical dictionary in hand, we propose a positive constraint matching pursuit (PCMP) algorithm to perform the decomposition. In the inter-note level, we propose a two stage sparse decomposition approach integrated with note statistical information. In frame level decomposition stage, note co-occurrence probabilities are embedded to guide atom selection and to build sparse multiple candidate graph providing backup choices for later selections. In the global optimal path searching stage, note transition probabilities are incorporated. Experiments on multiple data sets show that our proposed approaches outperform the state-of-the-art in terms of accuracy and recall for note recovery and music mood/genre classification.

Résumé

La production et la diffusion de musique numérisée ont explosé ces dernières années. Une telle quantité de données à traiter nécessite des méthodes efficaces et rapides pour l'analyse et la recherche automatique de musique. Cette thèse s'attache donc à proposer des contributions pour l'analyse sémantique de la musique, et en particulier pour la reconnaissance du genre musical et de l'émotion induite (ressentie par l'auditoire), à l'aide de descripteurs de bas-niveau sémantique mais également de niveau intermédiaire. En effet, le genre musical et l'émotion comptent parmi les concepts sémantiques les plus naturels perçus par les auditoires. Afin d'accéder aux propriétés sémantiques à partir des descripteurs bas-niveau, des modélisations basées sur des algorithmes de types K-means et GMM utilisant des BoW et Gaussian super vectors ont été envisagées pour générer des dictionnaires. Compte-tenu de la très importante quantité de données à traiter, l'efficacité temporelle ainsi que la précision de la reconnaissance sont des points critiques pour la modélisation des descripteurs de bas-niveau. Ainsi, notre première contribution concerne l'accélération des méthodes K-means, GMM et UMB-MAP, non seulement sur des machines indépendantes, mais également sur des clusters de machines. Afin d'atteindre une vitesse d'exécution la plus importante possible sur une machine unique, nous avons montré que les procédures d'apprentissage des dictionnaires peuvent être réécrites sous forme matricielle pouvant être accélérée efficacement grâce à des infrastructures de calcul parallèle hautement performantes telle que les multi-core CPU ou GPU. En particulier, en s'appuyant sur GPU et un paramétrage adapté, nous avons obtenu une accélération de facteur deux par rapport à une implémentation single thread.

Concernant le problème lié au fait que les données ne peuvent pas être stockées dans la mémoire d'une seul ordinateur, nous avons montré que les procédures d'apprentissage des K-means et GMM pouvaient être divisées par un schéma Map-Reduce pouvant être exécuté sur des clusters Hadoop et Spark. En utilisant notre format matriciel sur ce type de clusters, une accélération de 5 à 10 fois a pu être obtenue par rapport aux librairies d'accélération de l'état de l'art.

En complément des descripteurs audio bas-niveau, des descripteurs de niveau sémantique intermédiaire tels que l'harmonie de la musique sont également très importants puisqu'ils intègrent des informations d'un niveau d'abstraction supérieur à celles obtenues à partir de la simple forme d'onde. Ainsi, notre seconde contribution consiste en la modélisation de l'information liée aux notes détectées au sein du signal musical, en utilisant des connaissances sur les propriétés de la musique. Cette contribution s'appuie sur deux niveaux de connaissance musicale : le son des notes des instruments ainsi que les statistiques Public availability of music reveals two pivot tasks. One is the semantic analysis increasingly demanded by users, because human beings tend to express idea and make judgment on semantic level. Among all semantic concepts associated with music, the mood and genre are the most natural semantic information expressed by music, which can be easily perceived by audiences even without musical trainings. Modern digital music technology not only assists in music composition but also provides digitalized music knowledge such as realistic music instrument sound library for music synthesis via MIDI scripts. Thanks to this advance, we can make use of music knowledge a prior to improve mood and genre classification accuracy.

The other is to improve the efficiency of entire systems in order to handle large scale data. In this era of big data, we do not worry about the insufficient samples any more. The main focus shifts to terminating computation in an affordable duration. Thanks to the parallel computing infrastructures such as multi-core CPU, GPU and cluster of workstations, we can process massive amount of data simultaneously on multiple computing units. In our specific case, with the high-end hardware in hand, it is now possible for us to scale up our model and accelerate the entire computation procedure, which leads to superior results.

Problem and Objective

Music is a type of sound that has some stable frequencies in a time period. All musical sounds have their fundamental frequency and overtones. Fundamental frequency is the lowest frequency in harmonic series. Overtones are integer multiples of the fundamental frequency. Music can be produced by several methods. For example, the sound of a piano is produced by striking strings, and the sound of a violin is produced by bowing.

Music semantic information, in particular mood and genre, are expressed in different levels, from low level (signal level) to intermediate level (note level) and high level (direct semantics). In signal level, various features like MFCCs are extracted, in which all information is kept including noises. However, music semantics concerns abstract concepts that are expressed and perceived indirectly. To bridge the semantic gap between signal level features and human cognition, the signal level features need to be transformed to reflect the abstract concepts. Bag-of-word (BoW) [Yang et al. 2007] model has been demonstrated effective to transform original features to histogram of potential semantic centers or "words". In addition to BoW, UBM-MAP [START_REF] Campbell | Support vector machines using GMM supervectors for speaker verification[END_REF] based super vector method not only considers feature distribution of individual sample but also concerns background distribution as well. In signal level, the main challenge for the two approaches is scalability when encountering large data sets. For example the size of clusters for k-means and GMM should increase as the number of training sample grows. Our first objective is to accelerate k-means, GMM and UBM-MAP procedures to handle large number of training data.

Although signal level features contain complete information that can describe high-level semantics of music, their direct use is rarely very efficient even with BoW and UBM-MAP transformation. Music is indeed composed by sequential combination of notes and is generated by instruments accordingly. People understand music by perceiving the note combination sequence too. Therefore sound of notes plays an essential role in the semantic carried by music for identifying high-level concepts such as mood. If music can be effectively decomposed into note sound of instruments, statistics on the decomposition can provide valuable information for further semantic analysis. Thanks to Logic Pro 9, a high quality music producing software from Apple Inc., a "musical dictionary" made of musical words that are related to the notes produced by various instruments is built. Our second objective is to decompose music onto the dictionary as precisely as possible and take the advantage of statistics of the decomposition to improve mood and genre classification.

Our Approach and Contributions

As discussed above, music semantic analysis requires to handling information in different levels. In signal feature level, the main challenge is to accelerate the BoW process, namely to speed up k-means, GMM and UBM-MAP training with parallel infrastructure in order to incorporate massive samples in big data sets. In middle feature level, the main challenge is to recover note information as precise as possible with music knowledge in the form of instrument sound and note statistics. Our work mainly concentrates on the two aspects and is summarized as follows.

1. To incorporate signal level information for semantic analysis, we have adopted a bag-of-word model with k-means/GMM dictionary and a UBM-MAP based super vector approach. With scaled up data set, there are more and more demands for increasing number of clusters and mixtures for k-means and GMM [Over 2011]. The dictionary learning becomes the bottleneck of the whole computation pipeline.

Our first contribution thus focuses on accelerating k-means, GMM and UBM-MAP frameworks and it is divided into two levels which concern the acceleration on single machine and on cluster of workstations. In fact huge parallelism exists for k-means and GMM dictionary learning, for example in distance and probability calculation the computation pattern is the same for all input feature vectors. However, to simply divide work load by the number feature vectors does not guarantee maximum throughput of input data because of huge overhead for threading scheduling and data sharing, which is shown in our experiment with comparison with the state-of-the-art libraries [START_REF] Gao | [END_REF]. To achieve the maximum speed on single machine, we show that dictionary learning procedures can elegantly be rewritten in matrix format, for example in GMM training only two matrix multiplications and one matrix transformation are needed to re-estimate the parameters. Once converted to matrix format, the calculation can be accelerated efficiently by high performance multithreading linear algebra libraries. Especially with GPU support and careful tuning, we can even push the top speed up to two magnitudes faster than single thread implementation [START_REF] Gao | [END_REF].

Beyond single machine, we show that for big data set which cannot fit into the memory of individual computer, the k-means and GMM training procedures can be performed on independent sub-data blocks distributedly since the computation on each sub-data block is independent and the final result is obtained by aggregating sub-results. This map-reduce [Dean 2005] computational style inspires us to employ Hadoop [START_REF] White | Hadoop: The Definitive Guide[END_REF][START_REF] Shvachko | The hadoop distributed file system[END_REF] and Spark [START_REF] Zaharia | Spark: cluster computing with working sets[END_REF], Zaharia et al. 2012] cluster frameworks to even extend parallelization onto multiple computers level. Our experiments show that not only on single machine but also on Hadoop and Spark cluster our proposed method outperforms the state-of-the-art libraries in terms of speed and performance of music mood and genre classification [START_REF] Gao | [END_REF]].

2. Although signal level features with BoW model can be effective for music semantic analysis, it is still necessary to explore mid-level features like notes of music since it contains higher level of abstraction of meaning beyond physical oscillation. Mixing different tracks of instrument playing by averaging is quite easy which means the other way round is difficult. Thanks to modern music software which provides realistic instrument sound we can make use of this musical knowledge to help recover notes.

Our second contribution thus focuses on recovering note information from music signal with musical knowledge to aid semantic analysis. This contribution relies on two levels of musical knowledge: instrument note sound and note cooccurrence/transition statistics [START_REF] Gao | [END_REF]].

On the instrument note sound level, a note dictionary is firstly built from Logic Pro 9. We choose the first 80 realistic instruments as in general MIDI level 1 set and 31 percussion instrument sets including 1860 percussions. For each instrument, we choose 60 notes form note 31 to note 90. The 60 notes span 5 octaves from low to high, covering most instruments' playing note range. The duration of each note is set to 186ms, which are 4096 samples under a sample rate of 22050Hz. This duration is long enough to hold one attack-decay-sustainrelease envelope (ADSR) and leads to 5.38Hz in terms of frequency resolution, which is sufficient to discriminate adjacent note spectrum. Our musical dictionary is finally built by computing each musical word in frequency domain as the single-sided power spectrum of each note wave generated by short time Fourier transform (STFT) with Hamming window. A musical word in the dictionary is thus a 2048 dimensional vector. The number of musical words is the number of instruments multiplying the number of notes (60) plus the number of percussion instruments that is 6660 musical words in total.

With a musical dictionary in hand, any sparse solution solver can be applied to produce sparse solution in respect to note. Unfortunately classical greedy algorithms, for example orthogonal matching pursuit (OMP) [Pati et al. 1993], cannot directly be applied to the decomposition. Because each musical word in dictionary is a single-sided power spectrum of certain note, a positive constraint is naturally imposed onto the sparse solution. Therefore we propose a positive constraint matching pursuit (PCMP) [START_REF] Gao | [END_REF]] algorithm to solve this problem. When scrutinizing the decomposition results of PCMP within one frame, we found irregular note combinations. This is due to PCMP's over-fitting target signals without considering any compatibility of concurrent notes. To solve this problem, we propose a two stage sparse decomposition approach integrated with note statistical information. In frame level decomposition stage, note co-occurrence probabilities are embedded to guide atom selection in modified matching pursuit algorithm with the dictionary. A sparse multiple candidate graph is then constructed to provide backup choices for later selections. In the global optimal path searching stage, note transition probabilities are incorporated together with a goodness measure of frame decomposition. Its principle is to guide the local sparse music decomposition with co-occurred notes information and decode the global optimal decomposition path with consecutive note knowledge. Due to the Gabor limit [Yao 1993], time and frequency resolution cannot be well satisfied at the same time. Thus, we emphasize the frequency resolution aspect rather than the exact time location, since correct note recognition is more important for our following classification task.

Experiments on multiple data sets show that our proposed approaches outperform the state-of-the-art in terms of accuracy and recall for note recovery and music mood/genre classification.

Organization of the Thesis

 In chapter 2, we give a literature review of the works related to content based music signal analysis especially for emotion. We start with signal level features designed for content-based music classifications and corresponding low-level feature modeling methods. We then review middle-level features especially the notes or multi F0 estimation from music signal. Finally we present state-of-art music mood classification systems.

 In chapter 3, we focus on acceleration of low-level feature modeling ie. to speed up K-means, GMM and GSV. At first, we show that k-means clustering and EM algorithm for GMM can be translated to matrix multiplication format, which can be accelerated effectively under parallel computing infrastructures. We then show that when processing big data, we can even fit matrix format into MapReduce model so that the whole computation can be parallelized onto Hadoop and Spark clusters. Next, we introduce performance tuning for GPU, multi-core CPU and cluster implementations. The quality of trained GMM is also discussed in detail.

Finally we show experiments on the execution speed and quality of the learnt dictionary, compared with the state-of-the-art libraries.

 In chapter 4, we focus on mid-level feature of musical note extraction and its application on mood classification. Firstly, we present our construction of a musical dictionary, which consists of two sets of MIDI based instrument sounds.

We then introduce our modified matching pursuit algorithm to perform music decomposition subject to a natural positive constraint. Next, we verify the quality of sparse music decomposition via mood classification experiments on two data sets. To overcome the discontinuity of previous sparse decomposition, we further present our two-stage approach involving frame-level statistical integration and global-level optimal paths searching. Finally we show experimental results of the improved decomposition approach on real-world music signals.

 In chapter 5, we draw the conclusions and propose some perspectives for future research directions.

Chapter 2: Literature Review

In this chapter, we give a literature review of the works related to content based music signal analysis especially for emotion. First, we survey signal level or low level of features designed for multi-purpose signal analysis and content based music classifications. We also review the mainstream low level feature modeling methods for classification tasks i.e. bag-of-words (BoW) and universal background model based Gaussian super vector (GSV-UBM). Then we review middle level features especially the notes or multi F0 estimation from music signal. Finally, as we concentrate in this thesis on mood as a high level concept to detection in music, we survey state-of-art music mood classification systems.

Audio Features

The mood induced by music, for example happiness, is however too abstract to have simple if-else style definition. Therefore, data driven machine learning techniques turn out feasible solutions. Compared with the necessity of innovation concerning classifiers, feature extraction has even more space to delve. To develop effective features, researchers firstly turn to ourselves for help.

Speaking of humans, the very first step to understand audio information is to extract features from audio signal through the front end of our elaborate auditory system. Figure 2.1 shows the main part of cochlea. As it can be observed in Figure 2.1, there is a stiff structural element named basilar membrane inside the cochlea. The basilar membrane is the base for the sensory cells of hearing or "Stereocilia" (approximately 30.000 cells), and hence plays a crucial role in the transfer of sound oscillation to the nerve impulse to the neural networks in brain.

It also differentiates frequency distribution for incoming sound waves. Depending on the input frequencies, different regions from the basilar membrane will resonate, consequently only a small subset of sensory cells is activated. From the Figure 2.1 we also note that the distribution of frequencies is more logarithmic than linear, which influences many analysis methods and feature design for example wavelet analysis and MFCC. Further listening experiments show that although humans are experts for distinguish the frequency, loudness and temporal information of the sound, we are not sensitive to the phase of the sound wave.

These biological conclusions inspire researchers to design many effective features to characterize audio signal in different aspects. Music related features are usually divided into 3 levels. Low level i.e. signal level features reflect intrinsic characteristics of the signal without conveying direct semantic information about the contents. Middle level features incorporate human knowledge of music so that somewhat semantic information is expressed through for example notes, chords, and rhythms. High level features from lyrics which is related to nature language contain direct meaning that author endow to the music.

Level by level the features are developed to shorten so called semantic gap.

Low level feature survey

Although low level features are a little far from expressing semantics directly, they contain complete information of the signal and can be modeled to indirectly indicate semantics like mood. Low level features concerns 3 out of 4 main aspects of the sound: frequency, energy and the temporal, since human is not sensitive to the phase distortion.

Frequency carries a large portion of information for the sound, just like the colors for images.

Spectral flux (SF).

The SF is the 2-norm of the frame-to-frame spectral amplitude subtraction vector [START_REF] Scheirer | [END_REF]]. It quantifies (abrupt) difference in the shape of the spectrum over consecutive frames. Signals that have slowly varying spectrum for example noise have low SF, while signals with abrupt spectral changes (e.g. note onsets) have high SF. [START_REF] Lu | [END_REF]] provide a slightly different definition where the SF is calculated in logarithm domain of the spectrum. Similarly to SF, the cepstrum flux is defined by Xu in [Xu 2005]. SF is widely used in audio retrieval, e.g. in speech/music discrimination [Khan et al. 2004, Jiang et al. 2005, Khan et al. 2006], music information retrieval [Tzanetakis 2002a, Li et al. 2004], and speech analysis [Tzanetakis 2005].

Spectral peaks is proposed by Wang in [Wang 2003, Wang 2006]. Spectral peaks are designed for a very compact and noise robust representation of an audio signal. Sparse set of time-frequency pairs the constellation map is firstly constructed from Fourier spectrogram with local peaks. Pairs of time-frequency points are then calculated from the constellation map. For each pair, the two frequency components, the time difference, and the time offset from the beginning of the audio signal are combined into a feature. Each piece of music is finally represented by a large number of such time-frequency pairs. Wang also proposed an efficient search algorithm for large databases built from features described. The search system is detailed in [Wang 2003]. For spectral peak features, the music is represented in the form of spatio-temporal combinations of dominant frequencies.

The advantage of the technique is that it only relies on the salient frequencies (peaks) and denies all other relatively weak spectral content. This preserves the main characteristics of the spectrum and makes the representation highly robust to noise since the spectrum of noise is usually flat thus the peak frequencies are less influenced by noise than the other signals. However, only considering the frequency with the largest energy can neglect useful information which hidden in for example second largest peaks.

Pitch is an important frequency related characteristic of sound, different from loudness, duration, and timbre. The hearing sensation of pitch is defined as "that attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high" [ANSI 1995]. The term pitch can refer to fundamental frequency or frequency and the perceived frequency of a signal depending on the application case.

When pitch refers to the perceived fundamental frequency of a sound, it stands for a subjective psychophysical attribute. According the auditory experiment human can differentiate about 1400 distinct tones that is the total number of perceptible pitch steps in the range of human hearing capability. Note that the total number of notes in the musical equal-tempered scale is 120 notes. Pitch is usually denoted by the fundamental frequency F0.

Fundamental frequency. The fundamental frequency is the lowest frequency of a harmonic series, which denote the base vibration. It coarsely approximates the psychoacoustic pitch. Former researchers have developed various methods to estimate fundamental frequency such as temporal autocorrelation, spectral, and cepstral methods and combinations of these techniques as well. An early survey can be found in [Hess 1983].

Pitch Histogram. The pitch histogram tends to depict pitch distributions of a signal in a compact way and has been introduced for musical genre classification in [Tzanetakis 2002a, Tzanetakis 2002b]. In musical analysis the meaning of pitch equals to musical notes. The pitch histogram is a global representation that aggregates the pitch information or F0 from many short audio frames.

Consequently, these pitch histograms provide the distribution of the musical notes in music segments.

Chromagram. The chromagram is a spectrogram that represents the spectral energy of each of the 12 pitch classes [Bartsch et al. 2005]. The logarithmized short-time Fourier transform is firstly performed. The frequencies are mapped periodically to the 12 pitch classes by an aggregation function since each octave is consisted of 12 notes. The result is a 12 element vector for each audio frame. A similar algorithm for the extraction of chroma vectors can be found in [START_REF] Goto | A chorus-section detecting method for musical audio signals[END_REF]].

The chromagram maps all frequencies into one octave. This results in a spectral compression that allows for a regulated description of harmonic information in the signal. Since the energy of the same note in different octaves is aggregated into the same slot, large harmonic series can be represented by only a few chroma values [Bartsch et al. 2005]. The advantage of chroma is to provide an octave-invariant (compressed) spectrogram that takes properties of musical perception into account.

However, its drawback is co-occurring that chrome blurs the harmonic informat.

Pitch Profile. The pitch profile is a more accurate representation of the pitch distribution than the chroma features [START_REF] Zhu | [END_REF]]. It considers pitch mistuning introduced by mistuned instruments and is robust against noisy percussive sounds that do not have a pitch. Zhu et al. applyed the pitch profile in musical key detection and results show that the pitch profile outperforms traditional chroma features.

Harmonicity serves to distinguish periodic signals, for example harmonic sounds generated by instruments, from non-periodic signals like drum and noiselike sounds. Harmonics are frequencies located at integer multiples of the fundamental frequency. The harmonic spectrum shows peaks at the fundamental frequency and its integer multiples.

Harmonicity relates to the proportion of harmonic components in a signal, which is usually large in music signals. Harmonicity features can be used to distinguish musical instruments. For example harmonic instrument sounds like horns have stronger harmonic structure than percussive instrument sounds like drums. Furthermore, harmonicity can also be useful to separate environmental sound between harmonic and inharmonic sounds.

Inharmonicity measures. Most real world harmonic signals do not have a perfect harmonic structure. Inharmonicity features measure the difference between observed energy distribution along harmonics and their theoretical values which are exactly at integer multiples of the fundamental frequency.

A straight-forward cumulative measure for the deviation of the harmonics from their predicted values is introduced in [Agostini et al. 2001] and [Peeters 2004]. A more robust and more accurate feature is harmonicity prominence in which the energy and the bandwidth of each harmonic component are further considered in [START_REF] Cai | [END_REF]. A variant feature is to calculate entropy of the distances of adjacent peaks in the spectrum. Perfect harmonic sounds have constant distances, while for non-harmonic sounds the distances may vary.

The concept of the "cepstrum" has been firstly introduced by Bogert et al. in [Bogert et al. 1963]. Cepstrum was originally used to detect echoes in seismic signals. Cepstral features were introduced into audio domain by [Noll 1964, Bridle et al. 1974, Davis et al. 1980] to perform speech analysis. Cepstral features presents smoothed frequency of the log magnitude spectrum. It also conveys timbral characteristics and reflects pitch information. Euclidean metric can be applied on cepstral features to measure their distances, since cepstral features are embedded in an orthogonal space. Today, cepstral features are widely used in many fields of audio retrieval some example can be found in [START_REF] Lu | [END_REF], Xu et al. 2004].

Cepstral Features. Bogert et al. define the cepstrum as the Fourier Transform (FT) of the logarithm (log) of the magnitude (mag) of the spectrum of the original signal [Bogert et al. 1963]. The signal is firstly Fourier transformed. The log the Fourier transform magnitude is then served as input of the second time Fourier transforms. The final cepstrum is the result of the second Fourier transforms. (e.g. signal→FT →log(mag)→FT →cepstrum) This sequence is the original form for the cepstral features. However, in practice the computation slightly differs from this definition. For example, the second Fourier transform is often replaced by a DCT due to its ability to decorrelate output data as shown in following classical MFCC features.

Mel-frequency cepstral coefficients (MFCCs). MFCC's most notable success is achieved in automatic speech recognition task and MFCC has evolved into one of the standard techniques in most domains of audio signal processing.

Computation of MFCCs includes a conversion of the Fourier coefficients to Melscale [Stevens et al. 1937]. After conversion, the obtained vectors are logarithmized, and decorrelated by DCT in order to remove redundant information as mentioned in previous paragraph.

The components of MFCCs are usually the first 13 DCT coefficients that describe the coarse spectral shape. The first DCT coefficient represents the average power in the spectrum. The second coefficient approximates the broad shape of the spectrum and is related to the spectral centroid. The higher-order coefficients represent finer spectral details (e.g. pitch). MFCC can also be treated as an approximation of human hearing cochlea which shares the same characteristic of frequency response. In practice, the first 8-13 MFCC coefficients are sufficient to represent the shape of the spectrum. However, some applications may require more higher-order coefficients to capture pitch and tone information. For example in Chinese speech recognition up to 20 cepstral coefficients may be beneficial [START_REF] Wang | [END_REF].

Beside classical MFCC, several variations of MFCCs have been proposed. They mainly differ in the applied psychoacoustic scale i.e. instead of using Melscale, variations consider the Bark [Zwicker 1961], ERB [Moore et al. 1990] and octave-scale [Madage et al. 2004]. A typical variation of MFCCs is Barkfrequency cepstral coefficients (BFCCs).

Up to now the short-time Fourier transform (STFT) serves as the fundamental building block for most frequency related features. However, STFT provides only a suboptimal tradeoff between time and frequency resolution since the fixed window locks both the frequency and time resolution. The advantage of adaptive time-frequency decompositions, like the Wavelet transform is that they provide a frequency resolution that varies with the temporal resolution.

Instead of short-time Fourier transform, Wavelet transform and related transformations for time-frequency decomposition are firstly applied to obtain coefficients based on Wavelet mother function. For example, Khan et al. have successfully applied the variance of Haar Wavelet coefficients over several frames to speech/music discrimination in [Khan et al. 2006]. We consider such features as low level features since they do not have a semantic interpretation. Li et al. for music genre classification in [START_REF] Li | A comparative study on content-based music genre classification[END_REF]]. The authors used Daubechies Wavelets to decompose the audio signal. Histograms from the Wavelet coefficients are then built for every subband. The subband histograms provide an approximation of the waveform variation in each subband.

Daubechies Wavelet coefficient histogram features (DWCH). DWCHs have been proposed by

The final feature vector is composed of the first three statistical moments of each coefficient histogram together with the energy per subband. Li et al. also show that when combined with traditional features, DWCHs can further improve performance for music genre classification [START_REF] Li | A comparative study on content-based music genre classification[END_REF]. DWCHs have been used in the fields of artist style identification, emotion detection, and similarity retrieval in [Li et al. 2004, Li et al. 2006].

Adaptive time frequency transform (ATFT).

The ATFT proposed by Umapathy et al. in [Umapathy et al. 2005] is similar to the Wavelet transform. The signal is decomposed into a set of Gaussian basis functions of different scales, translations, and central frequencies. The scale parameter varies with the waveform envelope of the signal and represents for example rhythmic structures. It shows that the scale parameter contains discriminatory ability for musical genres classification.

Variable Resolutions Transform (VRT).

The VRT is first derived from the classic definition of Continuous Wavelet Transform (CWT) in order to enable a variable time-frequency coverage which should fit to music signal analysis better.

The consideration of specific properties of music signal finally leads to change the mother function as well and thus VRT is not a true CWT but a filter bank.

Auto-regression analysis is a standard technique in signal processing where the future signals are treated as linear combination of previous values. Linear predictor is built to estimate the value of each sample of a signal in the form of linear combination of it ancestors. Linear prediction analysis has a long tradition in audio retrieval and signal coding early examples can be found in [Rabiner et al. 1978, Tremain 1982].

Linear predictive coding (LPC). LPC is widely used in automatic speech

recognition since it takes into account the source-filter model of speech production.

The basic assumption is that vocal stimuli are modulated by filters like throat and mouth and filter can be parameterized, which means the filter parameter can be used as feature to represent speech signal [Rabiner et al. 1978]. Under the assumption the goal of LPC is designed to estimate basic parameters of a speech signal, such as formant frequencies and the vocal tract transfer function. LPC can be applied in other domains such as audio segmentation and general purpose audio retrieval where the LPC spectrum is used as an approximation of the spectral envelope.

As mentioned earlier, beside frequency and temporal features, loudness features that related to signal amplitude or energy is another important aspect of audio signal that human can easily perceive. Formally loudness is "that attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from soft to loud" [ANSI 1995]. The auditory system incorporates a number of physiological mechanisms that influence the transformation of the incoming physical sound intensity into the sensational loudness [Zwicker et al. 1999].

Specific Loudness Sensation (Sone). Pampalk et al. propose a feature that

approximates the specific loudness sensation per critical band of the human auditory system [START_REF] Pampalk | [END_REF]. A Bark-scaled spectrogram is firstly computed and then spectral masking and equal-loudness contours are applied.

Finally, the spectrum is transformed to specific loudness sensation in sone.

Related to loudness the energy of a signal is the square of the amplitude represented by the waveform. The power of a sound is defined as the energy transmitted per unit time in second [Moore 2004]. Consequently, power is calculated as the mean-square of a signal. In many cases the root-mean-square is used in feature extraction.

Short-time energy (STE). STE describes the envelope of a signal and is

extensively used in various fields of audio retrieval. STE is defined according to Zhang et al. as the mean energy per frame (which actually is a measure for power) [START_REF] Zhang | [END_REF]. The same definition is used for the MPEG-7 audio power descriptor [ISO-IEC 2002].

Low level feature modeling

With such amount of features in hands, we can characterize music signal from so many different angles. For the tasks concerning music signal itself for example signal denoising, signal coding etc. low level features alone are sufficient. For semantic analysis, however, another layer of model has to be built to further extract semantics from low level feature since they still contain too much detail of signal's redundancy and randomness which shade semantic concepts like mood and genre. K-means [Lloyd et al. 1982] and GMM [START_REF] Reynolds | A Mixture Modeling Approach to Text-Independent Speaker Identification[END_REF]] clustering based bag-of-words framework has demonstrated its effectiveness to model low level features and has been successfully applied to a number of multimedia classification tasks, e.g., visual categorization in computer vision. The bag-ofwords model is a simplifying representation originated in natural language processing and information retrieval (IR). In this domain, a text (such as a sentence or a document) is represented as the bag or multi-set of its words, disregarding grammar and even word order but keeping multiplicity. Bag-of-words method first constructs clusters of assembled low level features through k-means or GMM clustering. It then generates histogram against k-means centers or GMM mixtures, which reflects feature distributions with respect to the "words" in bag. This procedure helps translate signal level information into meaningful audio and visual words which convey more definite information for example genre and mood for music signal. The overall BoW is shown in Figure 2. . The algorithm is composed of the following steps.

1. Initialize K points into the space.

2. Assign each object to the group that has the closest centroid.

3. Recalculate the positions of the K centroids.

Mid-level features survey

Beside the signal level features, researchers also develop mid-level features which contain somewhat semantic information related to human knowledge. In this section we review mid-level features including tonality rhythm and especially note or multi-F0.

Tonality which is defined slightly different from musical system represents the sound property that can distinguish noise-like from tonal sounds [Zwicker et al. 1999]. Compared with tonal sounds tend to have sharp spectra, noise-like sounds have a continuous and flat spectrum. For example, instruments like violin produces regular harmonic tonal sound in contrast white noise has a flat spectrum standing for the minimum of tonality. Tonality is naturally related to the pitch strength that measures the strength of the perceived pitch.

Bandwidth. Bandwidth defined as the second-order statistic of the spectrum is usually calculated as the magnitude-weighted average of the differences between UBM Adapted Model the spectral components and the spectral centroid [Wold et al. 1996]. The bandwidth is thus reflects sound tonality in that tonal sounds usually have a low bandwidth since they contain single peaks in the spectrum while noise-like sounds have flat spectrum that leads to high bandwidth. However complex music sounds can still have high bandwidth meanwhile keep tonal characteristics. Therefore mere bandwidth is insufficient to distinguish tonality for the tasks that concern complex music. Besides, the bandwidth may be defined in the logarithm spectrum or the power spectrum to simulate human auditory perception [Sirinivasan et al. 2004]. As global bandwidth may blur the spectrum distribution, sub-bandwidth can be computed within subbands, which benefit some tasks. [Ramalingam et al. 2005].

In the MPEG-7 standard the measure for bandwidth is called spectral spread [ISO-IEC 2002]. Similarly to the bandwidth measures above, the MPEG-7 audio spectrum spread (ASS) is defined as the root-mean-square deviation with respect to the spectrum centroid.

Subband spectral flux (SSF). [START_REF] Cai | [END_REF] proposed the SSF to perform the environmental sound recognition. The feature measures the portion of prominent partials in different subbands. SSF is derived from the logarithmized short-time Fourier spectrum. For each subband the SSF is the summation of the differences between adjacent frequency slots in that subband. Low SSF represents flat subbands and high SSF indicates the subband contain variant frequency components, which reflect somewhat tonality of the signal.

Entropy. A natural measure of flatness of a spectrum is entropy. Shannonand

Renyi entropy is usually computed in multiple subbands [Ramalingam et al. 2005].

The entropy represents the uniformity or, in the opposite angle, the chaos of the spectrum. Misra et al. have proposed a multi-resolution entropy feature is in [Misra et al. 2004, Misra et al. 2005]. The spectrum is split into overlapping Melscaled subbands and Shannon entropy is computed on these subbands. For a flat distribution in the spectrum the entropy is low meaning the spectrum is less chaotic whereas sharp peaks in a spectrum introduce high entropy which means more information exists. The entropy feature characterizes the peakiness of a subband thus may be used for music/non-music or speech/non-speech related detection.

Rhythm is a mid-level feature that captures change patterns of timbre and energy over time span. Zwicker and Fastl have shown that the hearing sensation of rhythm depends on the temporal variation of loudness [Zwicker et al. 1999].

Rhythm is an important feature in music. In music it relates to the tempo of a piece of music measured in beats-per-minute (BMP). Unlike other frame based or statistic based feature, rhythm evolves over a relatively longer period. Therefore, the analysis windows of rhythm features are usually in the range of a few seconds (≈ 3-5s) [Tzanetakis 2002]. Analysis of low-frequency amplitude modulations is a common way to derive rhythmic patterns.

Pulse metric.

A measure for the "rhythmicness" of sound is proposed by Scheirer and Slaney in [START_REF] Scheirer | [END_REF]]. To detect rhythmic modulations, the autocorrelation of several subbands is firstly performed and autocorrelation peaks are then identified. The autocorrelations in all subbands show peaks at similar positions means a high pulse metric, which indicates a strong rhythmic structure in the signal.

Band periodicity. The band periodicity also reflects the strength of rhythmic structures and is similar to pulse metric [START_REF] Lu | [END_REF]]. The analysis is conducted in every subbands. The maximum peak of the subband correlation function is estimated for each analysis frame. The band periodicity is then obtained by averaging the peaks in all frames. The band periodicity correlates with the rhythm content of a signal, since it captures the strength of repetitive structures over time verified by multiple analyzing windows.

Beat spectrum and beat spectrogram. The beat spectrum represents the selfsimilarity of a signal in different time delay which is similarly to autocorrelation.

[Foote 2000, Foote et al. 2001]. Strong beats are implied by the peaks in the beat spectrum with a specific repetition rate. Since the peaks correspond to note onsets with high periodicity, strong beats essentially reflect high rhythm content appearing in the frame analyzed.

The beat spectrum is further concatenated for series of audio frames to form a 2 dimensional beat spectrogram. Each column of the beat spectrogram is the beat spectrum of a single frame. The beat spectrogram shows the rhythmic evolution of a signal over time. The 2D beat spectrogram visualizes how the tempo shifts over time therefore the beat spectrogram provide detailed sequential rhythm information that allows for further rhythmic structures analysis.

The beat spectrum is the foundation of onset detection and can be used to measure similarity of music in terms of rhythm. It may also be used to segment music into pieces with different rhythmical patterns, such as chorus and verse.

Cyclic beat spectrum. The CBS is a compact and robust representation of the fundamental tempo of a piece of music, which is similar to pitch classes in the chroma feature [START_REF] Kurth | [END_REF]]. Previous defined beat spectrum contains not only the fundamental tempo but also related tempos a harmonic and sub-harmonic scale to the fundamental tempo that is multiple fold tempo or half, one third etc. to simulate the human perception [Zwicker et al. 1999]. This results in a twodimensional representation of acoustic versus modulation frequency.

Note (multi-F0), music is indeed sound poetry comprised of notes played by various instruments. People understand music by perceiving the note combination sequence too. Therefore sound of notes plays an important role in the semantics carried by music for identifying high-level concepts such as mood. So, if music can be effectively decomposed into note sound of playing instruments, statistics on the decomposition can provide valuable information for further music classification. However, mixing different instrument playing is trivial while decomposing is quite challenging due to the intrinsic complexity of polyphonic music.

Recovering notes from a music wave signal is usually referred to multiple F0 estimation. The approaches in literature can be roughly sorted into two categories: parameterized like statistical model based methods and non-parameterized like non-negative matrix factorization (NMF) based methods. Parameterized approaches usually assume that multiple F0 can be described by particular models with a small number of free parameters that can be estimated from the signal. For NMF is such an extensible framework that it largely dominates non-parameter methods. For example, in [START_REF] Zafeiriou | [END_REF]] Zafeiriou adds a linear discriminant analysis (LDA) stage to the activities extracted by NMF. In [Guan et al. 2011, Wang et al. 2004], fisher-like discriminant constraints are embedded inside the decomposition. In [Lwandowski 2012], Lewandowski proposes a supervised method with two discriminative criteria that maximize inter-class scatter and quantify the predictive potential of a given decomposition. In order to extract features that enforce the separability between pitch labels, pitch information present in time-aligned musical scores is fused in sparse NMF. In [START_REF] Sakaue | [END_REF]], Sakaue combines Bayesian inference with NMF to propose a Bayesian non-negative harmonic-temporal factorization (BNHTF). BNHTF models the harmonic and temporal structures separately with Gaussian mixture models. In [START_REF] Gao | [END_REF]], a music sparse decomposition approach is proposed using high quality MIDI dictionary. This work is a variant of sparse NMF and uses nonnegative matching pursuit to solve sparse NMF. Unlike NMF that processes the entire signal, this work constructs the activity matrix column by column. It is still worth mentioning the work in [Leveau et al. 2008] where Leveau et al. propose to learn instrument specified note atoms with a modified matching pursuit and a tracking of the played instrumental notes by searching an optimal path with respect to the reconstruction error.

Previous works in the literature have demonstrated the effectiveness of various approaches in multiple-F0 estimation, especially NMF based methods. However, under the NMF framework, the entire music spectrum series are treated as a whole object to be reconstructed. Most of the algorithms focus on reducing the spectrum reconstruction error so as to overlook the compatibility in concurrent and consecutive notes. This batch processing style makes it hard to fuse note cooccurrence and transition information to guide note detection during the matrix factorization. Indeed, after the signal spectrum matrix is factorized, and are new represents of the music, which have lost signal context information for postprocessing to correct possible error. Even in [Leveau et al. 2008], the Viterbi algorithm is used to search the optimal path only with respect to a minimum reconstruction error and neglects the underlying note relations. Nevertheless correlation between concurrent and consecutive notes contains significant heuristics that can help to correct the decomposition error introduced by a signal level analysis.

Audio-Based Musical Mood Detection Systems Survey

Representation of emotions

Among all the concepts associated with music, the emotion or mood is

probably the most natural semantic information expressed by music and can be easily perceived by audiences even without special music knowledge. Music is also referred to as a "language of emotion" [Pratt 1952 The continuous approach on the other hand consists in defining an Ndimensional emotional space. The most famous one is the two or threedimensional model proposed by Russell [Russel 1980] and Schlosberg In following section we review the state-of-the-art of content-based emotion recognition system for both discrete and continuous emotion descriptions. The former results in a classification task and the latter in a regression task

Emotion classification

In one of the early works on this field, acoustic features related to timbre, rhythm, and pitch are used to train support vector machines (SVMs) to classify music into one of 13 mood categories [START_REF] Li | A comparative study on content-based music genre classification[END_REF]. The system has achieved an accuracy of 45% on the data set consisting of a hand-labeled library of 499 music clips with 30-seconds each from a variety of genres including ambient, classical, fusion, and jazz.

In [START_REF] Cai | A flexible framework for key audio effects detection and auditory context inference[END_REF] MIREX first introduced audio music mood classification as a task in 2007 [Xu et al. 2008

Emotion Regression

Parametric regression approaches have demonstrated the ability to outperform supervised classifications with similar features in music emotion prediction, presented in several recent works. In [Yang et al. 2008 et al. 2007] and Marsyas [Tzanetakis et al. 1999]. PCA was applied prior to regression to reduce the data to a tractable number of dimensions. This system achieves an (coefficient of determination) score of 0.58 for arousal and 0.28 for valence.

In In [Eerola et al. 2009] multiple regression approaches, including Partial Least-Squares (PLS) regression were investigated. PLS is an approach that considers correlation between label dimensions. They achieved performance of 0.72, 0.85, and 0.79 for valence, activity, and tension, respectively.

In [Madsen et al. 2012] Madsen et al. propose a novel approach to develop a system that is trained on ranking data and afterwards can make V-A predictions in the testing phase. In their experiments subjects are simply asked to rate pairs of songs as to which song is higher in terms of valence and arousal. The drawback of the system is that full ranking procedure requires enumerating on all pair combinations and thus the dataset is limited in size. Their current set contains 20 songs, and therefore 190 unique pairings. With the complete training set (90% of all data) they obtain valence and arousal error of 0.13 and 0.14, respectively.

Conclusion

As surveyed in this chapter, content-based music classification, and in particular mood classification, relies on different level features extracted from music signals. Low level features preserve complete information from the original signal; however they are redundant to process which makes modeling low level features inevitable for example using BoW and GSV methods. When dealing with big data, we have to accelerate the bottle neck of the modeling which is the dictionary learning of k-mean and GMM. This leads to our first contribution for effective accelerate k-means, GMM and MAP which is developed in Chapter 3.

Regarding mid-level feature, previous work in literature hardly uses note information which is in fact the most natural semantic given by the composer.

Therefore our second contribution concerns music signal decomposition into note histogram with the help of sparse representation. Two algorithms are proposed in chapter 4 to elaborate the whole process.

Chapter 3: Acceleration for Low Level Feature Modeling

Introduction

Bag-of-words (BoW) framework has demonstrated its effectiveness to model low level features and has been successfully applied to a number of multimedia classification tasks, e.g., visual categorization in computer vision.

In addition to BoW, MAP adaptation based GMM super vector (GSV) as

another transformation of low level features has been successfully applied to many classification problems such as speaker verification [START_REF] Campbell | Support vector machines using GMM supervectors for speaker verification[END_REF]], video annotation [START_REF] Inoue | A fast MAP adaptation technique for GMM-supervector-based video semantic indexing systems[END_REF]] and most notably in music mood classification [Wu et al. 2013, Cao et al. 2009]. In contrast to the histogram of bag-of-words, GMM super vector characterizes the mean shift between the input signal and the universal background GMM. K-means and GMM clustering, as dictionary learning procedures, lie at the heart of many audio and visual processing algorithms, in particular k-means, GMM based BoW framework and MAP based super vector approach.

In the era of big data, for example in iTunes music store, there have been over 37 million songs available by 2014 and the number is still growing fast. Machlica in [START_REF] Machlica | Fast Estimation of Gaussian Mixture Model Parameters on GPU Using CUDA[END_REF]] used cached textual memory and carefully configured memory usage to elevate performance. In previous works user defined GPU kernel functions undertake main computation work. However, kernel functions require careful design and hardware related tuning thus is hard to translate into other languages for use in other computation platform.

Google

In this chapter we present our approach to accelerating k-means, GMM and MAP, which can be effectively achieved on multiple parallel platforms of GPU, multi-core CPU and computer cluster such as Hadoop and Spark. The speed-up is mainly empowered by matrix-based operations. We firstly show that the three procedures can be concisely reformulated into matrix multiplications, which can be efficiently accelerated by parallel computation facilities on single machine. For example highly optimized matrix operation libraries of CUBLAS, ACML and ATLAS can be employed to speedup the calculations. Since the proposed computation structure is formulated into matrix operations, it also can be easily translated into languages with underlying BLAS support, e.g., MATLAB or FORTRAN. When data is even too big to fit in single machine's memory, we show that the data can be divided into small blocks and processed block by block. When data is even bigger so as to make disk IO as bottleneck for single machine, the data has to be stored and processed distributedly in machine cluster such as Hadoop of learnt dictionary are then examined for three implementations on music genre and mood classification. Final conclusion is drawn in section 3.6.

K-means and EM Algorithm in Matrix Format

In this section k-means [START_REF] Hartigan | Algorithm AS 136: A k-means clustering algorithm[END_REF] and EM [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] algorithm are shown in matrix multiplication format. The two algorithms are reformulated into matrix format in that the multiplication of matrix can be effectively accelerated via well tuned linear algebra libraries. The computational efficiency can be greatly enhanced on parallel infrastructure, compared with user defined programs. Several symbols are firstly defined:

is the number of dimensions for feature vectors, k-means cluster centers and Gaussian mixtures; is the number of feature vectors; is the number of kmeans clusters or GMM mixtures; is the feature matrix in which each column represents one feature vector; is the matrix of k-means cluster centers in which each column represents one center; represents the variance matrix of which, in contrast to a covariance matrix , is the variance of dimension for cluster or mixture . In GMM, denotes the prior probabilities or weights of every mixture, the matrix of means, the set of covariance matrices. Other symbols are defined each time they are used.

K-means in matrix format

K-means clustering iteration contains two steps: cluster decision and cluster center updating. The first is to find the nearest center to which each feature vector is to be clustered. The second is to re-estimate cluster centers according to the nearest relationship.

To measure the closeness between data set and centers , squared Euclid distance is commonly used, defined as (3.1) In matrix format, squared distance matrix can be written as

(3.2)
where is the vector of squared length of feature vectors and is the vector of squared length of centers.

For the center updating step the new center matrix can be written as

, where occupation matrix is defined as where is the number of associated feature vectors to center . Variance matrix can be computed similarly as , where and .

EM for GMM in matrix format

In GMM, the probability density of a feature vector is defined as The EM updating formulas can then be written as (3.12) (3.13) (3.14) where is the squared data matrix in which and is the squared mean matrix of just updated.

(3.

MAP in Matrix Format

To obtain the GMM super vector, UBM should be adapted via MAP as follows is the input feature vector to adapt on.

represents the universal background GMM, denotes the relevant coefficient for mixture , in which is a free parameter of absolute relevant occupancy. denotes the same as column vector of . According to the formula MAP for GMM formula can be computed in the same way as EM algorithm i.e., in matrix multiplication format. The final GMM super vector for input data is then obtained by concatenating adapted mean vector weighted by corresponding standard derivation and mixture weight.

MapReduce Acceleration

It is quite straightforward for k-means and GMM in their matrix format to take the advantages of parallel computing power on an individual machine.

However, when data scale gets such a size to which one computer cannot afford, we have to seek help from computer clusters. This section shows our matrix multiplication method can perfectly fit into computer cluster scenario, in particular MapReduce model so that the Hadoop and Spark framework can soundly be employed to further accelerate the computing.

MapReduce structure

MapReduce [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF]] is a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. It starts to prevail with the Apache Hadoop project. A MapReduce program is composed of a Map() and a Reduce() procedure. The Map() procedure performs dividing, filtering and sorting data blocks to conduct the distributed computation. The Reduce() procedure performs a collecting operation that aggregate sub results and transform them into the final one. The "MapReduce System" consists of distributed servers, running the various tasks in parallel, managing all communications and data transfers between the various parts of the system, and providing redundancy and fault tolerance.

Hadoop architecture

Hadoop is designed to efficiently process large volumes of information by connecting many affordable commodity computers together to work in parallel.

Hadoop distributed file system (HDFS)

A big bottleneck for parallel computing is data access bandwidth, especially across computing nodes. To achieve high data accessibility Hadoop Distributed File System (HDFS) has been developed. HDFS has a master/slave architecture as shown in Figure 3.1. An HDFS cluster consists of a single Namenode, a master server that manages the file system namespace and regulates access to files by clients. In addition, there are a number of Datanodes, usually one per node in the cluster, which manage storage attached to the nodes that they run on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally, a file is split into one or more Clients try to access blocks of data locally and remotely.

Hadoop MapReduce

Hadoop MapReduce architecture is shown in Figure 3

MapReduce k-means in matrix format

Since

Performance Tuning

The formula in previous sections represents the theoretically ideal situation.

However, to achieve the best performance, there are still several parameters that need to be tuned according to the underlying hardware configurations.

Multi-core CPU

For single machine based test run, when distance matrix , or probability matrix is too large to fit into the memory, serialized MapReduce version of k-means or GMM must be adopted. In such a situation data blocks are processed one by one and finally aggregated. On machines equipped with AMD muti-core CPU, ACML is used for matrix multiplication to maximize the computing speed. On machine with Intel CPU, ATLAS is tuned and employed instead. To take full advantage of multi-core CPU, calculation of and is implemented with OpenMP 1 which takes charge of dispatching for-loop into multiple threads. However, spawning as many threads as possible is not the optimal way of acceleration. Because too many threads increase the overhead of thread scheduling and enhance cache faults or even page faults when a large number of threads access data. For example when we run the following code to calculate feature vectors' square length, the fastest speed is achieved where OpenMP schedule batch size is around 10240, which is shown in Figure 3. For example, to compute occupation matrix from matrix in k-means algorithm, we have tested calculation performance on in both row major order and column major order. In the case of row major order, adjacent threads read global memory address with big gaps whereas in column major order adjacent threads read adjacent memory. Figure 3.8 shows the time consumption of two memory accessing orders, the brown bar indicates column major order to read while the bar in cyan denote row major order one. From Figure 3.8

we can find that same kernel function runs more than 7 times faster on .in column major order. In former case the computation task is parallelized on each vector so that the speed gain is obtained from coalesced memory access. Another example is to compute posterior probability matrix from in EM algorithm for GMM.

The time consumption of 16x16 thread block dimension is shown in cyan bar in Figure 3.9 and the time consumption of 1x256 is shown in cyan bar in Figure 3.10. From the two figures we can find that thread block dimension of 1x256 is 6.9 time faster than of 16x16 (245.3ms down to 35.8ms), which lead overall 30% efficiency improvement. The acceleration is essentially due to coalesced memory access. Indeed, although taking exponential for each matrix element is a 2D parallelable operation, the matrix data is actually stored linearly in global memory. Therefore 16x16 configuration causes non-consecutive global memory access whereas 1x256 does. Another tuning point is to merge matrix operations whenever possible, like multiplication, can save overhead caused by function calling and repeated memory access. For example when block mean and variance matrix updating is combined into one matrix multiplication 10% execution time is saved.

The final aspect where acceleration can be gained is to upgrade to high performance graphic card with advanced GPU. Table 3.1 show our fine tuned implementation executes on 4 types of GPUs.

Hadoop and Spark cluster

On a cluster backed with HDFS, in order to achieve maximum computation throughput, the input data size is set to its largest value provided that the corresponding distance matrix or probability matrix can fit into memory. Since the data is stored in blocks in HDFS, configuring blocks size equal to input size can further avoid extra disk IO overhead. Figure 3.13 shows how the data split size influence the execution time. From Figure 3.13 we can find that our matrix based method prefers large block data which maximizes the parallel ability of each computing node. We also test the impact of number of cores to the execution time, which is illustrated in Figure 3.14 and 3.15. To leverage high performance linear algebra library such as ACML and ATLAS, computational expensive procedures are all implemented with C language which are called via Java Native Interface (JNI) in both Hadoop and Spark. Because ACML and ATLAS are multi-threaded, limiting the number of parallel tasks on a single node is necessary to avoid over-competition for CPU time. In high-end servers with for example 32 cores, it is faster to run 8 32-threaded tasks than 8 4threaded tasks.

K-means and GMM refinement

K-means and GMM clustering results are highly sensitive to the initialization of centers and mixtures because both algorithms only guarantee to find a local optimal solution with respect to the initialization. To obtain reasonable initial centers, we first sub-sample the training data set into and then perform KKZ [Katsavounidis et al. 1994, He et al. 2004] algorithm on it. The advantage of sub-sampling KKZ is that outlier vectors located far from real data distribution have little possibility to be selected so that initial centers are near input data distribution yet sufficiently separated.

Even with decent initialization, k-means and GMM clustering can run into 3 awkward situations: 1) two or more centers compete to represent one cluster;

2) centers are trapped in very small clusters; 3) centers are stuck between two real data clusters which make the representing center or mixture looks too fat to split. In our experiment we developed a three stage method to detect and alleviate the 3 situations. In the first step to merge neighbors, Bhattacharyya distance between centers or mixtures are calculated. A "near" graph is then constructed. If two centers or mixtures are too close there will be an edge between them in the "near" graph. Independent connected components are then obtained from the graph to merge too near centers if any. The nearness threshold is set to 0.5. In the second step dead clusters are killed that is centers or mixtures with too small weight are eliminated. The smallness threshold is Output result: refined GMM

Experiments on Music Genre and Mood Classification

To evaluate speed and quality of our implementations, music genre and mood classification have been conducted on GPU, multi-core CPU and Hadoop, Spark cluster.

Experiment setups

Computer configuration

A single thread implementation based on clapack2 was used as a baseline using a single machine. It ran on a PC with Intel ® Core™ i7-940 @2.93GHz.

The implementation based on ACML ran on a server with 4 8-cored AMD Opteron™ Processor 6128 @2GHz and 100GB of memory. The implementation based on CUBLAS ran on 240-cored NVIDIA GTX 285.

Yael3 was also tested on the server as a benchmark for multi-threading implementation. The Hadoop and Spark clusters consist of 16 computers as shown in Table 3.2 architecture. This abnormal phenomenon is due to random memory access pattern of operations on GPU. Therefore in this scenario matrix multiplication is the optimal but still slower way for GPU.

In [START_REF] Machlica | Fast Estimation of Gaussian Mixture Model Parameters on GPU Using CUDA[END_REF]] Machlica et al. reported a faster result of comparable data set, however, the duration profile in [START_REF] Machlica | Fast Estimation of Gaussian Mixture Model Parameters on GPU Using CUDA[END_REF] only recorded kernel function's running time without data IO and data preparation duration. If only GPU execution duration is considered, our method consumes 7 seconds compared with 9.1 in [START_REF] Machlica | Fast Estimation of Gaussian Mixture Model Parameters on GPU Using CUDA[END_REF]. From genre classification accuracy column in Table 3.4, we can find that the quality of dictionary trained by CPU is little better than GPU by less than 1% in terms of average classification accuracy. This is due to the less floating point error of CPU and double precision floating point numbers used during summation procedure on CPU.

From Table 3.6, we can find that with the same number of mixture, the same types of GPU and comparable data scale as in [START_REF] Azhari | [END_REF], our CUBLAS based implementation is 10 times faster than CUDA kernel implementation described in [START_REF] Azhari | [END_REF]. From Table 3.7-3.9 we can find that 1024 dimensional bag-of-words histogram features outperforms the standard 6552 dimensional OpenSMILE emotional features by 3% in terms of average classification accuracy. with Spark, we can also find that for iterative algorithms Spark with data caching mechanism runs faster than Hadoop. However, when computation becomes more expensive with the same amount of data, the gap between the two frameworks is shortening.

The reason why the proposed matrix format outperforms the two libraries is because of the JVM thread scheduling overhead. Compared with Mahout and MLLib in which one thread is arranged to one data vector to perform the calculation, the proposed method directly feeds large chunk of data to highly tuned math library and let the library decide the optimal thread configuration to run the calculation.

Conclusion

In this chapter, we have proposed to use matrix format on GPU multi-core CPU and cluster to accelerate bag-of-words and GMM super vector method, especially for dictionary learning of k-means and GMM clustering. To employ high performance matrix operation library of ACML, ATLAS and CUBLAS, we propose to reformulate k-means and EM algorithm into matrix multiplications, which is also convenient to be implemented with other languages for example MATLAB and FORTRAN. Experiments on music genre and mood classification tasks show that the proposed implementations achieve 38 to 209 times acceleration, compared with single threaded CPU version on single machine. 240cored GPU can run up to 5 times faster than 4 8-cored CPUs with just less 1% performance decline. On Hadoop and Spark cluster, the proposed method still achieves 10 and 5 speed-up, compared with Mahout and MLLib.

Our proposed approach thus allows going a step further for the modeling of low level features when dealing with large scale data. As low level features are important but generally insufficient to depict the whole picture of music, we will discuss in the next chapter mid-level features in particular note histogram feature with its application in content based music classification.

Chapter 4: Sparse Music Decomposition with MIDI

Dictionary and Musical Knowledge

Introduction

As shown in previous chapters most of the automated music analysis approaches available in the literature rely on the representation of the music through a set of low-level audio features related to frequential, energy and temporal properties.

Identifying high-level concepts, such as music mood, from this "black-box" representation is particularly challenging, even with BoW and GSV.

Therefore we propose in this chapter our new representation of the music that allows gaining an in-depth understanding of its structure and harmony that we expect to be important for further music analysis, and particularly mood classification. Its principle is to decompose sparsely the music into a basis of elementary audio elements, called musical words, which represent the notes played by various instruments generated through a MIDI synthesizer. To do so, our approach relies on the sparse theory [Elad 2010] and its essence is to represent the music, thanks to a "musical dictionary" made of over complete musical words that are related to the notes produced by various instruments. From this sparse representation, we also define a new feature which favors further mood classification. Experiments driven on two music datasets have shown the effectiveness of this approach to represent accurately music signals and to allow efficient music mood classification.

To achieve more accurate decomposition, statistical music knowledge is further integrated into the whole sparse decomposition process. We then present our twostage sparse decomposition approach integrated with music knowledge. In frame level decomposition stage, note co-occurrence probabilities are embedded to guide atom selection in modified matching pursuit algorithm with a MIDI dictionary. A sparse multiple candidate graph is then constructed to provide backup choices for later selections. In the global optimal path searching stage, note transition probabilities are incorporated together with a goodness measure of frame decomposition. Its principle is to guide the local sparse music decomposition with co-occurred notes information and decode the global optimal decomposition path with consecutive note knowledge. Due to the Gabor limit, time and frequency resolution cannot be well satisfied at the same time. Thus, we emphasize the frequency resolution aspect rather than the exact time location, since correct note recognition is more important for our following classification task. Experiments on real-world polyphonic music show that embedding music knowledge within the sparse decomposition achieves notable improvement in terms of note recognition precision and recall.

The rest of the chapter is organized as follow. Section 4.2 introduces sparse music decomposition. To build a musical dictionary, two sets of MIDI based instrument sound are generated, which is detailed in section 4.2.2. A modified matching pursuit algorithm is presented in section 4.

Sparse Decomposition of Music Using a Musical Dictionary

Overview of the approach

The general principle of our music sparse representation and feature extraction is illustrated in Figure 4.1. It relies on a musical dictionary made of musical words. Each of these words corresponds to the spectrum of a note produced by an instrument through a MIDI synthesizer. To decompose a music signal onto this musical dictionary, the signal is firstly framed by Hamming window and the spectrum is computed in each of these frames. The sparse solution solver then decomposes each of the signal frames into the musical dictionary to obtain the sparse solution describing the musical words that are used to represent the frame content. The sparse solutions are finally aggregated and normalized over all frames to generate an instrument note histogram, or musical histogram, which will form the feature representing the input music signal for further classification.

MIDI musical dictionary

Elaborating an appropriate musical dictionary is a key issue since this set of atoms, or musical words, has to be rich enough to allow accurate music decomposition, in terms of notes and instruments. Unfortunately, it is infeasible to record such a huge data set. Although [Leveau 2008] has suggested learning atoms from instrument playing recordings, it is still impractical to apply to a large instrument set. Therefore, in order to get adequate instrument note sounds we propose to make use of a MIDI synthesizer.

Indeed, a MIDI synthesizer is able to generate various instrument sounds on almost all possible notes. In our system two sets of MIDI synthesized waves are tested. One is produced by "Windows Vista built-in Microsoft GS Wavetable Synthesizer". The other is generated from Logic Pro 9, a high quality music producing software from Apple Inc.

For wavetable synthesizer we select all 128 "general MIDI level 1" sound instruments and 47 "general MIDI level 1" percussion instruments1 . For Logic Pro 9, we choose the first 80 realistic instruments as in general MIDI level 1 set and 31 percussion instrument sets including 1860 percussions. For each instrument, we choose 60 notes form note 31 to note 90. The 60 notes span 5

octaves from low to high2 , covering most instruments' playing note range.

The duration of each note is set to 186ms, which are 4096 samples under a sample rate of 22050Hz. This duration is long enough to hold one attack-decaysustain-release envelope (ADSR) and leads to 5.38Hz in terms of frequency resolution, which is sufficient to discriminate adjacent note spectrum. This window length is also convenient for FFT computation. Our MIDI musical dictionary is finally built by computing each musical word in frequency domain as the single-sided power spectrum of each note wave generated by short time Fourier transform (STFT) with Hamming window. The STFT is applied because with 5.38Hz resolution single-sided spectrum for each note is linearly addable and more robust against time-frequency transform like wavelet transform. According to our previous experiment atoms of wavelet transform coefficients cannot compare with FFT ones due to its sensitivity of time position and the quality of input signal.

A musical word is thus a 2048 dimensional vector. The number of musical words is decided by the number of instruments multiplying the number of notes (60) plus the number of percussion instruments. For the dictionary generated by "general MIDI level 1", 7727 musical words are created. For Logic Pro 9, 6660 musical words are created.

Sparse representation and positive constraint matching pursuit

Sparse representation [Elad 2010] is originated from finding the solution of an underdetermined linear system so that contains as few non-zero components as possible. This problem is formulated as subject to

. In many cases is hard to satisfy, thus in practice and are minimized simultaneously. When applied to signal processing, represents the signal to analyze, is an over-complete dictionary with atoms that can reconstruct and is the sparse interpretation of under . For similar example inverse Fourier matrix serves as dictionary to reconstruct signal using its spare frequency domain coefficients , although is not overcomplete.

With a MIDI musical dictionary in hand, any sparse solution solver can be applied to produce sparse solution in respect to note. Unfortunately classical greedy algorithms, for example orthogonal matching pursuit (OMP), cannot directly be applied to the decomposition. Because each musical word in MIDI dictionary is a single-sided power spectrum of certain note, a positive constraint is naturally imposed onto the sparse solution. In another word, any negative component of sparse solution is prohibited, as any negative appearance of certain note is impossible.

We propose a positive constraint matching pursuit (PCMP) algorithm detailed in Algorithm 1 to solve this problem. The difference between OMP [Elad 2010] and the proposed algorithm is the positive constraint introduced in the step 3 of main iteration. For OMP, least mean square (LMS) suffices to solve the minimization in step 3, which also results in residual orthogonal to support .

For PCMP, however, after positive constraint minimization, orthogonality between and is not guaranteed, thus the algorithm is turned to a special matching pursuit. 4. Update residual: .

If break.

Output result: .

A musical histogram as audio feature

As mentioned previously, in order to perform the music signal decomposition onto the musical dictionary, the music is firstly framed and the spectrum is computed in each of these frames. Then, a sparse decomposition of each frame is computed using PCMP onto the musical dictionary. The obtained sparse decompositions finally need to be combined in order to obtain a feature that can represent the whole music signal for further classification. To do so, we have defined a musical histogram that is built from the aggregation of the sparse representation of each frame using the following process. Let be the total number of frames of the input music. For each frame , compute decomposition sparse solution . The dimension of is equal to the number of musical words in the dictionary. The musical histogram feature is computed as .

For the consideration of efficiency and complete covering, in the following experiments frame shifting length is fixed to 186ms, the same as frame length.

Experiments and results

We present in the following subsections experiments we have driven in order to evaluate the ability of the proposed method to accurately decompose music, as well as the efficiency of our musical histogram feature for the problem of music mood classification.

Verification of the decomposition with MIDI dictionary

To evaluate the decomposition quality with proposed PCMP and MIDI musical dictionary, a multi-timbral music with time domain note reference has been used, which is from Mirex2007 multiF0 development data 3 . The music is a recording of the fifth variation from L. van Beethoven Variations from String Quartet Op.18 N.5, lasting for 54s. 5 instruments are included in the music: bassoon, clarinet, flute, horn and oboe. Each instrument was recorded separately while the performer is listening to the other parts through headphones. Later the 5 parts were mixed to a mono 44.1 kHz 16 bits wave file.

In this evaluation, only Logic Pro 9 MIDI dictionary has been tested.

Sparse Decomposition with Note Statistics

Our proposed method consists of two main steps. In the first step, the entire music signal is framed and a modified orthogonal matching pursuit algorithm is performed on each frame to generate decomposition candidates. In the second step, decomposition candidates are connected to form a directed graph and an optimal path is then constructed to produce the final decomposition result.

Frame level sparse decomposition

Former study shows that elaborating an appropriate musical dictionary is a key issue since this set of atoms has to be rich enough to characterize the varieties of real word music. Although [Leveau et al. 2008] has developed sophisticated method to learn atoms from instrument recordings, it is still impractical to apply to a large instrument set. Therefore, in order to get adequate instrument note sounds, we propose to make use of a MIDI synthesizer. Logic Pro 9 is employed in our approach to generate the MIDI note dictionary because of its huge instrumental library and the high sound quality. Unlike pre-installed MIDI synthesizer with sound card, Logic Pro 9 uses a large number of real instrument recordings to make synthesized wave signal as natural as possible.

To build the MIDI dictionary, we choose the first 80 realistic instruments as in The adoption of the sparse representation is based on the hypothesis that during a 186ms time slot, there will not be many notes played together. Therefore, concurrent notes are sparse within one frame. Sparse representation [Elad 2010] is originated from finding the solution of an underdetermined linear system so that contains as few non-zero components as possible. In most cases is hard to satisfy, thus in practice and are minimized simultaneously instead.

Armed with our MIDI dictionary, the classical matching pursuit algorithm like orthogonal matching pursuit (OMP) [Pati et al. 1993] must be modified because the single-sided power spectrum words in MIDI dictionary impose an inherent positive constraint on sparse solutions. In other words, any negative component of a sparse solution is prohibited, as negative appearance of certain notes is impossible. To solve this problem we adopt a positive constraint matching pursuit (PCMP) algorithm that is mentioned in [START_REF] Gao | [END_REF], Bruckstein et al. 2008].

The difference between OMP and PCMP is in updating a provisional solution step: for OMP, least mean square (LMS) suffices to solve the minimization resulting in residual signals orthogonal to support set. For PCMP, however, after the positive constraint minimization, orthogonality is not always guaranteed, thus the algorithm is turned to a weak orthogonal matching pursuit.

When scrutinizing the decomposition results of PCMP within one frame, we found a number of irregular note combinations. This is due to PCMP's overfitting target signals without considering any compatibility of concurrent notes. In fact, atom selection in each iteration of orthogonal matching pursuit algorithm is very important. OMP guarantees that expending support set with any linear independent atoms will decrease the reconstruction error and at the same time keep the residual signal orthogonal to the new expanded support set. Any atom selected in the support set will permanently reside. Therefore previously selected atoms have a great influence on following ones and alter the overall OMP performance. Although PCMP does not always hold orthogonal property, the principle remains the same.

Selecting a new atom in dictionary is thus the very place where concurrent note heuristic information should be embedded. Orthogonal matching pursuit is a greedy algorithm. In each iteration only the best atom will be added into support set. This can be risky in some cases, since once a "bad" atom is selected, this error cannot be corrected in the future. In [START_REF][END_REF], it has been shown that it is possible to select "bad" atom initially so as to trap OMP from reconstructing target signals. Methods like OCMP in [Rath et al. 2008] are proposed to overcome the problem. However, in music decomposition the same note in different octave or from the same kind of instruments shares the similar harmonic pattern. Therefore it is hazardous to rule out a suboptimal decomposition too early before adjacent note compatibility is checked.

To overcome this drawback of OMP, we propose to keep best candidates in each iteration instead of only one. To measure the goodness of frame decomposition we define , where is sparse note decomposition vector, is decomposition residual signal, denotes note concurrent probability, is a free parameter that balances concurrent probability term and reconstruction error term. As an example shown in Thanks to the multiple decomposition candidates generated by the modified PCMP previously, an inter-decomposition directed graph is further constructed to help determining the optimal decomposition path through all frames, as illustrated in Figure 4.5. In this directed graph, each decomposition candidate forms a node and outgoing edge denotes the transition probability computed by equation (4.2).

The nodes are disconnected within the same frame indexed with . where is the frame index, is the total number of frames, is a balance parameter to adjust emphasis, denotes decomposition candidate index in frame along path . Initially =1. A similar study on emotion recognition from audio signal is presented in [START_REF] Meng | [END_REF] in which the hidden states of the HMMs are associated with the levels of affective dimensions to convert the classification problem into a best path finding problem in HMM.

Experiment and results

To evaluate the decomposition quality of the proposed PCMP with note statistics, a multi-timbral music with time domain note reference has been used, which is All parameters and setups are the same as used in previous experiment except for the conditional probability estimation. In this experiment the rest data other than first 30 seconds are used to estimate conditional probabilities . From Table 4.16 we can observe that the proposed approach achieves the highest recall and Fmeasure of 77.3% and 68%, although obtains the lowest precision of 60.7%. From the two experiments, we can find that with statistical musical knowledge sparse decomposition is improved in terms of both precision and recall. The proposed approach tends to obtain superior recall and F-measures but lower precisions compared with variant NMF and other methods. Higher recall means the more information is preserved in the decomposition results. Since our final aim of the decomposition is to provide decent features for music classifications, the performance of our system is actually preferred. Our higher recalls and Fmeasures are attributed to the quality of MIDI dictionary as well as statistical music knowledge fused in sparse decomposition. Longer analysis window is another important factor.

When comparing decomposition with the ground truth, we found numbers of instrument errors even with correct note detections, which is likely caused by mismatches between the MIDI dictionary and the real-world data. In some cases concurrent and transition probability of notes can even make incorrect compensation to original PCMP, which is probably due to the limitation of the naive Bayes model. To overcome these drawbacks, dictionary adaptation techniques and sophisticated graphical models will be proposed and investigated in our future work.

To test our PCMP based mid-level feature for content-based music classification, we have conducted experiments on previous mentioned data sets.

The results are shown in following tables. From Table 4.17, compared with PCMP result, the multiple candidates improve the average accuracy by 0.7%.

Conclusion

We present in this chapter our novel music representation that aims at gaining an in-depth understanding of the music structure and harmony. It is obtained by decomposing sparsely the music onto a dictionary made of musical words that are a representation of the notes played instruments obtained from a MIDI synthesizer. Experiments have shown that our approach has the ability to decompose music into notes and the musical feature derived from this decomposition allows improving the music mood classification. Indeed, it has outperformed openSMILE low-level features GSV for the classical music and improved the classification accuracy when combined with openSMILE and GSV for the APM data set which is more complex particularly due to the high variability of the instruments used.

To further improve decomposition accuracy, we have incorporated music knowledge which concern note statistical information into our sparse decomposition. In the frame level, music signals are decomposed onto a MIDI dictionary with a note co-occurrence heuristic. Transition probabilities are then computed between adjacent decomposition candidates through the whole frame sequence. The final optimal decomposition path is then constructed by the Viterbi algorithm. Experimental results show that both embedding concurrent note statistics in PCMP and applying a note sequence heuristic improve the note recognition precision and recall. Our proposed PCMP with optimal path search outperforms the state-of-the-art methods in terms of recall and f-measure. When fused with low level features our note histogram features increase the mood and genre classification accuracy.

Chapter 5: Conclusions and Future Work

Conclusion

In this thesis, we focus on using low level and mid level feature to perform semantic analysis of music in particular mood and genre classification. Regarding low level features, although they contain complete signal related information, their direct use for semantic analysis is hardly conceivable since too much signal details and redundancies prevent the semantics concepts from being efficiently detected.

Thus, low level feature modeling techniques have to be applied to delve semantic information from the noisy features. K-means and GMM based BoW as well as

Gaussian super vector methods have demonstrated their effectiveness in modeling low level features, their principle being to transform redundant signal features into "words" that express semantic meanings. However, the trend of "big data" challenges the efficiency of the modeling methods, particularly k-means, GMM and MAP procedures, which are the computational bottle necks. Therefore, we have proposed to use matrix format which can be effectively accelerated on GPU multi-core CPU and cluster to implement bag-of-words and GMM super vector From experimental results we can find detailed improvement that high performance library based implementations proposed achieve up to 5 times faster than multi-threading based implementation (Yael). We also observe that GPU Experiments have shown that our approach has the ability to recover music notes meanwhile the musical feature derived from this decomposition allows improving the music mood classification. Indeed, it has outperformed openSMILE low-level features and GSV for the classical music, and improved the classification accuracy when combined with openSMILE and GSV for APM data set which is more complex particularly due to the high variability of the instruments used.

To further improve decomposition accuracy, we have proposed to incorporate music knowledge which concern note statistical information to improve sparse decomposition. In the frame level, music signals are decomposed onto a MIDI dictionary with a note co-occurrence heuristic. Transition probabilities are then computed between adjacent decomposition candidates through the whole frame sequence. The final optimal decomposition path is then constructed by the Viterbi algorithm.

From the experiments, we can find that with statistical musical knowledge sparse decomposition is improved in terms of both precision and recall. The proposed approach tends to obtain superior recall and F-measures but lower precisions compared with variant NMF and other methods. Higher recall means the more information is preserved in the decomposition results. For example we can find that when co-occurrence note information is integrated into PCMP, the precision increases about 6% while recall increases by 2%~3%. When the note transition information is fused and the optimal path decoding is applied, the precision and recall are further improved by 5% and 2% approximately. From MIREX2007 dataset we can find that if no threshold is imposed on the sparse solution of PCMPMCV, 72% of the notes can be recalled while the precision is 51.8% resulting in an F-measure of 60.3 %. The recall of our best configuration outperforms state of the art result by more than 10% while the precision is 8% lower. From another larger dataset MUS we can observe that the proposed approach still achieves the superior result compared with the state-of-the-art. We obtained the highest recall and F-measure of 77.3% and 68%, although obtains the lowest precision of 60.7%.

Since our final aim of the decomposition is to provide decent features for music classifications, the performance of our system is actually preferred. Our higher recalls and F-measures are attributed to the quality of MIDI dictionary as well as statistical music knowledge fused in sparse decomposition. Longer analysis window is another important factor.

From classical music dataset we can find that the dictionary built with high quality instrument waves (Logic Pro 9) outperforms Microsoft wavetable synthesizer. Our proposed histogram musical feature also beat the openSMILE features. Regarding to individual feature, we can find that the musical histogram feature generated from Logic Pro 9 MIDI dictionary outperforms the others by 2% to 7% on average accuracy. For each individual mood, Logic Pro 9 MIDI dictionary also surpasses the others. From APM music dataset we can find that compared with the classical music set the overall performance of musical histogram feature, openSMILE and GSV decline by 30%, 10% and 11.5%.

OpenSMILE feature set outperforms Logic Pro 9 musical histogram feature by 15.5% and GSV surpass musical histogram feature by 17.4% However, when these two levels of feature sets are combined in the late fusion, the average accuracy increases by 2.5% and 2.1%. The musical histogram feature is less effective with this modern music dataset than with the classical music dataset.

The reason certainly lies in the MIDI dictionary that may have difficulties to accurately decompose this music due to its important complexity and the presence of instruments in music that are missing in the dictionary. This problem can be solved by using a MIDI synthesizer producing more realistic instrument sounds.

Even though openSMILE feature set provides very complete low-level information characterizing temporal and frequential signal properties, its performance for classification can be improved by enriching this description with higher level information that we propose with our musical histogram feature which allows to explicit the music content.

To sum up, embedding concurrent note statistics in PCMP and applying a note sequence heuristic allows improving the note recognition precision and recall.

Our proposed PCMP with optimal path search outperforms the state-of-the-art methods. Our proposed mid level histogram achieve the best results on classical music. Although inferior to the low level feature performance our proposed feature provide compensated information for mood classification on modern music dataset.

Perspective and Future Work

We plan to perform the following improvements to our current system. In the low level feature modeling acceleration part, we plan to install GPU on the Hadoop and Spark cluster so that the overall computation can be parallelized even between CPUs and GPUs. The challenge will be here to coordinate data consumption between CPUs and GPUs since GPU executes faster.

In the note decomposition part, we plan to explore dictionary self-adaptation techniques, since even if Logic Pro can generate realistic instrument sound, the dictionary is not universally compatible. There can be many factors like recording distortion that affect the accuracy of note decomposition. If the MIDI note dictionary can be effectively adapted to the input signal, not only the note recovery accuracy but the final classification performance can be further improved.

Up to now, our system neglects high level information which concerns human natural language. Indeed, lyrics can represent interesting semantic information particularly related to emotions. Therefore another important direction of improvement is to employ natural language processing techniques to represent lyrics information that could be combined with our low and middle level audio features for music mood and genre classification.

Publications

 Boyang Gao

Figure 2 .

 2 Figure 2.1: main part of human cochlea...

 Figure 2.1: main part of human cochlea...

Figure 2 . 2 :

 22 Figure 2.2: BoW based music classification framework..

Figure 2 . 3 :

 23 Figure 2.3: example of 2 dimensional k-means clustering result with 3 centers.....................

Figure 2 . 4 :

 24 Figure 2.4: Mikey mouse data example where GMM works better than k-means……..

Figure 2 . 5 :

 25 Figure 2.5: GSV based classification framework..

Figure 2 .

 2 Figure 2.6: simple example of MAP estimation..

Figure 2 .

 2 Figure 2.7: NMF for mult-F0 estimation...

Figure 2 .

 2 Figure 2.8: Plutchik's emotional wheel...

Figure 2 .

 2 Figure 2.9: Two-dimensional emotion space and basic emotions.....................................

Figure 2 .

 2 Figure 2.10: Three-dimensional emotion space and 6 basic emotions.............................

Figure 3 . 1 :

 31 Figure 3.1: HDFS Architecture ..

Figure 3 . 2 :

 32 Figure 3.2: Hadoop MapReduce Architecture ..

Figure 3 . 3 :

 33 Figure 3.3: OpenMP execution time vs. batch size ...

Figure 3 . 4 :

 34 Figure 3.4: CUDA thread parallel architecture ..

Figure 3 . 5 :

 35 Figure 3.5: CUDA memory hierarchies ..

Figure 3 . 6 :

 36 Figure 3.6: Local memory banks with/without conflicts ..

Figure 3 .

 3 Figure 3.7: Global memory access patterns ..

Figure 3 .

 3 Figure 3.8: Time consumption comparison between column and row major order........

Figure 3 .

 3 Figure 3.9: Time consumption of 16x16 thread block dimension.....................................

Figure 3 .

 3 Figure 3.10: Time consumption of 1.256 thread block dimension....................................

Figure 3 .

 3 Figure 3.11: Time consumption of CUBLAS sgemm with matrix transpose..................

Figure 3 .

 3 Figure 3.12: Time consumption of CUBLAS sgemm without matrix transpose.............

Figure 3 .

 3 Figure 3.13: K-means time per iteration vs. different data split size................................

Figure 3 .

 3 Figure 3.14: K-mean time per iteration vs. number cores in cluster.................................

Figure 3 .

 3 Figure 3.15: GMM time per iteration vs. number cores in cluster....................................

Figure 4 . 1 :

 41 Figure 4.1: Musical histogram feature extraction flow chart..

Figure 4 . 2 :

 42 Figure 4.2: Note precision vs. recall..

Figure 4 . 3 :

 43 Figure 4.3: Note precision vs. recall with octave tolerance..

Figure 4 . 4 :

 44 Figure 4.4: Multiple candidate selection example...

Figure 4 . 5 :

 45 Figure 4.5: Optimal path decoding example..

Figure 4 . 6 :

 46 Figure 4.6: Note precision vs. recall of the two improvements..

 : Advanced emotion combination... Table 2.2: MIREX emotion clusters.. Table 3.1: Fine tuned K-mean and GMM execute on different GPUs.................................... Table 3.2: Cluster Computer Configurations... Table 3.3: Classical music dataset mood distribution.. Table 3.4: Execution time and accuracy of different implementation for music genre classification... Table 3.5: Execution time and accuracy of different implementation for music mood classification... Table 3.6: Running time per iteration for mood GMM training.. Table 3.7: CUBLAS mood classification confusion matrix (actual classes in rows, predicted classes in columns) .. Table 3.8: ACML mood classification confusion matrix (actual classes in rows, predicted classes in columns)……... Table 3.9: OpenSMILE mood classification confusion matrix (actual classes in rows, predicted classes in columns)…... Table 4.1: Classical music dataset mood distribution.. Table 4.2: APM dataset mood distribution.. Table 4.3: Xiao [Xiao et al. 2008b] confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset.. Table 4.4: OpenSMILE confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset... Table 4.5: GSV confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset... Table 4.6: General MIDI confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset... Table 4.7: Logic Pro 9 confusion matrix. (actual classes in rows, predicted classes in columns) using the classical dataset...

Table 4 . 8 :

 48 OpenSMILE fused with PCMP confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset... Table 4.9: GSV fused with PCMP confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset...Table 4.10: OpenSMILE confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.. Table 4.11: GSV confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.. Table 4.12: Logic Pro 9 confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.. Table 4.13: OpenSmile fused with PCMP confusion matrix... Table 4.14: GSV fuse PCMP confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.. Table 4.15: Average multiple pitch estimation performance on MIREX2007 dataset............ Table 4.16: Average multiple pitch estimation performance on MUS dataset........................ Table 4.17: PCMP+multiple candidate confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset... Table 4.18: PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset... Table 4.19: GSV fused with PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset................... Table 4.20: PCMP+multiple candidates confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.. Table 4.21: PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.. Table 4.22: GSV fuse PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.................................... 100 Table 4.23: Results on all data sets.. 101 i

 de co-occurrence et de transitions entre notes. Pour le premier niveau, un dictionnaire musical constitué de notes d'instruments a été élaboré à partir du synthétiseur Midi de Logic Pro 9. Basé sur ce dictionnaire, nous avons proposé un algorithme « Positive Constraint Matching Pursuit » (PCMP) pour réaliser la décomposition de la musique. Pour le second niveau, nous avons proposé une décomposition parcimonieuse intégrant les informations de statistiques d'occurrence des notes ainsi que les probabilités de co-occurrence pour guider la sélection des atomes du dictionnaire musical et pour construire un graphe à candidats multiples pour proposer des choix alternatifs lors des sélections successives. Pour la recherche du chemin global optimal de succession des notes, les probabilités de transitions entre notes ont également été incorporées. Les expérimentations menées sur plusieurs jeux de données ont montré que nos approches permettent d'avoir des résultats supérieurs à ceux de l'état de l'art pour l'identification des notes ainsi que pour la classification de la musique en genres musicaux et en émotions.With the development of information technology, digitalized music production exploded in the past decade. For example, in the on-line music store of iTunes, there have been over 37 million songs 1 available by 2014 and the number is still growing fast. YouTube website receives 100 hours of video upload in every minute and a large portion is music. Such a huge amount of data drives the development of effective and efficient methods for automatic music analysis and retrieval.

Figure 2 . 1 :

 21 Figure 2.1: Main part of human cochlea [Pradier 2011].

Figure 2 .

 2 1 verifies that sensing frequency is indeed the foundation for human to analyze audio signal. Therefore many effective features have been developed concerning frequency domain information. All features in this group live in frequency or autocorrelation domain. The most popular methods are the Fourier transform and the autocorrelation. Other popular methods include the Cosine transform, Wavelet transform, and the constant Q transform. We firstly review frequency features related to the short-time Fourier transform (STFT) for computation of the spectrogram.

2 .

 2 Low level features are firstly extracted from music signal. Low level features pass k-means or GMM dictionary. Low level features become to histogram feature vectors. Histogram feature are then passed into mood SVMs. SVMs give the final mood decision scores. From the whole process we can find that the quality of k-means and GMM is the key factor.

Figure 2 . 2 :

 22 Figure 2.2: BoW based music classification framework.

4 .

 4 Go to steps 2 until the centroids no longer change. The output of k-means clustering is indeed a Voronio diagram that tiles ndimensional space with respect to clustering centers. A two dimensional example is shown in Figure 2.3.

Figure 2 . 3 :

 23 Figure 2.3: Example of 2 dimensional k-means clustering result with 3 centers

Figure 2 . 4 :

 24 Figure 2.4: Mikey mouse data example where GMM works better than kmeans.

Figure 2 . 5 :

 25 Figure 2.5: GSV based classification framework.

Figure 2 . 6 :

 26 Figure 2.6: Simple example of MAP estimation. Left sub-figure denotes the universal background model with input data (stars). Right sub-figure denotes the adapted GMM with respect to new input data.

 The cyclic beat spectrum aggregate tempos rooted in the same fundamental tempo into one tempo class. The CBS is computed from a beat spectrum. Low-pass filter is firstly used to remove timbre information irrelevant to the tempo analysis and the spectrogram is obtained from short-time Fourier transform. A novelty curve is then generated by summing the differences between adjacent spectral vectors. A bank of comb filters corresponding to particular tempos is then performed on the novelty curve. The analysis results in a beat spectrogram where peaks correspond to dominant tempos. The beat spectrum is then divided into logarithmically scaled tempo octaves. The CBS is finally obtained by aggregating the beat spectrum over all tempo classes.Beat histogram. The beat histogram is designed as a compact globalrepresentation of the rhythm content of a piece of music[Tzanetakis et al. 2001].Similarly to other rhythm features, periodicity analysis in multiple frequency bands is firstly performed. To obtain an octave-frequency decomposition the Wavelet transform is used to detect the most salient periodicities in each subband and accumulate them into a histogram. The beat histogram thus depicts the repetition rates of main beat and sub beats together with their strength.Each bin of the histogram corresponds to a beat period in beats-per-minutewhere peaks indicate the main and sub beats. The beat histogram compactly demonstrates the distribution of all occurring beat periods in a piece of music. The beat histogram can be applied to content based music classification, especially genre classification for music in different genres usually contain different beat patterns. Much useful information can be derived from the beat histogram for example a measure for the beat strength may be easily obtained from the beat histogram as in[START_REF] Tzanetakis | Music genre classification ofaudio signals[END_REF]. A derivation of the beat histogram is also proposed by[START_REF] Grimaldi | [END_REF]] which took the advantage of the discrete Wavelet packet transform (DWPT)[Mallat 1999].Rhythm patterns. To measure music similarity and perform the retrieval Pampalk et al. introduced rhythm patterns in [Pampalk et al. 2002]. Given the spectrogram in the specific loudness sensation in sone, the amplitude modulations are extracted by Fourier transform of the critical bands over time. The extracted modulation frequencies are then weighted with respect to the fluctuation strength

 example, in [Kmaeoka et al. 2007] Kameoka et al. propose a multi-pitch analyzer named the harmonic temporal structured clustering (HTC) method that jointly estimates pitch, intensity, onset and duration. HTC decomposes the power spectrum time series into distinct clusters such that each cluster has originated from a single source modeled by a Gaussian Mixture Model (GMM). The parameters of the source model are computed thanks to maximum a posteriori (MAP) estimation. In [Wu et al. 2001], Wu et al. extend Kameoka's work to propose a flexible harmonic temporal timbre model to decompose the spectral energy of the signal in the time-frequency domain into individual pitched notes. Each note is modeled with a 2-dimensional Gaussian kernel. Parameters of Gaussian mixtures are then estimated by expectation maximization (EM) algorithm with a global Kullback-Leibler (KL) divergence cost function.Unlike parameterized approaches, non-parameterized methods like NMF focus on recovering pitch combinations from the signal data itself without presuming any underlying model forms. For example, NMF[START_REF] Lee | [END_REF] based methods try to decomposes the multiple pitch spectrum matrix into two matrices and[Rczynski et al. 2007]. contains various harmonic patterns and consists of activation behaviors so that , which is illustrated in Figure2.7. In[Hoyer 2002], Hoyer extends the original NMF by adding a regulation term to make sparse. Sparseness property is quite helpful especially for music note estimation, since a short period music can only contain a few notes played together, compared with all possible notes.

Figure 2 .

 2 Figure 2.7: NMF for mult-F0 estimation.

[

 Schlosberg 1954]. Each emotion are expressed as a point in emotional space consisting of valence (or evaluation), arousal (or activation) and potency (or power). Valence defines how positive or negative an emotion is; arousal measures the degree of excitement or involvement of the individual in the emotional state; potency accounts for the strength of the emotion. Discrete emotion categories can be transferred to the continuous by projecting in a continuous space. Figure2.9 and Figure2.10 shows the locations of basic emotions in the continuous space.

Figure 2 .

 2 Figure 2.9: Two-dimensional emotion space and basic emotions [Russel 1980].

Figure 2 .

 2 Figure 2.10: Three-dimensional emotion space and 6 basic emotions.

 mood detection and tracking was performed with a similar set of acoustic features including intensity, timbre, and rhythm. Instead of SVM Gaussian Mixture Models (GMMs) are employed as classifier for the four principal mood quadrants on the V-A classification. The system achieved an overall accuracy of 85% on a data set involving 800 classical music clips from a data set of 250 pieces with 20 seconds in duration. All music clips are labeled manually to one of the 4 quadrants.In[Mandel et al. 2006] Mandel et al. developed an active learning system that can provide recommendations based upon any musical context defined by the user. To construct a personalized playlist, the users provide a set of seed songs to the system. The input songs represent the class of playlist desired. The system uses the initial data, combined with verification data from the user, to construct a binary SVM classifier using MFCC features. When tested on 72 distinct moods from AMG labels, the system achieved a maximum performance of 45.2%.In[Skowronek et al. 2007] Skowronek et al. developed binary classifiers for each of 12 non-exclusive mood categories using a data set of 1059 song excerpts.Features that are used included temporal modulation, tempo and rhythm, chroma and key information, and occurrences of percussive sound events. Quadratic discriminant functions are trained for each mood, with accuracy ranging from 77% (carefree-playful) to 91% (calming-soothing) varying on the categories In[Vaizman et al. 2011] the dynamic texture mixture (DTM) model is investigated for the representation of short-time audio features in an emotion classification problem. In their work they consider each audio segment to contain a static emotion in one of four categories. The dataset evaluated consists of 72 audio excerpts, each of about 30 seconds. With the DTM model, their best performing approach obtains 0.8692 in terms of area under ROC curve (AUC).

 [Han et al. 2009] Han et al. investigated a quantized representation of the V-A space and employed SVMs for classification. With inferior results of 33% accuracy in an 11-class problem, they turned to regression-based approaches. The problem was reformulated in the form of regression. They obtain a best performance of 95% classification accuracy with 11 quantized categories of GMM regression.

 Image has being searched against 10 billion images since 2010[Google blog 2010]. YouTube receives 100 hours of video upload in every minute. With the drastically increased data scale, the dictionary learning of kmeans and GMM becomes a computational bottleneck and requires accelerations.There are previous works in the literature employing GPU to accelerate EM for GMM training.[Kumar et al. 2009, Pangbom 2010[START_REF] Azhari | [END_REF], Gonina 2011[START_REF] Machlica | Fast Estimation of Gaussian Mixture Model Parameters on GPU Using CUDA[END_REF], Wu et al. 2012] have implemented EM algorithm on CUDA to train GMM. Wu in[START_REF] Wu | [END_REF]] also mentioned to use individual CUBLAS function to update means and variance matrix. Azhari in[START_REF] Azhari | [END_REF]] implemented MFCC extraction in CUDA too. Gonina in[Gonina 2011] also provided Python interface to GPU based GMM training.

[

 [START_REF] White | Hadoop: The Definitive Guide[END_REF] with Hadoop distributed file system (HDFS)[START_REF][END_REF]. Apache Hadoop is a framework for running applications on large cluster built of commodity hardware. The Hadoop framework transparently provides to applications both reliability and data motion. Hadoop implements a computational paradigm named MapReduce, where the application is divided into many small fragments of work, each of which may be executed or re-executed on any node in a cluster. In addition, it provides a distributed file system (HDFS) that stores data on the computer nodes, thereby enabling very high aggregate bandwidth across the cluster. Both MapReduce and the Hadoop distributed file system are designed so that node failures are automatically handled by the framework. Mahout is a machine learning library on Hadoop which provides k-means clustering algorithm.Although Hadoop provides facilities to parallelize data accessing and computing, it is still designed for one pass processing in nature, which is reading data from disks, computing and writing back results, which lacks data caching scheme. However, k-means, GMM and MAP are iterative algorithms which perform the computation on the same data for many iterations. Hadoop thus wastes disk reading overhead from the second iteration. To avoid the Hadoop's drawback, Spark framework[START_REF] Zaharia | [END_REF]] has been developed by UC Berkeley AMPLab, in which Resilient Distributed Datasets (RDDs)[START_REF] Zaharia | [END_REF]] is implemented to cache data into main memory when possible.RDD is a distributed memory abstraction that enables programmers to perform in-memory computations on large clusters in a fault-tolerant manner. RDDs are motivated by two types of applications that current computing frameworks handle inefficiently: iterative algorithms and interactive data mining tools. In both cases, keeping data in memory can improve performance by an order of magnitude. To achieve fault tolerance efficiently, RDDs also provide a restricted form of shared memory, based on coarse grained transformations rather than fine-grained updates to shared state. MLlib is a machine learning library on Spark that provides k-means clustering algorithm. In this chapter we show how these parallel frameworks accelerate k-means, GMM clustering as well MAP adaptation. The contributions of this chapter are thus threefold:  K-means, GMM, MAP reformulated into the matrix operation form  GPU-based acceleration  Cluster-based acceleration The rest of the chapter is organized as follows: section 3.2 shows matrix multiplication format of k-means clustering and EM algorithm for GMM. Section 3.3 addresses Hadoop and Spark based acceleration in MapReduce model. Section 3.4 introduces performance tuning for GPU, multi-core CPU and cluster implementations. The quality of trained GMM is also discussed. Section 3.5 is dedicated to experiments where the execution speed and quality

 blocks and these blocks are stored in a set of Datanodes. Data blocks are also replicated several times across Datanodes. The replication makes data block more locally available to computing nodes and more robust against possible disk failure. The Namenode executes file system namespace operations like opening, closing, and renaming files and directories. It also determines the mapping of blocks to Datanodes. The Datanodes are responsible for serving read and write requests from the file system's clients. The Datanodes also perform block creation, deletion, and replication upon instruction from the Namenode. Hadoop tie these smaller and more reasonably priced machines together into a single cost-effective storage cluster.

Figure 3 . 1 :

 31 Figure 3.1: HDFS Architecture [Borthakur 2007]. Namenode manage data information of datanodes. Datanodes store duplicated blocks of data.

Figure 3 . 2 :

 32 Figure 3.2: Hadoop MapReduce Architecture [Yahoo 2014]. Datablocks are read by the mapper and is processed. The intermediate results are then shuffled and provided to the reducer. The reducers generate the final combined result.

3 .#}Figure 3 . 3 :

 333 Figure 3.3: OpenMP execution time vs. batch size. 10k of data achieve the peak performance.

Figure 3 . 4 :

 34 Figure 3.4: CUDA thread parallel architecture [Nvidia 2014]. Workloads are divided into 2D threads configuration.

Figure 3 . 5 :

 35 Figure 3.5: CUDA memory hierarchies [Nvidia 2014]. Global memory can be accessed by all threads. Shared memory is shared within thread block.

Figure 3 . 6 :

 36 Figure 3.6: Local memory banks with/without conflicts [Nvidia 2014]. The three typical cases that will not generate bank conflicts.

Figure 3 .

 3 Figure 3.7: Global memory access patterns [Nvidia 2014].

Figure 3 . 8 :

 38 Figure 3.8: Time consumption comparison between column and row major order, the brown bar indicates column major order time consumption while the bar in cyan denotes row major order time consumption.

Figure 3 . 9 :

 39 Figure 3.9: Time consumption of 16x16 thread block dimension (345.3ms in cyan bar).

Figure 3 .

 3 Figure 3.10: Time consumption of 1x256 thread block dimension (35.8ms in cyan bar).

Figure 3 .

 3 Figure 3.11: Time consumption of CUBLAS sgemm with matrix transpose (116.8ms in the first brown bar).

Figure 3 .

 3 Figure 3.12: Time consumption of CUBLAS sgemm without matrix transpose (43.0ms in the first blue bar).

Figure 3 .

 3 Figure 3.13: K-means time per iteration vs. different data split size.

Figure 3 .Figure 3 .

 33 Figure 3.14: K-mean time per iteration vs. number cores in cluster.

2 .

 2 calculated as one tenth of average weight. In the third step to split fat clusters, centers and mixtures with abnormally large variance in certain dimension are to split. The abnormally large threshold for one dimension is defined as 3 + the mean of standard derivations of all centers or mixtures. We have also tried to use kurtosis of Gaussian distribution to differentiate fat clusters.Unfortunately in high dimensional space kurtosis becomes insensitive even when the mixture covers two far away clusters. In our 39 dimensional data experiment we find kurtosis cannot effectively detect fat mixture compared with variance threshold. In the experiment of music genre and mood classification, 1.5% accuracy improvement is achieved with our three step refinement procedure.Algorithm 3.1: Mixture refinementTask: to refine the mixture obtained by EM algorithm Construct a "near" graph: if two centers or mixtures are too close there will be an edge between them in the "near" graph.1.3. Obtain Independent connected components with the nearness threshold setting to 0.5.2.To kill dead clusters with too small weight. The dead threshold is calculated as one tenth of average weight 3. To split fat mixtures with abnormally large variance in certain dimension. The abnormally large threshold for one dimension is set to 3 + the mean of standard derivations of all centers or mixtures.

 2.3 to perform music decomposition subject to a natural positive constraint and note histogram feature is also defined. In section 4.2.4, the quality of sparse music decomposition is verified and mood classification experiments on two data sets are conducted. Section 4.3 introduces our two-stage approach in detail. Section 4.3.1 explains our frame level statistical integration while section 4.3.2 shows how global level optimal paths are constructed. Section 4.3.3 gives experimental results on realworld music signals. The conclusion is drawn in the final section.

Figure 4 . 1 :

 41 Figure 4.1: Musical histogram feature extraction flow chart.

Figure 4 . 2 shows

 42 precision and recall scatter diagram of the decomposition. Statistic of note recognition precision and recall has been made upon consecutive 186ms segments, the same as in computing the musical histogram feature. From Figure4.2 we can find that when there is no threshold imposed on sparse solution, 69% of notes can be recalled, although the precision is 40%. If we only consider the recognition of notes, no matter the octave, the recall and precision increase to 85% and 47% as presented in Figure4.3. These results show that the proposed PCMP with MIDI musical dictionary can detect the structure of multi-timbral music with a satisfactory efficiency.

Figure 4 . 2 :

 42 Figure 4.2: Note precision vs. recall.

Figure 4 .

 4 4 we keep the top 3 decomposition candidates in every iteration. In the first iteration (C), (E), (G) are kept. In the second iteration, (C, D), (E, F) and (E, G) are obtained according to the reconstruction error and concurrent probability. Note that (G) selected in the first iteration is eliminated because its descendant combinations (G,*) are inferior to others'. After 3 iterations, combinations of (C, D, E), (C, D, G) and (E, F, B) survive, as shown in orange.

Figure 4 . 4 :

 44 Figure 4.4: Multiple candidate selection example

Figure 4 . 5 :

 45 Figure 4.5: Optimal path decoding example

Figure 4 . 6 :

 46 Figure 4.6: Note precision vs. recall of the two improvements.

 method. To employ high performance matrix operation library of ACML, ATLAS and CUBLAS we reformulate k-means and EM algorithm into matrix multiplications, which is also very concise to implement in other languages like MATLAB and FORTRAN. Experiments on music genre and mood classification tasks show that the proposed implementations achieve 38 to 209 times acceleration, compared with single threaded CPU version. 240-cored GPU can run up to 5 times faster than 4 8-cored CPUs with just less 1% performance lost.

based implementation executes 5

 5 times faster than multi-core CPU based one on GMM training whereas multi-core version outperforms GPU on k-means clustering by 22% in terms of speed. GPU based k-means is slower than multi-core CPU in that CPU version executes operations for calculation while representation of the notes played instruments obtained from a MIDI synthesizer.

Table 2 .

 2

	Human feelings (results of emotions)	Feelings	Opposite
	Optimism	Anticipation + Joy	Disapproval
	Love	Joy + Trust	Remorse
	Submission	Trust + Fear	Contempt
	Awe	Fear + Surprise	Aggression
	Disapproval	Surprise + Sadness	Optimism
	Remorse	Sadness + Disgust	Love
	Contempt	Disgust + Anger	Submission
	Aggressiveness	Anger + Anticipation	Awe

1: Advanced emotion combination.

]. In 2007, the highest percentage correct (61.5%) is achieved by Tzanetakis using only MFCC, and spectral shape, centroid, and rolloff features with an SVM classifier[Tzanetakis 2007]. The best system in 2008 submitted by Peeters achieved 2.2% of improvement (63.7%) by introducing a larger feature set including, MFCCs, Spectral Crest/Spectral Flatness together with a variety of chroma based features[Peeters 2008]. Before the final GMM based classification, GSV based system which topped mood classification task with 68.33% of overall accuracy. Their framework was following Cao's submission in[START_REF] Cao | [END_REF]].

	In addition, two types of features are used in Wu's submissions, including visual
	features and acoustic features. The visual features capture characteristics of a
	spectrogram's texture from both local and global views. Acoustic features are
	used to represent global timbre characteristics. The two types of features are

Inertia Ratio Maximization with Feature Space Projection (IRMFSP) was first employed to perform the feature selection in which the most effective 40 features were preserved and Linear Discriminant Analysis (LDA) was also applied for further dimensionality reduction.

Starting from 2009 the Gaussian super vector based methods have dominated this evaluation. In

[START_REF] Cao | [END_REF]

] Cao and Li developed a system that achieved the best results in several categories, including mood classification (65.7%). Their system applied a Gaussian super vector of low-level acoustic features and followed by support vector machine as classifier. In 2013, Wu et al. submitted a finally concatenated to a single long feature vector to feed into SVM classifier.

] Yang et al. proposed to perform regression for projecting high dimensional acoustic features to the two dimensional space to predict V-A values directly from audio, Support vector regression (SVR) [Smola et al. 2004] and a variety of ensemble boosting algorithms, including AdaBoost.RT [Shrestha et al. 2006], were employed to perform the regression. The ground-truth V-A label was collected for each of 195 music clips. 114 common features are extracted with tools of PsySound [Cabrera

.4 MapReduce EM in matrix format

 Hadoop has to reload model and training data from disk for every Mapper at each iteration. When data is big whereas computation is relatively inexpensive, Hadoop distributed disk IO can even be a bottleneck for entire algorithms. To avoid this extra time consumption we switched to Spark the

	data set, data feature matrix In the end of iteration the updated cluster center is calculated as is divided into blocks 3.3.4.2 Reduce phase
	which in fact has been implicitly done by HDFS. (3.26) In each iteration, the overall accumulated weight vector, mean matrix and
	What we need to do is just writing a data format to inform Hadoop how much (3.27) variance matrix for feature blocks are computed in the phase of reduce as
	data is needed for a Mapper. 3.3.3.1 Map phase framework.	(3.28) (3.30)
	In each iteration, the Map phase consists of computing sub-results of (3.31) Similar to Hadoop, Spark also supports the MapReduce parallel model and
	weights, center and variance on where . Note that as follow. does not affect cluster center HDFS accessing. The difference is that Spark introduces a data abstraction is firstly computed as before with one matrix multiplication. For each feature block, calculate updating; therefore it is only computed in the last iteration. The matrix version (3.32) named resilient distributed datasets (RDD). An RDD is a read-only collection
	occupation matrix k-means clustering main steps are summarized as follows. as of objects partitioned across a set of machines that can be rebuilt if a partition
	is lost. RDDs can be explicitly cached in memory across machines and reused
	The updated GMM parameters are finally obtained as  For each iteration	(3.21) (3.33)
	 Map() = {	
	 Calculate	with one matrix multiplication	(3.34)
	For each feature block, weight feature vector  Calculate from	in which	indicates the (3.35)
	number of related feature vector for center , center matrix  Calculate and with one matrix multiplication	and variance
	matrix } where	are computed by one matrix multiplication as . The matrix version main steps are
	 Reduce() = {	
	 Aggregate summarized as follow.	and	to update new
	}			(3.22)
	 For each iteration	
	 Map(3.33.3.4.1Map phase) = {  Calculate	with one matrix multiplication
	3.3.3.2 Reduce phase As performed in MapReduce k-means For each feature block, weight vector,  Calculate from
	In each iteration, the Reduce phase is comprised of accumulating and mean matrix and variance matrix are computed in Mapper as follow. is  Calculate , and with one matrix multiplication
	averaging block-wise weight, center and variance output from Mappers. The firstly computed by one matrix multiplication as in section II. is then  Reduce() = {
	final re-estimated centers are computed as follow. calculated accordingly. Sub result for is computed as  Aggregate , and to update new GMM parameters
	}			(3.23)
				(3.24) (3.29)
	3.3.5 MapReduce in Spark
				(3.25)

Hadoop provides infrastructure for MapReduce computing model, we show in this section how matrix format computation can fit into it. For large Although Hadoop provides efficient parallel mechanism, it introduces extra overhead of disk IO at each iteration. Hadoop supports neither data caching nor shared variable. Therefore for iterative algorithm like k-means and GMM, in multiple MapReduce parallel operations. RDDs achieve fault tolerance through a notion of lineage: if a partition of an RDD is lost, the RDD has enough information to rebuild just that partition. When an entire assigned RDD cannot hold into the memory of a node, RDD is then automatically and efficiently serialized onto its local disk and de-serialized back when necessary. Spark also supports shared variables which are copied to referenced Mappers and Reducers without loading from disk. For constant data, Spark even provides broadcast variables to ensure every node to receive only one copy and thereby avoids the underlying duplication for each Mapper or Reducer.

Table 3 .

 3 1: Fine tuned K-mean and GMM execution time on different GPUs.

	#Mixture: 2048	K-means	GMM
	#Vector:	2.7M	(sec/iteration)	(sec/iteration)
	Feature:	39Dim MFCC		
	NVIDIA GeForce 9400		
	Mem:256 MB	169.3	232.9
	CUDA core:16		
	NVIDIA GeForce GT220		
	Mem:1G		46.9	56.5
	CUDA core:48		
	NVIDIA GeForce GTX 285		
	Mem:1G		9.1	10.9
	CUDA core:240		
	NVIDIA GeForce GTX 580		
	Mem:2G		4.3	5.2
	CUDA core:512		

Table 3 .

 3 2: Cluster computer configurations.Music mood classification is performed on two datasets. The smaller one is provided by Xiao et al.[Xiao et al. 2008] and it consists of 416 16s long pure classical music segments, manually divided into 4 moods as shown in Table3.3. The same 39-dimentional MFCC features are extracted. K-means to GMM clustering are performed on both GPU and 32-cored server.

	Num.	CPU	Memory
	2	CPU 6274 @2GHz 4x16-cored AMD ® Opteron™	100GB
	1	CPU 6128 @2GHz 4x8-cored AMD ® Opteron™	100GB
		1x4-cored Intel ® Core™ i7	24GB
	3	CPU 950 @3.07GHz (HT to 8-	
		cored)	
		1x4-cored Intel ® Core™ i7	24GB
	2	CPU 940 @2.93GHz (HT to 8-	
		cored)	
		1x4-cored Intel ® Core™ i7	16GB
	8	CPU 860 @2.80GHz (HT to 8-	
		cored)	
	3.5.1.2 Datasets and features	

Table 3 .

 3 3: Classical music dataset mood distribution. means, GMM clustering and MAP adaptation are then performed on the Hadoop and Spark clustering. Finally the GMM super vector serves as feature vector to train linear SVMs. The training and testing set are divided by 50%/50%. The SVM parameters are set to default. The running time on cluster and accuracy results are shown in Table3.5

		Anxious Content Depressed Exuberant
	# music	81	124	120	91
	After dictionary learning, low level features of each music segments are
	converted to normalized dictionary words histogram. The normalized
	histograms as final feature vectors are used to train one-versus-others SVM
	classifier. To compare the mood classification performance, standard
	OpenSMILE [Eyben et al. 2010] low level features with statistic functions are
	extracted and used to train SVM as benchmark. The training and testing set are
	divided by 50%/50%. The SVM parameters are set to default. The running
	time and accuracy results of the two experiments are shown in Table 3.4 and
	Table 3.6-3.9.				
	The other music mood dataset evaluated is the "Now That's What I Call
	Music!" (NTWICM) dataset introduced in [Björn et al. 2010], containing 2648
	songs annotated by four listeners on 5-point scales for perceived arousal and
	valence on song level. The NTWICM dataset is also served to benchmark

efficiency of our proposed method with existing library of Mahout

[START_REF] Anil | Mahout in action[END_REF]

and MLLib

[START_REF] Bahmani | Scalable k-means++[END_REF]

on Hadoop and Spark cluster. For NTWICM datasets, the same 39-dimentional MFCC features are firstly extracted. K-

Table 3 .

 3 4: Execution time and accuracy of different implementation for music genre classification.

	# Centers/# Mixtures # Vectors # Dimension	= 2048 = 2.7M = 39	time per iteration (sec)	K-means speed-up (times)	Genre Acc (%)	time per iteration (sec)	GMM speed-up (times)	Genre Acc (%)	time per song(sec)	MAP speed-up (times)p	Genre Acc (%)
	1 thread CPU		278.2	1.0		2,288.4	1.0		1.5	1	
	32-cored CPU Yael(INRIA)	37.2	7.5	68.1	153.2	14.9	78.0			
	32-cored CPU (ours)		7.3	38.0	69.6	70.1	32.6	78.7	0.07	21 80.5%
	240-cored GPU		9.1	30.4	69.5	10.9	209.5	77.8	0.02	75 79.4%
	UWB[Machlica et al. 2011]				9.1 *					
	*only kernel execution time counted for GMM with 2048 mixtures trained by 3.125M 40-dimensional	
	vectors.										

Table 3 .

 3 5: Execution time and accuracy of different implementation for music mood classification.

	# Centers/# Mixtures # Vectors # Dimension	= 4096 = 60M = 39	time per iteration	K-means Speed-up (times) Valance Acc (%)	Arousal Acc (%)	time per iteration	GMM Valance Acc (%)	Arousal Acc (%)	time per song	MAP Valance Acc(%)	Arousal Acc (%)
	Mahout on Hadoop		1530sec	1.0							
	MLLib on Spark		453.7sec	3.4	54.1	48.9					
	Matrix format on Hadoop Matrix format on Spark	152.4sec 90.2sec	10.0 17.0	55.0	49.7	10.0min 8.8min	55.9	50.3	0.71sec 0.65sec	56.7	51.8

Table 3 .

 3 6: Running time per iteration for mood GMM training.

	32-cored CPU 240-cored GPU Azhari [Azhari et al. 2011]
	time (sec)	9.6	2.9		30.0
	Table 3.7: CUBLAS mood classification confusion matrix (actual classes in
	rows, predicted classes in columns).			
	%	Anx	Con	Dep	Exu
	Anx	81.0±8.9 1.2±2.0 1.0±1.7 16.8±7.4
	Con	0.0±0.0 91.1±2.9 8.7±2.9 0.2±0.5
	Dep	0.0±0.0 8.8±3.7 90.5±3.2 0.7±1.5
	Exu	10.2±4.7 3.8±2.0 0.0±0.0 86.0±4.2
	Average	87.2		
	Table 3.8: ACML mood classification confusion matrix (actual classes in rows,
	predicted classes in columns).			
	%	Anx	Con	Dep	Exu
	Anx	81.0±7.8 1.2±2.0 1.2±1.7 16.5±6.2
	Con	0.0±0.0 91.9±3.0 8.1±3.0 0.0±0.0
	Dep	0.0±0.0 8.3±3.5 91.0±3.2 0.7±1.5
	Exu	11.3±5.3 3.6±1.8 0.0±0.0 85.1±5.0
	Average	87.3		

Table 3 .

 3 9: OpenSMILE mood classification confusion matrix (actual classes in rows, predicted classes in columns).Compared with the state-of-the-art implementation, from Table3.5, we can find that the propose method for k-mean is 10 times faster than Mahout on Hadoop and 5 times faster than MLLib on Spark. Matrix format k-means on Hadoop even runs 3 times faster than MLLib does on Spark. Comparing Hadoop

	%	Anx	Con	Dep	Exu
	Anx	85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8
	Con	5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7
	Dep	9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0
	Exu	17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9
	Average		84.0		
	3.5.2.2 Hadoop and Spark clustering			

Table 4 .

 4 1: Classical music dataset mood distribution. Several other conclusions can also be drawn from these results. First, the musical histogram feature is less effective with this modern music dataset than with the classical music dataset. The reason certainly lies in the MIDI dictionary that may have difficulties to accurately decompose this music due to its important complexity and the presence of instruments in music that are missing in the

		80%					
		70%					
	Precision	50% 60%					
		40%					
		30%					
		0%	15%	30%	45%	60%	75%	90%
					Recall		

Table 4 .

 4 Figure 4.6 shows precision and recall scatter diagram of the proposed decomposition that improve original PCMP, noted as PCMPMC and PCMPMCV. 15 displays the comparisons in terms of precision, recall and F-measure between our proposed method and the state of the art results. F-measure is defined as the harmonic mean of precision and recall. Statistic of note recognition precision and recall has been made upon consecutive 186ms frames. For ground truth MIDI, if 70% of some note lies in the frame the note is accounted and there is no frequency tolerance. Threshold for drawing the diagram is imposed on sparse solution vector in each frame to filter insignificant note detection according to its sparse solution value. Different thresholds result in scatter points in Figure4.6. Two free parameters and are set to 0.8 and 1.3 to balance reconstruction error and note statistics.

	provided in Mirex2007 multiF0 development data [Mirex2007 2007]. The music
	is a recording of the fifth variation from L. van Beethoven Variations from String
	Quartet Op.18 N.5, lasting for 54s. 5 instruments are included into the music.
	Each instrument was recorded separately and then mixed to a mono 44.1 kHz 16
	bits wave file. The whole music is tested by our system (PCMP with multi-
	candidate and Viterbi) against its ground truth MIDI file.
	Another widely used dataset adopted in our experiments is MUS, provided in
	MAPS [Emiya et al. 2010]. MUS contains 270 pieces of classical and traditional

music, recorded in different conditions which vary in piano instruments and surroundings. For each piano music piece, as in

[Lewandowski et al. 2012]

, first

Table 4 .

 4 15 and Figure4.6 we can find that if no threshold is imposed on the sparse solution of PCMPMCV, 72% of the notes can be recalled while the precision is 51.8% resulting in an F-measure of 60.3 %. The recall of our best configuration outperforms state of the art result in[Wu et al. 2011] by more than 10% while the precision is 8% lower, resulting in an F-measure 0.2% lower than that reported in[Wu et al. 2011].

Table 4 .

 4 16: Average multiple pitch estimation performance on MUS dataset.

		Prec.(%) Rec. (%) F-meas.(%)
	Spectral constraints [Vincent et al. 2010]	71.6	65.5	67.0
	Isolated note spectra [Vincent et al. 2010]	68.6	66.7	66.0
	DNMF-LV	68.1	65.9	66.9
	[Raczynski et al. 2012]			
	DNMF-AE	66.8	68.7	67.8
	[Raczynski et al. 2012]			
	SONIC [Marolt 2004]	74.5	57.6	63.6
	PCMPMCV	60.7	77.3	68.0

Table 4 .

 4 16 shows the precision, recall and F-measure results on MUS data set.

Table 4 .

 4 18 shows that optimal path gain additional 0.5% of accuracy compared with multiple candidates situation. When low level information is added, as shown in Table4.19, the overall performance is increased by 3.6%. Tables 4.20 to 4.22 demonstrate the similar results on APM data set. Compared with basic PCMP results, from Table4.20 and 4.21, we can find that the two innovations of PCMP achieve 2% and 3% improvement. The Table4.22 shows that the best performance reached is 80.2% when GSV is further fused.

Table 4 .

 4 17: PCMP+multiple candidate confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset.

	%	Anx Con Dep Exu
	Anx	88.7 2.3 1.5 7.5
	Con	0.8 96.1 1.3 1.8
	Dep	2.2 4.9 90.3 2.4
	Exu	4.6 5.2 2.7 87.5
	Average	90.7

Table 4 .

 4 18: PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the classical dataset.

	%	Anx Con Dep Exu
	Anx	89.3 2.3 1.3 7.1
	Con	0.8 96.2 1.3 1.7
	Dep	2.0 4.9 91.0 2.1
	Exu	4.4 4.8 2.7 88.1
	Average	91.2

Table 4 .

 4 19: GSV fused with PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the classical

	dataset.	
	%	Anx Con Dep Exu
	Anx	92.9 0.3 1.0 5.8
	Con	0.2 96.7 3.0 0.1
	Dep	1.2 2.8 94.9 1.1
	Exu	4.0 1.1 0.2 94.7
	Average	94.8

Table 4 .

 4 20 PCMP+multiple candidates confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.

	%	Fear Happy Relax Sad
	Fear	63.1 11.9	7.8	17.2
	Happy	8.5 68.0	17.2 6.3
	Relax	7.6 18.1	51.0 23.3
	Sad	10.0 5.6	18.5 65.9
	Average		62.0	

Table 4 .

 4 21: PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the APM dataset.

	%	Fear Happy Relax Sad
	Fear	64.3 11.5	7.6	16.6
	Happy	8.3 69.2	16.5 6.0
	Relax	7.2 18.1	51.8 22.9
	Sad	10.0 5.1	18.1 66.8
	Average		63.0	

Table 4 .

 4 22: GSV fused with PCMP+multiple candidates+optimal path confusion matrix (actual classes in rows, predicted classes in columns) using the APM We also tested our PCMP based feature on two public datasets: "Now That's What I Call Music" proposed in[Shuller et al. 2010] for mood classification and the famous GTZAN data set for genre classification. Integrated with Xiao's and APM data set, the overall results are shown in Table4.23. From Table4.23 we can observe that although PCMP based features cannot beat the state-of-the-art in[Shuller et al. 2010] and [Panagakis et al. 2009], they have demonstrated the ability to compensate the drawback of low level information by increasing classification accuracy by around 3%.

	dataset.			
	%	Fear Happy Relax Sad
	Fear	83.4 3.6	1.3	11.7
	Happy	4.7 85.7	7.0	2.6
	Relax	6.1 9.6	72.6 11.7
	Sad	16.3 0.4	4.4	78.9
	Average		80.2	

Table 4 .

 4 23: Results on all data sets.

	Accuracy (%)	Xiao	APM	Mood NTWICM (V/A) GTZAN Genre
	Xiao [Xiao et al. 2008b]	82.95	N/A	N/A	N/A
	Shuller [Shuller et al.	N/A	N/A	61.0/58.7	N/A
	2010]				
	Topology preserving	N/A	N/A	N/A	93.7
	NTF +SRC[Panagakis et				
	al. 2009]				
	BoW(GMM)	87.3	N/A	55.9/50.3	78.7
	GSV	88.3	76.8	56.7/51.8	80.5
	OpenSmile	84.0	74.9	N/A	N/A
	PCMP	90.0	59.4	48.3/41.5	78.3
	OpenSmile+PCMP	93.7	77.4	N/A	N/A
	GSV+PCMP	94.4	78.9	N/A	N/A
	PCMP+multiple	90.7	62.0	N/A	N/A
	candidates				
	PCMP+multiple	91.2	63.0	49.6/44.1	79.5
	candidates+optimal path				
	GSV+PCMP+multiple	94.8	80.15	56.9/52.3	83.2
	candidates +optimal path				

 Simon Masnou Li i g Ch "Activ Co oi s T cki g: Recover Trajectories Globally via Min-cost/ x f ow" submitted to IEEE Transaction on Midi Dictionary Driven by St tistic M sic K ow g " i Proc. 14 th International Society for Music Information Retrieval Conference (ISMIR), 2013 Qian Yao, Wu Zhi-Zheng, Gao Bo-Yang Soo g F k K. "I p oved Prosody Generation by M xi izi g Joi t P ob bi ity of St t Lo g U its" IEEE Transactions on Audio, Speech and Language Processing, Vol 19, Issue 6, pp. 1702-1710, Aug. 2011

			Li i g Ch	"Acc	t K-means,GMM and MAP
	Computation with GPU, Multi-co CPU	Co p t C st " submitted to IEEE
	Transaction on Multimedia		
	Image Processing		
	 Boyang Gao	Li i g Ch	"Sp s M sic	co positio o to
	 Nico s B s … Boyang Gao		, Liming Chen … "IRIM t TR CVI
	2012: S	tic I xi g	I st c S ch " i Proc. TRECVID 2012 workshop, 2012
	 Boyang Gao	Li i g Ch	"M sic Sp s	co positio o to
	MI I ictio y of M sic Wo s	Its App ic tio to M sic Moo C ssific tio " i
	Proc. 10th Workshop on Content-Based Multimedia Indexing (CBMI), 2012
	 Chao Zhu, Boyang Gao Ch s-	o	Bichot	, Liming Chen,
	Ni g i g Li Y Zh g " CL-LIRIS t TR CVI 2011: S	tic I xi g" 2011
	TRECVID Workshop, 2011, Washington	

 Xiaofang Wang, Boyang Gao,  Boyang Gao , Liming Chen, "Accelerate Bag-of-Words Method With GPU And Multi-Core CPU And Its Application to Music Classification" in Proc. to the 11 th International Conference on Signal Processing (ICSP), 2012 

http://www.apple.com/itunes/features/

http://www.netlib.org/clapack/

https://gforge.inria.fr/projects/yael

http://www.midi.org/techspecs/gm1sound.php

http://tonalsoft.com/pub/news/pitch-bend.aspx

http://www.music-ir.org/mirex/wiki/2007

GPU

version actually executes matrix multiplication containing operations. We choose matrix multiplication for calculation in GPU because operations consume as twice time as matrix multiplication on GPU architecture. This abnormal phenomenon is due to random memory access pattern of operations on GPU. Therefore in this scenario matrix multiplication is the optimal but still slower way for GPU.

Comparing with the state-of-the-art result in [START_REF] Machlica | Fast Estimation of Gaussian Mixture Model Parameters on GPU Using CUDA[END_REF]] that only recorded kernel function's running time without data IO and data preparation duration, our method consumes only 7 seconds compared with 9.1 in their paper.

From genre classification result, we can find that the quality of dictionary trained by CPU is little better than GPU by less than 1% in terms of average classification accuracy. This is due to the less floating point error of CPU and double precision floating point numbers used during summation procedure on CPU. Last but not the least, we can find that with the same number of mixture, the same types of GPU and comparable data scale our CUBLAS based implementation is 10 times faster than CUDA kernel implementation described. In mood classification phase, we can find that 1024 dimensional bag-of-words histogram features outperforms the standard 6552 dimensional OpenSMILE emotional features by 3% in terms of average classification accuracy.

On Hadoop and Spark cluster when optimal configuration is set the proposed method still achieves 10 and 5 speed-up, compared with the state-of-the-art libraries of Mahout and MLLib.

Regarding mid-level features, previous work in literatures seldom uses note information which is in fact among the most natural semantic given by the composer. The difficulties of decomposing music into note combination are attributed to the complexity of music signal, in which sound of different instruments entangle. With the help of a realistic instrument sound library, we have proposed our novel music representation feature that aims at gaining an indepth understanding of the music structure and harmony. We decompose music sparsely onto a dictionary made of musical words. The musical words are a