
HAL Id: tel-01170652
https://theses.hal.science/tel-01170652v1

Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to music semantic analysis and its
acceleration techniques

Boyang Gao

To cite this version:
Boyang Gao. Contributions to music semantic analysis and its acceleration techniques. Other. Ecole
Centrale de Lyon, 2014. English. �NNT : 2014ECDL0044�. �tel-01170652�

https://theses.hal.science/tel-01170652v1
https://hal.archives-ouvertes.fr

THESE

 pour obtenir le grade de

DOCTEUR DE L’ECOLE CENTRALE DE LYON

Spécialité : Informatique

présentée et soutenue publiquement par

 Boyang Gao

Contributions to Music Semantic Analysis

and Its Acceleration Techniques

Ecole Doctorale InfoMaths

Directeur de thèse : Liming Chen

 Co-directeur de thèse : Emmanuel Dellandréa

JURY

Pr. Frédéric BIMBOT IRISA Rapporteur

Pr. Hongying MENG Brunel University, UK Rapporteur

Pr. Jean-Paul HATON Université Henri Poincare Examinateur

Pr. Liming CHEN Ecole Centrale de Lyon Directeur de thèse

Dr. Emmanuel DELLANDRÉA Ecole Centrale de Lyon Co-directeur de thèse

Numéro d’ordre :

Contents

Abstract……………………….……………………….……………………….……….…... i

Résumé……………………………………………………………………………………… ii

1. Introduction……………………….……………………….……………………………..

1.1. Research Context……………………….……………………….…………………..

1.2. Problem and Objective………………….……………………….……………….....

1.3. Our Approach and Contributions………………….………………………………..

1.4. Organization of the Thesis………………….……………………….………………

1

1

2

3

6

2. Literature Review………………….……………………….………………………..…..

2.1. Audio Features………………….……………………….……………………….....

2.1.1. Low level feature survey………………….……………………….………...

2.1.2. Low level feature modeling………………….……………………….……...

2.1.2.1. K-means dictionary learning………………….……………………...

2.1.2.2. GMM dictionary learning………………….…………………………

2.1.2.3. Gaussian super vector………………….……………………….…….

2.1.3. Mid-level features survey………………….……………………….………...

2.2. Audio-Based Musical Mood Detection Systems Survey………………….………...

2.2.1. Representation of emotions………………….……………………….……....

2.2.2. Emotion classification………………….……………………….…………….

2.2.3. Emotion regression………………….……………………….……………….

2.3. Conclusion………………….……………………….……………………………….

8

8

9

17

18

20

21

23

30

30

34

36

37

3. Acceleration for Low Level Feature Modeling………………….……………………....

3.1. Introduction………………….……………………….……………………………..

3.2. K-means and EM Algorithm in Matrix Format………………….………………….

3.2.1. K-means in matrix format………………….……………………….………..

3.2.2. EM for GMM in matrix format………………….…………………………...

3.2.3. MAP in matrix format………………….…………………………………….

3.3. MapReduce Acceleration………………….……………………….………………..

3.3.1. MapReduce structure………………….……………………….……………..

3.3.2. Hadoop architecture………………….……………………….……………...

3.3.2.1. Hadoop distributed file system (HDFS) ………………….…………

3.3.2.2. Hadoop MapReduce………………….……………………….……...

3.3.3. MapReduce K-means in Matrix Format………………….………………….

3.3.3.1. Map phase………………….……………………….………………..

3.3.3.2. Reduce phase………………….……………………….…………….

3.3.4. MapReduce EM in matrix format………………….………………………..

38

39

41

41

42

44

45

45

45

46

47

48

48

49

50

3.3.4.1. Map phase………………….……………………….……………….

3.3.4.2. Reduce phase………………….……………………….…………….

3.3.5. MapReduce in Spark………………….……………………….…………….

3.4. Performance Tuning………………….……………………….…………………….

3.4.1. Nvidia GPU………………….……………………….……………………...

3.4.2. Hadoop and spark cluster………………….……………………….………...

3.4.3. K-means and GMM refinement………………….…………………………..

3.5. Experiments on Music Genre and Mood Classification………………….…………

3.5.1. Experiment setups………………….……………………….………………..

3.5.1.1. Computer Configuration………………….………………………….

3.5.1.2. Datasets and Features………………….……………………….…….

3.5.2. Results and Analysis………………….……………………….……………..

3.5.2.1. Single computer………………….……………………….………….

3.5.2.2. Hadoop and Spark Clustering………………….…………………….

3.6. Conclusion………………….……………………….………………………………

50

50

51

52

53

61

63

64

64

64

65

66

66

70

70

4. Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge…………

4.1. Introduction………………….……………………….……………………………...

4.2. Sparse Decomposition of Music Using a Musical Dictionary………………………

4.2.1. Overview of the approach………………….……………………….………..

4.2.2. MIDI musical dictionary………………….……………………….…………

4.2.3. Sparse representation and positive constraint matching pursuit……………..

4.2.4. A musical histogram as audio feature………………………………………..

4.2.5. Experiments and Results………………….……………………….…………

4.2.5.1. Verification of the decomposition with MIDI dictionary……………

4.2.5.2. Mood classification with musical histogram feature…………………

4.2.5.3. Results and analysis………………….……………………….………

4.3. Sparse Decomposition with Note Statistics………………….………………………

4.3.1. Frame level sparse decomposition………………….………………………...

4.3.2. Global level optimal note path searching………………….………………….

4.3.3. Experiment and results………………….……………………….……………

4.4. Conclusion………………….……………………….……………………………….

72

72

73

73

74

75

78

78

78

80

81

87

87

91

94

101

5. Conclusions and Future Work………………….……………………….………………..

5.1. Conclusion………………….……………………….……………………………….

5.2. Perspective and Future Work………………….……………………….…………….

103

103

107

Publications………………….……………………….………………………………………..

Bibliography………………….……………………….………………………………………

108

109

List of Figures

Figure 2.1: main part of human cochlea... 9

Figure 2.2: BoW based music classification framework.. 18

Figure 2.3: example of 2 dimensional k-means clustering result with 3 centers..................... 19

Figure 2.4: Mikey mouse data example where GMM works better than k-means…….. 20

Figure 2.5: GSV based classification framework.. 22

Figure 2.6: simple example of MAP estimation.. 23

Figure 2.7: NMF for mult-F0 estimation... 28

Figure 2.8: Plutchik’s emotional wheel... 31

Figure 2.9: Two-dimensional emotion space and basic emotions..................................... 33

Figure 2.10: Three-dimensional emotion space and 6 basic emotions............................. 33

Figure 3.1: HDFS Architecture .. 47

Figure 3.2: Hadoop MapReduce Architecture .. 48

Figure 3.3: OpenMP execution time vs. batch size ... 53

Figure 3.4: CUDA thread parallel architecture .. 54

Figure 3.5: CUDA memory hierarchies .. 55

Figure 3.6: Local memory banks with/without conflicts .. 56

Figure 3.7: Global memory access patterns .. 57

Figure 3.8: Time consumption comparison between column and row major order........ 58

Figure 3.9: Time consumption of 16x16 thread block dimension..................................... 59

Figure 3.10: Time consumption of 1.256 thread block dimension.................................... 59

Figure 3.11: Time consumption of CUBLAS sgemm with matrix transpose.................. 60

Figure 3.12: Time consumption of CUBLAS sgemm without matrix transpose............. 60

Figure 3.13: K-means time per iteration vs. different data split size................................ 62

Figure 3.14: K-mean time per iteration vs. number cores in cluster................................. 62

Figure 3.15: GMM time per iteration vs. number cores in cluster.................................... 63

Figure 4.1: Musical histogram feature extraction flow chart.. 74

Figure 4.2: Note precision vs. recall.. 79

Figure 4.3: Note precision vs. recall with octave tolerance.. 80

Figure 4.4: Multiple candidate selection example... 90

Figure 4.5: Optimal path decoding example.. 93

Figure 4.6: Note precision vs. recall of the two improvements.. 97

List of Tables

Table 2.1: Advanced emotion combination... 31

Table 2.2: MIREX emotion clusters.. 32

Table 3.1: Fine tuned K-mean and GMM execute on different GPUs.................................... 61

Table 3.2: Cluster Computer Configurations... 65

Table 3.3: Classical music dataset mood distribution.. 66

Table 3.4: Execution time and accuracy of different implementation for music genre

classification... 68

Table 3.5: Execution time and accuracy of different implementation for music mood

classification... 68

Table 3.6: Running time per iteration for mood GMM training.. 69

Table 3.7: CUBLAS mood classification confusion matrix (actual classes in rows,

predicted classes in columns) .. 69

Table 3.8: ACML mood classification confusion matrix (actual classes in rows, predicted

classes in columns)……... 69

Table 3.9: OpenSMILE mood classification confusion matrix (actual classes in rows,

predicted classes in columns)…... 70

Table 4.1: Classical music dataset mood distribution.. 81

Table 4.2: APM dataset mood distribution.. 81

Table 4.3: Xiao [Xiao et al. 2008b] confusion matrix (actual classes in rows,

predicted classes in columns) using the classical dataset .. 82

Table 4.4: OpenSMILE confusion matrix (actual classes in rows, predicted classes in

columns) using the classical dataset... 82

Table 4.5: GSV confusion matrix (actual classes in rows, predicted classes in columns)

using the classical dataset... 83

Table 4.6: General MIDI confusion matrix (actual classes in rows, predicted classes in

columns) using the classical dataset... 83

Table 4.7: Logic Pro 9 confusion matrix. (actual classes in rows, predicted classes in

columns) using the classical dataset... 83

Table 4.8: OpenSMILE fused with PCMP confusion matrix (actual classes in rows,

predicted classes in columns) using the classical dataset... 84

Table 4.9: GSV fused with PCMP confusion matrix (actual classes in rows, predicted

classes in columns) using the classical dataset... 84

Table 4.10: OpenSMILE confusion matrix (actual classes in rows, predicted classes in

columns) using the APM dataset.. 85

Table 4.11: GSV confusion matrix (actual classes in rows, predicted classes in columns)

using the APM dataset.. 85

Table 4.12: Logic Pro 9 confusion matrix (actual classes in rows, predicted classes in

columns) using the APM dataset.. 86

Table 4.13: OpenSmile fused with PCMP confusion matrix... 86

Table 4.14: GSV fuse PCMP confusion matrix (actual classes in rows, predicted classes in

columns) using the APM dataset.. 86

Table 4.15: Average multiple pitch estimation performance on MIREX2007 dataset............ 95

Table 4.16: Average multiple pitch estimation performance on MUS dataset........................ 96

Table 4.17: PCMP+multiple candidate confusion matrix (actual classes in rows, predicted

classes in columns) using the classical dataset... 98

Table 4.18: PCMP+multiple candidates+optimal path confusion matrix (actual classes in

rows, predicted classes in columns) using the classical dataset... 98

Table 4.19: GSV fused with PCMP+multiple candidates+optimal path confusion matrix

(actual classes in rows, predicted classes in columns) using the classical dataset................... 99

Table 4.20: PCMP+multiple candidates confusion matrix (actual classes in rows, predicted

classes in columns) using the APM dataset.. 99

Table 4.21: PCMP+multiple candidates+optimal path confusion matrix (actual classes in

rows, predicted classes in columns) using the APM dataset.. 99

Table 4.22: GSV fuse PCMP+multiple candidates+optimal path confusion matrix (actual

classes in rows, predicted classes in columns) using the APM dataset.................................... 100

Table 4.23: Results on all data sets.. 101

i

Abstract

Digitalized music production exploded in the past decade. Huge amount of data

drives the development of effective and efficient methods for automatic music

analysis and retrieval. This thesis focuses on performing semantic analysis of

music, in particular mood and genre classification, with low level and mid level

features since the mood and genre are among the most natural semantic

concepts expressed by music perceivable by audiences. In order to delve

semantics from low level features, feature modeling techniques like K-means

and GMM based BoW and Gaussian super vector have to be applied. In this big

data era, the time and accuracy efficiency becomes a main issue in the low level

feature modeling. Our first contribution thus focuses on accelerating k-means,

GMM and UBM-MAP frameworks, involving the acceleration on single

machine and on cluster of workstations. To achieve the maximum speed on

single machine, we show that dictionary learning procedures can elegantly be

rewritten in matrix format that can be accelerated efficiently by high

performance parallel computational infrastructures like multi-core CPU, GPU.

In particular with GPU support and careful tuning, we have achieved two

magnitudes speed up compared with single thread implementation. Regarding

data set which cannot fit into the memory of individual computer, we show that

the k-means and GMM training procedures can be divided into map-reduce

pattern which can be executed on Hadoop and Spark cluster. Our matrix format

version executes 5 to 10 times faster on Hadoop and Spark clusters than the

state-of-the-art libraries.

Beside signal level features, mid-level features like harmony of music, the

most natural semantic given by the composer, are also important since it

contains higher level of abstraction of meaning beyond physical oscillation. Our

second contribution thus focuses on recovering note information from music

signal with musical knowledge. This contribution relies on two levels of

musical knowledge: instrument note sound and note co-occurrence/transition

statistics. In the instrument note sound level, a note dictionary is firstly built

i

from Logic Pro 9. With the musical dictionary in hand, we propose a positive

constraint matching pursuit (PCMP) algorithm to perform the decomposition. In

the inter-note level, we propose a two stage sparse decomposition approach

integrated with note statistical information. In frame level decomposition stage,

note co-occurrence probabilities are embedded to guide atom selection and to

build sparse multiple candidate graph providing backup choices for later

selections. In the global optimal path searching stage, note transition

probabilities are incorporated. Experiments on multiple data sets show that our

proposed approaches outperform the state-of-the-art in terms of accuracy and

recall for note recovery and music mood/genre classification.

Résumé

La production et la diffusion de musique numérisée ont explosé ces dernières

années. Une telle quantité de données à traiter nécessite des méthodes efficaces et

rapides pour l’analyse et la recherche automatique de musique. Cette thèse

s’attache donc à proposer des contributions pour l’analyse sémantique de la

musique, et en particulier pour la reconnaissance du genre musical et de l’émotion

induite (ressentie par l’auditoire), à l’aide de descripteurs de bas-niveau

sémantique mais également de niveau intermédiaire. En effet, le genre musical et

l’émotion comptent parmi les concepts sémantiques les plus naturels perçus par

les auditoires. Afin d’accéder aux propriétés sémantiques à partir des descripteurs

bas-niveau, des modélisations basées sur des algorithmes de types K-means et

GMM utilisant des BoW et Gaussian super vectors ont été envisagées pour

générer des dictionnaires. Compte-tenu de la très importante quantité de données

à traiter, l’efficacité temporelle ainsi que la précision de la reconnaissance sont

des points critiques pour la modélisation des descripteurs de bas-niveau. Ainsi,

notre première contribution concerne l’accélération des méthodes K-means,

GMM et UMB-MAP, non seulement sur des machines indépendantes, mais

également sur des clusters de machines. Afin d’atteindre une vitesse d’exécution

la plus importante possible sur une machine unique, nous avons montré que les

procédures d’apprentissage des dictionnaires peuvent être réécrites sous forme

matricielle pouvant être accélérée efficacement grâce à des infrastructures de

calcul parallèle hautement performantes telle que les multi-core CPU ou GPU. En

particulier, en s’appuyant sur GPU et un paramétrage adapté, nous avons obtenu

une accélération de facteur deux par rapport à une implémentation single thread.

Concernant le problème lié au fait que les données ne peuvent pas être stockées

dans la mémoire d’une seul ordinateur, nous avons montré que les procédures

d’apprentissage des K-means et GMM pouvaient être divisées par un schéma

Map-Reduce pouvant être exécuté sur des clusters Hadoop et Spark. En utilisant

notre format matriciel sur ce type de clusters, une accélération de 5 à 10 fois a pu

être obtenue par rapport aux librairies d’accélération de l’état de l’art.

En complément des descripteurs audio bas-niveau, des descripteurs de niveau

sémantique intermédiaire tels que l’harmonie de la musique sont également très

importants puisqu’ils intègrent des informations d’un niveau d’abstraction

supérieur à celles obtenues à partir de la simple forme d’onde. Ainsi, notre

seconde contribution consiste en la modélisation de l’information liée aux notes

détectées au sein du signal musical, en utilisant des connaissances sur les

propriétés de la musique. Cette contribution s’appuie sur deux niveaux de

connaissance musicale : le son des notes des instruments ainsi que les statistiques

de co-occurrence et de transitions entre notes. Pour le premier niveau, un

dictionnaire musical constitué de notes d’instruments a été élaboré à partir du

synthétiseur Midi de Logic Pro 9. Basé sur ce dictionnaire, nous avons proposé un

algorithme « Positive Constraint Matching Pursuit » (PCMP) pour réaliser la

décomposition de la musique. Pour le second niveau, nous avons proposé une

décomposition parcimonieuse intégrant les informations de statistiques

d’occurrence des notes ainsi que les probabilités de co-occurrence pour guider la

sélection des atomes du dictionnaire musical et pour construire un graphe à

candidats multiples pour proposer des choix alternatifs lors des sélections

successives. Pour la recherche du chemin global optimal de succession des notes,

les probabilités de transitions entre notes ont également été incorporées. Les

expérimentations menées sur plusieurs jeux de données ont montré que nos

approches permettent d’avoir des résultats supérieurs à ceux de l’état de l’art pour

l’identification des notes ainsi que pour la classification de la musique en genres

musicaux et en émotions.

Chapter 1: Introduction

1

Chapter 1: Introduction

1.1 Research context

With the development of information technology, digitalized music production

exploded in the past decade. For example, in the on-line music store of iTunes,

there have been over 37 million songs
1
 available by 2014 and the number is still

growing fast. YouTube website receives 100 hours of video upload in every

minute and a large portion is music. Such a huge amount of data drives the

development of effective and efficient methods for automatic music analysis

and retrieval.

Public availability of music reveals two pivot tasks. One is the semantic

analysis increasingly demanded by users, because human beings tend to express

idea and make judgment on semantic level. Among all semantic concepts

associated with music, the mood and genre are the most natural semantic

information expressed by music, which can be easily perceived by audiences

even without musical trainings. Modern digital music technology not only

assists in music composition but also provides digitalized music knowledge

such as realistic music instrument sound library for music synthesis via MIDI

scripts. Thanks to this advance, we can make use of music knowledge a prior to

improve mood and genre classification accuracy.

The other is to improve the efficiency of entire systems in order to handle

large scale data. In this era of big data, we do not worry about the insufficient

samples any more. The main focus shifts to terminating computation in an

affordable duration. Thanks to the parallel computing infrastructures such as

multi-core CPU, GPU and cluster of workstations, we can process massive

amount of data simultaneously on multiple computing units. In our specific

case, with the high-end hardware in hand, it is now possible for us to scale up

our model and accelerate the entire computation procedure, which leads to

superior results.

1 http://www.apple.com/itunes/features/

http://www.apple.com/itunes/features/

Chapter 1: Introduction

2

1.2 Problem and Objective

Music is a type of sound that has some stable frequencies in a time period. All

musical sounds have their fundamental frequency and overtones. Fundamental

frequency is the lowest frequency in harmonic series. Overtones are integer

multiples of the fundamental frequency. Music can be produced by several

methods. For example, the sound of a piano is produced by striking strings, and

the sound of a violin is produced by bowing.

Music semantic information, in particular mood and genre, are expressed in

different levels, from low level (signal level) to intermediate level (note level)

and high level (direct semantics). In signal level, various features like MFCCs

are extracted, in which all information is kept including noises. However, music

semantics concerns abstract concepts that are expressed and perceived

indirectly. To bridge the semantic gap between signal level features and human

cognition, the signal level features need to be transformed to reflect the abstract

concepts. Bag-of-word (BoW) [Yang et al. 2007] model has been demonstrated

effective to transform original features to histogram of potential semantic

centers or “words”. In addition to BoW, UBM-MAP [Campbell et al. 2006]

based super vector method not only considers feature distribution of individual

sample but also concerns background distribution as well. In signal level, the

main challenge for the two approaches is scalability when encountering large

data sets. For example the size of clusters for k-means and GMM should

increase as the number of training sample grows. Our first objective is to

accelerate k-means, GMM and UBM-MAP procedures to handle large number

of training data.

Although signal level features contain complete information that can describe

high-level semantics of music, their direct use is rarely very efficient even with

BoW and UBM-MAP transformation. Music is indeed composed by sequential

combination of notes and is generated by instruments accordingly. People

understand music by perceiving the note combination sequence too. Therefore

sound of notes plays an essential role in the semantic carried by music for

identifying high-level concepts such as mood. If music can be effectively

http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Strings_(music)
http://en.wikipedia.org/wiki/Bow_(music)

Chapter 1: Introduction

3

decomposed into note sound of instruments, statistics on the decomposition can

provide valuable information for further semantic analysis. Thanks to Logic Pro

9, a high quality music producing software from Apple Inc., a “musical

dictionary” made of musical words that are related to the notes produced by

various instruments is built. Our second objective is to decompose music onto

the dictionary as precisely as possible and take the advantage of statistics of the

decomposition to improve mood and genre classification.

1.3 Our Approach and Contributions

As discussed above, music semantic analysis requires to handling information

in different levels. In signal feature level, the main challenge is to accelerate the

BoW process, namely to speed up k-means, GMM and UBM-MAP training

with parallel infrastructure in order to incorporate massive samples in big data

sets. In middle feature level, the main challenge is to recover note information

as precise as possible with music knowledge in the form of instrument sound

and note statistics. Our work mainly concentrates on the two aspects and is

summarized as follows.

1. To incorporate signal level information for semantic analysis, we have adopted

a bag-of-word model with k-means/GMM dictionary and a UBM-MAP based

super vector approach. With scaled up data set, there are more and more

demands for increasing number of clusters and mixtures for k-means and GMM

[Over 2011]. The dictionary learning becomes the bottleneck of the whole

computation pipeline.

Our first contribution thus focuses on accelerating k-means, GMM and UBM-

MAP frameworks and it is divided into two levels which concern the

acceleration on single machine and on cluster of workstations. In fact huge

parallelism exists for k-means and GMM dictionary learning, for example in

distance and probability calculation the computation pattern is the same for all

input feature vectors. However, to simply divide work load by the number

feature vectors does not guarantee maximum throughput of input data because

of huge overhead for threading scheduling and data sharing, which is shown in

Chapter 1: Introduction

4

our experiment with comparison with the state-of-the-art libraries [Gao et al.

2012]. To achieve the maximum speed on single machine, we show that

dictionary learning procedures can elegantly be rewritten in matrix format, for

example in GMM training only two matrix multiplications and one matrix

transformation are needed to re-estimate the parameters. Once converted to

matrix format, the calculation can be accelerated efficiently by high

performance multithreading linear algebra libraries. Especially with GPU

support and careful tuning, we can even push the top speed up to two

magnitudes faster than single thread implementation [Gao et al. 2012].

Beyond single machine, we show that for big data set which cannot fit into the

memory of individual computer, the k-means and GMM training procedures can

be performed on independent sub-data blocks distributedly since the

computation on each sub-data block is independent and the final result is

obtained by aggregating sub-results. This map-reduce [Dean 2005]

computational style inspires us to employ Hadoop [White 2009, Shvachko et al.

2010] and Spark [Zaharia et al. 2010, Zaharia et al. 2012] cluster frameworks to

even extend parallelization onto multiple computers level. Our experiments

show that not only on single machine but also on Hadoop and Spark cluster our

proposed method outperforms the state-of-the-art libraries in terms of speed and

performance of music mood and genre classification [Gao et al. 2012].

2. Although signal level features with BoW model can be effective for music

semantic analysis, it is still necessary to explore mid-level features like notes of

music since it contains higher level of abstraction of meaning beyond physical

oscillation. Mixing different tracks of instrument playing by averaging is quite

easy which means the other way round is difficult. Thanks to modern music

software which provides realistic instrument sound we can make use of this

musical knowledge to help recover notes.

Our second contribution thus focuses on recovering note information from

music signal with musical knowledge to aid semantic analysis. This contribution

relies on two levels of musical knowledge: instrument note sound and note co-

occurrence/transition statistics [Gao et al. 2012].

Chapter 1: Introduction

5

On the instrument note sound level, a note dictionary is firstly built from

Logic Pro 9. We choose the first 80 realistic instruments as in general MIDI

level 1 set and 31 percussion instrument sets including 1860 percussions. For

each instrument, we choose 60 notes form note 31 to note 90. The 60 notes span

5 octaves from low to high, covering most instruments’ playing note range. The

duration of each note is set to 186ms, which are 4096 samples under a sample

rate of 22050Hz. This duration is long enough to hold one attack-decay-sustain-

release envelope (ADSR) and leads to 5.38Hz in terms of frequency resolution,

which is sufficient to discriminate adjacent note spectrum. Our musical

dictionary is finally built by computing each musical word in frequency domain

as the single-sided power spectrum of each note wave generated by short time

Fourier transform (STFT) with Hamming window. A musical word in the

dictionary is thus a 2048 dimensional vector. The number of musical words is

the number of instruments multiplying the number of notes (60) plus the

number of percussion instruments that is 6660 musical words in total.

With a musical dictionary in hand, any sparse solution solver can be applied to

produce sparse solution in respect to note. Unfortunately classical greedy

algorithms, for example orthogonal matching pursuit (OMP) [Pati et al. 1993],

cannot directly be applied to the decomposition. Because each musical word in

dictionary is a single-sided power spectrum of certain note, a positive constraint

is naturally imposed onto the sparse solution. Therefore we propose a positive

constraint matching pursuit (PCMP) [Gao et al. 2012] algorithm to solve this

problem. When scrutinizing the decomposition results of PCMP within one

frame, we found irregular note combinations. This is due to PCMP’s over-fitting

target signals without considering any compatibility of concurrent notes. To

solve this problem, we propose a two stage sparse decomposition approach

integrated with note statistical information. In frame level decomposition stage,

note co-occurrence probabilities are embedded to guide atom selection in

modified matching pursuit algorithm with the dictionary. A sparse multiple

candidate graph is then constructed to provide backup choices for later

selections. In the global optimal path searching stage, note transition

Chapter 1: Introduction

6

probabilities are incorporated together with a goodness measure of frame

decomposition. Its principle is to guide the local sparse music decomposition

with co-occurred notes information and decode the global optimal

decomposition path with consecutive note knowledge. Due to the Gabor limit

[Yao 1993], time and frequency resolution cannot be well satisfied at the same

time. Thus, we emphasize the frequency resolution aspect rather than the exact

time location, since correct note recognition is more important for our following

classification task.

Experiments on multiple data sets show that our proposed approaches

outperform the state-of-the-art in terms of accuracy and recall for note recovery

and music mood/genre classification.

1.4 Organization of the Thesis

 In chapter 2, we give a literature review of the works related to content based

music signal analysis especially for emotion. We start with signal level features

designed for content-based music classifications and corresponding low-level

feature modeling methods. We then review middle-level features especially the

notes or multi F0 estimation from music signal. Finally we present state-of-art

music mood classification systems.

 In chapter 3, we focus on acceleration of low-level feature modeling ie. to speed

up K-means, GMM and GSV. At first, we show that k-means clustering and EM

algorithm for GMM can be translated to matrix multiplication format, which can

be accelerated effectively under parallel computing infrastructures. We then show

that when processing big data, we can even fit matrix format into MapReduce

model so that the whole computation can be parallelized onto Hadoop and Spark

clusters. Next, we introduce performance tuning for GPU, multi-core CPU and

cluster implementations. The quality of trained GMM is also discussed in detail.

Finally we show experiments on the execution speed and quality of the learnt

dictionary, compared with the state-of-the-art libraries.

 In chapter 4, we focus on mid-level feature of musical note extraction and its

application on mood classification. Firstly, we present our construction of a

Chapter 1: Introduction

7

musical dictionary, which consists of two sets of MIDI based instrument sounds.

We then introduce our modified matching pursuit algorithm to perform music

decomposition subject to a natural positive constraint. Next, we verify the quality

of sparse music decomposition via mood classification experiments on two data

sets. To overcome the discontinuity of previous sparse decomposition, we further

present our two-stage approach involving frame-level statistical integration and

global-level optimal paths searching. Finally we show experimental results of the

improved decomposition approach on real-world music signals.

 In chapter 5, we draw the conclusions and propose some perspectives for future

research directions.

Chapter 2: Literature Review

8

Chapter 2: Literature Review

In this chapter, we give a literature review of the works related to content based

music signal analysis especially for emotion. First, we survey signal level or low

level of features designed for multi-purpose signal analysis and content based

music classifications. We also review the mainstream low level feature modeling

methods for classification tasks i.e. bag-of-words (BoW) and universal

background model based Gaussian super vector (GSV-UBM). Then we review

middle level features especially the notes or multi F0 estimation from music

signal. Finally, as we concentrate in this thesis on mood as a high level concept to

detection in music, we survey state-of-art music mood classification systems.

2.1 Audio Features

The mood induced by music, for example happiness, is however too abstract to

have simple if-else style definition. Therefore, data driven machine learning

techniques turn out feasible solutions. Compared with the necessity of innovation

concerning classifiers, feature extraction has even more space to delve. To

develop effective features, researchers firstly turn to ourselves for help.

Speaking of humans, the very first step to understand audio information is to

extract features from audio signal through the front end of our elaborate auditory

system. Figure 2.1 shows the main part of cochlea. As it can be observed in

Figure 2.1, there is a stiff structural element named basilar membrane inside the

cochlea. The basilar membrane is the base for the sensory cells of hearing or

“Stereocilia” (approximately 30.000 cells), and hence plays a crucial role in the

transfer of sound oscillation to the nerve impulse to the neural networks in brain.

It also differentiates frequency distribution for incoming sound waves. Depending

on the input frequencies, different regions from the basilar membrane will

resonate, consequently only a small subset of sensory cells is activated. From the

Figure 2.1 we also note that the distribution of frequencies is more logarithmic

than linear, which influences many analysis methods and feature design for

example wavelet analysis and MFCC. Further listening experiments show that

Chapter 2: Literature Review

9

although humans are experts for distinguish the frequency, loudness and temporal

information of the sound, we are not sensitive to the phase of the sound wave.

These biological conclusions inspire researchers to design many effective features

to characterize audio signal in different aspects.

Figure 2.1: Main part of human cochlea [Pradier 2011].

Music related features are usually divided into 3 levels. Low level i.e. signal level

features reflect intrinsic characteristics of the signal without conveying direct

semantic information about the contents. Middle level features incorporate human

knowledge of music so that somewhat semantic information is expressed through

for example notes, chords, and rhythms. High level features from lyrics which is

related to nature language contain direct meaning that author endow to the music.

Level by level the features are developed to shorten so called semantic gap.

2.1.1 Low level feature survey

Although low level features are a little far from expressing semantics directly, they

contain complete information of the signal and can be modeled to indirectly

indicate semantics like mood. Low level features concerns 3 out of 4 main aspects

Chapter 2: Literature Review

10

of the sound: frequency, energy and the temporal, since human is not sensitive to

the phase distortion.

Frequency carries a large portion of information for the sound, just like the

colors for images. Figure 2.1 verifies that sensing frequency is indeed the

foundation for human to analyze audio signal. Therefore many effective features

have been developed concerning frequency domain information.

All features in this group live in frequency or autocorrelation domain. The most

popular methods are the Fourier transform and the autocorrelation. Other popular

methods include the Cosine transform, Wavelet transform, and the constant Q

transform. We firstly review frequency features related to the short-time Fourier

transform (STFT) for computation of the spectrogram.

Spectral flux (SF). The SF is the 2-norm of the frame-to-frame spectral

amplitude subtraction vector [Scheirer 1997]. It quantifies (abrupt) difference in

the shape of the spectrum over consecutive frames. Signals that have slowly

varying spectrum for example noise have low SF, while signals with abrupt

spectral changes (e.g. note onsets) have high SF.

Lu et al. in [Lu et al. 2001] provide a slightly different definition where the SF

is calculated in logarithm domain of the spectrum. Similarly to SF, the cepstrum

flux is defined by Xu in [Xu 2005]. SF is widely used in audio retrieval, e.g. in

speech/music discrimination [Khan et al. 2004, Jiang et al. 2005, Khan et al. 2006],

music information retrieval [Tzanetakis 2002a, Li et al. 2004], and speech analysis

[Tzanetakis 2005].

Spectral peaks is proposed by Wang in [Wang 2003, Wang 2006]. Spectral

peaks are designed for a very compact and noise robust representation of an audio

signal. Sparse set of time-frequency pairs the constellation map is firstly

constructed from Fourier spectrogram with local peaks. Pairs of time-frequency

points are then calculated from the constellation map. For each pair, the two

frequency components, the time difference, and the time offset from the beginning

of the audio signal are combined into a feature. Each piece of music is finally

represented by a large number of such time-frequency pairs. Wang also proposed

Chapter 2: Literature Review

11

an efficient search algorithm for large databases built from features described. The

search system is detailed in [Wang 2003]. For spectral peak features, the music is

represented in the form of spatio-temporal combinations of dominant frequencies.

The advantage of the technique is that it only relies on the salient frequencies

(peaks) and denies all other relatively weak spectral content. This preserves the

main characteristics of the spectrum and makes the representation highly robust to

noise since the spectrum of noise is usually flat thus the peak frequencies are less

influenced by noise than the other signals. However, only considering the

frequency with the largest energy can neglect useful information which hidden in

for example second largest peaks.

Pitch is an important frequency related characteristic of sound, different from

loudness, duration, and timbre. The hearing sensation of pitch is defined as “that

attribute of auditory sensation in terms of which sounds may be ordered on a scale

extending from low to high” [ANSI 1995]. The term pitch can refer to fundamental

frequency or frequency and the perceived frequency of a signal depending on the

application case.

When pitch refers to the perceived fundamental frequency of a sound, it stands

for a subjective psychophysical attribute. According the auditory experiment

human can differentiate about 1400 distinct tones that is the total number of

perceptible pitch steps in the range of human hearing capability. Note that the total

number of notes in the musical equal-tempered scale is 120 notes. Pitch is usually

denoted by the fundamental frequency F0.

Fundamental frequency. The fundamental frequency is the lowest frequency

of a harmonic series, which denote the base vibration. It coarsely approximates the

psychoacoustic pitch. Former researchers have developed various methods to

estimate fundamental frequency such as temporal autocorrelation, spectral, and

cepstral methods and combinations of these techniques as well. An early survey

can be found in [Hess 1983].

Pitch Histogram. The pitch histogram tends to depict pitch distributions of a

signal in a compact way and has been introduced for musical genre classification

Chapter 2: Literature Review

12

in [Tzanetakis 2002a, Tzanetakis 2002b]. In musical analysis the meaning of pitch

equals to musical notes. The pitch histogram is a global representation that

aggregates the pitch information or F0 from many short audio frames.

Consequently, these pitch histograms provide the distribution of the musical notes

in music segments.

Chromagram. The chromagram is a spectrogram that represents the spectral

energy of each of the 12 pitch classes [Bartsch et al. 2005]. The logarithmized

short-time Fourier transform is firstly performed. The frequencies are mapped

periodically to the 12 pitch classes by an aggregation function since each octave is

consisted of 12 notes. The result is a 12 element vector for each audio frame. A

similar algorithm for the extraction of chroma vectors can be found in [Goto 2003].

The chromagram maps all frequencies into one octave. This results in a spectral

compression that allows for a regulated description of harmonic information in the

signal. Since the energy of the same note in different octaves is aggregated into the

same slot, large harmonic series can be represented by only a few chroma values

[Bartsch et al. 2005]. The advantage of chroma is to provide an octave-invariant

(compressed) spectrogram that takes properties of musical perception into account.

However, its drawback is co-occurring that chrome blurs the harmonic informat.

Pitch Profile. The pitch profile is a more accurate representation of the pitch

distribution than the chroma features [Zhu et al. 2006]. It considers pitch

mistuning introduced by mistuned instruments and is robust against noisy

percussive sounds that do not have a pitch. Zhu et al. applyed the pitch profile in

musical key detection and results show that the pitch profile outperforms

traditional chroma features.

Harmonicity serves to distinguish periodic signals, for example harmonic

sounds generated by instruments, from non-periodic signals like drum and noise-

like sounds. Harmonics are frequencies located at integer multiples of the

fundamental frequency. The harmonic spectrum shows peaks at the fundamental

frequency and its integer multiples.

Chapter 2: Literature Review

13

Harmonicity relates to the proportion of harmonic components in a signal,

which is usually large in music signals. Harmonicity features can be used to

distinguish musical instruments. For example harmonic instrument sounds like

horns have stronger harmonic structure than percussive instrument sounds like

drums. Furthermore, harmonicity can also be useful to separate environmental

sound between harmonic and inharmonic sounds.

Inharmonicity measures. Most real world harmonic signals do not have a

perfect harmonic structure. Inharmonicity features measure the difference between

observed energy distribution along harmonics and their theoretical values which

are exactly at integer multiples of the fundamental frequency.

A straight-forward cumulative measure for the deviation of the harmonics from

their predicted values is introduced in [Agostini et al. 2001] and [Peeters 2004]. A

more robust and more accurate feature is harmonicity prominence in which the

energy and the bandwidth of each harmonic component are further considered in

[Cai et al. 2006]. A variant feature is to calculate entropy of the distances of

adjacent peaks in the spectrum. Perfect harmonic sounds have constant distances,

while for non-harmonic sounds the distances may vary.

The concept of the “cepstrum” has been firstly introduced by Bogert et al. in

[Bogert et al. 1963]. Cepstrum was originally used to detect echoes in seismic

signals. Cepstral features were introduced into audio domain by [Noll 1964, Bridle

et al. 1974, Davis et al. 1980] to perform speech analysis. Cepstral features

presents smoothed frequency of the log magnitude spectrum. It also conveys

timbral characteristics and reflects pitch information. Euclidean metric can be

applied on cepstral features to measure their distances, since cepstral features are

embedded in an orthogonal space. Today, cepstral features are widely used in

many fields of audio retrieval some example can be found in [Lu et al. 2001, Xu et

al. 2004].

Cepstral Features. Bogert et al. define the cepstrum as the Fourier Transform

(FT) of the logarithm (log) of the magnitude (mag) of the spectrum of the original

signal [Bogert et al. 1963]. The signal is firstly Fourier transformed. The log the

Chapter 2: Literature Review

14

Fourier transform magnitude is then served as input of the second time Fourier

transforms. The final cepstrum is the result of the second Fourier transforms. (e.g.

signal→FT →log(mag)→FT →cepstrum) This sequence is the original form for the

cepstral features. However, in practice the computation slightly differs from this

definition. For example, the second Fourier transform is often replaced by a DCT

due to its ability to decorrelate output data as shown in following classical MFCC

features.

Mel-frequency cepstral coefficients (MFCCs). MFCC’s most notable success

is achieved in automatic speech recognition task and MFCC has evolved into one

of the standard techniques in most domains of audio signal processing.

Computation of MFCCs includes a conversion of the Fourier coefficients to Mel-

scale [Stevens et al. 1937]. After conversion, the obtained vectors are

logarithmized, and decorrelated by DCT in order to remove redundant information

as mentioned in previous paragraph.

The components of MFCCs are usually the first 13 DCT coefficients that

describe the coarse spectral shape. The first DCT coefficient represents the average

power in the spectrum. The second coefficient approximates the broad shape of the

spectrum and is related to the spectral centroid. The higher-order coefficients

represent finer spectral details (e.g. pitch). MFCC can also be treated as an

approximation of human hearing cochlea which shares the same characteristic of

frequency response. In practice, the first 8-13 MFCC coefficients are sufficient to

represent the shape of the spectrum. However, some applications may require

more higher-order coefficients to capture pitch and tone information. For example

in Chinese speech recognition up to 20 cepstral coefficients may be beneficial

[Wang et al. 2000].

Beside classical MFCC, several variations of MFCCs have been proposed.

They mainly differ in the applied psychoacoustic scale i.e. instead of using Mel-

scale, variations consider the Bark[Zwicker 1961], ERB[Moore et al. 1990] and

octave-scale [Madage et al. 2004]. A typical variation of MFCCs is Bark-

frequency cepstral coefficients (BFCCs).

Chapter 2: Literature Review

15

Up to now the short-time Fourier transform (STFT) serves as the fundamental

building block for most frequency related features. However, STFT provides only

a suboptimal tradeoff between time and frequency resolution since the fixed

window locks both the frequency and time resolution. The advantage of adaptive

time-frequency decompositions, like the Wavelet transform is that they provide a

frequency resolution that varies with the temporal resolution.

Instead of short-time Fourier transform, Wavelet transform and related

transformations for time-frequency decomposition are firstly applied to obtain

coefficients based on Wavelet mother function. For example, Khan et al. have

successfully applied the variance of Haar Wavelet coefficients over several frames

to speech/music discrimination in [Khan et al. 2006]. We consider such features as

low level features since they do not have a semantic interpretation.

Daubechies Wavelet coefficient histogram features (DWCH). DWCHs have

been proposed by Li et al. for music genre classification in [Li et al. 2003]. The

authors used Daubechies Wavelets to decompose the audio signal. Histograms

from the Wavelet coefficients are then built for every subband. The subband

histograms provide an approximation of the waveform variation in each subband.

The final feature vector is composed of the first three statistical moments of each

coefficient histogram together with the energy per subband. Li et al. also show that

when combined with traditional features, DWCHs can further improve

performance for music genre classification [Li et al. 2003]. DWCHs have been

used in the fields of artist style identification, emotion detection, and similarity

retrieval in [Li et al. 2004, Li et al. 2006].

Adaptive time frequency transform (ATFT). The ATFT proposed by

Umapathy et al. in [Umapathy et al. 2005] is similar to the Wavelet transform. The

signal is decomposed into a set of Gaussian basis functions of different scales,

translations, and central frequencies. The scale parameter varies with the

waveform envelope of the signal and represents for example rhythmic structures. It

shows that the scale parameter contains discriminatory ability for musical genres

classification.

Chapter 2: Literature Review

16

Variable Resolutions Transform (VRT). The VRT is first derived from the

classic definition of Continuous Wavelet Transform (CWT) in order to enable a

variable time-frequency coverage which should fit to music signal analysis better.

The consideration of specific properties of music signal finally leads to change the

mother function as well and thus VRT is not a true CWT but a filter bank.

Auto-regression analysis is a standard technique in signal processing where the

future signals are treated as linear combination of previous values. Linear predictor

is built to estimate the value of each sample of a signal in the form of linear

combination of it ancestors. Linear prediction analysis has a long tradition in audio

retrieval and signal coding early examples can be found in [Rabiner et al. 1978,

Tremain 1982].

Linear predictive coding (LPC). LPC is widely used in automatic speech

recognition since it takes into account the source-filter model of speech production.

The basic assumption is that vocal stimuli are modulated by filters like throat and

mouth and filter can be parameterized, which means the filter parameter can be

used as feature to represent speech signal [Rabiner et al. 1978]. Under the

assumption the goal of LPC is designed to estimate basic parameters of a speech

signal, such as formant frequencies and the vocal tract transfer function. LPC can

be applied in other domains such as audio segmentation and general purpose audio

retrieval where the LPC spectrum is used as an approximation of the spectral

envelope.

As mentioned earlier, beside frequency and temporal features, loudness features

that related to signal amplitude or energy is another important aspect of audio

signal that human can easily perceive. Formally loudness is “that attribute of

auditory sensation in terms of which sounds may be ordered on a scale extending

from soft to loud” [ANSI 1995]. The auditory system incorporates a number of

physiological mechanisms that influence the transformation of the incoming

physical sound intensity into the sensational loudness [Zwicker et al. 1999].

Specific Loudness Sensation (Sone). Pampalk et al. propose a feature that

approximates the specific loudness sensation per critical band of the human

Chapter 2: Literature Review

17

auditory system [Pampalk et al. 2002]. A Bark-scaled spectrogram is firstly

computed and then spectral masking and equal-loudness contours are applied.

Finally, the spectrum is transformed to specific loudness sensation in sone.

Related to loudness the energy of a signal is the square of the amplitude

represented by the waveform. The power of a sound is defined as the energy

transmitted per unit time in second [Moore 2004]. Consequently, power is

calculated as the mean-square of a signal. In many cases the root-mean-square is

used in feature extraction.

Short-time energy (STE). STE describes the envelope of a signal and is

extensively used in various fields of audio retrieval. STE is defined according to

Zhang et al. as the mean energy per frame (which actually is a measure for power)

[Zhang et al. 2001]. The same definition is used for the MPEG-7 audio power

descriptor [ISO-IEC 2002].

2.1.2 Low level feature modeling

With such amount of features in hands, we can characterize music signal from so

many different angles. For the tasks concerning music signal itself for example

signal denoising, signal coding etc. low level features alone are sufficient. For

semantic analysis, however, another layer of model has to be built to further

extract semantics from low level feature since they still contain too much detail of

signal’s redundancy and randomness which shade semantic concepts like mood

and genre.

K-means [Lloyd et al. 1982] and GMM [Reynolds et al. 1990] clustering based

bag-of-words framework has demonstrated its effectiveness to model low level

features and has been successfully applied to a number of multimedia

classification tasks, e.g., visual categorization in computer vision. The bag-of-

words model is a simplifying representation originated in natural language

processing and information retrieval (IR). In this domain, a text (such as a sentence

or a document) is represented as the bag or multi-set of its words, disregarding

grammar and even word order but keeping multiplicity. Bag-of-words method first

constructs clusters of assembled low level features through k-means or GMM

Chapter 2: Literature Review

18

clustering. It then generates histogram against k-means centers or GMM mixtures,

which reflects feature distributions with respect to the “words” in bag. This

procedure helps translate signal level information into meaningful audio and visual

words which convey more definite information for example genre and mood for

music signal. The overall BoW is shown in Figure 2.2. Low level features are

firstly extracted from music signal. Low level features pass k-means or GMM

dictionary. Low level features become to histogram feature vectors. Histogram

feature are then passed into mood SVMs. SVMs give the final mood decision

scores. From the whole process we can find that the quality of k-means and GMM

is the key factor.

Figure 2.2: BoW based music classification framework.

2.1.2.1 K-means dictionary learning

k-means dictionary or cluster is obtained by classic Lloyd’s algorithm. This

algorithm aims at minimizing the objective function of

Chapter 2: Literature Review

19

where

 is Euclid distance between a data point

 and the cluster centre

 . The algorithm is composed of the following steps.

1. Initialize K points into the space.

2. Assign each object to the group that has the closest centroid.

3. Recalculate the positions of the K centroids.

4. Go to steps 2 until the centroids no longer change.

The output of k-means clustering is indeed a Voronio diagram that tiles n-

dimensional space with respect to clustering centers. A two dimensional example

is shown in Figure 2.3.

Figure 2.3: Example of 2 dimensional k-means clustering result with 3 centers

Although it can be proved that the procedure will always terminate, the k-means

algorithm does not necessarily find the most optimal configuration, corresponding

to the global objective function minimum. The algorithm is also significantly

sensitive to the initialization of cluster centers. Many initialization methods

including R-MEAN, R-SEL, SCS, KKZ and KR have been proposed to address

the issue [He et al. 2004]. The generated k centroids are finally treated as a

codebook that translates input feature vectors.

Chapter 2: Literature Review

20

2.1.2.2 GMM dictionary learning

In addition to k-means, Gaussian mixture model (GMM) as another important

stochastic dictionary has been successfully applied to encode low level feature

vectors. A Gaussian mixture model is a parametric probability density function

represented as a weighted sum of Gaussian component densities.

where

GMMs are widely used in audio signal processing domain, most notably in

speaker recognition [Reynold 1992], due to their ability of representing a large

class of sample distributions. The most powerful attributes of the GMM is its

ability to approximate arbitrarily shaped densities functions.

GMM often performs better than k-means in two folds: as defined in equation

GMM takes dimensional variances into account to shape the probability space near

the centers while k-means only tiles the feature vector space according to pair-wise

distance; GMM is soft whereas k-means is rigid in terms of clustering assignment

of feature vectors, which means feature vectors near the border of two clusters are

more reasonable handled by GMM than by k-means. Figure 2.4 shows a typical

situation where GMM provides a better clustering result than k-means.

Chapter 2: Literature Review

21

Figure 2.4: Mikey mouse data example where GMM works better than k-

means.

Given training vectors and a GMM configuration, parameters of the GMM,

 are to be estimated so as to best match the distribution of the training feature

vectors. The most popular and well-established method is maximum likelihood

(ML) estimation. ML parameter estimates can be obtained iteratively using

expectation-maximization (EM) algorithm [Reynold et al. 2000]. The new

parameters are re-estimated iteratively as follows

2.1.2.3 Gaussian super vector

In addition to BoW, Gaussian super vector (GSV) as another transformation of low

level features has been successfully applied to many classification problems such

as speaker verification [Compbell et al. 2006] and video annotation [Inoue et al.

2011] in particular music mood classification in Mirex evaluation[Wu 2013, Cao

Chapter 2: Literature Review

22

et al. 2009]. In contrast to the histogram of bag-of-words, GMM super vector

characterizes the mean shift between the signal given and the universal

background GMM. In others words GMM super vector represents the change in

contrast to the background model. The framework of GSV based classification is

shown in Figure 2.5.

Figure 2.5: GSV based classification framework.

GSV is derived from concatenate mean vectors in the adapted GMM from a

universal background model (UBM), using maximum a posteriori (MAP)

estimation. The adapted GMM reflects the difference between data distribution

and universal distribution. Like the EM algorithm, the MAP estimation is as

follow.

The first step of MAP is identical to the EM, where estimates of the sufficient

statistics of the training data are computed. Unlike the second step of the EM

Chapter 2: Literature Review

23

algorithm, the new statistics are combined with the old ones from UBM. The free

parameter is to balance which side should be emphasized. Figure 2.6 illustrate

a simple example of the MAP estimation.

Figure 2.6: Simple example of MAP estimation. Left sub-figure denotes the

universal background model with input data (stars). Right sub-figure denotes the

adapted GMM with respect to new input data.

2.1.3 Mid-level features survey

Beside the signal level features, researchers also develop mid-level features which

contain somewhat semantic information related to human knowledge. In this

section we review mid-level features including tonality rhythm and especially note

or multi-F0.

Tonality which is defined slightly different from musical system represents the

sound property that can distinguish noise-like from tonal sounds [Zwicker et al.

1999]. Compared with tonal sounds tend to have sharp spectra, noise-like sounds

have a continuous and flat spectrum. For example, instruments like violin produces

regular harmonic tonal sound in contrast white noise has a flat spectrum standing

for the minimum of tonality. Tonality is naturally related to the pitch strength that

measures the strength of the perceived pitch.

Bandwidth. Bandwidth defined as the second-order statistic of the spectrum is

usually calculated as the magnitude-weighted average of the differences between

UBM Adapted Model

Chapter 2: Literature Review

24

the spectral components and the spectral centroid [Wold et al. 1996]. The

bandwidth is thus reflects sound tonality in that tonal sounds usually have a low

bandwidth since they contain single peaks in the spectrum while noise-like sounds

have flat spectrum that leads to high bandwidth. However complex music sounds

can still have high bandwidth meanwhile keep tonal characteristics. Therefore

mere bandwidth is insufficient to distinguish tonality for the tasks that concern

complex music. Besides, the bandwidth may be defined in the logarithm spectrum

or the power spectrum to simulate human auditory perception [Sirinivasan et al.

2004]. As global bandwidth may blur the spectrum distribution, sub-bandwidth can

be computed within subbands, which benefit some tasks. [Ramalingam et al. 2005].

In the MPEG-7 standard the measure for bandwidth is called spectral spread [ISO-

IEC 2002]. Similarly to the bandwidth measures above, the MPEG-7 audio

spectrum spread (ASS) is defined as the root-mean-square deviation with respect

to the spectrum centroid.

Subband spectral flux (SSF). Cai et al. in [Cai et al. 2006] proposed the SSF

to perform the environmental sound recognition. The feature measures the portion

of prominent partials in different subbands. SSF is derived from the logarithmized

short-time Fourier spectrum. For each subband the SSF is the summation of the

differences between adjacent frequency slots in that subband. Low SSF represents

flat subbands and high SSF indicates the subband contain variant frequency

components, which reflect somewhat tonality of the signal.

Entropy. A natural measure of flatness of a spectrum is entropy. Shannonand

Renyi entropy is usually computed in multiple subbands [Ramalingam et al. 2005].

The entropy represents the uniformity or, in the opposite angle, the chaos of the

spectrum. Misra et al. have proposed a multi-resolution entropy feature is in

[Misra et al. 2004, Misra et al. 2005]. The spectrum is split into overlapping Mel-

scaled subbands and Shannon entropy is computed on these subbands. For a flat

distribution in the spectrum the entropy is low meaning the spectrum is less

chaotic whereas sharp peaks in a spectrum introduce high entropy which means

more information exists. The entropy feature characterizes the peakiness of a

Chapter 2: Literature Review

25

subband thus may be used for music/non-music or speech/non-speech related

detection.

Rhythm is a mid-level feature that captures change patterns of timbre and

energy over time span. Zwicker and Fastl have shown that the hearing sensation of

rhythm depends on the temporal variation of loudness [Zwicker et al. 1999].

Rhythm is an important feature in music. In music it relates to the tempo of a piece

of music measured in beats-per-minute (BMP). Unlike other frame based or

statistic based feature, rhythm evolves over a relatively longer period. Therefore,

the analysis windows of rhythm features are usually in the range of a few seconds

(≈ 3-5s) [Tzanetakis 2002]. Analysis of low-frequency amplitude modulations is a

common way to derive rhythmic patterns.

Pulse metric. A measure for the “rhythmicness” of sound is proposed by

Scheirer and Slaney in [Scheirer et al. 1997]. To detect rhythmic modulations, the

autocorrelation of several subbands is firstly performed and autocorrelation peaks

are then identified. The autocorrelations in all subbands show peaks at similar

positions means a high pulse metric, which indicates a strong rhythmic structure in

the signal.

Band periodicity. The band periodicity also reflects the strength of rhythmic

structures and is similar to pulse metric [Lu et al. 2001]. The analysis is conducted

in every subbands. The maximum peak of the subband correlation function is

estimated for each analysis frame. The band periodicity is then obtained by

averaging the peaks in all frames. The band periodicity correlates with the rhythm

content of a signal, since it captures the strength of repetitive structures over time

verified by multiple analyzing windows.

Beat spectrum and beat spectrogram. The beat spectrum represents the self-

similarity of a signal in different time delay which is similarly to autocorrelation.

[Foote 2000, Foote et al. 2001]. Strong beats are implied by the peaks in the beat

spectrum with a specific repetition rate. Since the peaks correspond to note onsets

with high periodicity, strong beats essentially reflect high rhythm content

appearing in the frame analyzed.

Chapter 2: Literature Review

26

The beat spectrum is further concatenated for series of audio frames to form a 2

dimensional beat spectrogram. Each column of the beat spectrogram is the beat

spectrum of a single frame. The beat spectrogram shows the rhythmic evolution of

a signal over time. The 2D beat spectrogram visualizes how the tempo shifts over

time therefore the beat spectrogram provide detailed sequential rhythm

information that allows for further rhythmic structures analysis.

The beat spectrum is the foundation of onset detection and can be used to

measure similarity of music in terms of rhythm. It may also be used to segment

music into pieces with different rhythmical patterns, such as chorus and verse.

Cyclic beat spectrum. The CBS is a compact and robust representation of the

fundamental tempo of a piece of music, which is similar to pitch classes in the

chroma feature [Kurth et al. 2006]. Previous defined beat spectrum contains not

only the fundamental tempo but also related tempos a harmonic and sub-harmonic

scale to the fundamental tempo that is multiple fold tempo or half, one third etc.

The cyclic beat spectrum aggregate tempos rooted in the same fundamental tempo

into one tempo class. The CBS is computed from a beat spectrum. Low-pass filter

is firstly used to remove timbre information irrelevant to the tempo analysis and

the spectrogram is obtained from short-time Fourier transform. A novelty curve is

then generated by summing the differences between adjacent spectral vectors. A

bank of comb filters corresponding to particular tempos is then performed on the

novelty curve. The analysis results in a beat spectrogram where peaks correspond

to dominant tempos. The beat spectrum is then divided into logarithmically scaled

tempo octaves. The CBS is finally obtained by aggregating the beat spectrum over

all tempo classes.

Beat histogram. The beat histogram is designed as a compact global

representation of the rhythm content of a piece of music [Tzanetakis et al. 2001].

Similarly to other rhythm features, periodicity analysis in multiple frequency

bands is firstly performed. To obtain an octave-frequency decomposition the

Wavelet transform is used to detect the most salient periodicities in each subband

Chapter 2: Literature Review

27

and accumulate them into a histogram. The beat histogram thus depicts the

repetition rates of main beat and sub beats together with their strength.

Each bin of the histogram corresponds to a beat period in beats-per-minute

where peaks indicate the main and sub beats. The beat histogram compactly

demonstrates the distribution of all occurring beat periods in a piece of music. The

beat histogram can be applied to content based music classification, especially

genre classification for music in different genres usually contain different beat

patterns. Much useful information can be derived from the beat histogram for

example a measure for the beat strength may be easily obtained from the beat

histogram as in [Tzanetakis et al. 2002]. A derivation of the beat histogram is also

proposed by Grimaldi et al. in [Grimaldi et al. 2003] which took the advantage of

the discrete Wavelet packet transform (DWPT) [Mallat 1999].

Rhythm patterns. To measure music similarity and perform the retrieval

Pampalk et al. introduced rhythm patterns in [Pampalk et al. 2002]. Given the

spectrogram in the specific loudness sensation in sone, the amplitude modulations

are extracted by Fourier transform of the critical bands over time. The extracted

modulation frequencies are then weighted with respect to the fluctuation strength

to simulate the human perception [Zwicker et al. 1999]. This results in a two-

dimensional representation of acoustic versus modulation frequency.

Note (multi-F0), music is indeed sound poetry comprised of notes played by

various instruments. People understand music by perceiving the note combination

sequence too. Therefore sound of notes plays an important role in the semantics

carried by music for identifying high-level concepts such as mood. So, if music

can be effectively decomposed into note sound of playing instruments, statistics

on the decomposition can provide valuable information for further music

classification. However, mixing different instrument playing is trivial while

decomposing is quite challenging due to the intrinsic complexity of polyphonic

music.

Recovering notes from a music wave signal is usually referred to multiple F0

estimation. The approaches in literature can be roughly sorted into two categories:

Chapter 2: Literature Review

28

parameterized like statistical model based methods and non-parameterized like

non-negative matrix factorization (NMF) based methods. Parameterized

approaches usually assume that multiple F0 can be described by particular models

with a small number of free parameters that can be estimated from the signal. For

example, in [Kmaeoka et al. 2007] Kameoka et al. propose a multi-pitch analyzer

named the harmonic temporal structured clustering (HTC) method that jointly

estimates pitch, intensity, onset and duration. HTC decomposes the power

spectrum time series into distinct clusters such that each cluster has originated

from a single source modeled by a Gaussian Mixture Model (GMM). The

parameters of the source model are computed thanks to maximum a posteriori

(MAP) estimation. In [Wu et al. 2001], Wu et al. extend Kameoka's work to

propose a flexible harmonic temporal timbre model to decompose the spectral

energy of the signal in the time-frequency domain into individual pitched notes.

Each note is modeled with a 2-dimensional Gaussian kernel. Parameters of

Gaussian mixtures are then estimated by expectation maximization (EM)

algorithm with a global Kullback–Leibler (KL) divergence cost function.

Unlike parameterized approaches, non-parameterized methods like NMF focus

on recovering pitch combinations from the signal data itself without presuming

any underlying model forms. For example, NMF [Lee et al. 2001] based methods

try to decomposes the multiple pitch spectrum matrix into two matrices and

 [Rczynski et al. 2007]. contains various harmonic patterns and consists of

activation behaviors so that , which is illustrated in Figure 2.7. In [Hoyer

2002], Hoyer extends the original NMF by adding a regulation term to make

sparse. Sparseness property is quite helpful especially for music note estimation,

since a short period music can only contain a few notes played together, compared

with all possible notes.

Chapter 2: Literature Review

29

Figure 2.7: NMF for mult-F0 estimation.

NMF is such an extensible framework that it largely dominates non-parameter

methods. For example, in [Zafeiriou 2006] Zafeiriou adds a linear discriminant

analysis (LDA) stage to the activities extracted by NMF. In [Guan et al. 2011,

Wang et al. 2004], fisher-like discriminant constraints are embedded inside the

decomposition. In [Lwandowski 2012], Lewandowski proposes a supervised

method with two discriminative criteria that maximize inter-class scatter and

quantify the predictive potential of a given decomposition. In order to extract

features that enforce the separability between pitch labels, pitch information

present in time-aligned musical scores is fused in sparse NMF. In [Sakaue et al.

2012], Sakaue combines Bayesian inference with NMF to propose a Bayesian

non-negative harmonic-temporal factorization (BNHTF). BNHTF models the

harmonic and temporal structures separately with Gaussian mixture models. In

[Gao et al. 2012], a music sparse decomposition approach is proposed using high

quality MIDI dictionary. This work is a variant of sparse NMF and uses non-

negative matching pursuit to solve sparse NMF. Unlike NMF that processes the

entire signal, this work constructs the activity matrix column by column. It is

still worth mentioning the work in [Leveau et al. 2008] where Leveau et al.

propose to learn instrument specified note atoms with a modified matching

pursuit and a tracking of the played instrumental notes by searching an optimal

path with respect to the reconstruction error.

Previous works in the literature have demonstrated the effectiveness of various

approaches in multiple-F0 estimation, especially NMF based methods. However,

under the NMF framework, the entire music spectrum series are treated as a

whole object to be reconstructed. Most of the algorithms focus on reducing the

spectrum reconstruction error so as to overlook the compatibility in concurrent

and consecutive notes. This batch processing style makes it hard to fuse note co-

occurrence and transition information to guide note detection during the matrix

factorization. Indeed, after the signal spectrum matrix is factorized, and are

new represents of the music, which have lost signal context information for post-

processing to correct possible error. Even in [Leveau et al. 2008], the Viterbi

Chapter 2: Literature Review

30

algorithm is used to search the optimal path only with respect to a minimum

reconstruction error and neglects the underlying note relations. Nevertheless

correlation between concurrent and consecutive notes contains significant

heuristics that can help to correct the decomposition error introduced by a signal

level analysis.

2.2 Audio-Based Musical Mood Detection Systems Survey

2.2.1 Representation of emotions

Among all the concepts associated with music, the emotion or mood is

probably the most natural semantic information expressed by music and can be

easily perceived by audiences even without special music knowledge. Music is

also referred to as a “language of emotion” [Pratt 1952] [Kim et al. 2010]. All

these motivate music mood studies with high priority in both theoretical and

practical perspectives.

Emotions root in highly subjective experiences therefore it is hard to find

universal models to describe them. Generally speaking, there exist two directions

in the psychological literatures, depending on whether emotions are considered

discrete or continuous. In discrete case, categorical approaches are proposed

involving finding and organizing some set of emotional descriptors (tags) based

on their relevance to the corresponding music. [Hevner 1936] used 66 adjectives

sorted into 8 groups. In spite of being disputed, many categorical studies inspired

by Hevner demonstrate proposed tagging can be meaningful and consistent,

regardless of the listener’s musical background [Juslin et al. 2001] [Schubert et al.

2003]. In a sequence of music-listening studies, Zenter et al. [Zenter et al. 2008]

reduced a set of 801 “general” emotional terms into a subset metric of 146 terms

specific to music mood rating. Their studies, which involved rating music-

specificity of words and testing words in lab and concert settings with casual and

genre-aficionado listeners, revealed that the interpretation of these mood words

varies between different genres of music. Another example is the BEEV (Basic

English Emotional Vocabulary), which consists of 40 discrete words for

automatic emotion recognition [Kim et al. 2008].

Chapter 2: Literature Review

31

Another famous example is Plutchik’s emotional wheel [Plutchik et al. 1980],

shown in Figure 2.8. Plutchik created the wheel of emotions in 1980 which

consisted of 8 basic emotions of joy vs. sadness, trust vs. disgust, fear vs. anger,

surprise vs. anticipation and 8 advanced emotions each composed of 2 basic ones,

which show in Table 2.1.

Figure 2.8: Plutchik’s emotional wheel [Plutchik et al. 1980].

Table 2.1: Advanced emotion combination.

Human feelings (results of emotions) Feelings Opposite

Optimism Anticipation + Joy Disapproval

Love Joy + Trust Remorse

Submission Trust + Fear Contempt

Awe Fear + Surprise Aggression

Disapproval Surprise + Sadness Optimism

Remorse Sadness + Disgust Love

Contempt Disgust + Anger Submission

Aggressiveness Anger + Anticipation Awe

Chapter 2: Literature Review

32

The MIREX evaluations for automatic music mood classification have

categorized songs into one of five mood clusters, shown in Table 2.2. The

five categories were derived by performing clustering on a co-occurrence

matrix of mood labels for popular music from the All Music Guide [Hu

2008].

Table 2.2: MIREX emotion clusters.

Cluster Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured

Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

The continuous approach on the other hand consists in defining an N-

dimensional emotional space. The most famous one is the two or three-

dimensional model proposed by Russell [Russel 1980] and Schlosberg

[Schlosberg 1954]. Each emotion are expressed as a point in emotional space

consisting of valence (or evaluation), arousal (or activation) and potency (or

power). Valence defines how positive or negative an emotion is; arousal

measures the degree of excitement or involvement of the individual in the

emotional state; potency accounts for the strength of the emotion. Discrete

emotion categories can be transferred to the continuous by projecting in a

continuous space. Figure 2.9 and Figure 2.10 shows the locations of basic

emotions in the continuous space.

Chapter 2: Literature Review

33

Figure 2.9: Two-dimensional emotion space and basic emotions [Russel 1980].

Figure 2.10: Three-dimensional emotion space and 6 basic emotions.

Chapter 2: Literature Review

34

In following section we review the state-of-the-art of content-based emotion

recognition system for both discrete and continuous emotion descriptions. The

former results in a classification task and the latter in a regression task

2.2.2 Emotion classification

In one of the early works on this field, acoustic features related to timbre, rhythm,

and pitch are used to train support vector machines (SVMs) to classify music into

one of 13 mood categories [Li et al. 2003]. The system has achieved an accuracy

of 45% on the data set consisting of a hand-labeled library of 499 music clips

with 30-seconds each from a variety of genres including ambient, classical,

fusion, and jazz.

In [Lu et al. 2006] mood detection and tracking was performed with a similar

set of acoustic features including intensity, timbre, and rhythm. Instead of SVM

Gaussian Mixture Models (GMMs) are employed as classifier for the four

principal mood quadrants on the V-A classification. The system achieved an

overall accuracy of 85% on a data set involving 800 classical music clips from a

data set of 250 pieces with 20 seconds in duration. All music clips are labeled

manually to one of the 4 quadrants.

In [Mandel et al. 2006] Mandel et al. developed an active learning system that

can provide recommendations based upon any musical context defined by the

user. To construct a personalized playlist, the users provide a set of seed songs to

the system. The input songs represent the class of playlist desired. The system

uses the initial data, combined with verification data from the user, to construct a

binary SVM classifier using MFCC features. When tested on 72 distinct moods

from AMG labels, the system achieved a maximum performance of 45.2%.

In [Skowronek et al. 2007] Skowronek et al. developed binary classifiers for

each of 12 non-exclusive mood categories using a data set of 1059 song excerpts.

Features that are used included temporal modulation, tempo and rhythm, chroma

and key information, and occurrences of percussive sound events. Quadratic

discriminant functions are trained for each mood, with accuracy ranging from

77% (carefree-playful) to 91% (calming-soothing) varying on the categories

Chapter 2: Literature Review

35

In [Vaizman et al. 2011] the dynamic texture mixture (DTM) model is

investigated for the representation of short-time audio features in an emotion

classification problem. In their work they consider each audio segment to contain

a static emotion in one of four categories. The dataset evaluated consists of 72

audio excerpts, each of about 30 seconds. With the DTM model, their best

performing approach obtains 0.8692 in terms of area under ROC curve (AUC).

MIREX first introduced audio music mood classification as a task in 2007 [Xu

et al. 2008]. In 2007, the highest percentage correct (61.5%) is achieved by

Tzanetakis using only MFCC, and spectral shape, centroid, and rolloff features

with an SVM classifier [Tzanetakis 2007]. The best system in 2008 submitted by

Peeters achieved 2.2% of improvement (63.7%) by introducing a larger feature

set including, MFCCs, Spectral Crest/Spectral Flatness together with a variety of

chroma based features [Peeters 2008]. Before the final GMM based classification,

Inertia Ratio Maximization with Feature Space Projection (IRMFSP) was first

employed to perform the feature selection in which the most effective 40 features

were preserved and Linear Discriminant Analysis (LDA) was also applied for

further dimensionality reduction.

Starting from 2009 the Gaussian super vector based methods have dominated

this evaluation. In [Cao et al. 2009] Cao and Li developed a system that achieved

the best results in several categories, including mood classification (65.7%). Their

system applied a Gaussian super vector of low-level acoustic features and

followed by support vector machine as classifier. In 2013, Wu et al. submitted a

GSV based system which topped mood classification task with 68.33% of overall

accuracy. Their framework was following Cao’s submission in [Cao et al. 2009].

In addition, two types of features are used in Wu’s submissions, including visual

features and acoustic features. The visual features capture characteristics of a

spectrogram’s texture from both local and global views. Acoustic features are

used to represent global timbre characteristics. The two types of features are

finally concatenated to a single long feature vector to feed into SVM classifier.

Chapter 2: Literature Review

36

2.2.3 Emotion Regression

Parametric regression approaches have demonstrated the ability to outperform

supervised classifications with similar features in music emotion prediction,

presented in several recent works. In [Yang et al. 2008] Yang et al. proposed to

perform regression for projecting high dimensional acoustic features to the two

dimensional space to predict V-A values directly from audio, Support vector

regression (SVR) [Smola et al. 2004] and a variety of ensemble boosting

algorithms, including AdaBoost.RT [Shrestha et al. 2006], were employed to

perform the regression. The ground-truth V-A label was collected for each of 195

music clips. 114 common features are extracted with tools of PsySound [Cabrera

et al. 2007] and Marsyas [Tzanetakis et al. 1999]. PCA was applied prior to

regression to reduce the data to a tractable number of dimensions. This system

achieves an (coefficient of determination) score of 0.58 for arousal and 0.28

for valence.

In [Han et al. 2009] Han et al. investigated a quantized representation of the

V-A space and employed SVMs for classification. With inferior results of 33%

accuracy in an 11-class problem, they turned to regression-based approaches. The

problem was reformulated in the form of regression. They obtain a best

performance of 95% classification accuracy with 11 quantized categories of

GMM regression.

In [Eerola et al. 2009] multiple regression approaches, including Partial Least-

Squares (PLS) regression were investigated. PLS is an approach that considers

correlation between label dimensions. They achieved performance of 0.72,

0.85, and 0.79 for valence, activity, and tension, respectively.

In [Madsen et al. 2012] Madsen et al. propose a novel approach to develop a

system that is trained on ranking data and afterwards can make V-A predictions

in the testing phase. In their experiments subjects are simply asked to rate pairs of

songs as to which song is higher in terms of valence and arousal. The drawback

of the system is that full ranking procedure requires enumerating on all pair

combinations and thus the dataset is limited in size. Their current set contains 20

Chapter 2: Literature Review

37

songs, and therefore 190 unique pairings. With the complete training set (90% of

all data) they obtain valence and arousal error of 0.13 and 0.14, respectively.

2.3 Conclusion

As surveyed in this chapter, content-based music classification, and in particular

mood classification, relies on different level features extracted from music

signals. Low level features preserve complete information from the original

signal; however they are redundant to process which makes modeling low level

features inevitable for example using BoW and GSV methods. When dealing with

big data, we have to accelerate the bottle neck of the modeling which is the

dictionary learning of k-mean and GMM. This leads to our first contribution for

effective accelerate k-means, GMM and MAP which is developed in Chapter 3.

Regarding mid-level feature, previous work in literature hardly uses note

information which is in fact the most natural semantic given by the composer.

Therefore our second contribution concerns music signal decomposition into note

histogram with the help of sparse representation. Two algorithms are proposed in

chapter 4 to elaborate the whole process.

Chapter 3: Acceleration for Low Level Feature Modeling

38

Chapter 3: Acceleration for Low Level Feature

Modeling

3.1 Introduction

Bag-of-words (BoW) framework has demonstrated its effectiveness to model

low level features and has been successfully applied to a number of

multimedia classification tasks, e.g., visual categorization in computer vision.

In addition to BoW, MAP adaptation based GMM super vector (GSV) as

another transformation of low level features has been successfully applied to

many classification problems such as speaker verification [Campbell et al.

2006], video annotation [Inoue et al. 2011] and most notably in music mood

classification [Wu et al. 2013, Cao et al. 2009]. In contrast to the histogram of

bag-of-words, GMM super vector characterizes the mean shift between the

input signal and the universal background GMM. K-means and GMM

clustering, as dictionary learning procedures, lie at the heart of many audio and

visual processing algorithms, in particular k-means, GMM based BoW

framework and MAP based super vector approach.

In the era of big data, for example in iTunes music store, there have been

over 37 million songs available by 2014 and the number is still growing fast.

Google Image has being searched against 10 billion images since 2010

[Google blog 2010]. YouTube receives 100 hours of video upload in every

minute. With the drastically increased data scale, the dictionary learning of k-

means and GMM becomes a computational bottleneck and requires

accelerations.

There are previous works in the literature employing GPU to accelerate EM

for GMM training. [Kumar et al. 2009, Pangbom 2010, Azhari 2011, Gonina

2011, Machlica et al. 2011, Wu et al. 2012] have implemented EM algorithm

on CUDA to train GMM. Wu in [Wu et al. 2012] also mentioned to use

individual CUBLAS function to update means and variance matrix. Azhari in

[Azhari 2011] implemented MFCC extraction in CUDA too. Gonina in

[Gonina 2011] also provided Python interface to GPU based GMM training.

Machlica in [Machlica et al. 2011] used cached textual memory and carefully

Chapter 3: Acceleration for Low Level Feature Modeling

39

configured memory usage to elevate performance. In previous works user

defined GPU kernel functions undertake main computation work. However,

kernel functions require careful design and hardware related tuning thus is

hard to translate into other languages for use in other computation platform.

In this chapter we present our approach to accelerating k-means, GMM and

MAP, which can be effectively achieved on multiple parallel platforms of

GPU, multi-core CPU and computer cluster such as Hadoop and Spark. The

speed-up is mainly empowered by matrix-based operations. We firstly show

that the three procedures can be concisely reformulated into matrix

multiplications, which can be efficiently accelerated by parallel computation

facilities on single machine. For example highly optimized matrix operation

libraries of CUBLAS, ACML and ATLAS can be employed to speedup the

calculations. Since the proposed computation structure is formulated into

matrix operations, it also can be easily translated into languages with

underlying BLAS support, e.g., MATLAB or FORTRAN. When data is even

too big to fit in single machine’s memory, we show that the data can be

divided into small blocks and processed block by block. When data is even

bigger so as to make disk IO as bottleneck for single machine, the data has to

be stored and processed distributedly in machine cluster such as Hadoop

[White 2009] with Hadoop distributed file system (HDFS) [Konstantin et al.

2010]. Apache Hadoop is a framework for running applications on large

cluster built of commodity hardware. The Hadoop framework transparently

provides to applications both reliability and data motion. Hadoop implements

a computational paradigm named MapReduce, where the application is

divided into many small fragments of work, each of which may be executed or

re-executed on any node in a cluster. In addition, it provides a distributed file

system (HDFS) that stores data on the computer nodes, thereby enabling very

high aggregate bandwidth across the cluster. Both MapReduce and the

Hadoop distributed file system are designed so that node failures are

automatically handled by the framework. Mahout is a machine learning library

on Hadoop which provides k-means clustering algorithm.

Although Hadoop provides facilities to parallelize data accessing and

computing, it is still designed for one pass processing in nature, which is

Chapter 3: Acceleration for Low Level Feature Modeling

40

reading data from disks, computing and writing back results, which lacks data

caching scheme. However, k-means, GMM and MAP are iterative algorithms

which perform the computation on the same data for many iterations. Hadoop

thus wastes disk reading overhead from the second iteration. To avoid the

Hadoop’s drawback, Spark framework [Zaharia 2010] has been developed by

UC Berkeley AMPLab, in which Resilient Distributed Datasets (RDDs)

[Zaharia 2012] is implemented to cache data into main memory when possible.

RDD is a distributed memory abstraction that enables programmers to perform

in-memory computations on large clusters in a fault-tolerant manner. RDDs are

motivated by two types of applications that current computing frameworks

handle inefficiently: iterative algorithms and interactive data mining tools. In

both cases, keeping data in memory can improve performance by an order of

magnitude. To achieve fault tolerance efficiently, RDDs also provide a

restricted form of shared memory, based on coarse grained transformations

rather than fine-grained updates to shared state. MLlib is a machine learning

library on Spark that provides k-means clustering algorithm. In this chapter we

show how these parallel frameworks accelerate k-means, GMM clustering as

well MAP adaptation.

The contributions of this chapter are thus threefold:

 K-means, GMM, MAP reformulated into the matrix operation form

 GPU-based acceleration

 Cluster-based acceleration

The rest of the chapter is organized as follows: section 3.2 shows matrix

multiplication format of k-means clustering and EM algorithm for GMM.

Section 3.3 addresses Hadoop and Spark based acceleration in MapReduce

model. Section 3.4 introduces performance tuning for GPU, multi-core CPU

and cluster implementations. The quality of trained GMM is also discussed.

Section 3.5 is dedicated to experiments where the execution speed and quality

of learnt dictionary are then examined for three implementations on music

genre and mood classification. Final conclusion is drawn in section 3.6.

Chapter 3: Acceleration for Low Level Feature Modeling

41

3.2 K-means and EM Algorithm in Matrix Format

In this section k-means [Hartigan et al. 1979] and EM [Dempster et al. 1977]

algorithm are shown in matrix multiplication format. The two algorithms are

reformulated into matrix format in that the multiplication of matrix can be

effectively accelerated via well tuned linear algebra libraries. The

computational efficiency can be greatly enhanced on parallel infrastructure,

compared with user defined programs. Several symbols are firstly defined:

is the number of dimensions for feature vectors, k-means cluster centers and

Gaussian mixtures; is the number of feature vectors; is the number of k-

means clusters or GMM mixtures; is the feature matrix in which each

column represents one feature vector; is the matrix of k-means cluster

centers in which each column represents one center; represents the variance

matrix of which, in contrast to a covariance matrix , is the variance

of dimension for cluster or mixture . In GMM,
 denotes

the prior probabilities or weights of every mixture, the

matrix of means, the set of covariance matrices. Other

symbols are defined each time they are used.

3.2.1 K-means in matrix format

K-means clustering iteration contains two steps: cluster decision and cluster

center updating. The first is to find the nearest center to which each feature

vector is to be clustered. The second is to re-estimate cluster centers according

to the nearest relationship.

To measure the closeness between data set and centers , squared Euclid

distance is commonly used, defined as

(3.1)

In matrix format, squared distance matrix can be written as

Chapter 3: Acceleration for Low Level Feature Modeling

42

(3.2)

where

 is the vector of squared length of feature

vectors and

 is the vector of squared length of

centers.

For the center updating step the new center matrix can be written as

 , where occupation matrix is defined as

where is the number of associated feature vectors to center . Variance

matrix can be computed similarly as
 , where

 and
 .

3.2.2 EM for GMM in matrix format

In GMM, the probability density of a feature vector is defined as

 (3.3)

where is the GMM parameter set and is the

probability of a feature vector under a single Gaussian mixture , defined

as

 (3.4)

Like k-means, EM iteration for GMM training includes two main steps:

probability calculation and parameter updating. The first step decides relations

Chapter 3: Acceleration for Low Level Feature Modeling

43

between feature vectors and Gaussian mixtures in terms of likelihood; the

second step updates GMM parameters with the feature matrix according to

how likely each mixture can generate the observed feature vectors.

In the first step are computed. To avoid floating point numeric

overflow, the natural logarithm of is preserved during calculation

(3.5)

where

 In practice

covariance matrix is often treated as diagonal, in order to simplify

computation. Let denote the GMM

variance matrix; Let denote the corresponding logarithmic probability matrix

in which , then can be written as

(3.6)

where
 , is the reciprocal matrix of in which

 and is -weighted mean matrix in which

 . Then is computed according to Bayes’ rule

 (3.7)

Posterior probability is firstly computed in logarithmic scale, that is

 , and then converted into

linear scale when needed. are also aggregated directly in

logarithm. When posterior probability is ready EM updating procedure can be

performed to re-estimate GMM parameters as follows:

Chapter 3: Acceleration for Low Level Feature Modeling

44

(3.8)

(3.9)

(3.10)

Let denote the posterior probability matrix, in which

 and let denote the occupation matrix for all mixtures, in which

 (3.11)

The EM updating formulas can then be written as

(3.12)

(3.13)

(3.14)

where is the squared data matrix in which and is the

squared mean matrix of just updated.

3.2.3 MAP in Matrix Format

To obtain the GMM super vector, UBM should be adapted via MAP as

follows

(3.15)

(3.16)

(3.17)

Chapter 3: Acceleration for Low Level Feature Modeling

45

where

(3.18)

(3.19)

(3.20)

 is the input feature vector to adapt on.

represents the universal background GMM,

denotes the relevant coefficient for mixture , in which is a free parameter

of absolute relevant occupancy.
 denotes

 the same as column

vector of . According to the formula MAP for GMM formula can be

computed in the same way as EM algorithm i.e., in matrix multiplication

format. The final GMM super vector for input data is then obtained by

concatenating adapted mean vector weighted by corresponding standard

derivation and mixture weight.

3.3 MapReduce Acceleration

It is quite straightforward for k-means and GMM in their matrix format to take

the advantages of parallel computing power on an individual machine.

However, when data scale gets such a size to which one computer cannot

afford, we have to seek help from computer clusters. This section shows our

matrix multiplication method can perfectly fit into computer cluster scenario, in

particular MapReduce model so that the Hadoop and Spark framework can

soundly be employed to further accelerate the computing.

3.3.1 MapReduce structure

MapReduce [Dean et al. 2008] is a programming model for processing large

data sets with a parallel, distributed algorithm on a cluster. It starts to prevail

Chapter 3: Acceleration for Low Level Feature Modeling

46

with the Apache Hadoop project. A MapReduce program is composed of a

Map() and a Reduce() procedure. The Map() procedure performs dividing,

filtering and sorting data blocks to conduct the distributed computation. The

Reduce() procedure performs a collecting operation that aggregate sub results

and transform them into the final one. The "MapReduce System" consists of

distributed servers, running the various tasks in parallel, managing all

communications and data transfers between the various parts of the system,

and providing redundancy and fault tolerance.

3.3.2 Hadoop architecture

Hadoop is designed to efficiently process large volumes of information by

connecting many affordable commodity computers together to work in

parallel.

3.3.2.1 Hadoop distributed file system (HDFS)

A big bottleneck for parallel computing is data access bandwidth, especially

across computing nodes. To achieve high data accessibility Hadoop

Distributed File System (HDFS) has been developed. HDFS has a master/slave

architecture as shown in Figure 3.1. An HDFS cluster consists of a single

Namenode, a master server that manages the file system namespace and

regulates access to files by clients. In addition, there are a number of

Datanodes, usually one per node in the cluster, which manage storage attached

to the nodes that they run on. HDFS exposes a file system namespace and

allows user data to be stored in files. Internally, a file is split into one or more

blocks and these blocks are stored in a set of Datanodes. Data blocks are also

replicated several times across Datanodes. The replication makes data block

more locally available to computing nodes and more robust against possible

disk failure. The Namenode executes file system namespace operations like

opening, closing, and renaming files and directories. It also determines the

mapping of blocks to Datanodes. The Datanodes are responsible for serving

read and write requests from the file system’s clients. The Datanodes also

perform block creation, deletion, and replication upon instruction from the

Namenode. Hadoop tie these smaller and more reasonably priced machines

together into a single cost-effective storage cluster.

Chapter 3: Acceleration for Low Level Feature Modeling

47

Figure 3.1: HDFS Architecture [Borthakur 2007]. Namenode manage data

information of datanodes. Datanodes store duplicated blocks of data.

Clients try to access blocks of data locally and remotely.

3.3.2.2 Hadoop MapReduce

Hadoop MapReduce architecture is shown in Figure 3.2. In Hadoop

MapReduce, records are processed in isolation by tasks called Mappers. In

each computing node there can exist multiple Mappers. Mappers are arranged

as near data as possible so that inter-node communication is minimal. The

output from the Mappers is then sorted according to the key and brought

together into a second set of tasks called Reducers, where results from

different mappers are merged together. Mapping and reducing tasks run on

nodes where individual records of data are already present. Separate nodes in a

Hadoop cluster still communicate with one another but only when necessary.

However, in contrast to more conventional distributed systems where

application developers explicitly marshal byte streams from node to node over

sockets or through MPI buffers, communication in Hadoop is performed

implicitly. Pieces of data are tagged with key names which indicate Hadoop to

send related bits of information to a common destination node. Hadoop

Chapter 3: Acceleration for Low Level Feature Modeling

48

internally manages all of the data transfer and cluster topology issues, from

data blocks to machine and machine to rack.

To tolerate system fault, Hadoop isolate tasks in both Mappers and

Reducers by wrapping up all necessary resources. By restricting the

communication between nodes, Hadoop makes the distributed system much

more reliable. Individual node failures can be worked around by rearrange

tasks on other machines. Since user-level tasks do not communicate explicitly

with one another, no messages need to be exchanged by user programs, nor do

nodes need to roll back to pre-arranged checkpoints to partially restart the

computation. The other workers continue to operate as though nothing went

wrong, leaving the underlying Hadoop layer to partially restart the failed

program.

Figure 3.2: Hadoop MapReduce Architecture [Yahoo 2014]. Datablocks

are read by the mapper and is processed. The intermediate results are then

shuffled and provided to the reducer. The reducers generate the final

combined result.

3.3.3 MapReduce k-means in matrix format

Since Hadoop provides infrastructure for MapReduce computing model, we

show in this section how matrix format computation can fit into it. For large

Chapter 3: Acceleration for Low Level Feature Modeling

49

data set, data feature matrix is divided into blocks

 which in fact has been implicitly done by HDFS.

What we need to do is just writing a data format to inform Hadoop how much

data is needed for a Mapper.

3.3.3.1 Map phase

In each iteration, the Map phase consists of computing sub-results of

weights, center and variance on as follow.
 is firstly computed as

before with one matrix multiplication. For each feature block, calculate

occupation matrix as

 (3.21)

For each feature block, weight feature vector in which indicates the

number of related feature vector for center , center matrix and variance

matrix are computed by one matrix multiplication as

 (3.22)

3.3.3.2 Reduce phase

In each iteration, the Reduce phase is comprised of accumulating and

averaging block-wise weight, center and variance output from Mappers. The

final re-estimated centers are computed as follow.

(3.23)

(3.24)

(3.25)

Chapter 3: Acceleration for Low Level Feature Modeling

50

In the end of iteration the updated cluster center is calculated as

(3.26)

(3.27)

(3.28)

where

 . Note that does not affect cluster center

updating; therefore it is only computed in the last iteration. The matrix version

k-means clustering main steps are summarized as follows.

 For each iteration

 Map() = {

 Calculate
 with one matrix multiplication

 Calculate from

 Calculate and with one matrix multiplication

}

 Reduce() = {

 Aggregate and to update new

}

3.3.4 MapReduce EM in matrix format

3.3.4.1Map phase

As performed in MapReduce k-means For each feature block, weight vector,

mean matrix and variance matrix are computed in Mapper as follow. is

firstly computed by one matrix multiplication as in section II.
 is then

calculated accordingly. Sub result for is computed as

 (3.29)

Chapter 3: Acceleration for Low Level Feature Modeling

51

3.3.4.2 Reduce phase

In each iteration, the overall accumulated weight vector, mean matrix and

variance matrix for feature blocks are computed in the phase of reduce as

(3.30)

(3.31)

(3.32)

The updated GMM parameters are finally obtained as

(3.33)

(3.34)

(3.35)

where

 . The matrix version main steps are

summarized as follow.

 For each iteration

 Map() = {

 Calculate with one matrix multiplication

 Calculate
 from

 Calculate , and with one matrix multiplication

 Reduce() = {

 Aggregate , and to update new GMM parameters

}

3.3.5 MapReduce in Spark

Although Hadoop provides efficient parallel mechanism, it introduces extra

overhead of disk IO at each iteration. Hadoop supports neither data caching

nor shared variable. Therefore for iterative algorithm like k-means and GMM,

Chapter 3: Acceleration for Low Level Feature Modeling

52

Hadoop has to reload model and training data from disk for every Mapper at

each iteration. When data is big whereas computation is relatively

inexpensive, Hadoop distributed disk IO can even be a bottleneck for entire

algorithms. To avoid this extra time consumption we switched to Spark the

framework.

Similar to Hadoop, Spark also supports the MapReduce parallel model and

HDFS accessing. The difference is that Spark introduces a data abstraction

named resilient distributed datasets (RDD). An RDD is a read-only collection

of objects partitioned across a set of machines that can be rebuilt if a partition

is lost. RDDs can be explicitly cached in memory across machines and reused

in multiple MapReduce parallel operations. RDDs achieve fault tolerance

through a notion of lineage: if a partition of an RDD is lost, the RDD has

enough information to rebuild just that partition. When an entire assigned

RDD cannot hold into the memory of a node, RDD is then automatically and

efficiently serialized onto its local disk and de-serialized back when necessary.

Spark also supports shared variables which are copied to referenced Mappers

and Reducers without loading from disk. For constant data, Spark even

provides broadcast variables to ensure every node to receive only one copy

and thereby avoids the underlying duplication for each Mapper or Reducer.

3.4 Performance Tuning

The formula in previous sections represents the theoretically ideal situation.

However, to achieve the best performance, there are still several parameters

that need to be tuned according to the underlying hardware configurations.

3.4.1 Multi-core CPU

For single machine based test run, when distance matrix , or probability

matrix is too large to fit into the memory, serialized MapReduce version of

k-means or GMM must be adopted. In such a situation data blocks are

processed one by one and finally aggregated. On machines equipped with

AMD muti-core CPU, ACML is used for matrix multiplication to maximize the

computing speed. On machine with Intel CPU, ATLAS is tuned and employed

instead. To take full advantage of multi-core CPU, calculation of and

Chapter 3: Acceleration for Low Level Feature Modeling

53

is implemented with OpenMP
1
 which takes charge of dispatching for-loop into

multiple threads. However, spawning as many threads as possible is not the

optimal way of acceleration. Because too many threads increase the overhead

of thread scheduling and enhance cache faults or even page faults when a large

number of threads access data. For example when we run the following code to

calculate feature vectors’ square length, the fastest speed is achieved where

OpenMP schedule batch size is around 10240, which is shown in Figure 3.3.

#pragma omp parallel for default(shared) private(i) schedule(guided,10240)

 for (int i = 0; i < pData->nVecCurBlock; i++) {

 float * pVecSqr = pData->pVecSqrCurBlock + (long long)i*pData->nDim;

 float * pVec = pData->pVecCurBlock + (long long)i*pData->nDim;

 for (int j = 0; j < pData->nDim; j++) {

 pVecSqr[j] = pVec[j]*pVec[j];

 }

}

Figure 3.3: OpenMP execution time vs. batch size. 10k of data achieve the peak

performance.

1 http://openmp.org/wp/

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 16 64 256 1024 4096 10k 20k 30k

Ti
m

e
 p

e
r

it
e

ra
ti

o
n

 (
se

c)

Size of data chunk

time

Chapter 3: Acceleration for Low Level Feature Modeling

54

3.4.2 Nvidia GPU

Similarly, on GPU version, the matrix multiplications are implemented with

CUBLAS and calculation of and
 are implemented with custom

CUDA kernel functions. To achieve the peak performance, matrix

multiplication and kernel functions need to be further tuned.

CUDA computing architecture and memory access pattern have to be well

understood in order to push GPU into top speed. CUDA adopts single

instruction multiple threads (SIMT) architecture. Threads are firstly divided

into grids and then grouped into block. The threads are index up to 3

dimensions. 32 threads within one block form one warp which is the unit of the

GPU thread management. When GPUs are idle, the thread manager tries to

arrange one or half warp of threads to execute at same time with the identical

instructions. The CUDA parallel architecture is shown in Figure 3.4. Therefore

dividing problem into threads block whose dimension is multiple of warp will

execute faster, otherwise some threads will be wasted when computing the

corner cases of problems.

Chapter 3: Acceleration for Low Level Feature Modeling

55

Figure 3.4: CUDA thread parallel architecture [Nvidia 2014]. Workloads are

divided into 2D threads configuration.

Beside of thread architecture, memory access is another important aspect that

affects parallel execution significantly. Memory in CUDA can roughly be

divided into local (or shared) and global parts, as shown in Figure 3.5. Local

memory is much faster, however, of too limited size. For example GTX285

has only 16KB. Local memory is shared and only accessible within the thread

block. Local memory may also cause bank conflicts. As illustrated in Figure

3.6. To achieve high memory bandwidth for concurrent accesses, shared

memory is divided into equally sized memory modules (banks) that can be

accessed simultaneously. Therefore, any memory load or store of n addresses

that spans n distinct memory banks can be serviced simultaneously, yielding

an effective bandwidth that is n times as high as the bandwidth of a single

bank. However, if multiple addresses of a memory request map to the same

memory bank, the accesses are serialized. The hardware splits a memory

request that has bank conflicts into as many separate conflict-free requests as

Chapter 3: Acceleration for Low Level Feature Modeling

56

necessary, decreasing the effective bandwidth by a factor equal to the number

of separate memory requests. The one exception here is when multiple threads

in a warp address the same shared memory location, resulting in a broadcast.

Despite these limitations, local memory should be used whenever shared data

exists within thread block in order to boost memory throughput. Compared

with local memory, global memory is larger, up to several gigabytes, yet

slower. For our tasks, most memory access happens in global domain and for

computation ability less than 2.0 the global memory does not have cache

(GTX285 has computation ability of 1.3). Therefore memory access pattern

affects computation throughput tremendously. In many scenarios memory

access becomes the computational bottleneck.

Figure 3.5: CUDA memory hierarchies [Nvidia 2014]. Global memory can be

accessed by all threads. Shared memory is shared within thread block.

Chapter 3: Acceleration for Low Level Feature Modeling

57

Figure 3.6: Local memory banks with/without conflicts [Nvidia 2014]. The

three typical cases that will not generate bank conflicts.

In CUDA, global memory access is divided into memory transactions which

can load up to 128 bytes at one time. Figure 3.7 illustrate three typical global

memory access cases and corresponding memory transactions needed. From

memory access scheme and SIMT architecture shown in Figure 3.4 and 3.7 we

Chapter 3: Acceleration for Low Level Feature Modeling

58

can find that aligned continuous, namely coalesced, memory access is the most

efficient way to access global memory, which prefer to neighbor threads in a

block access neighbor data. Although threads block can be configured in 2D or

3D, the memory neighborhood is still confined in linear due to insufficient

amount of cache.

Figure 3.7: Global memory access patterns [Nvidia 2014].

Chapter 3: Acceleration for Low Level Feature Modeling

59

For example, to compute occupation matrix from matrix in k-means

algorithm, we have tested calculation performance on in both row major

order and column major order. In the case of row major order, adjacent threads

read global memory address with big gaps whereas in column major order

adjacent threads read adjacent memory. Figure 3.8 shows the time consumption

of two memory accessing orders, the brown bar indicates column major order

to read while the bar in cyan denote row major order one. From Figure 3.8

we can find that same kernel function runs more than 7 times faster on .in

column major order.

Figure 3.8: Time consumption comparison between column and row major

order, the brown bar indicates column major order time consumption while the

bar in cyan denotes row major order time consumption.

In former case the computation task is parallelized on each vector so that the

speed gain is obtained from coalesced memory access. Another example is to

compute posterior probability matrix from in EM algorithm for GMM.

The time consumption of 16x16 thread block dimension is shown in cyan bar

in Figure 3.9 and the time consumption of 1x256 is shown in cyan bar in Figure

3.10. From the two figures we can find that thread block dimension of 1x256 is

6.9 time faster than of 16x16 (245.3ms down to 35.8ms), which lead overall

30% efficiency improvement. The acceleration is essentially due to coalesced

memory access. Indeed, although taking exponential for each matrix element is

a 2D parallelable operation, the matrix data is actually stored linearly in global

memory. Therefore 16x16 configuration causes non-consecutive global

memory access whereas 1x256 does.

Chapter 3: Acceleration for Low Level Feature Modeling

60

Figure 3.9: Time consumption of 16x16 thread block dimension (345.3ms in

cyan bar).

Figure 3.10: Time consumption of 1x256 thread block dimension (35.8ms in

cyan bar).

In calling CUBLAS SDK functions, using non-transposed matrix function

call whenever possible can improve the execution speed, because transpose

operation is expensive and from NVIDIA’s profiler we can find when

cublasSgemm() is performed on matrix which needs to transpose the

multiplication is actually performed by a CUDA kernel function, which is

much slower. Figure 3.11 shows time consumption of matrix multiplication

with transpose and Figure 3.12 shows time consumption without matrix

transpose. From the two figures we observe 2.7 times speed-up (116.8ms down

to 43.0ms) when calling cublasSgemm() with non-transposed arguments.

Chapter 3: Acceleration for Low Level Feature Modeling

61

Figure 3.11: Time consumption of CUBLAS sgemm with matrix transpose

(116.8ms in the first brown bar).

Figure 3.12: Time consumption of CUBLAS sgemm without matrix transpose

(43.0ms in the first blue bar).

Another tuning point is to merge matrix operations whenever possible, like

multiplication, can save overhead caused by function calling and repeated

memory access. For example when block mean and variance matrix updating is

combined into one matrix multiplication 10% execution time is saved.

The final aspect where acceleration can be gained is to upgrade to high

performance graphic card with advanced GPU. Table 3.1 show our fine tuned

implementation executes on 4 types of GPUs.

Chapter 3: Acceleration for Low Level Feature Modeling

62

Table 3.1: Fine tuned K-mean and GMM execution time on different GPUs.

#Mixture: 2048
K-means

(sec/iteration)

GMM

(sec/iteration)
#Vector: 2.7M

Feature: 39Dim MFCC

NVIDIA GeForce 9400

Mem:256 MB

CUDA core:16

169.3 232.9

NVIDIA GeForce GT220

Mem:1G

CUDA core:48

46.9 56.5

NVIDIA GeForce GTX 285

Mem:1G

CUDA core:240

9.1 10.9

NVIDIA GeForce GTX 580

Mem:2G

CUDA core:512

4.3 5.2

3.4.3 Hadoop and Spark cluster

On a cluster backed with HDFS, in order to achieve maximum computation

throughput, the input data size is set to its largest value provided that the

corresponding distance matrix or probability matrix can fit into memory. Since

the data is stored in blocks in HDFS, configuring blocks size equal to input size

can further avoid extra disk IO overhead. Figure 3.13 shows how the data split

size influence the execution time. From Figure 3.13 we can find that our matrix

based method prefers large block data which maximizes the parallel ability of

each computing node. We also test the impact of number of cores to the

execution time, which is illustrated in Figure 3.14 and 3.15. To leverage high

performance linear algebra library such as ACML and ATLAS, computational

Chapter 3: Acceleration for Low Level Feature Modeling

63

expensive procedures are all implemented with C language which are called via

Java Native Interface (JNI) in both Hadoop and Spark. Because ACML and

ATLAS are multi-threaded, limiting the number of parallel tasks on a single

node is necessary to avoid over-competition for CPU time. In high-end servers

with for example 32 cores, it is faster to run 8 32-threaded tasks than 8 4-

threaded tasks.

Figure 3.13: K-means time per iteration vs. different data split size.

Figure 3.14: K-mean time per iteration vs. number cores in cluster.

0

200

400

600

800

1000

1200

1400

1600

1800

32MB 16MB 4MB 1MB 156B

Ti
m

e
 p

e
r

it
e

ra
ti

o
n

 (
se

c)

Data split size

Matrix on Spark

Matrix on Hadoop

MLLib on Spark

Mahout on Hadoop

0

1000

2000

3000

4000

5000

6000

212 204 192 160 128 64 32

Ti
m

e
 p

e
r

it
e

ra
ti

o
n

 (
se

c)

Number of cores

Matrix on Spark

MLLib on Spark

Matrix on Hadoop

Mahout on Hadoop

Chapter 3: Acceleration for Low Level Feature Modeling

64

Figure 3.15: GMM time per iteration vs. number cores in cluster.

3.4.4 K-means and GMM refinement

K-means and GMM clustering results are highly sensitive to the initialization

of centers and mixtures because both algorithms only guarantee to find a local

optimal solution with respect to the initialization. To obtain reasonable initial

centers, we first sub-sample the training data set into and then perform

KKZ [Katsavounidis et al. 1994, He et al. 2004] algorithm on it. The

advantage of sub-sampling KKZ is that outlier vectors located far from real

data distribution have little possibility to be selected so that initial centers are

near input data distribution yet sufficiently separated.

Even with decent initialization, k-means and GMM clustering can run into

3 awkward situations: 1) two or more centers compete to represent one cluster;

2) centers are trapped in very small clusters; 3) centers are stuck between two

real data clusters which make the representing center or mixture looks too fat

to split. In our experiment we developed a three stage method to detect and

alleviate the 3 situations. In the first step to merge neighbors, Bhattacharyya

distance between centers or mixtures are calculated. A “near” graph is then

constructed. If two centers or mixtures are too close there will be an edge

between them in the “near” graph. Independent connected components are

then obtained from the graph to merge too near centers if any. The nearness

threshold is set to 0.5. In the second step dead clusters are killed that is centers

or mixtures with too small weight are eliminated. The smallness threshold is

0

5

10

15

20

25

30

35

40

212 204 192 160 128 64

Ti
m

e
 p

e
r

it
e

ra
ti

o
n

 (
m

in
)

Number of cores

Matrix on Spark

Matrix on Hadoop

Chapter 3: Acceleration for Low Level Feature Modeling

65

calculated as one tenth of average weight. In the third step to split fat clusters,

centers and mixtures with abnormally large variance in certain dimension are

to split. The abnormally large threshold for one dimension is defined as 3 +

the mean of standard derivations of all centers or mixtures. We have also tried

to use kurtosis of Gaussian distribution to differentiate fat clusters.

Unfortunately in high dimensional space kurtosis becomes insensitive even

when the mixture covers two far away clusters. In our 39 dimensional data

experiment we find kurtosis cannot effectively detect fat mixture compared

with variance threshold. In the experiment of music genre and mood

classification, 1.5% accuracy improvement is achieved with our three step

refinement procedure.

Algorithm 3.1: Mixture refinement

Task: to refine the mixture obtained by EM algorithm

Input: GMM

Output: refined GMM

1. To merge near mixtures

1.1. Calculate Bhattacharyya distance between centers or mixtures

1.2. Construct a “near” graph: if two centers or mixtures are too close

there will be an edge between them in the “near” graph.

1.3. Obtain Independent connected components with the nearness

threshold setting to 0.5.

2. To kill dead clusters with too small weight. The dead threshold is

calculated as one tenth of average weight

3. To split fat mixtures with abnormally large variance in certain

dimension. The abnormally large threshold for one dimension is set to

3 + the mean of standard derivations of all centers or mixtures.

Output result: refined GMM

3.5 Experiments on Music Genre and Mood Classification

To evaluate speed and quality of our implementations, music genre and

mood classification have been conducted on GPU, multi-core CPU and

Hadoop, Spark cluster.

Chapter 3: Acceleration for Low Level Feature Modeling

66

3.5.1 Experiment setups

3.5.1.1 Computer configuration

A single thread implementation based on clapack
2
 was used as a baseline

using a single machine. It ran on a PC with Intel
®
 Core™ i7-940 @2.93GHz.

The implementation based on ACML ran on a server with 4 8-cored AMD

Opteron™ Processor 6128 @2GHz and 100GB of memory. The

implementation based on CUBLAS ran on 240-cored NVIDIA GTX 285.

Yael
3

 was also tested on the server as a benchmark for multi-threading

implementation. The Hadoop and Spark clusters consist of 16 computers as

shown in Table 3.2

Table 3.2: Cluster computer configurations.

Num. CPU Memory

2
4x16-cored AMD

®
 Opteron™

CPU 6274 @2GHz

100GB

1
4x8-cored AMD

®
 Opteron™

CPU 6128 @2GHz

100GB

3

1x4-cored Intel
®
 Core™ i7

CPU 950 @3.07GHz (HT to 8-

cored)

24GB

2

1x4-cored Intel
®
 Core™ i7

CPU 940 @2.93GHz (HT to 8-

cored)

24GB

8

1x4-cored Intel
®

Core™ i7

CPU 860 @2.80GHz (HT to 8-

cored)

16GB

3.5.1.2 Datasets and features

2 http://www.netlib.org/clapack/
3 https://gforge.inria.fr/projects/yael

Chapter 3: Acceleration for Low Level Feature Modeling

67

GTZAN [Tzanetakis et al. 2002] data set is used for genre classification.

GTZAN contains 10 genres of music. Each genre contains 100 30-sec

segments. MFCC with delta and delta delta features are extracted. MFCC

analysis window shift is 10ms long, resulting in 100 39-dimensional feature

vectors per second. To test k-means, GMM quality 10-fold cross validation is

performed. In each fold K-means and GMM with 2048 clusters and mixtures

are trained by 2.7 million 39-dimentional feature vectors.

Music mood classification is performed on two datasets. The smaller one is

provided by Xiao et al. [Xiao et al. 2008] and it consists of 416 16s long pure

classical music segments, manually divided into 4 moods as shown in Table

3.3. The same 39-dimentional MFCC features are extracted. K-means to GMM

clustering are performed on both GPU and 32-cored server.

Table 3.3: Classical music dataset mood distribution.

 Anxious Content Depressed Exuberant

music 81 124 120 91

After dictionary learning, low level features of each music segments are

converted to normalized dictionary words histogram. The normalized

histograms as final feature vectors are used to train one-versus-others SVM

classifier. To compare the mood classification performance, standard

OpenSMILE [Eyben et al. 2010] low level features with statistic functions are

extracted and used to train SVM as benchmark. The training and testing set are

divided by 50%/50%. The SVM parameters are set to default. The running

time and accuracy results of the two experiments are shown in Table 3.4 and

Table 3.6-3.9.

The other music mood dataset evaluated is the “Now That’s What I Call

Music!” (NTWICM) dataset introduced in [Björn et al. 2010], containing 2648

songs annotated by four listeners on 5-point scales for perceived arousal and

valence on song level. The NTWICM dataset is also served to benchmark

efficiency of our proposed method with existing library of Mahout [Anil et al.

2011] and MLLib [Bahmani et al. 2012] on Hadoop and Spark cluster. For

NTWICM datasets, the same 39-dimentional MFCC features are firstly

Chapter 3: Acceleration for Low Level Feature Modeling

68

extracted. K-means, GMM clustering and MAP adaptation are then performed

on the Hadoop and Spark clustering. Finally the GMM super vector serves as

feature vector to train linear SVMs. The training and testing set are divided by

50%/50%. The SVM parameters are set to default. The running time on cluster

and accuracy results are shown in Table 3.5

3.5.2 Results and analysis

3.5.2.1 Single computer

From Table 3.4 we can find that 1) high performance library based

implementations proposed in this chapter achieve up to 5 times faster than

multi-threading based implementation (Yael). 2) GPU based implementation

executes 5 times faster than multi-core CPU based one on GMM training

whereas multi-core version outperforms GPU on k-means clustering by 22% in

terms of speed. GPU based k-means is slower than multi-core CPU in that CPU

version executes operations for calculation while GPU version

actually executes matrix multiplication containing operations. We

choose matrix multiplication for calculation in GPU because

operations consume as twice time as matrix multiplication on GPU

architecture. This abnormal phenomenon is due to random memory access

pattern of operations on GPU. Therefore in this scenario matrix

multiplication is the optimal but still slower way for GPU.

In [Machlica et al. 2011] Machlica et al. reported a faster result of

comparable data set, however, the duration profile in [Machlica et al. 2011]

only recorded kernel function’s running time without data IO and data

preparation duration. If only GPU execution duration is considered, our method

consumes 7 seconds compared with 9.1 in [Machlica et al. 2011]. From genre

classification accuracy column in Table 3.4, we can find that the quality of

dictionary trained by CPU is little better than GPU by less than 1% in terms of

average classification accuracy. This is due to the less floating point error of

CPU and double precision floating point numbers used during summation

procedure on CPU.

From Table 3.6, we can find that with the same number of mixture, the same

types of GPU and comparable data scale as in [Azhari et al. 2011], our

Chapter 3: Acceleration for Low Level Feature Modeling

69

CUBLAS based implementation is 10 times faster than CUDA kernel

implementation described in [Azhari et al. 2011]. From Table 3.7-3.9 we can

find that 1024 dimensional bag-of-words histogram features outperforms the

standard 6552 dimensional OpenSMILE emotional features by 3% in terms of

average classification accuracy.

Chapter 3: Acceleration for Low Level Feature Modeling

70

Table 3.4: Execution time and accuracy of different implementation for music genre classification.

Centers/# Mixtures

Vectors

Dimension

= 2048

= 2.7M

= 39

K-means GMM MAP

time per

iteration (sec)

 speed-up

(times)

Genre

Acc (%)

time per

iteration (sec)

speed-up

(times)

Genre

Acc (%)

time

 per

song(sec)

speed-

up

(times)p

Genre

Acc

(%)

1 thread CPU 278.2 1.0

2,288.4 1.0

1.5 1

32-cored CPU Yael(INRIA) 37.2 7.5 68.1 153.2 14.9 78.0

32-cored CPU (ours) 7.3 38.0 69.6 70.1 32.6 78.7 0.07 21 80.5%

240-cored GPU 9.1 30.4 69.5 10.9 209.5 77.8 0.02 75 79.4%

UWB[Machlica et al. 2011]

9.1*

*only kernel execution time counted for GMM with 2048 mixtures trained by 3.125M 40-dimensional

vectors.

Table 3.5: Execution time and accuracy of different implementation for music mood classification.

Centers/# Mixtures

Vectors

Dimension

= 4096

= 60M

= 39

K-means GMM MAP

time per

iteration

Speed-

up

(times)

Valance

Acc (%)

Arousal

Acc (%)
time per

iteration

Valance

Acc (%)

Arousal

Acc (%)

time

 per

song

Valance

Acc(%)

Arousal

Acc

(%)

Mahout on Hadoop 1530sec 1.0

MLLib on Spark 453.7sec 3.4 54.1 48.9

Matrix format on Hadoop 152.4sec 10.0
55.0 49.7

10.0min
55.9 50.3

0.71sec
56.7 51.8

Matrix format on Spark 90.2sec 17.0 8.8min 0.65sec

Chapter 3: Acceleration for Low Level Feature Modeling

71

Table 3.6: Running time per iteration for mood GMM training.

32-cored CPU 240-cored GPU Azhari [Azhari et al. 2011]

time (sec) 9.6 2.9 30.0

Table 3.7: CUBLAS mood classification confusion matrix (actual classes in

rows, predicted classes in columns).

% Anx Con Dep Exu

Anx 81.0±8.9 1.2±2.0 1.0±1.7 16.8±7.4

Con 0.0±0.0 91.1±2.9 8.7±2.9 0.2±0.5

Dep 0.0±0.0 8.8±3.7 90.5±3.2 0.7±1.5

Exu 10.2±4.7 3.8±2.0 0.0±0.0 86.0±4.2

Average 87.2

Table 3.8: ACML mood classification confusion matrix (actual classes in rows,

predicted classes in columns).

% Anx Con Dep Exu

Anx 81.0±7.8 1.2±2.0 1.2±1.7 16.5±6.2

Con 0.0±0.0 91.9±3.0 8.1±3.0 0.0±0.0

Dep 0.0±0.0 8.3±3.5 91.0±3.2 0.7±1.5

Exu 11.3±5.3 3.6±1.8 0.0±0.0 85.1±5.0

Average 87.3

Chapter 3: Acceleration for Low Level Feature Modeling

72

Table 3.9: OpenSMILE mood classification confusion matrix (actual classes in

rows, predicted classes in columns).

% Anx Con Dep Exu

Anx 85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8

Con 5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7

Dep 9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0

Exu 17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9

Average 84.0

3.5.2.2 Hadoop and Spark clustering

Compared with the state-of-the-art implementation, from Table 3.5, we can

find that the propose method for k-mean is 10 times faster than Mahout on

Hadoop and 5 times faster than MLLib on Spark. Matrix format k-means on

Hadoop even runs 3 times faster than MLLib does on Spark. Comparing Hadoop

with Spark, we can also find that for iterative algorithms Spark with data caching

mechanism runs faster than Hadoop. However, when computation becomes more

expensive with the same amount of data, the gap between the two frameworks is

shortening.

The reason why the proposed matrix format outperforms the two libraries is

because of the JVM thread scheduling overhead. Compared with Mahout and

MLLib in which one thread is arranged to one data vector to perform the

calculation, the proposed method directly feeds large chunk of data to highly

tuned math library and let the library decide the optimal thread configuration to

run the calculation.

3.6 Conclusion

In this chapter, we have proposed to use matrix format on GPU multi-core CPU

and cluster to accelerate bag-of-words and GMM super vector method, especially

for dictionary learning of k-means and GMM clustering. To employ high

performance matrix operation library of ACML, ATLAS and CUBLAS, we

Chapter 3: Acceleration for Low Level Feature Modeling

73

propose to reformulate k-means and EM algorithm into matrix multiplications,

which is also convenient to be implemented with other languages for example

MATLAB and FORTRAN. Experiments on music genre and mood classification

tasks show that the proposed implementations achieve 38 to 209 times

acceleration, compared with single threaded CPU version on single machine. 240-

cored GPU can run up to 5 times faster than 4 8-cored CPUs with just less 1%

performance decline. On Hadoop and Spark cluster, the proposed method still

achieves 10 and 5 speed-up, compared with Mahout and MLLib.

Our proposed approach thus allows going a step further for the modeling of low

level features when dealing with large scale data. As low level features are

important but generally insufficient to depict the whole picture of music, we will

discuss in the next chapter mid-level features in particular note histogram feature

with its application in content based music classification.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

72

Chapter 4: Sparse Music Decomposition with MIDI

Dictionary and Musical Knowledge

4.1. Introduction

As shown in previous chapters most of the automated music analysis approaches

available in the literature rely on the representation of the music through a set of

low-level audio features related to frequential, energy and temporal properties.

Identifying high-level concepts, such as music mood, from this “black-box”

representation is particularly challenging, even with BoW and GSV.

Therefore we propose in this chapter our new representation of the music that

allows gaining an in-depth understanding of its structure and harmony that we

expect to be important for further music analysis, and particularly mood

classification. Its principle is to decompose sparsely the music into a basis of

elementary audio elements, called musical words, which represent the notes

played by various instruments generated through a MIDI synthesizer. To do so,

our approach relies on the sparse theory [Elad 2010] and its essence is to represent

the music, thanks to a “musical dictionary” made of over complete musical words

that are related to the notes produced by various instruments. From this sparse

representation, we also define a new feature which favors further mood

classification. Experiments driven on two music datasets have shown the

effectiveness of this approach to represent accurately music signals and to allow

efficient music mood classification.

To achieve more accurate decomposition, statistical music knowledge is further

integrated into the whole sparse decomposition process. We then present our two-

stage sparse decomposition approach integrated with music knowledge. In frame

level decomposition stage, note co-occurrence probabilities are embedded to

guide atom selection in modified matching pursuit algorithm with a MIDI

dictionary. A sparse multiple candidate graph is then constructed to provide

backup choices for later selections. In the global optimal path searching stage,

note transition probabilities are incorporated together with a goodness measure of

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

73

frame decomposition. Its principle is to guide the local sparse music

decomposition with co-occurred notes information and decode the global optimal

decomposition path with consecutive note knowledge. Due to the Gabor limit,

time and frequency resolution cannot be well satisfied at the same time. Thus, we

emphasize the frequency resolution aspect rather than the exact time location,

since correct note recognition is more important for our following classification

task. Experiments on real-world polyphonic music show that embedding music

knowledge within the sparse decomposition achieves notable improvement in

terms of note recognition precision and recall.

The rest of the chapter is organized as follow. Section 4.2 introduces sparse

music decomposition. To build a musical dictionary, two sets of MIDI based

instrument sound are generated, which is detailed in section 4.2.2. A modified

matching pursuit algorithm is presented in section 4.2.3 to perform music

decomposition subject to a natural positive constraint and note histogram feature

is also defined. In section 4.2.4, the quality of sparse music decomposition is

verified and mood classification experiments on two data sets are conducted.

Section 4.3 introduces our two-stage approach in detail. Section 4.3.1 explains our

frame level statistical integration while section 4.3.2 shows how global level

optimal paths are constructed. Section 4.3.3 gives experimental results on real-

world music signals. The conclusion is drawn in the final section.

4.2. Sparse Decomposition of Music Using a Musical Dictionary

4.2.1. Overview of the approach

The general principle of our music sparse representation and feature extraction

is illustrated in Figure 4.1. It relies on a musical dictionary made of musical

words. Each of these words corresponds to the spectrum of a note produced by an

instrument through a MIDI synthesizer. To decompose a music signal onto this

musical dictionary, the signal is firstly framed by Hamming window and the

spectrum is computed in each of these frames. The sparse solution solver then

decomposes each of the signal frames into the musical dictionary to obtain the

sparse solution describing the musical words that are used to represent the

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

74

frame content. The sparse solutions are finally aggregated and normalized over

all frames to generate an instrument note histogram, or musical histogram, which

will form the feature representing the input music signal for further classification.

Figure 4.1: Musical histogram feature extraction flow chart.

4.2.2. MIDI musical dictionary

Elaborating an appropriate musical dictionary is a key issue since this set of

atoms, or musical words, has to be rich enough to allow accurate music

decomposition, in terms of notes and instruments. Unfortunately, it is infeasible to

record such a huge data set. Although [Leveau 2008] has suggested learning

atoms from instrument playing recordings, it is still impractical to apply to a large

instrument set. Therefore, in order to get adequate instrument note sounds we

propose to make use of a MIDI synthesizer.

Indeed, a MIDI synthesizer is able to generate various instrument sounds on

almost all possible notes. In our system two sets of MIDI synthesized waves are

tested. One is produced by “Windows Vista built-in Microsoft GS Wavetable

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

75

Synthesizer”. The other is generated from Logic Pro 9, a high quality music

producing software from Apple Inc.

For wavetable synthesizer we select all 128 “general MIDI level 1” sound

instruments and 47 “general MIDI level 1” percussion instruments
1
. For Logic

Pro 9, we choose the first 80 realistic instruments as in general MIDI level 1 set

and 31 percussion instrument sets including 1860 percussions. For each

instrument, we choose 60 notes form note 31 to note 90. The 60 notes span 5

octaves from low to high
2
, covering most instruments’ playing note range.

The duration of each note is set to 186ms, which are 4096 samples under a

sample rate of 22050Hz. This duration is long enough to hold one attack-decay-

sustain-release envelope (ADSR) and leads to 5.38Hz in terms of frequency

resolution, which is sufficient to discriminate adjacent note spectrum. This

window length is also convenient for FFT computation. Our MIDI musical

dictionary is finally built by computing each musical word in frequency domain

as the single-sided power spectrum of each note wave generated by short time

Fourier transform (STFT) with Hamming window. The STFT is applied because

with 5.38Hz resolution single-sided spectrum for each note is linearly addable and

more robust against time-frequency transform like wavelet transform. According

to our previous experiment atoms of wavelet transform coefficients cannot

compare with FFT ones due to its sensitivity of time position and the quality of

input signal.

A musical word is thus a 2048 dimensional vector. The number of musical

words is decided by the number of instruments multiplying the number of notes

(60) plus the number of percussion instruments. For the dictionary generated by

“general MIDI level 1”, 7727 musical words are created. For Logic Pro 9, 6660

musical words are created.

4.2.3. Sparse representation and positive constraint matching pursuit

Sparse representation [Elad 2010] is originated from finding the solution of

an underdetermined linear system so that contains as few non-zero

1
 http://www.midi.org/techspecs/gm1sound.php

2
 http://tonalsoft.com/pub/news/pitch-bend.aspx

http://www.midi.org/techspecs/gm1sound.php
http://tonalsoft.com/pub/news/pitch-bend.aspx

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

76

components as possible. This problem is formulated as subject to

 . In many cases is hard to satisfy, thus in practice and

 are minimized simultaneously. When applied to signal processing,

represents the signal to analyze, is an over-complete dictionary with atoms that

can reconstruct and is the sparse interpretation of under . For similar

example inverse Fourier matrix serves as dictionary to reconstruct signal

using its spare frequency domain coefficients , although is not over-

complete.

With a MIDI musical dictionary in hand, any sparse solution solver can be

applied to produce sparse solution in respect to note. Unfortunately classical

greedy algorithms, for example orthogonal matching pursuit (OMP), cannot

directly be applied to the decomposition. Because each musical word in MIDI

dictionary is a single-sided power spectrum of certain note, a positive constraint is

naturally imposed onto the sparse solution. In another word, any negative

component of sparse solution is prohibited, as any negative appearance of certain

note is impossible.

We propose a positive constraint matching pursuit (PCMP) algorithm detailed

in Algorithm 1 to solve this problem. The difference between OMP [Elad 2010]

and the proposed algorithm is the positive constraint introduced in the step 3 of

main iteration. For OMP, least mean square (LMS) suffices to solve the

minimization in step 3, which also results in residual orthogonal to support .

For PCMP, however, after positive constraint minimization, orthogonality

between and is not guaranteed, thus the algorithm is turned to a special

matching pursuit.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

77

Algorithm 1: Positive constraint matching pursuit

Task: Approximate the solution of problem: , subject to

Input: Dictionary , signal , max iteration number and error

threshold .

Output: sparse solution:

Initialization:

Initial solution: .

Initial residual: .

Initial support: .

Main iteration: for

1. Compute error:

 for all using the

optimal choice

.

2. Update support: Find a minimizer, of

and update

3. Update provisional solution: Compute , minimizer of

subject to .

4. Update residual: .

5. If
 break.

Output result: .

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

78

4.2.4. A musical histogram as audio feature

As mentioned previously, in order to perform the music signal decomposition

onto the musical dictionary, the music is firstly framed and the spectrum is

computed in each of these frames. Then, a sparse decomposition of each frame is

computed using PCMP onto the musical dictionary. The obtained sparse

decompositions finally need to be combined in order to obtain a feature that can

represent the whole music signal for further classification. To do so, we have

defined a musical histogram that is built from the aggregation of the sparse

representation of each frame using the following process. Let be the total

number of frames of the input music. For each frame , compute decomposition

sparse solution . The dimension of is equal to the number of musical words

in the dictionary. The musical histogram feature is computed as .

For the consideration of efficiency and complete covering, in the following

experiments frame shifting length is fixed to 186ms, the same as frame length.

4.2.5 Experiments and results

We present in the following subsections experiments we have driven in order to

evaluate the ability of the proposed method to accurately decompose music, as

well as the efficiency of our musical histogram feature for the problem of music

mood classification.

4.2.5.1. Verification of the decomposition with MIDI dictionary

To evaluate the decomposition quality with proposed PCMP and MIDI musical

dictionary, a multi-timbral music with time domain note reference has been used,

which is from Mirex2007 multiF0 development data
3
. The music is a recording of

the fifth variation from L. van Beethoven Variations from String Quartet Op.18

N.5, lasting for 54s. 5 instruments are included in the music: bassoon, clarinet,

flute, horn and oboe. Each instrument was recorded separately while the

performer is listening to the other parts through headphones. Later the 5 parts

were mixed to a mono 44.1 kHz 16 bits wave file.

3
 http://www.music-ir.org/mirex/wiki/2007

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

79

In this evaluation, only Logic Pro 9 MIDI dictionary has been tested. Figure 4.2

shows precision and recall scatter diagram of the decomposition. Statistic of note

recognition precision and recall has been made upon consecutive 186ms

segments, the same as in computing the musical histogram feature. From Figure

4.2 we can find that when there is no threshold imposed on sparse solution, 69%

of notes can be recalled, although the precision is 40%. If we only consider the

recognition of notes, no matter the octave, the recall and precision increase to

85% and 47% as presented in Figure 4.3. These results show that the proposed

PCMP with MIDI musical dictionary can detect the structure of multi-timbral

music with a satisfactory efficiency.

Figure 4.2: Note precision vs. recall.

30%

40%

50%

60%

70%

80%

0% 15% 30% 45% 60% 75% 90%

P
re

ci
si

o
n

Recall

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

80

Figure 4.3: Note precision vs. recall with octave tolerance.

4.2.5.2. Mood classification with musical histogram feature

Two music datasets have been used in our experiments to evaluate the

performance of our musical histogram feature for the problem of music mood

classification. We have only considered datasets containing voiceless music titles,

since our MIDI dictionary covers at present only instrument sounds. The first

dataset provided by Xiao et al. [Xiao et al. 2008] consists of 416 16s long pure

classical music segments, manually divided into 4 moods as shown in Table 4.1.

According to [Xiao et al. 2008], 16s long segments are most sensitive to mood for

this dataset. The second dataset contains 401 30s long segments of modern music

from various genres obtained from APM Music web site
4
 that provides the mood

labels. The 401 excerpts are equally selected from 4 moods as shown in Table 4.2.

The same type of dataset is also used for the mood classification task of MIREX

challenge. Compared with the first classical dataset, APM music enjoys more

4
 http://www.apmmusic.com/myapm/main.php

30%

40%

50%

60%

70%

80%

0% 15% 30% 45% 60% 75% 90%

P
re

ci
si

o
n

Recall

http://www.apmmusic.com/myapm/main.php

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

81

variety not only in genres (classical, pop, jazz, rock etc.) but also in diversified

musical instruments.

Table 4.1: Classical music dataset mood distribution.

 Anxious Content Depressed Exuberant

music 81 124 120 91

Table 4.2: APM dataset mood distribution.

 Fear Happy Relax Sad

music 101 100 100 100

In addition to our musical histogram feature, we have made use of the well-

known large emotion feature set of openSMILE [Eyben et al. 2010] as a

comparison reference. This large emotion feature set contains 6552 features

including various time and frequency domain feature such as zero cross rate, log

energy, filter bank energy, MFCC, pitch etc. and statistical functions performing

on them. In our experiments, 5 times 2-fold cross-validation has been performed.

For each time and each fold, the same training and testing division has been used

by both openSMILE and musical histogram features. SVM classifiers with RBF

kernel have been employed and a simple averaging probability output by SVM

has been used for late fusion of the two classifiers results.

4.2.5.3. Results and analysis

The averaged confusion matrices for the first classical music dataset are presented

in Tables 4.3-4.9. The results obtained by Xiao et al. [Xiao et al. 2008a, Xiao et

al. 2008b] are shown in Table 4.3. From Table 4.4 and 4.5 we can find that

Gaussian super vector outperforms OpenSmile feature by 4.3 percents.

Comparing Tables 4.6 with 4.7, we can find that, no surprisingly, the dictionary

built with high quality instrument waves (Logic Pro 9) produces a more

discriminative musical histogram feature, probably due to its higher ability to

accurately decompose the music signal. According to Table 4.8 and 4.9, when late

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

82

fusion is performed on Logic Pro 9 musical histogram feature with openSMILE

features and GSV, additional 3.7% and 4.4% improvement are further obtained on

average accuracy. Note that for each individual mood late fusion achieves best

accuracy too. Speaking of individual feature, from Table 4.4, 4.5, 4.6, 4.7, we can

find that the musical histogram feature generated from Logic Pro 9 MIDI

dictionary outperforms the other 3 by 2% to 7% on average accuracy. For each

individual mood, Logic Pro 9 MIDI dictionary also surpasses the others.

Table 4.3: Xiao [Xiao et al. 2008b] confusion matrix (actual classes in rows,

predicted classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 78.31 1.85 18.47 1.37

Con 2.10 79.14 0.00 18.77

Dep 10.25 1.33 88.08 0.33

Exu 2.20 11.43 0.11 86.26

Average 82.95

Table 4.4: OpenSMILE confusion matrix (actual classes in rows, predicted

classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 85.5±7.1 2.5±1.6 0.5±1.0 11.5±6.8

Con 5.5±4.7 86.9±4.2 6.3±3.0 1.3±2.7

Dep 9.0±6.3 6.2±3.9 83.5±7.9 1.3±3.0

Exu 17.6±5.0 2.2±1.4 0.2±0.7 80.0±5.9

Average 84.0

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

83

Table 4.5: GSV confusion matrix (actual classes in rows, predicted classes in

columns) using the classical dataset.

% Anx Con Dep Exu

Anx 87.1 2.5 0.5 11.5

Con 3.5 92.9 2.3 1.3

Dep 4.1 5.6 88.4 1.9

Exu 8.6 6.8 0.1 84.7

Average 88.3

Table 4.6: General MIDI confusion matrix (actual classes in rows, predicted

classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 81.5±5.8 1.0±1.2 8.3±6.2 9.3±3.5

Con 0.2±0.5 93.1±4.3 6.1±3.9 0.6±1.1

Dep 4.5±3.1 8.3±2.1 82.7±4.4 4.5±2.6

Exu 8.4±4.7 6.2±2.6 6.7±3.6 78.7±5.8

Average 84.0

Table 4.7: Logic Pro 9 confusion matrix. (actual classes in rows, predicted

classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 87.3±3.6 2.5±2.5 2.0±1.5 8.2±4.6

Con 0.8±1.1 96.0±2.3 1.3±1.4 1.9±1.9

Dep 2.2±2.9 5.3±2.4 90.0±2.9 2.5±1.9

Exu 5.1±1.4 5.8±2.8 2.7±1.3 86.4±3.5

Average 90.0

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

84

Table 4.8: OpenSMILE fused with PCMP confusion matrix (actual classes in

rows, predicted classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 91.5±1.7 1.0±1.2 1.0±1.2 6.5±2.3

Con 0.2±0.5 96.3±2.7 3.4±2.3 0.2±0.5

Dep 1.2±1.7 3.2±1.7 94.7±2.3 1.0±1.1

Exu 5.8±4.2 1.6±1.4 0.2±0.7 92.4±4.1

Average 93.7

Table 4.9: GSV fused with PCMP confusion matrix (actual classes in rows,

predicted classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 92.4 0.6 1.0 6.0

Con 0.2 96.5 3.1 0.2

Dep 1.3 3.2 94.2 1.3

Exu 4.2 1.2 0.2 94.4

Average 94.4

The averaged confusion matrices for the second APM music dataset are presented

in Tables 4.10-4.14. Note that latest best result in MIREX2010 on a similar data

source with more mood classes achieved 64% on average accuracy. Table 4.10

and Table 4.11 show that GSV still outperform OpenSMILE by 2%. From Table

4.10-4.12, we can find that compared with the classical music set the overall

performance of musical histogram feature, openSMILE and GSV decline by 30%,

10% and 11.5%. OpenSMILE feature set outperforms Logic Pro 9 musical

histogram feature by 15.5% and GSV surpass musical histogram feature by 17.4%

However, according to Table 4.13 and 4.14, when these two levels of feature sets

are combined in the late fusion, the average accuracy increases by 2.5% and

2.1%. Several other conclusions can also be drawn from these results. First, the

musical histogram feature is less effective with this modern music dataset than

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

85

with the classical music dataset. The reason certainly lies in the MIDI dictionary

that may have difficulties to accurately decompose this music due to its important

complexity and the presence of instruments in music that are missing in the

dictionary. This problem should be solved by using a MIDI synthesizer producing

more realistic instrument sounds. Second important information provided by these

results is that even though openSMILE feature set provides very complete low-

level information characterizing temporal and frequential signal properties, its

performance for classification can be improved by enriching this description with

higher level information that we propose with our musical histogram feature

which allows to explicit the music content.

Table 4.10: OpenSMILE confusion matrix (actual classes in rows, predicted

classes in columns) using the APM dataset.

% Fear Happy Relax Sad

Fear 83.2±6.3 5.2±3.2 2.4±2.7 9.2±4.1

Happy 11.6±6.4 78.2±9.2 8.8±5.3 1.4±2.5

Relax 10.4±3.9 8.8±4.0 68.8±5.9 12.0±5.4

Sad 23.0±7.8 1.4±1.3 6.2±3.3 69.4±8.2

Average 74.9

Table 4.11: GSV confusion matrix (actual classes in rows, predicted classes in

columns) using the APM dataset.

% Fear Happy Relax Sad

Fear 86.2 3.3 2.4 8.1

Happy 9.5 81.4 7.8 1.3

Relax 10.2 8.6 69.8 11.4

Sad 23.0 1.4 5.7 69.9

Average 76.8

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

86

Table 4.12: Logic Pro 9 confusion matrix (actual classes in rows, predicted

classes in columns) using the APM dataset.

% Fear Happy Relax Sad

Fear 61.8±7.7 12.2±4.5 7.4±4.2 18.6±3.0

Happy 8.6±3.1 67.2±6.8 17.4±5.5 6.8±2.4

Relax 9.0±2.7 19.8±4.8 45.8±6.8 25.4±5.1

Sad 11.4±5.2 6.4±3.1 19.4±6.5 62.8±5.7

Average 59.4

Table 4.13: OpenSmile fused with PCMP confusion matrix (actual classes in

rows, predicted classes in columns).

% Fear Happy Relax Sad

Fear 80.6 4.4±2.0 1.4±1.3 13.6±4.9

Happy 5.4±3.5 83.8±7.6 7.8±6.0 3.0±2.9

Relax 7.8±4.2 10.2±3.9 68.6±6.9 13.4±4.7

Sad 17.8±5.8 0.4±0.8 5.4±2.4 76.4±6.1

Average 77.4

Table 4.14: GSV fuse PCMP confusion matrix (actual classes in rows, predicted

classes in columns) using the APM dataset.

% Fear Happy Relax Sad

Fear 82.3 4.0 1.4 12.3

Happy 5.3 84.0 7.7 3.0

Relax 7.1 10.0 70.9 12.0

Sad 16.3 0.4 4.9 78.4

Average 78.9

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

87

4.3 Sparse Decomposition with Note Statistics

Our proposed method consists of two main steps. In the first step, the entire music

signal is framed and a modified orthogonal matching pursuit algorithm is

performed on each frame to generate decomposition candidates. In the second

step, decomposition candidates are connected to form a directed graph and an

optimal path is then constructed to produce the final decomposition result.

4.3.1 Frame level sparse decomposition

Former study shows that elaborating an appropriate musical dictionary is a key

issue since this set of atoms has to be rich enough to characterize the varieties of

real word music. Although [Leveau et al. 2008] has developed sophisticated

method to learn atoms from instrument recordings, it is still impractical to apply

to a large instrument set. Therefore, in order to get adequate instrument note

sounds, we propose to make use of a MIDI synthesizer. Logic Pro 9 is employed

in our approach to generate the MIDI note dictionary because of its huge

instrumental library and the high sound quality. Unlike pre-installed MIDI

synthesizer with sound card, Logic Pro 9 uses a large number of real instrument

recordings to make synthesized wave signal as natural as possible.

To build the MIDI dictionary, we choose the first 80 realistic instruments as in

general MIDI level 1 set and 31 percussion instrument sets including 1860

percussion sounds. For each instrument, we keep 60 notes from note 31 to note

90. The 60 notes span 5 octaves from low to high, covering most instrumental

playing range. The duration of each note is set to 186ms, which are 4096 samples

under a sample rate of 22050Hz. This duration is long enough to hold one attack-

decay-sustain-release (ADSR) envelope and leads to 5.38Hz in terms of

frequency resolution, which is sufficient to discriminate adjacent notes in piano

roll. Our MIDI note wave is then converted into a single-sided power spectrum

obtained by applying the short time Fourier transform (STFT) with a Hamming

window. The final MIDI dictionary thus contains 6660 2048-dimensional vectors.

The adoption of the sparse representation is based on the hypothesis that during

a 186ms time slot, there will not be many notes played together. Therefore,

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

88

concurrent notes are sparse within one frame. Sparse representation [Elad 2010] is

originated from finding the solution of an underdetermined linear system

 so that contains as few non-zero components as possible. In most

cases is hard to satisfy, thus in practice and are

minimized simultaneously instead.

Armed with our MIDI dictionary, the classical matching pursuit algorithm like

orthogonal matching pursuit (OMP) [Pati et al. 1993] must be modified because

the single-sided power spectrum words in MIDI dictionary impose an inherent

positive constraint on sparse solutions. In other words, any negative component of

a sparse solution is prohibited, as negative appearance of certain notes is

impossible. To solve this problem we adopt a positive constraint matching pursuit

(PCMP) algorithm that is mentioned in [Gao et al. 2012, Bruckstein et al. 2008].

The difference between OMP and PCMP is in updating a provisional solution

step: for OMP, least mean square (LMS) suffices to solve the minimization

resulting in residual signals orthogonal to support set. For PCMP, however, after

the positive constraint minimization, orthogonality is not always guaranteed, thus

the algorithm is turned to a weak orthogonal matching pursuit.

When scrutinizing the decomposition results of PCMP within one frame, we

found a number of irregular note combinations. This is due to PCMP’s over-

fitting target signals without considering any compatibility of concurrent notes. In

fact, atom selection in each iteration of orthogonal matching pursuit algorithm is

very important. OMP guarantees that expending support set with any linear

independent atoms will decrease the reconstruction error and at the same time

keep the residual signal orthogonal to the new expanded support set. Any atom

selected in the support set will permanently reside. Therefore previously selected

atoms have a great influence on following ones and alter the overall OMP

performance. Although PCMP does not always hold orthogonal property, the

principle remains the same.

Selecting a new atom in dictionary is thus the very place where concurrent note

heuristic information should be embedded. To formulate concurrent note

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

89

information, Bayes model is employed in our approach to approximate the

posterior probability of potential note given observed notes

where denotes observed notes obtained by first PCMP

iterations, represents a potential co-occurred note with . The note prior

probability and the note co-occurrence posterior probability are

estimated from our classical music MIDI database. To obtain , a joint

distribution is firstly estimated by accounting the frequency with overlap

degree of the concurrent note and Then is obtained by normalizing

 over Although equation (4.1) provides instructive information to help

select appropriate note combinations, it is still risky to only consider the best note

decomposition, since the second best one may be more appropriate in adjacent

note context. To avoid the one best bias, we propose to preserve multiple

candidates to give top-N best decompositions chances to recover in optimal path

searching.

Orthogonal matching pursuit is a greedy algorithm. In each iteration only the

best atom will be added into support set. This can be risky in some cases, since

once a “bad” atom is selected, this error cannot be corrected in the future. In

[Chen et al. 2001], it has been shown that it is possible to select “bad” atom

initially so as to trap OMP from reconstructing target signals. Methods like

OCMP in [Rath et al. 2008] are proposed to overcome the problem. However, in

music decomposition the same note in different octave or from the same kind of

instruments shares the similar harmonic pattern. Therefore it is hazardous to rule

out a suboptimal decomposition too early before adjacent note compatibility is

checked.

To overcome this drawback of OMP, we propose to keep best candidates in

each iteration instead of only one. To measure the goodness of frame

decomposition we define
 , where is sparse

note decomposition vector, is decomposition residual signal,

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

90

 denotes note concurrent probability, is a free parameter

that balances concurrent probability term and reconstruction error term. As an

example shown in Figure 4.4 we keep the top 3 decomposition candidates in

every iteration. In the first iteration (C), (E), (G) are kept. In the second iteration,

(C, D), (E, F) and (E, G) are obtained according to the reconstruction error and

concurrent probability. Note that (G) selected in the first iteration is eliminated

because its descendant combinations (G,*) are inferior to others’. After 3

iterations, combinations of (C, D, E), (C, D, G) and (E, F, B) survive, as shown in

orange.

Figure 4.4: Multiple candidate selection example

When sparse decomposition terminates, the top note candidates are derived

for every signal frame. The best one can be treated as the decomposition result of

the current frame. Besides, all candidates are preserved for constructing the

optimal decomposition path when we further investigate inter-frame relations.

The multiple candidate PCMP algorithm that we propose is summarized in

Algorithm 2.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

91

4.3.2 Global level optimal note path searching

All previous steps in sections 4.3.1 focus on improving sparse note decomposition

within one signal frame. When further scrutinizing the PCMP decomposition

between consecutive frames, we can still find a number of discontinuous note

decompositions, in which the note sequence has sudden abnormal jumps in

adjacent frames, including octave shift or sharp/flat drift. This is due to a lack of

note transition regulation and because the sparse decomposition only minimizes

reconstruction error in current frame without considering any neighbor frame

contexts.

Besides the co-occurred ones, consecutive notes bear strong correlations which

convey various melodies, temporal and dynamic information of music. It is

reasonable to incorporate such sequential knowledge of notes as to suppress the

discontinuous note error.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

92

Algorithm 4.2:Positive Constraint Matching Pursuit Producing Multiple

Candidates

Task: Approximate the solution of problem: , subject to .

Input: Dictionary , signal , max iteration number , top candidates to keep,

balance parameter , note posterior probability and error threshold .

Output: sparse solution:

Initialization:

Initial residual:
 .

Initial support:
 .

Initial candidate queue:

 }

Main iteration:

for

for

1. Compute
 according to equation (4.1)

2. Compute error:

 all

using the optimal choice

 .

3. Find top minimizers of to form

 , and push

 into

end

for each

 Compute that minimizes
 subject to

 .

 Compute residual
 .

end

Ascendingly sort according to

 and keep the first

 items.

If any

 break.

end

Output result: .

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

93

We thus apply transition probabilities to model relations between two

decomposition candidates in adjacent frames. To formulate note transitions,

Bayes model is adopted so that conditional probability can be approximated from

individual note pairs. Since at most candidates remain in one frame the

posterior probability of candidate in frame given candidate in frame is

calculated as

where

 denotes the decomposition candidate in frame

containing notes. is calculated similarly as in equation (4.1).

Thanks to the multiple decomposition candidates generated by the modified

PCMP previously, an inter-decomposition directed graph is further constructed to

help determining the optimal decomposition path through all frames, as illustrated

in Figure 4.5. In this directed graph, each decomposition candidate forms a node

and outgoing edge denotes the transition probability computed by equation (4.2).

The nodes are disconnected within the same frame indexed with .

Figure 4.5: Optimal path decoding example

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

94

In order to connect transition probabilities with the sparse decomposition

candidates, the decomposition goodness measure is converted into corresponding

probabilities as
 , since the frame signal and atoms in

have been normalized to unit vectors. The conversion also reflects a reasonable

assumption that the reconstructed signal is approximately Gaussian distributed

around original one. Treating the decomposition candidates as hidden states of a

first order Hidden Markov Model (HMM), Viterbi algorithm decodes the optimal

decomposition candidate path :

where is the frame index, is the total number of frames, is a balance

parameter to adjust emphasis, denotes decomposition candidate index in frame

 along path . Initially

 =1. A similar study on emotion recognition

from audio signal is presented in [Meng et. al 2011] in which the hidden states of

the HMMs are associated with the levels of affective dimensions to convert the

classification problem into a best path finding problem in HMM.

4.3.3 Experiment and results

To evaluate the decomposition quality of the proposed PCMP with note statistics,

a multi-timbral music with time domain note reference has been used, which is

provided in Mirex2007 multiF0 development data [Mirex2007 2007]. The music

is a recording of the fifth variation from L. van Beethoven Variations from String

Quartet Op.18 N.5, lasting for 54s. 5 instruments are included into the music.

Each instrument was recorded separately and then mixed to a mono 44.1 kHz 16

bits wave file. The whole music is tested by our system (PCMP with multi-

candidate and Viterbi) against its ground truth MIDI file.

Another widely used dataset adopted in our experiments is MUS, provided in

MAPS [Emiya et al. 2010]. MUS contains 270 pieces of classical and traditional

music, recorded in different conditions which vary in piano instruments and

surroundings. For each piano music piece, as in [Lewandowski et al. 2012], first

30 seconds are tested by our system against ground truth MIDI files.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

95

Figure 4.6 shows precision and recall scatter diagram of the proposed

decomposition that improve original PCMP, noted as PCMPMC and PCMPMCV.

Table 4.15 displays the comparisons in terms of precision, recall and F-measure

between our proposed method and the state of the art results. F-measure is defined

as the harmonic mean of precision and recall. Statistic of note recognition

precision and recall has been made upon consecutive 186ms frames. For ground

truth MIDI, if 70% of some note lies in the frame the note is accounted and there

is no frequency tolerance. Threshold for drawing the diagram is imposed on

sparse solution vector in each frame to filter insignificant note detection according

to its sparse solution value. Different thresholds result in scatter points in Figure

4.6. Two free parameters and are set to 0.8 and 1.3 to balance reconstruction

error and note statistics.

Table 4.15: Average multiple pitch estimation performance on MIREX2007

dataset.

 Prec.

(%)

Rec.

(%)

F-meas.

(%)

NMF[Raczynski et al. 2007] 41.1 46.6 45.3

HTC[Kameoka et al. 2007] 57.4 51.3 54.2

JHT[Wu et al. 2011] 59.7 61.4 60.5

PCMPMCV 51.8 72.0 60.3

From Figure 4.6 we can see that when co-occurrence note information is

integrated into PCMP, the precision increases about 6% while recall increases by

2%~3%. When the note transition information is fused and the optimal path

decoding is applied, the precision and recall are further improved by 5% and 2%

approximately. From Table 4.15 and Figure 4.6 we can find that if no threshold is

imposed on the sparse solution of PCMPMCV, 72% of the notes can be recalled

while the precision is 51.8% resulting in an F-measure of 60.3 %. The recall of

our best configuration outperforms state of the art result in [Wu et al. 2011] by

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

96

more than 10% while the precision is 8% lower, resulting in an F-measure 0.2%

lower than that reported in [Wu et al. 2011].

Table 4.16: Average multiple pitch estimation performance on MUS dataset.

 Prec.(%) Rec. (%) F-meas.(%)

Spectral constraints

 [Vincent et al. 2010]
71.6 65.5 67.0

Isolated note spectra

 [Vincent et al. 2010]
68.6 66.7 66.0

DNMF-LV

[Raczynski et al. 2012]

68.1 65.9 66.9

DNMF-AE

[Raczynski et al. 2012]

66.8 68.7 67.8

SONIC [Marolt 2004] 74.5 57.6 63.6

PCMPMCV 60.7 77.3 68.0

Table 4.16 shows the precision, recall and F-measure results on MUS data set.

All parameters and setups are the same as used in previous experiment except for

the conditional probability estimation. In this experiment the rest data other than

first 30 seconds are used to estimate conditional probabilities . From Table

4.16 we can observe that the proposed approach achieves the highest recall and F-

measure of 77.3% and 68%, although obtains the lowest precision of 60.7%.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

97

Figure 4.6: Note precision vs. recall of the two improvements.

From the two experiments, we can find that with statistical musical knowledge

sparse decomposition is improved in terms of both precision and recall. The

proposed approach tends to obtain superior recall and F-measures but lower

precisions compared with variant NMF and other methods. Higher recall means

the more information is preserved in the decomposition results. Since our final

aim of the decomposition is to provide decent features for music classifications,

the performance of our system is actually preferred. Our higher recalls and F-

measures are attributed to the quality of MIDI dictionary as well as statistical

music knowledge fused in sparse decomposition. Longer analysis window is

another important factor.

When comparing decomposition with the ground truth, we found numbers of

instrument errors even with correct note detections, which is likely caused by

mismatches between the MIDI dictionary and the real-world data. In some cases

concurrent and transition probability of notes can even make incorrect

compensation to original PCMP, which is probably due to the limitation of the

naive Bayes model. To overcome these drawbacks, dictionary adaptation

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

98

techniques and sophisticated graphical models will be proposed and investigated

in our future work.

To test our PCMP based mid-level feature for content-based music

classification, we have conducted experiments on previous mentioned data sets.

The results are shown in following tables. From Table 4.17, compared with

PCMP result, the multiple candidates improve the average accuracy by 0.7%.

Table 4.18 shows that optimal path gain additional 0.5% of accuracy compared

with multiple candidates situation. When low level information is added, as

shown in Table 4.19, the overall performance is increased by 3.6%. Tables 4.20 to

4.22 demonstrate the similar results on APM data set. Compared with basic

PCMP results, from Table 4.20 and 4.21, we can find that the two innovations of

PCMP achieve 2% and 3% improvement. The Table 4.22 shows that the best

performance reached is 80.2% when GSV is further fused.

Table 4.17: PCMP+multiple candidate confusion matrix (actual classes in rows,

predicted classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 88.7 2.3 1.5 7.5

Con 0.8 96.1 1.3 1.8

Dep 2.2 4.9 90.3 2.4

Exu 4.6 5.2 2.7 87.5

Average 90.7

Table 4.18: PCMP+multiple candidates+optimal path confusion matrix (actual

classes in rows, predicted classes in columns) using the classical dataset.

% Anx Con Dep Exu

Anx 89.3 2.3 1.3 7.1

Con 0.8 96.2 1.3 1.7

Dep 2.0 4.9 91.0 2.1

Exu 4.4 4.8 2.7 88.1

Average 91.2

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

99

Table 4.19: GSV fused with PCMP+multiple candidates+optimal path confusion

matrix (actual classes in rows, predicted classes in columns) using the classical

dataset.

% Anx Con Dep Exu

Anx 92.9 0.3 1.0 5.8

Con 0.2 96.7 3.0 0.1

Dep 1.2 2.8 94.9 1.1

Exu 4.0 1.1 0.2 94.7

Average 94.8

Table 4.20 PCMP+multiple candidates confusion matrix (actual classes in rows,

predicted classes in columns) using the APM dataset.

% Fear Happy Relax Sad

Fear 63.1 11.9 7.8 17.2

Happy 8.5 68.0 17.2 6.3

Relax 7.6 18.1 51.0 23.3

Sad 10.0 5.6 18.5 65.9

Average 62.0

Table 4.21: PCMP+multiple candidates+optimal path confusion matrix (actual

classes in rows, predicted classes in columns) using the APM dataset.

% Fear Happy Relax Sad

Fear 64.3 11.5 7.6 16.6

Happy 8.3 69.2 16.5 6.0

Relax 7.2 18.1 51.8 22.9

Sad 10.0 5.1 18.1 66.8

Average 63.0

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

100

Table 4.22: GSV fused with PCMP+multiple candidates+optimal path confusion

matrix (actual classes in rows, predicted classes in columns) using the APM

dataset.

% Fear Happy Relax Sad

Fear 83.4 3.6 1.3 11.7

Happy 4.7 85.7 7.0 2.6

Relax 6.1 9.6 72.6 11.7

Sad 16.3 0.4 4.4 78.9

Average 80.2

We also tested our PCMP based feature on two public datasets: “Now That’s

What I Call Music” proposed in [Shuller et al. 2010] for mood classification and

the famous GTZAN data set for genre classification. Integrated with Xiao’s and

APM data set, the overall results are shown in Table 4.23. From Table 4.23 we

can observe that although PCMP based features cannot beat the state-of-the-art in

[Shuller et al. 2010] and [Panagakis et al. 2009], they have demonstrated the

ability to compensate the drawback of low level information by increasing

classification accuracy by around 3%.

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

101

Table 4.23: Results on all data sets.

Accuracy (%)
Mood Genre

Xiao APM NTWICM (V/A) GTZAN

Xiao [Xiao et al. 2008b] 82.95 N/A N/A N/A

Shuller [Shuller et al.

2010]

N/A N/A 61.0/58.7 N/A

Topology preserving

 NTF +SRC[Panagakis et

al. 2009]

N/A N/A N/A 93.7

BoW(GMM) 87.3 N/A 55.9/50.3 78.7

GSV 88.3 76.8 56.7/51.8 80.5

OpenSmile 84.0 74.9 N/A N/A

PCMP 90.0 59.4 48.3/41.5 78.3

OpenSmile+PCMP 93.7 77.4 N/A N/A

GSV+PCMP 94.4 78.9 N/A N/A

PCMP+multiple

candidates

90.7 62.0 N/A N/A

PCMP+multiple

candidates+optimal path

91.2 63.0 49.6/44.1 79.5

GSV+PCMP+multiple

candidates +optimal path

94.8 80.15 56.9/52.3 83.2

4.4. Conclusion

We present in this chapter our novel music representation that aims at gaining an

in-depth understanding of the music structure and harmony. It is obtained by

decomposing sparsely the music onto a dictionary made of musical words that are

a representation of the notes played instruments obtained from a MIDI

synthesizer. Experiments have shown that our approach has the ability to

decompose music into notes and the musical feature derived from this

decomposition allows improving the music mood classification. Indeed, it has

Chapter 4: Sparse Music Decomposition with MIDI Dictionary and Musical Knowledge

102

outperformed openSMILE low-level features GSV for the classical music and

improved the classification accuracy when combined with openSMILE and GSV

for the APM data set which is more complex particularly due to the high

variability of the instruments used.

To further improve decomposition accuracy, we have incorporated music

knowledge which concern note statistical information into our sparse

decomposition. In the frame level, music signals are decomposed onto a MIDI

dictionary with a note co-occurrence heuristic. Transition probabilities are then

computed between adjacent decomposition candidates through the whole frame

sequence. The final optimal decomposition path is then constructed by the Viterbi

algorithm. Experimental results show that both embedding concurrent note

statistics in PCMP and applying a note sequence heuristic improve the note

recognition precision and recall. Our proposed PCMP with optimal path search

outperforms the state-of-the-art methods in terms of recall and f-measure. When

fused with low level features our note histogram features increase the mood and

genre classification accuracy.

Chapter 5: Conclusions and Future Work

103

Chapter 5: Conclusions and Future Work

5.1 Conclusion

In this thesis, we focus on using low level and mid level feature to perform

semantic analysis of music in particular mood and genre classification. Regarding

low level features, although they contain complete signal related information, their

direct use for semantic analysis is hardly conceivable since too much signal details

and redundancies prevent the semantics concepts from being efficiently detected.

Thus, low level feature modeling techniques have to be applied to delve semantic

information from the noisy features. K-means and GMM based BoW as well as

Gaussian super vector methods have demonstrated their effectiveness in modeling

low level features, their principle being to transform redundant signal features into

“words” that express semantic meanings. However, the trend of “big data”

challenges the efficiency of the modeling methods, particularly k-means, GMM

and MAP procedures, which are the computational bottle necks. Therefore, we

have proposed to use matrix format which can be effectively accelerated on GPU

multi-core CPU and cluster to implement bag-of-words and GMM super vector

method. To employ high performance matrix operation library of ACML, ATLAS

and CUBLAS we reformulate k-means and EM algorithm into matrix

multiplications, which is also very concise to implement in other languages like

MATLAB and FORTRAN. Experiments on music genre and mood classification

tasks show that the proposed implementations achieve 38 to 209 times

acceleration, compared with single threaded CPU version. 240-cored GPU can run

up to 5 times faster than 4 8-cored CPUs with just less 1% performance lost.

From experimental results we can find detailed improvement that high

performance library based implementations proposed achieve up to 5 times faster

than multi-threading based implementation (Yael). We also observe that GPU

based implementation executes 5 times faster than multi-core CPU based one on

GMM training whereas multi-core version outperforms GPU on k-means

clustering by 22% in terms of speed. GPU based k-means is slower than multi-core

CPU in that CPU version executes operations for calculation while

Chapter 5: Conclusions and Future Work

104

GPU version actually executes matrix multiplication containing

 operations. We choose matrix multiplication for calculation in GPU

because operations consume as twice time as matrix

multiplication on GPU architecture. This abnormal phenomenon is due to random

memory access pattern of operations on GPU. Therefore in this scenario

matrix multiplication is the optimal but still slower way for GPU.

Comparing with the state-of-the-art result in [Machlica et al. 2011] that only

recorded kernel function’s running time without data IO and data preparation

duration, our method consumes only 7 seconds compared with 9.1 in their paper.

From genre classification result, we can find that the quality of dictionary trained

by CPU is little better than GPU by less than 1% in terms of average classification

accuracy. This is due to the less floating point error of CPU and double precision

floating point numbers used during summation procedure on CPU. Last but not the

least, we can find that with the same number of mixture, the same types of GPU

and comparable data scale our CUBLAS based implementation is 10 times faster

than CUDA kernel implementation described. In mood classification phase, we

can find that 1024 dimensional bag-of-words histogram features outperforms the

standard 6552 dimensional OpenSMILE emotional features by 3% in terms of

average classification accuracy.

On Hadoop and Spark cluster when optimal configuration is set the proposed

method still achieves 10 and 5 speed-up, compared with the state-of-the-art

libraries of Mahout and MLLib.

Regarding mid-level features, previous work in literatures seldom uses note

information which is in fact among the most natural semantic given by the

composer. The difficulties of decomposing music into note combination are

attributed to the complexity of music signal, in which sound of different

instruments entangle. With the help of a realistic instrument sound library, we

have proposed our novel music representation feature that aims at gaining an in-

depth understanding of the music structure and harmony. We decompose music

sparsely onto a dictionary made of musical words. The musical words are a

Chapter 5: Conclusions and Future Work

105

representation of the notes played instruments obtained from a MIDI synthesizer.

Experiments have shown that our approach has the ability to recover music notes

meanwhile the musical feature derived from this decomposition allows improving

the music mood classification. Indeed, it has outperformed openSMILE low-level

features and GSV for the classical music, and improved the classification

accuracy when combined with openSMILE and GSV for APM data set which is

more complex particularly due to the high variability of the instruments used.

To further improve decomposition accuracy, we have proposed to incorporate

music knowledge which concern note statistical information to improve sparse

decomposition. In the frame level, music signals are decomposed onto a MIDI

dictionary with a note co-occurrence heuristic. Transition probabilities are then

computed between adjacent decomposition candidates through the whole frame

sequence. The final optimal decomposition path is then constructed by the Viterbi

algorithm.

From the experiments, we can find that with statistical musical knowledge

sparse decomposition is improved in terms of both precision and recall. The

proposed approach tends to obtain superior recall and F-measures but lower

precisions compared with variant NMF and other methods. Higher recall means

the more information is preserved in the decomposition results. For example we

can find that when co-occurrence note information is integrated into PCMP, the

precision increases about 6% while recall increases by 2%~3%. When the note

transition information is fused and the optimal path decoding is applied, the

precision and recall are further improved by 5% and 2% approximately. From

MIREX2007 dataset we can find that if no threshold is imposed on the sparse

solution of PCMPMCV, 72% of the notes can be recalled while the precision is

51.8% resulting in an F-measure of 60.3 %. The recall of our best configuration

outperforms state of the art result by more than 10% while the precision is 8%

lower. From another larger dataset MUS we can observe that the proposed

approach still achieves the superior result compared with the state-of-the-art. We

obtained the highest recall and F-measure of 77.3% and 68%, although obtains the

lowest precision of 60.7%.

Chapter 5: Conclusions and Future Work

106

 Since our final aim of the decomposition is to provide decent features for

music classifications, the performance of our system is actually preferred. Our

higher recalls and F-measures are attributed to the quality of MIDI dictionary as

well as statistical music knowledge fused in sparse decomposition. Longer

analysis window is another important factor.

From classical music dataset we can find that the dictionary built with high

quality instrument waves (Logic Pro 9) outperforms Microsoft wavetable

synthesizer. Our proposed histogram musical feature also beat the openSMILE

features. Regarding to individual feature, we can find that the musical histogram

feature generated from Logic Pro 9 MIDI dictionary outperforms the others by

2% to 7% on average accuracy. For each individual mood, Logic Pro 9 MIDI

dictionary also surpasses the others. From APM music dataset we can find that

compared with the classical music set the overall performance of musical

histogram feature, openSMILE and GSV decline by 30%, 10% and 11.5%.

OpenSMILE feature set outperforms Logic Pro 9 musical histogram feature by

15.5% and GSV surpass musical histogram feature by 17.4% However, when

these two levels of feature sets are combined in the late fusion, the average

accuracy increases by 2.5% and 2.1%. The musical histogram feature is less

effective with this modern music dataset than with the classical music dataset.

The reason certainly lies in the MIDI dictionary that may have difficulties to

accurately decompose this music due to its important complexity and the presence

of instruments in music that are missing in the dictionary. This problem can be

solved by using a MIDI synthesizer producing more realistic instrument sounds.

Even though openSMILE feature set provides very complete low-level

information characterizing temporal and frequential signal properties, its

performance for classification can be improved by enriching this description with

higher level information that we propose with our musical histogram feature

which allows to explicit the music content.

To sum up, embedding concurrent note statistics in PCMP and applying a note

sequence heuristic allows improving the note recognition precision and recall.

Our proposed PCMP with optimal path search outperforms the state-of-the-art

Chapter 5: Conclusions and Future Work

107

methods. Our proposed mid level histogram achieve the best results on classical

music. Although inferior to the low level feature performance our proposed

feature provide compensated information for mood classification on modern

music dataset.

5.2 Perspective and Future Work

We plan to perform the following improvements to our current system. In the low

level feature modeling acceleration part, we plan to install GPU on the Hadoop

and Spark cluster so that the overall computation can be parallelized even

between CPUs and GPUs. The challenge will be here to coordinate data

consumption between CPUs and GPUs since GPU executes faster.

In the note decomposition part, we plan to explore dictionary self-adaptation

techniques, since even if Logic Pro can generate realistic instrument sound, the

dictionary is not universally compatible. There can be many factors like recording

distortion that affect the accuracy of note decomposition. If the MIDI note

dictionary can be effectively adapted to the input signal, not only the note

recovery accuracy but the final classification performance can be further

improved.

Up to now, our system neglects high level information which concerns human

natural language. Indeed, lyrics can represent interesting semantic information

particularly related to emotions. Therefore another important direction of

improvement is to employ natural language processing techniques to represent

lyrics information that could be combined with our low and middle level audio

features for music mood and genre classification.

108

Publications

 Boyang Gao Li i g Ch “Acc t K-means,GMM and MAP

Computation with GPU, Multi-co CPU Co p t C st ” submitted to IEEE

Transaction on Multimedia

 Xiaofang Wang, Boyang Gao, Simon Masnou Li i g Ch “Activ Co oi s T cki g:

Recover Trajectories Globally via Min-cost/ x f ow” submitted to IEEE Transaction on

Image Processing

 Boyang Gao Li i g Ch “Sp s M sic co positio o to

Midi Dictionary Driven by St tistic M sic K ow g ” i Proc. 14
th

 International Society

for Music Information Retrieval Conference (ISMIR), 2013

 Nico s B s … Boyang Gao , Liming Chen … “IRIM t TR CVI

2012: S tic I xi g I st c S ch ” i Proc. TRECVID 2012 workshop, 2012

 Boyang Gao , Liming Chen, "Accelerate Bag-of-Words Method With

GPU And Multi-Core CPU And Its Application to Music Classification" in Proc. to the 11
th

International Conference on Signal Processing (ICSP), 2012

 Boyang Gao Li i g Ch “M sic Sp s co positio o to

MI I ictio y of M sic Wo s Its App ic tio to M sic Moo C ssific tio ” i

Proc. 10th Workshop on Content-Based Multimedia Indexing (CBMI), 2012

 Chao Zhu, Boyang Gao Ch s- o Bichot , Liming Chen,

Ni g i g Li Y Zh g “ CL-LIRIS t TR CVI 2011: S tic I xi g” 2011

TRECVID Workshop, 2011, Washington

 Qian Yao, Wu Zhi-Zheng, Gao Bo-Yang Soo g F k K. “I p oved Prosody Generation

by M xi izi g Joi t P ob bi ity of St t Lo g U its” IEEE Transactions on Audio,

Speech and Language Processing, Vol 19, Issue 6, pp. 1702-1710, Aug. 2011

109

Bibliography

[Josef 2009] Sivic, Josef (April 2009). "Efficient visual search of videos cast as

text retrieval". IEEE Transactions On Pattern Analysis And Machine

Intelligence, Vol. 31, No. 4. IEEE. pp. 591–605.

[Liu et al. 2013] Ningning Liu, Emmanuel Dellandréa, Chao Zhu, Yu Zhang,

Charles-Edmond Bichot, Stéphane Bres, Bruno Tellez, Liming Chen,

“Multimodal Recognition of Visual Concepts using Histograms of textual

Concepts and Selective Weighted Late Fusion Scheme”, Computer Vision and

Image Understanding (CVIU) 117(5):493-512 (2013)

[Kong et al. 2010] J. Kong, “GPU accelerated face detection”, Proceeding of

Intelligent Control and Information Processing (ICICIP), pp.584-588, 2010.

[van de Sande et al. 2011] K. van de Sande and T. Gevers, “Empowering visual

categorization with the GPU,” IEEE Transactions on Multimedia, Volume 13

(1), page 60-70, 2011.

[Kumar et al. 2009] N. Kumar, S. Satoor and I. Buck, “Fast parallel Expectation

Maximization for Gaussian Mixture Models on GPUs using CUDA,”

Proceeding of 11th IEEE International Conference on High Performance

Computing and Communications, 2009.

[Pangborn et al. 2010] A. D. Pangborn, “Scalable data clustering using GPUs,”

Masters thesis, Rochester Institute of Technology, 2010.

[Azhari et al. 2011] M. Azhari and C. Ergün, “Fast Universal Background Model

(UBM) Training on GPUs using Compute Unified Device Architecture (

CUDA),” International Journal of Electrical & Computer Sciences IJECS-

IJENS, vol. 11, no. 4, pp. 49-55, 2011.

[Gonina 2011] E. Gonina, “Fast Speaker Diarization Using a Specialization

Framework for Gaussian Mixture Model Training,” master thesis, University

of California Berkeley, 2011.

[Vanek et al. 2011] L. Machlica, J. Vanek, and Z. Zajic, “Fast Estimation of

Gaussian Mixture Model Parameters on GPU Using CUDA”, Proceeding of

http://www.di.ens.fr/~josef/publications/sivic09a.pdf
http://www.di.ens.fr/~josef/publications/sivic09a.pdf

110

12th International Conference on Parallel and Distributed Computing

Applications and Technologies, no. 1, pp. 167-172, 2011.

[Wu et al. 2012] K. Wu, Y. Song and L. Dai, “CUDA-Based Fast GMM Model

Training Method and Its Application,” Journal of Data Acquisition &

Processing, vol. 27, no. 1, pp. 85-90, 2012.

[Tzanetakis et al. 2002] G. Tzanetakis and P. Cook, “Music genre classification

ofaudio signals”, IEEE Transactions on Speech and Audio Processing,

10(5):293–302, 2002.

[Xiao et al. 2008] Z. Xiao, E. Dellandréa, W. Dou and L. Chen, “What is the best

segment duration for music mood analysis ?,” in Proc. International

Workshop on Content-Based Multimedia Indexing (CBMI), London, 2008.

[Eyben et al. 2010] F. Eyben, M. Wöllmer and B. Schulle, “OpenSMILE the

munich versatile and fast open-source audio feature extractor,” in Proc. ACM

Multimedia (MM), Florence, 2010.

[GoogleBlog 2010] http://googleblog.blogspot.fr/2010/07/ooh-ahh-google-

images-presents-nicer.html

[Campbell et al. 2006] Campbell W M, Sturim D E, Reynolds D A. Support

vector machines using GMM supervectors for speaker verification[J]. Signal

Processing Letters, IEEE, 2006, 13(5): 308-311.

[Inoue et al. 2011] Inoue N, Shinoda K. A fast MAP adaptation technique for

GMM-supervector-based video semantic indexing systems[C] in Proceedings

of the 19th ACM international conference on Multimedia. ACM, 2011: 1357-

1360.

[White 2010] White, Tom. Hadoop: The Definitive Guide. O'Reilly Media, 2009.

[Konstantin et al. 2010] Shvachko, Konstantin, et al. "The hadoop distributed file

system." In Proceedings of Symposium on Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th. IEEE, 2010.

[Zaharia et al. 2010] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., &

Stoica, I. (2010, June). Spark: cluster computing with working sets. In

111

Proceedings of the 2nd USENIX conference on Hot topics in cloud computing

(pp. 10-10).

[Zaharia et al. 2012] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Stoica, I. (2012, April). Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation

(pp. 2-2). USENIX Association.

[Dean et al. 2008] Dean, J., Ghemawat, S. (2008). MapReduce: simplified data

processing on large clusters. Communications of the ACM, 51(1), 107-113.

[Katsavounidis et al. 1994] I. Katsavounidis, C. Kuo, and Z. Zhang. A new

initialization technique for generalized Lloyd iteration. IEEE Signal

Processing Letters,1(10):144–146, 1994.

[He et al. 2004] He, J., Lan, M., Tan, C. L., Sung, S. Y., & Low, H. B. (2004,

July). Initialization of cluster refinement algorithms: A review and

comparative study 2004. Proceedings.of 2004 IEEE International Joint

Conference on . Neural Networks, (Vol. 1). IEEE.

[Björn et al. 2010] Björn, S., Johannes, D., Gerhard, R. (2010). Determination of

nonprototypical valence and arousal in popular music: features and

performances. EURASIP Journal on Audio, Speech, and Music Processing,

2010.

[Anil et al. 2011] Anil, R., Dunning, T., Friedman, E. (2011). Mahout in action .

Manning.

[Bahmani et al 2012] Bahmani, B., Moseley, B., Vattani, A., Kumar, R.,

Vassilvitskii, S. (2012). Scalable k-means++. Proceedings of the VLDB

Endowment, 5(7), 622-633.Chicago

[Yahoo 2014] http://developer.yahoo.com/hadoop/tutorial/module1.html

[Borthakur 2007] Borthakur, D. (2007). The hadoop distributed file system:

Architecture and design. Hadoop Project Website.

[Hartigan 1979] Hartigan, John A., and Manchek A. Wong. "Algorithm AS 136:

A k-means clustering algorithm." Applied statistics (1979): 100-108.

112

[Dempster et al. 1977] Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin.

"Maximum likelihood from incomplete data via the EM algorithm." Journal

of the Royal Statistical Society. Series B (Methodological) (1977): 1-38.

[Kim et al. 2010] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, P.

Richardson, J. Scott, J. A. Speck and D. Turnbull, "Music emotion

recognition: a state of the art review," in Proc. 11th International Society for

Music Information Retrieval Conference, Utrecht, 2010.

[Pratt 1952] C. C. Pratt, Music as the language of emotion, Oxford: The Library

of Congress, 1952.

[Lim et al. 2011] S.-C. Lim, S.-J. Jang, S.-P. Lee and M. Y. Kim, "Music

genre/mood classification using a feature-based modulation spectrum," in

Proc. International Conference on Mobile IT Convergence (ICMIC), Gumi,

2011.

[Wang et al. 2010] J.-C. Wang, H.-Y. Lo, S.-K. Jeng and H.-M. Wang, "MIREX

2010: audio classification using semantic transformation and classifier

ensemble," in Music Information Retrieval Evaluation eXchange (MIREX),

2010.

[Cao et al. 2009] C. Cao and M. Li, "THINKIT’s submissions for MIREX2009

audio music classification and similarity tasks," in Music Information

Retrieval Evaluation eXchange (MIREX), 2009.

[Peeters et al. 2009] G. Peeters, "MIREX-09 “music mood, mixed-genre, latin-

genre and classical composer classification” tasks: ircamclassification08

submission," in Music Information Retrieval Evaluation eXchange (MIREX),

2009.

[Russell 1980] J. A. Russell, "A circumplex model of affect," Journal of

Personality and Social Psychology, vol. 39(6), pp. 1161-1178, 1980.

[Shuller et al. 2010] B. Schuller, J. Dorfner and G. Rigoll, "Determination of

nonprototypical valence and arousal in popular music: features and

performances," EURASIP Journal on Audio, Speech, and Music Processing,

vol. 2010, 2010.

113

[Yang et al. 2008] Y.-H. Yang, Y.-C. Lin, Y.-F. Su and H. Chen, "A regression

approach to music emotion recognition," IEEE Transactions on Audio,

Speech, and Language Processing, vol. 16, no. 2, pp. 448 457, 2008.

[Elad 2010] M. Elad, Sparse and Redundant Representations, New York:

Springer, 2010.

[Leveau et al 2008] P. Leveau, E. Vincent, G. Richard and L. Daudet,

"Instrument-specific harmonic atoms for mid-level music representation,"

IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no.

1, pp. 116-128, 2008.

[Xiao et al. 2008] Z. Xiao, E. Dellandréa, W. Dou and L. Chen, "What is the best

segment duration for music mood analysis ?," in Proc. International

Workshop on Content-Based Multimedia Indexing (CBMI), London, 2008.

[Xiao 2008] Z. Xiao, "Classification of emotion in audio signals," Doctor’s thesis

of Ecole Centrale de Lyon, 2008.

[Eyben et al. 2010] F. Eyben, M. Wöllmer and B. Schulle, "OpenSMILE the

munich versatile and fast open-source audio feature extractor," in Proc. ACM

Multimedia (MM), Florence, 2010.

[Kameoka et al. 2007] H. Kameoka, T. Nishimoto, and S. Sagayama, “A multi-

pitch analyzer based on harmonic temporal structured clustering,” IEEE

Transactions on Audio, Speech, and Language Processing , vol. 15, no. 3, pp.

982–994, 2007.

[Wu et al. 2011] J. Wu, E. Vincent, S. A. Raczynski, T. Nishimoto, N. Ono, and S.

Sagayama, “Multipitch estimation by joint modeling of harmonic and transient

sounds,” in Proceedings of 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 25–28, 2011.

[Lee et al. 2001] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix

factorization,” Advances in neural information processing systems, vol. 13, pp.

556-562, 2001.

114

[Raczynski et al. 2007] S. A. Raczynski, N. Ono, and S. Sagayama, “Multipitch

analysis with harmonic nonnegative matrix approximation,” in Proceedings of

8th International Conference on Music Information Retrieval (ISMIR), 2007.

[Hoyer et al. 2002] P. O. Hoyer, “Non-negative sparse coding,” in Proceedings of

12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557–

565, 2002.

[Zafeiriou et al. 2006] S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, “Exploiting

discriminant information in nonnegative matrix factorization with application

to frontal face verification,” IEEE Transactions on Neural Networks, vol. 17,

no. 3, pp. 683–695, 2006.

[Nvidia 2014] http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[Guan et al. 2011] N. Guan, D. Tao, Z. Luo and B. Yuan, “Manifold regularized

discriminative nonnegative matrix factorization with fast gradient descent,”

IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2030–2048, 2011.

[Wang et al. 2004] Y. Wang, Y. Jia, C. Hu and M. Turk, “Fisher non-negative

matrix factorization for learning local features,” in Proceedings of Asian

Conference on Computer Vision (ACCV), 2004.

[Boulanger-Lewandowski et al. 2012] N. Boulanger-Lewandowski, Y. Bengio,

and P. Vincent, “Discriminative non-negative matrix factorization for multiple

pitch estimation,” in Proceedings of 13th International Conference on Music

Information Retrieval (ISMIR), 2012

[Sakaue et al. 2012] D. Sakaue, T. Otsuka, K. Itoyama, and H.G. Okuno,

“Bayesian non-negative harmonic-temporal factorization and its application to

multipitch analysis,” in Proceedings of 13th International Conference on

Music Information Retrieval (ISMIR), 2012.

[Gao et al. 2012] B. Gao, E. Dellandréa, and L. Chen, “Music sparse

decomposition onto a midi dictionary of musical words and its application to

music mood classification,” in Proceedings of 10th IEEE International

Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6, 2012.

115

[Leveau et al. 2008] P. Leveau, E. Vincent, G. Richard and L. Daudet,

“Instrument-specific harmonic atoms for mid-level music representation,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1,

pp. 116-128, 2008.

[Bruckstein et al. 2008] A.M. Bruckstein, M. Elad, and M. Zibulevsky, “Sparse

non-negative solution of a linear system of equations is unique,” in

Proceedings of 3rd IEEE International Symposium on Communications,

Control and Signal Processing (ISCCSP), pp. 762–767, 2008.

[Chen et al. 2001] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic

decomposition by basis pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159,

2001.

[Mirex 2007] http://www.music-

ir.org/mirex/wiki/2007:Multiple_Fundamental_Frequency_Estimation_%26_T

racking

[Pati et al. 1993] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad, “Orthogonal

matching pursuit: Recursive function approximation with applications to

wavelet decomposition.” In Proceedings of IEEE Signals, Systems and

Computers, vol. 1, pp. 40-44, 1993

[Emiya et al. 2010] V. Emiya, R. Badeau, and B. David, “Multipitch estimation of

piano sounds using a new probabilistic spectral smoothness principle,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 18, no. 6, pp.

1643-1654, 2010.

[Rath et al 2008] G. Rath, and C. Christine, “A complementary matching pursuit

algorithm for sparse approximation,” in Proceedings of European Signal

Process. Conf., Lausanne, Switzerland. 2008.

[Vincent et al. 2010] E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic

spectral decomposition for multiple pitch estimation,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 18, no. 3:pp. 528–537, 2010.

116

[Marolt 2004] M. Marolt, “A connectionist approach to automatic transcription of

polyphonic piano music,” IEEE Transactions on Multimedia, vol. 6, no. 3, pp.

439–449, 2004.

[Abarbanel et al. 1996] H. Abarbanel. Analysis of Observed Chaotic Data.

Springer, New York, New York, 1996.

[Scheirer et al. 1997] E. Scheirer and M. Slaney. Construction and evaluation of a

robust multifeature speech/music discriminator. In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing,

volume 2, pages 1331-1334, Munich, Germany, Apr. 1997.

[Lu et al. 2001] G. Lu. Indexing and retrieval of audio: A survey. Multimedia

Tools and Applications, 15(3):269-290, Dec. 2001.

[Xu et al. 2005] C. Xu, N.C. Maddage, and X. Shao. Automatic music

classification and summarization. IEEE Transactions on Speech and Audio

Processing, 13(3):441-450, May 2005.

[Khan et al. 2006] M.K.S. Khan and W.G. Al-Khatib. Machine-learning based

classification of speech and music. Multimedia Systems, 12(1):55-67, Aug.

2006.

[Khan et al. 2004] M. Kashif Saeed Khan, Wasfi G. Al-Khatib, and Muhammad

Moinuddin. Automatic classification of speech and music using neural

networks. In MMDB 04: Proceedings of the 2nd ACM international

workshop on Multimedia databases, pages 94-99. ACM Press, 2004.

[Jiang et al. 2005] H. Jiang, J. Bai, S. Zhang, and B. Xu. Svm-based audio scene

classification. In Proceedings of the IEEE International Conference on

Natural Language Processing and Knowledge Engineering, pages 131-136,

Wuhan, China, Oct. 2005. IEEE.

[Tzanetakis 2002] G. Tzanetakis. Musical genre classification of audio signals.

IEEE Transactions on Speech and Audio Processing, 10(5):293-302, Jul.

2002.

117

[Tzanetakis 2005] G. Tzanetakis. Audio-based gender identification using

bootstrapping. In Proceedings of the IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, pages 432433, Victoria,

Canada, Aug. 2005. IEEE.

[Li et al. 2004] T. Li and M. Ogihara. Content-based music similarity search and

emotion detection. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, volume 5, pages 705-708,

Montreal, Quebec, Canada, May 2004. IEEE.

[Wang 2003] A. Wang. An industrial strength audio search algorithm. In

Proceedings of the International Conference on Music Information Retrieval,

pages 7-13, Baltimore, Maryland, Oct. 2003.

[Wang 2006] A. Wang. The shazam music recognition service. Communications

of the ACM, 49(8):44-48, Aug. 2006.

[ANSI 1995] ANSI. Bioacoustical Terminology, ANSI S3.20-1995 (R2003).

American National Standards Institute, New York, 1995.

[Hess 1983] W. Hess. Pitch determination of speech signals : algorithms and

devices. Springer, Berlin, Germany, 1983.

[Bartsch et al. 2001] M.A. Bartsch and G.H. Wakefield. To catch a chorus: using

chromabased representations for audio thumbnailing. In Proceedings of the

IEEE Workshop on the Applications of Signal Processing to Audio and

Acoustics, pages 15-18, New Platz, New York, Oct. 2001. IEEE

[Goto 2003] M. Goto. A chorus-section detecting method for musical audio

signals. In Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 5, pages 437-440, Hong Kong, China,

Apr. 2003. IEEE.

[Zhu et al. 2006] Y. Zhu and M.S. Kankanhalli. Precise pitch profile feature

extraction from musical audio for key detection. IEEE Transactions on

Multimedia, 8(3):575-584, Jun. 2006.

118

[Agostini et al. 2001] G. Agostini, M. Longari, and E. Pollastri. Musical

instrument timbres classification with spectral features. In Proceedings of the

IEEE Workshop on Multimedia Signal Processing, pages 97-102, Cannes,

France, Oct. 2001. IEEE.

[Cai et al. 2006] R. Cai, L. Lu, A. Hanjalic, H.J. Zhang, and L.H. Cai. A flexible

framework for key audio effects detection and auditory context inference.

IEEE Transactions on Speech and Audio Processing, 14:1026-1039, May

2006

[Bogert et al. 1963] B. Bogert, M. Healy, and J. Tukey. The quefrency alanysis of

time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and

saphe-cracking. In Proceedings of the Symposium on Time Series Analysis,

pages 209-243. New York: Wiley, 1963

[Noll 1964] A.M. Noll. Short-time spectrum and cepstrum techniques for vocal

pitch detection. The Journal of the Acoustical Society of America, 36(2),

1964.

[Bridle et al. 1974] J.S. Bridle and M.D. Brown. An experimental automatic word

recognition system. JSRU Report No. 1003, Ruislip, England: Joint Speech

Research Unit, 1974.

[Davis et al. 1980] S. Davis and P. Mermelstein. Comparison of parametric

representations for monosyllabic word recognition in continuously spoken

sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing,

28(4):357-366, Aug. 1980.

[Xu et al. 2004] M. Xu, L. Duan, L. Chia, and C. Xu. Audio keyword generation

for sports video analysis. In Proceedings of the ACM International

Conference on Multimedia, pages 758-759, 2004.

[Wang et al. 2000] X. Wang, Y. Dong, J. Hakkinen, and O. Viikki. Noise robust

chinese speech recognition using feature vector normalization and higher-

order cepstral coefficients. In Proceedings of the 5th International Conference

on Signal Processing, volume 2, pages 738-741, Aug. 2000

119

[Zwicker 1961] E. Zwicker. Subdivision of the audible frequency range into

critical bands (frequenzgruppen). The Journal of the Acoustical Society of

America, 33:248, 1961.

[Moore et al. 1990] C.J. Moore, R.W. Peters, and B.R. Glasberg. Auditory filter

shapes at low center frequencies. Journal of the Acoustical Society of America,

88(1):132-140, 1990.

[Ogihara et al. 2003] T. Li, M. Ogihara, and Li Q. A comparative study on

content-based music genre classification. In SIGIR 03: Proceedings of the

26th annual international ACM SIGIR conference on Research and

development in informaion retrieval, pages 282-289, Toronto, Canada, 2003.

ACM Press.

[Li et al. 2004] T. Li and M. Ogihara. Content-based music similarity search and

emotion detection. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, volume 5, pages 705-708, Montreal,

Quebec, Canada, May 2004. IEEE, IEEE.

[Li et al. 2006] T. Li and M. Ogihara. Toward intelligent music information

retrieval. IEEE Transactions on Multimedia, 8(3):564-574, Jun. 2006.

[Umapathy et al. 2005] K. Umapathy, S. Krishnan, and S. Jimaa. Multigroup

classification of audio signals using time-frequency parameters. IEEE

Transactions on Multimedia, 7(2):308-315, Apr. 2005.

[Rabiner et al. 1978] L. Rabiner and R. Schafer. Digital Processing of Speech

Signals. Prentice Hall Inc., Englewood Cliffs, New Jersey, 1978.

[Tremain 1982] T. Tremain. The government standard linear predictive coding

algorithm: Lpc-10. Speech Technology Magazine, 1:40-49, Apr. 1982.

[Zwicker et al. 1999] E. Zwicker and H. Fastl. Psychoacoustics: Facts and

Models. Springer, Berlin, Heidelberg, Germany, 2nd edition, 1999.

[Pampalk et al. 2002] E. Pampalk, A. Rauber, and D. Merkl. Content-based

organization and visualization of music archives. In Proceedings of the tenth

120

ACM international conference on Multimedia, pages 570-579. ACM Press,

2002.

[Pfeiffer 1999] S. Pfeiffer. The importance of perceptive adaptation of sound

features for audio content processing. In Proceedings SPIE Conferences,

Electronic Imaging Storage and Retrieval for Image and Video Databases VII,

pages 328-337, San Jose, California, Jan. 1999.

[Pfeiffer 2001] S. Pfeiffer. Pause concepts for audio segmentation at different

semantic levels. In Proceedings of the ACM International Conference on

Multimedia, pages 187-193, Ottawa, Canada, 2001. ACM Press.

[ISO-IEC 2002] ISO-IEC. Information Technology Multimedia Content

Description Interface part 4: Audio. Number 15938. ISO/IEC, Moving

Pictures Expert Group, 1st edition, 2002.

[Zhang et al. 2001] T. Zhang and C. C. J. Kuo. Content-Based Audio

Classifcation and Retrieval for Audiovisual Data Parsing. Kluwer Academic

Publishers, Boston, Massachusetts, 2001.

[Lloyd et al. 1982] Lloyd, Stuart P. (1982), "Least squares quantization in PCM",

IEEE Transactions on Information Theory 28 (2): 129–137,

doi:10.1109/TIT.1982.1056489.

[Reynolds et al. 2000] D. Reynolds, T.F. Quatieri, and R.B. Dunn, “Speaker

Verification using Adapted Gaussian Mixture Models,” Digital Signal

Processing, vol. 10, pp. 19–41, 2000.

[Reynolds et al. 1990] Reynolds, D. A. Rose, R. C. and Smith, M. J. T., A

Mixture Modeling Approach to Text-Independent Speaker Identification,

Journal of the Acoustical Society of America, Suppl. 1, Vol. 87, p. 109, 1990.

[Wold et al. 1996] T. Wold, D. Blum, and J. Wheaton. Content-based

classification, search, and retrieval of audio. IEEE Multimedia, 3(3):2736,

1996.

[Ramalingam et al. 2005] A. Ramalingam and S. Krishnan. Gaussian mixture

modeling using short time fourier transform features for audio fingerprinting.

http://en.wikipedia.org/wiki/Digital_object_identifier

121

In Proceedings of the IEEE International Conference on Multimedia and

Expo, pages 1146-1149, Amsterdam, The Netherlands, Jul. 2005. IEEE.

[Scheirer 1998] E. Scheirer. Tempo and beat analysis of acoustic musical signals.

Joint Acoustic Society of America, 103(1):588-601, Jan. 1998.

[Tzanetakis 2002] G. Tzanetakis. Manipulation, analysis and retrieval systems for

audio signals. PhD. Thesis. Computer Science Department, Princeton

University, 2002.

[Foote 2000] J. Foote. Automatic audio segmentation using a measure of audio

novelty. In Proceedings of the IEEE International Conference on Multimedia

and Expo, volume 1, pages 452-455, New York, NY, Aug. 2000. IEEE.

[Foote et al. 2001] J. Foote and S. Uchihashi. The beat spectrum: a new approach

to rhythm analysis. In Proceedings of the IEEE International Conference on

Multimedia and Expo, pages 881-884. IEEE, 2001.

[Kurth et al. 2006] F. Kurth, T. Gehrmann, and M. MuÌller. The cyclic beat

spectrum: Tempo-related audio features for time-scale invariant audio

identification. In Proceedings of the 7th International Conference on Music

Information Retrieval, pages 35-40, Victoria, Canada, Oct. 2006.

[Grimaldi et al. 2003] M. Grimaldi, P. Cunningham, and A. Kokaram. A wavelet

packet representation of audio signals for music genre classification using

different ensemble and feature selection techniques. In Proceedings of the

ACM SIGMM international workshop on Multimedia information retrieval,

pages 102-108, Berkeley, California, 2003. ACM Press.

[Mallat 1999] S. Mallat. A wavelet tour of signal processing. Academic Press, San

Diego, California, 1999.

[Rauber et al. 2002] A. Rauber, E. Pampalk, and D. Merkl. Using psycho-acoustic

models and self-organizing maps to create a hierarchical structuring of music

by sound similarity. In Proceedings of the International Conference on Music

Information Retrieval, Paris, France, Oct. 2002.

122

[Meng et al. 2011] Meng, H. and Bianchi-Berthouze, N., Naturalistic. Affective

Expression Classification by a Multi-Stage Approach Based on Hidden

Markov Models, in Proceedings of 1st International Audio/Visual Emotion

Challenge and Workshop (AVEC 2011), LNCS (6975): 378- 387.

