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Introduction

Some of the most spectacular examples of collective motion are provided by animal popula-
tions that self-assemble into coherently-moving groups. The spontaneous emergence of coordi-
nated motion at large scale is observed in systems as diverse as bird flocks, fish shoal or locust
swarms (see Fig. 1). From a physical perspective, this robust observation has raised an intense
interest over the past 20 years. Such ensembles of motile individuals were shown to display rich
physical properties, which strongly differ from all equilibrium systems. A variety of theoretical
models are now available, together with a number of experimental realizations. They unveiled a
large diversity of phenomenologies, and define the field of “active matter” [136, 216].

In this introduction, we situate more precisely this thesis in the broad area of active matter. In
the first section, we specify the subclass of systems which we consider: populations displaying po-
lar structures, i.e. directed motion at large scale. We then introduce, in section 2, the paradigmatic
framework of active matter, which we refer to as “Vicsek-like models”. In section 3, we recall the
standard hydrodynamic approaches used to describe the large-scale dynamics of active popula-
tions. Section 4 is devoted to the connection between theoretical models and actual experimental
systems. Finally, we conclude in section 5 with a general outline of the thesis.

(a)

(c)

(b)

Figure 1 – Coherent motion in animal groups. (a) Populations of locusts form swarms that cover hun-
dreds of km2. (b) Thousands of starlings move coherently within a flock. (c) Millions of sardines migrate
collectively by forming large shoals [218].
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1 Polar active matter

Before we describe the theoretical background of this thesis, it is useful to specify the subclass
of active systems that we have in mind. In a physical perspective, the motile individuals that we
mentioned in Fig. 1 are examples of self-propelled particles. Irrespective of the mechanisms they
use to achieve their motion, they share two main features [168].

(i) Each individual converts energy, which is stored or homogeneously supplied to the system,
into net translational motion. The local spend or injection of energy keeps the population
out of equilibrium.

(ii) Each individual propels itself along its own direction. Self-propelled bodies are polar parti-
cles which carry an orientation (although their geometric shape can be isotropic).

As a matter of fact, this general definition encompasses a variety of systems. A number of
biological situations involve active elements to generate motion, from animal flocks to the inter-
nal dynamics of cells [30, 121, 187, 223]. In addition, much effort has been devoted over the past
8 years to building synthetic systems in the lab. Several strategies are now available to prepare
self-propelled particles, either extracted from biological materials or purely artificial. All the fun-
damental components of soft-matter have been motorized: polymers [115, 188, 190, 201], emul-
sions [52, 102, 110, 209, 210, 213], colloids [39, 105, 112, 149–151, 204], and grains [68, 120, 122,
144]. Synthetic active populations are then obtained by assembling these self-propelled units.

As an illustration of the diversity of recent active materials, three examples of experimental
systems are shown in Fig. 2: bacteria swimming in thin films of liquid [227], colloids propelled by
self-phoretic effects [151], and microtubule filaments driven by molecular motors [188]. We will
not enter the details of the propulsion and interaction mechanisms. However, comparing the ex-
perimental pictures (Fig. 2) to the initial flocking problem (Fig. 1) yields a striking remark: none
of these examples display coherent flocks akin to those observed in animal populations. In con-
trolled experiments, more complex spatio-temporal patterns have been systematically reported,
such as clustering [151, 204], swirling [68, 73], nematic organization with dynamical defects [115,
188, 201] etc. Stable directed motion is not observed at the entire population scale.

This rich phenomenology shows that the terms “collective motion” and “active matter” en-
compass very diverse behaviors. We have to be more precise in specifying the class of systems we
study. More specifically, in this thesis we focus on polar active matter. We are interested in active
populations which display stable directed motion, akin to the animal groups shown in Fig. 1. Lo-
cally, the individuals align their orientations and move coherently along the same local direction.
Until recently, the physical descriptions of this subclass of systems were mostly restricted to theo-

(c)

(b)(a)

Figure 2 – Illustration of the diversity of active patterns. (a) Moving clusters in suspensions of motile bac-
teria (reproduced from [227]). (b) Dynamical crystals in a suspension of self-propelled colloids (reproduced
from [151]). (c) Nematic order in a suspension of microtubules driven by molecular motors, confined at an
oil-water interface. The arrows denote disclination defects (reproduced from [188]).
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retical and numerical approaches. From this perspective, the emergence of polar structures is well
accounted for by a simple numerical framework, that we now describe.

2 The paradigmatic numerical framework: Vicsek-like models

2.1 The Vicsek model: aligning self-propelled spins

The physics of active matter was initiated by the seminal work of Vicsek et al. in 1995 [215].
The numerical model that they proposed can be introduced from a simple remark. The emer-
gence of directed motion is observed in a variety of living systems, which obviously involve very
different interaction mechanisms, see Fig. 1. This observation suggests that simple physical rules
may be sufficient to account for the flocking behavior, irrespective of the details of the commu-
nication between the individuals. The Vicsek model identifies three minimal ingredients which
are sufficient to explain the emergence of directed motion. (i) The motile individuals are viewed
as self-propelled spins moving at a constant speed. (ii) In analogy with magnetic systems, where
ferromagnetic phases arise from alignment couplings between neighboring spins, neighboring
particles are assumed to align their directions of motion. (iii)These interactions compete with ro-
tational noise, which randomizes the orientations (as does thermal noise in spin systems at equi-
librium).

More precisely, the previous ingredients are implemented in a 2D agent-based model, with
discrete time [215]. N point particles, located at positions ri (t ), move at the constant speed v0.
Their directions of motion are set by unit vectors p̂i (t ). At each time step ∆t , the particle positions
evolve according to:

ri (t +∆t ) = ri (t )+ v0p̂i (t )∆t . (1)

This equation is complemented by an alignment rule for the particle orientations. We denote by
θi the angle between p̂i and the x̂-axis. Identifying vectors and complex numbers, it is convenient
to write p̂i ≡ exp(iθi ) and θi = arg



p̂i


[25]. With these notations, the particles rotate their orien-
tations as follows. At each time step, particle i interacts with the Ni neighbors lying in the circle
Ai of radius R, centered at ri (Fig. 4(a)). Within this interaction range, the mean orientation of the
neighbors is given by the angle:

θ̄i = arg



1

Ni



j∈Ai

p̂ j



. (2)

The particle instantaneously changes its orientation and aligns in the direction θ̄i , up to a noise
term (see Fig. 3). Its direction of motion becomes:

θi (t +∆t ) = θ̄i (t )+ξi (t ), (3)

Figure 3 – Alignment rule in the Vicsek model. To pick up its new orientation, particle i computes the
mean orientation θ̄i of the neighbors lying in the domain Ai , and makes an error ξi .
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where the rotational noise ξi is uniformly distributed in the interval [−πD,πD]. The dynamics is
simulated in periodic boundary conditions. As both the time step ∆t and the interaction radius R
can be set to one, without loss of generality, the dynamics is controlled by three parameters: the
particle speed v0, the amplitude of the noise D, and the averaged density of particles in the simu-
lation box.

Transition to collective motion In order to characterize the emergence of polar order, we need
an order parameter which quantifies the degree of alignment between the flying spins. The aver-
age polarization is defined as the modulus of the mean particle orientation:

Π0 ≡










1

N



i
p̂i











. (4)

We clearly find Π0 ≈ 0 when the particle orientations are random, and Π0 = 1 when they are all per-
fectly aligned. Upon decreasing the noise amplitude at fixed density, the population undergoes a
non-equilibrium phase transition from isotropic to polar states. The bifurcation curve is shown in
Fig. 4(a). At high noise amplitudes, the system forms an homogeneous, disordered gas: Π0 ≈ 0. All
directions of motion are equally distributed, as shown in Fig. 5(a). Decreasing D below a threshold
value, the population self-organizes into polar phases: Π0 ̸= 0. This spontaneous symmetry break-
ing was expected from the alignment interactions, in analogy with the ferro-para transition in spin
systems. However, the interplay with self-propulsion makes the phenomenology more subtle. As
a matter of fact, two types of polar phases are successively observed.

Onset of collective motion: heterogeneous polar phase In a range of noise amplitudes below the
transition point, at the onset of collective motion, the system becomes spatially heterogeneous. At
a first glance, the population looks phase-separated, as exemplified in Fig. 5(b): dense polar bands
propagate in a dilute isotropic gas. The bands move along one of the axis of the periodic box, and
are invariant along the transverse direction. When several bands are observed, they organize into
periodic patterns [198]. The emergence of such spatial patterns strongly impacts the order of the
transition to polar states. In contrast with the ferro-para transition at equilibrium, here the tran-
sition to collective motion is first-order. Although this question remains controversial in some
limits [1, 9, 216], this feature of the transition was clearly demonstrated by the finite-size scaling
analysis carried out by Chaté et al. [49]. They showed that the bifurcation curve, Π0 versus D, dis-
plays a sharp jump at the transition and becomes discontinuous in the limit of large system sizes.
This result is also supported by the sharp drop of the Binder cumulant, G = 1− 〈Π4

0〉/


3〈Π2
0〉2



,
which is a signature of a discontinuous transition, see Fig. 4(b) [49]. Another evidence is the ob-
servation of hysteresis close to the transition, as shown in Fig. 4(c). This latter finding is another

(a) (b) (c)

Figure 4 – Transition to polar states in the Vicsek model (reproduced from [49]). (a) Average polarization Π0

plotted versus the noise amplitude D. The different curves correspond to different system sizes. (b) Binder
cumulant, G = 1−〈Π4

0〉/


3〈Π2
0〉2



, plotted versus the noise amplitude. (c) Hysteresis loop in the transition
curve (obtained here for a 3D version of the Vicsek model).
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(b)(a)

(c) (d)

Figure 5 – Phase diagram of the Vicsek model. (a) Isotropic gas (reproduced from [215]). (b) Heteroge-
neous polar phase: propagating bands (reproduced from [49]). (c) Homogeneous polar phase (reproduced
from [215]). (d) Standard deviation of the particle number, ∆n, plotted versus the mean number, 〈n〉, in the
homogeneous polar phase (log scale). Dashed line: slope 0.8 (reproduced from [49]).

signature of first-order transitions and echoes, e.g., the nucleation of a gas bubble in a metastable
liquid. It suggests that the emergence of polar states may result from the nucleation of polar pat-
terns from a stable isotropic gas.

Homogeneous polar phase: giant density fluctuations At lower noise amplitudes, far from the
transition, the population forms a highly-polarized phase. A typical snapshot is shown in Fig. 5(c).
In contrast with the band phase observed close to the transition, here the system is spatially ho-
mogeneous on average. This second type of polar states displays two remarkable features. (i) The
polar order is truly long-ranged, in 2D. This result contrasts with equilibrium systems, in which the
Mermin-Wagner theorem forbids long-range order when a continuous symmetry is spontaneously
broken due to short-range interactions. (ii) Although this polar phase is globally homogeneous, it
exhibits anomalously large density fluctuations. We count the number n of particles lying in an
arbitrary domain. Figure 5(d) shows the standard deviation ∆n plotted versus the mean particle
number in the domain, 〈n〉. The number fluctuations scale as ∆n ∝ 〈n〉a , where a ≈ 0.8 in the
limit of large domain sizes [49]. This scaling shows that density correlations are long-ranged: in
any system with short-ranged correlations, the central limit theorem imposes the exponent a = 1

2 .
Density fluctuations are enhanced in the polar phase.

2.2 The hallmarks of polar active matter

A number of variants of the Vicsek model have been proposed. They rely on slightly different
implementations of the three fundamental ingredients identified above: self-propulsion, align-
ment interactions and rotational noise. These “Vicsek-like” models include e.g. various definitions
of the noise [1, 9, 49, 92], metric-free interaction rules (each individual interacts with its nearest-
neighbors, irrespective of the distance) [83, 160], continuous-time equations of motion [79, 156],
and 1D implementations on periodic lattices [147, 197]. Without entering the details of the differ-
ences between these models, let us mention one specific example which will be of great impor-
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tance in this thesis. A couple of works have considered an active analog of the classical XY model,
referred to as the “flying XY model” and defined by [79, 156]:

d

dt
ri = v0p̂i , (5)

d

dt
θi =−1

τ



j∈Ai

sin(θi −θ j )+ξi , (6)

where ξi is the rotational noise and τ the typical alignment time. The first term of Eq. (6) takes
the form of an effective potential for the particle orientation: d

dt θi = − ∂
∂θi



j Heff(θi − θ j ) + ξi ,

where Heff(θi ,θ j ) = −τ−1 cos(θi − θ j ) promotes alignment between particles in a typical time-
scale τ. In this model, the alignment couplings are pairwise-additive: the more neighbors in the
interaction range, the stronger the alignment. This property, which is expected for a number of
physical interactions, contrasts with the non-additive behavioral rules introduced in the Vicsek
approach.

The variants of the Vicsek model make it possible to test the robustness of the macroscopic
phenomenology to the specific forms of the alignment interactions and rotational noise. Three
distinctive features of polar active matter have been identified.

Transition to collective motion In all models, the competition between alignment interactions
and rotational noise gives rise to a transition to polar phases, upon decreasing the noise amplitude.
Apart from metric-free models (in which the particle density is not relevant), we stress that the
transition can also be reached by increasing the mean density, at fixed noise amplitude. The latter
control parameter can be easily varied in experimental systems: the existence of a transition has
been also confirmed in experiments, as we will discuss it later [38, 68, 122, 190].

Onset of collective motion: heterogeneous polar phase The emergence of spatial patterns at the
onset of collective motion is a very robust observation. Apart from metric-free models, it has been
observed in a wealth of numerical simulations and experiments [36, 49, 92, 175, 190, 197, 219], irre-
spective of the symmetry of the order parameter [198]. Heterogeneous polar structures, akin to the
bands shown in Fig. 5(b), propagate in a dilute, weakly-polarized background. However, beyond
this generic qualitative feature, the precise shape of the band pattern depends on the specifics of
the model. The exact structure of the heterogeneous polar phase is not universal, and remains
difficult to understand theoretically. We will come back to the numerical and experimental phe-
nomenology in Chapter 2, in which we consider this question in more details.

Homogeneous polar phase: giant density fluctuations The existence of giant density fluctua-
tions is also a robust feature of homogeneous polar phases. The standard deviation of the number
fluctuations scales as ∆n ∼ 〈n〉a , where a > 1

2 . Theoretical and experimental approaches demon-
strated that this abnormal behavior arises from the interplay between self-propulsion and splay
fluctuations [136, 144, 169, 189, 214]. Due to the particle motion, any splay disturbance of the par-
ticle orientations yields density fluctuations, as sketched in Fig. 6. Although the splay modes are

Figure 6 – In polar phases, splay disturbances of the particle orientations are coupled to density fluctua-
tions (here, a diverging splay perturbation yields a local depletion of particles).
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damped diffusively, they are advected over long distances by the particle propulsion. The resulting
density correlations are long-ranged. When counting the number fluctuations in a large domain,
the central limit theorem does not apply and the density fluctuations are anomalously large. This
scenario is confirmed by the absence of giant number fluctuations in one-dimensional models.

We stress that the homogeneous polar phase remains linearly stable. The splay mode, which
is responsible for the density fluctuations, is diffusively damped. By contrast, a number of ex-
perimental and numerical works have also reported giant fluctuations in a different context, in
systems displaying spatio-temporal patterns such as dynamical clusters [68, 151, 227]. When the
homogeneous polar state is unstable and gives rise to heterogeneous structures, the origin of the
enhanced number fluctuations and their scaling exponent may be different. All in all, regardless
of their origin, large density fluctuations were found in all polar systems. Conversely, we will study
in this thesis an experimental system displaying a homogeneous polar state with very few density
fluctuations



a = 1
2



. This observation suggests that the giant fluctuations can be suppressed by
additional mechanisms, which we will try to identify.

The three previous properties are the hallmarks of polar active systems, governed by alignment
interactions. They have been firmly established by a number of numerical studies, and are robust
to the specifics of the interaction rules. We now describe the analytical approaches which were
proposed to explain these observations.

3 Hydrodynamic description of active populations

3.1 Active populations as self-flowing fluids

In addition to the numerical models, the theoretical study of active matter was initiated by
Toner and Tu in 1995 [211]. They adopted the basic idea of hydrodynamics: the coupled dynamics
of all particles cannot be solved at the microscopic level, however the macroscopic properties of
the system are well accounted for by a coarse-grained continuum description. Al large scale, the
population is viewed as an effective material, a fluid capable of flowing by itself. The hydrody-
namics of this active fluid is described by two slowly-varying fields: the local density ρ(r, t ), and
the local velocity u(r, t ).

Toner and Tu derived evolution equations for these hydrodynamic fields from conservation
laws and symmetry arguments. First, the particle-number conservation imposes the usual conti-
nuity equation:

∂t ρ+∇· (ρu) = 0. (7)

Second, the equivalent of the Navier-Stokes equation is obtained by keeping all the terms allowed
by symmetry. As the hydrodynamic description is meant to account for slow spatial variations, the
equation is truncated at second order in gradients [211, 214]:

∂t u+ξ1(u ·∇)u =


a2 −a4|u|2


u−∇P+ξ2(∇·u)v+D1∇2u+D2∇ (∇·u)+D3(u ·∇)2u. (8)

Random forces can be added as well to account for fluctuations at the hydrodynamic level.

Three important comments are in order.
(i) The first term in Eq. (8) allows a spontaneous breaking of the rotational symmetry, when

a2 > 0. Indeed, looking at spatially-homogeneous states, this equation reduces to
∂t u =



a2 −a4|u|2


u. When a2 < 0, the velocity relaxes to zero. This situation corresponds to
an isotropic phase: a vanishing mean velocity is found when the motile particles move in random
directions. Conversely, when a2 > 0 the disordered state is linearly unstable and the population
forms a polar state with non-zero mean velocity. Assuming a4 > 0, the corresponding solution is
u =

p
a2/a4. Note that a negative a4 coefficient would require to include higher-order terms in the

expansions, such as a6|u|4u, in order to prevent the divergence of the velocity. Hence the form of
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Eq. (8) captures the spontaneous breaking of the rotational symmetry by the selection of a random
direction.

(ii) The above equations have been deduced from generic symmetry arguments. They apply
to all polar systems, irrespective of the form of the interactions at the microscopic level. However,
the generality of this approach implies that the eight coefficients a2, a4, P, ξ1, ξ2, D1, D2, D3 are
unknown. Importantly, they are not scalar coefficients, a priori, but functionals of the two scalar
fields ρ and |u|2. Both their signs and their functional dependences are related to the details of the
microscopic dynamics. They cannot be predicted by this general approach.

(iii) The gradient expansion used to derive Eq. (8) holds when the interactions are short-
ranged. In this thesis, we will show that long-ranged interactions add non-local terms which im-
pact the large-scale properties of the active fluid.

The previous hydrodynamic framework was successfully used to explain the large-scale prop-
erties of homogeneous polar phases. The Toner and Tu equations predict the propagation of lin-
ear waves having anisotropic propagation speeds [212, 214]. They also explain the emergence of
long-range order in polar phases, which was elucidated from a renormalization-group analysis of
Eqs. (7)–(8) [211, 212]. In addition, the giant density fluctuations are well captured by this hydro-
dynamic description (we will come back to this specific point in Chapter 1) [136, 212]. We also
note that similar phenomenological approaches were applied to many other active systems, in-
cluding active gels [113, 117, 118, 163], bacterial suspensions [222, 223] or active nematics [85–87,
169, 192].

However, important numerical findings cannot be explained within this general framework.
First, the value of the scaling exponent of the density fluctuations is still debated. Second and more
important, generic symmetry arguments are not sufficient to predict the existence of a phase tran-
sition when varying microscopic parameters, nor the emergence of spatial patterns at the onset of
collective motion. The expressions of the 8 unknown functional are crucial to answer these ques-
tions. In order to make further progress, we have to discuss the connection between the Toner-Tu
theory at large scale, and the equations of motion at the one-particle level.

3.2 Connection with the microscopic dynamics: kinetic-theory approaches

Over the past few years, significant effort has been devoted to establishing hydrodynamic the-
ories, akin to the Toner-Tu equations, from microscopic models. The hydrodynamic fields are
explicitly built from the degrees of freedom of the particles. The density field is inferred from the
distribution of the particle positions:

ρ(r, t ) =




i
δ (r− ri (t ))



, (9)

where the brackets 〈·〉 denote the average over the realizations of the stochastic microscopic dy-
namics. Similarly, the local average of the particle orientations defines the polarization field:

Π(r, t ) = 1

ρ(r, t )





i
p̂iδ (r− ri (t ))



, (10)

which, for particles moving at a constant speed v0, readily sets the velocity field u(r, t ) = v0Π(r, t ).
The evolution equations for the density and velocity fields are established from the micro-

scopic dynamics using kinetic-theory methods. The equations of motion of the particles are
coarse-grained and lead to Toner-Tu-like hydrodynamic equations, focusing on slow time and
space variations. Such approaches have been implemented for a large number of microscopic
models, in the literature [11–13, 23–25, 79, 108, 131, 139, 158–160, 207, 208]. In particular, E. Bertin
et al. considered a variant of the Vicsek model, in which particle alignment occurs during binary
collisions. They used a Boltzmann-like approach to derive the resulting hydrodynamic equations.
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These coarse-graining methods have been much useful for our work: we will review their technical
implementations in Chapter 1.

The kinetic-theory approaches lead to hydrodynamic equations having the form predicted by
Toner and Tu. In addition, they provide the functional dependences of all coefficients as a function
of ρ and |v|2, and relate them to the parameters of the microscopic dynamics. Importantly, these
results account for the existence of a transition to collective motion. As we discussed it above, the
transition between isotropic and polar states is triggered by the sign change of the coefficient a2.
In Vicsek-like models assuming finite-ranged (metric) interactions, it takes the form: a2 = α(ρ−ρc ),
where α and ρc depend on the noise amplitude [23, 25, 79]. Hydrodynamic descriptions therefore
account for the emergence of collective motion when the density reaches a critical value ρc , in
agreement with the numerical findings. A more detailed analysis of the expressions of α and ρc

shows that the transition is also reached by decreasing the noise amplitude, at fixed density.

In spite of this qualitative success of hydrodynamic theories, two numerical observations re-
main poorly understood.

(i) It was numerically shown, in the Vicsek model, that the transition to collective motion is
first-order. In the canonical Landau description of phase transitions, this result would be
readily explained by a negative a4 coefficient. Conversely, the kinetic theories demonstrate
that a4 is positive. Looking at spatially-homogeneous states, Eq. (8) therefore predicts a
continuous transition from the isotropic to the polar phase. When the density reaches ρc ,
the velocity continuously bifurcates from u = 0 to u =



α(ρ−ρc )/a4. In other words, a
(meta-)stable disordered phase never coexists with a (meta-)stable polar phase. The exis-
tence of hysteresis at the transition, Fig. 4(c), has no simple explanation.

(ii) The origin of the spatial patterns observed at the onset of collective motion is still debated.
Two scenarios have been proposed. In a first scenario, the spatial structures result from the
(still unexplained) first-order nature of transition. The spatial structures would correspond
to a phase separation: polar droplets would coexist with the isotropic gas. In a second sce-
nario, the polar patterns emerge from an instability of the polar phase. For short-ranged
(metric) interactions, the hydrodynamic theories indeed predict that the homogeneous po-
lar phase is linearly unstable against finite-wavelength perturbations [25, 136, 141]. The
shape of the spatial patterns is then set by the non-linearities of the hydrodynamic equa-
tions. Consistently, propagating solitonic solutions have been demonstrated numerically in
specific models [25, 88, 91, 141].

As a matter of fact, these questions are the two sides of the same coin: the formation of localized
structures is related to the first-order nature of the transition [49, 109]. However, it does not re-
duce to a simple coexistence scenario at the mean-field level: there is no domain where both the
isotropic gas and the homogeneous polar phase are linearly stable. Conversely, it is the formation
of spatial patterns which makes the transition discontinuous. We shall note that the importance of
spatial fluctuations was already stressed in equilibrium systems: fluctuations can make first-order
a transition which is second-order at the mean field level [35, 104, 202]. However, we will show
that the transition to collective motion follows a very different mechanism from these equilibrium
scenarios. To gain more insight, we will have to study the non-linear excitations of polar active
matter. This is the purpose of Chapter 2.

To close this section, we stress that continuum descriptions are the standard theoretical frame-
work used to study active populations. Lagrangian descriptions have been scarcely explored. Yet,
the individual motions are known to display non-trivial behaviors in polar phases, such as anoma-
lous transverse diffusion [43, 49, 211]. In complement to the usual hydrodynamic approaches, we
will also consider the dynamics of interacting particles in a Lagrangian description, see Chapter 3.
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4 From theoretical models to actual systems

In the previous sections, we have recalled the two basis of active-matter theory: minimal inter-
action rules at the microscopic level (Vicsek-like models), and generic hydrodynamic descriptions
at the macroscopic level (Toner-Tu theory). Kinetic theories connect these two approaches. The
next step is to come back to experiments and test the relevance of this theoretical framework to
the description of actual systems: does it accurately accounts for the origin and the properties of
polar structures in real populations? This question is one of the main issues of this thesis. It can
be tackled by considering two types of systems: living populations, or synthetic active particles.

4.1 Inferring behavioral rules from living populations

Up to now, the only examples of polar active systems that we mentioned are animal groups. It
is natural to confront the theoretical descriptions to these living systems, which have inspired the
first works on active matter. A number of experiments have studied animal populations, either in
the wild or in the lab. For instance, Bialek et al. have derived a microscopic theory from experi-
mental data on starling flocks [27]. Measuring the velocities all bird in the flock, they showed that
the orientational correlations are reproduced by a probability distribution of the form:

P


{p̂i }


= 1

Z
exp



−


i , j
Ji j p̂i · p̂ j



, (11)

where p̂i is the direction of motion of the i th bird. The latter distribution satisfies the maxi-
mum entropy principle: it is the simplest distribution which reproduces the experimental corre-
lations. It is analogous to a thermal equilibrium distribution, for which the effective Hamiltonian
Heff(p̂i , p̂ j ) = Ji j p̂i ·p̂ j has exactly the form defining the “flying XY model”, Eq. (6) above (although
birds interact with a fixed number of nearest neighbors, rather via metric alignment rules [10]).
This approach has been refined to also describe velocity fluctuations and rapid information trans-
fers in the flock [6, 8, 26, 46]. It confirms, on a rigorous basis, the relevance of alignment interac-
tions between birds viewed as flying spins. Consistent quantitative results have also been obtained
in animal populations as diverse as fish schools [132], locust swarms [38] or midge groups [7].

However, although alignment interactions correctly capture the emergence of directed mo-
tion, they are not sufficient to fully reproduce the behaviors displayed by animal populations.
In particular, they do not lead to compact flocks. Attractive and repulsive couplings are also re-
quired to ensure the cohesion of the group at long distance, and to prevent collisions between
individuals at short range [50, 57, 172]. As a result, quantitative data analysis on living populations
clearly validate the Vicsek ideas, but also show that basic alignment couplings are entangled with

∑

∑∑

∑ ∑ ∑ ∑

A B(a) (b)

Figure 7 – Relevance of the Vicsek ideas to the description of animal groups. (a) A starling flock can be
described as (b) a population of flying spins endowed with ferromagnetic alignment couplings (reproduced
from [27]).
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more complex behavioral rules. This finding highlights the limitation of the approaches based
on animal populations: the models rely on effective interaction rules, which must be inferred a
posteriori from experimental measurements [26, 27, 40, 114, 132]. In living systems, the real inter-
action mechanisms are obviously much more complex. The communication between individuals
involves elaborate biological processes which cannot be modeled from first physical principles.
Hence it is very difficult to identity and vary the control parameters in experiments. The forma-
tion of polar flocks results from a combination of environmental factors, and the transition to
collective motion cannot be triggered by tuning a simple experimental parameter.

4.2 Modeling experimental systems

In order to circumvent the intrinsic limitations of experiments on living populations, signifi-
cant effort has been devoted to designing artificial systems. Such experiments aim at controlling
all parameters of the dynamics, in order to understand the very origin of collective motion. An
optimal model system fulfills three requirements: (i) all parameters are controlled or measured,
(ii) polar structures form at large scale, (iii) the interactions between particles are physically un-
derstood from first principles. Satisfying these conditions requires a combination of experimental
work to build large populations of self-propelled bodies, and theoretical effort to model the mi-
croscopic dynamics and make the connection with the standard numerical and hydrodynamic ap-
proaches. At the beginning of this PhD, these three requirements were not met in any experimental
system. As we already stressed it at the beginning of this introduction, a number of controlled ex-
perimental systems are now available. However, only few of them display polar structures. A first
realization consists in populations of robots: collective behaviors were indeed observed and mod-
eled, however it is difficult to reach large particle numbers [84]. Two other experimental systems
exhibit polar order in larger populations.

Actin filaments driven by molecular motors Schaller et al. devised an active system by assem-
bling biological materials [190]. The motile objects are actin filaments – elongated proteins which
compose the cell cytoskeleton. They are set in motion by molecular motors (myosin proteins)
fixed on a 2D surface, as sketched in Fig. 8(a). The main advantage of this molecular system is that
large particle numbers are easily reached. Varying the actin concentration, a transition to collec-
tive motion has been observed. At low concentrations, the filaments move in random directions
and form an isotropic phase. Upon increasing the filament density, it self-organizes into coher-
ent polar structures which take the form of moving clusters (Fig. 8(b)), bands (Fig. 8(c)) and swirls
(Fig. 8(d)). In dense systems, giant density fluctuations were measured. Their origin was clearly
related to splay fluctuations, in qualitative agreement with the theoretical predictions [189].

(a) (b) (c) (d)

Figure 8 – Actin filaments driven by molecular motors. (a) Sketch of the experimental system (reproduced
from [189]). (b) Polar bands (reproduced from [190]). (c) Polar cluster (reproduced from [190]). (d) Swirling
pattern (reproduced from [190]).
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(a) (b) (c)

Figure 9 – Vibrated polar grains. (a) Polar disks moving on a vibrating surface. Red colors denote polar
clusters of aligned disks (reproduced from [68]). (b) Average polarization plotted versus the amplitude of
the surface vibration (adapted from [68]). (c) Polar rods (white color) surrounded by passive beads (grey
color) (reproduced from [122]).

Vibrated polar grains Another class of systems consists is grains shaken on a vibrating surface.
When the grains are polar, more precisely when the friction with the surface is asymmetric, the
repeated collisions with the vibrating plane results in a net motion of the particles [120]. Using
polar disks, J. Deseigne and O. Dauchot demonstrated the existence of a transition to polarized
phases, as shown in Figs. 9(a) and 9(b) [68]. Reducing the amplitude of vibration makes it possible
to decrease the rotational diffusivity of the disks, and to trigger a transition akin to that observed
in Vicsek-like models. In this system, the alignment results from contact interactions between the
motile disks. Another possibility was recently proposed by Kumar et al.: the interactions between
pointy rods are mediated by non-motile, isotropic beads [122]. The motion of the active rods in-
duces a flow of passive beads, as would an active swimmer in a fluid: the polar rods interact at a
distance via the displacement of the beads. At high enough density, the rods coherently circulate
in the confining box as shown in Fig. 9(c).

The experimental systems mentioned above partially validate the theoretical framework of
polar active matter: a transition to collective motion is observed, it is associated with heteroge-
neous spatial structures, and giant density fluctuations have been measured. However, they do
not significantly increase our knowledge of the origin of directed motion. Indeed, the interac-
tions between the motile bodies are very difficult to describe. They mostly arise from short-range
collisions and remain challenging to describe from first physical principles. In the actin motility
assays, the emergence of polar order from contact interactions between elongated filament is far
from obvious. At a first glance, excluded-volume interactions between hard rods have rather a ne-
matic symmetry, as sketched in Fig. 10 [11, 13]. It is not much easier to understand how alignment
arises from collisions between circular grains. Up to now, the theoretical descriptions have been
restricted to phenomenological approaches, based on numerical simulations of simplified micro-
scopic models [94, 122, 219]. They showed that polar states emerge from very subtle mechanisms,
which do not reduce to effective alignment torques as assumed in all Vicsek-like models. As a re-
sult, it is difficult to unambiguously identify and model the physical ingredients which rule, at the

Figure 10 – At a first glance, the repulsion between slender motile bodies seems to promote nematic
ordering. When the initial angle between the rods is closer to π

2 , this naive picture does not hold and polar
collisions are actually favored.
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one-particle level, the formation and the shape of the observed patterns.
In this thesis, we will study another experimental system in which the microscopic dynam-

ics can be modeled from first physical principles. The physical origin of collective motion can be
clearly identify, and put into the simple form of Vicsek-like alignment torques. Hence the large-
scale behavior of the population can be explicitly linked to the microscopic dynamics, following
the standard hydrodynamic approaches. This is the purpose of Chapter 1.

4.3 A diversity of polar patterns

Finally, we compare the previous experimental observations and the standard theories of ac-
tive matter. It is worth noting that none of the systems described above fully reproduce the phe-
nomenology of Vicsek-like models. In particular, none of them displays the homogeneous polar
state found numerically at large density and small noise. More complex patterns have been sys-
tematically observed, such as clustering and swirling motions. From a theoretical perspective, it
is important to understand the discrepancies between paradigmatic theories and model experi-
ments. Two explanations can be proposed.

• First, most of the numerical simulations have been performed in periodic boundary con-
ditions. By contrast, experimental systems are confined in closed boxes. The emergence
of homogeneous polar phases is therefore frustrated: the particles are forced to change
their direction when reaching the boundaries. This simple remark highlights the role of the
boundary conditions in setting the shape of the polar patterns.

• Second, in real systems the alignment rules are entangled with more complex interactions. A
very large number of numerical models, which we will not describe here, have demonstrated
that including additional interactions to the microscopic models dramatically impacts the
large-scale structure of the population. The diversity of experimental patterns echoes the
variety of numerical behaviors obtained from different interaction rules, see e.g. [50, 55, 57,
92, 95, 128, 134, 140, 176].

We will obviously have to consider these two points more carefully when modeling our experi-
mental system.

5 Goals and organization of this thesis

The previous sections have highlighted three main issues of active-matter theories: micro-
scopic models, large-scale descriptions, and connection with experimental systems. They are ob-
viously closely related, and this thesis aims at establishing links between these various aspects. It
is based on three entry points, which compose the three main chapters of this manuscript.

Chapter 1: Emergence of macroscopic polar phases in a model colloidal system
The first part of this thesis is devoted to the theoretical description of a model experimental sys-
tem: a population of motile colloids. We quantitatively confront active-matter theories and exper-
iments.

• We explicitly link the macroscopic properties of the system to the microscopic dynamics.
We establish and coarse-grain the equations of motion of the colloidal population. This
approach makes it possible to identify the microscopic interactions responsible for the pat-
terns observed at large scale.

• As opposed to the other available experiments, this system displays homogeneous polar
states at high densities. Yet giant density fluctuations are not observed. We propose a mech-
anism to explain this discrepancy with the previous theoretical predictions.
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• We investigate the influence of the boundary conditions on the structure of the polar pat-
terns. We show that rigid confinement leads to the formation of an heterogeneous vortex
phase.

• Beyond the specifics of this system, we discuss the generality of our results. In particular, we
classify the possible interactions between self-propelled bodies.

Figure 11 – We study a population of colloidal rollers which reproduce the Vicsek phenomenology. Top: a
macroscopic polar band forms at the onset of collective motion. Bottom: close view on the three phases of
the system – isotropic gas, polar band and homogeneous polar liquid.

Chapter 2: Emergent spatial structures in flocking models
The second chapter deals with the heterogeneous polar patterns which generically form at the
transition to collective motion. We introduce a dynamical-system framework to analyze the shape
of these non-linear excitations. We show that the conventional hydrodynamic theories possess
traveling solutions which exactly correspond to the patterns observed in simulations and experi-
ments. The results also provide further insight into the first-order nature of the transition to col-
lective motion.

Figure 12 – Simulations and experiments display three types of spatial patterns, which correspond to three
classes of non-linear solutions of the hydrodynamic equations of active matter.

Chapter 3: Geometry of interacting trajectories in a flock
Finally, we propose another description of active systems. Combining analytical and numerical re-
sults, we adopt a geometric approach to characterize the particle trajectories in standard flocking
models.
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• We show that the non-equilibrium dynamics of interacting active particles can be mapped
onto the conformations of semi-flexible polymer chains at equilibrium. Building on this
analogy, we study the statistics of the curvature and the writhe of the trajectories. These
quantities provide information on the microscopic dynamics, in a Lagrangian approach.

• In a geometric perspective, the motion of a compact flock defines a braid of entangled tra-
jectories. We characterize the winding between the particle trajectories, which measures the
mixing dynamics within the flock. We show that it is predominantly set by the global twist
which arises from a spontaneous symmetry breaking.

Figure 13 – A compact polar flock (left) can be seen as a braid of entangled individual trajectories (right).

Appendix: Non-equilibrium dynamics of confined suspensions
In the appendix, we reproduce two articles devoted to a closely-related problem. They study the
collective dynamics of suspensions of particles confined in thin liquid films. Two situations are
considered: (i) passive particles driven by an external flow (e.g. droplets advected in a microfluidic
channel), and (ii) active particles which propel themselves (e.g. swimming bacteria in thin films).
The motion of the particles induces a flow field in the liquid. It turns out that, in both cases, the
resulting hydrodynamic interactions have the same symmetry: they correspond to long-ranged,
unscreened dipolar flows. In the passive case, we demonstrate the propagation of density waves.
The theoretical dispersion relation is in agreement with a model microfluidic experiment. In the
active case, we investigate the large-scale hydrodynamics of isotropic suspensions, and show that
the phase behavior solely depends on the shape of the swimmers.

Figure 14 – Left: propagation of density waves in advected confined emulsions. The dispersion relation
is studied experimentally (grey dots) and theoretically (red curve). Right: phase diagram of a confined
suspension of active particles. The linear stability of disordered states depends on the strength of the hy-
drodynamic interactions and on the shape of the swimmers.





CHAPTER 1

Emergence of macroscopic polar phases
in a model colloidal system

Although polar active matter has motivated a large number of theoretical works, only few ex-
periments display polar structures in fully controlled systems. Comparing theories to controlled
experiments therefore remains a challenging issue. On the theoretical side, numerical and an-
alytical models have identified simple interaction rules that account for the emergence of polar
structures: self-propelled spins endowed with alignment interactions undergo a transition from
disordered to polar states [136, 216]. However, the relevance of this standard framework to the de-
scription of real systems is difficult to assess. In living populations, the communication between
individuals involves biological mechanisms, e.g. visual and cognitive processes, that are not set
by physical laws and cannot be modeled a priori. Identifying the parameters that chiefly rule the
collective dynamics, and controlling their values in experiments, is a difficult challenge. To gain
more insight into the physical mechanisms that trigger collective motion, we rather turn to syn-
thetic systems in which all parameters can be controlled.

Until 2013, only two artificial systems displayed polar structures in large populations: actin fil-
aments propelled by molecular motors [190], and polar grains shaken on a vibrating surface [68].
However, in these two experiments the interactions mostly arise from collisions between the parti-
cles, which are utterly difficult to describe theoretically [13]. Analytical descriptions were therefore
restricted to simplified collision rules introduced semi-phenomenologically. In addition, none of
these experimental setups displayed the homogeneous polar phase found in simulations of the
Vicsek-like models. We therefore need another system, experimentally controlled, which would
make it possible to fully model the dynamics from first physical principles. It would thereby allow
a quantitative comparison between theory and experiments.

In the group of Denis Bartolo, we have studied a population of rolling colloids that fulfills these
requirements. In strong connection with the experiments, we have modeled the dynamics from
the microscopic to the macroscopic level.

Hereafter, I briefly outline our approach and our main results, putting emphasis on the the-
oretical part. This summary does not aim at providing thorough explanations about the calcula-
tions, it merely highlights the main steps that we have followed. All details can be found in the
articles reproduced at the end of the chapter. More precisely, most of the theoretical results are
derived in the Supplementary Document of the article “Emergence of macroscopic directed mo-
tion in population of motile colloids”, which is reproduced p. 43. We will also refer to the two
articles “Emergent vortices in populations of colloidal rollers” and “Tailoring the interactions be-
tween self-propelled bodies”, p. 66 and 79, that focus on more specific points.
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This chapter is organized as follows.

1) In the first section, we show how to design a model active system. We theoretically intro-
duce the propulsion mechanism, based on the Quincke rotation of colloidal spheres near a
surface, and compare with experimental results.

2) We then model the interactions between rolling colloids from the Stokes and Maxwell equa-
tions. We also discuss the validity and the generality of the resulting equations of motion.

3) Finally, we coarse-grain the microscopic model and study the large-scale behavior of the
population. We theoretically explain the macroscopic phenomenology observed experi-
mentally.

1 Designing a population of self-propelled colloids

In this section, we show how to design a synthetic population of self-propelled particles. The
propulsion of colloidal spheres is achieved by combining two effects, that we briefly introduce in
the first subsections:

1) a net rotation of the particles is produced by an electro-hydrodynamical instability known
as the Quincke rotation,

2) this rotational motion is then converted to translational motion by letting the sphere roll on
a solid surface.

We then validate our theoretical description by comparing to experiments. We finally exploit this
active system to probe the emergence of polar order, and briefly describe the collective behaviors
observed experimentally.

1.1 Powering an insulating particle in a conducting liquid: the Quincke rotation

To produce the mechanical motion of spherical particles, we take advantage of an electro-
hydrodynamic effect that converts electrostatic energy supplied to the system into mechanical
motion. Let us consider an insulating sphere of radius a, located at r = 0 and immersed in a
conducting fluid (an ionic solution). A uniform electric field E0 is applied in the direction ẑ, as
sketched in Fig. 1.1. Above a critical magnitude of the electric field, the particle spontaneously
rotates around an axis perpendicular to E0. This effect was first reported by Quincke in 1896 [165]
and is known as the Quincke rotation. A complete theoretical explanation was proposed by
Melcher and Taylor in 1969 [138]. More recent studies have mostly focused on the impact on the
rheology and the conductivity of suspensions [62, 72, 106, 126, 152, 153].

We briefly recall the physical origin of this instability. As an external electric field is applied,
a surface-charge distribution arises at the interface between the spherical particle and the liquid.

Figure 1.1 – An insulating sphere is embedded in a conducting liquid, and a uniform DC electric field E0 is
applied. The particle undergoes the Quincke rotation when the amplitude of the field exceeds a threshold
value.
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Figure 1.2 – Emergence of the Quincke rotation. (a) Electric charges accumulate at the particle-liquid
interface and result in a dipolar surface distribution. (b) When a small rotational perturbation tilts the
dipole P, a net electric torque Te amplifies the initial perturbation.

It has two origins. (i) The particle and the liquid have different dielectric permittivities; in the ex-
ternal field, their dielectric polarization gives rise to a net charge-density at the interface. (ii) Ions
are transported in the conducting liquid from one electrode to the other, and accumulate at the
interface with the insulating particle. The resulting charge distribution induces an electric field
that superimposes to E0. It in turn impacts the dielectric polarization and the transport of ions
in the liquid: a steady state is reached when the net flux of charges vanishes at the interface. The
particle then carries a dipolar charge distribution. Its dipole moment P is opposite to the applied
field E0, as sketched in Fig. 1.2(a).

A naive analysis readily suggests that this steady state is mechanically unstable. Let us consider
a small rotational perturbation. When the particle rotates, the ions that have accumulated at the
interface are advected by the particle motion. The rotational disturbance therefore tilts the dipole
moment, as depicted in Fig. 1.2(b). The particle experiences an electrostatic torque, Te = ϵl

ϵ0
P×E0,

which amplifies the initial rotation and makes the non-rotating state unstable. However, the con-
duction of charges in the liquid makes the situation more complex: ions are continuously trans-
ported between the electrodes. They reach or leave the interface in order to restore the initial state,
in which P is opposite to E0 and Te = 0. The latter mechanism enhances the stability of the non-
rotating state. Hence the steady state of the system is set by the competition between two effects:
the advection of charges at the interface increases the electrostatic torque, while the transport of
ions in the solution makes it relax to zero. As a result, the non-rotating state remains stable for
low amplitudes of the electric field. The rotational instability arises when E0 exceeds a threshold
value EQ.

More quantitatively, the evolution of the dipole moment is ruled by the charge-conservation
equation at the interface:

dP

dt
=−1

τ



P+2πϵ0a3E0


+Ω×


P−4πϵ0a3χ∞E0


, (1.1)

where Ω is the angular velocity of the particle. The first term in the right-hand side accounts for
the transport of charges by conduction in the liquid. If the particle does not rotate, the dipole mo-
ment relaxes to P = −2πϵ0a3E0, which is opposite to the applied field, Fig. 1.2(a). The relaxation

time is the so-called Maxwell-Wagner time τ≡ ϵp+2ϵl

2σl
. The second term corresponds to the advec-

tion of charges at the interface: the dipole moment rotates as the particle rotates (the component
4πϵ0a3χ∞E0 accounts for the dielectric polarization, which adjusts quasi-instantaneously: it is not
advected by the particle rotation).

The electrodynamical equation (1.1) is complemented by a mechanical equation. The elec-
trostatic torque is balanced by the viscous drag: Te = µ−1

r Ω, where µr = (8πηa3)−1 and η is the
viscosity of the liquid. As a consequence, it can be shown that the non-rotating state is unstable

when the external field E0 exceeds EQ =


4πϵl a3(χ∞+ 1
2 )µrτ

−1/2
. The stable state corresponds to

a steady rotation at the rate:

Ω= 1

τ





E0

EQ

2

−1. (1.2)

Importantly, the rotation axis can be any direction perpendicular to E0. It is set by the random
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direction of the initial rotational perturbation. In other words, the Quincke rotation spontaneously
breaks the rotational symmetry in the plane orthogonal to E0.

1.2 From rotational to translational motion

The Quincke effect provides a mechanism that drives the rotation of the particles. In order
to devise a system of self-propelled bodies, we have to convert this rotational motion into net
translation. The basic idea is simple: we let the spherical particles roll on a surface, Fig. 1.3(a).

The presence of a surface makes the above theory more complex. First, experimentally the
surface is also the lower electrode used to induce E0. It therefore a priori impacts the electrody-
namic equation (1.1). We have shown that taking account of this effect only yields subdominant
corrections, within the experimental conditions. Second, the rotating particle now exchanges mo-
mentum with the surface, which impacts the mechanical equation relating the electrostatic torque
to the rotation rate. More precisely, the contact between the particle and the surface is lubricated
by the viscous liquid, and the sphere both rolls and slides. Its motion is described by a mobility
matrix M that links the electrostatic force and torque, Fe and Te, to the translational and rotational
velocities, v and Ω:





1
a v
Ω∥
Ωz



=M ·







aFe
∥

Te
∥

Te
z






, (1.3)

where we have distinguished between the in-plane and the z-components of the vectors, Fig. 1.3(b).

In an unbounded fluid, the mobility matrix is diagonal and the electrostatic torque induces
no net force. Close to a no-slip wall, M has non-diagonal components that couple translational
and rotational motion: the sphere rolls. All these mobility factors are deduced from the friction
coefficients calculated in the literature [89, 90, 130, 148], in the lubrication regime. In particular,
the electrostatic torque induces a net translation of the particle: v = aµ̃t Te × êz , where µ̃t is an
off-diagonal term of the matrix M .

Combining Eq. (1.3) with the electrodynamic equation (1.1), we obtain the equation of motion
of an isolated roller. After a relaxation time ∼ τ, we find that the sphere steadily rolls on the surface
in the direction opposite to the in-plane component of the polarization:

v =− ϵl

ϵ0
aµ̃t E0 P∥, (1.4)

At this stage, our theoretical description gives two predictions for the motion of an isolated parti-
cle.

(i) The Quincke mechanism corresponds to a spontaneous symmetry breaking: in the plane of
the surface, all directions of motion are equivalent.

Figure 1.3 – (a) When rotating close to a surface, a spherical particle rolls and propels itself. (b) The direc-
tion of motion is set by the angle θ in the plane of the surface.
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(ii) The rolling speed is controlled by the amplitude of the external electric field E0, as:

v0 =
aµ̃t

µrτ





E0

EQ

2

−1, (1.5)

where EQ is the threshold of the Quincke rotation.

The first prediction has a clear consequence on the equations of motion: as there is no privi-
leged direction in the plane of the surface, the propulsion mechanism cannot change the direction
of motion. The rotation of the particle is solely triggered by the noise acting on it. An isolated roller
therefore undergoes a persistent random walk at constant speed. Its motion is described by:

ṙ = v0p̂ = v0(cosθ, sinθ), (1.6)

θ̇=


2Dr ξ(t ), (1.7)

where ξ(t ) is a Gaussian white noise with zero mean and variance 〈ξ(t )ξ(t ′)〉 = δ(t − t ′). The rota-
tional diffusivity Dr is the typical rate at which the particle orientation changes.

1.3 Experimental realization

The propulsion mechanism analyzed above was used to build an experimental population of
motile colloids. The experiments were carried out by Antoine Bricard and Nicolas Desreumaux,
in parallel with the theoretical work. PMMA colloids of radius a = 2.4µm are immersed in an
AOT/hexadecane solution. The suspension is first injected between two conducting glass slides in
a microfluidic device, and the colloids sediment on the bottom slide, Fig. 1.4(a). When an electric
field E0 ∼ 3×106 V ·m−1 is then applied, the colloids rotate due to the Quincke mechanism. They
roll on the electrode.

Fig. 1.4(b) shows the superposition of successive snapshots of the colloidal population. In this
dilute regime, the rollers undergo very few interactions and behave as persistent random walkers.
We can therefore test our theoretical predictions for the one-particle dynamics.

First, the probability distribution of the velocity vector is plotted in Fig. 1.5(a). The distribu-
tion is clearly isotropic: the direction of motion is random, which confirms that the propulsion
corresponds to a spontaneous symmetry breaking.

Second, the distribution of the velocity is sharply peaked on a circle. The rollers therefore
move at a constant speed v0 (in contrast with brownian particles), in agreement with the equa-
tion of motion (1.6). More precisely, the roller speed is tuned by the applied electric field E0, as
shown in Fig. 1.5(b). The variations of v0 with the applied electric field are well fitted by the theo-
retical formula (1.5). As our model does not involve any phenomenological parameter except the
noise amplitude, we can compare the experimental values of the fitting parameters to the orders

100 µm

(b)(a)

Figure 1.4 – (a) Sketch of the experimental setup. (b) Trajectories of colloids rolling on the surface. The
rollers undergo persistent random walks with long persistence times.
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Figure 1.5 – (a) Probability distribution of the roller velocity. (b) Speed of a colloid as a function of the
applied electric field. (c) Autocorrelation of the roller direction, 〈v(t )·v(t+T)〉/v2

0 , plotted versus the traveled
distance v0T.

of magnitudes expected from the theory. Using typical values for the microscopic parameters (liq-
uid viscosity and conductivity, colloid radius, dielectric permittivities...), we expect EQ ∼ 106 V·m−1

for the threshold of the Quincke rotation, and(aµ̃t )/(µrτ) ∼ 2mm · s−1 for the typical velocity of the
particle. These orders of magnitude are compatible with the experimental measurements. Note
the high speed of the colloids, which travel more than 100 times their size during 1s. All these re-
sults unambiguously validate our theoretical description of the propulsion mechanism.

Finally, we use the experimental data to measure our sole phenomenological parameter, the
amplitude of the noise Dr . From Eq. (1.7), we deduce that the autocorrelation of the roller velocity
decays as 〈v(t ) ·v(t +T)〉 = v2

0 exp(−Dr T). This quantity is plotted in Fig. 1.5(c) and indeed displays
an exponential decay at short times (the sharp drop of the autocorrelation at longer times orig-
inates from collisions with the boundaries). The rotational diffusion time is D−1

r = 0.31± 0.02 s,
which corresponds to a persistence length v0/Dr = 160 µm.

1.4 Towards collective motion

Having devised a population of self-propelled colloids, we can now investigate the emergence
of collective motion. To do so, we increase the density of rollers in order to make them interact.
Before we go any further in the theoretical modeling, let us summarize the phenomenology ob-
served experimentally. The large-scale patterns displayed by the populations of rollers fall in three
main classes.

Transition to directed motion: propagating band in periodic boundaries The motion of the
rollers is first confined to a racetrack. This geometry, which is periodic in the direction of the closed
track, is compatible with the emergence of steady polar phases (as in simulations of Vicsek-like
models). The experimental control parameter is the mean area fraction φ0, which is the fraction
of the racetrack area occupied by the rollers. At low φ0, the population forms an isotropic gas, the
directions of the rollers are random. Upon increasing the area fraction above a critical valueφb , the
system self-organizes into polar phases. This transition is quantified by the averaged polarization
Π0 ≡ |〈p̂i 〉i |, plotted versus φ0 in Fig. 1.6(a). The rise of the order parameter to non-zero values
unveils the emergence of coherent polar phases at φ0 >φb .

Close to the transition, the stationary state takes the form of a single band cruising along the
track, as shown in Fig. 1.6(b) and 1.6(c). A macroscopic fraction of the rollers form a coherent
structure having a sharp front and a long tail, which propagates in a sea of disordered particles.
Remarkably, the band has no intrinsic length: its size is proportional to the total length of the
track, for a given area fraction. In other words, the fraction of the racetrack area that is occupied
by the band does not depend on the system size, it solely increases with φ0.
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Figure 1.6 – Polar phases in periodic boundaries (racetrack). (a) Transition to collective motion: averaged
polarization versus the mean area fraction. Above the critical area fraction φb , the population self-organizes
into polar phases. (b) A macroscopic band propagates along the racetrack. (c) Close-up on the front of the
band: the polar band propagates in a disordered sea. (d) Close-up view of the polar liquid phase. (e) Vari-
ance of the particle number, (∆n)2, versus the mean number of particles, 〈n〉, in the polar liquid. The density
fluctuations are normal.

Polar liquid in periodic boundaries Further increasing the area fraction in a periodic confine-
ment, the length of the band reaches the length of the track. After a transient regime in which a
band nucleates and catches up with itself, the population forms a homogeneous polar phase with
high polarization, Π0 ≈ 1. All the colloids move in the same direction with very little spatial hetero-
geneities, as exemplified in Fig. 1.6(d). We emphasize that this phase diagram is strikingly similar
to the Vicsek model, which also displays propagating bands close to the transition and homoge-
neous polar states at high densities. The Quincke rollers provide the first experimental realization
of an homogeneous polar phase, which had never been observed before.

However, the structure of the polar liquid is qualitatively different from all theories of active
matter. In all flocking models, it has been shown numerically and analytically that the homoge-
neous polar state displays giant density fluctuations: the standard deviation of the particle num-
ber increases as ∆n ∼ 〈n〉a , where 〈n〉 is the mean particle number and a ≈ 1 [136, 211, 212]. This
behavior was believed to be a hallmark of active polar systems. In Fig. 1.6(e) we plot the variance of
the number fluctuations measured in our experimental system, in strongly polarized phases. Un-
expectedly, we find that density fluctuations are normal: ∆n ∼

p
〈n〉. This observation is a major

difference between our system and all the available models.

Polar vortex in confining boundaries We finally change the boundaries and confine the rollers
in a circular box. In non-periodic geometries, the emergence of a uniform polarization is frus-
trated. Instead, the population forms a steadily-rotating vortex that spans the entire box, see
Fig. 1.7(a). This behavior arises from a non-equilibrium phase transition, demonstrated in
Fig. 1.7(b) by plotting the azimuthal polarization versus the mean area fraction φ0. The vortex cor-
responds to a spatially-heterogeneous structure. The local density of particles increases from the
center to the edge of the confining box, as shown by the radial density profile plotted in Fig. 1.7(c).
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Figure 1.7 – Vortex structure observed in confining boundaries (disk). (a) The roller population self-
organizes into a macroscopic vortex. (b) Azimuthal polarization, Πϕ ≡



p̂i · êϕ


i , plotted versus the area
fraction for different confinement radii Rc. (c) Radial density profile plotted versus the rescaled distance to
the center, r /Rc, for different confinement radii.

Remarkably, this structure has no intrinsic length-scale: all density profiles, obtained for differ-
ent box sizes, collapse on a single master curve when the distance to the center is rescaled by the
radius of the confining box. Hence the vortex is not a finite-size effect; it defines a genuine macro-
scopic – yet heterogeneous – phase of polar active matter in confinement.

In a word, the population of Quincke rollers spontaneously self-organizes into macroscopic
polar patterns involving thousands of colloids. In what follows, we aim at explaining theoretically
the large-scale patterns reported above from a microscopic description of the interactions. We
have to elucidate:

• the transition to directed motion associated with the emergence of propagating bands,

• the absence of giant density fluctuations in the polar liquid,

• the structure of the heterogeneous vortex observed in confining boundaries.

As a first step, in the next section we describe the microscopic dynamics of interacting rollers and
establish their equations of motion.

2 Microscopic dynamics of a population of rollers

We now build a microscopic model which describes the dynamics of the system. We first in-
vestigate the interaction mechanisms, and show how the rollers reorient in the electrostatic and
hydrodynamic fields induced by their neighbors. We then derive the equations of motion for the
population of rollers. We discuss their accuracy by comparing numerical simulations of the model
to the experimental measurements. Finally, we show that the form of the equations of motion is
not specific to the Quincke rollers and can be extended to a whole class of systems.

2.1 Origin of the roller-roller interactions

In the population of Quincke rollers, the interactions arise from physical mechanisms that can
be easily identified, in the far-field limit. They have two origins. First, a motile colloid carries a
surface electric charge. It therefore disturbs the electric field around it, and induces electrostatic
interactions. Second, the rolling motion gives rise to a flow field in the liquid, and induces hy-
drodynamic interactions. We consider the dynamics of a test particle and denote by δE(r, t ) and
u(r, t ) the electrostatic and hydrodynamic fields created by the neighboring colloids. Although
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the individual propulsion does not promote any direction in the plane of the surface, the in-plane
components of the fields δE(r, t ) and u(r, t ) now define privileged directions. The interactions ex-
plicitly break the rotational symmetry around the ẑ-axis and give rise to a nontrivial orientational
dynamics, as we show it now.

We focus on dilute populations and treat the interactions perturbatively. We assume that
|δE|/E0 =O (ϵ) and τ



∂z u∥


=O (ϵ) are small quantities. The electrostatic and hydrodynamic equa-
tions describing the Quincke rotation near a surface, Eqs. (1.1) and (1.3), are impacted by the dis-
turbance fields δE and u. Without entering the details of the calculation, the dynamics of the
particle can be described by three parameters: the z-component of its dipole moment, Pz ; the
norm of its velocity, v ; its in-plane direction of motion, set by the angle θ. In the absence of noise,
we showed that the coupled evolution equations have the following structure:

Ṗz =
1

τ
f10(Pz , v) + ϵ

τ
f11(Pz , v,θ),

v̇ = 1

τ
f20(Pz , v) + ϵ

τ
f21(Pz , v,θ),

θ̇ = 0 + ϵ

τ
f31(Pz , v,θ).

(1.8)

(1.9)

(1.10)

The latter equations display two well-separated time-scales. In the right-hand side, the first terms
describe the individual propulsion due to the Quincke mechanism, and involve the Maxwell-
Wagner time τ. The second terms correspond to the interactions with the neighboring rollers,
which take place on a much longer time-scale ∼ τ/ϵ.

The separation between fast and slow variables makes it simple to obtain the solution at lowest
order in ϵ (in a direct multi-scale analysis).

• Neglecting the corrections of order O (ϵ) in Eqs. (1.8) and (1.9), we find that Pz and v relax
towards their unperturbed value over a time ∼ τ. In particular, the particle speed quickly
relaxes towards v0, the value set by the Quincke rotation in the absence of interactions.

• By contrast, the direction of motion does not evolve at order O (ϵ0), as we already discussed it
previously. The orientational dynamics is set by the interactions, which explicitly break the
rotational symmetry. As a result, the direction of motion rotates on a time-scale τ/ϵ which
is much longer than τ.

In view of building a large-scale description of the population of rollers, valid for long observation
times, we average over the fast relaxation of the particle speed and only retain the slow orienta-
tional dynamics. We arrive at our first main result regarding the motion of interacting rollers: in
this approximation, the particles move at a constant speed and only change their orientations due
to interactions. This prediction is compatible with the experimental findings: the colloid velocity
only increases by ∼ 10% when the averaged area fraction varies from 0.01 to 0.04 (note that, in
principle, this moderate increase should be accounted for by the terms of order O (ϵ)).

We deduce the equations of motion of particle i , in the absence of noise. Replacing the func-
tion f31 by its explicit expression, we obtain:

ṙi = v0p̂i = v0(cosθi , sinθi ), (1.11)

θ̇i =− ∂

∂θi



−µ1 p̂i ·∂z u∥(ri )+µ2 p̂i ·δE∥(ri )


, (1.12)

where µ1 and µ2 are positive coefficients that depend on a, τ, v0 and the mobility factors. These
equations have a clear meaning. The particle reorients, at constant speed, along the local flow
direction and opposite to the electric field induced by its neighbors.
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2.2 Equations of motion

We now use the previous result to derive the equations of motion of a dilute population of
rollers. To do so, we have explicitly calculated the fields δE( j )

∥ (ri ) and u( j )
∥ (ri ) induced at the posi-

tion ri by a neighboring particle j , in the far-field limit. The electrostatic field is deduced from the
dipolar charge distribution at the surface of particle j . We also take account for the lower electrode
on which the particles roll, by considering a fictive image-charge distribution below the electrode.
The flow field is calculated in a similar manner using hydrodynamic singularities. Taking advan-
tage of the linearity of the Stokes equation, we introduce a fictive distribution of force-sources and
mass-sources, that are the Green functions of the hydrodynamic equations [56, 199]. In the far-
field limit, the flow field can be decomposed as the sum of the elementary flows created by force
and source multipoles, that are combined to fulfill the boundaries conditions at the particle-liquid
interface. The additional no-flux and no-slip constraints on the upper and lower surfaces are ac-
counted for by complex image-singularity distributions. In the present case, the hydrodynamic
field induced by a rolling colloid amounts to the flow created by a rotlet singularity, i.e. a point-
wise torque exerted on the fluid and located on the particle. The flow induced by a rotlet near a
rigid wall (resp. confined between two walls) has been calculated by Blake and Chwang [29] (resp.
Hackborn [98]). We have used these available results to deduce the hydrodynamic couplings be-
tween two rollers.

Assuming that both electrostatic and hydrodynamic interactions are pairwise-additive, we fi-
nally obtain the equations of motion for the population of rollers. The particle i moves at a con-
stant velocity v0, and changes its direction of motion due to interactions and noise:

ṙi = v0p̂i, (1.13)

θ̇i =−1

τ

∂

∂θi



j ̸=i
Heff(ri − r j , p̂i , p̂ j )+



2Dr ξi (t ). (1.14)

ξi (t ) is a Gaussian white noise with zero mean and variance 〈ξi (t )ξ j (t ′)〉 = δ(t − t ′)δi j , it accounts
for the rotational diffusion of the rollers. The effective potential Heff describes both electrostatic
and hydrodynamic couplings. It can be written in the following form:

Heff(r, p̂i , p̂ j ) =−A(r ) p̂ j · p̂i −B(r ) r̂ · p̂i −C(r ) p̂ j · (2r̂r̂− I) · p̂i , (1.15)

where r̂ ≡ r/r . The explicit expressions of the functions A(r ), B(r ) and C(r ) are provided in the Sup-
plementary Document of the article “Emergence of macroscopic directed motion in population
of motile colloids”, p. 55 of the present manuscript. They only involve well-identified microscopic
quantities, with no phenomenological parameter.

(i) The first term, −A(r ) p̂ j · p̂i , promotes the alignment of particle i with the direction of par-
ticle j . It is analogous to the spin-spin alignment interactions defining the standard XY
model. In the absence of the B- and C-terms, the above equations would therefore reduce
to the so-called "flying XY model" [79, 156]. In the experimental conditions, this alignment
term is dominated by hydrodynamic couplings that are exponentially screened over a dis-
tance ∼ H/π, where H is the gap between the two horizontal surfaces (Fig. 1.4(a)).

(ii) The second term, −B(r ) r̂·p̂i , corresponds to repulsive interactions, as B(r ) > 0. Particle i ro-
tates its direction of motion in order to align along −(ri −r j ) and moves away from particle j .
This term is a purely electrostatic effect, that is also screened over a distance ∼ H/π.

(iii) The last term, −C(r ) p̂ j · (2r̂r̂− I) · p̂i , has a dipolar symmetry. As opposed to the previous
terms, it includes an hydrodynamic contribution which is not screened over the channel
height, and algebraically decays like r−2 at long distance. This interaction is therefore truly
long-ranged in 2D, and arises from mass conservation in the liquid. Its strength is small
compared to the short-ranged hydrodynamic terms, yet we will show that it significantly
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impacts the properties of polar phases. A more detailed discussion on the origin and the
features of this long-range coupling is provided in the Appendix.

2.3 How accurate is our microscopic model?

Before we link the microscopic model with the macroscopic behavior of the population, we
discuss its accuracy and its robustness. We first test the validity of the model by comparing nu-
merical simulations of the equations of motion with the experimental results.

Remarkably, all coefficients involved in the model can be measured or estimated. The particle
speed and the rotational diffusion have been deduced from the isolated-roller dynamics, as ex-
plained in section 1.3. The threshold electric field EQ is measured experimentally as the critical
field at which the colloids start moving. We use typical values for the dielectric constants and the
conductivity of the liquid, and we assume the distance between the particle and the surface to
be ∼ 50 µm (although this parameter is not controlled precisely, it only yields logarithmic correc-
tions to the mobility coefficients when this gap is small compared to the particle diameter).

The equations of motion (1.13)–(1.15) have been simulated numerically by Charles Savoie, De-
basish Das and David Saintillan. A short-range force was added to prevent the overlap between
colloids. This steric repulsion is not accounted for by our far-field description, its range is the
only free parameter of the model. Obviously, we do not expect a perfect quantitative agreement
between numerical and experiments result. However, we hope that the orders of magnitudes are
correctly predicted by the theory.

The microscopic model, solved numerically, reproduces all the macroscopic behaviors ob-
served experimentally. Qualitatively, both the steady states and the transient regimes look strik-
ingly similar. In order to perform a more quantitative comparison, we focus on confining bound-
aries: the rollers are confined in a circular box. Above a critical area fraction φv , the numeri-
cal model leads to the emergence of a macroscopic vortex akin to the experimental pattern, see
Fig. 1.8(a). Both the bifurcation curve, showing the azimuthal polarization as a function of the
mean density, and the radial density profiles are in good qualitative agreement with the experi-
ments, as shown in Fig. 1.8(b) and 1.8(c). The main discrepancy is the precise position of the tran-
sition point φv . The numerical value is underestimated by a factor of ∼ 3. Given the large number
of approximations required to establish the model and the uncertainties in the estimation of the
parameters, the agreement is very convincing. In addition, we note that φv can be tuned to the
experimental value by increasing the range of the steric repulsion, our only free parameter.

Figure 1.8 – Numerical simulation of the microscopic model in a circular box of radius Rc. (a) Snapshot
of the vortex phase. (b) Azimuthal polarization, Πϕ ≡



p̂i · êϕ


i , plotted versus the area fraction. The vortex
forms above a critical area fraction φv . Open symbols: experiments. Filled disks: numerical data. (c) Radial
area fraction, φ(r )/φv , plotted versus the rescaled distance to the center, r /Rc. Open symbols: experiments.
Filled disks: numerical data.
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The agreement between numerical and experimental results validates our model. It proves
that all the fundamental ingredients which rule the macroscopic phenomenology have been cor-
rectly identified. To go beyond, we mention three elements that could be considered in more
details for future improvements of the model.

• The short-range interactions are not described in our theory: a non-phenomenological de-
scription of collisions between colloids in contact is difficult to achieve. Yet, steric repulsion
is a necessary ingredient for a realistic description of the system. Numerically, it was added
phenomenologically and only impacts the dynamics at the quantitative level.

• We have modeled all electrostatic effects using the Maxwell-Wagner framework, which ne-
glects all electro-osmosis phenomenon occurring at the interfaces, inside the polariza-
tion layers. This approximation is justified given the small value of the Debye length,
ℓD ∼ 10−10 m, which is very small compared to the colloid size. Nevertheless, it has been
shown that any heterogeneity on an electrode, such a particle lying on it, induces an electro-
hydrodynamic flow [174]. This effect also contributes to the repulsion between colloids and
should increase the coefficient B(r ) in Eq. (1.15). However, it does not change the functional
form of the potential, as we justify it in the next section.

• Rotational noise has been included phenomenologically in the simplest possible form: it
was supposed to be uncorrelated with a Gaussian statistics. It would be interesting to go be-
yond this minimal assumption by studying how fluctuations in the Quincke electro-rotation
yield rotational diffusion. In addition, in systems of interacting colloids the rotational diffu-
sivity is renormalized by particle collisions and fluctuations in the interactions. This remark
is compatible with the numerical observations: the model underestimates the area fraction
φv at which the system self-organizes into a vortex, i.e. underestimates the amplitude of the
noise.

2.4 How robust is our microscopic model?

We now would like to place the microscopic model in a broader perspective. Is it fully specific
to our experimental system, or can we generalize to other active populations?

To answer this question, we have classified the possible interactions between self-propelled
particles according to their symmetries. The results are thoroughly explained in the article “Tai-
loring the interactions between self-propelled bodies”, reproduced p. 79. Here, we introduce the
main idea by generalizing the special case of the Quincke rollers. We show that the structure and
the symmetries of the equations of motion are not specific to this model, and can be extended to
a whole class of systems. Coming back to the derivation of the equations of motion, we stress that
the model is based on two fundamental ingredients, irrespective of the specifics of the interac-
tions.

Propulsion at constant speed The first ingredient is that the particles move at a constant speed
(section 2.1). This result comes from the following assumption: the interactions yield small pertur-
bations to the propulsion mechanism. In order to stress the generality of this result, we consider a
standard model, which describes the propulsion by a simple non-linear force [74, 128]:

∂t ri = vi , (1.16)

∂t vi =
1

τ



1− |vi |
v0



vi +


j ̸=i
F j→i +

p
2Dξi (t ). (1.17)

The first term in the right-hand side of Eq. (1.17) accounts for the propulsion and the friction
forces experienced by a particle of unit mass. In the absence of interactions and noise, the speed
relaxes to |v| = v0 in a typical time τ and the particle steadily moves in a random direction. The



Microscopic dynamics of a population of rollers 29

second and third terms describe respectively the interactions between particles, and the noise. We
assume that they only yield small perturbations to the propulsion mechanism: F j→i , D ≪ v0/τ.
We observe the dynamics on long time-scales and do not pay attention to the fast variations of the
particle speed |v|. Averaging the stochastic equations Eqs. (1.16) and (1.17) over time-scales larger
than τ, we arrive at:

∂t ri = v0p̂i , (1.18)

∂t p̂i =
1

v0
(I− p̂i p̂i ) ·





j ̸=i
F j→i (t )+

p
2Dξi (t )



(1.19)

(keeping only the dominant terms). In this limit, the particle moves at a constant speed and un-
dergoes a slow orientational dynamics due to interactions and noise. The projection operator
(I−p̂i p̂i ) ensures that the norm of the orientation p̂i remains constant. Remarkably, the equations
of motion obtained from this simple model have the same form as those of Quincke rollers.

Symmetries of the interactions The second main ingredient of our model is that the rollers in-
teract through (electrostatic and hydrodynamic) fields (section 2.2). In the effective potential that
rules the orientational dynamics, Eq. (1.15), we have grouped the different terms according to
their symmetries. The resulting expression corresponds to a multipolar expansion of the interac-
tion fields: the particle reorients in the homogeneous, monopolar and dipolar fields created by
its neighbors. Again, the form of this equation is not specific to the Quincke rollers: it could have
been deduced from generic symmetry arguments.

In a more general perspective, the interaction force F j→i exerted by particle j on particle i , in
Eq. (1.19), can be Fourier expanded with respect to the angular position. It is recast into a generic
multipolar series:

F j→i = f0 + f div
1 r̂i j + f rot

1 r̂i j × ẑ+ f−1



2
f−1f−1

f 2
−1

− I



· r̂i j + f2 · (2r̂i j r̂i j − I)+ . . . (1.20)

The fks are coefficients which only depend on the orientations p̂i and p̂ j , and on the distance
ri j between the two particles. The symmetries of the first terms are sketched in Fig. 1.9. They
correspond to homogeneous, monopolar, vortical, elongational, and dipolar force fields.

Figure 1.9 – Sketch of the first Fourier modes of the force F j→i exerted by particle j on particle i .



30 EMERGENCE OF MACROSCOPIC POLAR PHASES IN A MODEL COLLOIDAL SYSTEM

Importantly, this decomposition only requires translational invariance. It applies to all active
systems, irrespective of the specifics of the interactions. Additional information about the inter-
action mechanism further constrains the form of the Fourier coefficients fk. Different cases are
analyzed in the article. For instance, potential forces necessary take the form F j→i = f div

1 (ri j )r̂i j

and result in attractive or repulsive couplings (see e.g. [55, 74, 128] for typical examples consider-
ing Morse potentials). Inelastic collisions, satisfying Galilean invariance, impose fk = fk(rab , |p̂a −
p̂b |) (p̂a − p̂b) (see e.g. the numerical model of shaken grains studied in [219]). The Quincke rollers
belong to a third class: individuals rotating their orientations in the field created by their neigh-
bors. This class also includes, e.g., the experimental system of Kumar et al. made of pointy rods
lying on a shaken bed of isotropic rods, biofilaments in plant cytoskeleton, and all agent-based
models for collective motion involving pairwise-additive interactions. The coefficients then take
the form fk = fk(rab)p̂b . In addition, all components fk having negative topological charges, k < 0,
are forbidden for Laplacian fields.

This general analysis answers our initial question: the microscopic model for the Quincke
rollers is robust. Any error in modeling of the electrostatic or hydrodynamic interactions would
impact the amplitudes of the prefactors A(r ), B(r ), C(r ) and their dependence in the distance r ,
but would not change the form of the equations of motion. It also suggests a last remark: in this
framework, the existence of alignment effects in polar systems is not surprising. It emerges natu-
rally as the lowest-order component of an angular Fourier expansion.

3 From microscopic to macroscopic dynamics

In the last part of this chapter, we use the microscopic model that we derived above to elu-
cidate the large-scale phenomenology observed experimentally. We coarse-grain the equations
of motion to establish an hydrodynamic description of the population. We then exploit this ap-
proach to explain the experimental phase diagram: (i) the transition to collective motion, (ii) the
structure of the polar liquid, (iii) the vortex phase found in confining boundaries.

3.1 Hydrodynamic description

We aim at understanding the macroscopic behaviors of the population of rollers from the mi-
croscopic model. To do so, we view the population as an active fluid. We describe its large-scale
dynamics in terms of hydrodynamic fields that are easily measurable, such as density and velocity
fields. Over the past 6 years, a large number of articles have been devoted to building hydrody-
namic theories from microscopic models [11–13, 23–25, 79, 108, 139, 158–160, 207, 208]. Most of
them are based on the same kinetic-theory framework but use slightly different approximation
schemes. We discuss and adapt these methods to our model.

In order to define the hydrodynamic variables, we introduce the one-body distribution func-
tion, Ψ(1)(r,θ, t ), that is the probability density of finding a particle at position r, moving in the
direction θ, at time t . The hydrodynamic fields are the successive moments of Ψ(1).

• The density field is given by ρ(r, t ) ≡


dθ Ψ(1)(r,θ, t ). To make the comparison with the
experiments easier, we multiply by the particle area and consider the local area fraction
(Fig. 1.10(a)):

φ(r, t ) ≡πa2


dθΨ(1)(r,θ, t ). (1.21)

• The first-order moment defines the polarization field, that is the averaged orientation of the
particles at position r:

Π(r, t ) ≡ πa2

φ



dθ p̂Ψ(1)(r,θ, t ). (1.22)
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Figure 1.10 – The angular moments of the one-particle distribution function describe the local orien-
tational order. (a) The area fraction gives the local density of particles. (b) The polarization reflects the
alignment of the particle directions of motion, i.e. the polar order. (c) The nematic-order tensor reflects the
alignment of the particle axis irrespective of their direction, i.e. the nematic order.

Π(r, t ) characterizes the local polar order. Its norm quantifies the degree of alignment of
the particle orientations (Fig. 1.10(b)). Its direction is the direction of motion of the active
population.

• The second-order moment of Ψ(1) is the nematic-order tensor, defined as:

Q(r, t ) ≡ πa2

φ



dθ



p̂p̂− 1

2
I



Ψ(1)(r,θ, t ). (1.23)

Q(r, t ) characterizes the local nematic order (Fig. 1.10(c)). Its largest eigenvalue quantifies
the degree of alignment of the particle axis, irrespective of the directions of motion. The
correspondig eigenvector gives the direction of the nematic order.

We now coarse-grain the microscopic model to establish evolution equations for the hydrody-
namic variables φ, Π, Q. We start from the coupled equations of motion that rule the dynamics of
the N rollers. The state of the system is set by the N positions r1, ...,rN and orientations θ1, ...,θN of
all particles. It is fully encoded by the N-particle distribution function Ψ(N)(r1...,rN,θ1, ...,θN, t ).
Using standard kinetic theory methods [173], we transform the 2N coupled Langevin equa-
tions (1.13) and (1.14) into a Fokker-Planck equation for Ψ(N):

∂Ψ(N)

∂t
+



i
∇i ·



v0p̂iΨ
(N)+



i

∂

∂θi



1

τ



j ̸=i

∂Heff(ri − r j ,θi ,θ j )

∂θi
Ψ(N)



−Dr


i

∂2

∂θ2
i

Ψ(N) = 0. (1.24)

This equation contains all information on the dynamics of the system. However, we aim at describ-
ing the population in terms of hydrodynamic fields that only involve the one-body distribution
Ψ(1). When moving from the full phase-space to this reduced one-body representation, informa-
tion is lost. Coarse-graining the equations of motion therefore requires simplifying assumptions,
that are known as closure relations.

First closure approximation: two-body correlations We first establish the evolution equation
for the one-particle distribution. Ψ(1) is inferred from the total distribution function Ψ(N) by inte-
grating over the degrees of freedom of all particles but one:
Ψ(1)(r,θ, t ) = 1

(N−1)!



d2r2...d2rNdθ2...dθN Ψ(N)(r,r2, ...rN,θ,θ2, ...,θN, t ). After integration, the Fokker-
Planck equation (1.24) yields:

∂tΨ
(1) + v0 p̂ ·∇Ψ(1) + 1

τ
∂θ



d 2r′dθ′
∂Heff(r− r′,θ,θ′)

∂θ
Ψ(2)(r,r′,θ,θ′, t )−Dr ∂

2
θΨ

(1) = 0. (1.25)

The evolution of the one-body density involves the two-body correlation functionΨ(2)(r,r′,θ,θ′, t ) ≡
1

(N−2)!



d2r3...d2rNdθ3...dθN Ψ(N)(r,r′,r2, ...rN,θ,θ′,θ3, ...,θN, t ), that gives the probability of finding



32 EMERGENCE OF MACROSCOPIC POLAR PHASES IN A MODEL COLLOIDAL SYSTEM

Figure 1.11 – Experimental measurement of the radial pair distribution function, defined as the
pair distribution Ψ(2) averaged over the particle orientations and normalized by Ψ(1)Ψ(1): g



|ri − r j |


=
Ψ(2)(ri ,r j )/



Ψ(1)(ri )Ψ(1)(r j )


. The distance has been normalized by the particle diameter.

two particles at positions r and r′ with orientations θ and θ′. Ψ(2) therefore accounts for the two-
body correlations. Similarly, the evolution equation ofΨ(2) involves the three-particle correlations,
etc. We end up with a hierarchy of N evolution equations that couple the dynamics of the n-body
distribution Ψ(n) to Ψ(n+1).

In order to close this hierarchy and obtain an evolution equation for Ψ(1) only, we have to
postulate an extra relation between Ψ(2) and Ψ(1). All available models use a mean-field approx-
imation (akin to the "molecular-chaos" assumption in Boltzmann-like approaches), and neglect
correlations at all distances. Here, we assume that the correlations vanish over a distance as small
as one particle diameter. However, we also account for the two-body correlations arising at short
range from the steric repulsion between colloids. In a crude approximation, we therefore intro-
duce the steric repulsion a posteriori by writing that two particles cannot be closer than one colloid
diameter. We postulate a modified mean-field closure relation:

Ψ(2)(r,r′,θ,θ′, t ) =


0 if |r− r′| < 2a

Ψ(1)(r,θ, t )Ψ(1)(r′,θ′, t ) if |r− r′| ≥ 2a
. (1.26)

This ansatz is supported by two observations. First, the radial structure factor measured experi-
mentally is plotted in Fig. 1.11. Even at high densities in the polar phase, it is well approximated
by a Heaviside function, which confirms that the positional correlations are very weak beyond a
distance of a few particle radii. Second, we have used the same ansatz to study the density waves
that propagate in driven suspensions of confined particles, see the Appendix. We have shown that
the short-ranged correlations induced by local collisions are a key ingredient, which captures very
well the experimental dispersion relation at small wavelengths.

As a last remark, we note that this coarse-graining approach is valid when the distance be-
tween particles is small compared to the interaction radius. The colloids then experience interac-
tion fields induced by their neighbors at all times [54]. This approximation is compatible with our
microscopic model, which describes the interactions at long distance. Here, the range of the inter-
actions is set by the channel height, H ∼ 200µm in the experimental conditions. The interparticle
distance being ∼ a/



φ, this approximation is fully justified in the range of area fractions in which
collective motion emerges, φ≫ (a/H)2 ∼ 10−4. In the opposite limit of interactions occuring dur-
ing sparse collision events, one should rather use a Boltzmann-like approach which quantifies the
collision rate between individuals [12, 25].

Second closure approximation: orientational structure From the evolution of the one-particle
distribution Ψ(1), we deduce the dynamics of the hydrodynamic fields.

Integrating Eq. (1.25) over θ, we recover the particle-conservation law:

∂t φ+ v0∇· (φΠ) = 0. (1.27)
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Taking the first-order moment of Eq. (1.25), we find the evolution of the polarization field:

∂t (φΠ)+ v0∇·


φQ+ φ

2
I



=F [φ,Π,Q], (1.28)

where the right-hand side is an effective force field arising from the interactions and the noise. At
first order in a gradient expansion, it is given by:

F =−Dr φΠ+ α

τ
φ2(I−2Q) ·Π− aβ

2τ
φ(I−2Q) ·∇φ+ κ

τ
φ(I−2Q) ·M∗φΠ+O (aH∇2). (1.29)

Importantly, all coefficients are explicitly related to the microscopic parameters involved in the
model, Eq. (1.15). The first term reflects the rotational diffusion that damps the local polariza-
tion. The second term stems from the alignment rule at the microscopic level, with amplitude
α =



r≥2a dr r A(r )/a2. The third term, with strength β =


r≥2a dr r 2B(r )/a3, is related to the elec-
trostatic repulsion. The last term arises from the non-screened hydrodynamic interactions having
a dipolar symmetry; it involves a non-local kernel M that we will discuss later.

Similarly, taking the second-order moment of Eq. (1.25) provides the evolution of the nematic-
order tensor Q etc. However, this procedure produces an infinite hierarchy of equations: the evo-
lution of φ involves the first-order moment Π, the dynamics of which depends on the second-
order moment Q, which is coupled to the third-order one etc. Hence we have to make a second
approximation to close the hierarchy and find evolution equations for φ and Π only. We need an
additional closure relation between φ, Π and Q.

The closure problem has been thoroughly studied in the context of the hydrodynamics of
anisotropic fluids, see e.g. [71, 103]. However, the relations that were obtained are not compatible
with the polar symmetry and cannot be used directly. More recently, several articles have tackled
the question in the case of self-propelled particles endowed with alignment interactions [12, 25,
160]. It turns out that there is no rigorous closure method holding for all magnitudes of the polar-
ization. Different assumptions are required in weakly- and strongly-polarized phases.

3.2 Transition to collective motion

We first investigate the transition from disordered to polar states. In the literature, two types
of closure approximations have been systematically used to relate φ, Π and Q. Both of them are
valid for weakly-polarized phases, they are therefore well-suited for studying the emergence of
collective motion.

• Most of the available theories use the closure scheme first introduced by Bertin, Droz and
Grégoire [25]. They note that the hydrodynamic fields correspond to the first angular Fourier
modes of the distribution function Ψ(1). Defining these modes as
Ψ(1)(r,θ, t ) ≡ 1

2π



k∈Z Ψ̂
(1)
k (r, t )e−i kθ, we readily find from Eqs. (1.21) and (1.22) that φ =

πa2Ψ̂(1)
0 and (Πx ,Πy ) = (ReΨ̂(1)

1 , ImΨ̂(1)
1 )/φ. As we noted it above, the evolution equation

for Ψ(1), Eq. (1.25), turns into an infinite hierarchy of equations which couple all Fourier
components.
In weakly-polarized states, the angular probability distribution is very flat. Hence its Fourier
series is sharply peaked around the zeroth-order mode Ψ̂(1)

0 . From this remark, Bertin et al.

proposed the following scaling ansatz: Ψ̂(1)
k = O



|ϵ|k


, where ϵ ≪ 1. Looking at long time-
and space-variations, they also assume ∂t ,∇ = O (ϵ) [160]. These hypothesis make it possi-
ble to truncate the infinite hierarchy in a controlled manner – for instance by neglecting all
terms of order O (ϵ3).

• Baskaran and Marchetti use a slightly different approach [13]. They also truncate the high-
order Fourier modes of the distribution function, but at a different level. Rather than ne-
glecting terms in the final equations, they immediately specify the form of the one-body
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distribution: Ψ(1) =φ


1+2p̂ ·Π+4p̂p̂ : Q


/(2π2a2). A closed set of equations for φ and Π is
then obtained by assuming that the nematic order relaxes much faster than the local polar-
ization.

For the colloidal rollers, we have checked that both approaches are strictly equivalent. Note that
this would not be the case, however, for more complex interaction rules.

Using these methods, after lengthy algebra and at leading order in a/H ≪ 1, we obtain the
following hydrodynamic equations:

∂t φ+ v0∇· (φΠ) = 0, (1.30)

∂t (φΠ)+ 3v0α

8τDr
(φΠ ·∇)φΠ=



α

τ
φ−Dr −

α2

2τ2Dr
(φ2Π2)



φΠ− 1

2τ



τv0 +βaφ


∇φ (1.31)

+ κ

τ
φM∗φΠ− 5v0α

8τDr
(∇·φΠ)φΠ+ 5v0α

16τDr
∇(φ2Π2)+ αβ

2τ2Dr
a(∇φ ·φΠ)φΠ+O (∇2).

The coefficients α, β, κ and the non-local kernel M are given in the Supplementary Document of
the article, p. 58. Apart from the non-local term, the recover the terms obtained phenomenolog-
ically by Toner and Tu [211, 214]. In addition, we now know the density-dependence of all scalar
coefficients, as well as their explicit expressions as a function of the microscopic parameters.

Homogeneous states We look for homogeneous solutions of the previous equations. Eqs. (1.30)
reduces to φ(r, t ) =φ0 and Eq. (1.31) implies:

∂tΠ=
α

τ
φ0 −Dr



Π− α2

2τ2Dr
(φ2

0Π
2)Π. (1.32)

The term (α/τφ0)Π arises from alignment interactions at the microscopic level, and favors the
emergence of polar order. It competes with the rotational diffusion, −DrΠ, which destroys the
polarization, and gives rise to a non-equilibrium phase transition. The isotropic phase becomes
unstable and the system forms a polar phase above the critical area fraction

φc =
τDr

α
. (1.33)

Figure 1.12 – (a) Critical area fraction (rescaled by τDr ) plotted versus the external electric field E0/EQ

(we used typical values of the microscopic parameters that correspond to the experimental conditions, as
explained in section 2.3). In the density-external field plane, polar states are found above this transition
line. (b) Orientation–density relation in homogeneous phases. Red dashed line: bifurcation curve given by
Eq. (1.34), valid when φ0/φc is close to 1. Blue full line: prediction from Eq. (1.38), accurate for strongly
polar phases. These two asymptotic models predict a phase transition to a polar state at φ0 = φc . Dot
symbols: experimental data. At the onset of collective motion, the experimental values correspond to polar
bands propagating in an isotropic gas. This spatially-heterogeneous state is not accounted for by Eqs. (1.34)
and (1.38), which hold for spatially-homogeneous phases only.
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The last cubic term, in Eq. (1.32), prevents the divergence of the polarization. Neglecting all gradi-
ent terms, we find the following bifurcation for the polarization (see also Fig. 1.12(b)):

Π0(φ0) =









2φc

φ0



1− φc

φ0



if φ0 >φc

0 if φ0 ≤φc

. (1.34)

This simple result shows that our model correctly reproduces a transition to collective mo-
tion. Polar order originates from alignment interactions, as postulated in Vicsek-like models. Here
the physical origin of the alignment interactions can be clearly identified: given the experimen-
tal orders of magnitudes, the main contribution to the coefficient α arises from hydrodynamic
couplings. More quantitatively, we find that the critical area fraction φc weakly depends on the
applied electric field E0, as shown in Fig. 1.12(a). This prediction is in agreement with the exper-
imental data, which showed no notable influence of E0 on the threshold density at which polar
phases form.

Onset of collective motion To gain more insight into the transition to collective motion, we in-
vestigate the linear stability of the homogenous states against spatial fluctuations. We consider
plane-wave perturbations: φ(r, t ) =φ0 +δφ̃e i (q·r−ωt ) and Π(r, t ) =Π0x̂+δΠ̃e i (q·r−ωt ). We linearize
Eqs. (1.30) and (1.31) in the perturbations, and calculate the eigenvalues ω(q). The imaginary part
Im(ω) is the growth rate of the corresponding eigenmode.

We find that the isotropic state, Π0 = 0, is stable for φ0 < φc . Conversely, above the critical
area fraction φc , both the isotropic state and the homogeneous polar phase given by Eq. (1.34)
are linearly unstable. Starting from the isotropic phase, we note that the most unstable mode
corresponds to compression waves that couple density and orientational perturbations in the
longitudinal direction. This instability arises from the alignment couplings. Its growth rate,

Im(ω)max = α
2τ (φ0 −φc )



1+


1− 2τv0(τv0+βaφ0)
α2(φ0−φc )2 q2



, is maximum for small-q perturbations. These

findings are consistent with all the available models describing the transition to polar states [25,
136]. They also agree with the experimental observations: at the onset of collective motion, the
disordered phase destabilizes in the form of bands, which consist in coupled density and polar-
ization heterogeneities in the longitudinal direction, occurring at the entire-system size. These
spatial structures stem from small-q compression fluctuations that have been amplified.

The latter results have an important consequence on the nature of the transition to collec-
tive motion, as we already stressed it in the Introduction. A the onset of polar order, the system
is spatially heterogeneous. Hence the transition cannot be correctly described by the spatially-
homogeneous theory, Eq. (1.32). We cannot expect Eq. (1.32) to fit the experimental data at
φ0 > φc . A reliable theory should account for the structure of the band phase: it should go be-
yond the linear analysis performed above, and deal with the non-linearities that set the shape of
the bands. This problem is the purpose of Chapter 2, and will be considered in a more general and
more formal framework. Here, we only mention that the existence of spatial patterns makes the
transition first-order. Hence the critical area fraction φc arising in the theory is a priori different
from the experimental value φb at which polar bands form.

3.3 Structure of the homogeneous polar liquid

In the previous section, we have followed the closure scheme that is widely used in active-
matter theories. However, deep in the polar phase this approximation is not valid any more and
yields non-physical results. For instance, Eq. (1.34) would predict that the polarization decays
at large densities (see Fig. 1.12(b)), which is obviously not expected from the interplay between
pairwise-additive alignment couplings and rotational diffusion. We therefore have to use another
closure relation to investigate the properties of strongly-polarized phases.
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Deep in the polar phase, the closure problem has been overlooked so far. The simplest ansatz
consists in assuming that the polar order is perfect. The distribution function then takes the form
Ψ(1)(r, p̂, t ) =φ(r, t )δ



p̂− Π̂(r, t )


, which imposes Q = Π̂Π̂− 1
2 I [71, 184, 223]. However, this ansatz

does not account for the possible melting of the polarization, due to rotational noise or interac-
tions that would destroy alignment. We therefore propose another closure relation which also
allows fluctuations of the magnitude of the polarization. In strongly-polarized states, the angu-
lar distribution Ψ(1)(r,θ, t ) is sharply peaked around the local mean direction θ̄(r, t ), with vari-
ance σ2(r, t ) ≪ (2π)2. We neglect the high-order cumulants and approximate the characteristic
function by Ψ̂(1)

k = φ exp


i θ̄k −σ2k2/2


. The angular distribution is approximated by a wrapped

normal distribution (a Gaussian on the unit circle). The mean θ̄ gives the direction of the local po-
larization, and the variance is related to its magnitude as Π2 = exp(−σ2/2). This “Gaussian”ansatz
constrains the second-order moment: Ψ̂2 = |Ψ̂1|2Ψ̂1Ψ̂1/Ψ̂3

0. In real space, it leads to the following
expression for the nematic-order tensor:

Q =Π4


Π̂Π̂− 1

2
I



. (1.35)

We use this new closure relation to obtain the evolution equation of the polarization field from
Eq. (1.28). At second order in a gradient expansion and neglecting higher-order terms in a/H, we
arrive at:

∂t φ+ v0∇· (φΠ) = 0, (1.36)

∂t Π+ v0Π
2(Π ·∇)Π=

α

τ
(1−Π4)φ−Dr



Π+ κ

τ



(1+Π4)I−2Π2ΠΠ


·M∗φΠ (1.37)

− v0

2φ
(1−Π4)∇φ+ v0

φ
(1−Π2)(Π ·∇φ)Π+ v0(1−Π2)(∇·Π)Π+ v0(Π2

I−ΠΠ) ·∇(Π2)

− βa

2τ



(1+Π4)I−2Π2ΠΠ


·∇φ+ γa2

2τ



(1+Π4)I−2Π2ΠΠ


·∇2(2I−M) ·φΠ+O (∇3).

Homogeneous polar state As we did it before, we first look for spatially-homogeneous solutions
of Eqs. (1.36) and (1.37). The polarization is readily obtained as a function of the area fraction φ0:

Π0(φ0) =


1− φc

φ0

1/4

. (1.38)

As expected, Π0 plateaus to 1 in the limit of highly-concentrated populations, as plotted in
Fig. 1.12(b). Although this expression is only valid for large polarizations, we note that it also pre-
dicts a transition to collective motion at the same critical density φc , which suggests that it might
be qualitatively reliable in a wide range of polarizations.

Figure 1.13 – Three asymptotic orientational modes. (a) Compression mode: fluctuations of the modu-
lus of the polarization field along the mean direction of motion. (b) Bending modes: fluctuations of the
orientation of the polarization along the mean direction of motion. (c) Splay modes: fluctuations of the ori-
entation of the polarization perpendicularly to the mean direction of motion. Both compression and splay
modes couple orientation and density fluctuations.
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Linear stability We now study the stability of the homogeneous polar state against small plane-
wave perturbations: φ(r, t ) =φ0 +δφ̃e i (q·r−ωt ) and Π(r, t ) =Π0x̂+δΠ̃e i (q·r−ωt ). The results can be
summarized by discussing three special modes.
Compression waves: the compression mode couples density fluctuations to variations of the mag-
nitude of the polarization (Fig. 1.13(a)). It was found to be unstable at the onset of collective mo-
tion. Here, we indeed find that this mode is unstable below a critical area fraction (∼ 10φc ). How-
ever, it is re-stabilized at higher densities due to the repulsive interactions which clearly disfavor
density heterogeneities (β-term in Eq. (1.37)).
Bending modes: orientational bending fluctuations, q̂ ⊥Π0 (Fig. 1.13(b)), are unstable due to the
non-screened hydrodynamic coupling. This result was obtained in an isotropic geometry. How-
ever, the dipolar hydrodynamic interactions are are sensitive to the shape of the boundaries, due
to their long-ranged nature (see the Appendix for more explanations). Experimentally, the rollers
are confined in a track. In such anisotropic boundaries, the bending instability is suppressed by
the transverse confinement.
Splay modes: splay perturbations, q̂ ∥Π0, couple density and orientation fluctuations (Fig. 1.13(c)).
They are damped due to the long-ranged dipolar hydrodynamic couplings. We note that, in all
populations of hydrodynamically-coupled particles, splay and bend fluctuations have dual behav-
iors. A bending (resp. splay) instability is associated with the damping of the splay (resp. bending)
mode, as it was found for suspensions of extensile (resp. contractile) swimmers [183, 184]. Here,
the damping of splay fluctuations, due to the dipolar couplings, can be understood as follows. In
strongly-polarized states, Π ∼ 1, the long-range interactions rotate the local polarization due to
the effective torque (I−ΠΠ) ·Fdip, where Fdip = (2κ/τ)M∗φΠ has a dipolar symmetry. More pre-
cisely, Fdip arises from the flow field induced by a distribution of source dipoles∝φΠ, and satisfies
∇·Fdip =−(2κ/τ)∇·φΠ. For splay fluctuations, q̂ = ŷ, we readily see that Fdip =−(2κ/τ)φδΠy ŷ is
opposite to the local disturbance of the polarization field, δΠy ŷ. The dipolar field damps the splay
mode. In addition, it is worth noting that Fdip does not depend on the amplitude of the wave-
vector, q . The damping of splay fluctuations is generic: the damping rate does not depend on the
wave-length.

Density fluctuations We finally consider the unexpected experimental finding: density fluctua-
tions are not giant, but normal in the polar liquid. We show that giant density fluctuations, that
were generically found in polar phases, are suppressed by the long-range dipolar couplings.

Briefly, in the standard theories of active matter, giant density fluctuations emerge from two
ingredients: (i) due to the propulsion of the particles, the splay mode couples the density and
polarization fields; (ii) the splay fluctuations are damped diffusively, at a rate proportional to q2:
larger-scale fluctuations (that involve larger particle numbers) are damped slower [136, 212]. As a
result, although the homogeneous polar phase is linearly stable, the standard deviation of the par-
ticle number, ∆n, scales with the particle number 〈n〉 as ∆n ∼ 〈n〉 in 2D [211]. By contrast, here the
splay fluctuations are damped generically: their damping rate is independent of q . This peculiar
behavior stems from the interplay between the dipolar symmetry and the r−2 decay of the long-
ranged hydrodynamic couplings, in 2D. We now show that it suppresses the giant fluctuations in
the polar liquid.

To do so, we follow the standard framework introduced by Toner, Tu and Ramaswamy [212].
We add a conserved white noise term ∇ · ξφ to Eq. (1.36) and a non-conserved Gaussian noise
ξΠŷ to Eq. (1.37), with zero mean and correlations



ξφm (r, t )ξφn (r′, t ′)


≡ 2Dφδm,nδ(r− r′)δ(t − t ′),


ξΠ(r, t )ξΠ(r′, t ′)


≡ 2DΠδ(r− r′)δ(t − t ′),


ξφm (r, t )ξΠ(r′, t ′)


≡ 0. We calculate the correlation func-
tion,



|δφq,ω|2


, in Fourier space within a linear-response approximation. For rollers enclosed in
a region of area A , the static structure factor is deduced as:

S(q) ≡


|δφq(t )|2


πa2φ0A
= 1

πa2φ0A

+∞

−∞

dω

2π



|δφq,ω|2


. (1.39)

This lengthy calculation yields complex expressions that are provided in the Supplementary Doc-
ument of the article. The structure factor has a clear interpretation. Fluctuations of the number of
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particles lying in a domain of size L are described by the Fourier mode q ∼ 2π/L. From Eq. (1.39),
they are readily related to the structure factor by S(q ∼ 2π/L) ∼ (∆N)2/〈N〉. In the limit of large
domains, L →∞, we therefore have to study the structure factor at vanishing q . We find that it sat-
urates to a constant value, S(q) = O



(qa)0


, due to the generic stabilization of splay fluctuations
by the long-range hydrodynamic interactions. As a result, the density fluctuations are normal:

∆n

〈n〉
∼ 1

p
〈n〉

, (1.40)

in agreement with the experimental finding (Fig. 1.6(e))

Our theoretical model therefore provides a mechanism that suppresses the giant density fluc-
tuations. Note that the long-ranged hydrodynamic interactions that are responsible for this behav-
ior are not specific to Quincke rollers; they generically occur in all suspensions of self-propelled
bodies confined in a thin layer of liquid, as we explain it in the Appendix.

3.4 Polar phases in confinement: rotating vortices

We now turn to the last pattern observed experimentally: in confining disk, the population of
rollers displays a transition from a disordered gas to a steadily rotating vortex. This state of the
system has been studied by combining experiments (carried out by A. Bricard and V. Chikkadi),
numerical simulations (performed by C. Savoie, D. Dash and D. Saintillan), and theory. The results
are reported in the article “Emergent vortices in populations of colloidal rollers”, that can be found
p. 66.

Experimental and numerical findings Let us first have a more detailed look at the experimental
and numerical phenomenology. Experimentally, a population of colloidal rollers is confined in a
disk of radius Rc. Numerically, the equations of motion that we established above, Eqs. (1.13)–
(1.15), have been simulated in a circular box with reflecting boundaries.

Above the critical area fraction φv , the population forms a steady axisymmetric vortex
that spans the entire disk, as illustrated by the density and polarization fields in Figs. 1.14(a)
and 1.14(b). This bifurcation is quantified by the polarization field projected along the azimuthal
direction, Πϕ = Π · êϕ, plotted versus the mean area fraction φ0 in Fig. 1.14(c). Remarkably, the
vortex is spatially heterogeneous. At a first glance, Figs. 1.14(a) and 1.14(b) suggest that the system
is phase separated: a dense polar-liquid ring encloses a dilute and disordered gas at the center.
This picture is supported by the variations of the area occupied by the polar ring, Aring (defined
as the region where Πϕ > 0.5), as a function of φ0 for different confinement radii Rc. All curves
collapse on a single master curve when rescaling Aring by the overall confinement area πR2

c, as
shown in Fig. 1.14(d). The polarized ring therefore occupies the same area fraction, irrespective of
the system size, as would a liquid coexisting with its vapor at equilibrium. However, this phase-
separation scenario is not consistent with the spatial variations of the density field. If two phases
were coexisting, they would be separated by an interface having an intrinsic width. Here, the ra-
dial density profiles plotted in Fig. 1.14(e) do not display any clear interface. More importantly,
they all collapse on a single master curve when rescaling the distance to the center by Rc. The
confinement radius is the only characteristic length-scale of the vortex.

Hydrodynamic description We now use the theoretical model to elucidate the vortex pattern.
We start from the hydrodynamic equations Eqs. (1.27) and (1.28) that couple φ, Π and Q. We
look for steady axisymmetric solutions of the form φ = φ(r ), Π = Πϕ(r )êϕ and Q = Q(r )(êϕêϕ −
êr êr ), where Q(r ) > 0. As we discussed it above, we a priori need a closure relation to link these
three hydrodynamic fields. Remarkably, this extra approximation is not needed to establish the
existence and the spatial structure of the vortex pattern.
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Figure 1.14 – (a) Time-averaged of the local area fraction measured experimentally (Rc = 1.35mm, φ0 =
0.05). (b) Time-averaged polarization field. (c) Averaged azimuthal polarization plotted versus the mean
area fraction φ0. A polar vortex forms at φ0 > φv . Open symbols: experiments. Filled circles: numerical
simulations (see section 2.3). Full line: best fit from the theory. (d) Area fraction occupied by the polar ring,
defined as the region where Πϕ > 0.5, plotted as a function of the mean area fraction φ0. Open symbols:
experiments. Filled circles: numerical simulations. Full line: theoretical prediction with no free fitting
parameter. (e) Radial density profiles rescaled by φv , plotted versus the rescaled distance to the center
r /Rc. Open symbols: experiments performed for different confinement radii. Filled circles: numerical
simulations. Full line: theoretical prediction. (f ) Time-averaged packing fraction at the center of the disk
normalized by φv and plotted versus the averaged area fraction (experimental measurement).

First, we project the momentum equation, Eq. (1.28), on the azimuthal direction. With the
axisymmetric ansatz, we find:

0 =
α

τ
φ(1−2Q)−Dr



φΠϕ. (1.41)

For the sake of simplicity, we have neglected the non-local term (it can be calculated exactly and
only yields a small correction to the first term, as κ/α ∼ a/H ≪ 1). Eq. (1.41) accounts for the
competition between alignment and rotational diffusion, it again leads to a dynamical phase tran-
sition. Increasing the mean area fraction above the critical value φc = τDr /α, the system bifurcates
from an isotropic state with Πϕ = 0, to a polarized vortex with Πϕ ̸= 0 and Q = 1

2



1−φc /φ


. The
bifurcation from the disordered gas to the polar vortex occurs at the mean-field critical density:
φv =φc .

Second, we project Eq. (1.28) on the radial direction. We obtain:

−2
v0

r
Q =−βa

2τ
(1+2Q)∂rφ, (1.42)

with Q = 1
2



1−φc /φ


. The left-hand side corresponds to the advection of momentum due to the
propulsion of the particles. In the rotating frame, it amounts to a centrifugal force: in the ab-
sence of any interaction, self-propulsion drives the particles away from the center of their circular
trajectories. This kinematic effects competes with the repulsive interactions between the rollers,
right-hand side of Eq. (1.42). When density heterogeneities form, the repulsive couplings result in
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a net force that is oriented against the local density gradient. A radial density profile forms and
adjusts so that the centrifugal force is exactly balanced by the repulsion. This stationary profile is
deduced from Eq. (1.42) and satisfies by the implicit relation:

r = r⋆ exp



Λ
φ

φc
+ Λ

2
log



φ

φc
−1



, (1.43)

where Λ ≡ φc βa/(τv0) and r⋆ is an integration constant. The density plateaus at φ = φc at the
center of the box, and grows significantly as r > r⋆, where r⋆ therefore sets the typical core radius
of the vortex. Importantly, the vortex has no intrinsic length-scale. Its only characteristic length is
the constant r⋆ , which is set by the total particle number in the box: πR2

cφ0 = 2π
Rc

0 r dr φ(r ). As
a consequence, we readily find that r⋆ scales with the confinement radius, for fixed φ0. As φ only
depends on r /r⋆, Eq. (1.43), all density profiles obtained for different box sizes Rc collapse on a
single curve, in agreement with the experimental data.

Comparison with the experiments To further check the theoretical description, we quantita-
tively compare the analytical results to the experimental data. First, the model predicts that
the density at the center exactly corresponds to the critical density at which the vortex emerges:
φ(r = 0) = φc = φv . This relation holds for any confinement radius and total particle number. It
is validated by the experiments, see Fig. 1.14(f). Second, we can use the theoretical expressions
to fit the experimental data. To do so, we also need the polarization field. At this point we have
to specify a closure relation to deduce Πϕ from φ and Q. Here, the vortex corresponds to large
spatial variations of the polarization, from 0 at the center to ∼ 1 close to the boundary, in dense
populations. We therefore need an assumption that reproduces the basic physical behaviors ex-
pected both in the isotropic phase (Q = 0) and in the strongly-polarized regime (Q = 1/2). We take
a simple relation which neglects the correlations in the orientational fluctuations: Q =Π2

ϕ/2 [223].
This choice leads to:

Πϕ(r ) =


1− φc

φ(r )
. (1.44)

We use this relation, together with Eq. (1.43), to fit the experimental polarization curve, Fig. 1.14(c).
The best fit is obtained for values of φc and β that are respectively five and two times larger than
those deduced from the microscopic parameters. Given the number of simplifications needed to
establish the model, the agreement is very convincing. Keeping the exact same values of the fitting
parameters, we also calculate the area fraction of the outer polarized ring and the density profile,
Figs. 1.14(d) and 1.14(e). Again, the agreement with the experimental very good.

The hydrodynamic theory therefore demonstrates that the vortex observed experimentally
does not correspond to a coexistence between two phases. Such a phase-separation would be
obtained if the area fraction in the vortex core were smaller, φ(r = 0) < φc : a bubble of isotropic
gas would then nucleate in the polar liquid. Here, the density at the center self-regulates to
φ(r = 0) = φc . The vortex consists in one spatially-heterogeneous phase which lies on the verge
of a phase separation. The azimuthal polarization is produced by the alignment interactions; the
spatial structure of the vortex is set by the competition between repulsive interactions and the
centrifugal force induced by self-propulsion.

Finally, we again stress on the generality of our result and emphasize that the latter scenario is
not specific to the Quincke rollers. Indeed, the hydrodynamic equations have the form predicted
by the Toner and Tu theory [211, 214], which applies to all polar systems (irrespective of the micro-
scopic origin of the hydrodynamic forces). More generally, this mechanism is not even restricted
to interactions having a polar symmetry, since the existence of a centrifugal force solely relies on
self-propulsion. The same large-scale behavior is also expected for self-propelled bodies experi-
encing nematic alignment rules, e.g. shaken elongated rods, concentrated bacterial suspensions
or motile biofilaments.
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Conclusion and perspectives

To close this chapter, we very briefly outline the steps that we followed and the main results.
We have theoretically studied the emergence of collective behaviors in a controlled experimen-
tal system. To do so, we have explicitly modeled the microscopic dynamics from first physical
principles (the Maxwell’s and Stokes’ equations), and made the connection with the large-scale
behavior of the population in a hydrodynamic description. This approach has made it possible to
demonstrate the physical origin of the large-scale phenomenology observed experimentally.

• Alignment interactions mostly originate from hydrodynamic couplings between the col-
loids. They compete with the rotational noise and give rise to a dynamical phase transition
to polar states.

• Repulsion between particles plays an important role in stabilizing homogeneous polar
phases at high densities, as well as heterogeneous polar vortices in non-periodic geome-
tries.

• Additional long-ranged dipolar couplings, that are not present in standard active-matter
models, provide a possible mechanism for the suppression of the giant density fluctuations
in the polar phase.

The macroscopic behavior of the system also highlights the importance of the geometry of the
boundaries. In this non-equilibrium system, several stationary states can be found (e.g. propa-
gating bands or rotating vortices). The boundary conditions play a key role in selecting a pattern
among all possible solutions.

In addition, apart from the long-range interactions, the symmetries of both microscopic and
hydrodynamic equations are not specific to the Quincke rollers. The latter remark makes this sys-
tem a good candidate for studying new properties of active matter (e.g. in more complex geome-
tries) on a model experimental population which is fully modeled theoretically.

To conclude, we mention a few open questions and suggest possible extensions of this work.

• We noted that the boundary conditions play an important role in selecting the steady state.
However, we have merely rationalized the experimental phenomenology a posteriori: for in-
stance, in circular boundaries we have explicitly focused on axisymmetric states. The mech-
anisms which select a macroscopic phase, after a transient regime, are not understood. As

(a)

(b)

(c)

N=ãã

N=ãã

N=ãã

Figure 1.15 – Large-scale patterns in rectangular boxes. (a) A vortex. (b) An array of counter-rotating
vortices. (c) A band bouncing against the walls.
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a matter of fact, predicting the final state of the system in an arbitrary geometry is a com-
plex problem. Let us e.g. consider a rectangular confining box and vary its aspect ratio. In
squared boxes, the population self-organizes into complex vortex patterns that we did not
describe theoretically, see Fig. 1.15(a). In rectangular boxes, we find an array of counter-
rotating vortices, Fig. 1.15(b). Further increasing the aspect ratio, the population forms a
moving band which bounces endlessly against the box, Fig. 1.15(c). These experimental re-
sults show that the final state cannot be readily deduced from the topology of the confining
area: bands are found both in periodic racetracks and in rectangular boxes. Although an
analytical study might be difficult to achieve, this open problem could be studied experi-
mentally and numerically.

• The boundary conditions play another important role: they impact the nature of the transi-
tion to collective motion. (i) In a confining disk, we have shown that the transition towards
vortex states is well described by a continuous (second-order) bifurcation. Upon increasing
the mean density, the maximum polarization in the vortex continuously increases from 0 (at
the transition) to 1 (at very high density). (ii) By contrast, in periodic boundaries the popula-
tion forms propagating bands. Even at the onset of collective motion, the polarization at the
front is very high; increasing the density chiefly increases the width of the band. The emer-
gence of such propagating structures is associated with a first-order transition, see [49, 109]
for numerical evidences on the Vicsek model and Chapter 2. The formation of vortices and
bands therefore correspond to very different scenarios. These two situations highlight the
the impact of the boundary conditions on the nature of the transition to collective motion,
which could be further investigated both experimentally and theoretically.

• In order to make the comparison between theory and experiments more quantitative, the
dispersion relation of linear waves could be measured experimentally.

• Experimentally, the tail of the band clearly displays a bending motion. In order to theoret-
ically account for this observation, one should study small perturbations of the non-linear
band structure. In a more naive approach, two explanations can be advanced. (i) We men-
tioned that the long-ranged dipolar interactions result in a bending instability of the polar
liquid, that is reduced by the confinement but could remain noticeable in the band phase.
(ii) In a density gradient, repulsive couplings may favor the bending of the polarized phase.
A numerical study may easily identify the very origin of this experimental finding.

• For large values of the applied electric field, it was experimentally found that the colloids
stop rolling. This effect is not explained by the Quincke theory. Studying the chemical pro-
cesses which occur at the interfaces might be required to get a more thorough understand-
ing of the system.

• Our theory holds for dilute populations of rollers. In the high-density limit, contact interac-
tions may play a predominant role and lead to different behaviors, allowing e.g. significant
variations of the roller speed with the local density and polarization.
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From the formation of animal flocks to the emergence of coordinate motion in bacterial
swarms, at all scales, populations of motile organisms display coherent collective motion. This
consistent behavior strongly contrasts with the difference in communication abilities between
the individuals. Guided by this universal feature, physicists have proposed that solely align-
ment rules at the individual level could account for the emergence of unidirectional motion at
the group level [136, 212, 215, 216]. This hypothesis has been supported by agent-based simula-
tions [38, 92, 215]. However, more complex collective behaviors have been systematically found
in experiments including the formation of vortices [190, 201, 222], fluctuating swarms [190, 227],
clustering [151, 204], and swirling [68, 73, 120, 188]. All these (living and man-made) model
systems (bacteria [73, 222, 227], biofilaments and molecular motors [188, 190, 201], shaken
grains [68, 120] and reactive colloids [151, 204]) predominantly rely on actual collisions to dis-
play collective motion. As a result, the potential local alignment rules are entangled with more
complex, and often unknown, interactions. The large-scale behaviour of the populations there-
fore strongly depends on these uncontrolled microscopic couplings that are extremely chal-
lenging to measure and describe theoretically.

Here, we demonstrate a new phase of active matter. We reveal that dilute populations of
millions of colloidal rollers self-organize to achieve coherent motion along a unique direction,
with very few density and velocity fluctuations. Identifying, quantitatively, the microscopic in-
teractions between the rollers allows a theoretical description of this polar-liquid state. Com-
parison of the theory with experiment suggests that hydrodynamic interactions promote the
emergence of collective motion either in the form of a single macroscopic flock at low densi-
ties, or in that of a homogenous polar phase at higher densities. Furthermore, hydrodynamics
protects the polar-liquid state from the giant density fluctuations, which were hitherto consid-
ered as the hallmark of populations of self-propelled particles [136, 194, 212]. Our experiments
demonstrate that genuine physical interactions at the individual level are sufficient to set ho-
mogeneous active populations into stable directed motion.

Our system consists of large populations of colloids capable of self-propulsion and of sensing
the orientation of their neighbors solely by means of physical mechanisms. We take advantage of
an overlooked electrohydrodynamic phenomenon referred to as the Quincke rotation [138, 165]
(Fig. 1.16a). When an electric field E0 is applied to an insulating sphere immersed in a conducting
fluid, above a critical field amplitude EQ, the charge distribution at the sphere’s surface is unstable
to infinitesimal fluctuations. This spontaneous symmetry breaking results in a net electrostatic
torque, which causes the sphere to rotate at a constant speed around a random direction trans-
verse to E0 [165]. We exploit this instability to engineer self-propelled colloidal rollers. We use
PMMA beads of radius a = 2.4µm diluted in an hexadecane solution filling the gap between two
conducting glass slides. Once the particles have sedimented on the bottom electrode, we apply an
homogeneous electric field, and indeed observe their high-speed rolling motion (Fig. 1.16a). Iso-
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Figure 1.16 – Single-roller dynamics. a– Sketch of the Quincke rotation and of the self-propulsion mech-
anisms, and superposition of ten successive snapshots of rolling colloids. Time interval: 5.6 ms. Scale bar
50µm. b– Probability distribution of the velocity vector (v∥, v⊥) for isolated rollers. ev∥ corresponds to
the projection of the velocity on the direction tangent to the racetrack-shaped confinement, see Fig.2. v⊥
is normal to v//. The probability distribution involves more than 1.4×105 instantaneous-speed measure-
ments. c– Modulus of the individual velocity v0 with respect to the electrostatic field amplitude E0. Inset :
v2

0 versus E0
2. The black dots represent the maximum of the probability distribution, and the error bars are

defined from the standard deviation.
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Figure 1.17 – Transition to directed collective motion. a– Dark field pictures of a roller population
that spontaneously forms a macroscopic band propagating along the racetrack, E0/EQ = 1.39 and φ0 =
10−2. Scale bar 5 mm. b, c, d– Close views on the roller populations. The arrows correspond to the roller
displacement between two subsequent movie frames (180 fps).Three distinct regimes are observed when
varying φ0. b– Isotropic gas, φ0 = 6×10−4. c– Propagating band, φ0 = 10−2. d– Homogeneous polar liquid
φ0 = 1.8× 10−1. Scale bar 500µm. (Note that the apparent size of the particles is twice larger than 2a =
4.8µm, due to light diffraction). e– The modulus of the average polarization, Π0, increases sharply from
zero when the average area fraction Φ0 exceeds Φc = 310−3 and reaches Π0 ∼ 1 for the largest area fraction.
Φc is independent of E0. The error bars correspond to the standard deviations.
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lated rollers propel along random directions (Fig. 1.16b). Their velocity v0 is set by E0 and scales

as


(E0/EQ)2 −1


1
2 (Fig. 1.16c and Supplementary Materials).

In view of questioning the emergence of collective unidirectional motion, we electrically con-
fine the roller populations in racetracks periodic in the curvilinear coordinate s. Their width is
500µm < W < 5mm (Fig. 1.17a and Methods). During a typical 10-minute-long experiment, mil-
lions of rollers travel over distances as large as 105−106 particle radii, which makes it possible to in-
vestigate exceptionally large-scale dynamics. At low area fraction, φ0, the rollers form an isotropic
gaseous phase. They all move at the same velocity along random directions as would an isolated
particle (Fig. 1.17b). Increasing φ0 above a critical value φc , we observe a clear transition to col-
lective motion. A macroscopic fraction of the rollers self-organizes and cruises coherently along
the same direction (Figs. 1.17c and 1.17d). More quantitatively, we define a polarization order pa-
rameter Π0 as the modulus of the time and ensemble average of the particle-velocity orientation.
Π0 increases sharply with φ0 and displays a clear slope discontinuity at φc = 3×10−3, revealing the
strongly collective nature of the transition (Fig. 1.17e). Remarkably, φc is a material constant: it is
independent of the electric-field amplitude.

For area fractions higher than but close to φc , small density excitations nucleate from an un-
stable isotropic state and propagate along random directions. After complex collisions and coa-
lescence events, the system phase separates to form a single macroscopic band that propagates
at a constant velocity cband through an isotropic gaseous phase (Figs. 1.17a, 1.17c and 1.18a). No
stationary state involving more than a single band was observed even in the largest systems (10 cm
long). The velocity cband is found to be very close to the single particle velocity v0 at the front of the
band. The bands are coupled to a net particle flux: they are colloidal flocks traveling through an
isotropic phase. Their density profile is strongly asymmetric, unlike the slender bands observed in
dense motility assays [190]. This marked asymmetry is akin to that found in 1D agent-based mod-

Figure 1.18 – Propagating-band state. a– Left: spatiotemporal diagram of the area fraction recorded
along the curvilinear coordinate s. Right: temporal variations of the area fraction measured at the curvilin-
ear coordinate s = 0.8L (white dotted line on left panel), where L is the overall length of the racetrack. b–
Shape of the band for four different area fractions Φ0 = 5.310−3,7.810−3,1.010−2, and 1.510−2. The local
area fraction is plotted as a function of s/L. Inside the band φ(s) decreases exponentially towards Φ∞ ≃Φc .
c– The band length rescaled by the stadium length Lband/L increases with the area fraction Φ0 and is inde-
pendent of the racetrack length (L = 28 mm, (white dots): L = 50 mm (grey dots), L = 73mm (black dots).
The error bars represent the estimated error associated with the measurements Lband from the plots shown
in b. d– Modulus of the local polarization Π(s) plotted versus 1−Φ(s)/Φ∞. The black dots correspond to
averages over 5000 local measurements (grey dots). The error bars correspond to the standard deviations.
The red curve is the theoretical prediction.
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els [147]. It might be promoted by the high aspect ratio of the confinement. The local area fraction
φ(s, t ), at curvilinear coordinate s, and time t , increases sharply and then decays exponentially
to a constant value φ∞, which is very close to the critical volume fraction φc (Fig. 1.18b). This
shape is similar to the one found in numerical simulations of the celebrated 2D Vicsek model [25,
51]. Remarkably, the bands have no intrinsic scale and their length, Lband, is set by the particle-
number conservation only. This result is readily inferred from Fig. 1.18c, which shows that the
bands span a fraction of the racetrack which merely increases with φ0 regardless of the overall
curvilinear length L.

Looking now at the local polarization, we observe that the colloidal flock loses its internal co-
herence away from the band front as Π(s, t ) decays continuously to zero along the band. Quan-
titatively φ(s, t ) and Π(s, t ) are related in a universal manner irrespective of the particle velocity,
and of the mean volume fraction (Fig. 1.18d). All our data collapse on a single master curve solely

parametrized by the particle fraction φ∞ away from the band: Π(s, t ) =


1− φ∞
φ(s,t )



. As it turns out,

this relation corresponds to particle-number conservation in a system where density and polariza-
tion waves propagate steadily at a velocity v0 (see [25] and Supplementary Methods). This robust
observation unambiguously demonstrates that the band state corresponds to a genuine stationary
flocking phase of colloidal active matter.

Further increasing the area fraction above φ0 ∼ 2×10−2, transient bands eventually catch-up
with themselves along the periodic direction and form a homogeneous polar phase (Fig. 1.17d)
where the velocity distribution condenses on a single orientation of motion (Fig. 1.19a, to be con-
trasted with the perfectly isotropic distribution below φc in Fig. 1.16b). Conversely the roller po-
sitions are weakly correlated as evidenced by the shape of the pair-distribution function, which is
similar to that found in low-density molecular liquids (Fig. 1.19b). We also emphasize that the den-
sity fluctuations are normal at all scales (Fig. 1.19c). This is the first experimental observation of a
polar-liquid phase of active matter. The existence of a polar-liquid phase was theoretically estab-
lished yet had never been observed in any prior experiment involving active materials. Until now,
collective motion has been found to occur in the form of patterns with marked density and/or ori-
entational heterogeneities [68, 73, 188, 190, 227]. Furthermore, in contrast with the present obser-
vations, giant density fluctuations are considered to be a generic feature of the uniaxially-ordered
states of self-propelled-particle liquids [136, 194, 212]. We solve this apparent contradiction below
and explain quantitatively our experimental observations.

From a theoretical perspective, the main advantage offered by the rollers is that their interac-
tions are clearly identified. We show in the Supplementary Methods how to establish the equations
of motion of Quincke rollers interacting via electrostatic and far-field hydrodynamic interactions.

slo
pe 1

Figure 1.19 – Polar-liquid state. a– Probability distribution of the velocity vector (v//, v⊥) in the the
polar-liquid state, where v∥ corresponds to the projection of the velocity on the direction tangent to the
racetrack shown in Fig.2. v⊥ is normal to v//. The probability distribution involves more than 3.2× 107

instantaneous-speed measurements. b– Pair correlation function of the particle position in the polar liquid
state. c– Variance of the number of colloids ∆N2 scales linearly with the average number of colloids N
counted inside boxes of increasing size. E0/EQ = 1.39 and φ0 = 9.5×10−2.
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They take a compact form both for the position ri, and the orientation p̂i of the i th particle:

ṙi = v0p̂i (1.45)

θ̇i = τ−1


i ̸= j
∂θi Heff(ri − r j , p̂i , p̂ j ) (1.46)

where p̂i makes an angle θi with the x-axis. In dilute systems, the particle interactions do not af-
fect their propulsion speed, yet the electric field and flow field compete to align the p̂i s with them.
This competition takes the form of an effective potential Heff for the local orientations p̂i . At lead-
ing order in a/r , Heff(r,pi ,p j ) = A(r )p̂i · p̂ j +B(r )p̂i · r̂+C(r )p̂ j ·(2r̂r̂−I) · p̂j, where A(r ) is a positive
function, and thus promotes the alignment of the neighboring rollers. Importantly, A is dom-
inated by a hydrodynamic interaction, which arises from a hydrodynamic singularity screened
over distances of the order of the chamber height [98]. B(r ) is also short ranged and accounts for
a dipolar repulsion. Conversely, C(r ) is long ranged and decays algebraically as r−2 due to un-
screened potential-dipole flows induced by the roller motion in confinement [37]. Neither B nor C
yield any net alignment interaction. Neglecting these two terms, our model built from the actual
microscopic interactions would amount to the so-called flying x y-model introduced phenomeno-
logically in [79]. We emphasize that Heff is independent of v0 and E0, and that it is not specific to
the Quincke mechanism. Its expression could have been deduced from generic arguments based
on global rotational invariance. We then use a conventional kinetic-theory framework à la Boltz-
mann to derive the large-scale equation of motion for the density, and the polarization fields [25,
79]. In the present case, this approximation was fully supported by the weak positional correla-
tions in all the three phases, as exemplified in Fig. 1.19b. The resulting hydrodynamic equations
are shown in the Supplementary Methods. At the onset of collective motion, the magnitude of the
terms arising from the long-range hydrodynamic interactions are negligible. We are therefore left
with equations for φ and Π akin to the Toner and Tu model [136, 212]. However, we provide ex-
plicitly the functional form of the transport coefficients phenomenologically introduced in [212].
Accordingly, we find that the competition between the polar ordering (induced by the short-range
hydrodynamic interactions) and rotational diffusion yields a mean-field phase transition between
an isotropic and a macroscopically ordered state (see Supplementary Methods). The phase tran-
sition occurs above a critical fraction φc that does not depend on the particle velocity (i.e. on E0),
in agreement with our experiments: collective motion chiefly stems from hydrodynamic interac-
tions between the electrically powered rollers. However, at the onset of collective motion (i.e. for
φ0 >φc), the homogeneous polar state is linearly unstable to spatial heterogeneities. Moreover, for
φ0 >φc, the compression modes are unstable eigenmodes of the isotropic state, in agreement with
the emergence of density bands observed in the experiments, all starting from an homogeneous
state and an isotropic velocity distribution.

We also rigorously establish a kinetic theory for the strongly polarized state reached for
φ0 ≫ φc (Supplementary Methods). In this regime, the short range electrostatic repulsion mat-
ters, causing the density fluctuations to relax and stabilizes the polar-liquid state. In addition, the
long-range hydrodynamic interactions further stabilize the system by damping the splay modes
of Π [37], thereby suppressing the giant density fluctuations [189], in agreement with our unantic-
ipated experimental findings (Fig. 1.19c and Supplementary Methods). We stress here that theses
long-range hydrodynamic interactions do not depend at all on the propulsion mechanism at the
individual level. They solely arise from from the confinement of the fluid in the z-direction [37].
They are therefore not specific to the Quincke propulsion mechanism. The only way to destroy the
robust polar-liquid phase is to forbid it geometrically by eliminating the angular periodicity of the
confinement in the curvilinear coordinate. In rectangular geometries with large enough aspect
ratio, we observe that the bands never relax but rather bounce endlessly against the confining box.
In confinement with an aspect ratio of order one, the band state is replaced by a single macro-
scopic spiral.

We have engineered large-scale populations of self-propelled particles from which collective
macroscopic polar motion emerges from hydrodynamic interactions at exceptionally small densi-
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ties. In addition, we believe that control over their interactions, and the ease with which they can
be confined in custom geometries, will extend the current paradigm of active matter to collective
motion in more complex environments relevant to biological, robotic and social systems.

METHODS
We use commercial PMMA colloids (Thermo scientific G0500, 2.4µm radius), dispersed in a 0.15
mol.L−1 AOT/hexadecane solution. The suspension is injected in a wide microfluidic chamber
made of double-sided scotch tapes. The tape is sandwiched between two ITO-coated glass slides
(Solems, ITOSOL30, 80 nm thick). To achieve electric confinement an additional layer of scotch
tape including a hole having the desired geometry is added to the upper ITO-coated slide. The
holes are made with a precision plotting cutter (Graphtec robo CE 5000). The gap between the
two ITO electrode is constant over the entire chamber H = 220µm. The electric field is applied by
means of a voltage amplifier (Trek 606E-6). The colloids are observed with a Nikon AMZ1500 stere-
omicroscope (1X magnification) equipped with a dark-field illuminator, and with a Zeiss axiovert
microscope (10X objective) for local measurements. In both case, high speed movies are taken
with CMOS camera (Basler A CE) at frame rates comprised between 70 and 900 fps.The particles
are detected to a 1 pixel accuracy by locating the intensity maxima on the experimental pictures.
The particle trajectories are reconstructed using a conventional tracking code[58].
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Supplementary Information

Here, we provide a comprehensive description of the theoretical model outlined in the main
text, which accounts of the large-scale properties of a population of colloidal rollers. For sake of
clarity, this document is written in a self-consistent fashion, all the notations and definitions of
the main text are explicitly re-defined. It is organized as follows: In section 1 we introduce a mi-
croscopic model that accounts for the motion of a single colloidal roller moving on a solid surface.
Then, in section 2 we model the two-body interactions between colloidal rollers. We show that
the combination of the electrostatic and the hydrodynamic couplings take the form of an effec-
tive potential Heff that couples the orientation of the rollers. In section 3, the latter microscopic
model is coarse-grained following a kinetic theory framework. We focus first on weakly polarized
states, for which we establish the dynamics of the local density φ(r, t ), and of the local polarization
field Π(r, t ) in section 4. This model accounts for a mean-field transition to collective motion. The
linear stability of the homogeneous polar phase is questioned, and the existence of unstable com-
pression modes is shown to be consistent with the formation of a band state. This stationary band
state is characterized by the constitutive relation between the local density and the local polar-
ization. Finally, we consider the large-scale dynamics of the polar-liquid phases in section 5. Our
main result is the explanation for the suppression of the giant density fluctuations by long-ranged
hydrodynamic interactions.
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1 From Quincke rotation to self-propulsion: the single roller dynamics

1.1 Quincke rotation: uniform electric field, quiescent fluid

Before discussing the key role played by the solid surface, we briefly recall the main ingredi-
ents which originate the Quincke rotation of an isolated particle embedded in a quiescent and
unbounded liquid [138].

This electro-hydrodynamic effect arises from the interplay between interfacial electrodynam-
ics and the particle motion in a viscous fluid. Let us consider an insulating sphere of radius a
located at r = 0, possibly rotating at the angular velocity Ω. We note ϵp the dielectric permittivity
of the particle. It is surrounded by a conducting liquid with a conductivity σ and a permittivity
ϵl . The solid particle is assumed to be impermeable. As the charge carriers in the liquid are ions,
the sphere is a perfect insulator. A uniform DC electric field E0 ẑ is applied along the z-direction
as sketched in Fig. 1.20A. After a transient regime, the electric charge relaxes to zero in the bulk.
However, the charge distribution is not uniform at the the liquid-particle interface. Due to the
conductivity and permittivity discontinuity, a non-uniform charge distribution arises close to the
interface. The thickness of the charge layer is assumed to be much smaller than the particle ra-
dius a. Therefore it can be modeled by a surface-charge distribution deduced from the continuity
relation: qs = (ϵl El − ϵp Ep ) · r̂|r=a , where El (resp. Ep ) stands for the electrostatic field inside the
liquid (resp. the particle). Using the Maxwell’s equations, it can be readily shown that the surface
charge distribution is dipolar. It is thus described by its first moment P ≡



d2s qs r̂s . To establish
how P depends on E0, we use the surface-charge conservation equation ∂t qs +∇s · js = 0, where
∇s ≡ (I− r̂r̂) ·∇ is the surface divergence operator, and js is the surface current. Due to the possible
rotation of the particle, both ohmic conduction and charge advection contribute to the surface
current: js =σE+qs Ω×ar̂. After some elementary algebra, the charge-conservation equation can
be recast into a dynamical equation for the dipole moment P [138, 153]:

dP

dt
+ 1

τ
P =−1

τ
2πϵ0a3E0 +Ω×



P−4πϵ0a3χ∞E0


(1.47)

where χ∞ ≡ ϵp−ϵl

ϵp+2ϵl
and τ is the so-called Maxwell-Wagner time. It is convenient to distinguish

two contributions to the overall polarization vector: P ≡ Pϵ+Pσ. The "static" contribution, Pϵ ≡
4πϵ0a3χ∞E0 arises from the dielectric polarization, due to the permittivity discontinuity at the
interface. The dynamic contribution Pσ results from the transport of the charges in the solution.
When no rotation occurs, the dipole P relaxes towards a stationary value and orients along −E0

in a time τ due to the finite conductivity of the solution. However, as the particle rotates, charge
advection competes with the spontaneous relaxation, and could in principle result in a dipole
orientation making a finite angle with the external field E0.

More quantitatively, we now show that the surface charge distribution can spontaneously
break a rotational symmetry and therefore induce the steady rotation of the insulating sphere.
In order to do so, we need an extra equation that is the angular momentum conservation. Since
the particle carries surface charges, it may experience a net electric force Fe and an electric torque
Te. The net interfacial electric stress is the jump of the Maxwell stress tensor across the interface:

solid liquid

Figure 1.20 – An isolated solid sphere in an unbounded conducting liquid. When an external electric field
E0 is applied, the particle can undergo Quincke rotation.
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Figure 1.21 – Emergence of Quincke rotation. A– Electric charges accumulate at the particle-liquid inter-
face and result in a dipolar surface distribution. B– A small rotational perturbation tilts the dipole P, thereby
inducing a net electric torque Te which amplifies the initial perturbation.

r̂ ·


TM
l −TM

p


r=a , where TM ≡ ϵEE− 1
2ϵE2I. Integrating over the surface, we obtain the torque

Te = ϵl
ϵ0

P×E0 and the net force Fe = ϵl
ϵ0

(P ·∇)E0, which vanishes in a uniform external field. Having
colloidal systems in mind, we ignore the inertia of the sphere. Therefore the translation velocity v
and the rotation speed Ω are linearly related to Fe and Te through a mobility matrix M :

 1
a v
Ω



≡M ·


aFe

Te



(1.48)

In an unbounded fluid, M is diagonal and has the form M =


µt I 0
0 µr I



, whereµt = (6πηa3)−1 in a

liquid of viscosity η. Eqs. (1.47) and (1.48) together fully capture the particle dynamics. When χ∞+
1
2 > 0 and when the external field E0 exceeds the threshold value EQ =



4πϵl a3(χ∞+ 1
2 )µrτ

−1/2
,

two stationary states are found from Eqs. (1.47) and (1.48). A first non-rotating solution is unsta-
ble against rotational perturbations. The second solution is stable and corresponds to a steady
rotation at angular velocity

Ω= 1

τ





E0

EQ

2

−1 (1.49)

The rotation axis can be any direction perpendicular to E0 as the symmetry is spontaneously bro-
ken. Such a stationary rotating state is conditioned by the competition between two opposite
effects, that can be easily read from Eq. (1.47). On the one hand, the charge relaxation promotes
the alignment of the dipole P in the direction −E0, thereby canceling the electric torque Te. On the
other hand, any small rotational perturbation advects the surface charge distribution and tilts the
dipole Pσ. This gives rise to a net electric torque Te which tends to amplify the initial disturbance,
until it is balanced by the viscous torque, see Fig. 1.21A.

The Quincke-electro-rotation mechanism can be summarized as follows: when the external
field exceeds a threshold value EQ, any infinitesimal perturbation results in an electrostatic torque
which is large enough to advect the charges despite the stabilizing mechanism provided by the
finite conductivity of the solution. The advection amplifies the initial perturbation until the vis-
cous torque balances the electric torque. When the stationary state is reached, the particle steadily
rotates at Ω around an axis perpendicular to E0, the direction of which is set by the initial pertur-
bation only.

1.2 Self-propulsion of a Quincke roller

In an unbounded fluid and a uniform electric field, the particle experiences no net force and
thus have no translational velocity. To achieve propulsion of the spheric particle, the basic idea
is to let it roll on a plane surface that is one of the two electrodes used to induce E0. In order to
establish the equations of motion of a Quincke roller, we have to modify both the mechanical and
the electrostatic equations introduced above.

First we note that contact between the sphere and the planar electrode is lubricated by the
surrounded liquid. A priori, the sphere both rolls and slides on the surface. This is accounted for
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Figure 1.22 – Quincke rotating particle rolling on a plane conducting surface. A– The surface couples
rotational and translational motion, allowing propulsion. It also disturbs the electric field. The dominant
contribution to the image charge distribution is the symmetric dipole P⋆. B– In the plane of the surface, the
direction of the translation velocity is defined by the angle θ.

by a modified mobility matrix M :




1
a v
Ω∥
Ωz



=M ·







aFe
∥

Te
∥

Te
z






(1.50)

where we now have to distinguish between the in-plane components and the z-component of the
vectors, see Fig. 1.22A. The mobility matrix is non-diagonal and can be written as

M =





µt I µ̃tΛ 0
−µ̃rΛ µr I 0

0 0 µ⊥



 , (1.51)

where Λ =


0 1
−1 0



. The off-diagonal blocks of M couple rotational and translational motion:

they are responsible for the rolling motion. For instance µ̃t relies the electric torque to the trans-
lational propulsion speed. The mobility factors are easily inferred from the friction coefficients
which were calculated in [89, 90, 130, 148], in the lubrication regime. They depend only loga-
rithmically on the distance between the particle and the surface, which was assumed to be small
compared to the particle radius. Although we do not precisely control this gap, the numerical
values of the mobility coefficients are weakly affected by this logarithmic dependence.

The surface at z = 0 does not only modify the hydrodynamics of the fluid, but also disturbs the
electric field. Indeed, the particle lies on the lower electrode, which is an equipotential surface.
We take it into account by considering an electric image charge distribution in the region z < 0,
which is dominated by a dipole P⋆ = Pz ẑ−P∥ at z = −a, as sketched in Fig. 1.22A. As opposed to
the case considered in the previous section, where we considered the classical Quincke setup, the
particle experiences an external electric field which is not uniform. It includes here a correction
δE⋆ induced by the image charges. From the steady solution of the Quincke rotation in an infinite
fluid, we can calculate the unperturbed dipole P in the absence of the surface, and then evaluate
the disturbance field due to the surface. Whithin our experimental conditions, E0 < 3EQ and χ∞ ≪
1
2 [153]. Therefore, the correction δE⋆ is much smaller that the magnitude of the unperturbed field:
|δE⋆|/E0 ∼ 0.01. At leading order in |δE⋆|/E0, the dynamics of the electric polarization is written
in a form that is more complex than Eq. (1.47):

dPσ
z

dt
+ 1

τ
Pσ

z = ϵl

ϵ0
µr E0Pσ

∥
2 − 1

τ
4πϵ0a3



χ∞+ 1

2



E0 (1.52)

dPσ
∥

dt
+ 1

τ
Pσ
∥ =− ϵl

ϵ0
µr E0Pσ

z Pσ
∥ (1.53)

dθ

dt
= 0 (1.54)
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where θ defines the direction of the in-plane component of the polarization, Fig. 1.22B. The re-
lation between the polarization, the electric torque and the electric force is not affected by the
substrate. In addition, it is worth noting that the surface induces no tangential force Fe

∥, and no
perpendicular torque Te

z = 0 on the sphere. This is a rigorous results that does not depend on the
specifics of the experiments. It holds at all order in |δE⋆|/E0 as it only follows from the symmetry
of the real charges and of the image charges with respect to the equipotential plane. Combing
now Eqs. (1.47) and (1.50) we infer the equations of motion of an isolated sphere lying on a planar
electrode:

v =− ϵl

ϵ0
aµ̃t E0Pσ

∥ (1.55)

This is the first main result of this supplementary document: The particle steadily rolls on the
electrode at a velocity v, which points in the direction opposite to the electric polarization. When
E0 > EQ, the rolling speed v0 ≡ |v| is proportional to the in-plane component of P, and is given by

v0 =
aµ̃t

µrτ





E0

EQ

2

−1 (1.56)

The variations of the roller velocity that we measured are in excellent agreement with the above
prediction as shown in Fig. 1.16c main text. As our theory does not involve any phenomenological
parameter, we can provide an estimate of both the Quincke threshold and the intrinsic velocity
scale of the rollers. We have a = 2.4µm, η ∼ 2mPa · s−1, ϵl ∼ 2ϵ0 and τ ∼ 1ms [153]. So using the
expressions below Eq. (1.48), we find EQ ∼ 106 V ·m−1 which is consistent with the value deduced
from the best fit which yields EQ = 1.6106 V ·m−1. The mobility coefficients weakly depends on the
thickness of the lubrication layer underneath the roller, which is assumed to be here of the order
of 10-100 nm. Hence we find aµ̃t

µr τ
∼ 2mm · s−1, which again agrees well with the value deduced

from our measurements ∼ 1.5mm · s−1. These results unambiguously confirm that the fast mo-
tion of the colloids results from the Quincke rotation of the colloids that in turn roll on the planar
electrode, and that we have now a quantitative understanding of this novel self-propulsion mech-
anism.

2 Roller-roller interactions

The one-particle dynamics does not explicitly break the rotational invariance around the ẑ-
axis, as Eq. (1.54) shows. When there are no inter-particle interactions, the system undergoes a
spontaneous symmetry breaking, and all the rolling directions θ have the same probability. In this
section we show how this invariance is destroyed by the roller-roller interactions, and establish the
equations of motion of a population of interacting active colloids.

The rollers are a priori coupled by electrostatic and hydrodynamic interactions as well. Their
surface-charge distribution induces a field disturbance δE(r, t ) which may alter the polarization,
and the velocity, of the surrounding particles. Moreover, as it moves a roller induces a nontrivial
fluid motion around it. Therefore, all the rollers are advected by a flow field u∥(r, t ) resulting from
the motion of their neighbors. Generically, for a given distribution of roller position, both δE∥ and
u∥ break the rotational invariance around ẑ thereby yielding orientational couplings between the
active colloids.

2.1 A roller in heterogeneous fields

Let us first consider the simpler problem of a single roller in a non-uniform electric field. Its
charge distribution has other multipolar components on top of the dipole that we considered so
far. However, it can be shown that the dynamics of Pσ is not coupled to the other multipoles, see
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e.g. [62], and obeys

dPσ

dt
+ 1

τ
Pσ =−1

τ
4πϵ0a3



χ∞+ 1

2



(E0 +δE)+Ω×Pσ (1.57)

This modified equation for the in-plane electric dipole is again complemented by a mechanical
equation that relates the velocity of the particle to the forces and torques acting on it. Considering
that the roller is driven both by the Quincke mechanism and by an external fluid-flow field u, we
need to introduce two additional mobility coefficients to generalize Eq. (1.50) [90]:





1
a v
Ω∥
Ωz



=M ·







aFe
∥

Te
∥

Te
z






+





µs ∂z u∥




z=0
µ̃s ẑ×∂z u∥





z=0
0



 (1.58)

We now proceed to a perturbative analysis of Eqs. (1.57) and (1.58). Having dilute systems in
mind, we assume that |δE|/E0 = O (ϵ) and τ



∂z u∥


 = O (ϵ) are small parameters. We will further
justify this approximation scheme at the end of this section. At leading order in ϵ, Eqs. (1.53)–
(1.52) remain valid despite the interactions. Pz , P∥ and the norm of the velocity relax towards their
unperturbed value over the timescale τ. However, as anticipated the orientations of the particles
are now coupled, and evolve on much longer timescales ∼ τ/ϵ. After some tedious algebra, at
leading order in ϵ this slow orientational dynamics takes a rather simple form

dθ

dt
= a

τv0

µ̃sµ̃t

µr
p̂⊥ · ∂z u∥





z=0 −
v0

a

µr

µ̃t



µ⊥
µr

−1



p̂⊥ ·
δE∥
E0

+ aµ̃r

τµr
p̂⊥ · (P ·∇)

δE∥
E0

(1.59)

where p̂⊥ =−sinθ x̂+cosθ ŷ. The three terms on the right-hand-side have a clear physical mean-
ing. First term: when the direction of motion is perpendicular to the flow field, the particle expe-
riences a torque which promotes the reorientation along the local flow direction. The direction p̂
thus rotates until aligning with u∥. Similarly, the second term accounts for the electrostatic cou-
pling: it causes the dipole Pσ

∥ to align with δE∥, and therefore aligns v in the opposite direction,

since (µ⊥
µr

− 1) > 0. The last term stems from the field inhomogeneity. Within our experimental
conditions, it can be checked from the numerical values of the prefactors, that this last term is
subdominant, and we henceforth neglect its contribution.

We have just shown that when a roller feels weak heterogeneities in the electric field and in the
flow field, its propulsion speed is unchanged. Conversely, the slow orientational dynamics of the
particles now explicitly breaks rotational invariance. The roller is prone to align its velocity with
the reverse local electric field and with the local fluid velocity past the planar surface.

2.2 Equation of motion of a population of interacting rollers

We now exploit the above results to establish the equations of motion of a population of inter-
acting rollers. Eq. (1.59) is correct regardless of the origin of the fields’ heterogeneities. Let us begin
with a first important remark: If one now consider a test particle moving in an electric and a flow
field perturbed by its neighbors, we readily infer that the speed of the test particle is unchanged.
In a dilute population of interacting rollers all the particles propel themselves at the same speed,
which is again confirmed by the narrow velocity distributions found experimentally both in the
isotropic and in the polar-liquid phases, Fig. 1.16b and 1.19a in the main text.

To go beyond this result, we derive explicitly the forms of the electrostatic and of the hydrody-
namic interactions between the active colloids. We note ri (t ) (resp. p̂i (t )) the position (resp. the
orientation) of particle i .



54 EMERGENCE OF MACROSCOPIC POLAR PHASES IN A MODEL COLLOIDAL SYSTEM

Figure 1.23 – Electrostatic interactions: a particle rolling in direction p̂ creates a perturbative electric field.
The field lines are plotted in the plane containing all the other particles, which tend to align in the opposite
direction. A– A radial part (proportional to Pz ) results in a repulsive effect, which does not depend on
the orientation of the particle. B– An additional contribution (proportional to P∥) breaks the rotational
symmetry and yields a position-dependent interaction.

a) Electrostatic interactions

We calculate the disturbance fields δE∥(ri , t ) and u∥(ri , t ) induced by all the other rollers j ̸= i .
The electric field induced by the particle j originates from the dipole P j and its electrostatic image
P⋆

j (Fig. 1.22A). Summing these two contributions in a far-field expansion, we find

δE( j )
∥ (ri , t ) = 3

2πϵ0r 3
i j



a

ri j
Pz r̂i j −

a2

r 2
i j

P∥ p̂ j ·


5r̂i j r̂i j − I


+O



a3

r 3
i j



(1.60)

where ri j = ri − r j = ri j r̂i j , and where Pz and P∥ are the components of the total polarization at
order ϵ0. We recall that in an heterogeneous field, the dipolar fouling to the local field causes the
roller to align its velocity in a direction opposite to δE∥. Hence we infer from Eq. (1.60) that the
two-body electrostatic interactions combine two contributions. The first term in Eq. (1.60) is pro-
portional to Pz . Since Pz < 0, this first term corresponds to a repulsive interaction: it favors a roller
velocity vi pointing in the direction opposite to r̂i j The second term on the r.h.s of Eq. (1.60) is
proportional to P∥, and it possibly results in alignment or anti-alignment with p̂ j , depending on
the relative positions between the two rollers. The symmetry of these two electrostatic couplings
is better understood by inspecting the electric-vector field plotted in Fig. 1.23A. So far, we have
implicitly neglected the influence of the upper electrode, which is also a conducting equipotential
surface. The former results are therefore valid only at distance smaller than the separation dis-
tance H between the two electrodes. Experimentally, the channel height is H = 200µm ≫ a. At
larger scales, all the electrostatic couplings are exponentially screened over a characteristic length
H/π.

As a last comment about electrostatic interactions, we note that Eqs. (1.60) and (1.61) confirm
that the perturbative treatment |δE|/E0 =O (ϵ), τ



∂z u∥


=O (ϵ) is self-consistent for dilute systems
as the algebraic electrostatic repulsion prevents the formation of concentrated clusters in a popu-
lation of rollers.

b) Hydrodynamic interactions

A similar approach is used to deal with the hydrodynamic interactions in dilute systems. The
flow field created by the particles is expressed in terms of pointwise hydrodynamic singularities.
ri j < H: Over distances smaller than the channel height H, a Quincke roller is akin to a rotlet
near a no-slip wall. The particle is a pointwise torque-source which induces a complex flow field.
This flow was computed by Blake and Chwang using the image singularity method [29]. ri j > H:
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Figure 1.24 – Hydrodynamic interactions: a particle rolling in direction p̂ creates a flow field. The stream-
lines are plotted in the plane containing all the other particles, which tend to align in flow. A– At distances
smaller than the channel height, the central roller induces a radial shear with anisotropic amplitude, which
globally promotes alignment. B– At distances much larger than the channel height, the non-screened re-
sulting flow has a dipolar symmetry.

At long distances, unlike electrostatic screening, mass conservation gives rise to a non-vanishing
flow having the form of a two-dimensional source dipole, as it was derived by Hackborn for a rotlet
located between two rigid walls [98]. These results provide the shear rate induced by particle j at
the location of the particle i . Keeping only the leading order terms in a a/ri j expansion, we obtain

∂z u( j )
∥







z=0
(ri , t ) =







6µr

aµ̃t
v0

a3

r 3
i j

(p̂ j · r̂i j )r̂i j if ri j < H
π

6µr

Hµ̃t
v0

a2

r 2
i j

p̂ j · (2r̂i j r̂i j − I) at long distance ri j ≫ H
π

(1.61)

The corresponding streamlines are plotted in Fig. 1.24. We showed that the particle velocity reori-
ents along the local direction of ∂z u∥. Therefore, we deduce from Eq. (1.61) and Fig. 1.24A that,
at short distances (ri j ≪ H) the hydrodynamic interactions promote the alignment of the roller
velocities. In addition, for ri j > H, long-range hydrodynamic interactions that algebraically decay
as r−2 have a dipolar symmetry. They can either cause alignment or anti-alignment, depending
on the relative positions between the rollers, Fig. 1.24B.

c) Equations of motion

Assuming that both electrostatic and hydrodynamic interactions are pairwise additive, the
above results can be summarized in a compact form. The particle i moves at constant velocity
v0 on the surface, and undergoes a slow orientational dynamics:

ṙi = v0p̂i (1.62)

θ̇i =
1

τ

∂

∂θi



j ̸=i
Heff(ri − r j , p̂i , p̂ j )+



2Dr ξi (t ) (1.63)

The global interaction potential Heff accounts for all the possible interactions between the rollers
that we have established above. It takes the generic form:

Heff(r, p̂i , p̂ j ) = A(r ) p̂ j · p̂i +B(r ) r̂ · p̂i +C(r ) p̂ j · (2r̂r̂− I) · p̂i (1.64)
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where the coefficients have complex expressions, deduced from well identified microscopic pa-
rameters:

A(r ) = 3µ̃s
a3

r 3
Θ (r )+9



µ⊥
µr

−1



χ∞+ 1

2
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r 5
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B(r ) = 6
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C(r ) = 6µ̃s
a
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r 2
+3µ̃s

a3

r 3
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r 5
Θ (r ) (1.67)

Here, r reduces to a two-dimensional vector parallel to the surface, and Θ accounts for the screen-
ing of finite-range interactions. For sake of simplicity, we henceforth approximate the screening
function by a step function: Θ(r ) = 1 if r ≤ H/π, and Θ(r ) = 0 otherwise. We have also introduced
a noise term in Eq. (1.63) to account for rotational diffusion. ξi (t ) is a Gaussian white noise with
zero mean and unit variance 〈ξi (t )ξ j (t ′)〉 = δ(t − t ′)δi j . Remarkably, the rotational diffusivity Dr is
the only phenomenological coefficient of our theory.

Several comments are in order:

(i) The term A(r ) p̂ j · p̂i is an alignment interaction. It arises both from the short-distance hy-
drodynamic interactions and from part of the electrostatic couplings. They correspond respec-
tively to the first and the second terms in (1.65).

(ii) In the absence of the B and C terms, our model would reduce to the so-called "flying XY
model" introduced phenomenologically in [79]. Nevertheless, additional terms have been ob-
tained from the microscopic analysis.

(iii) The coefficient B(r ) is positive, since χ∞+ 1
2 > 0 and χ∞ < 0 in our experimental system.

It corresponds to the electrostatic repulsive coupling. The last term C(r ) combines electric and
hydrodynamic interactions. Contrary to A(r ), theses additional terms in Eq. (1.64) do not yield
any net alignment interaction in an isotropic population.

(iv) A(r ) and B(r ) are finite-range interactions, being screened on a distance set by the channel
height. Conversely, C(r ) contains the unscreened dipolar hydrodynamic coupling. It is truly long-
ranged since it algebraically decays like r−2 in two dimensions. Note however, that its strength is
small compared to the short-range hydrodynamic effect, since it is proportional to a/H ≪ 1.

(v) The hydrodynamic interactions yield no dependence on E0 for the effective potential Heff,
as the first terms in Eqs. (1.65) and (1.67) show. Although the induced flow field is proportional
to the particle velocity, the norm of the velocity vector v0p̂ is constant. As a consequence, the
resulting orientation rate does not depend on v0, it is thus independent of the external electric
field.

(vi) Finally we note, as we did it in the main text, that the generic relation (1.64) is not spe-
cific to the Quincke rollers. Indeed, this effective potential is expected whenever particles move
at constant velocity, and experience short-range polar alignment. The slow angular variations of
the two-body interactions are described by the first terms of a generic Fourier-expansion in θ. Im-
posing global rotational invariance, the resulting effective potential can be recast into a function
of p̂, leading to the generic equation (1.64). In this approach, the first term accounts for alignment
in a uniform field. The repulsive term proportional to B(r ) corresponds to a local alignment in a
monopolar field, while the last term corresponds to a local alignment in a dipolar field. We stress
that no other lower-order moment is allowed, due to symmetry considerations. Within this frame-
work, the flow induced by model swimmers referred to as pushers and pullers would be coupled
via a higher order quadrupolar term reflecting the symmetry of the flow lines induced by force
dipoles [47].



Article: Emergence of macroscopic directed motion in populations of motile colloids 57

3 From microscopic interactions to macroscopic hydrodynamic equa-
tions

In the following, we link the microscopic interaction rules to the large-scale properties of the
roller population. The microscopic equations of motion have to be coarse-grained, in order to
derive kinetic equations for hydrodynamic fields such as the particle density and the orientation
field. We sumarize here the main steps of this procedure. Using standard kinetic theory methods
(see e.g. [139, 173]), the 2N coupled Langevin equations (1.62)–(1.63) can be transformed into a
Fokker-Planck equation for the N-particle distribution function Ψ(N)(r1...,rN,θ1, ...,θN, t ):

∂Ψ(N)

∂t
+



i
∇i ·



v0p̂iΨ
(N)+



i

∂

∂θi



1

τ



j ̸=i

∂Heff(ri − r j ,θi ,θ j )

∂θi
Ψ(N)



−Dr


i

∂2

∂θ2
i

Ψ(N) = 0 (1.68)

By integrating over N−1 particle positions and directions, we obtain the time evolution of the one-
particle density Ψ(1)(r,θ, t ) ≡ 1

(N−1)!



d2r2...d2rNdθ2...dθN Ψ(N)(r,r2, ...rN,θ,θ2, ...,θN, t ). It is cou-

pled to the two-point distribution function Ψ(2)(r,r′,θ,θ′, t ) ≡
1

(N−2)!



d2r3...d2rNdθ3...dθN Ψ(N)(r,r′,r2, ...rN,θ,θ′,θ3, ...,θN, t ), and obeys:
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∂Heff(r− r′,θ,θ′)

∂θ
Ψ(2)(r,r′,θ,θ′, t )−Dr ∂

2
θΨ

(1) = 0 (1.69)

The latter expression is the first equation of an infinite hierarchy, which couples the n-point distri-
bution Ψ(n) to the (n+1)-point distribution Ψ(n+1). To close this hierarchy of equations, we postu-
late a relation between Ψ(2) and Ψ(1), and introduce a generalized mean-field (i.e. Boltzmann-like)
approximation. We assume that the two-body correlations cancel over a distance as small as one
particle diameter. We also include steric exclusion effects between the colloids:

Ψ(2)(r,r′,θ,θ′, t ) =


0 if |r− r′| < 2a

Ψ(1)(r,θ, t )Ψ(1)(r′,θ′, t ) if |r− r′| ≥ 2a
(1.70)

This ansatz is supported by the absence of positional correlation in the three phases (gas, bands
and polar liquid). Even at the high densities, in the polar-liquid phase, the radial distribution
function of the colloids is very well approximated by a Heaviside function. In addition, we note
that this approximation was successfully used to describe the large scale behavior of driven con-
fined suspensions [69]. We then derive from Eqs. (1.69) and (1.70) a closed equation for the
one-particle distribution function. The hydrodynamic fields that characterize the structure of
the population are defined by the angular Fourier modes of Ψ(1). Defining these modes as
Ψ(1)(r,θ, t ) = 1

2π



k∈Z Ψ̂
(1)
k (r, t )e−i kθ, the three hydrodynamic field that we consider are:

Area fraction: φ(r, t ) ≡πa2


dθΨ(1)(r,θ, t ) = 1

πa2
Ψ̂(1)

0 (1.71)

Velocity polarization: Π(r, t ) ≡ πa2

φ



dθ p̂Ψ(1)(r,θ, t ) = 1

Ψ̂(1)
0



ReΨ̂(1)
1

ImΨ̂(1)
1



(1.72)

Nematic order tensor: Q(r, t ) ≡ πa2

φ



dθ



p̂p̂− 1

2
I



Ψ(1)(r,θ, t ) = 1

2Ψ̂(1)
0



ReΨ̂(1)
2 ImΨ̂(1)

2
ImΨ̂(1)

2 −ReΨ̂(1)
2



(1.73)

In all that follows and in the main text we do not refer anymore to the electrostatic properties of
the colloids. Therefore, for sake of simplicity Π will be simply referred to as the polarization field.

By integrating Eq. (1.69) over θ, we immediately recover the particle-number conservation law:

∂t φ+ v0∇· (φΠ) = 0 (1.74)
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Taking the first angular moment of Eq. (1.69) similarly couples the time evolution of Π to the ne-
matic order tensor Q. We thereby generate a new hierarchy of equations which couples each mo-
ment of the distribution function to higher-order moments [13, 103, 223]. One more closure as-
sumption is required, and it should be carefully defined for each phase that we want to describe
as we will show it below.

4 Transition to collective motion

We first focus on the transition to collective motion. For weakly-polarized phases, two possible
closure schemes have been used in the context of active fluids. Bertin et al. [25, 160] introduced
a scaling ansatz for the amplitude of the angular Fourier components of the one-point function.
This ansatz is expected to be relevant for nearly-isotropic states with small and slow variations
of the hydrodynamic field. Baskaran and Marchetti [13] assume the distribution function to be a
linear functional of its first three moments. This ansatz is obviously exact in the limit of purely
isotropic states. Coming back to our model for the population of rollers, (1.62)–(1.64), we have
checked that these two closure methods lead to the same kinetic equations, and are therefore
strictly equivalent. We also assume that Q is a fast-relaxing variable, following again [25] and [103]
in a fluid mechanics context. Within this approximation scheme, after lengthy algebra, and at
leading order in a/H ≪ 1, we obtain the following equation for the evolution of the orientation
field:

τ∂t (φΠ)+ 3v0α

8Dr
(φΠ ·∇)φΠ=



αφ−τDr −
α2

2τDr
(φ2Π2)



φΠ+κφM∗φΠ− 1

2



τv0 +aβφ


∇φ

(1.75)

− 5v0α

8Dr
(∇·φΠ)φΠ+ 5v0α

16Dr
∇(φ2Π2)+ αβ

2τDr
a(∇φ ·φΠ)φΠ+O (∇2)

where

α≡


r≥2a
dr A(r )

r

a2
= 3

2
µ̃s +

3

8



µ⊥
µr

−1



χ∞+ 1

2





1−
E2

Q

E2
0



(1.76)

β≡


r≥2a
dr B(r )

r 2

a3
= 3



µ⊥
µr

−1











E2
0

E2
Q

−1





χ∞+ 1

2

 E2
Q

E2
0

−χ∞


(1.77)

κ≡ 3µ̃s
a

H
≪ α (1.78)

M∗φΠ(r, t ) ≡ 1

π



|r−r′|≥2a
d2r′

1

|r− r′|2



2
(r− r′)(r− r′)

|r− r′|2
− I



·φ(r′, t )Π(r′, t ) (1.79)

We stress that all the coefficients involved in the above non-local equation have been inferred
from a well controlled microscopic model introduced in the first section of this document. We
only briefly recall their physical origin:

• α> 0 accounts for the alignment interactions, which favor the emergence of polar order. It is
chiefly set by the local hydrodynamic interactions between the rollers (first term on the r.h.s
of Eq. 1.76). It yields the same generic terms as those found in [25] or [79] (when the particle
velocity is constant), which are known to lead to large-scale coherent motion.

• β> 0 stems from the repulsive electrostatic couplings.

• κ gives the strength of the long-range dipolar hydrodynamic interactions, which result in a
non-local operator M. We studied the impact of these truly long-range interactions in [37,
69].
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4.1 Homogeneous states: A Curie-Weiss description of collective motion

Looking for homogeneous phases, i.e. dropping space derivatives, Eq. (1.74) reduces to
φ(r, t ) =φ0, and Eq. (1.75) takes the simple form:

τ∂tΠ=


αφ0 −τDr


Π− α2

2τDr
(φ2

0Π
2)Π (1.80)

Hence, it readily follows from the cubic form of the r.h.s that the system undergoes a mean-field
phase transition to a polar state as φ0 exceeds the critical area fraction:

φc =
τDr

α
(1.81)

At small density φ0 ≤φc , the only stationary state is an isotropic phase with zero mean orientation:
Π0 = 0. The disordered solution becomes unstable above φc , and the system forms a polar ordered
phase with Π0 ̸= 0. At the onset of collective motion, the following bifurcation is expected, see also
Fig. 1.25B:

Π0(φ0) =









2φc

φ0



1− φc

φ0



if φ0 >φc

0 if φ0 ≤φc

(1.82)

Starting from a realistic and accurate microscopic description of the Quincke mechanism at the
single-roller level, we have established the existence of a genuine phase transition to collective
motion in populations of such active colloids. This is one of our main theoretical results.

To further stress on the importance of the hydrodynamic interactions in this collective phe-
nomena, we plot the variations of φc as a function of E0 in Fig. 1.25A. Using microscopic param-
eters corresponding to our experimental setup, we indeed observe that the transition line weakly
depends on the magnitude of external field. As we discussed above, the hydrodynamic polar in-
teractions result in an orientation rate which does not depend on the particle velocity, and thus
does not yield any dependence on E0 for φc . The qualitative agreement with the experimental
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Figure 1.25 – Homogeneous steady states. A– Transition line in the plane of density and external ap-
plied electric field. The variations of the critical area fraction (rescaled by τDr ) are plotted as a function
of E0/EQ. (The distance between the particle and the surface was set to 0.01a, mobility coefficients were
deduced from [89, 90, 130, 148] and dielectric constants were taken from [153]). B– t The symbols denote
the experimental values of the average polarization. The data show a transition to collective motion at
a critical area fraction, as expected from both theoretical curves. They also unveil the formation of polar-
liquid phases (filled symbols) at high area fractions, in agreement with Eq. (1.86). However, for intermediate
densities (open symbols), the experimental data correspond to phase-separated states consisting in bands
propagative in a gaseous apolar phase. The band state is obviously not accounted for by the theoretical
expressions (1.82) and (1.86), which hold for spatially homogeneous systems only. As a consequence, the
theoretical curves are quantitatively relevant for isotropic phases and polar-liquid phases only. However we
stress that the two asymptotic models correctly predict a phase transition to a macroscopically polar state.
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data, which showed no dependence of φc on E0, strengthens the relevance of our theory, further
confirms the central role of the hydrodynamic interactions in the transition to collective motion.

4.2 Linear stability analysis

We now investigate the stability of the isotropic and of the polar homogeneous phases
against spatial fluctuations. We consider plane-wave perturbations: φ(r, t ) = φ0 + δφ̂e i (q·r−ωt )

and Π(r, t ) = Π0x̂ + δΠ̂e i (q·r−ωt ). In the following, we define the wave-vector direction as q ≡
q cosϕq x̂+q sinϕq ŷ.

Weakly-polarized phases We linearize Eqs. (1.74) and (1.75) around a uniform polar state with

density φ0 >φc and orientation Π0 =


2φc

φ0



1− φc

φ0



. The eigenvalues ω(q) cancel a cubic equation

which is solved numerically. We found that the growth rates Im(ω) are invariant upon the trans-
formations ϕq →−ϕq and ϕq → ϕq +π. Without loss of generality, we focus on ϕq ∈



0, π2


. The
growth rates are plotted in Fig. 1.26A as a function of the wave vector direction ϕq. The uniform
polar states are unstable for all wave-vector directions: no homogeneous polar phase exists at the
onset of collective motion. This result is consistent with all the available models that were used
so far to account for the emergence of collective dynamics in active polar matter [136]. The com-
pression modes are eigenmodes of the linear stability problems. They are exponentially amplified
in the polar phase. This mode of destabilization is consistent with the formation of propagative
bands in our experiments for φ0 close but above φc.

Isotropic phases A similar stability analysis is carried out around a uniform and isotropic state
Π0 = 0. Two modes couple the density fluctuations and the orientational perturbations in the lon-

gitudinal direction. The corresponding eigenvalues areω± = i α
2τ (φ0−φc )



1±


1− 2τv0(τv0+βaφ0)
α2(φ0−φc )2 q2



.

We also find a pure transverse orientational mode, with the pulsation ω⊥ = i α
τ (φ0 −φc ). We find

that the isotropic state is linearly stable below the critical density φc . However, it is unstable
against both orientation and compression fluctuations when φ0 > φc . Again, the fact that com-
pression modes are unstable is consistent with the formation of bands from isotropic phases,
which is observed experimentally when φ0 >φc .

Figure 1.26 – Stability of weakly-polar states against linear fluctuations. The growth rates of the three
eigenmodes modes are plotted as a function of the wave-vector direction ϕq, for E0 = 2EQ, φ0 = 1.1φc and
qa = 1

500 . The values of the other parameters are the same as in Fig. 1.25A. Instabilities were observed for
all values of E0, φ0, and qa.
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4.3 Constitutive density-polarization relation in band phases

At the onset of collective motion, homogeneous states are linearly unstable. The experiments
show that large density excitations (bands) steadily propagate in the system. It is difficult to de-
rive analytically the shape of band-density profiles. However, the particle-number conservation
provides a relation between the local density and the local polarization field when density ex-
citations propagate steadily. Looking for propagative solutions of the form φ = φ(x − cbandt ),
Π = Π(x − cbandt )x̂ and integrating Eq. (1.74) over the transverse direction leads to the relation

Π(s) = cband

v0



1− φ∞
φ(s)



(1.83)

where the integration constant φ∞ is the area fraction far away from the band. Note that this ex-
pression does not depend on any closure scheme at the hydrodynamic level. The latter relation
was used to fit the data, Fig. 1.18d in the main text. The agreement with our theoretical prediction
is a direct proof that the bands are stationary structures as it was also demonstrated in [25] for the
numerical Vicsek model. Band states are genuine phases of colloidal active matter.

5 Polar liquid phase

The closure scheme we followed above (a scaling ansatz for the magnitude of the Fourier
modes of Ψ) was widely implemented in the previous studies on active matter. We stress that
this scheme is not relevant any more for strongly polarized phases. In particular, it results in an
unexpected decay of the mean orientation Π0 with the density, as shown in Fig. 1.25B (dashed
line). This approximation does not support the observation of stable homogeneous polar liquids,
in strong contrast with our experimental findings. This may not be surprising, since the link it
provides between Q, φ, and Π was devised for weakly-organized phases, an approximation which
obviously breaks down in the polar-liquid phase.

In order to investigate the properties of the polar liquids, we introduce a new closure approx-
imation. When the angular probability distribution Ψ(r,θ, t ) is peaked, the high-order cumulants
of the generating function can be neglected. Then a simple assumption, which becomes exact
in the limit of perfectly polar order, is to approximate the angular distribution by the wrapped
normal distribution, the mean and the variance of which is determined in a self-consistent fash-
ion. The "Gaussian" ansatz imposes the following relation between the angular Fourier compo-
nents Ψ̂k of the distribution function: Ψ̂2 = |Ψ̂1|2Ψ̂1Ψ̂1/Ψ̂3

0. Equivalently, it can also be written as
Q =Π2ΠΠ− 1

2Π
4 I, where we have dropped the implicit dependence in r, t . With this new closure

relation, neglecting higher-order terms in a
H , the dynamics of the orientation field is obtained from

Eqs. (1.69)–(1.70). Again after some lengthy algebra we obtain:

τ∂t Π+τv0Π
2(Π ·∇)Π=



α(1−Π4)φ−τDr


Π+κ


(1+Π4)I−2Π2ΠΠ


·M∗φΠ (1.84)

− τv0

2φ
(1−Π4)∇φ+ τv0

φ
(1−Π2)(Π ·∇φ)Π+τv0(1−Π2)(∇·Π)Π

+τv0(Π2I−ΠΠ) ·∇(Π2)− 1

2
βa



(1+Π4)I−2Π2ΠΠ


·∇φ

+ 1

2
γa2 

(1+Π4)I−2Π2ΠΠ


·∇2(2I−M) ·φΠ+O (∇3)

where

γ≡ µ̃s
3H

4πa
(1.85)



62 EMERGENCE OF MACROSCOPIC POLAR PHASES IN A MODEL COLLOIDAL SYSTEM

5.1 Transition to collective motion: Curie-Weiss description

Even though we built this novel closure scheme to address the properties of the polar liquid, it
is worth noting that Eq. (1.84) also accounts for the transition to collective motion. Looking again
at homogeneous phases, the relation between the average polarization Π0 and the average area
fraction φ0 follows from Eq. (1.84):

Π0(φ0) =


1− φc

φ0

1/4

(1.86)

These variations are plotted in Fig. 1.25B (full line). As expected, Π0 plateaus to 1 in the limit of
highly concentrated suspensions. More surprisingly, even though the closure scheme is a priori
valid only for ordered phases, the above relation predicts a transition to collective motion at the
same critical value φc as the one found in Eq. (1.80). Therefore, we can reasonably expect Eq. (1.84)
to be accurate over a wide range of area fractions. However, the 1/4 scaling at the onset of collective
motion is not expected to be valid. Firstly, the usual closure relation, that we used in the previous
section, to account for weakly polarized states is not compatible with the Gaussian fluctuation
hypothesis. In addition, and more importantly, we know from the experiments that this scaling
inferred from a Curie-Weiss approximation cannot be probed as the system phase separates so
that extended ordered bands cruise through an isotropic gaseous phase. This phase separation is
reflected by a mere qualitative agreement between the theory and the measure of the polarization
curve shown in Fig. 1.25B.

5.2 Linear stability analysis

Following the same approach as in section IV 4.2, we now investigate the linear stability of
homogeneous polar phases, with respect to spatial fluctuations, for densities φ0 ≫ φc . The
mean polarization Π0 is given by Eq. (1.86). We consider plane-wave perturbations of the form
φ(r, t ) = φ0 +δφ̂e i (q·r−ωt ) and Π(r, t ) = Π0x̂+δΠ̂e i (q·r−ωt ). The wave-vector direction is defined
as q ≡ q cosϕq x̂+q sinϕq ŷ. Performing a conventional linear stability analysis of Eqs. (1.74) and

(1.84), and restraining ourselves to terms at zeroth order in φ0

φc
, we find that the dispersions take

the form ω±(q) ≡ω′
±(q)+ i ω′′(q). Their explicit expressions are:

τω′
± = τv0q cosϕq ±





F2
1 +F2

2 +F1 (1.87)

τω′′
± = F0 ±





F2
1 +F2

2 −F1 (1.88)

where F0 = κφ0 cos(2ϕq) − γ
2 a2φ0



2−cos(2ϕq)


q2, F1 = β
2 aτv0φ0q2 sin2ϕq − 1

2 F2
0 and F2 =

−2τv0φ0q


κ+ γ
2 a2q2



sin2ϕq cosϕq. We note again that the above eigenvalues are invariant upon
the transformations ϕq →−ϕq and ϕq →ϕq+π. Without loss of generality, we focus on ϕq ∈



0, π2


.
The growth rates are plotted in Fig. 1.27A. Depending on the direction ϕq, we find positive or neg-
ative growth rates, leading to unstable or stable eigenmodes, respectively.

• Splay modes To further clarify the stabilization/destabilization mechanisms, we expand
Eqs. (1.87) and (1.88) in the small wave-vector limit. For ϕq > π/4, the eigenvalues follow
simple scaling laws: τω′

± = O (qa), τω′′
+ = O (q2a2) and τω′′

− = 2κφ0 cos(2ϕq)+O (q2a2). Im-
portantly, we find that the fastest rate τω′′

− scales as τω′′
− =−2κφ0+O ((qa)2). It corresponds

to a pure splay mode (ϕq = π/2). Since ω′′
− is proportional to κ and negative, splay fluctu-

ations are stabilized by the long-range hydrodynamic interactions. We also emphasize that
at leading order in qa the relaxation rate |ω′′

−| does not depend on the wave-vector, i.e. the
stabilization of the corresponding splay mode is generic, for the very same reason as the one
we discussed in [37]. This important observation plays a central role in the suppression of
giant density fluctuations, as we discuss it in the next section.
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Figure 1.27 – Stability of strongly polarized states. A– The growth rates ω′′
± are plotted as a function of

the wave-vector direction ϕq Blue line: τω′′
−, red dashed line: τω′′

+ (φ0 = 10φc , qa = 1
500 , E0 = 2EQ, the

values of the other parameters are the same as in Fig. 1.25A). B– Magnitude of the pure compression mode
ϕq = 0 plotted versus the average area fraction of rollers. The repulsive electrostatic interactions result in a
restabilization of the compression waves at high area fractions.

• Bending modes For ϕq < π/4, a similar small-q expansion yields τω′
± = O (qa), τω′′

+ =
2κφ0 cos(2ϕq)+O (q2a2) and τω′′

− = O (q2a2). Fluctuations having the form of bend modes
(ϕq = 0) are exponentially amplified. However, as obviously expected transverse confine-
ment eliminates this instability. More details about confinement-induced stabilization will
be provided in a forthcoming detailed paper.

• Compression mode At leading order in


φ0

φc



, the pure-compression mode corresponding to

ϕq = 0, and δΠx ̸= 0 is marginally stable, i.e. compression fluctuations are merely advected
at a velocity v0. Investigating their linear stability requires to expand the equations of motion

up to order


φ0

φc

2
. This yields the following growth rate:

τω′′
− = 3(τv0)2

64αφ0



φc

φ0

2

q2 − β

8α
aτv0

φc

φ0



1+ φc

φ0



q2 +o(q2a2) (1.89)

It is plotted as a function of φ0 in Fig. 1.27B. The compression mode is unstable below a
critical area fraction, and becomes stable at higher densities. To gain more physical insight
into this bifurcation mechanism, we propose the following qualitative explanation. Below a
critical area fraction (∼ 10φc within our experimental conditions) the first term of the above
expression leads to a positive growth rate. It originates from the alignment interactions,
which destabilize the compression fluctuations. When the density locally increases, align-
ment is enhanced and the local polar order increases accordingly: δΠx > 0. As a conse-
quence, concentrated regions move coherently as a "rigid body" through a less concentrated
background. As a result this "coherent pack "captures even more particles due to the align-
ment interactions with the particles that collide it. The initial density fluctuations are thus
amplified. This is consistent with the weakly polarized state being unstable near the tran-
sition to collective motion, as we found in section 4. However, the electrostatic repulsion,
proportional to β, impedes the formation of concentrated regions. It results in a second term
which stabilizes polar liquid phases above a critical density, see Fig. 1.27B. Again this predic-
tion is in good agreement with our experimental observations. We find that the band phase
evolves into an homogeneous polar-liquid state as the roller density is sufficiently increased,
see Fig. 1.17e in the main text.

To close this section, it is worth noting that hydrodynamics was shown to destroy polar order-
ing in several models of active suspensions [136, 183, 184]. These papers focus on 3D suspensions
of microswimers. The flow disturbance induced by the swimmer on the surrounding fluid is mod-
eled as a force dipole singularity (in the far field). Moreover, the swimmers reorient along the
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principal direction of the local elongation of the flow, and rotate due to the local vorticity (Jeffery’s
orbits). The resulting equations of motion for the density and the polarization fields are linearly
unstable around a homogeneous polar state. The hydrodynamic dipoles result in a generic sup-
pression of polar ordering (the growth rate of the instability does not depend on the wavelength
at long-enougth wavelengths) [183, 184]. However, in our system the propulsion mechanism, the
rolling of the colloids, strongly involve the lower surface. As they roll, the colloids induce far-field
perturbations that have the symmetry of a mirrored rotlet. The magnitude of this singular per-
turbation to the flow can have a non-zero value because momentum is continuously exchanged
between the fluid and the confining walls. In addition, the coupling to the local flow field also
differs from the one considered for unbounded suspensions. As shown in the previous sections,
the rollers align with the local flow on the bottom-surface. Both the symmetry of the far-field flow,
and the local coupling to the fluid flow result in an alignment interaction between the colloidal
rollers. The emergence of polar order from an isotropic population is a direct consequence of this
microscopic polar interaction. Therefore the qualitative consequences of hydrodynamic interac-
tions on the large-scale behavior of active fluids strongly depend on the microscopic mechanism
responsible for self-propulsion.

5.3 Density fluctuations

We now turn to the question of density-density correlations in the polar liquid phase. Most of
all the previous theoretical studies on polar active matter have reported the emergence of "giant
density fluctuations" in polar liquids. Giant density fluctuations were believed to be a robust and
generic feature of active polar liquids [136, 212]. Although our model includes classical alignment
interactions, it also contains additional repulsive and dipolar couplings: among them, the long-
range hydrodynamic interactions destroy the giant density fluctuations, as we show below.

To account for the density fluctuations, we employ a fluctuating-hydrodynamic description.
We add a conserved white noise term ∇ · ξφ to Eq. (1.74) and a non-conserved Gaussian noise
ξΠŷ to Eq. (1.84), with zero mean and correlations



ξφm (r, t )ξφn (r′, t ′)


≡ 2Dφδm,nδ(r− r′)δ(t − t ′),


ξΠ(r, t )ξΠ(r′, t ′)


≡ 2DΠδ(r−r′)δ(t−t ′),


ξφm (r, t )ξΠ(r′, t ′)


≡ 0. The correlation function


|δφq,ω|2


is calculated in Fourier space within a linear response approximation. The static structure factor
for rollers enclosed in a region of area A is defined as:

S(q) ≡ 1

πa2φ0A

+∞

−∞

dω

2π



|δφq,ω|2


(1.90)

Computing the field amplitude that linearly responds to the noise sources, and averaging over the
noise realizations we obtain a rather complex expression for the static structure factor of the polar
liquid:

S(q) = 16π2τ

a2φ0A



v2
0φ

2
0 sin2ϕq DΠ+4κ2φ2

0 cos2(2ϕq)Dφ



q2I1(q)+Dφq2I2(q)


(1.91)

where

I1(q) =
|ω′′

+|+ |ω′′
−|

2τ3|ω′′
+ω

′′
−|



(ω′
+−ω′

−)2 + (|ω′′
+|+ |ω′′

−|)2
 (1.92)

I2(q) =
|ω′′

+|ω′
−

2 +|ω′′
−|ω′

+
2 +|ω′′

+ω
′′
−|(|ω′′

+|+ |ω′′
−|)

2τ|ω′′
+ω

′′
−|



(ω′
+−ω′

−)2 + (|ω′′
+|+ |ω′′

−|)2
 (1.93)

where ω′
± and ω′′

± are given by Eqs. (1.87) and (1.88). In the small q limit, at leading order we
readily find that the structure factor behaves as S(q) =O ((qa)0). The density fluctuations saturate
as q → 0. In this limit, the structure factor quantifies the large-scale density fluctuations: S(q →
0) = (∆N)2

〈N〉 , where 〈N〉 is the mean particle number and (∆N)2 is the variance of the particle number
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N. It then follows from the saturation of S that the density fluctuations are normal

∆N

〈N〉
∼ 1

p
〈N〉

(1.94)

In a suspension of Quincke rolling particles, the large-scale number fluctuations follow the same
scaling law as in equilibrium systems. Contrary to most of active systems, there are no giant den-
sity fluctuations. This unusual behavior stems from the generic stabilization of splay disturbances
ω′′

−(q) = O (1) by the long-range dipolar hydrodynamic interactions, which decay like r−2 in two
dimensions [37].

Importantly, the previous asymptotic expansions are valid in the limit of small wave vectors
qH ≪ 1 (we recall that H is the channel height). The long-range dipolar interactions, that govern
the density fluctuations at large scales, are subdominant at distances smaller than H (see sec-
tion 2). As a consequence, deviations from the above prediction are expected below a crossover
length of order H. In the case of splay fluctuations, i.e. ϕq = π/2, the small-q expansion yields a
simple analytic expression for the structure factor at all qs:

S(q ŷ) = S0


1+ζq2+O (q3a3) (1.95)

where S0 = 8π2v0

A βa3



DΠ+ 4κ2

v2
0

Dφ



and ζ = βaτv0

4κ2φ2
0



φ0 +
2κDφ

4κ2Dφ+v2
0 DΠ



− 3γ
2κa2. The structure factor there-

fore deviates from its large-scale behavior when q ≳ |ζ|−1/2. From the expressions of the coeffi-
cients β, κ, γ that we deduced from the microscopic model of the roller propulsion and interaction
mechanisms, Eqs. (1.77), (1.78) and (1.85), we indeed find that S(q) deviates from a constant value
and decays algebraically as q exceeds H−1.

A direct comparison with the experimental data is difficult to obtain in stadium-shape poten-
tials due to the small size of our ITO coated slides which prevent the exploration of very small q
modes. However, we were able to quantify the particle-number fluctuations in real space. The
data unambiguously show that the number fluctuations are normal ∆N ∼

p
〈N〉, as expected from

Eq. (1.94).
As a final remark we stress that the hydrodynamic interactions between the rollers play a cur-

tail role in determining the large-scale behavior of the populations of active colloids. They provide
the very mechanism that allows the rollers to sense the orientation of their neighbors and to pro-
mote local alignment of their velocities. This microscopic alignment interaction was shown to
yield very large-scale orientational order. Furthermore the hydrodynamic couplings also stabilize
the density fluctuations of these unique active polar liquids by suppressing the splay fluctuations
of the local polarization field that are generically responsible for the usual giant density fluctua-
tions of active matter [189].
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Coherent vortical motion has been reported in a wide variety of popu-
lations including living organisms (bacteria, fishes, human crowds) and syn-
thetic active matter (shaken grains, mixtures of biopolymers), yet a unified de-
scription of the formation and structure of this pattern remains lacking. In
this article we report the self-organization of motile colloids into a macro-
scopic steadily rotating vortex. Combining physical experiments and numer-
ical simulations, we elucidate this collective behavior. We demonstrate that the
emergent-vortex structure lives on the verge of a phase separation, and single
out the very ingredient responsible for this state of polar active matter. Build-
ing on this observation, we establish a continuum theory and lay out a strong
foundation for the description of vortical collective motion in a broad class of
motile populations constrained by geometrical boundaries.

Building upon the pioneering work of Vicsek et al. [215], physicists, mathematicians and biol-
ogists have contemplated the self-organization of living-organism groups into flocks as an emer-
gent process stemming from simple interaction rules at the individual level [136, 212, 216]. This
idea has been supported by quantitative trajectory analysis in animal groups [20, 44, 82], together
with a vast number of numerical and theoretical models [136, 216], and more recently by the ob-
servations of flocking behavior in ensembles of non-living motile particles such as shaken grains,
active colloids, and mixtures of biofilaments and molecular motors [36, 67, 122, 190]. From a
physicist’s perspective, these various systems are considered as different instances of polar active
matter, which encompasses any ensemble of motile bodies endowed with local velocity-alignment
interactions. The current paradigm for flocking physics is the following. Active particles are per-
sistent random walkers, which when dilute form a homogeneous isotropic gas. Upon increasing
density, collective motion emerges in the form of spatially localized swarms that may cruise in a
sea of randomly moving particles; further increasing density, a homogeneous polar liquid forms
and spontaneously flows along a well-defined direction [92, 211, 215]. This picture is the outcome
of experiments, simulations and theories mostly performed in unbounded or periodic domains.

Beyond this picture, significant attention has been devoted over the last five years to confined
active matter [60, 67, 84, 94, 115, 120, 122, 133, 145, 193, 216, 217, 222, 225]. Confined active
particles have consistently, yet not systematically, been reported to self-organize into vortex-like
structures. However, unlike for our understanding of flocking, we are still lacking a unified pic-
ture to account for the emergence and structure of such vortex patterns. This situation is mostly
due to the extreme diversity in the nature and symmetries of the interactions between the active
particles that have been hitherto considered. Do active vortices exist only in finite-size systems
as in the case of bacterial suspensions [222], which lose this beautiful order and display intermit-
tent turbulent dynamics [220] when unconfined? What are the necessary interactions required to
observe and/or engineer bona fide stationary swirling states of active matter?
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In this paper, we answer these questions by considering the impact of geometrical boundaries
on the collective behavior of motile particles endowed with velocity-alignment interactions. Com-
bining quantitative experiments on motile colloids, numerical simulations and analytical theory,
we elucidate the phase behavior of polar active matter restrained by geometrical boundaries. We
use colloidal rollers which, unlike most of the available biological self-propelled bodies, inter-
act via well established dynamical interactions [36]. We first exploit this unique model system to
show that above a critical concentration populations of motile colloids undergo a non-equilibrium
phase transition from an isotropic gaseous state to a novel ordered state where the entire popu-
lation self-organizes into a single heterogeneous steadily rotating vortex. This self-organization is
not the consequence of the finite system size. Rather, this emergent vortex is a genuine state of po-
lar active matter lying on the verge of a macroscopic phase separation. This novel state is the only
ordered phase found when unidirectional directed motion is hindered by convex isotropic bound-
aries. We then demonstrate theoretically that a competition between alignment, repulsive inter-
actions and confinement is necessary to yield large-scale vortical motion in ensembles of motile
particles interacting via alignment interactions, thereby extending the relevance of our findings to
a broad class of active materials.

1 Experiments

The experimental setup is fully described in the Materials and Methods section and in
Figs. 1.28a and 1.28b. Briefly, we use colloidal rollers powered by the Quincke1896 electrorotation
mechanism as thoroughly explained in [36]. An electric field E0 is applied to insulating colloidal
beads immersed in a conducting fluid. Above a critical field amplitude EQ, the symmetry of the
electric charge distribution at the bead surface is spontaneously broken. As a result, a net electric
torque acts on the beads causing them to rotate at a constant rate around a random axis transverse
to the electric field [138, 153, 165]. When the colloids sediment, or are electrophoretically driven,
onto one of the two electrodes, rotation is converted into a net rolling motion along a random
direction. Here, we use PMMA spheres of radius a = 2.4µm immersed in a hexadecane solution.

As sketched in Fig. 1.28a, the colloids are handled and observed in a microfluidic device made
of double-sided scotch tape and of two ITO-coated glass slides. The ITO layers are used to apply
a uniform DC field E0 = E0ẑ in the z-direction, with E0 = 1.6V/µm (E0 = 1.1EQ). Importantly, the

b

Scotch tape

Glass slide (ITO coated)

PMMA colloids

a

Figure 1.28 – Experimental setup. a– Sketch of the setup. 5-micron PMMA colloids roll in a microchannel
made of two ITO-coated glass slides assembled with double-sided scotch tape. An electrokinetic flow con-
fines the rollers at the center of the device in a circular chamber of radius Rc. b– Superimposed fluorescence
pictures of a dilute ensemble of rollers (E0/EQ = 1.1, φ0 = 6×10−3). The colloids propel only inside a circular
disc of radius Rc = 1mm and follow persistent random walks.
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electric current is nonzero solely in a disc-shaped chamber at the center of the main channel. As
exemplified by the trajectories shown in Fig. 1.28b, Quincke1896 rotation is hence restrained to
this circular region in which the rollers are trapped. We henceforth characterize the collective dy-
namics of the roller population for increasing values of the colloid packing fraction φ0.

1.1 Individual self-propulsion in confinement

For area fractions smaller than φ⋆ = 10−2, the ensemble of rollers uniformly explores the cir-
cular confinement as illustrated by the flat profile of the local packing fraction averaged along
the azimuthal direction φ(r ) in Fig. 1.29a. The rollers undergo uncorrelated persistent random
walks as demonstrated in Figs. 1.29b and 1.29c. The probability distribution of the roller ve-
locities is isotropic and sharply peaked on the typical speed v0 = 493± 17µm.s−1. In addition,
the velocity autocorrelation function decays exponentially at short time as expected from a sim-
ple model of self-propelled particles having a constant speed v0 and undergoing rotational dif-
fusion with a rotational diffusivity D−1 = 0.31 ± 0.02s that hardly depends on the area fraction
(see the Supplementary Information). These quantities correspond to a persistence length of
ℓp = v0/D = 160µm that is about a decade smaller than the confinement radius Rc used in our
experiments: 0.9mm < Rc < 1.8mm.

At long time, due to the collisions on the disc boundary, the velocity autocorrelation function
sharply drops to 0 as seen in Fig. 1.29c. Unlike swimming cells [22, 217], self-propelled grains [67,
84, 120] or autophoretic colloids [203], dilute ensembles of rollers do not accumulate at the bound-
ary. Instead, they bounce off the walls of this virtual box as shown in a close-up of a typical roller
trajectory in Fig. 1.29d. As a result, the outer region of the circular chamber is depleted, and the
local packing fraction vanishes as r goes to Rc, Fig. 1.29a. The repulsion from the edges of the
circular hole in the microchannel stems from another electrohydrodynamic phenomenon [226].
When an electric field is applied, a toroidal flow sketched in Fig. 1.28a is osmotically induced by
the transport of the electric charges at the surface of the insulating adhesive films. Consequently,
a net inward flow sets in at the vicinity of the bottom electrode. As the colloidal rollers are prone
to reorient in the direction of the local fluid velocity [36], this vortical flow repels the rollers at a
distance typically set by the channel height H while leaving unchanged the colloid trajectories in
the center of the disc. This electrokinetic flow will be thoroughly characterized elsewhere.

Figure 1.29 – Dynamics of an isolated colloidal roller. a– Local packing fraction φ(r ), averaged over the
azimuthal angle φ, plotted as a function of the radial distance. The dashed line indicates the radius of the
circular chamber. b– Probability distribution function of the roller velocities measured from the individual
tracking of the trajectories. c– Autocorrelation of the roller velocity 〈vi (t ) · vi (t +T)〉 plotted as a function
of v0T for packing fractions ranging from φ0 = 6× 10−3 to φ0 = 10−2. Full line: best exponential fit. d–
Superimposed trajectories of colloidal rollers bouncing off the edge of the confining circle. Time interval:
5.3 ms. (E0/EQ = 1.1, φ0 = 6 × 10−3). Same parameters for the four panels: Rc = 1.4mm, E0/EQ = 1.1,
φ0 = 6×10−3.
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1.2 Collective motion in confinement

As the area fraction is increased above φ⋆, collective motion emerges spontaneously at the
entire population level. When the electric field is applied, large groups of rollers akin to the band-
shaped swarms reported in [36] form and collide. However, unlike what was observed in periodic
geometries, the colloidal swarms are merely transient and ultimately self-organize into a single
vortex pattern spanning the entire confining disc as shown in Fig. 1.30a. Once formed, the vor-
tex is very robust, rotates steadily and retains an axisymmetric shape. In order to go beyond this
qualitative picture, we measured the local colloid velocity field v(r, t ) and use it to define the po-
larization field Π(r, t ) ≡ v/v0, which quantifies local orientational ordering. The spatial average of
Π vanishes when a coherent vortex forms, therefore we use its projection Πϕ ≡ 〈Π · êϕ〉r,t along the
azimuthal direction as a macroscopic order parameter to probe the transition from an isotropic
gas to a polar-vortex state. As illustrated in Fig. 1.30b, Πϕ(φ0) displays a sharp bifurcation from
an isotropic state with Πϕ = 0 to a globally ordered state with equal probability for left- and right-
handed vortices above φ0 =φ⋆. Furthermore, Fig. 1.30b demonstrates that this bifurcation curve
does not depend on the confinement radius Rc. The vortex pattern is spatially heterogeneous. The
order parameter and density fields averaged over time are displayed in Figs. 1.30c and 1.30d, re-
spectively. At first glance, the system looks phase-separated: a dense and ordered polar-liquid ring
where all the colloids cruise along the azimuthal direction encloses a dilute and weakly ordered
core at the center of the disc. We shall also stress that regardless of the average packing fraction,
the packing fraction in the vortex core is measured to be very close to φ⋆, the average concen-

Figure 1.30 – Collective dynamics: experiments. a– Snapshot of a vortex of rollers. The dark dots show the
position of one half of the ensemble of rollers. The blue vectors represent their instantaneous speed (Rc =
1.35mm, φ0 = 5×10−2). b– Average polarization plotted versus the average packing fraction for different
confinement radii. Open symbols: experiments. Full line: best fit from the theory. Filled circles: numerical
simulations (b = 3a, Rc = 1mm). c– Time-averaged polarization field (Rc = 1.35mm, φ0 = 5×10−2). d– Time
average of the local packing fraction (Rc = 1.35mm, φ0 = 5×10−2). e– Time-averaged packing fraction at
the center of the disc, normalized by φ⋆ and plotted versus the average packing fraction. Error bars: 1SD.
f– Fraction of the disc where Πϕ > 0.5 versus the average packing fraction. Open symbols: experiments.
Full line: theoretical prediction with no free fitting parameter. Filled circles: numerical simulations (b = 3a,
Rc = 1mm). g– Radial density profiles plotted as a function of the distance to the disc center r . All the
experiments correspond to φ0 = 0.032± 0.002, error bars: 1σ. h– Open symbols: same data as in g. The
radial density profiles are rescaled by φ⋆ and plotted versus the rescaled distance to the center r /Rc. All the
profiles are seen to collapse on a single master curve. Filled symbols: Numerical simulations. Solid line:
theoretical prediction. All the data correspond to E0/EQ = 1.1.
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tration below which the population is in a gaseous state, see Fig. 1.30e. This phase-separation
picture is consistent with the variations of the area occupied by the ordered outer ring, Aring, for
different confinement radii Rc, as shown in Fig. 1.30e. We define Aring as the area of the region
where the order parameter exceeds 0.5, and none of the results reported below depend on this ar-
bitrary choice for the definition of the outer-ring region. Aring also bifurcates asφ0 exceedsφ⋆, and
increases with Rc. Remarkably, all the bifurcation curves collapse on a single master curve when
Aring is rescaled by the overall confinement area πR2

c, Fig. 1.30f. In other words, the strongly polar-
ized outer ring always occupies the same area fraction irrespective of the system size, as would a
molecular liquid coexisting with a vapor phase at equilibrium. However, if the system were gen-
uinely phase-separated, one should be able to define an interface between the dense outer ring
and the dilute inner core, and this interface should have a constant width. This requirement is not
borne out by our measurements. The shape of the radial density profiles of the rollers in Fig. 1.30g
indeed makes it difficult to unambiguously define two homogeneous phases separated by a clear
interface. Repeating the same experiments in discs of increasing radii, we found that the den-
sity profiles are self-similar, Fig. 1.30h. The width of the region separating the strongly polarized
outer ring from the inner core scales with the system size, which is the only characteristic scale
of the vortex patterns. The colloidal vortices therefore correspond to a monophasic yet spatially
heterogeneous liquid state.

In order to elucidate the physical mechanisms responsible for this intriguing structure, we now
introduce a theoretical model that we solve both numerically and analytically.

2 Numerical simulations

The Quincke1896 rollers are electrically powered and move in a viscous fluid, and hence inter-
act at a distance both hydrodynamically and electrostatically. In [36], starting from the Stokes and
Maxwell equations, we established the equations of motion of a dilute ensemble of Quincke1896
rollers within a pairwise additive approximation. When isolated, the i th roller located at ri moves
at a speed v0 along the direction p̂i = (cosθi , sinθi ) opposite to the in-plane component of the
electrostatic dipole responsible for Quincke1896 rotation [36]. When interacting via contact and
electrostatic repulsive forces, the roller velocity and orientation are related by:

∂t ri = v0p̂i −∂ri



j ̸=i
Hrep(ri − r j ). (1.96)

Inertia is obviously ignored, and for the sake of simplicity we model all the central forces acting
on the colloids as an effective hard-disc exclusion Hrep of range b. In addition, θi follows an
overdamped dynamics in an effective angular potential capturing both the electrostatic and hy-
drodynamic torques acting on the colloids [36]:

∂tθi (t ) = ∂θi



j ̸=i
H (ri − r j ; p̂i , p̂ j )+ξi . (1.97)

The ξi ’s account for rotational diffusion of the rollers. They are uncorrelated white noise variables
with zero mean and variance 〈ξi (t )ξ j (t ′)〉 = 2Dδ(t − t ′)δi j . The effective potential in Eq. (1.97) is
composed of three terms with clear physical interpretations:

H (r, p̂i , p̂ j ) = A(r ) p̂ j · p̂i +B(r ) r̂ · p̂i (1.98)

+C(r ) p̂ j · (2r̂r̂− I) · p̂i ,

where r̂ = r/r . The symmetry of these interactions is not specific to colloidal rollers and could
have been anticipated phenomenologically exploiting both the translational invariance and the
polar symmetry of the surface-charge distribution of the colloids [42]. The first term promotes
alignment and is such that the effective potential is minimized when interacting rollers propel
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Figure 1.31 – Collective dynamics: numerical simulations. a– The numerical phase diagram of the con-
fined population is composed of three regions: isotropic gas (low φ0, small b), swarm coexisting with a
gaseous phase (intermediate φ0 and b), and vortex state (high φ0 and b). Rc = 0.5mm. b– Snapshot of a
vortex state. Numerical simulation for φ0 = 0.1, and b = 5a. c– Snapshot of a swarm. Numerical simulation
for φ0 = 4.5× 10−2, and b = 2a. d– Variation of the density correlation length as a function of Rc. Above
Rc = 1mm, ξ plateaus and a vortex is reached (φ0 = 3×10−2, b = 3a). e– Four numerical snapshots of rollers
interacting via: alignment interactions only (A), alignment interactions and repulsive torques (A+B, where
the magnitude of B is 5 times the experimental value), alignment and excluded volume interactions (A+b,
where the repulsion distance is b = 5a), alignment and the C-term in Eq. (1.98) (A+C). Polarized vortices
emerge solely when repulsive couplings exist (A+B and A+b).

along the same direction. A(r ) is positive, decays exponentially with r /H, and results both from
hydrodynamic and electrostatic interactions. The second term gives rise to repulsive torques, and
is minimized when the roller orientation points away from its interacting neighbor. B(r ) also de-
cays exponentially with r /H but solely stems from electrostatics. The third term has a less intuitive
meaning, and promotes the alignment of p̂i along a dipolar field oriented along p̂ j . This term is a
combination of hydrodynamic and electrostatic interactions, and includes a long-ranged contri-
bution.

The functions A(r ), B(r ), and C(r ) are provided in the Supplementary Information As it turns
out, all the physical parameters (roller velocity, field amplitude, fluid viscosity, etc.) that are
needed to compute their exact expressions have been measured, or estimated up to logarithmic
corrections, see the Supplementary Information. We are then left with a model having a single
free parameter that is the range, b, of the repulsive forces between colloids. We numerically solved
this model in circular simulation boxes of radius Rc with reflecting boundary conditions using an
explicit Euler scheme with adaptive time-stepping. All the numerical results are discussed using
the same units as in the experiments to facilitate quantitative comparisons.

The simulations revealed a richer phenomenology than the experiments, as captured by the
phase diagram in Fig. 1.31a corresponding to Rc = 0.5mm. By systematically varying the range
of the repulsive forces and the particle concentration, we found that the (φ0,b) plane is typically
divided into three regions. At small packing fractions, the particles hardly interact and form an
isotropic gaseous phase. At high fractions, after transient dynamics strikingly similar to that ob-
served in the experiments, the rollers self-organize into a macroscopic vortex pattern, Fig. 1.31b.
However, at intermediate densities, we found that collective motion emerges in the form of a
macroscopic swarm cruising around the circular box through an ensemble of randomly moving
particles, Fig. 1.31c. These swarms are akin to the band patterns consistently reported for polar
active particles at the onset of collective motion in periodic domains [36, 92]. This seeming con-
flict between our experimental and numerical findings is solved by looking at the variations of
the swarm length ξs with the confinement radius Rc in Fig. 1.31d. We define ξs as the correlation
length of the density fluctuations in the azimuthal direction. The angular extension of the swarms
ξs/Rc increases linearly with the box radius. Therefore, for a given value of the interaction param-
eters, there exists a critical box size above which the population undergoes a direct transition from
a gaseous to an axisymmetric vortex state. For b = 3a, which was measured to be the typical in-
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terparticle distance in the polar liquid state [36], this critical confinement is Rc = 1mm. This value
is close to the smallest radius accessible in our experiments where localized swarms were never
observed, thereby solving the apparent discrepancy with the experimental phenomenology.

More quantitatively, we systematically compare our numerical and experimental measure-
ments in Figs. 1.30b and 1.30c for Rc = 1mm. Even though a number of simplifications were
needed to establish Eqs. (1.96), (1.97) and (1.98) [36], the simulations account very well for the
sharp bifurcation yielding the vortex patterns as well as their self-similar structure. This last point
is proven quantitatively in Fig. 1.30h, which demonstrates that the concentration increases away
from the vortex core, where φ(r = 0) =φ⋆, over a scale that is solely set by the confinement radius.
We shall note however that the numerical simulations underestimate the critical packing fraction
φ⋆ at which collective motion occurs, which is not really surprising given the number of approx-
imations required to establish the interaction parameters in the equations of motion Eq. (1.98).
We unambiguously conclude from this set of results that Eqs. (1.96), (1.97) and (1.98) include all
the physical ingredients that chiefly dictate the collective dynamics of the colloidal rollers. We
now exploit the opportunity offered by the numerics to turn on and off the four roller-roller in-
teractions one at a time, namely the alignment torque, A, the repulsion torque B and force b, and
the dipolar coupling C. Snapshots of the resulting particle distributions are reported in Fig. 1.31e.
None of these four interactions alone yields a coherent macroscopic vortex. We stress that when
the particles solely interact via pairwise-additive alignment torques, B = C = b = 0, the popula-
tion condenses into a single compact polarized swarm. Potential velocity-alignment interactions
are not sufficient to yield macroscopic vortical motion. We evidence in Fig. 1.31e (top-right and
bottom-left panels) that the combination of alignment (A ̸= 0) and of repulsive interactions (B ̸= 0
and/or b ̸= 0) is necessary and sufficient to observe spontaneously flowing vortices.

3 Theory and discussion

Having identified the very ingredients necessary to account for our observations, we can now
gain more detailed physical insight into the spatial structure of the vortices by constructing a min-
imal hydrodynamic theory. We start from Eqs. (1.96), (1.97) and (1.98), ignoring the C term in
Eq. (1.98). The model can be further simplified by inspecting the experimental variations of the
individual roller velocity with the local packing fraction, see the Supplementary Information. The
roller speed only displays variations of 10% as φ(r) increases from 10−2 to 4×10−2. These minute
variations suggest ignoring the contributions of the repulsive forces in Eq. (1.96), and solely con-
sidering the interplay between the alignment and repulsion torques on the orientational dynam-
ics of Eq. (1.97). These simplified equations of motion are coarse-grained following a conventional
kinetic-theory framework reviewed in [136] to establish the equivalent to the Navier-Stokes equa-
tions for this two-dimensional active fluid. In a nutshell, the two observables we need to describe
are the local area fraction φ and the local momentum field φΠ. They are related to the first two
angular moments of the one-particle distribution function ψ(r, p̂, t ) = πa2〈i δ(r− ri )δ(p̂− p̂i )〉,
which evolves according to a Fokker-Plank equation derived from the conservation of ψ and
Eqs. (1.96) and (1.97). This equation is then recast into an infinite hierarchy of equations for the
angular moments of ψ. The two first equations of this hierarchy, corresponding to the mass con-
servation equation and to the momentum dynamics, are akin to the continuous theory first intro-
duced phenomenologically by Toner and Tu [136, 212]:

∂tφ+ v0∇·


φΠ


= 0, (1.99)

∂t


φΠ


+ v0∇·


φQ+ φ

2
I



= F(φ ,Π,Q), (1.100)

where Q is the usual nematic order parameter. The meaning of the first equation is straightfor-
ward, while the second calls for some clarifications. The divergence term on the left-hand side of
Eq. (1.100) is a convective kinematic term associated with the self-propulsion of the particles. The
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force field F on the right-hand side would vanish for non-interacting particles. Here, at first order
in a gradient expansion, F is given by:

F =−DφΠ+αφ2(I−2Q) ·Π−βφ(I−2Q) ·∇φ. (1.101)

This force field has a clear physical interpretation. The first term reflects the damping of the po-
larization by the rotational diffusion of the rollers. The second term, defined by the time rate
α= (



r>2a r A(r )dr )/a2, echoes the alignment rule at the microscopic level and promotes a nonzero
local polarization. The third term, involving β = (



r>2a r 2B(r )dr )/(2a2), is an anisotropic pres-
sure reflecting the repulsive interactions between rollers at the microscopic level. Eqs. (1.99)
and (1.100) are usually complemented by a dynamical equation for Q and a closure relation. This
additional approximation, however, is not needed to demonstrate the existence of vortex patterns
and to rationalize their spatial structure.

Looking for axisymmetric steady states, it readily follows from mass conservation, Eq. (1.99),
that the local fields must take the simple forms: φ=φ(r ), Π=Πϕ(r )eϕ and Q = Q(r )(eϕeϕ−er er ),
where Q(r ) > 0. We also infer the relation



−D+αφ(1−2Q)


φΠϕ = 0 from the projection of the
momentum equation, Eq. (1.100), on the azimuthal direction. This relation tells us that the com-
petition between rotational diffusion and local alignment results in a mean-field transition from
an isotropic state with Πϕ = 0 to a polarized vortex state with Πϕ ̸= 0 and Q = 1

2



1−D/(αφ)


. This
transition occurs when φ exceeds φ⋆ ≡ D/α, the ratio of the rotational diffusivity to the alignment
strength at the hydrodynamic level. In addition, the projection of Eq. (1.100) on the radial direction
sets the spatial structure of the ordered phase:

2
v0

r
Q−β (1+2Q)

dφ

dr
= 0, (1.102)

with again Q = 1
2



1−φ⋆/φ


in the ordered polar phase. This equation has a clear physical meaning
and expresses the balance between the centrifugal force arising from the advection of momentum
along a circular trajectory and the anisotropic pressure induced by the repulsive interactions be-
tween rollers. It has an implicit solution given by

r

r⋆
= exp



2Λ
φ

φ⋆
+Λ log



φ

φ⋆
−1



. (1.103)

φ(r ) is therefore parametrized by the dimensionless number Λ ≡ φ⋆ β
v0

reflecting the interplay
between self-propulsion and repulsive interactions. Given the experimental values of the mi-
croscopic parameters, Λ is much smaller that unity (Λ ∼ 0.08). An asymptotic analysis reveals
that r⋆ is the typical core radius of the vortex. For r < r⋆, the density increases slowly as
φ∼φ⋆



1+ (r /r⋆)1/Λ


for all φ0 and Rc. As r reaches r⋆, it increases significantly and then growths
logarithmically as φ ∼ v0/β log(r /r⋆) away from the vortex core. However, r⋆ is an integration
constant which is solely defined via the mass conservation relation: πR2

cφ0 =
Rc

0 2πrφ(r )dr and
therefore only depends on φ0 and Rc. r⋆ does not provide any intrinsic structural scale, and the
vortex patterns formed in different confinements are predicted to be self-similar in agreement
with our experiments and simulations despite the simplification made in the model, Fig. 1.30e. In
addition, Eq. (1.103) implies that the rollers self-organize by reducing their density at the center
of the vortex down to φ = φ⋆, the mean area fraction at the onset of collective motion, again in
excellent agreement with our measurements in Fig. 1.30e.

In order to characterize the orientational structure of the vortices, an additional closure rela-
tion is now required. The simplest possible choice consists in neglecting correlations of the orien-
tational fluctuations, and therefore assuming Q =Π2

ϕ/2. This choice implies that

Πϕ(r ) =


1−φ⋆/φ(r ). (1.104)

Eqs. (1.103) and (1.104) provide a very nice fit of the experimental polarization curve as shown in
Fig. 1.30b, and therefore capture both the pitchfork bifurcation scenario at the onset of collective
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motion and the saturation of the polarization at high packing fractions. The best fit is obtained
for values of φ⋆ and β respectively five and two times larger than those deduced from the micro-
scopic parameters. Given the number of simplifications needed to establish both the microscopic
and hydrodynamic models, the agreement is very convincing. We are then left with a hydrody-
namic theory with no free fitting parameter, which we use to compute the area fraction of the
outer polarized ring where Πϕ > 0.5. The comparison with the experimental data in Fig. 1.30f is
excellent.

Furthermore, Eqs. (1.103) and (1.104) predict that the rollers are on the verge of a phase sepa-
ration. If the roller fraction in the vortex core were smaller (φ<φ⋆), orientational order could not
be supported and an isotropic bubble would nucleate in a polar liquid. This phase separation is
avoided by the self-regulation of φ(r = 0) at φ⋆.

Altogether our theoretical results confirm that the vortex patterns stem from the interplay be-
tween self-propulsion, alignment, repulsion and confinement. Alignment interactions promote
a global azimuthal flow. If the rollers were not confined, the population would evaporate as self-
propulsion induces a centrifugal force despite the absence of inertia. Finally, the repulsive interac-
tions prevent condensation of the population on the geometrical boundary and allow for extended
vortical patterns.

We close this discussion by stressing on the generality of this scenario. Neither the nature of
the repulsive couplings nor the symmetry of the interactions yielding collective motion are crucial,
thereby making the above results relevant to a much broader class of experimental systems. For
instance, self-propelled particles endowed with nematic alignment rules are expected to display
the same large-scale phenomenology. The existence of a centrifugal force indeed does not rely on
the direction of the individual trajectories. Shaken elongated rods, concentrated suspensions of
bacteria, or motile biofilaments, among other possible realizations, are expected to have a similar
phase behavior. Quantitative local analysis of their spatial patterns [67, 122, 145, 190, 222] would
make it possible to further test and elaborate our understanding of the structure of confined active
matter.

4 Conclusion

We have taken advantage of a unique experimental system where ensembles of self-propelled
colloids with well-established interactions self-organize into macrosopic vortices when confined
by circular geometric boundaries. We have identified the physical mechanism that chiefly dictates
this emergent behavior. Thanks to a combination of numerical simulations and analytical theory,
we have demonstrated that orientational couplings alone cannot account for collective circular
motion. Repulsion between the motile individuals is necessary to balance the centrifugal flow in-
trinsic to any ordered active fluid and to stabilize heterogeneous yet monophasic states in a broad
class of active fluids. A natural challenge is now to quantify the robustness of these spontaneously
flowing states when their collective excitations are frustrated by the geometry and/or topology of
the boundaries.
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Methods

Experiments We use fluorescent PMMA colloids (Thermo scientific G0500, 2.4µm radius), dis-
persed in a 0.15 mol.L−1 AOT/hexadecane solution. The suspension is injected in a wide microflu-
idic chamber made of double-sided scotch tapes. The tape is sandwiched between two ITO-coated
glass slides (Solems, ITOSOL30, 80 nm thick). An additional layer of scotch tape including a hole
having the desired confinement geometry is added to the upper ITO-coated slide. The holes are
made with a precision plotting cutter (Graphtec robo CE 6000). The gap between the two ITO elec-
trodes is constant over the entire chamber H = 220µm. The electric field is applied by means of
a voltage amplifier (Stanford Research Systems, PS350/5000V-25W). All the measurements were
performed 5 minutes after the beginning of the rolling motion, when a steady state was reached
for all the observables.

The colloids are observed with a 4X microscope objective for particle tracking, PIV and
number-density measurements. High-speed movies are recorded with a CMOS camera (Basler
ACE) at a frame rate of 190fps. All images are 2000×2000 8-bit pictures. The particles are detected
to sub-pixel accuracy and the particle trajectories are reconstructed using a MATLAB version of a
conventional tracking code [58]. The PIV analysis was performed with the mpiv MATLAB code. A
block size of 44µm was used.

Numerical simulations The simulations are performed by numerically integrating the equa-
tions of motion Eqs. (1.96), and (1.97). Particle positions and rolling directions are initialized ran-
domly inside a circular domain. Integration is done using an Euler scheme with an adaptive time
stepδt , and the diffusive term in the equation for the rotational dynamics is modeled as a Gaussian
variable with zero mean and with variance 2D/δt . Steric exclusion between particles is captured
by correcting particle positions after each time step so as to prevent overlaps. Bouncing off of par-
ticles at the confining boundary is captured using a phenomenological torque that reorients the
particles towards the center of the disc; the form of the torque was chosen so at the reproduce the
bouncing trajectories observed in the experiments.

Supplementary Information

A Dynamics of a single roller

At low packing fraction, φ0 ≪ φ⋆, the colloids behave as non-interacting persistent random
walkers. Their motion is described by:

∂t ri = v0p̂i = v0(cosθi , sinθi ), (1.105)

∂tθi = ξi (t ), (1.106)

where ξi is a white noise with zero mean and variance 〈ξi (t )ξi (t ′)〉 = 2Dδ(t − t ′). The velocity
autocorrelation function decays exponentially as

〈v0p̂i (t +T) · v0p̂i (t )〉 = v2
0 e−DT, (1.107)

and the mean-squared displacement is given by:

〈[ri (t +T)− ri (t )]2〉 = 2
v2

0

D2



DT−1+e−DT

. (1.108)
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Figure 1.32 – Mean-squared displacement of the rollers, 〈[ri (t +T)− ri (t )]2〉i ,t plotted as a function of the
lag time T. Open symbol: experiments (error bars 1SD). Full line: theoretical prediction.

The later expressions are used to fit the experimental data, Fig. 1.29c and Supplementary Fig. 1.32
below, and provide the following values for the particle speed and diffusivity:

v0 = 493±17µm.s−1, (1.109)

D−1 = 0.31±0.02s. (1.110)

B Population of interacting rollers

B.1 Microscopic model

In [36], we have theoretically described the microscopic dynamics of a population of colloids
rolling on a conducting surface. We briefly summarize this model. A colloid powered by the
Quincke1896 mechanism, when rotating close to a wall, exchanges momentum with this solid
surface and translates at a speed given by

v0 =
aµ̃t

µrτ





E0

EQ

2

−1. (1.111)

EQ is the critical electric field below which the particle does not rotate. The Maxwell-Wagner time
τ characterizes the dynamics of the electric charges at the colloid surface, which are responsible
for the Quincke1896 instability. µr and µ̃t are mobility coefficients accounting for the viscous drag
exerted by the liquid in the vicinity of solid wall that depend logarithmically on the distance to
the solid wall [36]. In order to account for the roller-roller interactions at long distances, we have
computed the electrostatic and hydrodynamic fields induced by the motion of a colloid. Assuming
pairwise additive interactions, we have shown that these fields promote the alignement of the
velocity of neighboring particles. Within this framework, the speed of the colloids is taken to be a
constant as it relaxes to v0 much faster than the typical timescale of the orientation dynamics. In
addition to these far-field couplings, we model the short-distance repulsion between colloids by
an effective hard-core potential. The resulting equations of motion are given by Eqs. (1.96)–(1.98)
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in the main text, where the functions A(r ), B(r ), C(r ) are given by:

A(r ) = A1

 a

r

3
Θ(r )+A2

 a

r

5
Θ(r ), (1.112)

B(r ) = B1

 a

r

4
Θ(r ), (1.113)

C(r ) = C1



2
 a

H

 a

r

2
+

 a

r

3
Θ(r )



+C2

 a

r

5
Θ(r ). (1.114)

These electrostatic and hydrodynamic couplings are exponentially screened over a distance set by
the channel height H (see Fig. 1.28a, main text). For sake of simplicity, we approximate the screen-
ing function Θ(r ) by the step function Θ(r ) = 1 if r ≤ H/π and Θ(r ) = 0 otherwise. In addition, the
coefficients of the above functional forms are given by:

A1 = 3τ−1µ̃s , (1.115)

A2 = 9τ−1


µ⊥
µr

−1



χ∞+ 1

2





1−
E2

Q

E2
0



, (1.116)

B1 = 6τ−1


µ⊥
µr

−1











E2
0

E2
Q

−1





χ∞+ 1

2

 E2
Q

E2
0

−χ∞


, (1.117)

C1 = A1, (1.118)

C2 =
5

3
A2. (1.119)

µr and µ⊥ are mobility coefficients which only depend on the viscosity of the liquid and the gap
d between the colloid and the surface. χ∞ depends on the dielectric permittivities ϵl and ϵp of the
liquid and of the particles.

χ∞ =
ϵp −ϵl

ϵp +2ϵl
. (1.120)

A thorough derivation of this model is provided in the supplementary informations of [36].

B.2 Estimation of the simulation parameters

In order to perform numerical simulations relevant to our experimental conditions, we have
estimated the coefficients of the equations of motion as follows. The speed v0 and the rotational
diffusivity D have been deduced from the single-particle dynamics, Eqs. (1.109) and (1.110). The
threshold electric field EQ is measured experimentally as the critical value at which the colloids
start moving. We use typical values for the dielectric permittivities of hexadecane (ϵl = 2.2ϵ0) and
PMMA colloids (ϵp = 2.6ϵ0) [152] to evaluate χ∞ = 0.06. The mobility coefficients are estimated. We
assume the distance between a particle and the surface to be d ∼ 50nm. Although this parameter
is not controlled precisely, it only yields small corrections to the mobility coefficients in the limit
d ≪ a, and weakly impacts the particle dynamics. Using the expressions derived in [89, 90, 130,
148], we find µ̃s = 0.30, µ⊥/µr = 1.6 and µ̃t /µr = 8.7×10−2. Finally, the Maxwell-Wagner time τ

was calculated from Eq. (1.111): τ = 0.29ms. As a result, we obtain the following values for the
microscopic coefficients:

A1 = B1 = C1 = 0.9τ−1, (1.121)

A2 = 1.0τ−1, (1.122)

C2 = 1.7τ−1. (1.123)
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C Variation of the roller speed with the packing fraction

In Supplementary Fig. 1.33, we plot the individual roller velocity v0 as a function of the local
area fraction φ. As φ varies from 10−2 to 4×10−2, v0 only increases by ∼ 10%.

Figure 1.33 – Variation of the roller velocity with the local area fraction. E/EQ = 1.4.
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We classify the interactions between self-propelled particles moving at a
constant speed from symmetry considerations. We establish a systematic ex-
pansion for the two-body forces in the spirit of a multipolar expansion. This for-
mulation makes it possible to rationalize most of the models introduced so far
within a common framework. We distinguish between three classes of physical
interactions: (i) potential forces, (ii) inelastic collisions and (iii) non-reciprocal
interactions involving polar or nematic alignment with an induced field. This
framework provides simple design rules for the modeling and the fabrication
of self-propelled bodies interacting via physical interactions. A class of possi-
ble interactions that should yield new phases of active matter is highlighted.

1 Introduction

Active materials composed of motile bodies define a quickly-growing field of statistical and
soft-matter physics [136, 216]. Over the last decades, much attention has been devoted to the in-
dividual dynamics of self-propelled particles (e.g. effective diffusion and migration in an external
field), and to the collective properties of large populations (e.g. transition to collective motion, and
emergence of coherent spatial patterns) [136, 175, 216].

From a theoretical perspective, the large-scale properties of active populations have been in-
vestigated for several interaction schemes at the single-particle level, see e.g. [49, 57, 95, 128, 156,
215]. In most of the models, dynamical rules such as velocity-alignment or hard-core repulsion
were included without refereeing to the microscopic physics responsible for these couplings. A
priori a number of alternative phenomenological rules could be considered, yet no global frame-
work exists to elaborate and classify such interactions with overlooked symmetries.

From an experimental perspective, significant progress has been made over the last years, and
a number of artificial active systems are now available, including self-propelled colloids [36, 112,
151, 154, 204], vibrating grains [68, 120, 122, 144], biofilaments [188, 190, 201]. Now that the fabri-
cation of motile microscopic systems is a problem that has been partly solved, a natural next step
is to consider the self-assembly of these autonomous units into new materials. The design of such
active phases requires a deeper understanding of the interaction symmetries between their ele-
mentary units. Surprisingly, until now, the two-body interactions between self-propelled colloids
and filaments have been scarcely characterized.

In this paper, we classify the symmetries of the mutual interactions between self-propelled
bodies moving at a constant speed. We first decompose systematically the two-body force fields
in a generalized multipole expansion which solely requires that the particles live in a homoge-
neous space (translational invariance). We then show how little additional information about the
interaction process further simplify the form of the interactions. We consider explicitly three rel-
evant cases: (i) Isotropic particles interacting only via potential interactions, (ii) Isotropic parti-
cles interacting via two-body inelastic collisions, and (iii) Particles of arbitrary shape that interact
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via non-reciprocal interactions (viz. interactions that are non invariant upon Galilean transfor-
mations). We systematically exemplify our results with classical active-matter models, which we
rationalize within a unified framework. We close this paper by suggesting guidelines for the design
of new active materials.

2 Interacting self-propelled bodies: equations of motion

By definition, self-propelled particles convert stored internal energy to propel themselves in
the absence of any external force [136]. We consider here the simplest framework supporting this
definition: point particles moving at a constant speed v0 in a homogeneous space. More precisely,
any force acting on the particle a located at ra and moving at a velocity va = v0p̂a alters only its
direction of motion, defined by the unit vector p̂a . We also assume that the particles interact via
pairwise-additive couplings. The equations of motion for the particle a are then the Newton’s
equations completed by the constant velocity constraint:

∂t ra = p̂a , (1.124)

∂t p̂a = (I− p̂a p̂a) ·


b ̸=a
Fb→a , (1.125)

where Fb→a is the force exerted by particle b on particle a, and where we have set v0 = 1. The
projection operator (I− p̂a p̂a) ensures that the norm of the velocity vector p̂a remains constant.
Eq. (1.125) implies that particles having a constant speed reorient and align along the net force that
they experience. These equations, that have been extensively studied [177], can also be viewed as
the asymptotic limit of a broader class of active-particle dynamics, see e.g. [101, 128, 219]. Our
predictions do not strictly require the propulsion speed to be a constant, but only that some inter-
nal dissipation mechanisms causes v0 to relax towards its stationary value in a time much shorter
than the changes in the velocity direction. We further clarify this point and discuss the robustness
of Eqs. (1.124) and (1.125) in Appendix A, by studying a specific energy-exchange model [55, 74,
128].

3 Interactions in homogeneous media: Translational invariance

We now establish a generic expression which classifies the interactions according to their an-
gular symmetries. For sake of clarity, we restrict the discussion to two spatial dimensions; the gen-
eralization to a 3D system is provided in Appendix B. The force exerted by particle b on particle a
is a priori a function of the two positions ra , rb and orientations p̂a , p̂b . However, by definition, in
a homogenous medium Fa→b(ra ,rb ; p̂a , p̂b) is translationally invariant, and therefore only depend
on the relative positions of the particles: ra −rb . We now identify 2D vectors to complex numbers,
and note ra −rb = rab exp(iϕab), where rab is the interparticle distance and ϕab the relative angu-
lar position. Without any additional assumption, we Fourier transform Fb→a with respect to ϕab

and obtain:

Fb→a =


k
fk(rab , p̂a , p̂b)ei[kϕab+ψk(rab ,p̂a ,p̂b )]. (1.126)

Transforming the real and imaginary parts into polynomial series in cosϕab and sinϕab , and after
some elementary algebra, Eq. (1.126) is recast into a more intuitive expansion akin to a multipolar
series:

Fb→a = f0 + f div
1 r̂ab + f rot

1 ϵ · r̂ab (1.127)

+ f−1



2
f−1f−1

f 2
−1

− I



· r̂ab + f2 · (2r̂ab r̂ab − I)+ . . .
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f div
1 = f1 cosψ1 and f rot

1 = − f1 sinψ1 are scalars, ϵ is the completely antisymmetric Levy-Civita
symbol, and all the other coefficients are vectors: f0 = f0(cosψ0, sinψ0), f−1 =
f−1(cos(ψ−1/2),sin(ψ−1/2)) and f2 = f2(cosψ2,−sinψ2). We recall that all the fk depend in princi-
ples on the relative position and on the orientations of particles a and b. The terms in Eq. (1.127)
are classified according to their angular periodicity, the index k corresponds to the topological
charge of the force field induced by the particle b: the larger k, the faster the angular variations of
the field. Eq. (1.127) is already a pivotal result of this paper as it describes all the possible symme-
tries of the field in which a self-propelled particle reorients. In order to gain more physical insight
into this formal expansion, the first modes are plotted in Fig. 1.35, and discussed below.

• The k = 0 component is a field having a constant orientation. The particle a reorients along
Fa→b , which is aligned with the vector f0(rab , p̂a , p̂b) regardless of the relative positions of
the particles.

• The k = 1 component in Eq. (1.127) generically corresponds to a spiral force field. To bet-
ter understand its contribution, it is convenient to distinguish between its divergence and
rotational components as done in Eq. (1.127) and Fig. 1.35. The first term, f div

1 r̂ab , has the
symmetry of a monopolar field. This term therefore gives rise to repulsive (resp. attractive)
couplings. For example, particle a reorients along r̂ab if f div

1 (rab , p̂a , p̂b) > 0. The second
term, the rotational part f rot

1 ϵ · r̂ab , breaks the bottom-top symmetry in 2D, which implies
that f rot

1 is a pseudoscalar quantity. Consequently, f rot
1 is non-zero only for particles having

some chiral features. In such an interaction field, a chiral particle b could be forced to circle
around its neighbor.

• The k =−1 component has the form of an hyperbolic elongation field with a negative topo-
logical charge. The k = 2 contribution has the dipolar symmetry, the direction of the dipole
being set by the vector f2(rab , p̂a , p̂b). Similarly, the higher-order terms of the Fourier expan-
sion correspond to force fields having positive or negative topological charges. Note that
the contributions from the k < 0 components do not correspond to conventional multipoles
associated with a Laplacian field.

=

div rot

Figure 1.34 – Sketch of the first modes of the Fourier expansion Eq. (1.127). The force exerted by particle
b on particle a is deduced from the field Fb→a(r− rb , p̂a , p̂b) at the position r = ra . For k ̸= 1, the force field
breaks the rotational symmetry, its direction is set by the vector fk. We recover the symmetries of a standard
multipolar expansion for k > 0, while the k < 0 components have negative topological charges. Note that
the spiral field k = 1 is the linear superposition of a curl-free and of a divergence-less monopolar fields.
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We have classified all the possible symmetries of the fields that cause the particle reorientation.
In order to fully prescribe the orientational dynamics, we now have to specify how the fks relate
to the particle orientations and relative distance. In order to do so, we focus on three types of
interactions which encompass most of the numerical and experimental systems.

4 Potential interactions between isotropic particles

We first consider the simplest possible setup: isotropic particles interacting via potential in-
teractions. Fa→b = −∇aU(rab) derives from a potential U(rab) which only depends on the in-
terparticle distance. Consequently, Fa→b readily reduces to the sole curl-free part of the mode
k = 1 in Eq. (1.127). The force field has the symmetry of a monopole, with a strength f div

1 (rab) =
−∂rab U(rab), it results in attractive or repulsive couplings. Such potential interactions have been
studied in a number of numerical models, see e.g. [55, 74, 80, 100, 128]. For instance, d’Orsogna et
al. demonstrated that forces deriving from a Morse potential can lead to the emergence of a num-
ber of patterns all having an a rotational symmetry, such as vortices, rings and circular clumps [74].
We stress that potential forces cannot explicitly couple the velocities of isotropic particles. How-
ever we will show in Sect. 6, and in Appendix C, that potential forces can yield net alignment inter-
actions between slender bodies.

5 Inelastic collisions between isotropic particles

We now turn to a more general situation and assume that the particles undergo physical two-
body collisions, where Fa→b could also be associated to a dissipative process. However, we still
restrain here to the situation where Fa→b is invariant upon Galilean transformations. In other
words, Fa→b is assumed to only depend on the relative position, rab , and on the relative orienta-
tion/velocity, p̂a − p̂b . The coefficients of the Fourier series hence depend only on p̂a − p̂b , and the
vector coefficients fk̸=1 in Eq. (1.127) are all oriented along p̂a − p̂b :

fk = fk(rab , |p̂a − p̂b |) (p̂a − p̂b). (1.128)

It follows from Eq. (1.127) that Fb→a = −Fa→b . Even though the self-propulsion mechanism does
not conserve momentum, see Eq. (1.124), the invariance of the forces upon Galilean transforma-
tions implies that they obey the Newton’s third law. This situation typically corresponds to the
model for vibrated polar disks introduced in [219]. Weber et al. studied numerically a system of po-
lar grains set in motion by the vibration of a substrate and interacting via short-range inelastic col-
lisions [68, 94, 120, 144]. They model the interactions by the spring-and-dash-pot model and as-
sume that Fa→b =−λ[(p̂a−p̂b)·r̂ab]r̂ab+κ(d−rab)r̂ab . The first term is associated with viscous fric-
tion, and the last term corresponds to elastic repulsion for rab < d . They observed numerically that
such inelastic collisions can lead to velocity alignment interactions, thereby giving rise to a macro-
scopic polar order. In the classification given by Eq. (1.127), the force corresponds to a combina-
tion of the three components k = 0, 1 and 2, where f0 = f2 =−(λ/2)(p̂a − p̂b) and f div

1 = κ(d − rab).
Beyond this specify model which beautifully accounts for experimental results, the present frame-
work makes it possible to provide a clear design rule for collision-induced velocity alignment at
the two-particle level. The lowest-order mode of Fa→b , f0 = f0(rab , |p̂a − p̂b |) (p̂a − p̂b), is the only
one that promotes a net polar alignment regardless of the two particles conformation provided
that f0 < 0 ( f0 > 0 would result in anti-alignement interactions). Particles interacting via f0 evolve
according to

∂t p̂a =− f0(rab , |p̂b − p̂a |) (I− p̂a p̂a) · p̂b . (1.129)

Consequently, any other contribution to the force expansion, Eq. (1.127), would compete with
this velocity-alignment rule and, in principle, could yield macroscopic states with more complex
symmetries that a mere polar phase.
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6 Nonreciprocal interactions.

We now consider forces that are not necessarily invariant upon Galilean transformations, and
therefore relax the reciprocal condition. Fa→b can now be different from −Fb→a . Prominent in-
stances are: (i) hydrodynamic interactions between simmers [37, 185]: when swimming in a liq-
uid, particle b creates a flow field that causes particle b to reorient in this flow, thereby yielding
effective long-range interactions. (ii) Polar phoretic particles respond to the local variations of a
scalar quantity (chemical potential [4, 154, 204], temperature [112]). They are also prone to align in
the phoretic field induced by their neighbors [28, 181]. More generally, we here describe particles
that reorient in a field originated from its neighbors. Note that this broader class encompasses
the potential interactions that we first considered. The field in which the particle aligns would
precisely correspond to the gradient of the potential.

In all that follows, we denote by h(r−rb , p̂b) the field created by particle b at position r. We as-
sume that h depends on time only via the particles’ conformation (this hypothesis corresponds to
a zero-Peclet number approximation in the context of phoretic particles) and that it does not de-
pendent on pa . This approximation is well-suited in a far-field description, since at long distance
the orientation of particle a does not modify the field induced by particle b.

We now have to specify how the particle reorients in the external field h to fully define the
expression of Fa→b . In view of gaining more physical intuition, we first introduce a prototypical
dumbbell model that can be simply solved.

6.1 Self-propelled dumbbells

We consider dumbbells made of two rigidly connected disks separated by a distance ℓ,
Fig. 1.35A. Looking at the motion of the dumbbell a, we denote by R(1)

a and R(2)
a the positions of the

two disks. We assume that the particle propels along its main axis: p̂a = (R(1)
a −R(2)

a )/ℓ. The dynam-
ics of the dumbbell is then modeled as follows. Both disks respond linearly to the field h(R−rb , p̂b)

exerted by particle b, where R = R( j )
a , j = 1,2. As thoroughly demonstrated in Appendix C, the

equation of motion of the dumbbell orientation then reduces to:

∂t p̂a = (I− p̂a p̂a) ·


αh(ra − rb , p̂b)+β(p̂a ·∇)h


, (1.130)

where α and β are two constant scalar quantities. This equation correspond to Eq. (1.125) with
Fa→b given by:

Fa→b = αh(ra − rb , p̂b)+β(p̂a ·∇)h+O (ℓ2∇2). (1.131)

We also show in Appendix C that α can either be a positive or a negative quantity depending of the
relative mobility coefficients of the two disks. Hence two different behaviors are obtained. If the
two disks are not identical (polar dumbbell), α ̸= 0 and the force is Fa→b = αh(ra − rb , p̂b)+O (ℓ∇).
The dumbbell aligns with, or opposite to h(ra − rb , p̂b). Conversely, if the two disks are identical,
then α = 0 and the first term in Eq. (1.130) vanishes. The force then reduces to Fa→b = β(p̂a ·∇)h,
and the dumbbell aligns nematically in a direction set by the field gradient. This minimalist setup
already shows that multiple field alignment rules can exist. We now go beyond this specific picture
and discuss more generally the polar and nematic cases.

A B

Figure 1.35 – Polar alignment in an external field h. A– An asymmetric dumbbell reorients in the field. B–
An isotropic particle carrying a polar internal structure can also align its velocity with the field.
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6.2 Polar alignment in an induced field

We first assume polar alignment in the direction of the field, which, regardless of the shape of
the particle, translates into:

Fa→b = αh(ra − rb , p̂b), (1.132)

whereα is here a phenomenological coefficient. The force is independent of p̂a . As a consequence,
the coefficients of the expansion in Eq. (1.127) only depend on rab and p̂b , and the scalar coeffi-
cients f div

1 and f rot
1 solely depend on the interparticle distance. In addition, the vector coefficients

fk̸=1 are necessarily oriented along p̂b :

fk = fk(rab)p̂b . (1.133)

We illustrate this result with three concrete examples. (i) This situation has been considered in the
context of interacting polar swimmers in confinement [37, 125], and of the motion of biofilament
in plant cytoskeleton [224]. For confined swimmers, Eq. (1.127) reduces to the sole dipolar term
(k = 2) which reflects the potential flow induced by any type of self-propelled object in a rigidly
confined liquid film. In a different context, Kumar et al. have demonstrated experimentally and
numerically that pointy rods lying on a shaken bed of isotropic grains experience self-propulsion
and velocity alignment interactions [122]. The rods interact effectively as they align locally with
the polar displacement field induced by the motion of their neighbors on top of the shaken bead
layer. (ii) This type of coupling is also responsible for the emergence of flocking patterns and of
spontaneously flowing phases in the ensembles of colloidal rollers introduced in [36]. The velocity
of a roller aligns in the direction of the flow field induced by the surrounding motile colloids. As
show in [36] (supplementary materials), within a far-field approximation, the roller-roller interac-
tion combines the first terms of Eq. (1.127), k = 0, 1 and 2. We emphasize that the colloidal rollers
have a perfectly isotropic shape, however their velocity very quickly relaxes in the direction of
their dipolar electric-charge distribution. This polar internal degree of freedom is responsible for
the polar-alignement rule in the external field, see Fig. 1.35B. (iii) Finally this type of coupling also
encompasses the interactions used in agent-based models for collective motion, provided that
they involve pairwise-additive interactions. In all these sequels of the seminal Vicsek model [215],
see e.g. [25, 79, 156], the interactions exactly correspond to the first Fourier mode, f0 = f0(rab)p̂b .
On top of this velocity-alignment rule, short-range repulsion and long-range attraction have also
been considered to reproduce the morphology of cohesive flocks akin to animal populations [49,
57, 92]. They are associated with the k = 1 component of the multipole expansion.

6.3 Nematic alignment in an induced field

In line with the previous discussion, and with Eq. (1.130), some motile particle, say a, can also
align nematically with the field h(ra − rb , p̂b) induced by particle b. This condition translates into
the following generic expression for the induced force:

Fa→b = βN(ra − rb , p̂b) · p̂a , (1.134)

were N is a tensor that can be constructed from the field h and the ∇-operator, depending on the
type of induced field and particle shape we are talking about. For instance, for the symmetric
dumbbells N takes the simple form: N = ∇h, see Eq. (1.130). More generally, when the nematic-
alignment rule arises from the slenderness of the particle, the expression of the tensor N is given by
the so-called Jeffery’s equation first introduced in the context of fluid mechanics [111, 183, 184].
Eq. (1.134) implies that the force Fb→a linearly depends on p̂a . The amplitudes of the Fourier
coefficients, fk in Eq. (1.126), therefore include a factor p̂a · r̂ab or p̂a · p̂b , and the vectors fk̸=1 in
Eq. (1.127) are oriented along p̂b . The k-coefficient of the classification in Eq. (1.127) takes the
generic form:

fk =


f
(pp)

k (rab)p̂a · p̂b + f
(r p)

k (rab)p̂a · r̂ab



p̂b . (1.135)



Article: Tailoring the interactions between self-propelled bodies 85

An important example concerns the zeroth-order term: both the f
pp

0 and the f
r p

0 contri-
butions promote nematic alignment between the two interacting particles a and b for this first
lowest-order term. We are now aware of any experimental realization, where self-propelled par-
ticles would experience nematic interactions mediated by an induced field. For instance in the
seminal pusher/puller model of Saintillan et al. Active swimmer align nematically in the far-field
flow induced by their motion. However these hydrodynamic interactions only correspond to the
k = +3 mode in Eq. (1.127), thereby yielding complex spatiotemporal fluctuations in swimmer
suspensions which cannot support nematic order [183, 184].

6.4 Higher-order symmetries

For particles having more complex shapes, the reorientation in the field in principle involves
higher symmetries than the polar or nematic modes. For instance, the force can include higher-
order terms such as Fa→b = γM(ra − rb , p̂b) : p̂a p̂a , where M is a third-rank tensor build from the
field h and its derivatives. Following the same procedure, classifying the interactions associated
with these higher-order couplings is straightforward.

7 Discussion

Building only on symmetry arguments, we have introduced a formal classification of all the
possible interactions between self-propelled particles. This classification does not only rational-
ize all the previously introduced models within a unique formal framework, it also brings two
unanticipated perspectives on the physics of interacting motile bodies.

Firstly, from a technical perspective, the classification defined by Eq. (1.125) makes it possible
to quickly identify the salient features of the two-body dynamics, even if the interactions take a
complex form. For instance, it offers a simple mean to check wether the interactions promote
velocity alignment (polar or nematic). In practical terms, Eqs. (1.125) and (1.127) imply that that
Fb→a supports a net alignment of the velocities only if its zero mode does not vanish. Equivalently,
a simple criteria for two-body alignment is that the angular integral of the two-body force does not
vanish. From Eq. (1.126), it necessarily takes the simple form:



Fb→a dϕab = ϵp̂b +ϵ′p̂a (1.136)

where the p̂a term does not contribute to the orientational dynamics, see Eq. (1.125). Any nonzero
value for ϵ yields alignment. To distinguish between interactions that promote polar or nematic
ordering, one should also look at the dependence on p̂a of ϵ. If ϵ is unchanged as the particle a
changes its orientation (p̂a →−p̂a), then Fa→b ∼ p̂b and leads to polar alignment in Eq (1.125). In
contrast, if the sign of ϵ changes as particle a changes its orientation (p̂a →−p̂a), then Fa→b leads
to nematic alignment in Eq (1.125).

Secondly, going back to the initial motivation of this work, the phase of an ensemble of inter-
acting particles is set by the symmetries of the interactions at the microscopic level. Although this
statement is obvious for equilibrium systems, it has been surprisingly overlooked when consid-
ering active matter. Until now, all the theoretical models and the (quantitatively characterized)
experimental realizations of active matter involving physical interactions have been restricted to
the k = 0,1,2,3 modes of the classification (1.127). Eq. (1.127) demonstrate that there exist a num-
ber of possible interactions rules between self-propelled particles that have not been considered
at all, even though they should yield novel macroscopic phases of active matter. A special atten-
tion should be devoted to the k = −1 and k = −2 modes of Eq. (1.127). All the kinetic theories of
active matter confirmed that interactions with a low angular symmetry strongly contribute to the
large-scale hydrodynamics of these systems. These types of interactions are therefore expected to
significantly contribute to the phase behavior of unanticipated active materials.

This work was partly funded by ANR grant MITRA and by the Institut Universitaire de France.
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Appendix A. Impact of small fluctuations of the particle speed

In this section, we further extend the range of validity of the equations of motion (1.124)–
(1.125). Let us consider the more general case where small fluctuations of the particle speed are
allowed. Following e.g. [74, 128], we model self-propulsion by a non-linear friction force and as-
sume the following equations of motion:

∂t ra = va , (1.137)

∂t va = 1

τ
(1−|va |)va +



b ̸=a
Fb→a +ξa(t ). (1.138)

Eq. (1.138) is a momentum conservation equation. The first term on the r.h.s. models self-
propulsion. It describes the conversion of internal energy into translational motion, and accounts
for dissipative friction forces. As a result, the particle speed relaxes to |v| = 1. In addition,



Fb→a is
the total external force acting on particle a. We also include here a possible noise term ξa(t ) with
zero mean and variance 〈ξa(t )ξa(t ′)〉 = 2Dδ(t − t ′)I . For the sake of clarity we discard active noise,
which would stem from fluctuations in the propulsion mechanism and could be easily included
as well, see e.g. [177].

We focus on small fluctuations of the speed, i.e. we assume that τD = O (ϵ) and τFb→a = O (ϵ),
where ϵ≪ 1. It is worth noting that Eq. (1.138) is the only possible expression for the propulsion
force at first order in ϵ. For sake of simplicity we restrain here to particles moving in a 2D space, as
the generalization to 3D is straightforward.

In order to obtain stochastic equations for the particle position and orientation, we have to
integrate out the speed fluctuations. This is easily done by using polar coordinates. We intro-
duce va = (1+ua)p̂a , where ua = O (ϵ), and we describe the particle orientation by the polar an-
gle θa : p̂a = (cosθa , sinθa). Similarly, we write the force as:



b Fb→a ≡ Fa(t )


cosφa(t ),sinφa(t )


.
Eqs. (1.137)–(1.138) are recast into:

∂t ra = (1+ua)p̂a , (1.139)

τ∂t ua =−ua +τD+τFa cos(θ−φa)+ξu
a (t ), (1.140)

τ∂tθa =−τFa sin(θ−φa)+τξθa(t )+O (ϵ2), (1.141)

where ξu
a and ξθa are independent white noises with zero mean and variance 〈ξu

a (t )ξu
a (t ′)〉 =

〈ξθa(t )ξθa(t ′)〉 = 2Dδ(t − t ′). The term τD in Eq. (1.140) is a spurious drift term that classically results
from the Stratonovich discretization scheme used here to define the noise terms, see e.g. [175].

Eqs. (1.140)–(1.141) involve two well separated time scales. In Eq. (1.140), the particle speed
relaxes to |v| = 1 in a time ∼ τ. The force and noise terms only give rise to subdominant correc-
tions. Conversely, in Eq. (1.141) the particle orientation evolves on a much longer time scale ∼ τ/ϵ.
Indeed, self-propulsion corresponds to a spontaneous breaking of the rotational symmetry, the
orientation is not constrained to relax toward a position set by any potential. Only the external
forces and noise dictate the orientational dynamics.

We now want to describe the particle dynamics on time scales much longer than τ. In other
words, we want to average the dynamics over the fast variations of the particle speed. Firstly, we
integrate Eq. (1.140) and combine this result with Eq. (1.139), which yields

∂t ra = (1+τD)p̂a +τξt (t ) p̂a

+


b



G(t − t ′)τ [Fb→a(t ′) · p̂a(t ′)]p̂a(t )dt ′, (1.142)

and
∂tθa =−Fa sin(θ−φa)+ξθa(t ), (1.143)

where ξt (t ) is a colored translational noise, with zero mean and correlations defined by 〈ξt (t )ξt (t ′)〉 =
(D/τ)exp



−|t − t ′|/τ


. The kernel G is given by G(t ) = τ−1 exp[−(t )/τ]Θ(t ), where Θ is the Heavi-
side step function. When considering only time variations at scales much larger than τ, the time
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correlations of the translational noise vanish, 〈ξt (t )ξt (t ′)〉 ∼ 2Dδ(t − t ′) and we recover a simple
Markovian kernel G(t − t ′) ∼ δ(t − t ′). Coming back to vector notations for the particle orientation,
the two coarse-grained equations of motion are:

∂t ra = p̂a +τ


b
Fb→a · p̂a p̂a +τξt (t ) p̂a , (1.144)

∂t p̂a = (I− p̂a p̂a) ·




b
Fb→a(t )+ξa(t )



. (1.145)

We recover Eq. (1.125) for the orientation dynamics. The velocity of the particle, Eq. (1.144), is
the sum of the self-propulsion p̂a and additional advection terms due to the interactions and the
noise. However, these contributions correspond to small corrections as τFb→a and τD were as-
sumed to be of order ϵ. The equations of motion that we assumed in the main text therefore cor-
respond to the limit τ→ 0 of this more general model. In other words, Eqs. (1.124) and (1.125) are
valid when the relaxation of the speed towards |v| = 1 is much faster than the modification of the
particle’s direction due to interactions and noise.

Appendix B. Generalization to 3D space

The 3D generalization of Eq. (1.126) is a spherical harmonics expansion, and contains a much
larger number of terms. However, most of them are discarded by the symmetries of the inter-
actions. For potential interactions between isotropic particles, the force is radial. For Galilean-
invariant interactions, the force field depends on a unique vector, û = (p̂b − p̂a)/|p̂b − p̂a |. Its ex-
pression is therefore invariant by rotation around the û-axis. For particles aligning in a field, the
force field also depends on a unique vector, û = p̂b , if the alignment rule is polar. The case of parti-
cles aligning nematically is readily inferred from the polar case by adding a factor p̂a · p̂b or p̂a · r̂ab

in the expression of the force.
These symmetry requirements greatly simplify the spherical harmonics expansion. In an or-

thonormal basis (x̂, ŷ, û), we find:

Fb→a = f0û+


k≥1



 fk













Yℓ,x (r̂ab)
Yℓ,y (r̂ab)
Yℓ,0(r̂ab)

+ f−k













−Yℓ,x (r̂ab)
−Yℓ,y (r̂ab)
Yℓ,0(r̂ab)

+Ωk













−Yℓ,y (r̂ab)
Yℓ,x (r̂ab)
0



 , (1.146)

where Yℓ,m are the spherical harmonics, Yℓ,x = (Y1,−1 −Y1,1)/2 and Yℓ,y = −(Y1,−1 +Y1,1)/(2i ). In
vector notations, the above equation takes a much more compact form:

Fb→a = f0û+ f1r̂ab + f−1(2ûû− I) · r̂ab +Ω1û× r̂ab

+ f2û · (3r̂i j r̂i j − I)+ ... (1.147)

The components fk>0 correspond to a standard multipolar series, they have the symmetries of
monopolar, dipolar, quadrupolar fields etc. The coefficients f−1 and Ωk are associated with elon-
gational and rotational fields, respectively.

Appendix C. Equations of motion for a dumbbell-shaped particle

We consider particles composed of two rigidly connected disks separated by a fixed distance ℓ.
Looking at the motion of particle a, we denote by R(1)

a and R(2)
a the positions of the two disks. We

assume here that the dumbbell propels along its principal axis: p̂a = (R(1)
a −R(2)

a )/ℓ. The dynamics
of the dumbbell is modeled as follows. We assume that the disk j propels itself in the direction p̂a
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and experiences the force field h(R( j )
a −rb , p̂b) exerted by particle b ( j = 1 or 2). The corresponding

equations of motion are:

∂t t R(1)
a = 1

τ1



p̂a −∂t R(1)
a



+h(R(1)
a − rb , p̂b)+F(2)→(1)

a , (1.148)

∂t t R(2)
a = 1

τ2



p̂a −∂t R(2)
a



+h(R(2)
a − rb , p̂b)+F(1)→(2)

a , (1.149)

where, the first term on the r.h.s accounts for the competition between the propulsion and the drag
force experienced by the two disks. The phenomenological drag coefficients τ−1

1 and τ−1
2 depend

on the sizes of the disks. The internal tension forces F(2)→(1)
a and F(1)→(2)

a are Lagrange multipliers
that preserve the inextensibility constraint |R(1)

a −R(2)
a | = ℓ.

The timescales τ1 and τ2 control the relaxation of the particle speed towards p̂a . As we did it
in Appendix A, we assume that they are much faster than the evolution of the force field h. In this
overdamped limit, the dynamics of the dumbbell becomes:

∂t R(1)
a = p̂a +τ1h(R(1)

a − rb , p̂b)+τ1F(2)→(1)
a , (1.150)

∂t R(2)
a = p̂a +τ2h(R(2)

a − rb , p̂b)+τ2F(1)→(2)
a . (1.151)

In addition, the inextensibility condition imposes (∂t R(1)
a −∂t R(2)

a ) · p̂a = 0. Introducing the center
of drag of the dumbbell, ra = (τ2R(1)

a +τ1R(2)
a )/(τ1 +τ2), and assuming that the variations of the

force field h(r− rb , p̂b) occur on large length scales compared to the particle size, the equations of
motion are:

∂t ra = p̂a + τ̄


2h(ra − rb , p̂b)+F(1)→(2)
a +F(2)→(1)

a



, (1.152)

∂t p̂a = (I− p̂a p̂a) ·


αh(ra − rb , p̂b)+β(p̂a ·∇)h


, (1.153)

where τ̄ = τ1τ2/(τ1 + τ2), α = (τ1 − τ2)/ℓ and β = −(τ2
1 + τ2

2)/(τ1 + τ2). Eq. (1.152) describes the
translational motion of the particle. Note that the advection terms are are subdominant in the
small-τ̄ limit (as we explained it in Appendix A. The orientational dynamics of the dumbbell due
to interactions with particle b is described by Eq. (1.153). This equation is identical to Eq. (1.125)
with the effective force

Fa→b = αh(ra − rb , p̂b)+β(p̂a ·∇)h+O (ℓ2∇2). (1.154)







CHAPTER 2

Emergent spatial structures in flocking models

In the previous chapter, an important feature of the colloidal population has not been ex-
plained: at the onset of collective motion, polar bands form and propagate. As a matter of fact,
this experimental observation reflects a long-standing theoretical problem. In all models of self-
propelled spins interacting via short-range alignment rules, heterogeneous spatial patterns having
the form of propagating bands are generically found. As a consequence, any “mean-field” theory
focusing on spatially-homogeneous states fails at describing the transition to collective motion.
This fundamental problem has been extensively addressed numerically in different models, and a
variety of band patterns have been reported. However, no unifying theory exists to account for the
shape of these spatial patterns.

In this chapter, we introduce a dynamical-system framework that rationalizes the experimen-
tal and numerical phenomenology reported so far. We show that the nonlinear excitations of hy-
drodynamic theories exactly correspond to the three types of patterns that were hitherto observed.
We analyze their shape and their existence domain, and suggest a link with the first-order nature
of the transition to collective motion.

This work was done in collaboration with A. Solon, A. Peshkov, H. Chaté, T. Dauxois, J. Tailleur
and V. Vitelli.

This chapter is organized as follows.

1) In the first section, we recall the context of this work. We classify the spatial patterns re-
ported so far and we discuss the connection with the order of the transition to collective
motion.

2) We then define the hydrodynamic equations which we study. They are introduced in sec-
tion 2 from simple phenomenological considerations.

3) In section 3, we summarize the dynamical-system approach that we use to analyze the non-
linear solutions of the hydrodynamic theories. This is the main part of this work. It is thor-
oughly explained in the article “Emergent spatial structures in flocking models: a dynamical
system insight”, which is reproduced p. 105.

4) Finally, we use this method to build a realistic description of the band patterns observed in
numerical simulations.
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1 Emergent polar patterns at the transition to collective motion

In this section, we introduce the problem we are interested in. We recall the previous numeri-
cal and experimental results which remain poorly understood theoretically.

1.1 Numerical and experimental facts

We recall that, throughout this thesis, we restrict ourselves to polar active matter. We con-
sider populations of self-propelled particles that experience alignment couplings and display po-
lar structures at large scale. In this class of systems, much effort has been devoted to understand-
ing the transition to collective motion from numerical simulations of the Vicsek model. In partic-
ular, the nature of the transition has been intensely debated [1, 9, 49, 216]. Although the question
remains controversial in some limits, there are clear numerical evidences that the transition is
first-order (see the careful finite-size scaling analysis carried out by H. Chaté and coworkers [49]).
For instance, hysteresis has been clearly observed close to the transition point (as we recalled it in
the Introduction) [49].

The first-order nature of the transition is associated with another distinctive feature: at the
onset of collective motion, the system self-organizes into spatially-heterogeneous phases. Dense
polar structures form and move in a disordered gas. At a first glance, this behavior seems easy
to explain: first-order transitions are known to give rise to phase separations, such as a bubble
of vapor coexisting with the liquid. Yet, in active systems, the polarized regions do not reduce
to spherical droplets delimited by a microscopic interface, but take more complex shapes. More
precisely, a number of simulations and experiments have demonstrated that the polar patterns
take the form of band-shaped swarms. These patterns are shown in Fig. 2.1 [36, 49, 91, 92, 136,
141, 175, 190, 197, 216, 219]. They consist in dense regions of aligned particles that propagate in
a dilute, weakly-polarized background. The bands are invariant in the direction transverse to the
propagation direction. This observation is a robust feature of polar active matter. It was reported
in the vast majority of numerical models based on self-propelled particles experiencing metric
alignment rules, in periodic boundary conditions. Similar structures were also found in synthetic
experimental populations.

Beyond their qualitative similarity, the exact shape of the dynamical patterns is not universal.
It depends on the specifics of the interaction rule at the microscopic level. More precisely, the
patterns which were hitherto reported take three different forms, see Fig. 2.1.
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Figure 2.1 – Band patterns in polar active matter. (a) Simulation of the Vicsek model; reproduced from [49].
(b) Simulation of a hydrodynamic theory; reproduced from [141]. (c) Motility assays of actin filaments;
reproduced from [190]. (d) Simulation of the Vicsek model: a snapshot and the corresponding density
(black solid line) and polarization (red dotted line) profiles; reproduced from [49]. (e) Colloidal rollers in a
racetrack confinement and shape of the corresponding density profile; see Chapter 1. (f ) Simulation of the
active Ising model; reproduced from [197]. (g) Simulation of a hydrodynamic theory; reproduced from [91].
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(i) Periodic density waves: a periodic arrangement of dense and polar structures propagates in
the system [49, 92, 141, 190, 219].

(ii) Solitary bands: a solitonic polar structure moves in a sea of disordered particles [36, 49, 92,
175, 219]. The band is often strongly asymmetric, with a sharp front and a smooth tail.

(iii) Polar-liquid droplets: a droplet of polar liquid coexists with a disordered gas, the two phases
being separated by thin domain walls [91, 197].

It is worth noting that, in Vicsek-like models the particles solely interact via local velocity-
alignment rules. The previous results demonstrate that such interactions do not solely break the
rotational symmetry, leading to polar structures. They also yield a spontaneous breaking of the
translational symmetry: spatial patterns are formed in the absence of any attractive couplings.
Elucidating this surprising behavior is a long-standing problem in active matter.

1.2 How to describe the transition to heterogeneous polar phases?

The conventional theoretical framework of polar active matter consists in continuum descrip-
tions. As we already stressed it in the Introduction and in Chapter 1, the hydrodynamic theories
indeed account for a phase transition between isotropic and polar states. However, it predicts that
spatially-homogeneous polar phases emerge from a continuous bifurcation. Hence the observed
spatial patterns cannot be explained by a simple phase-separation scenario.

A tentative hypothesis consists in investigating the role of fluctuations. In equilibrium systems,
it is well known that fluctuations can make first-order a transition which is second-order at the
mean field level. It is interesting to check wether a similar mechanism could explain the first-order
nature of the transition to collective motion, in Vicsek-like models. There are two main scenarios
of fluctuation-induced first-order phase transitions.

• Halperin, Lubensky and Ma analyzed situations in which the order parameter is coupled to a
gauge field (e.g. type-I superconductors and smectic-A liquid crystals) [99]. The fluctuations
of the gauge field make the transition discontinuous. Similar behaviors have been found in
non-equilibrium systems, using functional-integral approaches [146]. This scenario could
seem appealing in active matter, where the density field is coupled to the polarization. How-
ever, we have checked that including noise in the hydrodynamic equations, and integrating
over the fluctuations of the density field, does not make the transition first-order. Hydrody-
namic theories of active matter have no gauge structure.

• Brazowskii identified another mechanism, relevant for systems displaying a layered struc-
ture [35]. The spatial patterns arise from a linear instability of the homogeneous ordered
phase. When the growth rate of the fluctuation spectrum is maximum for a finite wave-
vector q0 ̸= 0, it has been shown that fluctuations make the transition first-order. The peri-
odicity of the emergent pattern is then set by the most unstable wavector, 2π/q0. This sce-
nario has been successfully applied to a number of systems (e.g. cholesteric liquid-crystals
or Rayleigh-Bénard convection in the Swift-Hohenberg theory [104, 202]). Again, it could
seem well-suited to understand the periodic band patterns found e.g. in the Vicsek model.
However, hydrodynamic theories of active matter reveal that the most unstable wave-vector
is q0 = 0 (see Chapter 1, p. 35 for more details). Hence the periodicity of the structure is not
set by any linear argument, and the Brazowskii mechanism does not hold.

Hence none of these scenarios apply to the transition to collective motion. Heterogeneous polar
phases arise from a different mechanism. In this chapter, we rather analyze the non-linear so-
lutions of hydrodynamic equations in the absence of fluctuations. This approach is justified by
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previous numerical works, which showed that hydrodynamic theories support the emergence of
spatial structures. Band patterns have been found from direct simulations of hydrodynamic equa-
tions in [91, 141], and solitonic solutions have been obtained numerically in [25] from a coarse-
grained description of a microscopic model. Building on these observations, we analyze the shape
of the propagating bands using a dynamical-system framework. We show that fluctuations are not
required to explain the first-order nature of the transition.

2 A phenomenological hydrodynamic description

We now define the hydrodynamic equations which we study. Since we aim at rationalizing the
various numerical and experimental observations within a unifying framework, we do not focus
on a specific model. We derive phenomenological equations from simple physical arguments.

2.1 Generic structure of the hydrodynamic equations

We start from a simple result from kinetic theories of active matter. We consider a population
of particles which propel themselves at a constant speed v0 = 1. We have explained in Chapter 1
how the microscopic equations of motion can be coarse-grained. We have shown that the resulting
large-scale equations couple successive hydrodynamic fields: the density ρ(r, t ), the polarization
Π(r, t ), the nematic-order tensor Q(r, t ). For the sake of convenience, we also introduce the mo-
mentum field W(r, t ) = ρ(r, t )Π(r, t ). The evolution equations take the generic form:

∂tρ+∇·W = 0, (2.1)

∂t W+∇·


ρQ+ 1

2
ρI



=F {ρ,W,Q}. (2.2)

Eq. (2.1) is the particle-conservation equation. The momentum equation, Eq. (2.2), involves two
types of terms. First, self-propulsion results in momentum advection. This kinematic effect cor-
responds to the left-hand side of Eq. (2.2). Second, interactions give rise to effective forces, which
are accounted for by the functional F {ρ,W,Q}. In a population of non-interacting particles, one
would find F {ρ,W,Q} = 0.

Based on the numerical and experimental results, we focus on structures varying along the
mean direction of motion, x, and invariant along the transverse y-direction: ρ = ρ(x, t ), W =
W(x, t )x̂, and Q = Q(x, t )(x̂x̂− ŷŷ). Eqs. (2.1) and (2.2) reduce to:

∂tρ+∂x W = 0, (2.3)

∂t W +∂x



ρQ+ 1

2
ρ



=F {ρ,W,Q}. (2.4)

To further specify the form of the hydrodynamic equations, we now discuss the interaction
term (r.h.s. of Eq. (2.4)) and the kinematic terms (l.h.s. of Eq. (2.4)) separately.

2.2 Interaction term: effective potential

The term F {ρ,W,Q} is responsible for the spontaneous symmetry breaking leading to polar
phases. Following Toner and Tu [211, 214], we assume an expression akin to the Landau theory of
phase transitions:

F =


a2 −a4W2W. (2.5)

In addition, we postulate simple density-dependences for a2 and a4 as follows.
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• In all models based on short-ranged (metric) interaction rules, the strength of the alignment
force experienced by a particle increases with the number of neighbors in the interaction
radius. Hence the transition to collective motion can be reached by increasing the density.
In agreement with all existing kinetic theories, close to the transition we assume a linear
dependence a2(ρ) = ρ−ρc (in a convenient choice of units). As a consequence, Eqs. (2.2)
and (2.5) predict a bifurcation from a disordered phase at ρ < ρc , with W = 0, to a spatially-
homogeneous state with momentum W =



(ρ−ρc )/a4, at ρ> ρc .

• Deep in the polar phase, ρ≫ ρc , the polarization behaves as Π= W/ρ∼ ρ−1


ρ/a4. We im-
pose that it saturates to a non-zero value, Π0, at high density. Indeed, for particles moving at
a constant speed the polarization cannot be larger than 1, as Π= 1 is reached when all par-
ticles are aligned. Some models are more restrictive and impose an upper bound Π0 < 1, as
we will discuss it later. The simplest choice which ensures the saturation of the polarization
is a4(ρ) = (ρΠ2

0)−1.

In this simple approach, we restrict ourselves to alignment interactions. Note that attractive or
repulsive couplings, e.g., would yield additional terms proportional to ∂xρ (see Chapter 1) which
could be treated as well.

2.3 Kinematic term: non-linear friction

Now that the ineraction term is fully specified, we discuss the kinematic term, ∂x (ρQ+ρ/2). As
we already noted in Chapter 1, Eqs. (2.3) and (2.4) do not define a closed set of equations. They
must be complemented by an extra closure relation which links ρ, W and Q.

For one-dimensional problems such as the active Ising model considered in [197], the answer
is trivial: only two directions of motion are allowed (x̂ and −x̂). From the definition of the hydro-
dynamic fields (Chapter 1 p. 30), it is readily found that Q = 1/2.

In two dimensions, the problem is more complex and approximations must be done. In Chap-
ter 1, we have established closure assumptions in two opposite limits.

(i) Weak polarization: most of the available kinetic theories of active matter were derived in the
limit of small polarizations [25, 136]. In this regime, we consider the following form for the
momentum equation1:

∂t W +ξW∂x W =


(ρ−ρc )− W2

ρΠ2
0



W −λ∂xρ+D∂xx W, (2.6)

where we have replaced the interaction term by the expression established above. The co-
efficients λ, ξ and D are independent of the density (we note that kinetic theories predict
λ= 1/2, as it can can be readily seen from the limit Q → 0).

(ii) Strong polarization: when the polarization is close to 1, we have stressed in Chapter 1 that
the previous closure approximation leads to non-physical results. We have proposed an-
other relation assuming Gaussian fluctuations around the mean direction of motion. With
this ansatz, the nematic order-parameter is Q =Π4/2 (see Chapter 1).

In that follows, we first introduce our dynamical-system approach in the weakly-polarized sit-
uation. We will then show how to build a more realistic description that interpolates between
weakly- and strongly-polarized states. Before we proceed, let us make a remark on the nucleation
of the band patterns.

1Here, we aim at introducing our approach from the simplest equations which capture the physics of flocking. Note
that other terms, such as ∂x (W2) or (∂x W)(∂xρ), can be included as well.
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2.4 Nucleation of the band pattern

In the literature, a linear stability argument provides a first picture for the growth of band struc-
tures. As we noted it in the previous chapter, the density dependence of the coefficient a2, in the
alignment force Eq. (2.5), makes the homogeneous polar state unstable against finite-wavelength
perturbations [91, 141]. This linear instability can be understood as follows. In dense regions,
the alignment interactions increase the local polarization (first term of Eq. (2.6)). Concentrated
regions get strongly-polarized and form a group of aligned particles that move coherently. When
moving across the dilute background, this swarm captures even more particles which align with
the coherent group, and grows.

The nucleation of spatial patterns is therefore well understood from a linear theory. It is based
on the density-dependence of the coefficient a2, which is a necessary condition for the formation
of bands (consistently, in models assuming topological alignment rules, a2 does not depend on
the local density and bands were not observed [160]). However, the shape of the patterns is not
understood. It is set by the non-linearities of the hydrodynamic equations and cannot be cap-
tured by a linear theory. In the next section, we therefore analyze the non-linear solutions.

3 Shape of the band pattern: a dynamical-system insight

We now outline the dynamical-system approach that we introduced to explain the band pat-
terns. This section summarizes the article “Emergent spatial structures in flocking models: a dy-
namical system insight”, which can be found p. 105. We first look for propagating solutions and
specify the boundary conditions. Then we introduce the dynamical-system method. We show
that the propagating solutions exactly correspond to the three types of patterns which were hith-
erto observed numerically and experimentally. Finally, we discuss the existence domain of the
band patterns and stress that several solutions coexist, thereby making the transition to collective
motion first-order.

3.1 Propagative solutions of hydrodynamic equations

We introduce the method using the hydrodynamic equations derived for weakly-polarized
states:

∂tρ+∂x W = 0, (2.7)

∂t W +ξW∂x W =


(ρ−ρc )− W2

ρΠ2
0



W −λ∂xρ+D∂xx W. (2.8)

We stress Eqs. (2.7) and (2.8) are simple realizations of the generic Toner and Tu equation, which
hold for any polar active system [211, 214]. Following Bertin, Droz and Grégoire [25], we look for
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Figure 2.2 – Effective potential H(W). Depending on the values of the parameters ρ⋆ and c, the potential
can display (a) one or (b) two maxima.
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propagating solutions of Eqs. (2.7) and (2.8):

ρ= ρ(x − ct ), (2.9)

W = W(x − ct ), (2.10)

where c is the probation speed. With this ansatz, the mass-conservation equation (2.7) readily
implies [25]:

ρ= ρ⋆+ 1

c
W. (2.11)

The momentum equation (2.8) is then recast into a second-order ordinary differential equation of
the form:

DẄ +Ẇ
dF

dW
+ dH

dW
= 0, (2.12)

where the dot symbol denotes derivative with respect to x−ct . In addition, F(W) =


c − λ
c



W− 1
2 W2

and H(W) is provided in the supplementary document of the article. Importantly, both F(W) and
H(W) depend on ρ⋆ and c, which are two free parameters.

It is worth noting that Eq. (2.12) amounts to the equation of motion of a particle of mass D and
position W. The particle experiences a non-linear friction set by F(W) and moves in a potential
H(W), which is plotted in Fig. 2.2 for two sets of values of the parameters ρ⋆ and c. Following these
well-established first steps, we have therefore mapped the global excitations of a population of N
coupled particles onto a one-body problem.

Finally, we have to specify boundary conditions. Mass conservation implies that ρ(x →−∞) =
ρ(x →+∞). The propagation of a spatial structure which would not meet this requirement would
increase or decrease the total particle number in the system. From Eq. (2.11), this condition read-
ily imposes that W(x → −∞) = W(x → +∞). In the mechanical picture of a particle moving in
the potential H(W), the particle comes back to its initial position. It cannot get stuck or escape
the potential well. Hence the mass-conservation condition strongly constrains the shapes of the
functions H(W) and F(W), i.e. the values of the parameters ρ⋆ and c.

3.2 Dynamical-system analysis

In order to establish the shape of the propagating patterns and their existence domain in the
plane (ρ⋆,c), we analyze Eq. (2.12) from a dynamical-system perspective. We introduce the auxil-
iary variable Z ≡ DẆ +F(W) and recast Eq. (2.12) into the 2-dimensional dynamical system:

Ẇ = 1

D
[Z−F(W)] , (2.13)

Ż =− dH

dW
. (2.14)

The solutions correspond to trajectories in the phase space (W,Z). Importantly, the patterns that
fulfill the mass-conservation condition, W(x → −∞) = W(x → +∞), are associated with closed
trajectories.

The existence and the shape of closed orbits in the phase space are deduced from the stability
of the fixed points of the dynamical system, by calculating their eigenvalues and eigendirections.
This approach is more thoroughly explained in the article. In brief, three types of closed trajecto-
ries exist.

(i) Periodic orbits – periodic density waves: when varying the parameters ρ⋆ and c, the dynam-
ical system undergoes a Hopf bifurcation. The fixed point located at the minimum of the
potential H(W), denoted by WH in Fig. 2.2, becomes linearly unstable. Trajectories spiral
from this unstable point to a cyclic attractor – a limit cycle, see Fig. 2.3(a). The trajectory
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Figure 2.3 – Numerical solutions of the dynamical system, Eqs. (2.13)–(2.14). (a) Trajectories of the dynam-
ical system (2.13)–(2.14) in the phase space (W,Z) (the expressions of the hydrodynamic coefficients and the
parameter values are provided in the article). The fixed points are located at the extrema of the potential
H(W) and lie on the red curve Z = F(W) . Here the effective potential has only one maximum at W = 0,
as sketched in Fig. 2.2(a). Solid blue line: limit cycle. (b) Periodic pattern of polar bands, corresponding
to the limit cycle shown in (a). (c) Homoclinic cycle: same parameters as (a) but for a lower value of ρ⋆.
(d) Solitary band, corresponding to the homoclinic cycle shown in (c). (e) Heteroclinic cycle . The existence
of heteroclinic orbits requires that the effective potential has another maximum at W = W′

H, as sketched in
Fig. 2.2(b). (f ) Polar-liquid droplet, corresponding to the heteroclinic cycle shown in (e).

never stops along the cycle, as it never reaches a fixed point. In real space, it therefore cor-
responds to a periodic crystal of parallel bands that propagate at the velocity c, Fig. 2.3(b).
When the coefficient D is small, we have shown that the bands are strongly asymmetric.
They are composed of a long exponential tail terminated by a sharp front at the head. When
varying the parameters ρ⋆ and c, both the amplitude and the period of the band pattern
change.

(ii) Homoclinic cycles – solitary bands: the dynamical system has another fixed point located at
(W = 0,Z = 0), which is a saddle-point. For some values of ρ⋆ and c, the limit cycle inter-
cepts the origin and becomes a homoclinic orbit, as exemplified in Fig. 2.3(c). Its period
diverges: at the end of the cycle, the trajectory gets stuck at the saddle-point. In real space,
this solution is a solitary band which cruises in a non-polarized background with density ρ⋆,
Fig. 2.3(d).

(iii) Heteroclinic cycles – polar liquid droplets: for some values of the parameters ρ⋆ and c, the
effective potential H(W) has a second maximum, denoted by W′

H in Fig. 2.2(b). In the phase
space, the dynamical system has a second saddle point. This configuration allows a third
type of solution: a heteroclinic cycle that connects the two saddle points, as shown in
Fig. 2.3(e). The dynamics freezes at these two fixed points. In real space, the correspond-
ing pattern is a localized droplet of polar liquid which moves in a disordered gas, Fig. 2.3(f).
The two branches of the heteroclinic cycles correspond to the domain walls which separate
these two phases.

These three types of patterns exactly correspond to those observed in simulations and experi-
ments. In addition, we emphasize that the salient features of the spatial patterns do not depend
on the specific forms of the hydrodynamic coefficients, in Eq. (2.8). At the qualitative level, the
dynamics in the phase space is solely set by the fixed points of the dynamical system, and by their
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stability. Only the global shapes of the effective potential H(W) and of the friction curve F(W)
matter. The dynamical-system framework therefore rationalizes the previous observations and
provides a method to analyze the shapes of the 1D spatial excitations of any hydrodynamic theory.

3.3 Existence domain of the band solutions

Until now, we have identified an infinite family of band-type solutions, which is parametrized
by the two free parameters ρ⋆ and c. In Fig. 2.4, we plot the domain of existence of the band
patterns in the plane (c,ρ⋆). Its upper limit (solid black line) corresponds to the Hopf bifurcation
that yields the emergence of limit cycles. Periodic density waves are found below this line. The
lower limit (dotted-dashed black line) was computed numerically by A. Solon and J. Tailleur. It
corresponds to the homoclinic bifurcation at which the limit cycle collapses with the saddle point
at the origin. The solitary bands are fond along this line. The heteroclinic cycle, if any, is unique:
polar-liquid droplets are fond at the blue point only.

In addition, the ensemble of band patterns is restrained by the total particle number. The
mean density ρ0 in the system is fixed: only the band solutions that match this constraint exist.
We are left with an infinite family of solutions, which is parametrized by one free parameter. As a
result, the solution is not unique. For a given value of ρ0, several spatial patterns may coexist. This
prediction has been confirmed by numerical observations on the Vicsek model, carried out in the
group of H. Chaté. For instance, Fig. 2.5 shows two simulations performed with identical values
of all simulation parameters: two-band and single-band patterns can be found starting from the
same initial conditions.

More importantly, band solutions can exist when the average density ρ0 is smaller than the
critical density ρc . Hence they also coexist with the isotropic phase at ρ0 ≲ ρc . This result confirms
the first-order scenario for the transition to collective motion. The band patterns are a genuine,
yet spatially heterogeneous, phase of active matter. They exist in a range of densities below ρc , in
which the isotropic gas remains stable. This finding is consistent with the observation of hysteresis
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Figure 2.4 – Band phase diagram in the plane (c,ρ⋆). Non-linear bands exist only in the grey region. Solitary
bands are found along the dotted-dahed line. Polar-liquid droplets are fond at the point c = ch only.
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Figure 2.5 – Numerical snapshots of the band phase in the Vicsek model. (a) and (b) were obtained with
identical values of all simulation parameters, and starting from the same initial conditions (random posi-
tions and orientations).
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close to the transition [49]. It is the formation of heterogeneous polarized structures which makes
the transition first-order.

As a last remark, we note that a similar Hopf-bifurcation scenario was also found in a different
class of systems. Giomi and Marchetti considered a model of active suspensions, in which pro-
pelled particles are advected in the flow induced by their swimming motion [88]. They demon-
strated that periodic traveling waves also coexist with the isotropic phase at the onset of collective
motion. In spite of notable differences in the shape of the patterns, this observation suggests that
the formation of spatial structures might arise from similar mechanisms in “dry”and “wet” sys-
tems.

4 Band patterns in a more realistic model

In section 2, we have noticed that the hydrodynamic equations take different forms in weakly-
and strongly-polarized states. Yet, the bands observed numerically and experimentally consist
in strongly-polarized regions that propagate in a weakly-polarized background. Any realistic de-
scription therefore has to interpolate between these two limits.

In this section, we generalize the dynamical-system method introduced above and propose a
more accurate model. We first define a dynamical system which interpolates between the weakly-
and strongly-polarized regimes. We then discuss the consequences on the existence domain of
the band solutions.

4.1 Definition of the dynamical system

Let us first recall the asymptotic limits in which the hydrodynamic equations were derived.

(i) Weak polarization: in the limit W → 0, we have shown that the non-linear friction takes the
form:

dF

dW
∼ c − 1

2c
. (2.15)

(ii) Strong polarization: when the polarization is close to 1, we have written the nematic order-
parameter as Q =Π4/2. From Eq. (2.4), the resulting non-linear friction is deduced as:

dF

dW
∼ c − 1

2c
−2Π3 + 3

2c
Π4, (2.16)

where Π= W
ρ = cW

cρ⋆+W . For large densities and polarizations, W ≫ cρ⋆, the latter expression
reduces to:

dF

dW
∼ c − 1

2c
− c3

2
+O





cρ⋆

W

2


. (2.17)

We interpolate between these two asymptotic regimes. We assume the following expression
for the friction term, which reproduces Eq. (2.15) for vanishing Ws and Eq. (2.17) when W ≫ cρ⋆:

dF

dW
= c − 1

2c
− c3

2
+ c3

2



cρ⋆

cρ⋆+W

2

. (2.18)

The function F(W), defined by Eq. (2.18), is plotted in Fig. 2.6. It has the same qualitative shape
as the parabola that we considered previously, with a maximum at W = WF.
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4.2 Existence domain of the band-like patterns

As the shape of the functions H(W) and F(W) defined above are qualitatively unchanged, we
recover patterns having the same qualitative shape as previously. Examples of numerical solutions
in the phase space (W,Z) and in real space are shown in Fig. 2.7. We recover periodic crystals of
asymmetric bands and solitary-band solutions. When the maximum polarization is Π0 < 1, polar-
liquid droplets can be obtained as well.

More interestingly, the modified friction term, Eq. (2.18), significantly impacts the existence
domain of the band patterns. Here, we have not computed the entire domain numerically. How-
ever, we have plotted in Fig. 2.8 the Hopf-bifurcation line, defined by the condition WF = WH.
Bands exist in the vicinity of this curve. Depending on the value of the maximum polarization, Π0,
two distinct behaviors are found.

(i) Π0 = 1: in a first class of models, the polarization can be arbitrary close to one. Let us con-
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Figure 2.6 – Friction term F(W), defined by Eq. (2.18), plotted for ρc = 0.1, ρ⋆ = 0.062, c = 0.9.

Figure 2.7 – (a) Trajectories of the dynamical system in the phase space (W,Z), for Π0 = 0.88, ρc = 0.1,
c = 0.882. ρ⋆ was chosen so that WH −WF ≳ 0. Thick blue line: limit cycle. Thin red line: curve Z = F(W).
(b) Periodic band pattern corresponding to the limit cycle shown in (a). (c) Same as (a) for a slightly smaller
value of ρ⋆. Thick blue line: homoclinic cycle. Thin red line: curve Z = F(W). (d) Solitary band correspond-
ing to the heteroclinic cycle shown in (c).
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Figure 2.8 – Hopf-bifurcation line, defined by WH −WF = 0, in the parameter space (c,ρ⋆/ρc ). Band-like
solutions exist close to this line. (a) Π0 = 1. (b) Solid blue line: Π0 = 0.8. Red dashed line: Π0 = 0.9.

sider e.g. the flying-XY model [79, 156]. We recall that particle i interacts with all neighbors
lying in a disk Ai of radius R. Its orientation θi evolves according to:

∂tθi =−1

τ



j∈Ai

sin(θi −θ j )+ξi (t ), (2.19)

where ξi (t ) is a noise term. In the right-hand side, the first term promotes polar ordering. As
alignment interactions are pairwise-additive, its amplitude is proportional to the number
of neighbors in the interaction disk, which scales as ∼ ρπR2. Increasing the local density,
the strength of this alignment term can be made arbitrary large. Conversely the noise term,
which destroys the polarization, does not depend on ρ. As a result, the polarization can be
made arbitrary close to Π0 = 1 by increasing the density.
In the existence domain of band solutions, Fig. 2.8(a), there is no solution propagating faster
than the particles: c ≤ 1. Consequently, the effective potential H(W) never displays a sec-
ondary maximum, and polar-liquid droplets do not exist. In addition, we numerically find
that the amplitude of the band diverges when c → 1. The latter result suggests that short-
range repulsion may be required to prevent the collapse of the population and recover band-
like patterns. Surprisingly, a full numerical characterization of this basic model is still lack-
ing.

(ii) Π0 < 1: in a second class of models, the upper-bond of the polarization is set by the noise
introduced in the microscopic dynamics. Let us consider e.g. the Vicsek model, with scalar
noise [25, 49, 215]. The orientation of particle i is updated at each time-step ∆t according to
the rule:

θi (t +∆t ) = θ̄i +ξi (t ), (2.20)

where θ̄i is the mean orientation of the neighbors lying in the domain Ai . Here the am-
plitude of the alignment term does not depend on the number of neighbors lying in the
interaction radius (the interactions are not pairwise-additive). The polarization cannot be
made arbitrary large by increasing the local density. Assuming a Gaussian noise with vari-
ance η, it is bounded by Π0 ∼ exp(−η2/2). Decreasing the amplitude of the noise increases
the maximum polarization allowed.
The existence domain of band solutions is plotted in Fig. 2.8(b). We find that the bands can-
not propagate faster than cmax < 1. The maximum speed increases with Π0. In other words,
cmax decreases for increasing noise amplitudes, in agreement with the agent-based simula-
tions carried out in [25]. Similarly, ρ⋆ cannot be smaller than a value ρ⋆min which increases
with the noise amplitude. Recalling that ρ⋆ is the density of the gas phase through which
a solitary band travels, this finding is also compatible with the numerical results reported
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in [25]. Finally, we note that patterns propagating faster than Π0 can be found. Hence the ef-
fective potential H(W) can display a secondary maximum, and polar-liquid droplets a priori
exist.

The above discussion shows that minute changes in the definition of the interaction rule can
dramatically alter the shape of the large-scale patterns. In the hydrodynamic equations, the struc-
ture of the band phase strongly depends on the functional forms of the coefficients. It is sensitive
to the details of the microscopic model, and cannot be deduced solely from symmetry considera-
tions.

Conclusion and perspectives

To conclude, we have generically studied the inhomogeneous traveling solutions of hydrody-
namic theories of polar active-matter. Using a dynamical-system framework, we have analyzed
the shape and the existence domain of these non-linear patterns. We have shown that they ex-
actly correspond to those hitherto observed in numerical simulations and experiments: (i) peri-
odic density waves, (ii) solitary bands, and (iii) polar-liquid droplets cruising in an isotropic phase.

Several questions still have to be addressed to get a complete understanding of the transition
to collective motion.

• This work does not explain the selection of a pattern among the possible solutions of the
hydrodynamic equations. Fluctuations obviously play a key role in the patter-selection pro-
cess. In order to get more insight into this problem, one should study the stability of the
non-linear solutions against small perturbations. In addition, the role of the initial con-
ditions could be further investigated: as several solution may coexist, different initial states
may lead to different patterns. We note that the experiments on the roller population (Chap-
ter 1) give a first glimpse into the band formation: starting from a disordered state, it was ob-
served that several bands form, collide and coalesce. In the transient regime, complex col-
lision events may favor large-amplitude/fast bands. This scenario should be studied more
carefully.

• The selection of a solution also depends on the specifics of the interactions, at the micro-
scopic level. Different microscopic models lead to different final states, although the hydro-
dynamic equations always keep the Toner-Tu form. Symmetry considerations at the macro-
scopic level are not enough to predict the shape of the final pattern. It would be interesting
to identify the microscopic ingredients that qualitatively matter for the selection of a spatial
structure. As a first step in this direction, A. Solon, H. Chaté and J. Tailleur have simulated
the hydrodynamic equations that we studied above, assuming that the polarization field is
either a scalar or a vectorial quantity [198]. In the former case (relevant e.g. for the active
Ising model [197]) they found polar-liquid droplets, while the latter case (relevant e.g. for
the Vicsek model) yields periodic band patterns. More work is required to fully understand
the differences between all active-spin models.

• Up to now, much attention has been devoted to the transition between the isotropic state
and the band phase. However, at higher densities or lower noise amplitudes, the band pat-
terns give way to a homogeneous polar state. It would be interesting to study this second
transition from heterogeneous to homogeneous polar phases.

• In a disordered phase, several solitary bands can nucleate. The interaction between these
solitonic structures could be questioned.

• Finally, we come back to the population of Quincke rollers. The above theory does not ac-
count for a striking feature of the experimental patterns: it was found that the propagating



104 EMERGENT SPATIAL STRUCTURES IN FLOCKING MODELS

bands have no intrinsic length-scale. Their length increases linearly with the size of the
system (see Chapter 1). One should study whether this property can be explained by chang-
ing the functional dependences of the hydrodynamic coefficients, in Eq. (2.8). In particu-
lar, steric repulsion between particles might impact the shape of the band by regulating the
maximum density at the front.
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We show that hydrodynamic theories of polar active matter generically pos-
sess inhomogeneous traveling solutions. We introduce a unifying dynamical-
system framework to establish the shape of these intrinsically nonlinear pat-
terns, and show that they correspond to those hitherto observed in experi-
ments and numerical simulation: periodic density waves, and solitonic bands,
or polar-liquid droplets both cruising in isotropic phases. We elucidate their
respective multiplicity and mutual relations, as well as their existence domain.

Could the emergence of collective motion in fish schools, bird flocks, and insect swarms be
understood within a unified physical framework? A growing stream of works has approached this
provocative question following the seminal work of Vicsek et al., who considered self-propelled
point particles interacting solely via local velocity-alignment rules [215]. This model displays a
spontaneous rotational-symmetry breaking leading to orientational order [136, 215, 216]. In addi-
tion, a number of subsequent simulations and experiments have revealed an even more surprising
feature. At the onset of collective motion, despite the lack of any attractive interactions, polar ac-
tive matter self-organizes in the form of band-shape swarms [25, 36, 49, 91, 92, 109, 141, 190,
197]. However, depending on the specifics of the systems, these dynamical patterns take three
different forms: (i) delocalized density waves [49, 190], as exemplified in Fig. 2.9(a), (ii) solitonic
structures [25, 36, 109], Fig. 2.9(b), and (iii) phase-separated states [91, 141, 197], Fig. 2.9(c). Al-
though it is now clear that they are responsible for the first-order nature of the transition towards
collective motion [92, 109, 197], no unifying theory exists to account for the origin and the variety
of these band patterns.

In this letter, we convey a comprehensive description of the propagative excitations of polar
active matter. Using a hydrodynamic description and dynamical system concepts, we establish
the shape of these intrinsically nonlinear band structures, and show that they correspond to those
observed in all the available experiments and numerical simulation, see e.g. [25, 36, 49, 91, 109,
141, 175, 190, 197, 219].

Our starting point is a hydrodynamic description of compressible polar active fluids [136, 211,
214]. Since we are chiefly interested in structures varying only along the main direction of motion,
we focus here on a one-dimensional problem. The local density field ρ(x, t ) obeys a conservation
equation which complements the equation governing the momentum field W(x, t ) = ρ(x, t )P(x, t ),
where P(x, t ) ∈ [0,1] is a polarization field. Following Toner1995,Tu1998 and Tu [211, 214] these
equations read

∂tρ+∂x W = 0 (2.21)

∂t W +ξW∂x W = a2W −a4W3 −λ∂xρ+D∂xx W (2.22)
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Figure 2.9 – Band patterns observed in agent-based simulations. (a) Smectic arrangement of polar bands
in the Vicsek model with vectorial noise [49]. Speed v = 0.5, noise intensity η = 0.6 and density ρ = 1.1.
(b) A solitary band observed for the same model and same parameters as in (a). (c) Polar-liquid droplet
in an isotropic phase observed in the active Ising model [197], with inverse temperature β = 6, density
ρ = 5, hopping rate D = 1, and bias ϵ = 0.9. More simulation details can be found in the Supplementary
Information.

where all the coefficients a priori depend both on ρ and W2. These phenomenological equations
were introduced to account for a continuous mean-field transition from a homogeneous isotropic
state with ρ = ρ0 and P = 0 when a2 < 0, to a homogeneous polarized state with P = ρ−1

0

p
a2/a4

when a2 > 0. In addition, the λ term reflects the pressure gradient induced by density heterogen-
ities. ξ and D are two transport coefficients associated respectively with the advection and the
diffusion of the local order parameter. Following [25], we now look for propagating solutions of
Eqs. (2.21) and (2.22): ρ= ρ(x − ct ) and W = W(x − ct ), where c is the propagation speed [25, 141].
This ansatz reduces Eq. (2.21) to an algebraic relation:

ρ= ρ⋆+ 1

c
W (2.23)

When a band moves in an isotropic gas, see e.g. Fig. 2.9(b), the constant ρ⋆ corresponds to the gas
density. Inserting the latter expression in Eq. (2.22) leads to a second order ordinary differential
equation:

DẄ +Ẇ
dF

dW
+ dH

dW
= 0, (2.24)

where H(W) is defined via dH/dW = a2W − a4W3, F(W) =


c − λ
c



W − 1
2ξW2, and the dot symbol

denotes derivative with respect to τ ≡ x − ct . Therefore, the band-pattern problem is recast into
a dynamical system framework: establishing the shape of the bands amounts to describing the
motion of a particle of mass D and position W in a potential H(W), and experiencing a nonlinear
friction F(W), see Fig. 2.10(a). Note that the particle gains (resp. losses) energy when F′(W) < 0
(resp. F′(W) > 0).

Mass conservation in the original problem, Eq. (2.21), constrains the boundary conditions of
Eq. (2.24) as W(x →−∞) = W(x →+∞). Given this simple observation, without any further calcu-
lation, we can anticipate all the possible band patterns: the solutions of Eq. (2.24) correspond to
closed trajectories in the (W,Ẇ) plane. Therefore they necessarily belong to one of the three follow-
ing classes: (i) periodic orbits, (ii) homoclinic cycles (the trajectory includes one saddle point), or
(iii) heteroclinic cycles (the trajectory includes two saddle points). Back in real space, as exempli-
fied in Fig. 2.11, these trajectories respectively correspond to three possible propagating patterns
W(x −ct ): (i) a smectic phase composed of ordered bands (W varies periodically with x −ct ), (ii) a
localized solitary wave, the length of which being set by the "time” taken to explore the homoclinic
cycle, (iii) a polar-liquid droplet separated by domain walls from an isotropic gaseous phase, the
fraction of polar liquid being given by the ratio between the waiting times at the two saddle points.
These three patterns exactly correspond to those hitherto observed in model experiments, and in
numerical simulations at the onset of collective motion.
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Figure 2.10 – (a) Sketch of the motion of an oscillating point particle in the effective potential H(W) for
P0 = 1, ρc = 1, λ = 0.5, ξ = 1, c = 0.9 and ρ⋆ = 0.7. The system looses or gains energy H when F′(W) > 0
or F′(W) < 0. (b) Band phase diagram for the same parameters. Non-linear bands exist only in the grey
region. The dashed lines correspond the the conditions WH > 0, and WF > 0. For c < c∗, the black full line
corresponds to the supercritical Hopf-bifurcation. Polar-liquid droplets states are observed only at c = ch .

Motivated by this pivotal observation, we now turn to the study of equation (2.24). For sake
of clarity we henceforth specify the functional dependence of the phenomenological coefficients
in Eq. (2.22). As the density is a control parameter of the transition to collective motion for all
models based on short-range alignment interactions, a2(ρ) has to change sign at a finite density
ρc [136, 216]. Different systems may result in different functions a2(ρ). We choose a simple linear
dependence a2 = ρ−ρc which is consistent, close to ρc, with all existing kinetic theories [13, 25,
36, 79, 197]. In addition, having e.g. the original Vicsek model in mind, we want to capture the
saturation of the average polarization of a homogeneous polar state of density ρ= ρ0, when ρ0 ≫
ρc , at a non-zero value P0. In agent-based models, P0 is set by the noise amplitude. Here, since
P ∼ ρ−1

0 [(ρ0 −ρc )/a4]1/2, the simplest possible choice yielding the correction saturation is a4(ρ) =
(ρP2

0)−1. This choice simplifies the equations studied numerically in [141]. In all that follows, ξ, λ
and D are kept constant.

Now that Eqs. (2.21)-(2.22) have been fully defined, we can obtain their propagative solutions
explicitly by solving Eq. (2.24). We stress that the two functions H(W) and F(W) are parametrized by
two independent parameters: ρ⋆ and c, which specify the shape of the bands. Their explicit form
are provided in the Supplementary Information and H is plotted in Fig. 2.10(a) for a given set of
parameters. The existence of closed trajectories in the (W,Ẇ) plane requires that the system has at
least one fixed point [5]. Hence, keeping in mind that Eq. (2.24) describes the motion of a massive
particle in a potential, we look for trajectories that display at least one oscillation. This obviously
requires: (i) that H has a local minimum at a finite value WH > 0 (and thus a local maximum at
W = 0), and (ii) that the friction F′(W) changes sign at a finite WF > 0 so that the particle do not
fall to and remains stuck at WH where H is minimum. It is straightforward to show that the former
condition implies ρ⋆ < ρc , and the latter c >

p
λ. In order to establish the shape of the periodic

trajectories of the dynamical system, and in turn the shape of the bands, we need to go beyond
this simple picture. We introduce the auxiliary variable Z ≡ DẆ +F(W) and recast Eq. (2.24) into
the 2-dimensional dynamical system:

Ẇ = 1

D
[Z−F(W)] (2.25)

Ż =− dH

dW
(2.26)

This change of variable greatly simplifies the investigation of the fixed points of the dynamical sys-
tem now defined by Eqs (2.25)-(2.26) [200]. It has at least two fixed points: (0,0) and (WH,F(WH)). A
conventional linear stability analysis shows that (0,0) is always a saddle point. Conversely the sec-
ond fixed point (WH,F(WH)) calls for a more careful discussion. It undergoes a Hopf-bifurcation
as WH −WF changes sign, as can be seen on the eigenvalues of the Jacobian matrices (see Sup-
plementary Information). This bifurcation, which we will thoroughly characterize elsewhere, is
supercritical (resp. subcritical) if c < c∗ (resp. c > c∗), where the critical velocity c∗ is defined
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Figure 2.11 – (a) Dashed lines: dynamical system trajectories, for P0 = 1, ρc = 0.1, λ = 0.5, ξ = 4, D = 0.1,
c = 0.9. ρ⋆ was chosen such that WH ≳WF. Thick line: stable limit cycle. Thin line: Z = F(W) curve. (b) Polar
smectic corresponding to the limit cycle shown in (a). (c) Homoclinic orbit; same parameters as in (a) but
for a lower value of ρ⋆. (d) Solitonic band corresponding to the limit cycle shown in (c). (e) H(W), full line,
plotted for P0 = 1, ρc = 1, λ = 1, ξ = 10 and D = 50. The dashed lines show the positions of WF and WH.
The values of c and ρ⋆ give rise to an heteroclinic cycle (see Supplementary Information). (f ) Polar-liquid
droplet for the same values of the parameters as in (e), see also the Supplementary Information.

implicitly by H′′′(WH) = 0. Both the bifurcation line and c∗ can be computed analytically and are
shown in Fig. 2.10(a). More importantly, regardless of its sub- or super-critical nature the Hopf
bifurcation results in an unstable spiral trajectory which can lead the system towards a cyclic at-
tractor. We now describe how these limit cycles are explored in the (W,Z) plane, and relate these
nonlinear trajectories to the morphologies of the band patterns.

Polar smectic phase/periodic orbits. To gain more quantitative insight, we consider large-
amplitude cycles in the limit of small D 2. For small W, Eq. (2.25) implies that the system quickly
relaxes towards the curve Z = F(W) in a time ∼ D−1. Close to the origin, the dynamics is con-
trolled by the linear properties of the saddle point (0,0), which defines two well-separated scales.
It can be easily shown that the stable direction is nearly horizontal, it is associated with a fast re-
laxation at the rate τ−1

− ∼ D−1(c −λ/c). Conversely, the unstable direction is nearly tangent to the
curve Z = F(W), and corresponds, again in the small-D limit, to a much slower growth at the rate
τ−1
+ ∼ (ρc −ρ⋆)/(c −λ/c). The shape of large-amplitude cycles immediately follows from this dis-

cussion and from the parabolic shape of F(W). Let us start from the left of the cycle, point A in
Fig. 2.11(a), close to the origin. We call Wmin the abscissa of this point, which is the minimum
value of W in the cycle. As noted above, the trajectory first remains near the parabola Z = F(W). If
A is close enough to the origin, this part of the cycle is explored slowly, in a time ∼ τ+. Then the
trajectory approaches the unstable point (WH,F(WH)). It therefore leaves the parabola and starts
spiraling, at a point labeled B in Fig. 2.11(a) (B is here defined as the point where the trajectory
deviates from the Z = F(W) curve by 5%). It finally crosses the parabola again, at point C, and Ẇ
changes sign, see Eq. (2.25). W then decreases and the system quickly goes back to point A in a
time typically set by ∼ τ−. To further check this picture we have numerically computed the phase
portraits of Eqs. (2.25) and (2.26), Fig. 2.11(a) (dotted lines). The typical periodic orbit shown in
Fig. 2.11(a) (full line) is in excellent agreement with the scenario described above. From this anal-
ysis, we infer the shape of the steadily propagating band pattern W(x − ct ). As anticipated, peri-
odic orbits correspond to a polar smectic phase composed of equally-spaced bands, in qualitative
agreement with the experimental pictures reported in [190], and Fig. 2.9(a). The numerical shape

2More precisely, we consider D ≪ (c2−λ)2

4c2(ρc−ρ⋆)
.
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of a smectic pattern is shown in Fig. 2.11(b). It is composed of strongly asymmetric excitations,
which reflects the time-scale separation in the underlying dynamical system close to the origin;
the large-amplitude bands are composed of a long exponential tail, and of a sharp front at the
head. Note that we describe here the propagation of large-amplitude excitations in a polarized
environment. However the minimum polarization in the regions separating the bands, Wmin, can
be vanishingly small. In this limit the period of the crystalline structure would diverge logarithmi-
cally as τ+ log(WF/Wmin).

Solitary bands/Homoclinic cycles. In the limiting case where the minimal value of W goes to 0
(Wmin = 0), point A then corresponds to the saddle located at the origin. Consequently the orbits
followed by the dynamical system become homoclinic. As exemplified in Fig. 2.11(c), they are not
periodic anymore, as the trajectory remains stuck at (0,0). In real space, the associated pattern is
a solitary wave emerging out of a disordered gas, Fig. 2.11(d). We stress that the existence of soli-
tonic structures at the onset of collective motion is one of the more robust observations made in
agent-based simulations [25, 49, 109], see Fig. 2.9(b).

Polar liquid droplets/Heteroclinic cycles. Until now, we have restricted our analysis to the
case where the dynamical system only probes the first two extrema of H. However, looking for
high-speed solutions (c > P0), H displays an additional extremum at W′

H > WH, see Fig. 2.11(e).
(W′

H,F(W′
H)) is a second saddle point. Therefore heteroclinic cycles are found when A is located

at the origin and C at the second saddle. The cycles are not periodic as the dynamics freezes both
at A and C. In real space, the corresponding structure, W(x − ct ), is a localized domain, a polar-
liquid droplet, traveling in a disordered gas, whose length is given by the residence at point C,
Fig. 2.11(f). This phase-separation pattern corresponds to the one numerically observed in the ac-
tive spin model, Fig. 2.9(c), and in a generalization of the 2D Toner1995,Tu1998 and Tu model [91,
197]. In the small P0 limit, the shapes of the asymmetric domain walls bounding the polar-liquid
droplets can be computed exactly (see Supplementary Information).

Several comments are in order. Firstly, we emphasize that the salient features of the swarm-
ing patterns do not depend on the specific functional forms of the hydrodynamic coefficients in
Eq. (2.22). The limit-cycle solutions solely require the existence of a Hopf bifurcation, and the dy-
namics along this cycle is chiefly controlled by the stability of the other fixed points. Therefore, at a
qualitative level, only the global shapes of the effective potential H(W) and the friction curve F(W)
matter. For instance, we shall stress that a hydrodynamic theory where a4 = cst in Eq. (2.22) would
yield non-linear patterns qualitatively identical to those shown in Fig. 2.9 (not shown). Only the
sign reversal of a2(ρ) at ρc was necessary to observe band patterns, in agreement with [160].

Secondly, we emphasize that travelling band can exist when the average density ρ0 is smaller
than ρc, though the linear stability of Eqs. (1) and (2) predicts that no small-amplitude wave can
propagate [136]. The fundamental propagative excitations of polar active matter are intrinsically
nonlinear below ρc .

Thirdly, we come back to the status of the solutions described above. Until now we have iden-
tified an infinite family of band-type solutions, located in the vicinity of the Hopf-bifurcation line
in the (c,ρ⋆) plane, grey region in Fig. 2.10(b). The boundaries of this region are found by looking
for non-degenerate solutions satisfying W > 0, and its extent is an increasing function of the diffu-
sivity D. The domain of existence of the bands collapses on the Hopf-bifurcation line in the limit
D → 0. The homoclinic cycles, corresponding to solitary waves, are constraint to include one sad-
dle point. Therefore they define a one-parameter ensemble of band-type solutions. This ensemble
corresponds to the lower boundary of the phase diagram, Fig. 2.10(b) (dashed-dotted line), and is
established by taking the infinite-period limit. The heteroclinic solution, polar-liquid droplet, is
constrained by the existence of two saddles along a cycle. Therefore, if any, the heteroclinic cycle
is unique. It is a limiting case of the one-parameter homoclinic family, point ch in Fig. 2.10(b).
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Finally, we discuss the pattern-selection problem. The ensemble of band-type solutions de-
scribed above is actually restrained by the mass-conservation law. The mean density ρ0 in the
system is fixed, therefore only band shapes compatible with this value exist. However, we are a
priori left with an infinite family of solutions, which is parametrized by one free parameter. Hence,
we predict that, for a given value of ρ0, several solutions propagating at different speeds may co-
exist. This conjecture is again supported by numerical evidences. In Fig. 2.9 the three-band and
single-band patterns correspond to identical values of all the simulation parameters. The full reso-
lution of the challenging pattern-selection problem obviously goes beyond the scope of this letter.
However, a tentative picture for the nucleation of stationary swarms from a disordered state can
be attempted from Eq. (2.22). The emergence of sharp fronts is natural since the l.h.s. of (2.22)
has the form of Burgers equation, which supports rarefaction shocks [221]. A density fluctuation
above ρc grows and polarizes via the generic coupling between density and order embodied in the
ρ-dependence of a2 in Eq. (2.22). When these two competing effects balance each other, the den-
sity at the top of the shock is pinned, and a constant-shape asymmetric band steadily propagates.
In the transient regime, we therefore expect several bands to form and collide, until the system
reaches one of the possible steady states. This mechanism might favor large-amplitude/fast bands
via coalescence events, in agreement with the experiments reported in [36].

To close this letter we comment on the role of fluctuations on the transition towards collec-
tive motion [216]. Eq. (2.22) predicts a second-order transition for homogeneous systems. Here,
we have evidenced that stationary polarized excitations (solitary bands, and polar-liquid droplets)
can coexist with a homogeneous isotropic phase, which in turn confirms the first order scenario
evidenced in numerical simulations [49, 92]. This coexistence does not rely on any fluctuation-
induced mechanism, unlike all the conventional equilibrium scenarios making first order a mean-
field second-order transition (e.g. Brazowskii1975 [35] and Halperin-Lubensky-Ma [99]). However,
beyond the mean-field deterministic picture, fluctuations are very likely to play a major role in the
stability, the selection, and the ordering of the band patterns. These difficult but crucial problems
are the topic for future work.

We thank J. Toner for valuable comments and suggestions. DB acknowledges support from
Institut Universitaire de France, and ANR project MiTra. HC, AP, AS, and JT thank the Max Planck
Institute for the Physics of Complex Systems, Dresden, for providing the framework of the Ad-
vanced Study Group “Statistical Physics of Collective Motion” within which part of this work was
performed.

Supplementary Information

A Microscopic models

Figure 1 of the main text shows typical examples of inhomogeneous structures found in polar
flocking models. Fig. 2.9(a) and 2.9(b) stem from a Vicsek model with vectorial noise [49] while
Fig. 2.9(c) comes from an active Ising model [197]. We recall below the definition of these models,
while more details can be found in the original publications [49, 197].
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A.1 Vicsek model

N point-like particles are moving off-lattice in 2d at constant speed v0. At each time step, the
direction along which each particle moves is updated in parallel, according to the rule

θi (t +1) = arg





j∈Si

vj(t )+ηNiξ



(2.27)

where θi is the angle made by the velocity vi of the i th particle and, say the x-axis. The sum runs
on particles in Si , the neighborhood of i of radius r0. Ni is the number of particles in Si and ξ is
a random unit vector with no angular correlation. This equation defines so-called vectorial noise
version of the Vicsek model [49, 215].

A.2 Active Ising model

N particles carrying a spin ±1 move and interact on a 2d lattice, an arbitrary number of par-
ticles being allowed on each site. The particles can hop to any adjacent sites or flip theirs spins
according to Monte-Carlo rates. The spin-flipping results from an on-site ferromagnetic interac-
tion, a particle reverses its spin S on site i at rate

W(S →−S) = exp



−βS
mi

ρi



(2.28)

where mi and ρi are the magnetization and the number of particles on site i and β plays the role
of an inverse temperature. The “self-propulsion” of the particles stems from a bias on the hopping
direction: particle k hop to the left (resp. right) with rates D(1+εSk ) (resp. D(1−εSk )) and to the
top and bottom with rate D. This sets an effective self-propulsion at speed 2DεSk in the horizontal
direction.

B Expressions of H and F

Using the functional dependences of a2(ρ) and a4(ρ) that we introduced in the main text, we
find the following expressions for the friction F and the potential H:

F(W) =


c −λc−1W − 1

2
ξW2, (2.29)

dH

dW
=



−(ρc −ρ⋆)+ W

c
− cW2

P2
0(cρ⋆+W)



W. (2.30)

The latter equation can be integrated over W and yields

H(W) =− 1

2
(ρc −ρ⋆)W2 + 1

3c
W3 − c3ρ∗2

P2
0

W + c2ρ∗

2P2
0

W2

− c

3P2
0

W3 + c4ρ∗3

P2
0

log



1+ W

cρ⋆



. (2.31)
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C Eigenvalues of the Jacobian matrix

The eigenvalues of the Jacobian matrix evaluated at the fixed point (WH,F(WH)) are plotted in
Fig. 2.12. The signs of their real and imaginary parts are only set by the difference WH −WF, hence
a Hopf bifurcation occurs at WH = WF.
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Figure 2.12 – Eigenvalues of the Jacobian matrix at the fixed point (WH,F(WH)), as a function of WH −WF.
The curves were plotted for fixed c = 0.9 by varying ρ⋆. Blue solid line: real part. Red dashed line: imaginary
part.

D Polar liquid domains/Heteroclinic cycles

We compute analytically the shape of the heteroclinic orbits, i.e. the boundary between a
polar-liquid droplet and the surrounding isotropic gas, in the limit of small P0. Since the mag-
netization scale is set by P0, when P0 → 0, W ≪ ρ∗ so that the Hamiltonian reduces to

dH

dW
=



−(ρc −ρ∗)+ W

c
− W2

P2
0ρ

∗



W (2.32)

Note that this cubic expression becomes exact if we assume the coefficient a4 to be independent
of ρ and W2, in the hydrodynamic equations (Eq. (2) main text). With this potential, solutions can
be found using the Ansatz

W±(x − ct ) =
W′

H

2
[1+ tanh(Λ±(x − ct ))] , (2.33)

which yields excellent agreement with the numerical solution of the ODE, see Fig. 2.13. For a given
set of parameters, only one heteroclinic cycle is found in the (ρ∗, c) plane and indeed, inserting
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Figure 2.13 – Heteroclinic orbit obtained by numerical integration (plain red line) and fit with Ansatz (2.33)
(dashed blue lines). Fitting parameters are the width of the front Λ± and the position of the front. Parame-
ters: P0 = 0.1, ρc = 1, ξ= 10, λ= 0.01, D = 50, c = 0.218, ρ∗ = 0.9502.
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Eq. (2.33) in the ODE with the potential given by Eq. (2.32) we obtain a unique solution (ρ∗, c)
given by

c = 1

3
p

2



P̃0 +9λ+


72P2
0λ+ (9λ+ P̃2

0)2 (2.34)

ρ∗ = 9c2ρc

9c2 +2P2
0

(2.35)

W′
H =

2P2
0ρ

⋆

3c
(2.36)

Λ± =
(c − λ

c )

4D



−1±


1+ 4D(ρc −ρ∗)

(c − λ
c )2



(2.37)

where P̃0 = P2
0(3ξρc −2).

Table 2.1 compares the five parameters c, ρ⋆, W′
H, Λ+ and Λ− found analytically to the best fit.

The agreement is excellent.

Numerical Analytical

c 0.218 0.2041
ρ∗ 0.9502 0.949

W′
H 0.0348 0.0310

Λ+ 0.0144 0.0152
Λ− -0.0162 -0.0167

Table 2.1 – Comparison between numerical and analytical values obtained in the limit P0 → 0. Parameters:
P0 = 0.1, ρc = 1, ξ = 10, λ = 0.01, D = 50. Numerically, Λ± are obtained by fitting the profile with Ansatz
(2.33).

We thank J. Toner for a careful reading of the supplementary document and for suggesting the
compact formula shown in Eq. (2.36).









CHAPTER 3

Geometry of interacting trajectories in a flock

In the previous chapters, we have followed the standard framework of active matter: the pop-
ulation of motile individuals is viewed as an active fluid, described by smoothly-varying hydro-
dynamic fields [136]. This approach is well-suited for studying the phase behavior of the system.
It has proven successful in elucidating the polar patterns that were observed in experiments and
simulations. However, it is not sufficient to fully account for the dynamics of the active particles:
by definition, the hydrodynamic equations do not retain all information on the individual motion
at small time- and length-scales. In this chapter, we therefore focus on a complementary descrip-
tion of active populations. Rather than studying the collective patterns at large scale, we study the
individual dynamics at all scales. This approach may be useful for practical issues. In contrast with
the Quincke rollers, in the vast majority of systems the microscopic dynamics cannot be modeled
a priori. This situation includes all animal populations, in which behavioral rules must be inferred
from experimental measurements, see e.g. [46, 132]. In order to build a microscopic model, one
needs quantitative observables that can be measured on actual flocks. Eulerian hydrodynamic
descriptions, based on coarse-grained quantities, are obviously not sufficient to unambiguously
build and test models at the individual level.

Here, we adopt a Lagrangian approach. Combining numerical and analytical results, we char-
acterize the trajectories of interacting bodies using geometrical quantities. We introduce observ-
ables that probe the individual motion and the mixing dynamics within a flock, and we study their
statistics in paradigmatic flocking models.

This chapter is divided in two parts.
First, we geometrically describe the individual motion. Building on an analogy with semi-

flexible polymers at equilibrium, we analyze the curvature and the writhe of three-dimensional
trajectories. The results are described p. 122 and followings.

Second, we turn to the relative motion of the individuals. We define a measure of the mix-
ing within a compact flock, which we quantify as the winding of the braid formed by the particle
trajectories. This approach is introduced in the article “Braiding a flock: winding statistics of in-
teracting flying spins", which can be found p. 134.

Before entering the details, we begin with a very short summary of the main ideas and results.
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1 Why is a geometric approach relevant?

Let us first consider the paradigmatic flocking models in a geometric perspective. N particles,
located at positions ri (i = 1, ...,N) in three-dimensional space, propel themselves along directions
t̂i at a constant speed v0. Their equations of motion, in three spatial dimensions, take the form:

d

dt
ri = v0t̂i , (3.1)

d

dt
t̂i = Ti



{r j , t̂ j }


+ξi . (3.2)

Eq. (3.2) describes the rotation of the particle orientation. t̂i diffuses on the unit sphere due to
the Gaussian rotational noise ξi ⊥ t̂i , with zero mean and variance 〈ξi (t )ξi (t ′)〉 = 2Dδ(t − t ′)I. The
interactions with the neighbors take the form of an effective torque, Ti



{r j , t̂ j }


, which changes the
particle direction.

As the particles move at constant speed, time exactly corresponds to the curvilinear coordinate
of the trajectories, s = v0t . The trajectory of particle i in real space, {ri (t )}, is deduced from the path
{t̂i (s)} followed by its direction on the unit sphere. By definition, t̂i (s) is the unit tangent vector of
the trajectory. Its rotation along the curve, d

ds t̂i = κi n̂i , defines the curvature κi and the normal
vector n̂i in the Frénet frame. As a result, Eq. (3.2) can be rewritten in a geometric form:

v0κi n̂i = Ti


{r j , t̂ j } j


+ξi . (3.3)

Remarkably, the dynamics of interacting flying spins reduces to a purely geometric problem.
Eq. (3.3) relates the local curvature of the i th trajectory to the positions and tangent vectors of the
neighboring trajectories. The population of self-propelled particles can be seen as a bundle of in-
teracting curves. In the following, we therefore use geometric quantities to characterize the shape
and the entanglement of the trajectories.

2 Geometric description of the individual dynamics

In the first part of this chapter, p. 122 and followings, we characterize the shape of active-
particle trajectories. This approach is based on the following observation: in the canonical frame-
work of polar active matter, which consists in polar alignment interactions, the particle trajectories
are equivalent to semi-flexible polymers at equilibrium. The analogy is easily understood for non-
interacting particles, Ti = 0 (disordered phase akin to Fig. 3.1(a)). Eq. (3.2) readily shows that the
tangent vector t̂i diffuses on the unit sphere. The direction of motion decorrelates over a typical
time D−1, i.e. over a typical distance ℓp ∼ v0D−1. The resulting trajectory exactly corresponds to
a polymer chain having a persistence length ℓp , which arises from the interplay between a finite
bending modulus and thermal fluctuations [180, 186]. We extend this analogy to particles expe-
riencing alignment interactions, in strongly polarized phases (Fig. 3.1(b)). Assuming Vicsek-like
alignment rules for Ti , in a mean-field description, we show that the alignment torques induced
by the neighbors translate to a stretching force applied to the equivalent polymer. We then exploit
this analogy to characterize the trajectories. We describe the non-equilibrium motion of active
particles with the tools commonly used to study polymers. We consider two geometric quan-
tities: (i) the curvature, which measures the in-plane bending of the trajectory; (ii) the writhe,
which measures the integrated torsion of the trajectory out of its plane of curvature [21, 135, 178].
Combining analytical and numerical results, we show how these quantities probe the individual
dynamics.

In particular, we show that the typical curvature reflects the collective organization of the sys-
tem into polar phases. More precisely, the curvature statistics depends on the time resolution δt
at which the trajectory is observed (δt sets the short-time cut-off required to interpret the white
noise ξ(t )). Fig. 3.1(d) shows the mean curvature plotted versus the coarse-graining time δt , for
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Figure 3.1 – Simulation of the model Eqs. (3.1)–(3.2), with Vicsek-like alignment interactions (250 particle
in a periodic box of length 7). (a) Instantaneous positions and orientations of the particles in the isotropic
phase, D = 1.47. (b) Same as (a) in the polar phase, D = 0.01. (c) Mean polarization, Π0, plotted versus the
amplitude of the noise. (d) Mean curvature of the trajectories, plotted versus the time resolution at which
the trajectory is observed. The different colors correspond to different noise amplitudes. Dots: numerical
data. Dashed black line: theoretical prediction for non-interacting particles (D = 1.47). Solid black line:
theoretical prediction for strongly-polarized states (D = 0.01).

different noise amplitudes. The numerical results are in good quantitative agreement with the an-
alytical predictions established from the polymer analogy (black lines). For long δts, isotropic and
polar phases display markedly different behaviors. The transition to collective motion, Fig. 3.1(c),
has a clear signature on the curvature of the particle trajectories. Finally, we discuss the robustness
of the results to the form of the interactions. We study a more complex numerical model which
reproduces compact flocks akin to animal groups in the wild [49, 57, 92]. Alignment interactions
are associated with attractive and repulsive couplings. We show that the curvature statistics bear
the signature of the microscopic dynamics at all time scales.

3 Geometric description of the mixing dynamics

In the second part of this chapter, we go beyond the mean-field description considered below.
Focusing on compact polar flocks akin to Fig. 3.2(a), we study the relative motion of the particles
within the group in a geometric perspective. More precisely, we quantify the mixing dynamics. As
they move, the individuals continuously exchange their position: their trajectories are not parallel
but form a braid of tangled curves. In this approach, the mixing within the flock is measured by
the entanglement between the trajectories.

In order to build a more quantitative description, we introduce a measure of the entanglement
of the trajectories in a convenient representation [34, 161, 205]. As we are interested in the internal
dynamics of the group, irrespective of its global motion, we follow the particle displacements in
a frame which is parallel-transported with the flock. When individuals exchange their positions,
they trajectories cross each other, as depicted in Fig. 3.2(b). By counting the crossings, we calculate
the winding of the braid formed by the trajectories, W(T). This quantity gives the averaged number
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Figure 3.2 – (a) The positions of the particles are followed in the frame (η̂1, η̂2,Π̂) which is parallel-
transported with the flock. (b) Braid of entangled trajectories. When particles exchange their relative po-
sitions in the flock, their trajectories cross each other. (c) Standard deviation of the winding of the braid,
plotted versus time.

of turns made by an arbitrary particle around an other one, during a time T.
We investigate the statistics of the winding numerically, and show that it displays two main

features.

(i) In Fig. 3.2(c), we plot the standard deviation


〈W2(T)〉 versus time. It displays a crossover
between a ballistic regime at short times, where



〈W2(T)〉 ∝ T, and a diffusive growth at
long times, where



〈W2(T)〉∝
p

T.

(ii) Studying the correlations of the trajectory crossings, we show that the winding statistics re-
sults from correlated particle displacements at the entire-flock scale.

We finally identify the origin of these numerical findings. The formation of a polar flock cor-
responds to a spontaneous breaking of the rotational symmetry. It therefore gives rise to a soft
orientational mode, consisting in a global rotation of the flock around its direction of motion,
which twists the trajectories at the entire-flock scale. We show that this coherent rotation chiefly
rules the winding statistics at long times. As the existence of a soft rotation mode is generic to all
the flying-spin models [26], we expect our results to be qualitatively robust to the detailed form of
the interactions.

All these results are detailed in the article “Braiding a flock: winding statistics of interacting
flying spins", p. 134.

Conclusion and perspectives

In this chapter, we have focused on the geometry of the paradigmatic active-matter models.
Combining analytical and numerical approaches, we have characterized the particle trajectories
and their entanglement in three-dimensional flocks.

Coming back to an experimental perspective, this approach provides observables which could
be measured in real systems. It may be useful to further test the relevance of the standard active-
matter models to the description of actual flocks. More specifically, the following questions could
be addressed.

• In all models, the emergence of polar flocks arises from a spontaneous breaking of the rota-
tional symmetry. All spatial directions are a priori equivalent. However, animal flocks often
respond to external perturbations and fields that explicitly break the rotational symmetry.
For instance, it was observed in bird flocks that the vertical axis (defined by gravity) has a
specific status [43]; the group mostly follows horizontal directions. The direction of motion



Trajectories of aligning self-propelled particles: geometric characterization 121

is also influenced by the presence of food, predators or by seasonal migration. This explicit
breaking of space isotropy may cause discrepancies between actual flocks and theoretical
models. In particular, the soft orientational mode, which chiefly rules the winding of the
trajectories, may be suppressed by external fields. The impact of constant fields on the dy-
namics could be investigated both theoretically and experimentally.

• In a similar perspective, it was observed that bird flocks change their direction of motion
by performing sudden collective turns [6, 8]. In our approach, these events create numer-
ous crossings between the individual trajectories, in response to external perturbations. It
would be interesting to study how external fluctuations impact the geometry of the individ-
ual trajectories.

• We restricted ourselves to particles moving at constant speed. One could study how fluctua-
tions of the propulsion speed change the geometry of the trajectories [26, 142]. For instance,
a flocking model was recently proposed to account for the inertia of the individuals [7, 8, 46],
and could be considered in a similar geometric perspective.

• The dynamics of active particles moving in disordered media has raised growing interest
in the past years [53, 54, 166]. For instance, it was numerically and experimentally found
that self-propelled particles can be trapped by obstacles, leading to subdiffusive behaviors
(see [54], and recent experimental results obtained by N. Desreumaux and V. Chikkadi on the
Quincke rollers [143]). The curvature of the trajectories might be an efficient tool to quantify
the trapping of the particles and the radius of their orbits.



Trajectories of aligning self-propelled particles:
geometric characterization

Here, we describe the dynamics of interacting self-propelled particles. Combining analyti-
cal and numerical approaches, we characterize their trajectories in three spatial dimensions. We
show that the paradigmatic framework of active matter – particles moving at a constant speed and
undergoing alignment interactions – can be mapped onto a well-studied equilibrium problem:
the individual trajectories are analogous to semi-flexible polymer chains. Building on this anal-
ogy, we characterize the writhe and the curvature of active-particle trajectories. We show that this
Lagrangian description probes the collective organization of the population into polar phases. It
makes is possible to directly measure the different time-scales of the dynamics by varying the time
resolution at which the trajectories are observed.

We proceed as follows. In the first section, we establish the analogy between particle trajec-
tories and polymer chains, in both isotropic and strongly-polarized phases. We then exploit this
result, in section 2, to deduce the statistics of the writhe fluctuations. Section 3 is devoted to the
curvature of the trajectories. We show that the transition to collective motion has a clear signature
on the typical curvature. Finally, we compare the analytical expressions to numerical results, in
section 4. We validate the theoretical predictions and discuss their robustness to different interac-
tion rules. We emphasize that analyzing the typical trajectory of one individual makes it possible
to finely probe the global organization of the flock.

1 Active-particle trajectories as semi-flexible polymers

We start from the paradigmatic models of flocking [216]. N persistent random walkers (ri (t ),
i = 1. . .N) propel at a constant speed v0 along a direction t̂i . Their equations of motion, in three
spatial dimensions, take the form:

d

dt
ri = v0t̂i , (3.4)

d

dt
t̂i = Ti



{r j , t̂ j }


+ξi . (3.5)

The particle orientation, t̂i , diffuses on the unit sphere due to the Gaussian rotational noise ξi ⊥ t̂i ,
with zero mean and variance 〈ξi (t )ξi (t ′)〉 = 2Dδ(t − t ′)I. The interactions with the neighbors take
the form of an effective torque, Ti



{r j , t̂ j }


, which rotates the particle direction. We consider two
limiting cases: non-interacting bodies (Ti = 0), and particles experiencing Vicsek-like alignment
torques leading to polar organization. In both situations, we show that the non-equilibrium dy-
namics of a particle can be mapped onto an equilibrium problem: the trajectories correspond to
the conformations of semi-flexible polymer chains.
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1.1 Free particles – isotropic phase

We first consider the simple case of non-interacting particles: Ti = 0. This limit is also relevant
when the interaction term, in Eq. (3.5), has a very small amplitude compared to the rotational
noise. The particles behave as persistent random walkers moving at constant speed. Their orien-
tation vectors t̂i diffuse on the unit sphere and decorrelate over a typical time D−1. In other words,
the direction of motion remains correlated over a persistence length ∼ v0/D along a trajectory. A
similar geometry is found for semi-flexible polymer chains, which also display a persistence length
set by the competition between the bending modulus and thermal noise. Let us draw the analogy
explicitly. As the particle moves at constant speed, its trajectory in real space, {ri (t )}, is equivalent
to the path followed by its orientation on the unit sphere,



t̂i (t )


. The probability of this path is
deduced from Eq. (3.5). It is given by [2]:

P


t̂i (t )


= 1

Z
exp



− 1

4D



dt



dt̂i

dt

2


, (3.6)

where Z is a normalization constant. To make the connection with semi-flexible polymers,
we introduce the curvilinear coordinate along the trajectory, s = v0t . Eq. (3.6) corresponds to
the distribution of the conformations of a worm-like polymer chain at equilibrium [180, 186].
The equivalent polymer has a bending modulus K and is described by the Hamiltonian H =
1
2 K



ds


dt̂i /ds
2. From Eq. (3.6), we readily identify the persistence length of the polymer at tem-

perature T with the persistence length of the particle trajectory: K/(kBT) ≡ v0/(2D). The constant-
speed constraint, Eq. (3.4), translates into a local inextensibility condition for the polymer [116].

1.2 Aligning particles – strongly polarized phase

We now extend the previous analogy to populations of particles experiencing alignment in-
teractions. We show that, in a mean-field approach, the trajectory of a particle is analogous to a
polymer stretched by a constant force. Following the paradigmatic Vicsek model, we assume that
particle i aligns its direction of motion along the mean orientation of its neighbors. Assuming that
it interacts with the NA

i particles lying in the sphere Ai of radius RA, it experiences the torque:

Ti =


I− t̂i t̂i


· 1

τ

1

NA
i



j∈Ai

t̂ j , (3.7)

where τ is the typical alignment time. The projection operator


I− t̂i t̂i


ensures that t̂i rotates
while keeping a unit norm, in Eq. (3.5). Below a critical value of the noise amplitude, this variant
of the Vicsek model gives rise to polar states, in which the particle directions are aligned. The polar
organization is described by the global polarization vector, Π0 = 1

N



i t̂i .
We use a mean-field approach to describe the strongly-polarized phase. In the alignment

torque, Eq. (3.7), we approximate the local average over the neighbors by the overall polarization:
1

NA
i



j∈Ai
t̂ j ∼Π0. This crude ansatz is certainly not valid in dilute or spatially-heterogeneous sys-

tems. However, at high densities and deep in the polar phase, when the average orientation of the
neighbors remains very close to Π0 ∼ 1, it simply states that the particle continuously experiences
a strong alignment force. Eq. (3.5) then reduces to:

d

dt
t̂i =



I− t̂i t̂i


· 1

τ
Π0 +ξi . (3.8)

Deep in the polar phase, the orientation of particle i remains very close to the mean direction of
motion Π̂0. Denoting by ηi (t ) the transverse orientational fluctuations, the direction of motion is

set by the unit vector t̂i (t ) =


1−η2
i (t )Π̂0 +ηi (t ). In the limit of small fluctuations, we obtain:

t̂i (t ) =


1−
η2

i (t )

2



Π̂0 +ηi (t )+O


η4
i



, (3.9)
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where the unit vector Π̂0 ≡Π0/Π0 gives the mean direction of motion. Inserting this expression in
the evolution equation (3.8), we arrive at:

d

dt
ηi =−Π0

τ
ηi +ξi +O



η3
i



. (3.10)

The latter equation corresponds to the well-known Ornstein-Uhlenbeck process. In the direction
transverse to Π̂0, the particle orientation fluctuates in a harmonic effective potential, the strength
of which is set by the magnitude of mean polarization, Π0.

We now map this dynamics onto an equivalent polymer problem. To do so, we consider the
probability of a trajectory ηi (t ), as we did it for free particles. It is given by the following Onsager-
Machlup functional, derived from the Langevin equation (3.10) [2]:

P


ηi (t )


∝ exp



− 1

4D



dt



dηi

dt
+ Π0

τ
ηi

2


. (3.11)

Expanding the square in the integral, we note that the cross-term is a time derivative: 2(Π0/τ)
dηi
dt ·

ηi = d
dt



(Π0/τ)η2
i



. It only contributes to the normalization factor. Up to this trivial gauge trans-
formation, we obtain:

P


ηi (t )


∝ exp



− 1

4D



dt



dηi

dt

2

−
Π2

0

4Dτ2



dt η2
i



. (3.12)

Introducing the curvilinear coordinate s = v0t , we rewrite this equation as a thermal distri-
bution: P



ηi (t )


∝ exp[−H /(kBT)]. The corresponding Hamiltonian has the form: H =
1
2 K



ds (dηi /ds)2 + 1
2 F



ds η2
i , where K/(kBT) ≡ v0/(2D) and F/(kBT) ≡ Π2

0/(2Dv0τ
2). This for-

mal identification has a clear physical interpretation in polymer physics. The first term of the
Hamiltonian corresponds to a bending energy, as we discussed it previously. In the paraxial ap-
proximation, Eq. (3.9), the last term can be rewritten as: 1

2 F


ds η2
i = F



ds


1− Π̂0 · t̂i


. Recalling

that t̂i = d
ds ri , it takes the equivalent form: 1

2 F


ds η2
i = −FΠ̂0 ·



dri + cte. Hence it corresponds
to the potential energy induced by a stretching force FΠ̂0, applied at the extremity of the polymer
(see e.g. [33, 116, 137]). In the polymer analogy, the mean-field alignment torque translates into a
constant stretching force.

In the following, we exploit the analogy with polymers at equilibrium to characterize the dy-
namics of aligning self-propelled particles. We aim at relating the geometry of the individual tra-
jectories to the global state of the system. How does a single trajectory provide information on the
collective organization of the population?

2 Writhe of the trajectories

The geometry of a curve is usually described by two properties: the curvature quantifies its
local bending, and the torsion accounts for its three-dimensional twisting behavior. We use a
similar framework to characterize the particle trajectories. Let us first study the torsion properties.
The local torsion of a curve is usually given by the rotation of the binormal vector, in the Frénet-
Serret frame. This definition requires that the curve has at least two derivatives. This is not the case
for the trajectories resulting from Eqs. (3.4)–(3.5), which are not regular enough for the torsion
to be well-defined [170]. Bulding on the analogy with polymers, we rather consider an integral
quantity which also quantifies the three-dimensional winding of the trajectory: its writhe [33, 78,
135, 178].

Let us first recall the definition of the writhe, following [135]. We consider a 3D curve of length L
such that the initial and final tangent vectors are identical: t̂(s = 0) = t̂(s = L), see Fig. 3.5(a). At
the beginning of the curve, we choose two arbitrary vectors û1(0) and û2(0), tangent to t̂(0), which



Trajectories of aligning self-propelled particles: geometric characterization 125

define an orthonormal basis. We then study the parallel transport of this frame along the path. Due
to the writhing of the curve in 3D space, the final frame



û1(L), û2(L), t̂(L)


has rotated with respect
to



û1(0), û2(0), t̂(0)


by an angle φ(L). The writhe of the curve is the number of turns made by the
parallel-transported frame around the tangent vector t̂(0) = t̂(L): it is defined by Wr(L) ≡φ(L)/(2π).
In order to extend this definition to arbitrary curves and compute the writhe numerically, it is
convenient to introduce an equivalent representation. In Fig. 3.5(b), we sketch the path followed
by the tangent vector t̂(s) on the unit sphere, between s = 0 and s = L. The angle φ(L) exactly
corresponds to the area enclosed by this path on the sphere. This definition is the Fuller expression
of the writhe [178]. It can be generalized to arbitrary curves, t̂(s = 0) ̸= t̂(s = L), by closing the
associated path on the sphere by a geodesic (this simple choice ensures that planar curves have
no writhe) [21, 135].

The writhe of worm-like polymer chains has been characterized in the literature. Using the
analogy established in section 1, we directly transpose these available results to the trajectories of
self-propelled particles. We again consider the two limits of non-interacting particles (isotropic
phases) and strongly-polarized states.

Free trajectories In the isotropic phase, the trajectories are equivalent to free polymer chains of
length v0T, where T denotes the observation time. As positive and negative writhing are equally
probable, the writhe distribution has no mean: 〈Wr(T)〉 = 0. Theoretical expressions for the vari-
ance



Wr2(T)


have been obtained in two asymptotic regimes.
(i) For short observation times compared to the persistence time, T ≪ D−1, the variance growth
quadratically with time:



Wr2(T)


= (DT)2/12.
(ii) For long observation times, T ≫ D−1, continuous models lead to a logarithmic divergence of
the variance



Wr2(T)


[32, 33, 135]. This behavior arises from the Fuller definition of the writhe,
which is singular when t̂(s) = −t̂(0) (see [135, 178]). In practice, this divergence is regularized by
the discretization of the curve, and results in a diffusive behavior [135, 178]:



Wr2(T)


∝ DT. (3.13)

Trajectories in polar phases The writhe of stretched polymers has been studied by Sinha [195].
Transposing the result to the particle trajectories in strongly-polarized phases, the probability dis-

Figure 3.3 – Definition of the writhe. (a) Rotation of the parallel-transported frame


û1(s), û2(s), t̂(s)


along
a writhing curve. When t̂(s = 0) = t̂(s = L), the rotation angle φ(L) around the tangent vector is well-defined.
(b) The rotation angle φ(L) corresponds to the area enclosed by the path t̂(s) on the unit sphere. The blue
arrows show the parallel transport of û1(s).
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tribution of the writhe is:

P (Wr(T)) =N exp



−TΠ0

τ



1+ 4π2

D2T2
Wr2



 (3.14)

(where N is a normalization factor). For T ≪ D−1, the variance is [178]:



Wr2(T)


= Dτ

4π2Π0
DT. (3.15)

We finally compare the results obtained for free particles and for trajectories in polar phases.
At long observation times, the variance of the writhe grows linearly in both cases:



Wr2(T)


∝ T. In
conclusion, the global organization of the population into polar states does not alter the diffusive
behavior of the writhe fluctuations. It only impacts their growth rate at the quantitative level: the
writhe is strongly reduced in the polar phase, where Dτ/Π0 ≪ 1. The writhe is therefore unlikely
to be a useful quantity to probe the organization of a flock from the inspection of a single-particle
trajectory. Conversely, we show in the next section that the curvature of a trajectory is a powerful
measure of the collective dynamics.

3 Curvature of the trajectories

In order to find a geometric quantity which would qualitatively reflect the collective organi-
zation into polar phases, we now turn to the in-plane bending of the trajectories. We study the
statistics of the curvature, which is defined from the rotation of the unit tangent vector as:

κ=








dt̂

ds









, (3.16)

where s = v0t is the curvilinear coordinate. The statistics of the curvature is set by Eq. (3.5). In this
continuous-time model, it can be readily seen that the variance 〈κ2(t )〉 diverges in the continuous-
time limit, since 〈ξi (t ) · ξi (t )〉 = 4Dδ(0). Having tracking observations in mind, we introduce a
coarse-graining time δt to interpret the white noise and regularize the curvature distribution. In
other words, the individual trajectory is observed at a finite time resolution δt .

3.1 Free trajectories

We first focus on non-interacting particles. We again take advantage of the analogy with poly-
mers at equilibrium and recall the result obtained for free semi-flexible chains. Rappaport et al.
studied a worm-like chain made of segments of length δs, with bending modulus K [171]. In three
spatial dimensions, the curvature follows the following Rayleigh distribution:

P(κ|δs) = κ

κ2
0

exp



− κ2

2κ2
0



, (3.17)

where κ2
0 = kBT/(Kδs). Here, the transposition to active-particle trajectories less direct. Indeed,

the trajectories are not discretized as segments of fixed length. The motion is observed at a finite
time resolution. We therefore have to make the link between δs, in Eq. (3.17), and the coarse-
graining time δt . Two different behaviors are obtained depending on the value of δt with respect
to the persistence time D−1.

Fine time resolution: δt ≪ D−1 When the coarse-graining time is much smaller than the persis-
tence time of the dynamics, we have δs = v0δt . The curvature follows the Rayleigh distribution
given by Eq. (3.17). Its mean value is 〈κ〉 =

p
π/2κ0. Using the polymer analogy, we readily obtain:

〈κ〉 =


πD/


v2
0 δt



. Note that, given the peaked shape of the curvature distribution, the mean
curvature is close to the typical curvature measured on an arbitrary trajectory.



Trajectories of aligning self-propelled particles: geometric characterization 127

Coarse time resolution: δt ≫ D−1 We also consider the case of long coarse-graining times. Al-
though this limit results in a loss of information about the particle dynamics, we will see that it
effectively characterizes the degree of organization of the population. As δt ≫ D−1, the persis-
tence in the particle dynamics cannot be observed. The apparent trajectory corresponds to a 3D
uncorrelated random walk. The distance δs traveled during the coarse-graining time δt follows a
Maxwell distribution:
P (δs) =



4πD3
effδt 3

−1/2
δs2 exp



−δs2/(4Deffδt )


, where the diffusion coefficient is deduced from
the equations of motion: Deff = v2

0/(6D) (see e.g. [157, 175]). The probability of the curvature is
then obtained from the polymer analogy, Eq. (3.17):

P(κ|δt ) =


dδs P(κ|δs)P(δs). (3.18)

The mean curvature is funally deduced as 〈κ〉 =


dκ κP(κ;δt ). After a straightforward calculation
of the integrals, we find: 〈κ〉 =

p
6D/v0.

Summarizing the previous results, the mean curvature of the trajectory depends on the coarse-
graining time δt as follows:

〈κ〉 ∼

























πD

v2
0 δt

if δt ≪ D−1,

p
6

D

v0
if δt ≫ D−1.

(3.19)

(3.20)

When δt ≪ D−1, 〈κ〉 decreases upon increasing the coarse-graining time, as 〈κ〉 ∝ δt−1/2. This
result can be understood as follows. Short time resolutions make it possible to observe the rough-
ness of the trajectory at small length scales: large curvature can be measured. Averaging over
longer times δt smoothes the trajectory, and thus reduces its mean curvature. Conversely, when
δt ≫ D−1 we obtain a very different behavior. 〈κ〉 becomes independent of the coarse-graining
time, and is solely set by the persistence length of the trajectory.

3.2 Trajectories in polar phases

We now turn to particles in strongly-polarized phases. Their trajectories are analogous to
stretched polymers. In the paraxial approximation, Eq. (3.9), the curvature reduces to κ =
v−1

0



dη/dt


. As previously, we introduce the coarse-graining time δt to regularize the curvature
distribution. More precisely, the curvature of the coarse-grained trajectory is:

κ(t ) = v−1
0











dt ′ Gδt (t − t ′)
dη

dt
(t ′)









, (3.21)

where Gδt is the coarse-graining kernel. We choose, e.g., the rectangle function: Gδt (t ) = (δt )−1 for
t ∈ [−δt/2,δt/2], and Gδt (t ) = 0 otherwise.

In order to calculate the probability distribution of the curvature, we decompose η = η1ê1 +
η2ê2, where ê1 and ê2 are orthogonal unit vectors transverse to the mean direction of motion Π̂0.
Defining the algebraic curvatures

κa(t ) = v−1
0



dt ′ Gδt (t − t ′)
dηa

dt
(t ′) (3.22)

for a = 1 or 2, we find

κ=


κ2
1 +κ2

2. (3.23)

We first establish the probability distribution of the components κa (a = 1 or 2). It is given by the
following functional integral:

P(κa |δt ) ∝


Dη(t ) δ



dt ′G−δt (t ′)
dηa

dt
(t ′)− v0κ



P


η(t )


, (3.24)
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where the probability of the trajectory P


η(t )


follows Eq. (3.12). Replacing the Dirac function by
its integral expression and introducing the Fourier components ηω =



dt η(t )eiωt , we arrive at:

P(κa |δt ) ∝


Dηω



dλ exp



iλ



dω

2π
Gδt ,ωiωηa,ω− v0κ



exp



− 1

4D



dω

2π



ω2 +
Π2

0

τ2



|ηω|2


.

(3.25)
The integrals over the Lagrange multiplier λ and over the polymer conformations ηω are Gaussian
integrals, which can be easily evaluated. This straightforward calculation leads to:

P(κa |δt ) =
p

2

κ0
p
π

exp



−
κ2

a

2κ2
0



, (3.26)

where

κ2
0 =

1

ℓp



dω

2π

(ωτ/Π0)2

1+ (ωτ/Π0)2
|Gδt ,ω|2. (3.27)

Taking for Gδt the rectangle function specified above, the latter expression reduces to:

κ2
0 =

2D

v2
0 δt

τ

Π0δt



1−e−Π0δt/τ


. (3.28)

The curvature statistics is finally deduced from Eqs. (3.23) and (3.26). It again follows a Rayleigh
distribution:

P(κ|δs) = κ

κ2
0

exp



− κ2

2κ2
0



, (3.29)

As a result, the curvature distribution has the same shape as for free particles. The alignment
interactions solely impact its expectation value:

〈κ〉 =


πD

v2
0 δt

τ

Π0δt



1−e−Π0δt/τ


. (3.30)

Upon varying the coarse-graining time, the mean curvature therefore displays a crossover between
two regimes:

〈κ〉 ∼





























πD

v2
0 δt

if δt ≪ τ,

1

v0δt



πDτ

Π0
if δt ≫ τ.

(3.31)

(3.32)

When δt is much shorter than the typical alignment time τ, we recover the expression obtained
for non-interacting particles. The alignment dynamics is not probed at this time-scale, it reduces
to a slow bending of the trajectory which does not impact its local roughness. The curvature
becomes sensitive to the alignment interactions when δt reaches the typical reorientation time.
When δt ≫ τ, we end up with a different scaling: 〈κ〉∝ δt−1.

Comparing the latter results to those obtained for free particles, we find that the curvature
bears the signature of the collective organization into polar phases. The typical curvature mea-
sured from individual trajectories displays very different behaviors at long δts, in these two limits.
In isotropic phases, 〈κ〉 becomes independent of the coarse-graining time at large δts. By contrast,
in strongly-polarized states, it decreases as 〈κ〉∝ δt−1 for δt ≫ τ. Upon decreasing the noise am-
plitude, the transition to collective motion is reflected by a crossover between these two regimes.
The transition can be clearly identified by analyzing a typical trajectory.
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4 Numerical validation and robustness of the results

4.1 Numerical models

In this last section, we confront the analytical predictions derived above to numerical results.
We simulate two agent-based models.

Alignment only First, we check numerically our theoretical expressions. We solve the equa-
tions of motion (3.4) and (3.5) with the alignment torque given by Eq. (3.7), using a forward Euler
scheme. N = 250 particles move at the speed v0 = 1 and align with their neighbors, in a cubic box
of length 7 with periodic boundaries. The interaction range is RA = 1, and the typical alignment
time is set to τ= 1. Upon decreasing the noise amplitude, this generalization of the Vicsek model
displays a transition to polar states, as demonstrated by the growth of the averaged polarization
Π0, see Figs. 3.4(a) and 3.4(b). In such small systems, the transition is a continuous crossover and
band patterns are not observed [49].

Compact flocks Second, we go beyond this reference framework and test the robustness of our
results to more complex dynamics. We simulate a more elaborate model, in which the alignment
interactions are entangled with attractive and repulsive couplings. We focus on equations of mo-
tion that produce compact swarms, akin to the bird flocks or fish schools observed in the wild.
Following [27, 49, 57, 92, 172], we add attractive interactions at long distance to prevent the evap-
oration of the swarm and ensure its cohesion. We also assume short-range repulsion to avoid
collisions between individuals. In the equations of motion (3.4) and (3.5), the interactions are now

Figure 3.4 – (a) Numerical simulation of the model Eqs. (3.4)–(3.5), with the Vicsek-like alignment
torque (3.7). Example of polar phase obtained in a 3D periodic box (250 particles, D = 0.01). (b) Mean
polarization plotted versus the variance of the noise, in the same model. (c) Compact flocks produced by
the model (3.33) (250 particles, D = 0.02). (d) Mean polarization plotted versus the noise amplitude, in
compact flocks. Inset: typical size of the flock plotted versus the noise amplitude.
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described by the effective torque:

Ti =


I− t̂i t̂i


· 1

τ



1

NA
i



j∈Ai

t̂ j +
1

NB
i



j∈Bi

f (ri j ) r̂i j



, (3.33)

where ri j ≡ ri − r j . We recover the alignment interactions introduced in the previous model,
Eq. (3.5), within the sphere Ai of radius RA = 1. The additional term describes the attractive and
repulsive couplings with the NB

i neighbors lying in the sphere Bi of radius RB = 5 [57]. These
interactions are attractive above a distance 2rc and repulsive for rc ≤ ri j < 2rc , with a divergent

amplitude at the hard-core radius ri j = rc [49, 92]. We take f (ri j ) = 1−


rc /(ri j − rc )
5 with rc = 0.4.

An example of polar flock is shown in Fig. 3.4(c). Due to the alignment interactions, the latter
equations of motion yield a transition between isotropic and polar states, as shown by the in-
crease of the mean polarization Π0 upon decreasing the noise amplitude, Fig. 3.4(d). In addition,
the population condenses into coherent flocks due to the long-distance attraction. This behavior

is quantified by the typical size of the group, Lflock ≡


N−1 

i (ri − r̄)2
1/2

, which sharply decreases
when D is reduced below the transition to polar order, Fig. 3.4(d) inset.

We measure numerically the writhe and the curvature of the trajectories in these two models,
and compare to the analytical expressions.

Figure 3.5 – Writhe statistics. (a) Reduced probability distribution of the writhe, deep in the polar phase,
obtained for alignment interactions only (D = 0.01, Π0 = 0.98, T = 2.5). (b) Variance of the writhe plotted
versus the observation time T, for different noise amplitudes. Black line: theoretical prediction for strongly
polarized phases (D = 0.01, Π0 = 0.98, no free parameter). (c) Same as (a) for the second numerical model,
leading to compact flocks (D = 0.01, T = 2.5). Black line: theoretical distribution, Eq. (3.14), established in
the absence of attraction/repulsion. (d) Same as (b) for compact flocks. Black line: theoretical prediction
in the absence of attraction/repulsion, Eq. (3.15), deep in the polar phase (D = 0.01, Π0 = 0.99).
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4.2 Writhe of the trajectories

Alignment only We first consider the reference model, including alignment interactions only,
Eq. (3.7). In Fig. 3.5(a), we plot the normalized distribution of the writhe deep in the polar phase.
Its shape is well reproduced by the analytical expression, Eq. (3.14). The variance of the writhe
fluctuations are shown in Fig. 3.5(b) versus the observation time T, for different noise amplitudes.
We find the expected diffusive scaling at long times,



Wr2(T)


∝ T. In strongly-polarized phases,
we also check that the growth rate is in quantitative agreement with Eq. (3.15) (blue bottom curve).

Figure 3.6 – Curvature statistics. (a) Probability distribution of the curvature in the polar phase, obtained
with alignment interactions only (D = 0.01, δt = 103). Blue dots: numerical results. Superimposed black
line: theoretical curve. (b) Mean curvature of the trajectories plotted versus the coarse-graining time δt , for
different noise amplitudes. Polar phases are obtained for D < Dc ≈ 0.2. Dashed black line: theoretical pre-
dictions for the isotropic state (D = 1.47). Solid black line: theoretical prediction for the strongly-polarized
phase (D = 0.01). (c) In the long-δt limit, the mean curvature behaves as 〈κ〉 ∝ δtα. The exponent α is
plotted versus the noise amplitude. Black lines: theoretical predictions for isotropic (α = 0) and strongly-

polarized (α = −1) phases. (d) Probability distribution of the reduced curvature, κ̃ = (κ−〈κ〉)/


〈κ2〉, in
compact polar flocks (D = 0.01, δt = 0.025). Black line: Rayleigh distribution. (e) Same as (b) for com-
pact flocks. The black lines are the theoretical predictions obtained in the absence of attraction/repulsion
(dashed lines: D = 0.63, solid line: D = 0.01). (f ) Same as (c) for compact flocks.
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Compact flocks Having validated the theoretical expressions, we test their robustness to the ad-
dition of attractive and repulsive interactions, Eq. (3.33). The statistics of the writhe is shown in
Figs. 3.5(c) and 3.5(d). We recover the same shape for the probability distribution, and the same
diffusive behavior at long observation times,



Wr2(T)


∝ T. The detailed form of the interactions
only impacts the writhe statistics at the quantitative level.

4.3 Curvature of the trajectories

Alignment only As we did it above, we first check the analytical predictions in the reference
model, Eq. (3.7). We coarse-grained the trajectories by averaging the particle positions over a
time δt . A typical probability distribution is plotted in Fig. 3.6(a) (blue dots), and displays excellent
agreement with the Rayleigh distribution Eq. (3.17), with no free parameter (black line). Fig. 3.6(b)
shows the mean curvature as a function of the coarse-graining time. The numerical results are
again in quantitative agreement with the theory. In addition, they confirm that the curvature bears
a clear signature of the transition to collective motion. The emergence of polar order is attested
by the dependence of the mean curvature in the coarse-graining time, 〈κ〉∝ δtα. We measure the
scaling exponent α on the numerical data and plot it as a function of D, in Fig. 3.6(c). As expected,
the transition to collective motion is associated with a crossover from α≈ 0 in isotropic states (high
noise), to α≈−1 in polar phases (low noise). Note that our results do not display exactly the expo-
nent α=−1 expected in polar phases, which suggests that the asymptotic regime δt ≫ τ was not
fully reached within our simulation time.

On a practical perspective, this approach may also provide a powerful tool to measure the
alignment time τ from experimental data. This quantity cannot be readily deduced from macro-
scopic measurements in a steady state, as the large-scale observables systematically combine the
different time-scales of the dynamics. For instance, the global polarization results from the com-
petition between the alignment and diffusion times. Conversely, evaluating the mean curvature
for different coarse-graining times provides a direct measurement of the relaxation time τ. Exper-
imentally, this procedure can be easily implemented by making successive time averaged on the
data. It makes it possible to directly test the model at the single-particle level, irrespective of any
coarse-graining approximation.

Compact flocks We finally compare these results, obtained for particles moving in periodic
space, to the model defined by Eq. (3.33). The trajectories are now confined within a compact
flock. The probability distribution of the curvature, Fig. 3.6(d), is very well described by the
Rayleigh distribution (3.17). Its shape is therefore robust to the introduction of alignment and
repulsion in the model. This is not the case for the mean curvature 〈κ〉, which is plotted as a func-
tion of δt in Fig. 3.6(e). Let us consider the limits of isotropic and strongly-polarized states, and
compare the numerical results (colored dots) to the analytical predictions obtained for alignment
interactions only (black lines).

(i) In isotropic flocks (e.g. D = 0.63), we observe a crossover between two regimes when δt
reaches the persistence time D−1, in agreement with Eqs. (3.19)–(3.20). However, the mean cur-
vature does not plateau to a constant values at large δts, but slightly increases with the coarse-
graining time. This behavior results from the confinement of the particles inside a finite-size flock,
due to the long-distance attraction. Let us denote by τflock the typical time needed for a particle
to move from the center to the edge of the flock. When δt ≫ τflock, the particle explores the en-
tire volume of the flock during the coarse-graining time. Its averaged position therefore remains
very close to the center of mass of the flock: the apparent trajectory is confined in a small domain,
the size of which decreases when increasing δt . The typical radius of curvature, 〈κ〉−1, therefore
decreases upon increasing δt .

(ii) In strongly-polarized flocks (e.g. D = 0.01), we recover the behavior of non-interacting par-
ticles at small δts, as expected from Eq. (3.31). When the trajectory is observed at small time-
scales compared to the typical interaction times, the interactions have no impact on the local
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curvature. Upon increasing δt , the numerical results deviate from the reference model (alignment
only). The overshoot visible in Fig. 3.6(e) may result from the repulsion between the particles:
when δt reaches the typical collision time, the curvature becomes sensitive to the short-range col-
lisions which deviate the particle trajectories and therefore increase their roughness. Upon further
increasing the coarse-graining times, this collisional dynamics is averaged out and the curvature
probes the alignment couplings. We therefore recover the theoretical prediction, Eq. (3.32). Note
that a different behavior is expected at larger coarse-graining times, when δt reaches the typical
diffusion time inside the flock τflock. We do not explore this regime here, as the long-time mixing
will be studied in the paper reproduced p. 134.

The previous results again prove that the curvature reflects the global organization of the pop-
ulation. The mean curvature, plotted as a function of δt , is a signature of the microscopic dy-
namics. Varying the coarse-graining time makes it possible to probe the particle motion at all
time-scales. It may be useful to directly test a microscopic model against experimental data, and
quantitatively measure the typical time-scales involved. Of particular interest is the long-δt be-
havior, which quantifies the emergence of polar order. The scaling exponent of 〈κ〉 versus δt ,
which is plotted in Fig. 3.6(f) as a function of the noise amplitude, looks discontinuous at the
transition to collective motion. More theoretical work is required to go beyond these heuristic in-
terpretations, and quantitatively understand how the confinement within polar flocks impacts the
curvature statistics.

5 Conclusion

In summary, we have characterized the trajectories of interacting self-propelled particles us-
ing geometric quantities. Building on the analogy with semi-flexible polymers, we have described
the statistics of their writhe and curvature. In particular, we have shown that measuring the mean
curvature from a typical trajectory makes it possible to probe the collective dynamics of the pop-
ulation at different time-scales.

We finally mention two possible extensions to this work. First, in real flocks the speed of
the individuals also fluctuates [26]. The trajectories would then correspond to extensible poly-
mer chains. The introduction of a compression modulus in the equivalent polymer problem may
strongly impact the curvature and the writhe statistics. Second, experimental setups now make
it possible to track the individual positions in animal populations, such as bird flocks or midge
swarms [7]. Studying the trajectories may be useful to build behavioral models which reproduce
the individual dynamics. For instance, recent experimental evidences suggest that midge swarms
may be poised closed to a critical point [7, 10, 44]. The curvature of the trajectories might provide
another tool to test the proximity of a transition in such systems.



Article: Braiding a flock: winding statistics of
interacting flying spins
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When animal groups move coherently in the form of a flock, their trajec-
tories are not all parallel, the individuals exchange their position in the group.
In this Letter we introduce a measure of this mixing dynamics, which we quan-
tify as the winding of the braid formed from the particle trajectories. Building
on a paradigmatic flocking model we numerically and theoretically explain the
winding statistics, and show that it is predominantly set by the global twist of
the trajectories as a consequence of a spontaneous symmetry breaking.

The collective behaviors observed in animal groups have attracted much attention in the bi-
ology, the mathematics and the physics communities over the last 20 years. Quantitative data
analysis have established that the salient traits of collective motion are very well captured by the
dynamics of flying spins: persistent random walkers endowed with interactions akin to ferromag-
netic couplings between their velocities [40, 44, 132, 136, 155, 216]. This framework has been ex-
tensively exploited to rationalize structural and dynamical properties starting from the emergence
of directed motion, to rapid (orientational) information transfer, see [8, 27, 45, 92, 132, 215] and
references therein. However, beyond these spectacular results, the internal dynamics of a flock,
the relative motion of the individuals, remains scarcely investigated both experimentally and the-
oretically yet it is known to display non-trivial anomalous behaviors [43, 211, 214].

In this Letter, we theoretically describe the mixing statistics of an archetypal flying-spin model.
We first stress the intrinsic geometrical nature of the dynamics of particles in a flock and map this
problem to the braiding statistics of their trajectories. We evidence the nontrivial statistics of the
winding between pairs of motile-particle trajectories, which is a robust measure of their entangle-
ment. This quantity displays spatial correlations at the population scale. We single out the rea-
son for the nontrivial statistics and show that the spontaneous breaking of a rotational symmetry
causes the global twist of the flock to chiefly rule the long-time winding fluctuations.

Flocking geometry. We begin with a simple remark on the geometry of flying-spin models. Let
us first recall the paradigmatic agent-based model of flocking, see e.g. [27, 92, 132, 216]. N persis-
tent random walkers, ri (t ), i = 1. . .N, propel at a constant speed v0 = 1 along a direction t̂i which
diffuses on the unit sphere. Time therefore corresponds to the curvilinear coordinate of the trajec-
tories. The rotation of the unit tangent vector, ˙̂ti = κi n̂i , defines the curvature κi and the normal
vector n̂i in the Frénet frame. The coupled equations of motion of the particles take the generic
form:

κi n̂i = (I− t̂i t̂i ) ·Fi ({r j , t̂ j } j )+ξi (t ), (3.34)

where ξi ⊥ t̂i is the rotational noise. The Fi s describe the interactions between the self-propelled
particles, they a priori depend both on the position and orientation of the particles. The projection
operator (I− t̂i t̂i ) ensures that n̂i ⊥ t̂i . Remarkably, Eq. (3.34) relates the curvature of the trajectory
to the positions and tangent vectors of the neighboring trajectories. Hence the dynamics of the
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population reduces to a geometrical problem: the flock can be seen as a bundle of interacting
curves. In this framework, the relative motion of the individuals is inferred from the entanglement
of their trajectories, which we characterize in this paper.

We use a standard (metric) form of Fi to account for the flocking dynamics:

Fi =
1

τNA
i



j∈Ai

t̂ j +
1

τNB
i



j∈Bi

f (ri j ) r̂i j , (3.35)

where τ is a relaxation time, which we henceforth set to τ = 1, and ri j ≡ ri − r j . The first term in
Eq. (3.35) is the ferromagnetic term which promotes alignment with the mean direction of the NA

i
neighbors lying in the sphere Ai of radius RA = 1. The second term is introduced to yield compact
flocks, and corresponds to attractive and repulsive interactions within the sphere Bi of radius
RB = 5 [57]. Following [49, 92], we assume that these interactions are attractive above a distance
2rc , and repulsive when rc ≤ ri j < 2rc with a divergent amplitude at ri j = rc . Here, we take f (ri j ) =
1− [rc /(ri j −rc )]5 with rc = 0.4. Rotational diffusion is accounted for by the uncorrelated Gaussian
white noises ξi of variance 2D. Eqs. (3.34) and (3.35) are first solved numerically using an explicit
Euler scheme. Below a critical noise amplitude Dc ∼ 0.2, the rotational symmetry of the particle
orientation is spontaneously broken. A compact polar flock forms and moves along Π(t ) = 〈t̂i (t )〉i

as exemplified in Fig. 3.7(a). Decreasing D below Dc the magnitude of the polarizationΠ increases.

Quantifying the entanglement of the trajectories. Inspired by Lagrangian mixing in fluids, we
now introduce a quantity which quantifies the entanglement of the trajectories [34, 161, 164, 205].
Let us first define a convenient representation of the relative motion of the individuals irrespective
of the global motion of the flock. We consider a frame (G(t ), η̂1(t ), η̂2(t ),Π̂(t )), shown in Fig. 3.7(a).
The origin is the center of mass G(t ) of the flock, and the axis are parallel transported along the
trajectory of G. We then project the ri s on the plane (η̂1(t ), η̂2(t )), see Fig. 3.7(b). If the flock were
undergoing a rigid-body motion, the projected positions would be stationary. In order to quan-
tify the deviations from this trivial behavior, we choose a reference axis, say η̂1, and observe the
relative positions of the particles along this line. As the group is rotationally invariant around Π̂,
all directions of observation are equivalent. The mixing in the flock results in particle exchanges
along η̂1. We keep track of these crossings over time, and of the relative positions in the orthogonal
direction η̂2. We assign an index ϵ = ±1 to each crossing, as depicted in Figs. 3.7(b), 3.7(c). Con-
sidering two particles i and j , we then define their pair winding number, wi j (T), as the linking
number between their world lines. wi j (T) is the half algebraic sum of the crossing indexes involv-
ing particles i and j , between time t0 and t0 +T. This quantity has a clear meaning: it counts the
number of turns of particle i around j (or, equivalently, of j around i ) , since a clockwise (resp.
counter-clockwise) turn results in two negative (resp. positive) crossings. We finally average over
the pairs and define the total winding between t0 and t0 +T, which is our measure of the entan-

Figure 3.7 – (a) Instantaneous positions and orientations of the particles in a compact polar flock (250
particles), and definition of the parallel-transported frame (η̂1, η̂2,Π̂). D = 2.6×10−2. (b) World lines of 5
particles in a polar flock. D = 2.6×10−2. (c) Definition of the crossing signs. (d) Braid diagram associated to
the world lines drawn in Fig. 3.7(b).
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glement of the world lines:

W(T) = 1

Np



(i , j )
wi j (T), (3.36)

where Np = N(N−1)/2 is the number of pairs. Importantly, W(T) does not depend on the distance
between the particles, only the signs of the crossings and the times at which they occur matter.
Therefore the world lines define a braid that can be drawn in the form of a normalized braid dia-
gram, Fig. 3.7(d) [205]. Denoting by ϵa the sign of the ath crossing, we turn the sum over the pairs
into a topological invariant of the braid: W(T) = (2/Np )



a ϵa . Practically we use the Artin repre-
sentation of the braid word [34, 81, 205] and the braidlab library [206] to compute both the pair
and the total winding numbers. The topological nature of W(T) makes it a very robust measure of
the flock mixing. We now carefully investigate its statistics.

Winding statistics. The normalized distributions of W(T) are plotted in Fig. 3.8(a) for different
values of the noise amplitude. For all the trajectory lengths, the total winding follows a Gaus-
sian statistics with zero mean since the flock has no intrinsic chirality: clockwise and counter-
clockwise windings are equally probable. The winding distribution is fully characterized by its

standard deviation 〈W2(T)〉
1
2 , where the brackets denote the average over different initial condi-

tions. The winding fluctuations increase linearly with the curvilinear length of the trajectories at

short times: 〈W2(T)〉
1
2 ∝ T, and crosses over to a diffusive regime where 〈W2(T)〉

1
2 ∝ T

1
2 at long

times, Fig. 3.8(b). These first results would naively suggest a simple scenario. If the crossing events
were uncorrelated the Gaussian statistics would readily stem from the central limit theorem as
W(T) is the average of the crossing signs. In addition, the variance of W(T) would obviously grow
in a diffusive manner. However, this appealing explanation is inconsistent with a deeper analysis
of the data. Let us carefully study the correlations between the pair windings, which are quantified

Figure 3.8 – (a) Probability distribution of the total winding W(T), normalized by its standard deviation
(T = 103). The different noise amplitudes correspond to different polarizations of the flock, ranging from
0.45 (D = 0.18) to 0.99 (D = 0.01). Solid line: Gaussian distribution. (b) Standard deviation of the total wind-
ing,



〈W2(T)〉, as a function of time T, for different noise amplitudes (log scale). (c) Correlation function,
defined by Eq. (3.37), as a function of T. (d) Variance of the total winding normalized by the variance of the
pair winding, plotted versus the particle number (log scale). Open circles: T = 10−1. Filled circles: T = 103.
Black squares: random walkers confined in a circular box of radius 20, diffusivity: 10. Time step: 0.1. Dashed
lines: slope −1.
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by:

Cw w (T) = 1

Np (Np −1)



(i , j )



(k,l ) ̸=(i , j )

〈wi j (t )wkl (T)〉
〈w2(T)〉

, (3.37)

where 〈w2(t )〉 = N −1
p



(i , j )〈w2
i j (T)〉 is the variance of the pair windings. Given this definition,

Cw w (T) = 0 for uncorrelated wi j s, and Cw w (T) = 1 when the pair windings are fully correlated.
Unexpectedly, we find that the correlation between the pair windings does not vanish at long
times. Conversely, it increases and plateaus at a finite value, Fig. 3.8(c), thereby ruling out the
simple scenario sketched above. In order to check that this unexpected behavior is not a finite-
size artifact, we first note that Cw w (T) ∼ 〈W2(T)〉/〈w2(T)〉 in the large-Np limit and plot the ratio
〈W2(T)〉/〈w2(T)〉 for flocks of different sizes N, in Fig. 3.8(d). Whereas short trajectories have in-
deed winding correlations Cw w (T) that decay with the system size, as 1/N, the winding correla-
tions of the long trajectories do not display any significant variations with N when increasing the
particle number by a factor of ∼ 8. In order to gain more insight into these tho opposite behaviors,
we computed the same quantity for the wordlines of independent 2D random walkers confined in
a circular box. Cw w follows the same 1/N nontrivial scaling observed for short flocking trajectories.
We shall note that the finite time step of our numerical scheme regularizes the winding statistics
of the random walkers and makes it possible to define its variance [19]. This second set of obser-
vations confirms that the saturation of Cw w (T) at long time originates from extended correlations
of the crossing events.

A twist in the statistics. We now elucidate the physical mechanism responsible for the winding
correlations. We first note that a global instantaneous rotation of the flock around Π̂ would result
in a fully correlated pair winding. We therefore separate the associated global trajectory twist from

Figure 3.9 – (a) Standard deviation of the total winding,


〈W2(T)〉 (blue open circles),


〈W⋆2(T)〉 (green

open circles) and


〈Tw2(T)〉 (red filled circles), as a function of T. Black squares: total winding of confined
random walkers, same parameters as in Fig. 2. (b) Variance of the total winding normalized by the vari-
ance of the pair winding computed in the twisting frame for different particle numbers (log scale). Open
circles: T = 10−1. Filled circles: T = 103. Black squares: confined random walkers. Dashed lines: slope −1.
(c) Probability distribution of the twist, normalized by its standard deviation (T = 103). Solid line: normal
distribution. (d) The normalized twist diffusivity: DTw/(T 2Lflock) decays quadratically with N (log scale).
Solid line: slope −2.
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the total winding. Denoting by ηi the position of particle i projected in the observation plane
(G, η̂1, η̂2), the instantaneous rotation rate of the flock is:

Ω= 1

N



i

1

η2
i

(ηi × η̇i ) · Π̂. (3.38)

Integrating over time, we define the global twist that is the number of turns of the flock around Π̂:

Tw(T) = 1

2π

t0+T

t0

dt Ω(t ). (3.39)

We finally define the winding of the untwisted trajectories in the frame (G, η̂⋆
1 , η̂⋆

2 ), obtained by
rotating the parallel-transported frame (G, η̂1, η̂2) by an angle 2π×Tw:

W⋆ = W −Tw. (3.40)

Hence W⋆ =N −1
p



(i , j ) w⋆
i j , where w⋆

i j = wi j −Tw is the winding between particles i and j in this

rotating frame. Within the braid picture, W⋆ is found by factorizing out the global twist of the braid
word [65, 66, 196].

In Fig. 3.9(a), we plot the standard deviation of W, Tw and W⋆ versus T.The twist contribution
dominates the total winding at long times and 〈W2〉 ∼ 〈Tw2〉. This numerical fact is better under-
stood by noting that the winding in the rotating frame qualitatively follows the behavior displayed
by confined random walkers. Above the relaxation time τ= 1 introduced in Eq. (3.35), W⋆(T) fol-
lows the same diffusive evolution: 〈W⋆2(T)〉∝ T [93]. More importantly, we also find the same 1/N
asymptotic scaling for Cw⋆w⋆ ∼ 〈W⋆2(T)〉/〈w⋆2(T)〉 showing that the spatial correlations of the dis-
placements are short-ranged at all times, Fig. 3.9(b). This result contrasts with the behavior of the
total winding in the parallel-transported frame where Cw w ∼ 〈W2(T)〉/〈w2(T)〉 hardly depends on
N at long times, Fig. 3.8(d). We can therefore propose the following scenario : the long-range spa-
tial correlations in the flock arise from the global rotation of the flock, hence from the global twist
of the trajectories.

Hydrodynamic description of the trajectories’ twist. The very origin of the global rotation of the
flock roots from the spontaneous breaking of the rotational symmetry of particle velocities. This
symmetry breaking gives rise to a soft orientational mode [26] which twists the trajectories in the
parallel-transported frame at the entire-flock scale. We now lay out a more quantitative explana-
tion by switching to an hydrodynamic description of the flock viewed as a active-fluid drop. We
use the conventional hydrodynamic framework first introduced phenomenologically by Toner and
Tu [211, 214] and later derived from microscopic theories [23, 25, 79, 136]. The fluid density and
velocity fields are ρ(r, t ) and v(r, t ). We focus on strongly polarized flocks in which all particles fol-
low the same average direction. The momentum equation linearized around the homogeneously
polarized state takes the simple form [136, 212]:

∂t (ρv)+λ(Π̂ ·∇)ρv =−∇P(ρ)+Γ∇2(ρv)+ f, (3.41)

where P is the local pressure, and f(r, t ) is a Gaussian white noise with correlation 〈 fα(r, t ) fβ(r′, t ′)〉 =
2D̃δ(r− r′)δ(t − t ′)δαβ. In this continuous limit, the global rotation rate, Eq. (3.38), is given by:

Ω= 1

N



d3r
1

η2
(η×ρv) · Π̂. (3.42)

Two comments are in order. Firstly, deep in the polarized phase, the linearity of Eq. (3.41) im-
plies that the momentum fluctuations are Gaussian. After space and time integration, Eqs. (3.42)
and (3.39) imply that the twist also follows a normal distribution, in agreement with our numer-
ical findings reported in Fig. 3.9(c). Secondly, the damping of velocity fluctuations is set by the
diffusive term Γ∇2(ρv), in Eq. (3.41) (see [136, 212] for more details). Hence the Fourier mode
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with wave-vector q decays in a time ∼ (Γq2)−1. While small-wavelength perturbations are quickly
damped, the large-scale fluctuations that occur at the size of the flock, q ∼ 1/Lflock, remain cor-
related over a time T ∼ L2

flock/Γ. This observation explains the time behavior of the trajectories’
twist fluctuations. At short times, T <T , the small-q fluctuations result in finite time correlations
in the rotation rate Ω. Consequently, the twist fluctuations persist and undergo a ”balistic” growth:
〈Tw2(T)〉∝ T2. At long times, T >T , all the Fourier modes have been relaxed, the correlations van-
ish, and one recovers the observed diffusive behavior for the trajectory-twist: 〈Tw2(T)〉 ∼DTwT.

We further check this analysis, by studying how the diffusion coefficient DTw depends on the
size of the flock. The temporal correlations of the rotation rate are computed from Eq. (3.41)
and (3.42). In the long-time limit, |t − t ′|≫T , we have 〈Ω(t )Ω(t ′)〉 ∼DTwδ(t − t ′), where the effec-
tive diffusivity scales as DTw ∝ D̃T 2LflockN−2. This quantitative prediction is in excellent agree-
ment with our numerical data, shown in Fig. 3.9(d). In addition, introducing the mean density ρ0

of the flock, we find DTw ∝ ρ−5/3
0 N−1/3. Assuming that ρ0 weakly depends on N, the variance of

the twist is predicted to decay very slowly with the flock size as N−1/3. This scaling confirms that
the ratio between the twist and the local winding fluctuations (〈W⋆2〉/〈w⋆2〉 ∼ N−1) diverges with
the flock size. Given our limited range of flock sizes, the −1

3 scaling law could not be quantitatively
checked. Nonetheless this weak decay is again consistent with the minute variations reported
in Fig. 3.8(d). These analytical predictions unambiguously confirm that the soft rotational mode
which results in the global twist of the trajectories chiefly rules the winding statistics and hence
the mixing of the self-propelled particles at long times. The prominence of the twist fluctuations
is expected to be qualitatively robust to the detailed form of the interactions; it solely relies on the
existence of a soft rotation mode which is generic to all the flying spin models.

We close with Letter from a potential experimental perspective. In most of the situations, in
the wild, external perturbations and fields (e.g. gravity [43]) explicitly break the rotational sym-
metry. Measuring the winding statistics should be an effective mean to probe the response of the
flock to these external bias which are difficult to quantify otherwise.

We acknowledge support from Institut Universitaire de France and ANR project MiTra.









Perspectives and open questions

In this thesis, the collective dynamics of aligning self-propelled particles has been studied from
different angles: microscopic description of an experimental system, connection with the hydro-
dynamics of polar active matter, spatial patterns at large scale, geometry of individual trajectories.
We have already summarized the main results and mentioned related open questions at the end of
the previous chapters. To close this manuscript, let us finish with a few more general perspectives.

• A number of questions arise from kinetic theories. In this thesis, we have solely used these
methods as a tool to coarse-grain the microscopic dynamics of the colloidal rollers. In par-
ticular, we did not pay much attention to the spatial correlations between particles, follow-
ing all the previous works on active matter. Yet, this question is crucial to understanding
the microscopic origin of the giant density fluctuations, found in polar phases. Rather than
studying the correlations a posteriori, from the fluctuating hydrodynamics of the popula-
tion, one could try to trace back the anomalous large-scale fluctuations from the correla-
tions between the particle positions.

• In this thesis, we have studied different steady states of the hydrodynamics of active matter:
homogeneous polar liquid, band patterns, heterogeneous vortex. As we already stressed it
several times, the selection of a pattern among these various solutions is not understood.
This complex problem involves the boundary conditions, the detailed form of the interac-
tions, and depends on the initial condition. The formation and the stability of the spatial
patterns of active matter should be further investigated in the future.

• Over the past years, a number of numerical works have studied more complex dynamics
than the simple Vicsek model, by adding e.g. attractive and repulsive couplings [50, 55, 57,
92, 128, 140], inertia for the moving particles [6, 8, 46, 225], or assuming a density-dependent
propulsion speed [79]. The large-scale phenomenology turns out to be dramatically altered
by these changes. Even slight modifications of the interaction rule (e.g. short-ranged vs.
metric-free couplings) impact the spatial patterns [123, 160, 198]. However, apart from the
Vicsek model, thorough numerical characterizations are still lacking. To better understand
the differences between these closely-related models, it may be enlightening to systemat-
ically compare the different implementations of the Vicsek ideas. For instance, how do
pairwise-additive interactions (such as in the “flying-XY model” [79, 156]) change the phe-
nomenology? What is the impact of the particle inertia? How do different boundary condi-
tions alter the structure of the polar states?

• By definition, polar phases emerge from a spontaneous breaking of the rotational symme-
try. Consistently, the theoretical models rely on the hypothesis that all directions of space
are equivalent. We discussed in Chapter 3 the consequence of this assumption on the co-
herent rotation of polar flocks. However, Cavagna et al. showed that diffusion in starling
flocks is anisotropic: it is minimal along the mean direction of motion and along the verti-
cal direction [43]. The latter anisotropy is not expected from the available models. It would
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be interesting to build theories which would account e.g. for the gravity field, and study the
impact of this explicit breaking of the rotational symmetry.

• Another interesting question is the shape of compact flocks. In the wild, the coherent mo-
tion of animal populations usually takes the form of cohesive groups. This behavior has
never been clearly seen in any synthetic experiment: when observed, polar structures sys-
tematically cruise in a disordered sea of particles that spans the entire box. As a matter of
fact, it has been shown numerically that cohesive polar groups arise from a subtle interplay
between alignment, repulsion and attraction [57]. However, the shape of these coherent
flocks has never been rationalized theoretically. In addition to the emergence of polar or-
der, it would be challenging to understand the formation of an interface separating the flock
from the external medium, as well as its fluctuations and response to external perturbations.
Can we describe the flock as a droplet of active liquid, having an effective surface tension?

• Recent works have studied numerically the dynamics of active particles in disordered me-
dia. In ensembles of non-interacting particles, it was shown that a random distribution of
repulsive obstacles can lead to sub-diffusive dynamics. In populations of aligning particles,
it can destroy polar order [53, 54]. Consistent quantitative observations have been made
very recently by N. Desreumaux and V. Chikkadi on the colloidal rollers [143]. These first
numerical and experimental results open interesting perspectives for theoretical works.

The previous questions could probably motivate future works in the same spirit as this the-
sis, connecting theoretical, numerical and experimental approaches. I hope that new interesting
results will be obtained in these directions.







APPENDIX

Non-equilibrium dynamics of confined
suspensions

In this appendix, I reproduce two articles devoted to the hydrodynamics of confined particle-
ladden fluids. When modeling the experimental system of colloidal rollers, in Chapter 1, we have
found that the hydrodynamic couplings between the particles have a long-ranged component. It
impacts the large-scale structure of the polar phase by destroying the giant density fluctuations. As
a matter of fact, this long-ranged dipolar interaction is not specific to the population of Quincke
rollers. It exists in all confined suspensions, when particles move between two rigid walls in a
thin layer of liquid. This situation encompasses two classes of systems. (i) A first class consists
in the transport of passive particles driven in thin channels or in semi-rigid films, e.g. colloid de-
position on solid surfaces [63, 64], protein motion in lipid membranes [77] or droplet-base mi-
crofluidics [15, 162, 191] (see Fig. A.1(a)). Due to the friction with the confining walls, the particle
moves slower than the surrounding liquid and cause distortions of the uniform advection flow.
(ii) A second situation corresponds to active suspensions composed of self-propelled particles,
e.g. active droplets moving in microfluidic channels [209] or bacteria swimming in nanometer-
thin films [61, 227] (see Fig. A.1(b)). The motion of the particles again induces a flow in the liquid.
Although the transport mechanisms are very different at the single-particle level, these two classes
of confined suspensions display large-scale dynamical patterns such as propagating density het-
erogeneities [17] and coherent clusters [227], shown in Fig. A.1. Here, we investigate the impact of
hydrodynamic interactions on the large-scale organization of these systems. We address the col-
lective dynamics of non-brownian particles under rigid confinement, in both passive and active
suspensions.

At large scale compared to the confinement width, the hydrodynamics of thin films of vis-

(a)

(b)

RMM=”ã

Figure A.1 – Two examples of confined suspensions. (a) Droplets transported by an external flow in a
microfluidic channel. Density waves freely propagate. (b) Colony of bacteria bacillus subtilis swimming in
a thin film of liquid. The bacteria form coherent clusters (reproduced from [227]).
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Figure A.2 – Disturbance flow field induced a long distance by a particle, in quasi-bidimensional confine-
ment. (a) Passive particle driven by a uniform external flow. (b) Active particle moving in the fluid.

cous fluids reduces to a Laplacian problem. The two-dimensional flow field is potential: v(r, t ) =
−∇Φ(r, t ). The incompressibility condition, ∇·v = 0, readily translates into∆Φ= 0. The latter equa-
tion, which is satisfied everywhere in the fluid, does not hold inside the solid particles: boundary
conditions are imposed at their surface. The resulting flow is calculated by considering fictive
source-singularities located at the particle positions: ∆Φ = S(r, t ), where the source distribution
S(r, t ) is zero outside of the particles. In the far field, the flow induced by a particle is deduced from
a multipolar expansion of S(r, t ). As mass conservation forbids source monopoles, the lowest-
order multipole is a source-sink dipole [59, 77]. It is the dominant contribution at long distance. A
particle located at r = 0 induces a dipolar disturbance flow:

v(r) = σ

2πr 2
· (2r̂r̂− I) , (A.1)

where the dipole strength is proportional to the particle speed with respect to the fluid. The
streamlines are sketched in Fig. A.2.

Importantly, the previous argument does not depend on the detailed transport mechanism at
the particle level. This result contrasts with unconfined fluids: in 3D suspensions of self-propelled
particles, the far-field flow has a different symmetry, and its sign depends on the propulsion mode
(the extensile or contractile nature of the swimmer) [14, 183, 185]. Conversely, under rigid confine-
ment, the flow induced by the stress distribution at the surface of the particle is screened by the
rigid walls, which are momentum reservoirs. The remaining unscreened flow solely arises from
mass conservation, due to the displacement of a finite-size object. As a result, the far-field flows
induced by passive and active particles have the same dipolar symmetry and the same r−2 decay,
Eq. (A.1) and Fig. A.2. These two situations can therefore be studied within a similar theoretical
framework. Using a simple kinetic theory, we investigate the dynamics of particles coupled by
long-ranged dipolar interactions.

In suspensions of passive suspensions cruising in a quasi-bidimensional channel, we find that
density excitations freely propagate in all directions, even though the particles are neither affected
by potential force nor by inertia, Fig. A.1(a). The dispersion relation is shaped by the combina-
tion of the long-ranged hydrodynamic interactions and local excluded volume effects. This works
combines theory and experiments, carried out by Nicolas Desreumaux and Raphaël Jeanneret. It
was done in collaboration with Eric Lauga. The results are explained in the article “Hydrodynamic
fluctuations in confined particle-laden fluids”, reproduced p. 149.

In active suspensions, the hydrodynamic interactions between confined swimmers solely de-
pend on their shape. Unlike in 3D suspensions, the particles reorient in uniform flows due to
friction with the confining walls. By studying the large-scale dynamics of isotropic populations,
we find that hydrodynamic interactions can promote the formation of coherent structures. This
work was done with Tommaso Brotto and Eric Lauga. It is detailed in the article “Hydrodynamic
of confined active fluids”, see p. 156.



Article: Hydrodynamic fluctuations in confined
particle-laden fluids

N. Desreumaux, J.-B. Caussin, R. Jeanneret, E. Lauga and D. Bartolo, Phys. Rev. Lett.
111, 118301 (2013)

We address the collective dynamics of non-Brownian particles cruising in a
confined microfluidic geometry and provide a comprehensive characterization
of their spatiotemporal density fluctuations. We show that density excitations
freely propagate at all scales, and in all directions even though the particles are
neither affected by potential forces nor by inertia. We introduce a kinetic the-
ory which quantitatively accounts for our experimental findings, demonstrat-
ing that the fluctuation spectrum of this non-equilibrium system is shaped by
the combination of truly long-range hydrodynamic interactions and local col-
lisions. We also demonstrate that the free propagation of density waves is a
generic phenomenon which should be observed in a much broader range of
hydrodynamic systems.

Understanding the collective dynamics of non-Brownian particles in viscous fluids is a long-
standing challenge in fluid mechanics. For example, many features of sedimentation in a quies-
cent fluid are still poorly understood. Rather than falling along straight lines, as an isolated par-
ticle does, sedimenting particles experience swirling motion correlated over large finite distance,
the physical origin of which has been under debate for more than 30 years [96, 167]. The con-
ceptual complexity of this collective dynamics contrasts with the formal simplicity of the (linear)
Stokes equation that rules low-Reynolds-number flows. Immersed bodies generically affect both
the momentum and the mass transfers of the fluid, even when not driven by external fields. As
a result, long-range interactions arise between the particles due to the interplay between the lo-
cal velocity of the fluid and the motion of the particles. They vanish only for uniform flows, for
which the particles would be all advected at the same speed as the fluid, irrespective of their spa-
tial distribution. Such a condition is never achieved when the fluid is confined by rigid walls or
obstacles. Friction with the bounding walls causes strong distortions of the flow field, inducing
effective interactions between the particles [31, 59, 70, 77]. As it turns out the transport of particle-
laden fluid through rigidly confined geometries is is involved in a number of industrial and natu-
ral processes, including filtration [107], colloid deposition on solid surfaces [63, 64], droplet-based
microfluidics [15, 191], Propel2005 micro-flows [162], protein motion in lipid membranes [77],
bacteria swarming [227, 228]. Understanding the particle transport in confined films is a neces-
sary first step toward the description of particle traffic in more complex geometries such as or-
dered, or random porous networks. Recently, pioneering experiments probed the propagation of
density heterogeneities in bidimensional emulsions and droplet streams [16, 17]. Focusing on a
semi-local quantity, the droplet density averaged over the channel width, Beatus2009 et al revealed
the propagation of longitudinal Burgers shocks, resulting from the linear variation of the droplet
speed with the local density [17]. However, this observation does not account for the complexity
of the structural [179], and spatiotemporal fluctuations observed at all scales in rigidly confined
particle-laden fluids, regardless of their specific geometry, composition, and driving mechanism,
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see e.g. [17, 47, 179, 209, 227].

Here we combine advanced microfluidic experiments and kinetic theory to shed light on the
collective dynamics of particles advected in shallow microchannels. We first characterize their
density fluctuations. We show that they freely propagate, at all scales and in all directions, in a
dispersive manner. We then quantitatively demonstrate how the interplay of hydrodynamic and
steric interactions shape the fluctuation spectrum of this many-body non-equilibrium system.
Finally, we show how bidimensional microfluidic emulsions can be effectively used as a proxy
to probe collective effects in a much broader range of hydrodynamic systems including diffusio-
phoretic suspensions, foams, or emulsions, cruising through porous media, and confined sedi-
mentation.

We developed a model microfluidic experiment which made it possible to track the individual
positions of hundred of thousands of identical droplets interacting hydrodynamically in a shal-
low channel. Briefly, the system consists of a monodisperse oil-in-water emulsion flowing in a
shallow microchannel. The length and width of the channel, L × W = 5cm × 5mm, are much
larger than its height, h = 27± 0.1µm, which compares with the droplet diameter, see Fig. A.3.
The emulsion is therefore confined in a quasi-2D geometry. The droplets are formed at a con-
ventional flow-focusing junction followed by a dilution module. The fluid flow-rates are imposed
by high-precision syringe pumps. Etched-glass microchips ensure that the channel dimensions
are unaffected by the flow conditions. In addition, the geometry of the junction, and the range
of flow rates, are chosen so-that the formation of the droplet was unaffected by the dilution flow.
Therefore we accurately controlled both the droplet radius, Rd, and the average area fraction, φ,
occupied by the emulsion. We report here results obtained for Rd = 16.7 ±0.3µm (Rd /h = 0.62),
and 0.21 < φ < 0.56. Varying the droplet sizes up to Rd ∼ 2h does not qualitatively change our
measurements. The droplets are visualized using fluorescence imaging. For each experiment we
tracked ∼ 105 particle trajectories in a region close to the center of the main channel, Fig. A.3B.

In the absence of droplets, the fluid flow would be uniform along the x-direction in the ob-
servation region. This is evidenced by the linear trajectories followed by isolated droplets cruising
along the channel. Conversely, even at the smallest surface fraction, when an emulsion flows, the
droplets undergo large transverse and longitudinal fluctuations in their motion. These fluctua-
tions lead to the formation of particle clusters at all scales. These clusters are clearly seen to travel
at a speed that is different from the mean droplet velocity. Density bands transverse to the flow
are faster than the longitudinal ones. However, these clusters are transient structures, they form
and break apart in a continuous fashion. Our purpose is to elucidate the physical mechanisms re-
sponsible for this complex and fluctuating dynamics. To quantify the spatiotemporal fluctuations
of the droplet density field ρ(r, t ), where r = (x, y), we measure its power spectrum. Introducing
the Fourier transform of the local density, ρq,ω′ = 1

2π



ρ(r, t )e i (q·r−ω′t )drdt, the power spectrum is
defined as |ρ̃q,ω′ |2, where ρ̃(r, t ) ≡ ρ(r, t )−〈ρ(r, t )〉. Practically, ρ is computed from the particle po-
sitions as ρ(r, t ) ≡ 

i G (r− ri (t )), where ri (t ) is the position of the i th droplet, and where G is a
Gaussian shape function.

B

x

y

A

Figure A.3 – A– Picture of the microfluidic setup. During the experiments one of these two 5-cm long
channels was continuously fed with monodisperse droplets. Scale bar: 5 cm. B– Typical snapshot of an
experimental movie. The black arrows indicate the direction of the flow. Scale bar: 500µm.
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In Fig. A.4A, we show a cut of a typical power spectrum in the (ω′, qx ) plane. This example cor-
responds to φ= 0.39, and to qy Rd = 0.2. Several important comments are in order: (i) The power
spectrum is localized in the Fourier space, which is the hallmark of propagative dynamics for the
density fluctuations, as first noted in [17] for the specific case of the y-averaged density mode
(qy = 0). We stress that compression modes propagate even though the droplets do not interact
via potential forces, and even though their inertia is negligible compared to the viscous friction
at this scale. These “sound" modes originate only from the hydrodynamic coupling between the
advected particles; (ii) The curve on which the spectrum is peaked corresponds to the dispersion
curve of the density waves. It deviates markedly from a straight line at moderate wavelengths. The
hydrodynamic interactions do not merely renormalize the mean advection speed but cause the
density fluctuations to propagate in a dispersive fashion; (iii) The global shape of the spectrum is
conserved for every area fraction, and more surprisingly for every wave vector qy provided that
the wavelength remains larger than the particle size (see below).

In all that follows, we discard the trivial non-dispersive contribution due to the advection at the
mean droplet velocity 〈vd〉. We focus on the density fluctuations in the frame moving at 〈vd〉, and
introduce the reduced pulsation ω ≡ ω′ − 〈vd〉qx . Experiments done at different area fractions,
and thus at different continuous phase velocities due to dilution, are compared by normalizing
the wave vectors by R−1

d , and the pulsations by vF/Rd, where vF is the velocity of the continuous
phase imposed by the seringee pumps. Fig. A.4B shows a typical dispersion relation: ω=ω(qx , qy ),
obtained for φ = 0.39. The spectrum is symmetric along the qy direction as expected from the
symmetry of the system. Furthermore, density fluctuations propagate in all directions except in
the one strictly transverse to the flow (qx = 0). In addition, the dispersion curve displays an axial

Figure A.4 – A– Grayscale power spectrum of the density fluctuations plotted in the (qx ,ω′) plane for
qy = 0.2/Rd, φ= 0.39, and vF = 1mm/s. Solid line: theoretical prediction for the location of the dispersion
curve. B– Experimental dispersion curve ω(qx , qy ), φ = 0.39. Recall that units are chosen so that Rd = 1,
and vF = 1. The dotted line indicates the qy value corresponding to the power spectrum shown in A. C–
Renormalized dispersion relations in the moving frame, qy = 0. Circles: experimental data, solid line: theo-
retical prediction, Eq. (A.7), with no adjustable parameter. D– Variations of the mean droplet velocity with
φ. Circles: experimental data. Solid line: best linear fit. The error bars account for statistical fluctuations,
and correspond to the standard deviation.



152 NON-EQUILIBRIUM DYNAMICS OF CONFINED SUSPENSIONS

symmetry with respect to the qy -axis. It is worth noting that the sign of the associated phase
velocity changes as qx increases. The long wavelength excitations propagate downstream, while
the short wavelength excitations propagate upstream.

In Fig. A.4C, we show that once renormalized by φ, the dispersion relations corresponding to
12 different area fractions collapse on a single master curve. This noticeable collapse is not spe-
cific to the purely longitudinal waves and occurs for all the possible qy values. Our systematic
rescaling demonstrate that a unique set of physical mechanisms dictates the collective motion of
the droplets, at all scales, regardless of the droplet density.

We now propose a theoretical model which quantitatively accounts for our experimental find-
ings. The instantaneous configuration of the emulsion is fully determined by the positions of N
identical axisymmetric particles: ri (t ), i = 1. . .N. The dynamics of an isolated particle has proven
to be correctly captured by a constant mobility coefficient, µ, defined as ṙi (t ) ≡ µv(ri , t ) where
v(r, t ) is the in-plane fluid velocity field averaged over the channel height in the absence of the
particle i [16, 17]. In our quasi-2D geometry, the fluid flow is potential and derives from the local
pressure field, v = −G∇P, where G = h2/12η, η being the viscosity of the aqueous phase; v(r, t ) is
then fully determined when considering the incompressibility condition, and the no-flux bound-
ary conditions through the sidewalls of the channel as well. In a particle-free channel, the velocity
field would be uniform, v = vFx̂. The particles are not passive tracers (µ< 1), therefore their rela-
tive motion with respect to the fluid results in a dipolar disturbance of the surrounding flow [59,
77]. The potential dipolar perturbation, vdip(r,ri (t )), induced at the position r by a particle located
at ri (t ) is defined by the modified incompressibility relation

∇·vdip(r,ri (t )) =σ∂xδ(r− ri (t )), (A.2)

where σ is the dipole strength (σ > 0). In order to establish the equations of motion of the N
particles, we now assume the dipolar disturbances to be pairwise additive. This yields ṙi (t ) =
µvFx̂+µ



j ̸=i vdip(ri (t ),r j (t )). We now move from these N coupled equations to an hydrodynamic
description for the particle density field ρ(r, t ). ρ(r, t ) obeys the conservation equation

∂tρ(r, t )+∇· j(r, t ) = 0. (A.3)

In order to relate the local particle current j(r,t) to the local structure of the suspension, we used a
conventional kinetic theory framework [139, 173]

j(r, t ) =µρ(r, t )vF +µ



dr′vdip(r,r′)ρ(2)(r,r′, t ), (A.4)

where ρ(2)(r,r′, t ) is the two-point distribution function. We now assume that the particle posi-
tions decorrelate over a distance as small as one particle diameter. In addition to this mean-field
approximation, we also explicitly account for the steric repulsion between the particles via the
following closure relation for Eq. (A.4)

ρ(2)(r,r′) =








0 if |r− r′| < 2Rd,
ρ(r)ρ(r′) if |r− r′| ≥ 2Rd,

(A.5)

where Rd is the radius of a particle. Eqs. (A.4) and (A.5) define the equations of motion for the
particle-density field. In principle, the effective extent of the excluded volume could be larger that
the particle radius due to short-range intermolecular repulsions, and lubrication forces. However
no measurable difference with the actual droplet radius could be observed in our experiments.
We now focus on the dynamics of small density fluctuations, ρ̃(r, t ), around an homogeneous
state: ρ̃(r, t ) ≡ ρ(r, t )− ρ0, where ρ0 = 〈ρ(r, t )〉 = φ/(πR2

d). As done in our experiments, we work

in the frame moving at the mean droplet velocity 〈vd〉 =µvFx̂+µρ0


|r−r′|≥2Rd
vdip(r,r′)dr′. At lead-

ing order in ρ̃, and combining Eqs. (A.4) and (A.5), the current functional that captures both the
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hydrodynamic interactions (long-range) and the contact interactions (short-range) remains non-
local: j̃(r, t ) ≡ µρ0



|r−r′|≥2Rd
vdip(r,r′)ρ̃(r′, t )dr′. However, using Eq. (A.2) and focusing on particles

far from the sidewalls, then ∇· j̃ takes a simple local form

∇· j̃(r, t ) =−µρ0σ

4πRd

2π

0
ρ̃(r−2Rdr̂′)cosθ′dθ′, (A.6)

where, since Rd ≪ W, we have used the expression of the dipolar perturbation corresponding to
an unbounded domain [59], vdip(r,r+2Rdr̂′) · r̂′ = −(σcosθ′)/8πR2

d, with r̂′ ≡ cosθ′x̂+ sinθ′ŷ . We
now look for plane wave solutions ρ̃(r, t ) =

q ρ̃q exp(iωt−i q·r) of Eq. (A.3). After some elementary
algebra we infer their dispersion relation, which is our main theoretical result

ω= (µσρ0)qx
J1(2qRd)

2qRd
, (A.7)

where J1 is the first Bessel function. As ω is real, this relation implies that density waves freely
propagate in the channel in qualitative agreement with our experimental observations. It is worth
noting that since ∇· j̃ is a local quantity, the form of the dispersion relation is generic, and does not
depend on the channel size, and geometry. In addition, the linear variations of ω with ρ0 explain
the collapse of the normalized dispersion relations on a single master curve over the entire range
of wave vectors (Fig. A.4C). We now move to a quantitative comparison between our theoretical
predictions and our experimental measurements. Eq. (A.7) is fully determined by two physical
parameters: the droplet radius Rd , and µσρ0 that quantifies the strength of the hydrodynamic
couplings. In order to determine this latter parameter, we exploit another specific feature of the
hydrodynamic interactions. Due to their symmetry, the sum of all the dipolar perturbations would
leave the mean droplet velocity unchanged in an isotropic and homogeneous system. However,
in anisotropic-channel geometries, 〈vd〉 increases linearly with the mean density irrespective of
the channel size [15]. At 0th order in ρ̃, 〈vd〉 = µvFx̂+ 1

2 (µσρ0)x̂. Importantly this relation provides
a direct means to measure independently the last unknown parameter of our theory. The linear
increase of the measured value of 〈vD〉 with ρ0 appears clearly in Fig. A.4D. The strength of the
hydrodynamic coupling (µσρ0) can thus be inferred from a linear fit (see Fig. A.4D). We superim-
posed our theoretical predictions for the dispersion relation, Eq. (A.7), both in the laboratory frame
and in the frame moving at 〈vd〉 in Figs. A.4A and A.4C. We find that the agreement between the
theory and the experiments is excellent over a wide range of wave vectors, and of area fractions.
Without any free fitting parameters, our model quantitatively captures the dispersive nature of the
density fluctuations observed in the flowing emulsions.

Figure A.5 – A– vgx plotted versus qy at qx = 0. Circles: experimental data for φ = 0.56. Solid line: The-
oretical prediction with no adjustable parameter deduced from Eq. (A.7). The error bars correspond to a
95% confidence interval in the measurement of vgx from the slope of the dispersion curve. B– Theoretical
prediction for the variations of the group velocity, vgx with the wave vector components. Dotted line: qx = 0.
The variations of vgx along this direction are shown in A.
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To gain additional physical insight into the propagation of the density waves, it is worth looking
at the small-q expansion of Eq. (A.7): ω= 1

2µσρ0qx [1− 1
2 (qRd)2]+O



(qRd)4


. At leading order, this
relation is non-dispersive (linear) whatever the direction of propagation. The phase velocity scales
linearly with the magnitude of the dipolar coupling σ. In addition, it does not depend explicitly on
Rd , which implies that the small-q excitations propagate only due to the long-range hydrodynamic
interactions between the particles. Conversely, the dispersive term in ω(q) explicitly depends on
the particle radius. At high q , the propagation of the density waves is set by the combination of
the excluded volume interactions and the angular symmetry of the hydrodynamic couplings.

To introduce our last quantitative results, we recall that one of the most striking feature ob-
served in the flowing emulsions is the propagation of vertical density bands which propagate at a
significantly faster speed than the mean droplet flow. An homogeneous vertical band spanning the
entire width of the channel corresponds to the linear superposition of plane waves associated with
qy = 0, and with qx ’s distributed around qx = 0. In the frame moving at 〈vd〉, their speed is given
by the x-component of the group velocity vgx (qx , qy ) = ∂ω/∂qx evaluated at q = 0. In Fig. A.5A, we
plot the experimental values of vgx (0, qy ), which we measured from the slope at the origin of the
dispersion curves (as the ones shown in Fig. A.4C). Again the agreement with the theoretical curve
deduced from Eq. (A.7) is excellent. This plot reveals that the density bands extended across the
entire channel width are the fastest and propagate at velocities 1.5 higher that the mean droplet
flow, thereby making them highly visible on the experimental movies. To go beyond this observa-
tion, we used Eq. (A.7), to plot the magnitude of vgx (qx , qy ) for all qs, Fig. A.5B. vgx displays non-
monotonic variations with both qx , and qy and changes its sign at high qs. In the frame moving at
〈vd〉, and for qRd ≪ 1, vgx is positive. The wave packets propagate faster than the mean flow due
to the hydrodynamic interactions that shape the dispersion curve in the long-wavelength limit. In
contrast, the excluded volume interactions between the droplets result in the opposite effect: at
high q the density-wave packets propagate upstream (vgx < 0, for qRd > 1).

As a last theoretical comment we note that the kinetic theory framework that we introduced is
not restricted to dipolar interactions. It could be used without additional complexity to address the
density fluctuations in unbounded sedimenting suspensions. Strong qualitative differences are
expected due to the loss of fore-aft symmetry for Stokeslets-type hydrodynamic interactions [96].

To close this letter we further stress on the relevance of our results to a much broader range of
physical systems. Two ingredients dictate the collective behavior of the confined emulsions: (i) the
hydrodynamic interactions between the particles derive from a potential, and have dipolar sym-
metry, (ii) the particles have a finite size. As it turns out these two features are shared by a number
of very distinct hydrodynamic systems. A first class of example concern the transport of particles
in porous media. Regardless of the spatial dimension (2D or 3D), the fluid flow in a porous net-
work is a potential flow at scales larger than the typical pore size. In addition, it has been recently
shown that when particles locally obstruct the porous network they induce a dipolar perturbation
to the velocity field [47]. Therefore, the dispersive propagation of density excitations is expected to
be found in particle filters, blood, micro-vessels, soils, etc. It is also worth noting that the dipolar
couplings found in Hele-Shaw and in networks geometries are not restricted to particles advected
by the surrounding fluid. Sedimenting particles, rising bubbles and even self-propelled particles
would move faster than the host fluid, thereby inducing a dipolar perturbation in the far field as
well. The same collective phenomenology would be found except that the speed of the density
waves should have the opposite signs, and that the mean particle velocity should decay with the
volume fraction. As a last example, we point that particles diffusiophoretically transported by an
homogeneous solute gradient [150] should also display a very similar propagative dynamics, as
they also induce a weak far field disturbance that has a dipolar symmetry [3]. This last exam-
ple makes it clear that confinement is not a requirement to observe the propagation of dispersive
waves. The model microfluidic experiment that we characterized and described in a quantitative
fashion should be seen as a proxy to probe generic collective effects in particle-laden fluids driven
out of equilibrium.
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Article: Hydrodynamics of confined active fluids
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We theoretically describe the dynamics of swimmer populations confined
in thin liquid films. We first demonstrate that hydrodynamic interactions be-
tween confined swimmers only depend on their shape and are independent of
their specific swimming mechanism. We also show that due to friction with
the walls, confined swimmers do not reorient due to flow gradients but the
flow field itself. We then quantify the consequences of these microscopic in-
teraction rules on the large-scale hydrodynamics of isotropic populations. We
investigate in details their stability and the resulting phase behavior, highlight-
ing the differences with conventional active, three-dimensional suspensions.
Two classes of polar swimmers are distinguished depending on their geomet-
rical polarity. The first class gives rise to coherent directed motion at all scales
whereas for the second class we predict the spontaneous formation of coherent
clusters (swarms).

Soft materials composed of motile particles have seen a surge of interest over the last couple
of years. They encompass auto-phoretic colloids [204], self-propelled droplets [209], and vibrated
grains [68, 119]. This interest was triggered by their fascinating structural and transport proper-
ties akin to the one found in biological systems such as bacterial suspensions, migrating cells, and
cytoskeletal extracts (see Ref. [136] and references therein). These so-called active fluids are en-
sembles of self-driven particles capable of propelling themselves in the absence of any external
actuation [41, 136, 168, 212, 216]. From a theoretical perspective, these systems are commonly
separated into two classes depending on the way they exchange momentum with their surround-
ings [136, 168, 212]. "Dry" systems, typically walkers, or crawlers, achieve locomotion by transfer-
ring momentum to a rigid substrate, and interact via short range contact interactions. In contrast
"wet" systems, typically suspensions of swimmers, conserve momentum, and the particles in-
teract at finite distance via long-range hydrodynamic interactions. A number of experimentally
relevant situations involve monolayers of active particles living in confined fluid films, and thus
belong to both classes – e.g. bacteria swimming on the surface of a cell-culture gel, or active col-
loids and droplets moving in microfluidic channels [61, 209, 228].

In this Letter, we describe the phase behavior of active fluids confined in two-dimensional
(2D) geometries. In order to do so, we first revisit the description of hydrodynamic interactions
under confinement. We demonstrate that the far-field flow induced by a swimmer does not de-
pend on the specifics of its swimming mechanism. The notions of pushers and pullers for in-
stance, prevalent in three dimensions (3D), are not relevant in thin films [182, 183]. In addition,
on the basis of a prototypal microscopic model, we show that due to friction with the walls, con-
fined polar swimmers are not only prone to align along the local elongation axis but with the flow
field itself. We then exploit these new interactions rules in 2D to address the large-scale dynam-
ics of confined populations of swimmers. We establish a novel set of hydrodynamic equations for
confined active films, which qualitatively differ from the modified Leslie-Eriksen equations for ac-
tive liquid crystals [136]. An investigation of the resulting phase behavior leads to the distinction
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between two classes of polar swimmers depending on their geometrical polarity. The first class
(large-head), gives rise to the emergence of coherent particle motion along the same direction at
all scales whereas for the second class (large-tail), we predict the spontaneous formation of coher-
ent clusters (swarms).

Let us consider an ensemble of self-propelled particles confined in a thin film of a Newtonian
liquid. We address strongly confined geometries where the particle height is comparable to the
film thickness, h, see Fig. A.6 (left). At scales larger than h, the fluid flow is characterized by the
projection of the z-averaged velocity field in the (x, y) plane. Far from a swimmer, the projected
flow field u(r, t ) is potential

u(r) =−G∇Π(r), (A.8)

where Π(r) is the pressure at r = (x, y). The Darcy factor G scales as G ∼ h2/η [97].
How does confinement affect hydrodynamic interactions between swimmers? In unbounded

fluids, the flow induced by a swimmer depends on the microscopic details of the propulsion mech-
anism [75, 76, 124]. In the far-field, this flow is often well approximated by a force-dipole singu-
larity, with a ∼ 1/r 2 spatial decay, and as such has been used in most theoretical models [14, 127,
183]. This description results in the distinction between so-called pushers (or extensile swim-
mers), and pullers (or contractile swimmers). They corresponds to force-dipoles having opposite
signs, and displaying different large scale dynamics [14, 127, 183]. When confined by solid walls,
these flows are screened algebraically and decay as ∼ 1/r 3, while retaining their angular symmetry.
This screening of hydrodynamic interactions was shown to suppress generic instabilities which are
the hallmark of isotropic pusher suspensions [136].

As it turns out, however, the two main consequences of confinement has actually been over-
looked so far. Any multipolar stress distribution on the surface of the swimmer actually yields
only subdominant contributions to the flow in the far field. For any particle transport mechanism
(swimming, driving, advection) the far-field flow induced by a particle moving in a confined fluid
has instead the symmetry of a potential source-dipole and decays as ∼ 1/r 2 [16, 47, 129]. The
distinction between pushers and pullers is thus irrelevant under confinement. Irrespective of the
propulsion mechanism, the flow induced by a swimmer located at r = r(t ) is defined by Eq. (A.8)
and by a modified incompressibility relation

∇·u(r) =−σ ·∇δ(r− r(t )), (A.9)

where the dipole strength is σ ≡ σ


ṙ(t )−u(0)(r(t ))


where u(0) is the velocity field in absence of
the particle, and σ scales as the square of the particle size (for a disk-shape particle, σ is twice
the particle area) [16]. The dipolar solution, ud(r|r(t ),σ), of Eqs. (A.8)-(A.9) is given, for a particle
located at the origin, by

ud(r|0,σ) = 1

2π|r|2 (2r̂r̂− I) ·σ, (A.10)

with r̂ ≡ r/|r| and I the identity tensor [16, 129]. This framework has proven to accurately describe
the interactions between confined advected droplets even in concentrated systems [17, 18, 47,
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Figure A.6 – Left: Sketch of a confined suspension of active particles swimming freely in the (x, y) plane.
Right: Close-up on a single polar swimmer (see text for notation). The active particles are confined between
two walls in the z-direction.
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48]. Importantly, the angular symmetry of ud is different from the one of a force dipole: it is a
polar flow field displaying the same angular dependence as that of a force monopole under con-
finement [129] despite the swimmers being self-driven. The reason for this apparent paradox lies
in the continuous momentum exchange with the confining walls, via the shear flow in the thin
films that lubricate the swimmer-wall contacts, see Fig. A.6.

The second important difference with 3D suspensions concerns hydrodynamic interactions
between swimmers. In order to account for these interactions, we first establish the equations of
motion of an isolated swimmer in a arbitrary fluid flow. We focus on swimming bodies with po-
lar shapes, as is the case for most motile cells. For a swimmer at position r(t ) we denote p(t ) its
orientation (|p|2 = 1) and vs the magnitude of its swimming velocity along p. From symmetry con-
siderations and at leading order in |∇u|, the equations of motion of a polar swimmer for {r(t ),p(t )}
take the generic form

Ṙα = vspα+µ⊥(δαβ−pαpβ)uβ+µ∥(pαpβ)uβ, (A.11)

ṗα = ν(δαβ−pαpβ)uβ+ν′(δαβ−pαpβ)(∇γuβ)pγ, (A.12)

where µ⊥ (resp. µ∥) is a transverse (resp. longitudinal) mobility coefficient and ν and ν′ are two ro-
tational mobility coefficients. In unbounded fluids, we have ν= 0 and µ⊥ = µ∥ = 1, and Eq. (A.12)
then corresponds to Jeffrey’s equation commonly used to quantify the orientation of anisotropic
particles with the flow-elongation axis [124, 183]. Conversely, confined suspensions offer the pos-
sibility of having a nonzero value for ν. Instead of reorienting due to flow gradients, swimmers
can reorient because of the flow itself, a new type of orientational dynamics which has not been
considered so far.

To provide insight into the conditions for nonzero values of ν, we derive the above equations
of motion for a prototypal microscopic model (dumbbell). We show how the lubricated friction
with the walls induce both anisotropic mobility (µ⊥ ̸= µ∥) and a direct coupling between the flow
velocity and the particle orientation (ν ̸= 0). Consider a rigid-dumbbell swimmer, composed of
two disks of radius b1 (resp. b2) located at r1 (resp. r2), and connected by a frictionless rigid rod of
length a ≫ {b1, b2} (see Fig. A.6, right). The lubrication forces between a disk-shape particle and
the solid walls hinder its advection by the fluid. Passive disks would be transported at a velocity
ṙi (t ) = µi u(ri ) (i = 1,2), where the mobility coefficient µi is comprised between 0 (fixed obstacle)
and 1 (passive tracer). We also introduce the drag coefficients αi : when a disk is pulled by an
external force F in a quiescent fluid, it moves at a velocity ṙi (t ) = αi F. Let us now assume that the
two disks would propel at a velocity v (0)

s p when alone, and let us compute the swimming speed
and mobility coefficients from Eqs. (A.11)-(A.12) for the dummbell. The displacement of each disk
results from the competition between (i) self-propulsion, (ii) the advection by the external flow
u(0), (iii) the advection of the disk i by the dipolar perturbation induced by the motion of the disk
j , ud(ri |r j ,σ j ), and (iv) the inextensibility constraint, r2 − r1 = ap. At leading order in bi /a, these
contributions yield the following equations of motion for the "head" (i = 2) and the "tail" (i = 1) of
the swimmer:

ṙ1 = v (0)
s p+µ1[u(0)(r1)+ud(r1|r2,σ2)]+α1T, (A.13)

ṙ2 = v (0)
s p+µ2[u(0)(r2)+ud(r2|r1,σ1)]−α2T, (A.14)

where the tension T ensures the inextensibility condition, p · (ṙ2 − ṙ1) = 0. Defining the center of
drag of the swimmer as r ≡ (α1r2 +α2r1)/(α1 +α2), Eqs. (A.13)-(A.14) are readily recast into the
form of Eqs. (A.11)-(A.12) with a dumbbell velocity and mobility coefficients given at leading or-
der by vs = v (0)

s +O ((bi /a)2), µ⊥ = α2µ1(1−γ2)+α1µ2(1−γ1), µ∥ = α2µ1(1+γ2)+α1µ2(1+γ1) and
ν= [(µ2+µ1γ2)−(µ1+µ2γ1)]/a, where γi ≡ b2

i (µi−1)/a2. We first see that the translational mobility
coefficients, µ⊥,∥ depend only on the anisotropy of the swimmer, and are independent of its geo-
metrical polarity (they remain unchanged upon a 1 ↔ 2 permutation). In addition, as µ∥ < µ⊥, a
non-swimming dumbbell making a finite angle with a uniform flow field would drift at a finite an-
gle from the flow direction. We also obtain that indeed ν ̸= 0 for polar swimmers. Since the µi ’s are
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decreasing functions of the particle radius, ν is negative for large-head swimmers (b2 > b1), and
positive otherwise. From Eq. (A.12) we thus get that in a uniform flow large-head swimmers would
reorient against the flow and propel upstream. In contrast, large-tail swimmers (b1 > b2) would
swim downstream. For apolar swimmers, ν vanishes and the orientation of a symmetric dumbbell
evolves according to the Jeffrey’s orbits, Eq. (A.12), where ν= 0 and ν′ = a[µ2(1+γ1)+µ1(1+γ2)]/2.
Note that since u is irrotational, the orientation of an isotropic swimmer made of a single disk is
not coupled to the background flow. In the rest of the paper we discard the conventional ν′ contri-
bution to the orientational dynamics. It only yields short-wavelength corrections to the large-scale
description of polar-swimmers suspensions described below.

We now turn to the dynamics of a dilute population of interacting swimmers in a quiescent
fluid. We introduce the one-point probability distribution function, Ψ(r,p, t ) for swimmers with
orientation p at position r and time t . The dynamics of the active particles is defined by Eqs (A.11)-
(A.12), with the fluid velocity field, u(r, t ), resulting from the linear superposition of force dipoles
induced by each swimmer, u(r, t ) =



dpdr′Ψ(r′,p, t )ud(r|r′,σ′), where σ′ = σvsp. Assuming, that
swimmers are subject to translational and rotational diffusion, Ψ(r,p, t ) obeys the continuity
equation

∂tΨ=−∇· (Ψṙ)−∇p · (Ψṗ)+D∇2Ψ+Dr∇2
pΨ, (A.15)

where ṙ and ṗ are defined by Eqs. (A.11)-(A.12), D and Dr are the translational and the rotational
diffusion coefficients respectively, and ∇p stands for the gradient on the unitary circle. For sim-
plicity, we neglect the translational diffusion. Specifically, anticipating on our results, we assume
D ≪ v2

s /DR, which is true for most biological and artificial micro-size swimmers. Note that for
homogeneous suspensions, and due to the symmetry of the dipolar coupling, the sum of all hy-
drodynamic interactions vanishes: when ∇Ψ(r,p, t ) = 0, we have



dr′ ud(r|r′,σ′) = 0, and thus
from Eqs. (A.11)-(A.12) it follows that ṗ = 0, and ∇· ṙ = 0. The dynamics of an homogeneous pop-
ulation, from Eq. (A.15), reduces thus to the orientational diffusion of an isolated swimmer, and
homogeneous phases relax toward an isotropic state over a time ∼ D−1

R .
We now investigate the dynamic response of the homogeneous and isotropic phase to spa-

tial fluctuations of the concentration and orientation of the active particles. The phase be-
havior is described in term of (i) the concentration field, c(r, t ) ≡



Ψ(r,p, t )dp, (ii) the local
polarization, p(r, t ) ≡ 1

c



pΨ(r,p, t )dp, and (iii) the local nematic-orientation tensor, Q(r, t ) ≡
1
c



(pp− 1
2 I)Ψ(r,p, t )dp. To establish their equation of motion, we need to add a closure relation

to Eq. (A.15). As we focus on deviations from isotropic and homogeneous states, we expand Ψ

linearly in its three first moments [14, 127]

Ψ(x,p, t ) = 1

2π
c


1+2pαPα+4pαpβQαβ



, (A.16)

where the numerical coefficients are chosen so that c, p, and Q are defined in a self-consistent
fashion. Defining µ̄≡ 1

2 (µ∥+µ⊥), and µ̃≡ (µ∥−µ⊥), and after some elementary but tedious algebra,
the three nonlinear equations of motion are inferred from Eqs. (A.15)-(A.16) as

∂t c =−∇α



vscPα+ µ̄cuα+ µ̃cQαβuβ



, (A.17)

∂t (cPα) = ν

2
uαc −νcuβQβα−DRcPα−∇βIβα, (A.18)

∂t (cQαβ) = ν

2
cuγ(2δγ(αPβ) −δαβPγ)−4DRcQαβ−∇γJγαβ, (A.19)

where the (potential) fluid velocity satisfies

∂αuα =−σvs∂α (cPα) , (A.20)

and where the expressions for the fluxes I and J are given in Supplementary Information.
Equations (A.17)-(A.20) fully describe the dynamics of the isotropic phase. We investigate

their linear stability with respect to plane-wave excitations of the form (δc,δp,δQ)exp(i k ·r−iωt ),
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with k = kx̂. At linear order, we can integrate Eq. (A.20) for the fluid velocity, and recast the
equations of motion into a set of two uncoupled linear systems having the form ∂t (δPy ,δQx y ) =
Mbend(δPy ,δQx y ) and ∂t (δc,δPx ,δQxx ) = Msplay(δc,δPx ,δQxx ). The first system couples the
transverse-polarization and the bend modes only. These modes are stable for all k, they corre-
spond to damped sound-waves. The associated dispersion relation is deduced from the eigenval-

ues of Mbend as iω= 1
2 (5DR ± i



−9D2
R + (kvs/2)2). In contrast, long-range hydrodynamic interac-

tions between swimmers can destabilize the concentration (c), the longitudinal polarization (Px )
and the splay modes (Qxx ). To convey an intuitive description of this instability we introduce
the two governing dimensionless numbers. First, Pe ≡ νc0σvs/(2DR) is a Peclet number com-
paring the rotational-diffusion rate DR to the rate of rotation of a polar swimmer induced by a
source dipole of magnitude σc0vs (c0 being to the average concentration); large-tail swimmers
(resp. large-head swimmers) correspond to Pe > 0 (resp. Pe < 0). The second dimensionless num-
ber, H ≡ (µ̄σc0vs)/vs, compares the swimming speed, vs, to the advection velocity induced by a
source dipole of magnitude σc0vs. In the long-wave-length limit (k → 0), the eigenfrequencies
associated with the stability matrix Msplay then take the form

ωc = −i
v2

s

2DR



1−H

1+Pe



k2, (A.21)

ωP = −i DR (1+Pe)+O (k2), (A.22)

ωQ = −4i DR +O (k2). (A.23)

At 0th order in k, the total number of swimmers being a conserved quantity we have ωc = 0,
and Msplay has only two non-trivial eigenvalues. Whereas rotational diffusion always stabilizes the
nematic orientation (−iωQ < 0), hydrodynamic interactions can in fact destabilize the isotropic
state. From Eq. (A.22), we see that large-head swimmers with Pe < −1 experience a generic in-
stability: fluctuations of the local polarization are amplified when the rotation induced by the
hydrodynamic couplings overcome the diffusional relaxation of Px (see Fig. A.7).

Several comments are in order. First, although the growth rate of the instability does not de-
pendent on k, the total polarization (k = 0) is not unstable. As discussed above, the sum of all
the hydrodynamic interactions cancels in this limit and no global directed flow can emerge spon-
taneously from an isotropic suspension. The instability shows however that groups of particles
swimming coherently along the same direction form at all scales. Second, the generic nature of
the instability is specific to the dipolar symmetry of the hydrodynamic interactions, and the po-
lar shape of the particles, and can be intuitively rationalized as follows. From Eq. (A.20) we see
that any finite wave-length perturbation of Px along x results in a fluid flow in the opposite direc-
tion, with amplitude ∼ σc0vsδPx . Polar swimmers align with, or against, the local flow direction
depending on their polarity. Large-head swimmers align along −u, thereby increasing the initial
perturbation of p and destabilizing the isotropic state. Conversely, large-tail swimmers align in

-1
H

Pe

1

Stable

(∼ k2)

(generic)

(∼ k2)
0

Large head

Large tail

Unstable (splay)

Unstable (Polarization)

Figure A.7 – Stability diagram of a nearly isotropic and homogeneous population of polar swimmers; Pe < 0
(resp. Pe > 0) refers to large-head swimmers (resp. large-tail swimmers).
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the opposite direction and the local polarization relaxes to zero. As the reorientation rate of the
swimmers is set by the magnitude of the velocity only (and not by the local strain-rate tensor), the
growth (or relaxation) rate of the polarization is independent of the wave vector.

This novel generic instability is qualitatively different from the one observed in unbounded
suspensions of pushers which, in contrast, is suppressed by confinement [136]. They differ in
both the physical mechanisms at work and the structure of the unstable modes (bend versus splay
modes). The only similarity is that in both systems the generic instability is a genuine collective
effect due to the long-range nature of hydrodynamic interactions.

To investigate the stability of the active film when Pe > −1, we need to consider the eigenfre-
quencies , and the eigenmodes of Msplay up to O(k2). From Eq. (A.21) we see that the combination
of self-propulsion and rotational diffusion yields an effective diffusive dynamics of the suspension
scaling as ωc ∼ (v2

s /DR)k2, as could have been anticipated from the single swimmer problem [105].
However, hydrodynamic interactions result in a renormalization of this single-swimmer effect.
These interactions control both the magnitude and the sign of the effective translational diffusion.
In the regions (Pe > −1, H > 1) and (Pe < −1, H < 1), the effective diffusivity is negative and thus
slowly destabilizes the isotropic phase (Fig. A.7). The associated eigenmodes are now complex su-
perpositions of c, Px , and Qxx , and thus clusters of aligned particles form and propel in a coherent
fashion (swarms), from a homogeneous film. Notably, both large-head (−1 < Pe < 0) and large-tail
(Pe > 0) swimmers are prone to this second splay-destabilization mechanism. In the other regions
of Fig. A.7, the effective diffusivity is positive and concentration fluctuations are stable.

In summary we revisited the theoretical description of confined populations of micro-
swimmers. We showed that active particles interact hydrodynamically in generic manner, which
is independent of the microscopic details of their propulsion mechanism and that, depending on
their polarity: they may reorient in flows instead of solely flow gradients. Focusing on polar swim-
mers, we then constructed a large scale hydrodynamic theory from a minimal microscopic model
(dummbells). Our analysis showed that the macroscopic orientational dynamics is very different
from the modified Leslie-Eriksen model of active liquid crystals due to a difference in the symme-
try of the microscopic coupling between confined polar particles and the fluid flow. It results in a
novel phase behavior for active films and, in particular, spontaneous large-scale directed motion
and swarming can emerge out of isotropic populations of confined swimmers.

This work was funded in part by the NSF (grant 0746285 to E.L.), Paris Emergence research
program (D. B.), and CNano Idf (D. B.). We thank Aparna Baskaran, Olivier Dauchot and David
Saintillan fro valuable discussions.

Supplementary Information

Using Ricci-calculus notation, the expression of the fluxes I and J are:

Iβα =
1

4



µ̃cPγuγδαβ+ (4µ̄− µ̃)cPαuβ+ µ̃cPβuα+4νcvs(Qαβ+
δαβ

2
)



, (A.24)

Jγαβ =
vsc

2
[δγ(αPβ) −

δαβ

2
Pγ]− µ̃c

4
[6uγδαβ−u(αδβ)γ]+2µ̄uγcQαβ

+ 1

6
µ̃c



−4uγQαβ−5uδQδγδαβ + 2uδQδ(αδβ)γ+2u(αQβ)γ


. (A.25)
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Resumé
L’émergence de mouvements cohérents à grande échelle a été abondamment observée dans

les populations animales (nuées d’oiseaux, bancs de poissons, essaims de bactéries...) et plus
récemment au sein de systèmes artificiels. De tels ensembles d’individus auto-propulsés, sus-
ceptibles d’aligner leurs vitesses, présentent des propriétés physiques singulières. Cette thèse
théorique étudie divers aspects de ces systèmes actifs polaires.

Dans un premier temps, nous avons modélisé une population de colloïdes auto-propulsés. En
étroite association avec les travaux expérimentaux, nous avons décrit la dynamique du niveau in-
dividuel à l’échelle macroscopique. Les résultats théoriques expliquent l’émergence et la structure
de motifs cohérents : (i) transition vers le mouvement collectif, (ii) propagation de structures spa-
tiales polarisées, (iii) amortissement des fluctuations de densité dans un liquide polaire, (iv) vortex
hétérogène dans des géométries confinées.

D’un point de vue plus fondamental, nous avons ensuite étudié les excitations non linéaires
qui se propagent dans les systèmes actifs polaires. L’analyse des théories hydrodynamiques de la
matière active, à l’aide d’outils issus des systèmes dynamiques, a permis de rationaliser les obser-
vations expérimentales et numériques reportées jusqu’ici.

Enfin, nous avons proposé une approche complémentaire pour caractériser les populations
actives. Associant étude numérique et résultats analytiques, nous avons étudié les propriétés
géométriques des trajectoires individuelles, ainsi que leur enchevêtrement au sein de groupes
tridimensionnels. Ces observables pourraient permettre de sonder efficacement la dynamique
de populations animales.

Abstract
The emergence of coherent motion at large scale has been widely observed in animal populations (bird

flocks, fish schools, bacterial swarms...) and more recently in artificial systems. Such ensembles of self-
propelled individuals, capable of aligning their velocities, are commonly referred to as polar active materi-
als. They display unique physical properties, which we investigate in this theoretical thesis.

We first describe a population of self-propelled colloids. In strong connection with the experiments, we
model the dynamics from the individual level to the macroscopic scale. The theoretical results account for
the emergence and the structure of coherent patterns: (i) transition to collective motion, (ii) propagation of
polar spatial structures, (iii) damping of density fluctuations in a polar liquid, (iv) heterogeneous vortex in
confined geometries.

We then follow a more formal perspective, and study the non-linear excitations which propagate in
polar active systems. We analyze the hydrodynamic theories of active matter using a dynamical-system
framework. This approach makes it possible to rationalize the experimental and numerical observations
reported so far.

Finally, we propose a complementary approach to characterize active populations. Combining nu-

merical and analytical results, we study the geometric properties of the individual trajectories and their

entanglement within three-dimensional flocks. We suggest that these observables should provide powerful

tools to describe animal flocks in the wild.
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