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Abstract  

Digitalized music production exploded in the past decade. Huge amount of data 

drives the development of effective and efficient methods for automatic music 

analysis and retrieval. This thesis focuses on performing semantic analysis of 

music, in particular mood and genre classification, with low level and mid level 

features since the mood and genre are among the most natural semantic 

concepts expressed by music perceivable by audiences. In order to delve 

semantics from low level features, feature modeling techniques like K-means 

and GMM based BoW and Gaussian super vector have to be applied. In this big 

data era, the time and accuracy efficiency becomes a main issue in the low level 

feature modeling. Our first contribution thus focuses on accelerating k-means, 

GMM and UBM-MAP frameworks, involving the acceleration on single 

machine and on cluster of workstations. To achieve the maximum speed on 

single machine, we show that dictionary learning procedures can elegantly be 

rewritten in matrix format that can be accelerated efficiently by high 

performance parallel computational infrastructures like multi-core CPU, GPU. 

In particular with GPU support and careful tuning, we have achieved two 

magnitudes speed up compared with single thread implementation. Regarding 

data set which cannot fit into the memory of individual computer, we show that 

the k-means and GMM training procedures can be divided into map-reduce 

pattern which can be executed on Hadoop and Spark cluster. Our matrix format 

version executes 5 to 10 times faster on Hadoop and Spark clusters than the 

state-of-the-art libraries. 

Beside signal level features, mid-level features like harmony of music, the 

most natural semantic given by the composer, are also important since it 

contains higher level of abstraction of meaning beyond physical oscillation. Our 

second contribution thus focuses on recovering note information from music 

signal with musical knowledge. This contribution relies on two levels of 

musical knowledge: instrument note sound and note co-occurrence/transition 

statistics. In the instrument note sound level, a note dictionary is firstly built 



i 

from Logic Pro 9. With the musical dictionary in hand, we propose a positive 

constraint matching pursuit (PCMP) algorithm to perform the decomposition. In 

the inter-note level, we propose a two stage sparse decomposition approach 

integrated with note statistical information. In frame level decomposition stage, 

note co-occurrence probabilities are embedded to guide atom selection and to 

build sparse multiple candidate graph providing backup choices for later 

selections. In the global optimal path searching stage, note transition 

probabilities are incorporated. Experiments on multiple data sets show that our 

proposed approaches outperform the state-of-the-art in terms of accuracy and 

recall for note recovery and music mood/genre classification.  



Résumé 

La production et la diffusion de musique numérisée ont explosé ces dernières 

années. Une telle quantité de données à traiter nécessite des méthodes efficaces et 

rapides pour l’analyse et la recherche automatique de musique. Cette thèse 

s’attache donc à proposer des contributions pour l’analyse sémantique de la 

musique, et en particulier pour la reconnaissance du genre musical et de l’émotion 

induite (ressentie par l’auditoire), à l’aide de descripteurs de bas-niveau 

sémantique mais également de niveau intermédiaire. En effet, le genre musical et 

l’émotion comptent parmi les concepts sémantiques les plus naturels perçus par 

les auditoires. Afin d’accéder aux propriétés sémantiques à partir des descripteurs 

bas-niveau, des modélisations basées sur des algorithmes de types K-means et 

GMM utilisant des BoW et Gaussian super vectors ont été envisagées pour 

générer des dictionnaires. Compte-tenu de la très importante quantité de données 

à traiter, l’efficacité temporelle ainsi que la précision de la reconnaissance sont 

des points critiques pour la modélisation des descripteurs de bas-niveau. Ainsi, 

notre première contribution concerne l’accélération des méthodes K-means, 

GMM et UMB-MAP, non seulement sur des machines indépendantes, mais 

également sur des clusters de machines. Afin d’atteindre une vitesse d’exécution 

la plus importante possible sur une machine unique, nous avons montré que les 

procédures d’apprentissage des dictionnaires peuvent être réécrites sous forme 

matricielle pouvant être accélérée efficacement grâce à des infrastructures de 

calcul parallèle hautement performantes telle que les multi-core CPU ou GPU. En 

particulier, en s’appuyant sur GPU et un paramétrage adapté, nous avons obtenu 

une accélération de facteur deux par rapport à une implémentation single thread. 

Concernant le problème lié au fait que les données ne peuvent pas être stockées 

dans la mémoire d’une seul ordinateur, nous avons montré que les procédures 

d’apprentissage des K-means et GMM pouvaient être divisées par un schéma 

Map-Reduce pouvant être exécuté sur des clusters Hadoop et Spark. En utilisant 

notre format matriciel sur ce type de clusters, une accélération de 5 à 10 fois a pu 

être obtenue par rapport aux librairies d’accélération de l’état de l’art. 



En complément des descripteurs audio bas-niveau, des descripteurs de niveau 

sémantique intermédiaire tels que l’harmonie de la musique sont également très 

importants puisqu’ils intègrent des informations d’un niveau d’abstraction 

supérieur à celles obtenues à partir de la simple forme d’onde. Ainsi, notre 

seconde contribution consiste en la modélisation de l’information liée aux notes 

détectées au sein du signal musical, en utilisant des connaissances sur les 

propriétés de la musique. Cette contribution s’appuie sur deux niveaux de 

connaissance musicale : le son des notes des instruments ainsi que les statistiques 

de co-occurrence et de transitions entre notes. Pour le premier niveau, un 

dictionnaire musical constitué de notes d’instruments a été élaboré à partir du 

synthétiseur Midi de Logic Pro 9. Basé sur ce dictionnaire, nous avons proposé un 

algorithme « Positive Constraint Matching Pursuit » (PCMP) pour réaliser la 

décomposition de la musique. Pour le second niveau, nous avons proposé une 

décomposition parcimonieuse intégrant les informations de statistiques 

d’occurrence des notes ainsi que les probabilités de co-occurrence pour guider la 

sélection des atomes du dictionnaire musical et pour construire un graphe à 

candidats multiples pour proposer des choix alternatifs lors des sélections 

successives. Pour la recherche du chemin global optimal de succession des notes, 

les probabilités de transitions entre notes ont également été incorporées. Les 

expérimentations menées sur plusieurs jeux de données ont montré que nos 

approches permettent d’avoir des résultats supérieurs à ceux de l’état de l’art pour 

l’identification des notes ainsi que pour la classification de la musique en genres 

musicaux et en émotions.   
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Chapter 1: Introduction 

1.1 Research context 

With the development of information technology, digitalized music production 

exploded in the past decade. For example, in the on-line music store of iTunes, 

there have been over 37 million songs
1
 available by 2014 and the number is still 

growing fast. YouTube website receives 100 hours of video upload in every 

minute and a large portion is music. Such a huge amount of data drives the 

development of effective and efficient methods for automatic music analysis 

and retrieval. 

Public availability of music reveals two pivot tasks. One is the semantic 

analysis increasingly demanded by users, because human beings tend to express 

idea and make judgment on semantic level. Among all semantic concepts 

associated with music, the mood and genre are the most natural semantic 

information expressed by music, which can be easily perceived by audiences 

even without musical trainings. Modern digital music technology not only 

assists in music composition but also provides digitalized music knowledge 

such as realistic music instrument sound library for music synthesis via MIDI 

scripts. Thanks to this advance, we can make use of music knowledge a prior to 

improve mood and genre classification accuracy. 

The other is to improve the efficiency of entire systems in order to handle 

large scale data. In this era of big data, we do not worry about the insufficient 

samples any more. The main focus shifts to terminating computation in an 

affordable duration. Thanks to the parallel computing infrastructures such as 

multi-core CPU, GPU and cluster of workstations, we can process massive 

amount of data simultaneously on multiple computing units. In our specific 

case, with the high-end hardware in hand, it is now possible for us to scale up 

our model and accelerate the entire computation procedure, which leads to 

superior results.   

                                                           
1 http://www.apple.com/itunes/features/ 

http://www.apple.com/itunes/features/
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1.2 Problem and Objective 

Music is a type of sound that has some stable frequencies in a time period. All 

musical sounds have their fundamental frequency and overtones. Fundamental 

frequency is the lowest frequency in harmonic series. Overtones are integer 

multiples of the fundamental frequency. Music can be produced by several 

methods. For example, the sound of a piano is produced by striking strings, and 

the sound of a violin is produced by bowing.  

Music semantic information, in particular mood and genre, are expressed in 

different levels, from low level (signal level) to intermediate level (note level) 

and high level (direct semantics). In signal level, various features like MFCCs 

are extracted, in which all information is kept including noises. However, music 

semantics concerns abstract concepts that are expressed and perceived 

indirectly. To bridge the semantic gap between signal level features and human 

cognition, the signal level features need to be transformed to reflect the abstract 

concepts. Bag-of-word (BoW) [Yang et al. 2007] model has been demonstrated 

effective to transform original features to histogram of potential semantic 

centers or “words”. In addition to BoW, UBM-MAP [Campbell et al. 2006] 

based super vector method not only considers feature distribution of individual 

sample but also concerns background distribution as well. In signal level, the 

main challenge for the two approaches is scalability when encountering large 

data sets. For example the size of clusters for k-means and GMM should 

increase as the number of training sample grows. Our first objective is to 

accelerate k-means, GMM and UBM-MAP procedures to handle large number 

of training data.  

Although signal level features contain complete information that can describe 

high-level semantics of music, their direct use is rarely very efficient even with 

BoW and UBM-MAP transformation. Music is indeed composed by sequential 

combination of notes and is generated by instruments accordingly. People 

understand music by perceiving the note combination sequence too. Therefore 

sound of notes plays an essential role in the semantic carried by music for 

identifying high-level concepts such as mood. If music can be effectively 

http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Strings_(music)
http://en.wikipedia.org/wiki/Bow_(music)
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decomposed into note sound of instruments, statistics on the decomposition can 

provide valuable information for further semantic analysis. Thanks to Logic Pro 

9, a high quality music producing software from Apple Inc., a “musical 

dictionary” made of musical words that are related to the notes produced by 

various instruments is built. Our second objective is to decompose music onto 

the dictionary as precisely as possible and take the advantage of statistics of the 

decomposition to improve mood and genre classification. 

1.3 Our Approach and Contributions 

As discussed above, music semantic analysis requires to handling information 

in different levels. In signal feature level, the main challenge is to accelerate the 

BoW process, namely to speed up k-means, GMM and UBM-MAP training 

with parallel infrastructure in order to incorporate massive samples in big data 

sets. In middle feature level, the main challenge is to recover note information 

as precise as possible with music knowledge in the form of instrument sound 

and note statistics. Our work mainly concentrates on the two aspects and is 

summarized as follows. 

1. To incorporate signal level information for semantic analysis, we have adopted 

a bag-of-word model with k-means/GMM dictionary and a UBM-MAP based 

super vector approach. With scaled up data set, there are more and more 

demands for increasing number of clusters and mixtures for k-means and GMM 

[Over 2011]. The dictionary learning becomes the bottleneck of the whole 

computation pipeline.  

Our first contribution thus focuses on accelerating k-means, GMM and UBM-

MAP frameworks and it is divided into two levels which concern the 

acceleration on single machine and on cluster of workstations. In fact huge 

parallelism exists for k-means and GMM dictionary learning, for example in 

distance and probability calculation the computation pattern is the same for all 

input feature vectors. However, to simply divide work load by the number 

feature vectors does not guarantee maximum throughput of input data because 

of huge overhead for threading scheduling and data sharing, which is shown in 



Chapter 1: Introduction 

 

4 

our experiment with comparison with the state-of-the-art libraries [Gao et al. 

2012]. To achieve the maximum speed on single machine, we show that 

dictionary learning procedures can elegantly be rewritten in matrix format, for 

example in GMM training only two matrix multiplications and one matrix 

transformation are needed to re-estimate the parameters. Once converted to 

matrix format, the calculation can be accelerated efficiently by high 

performance multithreading linear algebra libraries. Especially with GPU 

support and careful tuning, we can even push the top speed up to two 

magnitudes faster than single thread implementation [Gao et al. 2012].  

Beyond single machine, we show that for big data set which cannot fit into the 

memory of individual computer, the k-means and GMM training procedures can 

be performed on independent sub-data blocks distributedly since the 

computation on each sub-data block is independent and the final result is 

obtained by aggregating sub-results. This map-reduce [Dean 2005] 

computational style inspires us to employ Hadoop [White 2009, Shvachko et al. 

2010] and Spark [Zaharia et al. 2010, Zaharia et al. 2012] cluster frameworks to 

even extend parallelization onto multiple computers level. Our experiments 

show that not only on single machine but also on Hadoop and Spark cluster our 

proposed method outperforms the state-of-the-art libraries in terms of speed and 

performance of music mood and genre classification [Gao et al. 2012]. 

2. Although signal level features with BoW model can be effective for music 

semantic analysis, it is still necessary to explore mid-level features like notes of 

music since it contains higher level of abstraction of meaning beyond physical 

oscillation. Mixing different tracks of instrument playing by averaging is quite 

easy which means the other way round is difficult. Thanks to modern music 

software which provides realistic instrument sound we can make use of this 

musical knowledge to help recover notes.  

Our second contribution thus focuses on recovering note information from 

music signal with musical knowledge to aid semantic analysis. This contribution 

relies on two levels of musical knowledge: instrument note sound and note co-

occurrence/transition statistics [Gao et al. 2012].  
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On the instrument note sound level, a note dictionary is firstly built from 

Logic Pro 9. We choose the first 80 realistic instruments as in general MIDI 

level 1 set and 31 percussion instrument sets including 1860 percussions. For 

each instrument, we choose 60 notes form note 31 to note 90. The 60 notes span 

5 octaves from low to high, covering most instruments’ playing note range. The 

duration of each note is set to 186ms, which are 4096 samples under a sample 

rate of 22050Hz. This duration is long enough to hold one attack-decay-sustain-

release envelope (ADSR) and leads to 5.38Hz in terms of frequency resolution, 

which is sufficient to discriminate adjacent note spectrum. Our musical 

dictionary is finally built by computing each musical word in frequency domain 

as the single-sided power spectrum of each note wave generated by short time 

Fourier transform (STFT) with Hamming window. A musical word in the 

dictionary is thus a 2048 dimensional vector. The number of musical words is 

the number of instruments multiplying the number of notes (60) plus the 

number of percussion instruments that is 6660 musical words in total.  

With a musical dictionary in hand, any sparse solution solver can be applied to 

produce sparse solution in respect to note. Unfortunately classical greedy 

algorithms, for example orthogonal matching pursuit (OMP) [Pati et al. 1993], 

cannot directly be applied to the decomposition. Because each musical word in 

dictionary is a single-sided power spectrum of certain note, a positive constraint 

is naturally imposed onto the sparse solution. Therefore we propose a positive 

constraint matching pursuit (PCMP) [Gao et al. 2012] algorithm to solve this 

problem. When scrutinizing the decomposition results of PCMP within one 

frame, we found irregular note combinations. This is due to PCMP’s over-fitting 

target signals without considering any compatibility of concurrent notes. To 

solve this problem, we propose a two stage sparse decomposition approach 

integrated with note statistical information. In frame level decomposition stage, 

note co-occurrence probabilities are embedded to guide atom selection in 

modified matching pursuit algorithm with the dictionary. A sparse multiple 

candidate graph is then constructed to provide backup choices for later 

selections. In the global optimal path searching stage, note transition 
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probabilities are incorporated together with a goodness measure of frame 

decomposition. Its principle is to guide the local sparse music decomposition 

with co-occurred notes information and decode the global optimal 

decomposition path with consecutive note knowledge. Due to the Gabor limit 

[Yao 1993], time and frequency resolution cannot be well satisfied at the same 

time. Thus, we emphasize the frequency resolution aspect rather than the exact 

time location, since correct note recognition is more important for our following 

classification task. 

Experiments on multiple data sets show that our proposed approaches 

outperform the state-of-the-art in terms of accuracy and recall for note recovery 

and music mood/genre classification. 

1.4 Organization of the Thesis 

 In chapter 2, we give a literature review of the works related to content based 

music signal analysis especially for emotion. We start with signal level features 

designed for content-based music classifications and corresponding low-level 

feature modeling methods. We then review middle-level features especially the 

notes or multi F0 estimation from music signal. Finally we present state-of-art 

music mood classification systems. 

 In chapter 3, we focus on acceleration of low-level feature modeling ie. to speed 

up K-means, GMM and GSV. At first, we show that k-means clustering and EM 

algorithm for GMM can be translated to matrix multiplication format, which can 

be accelerated effectively under parallel computing infrastructures. We then show 

that when processing big data, we can even fit matrix format into MapReduce 

model so that the whole computation can be parallelized onto Hadoop and Spark 

clusters. Next, we introduce performance tuning for GPU, multi-core CPU and 

cluster implementations. The quality of trained GMM is also discussed in detail. 

Finally we show experiments on the execution speed and quality of the learnt 

dictionary, compared with the state-of-the-art libraries. 

 In chapter 4, we focus on mid-level feature of musical note extraction and its 

application on mood classification. Firstly, we present our construction of a 
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musical dictionary, which consists of two sets of MIDI based instrument sounds. 

We then introduce our modified matching pursuit algorithm to perform music 

decomposition subject to a natural positive constraint. Next, we verify the quality 

of sparse music decomposition via mood classification experiments on two data 

sets. To overcome the discontinuity of previous sparse decomposition, we further 

present our two-stage approach involving frame-level statistical integration and 

global-level optimal paths searching. Finally we show experimental results of the 

improved decomposition approach on real-world music signals.  

 In chapter 5, we draw the conclusions and propose some perspectives for future 

research directions. 
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Chapter 2: Literature Review 

In this chapter, we give a literature review of the works related to content based 

music signal analysis especially for emotion. First, we survey signal level or low 

level of features designed for multi-purpose signal analysis and content based 

music classifications. We also review the mainstream low level feature modeling 

methods for classification tasks i.e. bag-of-words (BoW) and universal 

background model based Gaussian super vector (GSV-UBM). Then we review 

middle level features especially the notes or multi F0 estimation from music 

signal. Finally, as we concentrate in this thesis on mood as a high level concept to 

detection in music, we survey state-of-art music mood classification systems.  

2.1 Audio Features  

The mood induced by music, for example happiness, is however too abstract to 

have simple if-else style definition. Therefore, data driven machine learning 

techniques turn out feasible solutions. Compared with the necessity of innovation 

concerning classifiers, feature extraction has even more space to delve. To 

develop effective features, researchers firstly turn to ourselves for help. 

Speaking of humans, the very first step to understand audio information is to 

extract features from audio signal through the front end of our elaborate auditory 

system. Figure 2.1 shows the main part of cochlea. As it can be observed in 

Figure 2.1, there is a stiff structural element named basilar membrane inside the 

cochlea. The basilar membrane is the base for the sensory cells of hearing or 

“Stereocilia” (approximately 30.000 cells), and hence plays a crucial role in the 

transfer of sound oscillation to the nerve impulse to the neural networks in brain. 

It also differentiates frequency distribution for incoming sound waves. Depending 

on the input frequencies, different regions from the basilar membrane will 

resonate, consequently only a small subset of sensory cells is activated. From the 

Figure 2.1 we also note that the distribution of frequencies is more logarithmic 

than linear, which influences many analysis methods and feature design for 

example wavelet analysis and MFCC. Further listening experiments show that 
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although humans are experts for distinguish the frequency, loudness and temporal 

information of the sound, we are not sensitive to the phase of the sound wave. 

These biological conclusions inspire researchers to design many effective features 

to characterize audio signal in different aspects. 

 

Figure 2.1: Main part of human cochlea [Pradier 2011]. 

Music related features are usually divided into 3 levels. Low level i.e. signal level 

features reflect intrinsic characteristics of the signal without conveying direct 

semantic information about the contents. Middle level features incorporate human 

knowledge of music so that somewhat semantic information is expressed through 

for example notes, chords, and rhythms. High level features from lyrics which is 

related to nature language contain direct meaning that author endow to the music. 

Level by level the features are developed to shorten so called semantic gap.  

2.1.1 Low level feature survey 

Although low level features are a little far from expressing semantics directly, they 

contain complete information of the signal and can be modeled to indirectly 

indicate semantics like mood. Low level features concerns 3 out of 4 main aspects 
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of the sound: frequency, energy and the temporal, since human is not sensitive to 

the phase distortion. 

Frequency carries a large portion of information for the sound, just like the 

colors for images. Figure 2.1 verifies that sensing frequency is indeed the 

foundation for human to analyze audio signal. Therefore many effective features 

have been developed concerning frequency domain information. 

All features in this group live in frequency or autocorrelation domain. The most 

popular methods are the Fourier transform and the autocorrelation. Other popular 

methods include the Cosine transform, Wavelet transform, and the constant Q 

transform. We firstly review frequency features related to the short-time Fourier 

transform (STFT) for computation of the spectrogram.  

Spectral flux (SF). The SF is the 2-norm of the frame-to-frame spectral 

amplitude subtraction vector [Scheirer 1997]. It quantifies (abrupt) difference in 

the shape of the spectrum over consecutive frames. Signals that have slowly 

varying spectrum for example noise have low SF, while signals with abrupt 

spectral changes (e.g. note onsets) have high SF. 

Lu et al. in [Lu et al. 2001] provide a slightly different definition where the SF 

is calculated in logarithm domain of the spectrum. Similarly to SF, the cepstrum 

flux is defined by Xu in [Xu 2005]. SF is widely used in audio retrieval, e.g. in 

speech/music discrimination [Khan et al. 2004, Jiang et al. 2005, Khan et al. 2006], 

music information retrieval [Tzanetakis 2002a, Li et al. 2004], and speech analysis 

[Tzanetakis 2005]. 

Spectral peaks is proposed by Wang in [Wang 2003, Wang 2006]. Spectral 

peaks are designed for a very compact and noise robust representation of an audio 

signal. Sparse set of time-frequency pairs the constellation map is firstly 

constructed from Fourier spectrogram with local peaks. Pairs of time-frequency 

points are then calculated from the constellation map. For each pair, the two 

frequency components, the time difference, and the time offset from the beginning 

of the audio signal are combined into a feature. Each piece of music is finally 

represented by a large number of such time-frequency pairs. Wang also proposed 
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an efficient search algorithm for large databases built from features described. The 

search system is detailed in [Wang 2003]. For spectral peak features, the music is 

represented in the form of spatio-temporal combinations of dominant frequencies. 

The advantage of the technique is that it only relies on the salient frequencies 

(peaks) and denies all other relatively weak spectral content. This preserves the 

main characteristics of the spectrum and makes the representation highly robust to 

noise since the spectrum of noise is usually flat thus the peak frequencies are less 

influenced by noise than the other signals. However, only considering the 

frequency with the largest energy can neglect useful information which hidden in 

for example second largest peaks. 

Pitch is an important frequency related characteristic of sound, different from 

loudness, duration, and timbre. The hearing sensation of pitch is defined as “that 

attribute of auditory sensation in terms of which sounds may be ordered on a scale 

extending from low to high” [ANSI 1995]. The term pitch can refer to fundamental 

frequency or frequency and the perceived frequency of a signal depending on the 

application case.  

When pitch refers to the perceived fundamental frequency of a sound, it stands 

for a subjective psychophysical attribute. According the auditory experiment 

human can differentiate about 1400 distinct tones that is the total number of 

perceptible pitch steps in the range of human hearing capability. Note that the total 

number of notes in the musical equal-tempered scale is 120 notes. Pitch is usually 

denoted by the fundamental frequency F0. 

Fundamental frequency. The fundamental frequency is the lowest frequency 

of a harmonic series, which denote the base vibration. It coarsely approximates the 

psychoacoustic pitch. Former researchers have developed various methods to 

estimate fundamental frequency such as temporal autocorrelation, spectral, and 

cepstral methods and combinations of these techniques as well. An early survey 

can be found in [Hess 1983]. 

Pitch Histogram. The pitch histogram tends to depict pitch distributions of a 

signal in a compact way and has been introduced for musical genre classification 
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in [Tzanetakis 2002a, Tzanetakis 2002b]. In musical analysis the meaning of pitch 

equals to musical notes. The pitch histogram is a global representation that 

aggregates the pitch information or F0 from many short audio frames. 

Consequently, these pitch histograms provide the distribution of the musical notes 

in music segments.  

Chromagram. The chromagram is a spectrogram that represents the spectral 

energy of each of the 12 pitch classes [Bartsch et al. 2005]. The logarithmized 

short-time Fourier transform is firstly performed. The frequencies are mapped 

periodically to the 12 pitch classes by an aggregation function since each octave is 

consisted of 12 notes. The result is a 12 element vector for each audio frame. A 

similar algorithm for the extraction of chroma vectors can be found in [Goto 2003]. 

The chromagram maps all frequencies into one octave. This results in a spectral 

compression that allows for a regulated description of harmonic information in the 

signal. Since the energy of the same note in different octaves is aggregated into the 

same slot, large harmonic series can be represented by only a few chroma values 

[Bartsch et al. 2005]. The advantage of chroma is to provide an octave-invariant 

(compressed) spectrogram that takes properties of musical perception into account. 

However, its drawback is co-occurring that chrome blurs the harmonic informat. 

Pitch Profile. The pitch profile is a more accurate representation of the pitch 

distribution than the chroma features [Zhu et al. 2006]. It considers pitch 

mistuning introduced by mistuned instruments and is robust against noisy 

percussive sounds that do not have a pitch. Zhu et al. applyed the pitch profile in 

musical key detection and results show that the pitch profile outperforms 

traditional chroma features. 

Harmonicity serves to distinguish periodic signals, for example harmonic 

sounds generated by instruments, from non-periodic signals like drum and noise-

like sounds. Harmonics are frequencies located at integer multiples of the 

fundamental frequency. The harmonic spectrum shows peaks at the fundamental 

frequency and its integer multiples. 
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Harmonicity relates to the proportion of harmonic components in a signal, 

which is usually large in music signals. Harmonicity features can be used to 

distinguish musical instruments. For example harmonic instrument sounds like 

horns have stronger harmonic structure than percussive instrument sounds like 

drums. Furthermore, harmonicity can also be useful to separate environmental 

sound between harmonic and inharmonic sounds. 

Inharmonicity measures. Most real world harmonic signals do not have a 

perfect harmonic structure. Inharmonicity features measure the difference between 

observed energy distribution along harmonics and their theoretical values which 

are exactly at integer multiples of the fundamental frequency. 

A straight-forward cumulative measure for the deviation of the harmonics from 

their predicted values is introduced in [Agostini et al. 2001] and [Peeters 2004]. A 

more robust and more accurate feature is harmonicity prominence in which the 

energy and the bandwidth of each harmonic component are further considered in 

[Cai et al. 2006]. A variant feature is to calculate entropy of the distances of 

adjacent peaks in the spectrum. Perfect harmonic sounds have constant distances, 

while for non-harmonic sounds the distances may vary. 

The concept of the “cepstrum” has been firstly introduced by Bogert et al. in 

[Bogert et al. 1963]. Cepstrum was originally used to detect echoes in seismic 

signals. Cepstral features were introduced into audio domain by [Noll 1964, Bridle 

et al. 1974, Davis et al. 1980] to perform speech analysis. Cepstral features 

presents smoothed frequency of the log magnitude spectrum. It also conveys 

timbral characteristics and reflects pitch information. Euclidean metric can be 

applied on cepstral features to measure their distances, since cepstral features are 

embedded in an orthogonal space. Today, cepstral features are widely used in 

many fields of audio retrieval some example can be found in [Lu et al. 2001, Xu et 

al. 2004]. 

Cepstral Features. Bogert et al. define the cepstrum as the Fourier Transform 

(FT) of the logarithm (log) of the magnitude (mag) of the spectrum of the original 

signal [Bogert et al. 1963]. The signal is firstly Fourier transformed. The log the 
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Fourier transform magnitude is then served as input of the second time Fourier 

transforms. The final cepstrum is the result of the second Fourier transforms. (e.g. 

signal→FT →log(mag)→FT →cepstrum) This sequence is the original form for the 

cepstral features. However, in practice the computation slightly differs from this 

definition. For example, the second Fourier transform is often replaced by a DCT 

due to its ability to decorrelate output data as shown in following classical MFCC 

features. 

Mel-frequency cepstral coefficients (MFCCs). MFCC’s most notable success 

is achieved in automatic speech recognition task and MFCC has evolved into one 

of the standard techniques in most domains of audio signal processing. 

Computation of MFCCs includes a conversion of the Fourier coefficients to Mel-

scale [Stevens et al. 1937]. After conversion, the obtained vectors are 

logarithmized, and decorrelated by DCT in order to remove redundant information 

as mentioned in previous paragraph. 

The components of MFCCs are usually the first 13 DCT coefficients that 

describe the coarse spectral shape. The first DCT coefficient represents the average 

power in the spectrum. The second coefficient approximates the broad shape of the 

spectrum and is related to the spectral centroid. The higher-order coefficients 

represent finer spectral details (e.g. pitch). MFCC can also be treated as an 

approximation of human hearing cochlea which shares the same characteristic of 

frequency response. In practice, the first 8-13 MFCC coefficients are sufficient to 

represent the shape of the spectrum. However, some applications may require 

more higher-order coefficients to capture pitch and tone information. For example 

in Chinese speech recognition up to 20 cepstral coefficients may be beneficial 

[Wang et al. 2000]. 

Beside classical MFCC, several variations of MFCCs have been proposed. 

They mainly differ in the applied psychoacoustic scale i.e. instead of using Mel-

scale, variations consider the Bark[Zwicker 1961], ERB[Moore et al. 1990] and 

octave-scale [Madage et al. 2004]. A typical variation of MFCCs is Bark-

frequency cepstral coefficients (BFCCs). 
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Up to now the short-time Fourier transform (STFT) serves as the fundamental 

building block for most frequency related features. However, STFT provides only 

a suboptimal tradeoff between time and frequency resolution since the fixed 

window locks both the frequency and time resolution. The advantage of adaptive 

time-frequency decompositions, like the Wavelet transform is that they provide a 

frequency resolution that varies with the temporal resolution. 

Instead of short-time Fourier transform, Wavelet transform and related 

transformations for time-frequency decomposition are firstly applied to obtain 

coefficients based on Wavelet mother function. For example, Khan et al. have 

successfully applied the variance of Haar Wavelet coefficients over several frames 

to speech/music discrimination in [Khan et al. 2006]. We consider such features as 

low level features since they do not have a semantic interpretation. 

Daubechies Wavelet coefficient histogram features (DWCH). DWCHs have 

been proposed by Li et al. for music genre classification in [Li et al. 2003]. The 

authors used Daubechies Wavelets to decompose the audio signal. Histograms 

from the Wavelet coefficients are then built for every subband. The subband 

histograms provide an approximation of the waveform variation in each subband. 

The final feature vector is composed of the first three statistical moments of each 

coefficient histogram together with the energy per subband. Li et al. also show that 

when combined with traditional features, DWCHs can further improve 

performance for music genre classification [Li et al. 2003]. DWCHs have been 

used in the fields of artist style identification, emotion detection, and similarity 

retrieval in [Li et al. 2004, Li et al. 2006]. 

Adaptive time frequency transform (ATFT). The ATFT proposed by 

Umapathy et al. in [Umapathy et al. 2005] is similar to the Wavelet transform. The 

signal is decomposed into a set of Gaussian basis functions of different scales, 

translations, and central frequencies. The scale parameter varies with the 

waveform envelope of the signal and represents for example rhythmic structures. It 

shows that the scale parameter contains discriminatory ability for musical genres 

classification. 
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Variable Resolutions Transform (VRT). The VRT is first derived from the 

classic definition of Continuous Wavelet Transform (CWT) in order to enable a 

variable time-frequency coverage which should fit to music signal analysis better. 

The consideration of specific properties of music signal finally leads to change the 

mother function as well and thus VRT is not a true CWT but a filter bank. 

Auto-regression analysis is a standard technique in signal processing where the 

future signals are treated as linear combination of previous values. Linear predictor 

is built to estimate the value of each sample of a signal in the form of linear 

combination of it ancestors. Linear prediction analysis has a long tradition in audio 

retrieval and signal coding early examples can be found in [Rabiner et al. 1978, 

Tremain 1982]. 

Linear predictive coding (LPC). LPC is widely used in automatic speech 

recognition since it takes into account the source-filter model of speech production. 

The basic assumption is that vocal stimuli are modulated by filters like throat and 

mouth and filter can be parameterized, which means the filter parameter can be 

used as feature to represent speech signal [Rabiner et al. 1978]. Under the 

assumption the goal of LPC is designed to estimate basic parameters of a speech 

signal, such as formant frequencies and the vocal tract transfer function. LPC can 

be applied in other domains such as audio segmentation and general purpose audio 

retrieval where the LPC spectrum is used as an approximation of the spectral 

envelope.  

As mentioned earlier, beside frequency and temporal features, loudness features 

that related to signal amplitude or energy is another important aspect of audio 

signal that human can easily perceive. Formally loudness is “that attribute of 

auditory sensation in terms of which sounds may be ordered on a scale extending 

from soft to loud” [ANSI 1995]. The auditory system incorporates a number of 

physiological mechanisms that influence the transformation of the incoming 

physical sound intensity into the sensational loudness [Zwicker et al. 1999].  

Specific Loudness Sensation (Sone). Pampalk et al. propose a feature that 

approximates the specific loudness sensation per critical band of the human 
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auditory system [Pampalk et al. 2002]. A Bark-scaled spectrogram is firstly 

computed and then spectral masking and equal-loudness contours are applied. 

Finally, the spectrum is transformed to specific loudness sensation in sone.  

Related to loudness the energy of a signal is the square of the amplitude 

represented by the waveform. The power of a sound is defined as the energy 

transmitted per unit time in second [Moore 2004]. Consequently, power is 

calculated as the mean-square of a signal. In many cases the root-mean-square is 

used in feature extraction.  

Short-time energy (STE). STE describes the envelope of a signal and is 

extensively used in various fields of audio retrieval. STE is defined according to 

Zhang et al. as the mean energy per frame (which actually is a measure for power) 

[Zhang et al. 2001]. The same definition is used for the MPEG-7 audio power 

descriptor [ISO-IEC 2002].  

2.1.2 Low level feature modeling  

With such amount of features in hands, we can characterize music signal from so 

many different angles. For the tasks concerning music signal itself for example 

signal denoising, signal coding etc. low level features alone are sufficient. For 

semantic analysis, however, another layer of model has to be built to further 

extract semantics from low level feature since they still contain too much detail of 

signal’s redundancy and randomness which shade semantic concepts like mood 

and genre.  

K-means [Lloyd et al. 1982] and GMM [Reynolds et al. 1990] clustering based 

bag-of-words framework has demonstrated its effectiveness to model low level 

features and has been successfully applied to a number of multimedia 

classification tasks, e.g., visual categorization in computer vision. The bag-of-

words model is a simplifying representation originated in natural language 

processing and information retrieval (IR). In this domain, a text (such as a sentence 

or a document) is represented as the bag or multi-set of its words, disregarding 

grammar and even word order but keeping multiplicity. Bag-of-words method first 

constructs clusters of assembled low level features through k-means or GMM 



Chapter 2: Literature Review 
 

18  

clustering. It then generates histogram against k-means centers or GMM mixtures, 

which reflects feature distributions with respect to the “words” in bag. This 

procedure helps translate signal level information into meaningful audio and visual 

words which convey more definite information for example genre and mood for 

music signal. The overall BoW is shown in Figure 2.2. Low level features are 

firstly extracted from music signal. Low level features pass k-means or GMM 

dictionary. Low level features become to histogram feature vectors. Histogram 

feature are then passed into mood SVMs. SVMs give the final mood decision 

scores. From the whole process we can find that the quality of k-means and GMM 

is the key factor.  

 

Figure 2.2: BoW based music classification framework. 

2.1.2.1 K-means dictionary learning 

k-means dictionary or cluster is obtained by classic Lloyd’s algorithm. This 

algorithm aims at minimizing the objective function of  
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where    
   
     is Euclid distance between a data point   

   
 and the cluster centre 

  . The algorithm is composed of the following steps. 

1. Initialize K points into the space.  

2. Assign each object to the group that has the closest centroid. 

3. Recalculate the positions of the K centroids. 

4. Go to steps 2 until the centroids no longer change.  

The output of k-means clustering is indeed a Voronio diagram that tiles n-

dimensional space with respect to clustering centers. A two dimensional example 

is shown in Figure 2.3. 

 

 

Figure 2.3: Example of 2 dimensional k-means clustering result with 3 centers 

Although it can be proved that the procedure will always terminate, the k-means 

algorithm does not necessarily find the most optimal configuration, corresponding 

to the global objective function minimum. The algorithm is also significantly 

sensitive to the initialization of cluster centers. Many initialization methods 

including R-MEAN, R-SEL, SCS, KKZ and KR have been proposed to address 

the issue [He et al. 2004]. The generated k centroids are finally treated as a 

codebook that translates input feature vectors.  
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2.1.2.2 GMM dictionary learning 

In addition to k-means, Gaussian mixture model (GMM) as another important 

stochastic dictionary has been successfully applied to encode low level feature 

vectors. A Gaussian mixture model is a parametric probability density function 

represented as a weighted sum of Gaussian component densities.  
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GMMs are widely used in audio signal processing domain, most notably in 

speaker recognition [Reynold 1992], due to their ability of representing a large 

class of sample distributions. The most powerful attributes of the GMM is its 

ability to approximate arbitrarily shaped densities functions. 

GMM often performs better than k-means in two folds: as defined in equation 

GMM takes dimensional variances into account to shape the probability space near 

the centers while k-means only tiles the feature vector space according to pair-wise 

distance; GMM is soft whereas k-means is rigid in terms of clustering assignment 

of feature vectors, which means feature vectors near the border of two clusters are 

more reasonable handled by GMM than by k-means. Figure 2.4 shows a typical 

situation where GMM provides a better clustering result than k-means. 
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Figure 2.4: Mikey mouse data example where GMM works better than k-

means. 

Given training vectors and a GMM configuration, parameters of the GMM, 

  are to be estimated so as to best match the distribution of the training feature 

vectors. The most popular and well-established method is maximum likelihood 

(ML) estimation. ML parameter estimates can be obtained iteratively using 

expectation-maximization (EM) algorithm [Reynold et al. 2000]. The new 

parameters are re-estimated iteratively as follows 

  
    

 

 
        

 

   

   

 

  
    

            
 
   

          
 
   

 

 

  
    

                
          

      
   

          
 
   

 

 

2.1.2.3 Gaussian super vector 

In addition to BoW, Gaussian super vector (GSV) as another transformation of low 

level features has been successfully applied to many classification problems such 

as speaker verification [Compbell et al. 2006] and video annotation [Inoue et al. 

2011] in particular music mood classification in Mirex evaluation[Wu 2013, Cao 
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et al. 2009]. In contrast to the histogram of bag-of-words, GMM super vector 

characterizes the mean shift between the signal given and the universal 

background GMM. In others words GMM super vector represents the change in 

contrast to the background model. The framework of GSV based classification is 

shown in Figure 2.5. 

 

Figure 2.5: GSV based classification framework. 

GSV is derived from concatenate mean vectors in the adapted GMM from a 

universal background model (UBM), using maximum a posteriori (MAP) 

estimation. The adapted GMM reflects the difference between data distribution 

and universal distribution. Like the EM algorithm, the MAP estimation is as 

follow.  

  
     

    
    

     
         

      

 

  
        

             
    

 

  
        

              
      

         
    

 

 

The first step of MAP is identical to the EM, where estimates of the sufficient 

statistics of the training data are computed. Unlike the second step of the EM 
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algorithm, the new statistics are combined with the old ones from UBM. The free 

parameter    is to balance which side should be emphasized. Figure 2.6 illustrate 

a simple example of the MAP estimation. 

 

 

Figure 2.6: Simple example of MAP estimation. Left sub-figure denotes the 

universal background model with input data (stars). Right sub-figure denotes the 

adapted GMM with respect to new input data. 

 

2.1.3 Mid-level features survey 

Beside the signal level features, researchers also develop mid-level features which 

contain somewhat semantic information related to human knowledge. In this 

section we review mid-level features including tonality rhythm and especially note 

or multi-F0. 

Tonality which is defined slightly different from musical system represents the 

sound property that can distinguish noise-like from tonal sounds [Zwicker et al. 

1999]. Compared with tonal sounds tend to have sharp spectra, noise-like sounds 

have a continuous and flat spectrum. For example, instruments like violin produces 

regular harmonic tonal sound in contrast white noise has a flat spectrum standing 

for the minimum of tonality. Tonality is naturally related to the pitch strength that 

measures the strength of the perceived pitch. 

Bandwidth. Bandwidth defined as the second-order statistic of the spectrum is 

usually calculated as the magnitude-weighted average of the differences between 

UBM Adapted Model 
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the spectral components and the spectral centroid [Wold et al. 1996]. The 

bandwidth is thus reflects sound tonality in that tonal sounds usually have a low 

bandwidth since they contain single peaks in the spectrum while noise-like sounds 

have flat spectrum that leads to high bandwidth. However complex music sounds 

can still have high bandwidth meanwhile keep tonal characteristics. Therefore 

mere bandwidth is insufficient to distinguish tonality for the tasks that concern 

complex music. Besides, the bandwidth may be defined in the logarithm spectrum 

or the power spectrum to simulate human auditory perception [Sirinivasan et al. 

2004]. As global bandwidth may blur the spectrum distribution, sub-bandwidth can 

be computed within subbands, which benefit some tasks. [Ramalingam et al. 2005]. 

In the MPEG-7 standard the measure for bandwidth is called spectral spread [ISO-

IEC 2002]. Similarly to the bandwidth measures above, the MPEG-7 audio 

spectrum spread (ASS) is defined as the root-mean-square deviation with respect 

to the spectrum centroid.  

Subband spectral flux (SSF). Cai et al. in [Cai et al. 2006] proposed the SSF 

to perform the environmental sound recognition. The feature measures the portion 

of prominent partials in different subbands. SSF is derived from the logarithmized 

short-time Fourier spectrum. For each subband the SSF is the summation of the 

differences between adjacent frequency slots in that subband. Low SSF represents 

flat subbands and high SSF indicates the subband contain variant frequency 

components, which reflect somewhat tonality of the signal. 

Entropy. A natural measure of flatness of a spectrum is entropy. Shannonand 

Renyi entropy is usually computed in multiple subbands [Ramalingam et al. 2005]. 

The entropy represents the uniformity or, in the opposite angle, the chaos of the 

spectrum. Misra et al. have proposed a multi-resolution entropy feature is in 

[Misra et al. 2004, Misra et al. 2005]. The spectrum is split into overlapping Mel-

scaled subbands and Shannon entropy is computed on these subbands. For a flat 

distribution in the spectrum the entropy is low meaning the spectrum is less 

chaotic whereas sharp peaks in a spectrum introduce high entropy which means 

more information exists. The entropy feature characterizes the peakiness of a 
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subband thus may be used for music/non-music or speech/non-speech related 

detection. 

Rhythm is a mid-level feature that captures change patterns of timbre and 

energy over time span. Zwicker and Fastl have shown that the hearing sensation of 

rhythm depends on the temporal variation of loudness [Zwicker et al. 1999]. 

Rhythm is an important feature in music. In music it relates to the tempo of a piece 

of music measured in beats-per-minute (BMP). Unlike other frame based or 

statistic based feature, rhythm evolves over a relatively longer period. Therefore, 

the analysis windows of rhythm features are usually in the range of a few seconds 

(≈ 3-5s) [Tzanetakis 2002]. Analysis of low-frequency amplitude modulations is a 

common way to derive rhythmic patterns. 

Pulse metric. A measure for the “rhythmicness” of sound is proposed by 

Scheirer and Slaney in [Scheirer et al. 1997]. To detect rhythmic modulations, the 

autocorrelation of several subbands is firstly performed and autocorrelation peaks 

are then identified. The autocorrelations in all subbands show peaks at similar 

positions means a high pulse metric, which indicates a strong rhythmic structure in 

the signal. 

Band periodicity. The band periodicity also reflects the strength of rhythmic 

structures and is similar to pulse metric [Lu et al. 2001]. The analysis is conducted 

in every subbands. The maximum peak of the subband correlation function is 

estimated for each analysis frame. The band periodicity is then obtained by 

averaging the peaks in all frames. The band periodicity correlates with the rhythm 

content of a signal, since it captures the strength of repetitive structures over time 

verified by multiple analyzing windows. 

Beat spectrum and beat spectrogram. The beat spectrum represents the self-

similarity of a signal in different time delay which is similarly to autocorrelation. 

[Foote 2000, Foote et al. 2001]. Strong beats are implied by the peaks in the beat 

spectrum with a specific repetition rate. Since the peaks correspond to note onsets 

with high periodicity, strong beats essentially reflect high rhythm content 

appearing in the frame analyzed.  
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The beat spectrum is further concatenated for series of audio frames to form a 2 

dimensional beat spectrogram. Each column of the beat spectrogram is the beat 

spectrum of a single frame. The beat spectrogram shows the rhythmic evolution of 

a signal over time. The 2D beat spectrogram visualizes how the tempo shifts over 

time therefore the beat spectrogram provide detailed sequential rhythm 

information that allows for further rhythmic structures analysis. 

The beat spectrum is the foundation of onset detection and can be used to 

measure similarity of music in terms of rhythm. It may also be used to segment 

music into pieces with different rhythmical patterns, such as chorus and verse. 

Cyclic beat spectrum. The CBS is a compact and robust representation of the 

fundamental tempo of a piece of music, which is similar to pitch classes in the 

chroma feature [Kurth et al. 2006]. Previous defined beat spectrum contains not 

only the fundamental tempo but also related tempos a harmonic and sub-harmonic 

scale to the fundamental tempo that is multiple fold tempo or half, one third etc. 

The cyclic beat spectrum aggregate tempos rooted in the same fundamental tempo 

into one tempo class. The CBS is computed from a beat spectrum. Low-pass filter 

is firstly used to remove timbre information irrelevant to the tempo analysis and 

the spectrogram is obtained from short-time Fourier transform. A novelty curve is 

then generated by summing the differences between adjacent spectral vectors. A 

bank of comb filters corresponding to particular tempos is then performed on the 

novelty curve. The analysis results in a beat spectrogram where peaks correspond 

to dominant tempos. The beat spectrum is then divided into logarithmically scaled 

tempo octaves. The CBS is finally obtained by aggregating the beat spectrum over 

all tempo classes. 

Beat histogram. The beat histogram is designed as a compact global 

representation of the rhythm content of a piece of music [Tzanetakis et al. 2001]. 

Similarly to other rhythm features, periodicity analysis in multiple frequency 

bands is firstly performed. To obtain an octave-frequency decomposition the 

Wavelet transform is used to detect the most salient periodicities in each subband 
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and accumulate them into a histogram. The beat histogram thus depicts the 

repetition rates of main beat and sub beats together with their strength.  

Each bin of the histogram corresponds to a beat period in beats-per-minute 

where peaks indicate the main and sub beats. The beat histogram compactly 

demonstrates the distribution of all occurring beat periods in a piece of music. The 

beat histogram can be applied to content based music classification, especially 

genre classification for music in different genres usually contain different beat 

patterns. Much useful information can be derived from the beat histogram for 

example a measure for the beat strength may be easily obtained from the beat 

histogram as in [Tzanetakis et al. 2002]. A derivation of the beat histogram is also 

proposed by Grimaldi et al. in [Grimaldi et al. 2003] which took the advantage of 

the discrete Wavelet packet transform (DWPT) [Mallat 1999]. 

Rhythm patterns. To measure music similarity and perform the retrieval 

Pampalk et al. introduced rhythm patterns in [Pampalk et al. 2002]. Given the 

spectrogram in the specific loudness sensation in sone, the amplitude modulations 

are extracted by Fourier transform of the critical bands over time. The extracted 

modulation frequencies are then weighted with respect to the fluctuation strength 

to simulate the human perception [Zwicker et al. 1999]. This results in a two-

dimensional representation of acoustic versus modulation frequency.  

Note (multi-F0), music is indeed sound poetry comprised of notes played by 

various instruments. People understand music by perceiving the note combination 

sequence too. Therefore sound of notes plays an important role in the semantics 

carried by music for identifying high-level concepts such as mood. So, if music 

can be effectively decomposed into note sound of playing instruments, statistics 

on the decomposition can provide valuable information for further music 

classification. However, mixing different instrument playing is trivial while 

decomposing is quite challenging due to the intrinsic complexity of polyphonic 

music.  

Recovering notes from a music wave signal is usually referred to multiple F0 

estimation. The approaches in literature can be roughly sorted into two categories: 
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parameterized like statistical model based methods and non-parameterized like 

non-negative matrix factorization (NMF) based methods. Parameterized 

approaches usually assume that multiple F0 can be described by particular models 

with a small number of free parameters that can be estimated from the signal. For 

example, in [Kmaeoka et al. 2007] Kameoka et al. propose a multi-pitch analyzer 

named the harmonic temporal structured clustering (HTC) method that jointly 

estimates pitch, intensity, onset and duration. HTC decomposes the power 

spectrum time series into distinct clusters such that each cluster has originated 

from a single source modeled by a Gaussian Mixture Model (GMM). The 

parameters of the source model are computed thanks to maximum a posteriori 

(MAP) estimation. In [Wu et al. 2001], Wu et al. extend Kameoka's work to 

propose a flexible harmonic temporal timbre model to decompose the spectral 

energy of the signal in the time-frequency domain into individual pitched notes. 

Each note is modeled with a 2-dimensional Gaussian kernel. Parameters of 

Gaussian mixtures are then estimated by expectation maximization (EM) 

algorithm with a global Kullback–Leibler (KL) divergence cost function. 

Unlike parameterized approaches, non-parameterized methods like NMF focus 

on recovering pitch combinations from the signal data itself without presuming 

any underlying model forms. For example, NMF [Lee et al. 2001] based methods 

try to decomposes the multiple pitch spectrum matrix   into two matrices   and 

  [Rczynski et al. 2007].   contains various harmonic patterns and   consists of 

activation behaviors so that     , which is illustrated in Figure 2.7. In [Hoyer 

2002], Hoyer extends the original NMF by adding a regulation term to make   

sparse. Sparseness property is quite helpful especially for music note estimation, 

since a short period music can only contain a few notes played together, compared 

with all possible notes.  
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Figure 2.7: NMF for mult-F0 estimation. 

NMF is such an extensible framework that it largely dominates non-parameter 

methods. For example, in [Zafeiriou 2006] Zafeiriou adds a linear discriminant 

analysis (LDA) stage to the activities extracted by NMF. In [Guan et al. 2011, 

Wang et al. 2004], fisher-like discriminant constraints are embedded inside the 

decomposition. In [Lwandowski 2012], Lewandowski proposes a supervised 

method with two discriminative criteria that maximize inter-class scatter and 

quantify the predictive potential of a given decomposition. In order to extract 

features that enforce the separability between pitch labels, pitch information 

present in time-aligned musical scores is fused in sparse NMF. In [Sakaue et al. 

2012], Sakaue combines Bayesian inference with NMF to propose a Bayesian 

non-negative harmonic-temporal factorization (BNHTF). BNHTF models the 

harmonic and temporal structures separately with Gaussian mixture models. In 

[Gao et al. 2012], a music sparse decomposition approach is proposed using high 

quality MIDI dictionary. This work is a variant of sparse NMF and uses non-

negative matching pursuit to solve sparse NMF. Unlike NMF that processes the 

entire signal, this work constructs the activity matrix   column by column. It is 

still worth mentioning the work in [Leveau et al. 2008] where Leveau et al. 

propose to learn instrument specified note atoms with a modified matching 

pursuit and a tracking of the played instrumental notes by searching an optimal 

path with respect to the reconstruction error. 

Previous works in the literature have demonstrated the effectiveness of various 

approaches in multiple-F0 estimation, especially NMF based methods. However, 

under the NMF framework, the entire music spectrum series   are treated as a 

whole object to be reconstructed. Most of the algorithms focus on reducing the 

spectrum reconstruction error so as to overlook the compatibility in concurrent 

and consecutive notes. This batch processing style makes it hard to fuse note co-

occurrence and transition information to guide note detection during the matrix 

factorization. Indeed, after the signal spectrum matrix is factorized,   and   are 

new represents of the music, which have lost signal context information for post-

processing to correct possible error. Even in [Leveau et al. 2008], the Viterbi 
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algorithm is used to search the optimal path only with respect to a minimum 

reconstruction error and neglects the underlying note relations. Nevertheless 

correlation between concurrent and consecutive notes contains significant 

heuristics that can help to correct the decomposition error introduced by a signal 

level analysis. 

2.2 Audio-Based Musical Mood Detection Systems Survey 

2.2.1 Representation of emotions 

Among all the concepts associated with music, the emotion or mood is 

probably the most natural semantic information expressed by music and can be 

easily perceived by audiences even without special music knowledge. Music is 

also referred to as a “language of emotion” [Pratt 1952] [Kim et al. 2010]. All 

these motivate music mood studies with high priority in both theoretical and 

practical perspectives. 

Emotions root in highly subjective experiences therefore it is hard to find 

universal models to describe them. Generally speaking, there exist two directions 

in the psychological literatures, depending on whether emotions are considered 

discrete or continuous. In discrete case, categorical approaches are proposed 

involving finding and organizing some set of emotional descriptors (tags) based 

on their relevance to the corresponding music. [Hevner 1936] used 66 adjectives 

sorted into 8 groups. In spite of being disputed, many categorical studies inspired 

by Hevner demonstrate proposed tagging can be meaningful and consistent, 

regardless of the listener’s musical background [Juslin et al. 2001] [Schubert et al. 

2003]. In a sequence of music-listening studies, Zenter et al. [Zenter et al. 2008] 

reduced a set of 801 “general” emotional terms into a subset metric of 146 terms 

specific to music mood rating. Their studies, which involved rating music-

specificity of words and testing words in lab and concert settings with casual and 

genre-aficionado listeners, revealed that the interpretation of these mood words 

varies between different genres of music. Another example is the BEEV (Basic 

English Emotional Vocabulary), which consists of 40 discrete words for 

automatic emotion recognition [Kim et al. 2008].  



Chapter 2: Literature Review 
 

31  

Another famous example is Plutchik’s emotional wheel [Plutchik et al. 1980], 

shown in Figure 2.8. Plutchik created the wheel of emotions in 1980 which 

consisted of 8 basic emotions of joy vs. sadness, trust vs. disgust, fear vs. anger, 

surprise vs. anticipation and 8 advanced emotions each composed of 2 basic ones, 

which show in Table 2.1.  

 

Figure 2.8: Plutchik’s emotional wheel [Plutchik et al. 1980]. 

 

Table 2.1: Advanced emotion combination. 

Human feelings (results of emotions) Feelings Opposite 

Optimism Anticipation + Joy Disapproval 

Love Joy + Trust Remorse 

Submission Trust + Fear Contempt 

Awe Fear + Surprise Aggression 

Disapproval Surprise + Sadness Optimism 

Remorse Sadness + Disgust Love 

Contempt Disgust + Anger Submission 

Aggressiveness Anger + Anticipation Awe 
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The MIREX evaluations for automatic music mood classification have 

categorized songs into one of five mood clusters, shown in Table 2.2. The 

five categories were derived by performing clustering on a co-occurrence 

matrix of mood labels for popular music from the All Music Guide [Hu 

2008]. 

Table 2.2: MIREX emotion clusters. 

Cluster Mood Adjectives 

Cluster 1 passionate, rousing, confident, boisterous, rowdy 

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good  natured 

Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding 

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry 

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral 

 

The continuous approach on the other hand consists in defining an N-

dimensional emotional space. The most famous one is the two or three-

dimensional model proposed by Russell [Russel 1980] and Schlosberg 

[Schlosberg 1954]. Each emotion are expressed as a point in emotional space 

consisting of valence (or evaluation), arousal (or activation) and potency (or 

power). Valence defines how positive or negative an emotion is; arousal 

measures the degree of excitement or involvement of the individual in the 

emotional state; potency accounts for the strength of the emotion. Discrete 

emotion categories can be transferred to the continuous by projecting in a 

continuous space. Figure 2.9 and Figure 2.10 shows the locations of basic 

emotions in the continuous space.  
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Figure 2.9: Two-dimensional emotion space and basic emotions [Russel 1980]. 

 

                     

Figure 2.10: Three-dimensional emotion space and 6 basic emotions.  
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In following section we review the state-of-the-art of content-based emotion 

recognition system for both discrete and continuous emotion descriptions. The 

former results in a classification task and the latter in a regression task  

2.2.2 Emotion classification 

In one of the early works on this field, acoustic features related to timbre, rhythm, 

and pitch are used to train support vector machines (SVMs) to classify music into 

one of 13 mood categories [Li et al. 2003]. The system has achieved an accuracy 

of 45% on the data set consisting of a hand-labeled library of 499 music clips 

with 30-seconds each from a variety of genres including ambient, classical, 

fusion, and jazz. 

In [Lu et al. 2006] mood detection and tracking was performed with a similar 

set of acoustic features including intensity, timbre, and rhythm. Instead of SVM 

Gaussian Mixture Models (GMMs) are employed as classifier for the four 

principal mood quadrants on the V-A classification. The system achieved an 

overall accuracy of 85% on a data set involving 800 classical music clips from a 

data set of 250 pieces with 20 seconds in duration. All music clips are labeled 

manually to one of the 4 quadrants.  

In [Mandel et al. 2006] Mandel et al. developed an active learning system that 

can provide recommendations based upon any musical context defined by the 

user. To construct a personalized playlist, the users provide a set of seed songs to 

the system. The input songs represent the class of playlist desired. The system 

uses the initial data, combined with verification data from the user, to construct a 

binary SVM classifier using MFCC features. When tested on 72 distinct moods 

from AMG labels, the system achieved a maximum performance of 45.2%. 

In [Skowronek et al. 2007] Skowronek et al. developed binary classifiers for 

each of 12 non-exclusive mood categories using a data set of 1059 song excerpts. 

Features that are used included temporal modulation, tempo and rhythm, chroma 

and key information, and occurrences of percussive sound events. Quadratic 

discriminant functions are trained for each mood, with accuracy ranging from 

77% (carefree-playful) to 91% (calming-soothing) varying on the categories 
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In [Vaizman et al. 2011] the dynamic texture mixture (DTM) model is 

investigated for the representation of short-time audio features in an emotion 

classification problem. In their work they consider each audio segment to contain 

a static emotion in one of four categories. The dataset evaluated consists of 72 

audio excerpts, each of about 30 seconds. With the DTM model, their best 

performing approach obtains 0.8692 in terms of area under ROC curve (AUC). 

MIREX first introduced audio music mood classification as a task in 2007 [Xu 

et al. 2008]. In 2007, the highest percentage correct (61.5%) is achieved by 

Tzanetakis using only MFCC, and spectral shape, centroid, and rolloff features 

with an SVM classifier [Tzanetakis 2007]. The best system in 2008 submitted by 

Peeters achieved 2.2% of improvement (63.7%) by introducing a larger feature 

set including, MFCCs, Spectral Crest/Spectral Flatness together with a variety of 

chroma based features [Peeters 2008]. Before the final GMM based classification, 

Inertia Ratio Maximization with Feature Space Projection (IRMFSP) was first 

employed to perform the feature selection in which the most effective 40 features 

were preserved and Linear Discriminant Analysis (LDA) was also applied for 

further dimensionality reduction.  

Starting from 2009 the Gaussian super vector based methods have dominated 

this evaluation. In [Cao et al. 2009] Cao and Li developed a system that achieved 

the best results in several categories, including mood classification (65.7%). Their 

system applied a Gaussian super vector of low-level acoustic features and 

followed by support vector machine as classifier. In 2013, Wu et al. submitted a 

GSV based system which topped mood classification task with 68.33% of overall 

accuracy. Their framework was following Cao’s submission in [Cao et al. 2009]. 

In addition, two types of features are used in Wu’s submissions, including visual 

features and acoustic features. The visual features capture characteristics of a 

spectrogram’s texture from both local and global views. Acoustic features are 

used to represent global timbre characteristics. The two types of features are 

finally concatenated to a single long feature vector to feed into SVM classifier.  
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2.2.3 Emotion Regression 

Parametric regression approaches have demonstrated the ability to outperform 

supervised classifications with similar features in music emotion prediction, 

presented in several recent works. In [Yang et al. 2008] Yang et al. proposed to 

perform regression for projecting high dimensional acoustic features to the two 

dimensional space to predict V-A values directly from audio, Support vector 

regression (SVR) [Smola et al. 2004] and a variety of ensemble boosting 

algorithms, including AdaBoost.RT [Shrestha et al. 2006], were employed to 

perform the regression. The ground-truth V-A label was collected for each of 195 

music clips. 114 common features are extracted with tools of PsySound [Cabrera 

et al. 2007] and Marsyas [Tzanetakis et al. 1999]. PCA was applied prior to 

regression to reduce the data to a tractable number of dimensions. This system 

achieves an   (coefficient of determination) score of 0.58 for arousal and 0.28 

for valence. 

In [Han et al. 2009] Han et al. investigated a quantized representation of the 

V-A space and employed SVMs for classification. With inferior results of 33% 

accuracy in an 11-class problem, they turned to regression-based approaches. The 

problem was reformulated in the form of regression. They obtain a best 

performance of 95% classification accuracy with 11 quantized categories of 

GMM regression. 

In [Eerola et al. 2009] multiple regression approaches, including Partial Least-

Squares (PLS) regression were investigated. PLS is an approach that considers 

correlation between label dimensions. They achieved    performance of 0.72, 

0.85, and 0.79 for valence, activity, and tension, respectively. 

In [Madsen et al. 2012] Madsen et al. propose a novel approach to develop a 

system that is trained on ranking data and afterwards can make V-A predictions 

in the testing phase. In their experiments subjects are simply asked to rate pairs of 

songs as to which song is higher in terms of valence and arousal. The drawback 

of the system is that full ranking procedure requires enumerating on all pair 

combinations and thus the dataset is limited in size. Their current set contains 20 
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songs, and therefore 190 unique pairings. With the complete training set (90% of 

all data) they obtain valence and arousal error of 0.13 and 0.14, respectively. 

2.3 Conclusion 

As surveyed in this chapter, content-based music classification, and in particular 

mood classification, relies on different level features extracted from music 

signals. Low level features preserve complete information from the original 

signal; however they are redundant to process which makes modeling low level 

features inevitable for example using BoW and GSV methods. When dealing with 

big data, we have to accelerate the bottle neck of the modeling which is the 

dictionary learning of k-mean and GMM. This leads to our first contribution for 

effective accelerate k-means, GMM and MAP which is developed in Chapter 3. 

Regarding mid-level feature, previous work in literature hardly uses note 

information which is in fact the most natural semantic given by the composer. 

Therefore our second contribution concerns music signal decomposition into note 

histogram with the help of sparse representation. Two algorithms are proposed in 

chapter 4 to elaborate the whole process. 
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Chapter 3: Acceleration for Low Level Feature 

Modeling 

3.1 Introduction 

Bag-of-words (BoW) framework has demonstrated its effectiveness to model 

low level features and has been successfully applied to a number of 

multimedia classification tasks, e.g., visual categorization in computer vision. 

In addition to BoW, MAP adaptation based GMM super vector (GSV) as 

another transformation of low level features has been successfully applied to 

many classification problems such as speaker verification [Campbell et al. 

2006], video annotation [Inoue et al. 2011] and most notably in music mood 

classification [Wu et al. 2013, Cao et al. 2009]. In contrast to the histogram of 

bag-of-words, GMM super vector characterizes the mean shift between the 

input signal and the universal background GMM. K-means and GMM 

clustering, as dictionary learning procedures, lie at the heart of many audio and 

visual processing algorithms, in particular k-means, GMM based BoW 

framework and MAP based super vector approach.  

In the era of big data, for example in iTunes music store, there have been 

over 37 million songs available by 2014 and the number is still growing fast. 

Google Image has being searched against 10 billion images since 2010 

[Google blog 2010]. YouTube receives 100 hours of video upload in every 

minute. With the drastically increased data scale, the dictionary learning of k-

means and GMM becomes a computational bottleneck and requires 

accelerations.  

There are previous works in the literature employing GPU to accelerate EM 

for GMM training. [Kumar et al. 2009, Pangbom 2010, Azhari 2011, Gonina 

2011, Machlica et al. 2011, Wu et al. 2012] have implemented EM algorithm 

on CUDA to train GMM. Wu in [Wu et al. 2012] also mentioned to use 

individual CUBLAS function to update means and variance matrix. Azhari in 

[Azhari 2011] implemented MFCC extraction in CUDA too. Gonina in 

[Gonina 2011] also provided Python interface to GPU based GMM training. 

Machlica in [Machlica et al. 2011] used cached textual memory and carefully 
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configured memory usage to elevate performance. In previous works user 

defined GPU kernel functions undertake main computation work. However, 

kernel functions require careful design and hardware related tuning thus is 

hard to translate into other languages for use in other computation platform. 

In this chapter we present our approach to accelerating k-means, GMM and 

MAP, which can be effectively achieved on multiple parallel platforms of 

GPU, multi-core CPU and computer cluster such as Hadoop and Spark. The 

speed-up is mainly empowered by matrix-based operations. We firstly show 

that the three procedures can be concisely reformulated into matrix 

multiplications, which can be efficiently accelerated by parallel computation 

facilities on single machine. For example highly optimized matrix operation 

libraries of CUBLAS, ACML and ATLAS can be employed to speedup the 

calculations. Since the proposed computation structure is formulated into 

matrix operations, it also can be easily translated into languages with 

underlying BLAS support, e.g., MATLAB or FORTRAN. When data is even 

too big to fit in single machine’s memory, we show that the data can be 

divided into small blocks and processed block by block. When data is even 

bigger so as to make disk IO as bottleneck for single machine, the data has to 

be stored and processed distributedly in machine cluster such as Hadoop 

[White 2009] with Hadoop distributed file system (HDFS) [Konstantin et al. 

2010]. Apache Hadoop is a framework for running applications on large 

cluster built of commodity hardware. The Hadoop framework transparently 

provides to applications both reliability and data motion. Hadoop implements 

a computational paradigm named MapReduce, where the application is 

divided into many small fragments of work, each of which may be executed or 

re-executed on any node in a cluster. In addition, it provides a distributed file 

system (HDFS) that stores data on the computer nodes, thereby enabling very 

high aggregate bandwidth across the cluster. Both MapReduce and the 

Hadoop distributed file system are designed so that node failures are 

automatically handled by the framework. Mahout is a machine learning library 

on Hadoop which provides k-means clustering algorithm. 

Although Hadoop provides facilities to parallelize data accessing and 

computing, it is still designed for one pass processing in nature, which is 
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reading data from disks, computing and writing back results, which lacks data 

caching scheme. However, k-means, GMM and MAP are iterative algorithms 

which perform the computation on the same data for many iterations. Hadoop 

thus wastes disk reading overhead from the second iteration. To avoid the 

Hadoop’s drawback, Spark framework [Zaharia 2010] has been developed by 

UC Berkeley AMPLab, in which Resilient Distributed Datasets (RDDs) 

[Zaharia 2012] is implemented to cache data into main memory when possible. 

RDD is a distributed memory abstraction that enables programmers to perform 

in-memory computations on large clusters in a fault-tolerant manner. RDDs are 

motivated by two types of applications that current computing frameworks 

handle inefficiently: iterative algorithms and interactive data mining tools. In 

both cases, keeping data in memory can improve performance by an order of 

magnitude. To achieve fault tolerance efficiently, RDDs also provide a 

restricted form of shared memory, based on coarse grained transformations 

rather than fine-grained updates to shared state. MLlib is a machine learning 

library on Spark that provides k-means clustering algorithm. In this chapter we 

show how these parallel frameworks accelerate k-means, GMM clustering as 

well MAP adaptation. 

The contributions of this chapter are thus threefold: 

 K-means, GMM, MAP reformulated into the matrix operation form 

 GPU-based acceleration 

 Cluster-based acceleration 

The rest of the chapter is organized as follows: section 3.2 shows matrix 

multiplication format of k-means clustering and EM algorithm for GMM. 

Section 3.3 addresses Hadoop and Spark based acceleration in MapReduce 

model. Section 3.4 introduces performance tuning for GPU, multi-core CPU 

and cluster implementations. The quality of trained GMM is also discussed. 

Section 3.5 is dedicated to experiments where the execution speed and quality 

of learnt dictionary are then examined for three implementations on music 

genre and mood classification. Final conclusion is drawn in section 3.6. 
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3.2 K-means and EM Algorithm in Matrix Format 

In this section k-means [Hartigan et al. 1979] and EM [Dempster et al. 1977] 

algorithm are shown in matrix multiplication format. The two algorithms are 

reformulated into matrix format in that the multiplication of matrix can be 

effectively accelerated via well tuned linear algebra libraries. The 

computational efficiency can be greatly enhanced on parallel infrastructure, 

compared with user defined programs. Several symbols are firstly defined:   

is the number of dimensions for feature vectors, k-means cluster centers and 

Gaussian mixtures;   is the number of feature vectors;   is the number of k-

means clusters or GMM mixtures;   is the feature matrix in which each 

column represents one feature vector;   is the matrix of k-means cluster 

centers in which each column represents one center;   represents the variance 

matrix of which, in contrast to a covariance matrix  ,        is the variance    

of dimension   for cluster or mixture  . In GMM,             
  denotes 

the prior probabilities or weights of every mixture,              the 

matrix of means,              the set of covariance matrices. Other 

symbols are defined each time they are used. 

3.2.1 K-means in matrix format 

K-means clustering iteration contains two steps: cluster decision and cluster 

center updating. The first is to find the nearest center to which each feature 

vector is to be clustered. The second is to re-estimate cluster centers according 

to the nearest relationship.  

To measure the closeness between data set   and centers  , squared Euclid 

distance is commonly used, defined as 

 

                 
 
        

   
       

      
    

(3.1) 

 

In matrix format, squared distance matrix can be written as  
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where       
      

      
    

  is the vector of squared length of feature 

vectors and       
      

      
    

  is the vector of squared length of 

centers. 

For the center updating step the new center matrix can be written as 

        , where occupation matrix   is defined as 

 

        

 

  
      

                         

                                        

  

 

where    is the number of associated feature vectors to center  . Variance 

matrix can be computed similarly as             
   , where         

        and   
                   . 

 

3.2.2 EM for GMM in matrix format 

In GMM, the probability density of a feature vector    is defined as  

                     

 

   

 (3.3) 

where           is the GMM parameter set and           is the 

probability of a feature vector    under a single Gaussian mixture  , defined 

as 

          
 

          
  

 
 
       

   
          (3.4) 

 

Like k-means, EM iteration for GMM training includes two main steps: 

probability calculation and parameter updating. The first step decides relations 
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between feature vectors and Gaussian mixtures in terms of likelihood; the 

second step updates GMM parameters with the feature matrix according to 

how likely each mixture can generate the observed feature vectors.  

In the first step           are computed. To avoid floating point numeric 

overflow, the natural logarithm of           is preserved during calculation 

 

               
 

 
      

   
        

   
      

(3.5) 

 

where                    
      

        
     

   
      In practice 

covariance matrix    is often treated as diagonal, in order to simplify 

computation. Let                                denote the GMM 

variance matrix; Let   denote the corresponding logarithmic probability matrix 

in which                     , then   can be written as 

 

   
 

 
              

     

  
 

 
        

    
  

    

  

  

(3.6) 

 

where              
 ,    is the reciprocal matrix of   in which 

                 and    is   -weighted mean matrix in which         

              .  Then           is computed according to Bayes’ rule 

 

          
           

            
 
   

 (3.7) 

 

Posterior probability is firstly computed in logarithmic scale, that is 

                                         , and then converted into 

linear scale when needed.              are also aggregated directly in 

logarithm. When posterior probability is ready EM updating procedure can be 

performed to re-estimate GMM parameters as follows: 
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(3.8) 

(3.9) 

(3.10) 

 

Let    denote the posterior probability matrix, in which         

          and let   denote the occupation matrix for all mixtures, in which  

 

       
         

          
 
   

 (3.11) 

 

The EM updating formulas can then be written as 

   
 

 
      

      

          

(3.12) 

(3.13) 

(3.14) 

 

where    is the squared data matrix in which                 and    is the 

squared mean matrix of   just updated. 

3.2.3 MAP in Matrix Format 

To obtain the GMM super vector, UBM should be adapted via MAP as 

follows 

  
     

    
    

     
         

      

  
        

             
    

  
        

              
      

    
     

    
 

(3.15) 

(3.16) 

(3.17) 
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where  

  
               

    
     

   
 

  
     

 

  
             

    
     

   
   

  
     

 

  
             

    
     

   
  

  

(3.18) 

(3.19) 

(3.20) 

 

   is the input feature vector to adapt on.         
      

      
      

represents the universal background GMM,      
        

          

denotes the relevant coefficient for mixture  , in which    is a free parameter 

of absolute relevant occupancy.   
  denotes          

   the same as column 

vector of   . According to the formula MAP for GMM formula can be 

computed in the same way as EM algorithm i.e., in matrix multiplication 

format. The final GMM super vector for input data is then obtained by 

concatenating adapted mean vector weighted by corresponding standard 

derivation and mixture weight.  

 

3.3 MapReduce Acceleration 
 

It is quite straightforward for k-means and GMM in their matrix format to take 

the advantages of parallel computing power on an individual machine. 

However, when data scale gets such a size to which one computer cannot 

afford, we have to seek help from computer clusters. This section shows our 

matrix multiplication method can perfectly fit into computer cluster scenario, in 

particular MapReduce model so that the Hadoop and Spark framework can 

soundly be employed to further accelerate the computing. 

3.3.1 MapReduce structure 

MapReduce [Dean et al. 2008] is a programming model for processing large 

data sets with a parallel, distributed algorithm on a cluster. It starts to prevail 
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with the Apache Hadoop project. A MapReduce program is composed of a 

Map() and a Reduce() procedure. The Map() procedure performs dividing, 

filtering and sorting data blocks to conduct the distributed computation. The 

Reduce() procedure performs a collecting operation that aggregate sub results 

and transform them into the final one. The "MapReduce System" consists of 

distributed servers, running the various tasks in parallel, managing all 

communications and data transfers between the various parts of the system, 

and providing redundancy and fault tolerance. 

3.3.2 Hadoop architecture 

Hadoop is designed to efficiently process large volumes of information by 

connecting many affordable commodity computers together to work in 

parallel.  

3.3.2.1 Hadoop distributed file system (HDFS) 

A big bottleneck for parallel computing is data access bandwidth, especially 

across computing nodes. To achieve high data accessibility Hadoop 

Distributed File System (HDFS) has been developed. HDFS has a master/slave 

architecture as shown in Figure 3.1. An HDFS cluster consists of a single 

Namenode, a master server that manages the file system namespace and 

regulates access to files by clients. In addition, there are a number of 

Datanodes, usually one per node in the cluster, which manage storage attached 

to the nodes that they run on. HDFS exposes a file system namespace and 

allows user data to be stored in files. Internally, a file is split into one or more 

blocks and these blocks are stored in a set of Datanodes. Data blocks are also 

replicated several times across Datanodes. The replication makes data block 

more locally available to computing nodes and more robust against possible 

disk failure. The Namenode executes file system namespace operations like 

opening, closing, and renaming files and directories. It also determines the 

mapping of blocks to Datanodes. The Datanodes are responsible for serving 

read and write requests from the file system’s clients. The Datanodes also 

perform block creation, deletion, and replication upon instruction from the 

Namenode. Hadoop tie these smaller and more reasonably priced machines 

together into a single cost-effective storage cluster. 
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Figure 3.1: HDFS Architecture [Borthakur 2007]. Namenode manage data 

information of datanodes. Datanodes store duplicated blocks of data. 

Clients try to access blocks of data locally and remotely.  

3.3.2.2 Hadoop MapReduce 

Hadoop MapReduce architecture is shown in Figure 3.2. In Hadoop 

MapReduce, records are processed in isolation by tasks called Mappers. In 

each computing node there can exist multiple Mappers. Mappers are arranged 

as near data as possible so that inter-node communication is minimal. The 

output from the Mappers is then sorted according to the key and brought 

together into a second set of tasks called Reducers, where results from 

different mappers are merged together. Mapping and reducing tasks run on 

nodes where individual records of data are already present. Separate nodes in a 

Hadoop cluster still communicate with one another but only when necessary. 

However, in contrast to more conventional distributed systems where 

application developers explicitly marshal byte streams from node to node over 

sockets or through MPI buffers, communication in Hadoop is performed 

implicitly. Pieces of data are tagged with key names which indicate Hadoop to 

send related bits of information to a common destination node. Hadoop 
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internally manages all of the data transfer and cluster topology issues, from 

data blocks to machine and machine to rack. 

To tolerate system fault, Hadoop isolate tasks in both Mappers and 

Reducers by wrapping up all necessary resources. By restricting the 

communication between nodes, Hadoop makes the distributed system much 

more reliable. Individual node failures can be worked around by rearrange 

tasks on other machines. Since user-level tasks do not communicate explicitly 

with one another, no messages need to be exchanged by user programs, nor do 

nodes need to roll back to pre-arranged checkpoints to partially restart the 

computation. The other workers continue to operate as though nothing went 

wrong, leaving the underlying Hadoop layer to partially restart the failed 

program. 

 

Figure 3.2: Hadoop MapReduce Architecture [Yahoo 2014]. Datablocks 

are read by the mapper and is processed. The intermediate results are then 

shuffled and provided to the reducer. The reducers generate the final 

combined result. 

 

3.3.3 MapReduce k-means in matrix format 

Since Hadoop provides infrastructure for MapReduce computing model, we 

show in this section how matrix format computation can fit into it. For large 
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data set, data feature matrix   is divided into blocks 

                      which in fact has been implicitly done by HDFS. 

What we need to do is just writing a data format to inform Hadoop how much 

data is needed for a Mapper.  

3.3.3.1 Map phase 

In each iteration, the Map phase consists of computing sub-results of 

weights, center and variance on      as follow.   
    is firstly computed as 

before with one matrix multiplication. For each feature block, calculate 

occupation matrix      as  

           
         

                         

                                        
  (3.21) 

 

 

For each feature block, weight feature vector      in which    indicates the 

number of related feature vector for center  , center matrix      and variance 

matrix      are computed by one matrix multiplication as  

 

 
       

    

    
   

  

    

  
   
       (3.22) 

 

3.3.3.2 Reduce phase 

In each iteration, the Reduce phase is comprised of accumulating and 

averaging block-wise weight, center and variance output from   Mappers. The 

final re-estimated centers are computed as follow. 

        
   

 

   
 

        
   

 

   
 

        
   

 

   
 

(3.23) 

(3.24) 

(3.25) 
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In the end of iteration the updated cluster center   is calculated as 

            
     

  
      

       

  
      

   
      

      
      

 

(3.26) 

(3.27) 

(3.28) 

 

where   
      

          
  . Note that      does not affect cluster center 

updating; therefore it is only computed in the last iteration. The matrix version 

k-means clustering main steps are summarized as follows. 

 

 For each iteration 

 Map(    ) = { 

 Calculate   
    with one matrix multiplication 

 Calculate      from   
    

 Calculate      and      with one matrix multiplication 

} 

 Reduce() = { 

 Aggregate           and      to update new    

} 

3.3.4 MapReduce EM in matrix format 

3.3.4.1Map phase 

As performed in MapReduce k-means For each feature block, weight vector, 

mean matrix and variance matrix are computed in Mapper as follow.      is 

firstly computed by one matrix multiplication as in section II.   
    is then 

calculated accordingly. Sub result for      is computed as 

 

 
       

    

    
   

  

    

  
   
    

    (3.29) 
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3.3.4.2 Reduce phase 

In each iteration, the overall accumulated weight vector, mean matrix and 

variance matrix for   feature blocks are computed in the phase of reduce as 

        
   

 

   
 

        
   

 

   
 

        
   

 

   
 

(3.30) 

(3.31) 

(3.32) 

 

The updated GMM parameters are finally obtained as  

            
     

  
      

     
     

  
      

   
      

  
       

      
 

(3.33) 

(3.34) 

(3.35) 

 

where   
      

          
  . The matrix version main steps are 

summarized as follow. 

 

 For each iteration 

 Map(    ) = { 

 Calculate      with one matrix multiplication 

 Calculate   
    from      

 Calculate        ,      and      with one matrix multiplication 

 Reduce() = { 

 Aggregate        ,      and      to update new GMM parameters  

} 

 

3.3.5 MapReduce in Spark  

Although Hadoop provides efficient parallel mechanism, it introduces extra 

overhead of disk IO at each iteration. Hadoop supports neither data caching 

nor shared variable. Therefore for iterative algorithm like k-means and GMM, 
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Hadoop has to reload model and training data from disk for every Mapper at 

each iteration. When data is big whereas computation is relatively 

inexpensive, Hadoop distributed disk IO can even be a bottleneck for entire 

algorithms. To avoid this extra time consumption we switched to Spark the 

framework. 

Similar to Hadoop, Spark also supports the MapReduce parallel model and 

HDFS accessing. The difference is that Spark introduces a data abstraction 

named resilient distributed datasets (RDD). An RDD is a read-only collection 

of objects partitioned across a set of machines that can be rebuilt if a partition 

is lost. RDDs can be explicitly cached in memory across machines and reused 

in multiple MapReduce parallel operations. RDDs achieve fault tolerance 

through a notion of lineage: if a partition of an RDD is lost, the RDD has 

enough information to rebuild just that partition. When an entire assigned 

RDD cannot hold into the memory of a node, RDD is then automatically and 

efficiently serialized onto its local disk and de-serialized back when necessary. 

Spark also supports shared variables which are copied to referenced Mappers 

and Reducers without loading from disk. For constant data, Spark even 

provides broadcast variables to ensure every node to receive only one copy 

and thereby avoids the underlying duplication for each Mapper or Reducer. 

3.4 Performance Tuning 

The formula in previous sections represents the theoretically ideal situation. 

However, to achieve the best performance, there are still several parameters 

that need to be tuned according to the underlying hardware configurations. 

3.4.1 Multi-core CPU 

For single machine based test run, when distance matrix   , or probability 

matrix   is too large to fit into the memory, serialized MapReduce version of 

k-means or GMM must be adopted. In such a situation data blocks are 

processed one by one and finally aggregated. On machines equipped with 

AMD muti-core CPU, ACML is used for matrix multiplication to maximize the 

computing speed. On machine with Intel CPU, ATLAS is tuned and employed 

instead. To take full advantage of multi-core CPU, calculation of      and   
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is implemented with OpenMP
1
 which takes charge of dispatching for-loop into 

multiple threads. However, spawning as many threads as possible is not the 

optimal way of acceleration. Because too many threads increase the overhead 

of thread scheduling and enhance cache faults or even page faults when a large 

number of threads access data. For example when we run the following code to 

calculate feature vectors’ square length, the fastest speed is achieved where 

OpenMP schedule batch size is around 10240, which is shown in Figure 3.3. 

 

#pragma omp parallel for default(shared) private(i) schedule(guided,10240) 

    for (int i = 0; i < pData->nVecCurBlock; i++) { 

        float * pVecSqr = pData->pVecSqrCurBlock + (long long)i*pData->nDim; 

        float * pVec    = pData->pVecCurBlock + (long long)i*pData->nDim; 

        for (int j = 0; j < pData->nDim; j++) { 

            pVecSqr[j] = pVec[j]*pVec[j]; 

        }    

}    

 

 

Figure 3.3: OpenMP execution time vs. batch size. 10k of data achieve the peak 

performance. 

 

 

 

                                                           
1 http://openmp.org/wp/ 
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3.4.2 Nvidia GPU 

Similarly, on GPU version, the matrix multiplications are implemented with 

CUBLAS and calculation of      and   
    are implemented with custom 

CUDA kernel functions. To achieve the peak performance, matrix 

multiplication and kernel functions need to be further tuned.  

CUDA computing architecture and memory access pattern have to be well 

understood in order to push GPU into top speed. CUDA adopts single 

instruction multiple threads (SIMT) architecture. Threads are firstly divided 

into grids and then grouped into block. The threads are index up to 3 

dimensions. 32 threads within one block form one warp which is the unit of the 

GPU thread management. When GPUs are idle, the thread manager tries to 

arrange one or half warp of threads to execute at same time with the identical 

instructions. The CUDA parallel architecture is shown in Figure 3.4. Therefore 

dividing problem into threads block whose dimension is multiple of warp will 

execute faster, otherwise some threads will be wasted when computing the 

corner cases of problems. 
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Figure 3.4: CUDA thread parallel architecture [Nvidia 2014]. Workloads are 

divided into 2D threads configuration.  

Beside of thread architecture, memory access is another important aspect that 

affects parallel execution significantly. Memory in CUDA can roughly be 

divided into local (or shared) and global parts, as shown in Figure 3.5. Local 

memory is much faster, however, of too limited size. For example GTX285 

has only 16KB. Local memory is shared and only accessible within the thread 

block. Local memory may also cause bank conflicts. As illustrated in Figure 

3.6. To achieve high memory bandwidth for concurrent accesses, shared 

memory is divided into equally sized memory modules (banks) that can be 

accessed simultaneously. Therefore, any memory load or store of n addresses 

that spans n distinct memory banks can be serviced simultaneously, yielding 

an effective bandwidth that is n times as high as the bandwidth of a single 

bank. However, if multiple addresses of a memory request map to the same 

memory bank, the accesses are serialized. The hardware splits a memory 

request that has bank conflicts into as many separate conflict-free requests as 
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necessary, decreasing the effective bandwidth by a factor equal to the number 

of separate memory requests. The one exception here is when multiple threads 

in a warp address the same shared memory location, resulting in a broadcast. 

Despite these limitations, local memory should be used whenever shared data 

exists within thread block in order to boost memory throughput. Compared 

with local memory, global memory is larger, up to several gigabytes, yet 

slower. For our tasks, most memory access happens in global domain and for 

computation ability less than 2.0 the global memory does not have cache 

(GTX285 has computation ability of 1.3). Therefore memory access pattern 

affects computation throughput tremendously. In many scenarios memory 

access becomes the computational bottleneck.  

 

Figure 3.5: CUDA memory hierarchies [Nvidia 2014]. Global memory can be 

accessed by all threads. Shared memory is shared within thread block. 
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Figure 3.6: Local memory banks with/without conflicts [Nvidia 2014]. The 

three typical cases that will not generate bank conflicts. 

In CUDA, global memory access is divided into memory transactions which 

can load up to 128 bytes at one time. Figure 3.7 illustrate three typical global 

memory access cases and corresponding memory transactions needed. From 

memory access scheme and SIMT architecture shown in Figure 3.4 and 3.7 we 
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can find that aligned continuous, namely coalesced, memory access is the most 

efficient way to access global memory, which prefer to neighbor threads in a 

block access neighbor data. Although threads block can be configured in 2D or 

3D, the memory neighborhood is still confined in linear due to insufficient 

amount of cache.  

 

Figure 3.7: Global memory access patterns [Nvidia 2014]. 
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For example, to compute occupation matrix   from matrix    in k-means 

algorithm, we have tested calculation performance on    in both row major 

order and column major order. In the case of row major order, adjacent threads 

read global memory address with big gaps whereas in column major order 

adjacent threads read adjacent memory. Figure 3.8 shows the time consumption 

of two memory accessing orders, the brown bar indicates column major order 

to read    while the bar in cyan denote row major order one. From Figure 3.8 

we can find that same kernel function runs more than 7 times faster on   .in 

column major order.  

 

Figure 3.8: Time consumption comparison between column and row major 

order, the brown bar indicates column major order time consumption while the 

bar in cyan denotes row major order time consumption. 

In former case the computation task is parallelized on each vector so that the 

speed gain is obtained from coalesced memory access. Another example is to 

compute posterior probability matrix    from  in EM algorithm for GMM. 

The time consumption of 16x16 thread block dimension is shown in cyan bar 

in Figure 3.9 and the time consumption of 1x256 is shown in cyan bar in Figure 

3.10. From the two figures we can find that thread block dimension of 1x256 is 

6.9 time faster than of 16x16 (245.3ms down to 35.8ms), which lead overall 

30% efficiency improvement. The acceleration is essentially due to coalesced 

memory access. Indeed, although taking exponential for each matrix element is 

a 2D parallelable operation, the matrix data is actually stored linearly in global 

memory. Therefore 16x16 configuration causes non-consecutive global 

memory access whereas 1x256 does. 
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Figure 3.9: Time consumption of 16x16 thread block dimension (345.3ms in 

cyan bar). 

 

Figure 3.10: Time consumption of 1x256 thread block dimension (35.8ms in 

cyan bar). 

In calling CUBLAS SDK functions, using non-transposed matrix function 

call whenever possible can improve the execution speed, because transpose 

operation is expensive and from NVIDIA’s profiler we can find when 

cublasSgemm() is performed on matrix which needs to transpose the 

multiplication is actually performed by a CUDA kernel function, which is 

much slower. Figure 3.11 shows time consumption of matrix multiplication 

with transpose and Figure 3.12 shows time consumption without matrix 

transpose. From the two figures we observe 2.7 times speed-up (116.8ms down 

to 43.0ms) when calling cublasSgemm() with non-transposed arguments.  
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Figure 3.11: Time consumption of CUBLAS sgemm with matrix transpose 

(116.8ms in the first brown bar). 

 

Figure 3.12: Time consumption of CUBLAS sgemm without matrix transpose 

(43.0ms in the first blue bar). 

Another tuning point is to merge matrix operations whenever possible, like 

multiplication, can save overhead caused by function calling and repeated 

memory access. For example when block mean and variance matrix updating is 

combined into one matrix multiplication 10% execution time is saved. 

The final aspect where acceleration can be gained is to upgrade to high 

performance graphic card with advanced GPU. Table 3.1 show our fine tuned 

implementation executes on 4 types of GPUs. 
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Table 3.1: Fine tuned K-mean and GMM execution time on different GPUs. 

#Mixture: 2048 
K-means 

(sec/iteration) 

GMM 

(sec/iteration) 
#Vector: 2.7M 

Feature: 39Dim MFCC 

NVIDIA GeForce 9400 

Mem:256 MB  

CUDA core:16  

169.3 232.9 

NVIDIA GeForce GT220 

Mem:1G 

CUDA core:48 

46.9 56.5 

NVIDIA GeForce GTX 285 

Mem:1G 

CUDA core:240 

9.1 10.9 

NVIDIA GeForce GTX 580 

Mem:2G 

CUDA core:512 

4.3 5.2 

 

3.4.3 Hadoop and Spark cluster 

On a cluster backed with HDFS, in order to achieve maximum computation 

throughput, the input data size is set to its largest value provided that the 

corresponding distance matrix or probability matrix can fit into memory. Since 

the data is stored in blocks in HDFS, configuring blocks size equal to input size 

can further avoid extra disk IO overhead. Figure 3.13 shows how the data split 

size influence the execution time. From Figure 3.13 we can find that our matrix 

based method prefers large block data which maximizes the parallel ability of 

each computing node. We also test the impact of number of cores to the 

execution time, which is illustrated in Figure 3.14 and 3.15. To leverage high 

performance linear algebra library such as ACML and ATLAS, computational 
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expensive procedures are all implemented with C language which are called via 

Java Native Interface (JNI) in both Hadoop and Spark. Because ACML and 

ATLAS are multi-threaded, limiting the number of parallel tasks on a single 

node is necessary to avoid over-competition for CPU time. In high-end servers 

with for example 32 cores, it is faster to run 8 32-threaded tasks than 8 4-

threaded tasks. 

 

Figure 3.13: K-means time per iteration vs. different data split size. 

 

 

Figure 3.14: K-mean time per iteration vs. number cores in cluster. 
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Figure 3.15: GMM time per iteration vs. number cores in cluster. 

3.4.4 K-means and GMM refinement 

K-means and GMM clustering results are highly sensitive to the initialization 

of centers and mixtures because both algorithms only guarantee to find a local 

optimal solution with respect to the initialization. To obtain reasonable initial 

centers, we first sub-sample the training data set into      and then perform 

KKZ [Katsavounidis et al. 1994, He et al. 2004] algorithm on it. The 

advantage of sub-sampling KKZ is that outlier vectors located far from real 

data distribution have little possibility to be selected so that initial centers are 

near input data distribution yet sufficiently separated. 

Even with decent initialization, k-means and GMM clustering can run into 

3 awkward situations: 1) two or more centers compete to represent one cluster; 

2) centers are trapped in very small clusters; 3) centers are stuck between two 

real data clusters which make the representing center or mixture looks too fat 

to split. In our experiment we developed a three stage method to detect and 

alleviate the 3 situations. In the first step to merge neighbors, Bhattacharyya 

distance between centers or mixtures are calculated. A “near” graph is then 

constructed. If two centers or mixtures are too close there will be an edge 

between them in the “near” graph. Independent connected components are 

then obtained from the graph to merge too near centers if any. The nearness 

threshold is set to 0.5. In the second step dead clusters are killed that is centers 

or mixtures with too small weight are eliminated. The smallness threshold is 
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calculated as one tenth of average weight. In the third step to split fat clusters, 

centers and mixtures with abnormally large variance in certain dimension are 

to split. The abnormally large threshold for one dimension is defined as 3   + 

the mean of standard derivations of all centers or mixtures. We have also tried 

to use kurtosis of Gaussian distribution to differentiate fat clusters. 

Unfortunately in high dimensional space kurtosis becomes insensitive even 

when the mixture covers two far away clusters. In our 39 dimensional data 

experiment we find kurtosis cannot effectively detect fat mixture compared 

with variance threshold. In the experiment of music genre and mood 

classification, 1.5% accuracy improvement is achieved with our three step 

refinement procedure. 

Algorithm 3.1: Mixture refinement 

Task: to refine the mixture obtained by EM algorithm 

Input: GMM 

Output: refined GMM 

1. To merge near mixtures 

1.1. Calculate Bhattacharyya distance between centers or mixtures  

1.2. Construct a “near” graph: if two centers or mixtures are too close 

there will be an edge between them in the “near” graph. 

1.3.  Obtain Independent connected components with the nearness 

threshold setting to 0.5. 

2. To kill dead clusters with too small weight. The dead threshold is 

calculated as one tenth of average weight 

3. To split fat mixtures with abnormally large variance in certain 

dimension. The abnormally large threshold for one dimension is set to 

3   + the mean of standard derivations of all centers or mixtures. 

Output result: refined GMM 

 

3.5 Experiments on Music Genre and Mood Classification 

To evaluate speed and quality of our implementations, music genre and 

mood classification have been conducted on GPU, multi-core CPU and 

Hadoop, Spark cluster. 
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3.5.1 Experiment setups 

3.5.1.1 Computer configuration 

A single thread implementation based on clapack
2
 was used as a baseline 

using a single machine. It ran on a PC with Intel
®
 Core™ i7-940 @2.93GHz. 

The implementation based on ACML ran on a server with 4 8-cored AMD 

Opteron™ Processor 6128 @2GHz and 100GB of memory. The 

implementation based on CUBLAS ran on 240-cored NVIDIA GTX 285. 

Yael
3

 was also tested on the server as a benchmark for multi-threading 

implementation. The Hadoop and Spark clusters consist of 16 computers as 

shown in Table 3.2 

Table 3.2: Cluster computer configurations.  

Num. CPU Memory 

2 
4x16-cored AMD

®
 Opteron™ 

CPU 6274 @2GHz  

100GB  

1 
4x8-cored AMD

®
 Opteron™ 

CPU 6128 @2GHz 

100GB 

3 

1x4-cored Intel
®
 Core™ i7 

CPU 950 @3.07GHz (HT to 8-

cored) 

24GB 

2 

1x4-cored Intel
®
 Core™ i7 

CPU 940 @2.93GHz (HT to 8-

cored) 

24GB 

8 

1x4-cored Intel
® 

Core™ i7 

CPU 860 @2.80GHz (HT to 8-

cored) 

16GB  

 

3.5.1.2 Datasets and features 

                                                           
2 http://www.netlib.org/clapack/ 
3 https://gforge.inria.fr/projects/yael 
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GTZAN [Tzanetakis et al. 2002] data set is used for genre classification. 

GTZAN contains 10 genres of music. Each genre contains 100 30-sec 

segments. MFCC with delta and delta delta features are extracted. MFCC 

analysis window shift is 10ms long, resulting in 100 39-dimensional feature 

vectors per second. To test k-means, GMM quality 10-fold cross validation is 

performed. In each fold K-means and GMM with 2048 clusters and mixtures 

are trained by 2.7 million 39-dimentional feature vectors.  

Music mood classification is performed on two datasets. The smaller one is 

provided by Xiao et al. [Xiao et al. 2008] and it consists of 416 16s long pure 

classical music segments, manually divided into 4 moods as shown in Table 

3.3. The same 39-dimentional MFCC features are extracted. K-means to GMM 

clustering are performed on both GPU and 32-cored server. 

Table 3.3: Classical music dataset mood distribution. 

 Anxious Content Depressed Exuberant 

# music 81 124 120 91 

 

After dictionary learning, low level features of each music segments are 

converted to normalized dictionary words histogram. The normalized 

histograms as final feature vectors are used to train one-versus-others SVM 

classifier. To compare the mood classification performance, standard 

OpenSMILE [Eyben et al. 2010] low level features with statistic functions are 

extracted and used to train SVM as benchmark. The training and testing set are 

divided by 50%/50%. The SVM parameters are set to default. The running 

time and accuracy results of the two experiments are shown in Table 3.4 and 

Table 3.6-3.9. 

The other music mood dataset evaluated is the “Now That’s What I Call 

Music!” (NTWICM) dataset introduced in [Björn et al. 2010], containing 2648 

songs annotated by four listeners on 5-point scales for perceived arousal and 

valence on song level. The NTWICM dataset is also served to benchmark 

efficiency of our proposed method with existing library of Mahout [Anil et al. 

2011] and MLLib [Bahmani et al. 2012] on Hadoop and Spark cluster. For 

NTWICM datasets, the same 39-dimentional MFCC features are firstly 
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extracted. K-means, GMM clustering and MAP adaptation are then performed 

on the Hadoop and Spark clustering. Finally the GMM super vector serves as 

feature vector to train linear SVMs. The training and testing set are divided by 

50%/50%. The SVM parameters are set to default. The running time on cluster 

and accuracy results are shown in Table 3.5 

3.5.2 Results and analysis 

3.5.2.1 Single computer 

From Table 3.4 we can find that 1) high performance library based 

implementations proposed in this chapter achieve up to 5 times faster than 

multi-threading based implementation (Yael). 2) GPU based implementation 

executes 5 times faster than multi-core CPU based one on GMM training 

whereas multi-core version outperforms GPU on k-means clustering by 22% in 

terms of speed. GPU based k-means is slower than multi-core CPU in that CPU 

version executes       operations for      calculation while GPU version 

actually executes matrix multiplication containing        operations. We 

choose matrix multiplication for      calculation in GPU because       

operations consume as twice time as         matrix multiplication on GPU 

architecture. This abnormal phenomenon is due to random memory access 

pattern of       operations on GPU. Therefore in this scenario matrix 

multiplication is the optimal but still slower way for GPU.  

In [Machlica et al. 2011] Machlica et al. reported a faster result of 

comparable data set, however, the duration profile in [Machlica et al. 2011] 

only recorded kernel function’s running time without data IO and data 

preparation duration. If only GPU execution duration is considered, our method 

consumes 7 seconds compared with 9.1 in [Machlica et al. 2011]. From genre 

classification accuracy column in Table 3.4, we can find that the quality of 

dictionary trained by CPU is little better than GPU by less than 1% in terms of 

average classification accuracy. This is due to the less floating point error of 

CPU and double precision floating point numbers used during summation 

procedure on CPU. 

From Table 3.6, we can find that with the same number of mixture, the same 

types of GPU and comparable data scale as in [Azhari et al. 2011], our 
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CUBLAS based implementation is 10 times faster than CUDA kernel 

implementation described in [Azhari et al. 2011]. From Table 3.7-3.9 we can 

find that 1024 dimensional bag-of-words histogram features outperforms the 

standard 6552 dimensional OpenSMILE emotional features by 3% in terms of 

average classification accuracy. 
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Table 3.4: Execution time and accuracy of different implementation for music genre classification. 

# Centers/# Mixtures  

# Vectors          

# Dimension                

= 2048 

= 2.7M 

= 39 

K-means GMM MAP 

time per  

iteration (sec) 

 speed-up 

(times) 

Genre 

Acc (%) 

time per  

iteration (sec) 

speed-up 

(times) 

Genre 

Acc (%) 

time  

 per 

song(sec) 

speed-

up 

(times)p 

Genre 

Acc 

(%) 

1 thread CPU 278.2 1.0 
 

2,288.4 1.0 
 

1.5 1  

32-cored CPU Yael(INRIA) 37.2 7.5 68.1 153.2 14.9 78.0    

32-cored CPU (ours) 7.3 38.0 69.6 70.1 32.6 78.7 0.07 21 80.5% 

240-cored GPU  9.1 30.4 69.5 10.9 209.5 77.8 0.02 75 79.4% 

UWB[Machlica et al. 2011] 
   

9.1* 

  
   

*only kernel execution time counted for GMM with 2048 mixtures trained by 3.125M 40-dimensional 

vectors. 

 

Table 3.5: Execution time and accuracy of different implementation for music mood classification. 

# Centers/# Mixtures  

# Vectors          

# Dimension                

= 4096 

= 60M 

= 39 

K-means GMM MAP 

time per  

iteration  

Speed-

up 

(times) 

Valance  

Acc (%) 

Arousal  

Acc (%) 
time per  

iteration  

Valance 

Acc (%) 

Arousal 

Acc (%) 

time  

 per 

song 

Valance 

Acc(%) 

Arousal 

Acc 

(%) 

Mahout on Hadoop 1530sec 1.0 
     

   

MLLib on Spark 453.7sec 3.4 54.1 48.9 
   

   

Matrix format on Hadoop 152.4sec 10.0 
55.0 49.7 

10.0min 
55.9 50.3 

0.71sec 
56.7 51.8 

Matrix format on Spark 90.2sec 17.0 8.8min 0.65sec 
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Table 3.6: Running time per iteration for mood GMM training. 

 

32-cored CPU 240-cored GPU  Azhari [Azhari et al. 2011] 

time (sec) 9.6 2.9 30.0 

 

Table 3.7: CUBLAS mood classification confusion matrix (actual classes in 

rows, predicted classes in columns). 

% Anx Con Dep Exu 

Anx 81.0±8.9 1.2±2.0 1.0±1.7 16.8±7.4 

Con 0.0±0.0 91.1±2.9 8.7±2.9 0.2±0.5 

Dep 0.0±0.0 8.8±3.7 90.5±3.2 0.7±1.5 

Exu 10.2±4.7 3.8±2.0 0.0±0.0 86.0±4.2 

Average 87.2 

 

Table 3.8: ACML mood classification confusion matrix (actual classes in rows, 

predicted classes in columns). 

% Anx Con Dep Exu 

Anx 81.0±7.8 1.2±2.0 1.2±1.7 16.5±6.2 

Con 0.0±0.0 91.9±3.0 8.1±3.0 0.0±0.0 

Dep 0.0±0.0 8.3±3.5 91.0±3.2 0.7±1.5 

Exu 11.3±5.3 3.6±1.8 0.0±0.0 85.1±5.0 

Average 87.3 
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Table 3.9: OpenSMILE mood classification confusion matrix (actual classes in 

rows, predicted classes in columns). 

% Anx Con Dep Exu 

Anx 85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8 

Con 5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7 

Dep 9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0 

Exu 17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9 

Average 84.0 

 

3.5.2.2 Hadoop and Spark clustering 

Compared with the state-of-the-art implementation, from Table 3.5, we can 

find that the propose method for k-mean is 10 times faster than Mahout on 

Hadoop and 5 times faster than MLLib on Spark. Matrix format k-means on 

Hadoop even runs 3 times faster than MLLib does on Spark. Comparing Hadoop 

with Spark, we can also find that for iterative algorithms Spark with data caching 

mechanism runs faster than Hadoop. However, when computation becomes more 

expensive with the same amount of data, the gap between the two frameworks is 

shortening.  

The reason why the proposed matrix format outperforms the two libraries is 

because of the JVM thread scheduling overhead. Compared with Mahout and 

MLLib in which one thread is arranged to one data vector to perform the 

calculation, the proposed method directly feeds large chunk of data to highly 

tuned math library and let the library decide the optimal thread configuration to 

run the calculation.  

3.6 Conclusion 

In this chapter, we have proposed to use matrix format on GPU multi-core CPU 

and cluster to accelerate bag-of-words and GMM super vector method, especially 

for dictionary learning of k-means and GMM clustering. To employ high 

performance matrix operation library of ACML, ATLAS and CUBLAS, we 
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propose to reformulate k-means and EM algorithm into matrix multiplications, 

which is also convenient to be implemented with other languages for example 

MATLAB and FORTRAN. Experiments on music genre and mood classification 

tasks show that the proposed implementations achieve 38 to 209 times 

acceleration, compared with single threaded CPU version on single machine. 240-

cored GPU can run up to 5 times faster than 4 8-cored CPUs with just less 1% 

performance decline. On Hadoop and Spark cluster, the proposed method still 

achieves 10 and 5 speed-up, compared with Mahout and MLLib. 

Our proposed approach thus allows going a step further for the modeling of low 

level features when dealing with large scale data. As low level features are 

important but generally insufficient to depict the whole picture of music, we will 

discuss in the next chapter mid-level features in particular note histogram feature 

with its application in content based music classification. 
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Chapter 4: Sparse Music Decomposition with MIDI 

Dictionary and Musical Knowledge 

4.1. Introduction 

As shown in previous chapters most of the automated music analysis approaches 

available in the literature rely on the representation of the music through a set of 

low-level audio features related to frequential, energy and temporal properties. 

Identifying high-level concepts, such as music mood, from this “black-box” 

representation is particularly challenging, even with BoW and GSV.  

Therefore we propose in this chapter our new representation of the music that 

allows gaining an in-depth understanding of its structure and harmony that we 

expect to be important for further music analysis, and particularly mood 

classification. Its principle is to decompose sparsely the music into a basis of 

elementary audio elements, called musical words, which represent the notes 

played by various instruments generated through a MIDI synthesizer. To do so, 

our approach relies on the sparse theory [Elad 2010] and its essence is to represent 

the music, thanks to a “musical dictionary” made of over complete musical words 

that are related to the notes produced by various instruments. From this sparse 

representation, we also define a new feature which favors further mood 

classification. Experiments driven on two music datasets have shown the 

effectiveness of this approach to represent accurately music signals and to allow 

efficient music mood classification. 

To achieve more accurate decomposition, statistical music knowledge is further 

integrated into the whole sparse decomposition process. We then present our two-

stage sparse decomposition approach integrated with music knowledge. In frame 

level decomposition stage, note co-occurrence probabilities are embedded to 

guide atom selection in modified matching pursuit algorithm with a MIDI 

dictionary. A sparse multiple candidate graph is then constructed to provide 

backup choices for later selections. In the global optimal path searching stage, 

note transition probabilities are incorporated together with a goodness measure of 
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frame decomposition. Its principle is to guide the local sparse music 

decomposition with co-occurred notes information and decode the global optimal 

decomposition path with consecutive note knowledge. Due to the Gabor limit, 

time and frequency resolution cannot be well satisfied at the same time. Thus, we 

emphasize the frequency resolution aspect rather than the exact time location, 

since correct note recognition is more important for our following classification 

task. Experiments on real-world polyphonic music show that embedding music 

knowledge within the sparse decomposition achieves notable improvement in 

terms of note recognition precision and recall.   

The rest of the chapter is organized as follow. Section 4.2 introduces sparse 

music decomposition. To build a musical dictionary, two sets of MIDI based 

instrument sound are generated, which is detailed in section 4.2.2. A modified 

matching pursuit algorithm is presented in section 4.2.3 to perform music 

decomposition subject to a natural positive constraint and note histogram feature 

is also defined. In section 4.2.4, the quality of sparse music decomposition is 

verified and mood classification experiments on two data sets are conducted. 

Section 4.3 introduces our two-stage approach in detail. Section 4.3.1 explains our 

frame level statistical integration while section 4.3.2 shows how global level 

optimal paths are constructed. Section 4.3.3 gives experimental results on real-

world music signals. The conclusion is drawn in the final section. 

4.2. Sparse Decomposition of Music Using a Musical Dictionary 

4.2.1. Overview of the approach 

The general principle of our music sparse representation and feature extraction 

is illustrated in Figure 4.1. It relies on a musical dictionary made of musical 

words. Each of these words corresponds to the spectrum of a note produced by an 

instrument through a MIDI synthesizer. To decompose a music signal onto this 

musical dictionary, the signal is firstly framed by Hamming window and the 

spectrum is computed in each of these frames. The sparse solution solver then 

decomposes each of the signal frames into the musical dictionary to obtain the 

sparse solution   describing the musical words that are used to represent the 
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frame content. The sparse solutions   are finally aggregated and normalized over 

all frames to generate an instrument note histogram, or musical histogram, which 

will form the feature representing the input music signal for further classification. 

 

 

Figure 4.1: Musical histogram feature extraction flow chart. 

 

4.2.2. MIDI musical dictionary  

Elaborating an appropriate musical dictionary is a key issue since this set of 

atoms, or musical words, has to be rich enough to allow accurate music 

decomposition, in terms of notes and instruments. Unfortunately, it is infeasible to 

record such a huge data set. Although [Leveau 2008] has suggested learning 

atoms from instrument playing recordings, it is still impractical to apply to a large 

instrument set. Therefore, in order to get adequate instrument note sounds we 

propose to make use of a MIDI synthesizer.  

Indeed, a MIDI synthesizer is able to generate various instrument sounds on 

almost all possible notes. In our system two sets of MIDI synthesized waves are 

tested. One is produced by “Windows Vista built-in Microsoft GS Wavetable 
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Synthesizer”. The other is generated from Logic Pro 9, a high quality music 

producing software from Apple Inc.  

For wavetable synthesizer we select all 128 “general MIDI level 1” sound 

instruments and 47 “general MIDI level 1” percussion instruments
1
. For Logic 

Pro 9, we choose the first 80 realistic instruments as in general MIDI level 1 set 

and 31 percussion instrument sets including 1860 percussions. For each 

instrument, we choose 60 notes form note 31 to note 90. The 60 notes span 5 

octaves from low to high
2
, covering most instruments’ playing note range.  

The duration of each note is set to 186ms, which are 4096 samples under a 

sample rate of 22050Hz. This duration is long enough to hold one attack-decay-

sustain-release envelope (ADSR) and leads to 5.38Hz in terms of frequency 

resolution, which is sufficient to discriminate adjacent note spectrum. This 

window length is also convenient for FFT computation. Our MIDI musical 

dictionary is finally built by computing each musical word in frequency domain 

as the single-sided power spectrum of each note wave generated by short time 

Fourier transform  (STFT) with Hamming window. The STFT is applied because 

with 5.38Hz resolution single-sided spectrum for each note is linearly addable and 

more robust against time-frequency transform like wavelet transform. According 

to our previous experiment atoms of wavelet transform coefficients cannot 

compare with FFT ones due to its sensitivity of time position and the quality of 

input signal.  

A musical word is thus a 2048 dimensional vector. The number of musical 

words is decided by the number of instruments multiplying the number of notes 

(60) plus the number of percussion instruments. For the dictionary generated by 

“general MIDI level 1”, 7727 musical words are created. For Logic Pro 9, 6660 

musical words are created. 

4.2.3. Sparse representation and positive constraint matching pursuit  

Sparse representation [Elad 2010] is originated from finding the solution    of 

an underdetermined linear system      so that    contains as few non-zero 

                                                           
1
 http://www.midi.org/techspecs/gm1sound.php 

2
 http://tonalsoft.com/pub/news/pitch-bend.aspx 

http://www.midi.org/techspecs/gm1sound.php
http://tonalsoft.com/pub/news/pitch-bend.aspx
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components as possible. This problem is formulated as           subject to 

    . In many cases      is hard to satisfy, thus in practice      and 

        are minimized simultaneously. When applied to signal processing,   

represents the signal to analyze,   is an over-complete dictionary with atoms that 

can reconstruct   and    is the sparse interpretation of   under  . For similar 

example inverse Fourier matrix     serves as dictionary to reconstruct signal   

using its spare frequency domain coefficients  , although     is not over-

complete.  

With a MIDI musical dictionary in hand, any sparse solution solver can be 

applied to produce sparse solution in respect to note. Unfortunately classical 

greedy algorithms, for example orthogonal matching pursuit (OMP), cannot 

directly be applied to the decomposition. Because each musical word in MIDI 

dictionary is a single-sided power spectrum of certain note, a positive constraint is 

naturally imposed onto the sparse solution. In another word, any negative 

component of sparse solution is prohibited, as any negative appearance of certain 

note is impossible.  

We propose a positive constraint matching pursuit (PCMP) algorithm detailed 

in Algorithm 1 to solve this problem. The difference between OMP [Elad 2010] 

and the proposed algorithm is the positive constraint introduced in the step 3 of 

main iteration. For OMP, least mean square (LMS) suffices to solve the 

minimization in step 3, which also results in residual    orthogonal to support   . 

For PCMP, however, after positive constraint minimization, orthogonality 

between   and   is not guaranteed, thus the algorithm is turned to a special 

matching pursuit. 
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Algorithm 1: Positive constraint matching pursuit 

Task: Approximate the solution of problem:         , subject to 

         

Input: Dictionary  , signal  , max iteration number   and error 

threshold   . 

Output: sparse solution:    

Initialization:
 

Initial solution:      . 

Initial residual:     . 

Initial support:       . 

Main iteration: for            

1. Compute error:                      
 

 
  for all   using the 

optimal choice   
    

           
 
. 

2. Update support: Find a minimizer,    of                          

and update               

3. Update provisional solution: Compute   , minimizer of        
  

subject to                  . 

4. Update residual:        . 

5. If      
     break. 

Output result:      . 
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4.2.4. A musical histogram as audio feature 

As mentioned previously, in order to perform the music signal decomposition 

onto the musical dictionary, the music is firstly framed and the spectrum is 

computed in each of these frames. Then, a sparse decomposition of each frame is 

computed using PCMP onto the musical dictionary. The obtained sparse 

decompositions finally need to be combined in order to obtain a feature that can 

represent the whole music signal for further classification. To do so, we have 

defined a musical histogram that is built from the aggregation of the sparse 

representation of each frame using the following process. Let   be the total 

number of frames of the input music. For each frame  , compute decomposition 

sparse solution   . The dimension of    is equal to the number of musical words 

in the dictionary. The musical histogram feature   is computed as         . 

For the consideration of efficiency and complete covering, in the following 

experiments frame shifting length is fixed to 186ms, the same as frame length. 

4.2.5 Experiments and results 

We present in the following subsections experiments we have driven in order to 

evaluate the ability of the proposed method to accurately decompose music, as 

well as the efficiency of our musical histogram feature for the problem of music 

mood classification.  

4.2.5.1. Verification of the decomposition with MIDI dictionary 

To evaluate the decomposition quality with proposed PCMP and MIDI musical 

dictionary, a multi-timbral music with time domain note reference has been used, 

which is from Mirex2007 multiF0 development data
3
. The music is a recording of 

the fifth variation from L. van Beethoven Variations from String Quartet Op.18 

N.5, lasting for 54s. 5 instruments are included in the music: bassoon, clarinet, 

flute, horn and oboe. Each instrument was recorded separately while the 

performer is listening to the other parts through headphones. Later the 5 parts 

were mixed to a mono 44.1 kHz 16 bits wave file.  

                                                           
3
 http://www.music-ir.org/mirex/wiki/2007 
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In this evaluation, only Logic Pro 9 MIDI dictionary has been tested. Figure 4.2 

shows precision and recall scatter diagram of the decomposition. Statistic of note 

recognition precision and recall has been made upon consecutive 186ms 

segments, the same as in computing the musical histogram feature. From Figure 

4.2 we can find that when there is no threshold imposed on sparse solution, 69% 

of notes can be recalled, although the precision is 40%. If we only consider the 

recognition of notes, no matter the octave, the recall and precision increase to 

85% and 47% as presented in Figure 4.3. These results show that the proposed 

PCMP with MIDI musical dictionary can detect the structure of multi-timbral 

music with a satisfactory efficiency. 

 

Figure 4.2: Note precision vs. recall. 
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Figure 4.3: Note precision vs. recall with octave tolerance. 

 

4.2.5.2. Mood classification with musical histogram feature 

Two music datasets have been used in our experiments to evaluate the 

performance of our musical histogram feature for the problem of music mood 

classification. We have only considered datasets containing voiceless music titles, 

since our MIDI dictionary covers at present only instrument sounds.  The first 

dataset provided by Xiao et al. [Xiao et al. 2008] consists of 416 16s long pure 

classical music segments, manually divided into 4 moods as shown in Table 4.1. 

According to [Xiao et al. 2008], 16s long segments are most sensitive to mood for 

this dataset. The second dataset contains 401 30s long segments of modern music 

from various genres obtained from APM Music web site
4
 that provides the mood 

labels. The 401 excerpts are equally selected from 4 moods as shown in Table 4.2. 

The same type of dataset is also used for the mood classification task of MIREX 

challenge. Compared with the first classical dataset, APM music enjoys more 

                                                           
4
 http://www.apmmusic.com/myapm/main.php 
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variety not only in genres (classical, pop, jazz, rock etc.) but also in diversified 

musical instruments.  

Table 4.1:  Classical music dataset mood distribution. 

 Anxious Content Depressed Exuberant 

# music 81 124 120 91 

 

Table 4.2: APM dataset mood distribution. 

 Fear Happy Relax Sad 

# music 101 100 100 100 

 

In addition to our musical histogram feature, we have made use of the well-

known large emotion feature set of openSMILE [Eyben et al. 2010] as a 

comparison reference. This large emotion feature set contains 6552 features 

including various time and frequency domain feature such as zero cross rate, log 

energy, filter bank energy, MFCC, pitch etc. and statistical functions performing 

on them. In our experiments, 5 times 2-fold cross-validation has been performed. 

For each time and each fold, the same training and testing division has been used 

by both openSMILE and musical histogram features. SVM classifiers with RBF 

kernel have been employed and a simple averaging probability output by SVM 

has been used for late fusion of the two classifiers results.  

4.2.5.3. Results and analysis 

The averaged confusion matrices for the first classical music dataset are presented 

in Tables 4.3-4.9. The results obtained by Xiao et al. [Xiao et al. 2008a, Xiao et 

al. 2008b] are shown in Table 4.3. From Table 4.4 and 4.5 we can find that 

Gaussian super vector outperforms OpenSmile feature by 4.3 percents. 

Comparing Tables 4.6 with 4.7, we can find that, no surprisingly, the dictionary 

built with high quality instrument waves (Logic Pro 9) produces a more 

discriminative musical histogram feature, probably due to its higher ability to 

accurately decompose the music signal. According to Table 4.8 and 4.9, when late 
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fusion is performed on Logic Pro 9 musical histogram feature with openSMILE 

features and GSV, additional 3.7% and 4.4% improvement are further obtained on 

average accuracy. Note that for each individual mood late fusion achieves best 

accuracy too. Speaking of individual feature, from Table 4.4, 4.5, 4.6, 4.7, we can 

find that the musical histogram feature generated from Logic Pro 9 MIDI 

dictionary outperforms the other 3 by 2% to 7% on average accuracy. For each 

individual mood, Logic Pro 9 MIDI dictionary also surpasses the others.   

Table 4.3: Xiao [Xiao et al. 2008b] confusion matrix (actual classes in rows, 

predicted classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 78.31 1.85 18.47 1.37 

Con 2.10 79.14 0.00 18.77 

Dep 10.25 1.33 88.08 0.33 

Exu 2.20 11.43 0.11 86.26 

Average 82.95 

 

Table 4.4: OpenSMILE confusion matrix (actual classes in rows, predicted 

classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8 

Con 5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7 

Dep 9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0 

Exu 17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9 

Average 84.0 

 

  



Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge 

83 

 

 

Table 4.5: GSV confusion matrix (actual classes in rows, predicted classes in 

columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 87.1 2.5 0.5 11.5 

Con 3.5 92.9 2.3 1.3 

Dep 4.1 5.6 88.4 1.9 

Exu 8.6 6.8 0.1 84.7 

Average 88.3 

Table 4.6: General MIDI confusion matrix (actual classes in rows, predicted 

classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 81.5±5.8 1.0±1.2 8.3±6.2 9.3±3.5 

Con 0.2±0.5 93.1±4.3 6.1±3.9 0.6±1.1 

Dep 4.5±3.1 8.3±2.1 82.7±4.4 4.5±2.6 

Exu 8.4±4.7 6.2±2.6 6.7±3.6 78.7±5.8 

Average 84.0 

Table 4.7: Logic Pro 9 confusion matrix. (actual classes in rows, predicted 

classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 87.3±3.6 2.5±2.5 2.0±1.5 8.2±4.6 

Con 0.8±1.1 96.0±2.3 1.3±1.4 1.9±1.9 

Dep 2.2±2.9 5.3±2.4 90.0±2.9 2.5±1.9 

Exu 5.1±1.4 5.8±2.8 2.7±1.3 86.4±3.5 

Average 90.0 
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Table 4.8: OpenSMILE fused with PCMP confusion matrix (actual classes in 

rows, predicted classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 91.5±1.7 1.0±1.2 1.0±1.2 6.5±2.3 

Con 0.2±0.5 96.3±2.7 3.4±2.3 0.2±0.5 

Dep 1.2±1.7 3.2±1.7 94.7±2.3 1.0±1.1 

Exu 5.8±4.2 1.6±1.4 0.2±0.7 92.4±4.1 

Average 93.7 

 

Table 4.9: GSV fused with PCMP confusion matrix (actual classes in rows, 

predicted classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 92.4 0.6 1.0 6.0 

Con 0.2 96.5 3.1 0.2 

Dep 1.3 3.2 94.2 1.3 

Exu 4.2 1.2 0.2 94.4 

Average 94.4 

 

The averaged confusion matrices for the second APM music dataset are presented 

in Tables 4.10-4.14. Note that latest best result in MIREX2010 on a similar data 

source with more mood classes achieved 64% on average accuracy. Table 4.10 

and Table 4.11 show that GSV still outperform OpenSMILE by 2%. From Table 

4.10-4.12, we can find that compared with the classical music set the overall 

performance of musical histogram feature, openSMILE and GSV decline by 30%, 

10% and 11.5%. OpenSMILE feature set outperforms Logic Pro 9 musical 

histogram feature by 15.5% and GSV surpass musical histogram feature by 17.4% 

However, according to Table 4.13 and 4.14, when these two levels of feature sets 

are combined in the late fusion, the average accuracy increases by 2.5% and 

2.1%. Several other conclusions can also be drawn from these results. First, the 

musical histogram feature is less effective with this modern music dataset than 
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with the classical music dataset. The reason certainly lies in the MIDI dictionary 

that may have difficulties to accurately decompose this music due to its important 

complexity and the presence of instruments in music that are missing in the 

dictionary. This problem should be solved by using a MIDI synthesizer producing 

more realistic instrument sounds. Second important information provided by these 

results is that even though openSMILE feature set provides very complete low-

level information characterizing temporal and frequential signal properties, its 

performance for classification can be improved by enriching this description with 

higher level information that we propose with our musical histogram feature 

which allows to explicit the music content. 

Table 4.10: OpenSMILE confusion matrix (actual classes in rows, predicted 

classes in columns) using the APM dataset. 

% Fear Happy Relax Sad 

Fear 83.2±6.3 5.2±3.2 2.4±2.7 9.2±4.1 

Happy 11.6±6.4 78.2±9.2 8.8±5.3 1.4±2.5 

Relax 10.4±3.9 8.8±4.0 68.8±5.9 12.0±5.4 

Sad 23.0±7.8 1.4±1.3 6.2±3.3 69.4±8.2 

Average 74.9 

 

Table 4.11: GSV confusion matrix (actual classes in rows, predicted classes in 

columns) using the APM dataset. 

% Fear Happy Relax Sad 

Fear 86.2 3.3 2.4 8.1 

Happy 9.5 81.4 7.8 1.3 

Relax 10.2 8.6 69.8 11.4 

Sad 23.0 1.4 5.7 69.9 

Average 76.8 
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Table 4.12: Logic Pro 9 confusion matrix (actual classes in rows, predicted 

classes in columns) using the APM dataset. 

% Fear Happy Relax Sad 

Fear 61.8±7.7 12.2±4.5 7.4±4.2 18.6±3.0 

Happy 8.6±3.1 67.2±6.8 17.4±5.5 6.8±2.4 

Relax 9.0±2.7 19.8±4.8 45.8±6.8 25.4±5.1 

Sad 11.4±5.2 6.4±3.1 19.4±6.5 62.8±5.7 

Average 59.4 

 

Table 4.13: OpenSmile fused with PCMP confusion matrix (actual classes in 

rows, predicted classes in columns). 

% Fear Happy Relax Sad 

Fear 80.6 4.4±2.0 1.4±1.3 13.6±4.9 

Happy 5.4±3.5 83.8±7.6 7.8±6.0 3.0±2.9 

Relax 7.8±4.2 10.2±3.9 68.6±6.9 13.4±4.7 

Sad 17.8±5.8 0.4±0.8 5.4±2.4 76.4±6.1 

Average 77.4 

 

Table 4.14: GSV fuse PCMP confusion matrix (actual classes in rows, predicted 

classes in columns) using the APM dataset. 

% Fear Happy Relax Sad 

Fear 82.3 4.0 1.4 12.3 

Happy 5.3 84.0 7.7 3.0 

Relax 7.1 10.0 70.9 12.0 

Sad 16.3 0.4 4.9 78.4 

Average 78.9 
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4.3 Sparse Decomposition with Note Statistics 

Our proposed method consists of two main steps. In the first step, the entire music 

signal is framed and a modified orthogonal matching pursuit algorithm is 

performed on each frame to generate decomposition candidates. In the second 

step, decomposition candidates are connected to form a directed graph and an 

optimal path is then constructed to produce the final decomposition result. 

4.3.1 Frame level sparse decomposition 

Former study shows that elaborating an appropriate musical dictionary is a key 

issue since this set of atoms has to be rich enough to characterize the varieties of 

real word music. Although [Leveau et al. 2008] has developed sophisticated 

method to learn atoms from instrument recordings, it is still impractical to apply 

to a large instrument set. Therefore, in order to get adequate instrument note 

sounds, we propose to make use of a MIDI synthesizer. Logic Pro 9 is employed 

in our approach to generate the MIDI note dictionary because of its huge 

instrumental library and the high sound quality. Unlike pre-installed MIDI 

synthesizer with sound card, Logic Pro 9 uses a large number of real instrument 

recordings to make synthesized wave signal as natural as possible.  

To build the MIDI dictionary, we choose the first 80 realistic instruments as in 

general MIDI level 1 set and 31 percussion instrument sets including 1860 

percussion sounds. For each instrument, we keep 60 notes from note 31 to note 

90. The 60 notes span 5 octaves from low to high, covering most instrumental 

playing range. The duration of each note is set to 186ms, which are 4096 samples 

under a sample rate of 22050Hz. This duration is long enough to hold one attack-

decay-sustain-release (ADSR) envelope and leads to 5.38Hz in terms of 

frequency resolution, which is sufficient to discriminate adjacent notes in piano 

roll. Our MIDI note wave is then converted into a single-sided power spectrum 

obtained by applying the short time Fourier transform (STFT) with a Hamming 

window. The final MIDI dictionary thus contains 6660 2048-dimensional vectors.  

The adoption of the sparse representation is based on the hypothesis that during 

a 186ms time slot, there will not be many notes played together. Therefore, 
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concurrent notes are sparse within one frame. Sparse representation [Elad 2010] is 

originated from finding the solution    of an underdetermined linear system 

     so that    contains as few non-zero components as possible. In most 

cases      is hard to satisfy, thus in practice      and         are 

minimized simultaneously instead.  

Armed with our MIDI dictionary, the classical matching pursuit algorithm like 

orthogonal matching pursuit (OMP) [Pati et al. 1993] must be modified because 

the single-sided power spectrum words in MIDI dictionary impose an inherent 

positive constraint on sparse solutions. In other words, any negative component of 

a sparse solution is prohibited, as negative appearance of certain notes is 

impossible. To solve this problem we adopt a positive constraint matching pursuit 

(PCMP) algorithm that is mentioned in [Gao et al. 2012, Bruckstein et al. 2008]. 

The difference between OMP and PCMP is in updating a provisional solution 

step: for OMP, least mean square (LMS) suffices to solve the minimization 

resulting in residual signals orthogonal to support set. For PCMP, however, after 

the positive constraint minimization, orthogonality is not always guaranteed, thus 

the algorithm is turned to a weak orthogonal matching pursuit.  

When scrutinizing the decomposition results of PCMP within one frame, we 

found a number of irregular note combinations. This is due to PCMP’s over-

fitting target signals without considering any compatibility of concurrent notes. In 

fact, atom selection in each iteration of orthogonal matching pursuit algorithm is 

very important. OMP guarantees that expending support set with any linear 

independent atoms will decrease the reconstruction error and at the same time 

keep the residual signal orthogonal to the new expanded support set. Any atom 

selected in the support set will permanently reside. Therefore previously selected 

atoms have a great influence on following ones and alter the overall OMP 

performance. Although PCMP does not always hold orthogonal property, the 

principle remains the same. 

Selecting a new atom in dictionary is thus the very place where concurrent note 

heuristic information should be embedded. To formulate concurrent note 
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information, Bayes model is employed in our approach to approximate the 

posterior probability of potential note given observed notes  

       
            
 
   

             
 
    

                                         

where              denotes   observed notes obtained by first   PCMP 

iterations,   represents a potential co-occurred note with  . The note prior 

probability      and the note co-occurrence posterior probability        are 

estimated from our classical music MIDI database. To obtain       , a joint 

distribution        is firstly estimated by accounting the frequency with overlap 

degree of the concurrent note   and    Then        is obtained by normalizing 

       over    Although equation (4.1) provides instructive information to help 

select appropriate note combinations, it is still risky to only consider the best note 

decomposition, since the second best one may be more appropriate in adjacent 

note context.  To avoid the one best bias, we propose to preserve multiple 

candidates to give top-N best decompositions chances to recover in optimal path 

searching. 

Orthogonal matching pursuit is a greedy algorithm. In each iteration only the 

best atom will be added into support set. This can be risky in some cases, since 

once a “bad” atom is selected, this error cannot be corrected in the future. In 

[Chen et al. 2001], it has been shown that it is possible to select “bad” atom 

initially so as to trap OMP from reconstructing target signals. Methods like 

OCMP in [Rath et al. 2008] are proposed to overcome the problem. However, in 

music decomposition the same note in different octave or from the same kind of 

instruments shares the similar harmonic pattern. Therefore it is hazardous to rule 

out a suboptimal decomposition too early before adjacent note compatibility is 

checked.  

To overcome this drawback of OMP, we propose to keep   best candidates in 

each iteration instead of only one. To measure the goodness of frame 

decomposition we define                         
 , where   is sparse 

note decomposition vector,    is decomposition residual signal,      
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     denotes note concurrent probability,   is a free parameter 

that balances concurrent probability term and reconstruction error term.  As an 

example shown in Figure 4.4 we keep the top 3 decomposition candidates in 

every iteration. In the first iteration (C), (E), (G) are kept. In the second iteration, 

(C, D), (E, F) and (E, G) are obtained according to the reconstruction error and 

concurrent probability. Note that (G) selected in the first iteration is eliminated 

because its descendant combinations (G,*) are inferior to others’. After 3 

iterations, combinations of (C, D, E), (C, D, G) and (E, F, B) survive, as shown in 

orange.  

 

Figure 4.4: Multiple candidate selection example 

When sparse decomposition terminates, the top   note candidates are derived 

for every signal frame. The best one can be treated as the decomposition result of 

the current frame. Besides, all candidates are preserved for constructing the 

optimal decomposition path when we further investigate inter-frame relations. 

The multiple candidate PCMP algorithm that we propose is summarized in 

Algorithm 2. 
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4.3.2 Global level optimal note path searching 

All previous steps in sections 4.3.1 focus on improving sparse note decomposition 

within one signal frame. When further scrutinizing the PCMP decomposition 

between consecutive frames, we can still find a number of discontinuous note 

decompositions, in which the note sequence has sudden abnormal jumps in 

adjacent frames, including octave shift or sharp/flat drift. This is due to a lack of 

note transition regulation and because the sparse decomposition only minimizes 

reconstruction error in current frame without considering any neighbor frame 

contexts.  

Besides the co-occurred ones, consecutive notes bear strong correlations which 

convey various melodies, temporal and dynamic information of music. It is 

reasonable to incorporate such sequential knowledge of notes as to suppress the 

discontinuous note error. 
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Algorithm 4.2:Positive Constraint Matching Pursuit Producing Multiple 

Candidates  

Task: Approximate the solution of problem:         , subject to         . 

Input: Dictionary  , signal  , max iteration number  , top    candidates to keep, 

balance parameter   , note posterior probability        and error threshold   . 

Output: sparse solution:    

Initialization:
 

Initial residual:   
   . 

Initial support:   
     . 

Initial candidate queue:       
    

    
 } 

Main iteration: 

for            

for          

1. Compute       
     according to equation (4.1) 

2. Compute error:                   
    

 

 
              

      all   

using the optimal choice   
    

   
        

 
 . 

3. Find top   minimizers of      to form                          

  
     , and push       

           
           

           into    

end 

for each   
     

 Compute   that minimizes        
  subject to              

     . 

 Compute residual   
      . 

end 

Ascendingly sort    according to    
  

 

 
            

    and keep the first 

  items. 

If any    
  

 

 
    break. 

end 

Output result:      . 
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We thus apply transition probabilities to model relations between two 

decomposition candidates in adjacent frames. To formulate note transitions, 

Bayes model is adopted so that conditional probability can be approximated from 

individual note pairs. Since at most   candidates remain in one frame the 

posterior probability of candidate   in frame   given candidate   in frame     is 

calculated as 

    
   
   

     
   

       
      

       
   

        
      

       
    

                                         

where   
   
      

   
     

   
     

   
  denotes the decomposition candidate   in frame   

containing   notes.             is calculated similarly as in equation (4.1).  

Thanks to the multiple decomposition candidates generated by the modified 

PCMP previously, an inter-decomposition directed graph is further constructed to 

help determining the optimal decomposition path through all frames, as illustrated 

in Figure 4.5. In this directed graph, each decomposition candidate forms a node 

and outgoing edge denotes the transition probability computed by equation (4.2). 

The nodes are disconnected within the same frame indexed with  . 

 

Figure 4.5: Optimal path decoding example 
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In order to connect transition probabilities with the sparse decomposition 

candidates, the decomposition goodness measure is converted into corresponding 

probabilities as                
  , since the frame signal   and atoms in   

have been normalized to unit vectors. The conversion also reflects a reasonable 

assumption that the reconstructed signal is approximately Gaussian distributed 

around original one. Treating the decomposition candidates as hidden states of a 

first order Hidden Markov Model (HMM), Viterbi algorithm decodes the optimal 

decomposition candidate path   : 

         
 

      
           

         
      

 

 
     

   
 
 

 

 

 

   

 

where   is the frame index,   is the total number of frames,   is a balance 

parameter to adjust emphasis,    denotes decomposition candidate index in frame 

  along path  . Initially      
   
    

   
  =1. A similar study on emotion recognition 

from audio signal is presented in [Meng et. al 2011] in which the hidden states of 

the HMMs are associated with the levels of affective dimensions to convert the 

classification problem into a best path finding problem in HMM. 

4.3.3 Experiment and results  

To evaluate the decomposition quality of the proposed PCMP with note statistics, 

a multi-timbral music with time domain note reference has been used, which is 

provided in Mirex2007 multiF0 development data [Mirex2007 2007]. The music 

is a recording of the fifth variation from L. van Beethoven Variations from String 

Quartet Op.18 N.5, lasting for 54s. 5 instruments are included into the music. 

Each instrument was recorded separately and then mixed to a mono 44.1 kHz 16 

bits wave file. The whole music is tested by our system (PCMP with multi-

candidate and Viterbi) against its ground truth MIDI file. 

Another widely used dataset adopted in our experiments is MUS, provided in 

MAPS [Emiya et al. 2010]. MUS contains 270 pieces of classical and traditional 

music, recorded in different conditions which vary in piano instruments and 

surroundings. For each piano music piece, as in [Lewandowski et al. 2012], first 

30 seconds are tested by our system against ground truth MIDI files. 



Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge 

95 

 

Figure 4.6 shows precision and recall scatter diagram of the proposed 

decomposition that improve original PCMP, noted as PCMPMC and PCMPMCV. 

Table 4.15 displays the comparisons in terms of precision, recall and F-measure 

between our proposed method and the state of the art results. F-measure is defined 

as the harmonic mean of precision and recall. Statistic of note recognition 

precision and recall has been made upon consecutive 186ms frames. For ground 

truth MIDI, if 70% of some note lies in the frame the note is accounted and there 

is no frequency tolerance. Threshold for drawing the diagram is imposed on 

sparse solution vector in each frame to filter insignificant note detection according 

to its sparse solution value. Different thresholds result in scatter points in Figure 

4.6. Two free parameters   and   are set to 0.8 and 1.3 to balance reconstruction 

error and note statistics.  

Table 4.15: Average multiple pitch estimation performance on MIREX2007 

dataset. 

 Prec. 

(%) 

Rec. 

(%) 

F-meas. 

(%) 

NMF[Raczynski et al. 2007] 41.1 46.6 45.3 

HTC[Kameoka et al. 2007] 57.4 51.3 54.2 

JHT[Wu et al. 2011] 59.7 61.4 60.5 

PCMPMCV 51.8 72.0 60.3 

 

From Figure 4.6 we can see that when co-occurrence note information is 

integrated into PCMP, the precision increases about 6% while recall increases by 

2%~3%. When the note transition information is fused and the optimal path 

decoding is applied, the precision and recall are further improved by 5% and 2% 

approximately. From Table 4.15 and Figure 4.6 we can find that if no threshold is 

imposed on the sparse solution of PCMPMCV, 72% of the notes can be recalled 

while the precision is 51.8% resulting in an F-measure of 60.3 %. The recall of 

our best configuration outperforms state of the art result in [Wu et al. 2011] by 
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more than 10% while the precision is 8% lower, resulting in an F-measure 0.2% 

lower than that reported in [Wu et al. 2011]. 

Table 4.16: Average multiple pitch estimation performance on MUS dataset. 

 Prec.(%) Rec. (%) F-meas.(%) 

Spectral constraints 

 [Vincent et al. 2010] 
71.6 65.5 67.0 

Isolated note spectra 

 [Vincent et al. 2010] 
68.6 66.7 66.0 

DNMF-LV  

[Raczynski et al. 2012] 

68.1 65.9 66.9 

DNMF-AE  

[Raczynski et al. 2012] 

66.8 68.7 67.8 

SONIC [Marolt 2004] 74.5 57.6 63.6 

PCMPMCV  60.7 77.3 68.0 

 

Table 4.16 shows the precision, recall and F-measure results on MUS data set. 

All parameters and setups are the same as used in previous experiment except for 

the conditional probability estimation. In this experiment the rest data other than 

first 30 seconds are used to estimate conditional probabilities       . From Table 

4.16 we can observe that the proposed approach achieves the highest recall and F-

measure of 77.3% and 68%, although obtains the lowest precision of 60.7%. 
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Figure 4.6: Note precision vs. recall of the two improvements. 

From the two experiments, we can find that with statistical musical knowledge 

sparse decomposition is improved in terms of both precision and recall. The 

proposed approach tends to obtain superior recall and F-measures but lower 

precisions compared with variant NMF and other methods. Higher recall means 

the more information is preserved in the decomposition results. Since our final 

aim of the decomposition is to provide decent features for music classifications, 

the performance of our system is actually preferred. Our higher recalls and F-

measures are attributed to the quality of MIDI dictionary as well as statistical 

music knowledge fused in sparse decomposition. Longer analysis window is 

another important factor.  

When comparing decomposition with the ground truth, we found numbers of 

instrument errors even with correct note detections, which is likely caused by 

mismatches between the MIDI dictionary and the real-world data. In some cases 

concurrent and transition probability of notes can even make incorrect 

compensation to original PCMP, which is probably due to the limitation of the 

naive Bayes model. To overcome these drawbacks, dictionary adaptation 
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techniques and sophisticated graphical models will be proposed and investigated 

in our future work. 

To test our PCMP based mid-level feature for content-based music 

classification, we have conducted experiments on previous mentioned data sets. 

The results are shown in following tables. From Table 4.17, compared with 

PCMP result, the multiple candidates improve the average accuracy by 0.7%. 

Table 4.18 shows that optimal path gain additional 0.5% of accuracy compared 

with multiple candidates situation. When low level information is added, as 

shown in Table 4.19, the overall performance is increased by 3.6%. Tables 4.20 to 

4.22 demonstrate the similar results on APM data set. Compared with basic 

PCMP results, from Table 4.20 and 4.21, we can find that the two innovations of 

PCMP achieve 2% and 3% improvement. The Table 4.22 shows that the best 

performance reached is 80.2% when GSV is further fused. 

Table 4.17: PCMP+multiple candidate confusion matrix (actual classes in rows, 

predicted classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 88.7 2.3 1.5 7.5 

Con 0.8 96.1 1.3 1.8 

Dep 2.2 4.9 90.3 2.4 

Exu 4.6 5.2 2.7 87.5 

Average 90.7 

 

Table 4.18: PCMP+multiple candidates+optimal path confusion matrix (actual 

classes in rows, predicted classes in columns) using the classical dataset. 

% Anx Con Dep Exu 

Anx 89.3 2.3 1.3 7.1 

Con 0.8 96.2 1.3 1.7 

Dep 2.0 4.9 91.0 2.1 

Exu 4.4 4.8 2.7 88.1 

Average 91.2 
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Table 4.19: GSV fused with PCMP+multiple candidates+optimal path confusion 

matrix (actual classes in rows, predicted classes in columns) using the classical 

dataset. 

% Anx Con Dep Exu 

Anx 92.9 0.3 1.0 5.8 

Con 0.2 96.7 3.0 0.1 

Dep 1.2 2.8 94.9 1.1 

Exu 4.0 1.1 0.2 94.7 

Average 94.8 

 

Table 4.20 PCMP+multiple candidates confusion matrix (actual classes in rows, 

predicted classes in columns) using the APM dataset. 

% Fear Happy Relax Sad 

Fear 63.1 11.9 7.8 17.2 

Happy 8.5 68.0 17.2 6.3 

Relax 7.6 18.1 51.0 23.3 

Sad 10.0 5.6 18.5 65.9 

Average 62.0 

 

Table 4.21: PCMP+multiple candidates+optimal path confusion matrix (actual 

classes in rows, predicted classes in columns) using the APM dataset. 

% Fear Happy Relax Sad 

Fear 64.3 11.5 7.6 16.6 

Happy 8.3 69.2 16.5 6.0 

Relax 7.2 18.1 51.8 22.9 

Sad 10.0 5.1 18.1 66.8 

Average 63.0 
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Table 4.22: GSV fused with PCMP+multiple candidates+optimal path confusion 

matrix (actual classes in rows, predicted classes in columns) using the APM 

dataset. 

% Fear Happy Relax Sad 

Fear 83.4 3.6 1.3 11.7 

Happy 4.7 85.7 7.0 2.6 

Relax 6.1 9.6 72.6 11.7 

Sad 16.3 0.4 4.4 78.9 

Average 80.2 

 

We also tested our PCMP based feature on two public datasets: “Now That’s 

What I Call Music” proposed in [Shuller et al. 2010] for mood classification and 

the famous GTZAN data set for genre classification. Integrated with Xiao’s and 

APM data set, the overall results are shown in Table 4.23. From Table 4.23 we 

can observe that although PCMP based features cannot beat the state-of-the-art in 

[Shuller et al. 2010] and [Panagakis et al. 2009], they have demonstrated the 

ability to compensate the drawback of low level information by increasing 

classification accuracy by around 3%. 
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Table 4.23: Results on all data sets. 

Accuracy (%) 
Mood Genre 

Xiao  APM NTWICM (V/A) GTZAN 

Xiao [Xiao et al. 2008b] 82.95 N/A N/A N/A 

Shuller [Shuller et al. 

2010] 

N/A N/A 61.0/58.7 N/A 

Topology preserving 

 NTF +SRC[Panagakis et 

al. 2009] 

N/A N/A N/A 93.7 

BoW(GMM) 87.3 N/A 55.9/50.3 78.7 

GSV 88.3 76.8 56.7/51.8 80.5 

OpenSmile 84.0 74.9 N/A N/A 

PCMP 90.0 59.4 48.3/41.5 78.3 

OpenSmile+PCMP 93.7 77.4 N/A N/A 

GSV+PCMP 94.4 78.9 N/A N/A 

PCMP+multiple 

candidates 

90.7 62.0 N/A N/A 

PCMP+multiple 

candidates+optimal path 

91.2 63.0 49.6/44.1 79.5 

GSV+PCMP+multiple 

candidates +optimal path 

94.8 80.15 56.9/52.3 83.2 

 

4.4. Conclusion 

We present in this chapter our novel music representation that aims at gaining an 

in-depth understanding of the music structure and harmony. It is obtained by 

decomposing sparsely the music onto a dictionary made of musical words that are 

a representation of the notes played instruments obtained from a MIDI 

synthesizer. Experiments have shown that our approach has the ability to 

decompose music into notes and the musical feature derived from this 

decomposition allows improving the music mood classification. Indeed, it has 
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outperformed openSMILE low-level features GSV for the classical music and 

improved the classification accuracy when combined with openSMILE and GSV 

for the APM data set which is more complex particularly due to the high 

variability of the instruments used.  

To further improve decomposition accuracy, we have incorporated music 

knowledge which concern note statistical information into our sparse 

decomposition. In the frame level, music signals are decomposed onto a MIDI 

dictionary with a note co-occurrence heuristic. Transition probabilities are then 

computed between adjacent decomposition candidates through the whole frame 

sequence. The final optimal decomposition path is then constructed by the Viterbi 

algorithm. Experimental results show that both embedding concurrent note 

statistics in PCMP and applying a note sequence heuristic improve the note 

recognition precision and recall. Our proposed PCMP with optimal path search 

outperforms the state-of-the-art methods in terms of recall and f-measure. When 

fused with low level features our note histogram features increase the mood and 

genre classification accuracy. 
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Chapter 5: Conclusions and Future Work 

5.1 Conclusion 

In this thesis, we focus on using low level and mid level feature to perform 

semantic analysis of music in particular mood and genre classification. Regarding 

low level features, although they contain complete signal related information, their 

direct use for semantic analysis is hardly conceivable since too much signal details 

and redundancies prevent the semantics concepts from being efficiently detected. 

Thus, low level feature modeling techniques have to be applied to delve semantic 

information from the noisy features. K-means and GMM based BoW as well as 

Gaussian super vector methods have demonstrated their effectiveness in modeling 

low level features, their principle being to transform redundant signal features into 

“words” that express semantic meanings. However, the trend of “big data” 

challenges the efficiency of the modeling methods, particularly k-means, GMM 

and MAP procedures, which are the computational bottle necks. Therefore, we 

have proposed to use matrix format which can be effectively accelerated on GPU 

multi-core CPU and cluster to implement bag-of-words and GMM super vector 

method. To employ high performance matrix operation library of ACML, ATLAS 

and CUBLAS we reformulate k-means and EM algorithm into matrix 

multiplications, which is also very concise to implement in other languages like 

MATLAB and FORTRAN. Experiments on music genre and mood classification 

tasks show that the proposed implementations achieve 38 to 209 times 

acceleration, compared with single threaded CPU version. 240-cored GPU can run 

up to 5 times faster than 4 8-cored CPUs with just less 1% performance lost.  

From experimental results we can find detailed improvement that high 

performance library based implementations proposed achieve up to 5 times faster 

than multi-threading based implementation (Yael). We also observe that GPU 

based implementation executes 5 times faster than multi-core CPU based one on 

GMM training whereas multi-core version outperforms GPU on k-means 

clustering by 22% in terms of speed. GPU based k-means is slower than multi-core 

CPU in that CPU version executes       operations for      calculation while 
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GPU version actually executes matrix multiplication containing 

       operations. We choose matrix multiplication for      calculation in GPU 

because       operations consume as twice time as         matrix 

multiplication on GPU architecture. This abnormal phenomenon is due to random 

memory access pattern of       operations on GPU. Therefore in this scenario 

matrix multiplication is the optimal but still slower way for GPU.  

Comparing with the state-of-the-art result in [Machlica et al. 2011] that only 

recorded kernel function’s running time without data IO and data preparation 

duration, our method consumes only 7 seconds compared with 9.1 in their paper. 

From genre classification result, we can find that the quality of dictionary trained 

by CPU is little better than GPU by less than 1% in terms of average classification 

accuracy. This is due to the less floating point error of CPU and double precision 

floating point numbers used during summation procedure on CPU. Last but not the 

least, we can find that with the same number of mixture, the same types of GPU 

and comparable data scale our CUBLAS based implementation is 10 times faster 

than CUDA kernel implementation described. In mood classification phase, we 

can find that 1024 dimensional bag-of-words histogram features outperforms the 

standard 6552 dimensional OpenSMILE emotional features by 3% in terms of 

average classification accuracy. 

On Hadoop and Spark cluster when optimal configuration is set the proposed 

method still achieves 10 and 5 speed-up, compared with the state-of-the-art 

libraries of Mahout and MLLib. 

Regarding mid-level features, previous work in literatures seldom uses note 

information which is in fact among the most natural semantic given by the 

composer. The difficulties of decomposing music into note combination are 

attributed to the complexity of music signal, in which sound of different 

instruments entangle. With the help of a realistic instrument sound library, we 

have proposed our novel music representation feature that aims at gaining an in-

depth understanding of the music structure and harmony. We decompose music 

sparsely onto a dictionary made of musical words. The musical words are a 
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representation of the notes played instruments obtained from a MIDI synthesizer. 

Experiments have shown that our approach has the ability to recover music notes 

meanwhile the musical feature derived from this decomposition allows improving 

the music mood classification. Indeed, it has outperformed openSMILE low-level 

features and GSV for the classical music, and improved the classification 

accuracy when combined with openSMILE and GSV for APM data set which is 

more complex particularly due to the high variability of the instruments used.  

To further improve decomposition accuracy, we have proposed to incorporate 

music knowledge which concern note statistical information to improve sparse 

decomposition. In the frame level, music signals are decomposed onto a MIDI 

dictionary with a note co-occurrence heuristic. Transition probabilities are then 

computed between adjacent decomposition candidates through the whole frame 

sequence. The final optimal decomposition path is then constructed by the Viterbi 

algorithm.  

From the experiments, we can find that with statistical musical knowledge 

sparse decomposition is improved in terms of both precision and recall. The 

proposed approach tends to obtain superior recall and F-measures but lower 

precisions compared with variant NMF and other methods. Higher recall means 

the more information is preserved in the decomposition results. For example we 

can find that when co-occurrence note information is integrated into PCMP, the 

precision increases about 6% while recall increases by 2%~3%. When the note 

transition information is fused and the optimal path decoding is applied, the 

precision and recall are further improved by 5% and 2% approximately. From 

MIREX2007 dataset we can find that if no threshold is imposed on the sparse 

solution of PCMPMCV, 72% of the notes can be recalled while the precision is 

51.8% resulting in an F-measure of 60.3 %. The recall of our best configuration 

outperforms state of the art result by more than 10% while the precision is 8% 

lower. From another larger dataset MUS we can observe that the proposed 

approach still achieves the superior result compared with the state-of-the-art. We 

obtained the highest recall and F-measure of 77.3% and 68%, although obtains the 

lowest precision of 60.7%. 
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 Since our final aim of the decomposition is to provide decent features for 

music classifications, the performance of our system is actually preferred. Our 

higher recalls and F-measures are attributed to the quality of MIDI dictionary as 

well as statistical music knowledge fused in sparse decomposition. Longer 

analysis window is another important factor.  

From classical music dataset we can find that the dictionary built with high 

quality instrument waves (Logic Pro 9) outperforms Microsoft wavetable 

synthesizer. Our proposed histogram musical feature also beat the openSMILE 

features. Regarding to individual feature, we can find that the musical histogram 

feature generated from Logic Pro 9 MIDI dictionary outperforms the others by 

2% to 7% on average accuracy. For each individual mood, Logic Pro 9 MIDI 

dictionary also surpasses the others. From APM music dataset we can find that 

compared with the classical music set the overall performance of musical 

histogram feature, openSMILE and GSV decline by 30%, 10% and 11.5%. 

OpenSMILE feature set outperforms Logic Pro 9 musical histogram feature by 

15.5% and GSV surpass musical histogram feature by 17.4% However, when 

these two levels of feature sets are combined in the late fusion, the average 

accuracy increases by 2.5% and 2.1%. The musical histogram feature is less 

effective with this modern music dataset than with the classical music dataset. 

The reason certainly lies in the MIDI dictionary that may have difficulties to 

accurately decompose this music due to its important complexity and the presence 

of instruments in music that are missing in the dictionary. This problem can be 

solved by using a MIDI synthesizer producing more realistic instrument sounds. 

Even though openSMILE feature set provides very complete low-level 

information characterizing temporal and frequential signal properties, its 

performance for classification can be improved by enriching this description with 

higher level information that we propose with our musical histogram feature 

which allows to explicit the music content. 

To sum up, embedding concurrent note statistics in PCMP and applying a note 

sequence heuristic allows improving the note recognition precision and recall. 

Our proposed PCMP with optimal path search outperforms the state-of-the-art 
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methods. Our proposed mid level histogram achieve the best results on classical 

music. Although inferior to the low level feature performance our proposed 

feature provide compensated information for mood classification on modern 

music dataset. 

 

5.2 Perspective and Future Work 

We plan to perform the following improvements to our current system. In the low 

level feature modeling acceleration part, we plan to install GPU on the Hadoop 

and Spark cluster so that the overall computation can be parallelized even 

between CPUs and GPUs. The challenge will be here to coordinate data 

consumption between CPUs and GPUs since GPU executes faster. 

In the note decomposition part, we plan to explore dictionary self-adaptation 

techniques, since even if Logic Pro can generate realistic instrument sound, the 

dictionary is not universally compatible. There can be many factors like recording 

distortion that affect the accuracy of note decomposition. If the MIDI note 

dictionary can be effectively adapted to the input signal, not only the note 

recovery accuracy but the final classification performance can be further 

improved. 

Up to now, our system neglects high level information which concerns human 

natural language. Indeed, lyrics can represent interesting semantic information 

particularly related to emotions. Therefore another important direction of 

improvement is to employ natural language processing techniques to represent 

lyrics information that could be combined with our low and middle level audio 

features for music mood and genre classification. 
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