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Résumé

Les modéles de taux d’intérét a absence d’opportunité arbitrage ont pour but de repro-
duire le comportement dans le temps de prix d’obligations & différentes maturités. Parmi
ceux-ci, les modeéles affines de structure par terme (ATSM) forment la classe de modéles la
plus utilisée depuis leur introduction par Duffie and Kan [1996]. Ils permettent en effet de
représenter les taux d’intérét des obligations zéro-coupon a toutes les maturités par une
fonction affine d’un nombre réduit de facteurs, disponible en formule fermée. Le modéle
affine le plus couramment utilisé est incontestablement le modéle gaussien, dans lequel les
rendements des obligations zéro-coupon sont des combinaisons affines de processus VAR
gaussiens standards. En conséquence, les taux d’intérét a toutes maturités sont aussi gaus-
siens et ont pour support la droite des réels. Cette propriété est en contradiction avec de
nombreuses caractéristiques théoriques des taux d’intérét obligataires. En particulier, il
est toujours possible de substituer de la monnaie & un investissement obligataire, conser-
vant ainsi un taux d’intérét nominal nul. En appliquant I’hypothése de non-arbitrage,
on obtient que les taux d’intérét des obligations zéro-coupon sont théoriquement toujours
positifs ou nuls. Toutefois, en pratique, on peut observer des taux d’intérét négatifs causés
par des frictions financiéres (par exemple si la possession de liquidités a un cotit positif).
Les taux d’intérét peuvent donc posséder une borne inférieure négative, que ’hypothése
gaussienne ne peut pas non plus prendre en compte. Les ATSM positifs constituent une
réponse ciblée a ce probléme, en assurant par construction la positivité de ’ensemble de
la courbe des taux. On considére dans cette thése plusieurs extensions des modéles af-
fines positifs de structure par terme des taux d’intérét. Aprés une introduction générale,
une premiére partie, composée des chapitres 2 et 3, se consacre a ’étude du modele de
structure par terme quadratique (QTSM). Par la suite, les chapitres 4 et 5 forment une
seconde partie dédiée & la modélisation des taux d’intérét pour reproduire le comporte-

ment de “taux au plancher”.

Le chapitre introductif détaille les principales hypothéses utilisées dans la construction
d’un modéle affine de taux d’intérét. On suppose notamment que le vecteur de facteurs
endogénes est un processus affine - ou composé auto-régressif (Car) - sous la mesure

risque-neutre, c’est-a-dire que sa transformée de Laplace conditionnée a son passé est une
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fonction exponentielle-affine de ses valeurs passées. Lorsque ’on spécifie le taux d’intérét
a court terme (et l'intensité de défaut dans le cas des obligations risquées) comme une
combinaison affine de ces facteurs, on obtient tous les taux d’intérét des obligations zéro-
coupon en formule fermée. Cette propriété est particuliérement utile, notamment lors de
Iestimation du modéle. La spécification du facteur d’escompte stochastique permet de
dégager la dynamique du vecteur de facteurs sous la mesure historique, et de formuler le

modéle sous une forme espace-état.

Comme démontré par Cheng and Scaillet [2007], les QTSM font partie de la classe des
modéles affines de taux d’intérét. Représentés sous une forme espace-état, ces modéles
rassemblent des équations de transition affines (VAR gaussien standard) et des équations
de mesure linéaire-quadratiques. Lorsque le vecteur de facteurs est partiellement ou to-
talement inobservable, le filtre de Kalman standard ne peut plus étre utilisé & cause de
la non-linéarité des équations de mesure. Afin de résoudre ce probléme, plusieurs filtres
non-linéaires ont été développés dans un cadre général. Ces filtres peuvent étre divisés
en deux classes distinctes. D’une part, certains filtres utilisent des simulations pour ap-
proximer les distributions non-gaussiennes issues des non-linéarités, et obtenir un filtrage
plus précis. Cependant, les simulations employées ont pour conséquence une complexité
computationnelle fortement accrue. D’autre part, les filtres dits déterministes s’appuient
sur des développements de Taylor des équations non-linéaires. Néanmoins, la plupart de
ces algorithmes (notamment les filtres de Kalman étendus et le filtre de Kalman inodore ')
sont exprimés dans le cadre le plus général possible et ne sont pas spécifiquement adaptés
au cas linéaire-quadratique. Le chapitre 2 propose de résoudre ces inadéquations grace a
un nouvel algorithme de filtrage appelé filtre de Kalman quadratique (QKF). Comme ce
nouvel outil appartient a la classe des filtres déterministes, il est & la fois rapide et facile a
implémenter. La formalisation de ’algorithme dépend principalement des propriétés des
processus affines, notamment du résultat suivant : si le processus du vecteur de facteurs
est un VAR gaussien standard, alors le processus empilé composé du méme vecteur et de
tous les produits possibles de ses composantes est affine. En formulant la dynamique de ce
nouveau processus empilé sous une forme VAR & chocs hétéroscédastiques non-gaussiens,
on obtient un modéle espace-état augmenté affine dans lequel le filtre de Kalman linéaire
peut étre utilisé. De la méme maniére, 'algorithme de lissage peut étre obtenu immeédia-
tement dans le modéle espace-état augmenté. Afin d’analyser la performance du QKF en
termes de filtrage et d’estimation par quasi maximum de vraisemblance, on réalise des
simulations Monte Carlo et montre que notre algorithme surpasse ses concurrents dans

les deux exercices.

1. Traduction littérale de Unscented Kalman filter.
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Dans le chapitre 3, on utilise cette nouvelle technique d’estimation et de filtrage pour
un QTSM des écarts de taux interbancaires en zone Euro. Ces derniers correspondent a
I'écart entre les taux interbancaires risqués Euribor et les taux swaps overnight (OIS),
considérés comme sans risques. Deux risques majeurs influencent les mouvements de ces
écarts de taux : risque de défaut et risque de liquidité, tous deux contenus dans les taux
Euribor. En conséquence, ces taux d’intérét risqués incorporent une compensation pour
le risque positive et les écarts de taux Euribor-OIS sont toujours positifs. Contrairement
aux différentes modélisations utilisées dans la littérature, le QTSM permet d’imposer cette
restriction théorique sur les écarts de taux. On construit ainsi un modéle & intensités de
défaut et de liquidité, ou celles-ci sont des fonctions quadratiques de deux facteurs gaus-
siens. On peut identifier chacun des facteurs respectivement comme risque de défaut et
de liquidité grace a des variables observables que nous savons liées a ces deux types de
risques. Nos estimations permettent de décomposer les écarts de taux a chaque maturité
en leurs différentes composantes afin d’analyser I'impact des politiques monétaires non
conventionnelles menées par la BCE. Nos résultats indiquent que malgré 1'explosion du
risque de liquidité sur le marché interbancaire européen aprés la faillite de Lehman Bro-
thers, les very long-term refinancing operations et les outright monetary transactions ont
contribué a sa diminution récente. A ’aide de notre modéle, on peut aussi obtenir les pro-
babilités de défaut moyennes des banques de la zone Euro, et 'on montre leur diminution

récente a la suite des politiques non conventionnelles citées précédemment.

Le chapitre 4 aborde un probléme plus général lié & la construction des modéles multivariés
affines de taux d’intérét. Une méthode simple consiste a considérer un ensemble de proces-
sus univariés affines et indépendants entre eux, et de les empiler dans un méme vecteur afin
de former un processus affine multivarié. L’hypothése forte d’indépendance peut la plupart
du temps étre remplacée par une hypothése d’indépendance des différentes composantes,
conditionnellement au passé du processus, sans changer le caractére affine du processus
multivarié. En revanche, introduire de la dépendance conditionnelle entre les composantes
s’avére en général plus ardu. Dans ce chapitre, on propose une nouvelle technique pour
construire des processus affines multivariés sans s’appuyer sur I’hypothése d’indépendance
conditionnelle. Ces processus, qu’on appelle récursifs affines, peuvent étre définis a ’aide
de leur transformée de Laplace conditionnelle. Supposons le vecteur de facteurs divisé en
plusieurs blocs. Chaque bloc est un processus récursif affine si sa transformée de Laplace
conditionnelle au passé du processus et aux blocs situés avant lui dans le vecteur est une
fonction exponentielle-affine des variables conditionnantes. Cette méthode est suffisam-
ment générale pour étre appliquée dans de nombreux exemples : processus VAR gaussiens
a volatilité stochastique, processus multivariés & valeurs discrétes, ou encore processus

vectoriel auto-régressif gamma. On montre ensuite que les processus récursifs affines sont
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aussi des processus affines, et leurs deux premiers moments conditionnels au passé peuvent
étre exprimés par des combinaisons affines disponibles en formule fermée. On peut aussi
incorporer les processus récursifs affines aux modeéles de valorisation des actifs a ’aide d’un
facteur d’escompte stochastique exponentiel-affine. Dans ce cas, la formule de passage de
la transformée de Laplace conditionnelle sous les mesures historique et risque-neutre est
obtenue a l'aide des transformées d’Esscher, et est disponible en formule fermée. Enfin,
on discute des méthodes d’estimation disponibles pour cette classe de processus suivant

I'observabilité de celui-ci.

Lorsqu’on modélise des variables a support positif comme les taux d’intérét, il est na-
turel de considérer des processus auto-régressifs gamma. Dans le chapitre 5, on introduit
une nouvelle classe de processus auto-régressifs gamma appelés gamma-zéro (ARGy), a
support sur R, qui peuvent atteindre zéro et y rester pendant plusieurs périodes. Ces
processus sont particulierement adaptés pour reproduire le comportement et la persis-
tance des taux d’intérét au plancher (ZLB). A l'aide de la méthode développée dans le
chapitre 4, on construit un processus multivarié affine dont chacune des composantes
peuvent individuellement atteindre zéro et y rester. Grace a ce nouveau processus multi-
varié, on formule le premier modéle affine de taux d’intérét délivrant simultanément un
taux d’intérét a court terme pouvant rester a zéro, et des taux d’intérét positifs ou nuls
a toutes les maturités exprimables comme fonctions affines des facteurs, disponibles en
formules fermées. Si on observe des taux d’intérét négatifs, notre modélisation autorise la
spécification d’une borne basse négative pour le taux court. En utilisant des données de
taux d’obligations souveraines japonaises de 1995 a 2014, on montre que notre modéle re-
produit précisément le niveau et les volatilités des taux d’intérét, particuliérement lorsque
les taux sont au plancher. Les propriétés du processus vectoriel auto-régressif gamma-zéro
nous permettent aussi obtention des probabilités de lift-off (c’est-a-dire les probabilités
que le taux court reprenne des valeurs positives) en formules fermées aussi bien sous la
mesure historique que risque-neutre. Nos estimations montrent que les différences entre les
probabilités obtenues sous les deux mesures peuvent étre substantielles, dues a la présence

de primes de risque conséquentes.

18 Guillaume ROUSSELLET



Abstract

No-arbitrage interest rate models are devoted to reproduce the behavior of bond prices
of several maturities through time. Among them, the class of affine term structure mod-
els (ATSM) has become increasingly popular since its introduction by Duffie and Kan
[1996]. Indeed, this class of model is able to produce zero-coupon bond interest rates at
each maturity that are closed-form affine functions of a reduced number of factors. The
most widely used ATSM is undoubtedly the Gaussian affine term structure model, where
bond yields at all maturities turn out to be affine combinations of a standard multivariate
Gaussian VAR process. This implies in particular that all yields at all maturities have
a Gaussian distribution, thus possess a statistical support on the entire real axis. This
feature is well-known to be inconsistent with several theoretical properties of bond yields,
such as the zero lower bound: since holding cash (providing a zero interest rate) is always
an alternative to investing in bonds, no-arbitrage arguments imply that bond interest
rates cannot theoretically go below zero. In practice however, we can observe negative
bond interest rates due to financial frictions such as positive cash storage costs. Yields
might have a negative lower bound which the Gaussian assumption still fails to repro-
duce. In comparison, the positive ATSMs are designed to ensure positivity of the whole
yield curve, overcoming this issue. This thesis proposes several extensions to the existing
positive affine term structure models. After a general introduction, a first part composed
of Chapters 2 and 3 studies the quadratic term structure model (QTSM). A second part
composed of Chapters 4 and 5 is centered on reproducing the behavior of interest rates

during the zero lower bound.

In the introductory chapter, we detail the main assumptions required to build an affine
term structure model (ATSM) of bond interest rates. The vector of endogenous factors
is assumed to be an affine — or compound autoregressive (Car) — process under the risk-
neutral measure, i.e. its conditional Laplace transform given its past is an exponential-
affine function of its past values. Together with an short-term interest rate specified as an
affine combination of these factors (and an affine risk intensity in the case of defaultable
bonds), we obtain closed-from pricing formulas for zero-coupon bond yields, a desirable

property, especially for estimation purposes. The specification of a stochastic discount
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factor also allows to retrieve the physical dynamics of the vector of factors, and formulate

a state-space model.

As shown by previous work, QTSMs are indeed embedded in the class of ATSMs. When
considering a quadratic term structure model (QTSM), the state-space model possesses
affine transition equations and linear-quadratic measurement equations. When the fac-
tors are latent, the standard Kalman filter cannot be employed. Several non-linear filters
have been developed for general non-linear state-space models. A first class of non-linear
filters use simulations to approximate the non-Gaussian distributions and produce more
accurate filtered variables. However, this comes at the cost of a high computational com-
plexity. A second class of non-linear filters can be called deterministic. They mostly rely
on Taylor expansions of the state-space model’s non-linearities. However, these algorithms
(such as the extended Kalman filter, or the unscented Kalman filter) are general and not
specifically fitted to the linear-quadratic state-space model. In Chapter 2, we develop
a new filtering algorithm that we call the Quadratic Kalman Filter (QKF), in order to
circumvent these issues. Since the QKF belongs to the class of deterministic filters, it is
computationally very fast and simple. The development of the algorithm relies entirely on
the affine processes properties. Indeed, when the state vector follows a Gaussian VAR(1),
the augmented vector composed of the original state and all possible products of the state
vector elements is known to be an affine process. Using the VAR representation of the
augmented vector, we express the state-space model in a linear form, bringing back the
possibility to use the linear Kalman filter algorithm. As a consequence, the derivation
of the smoothing algorithm is straightforward. Using Monte-Carlo simulations, we assess
the QKF performance for both filtering and quasi-maximum likelihood estimation. We

show that it outperforms its deterministic competitors in both exercises.

This new estimation technique is used in Chapter 3 to estimate a QTSM on the Euro
area interbank spreads. These spreads are defined by the difference between the risky
Euribor interest rates, and the nearly risk-less overnight indexed swap rates (OIS). The
sources of fluctuations of these spreads are assumed to be only related to default and
liquidity risks. Contrary to most existing models of interbank spreads, we specifically im-
pose that the spreads are always positive through the quadratic specification. Indeed, the
defaultable zero-coupon bonds interest rates incorporate a positive compensation for the
credit and liquidity risks whereas the risk-less bonds interest rates do not. We build an
intensity-based model to take these two risks into account. Both intensities as quadratic
combinations of two different Gaussian factors. These factors are related to credit and
liquidity observable proxies in order to identify both components in the spreads. Our

estimates allow us to decompose the spreads into their different components at each ma-
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turity, and to provide an insight on the effect of the ECB unconventional monetary policy
actions on the Euro area interbank market. We show that even though most of the ten-
sions after Lehman failure are liquidity-related, the recent ECB actions (mostly the long
term refinancing operations and the outright monetary transactions) have contributed to
greatly reduce these concerns. Our framework also allows to derive the average default
probabilities in the Furozone. We show that those probabilities have decreased as well

after the recent episodes of unconventional monetary policies.

In chapter 4, we consider a broader issue related to the construction of affine interest rate
models. Given several univariate affine process, we can easily build a multivariate affine
process stacking the different components together and assuming that they are indepen-
dent. The independence assumption can often be replaced by a conditional independence
assumption between components given the past without changing the affine nature of
the multivariate process. However, introducing conditional dependence between the dif-
ferent components while preserving the affine property of the multivariate process can
be complicated. In this chapter, we provide a new simple method to define multivariate
affine processes without relying on conditional independence between components. We
call these processes recursive affine. They can be defined recursively as follows. Let the
vector of risk factors be partitioned in several blocks. This vector is recursive affine if
the conditional Laplace transform of each block given the past of the whole process and
the present of blocks located above it in the vector is an exponential-affine function of
the conditioning variables. This technique can be applied to a wide variety of examples,
such as stochastic volatility VAR processes, discrete-value processes, or vector autoregres-
sive gamma processes. These multivariate processes are shown to be affine, hence their
first two conditional moments can be expressed with simple closed-form affine expres-
sions. Assuming an exponential-affine stochastic discount factor, the transition between
the physical and risk-neutral conditional Laplace transforms is available in closed-form
using Esscher transforms. We last discuss the estimation of such processes depending on

its observability.

Considering autoregressive gamma processes are of particular use when modeling positive
variables. In Chapter 5, we develop a new class of autoregressive gamma processes that
we call autoregressive gamma-zero (ARGy), that is not only positive, but can reach zero
and stay there for several periods. These processes are particularly fitted to reproduce
the interest rates stylized facts observed during the zero lower bound (ZLB), specifically
the persistence of the ZLB state. Using the method developed in Chapter 4, we build
the multivariate affine counterpart of the ARGy processes the components of which can

individually reach and stay at zero for several periods. This new process allows us to

Guillaume ROUSSELLET 21



List of Figures

build an affine term structure model which, contrary to existing models, can provide
simultaneously non-negative interest rates, a short-term interest rate that stays at zero for
several periods, and closed-form interest rate formulas. in the model, the lower bound on
the short-term interest rate can also be negative consistently with observed data. We apply
our model on Japanese Government Bonds data from 1995 to 2014. The estimated model
shows nice performances in reproducing the level and conditional volatilities of yields at all
maturities. The properties of the vectorial autoregressive gamma zero process also allow
us to compute in closed-form the so-called lift-off probabilities, that is the probabilities
that the short-term interest rate goes back to positive values permanently. We provide
evidence that there can be a large bias if the assessment of these probabilities is made

without purging the risk premia estimates from the observed yields.
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Chapter 1

Introduction

Abstract

This first chapter summarizes the notations and the assumptions most com-
monly used in affine interest rate models. It is accompanied by a review of
the associated literature. In Section 1.1, we present the conditional Laplace
transform and define the class of affine processes, which are both of utmost
importance for asset pricing models. Section 1.2 introduces the no-arbitrage
assumption along with the stochastic discount factor, which allows for the
identification of the risk premia contained in asset prices. In section 1.3,
we develop general pricing formulas for risk-less and defaultable zero-coupon
bonds. In the case of affine interest rate models, these general formulas are
extremely simple, as shown by Section 1.4. This section also covers the most
popular examples of affine interest rate models. Section 1.5 reviews the prop-
erties, the estimation techniques, and the recent developments of the class of
quadratic term structure models. This model proves particularly useful to
reproduce the positivity of interest rates. This positivity property alone is not
sufficient to reproduce the fact that interest rates can reach zero for a long
period (zero lower bound). Section 1.6 summarizes the recent interest rate
models employed to that respect. Last, Section 1.7 announces the following

chapters.
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1.1 The general discrete-time setup

1.1.1 Information of investors and factor dynamics: notations

Consider a discrete-time economy composed of a representative investor and n risk
factors denoted by X;. The set of information available to the investor at time ¢ is de-
noted by X; = (X¢, Xi—1,...). These factors can take values on the entire real line or on
a subset. The definition of the risk factors is central in asset pricing models. First, we as-
sume that the past and present values of the process X; correspond to the full information
set of the investor, and is always observable by him. Second, any asset payoff is defined
as a function of the risk factors g(X}), the form of g(e) depending on the considered asset
type. When pricing financial assets, the representative investor incorporates all available
information on present and past values of X; and his expectations of the future values of

the process.

The risk factors in asset pricing models can be either partially or totally observed by
the econometrician. Observable variables include for instance prices of financial assets
or macroeconomic variables such as GDP growth or inflation (see for instance Ang and
Piazzesi [2003]). When the factors are unobserved, the econometrician has to resort to

filtering techniques to infer their values from observed data.

The probability distribution of the risk factors in the real world is called the historical or
physical measure. The dynamics of the risk factors may be known via their conditional

probability density function.

Definition 1.1.1. Let X; be a R"-valued process. The dynamics of X, under the physical
measure are defined by the p.d.f. of X1 given all the present and past values of X,
denoted by Xy = (X4, Xy1,...). This p.d.f. is denoted by f¥(x411]X3), T4 € R™

Throughout this thesis, we will particularly focus on interest rates on bonds. We will
consider mostly continuously-compounded interest rates (or log-interest rates) defined as
the log-ratio of bond prices taken at two different dates. We concentrate on zero-coupon
bonds, that is bonds that yield one unit of currency at maturity. We define the short-
term interest rate between ¢ and ¢+ 1 as the log-return of a one-period zero-coupon bond,
denoted by r;. This interest rate is known when contracting the bond at time ¢ and is
thus risk-less. This short-term interest rate is a function of the risk factors hence r; will

be used as a notation abuse for r(X,).
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1.1.2 The conditional Laplace transform

Though the conditional p.d.f. of the risk factors characterizes their dynamics, a more
convenient representation can be based on the conditional Laplace transform of X, given
X;.

Definition 1.1.2. Let X; be a R"-valued process. Let the historical dynamics of X; be
defined by the conditional p.d.f f*(x41|Xy). The conditional Laplace transform of Xy
given X is denoted by oy (u) and is given by:

Vues, @?(U) = EP[GXP(UIXHM&] = / eXP(UlﬂftH)fP(xtJrﬂ&) A (1.1)
where EF (o) is the expectation operator under the physical probability measure, and S is
a subset of R™ such that the conditional Laplace transform is well-defined.

The conditional log-Laplace transform of X1 given X; is denoted by ¥ (u) and is
given by:

VueS, o) (u):=log (E[exp(v'Xi1)|Xe]) = log (i (u)) . (1.2)

Knowing the conditional Laplace transform of X, ; given X, is sufficient to characterize
the whole dynamics of X;. One can therefore use either the conditional p.d.f. or the
conditional Laplace transform equivalently. However, the latter has several advantages.
First, the k™ derivative of ¢} (u), setting u = 0, exactly gives the k' conditional moment
of X;11 given X;. Indeed, the conditional Laplace transform is also called the condi-
tional moment-generating function. Similarly, the conditional log-Laplace transform’s k"
derivative, setting u = 0, gives the k™ conditional cumulant of X;.; given X;, hence ¢ (u)

is also called the cumulant-generating function.

1.1.3 Affine processes and multihorizon Laplace transforms

So far, we have defined the one-period conditional distribution of the risk factors.
However, financial assets often pay off several periods after the purchasing date. This is
the case for fixed-income securities which are contracted for a certain time-to-maturity,
denoted by h in this thesis. As a consequence, it is useful to consider not only the one-
period conditional Laplace transform, but the multi-horizon conditional Laplace transform
of (Xeg1,..., Xeqn) given Xi.

Definition 1.1.3. Let X; be a R"-valued process. The multi-horizon conditional Laplace

transform is denoted by goft%(ul, ..., up) and is defined by:

Vh e N* V(up,...,un) €S",  @fpn(ur, ... up) = E" [exp(u) Xip1 + ... 4+ ) Xpan) | Xe]
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where S 1s a subset of R™ such that the conditional Laplace transform is well-defined.

The multi-horizon conditional Laplace transform generalizes the one-period conditional
Laplace transform. Indeed, for u = (uy,0,...,0), the multi-horizon conditional Laplace
transform is exactly equal to ¢ (u). More generally, we can define the h-period condi-
tional Laplace transform putting all u; to zero except uy. Provided that (X;) is strongly
stationary, it is also easy to obtain the marginal distribution of the risk factors setting
all u; equal to zero except uy, and letting h tend to infinity. The A-period conditional

Laplace transform converges to the marginal Laplace transform of X;.

The multi-horizon conditional Laplace transform is extensively used in asset-pricing mod-
els (see next section). In that respect, some conditional distributions are easier to manip-
ulate due to the specific form of their Laplace transforms. We define the class of affine
processes as the set of processes that possess exponential-affine conditional Laplace trans-
forms in X;, or equivalently affine conditional log-Laplace transforms in X, (see Darolles,
Gouriéroux, and Jasiak [2006]).

Definition 1.1.4. The process (Xi)iez is said to be affine (under the P-measure) — or
compound autoregressive of order 1 — if and only if the conditional Laplace transform
(resp. conditional log-Laplace transform) of Xii1 given Xy is an exponential-affine (resp.
affine) function of X,.

YuesS, o (u) = expla(u) X, + blu)] (1.3)
Ur(u) = a(u) X, +b(u), (1.4)

where a(u) : S — R™ and b(u) : S — R are deterministic functions of u.
The class of affine processes is wide enough to include e.g. the Gaussian VAR, the autore-
gressive gamma process of Gouriéroux and Jasiak [2006], or the autoregressive Poisson

process. Inside the class of affine processes, the conditional distributions are entirely

defined by functions a(u) and b(u). For instance, if X; follows a Gaussian VAR:
Xip1 = p+0X, + 5%,

where € R", ® and X matrices in R™*", and €41 is a multivariate i.i.d. normalized
(GGaussian shock, the conditional Laplace transform of X;,; given X, is exponential-affine
in X; and defined by:

1
a(u) =®'u and blu) =u'p+ éu'Eu.
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By combining the properties of conditional Laplace transforms with the specific formu-
lation of affine processes, simple properties of conditional moments and cumulants can

easily be derived.

Proposition 1.1.1. Let (X;) be an affine process under the physical measure. Conditional
cumulants of X, 1 given X; of any order are affine functions of X;. In particular, the
first two conditional cumulants and the first two conditional moments are the same and

are equal to:

da(u) ob(u)
EF(X, 1| X)) = —2%| X+ ——+ (1.5)
=L ou |,_o ! ou |,
" [ 9%a;(u 9%b(u
VE(Xia|Xy) = Z(W(u’)) Xip + Bugu? ; (1.6)
i=1 = u=0

where a;(u) is the i element of vector a(u), and VF(e) is the variance operator under

the physical measure.

This convenient property helps deriving closed-form formulas for the first two conditional
moments of an affine process: as long as a(u) and b(u) are known-in closed-form, it is
easy to derive conditional cumulants of any order, including the first two which are equal
to the first two conditional moments. Affine processes also possess exponential-affine

multi-horizon conditional Laplace transforms.

Proposition 1.1.2. Let (X;) be an affine process under the P-measure. The multi-horizon

h-period ahead conditional Laplace transform given X is an exponential-affine function

Oth.
Vh e N, Y(uy,...,up) € S, gpfjt+h(u1, .., Up) = exp {Agh)(ul, o up) Xy +B}(lh)(u1, cooup) |

where Agh)(ul, cooup) 8P — R and B}(Lh)(ul,...,uh) : 8" — R can be computed

recursively, initializing at AS) = a(up) and B,gl) = b(up), as follows:

For ke{2,...,h}, A;Lk)(ul, cooup) = alup_grr + Agﬁ_l)(ul, ceyup))
and ng) (ul, cooup) = ng—l)(ul, coosup) Fb(up—gr1 + .A;Lk_l)(ul, ceyUp)) -

Again, as long as a(u) and b(u) are available in closed-form, the recursive formulas of the
multi-horizon conditional Laplace transform are easily obtained. In the next section, we

use these convenient properties for the modeling of asset prices.
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1.2 General results of asset pricing modeling

In this section, we describe the absence of arbitrage (AOA) assumption on which
asset pricing is based, and we introduce the notions of stochastic discount factor and

risk-neutral dynamics.

1.2.1 The absence of arbitrage and the stochastic discount factor
(SDF)

Consider the general setup developed in the previous section. The new information
available at time ¢ is given by X;. Consider also an asset that yields g(X;,,) at time ¢+ h.
An asset-pricing model maps the payoff of this asset, to the price P, at which the asset

trades today. To do so, we must consider several assumptions.

First, we assume that the prices at which the assets trade at each period exist and are
unique (law of one price). Second, we assume that the payoff function g(e) belongs to the
set of square integrable functions at each date. Third, we assume that the price is linear
and continuous in the payoff of two different assets. Suppose we have a portfolio of assets
1 and 2 in quantities v; and v, yielding payoffs at ¢t + h equal to g;(Xyip) and go( Xiyp)
respectively. The total payoff in ¢ + h will be equal to 191 (Xiin) + V292(Xitn). The
linearity assumption states that the price of the portfolio should be equal to the linear
combination of the prices of each asset loaded by (71,72). The continuity assumption
states that an asset with a payoff tending towards zero should have a price converging to
zero as well. The last and most important assumption that we consider for the pricing
of financial assets is the absence of arbitrage opportunities or no-arbitrage assumption
(AOA). Intuitively, this assumption states that the prices of assets today instantaneously
adjust such that no trading strategy can provide a strictly positive excess return over

another trading strategy with probability one.

Definition 1.2.1. The absence of arbitrage opportunities assumption ensures that at any
date t, it 1s not possible to build a portfolio of future payoffs — possibly modified at subse-
quent dates — such that:

— the price of the portfolio at time t is zero,

— payoffs at subsequent dates are non-negative,

— there is at least one subsequent date such that the net payoff at this date is strictly

positive with a non zero conditional probability at t.

Using the previous assumption, Riesz representation theorem ensures the following

statements:
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Proposition 1.2.1. Under the previous assumptions, there exists a unique discount factor
between t and t + h, denoted by My in(Xitn), such that any asset with a payoff given by
9(Xi1n) has a price P, given by:

Py= B [ My (Xeen)9(Xean) | Xi] (L.7)

For the specific case of infinitely lived assets the payoff function is equal to the price at
t + h hence P, = EF [Mt’tJrh(XHh)PHh’&]. In addition, M4y is:

— positive given the AOA assumption;
h—1

— equal to HMtH,tHH(M) the product of all one-period discount factors;
i=0
This factor M ¢11(Xqa) is called the stochastic discount factor (SDF) and depends on
the risk factors X;;;. Putting together the previous results on the SDF, the prices of
financial assets today are equal to the expected discounted value of their future payoffs,
where the discount factor is a random variable which is not equal to the risk-less interest
rate most of the times. This risk-less interest rate would be the prevailing discount factor
provided the representative agent were risk-neutral. Therefore, whenever the SDF is
random and different from the risk-less interest rate, the representative agent shows non-
zero risk aversion. A direct consequence of the previous proposition is that the price of a
zero-coupon bond maturing at t + h is EF [Mt,tJrh(M”&] Indeed, using the pricing

formulas, the price of an asset paying g(X;y,) at time ¢t + h can be decomposed:

P = B [ Myn(Xean)g(Xern)|Xe|
= ]EP |:Mt’t+h(@)‘&j| EP [Q(M)‘&} + (COUP [Mt’t+h(M>’g(M>‘&i|

= Bt,h) E[g(Xun)|Xe] +Cov” [ Myen(Xian), o(Xean) | Xi] |

-

TV
expected component risk premium

where B(t,h) is the price of a risk-less zero-coupon bond of maturity A at time t. The
price of any asset is therefore equal to the weighted sum of the conditional expectation
of the asset payoff called expected component, and of the conditional covariance between

the SDF up to maturity and the future payoff, known as the risk premium.

1.2.2 Modeling with the risk-neutral dynamics

Assume that we are in the setup of the previous sections. It is possible to formulate a
new probability measure such that the observed prices are equal to the conditional expec-

tation of the future payoffs with respect to this new measure, discounted by the risk-less
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interest rate. This probability measure is called risk-neutral.

Definition 1.2.2. Let X; be a R"-valued process. Let M;ii1(Xiy1) be the stochastic
discount factor. The risk-neutral probability measure is defined by fQ(xt+1|&) the risk-

neutral conditional densities of the risk-factors which are given by:

Mt,t+1($t+1)

EP [ Mo (X)X

fQ(th‘&) = fp(mtﬂ‘&) = fp(xtﬂ‘&)Mt,tH(M) exp(re) ,

(1.8)
where 1y = 1r(X,) is the risk-less one-period interest rate. Any asset with a single payoff

at t + h given by g(Xin) has a price P, given by:

P, =E®

exp (— Zmi) 9(@)\&] - (1.9)

Equation (1.9) is the equivalent of Equation (1.7) in the risk-neutral world. Under P,
the discounting of future payoffs is made with the SDF whereas under Q, the probability
distribution is shifted such that the discounting is made with the compounded h-period
risk-less interest rate, namely exp(—r;—...—r;15—1). If one is interested only in the pricing
of financial instruments, leaving aside the risk premia decomposition, it is possible to work
only under the risk-neutral measure. As long as the conditional risk-neutral p.d.f and the

function r(X;) are known, asset prices can be computed.

1.2.3 Modeling strategies

Consider now that the function r(X;) — or equivalently E¥[My ;1 (Xyp1)|X] —is set. We
can obtain prices with the physical measure specifying both f* (21| X;) and My ;41 (Xip1),
or with the risk-neutral measure specifying only f@(z;:1|X;). If we are not only interested
in pricing financial assets but also in obtaining the risk premia components, the specifica-
tion of the risk-neutral density alone is not enough. However, the transition formula (1.8)
between the physical and the risk-neutral world essentially states that it is possible to
obtain such a decomposition specifying only two elements out of the physical conditional
density, the risk-neutral conditional density, and the SDF. For instance, if we specify
both the physical and the risk-neutral conditional densities, the SDF can be deduced as

a residual.

This particular relationship has led Bertholon, Monfort, and Pegoraro [2008] to create
a typology of the specification strategies in asset pricing models. These strategies are

summarized in Table 1.1.
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fP($t+1|&) fQ(fEt+1|&) M1 (2] Xe)

Direct Modeling specified deduced specified
Risk-Neutral Constrained Direct Modeling  specified specified deduced
Back Modeling deduced specified specified

Table 1.1: Asset Pricing Modeling Strategies

In the direct modeling strategy, the physical conditional density and the SDF are directly
specified. In the risk-neutral constrained direct modeling strategy, the econometrician
specifies both the physical and the risk-neutral conditional densities and obtain the SDF
as a residual. Last, in the back modeling strategy, both the risk-neutral conditional density
and the SDF are specified. The adopted modeling strategy often depends on the focus of
the asset-pricing model and whether the econometrician wants to control for the historical
dynamics and/or the pricing. If some of the risk factors are observed with, for instance,
macro variables, it seems more natural to focus on the historical dynamics specifying
directly the physical conditional p.d.f., using either the direct or risk-neutral constrained
modeling. If on the contrary the model is entirely focused on the pricing of assets with

latent factors, either the risk-neutral constrained or the back modeling are preferred.

1.2.4 Exponential-affine specification of the stochastic discount

factor

So far, we have presented the physical and the risk-neutral representations of the for-
mation of asset prices. In the previous section, we have emphasized that the transition
between the two worlds is made simple with the SDF. In this section, we present a con-

venient specification of the stochastic discount factor to obtain simple transition formulas.

A key feature of the SDF is that it should always be positive. A simple representation
has been given by e.g. Duffee [2002], where the SDF is an exponential-affine function of

the risk factors.

Definition 1.2.3. Let X; be a R"-valued process. Let Myy1(Xi41) be the SDF. The SDF

18 exponential-affine if it is of the form:
Mypi1(Xog1) = exp [ (Xo) Xer + Bi(X0)] (1.10)

where oy (Xy) and B(Xy) are functions of the past and present values of X;.

When the SDF is exponential-affine, the risk-less interest rate can be expressed simply
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with the use of the physical conditional Laplace transform of X;,; given X;. This implies
that the transition formula between the physical and risk-neutral conditional densities

can also be expressed easily.

Proposition 1.2.2. Let X; be a R"-valued process. Let My,11(Xii1) be the exponential-
affine SDF given by Equation (1.10). The short-term risk-less interest rate is given by:

7’(&) = —logEP |:Mt,t+1(&)|&:| = —ﬁt(&) - Tﬁ [at(&)}
hence  Myy1(Xep1) = exp [—r(Xy) + @) (X)) Xipq — Ur (( X))

and the transition equation (1.8) can be rewritten:

(X )Xt+1}
(X))

This convenient mapping between the risk-neutral and the physical conditional densities

Fe ] X) = fP(le‘Xt)eXp L (1.11)

can also be expressed in terms of conditional Laplace transforms of X, given X;. Again,

the transition formula turns out to be simple.

Proposition 1.2.3. Let X; be a R"-valued process. Let My, 1(Xiy1) be the exponential-
affine SDF given by Equation (1.10). The risk-neutral conditional Laplace transform and
the conditional log-Laplace transform of X,11 giwven X, are respectively denoted by wg(u)
and 2(u), and are given by:

VueS, ¢X(u) = EC [exp(u/ Xi41) ’ﬁ [u[;a)t(()(})} (1.12)
w;@(u) = log (ap?(u)) r [u—i—at (X) } — F[ ] ) (1.13)

When the risk factor process is affine, either under P or Q, the transition between the
two worlds given by Equation (1.13) is facilitated by the affine form of the conditional

log-Laplace transform of X, given X,.

Proposition 1.2.4. Let X; be an affine process under the physical measure with a con-
ditional Laplace transform given in Definition 1.1.4. Let Mt7t+1(h) be the exponential-
affine SDF given by Equation (1.10). The risk-neutral conditional log-Laplace transform
of Xip1 given Xy is given by:

VuesS, YR ={afuta(X)] - afo(X,)] }/Xt 10t an(X)] — b [on(X,)] -

We will show in the following section that it is important that the risk factor process is
affine under the Q-measure to obtain closed-form pricing formulas. In the context of risk-

neutral constrained or back modeling, we just have to specify the risk-neutral distribution
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of the risk factors such that the process is affine under Q. In the context of direct modeling
however, assuming that X; is affine in the physical world, we can see from the previous
proposition that not all functions a(e), b(e) and «y(e) yield affine risk-neutral dynamics
for Xt.

1.3 Risk-less and risky bond pricing

In this section, we use the framework that has been presented above to price both
risk-less and defaultable bonds. After defining interest rates on zero-coupon bonds, we

derive general pricing formulas using the exponential-affine SDF specification.

1.3.1 Risk-less bond pricing

A risk-less zero-coupon bond is a financial instrument that provides one unit of cur-
rency at maturity. We denote by B(t, h) the date ¢ price of a zero-coupon bond maturing
in h periods and R(t,h) the corresponding continuously-compounded rate. As empha-
sized previously, the short-term risk-less interest rate r; is equal to the one-period bond
interest rate R(t,1). Using the definition of log interest rates, the relationship between
R(t,h) and B(t, h) is given by:

R(t, ) = —% log [B(t, )] .

Using the no-arbitrage assumption presented previously, the prices of zero-coupon bonds

are given either under the physical of the risk-neutral measure by:

B(th) = B |Myusa(Xeer) - Mosnoseon(Xeon)|Xe|
= E?[exp(—r; — ... — rno1)| Xe] - (1.14)

Let us consider an econometric setup where the short-term risk-less rate is a parametric
function of the risk factors governed by a set of parameters denoted by 6, € ©,, that is
re = r(Xy; 0,). We consider the direct modeling strategy and specify the physical condi-
tional density of X, given X, as a parametric function of a set of parameters oF € OF,
and the p.d.f. is denoted by f*(z,41]Xy; 6%). We consider an exponential-affine SDF as in
Equation (1.10) and specify the loadings as a parametric function of a set of parameters
0o € ©,, which are denoted by oy (Xy; 6,)." Using the transition equation between the
two worlds, the risk-neutral conditional p.d.f. of X;; given X, is a parametric function

of (A,,6") and is denoted by f(24+1]Xy; 04, 6"). The econometrician is interested in esti-

1. The function B¢(Xy; 6a) can be deduced from the specification of a(Xy; 6a) and 7(Xy; 6,).
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mating 6 = (6,,6%,60,) € © = (O, x OF x 0,,).

Using the previous pricing formulas, we can link the observed bond prices to the
parametric specification.

B(t,h) = EFE)

h—1
P
exp < § i (Xigis 0a) Xigivr — r(Xegs 0r) — T/Jtp(e ) at+z‘(Xt+i;9a)D ‘Xt]
=0

h—1
— EQ0.6) [exp (—ZT()QH; 0r)> ‘Xt] .
i=0

The entire set 6 intervenes in the pricing formulas both under the physical or the risk-
neutral expression which, provided identification conditions are met, allows the econo-
metrician to estimate parameters from the bond prices. The denomination risk-less for
the bonds stems from the fact that the terminal payoff at time ¢ + h is equal to one and
is known ez-ante. Therefore, if an investor buys a risk-less zero-coupon bond at time ¢
and holds the bond up to maturity, he knows that he will earn an interest rate R(t,h).
Still, between the buying and the maturity dates, the successive prices of the bond are
not known at time ¢ and are random variables. In other words, if the investor decides
ex-ante to sell the bond before maturity, he will earn a random interest rate. This un-
certainty on the future value of long-term bonds is called term risk or interest rate risk,
and corresponds to the uncertainty on future realizations of the short-term risk-less rate
r; between t and t + h.

1.3.2 Defaultable bonds and intensity models

A defaultable zero-coupon bond is a financial instrument that provides one unit of
currency at maturity provided the issuing entity has not defaulted. The payoff of such
bonds is either 1 if the entity is still alive at time ¢ + h and zero otherwise (zero recovery
rate). We denote by E(t, h) the date t price of a defaultable zero-coupon bond maturing
in h periods if the entity is still alive at date t, and ﬁ(t, h) the corresponding continuously-
compounded rate. We also denote by d; the binary variable indicating whether the issuing
entity is alive at time ¢ (default: d; = 1). For the sake of clarity, even though the default
dummy is a risk factor and belongs to the investor’s information set, we separate X, from

d; in this section. We make several additional assumptions.
Definition 1.3.1. Let d; € {0,1} be the discrete process indicating whether default has
occurred.

1. the default state is absorbing such that once the issuing entity defaults, it stays in

default state forever;
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2. the transition probabilities under the risk-neutral measure are given by Q(di 1 =
0| Xty1,dr = 0) = exp[—Ar1(Xis1)], where M\iy1(Xii1) is the so-called default inten-
sity; and

3. d; does not Granger-cause the risk factors X; under the risk-neutral measure Q (see
Monfort and Renne [2013]).

In the following, by a notation abuse, we write A1 or A\jy1(Xiq1) indifferently. This
intensity plays the role of a survival rate and depends only on the factors Xy, (see e.g.
Jarrow, Lando, and Turnbull [1997], Duffie and Singleton [1999], Duffie and Lando [2001],
or Jarrow and Yu [2001]). Using an exponential survival rate proves useful for deriving
the pricing formulas. Using no-arbitrage arguments, under the risk-neutral measure, the

price E(t, h) must be equal to its expected present value in the next period.
B(t,h) = exp(—r)E® | B(t + 1,h — 1) x (1 — dpsy)| Xo, dy = o} . (1.15)

In ¢+ 1, the risky bond has value B(t+ 1, h— 1) if the entity has not defaulted (dy4; = 0),
and zero value if the entity has defaulted (d;;; = 1). To obtain general pricing formulas,
we iterate backwards from the maturity date. We know that B(t + h,0) = 1 provided no

default occurred. At the previous period, the price was:

E(t +h—1,1) = exp(—reip_1)E? [exp <_)\t+h(Xt+h)> |Xt+h—17 diyn—1 =0} .

Using the fact that d; does not Granger-cause X; (see previous definition), B(t+h—1,1)
is a function of only X;,, 1 and 7,1, but not of d; ;1. At date t + h — 2, using

Equation (1.15), we obtain:
B(t+h—2,2) = exp(—risp_s)EC [E(t +h—1,1)(1 = dpsp—1)| Xesn-2, dpyn—2 = 0] .

Conditioning first with respect to (Xyyn_1,71n—1) and using the fact that E(t +1,h—1)

is function of this information only, we get:

B(t+h—2,2) = exp(—ripn_2)E? [GXP(—Tt+h—1 — Agn(Xisn)

= Ahot(Xepn—1)| Xewn2, din—o = 0} :

Iterating on maturities, the pricing formulas for defaultable bonds of any maturity h are
given by:
é(t, h,) = EQ [exp(—rt - >\t+1 — . = Tt4h—-1 — )\t_}rh)‘&, dt = 0]
- 1
and R(t,h) = ~ log {E@ [exp(—n — Ml — e — Trh1 — /\t+h)|&, dy = O]} (1.16)
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This formula resembles closely the pricing formula (1.14) for risk-less zero coupon bonds.
The main difference is that the term exp(—r.;) is replaced with exp[—(7¢4; + Aeyiv1)] un-
der the Q-expectation. Under the risk-neutral measure, the terminal payoff is discounted
by the the short-term risk-less interest rate adjusted by the default intensity. A more
general case can be considered, where the recovery rate is non-zero and is random (see
e.g. Duffie and Singleton [1999]). In this framework, the recovery rate is defined as a
fraction of the defaultable bond price that would have been observed were the issuing
entity not defaulting. This framework will prove particularly useful in Chapter 3 when

we model the default and liquidity risks embedded in the interbank market interest rates.

Consider now the same econometric setup as in the previous section. We assume that
the intensity is a parametric function of the risk factors governed by a set of parameters
denoted by 6, € O,, that is: A\ = A(Xy;0)). The entire set of parameters becomes
0= (0,,0,0%0,) € ©= (0, x 0, x6F x0,). We can rewrite the previous formulas to

incorporate the parametric econometric specification.

h—1

B(t, h) = EQ0«) lexp (— Z [r(@; 0:) + M Xevivn; 9,\)]> | Xy, dy = O] . (117

=0

Note that the short-term risk-less interest rate and the default intensity are functions of
factors at different dates. This implies that observing only the prices of defaultable bonds
can be sufficient to identify both components. However, it is more common to model

jointly the risk-less and defaultable bonds in a single framework.

1.4 Affine term structure models (ATSM)

In this section, we present the class of affine term structure models of interest rates
(ATSM). These models rely on the assumptions that X, is an affine process under the risk-
neutral measure, and that the short-term risk-less interest rate (and the risk intensity) is
an affine combination of X;. After presenting the construction of ATSM, we detail two

popular distributions often used in practice to build ATSMs.

1.4.1 Building affine models

In the previous section, we have expressed the prices of risk-less and risky zero-coupon
bonds as the conditional expectation under the risk-neutral measure of the exponential
of minus future values of the short-term interest rate for risk-less bonds, added with the

risk intensity for defaultable bonds. When r, and \; are affine functions of the risk factors
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X;, the prices of bonds are equal to a conditional multi-horizon Laplace transform of

(Xi41, ..., X¢pn) given X, under the risk-neutral measure.

Definition 1.4.1. Let us consider the econometric framework presented in the previous
section. In affine term structure models, the parametric specifications of the short-term

risk-less interest rate ry and of the risk intensity \; are given by:

r(X;0,) = 00+0X, with 6, = (0,0
AMX;0)) = X+ NXy with 0y = (Ao, N,

where 6o and \g are scalars, and 0 and X are vectors of parameters of size n. In that case,

the pricing formulas can be written:

B h—1
B(t.h) = EX) |exp (— <5o+5fxt+z->) I&]
L 0

=

= oxp(—hdy — §'X,) 2057 (5,...,6,0)

i h—1
B(t, h) = E@(Ga’eﬂ)) exXp (— Z (50 + (SIXt_H' + )\0 + /\/Xt+i+1)> ’&, dt = 0]

=0

— exp(—hdy — hho — 8'X,) 2% (5= A, 6= A, —N) .

Proposition 1.4.1. Let X, be an affine process under the risk-neutral measure, that is
there exists deterministic functions a®(u) and b%(u) such that w@(aa, (1) = a0 (4) X+
bQ(Ga’GP)(u). If the short-term interest rate and the risk intensity are given by Definition

1.4.1, the prices and interest rates of zero-coupon bonds are given by:

Ao B
B(t,h) = exp (A, X, + By,) and R(t,h) = _Th X, — 7’1 (1.18)
- ~ - ~ A B

B(t, h) = exp (A;Xt + Bh> and R(t,h) = =X, - <L, (1.19)

where the loadings of the previous equations can be computed recursively using aQ(Ga’OP)(u)

and bQ(emaﬂD)(u), and are parametric functions of 0., 0%, 8, X, 0, and \.

The ATSMs are called affine since they provide yield formulas for all maturities that
are affine functions of the risk factors X;. Given a set of parameters, the interest rates’
loadings are easily computable and the pricing formulas are available in closed-form. This
is very useful for estimation purposes, since we do not need to simulate the risk factors

process to obtain the bond prices, which is computationally burdensome.
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1.4.2 The Gaussian ATSM (GATSM)

One of the most popular ATSM is obtained by setting the conditional distribution of
the risk factors X; as a Gaussian VAR(1). We present the model in the context of direct
modeling, which is often adopted in the macro-finance literature. Let us assume that the

P-dynamics of the risk factors are given by:
Xt = U + (I)Xt,1 + 21/2€t with Et E’ IIN(O, In> . (120)

The set of parameters p, ®, and ¥ composes 6% that entirely defines the dynamics under
the physical measure. The process (X;)icz belongs to the affine class of processes since

the conditional Laplace transform of X, given X, is given by:
P / 1 /
o, (u) = exp |u'(p + PXy) + U Yul , (1.21)

which is an exponential-affine function of X;. Both the short-term risk-less interest rate
ry and the risk intensity A, are specified as in definition 1.4.1. To obtain the risk-neutral
conditional distribution of the factors, we must specify a SDF. We use a slightly modified
version of the form given by Equation (1.10), and specify the SDF as an exponential-affine
function of the shocks of the VAR(1). More specifically, the SDF is given by:

1
Mt,t+1 =exXp | =Tt — F:fgt—l-l - §F2Ft s (122)

where I'; are the so-called market prices of risk, and the last term in the exponential
is the Jensen convexity adjustment term such that Ej[M;;.1] = exp(—r;). Relating
to the notations of Equation (1.10), this implies that a,(X;) = V2T and 8,(X;) =
—ry — TSN + ®X;) 4+ 315 'Ty. Duffee [2002] dubs essentially affine such a model

where the market prices of risk I'; are specified as:
Ty =0 +7X:, (1.23)

where 7 is a vector of size n and 7 is a (n X n) matrix. The SDF is therefore entirely
specified by the loadings 7y and v, which compose the set of parameters 6, of the general
econometric framework. It can be easily shown that the risk-neutral dynamics of the risk

factors are still given by a Gaussian VAR(1) with different parameters.

X, = p@4+ 3%, + 35722 where 22 IIN(0,1,) (1.24)
p@ = p—3Y2y and Q= —xV2y.
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As in the physical world, the risk-neutral dynamics of X, is affine. Using the same notation

as in the previous sections, we obtain the following pricing formulas:

Al By,
th) = ——hx 0
R( ) ) h t h
Ay, = —0+0%A4,,, Ay=0,
1
B, = —00+Bn1+A,_u%+ §A;_12Ah_1 , By=0,
and,
~ Al By,
th) = ——hx 0
R( ’ ) h t ]’L
A, = —540Y (Eh_l —/\> . Ay =0,
~ ~ ~ !/
Bh = —(50 - )\0 + Bhfl + (Ah,1 — )\) /LQ

+ %(Avh—l_)\>/2(gh—l_>\> , Bo=0.

Put together, the Gaussian assumption and the availability of closed-form pricing formu-
las explain the great popularity of this model, most notably through the simplicity of its

estimation with for instance the linear Kalman filter.

However, the simplicity of the GATSM comes at the cost of unpleasant properties. First,
the physical and risk-neutral dynamics of the risk factors X; are such that both the
conditional and marginal distributions of X; are Gaussian. Therefore X, takes values in
the entire R™ which implies that both r; and \; can take values on the entire real axis.
However, first, nominal interest rates on bonds are supposed to be bounded below by
0, being constrained by the so-called zero lower bound. This is directly linked to the
fact that holding cash is always an alternative to buying a short-term nominal bond (see
Black [1995]). Under the assumption of no storage costs, the short-term risk-less interest
rate 7, cannot theoretically go below 0.2 Second, when )\, < 0, the conditional default
probability given by the transition matrix of the default dummy d; goes below 0 which
is theoretically impossible. The following section presents an ATSM with positive factors

to circumvent this issue.

1.4.3 Cox, Ingersoll and Ross-type ATSM

Based on the positive factor process developed by Cox, Ingersoll, and Ross [1985] in

continuous-time, the Cox, Ingersoll, Ross (CIR henceforth) model has also been widely

2. Though the exact value of the lower bound can be debatable, it is commonly agreed that the
nominal interest rates are bounded below and that such a lower bound exists.
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used in practice. In their seminal paper, the authors develop an affine continuous-time
diffusion univariate process taking only positive values. For X, a scalar process, the

diffusion equation writes:
dXt = li(,u — Xt) dt + o\/ Xt th

where W; is a Brownian motion,  is the mean reversion speed parameter, and p is the
unconditional mean of X;. In addition, if 2ku > o2, the zero value is precluded (Feller
condition). The original interest rate model developed by Cox, Ingersoll and Ross assumes
that r, = X, so that the whole term structure of interest rates is governed by a single
factor only. Multifactor CIR diffusions can also be used to build term structure models
(An(n) models in the terminology of Dai and Singleton [2000]). The multivariate CIR

diffusion can be defined as:
dX; = K(u — X,) dt + ¥ diag (\/St> dw,

where S; = wy+QX;, wy being a vector of size n, Q a (n X n) matrix, K is a (n X n) matrix,
i is a vector of size n, ¥ is a (n X n) matrix, and W; is a multivariate Brownian motion
with independent increments. Dai and Singleton [2000] note that due to the positivity of
X, components, this multivariate process can only possess non-negative conditional and
unconditional correlations between components. In terms of estimation, Ait-Sahalia and
Kimmel [2010] show that it is possible to estimate yield curve affine models containing
these multivariate processes with closed-form approximations of the likelihood function.
In this thesis, we will consider the discrete-time equivalent of the multivariate CIR process

that we present hereafter.

Gouriéroux and Jasiak [2006] derive the univariate discrete-time equivalent of the continuous-
time CIR process, that they call autoregressive gamma process (ARG). This process pos-
sesses a positive statistical support, time-varying volatility, and belongs to the class of

affine processes. We present hereafter a multivariate generalization of this ARG process.

Definition 1.4.2. Let X, be a R} -valued process, and Z, be a N"-valued mizing random
variable. X, is said to be a wvectorial autoregressive gamma process with conditionally

independent elements if:

Vj < {1,...771}, Zj7t+1‘& ~ P((b;Xt)
and  Xju1|Zi, X~ Vo420 (G)

where ¢ = [@;](j=1,..ny 15 a (n X n) matriz and v = [V;]gj=1,. ny and ¢ = [(lgj=1,..n} are
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size-n vectors. v is called the shape or degree-of-freedom parameter, and ¢ is the scale

parameter. The conditional Laplace transform of X1 given X, is given by:

u®(C

m) ¢Xy—Vog(l—ue()|, (1.25)

1
V<1, Elep (X)) - e [(
where ® is the Hadamard product (component-wise), while, with abuse of notations, the

division and log operators work component-wise.

This multivariate process is such that the components of X; are always positive due to
the positive support of the gamma distribution, while staying in the affine class since the
conditional Laplace transform of X, given X, is an exponential-affine function of X.
Though the elements of X;,; are conditionally independent given X, Granger-causality
between the different components of X; can be easily taken into account if ¢ is not diago-
nal. The conditional independence assumption is not necessary to keep the affine property
of such multivariate processes. Indeed, in Chapter 4, we introduce a new recursive method

to build instantaneously correlated multivariate affine processes.

Let us now assume that the P-dynamics of X, are given by an autoregressive gamma
process with parameters ¢, (¥ and v, that is 0¥ = (Vec(¢”)', (", 1'). Both the short-term
risk-less interest rate and the risk-intensity are affine functions of X, given by Definition
1.4.1. We also assume that the SDF is an exponential-affine function of X;,; with constant

prices of risk, that is (X)) = 0.

My 1(Xig1) = exp [—r + 76X — ¥ (0)] -

We therefore have 6, = v9. With these assumptions, it can be shown that the risk-neutral

dynamics of X; are given by a vectorial autoregressive gamma process with parameters
Y, (¢ and v (see Chapter 5), such that:

P P
2 — dia Q—) x ¢ and (9 =dia (C—) x (P
’ g(l—“m@@“’ ¢ ‘ ST -0l -
where the vector of degree of freedom v is the same under both measures. Again, assuming
that r, = 0g + ¢’ X; and \; = \g + VX, bond yields at all maturities are affine functions

of X; and, using the same notations as in the previous sections, the pricing formulas are
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given by:
Ah/ Bh
h)y = —X;,— —
R<t7 ) h t h
A1 © CQ )
Ay, = —0+¢Y
" ¢ (1 — A1 ©CQ
Bh = —50 + Bh—l — l/, 10g (1 — Ah—l ® CQ)
and,
~ A By
R(t,h) = — . X — .
- (gh—l — >\> ol
Ay = —0+ ¢ —
1-— (Ah—l - /\> © (@
Eh = —50 - /\0 + Eh—l — I// log [1 — <2{h_1 — )\) ® CQ] .

Within this framework, the whole term structure of interest rates is positive at all times

as long as 0 and A have positive entries, and that dy and )y are positive.

1.4.4 Empirical assessment of multifactor CIR models

Though we focused on the discrete-time equivalent of the CIR-process and the asso-
ciated discrete-time term structure model, empirical assessments have been mostly per-
formed on the continuous-time model. The CIR term structure models have been largely
employed in the yield curve literature, with different fields of application. Brown and
Dybvig [1986] investigate the implications of the CIR, one-factor term structure model of
interest rates. Longstaff and Schwartz [1992] develop the first two-factor general equilib-
rium model with CIR processes to price bonds as well as options. Generalizing the class
of affine models, Dai and Singleton [2000] include CIR models with any number of factors
in the affine specifications. Le, Singleton, and Dai [2010] use a back modeling approach
to obtain richer historical dynamics with Dai and Singleton’s affine class of models while
keeping tractable pricing formulas. More recently, Backus, Chernov, and Zin [2014] apply

the ARG framework to model a consumption process in an asset pricing model.

While the one-factor model has been acknowledged to provide a limited fit and flexi-
bility, the multivariate version of the CIR process has been preferred, often with the
assumption that the components of the risk factors are independent (see e.g. Duffie and
Singleton [1997]). This independence assumption is not mandatory but greatly simplifies

the maximum likelihood estimation procedure at the cost of over-identification (see Dai
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and Singleton [2000]). Whereas a term structure model with several positive risk factors
provides a better fit to the data, it is known to have difficulties providing reliable risk
premia estimates (see for instance Backus, Foresi, and Telmer [2001]). Dai and Single-
ton [2002] mostly attribute this failure to the close relationship between the conditional
mean and conditional variance of univariate CIR processes, whereas Le, Singleton, and
Dai |2010] consider that using an exponential-affine SDF imposes too many constraints

on the physical dynamics when using the back modeling strategy.

In Chapter 4, we provide a more general technique to create multivariate affine pro-
cesses that can be instantaneously cross-correlated as well as including Granger causal-
ity. We define the class of recursive affine processes as the multivariate processes in
which each factors’ components X;; has a conditional Laplace transform given X; ; and
(Xi4,...,X,-1+) which is an exponential-affine function of the conditioning variables. Us-
ing the recursive specification, it is easy to build for instance multivariate ARG processes,
with a richer and more general correlation structure. We also derive the closed-form
transition formulas between the physical and the risk-neutral world for this class of pro-
cesses using an exponential-affine SDF. While keeping tractable dynamics under both
measures, this generalization of affine processes in discrete-time helps to address some of

the drawbacks of the CIR process presented above.

1.4.5 Applying the intensity-based ATSM to modeling default
and liquidity risks

A first part of the risky bond literature is mostly interested in the sole modeling of
credit risk in defaultable bonds or CDS. Using the ATSM framework, several authors
have emphasized its flexibility and simplicity for the joint pricing of risk-less and risky
bonds (see e.g. Duffee [1999], Collin-Dufresne and Solnik [2001], Chen, Cheng, and Wu
[2011], Gouriéroux, Monfort, and Polimenis [2006] or Jarrow, Li, Liu, and Wu [2010]).
The ATSM for the pricing of defaultable bonds is also particularly fitted to explain the
so-called credit-spread puzzle, that is the fact that risky rates contain significant and
time-varying default risk premia (see e.g. Collin-Dufresne, Goldstein, and Martin [2001],
Driessen [2005] or Chen, Collin-Dufresne, and Goldstein [2009]). These default risk pre-

mia reflect the investor’s aversion for bearing an asset containing default risk.

Extending the credit risk applications, some authors also considered the joint modeling
and the decomposition of both credit and liquidity risks in sovereign and corporate bonds,
or in CDS. Liquidity risk can represent an important pricing factor for risky bonds espe-

cially during distress periods where capital is known to be particularly scarce and asset
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prices drop sharply (resp. funding liquidity and market liquidity issues, see e.g. Brun-
nermeier and Pedersen [2009]). Liu, Longstaff, and Mandell [2006] develop a five-factor
ATSM to decompose credit and liquidity risks from swaps, and extract the associated
risk premia. Longstaff, Mithal, and Neis [2005] measure default and non-default com-
ponents on the CDS market and show that the default component represents the vast
majority of the spread. Feldhutter and Lando [2008] jointly price Treasuries, corporate
bond and swaps to decompose the swap rates into a credit component, a convenience yield
(liquidity-related), and a swap idiosyncratic factor. Monfort and Renne [2014] develop a
framework where the Eurozone government bond spreads with respect to German bonds
contain both credit and liquidity risks. The two risks are introduced via credit and lig-
uidity intensities. The identification is performed using credit and liquidity risk proxies,
such as the KfW-bund spread. In a related approach, Filipovic and Trolle [2013] use CDS
and overnight indexed swaps on LIBOR to decompose the term structure of interbank

risk into a default and a non-default component.

1.5 Quadratic term structure models (QTSM)

A natural idea to deal with the positivity of interest rates is to specify the short-term
interest rate r; as a quadratic combination of Gaussian risk factors X;. The same specifi-
cation can be used for the risk intensities \; to provide default probabilities constrained
between 0 and 1. This section presents the framework of the quadratic term structure

model and its general properties in terms of pricing.

1.5.1 The quadratic framework

The Quadratic Term Structure model (QTSM) was first introduced in the 1990s to
combine the nice characteristics of the affine framework of Duffie and Kan [1996] with the
positivity of interest rates and the time-varying conditional volatility as in the CIR model
of Cox, Ingersoll, and Ross [1985]. Ahn, Dittmar, and Gallant [2002] develop the general
QTSM framework and derive its theoretical properties. Following their assumptions, we

present hereafter its main characteristics.

Let us assume that the P-dynamics and the SDF specification are respectively given by
Equations (1.20) and (1.22). The risk-neutral dynamics of the risk factors are thus given
by the Gaussian VAR(1) of Equation (1.24). The main difference with the GATSM is that
the short-term interest rate and the risk-intensity are specified as quadratic combinations
of X;.

Definition 1.5.1. In a quadratic term structure model, the short-term interest rate r(Xy; 0,)
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and the risk intensity N(Xy; 05) are specified as:

Ty = 6() + 51Xt + X;(SQXt (126)
)\t - )\0 -+ )\llXt + Xt/)\QXt y (127)

where &g and \g are scalar values, 1 and A\ are size n vectors, 6o and Ay are symmetric

(n x n) matrices, and 6, = (8o, 91, Vec(da)') and 0y = (Ao, A}, Vec(A2)').

For identification purposes, do and Ay are imposed symmetric. It is also easy to impose
that r, and \; are positive valued processes: for example for r;, a necessary and sufficient
condition is that d, is positive definite and that Jy is bounded below by }16152_151. The

same conditions are applicable for the intensity specification.

1.5.2 Quadratic models are affine

With the short-term interest rate specification given by Equation (1.26), QTSMs do
not belong to the class of affine models listed by Dai and Singleton [2000]. However, Ahn,
Dittmar, and Gallant [2002] or Leippold and Wu [2007] show that closed-form pricing

formulas can be preserved. This result is mainly based on the following property shown
by Cheng and Scaillet [2007]:

Proposition 1.5.1. Let X; be a Gaussian VAR(1) process which P-dynamics are given
by Equation (1.20). Let us define by Z, = (X/,Vec(X,;X})")" the augmented vector of
factors of size n+n>. The process (Z;)cz is an affine process and the conditional Laplace

transform of Z,11 given Z, is given by:

V(u,V) €S, xSy, @f(u, V) = explai(u, V) X, + X/az(u, V)X, + b(u,v)]
= expla(u, V) Z; + b(u, V)],

where S, s the set of admissible vectors u of size n and Sy is the set of admissible

3. The Wishart term structure model of Gouriéroux and Sufana [2011] based on the Wishart au-
toregressive process of Gouriéroux, Jasiak, and Sufana [2009] is closely related to the QTSM. In these
models, the Wishart process is defined as the sum of K Gaussian VAR(1) outer-products. The short
rate is specified as a linear combination of all the Wishart matrix elements. Using notations of Equation
(1.26), when §; = 0 and the drift u of the dynamics of X; is equal to 0, the QTSM is equivalent to a
Wishart term structure model with one degree of freedom (K = 1). Applications of Wishart models of
interest rates include Filipovic and Teichmann [2002], Gouriéroux and Sufana [2010], Buraschi, Cieslak,
and Trojani [2008], or Jin and Maheu [2013].
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symmetric matrices V' of size (n x n), and:

ay(u,V) = (I, —2VY) Hu+2Vu)
as(u,V) = ®V(I, -2%V)'®
1 1
b(u,V) = u/'(I,—2%V)"! (u + §Eu) + WV (L, —28V) ty — 5 log |1, — 2XV| .

First, since the Q-dynamics of X; are also given by a Gaussian VAR when the exponential-
affine SDF is given by Equations (1.22) and (1.23), Z; is also an affine process under the
risk-neutral measure. Second, note that both r; and \; are affine functions of Z;. Put
together, the QTSM is an affine model where the total set of risk factors is given by
Z;. Using the properties of affine models presented in the previous sections, we obtain
closed-form pricing formulas for both risk-less and defaultable bonds, and the yields at
each maturity are affine functions of Z;, or quadratic combinations of the Gaussian risk
factors Xj.

1
~ 1/~ ~ -
Rit.h) = — <Ah Y BLX, + chhxt) .

The factor loadings can be recursively computed as:

1
Ah = Ah—l — 50 + B;z—l([n — QECh_l)_l (,UQ + §EBh_1)

, 1
+u¥ Ch_1 (I, — 25C,_1) @ — 5108l = 25Cha| . Ap =0

)

By = —01+ @Y [(I, — 2C,12) ' (Bpo1 +2Ch-1p%)] , By =0

Ch = —0,+3YCh (I, —25C,_1) 0%, Cy=0
)

- _ _ 1 -
Ay = A1 —Xo— 80+ (Baor — M) (L, — 28(Choq — A2)) (,u@ + §E(Bh—1 — )\1))

;= ~ 1 ~
+u (Choy = X)Ly = 28(Choq — o)) 1 — 5108 |1 = 25(Cht = o) |, Ap =0
B, = =640 (I, —2(Cho1 — X)8) " (Bpoy — M +2(Chy — AQ)MQ>] . By=0
Cpp = =0+ 0Y(Choy — X)Ly — 22(Chy — X)) 102, Cyh=0.

Filipovic [2002] shows that a term structure model embedding a short rate specified as a
polynomial combination of order k of Gaussian variables belongs to the class of ATSM if
and only if £ < 2. In other words, the QTSM is the maximal polynomial term structure
model with closed-form pricing formulas. Reciprocally, Chen, Filipovic, and Poor [2004]
show that a QTSM can only admit Orstein-Uhlenbeck diffusion for the risk factors X; in
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a continuous-time setting (corresponding to Gaussian VAR discrete-time dynamics).

1.5.3 Estimation methods

Up to this point, the composition of the risk factors X; have been left undetailed.
For estimation purposes, we must distinguish two different cases. First, if X, is com-
posed of components that are observed at all times, the parameter estimation can often
be performed with standard techniques, such as exact or pseudo maximum likelihood, or
GMM. When some components of X; are unobserved however, the econometrician has to
(i) estimate the parameters, and (ii) retrieve the values of the unobserved factors with
filtering or smoothing techniques. Points (i) and (%i) usually go hand-in-hand and most
parameter estimation techniques are combined with filtering procedures as well. We focus

on the case when X; is partially or entirely latent.

A natural procedure which has been largely employed in the Gaussian ATSM case with
latent factors is to resort to the linear Kalman filter (see Kalman [1960] for the orig-
inal algorithm, and Duan and Simonato [1999] and De Jong [2000] for term structure
applications). In the QTSM however, the state-space model gathering the risk factors
P-dynamics and the observable variables measurement equations is linear-quadratic, thus

non-linear algorithms must be employed.

The first non-linear filtering algorithms are based on Taylor expansions of the non-
linear equations of the state-space model (namely the measurement equations which are
quadratic in the QTSM case), and are called extended Kalman filters. The most popular
is the first-order extended Kalman filter (a first-order Taylor expansion is used, see e.g.
Jazwinski [1970]) whereas the second-order Kalman filter is rarely used in practice (see
Athans, Wishner, and Bertolini |[1968|). Among the papers estimating QTSMs, Brandt
and Chapman [2003], Inci and Lu [2004], or Kim and Singleton [2012] use the first-order
extended Kalman filter, whereas Lund [1997] use an iterated extended Kalman filter which
is supposed to correct some undesirable features of the first-order extended Kalman fil-
ter. Baadsgaard, Nielsen, and Madsen [2000] estimate their term structure model with
a version of the second-order extended Kalman filter called the truncated second-order
filter (see e.g. Maybeck [1982]). These methods can be used in any non-linear state-space

model, but rely on crude approximations when the model is highly non-linear.

A second strand of the literature prefers to use the unscented Kalman filter to estimate
non-linear term structure models. This algorithm was developed for physics applications
by Van Der Merwe and Wan [2001], Julier [2002], or Julier and Uhlmann [2004]. The
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authors advocate a better performance than the extended Kalman filters both in terms of
filtering, accuracy, and computational time. Christoffersen, Dorion, Jacobs, and Karoui
[2014] are the first to analyze the performance of the unscented Kalman filter with respect
to term structure modeling applications. Leippold and Wu [2007] are the first to use this
estimation technique in a QTSM framework, followed by Chen, Cheng, Fabozzi, and Liu
[2008] and Doshi, Ericsson, Jacobs, and Turnbull [2013].

Other estimation methods have been less used in the literature: Ahn, Dittmar, and
Gallant [2002| use the EMM with a reprojection technique to retrieve the factors, or
Andreasen and Meldrum [2013] use the sequential regression approach developed in An-
dreasen and Meldrum [2015]. The set of available estimation methods are usually not
specifically fitted to the QTSM case.

In Chapter 2, we develop a specific method that we call the Quadratic Kalman Filter to
increase the estimation and filtering performance in linear-quadratic state-space models
in general, and in QTSMs in particular. This new method builds mainly on the affine
property of the augmented process Z;. In the following section, we detail the different

applications associated with the QTSM specification.

1.5.4 Assessment and applications

The first introduction of quadratic term structure models are based on extending
the CIR term structure models. Longstaff [1989] first introduces the double square-root
process in continuous-time to model the short-term interest rate, and its diffusion is given
by:

dry = k(p — /ry)dt + o/r AV,

This diffusion stems from a Vasicek risk factor X;, and the short-term interest rate be-
ing specified as a quadratic function of X;. This specification is used to build a yield
curve model which is able to generate richer patterns than the original CIR model of
interest rates.* Estimating a one-factor model on U.S. Treasury bills from 1964 to 1986,
Longstaff shows evidence that the risk-free rate specified as a quadratic function of risk
factors is supported by the data. Beaglehole and Tenney [1992] reassess the model of

Longstaff showing that his pricing formulas only work when the underlying risk process X,

4. In his paper, Longstaff also derives the different properties associated with this short-term interest
rate process and the associated term structure. He shows that for p > 0, negative interest rates are
precluded, and zero is a reflecting barrier. The speed of mean-reversion is asymmetric due to the term in
pt — /Tt. When the underlying factor X; has a stationary distribution, then the short-term interest rate
r¢ has a Weibull stationary distribution. The whole term structure of interest rates can be expressed as
an affine combination of r; and /ry, thus as a quadratic combination of X;.
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is Orstein-Uhlenbeck. Also noting the limitations of the CIR term structure model, Con-
stantinides [1992] develops a squared-autoregressive independent variable nominal term
structure model (SAINTS). In this model, the risk-factors X; are independent Orstein-
Uhlenbeck diffusion processes and the stochastic discount factor is specified such that
the short-term interest rate is a quadratic function of X;. This authorizes closed-form
formulas for both nominal bond prices and European option prices. A one-factor model
is calibrated and Constantinides shows the variety of yield curve patterns that the model
can generate. Originally developed in continuous time, the model was adapted in discrete
time by Realdon [2006].

From a theoretical point of view, these models all belong to the class of QTSM intro-
duced by Ahn, Dittmar, and Gallant [2002]. After proposing a canonical form of QTSM
and comparing them to the canonical ATSM of Dai and Singleton [2000], they estimate
the model on U.S. zero-coupon monthly nominal interest rates from 1946 to 1991. They
compare different specifications contained in the class of QTSMs and ATSMs to conclude
that the QTSM provides a better fit to the interest rate data. Concerned with the assess-
ment of the QTSM abilities, Brandt and Chapman [2003] compare the possibilities of Dai
and Singleton’s affine class of models and of the QTSMs to reproduce a set of moment
conditions, expected excess returns (that is to forecast the behavior of the nominal term
premia), and the conditional yield’s volatilities. Estimating the models on U.S. nominal
monthly zero-coupon yields from 1953 to 1998, they conclude in the superiority of the
QTSM with respect to these criteria.

With established performance among existing term structure models and correcting un-
desirable features of CIR term structure models, the QTSM has been widely used for the
modeling of the risk-free yield curve. A first set of applications regards the joint model-
ing of international risk-free rates. Inci and Lu [2004] derive a quadratic term structure
model in continuous-time on U.S./German yield curves on the one hand and U.S./U.K.
yield curves on the other hand. Using the covered interest rate parity, the exchange rate
is a quadratic function of the risk factors and both countries’ yield curves are quadratic.
They show that the QTSM empirically performs better than the CIR international term
structure model of Backus, Foresi, and Telmer [2001] with respect to the fitting properties
(term structures and exchange rate), and the out-of-sample forecasting ability. Leippold
and Wu [2007] generalize this framework for international term structure models build-
ing a class of (m + n) Multi-Currency Quadratic Models (MCQM). They distinguish two
orthogonal sets of risk factors of respective size m and n and intervening respectively in
the term structures of yields and in currency risk premia. Using both Japanese and U.S.

data, they analyze the empirical results of a preferred (6 + 1) MCQM and conclude in a
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high flexibility for the modeling of international term structures of interest rates when an

independent currency factor is considered.

A second set of applications regards the modeling of nominal risk-free yield curve with
respect to monetary policy and macro-finance issues. Since the QTSM is able to provide
positivity of the entire yield curve, it is natural to assess its performance in a context of
very low interest rates such as the zero lower bound period. Kim and Singleton [2012]
compare the performance of a broad set of models, including both CIR models and QTSMs
(and their shadow-rate versions, see Section 1.6.2) on the Japanese government bond yield
data between 1995 and 2008. Their performance is assessed with respect to the ability
of fitting data, reproducing the time-varying volatility behavior of yields, and predicting
excess returns. Andreasen and Meldrum [2013] perform the same type of comparison on
U.S. data from 1961 to 2013. QTSM can also include observable variables to reproduce a
Taylor-type monetary policy rule, as introduced by Ang and Piazzesi [2003] in the Gaus-
sian ATSM case. Ang, Boivin, Dong, and Loo-Kung [2011] introduce a model where the
short-term nominal interest rate is specified as a linear combination of output gap and
inflation rate, where the two associated loadings are time-varying. The entire set of 4
risk factors is hence composed of both the interest rate loadings and the macroeconomic
variables and follow Gaussian VAR(1) dynamics. The short-term interest rate is therefore
a quadratic combination of both observed and unobserved factors. Their model autho-
rizes both the comparison of the size of the interest rate loadings, the yields forecasts, the
precision of expected excess returns, and the impulse-response of an adverse inflation or
GDP shock on the monetary policy reaction function. Campbell, Sunderam, and Viceira
[2013] introduce a QT'SM of both the nominal and real term structure of interest rates to

allow for time-varying conditional covariances in both term structures.

A last application domain regards the modeling of the term structure of risky interest
rates. Chen, Filipovic, and Poor [2004] first introduce the QTSM for defaultable interest
rates in a continuous-time framework. A direct application of this framework concerns
the modeling of CDS spreads as in e.g. Chen, Cheng, Fabozzi, and Liu [2008|. Based
on the approach of Duffie, Pan, and Singleton [2000], they specify both the short-term
risk-less interest rate and the default intensity as a quadratic function of Gaussian risk
factors in order to obtain positive spread values. Using CDS data for more than 1,000
entities, they estimate the model on three years of daily data and are able to separate the
default risk premium from the observed CDS spread. In a similar application, Doshi, Eric-
sson, Jacobs, and Turnbull [2013| model CDS spreads with default intensities specified as
quadratic functions of macroeconomic variables and firm observable characteristics. They

are able to show that the introduction of these observable explanatory variables contribute
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to a better empirical performance of their no-arbitrage QTSM, both for pricing and ex-
plaining the evolution of CDS spreads. Last, Hordahl and Tristani [2013] construct a
model for Euro-area sovereign spreads, taking into account the default probability of each
sovereign. They impose positivity of the intensities through the quadratic specification,
and include national debt-to-GDP ratios and GDP growth to explain the evolution of the

spreads through time.

In Chapter 3, we investigate further this branch of applications. We consider the spreads
between interbank risky and risk-less rates. These spreads contain both credit and liquid-
ity risks representing (i) the default risk of the borrowing bank and (%) the liquidity needs
of the lending bank. We develop an intensity-based term structure model of interbank
spreads as in Monfort and Renne [2014], but with quadratic credit and liquidity intensities
to impose for the positivity of the spreads. We estimate the model on EURIBOR-OIS
spreads (European data) and derive the default and liquidity interbank risk premia in the
Eurozone, as well as the default probabilities under both the risk-neutral and the physical
measures. We show that the decrease of spreads after the unconventional monetary policy

phases in the Eurozone are mostly liquidity-related.

1.6 Modeling the zero lower bound (ZLB)

In the previous sections, we have presented several models that can allow risk-less and
risky interest rates to be positive at all times. While easy to manipulate, these models
miss the possibility to reproduce closely the behavior of yields at the zero lower bound
(ZLB). In this situation, the short-term interest rate r; reaches zero and stays at zero
for an extensive period of time. In both the CIR model and the QTSM, the short-term
interest rate bounces back to positive values immediately after reaching the zero value.
In this section, we present extensions that have been operated to model the yield curve
at the ZLB.

1.6.1 The ZLB modeling problem

In a seminal article, Black [1995] emphasizes that provided there are no frictions in
financial markets, nominal bond interest rates should always be bounded below by zero.®
Indeed, for an investor, holding cash-money is always an option which pays off a zero
nominal interest rate. Therefore, using no-arbitrage arguments, nominal bonds should

always provide at least a zero interest rate since they entail more risk than holding paper

5. If there are frictions, interest rates can reach negative values. However, there should still exist a
lower bound, even though it is negative.
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money. This imposes a first theoretical constraint that the nominal yield curve should

always be non-negative at all times.

Second, it is usually the case that when the short-term nominal interest rates are at zero,
they stay at zero for a long period. To provide more economic intuition with this stylized
fact, consider that after a bad economic shock, the central bank’s short-term interest rate
often decreases sharply to keep inflation expectations well-anchored and/or restore GDP
growth. When reaching the ZLB, the central bank is not able anymore to control inflation
expectations and /or GDP growth through the nominal interest rate. In addition, putting
interest rates to zero may not be sufficient for the economy to recover from the bad shock,

leading to a long period of ZLB.

Third, it is of crucial importance for policy-makers and investors to know when the ZLB
period will end, and to calculate the so-called lift-off probabilities, that is the probabili-
ties that the future short-term interest rate goes back to positive values. To be consistent
with the zero lower bound, a term structure model should be able to gather the three

previous stylized facts.

Let the economy be represented by the set of risk factors X;. The modeling problem for
the ZLB is the following:

Can we find a short-term interest rate specification r(Xy, 0,) and some dynamics under
the physical and risk-neutral measures, gpf(aP) (u) and w;@(ea’QP)(u) such that:

1. the short-term interest rate is always non-negative (or bounded below);

2. the short-term interest rate can stay at the lower bound for several periods; and

3. the bond pricing formulas are easily computable in closed-form.
Under AOA, the risk factors X; possess the same statistical support under the physical
and the risk-neutral measures. Imposing constraints on the risk-neutral or the physical
conditional distribution of X;; given X, is hence the same with respect to the first two
points. The third point raises the question of finding an affine model able to cope with
the first two points. The most commonly-used ZLB-consistent model, called the shadow
rate model, does not consider the third point. We present this model in the following

section.

1.6.2 The shadow-rate models

Shadow rate models are built to provide non-negative interest rates at all maturi-

ties and a short-term risk-less interest rate that can stay extensively at zero. Consider
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an economy where the risk factors evolve under the physical measure accordingly with
Equation (1.20), and the SDF is given by Equations (1.22) and (1.23). The risk-neutral
dynamics of X; are given by the Gaussian VAR(1) of Equation (1.24). Consider that
there exists in the economy a so-called shadow rate denoted by s; = s(X;,0,) that can
take positive as well as negative values. This shadow rate can be economically interpreted
as the short-term interest rate that would have prevailed were it not bounded below by
zero. In most models, this shadow rate is specified as an affine function of the risk factors

(Kim and Singleton [2012] however consider a two-factor quadratic shadow-rate model).

Definition 1.6.1. Let X; be a R"-valued process. The affine shadow-rate is defined by:
s(Xy:0.) = 6o+ 0'X, | (1.28)
with 0 = (09, 6")". The effective short-term interest rate r, = r(Xy,0,) is defined by:
r(Xy; 6,) = max [s(X;,6,),0] . (1.29)

Here, 6, = 0, and the set of parameters governing the shadow short rate is the same as
the set of parameters governing the effective short-term interest rate. Note that instead of
putting zero in the max function, we can estimate a lower bound parameter r. Here, the
short-term interest rate is bounded below by 0, and can be exactly equal to zero as long as
the shadow rate evolves on the negative axis. Economically, this approach is appealing for
a Taylor-rule-type interpretation: s; would be the rate implied by a standard Taylor rule
whereas r; is the effective rate that the central bank decides to implement. Also, when

s is high and positive, the effective short-term rate r; essentially behaves like in a GATSM.

This concept of shadow-rate was first introduced by Black [1995] and was further devel-
oped by Krippner [2013] in a term structure framework. However, the max(e) function of
Equation (1.29) implies that the short-term rate process is not affine. Therefore, closed-
form formulas for bond prices at all maturities are not available. To compute the bond

prices, we must return to the no-arbitrage general formulas given by Equation (1.14):
B(t, h) = EQa") [exp(—r(&; 6,) — ... — (Xipnor; 9»)@} . (1.30)

To calculate each bond price, one must simulate the process X; under the risk-neutral
measure, calculate the shadow rate and the effective short-term interest rate, and calcu-
late the conditional expectation using Monte-Carlo. This is often problematic for most
shadow-rate term structure models in terms of both estimation and flexibility, and includ-

ing more than two latent factors can be a computationally challenging task.
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Recent papers have proposed estimation methods to overcome this issue. Krippner [2012]
proposes a method based on the valuation of options indexed on the shadow rate. Chris-
tensen and Rudebusch [2013| apply this estimation method on a Nelson-Siegel arbitrage-
free shadow-rate term structure model on Japanese data, therefore estimating a three
factor model. Kim and Singleton [2012] and Bauer and Rudebusch [2013] estimate the
shadow-rate models resorting to the extended Kalman filter with Monte-Carlo simulations
to calculate the measurement equations loadings. Recently, Priebsch [2013] proposes a
method based on a truncation of the conditional Laplace transform of the effective short-
term interest rate to compute approximated closed-form formulas in the shadow-rate

framework.

In the current context of near zero short-term interest rates in the biggest economic zones,
the shadow-rate models have been mostly compared to other models providing positive
yield curves, such as the multivariate CIR model. Kim and Singleton [2012| benchmark
the shadow-rate models comparing them to the QTSMs as well as CIR-type models. On
Japanese government bond data, they find that the quadratic-shadow-rate model with
two factors performs better than the others in terms of fit, conditional volatility, and
prediction of bond excess returns. On an extended sample of Japanese data, Christensen
and Rudebusch [2013] estimate different shadow-rate specifications and show that the
filtered values of the shadow-rate vary strongly depending on the specification. They
hence bring caution to the interpretation of the shadow-rate as a measure of the stance of
monetary policy, since its values are not robust to the specification. The same message is
held by Bauer and Rudebusch [2013] on U.S. data, where the authors compare the results
of shadow-rate models with different numbers of factors, including different numbers of
observable macroeconomic variables. They also use different specifications to compare
the lift-off date distribution, i.e. the most probable future date at which the economy is
expected to leave the zero lower bound. However, they do not purge the risk premium
contained in bond prices when computing the lift-off probabilities. The knowledge of lift-
off probabilities has become of crucial importance for central bankers, reflecting market
expectations on the future recovery of the economy or the credibility of monetary policy.
Building on a framework with only macroeconomic variables, Wu and Xia [2013] estimate
a shadow-rate model to compute the effects of the unconventional monetary policies put
into action by the Fed. Filipovic, Larsson, and Trolle [2013] use a linear pricing model to

derive swaption pricing formulas with CIR processes in a zero lower bound context.

As emphasized previously, the existing models are not able to match simultaneously the

positivity of the yield curve, the prolonged periods where the short-term interest rate is at
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zero, and the closed-form bond pricing formulas. While multivariate CIR models abandon
the ability to stay at zero, shadow rate models prefer to leave aside the closed-form pricing
formulas. In Chapter 5, we construct a new affine process based on the autoregressive
gamma processes, which is able to provide positive yields at all maturities as well as
staying at zero for several periods. The conditional distribution of the risk factor process
entails a zero point mass which is particularly adapted to the modeling of the zero lower
bound. We present a multifactor term structure model on Japanese Government bond
data.

1.7 Following chapters

To sum up, the remainder of the thesis is organized as follows.

In Chapter 2, we present a new filtering and approximate maximum likelihood techniques
to estimate quadratic term structure models. This methods that we call quadratic Kalman
filter (QKF) relies on the fact that, if X; is a Gaussian VAR(1), the conditional Laplace
transform of Z; = (X{, Vec(X;X})')" given Z;_, is exponential-affine. With Monte Carlo
simulations, we show that this new method outperforms its related competitors, namely

the extended and unscented Kalman filters.

In Chapter 3, we apply this estimation technique to model the Eurozone interbank spreads
of Euribor v.s. overnight-indexed swaps rates. Using a quadratic term structure model,
we specify credit and liquidity intensities to decompose the spreads at all maturities be-
tween their different risk components. Using a no-arbitrage framework also allows us to
extract the expected and risk premia components. We use this framework to provide an
insight on the efficiency of the ECB’s unconventional monetary policy actions targeting

the interbank market.

In Chapter 4, we provide a general recursive way of specifying affine processes which
components can be instantaneously correlated. These recursive affine autoregressive pro-
cesses are built assuming that the conditional Laplace transform of a component X, given
X1 and (Xi4,...,X,-14) is an exponential-affine function of the conditioning variables.
Still, it remains that the whole process (X;);ez is affine and transition formulas between
the physical and the risk-neutral measures with an exponential-affine SDF are derived in
closed-form. We detail a wide range of possible processes that enter this class, building
in particular vectorial autoregressive gamma processes which components can be instan-

taneously cross-correlated.
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In Chapter 5, we generalize the class of autoregressive gamma processes of Gouriéroux and
Jasiak |2006] to allow them to have a zero point mass. We call these processes autoregres-
stve gamma zero. Using the results of the previous chapter, we use a multivariate version
of these generalized ARG processes to build a term structure model consistent with the
zero lower bound. In particular, our framework authorizes to derive closed-form formulas
for calculating lift-off probabilities. An application is performed on Japanese government
bond yields, and the model performs well in fitting both yield levels, volatilities and excess

returns.
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Chapter 2

Estimation and Filtering in Quadratic
Factor Models

This chapter is based on the article “A Quadratic Kalman Filter” of Monfort, Renne, and

Roussellet (forthcoming in the Journal of Econometrics).

Abstract

We propose a new filtering and smoothing technique for non-linear state-space
models. Observed variables are quadratic functions of latent factors following
a Gaussian VAR. Stacking the vector of factors with its vectorized outer-
product, we form an augmented state vector whose first two conditional mo-
ments are known in closed-form. We also provide analytical formulae for the
unconditional moments of this augmented vector. Our new quadratic Kalman
filter (QKF) exploits these properties to formulate fast and simple filtering
and smoothing algorithms. A first simulation study emphasizes that the QKF
outperforms the extended and unscented approaches in the filtering exercise
showing up to 70% RMSEs improvement of filtered values. Second, we provide
evidence that QKF-based maximum-likelihood estimates of model parameters

always possess lower bias or lower RMSEs that the alternative estimators. '

1. Functions for the Quadratic Kalman Filter are implemented with the R-software and are available
on the runmycode-website at http://www.runmycode.org/companion/view/313.
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Résumé

Pour reproduire I’évolution d’un ensemble de taux d’intérét d’actifs financiers, ['utilisa-
tion de modéles a facteurs inobservables est fréquente. En effet, ceux-ci sont parcimonieux
et expliquent une large dimension longitudinale de données par un nombre réduit de fac-
teurs. Ils peuvent étre représentés sous une forme espace-état, comprenant deux ensembles
d’équations. Le premier contient les équations de transition, donnant la loi de probabi-
lité d’évolution des facteurs inobservables. Le second contient les équations de mesure,
qui relient les données observées a chaque date aux facteurs inobservables et & un bruit
de mesure. Aussi bien les équations de transition que les équations de mesure sont pa-
ramétrées. Les deux enjeux de 1’économétre sont (1) d’estimer les paramétres des deux
ensembles d’équations, et (2) d’obtenir une évaluation des facteurs filtrés et lissés, i.e. de

déduire la valeur optimale des facteurs sachant les observations disponibles.

Le filtre de Kalman [1960] standard est la méthode d’estimation et de filtrage optimale
si les équations de transition sont décrites par un modéle VAR linéaire gaussien, et les
variables observables sont des fonctions affines des facteurs auxquelles sont additionnés
des bruits de mesure gaussiens. Dans ce cas, aussi bien la loi conditionnelle des obser-
vables étant donné leur passé que la loi des facteurs inobservables conditionnellement &
leur passé sont gaussiennes. Les paramétres du modéle peuvent étre estimés aisément par
maximum de vraisemblance, et les facteurs filtrés sont obtenus par régression linéaire. Si
I'un des deux ensembles d’équations devient non-linéaire, il n’est plus possible d’utiliser le
filtre de Kalman standard comme méthode optimale, car les distributions conditionnelles
précédentes sont difficilement exprimables en formules fermées. Une premiére possibilité
est d’utiliser des méthodes simulées (Monte Carlo, méthodes bayesiennes), permettant
d’approximer précisément les distributions conditionnelles précédentes, a un cotit compu-
tationnel élevé. Une seconde possibilité est d’utiliser des filtres dits déterministes, comme
les filtres de Kalman étendus ou inodore.? Ces filtres approximent les non-linéarités des
équations de transition et de mesure a 'aide de développements de Taylor, permettant
une estimation simple et rapide, au prix de la disparition des propriétés asymptotiques

des estimateurs.

Dans ce chapitre, nous développons une nouvelle méthode d’estimation et de filtrage
pour les modéles espace-état dans lesquels les équations de transition sont données par
un VAR linéaire gaussien, et les variables observables sont des combinaisons linéaires-
quadratiques des facteurs inobservables, auxquelles sont additionnés des bruits de mesure

gaussiens. Notre nouvel algorithme, le Filtre de Kalman Quadratique (QKF), est dérivé

2. Traduction littérale de I'anglais Unscented Kalman Filter.
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d’une propriété fondamentale montrée par Cheng and Scaillet [2007] : lorsque la dyna-
mique d’un vecteur de facteurs est donnée par un VAR linéaire gaussien, le processus
multivarié constitué de I'empilement de ce vecteur et de tous les produits possibles de
ses composantes est un processus affine (au sens de composé auto-régressif, voir Darolles,
Gouriéroux, and Jasiak [2006]). Ce nouveau processus empilé appelé vecteur de facteurs
augmenté possede ainsi une espérance et une matrice de variance-covariance condition-
nelles & son passé exprimables en formules fermées sous la forme de fonctions affines de
son passé. Une premiére partie de ce chapitre est dédiée a la dérivation des deux premiers

moments conditionnels et marginaux du vecteur de facteurs augmenté.

Dans un second temps, nous transformons le modéle espace-état pour lui redonner une
forme linéaire. En effet, les équations de mesure, qui étaient des combinaisons linéaires-
quadratiques des facteurs initiaux, deviennent des combinaisons affines des éléments du
vecteur de facteurs augmenté. Les équations de transition peuvent étre exprimées sous une
forme VAR, dans laquelle les chocs sont des différences de martingale de moyenne nulle
et de variance unitaire. En approximant la loi conditionnelle de ces chocs étant donné
le passé des facteurs par une loi gaussienne, on obtient un modéle espace-état augmenté,
constitué d’équations de transitions du vecteur de facteurs augmenté dont la dynamique
est donnée par un VAR gaussien hétéroscédastique, et dont les équations de mesure sont
données par des fonctions affines du vecteur de facteurs augmenté. On peut ainsi ap-
pliquer directement 'algorithme du filtre de Kalman & ce nouveau modéle espace-état,

constituant notre algorithme du QKF.

Une derniére section est dédiée a 'analyse des performances empiriques de ce nouvel algo-
rithme en comparaison des filtres déterministes existants mentionnés ci-avant. I’analyse
empirique s’appuie sur des simulations du modéle espace-état linéaire-quadratique. On
considére un modéle de référence ou le processus latent et les variables observables sont
des scalaires. L’équation de transition est donnée par un AR(1) gaussien de moyenne nulle
et de variance conditionnelle normalisée & 1. On fait varier le paramétre auto-régressif pour
considérer différents cas. L’équation de transition est une fonction quadratique du facteur
latent plus un bruit de mesure. On paramétrise I’équation de mesure telle que la variance
marginale de I'observable soit unitaire. Deux paramétres controlent la part de la variance
de I'observable attribuée a la variance du facteur par rapport a celle du bruit de mesure,
et la part de la variance attribuée au terme linéaire du facteur par rapport au terme qua-
dratique. On totalise ainsi trois paramétres (un pour I’équation de transition et deux pour
I'équation de mesure) permettant de considérer un ensemble vaste de modéles espace-état

linéaire-quadratiques.
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Le premier exercice consiste a simuler le modéle de référence sur des trajectoires longues
(un million d’observations) pour différentes valeurs des parameétres. On calcule les facteurs
filtrés par les différents algorithmes en leur indiquant la vraie valeur des paramétres uti-
lisés pour la simulation. On compare ensuite les erreurs moyennes des facteurs filtrés par
chacun des algorithmes par rapport aux facteurs simulés. Dans tous les cas considérés, le
QKF produit des erreurs de filtrage inférieures ou égales a ses concurrents. Les différences
sont particuliérement frappantes lorsque les paramétres du modéle attribuent une forte
part de la variance de 'observable au terme quadratique : le QKF produit des erreurs de

filtrage moyennes jusqu’a 70% plus petites que celles de ses concurrents.

Le second exercice consiste a simuler le modéle de référence un grand nombre de fois pour
un jeu de parameétres donné, sur des trajectoires courtes (200 observations). On utilise
les différents algorithmes de filtrage pour estimer les paramétres du modéle par quasi-
maximum de vraisemblance. L’utilisation de plusieurs trajectoires courtes simulées par
jeu de paramétres permet d’obtenir la moyenne et variance relatives a la distribution a
distance finie des estimateurs de chaque algorithme de filtrage. Nos résultats montrent
la meilleure performance du QKF face a ses compétiteurs, en produisant des estimations
moins biaisées et des erreurs quadratiques moyennes plus petites dans la plupart des cas

considérés.
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2.1 Introduction

This paper proposes a new discrete-time Kalman filter for state-space models where
the transition equations are linear and the measurement equations are quadratic. We
call this method the Quadratic Kalman Filter (QKF). While this state-space model have
become increasingly popular in the applied econometrics literature, existing filters are
either highly computationally intensive, or not specifically fitted to the linear-quadratic
case. We begin by building the augmented vector of factors stacking together the latent
vector and its vectorized outer-product. To the best of our knowledge, this paper is the
first to derive analytically and provide closed-form formulae of both the conditional and
the unconditional first-two moments of this augmented vector.? Using these moments, the
transition equations of the augmented vector are expressed in an affine form. Similarly,
the measurement equations are rewritten as affine functions of the augmented vector of

factors. We thus obtain an augmented state-space model that is fully linear.

We perform the derivation of the QKF filtering and smoothing algorithms by applying the
linear Kalman algorithms to the augmented state-space model. To do so, we approximate
the conditional distribution of the augmented vector of factors given its own past by a
multivariate Gaussian distribution. Since no adaptation of the linear algorithm is needed,
the QKF combines simplicity of implementation and fast computational speed. We ap-
ply the same method for the derivation of the Quadratic Kalman Smoothing algorithm
(QKS). Indeed, since the QKF and QKS requires no simulations, it represents a convenient

alternative to particle filtering.

To compare our filter with the popular existing traditional filters (see Tanizaki |[1996)),
namely the first- and second-order extended and the unscented Kalman filters, we im-
plement a Monte-Carlo experiment. In order to explore a broad range of cases, we build
a benchmark state-space model with different values for (i) the persistence of the latent
process, (i1) the importance of noise variance in the observable, and (iii) the importance
of quadratic terms in the observables. RMSE measures are computed in each case. We
compare the filters with respect to two different criteria: filtering, i.e. retrieving latent
factors precisely from a fixed set of parameters, and parameter estimation, i.e. the capac-

ity to estimate the state-space model parameters.

First, these computations provide evidence of the superiority of the QKF filtering over its

competitors in all cases. When the measurement equations are fully quadratic, the QKF is

3. Buraschi, Cieslak, and Trojani [2008] provide formulae of conditional first-two moments for the
specific case of centred Wishart processes.
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the only filter able to capture the non-linearities and to produce time-varying evaluations
of the latent factors. This results in up to 70% lower RMSEs for the QKF compared to
the other filters, all cases considered. For measurement equations with both linear and
quadratic terms, the QKF still results — to a smaller extent — in lower filtering RMSEs.
These results are robust to the persistence degree of the latent process and the size of
the measurement noise. Also, we emphasize that the first-order extended Kalman filter
performs particularly poorly in some cases and should therefore be discarded for filtering

in the linear-quadratic model.

Second, the QKF-based maximum-likelihood estimates of model parameters always pos-
sess lower bias or lower RMSEs that the alternative estimators. We provide evidence that
this superiority is robust to the degree of persistence of the latent process, to the degree
of linearity of the measurement equations, and to the size of the measurement errors. We
conclude that the QKF results in the best bias/variance trade-off for the quasi maximum

likelihood estimation.

The remainder of the paper is organized as follows. Section 2 provides a brief review of
the non-linear filtering literature and its applications. Section 3 presents the state-space
model and builds the QKF. Section 4 performs a comparison of the QKF with popular
competitors using Monte-Carlo experiments. Section 5 concludes. Proofs are gathered in

the Appendices.

2.2 Literature review

The existing traditional non-linear filters use linearization techniques to transform the
state-space model. First and second-order extended Kalman filters build respectively on
first and second-order Taylor expansions of transition and measurement equations. The
first-order extended Kalman filter is extensively covered in Anderson and Moore [1979]. To
reduce the errors linked to the first-order approximations, Athans, Wishner, and Bertolini
[1968] develop a second-order extended Kalman filter.* In the general non-linear case,
both methods require numerical approximations of gradients and Hessian matrices, po-

> The unscented Kalman filter belongs

tentially increasing the computational burden.
more to the class of deterministic density estimators, and was originally implemented as

an alternative to the previous techniques for applications in physics. It is a derivative-

4. This method is treated in continuous and continuous-discrete time in Maybeck [1982]. Bar-Shalom,
Kirubarajan, and Li [2002] propose a complete description of this second-order filter.

5. Gustafsson and Hendeby [2012] build a derivative-free version of the second-order extended Kalman
filter which avoids issues due to numerical approximations, but shows a similar computational complexity.
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free method which is shown to be computationally close to the second-order extended
Kalman filter in terms of complexity (see Julier, Uhlmann, and Durrant-Whyte [2000] or
Julier and Uhlmann [2004]).° Whereas many other filters exist, both the extended and

unscented filters have been the most widely used in recent econometric applications.

We consider here a specification in which the transition equations are affine and the
measurement equations are quadratic. This quadratic framework is particularly suited
to numerous dynamic economic models. While first-order linearization is standard and
largely employed in the dynamic stochastic general equilibrium (DSGE) literature, the

algorithm we develop is fitted to exploit second-order approximations. ’

As for finance, an important field of applications of our filter is the modelling of term
structures of interest rates.® The standard and popular Gaussian affine term-structure
model (GATSM) provides yields which are affine combinations of dynamic linear auto-
regressive factor processes. As these models include latent factors, the linear Kalman
filter  has gained overwhelming popularity compared to other estimation techniques (see
e.g. Duan and Simonato [1999] or Joslin, Singleton, and Zhu [2011]). A natural exten-
sion of the GATSM is to assume that yields are quadratic functions of factor processes.
The bulk of the papers using QTSMs considers the dynamics of government-bond yield
curves (e.g. Leippold and Wu [2007] and Kim and Singleton [2012]). QTSMs have also
been shown to be relevant to model the dynamics of positive risk intensities and their
implied term structures: while default intensities are considered in the credit-risk litera-
ture (see e.g. Doshi, Ericsson, Jacobs, and Turnbull [2013] and Dubecq, Monfort, Renne,
and Roussellet [2014]), mortality intensities have also been modelled in this framework
(Gouriéroux and Monfort [2008]). In order to estimate QTSMs involving latent variables,
a wide range of techniques are considered in the existing literature: Inci and Lu [2004]
and Li and Zhao [2006] use the extended Kalman filter, Leippold and Wu [2007], Doshi,
Ericsson, Jacobs, and Turnbull [2013] or Chen, Cheng, Fabozzi, and Liu [2008] employ
the unscented Kalman filter and Andreasen and Meldrum [2011] opt for the particle fil-
ter. 1% Finally, Dubecq, Monfort, Renne, and Roussellet [2014] use the QKF filter that is

6. A general version of the algorithm is provided in Appendix 2.G.

7. Our approach could for instance be exploited to estimate the standard asset-pricing model of Burn-
side [1998] considered e.g. by Collard and Juillard [2001].

8. See Dai and Singleton [2003] for a survey of interest-rate term-structure modelling literature.

9. See Kalman [1960] for the original linear filter derivation. Properties are developed in e.g. Harvey
[1991] or Durbin and Koopman [2012].

10. Ahn, Dittmar, and Gallant [2002] resort to the efficient method of moments (EMM). However,
Duffee and Stanton [2008] show that, compared to maximum likelihood approaches, EMM has poor finite
sample properties when data are persistent, a typical characteristic of bond yields. Moreover, while
EMM is used to estimate model parameters, it does not directly provide estimates of the latent factors.
Gallant and Tauchen [1998] however propose a reprojection method to recover latent variables after
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developed hereafter.

The quadratic state-space framework that we consider in the present paper is also
well-suited to work with Wishart processes. These processes have been used in various
empirical-finance studies. In most cases, they are employed in multivariate stochastic
volatility models (see e.g. Jin and Maheu [2013] or Rinnergschwentner, Tappeiner, and
Walde [2011]). Wishart processes have also been exploited in several QTSMs (Filipovic
and Teichmann [2002|, Gouriéroux, Monfort, and Sufana [2010], Gouriéroux and Sufana
[2011])).

2.3 The Quadratic Kalman Filter (QKF) and Smoother
(QKs)

2.3.1 Model and notations

We are interested in a state-space model with affine transition equations and quadratic
measurement equations. We consider the following model involving a latent (or state)
variable X; of size n and an observable variable Y; of size m. X; might be only partially

latent, that is, some components of X; might be observed.

Definition 2.3.1. The linear-quadratic state-space model is defined by:

Xt = W + Q)Xt—l =+ Qgt (21&)
Y, = A+BX,+ > aX,CWX,+ Dn,. (2.1b)
k=1

where €, and n; are independent Gaussian white noises with unit variance-covariance
matrices, QX = X and DD' = V. e is the column selection vector of size m whose
components are 0 except the K" one, which is equal to 1. 1 and ® are respectively a
n-dimensional vector and a square matriz of size n. A and B are respectively a vector of
size m and a (n x m) matriz. All C%)’s are without loss of generality square symmetric

matrices of size m X m.

This formulation of the state-space model is for instance the typical quadratic term
structure framework explored by Ahn, Dittmar, and Gallant [2002]. A component-by-

component version of the measurement equations (2.1b) is:

Yir = Ap 4+ B Xy + X[CWX, + Dy, V€ {1,...,m}, (2.2)

having estimated the model parametrization by means of EMM.
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where Y, 1., Ay, By, Dy are respectively the k' row of Y;, A, B, and D. Note that u, ®,
Y, A, B, C® and D might be functions of (Y;_;,Y;_5,...), that are the past values of
the observable variables. The quadratic measurement equations notably imply that the

observable variables feature conditional heteroskedasticity.

Our objective is twofold: (i) filtering and smoothing of X;, which consist in retrieving
the values of X; conditionally on, respectively, past and present values of Y;, and all
the observed values of (Y;);=1,. 1 ; and (i) estimation of the parameters appearing in y,
P, Q, A, B, C®_ D. Note that  and D are defined up to the right multiplication by

an orthogonal matrix. These matrices can be fixed by imposing Q = /2 and D = V1/2. 11

Throughout the paper, we use the following notations. At date ¢, past observations of the

observed vector are denoted by ¥; = {Y;,Y;_1,Y;-9,..., Y1}, and for any process W;:

Wy = E[Wt|ﬁ]7 Pt‘\/zlf/ = V[Wt‘ﬁL
Wi = E|[WilY, P, = V| WilYia,
E (W) = E[WWei. V(W) = VW]

We also introduce the notation M1 =V [Yt\Yt_l] and:

/
Zt = (X;, VeC(XtXé)/) .

Zy is the vector stacking the components of X; and its vectorized outer-product. This
vector Z;, called the augmented state vector (see Cheng and Scaillet [2007]), will play
a key role in our algorithms. We first study the conditional moments of this vector given

past information.

2.3.2 Conditional moments of Z;

It can be shown (see Bertholon, Monfort, and Pegoraro [2008]) that when p, ® and
Y. do not depend on Y; 4, the process (Z;) is Compound Autoregressive of order 1 —or
Car(1)-, that is to say, the conditional log-Laplace transform, or cumulant generating

function defined by:

log i (u) = logE [exp(u’Zt)]Zt,l

is affine in Z;_;. This result crucially depends on the assumption stating that the matrix 2

11. © and D can be rectangular when ¥ or V' are not of full-rank.
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(hence ¥) does not depend on past values of X;_;.'? This affine property implies, in par-
ticular, that the conditional expectation E;_;(Z;) and the conditional variance-covariance
matrix V;_1(Z;) of Z; given Z;_; are affine functions of Z; ;. Moreover, E, (Z;) and

Vi-1(Z;) have closed-form expressions given in the following proposition.

Proposition 2.3.1. E, (7)) =+ &/)Zt_l and V, 1(Z4;) = it_l, where:

I P 0

Vec(up +X) pRP+PRQu | PP

d IV
Y1 = X(Z44a) =

TS | T30 4 (I + A) (2@ X)

'y = ,® (/L + (I)thl) + (/J + (I)Xt,1> ® I,

A, being the n* x n® matriz, partitioned in (n x n) blocks, such that the (i, ) block is e;e}

(see Appendix 2.B for A, properties).

Proof. See Appendix 2.C. [ |

Note that ¥,_; is a n(n+1)xn(n+1) matrix whereas i(o) is a R Mo (nt1)xn(n+1)
function, M (n41)xn(n+1) being the space of symmetric positive definite matrices of size
n(n +1). If p, ®, and X are functions of Y;_,, Proposition 2.3.1 still holds replacing
E;1(Z;) and Vi _1(Z;) by E(Zi|Zi—1,Yi-1) and V(Z;|Zi1, Yi-1), respectively.

it_l(o) is clearly a quadratic function of X; ; and an affine function of Z;, 1, denoted by
5(Z,_1) (Proposition 2.3.1). In the filtering algorithm, we have to compute E[S(Z,_1)|Y;_1].
This quantity is easily computable as i(Zt,”t,l) only once the affine form of the function

Y(Z) is explicitly available. Proposition 2.3.2 details this affine form.

Proposition 2.3.2. We denote $\*)) for i and j being {1,2} the (i, j) block of S,_. Each

12. This property is of particular use for term-structure modelling, allowing for closed-form formulas
to price long-term bonds in QTSM of the form of Ahn, Dittmar, and Gallant [2002].
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block of S s affine in Z,_1 and we have:

Vee (S) = Vee(®)

) = [2® (In: + A)] [Veell,) ® I, {u + EIiZH}

) = (e + M) @] (I @A) [Vee(l) @ 1] { ot <T>12t1}

) = (L + M) @ (Ine + AW [(In ® A @ L) (Vee(E) @ La)] { & A+ ézzt_l}

+ L2 @ (L2 + Ap)] Vee(X ®@ %)
(2.3)
Where ®1 and ®y are respectively the upper and lower blocks 0f<f> and A, is defined as in
Proposition 2.5.1. This particularly implies:

Vee [V, 1(Z,)] = Vee [E(ZH)] — U7,

where v and V are permutations of the multiplicative matrices in Equation 2.3, and are
detailed i Appendiz 2.D.

Proof. See Appendix 2.D. [ |

These results extend the computations of Buraschi, Cieslak, and Trojani [2008]. While
these authors express the conditional first-two moments of a central Wishart autoregres-
sive process (see Appendix C. of Buraschi, Cieslak, and Trojani [2008]), we derive the

first two-conditional moments of our augmented vector Z; in a more general case (where

it #0).

2.3.3 Unconditional moments of Z; and stationarity conditions

The analytic derivation of the first two unconditional moments of Z; can, in particular,
be exploited to initialize the filter. In the following subsection, we consider the standard
case where p, @ and X are not depending on Y;_;. If the eigenvalues of ® have a modulus
strictly smaller than 1, the process (X}) is strictly and, a fortiori, weakly stationary. Since
Zy is a function of X; the same is true for the process (Z;). The unconditional or stationary
distribution of X; is the normal distribution A (u*, X*) where:

pt =1 —®) 'y and X% =0X“d + X% (2.4)

Equivalently, we can write Vec(X") = (I—®®@®)~! Vec(X). The stationary distribution of
Zy is the image of N (u*, X") by the function f defined by f(z) = (2/, Vec(xa')")'. In order
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to initialize our filter, we need the first two moments of this stationary distribution, that
is to say the unconditional expectation E(Z;) and the unconditional variance-covariance
matrix V(Z;) of Z,.

Proposition 2.3.1 gives the expressions of the conditional moments of Z; given Z;_;, namely
Ei1(Z;) and V,_1(Z;). In general, the sole knowledge of these conditional moments
does not allow to compute the unconditional moments E(Z;) and V(Z;). However, it
is important to note that, here, the affine forms of E,_;(Z;) and V,_1(Z;) make these
computations feasible analytically. More precisely, starting from any value Z, of Z; at
t = 0, the sequence [E(Z;), Vec(V(Z;))], for t = 1,2,... satisfies a first-order linear

difference equation defined in the following proposition.

Proposition 2.3.3. We have:

E(Z,) i E(Z;-1) , o0
wnere

VeclV(Z,)] v Vec[V(Z;_1)] UV o

[1]

I
+
(1]

(2.5)
where 11 and d are defined in Proposition 2.5.1, and v, V are defined according to Propo-
siteon 2.5.2.

Proof. See Appendix 2.E. [ |

This linear difference equation is convergent since all the eigenvalues of = have a modulus
strictly smaller than 1. This is easily verified: = is block triangular thus its eigenvalues
are the eigenvalues of ® and D@ . Using the same argument, ® has the same eigenvalues
as ® and ® ® ® (see Proposition 2.3.1). Moreover the eigenvalues of the Kronecker prod-
uct of two square matrices are given by all the possible products of the first and second
matrices eigenvalues. Therefore, since ® has eigenvalues inside the unit circle, so have EIVD,
d® (5, and =.

We deduce that the unconditional expectation 7i* and variance-covariance % (or rather

Vec(S4)) of Z, are the unique solutions of:

p i

U

1L

LSl
o

S
S

Vec <§]“> > P Vec (i“)

We get the following corollary:
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Corollary 2.3.3.1. The unconditional expectation u* and variance-covariance S of Z;

are gen by:

-1

~ SO |
Vec (E“) = (InQ(n+1)2 —-d® <I>> (v + ¥u*)

~ ~\ —1
_ (1n2(n+1)2 b @) Vee [2 (ﬁ“)] ,

where 1 and d are defined in Proposition 2.5.1.

These closed-form expressions of " and S will make easy the initialization of our algo-

rithms. Note that the computation of Vec[3(1")] requires the explicit affine expression

of Appendix 2.D given by Vec[X(u")] = v + Wu".

2.3.4 Conditionally Gaussian approximation of (Z;)

Proposition 2.3.1 shows that Z; satisfies:
Zy =i+ 7 + §<Zt—1)§ta (2.7)

where Q(Z,_) is such that Q(Z,_1)Q(Z,_1) = %(Z,_1) and (&) is a martingale dif-
ference process, with a unit conditional variance-covariance matrix (i.e. E; 1(&) = 0
and V;_1(&) = Lyn41))- In the sequel, we approximate the process (&) by a Gaussian

white noise. In the standard case where p, ® and ¥ are time-invariant, the process Z;,
t=0,1,..., defined by Zz ~ N (i*,=*) and

Z: = p+ q)Zt*—1 + Q(Zt*—ﬁffa
where (&) is a standard Gaussian white noise, has exactly the same second-order prop-

erties as process (Z;). This statement is detailed in Proposition 2.3.4.

Proposition 2.3.4. If u, ® and X are time-invariant, the processes Z; and Z; have the
same second-order properties, i.e. the same means, variances, instantaneous covariances,

serial correlations, and serial cross-correlations.

Proof. 1t is easy to check that, for both processes, the mean, variance-covariance matrix,

and lag-h covariance matrix are respectively ", St and dhYe, [ |

2.3.5 The filtering algorithm

Using the augmented state vector Z; we can rewrite the state-space model of Definition

2.3.1 as an augmented state-space model.

Guillaume ROUSSELLET 69



Chapter 2. Estimation and Filtering in Quadratic Factor Models

Definition 2.3.2. The augmented state-space model associated with the linear-quadratic

state-space model is defined by:

Zy = p+ (5th1 + ﬁplft;
(2.8)

Y, = A+§Zt+D77t>

where n;, A, and D are defined as in Definition 2.3.1, Qt_l 18 such that Qt_lﬁé_l = it_l,
and (i, 5, are defined as in Proposition 2.5.1. Matrix B € Rmxn(ntl) jg.

Vec [C(l)],

Vec [C (m)] '

Approximating the process (&) by a standard Gaussian white-noise and noting that the
transition and measurement equations in Formula (2.8) are respectively linear in Z;_; and
Zy, the resulting state-space model is linear Gaussian. Whereas numerous existing filters
rely on an approximation of the conditional distribution of X; given Y; ; (see e.g. the
EKF and UKF in the next section), the QKF builds on an approximation of the conditional
distribution of Z; given Z;_; or, equivalently, of Z; given X;_;. Proposition 2.3.4 shows

13 The conditional variance-

that this approximation is exact up to the second order.
covariance matrix of the transition noise, i.e. Qt,lﬁgfl = it,l, is a linear function of
Z;_1 (see Proposition 2.3.2), which will be replaced in the standard linear Kalman filter
by i](Zt,”t,l). At each iteration, we emphasize that this computation should always be
made using the formulae of Proposition 2.3.2 where the affine forms in Z;, ; are made com-
pletely explicit (see the discussion below Proposition 2.3.1). Finally, we get the Quadratic

Kalman Filter algorithm displayed in Table 2.1.

Starting the algorithm at ¢ = 1, we need the initial values Zy, and PoZ|0~ As emphasized
previously, one can take the unconditional moments Zyo = i and Fyp = X*. Note that
using Equations (2.6), we have g* = 4+ dpt and TU = OXUY + f](,u“) and, therefore,
Z110 = Zoj, P1Z|o = P(fo- In other words we can also start the algorithm by the prediction

of Y;, for t = 1, using the initial values Z;p = p* and PIZ‘0 =3,

For large values of n, the QKF algorithm might suffer from the curse of dimensionality since

13. Proposition 2.3.4 implies in particular that the linear regressions of Z; and Z; on past observables
are the same functions. However, it does not imply that E(Z;|Y;) and E(Z/|Y};) are equal since &; is not

Gaussian and the conditional covariance matrix 3;_; depends on past values of the latent variable.
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Table 2.1: Quadratic Kalman Filter (QKF) algorithm

Initialization: Zojo = p* and POZ‘O =y,

Zipr | i+ PZ
State prediction: the=1 | K t—1[t—1
PZ

tlt—1

&)Ptz_”t_lgf)/ + i/](Zt—lhf—l)

y Yiior | A+ BZy
Measurement prediction:

Mt|t71 éptﬁ,1§/ + V

Gain: K, | P2 BM:}!

tle—1 tlt—1

Z Zii1 + Ki(Ys — Yy
State updating: e tlt—1 (Ve 1)

PZ Pt‘Zt_1

tlt

— KMy K

Note: p* and U are respectively the unconditional mean and variance of process Z; (that are given in

Corollary 2.3.3.1). Note that the implied value of [(XX")y; — Xy, X{),], that is a covariance matrix,

should be a non-negative matrix. When it is not the case, we replace its negative eigenvalues by 0 and
recompute (X X');; accordingly. Such a correction is not needed in the state-prediction step: indeed,

using the expression of matrices g and 6, we get that

[(XX")g1) — Xt+1‘tX£+1|t} =P((XX)epr — Xt\tXt/|t)q) + X, which is then positive.

the total filtered vector is of size n(n + 1). In that case, it is likely that other traditional
filters will result in faster computations. However, note that the n(n + 1)-dimensional
vector Z; could be replaced by the smaller vector [ X/, Vech(X;X;)']" of size n(n + 3)/2.
This transformation barely changes the augmented state space model, premultiplying the
lower block of Z; by a selection matrix H,, such that Vech(X;X]) = H,Vec(X,X]). The
formal definition of the selection matrix is given in Appendix 2.F. The computation of

conditional moments using Vech is thus straightforward.

2.3.6 The smoothing algorithm

Contrary to most existing non-linear filters, that are presented in the next section,
our QKF approach has a straightforward smoothing extension. Indeed, since our basic
state-space model is linear, we just have to use the standard backward fixed-interval
algorithm. Note however that the variance-covariance matrices PtZHﬁ
filtering algorithm using Vec(e) are not of full-rank since at least one component of Z; is

computed with the

redundant when n > 2. Consequently, the smoothing algorithm must be expressed with
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the Vech(e) operator. Let us introduce the following matrices:

n(n+3)
2

that are respectively the * "+3) xn(n+1) and n(n+1) x matrices using the selection

and duplication matrices Hn and G, defined in Appendix 2.F. We have:
Vec(Xi X,) = G,Vech(X; X]) and Vech(X,;X;) = H,Vec(X,X])

H,, is defined such that H,Z, = [X], Vech(X,X!)"]. The sandwich multiplication H,PZ  H’

1]t
drops the redundant rows and columns. We get the following smoothing algorithm:

-1

F, = <H P‘tH’) (ﬁnéé ) <H PH‘tH’>
ﬁnZt\T = IN{nZﬂt + Fi (ﬁnZt—i-HT - ﬁnZt-i-l\t)

(i) = (orudt) « 5 [(frion i) - (i)

The initial values Z7 ) and PY?‘T are obtained from the filtering algorithm.

2.4 Usual non-linear filters

Among the popular non-linear filters, two main classes of algorithms are widely used:
the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). Both approx-
imate the non-linear measurement or transition equations using linearization techniques
but their spirit differ radically. This section presents these algorithms applied to the
linear-quadratic state-space model of Definition 2.3.1. They will further be used as com-

petitors compared to the QKF in the performance assessment.

Two versions of the EKF have been used, namely the first and second order — Gaussian —
filters. Their derivations are respectively based on first- and second-order Taylor expan-
sions of the measurement equations around X,,_; at each iteration. For simplicity, we

use the following notations:

hX)) = A+BX,+ ) eX/C%
k=1

oh -
G = aX,(Xt\t ) =B+2) eXp, %
k=1
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Table 2.2 details both EKF algorithms in the quadratic measurement case.'* A general
non-linear version is provided in Appendix 2.G (see also Jazwinski [1970] and Anderson
and Moore [1979] for the EKF1, and Athans, Wishner, and Bertolini [1968] or Maybeck
[1982] for the EKF2).

Table 2.2: EKF algorithms in the quadratic case

Exrl EKr2
Inttialization: Xojo = E(Xo) and POXIO = V(Xo)
Xije— +OX,
State prediction: te—1 H t=1jt-1
X X
Pt\t—l (I)Pt—nt—l(l)/ + 2
m
Vi1 | A Xy h(Xy_1) + eTr(PX_C(k))
Measurement prediction: Hi=1 ( tt ) ( e 1) ; k tlt—1
pX
Mt|t—1 gt|t 1 t‘t 1gt|t 1 gt|t 1 tlt— 1g£|t 1+V
+V +2Z€k6 Tr (C() - 10() it 1)
k,j=1
o " =
Gain: K, Pt‘t_lgglt 1Mt‘t L
X, Xy + K (Y — Yy
State updating: tt tt—1 t(Ye = Yy a)
Pt)lg Pt\t  — KMy 1 K

Note: See above for the definition of G, and h(x).

In the EKF1 algorithm, both Y;_; and My,_; are grossly approximated, whereas the
EKF2 incorporates the so-called bias correction terms which are expected to reduce the
error on these moments evaluation (see fourth and fifth rows of Table 2.2). Even if the
Taylor expansion of the measurement equation is exact in the EKF2, it implicitly approxi-
mates the conditional distribution of (Y;, X;) given Y;_; by a Gaussian distribution, which

also induces errors in the recursions.

In comparison, the UKF belongs to the class of density-based filters and uses a set of

14. Another version of the second order filter called the truncated second-order filter is presented in
Maybeck [1982]. However, it makes the assumption that the third and higher-order conditional moments
of X, given Y;_; are sufficiently small to be negligible and set to 0. As a consequence, the calculation of
My in this algorithm can yield non positive-definite matrices showing far less computational stability
than the Gaussian second-order extended filter. We thus left it aside in our comparison exercise. Also,
higher-order extended filters can be derived with statistical linearization techniques, but are rarely used
in practice (see Gelb [1974]).
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vectors called sigma points. '

Definition 2.4.1. Let X € R" a random vector and define m = E(X) and P = V(X).
Let (\/ﬁ)Z denote the " column of the lower-triangular Cholesky decomposition of P. The
sigma set associated with X is composed of 2n + 1 sigma points (X;(m, P))i={o,...2n} and
2 sets of 2n + 1 weights (W;)i=qo,...2n) and (WZ»(C))Z-:{O’_“,%} defined by:

A/ (A+n) for i=0
m for i=0 W, =
1/[20\+n)] for i#0
A= m+(\/m), for ie[1,n]
Z , 2 _
mf( (n+/\)P)_7 for i€ [n+1,2n] qu(C) Wi+1l—a*+3 for i=0

W; for i#£0,

where (o, k, B) is a vector of tuning parameters and X = o?(n + k) —n. It is easy to see

that for any (o, Kk, B) we have:

2n 2n 2n
S Wixi=m and Y Wi (Xi—m) (X —m) = > W (X —m) (X —m) = P.

i=0 i=0 =0

The sigma set of Definition 2.4.1 is then used to approximate the moments of the non-
linear transformation h(X). The algorithm in the quadratic measurement equation case

is given in Table 2.3. A general non-linear version is also provided in Appendix 2.G. '

The tuning parameters (a, k, 3) are set by the user and depend on the applied filtering
problem specificities (dimension size n, number of periods 7, and prior knowledge on
distributions). Usual values when the distribution of X; given Y;_; is assumed Gaussian

are § =2, k=3 —mnor 0, and o = 1 for low dimensional problems.

2.5 Performance comparisons using Monte Carlo ex-

periments

We simulate a linear-quadratic state-space model and compare the performance of the
QKF filter against other popular non-linear filters. We distinguish two exercises, namely

filtering and parameter estimation.

15. The name density-based filter belongs to the terminology of Tanizaki [1996].

16. For an extensive description of the unscented Kalman filter, see Julier, Uhlmann, and Durrant-
Whyte [2000], Julier [2002], or Julier and Uhlmann [2004], and applications in Kandepu, Foss, and Imsland
[2008], or Christoffersen, Dorion, Jacobs, and Karoui [2014]. For the square-root version, see Van Der
Merwe and Wan [2001] or Holmes, Klein, and Murray [2008] for a square-root filtering application.
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Table 2.3: UKF algorithm in the quadratic case

Initialization: Xojo = E(Xp) and Po)|(0 = V(Xy) and choose (a, k, 3).

Xt +BX, 11—
State prediction: te—1 | H t—1ft-1

X X
Py | ®PZ @'+ X
Sigma points: {Xi,ﬂt—l(Xt\t—hPt)é,l)}, L) according
i={1,...,.2n

to Definition 2.4.1.

2n
Yipot | D Wih(Xige-1)
i=0

Measurement prediction.:

2n
Myt | S W WX gpe-1) = Yieor] [M(Xigge—1) — Y] +V
=0

2n
Gain: Ky ZWi(C) [Xitge—1 — Xgpe—1] [M( X ge—1) — Y;t|t—1}/Mtﬂl_1
i=0

X X1+ K (Y — Yy
State updating: e tlt—1 #(Ye = Y1)

pPX Pt)‘g_l — KMy, 1 K]

Note: Weights W; and W) are given in Definition 2.4.1.

2.5.1 A simple example

To emphasize the specificity of the QKF compared to both EKFs and UKF, let us con-
sider a very simple state-space model where analytical computations are feasible. Assume
that X; = g, ~ ZZN(0,02). The measured univariate Y; is given by Y; = X? and is per-
fectly measured without noise or, equivalently, the noise is infinitely small. The natural
method to retrieve X; from Y, is straightforward inverting the previous formula. The only
uncertainty remaining is the sign of 4+/Y; which is impossible to infer. In that model,
the distribution of Y; is a v(1/2,202) distribution, with mean and variance respectively

4 17
c-

given by o2 and 20
We compute the filtering formulae of the four aforementioned filters and compare them.
The results are presented in Table 2.4. Despite the simplicity of the model, the EKF1
is unable to reproduce the moments of Y; (second column of Table 2.4). Both the QKF
and the EKF2 give the exact formulation of Y; moments, whereas the computation of
M- for the UKF depends on the tuning parameters (o, x, 3) (see 3™ and 4" rows).
More importantly, looking at the last-two rows of Table 2.4, we see that the QKF is the

17. Recall that the density of a y(k, p) is given by f(z) = ka_l exp(—z/p).
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only filter to update the state variables correctly in the squared components, since the
second component of Z,; is exactly the observed Y;. However, all filters including the QKF
produce X,; = 0 for all periods. Therefore the QKF is the only considered filter to jointly
(i) correctly reproduce Y; first-two moments, and (%) produce time-varying estimates of
the latent factors. We systematize this comparison to different state-space models using

simulations in the next section.

TABLE 2.4 — Example : computation of filters’ formulae

QKF EKF 1 EKF 2 UKF
0
Xt|t—1 (Or Zt‘t—l for the QKF) ) 0 0 0
UE
o2 0
Pt)é , (or P‘t , for the QKF) o? o? o?
0 202
Yiji-1 o? 0 o? o?
My 204 0 208 (a*k + B)o?
0
Xt|t (OI‘ Zt‘t for the QKF) 0 0 0
Yy
o 0
Py (or Pf, for the QKF) o? o? o2
0 0

Notes : The state-space model is defined by X; ~ ZZN(0,02) and Y; = X?2. 'QKF’ is the Quadratic
Kalman filter, ’"EKF 1’ and ’EKF 2’ are respectively the ﬁrst and second-order extended Kalman filters,
"UKF’ is the unscented Kalman filter.

2.5.2 Comparison of filtering performance

We compare the filtering performance of the QKF against the EKF 1 and EKF 2, and
the UKF in a linear-quadratic state-space model. We parameterize state-space model as

follows :

Xt = (I)Xt 1+ & (29)
Y, = 0:(1—0)vV1— 32X, ++/(1—6,)( 1—91) X2+\/_17t

\/_
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where both ¢; and 7; are zero-mean normalized Gaussian white-noises, and both X; and
Y; are scalar variables (n = m = 1). Comparing with Equations (2.1a) and (2.1b), we
have set © = 0 and A = 0 for simplicity. It is straightforward to see that the unconditional
variance of Y; is equal to 1. Therefore, the weights (61, 60,) € [0, 1]?, should be interpreted
in the following way : ¢, is the proportion of Y; variance explained by the measurement
noise, the rest (i.e. 1 — #;) being explained by the state variables in the measurement
equation. 6, is the proportion of the variance of Y; explained by the linear term, within

the part explained by the state variables.

The performance of the different filters are assessed with respect to values of ®, #; and 6,.
We successively set ® = {0.3,0.6,0.9,0.95} controlling from low to very high persistence
of X; process, §; = {0.2,0.25,0.3,...,0.8} and 6, = {0,0.25,0.5,0.75} (for a total of 208
cases). For instance, a combination of (6, 6,) = (0.2,0.25) should be interpreted as 20%
of Y, variance can be attributed to the measurement noise and 80% to the latent factors, of
which 25% is attributed to the linear term and 75% to the quadratic term.'® Degenerated
cases where either 6; = 0, or §; = 1 are not considered (they correspond respectively to
situations with no measurement noise or no explanatory variables in the measurement
equation). Also, the case where 0, = 1 is left aside as the measurement equation becomes
linear, and all the considered filters boil down to the linear Kalman filter. '® For each
value of ¢, we simulate paths of the latent process X; of T" = 1,000,000 periods with
a starting value of Xy = 0. We then simulate the measurement noises 7; and compute
implied observable variables Y; for each combination of (0, 6;). The filtering exercise is
performed for each filter, initial values being known.?" For the UKF, we set a = 1, and
f = 2 as in Christoffersen, Dorion, Jacobs, and Karoui [2014]. For those values of («, f3)
and scalar processes, it can be shown that x = 0 implies the exact same recursions as the
EKF2. 2! We therefore set kK =3 —n = 2.

We denote by )/(t\‘t, )/(t?‘t and ﬁt\|t the filtered values resulting from any filtering algorithm.
The different filters are compared with respect to three measures of performance. First,
we compute the RMSEs of filtered values )/(t\‘t compared to X;. Second, we calculate
RMSEs of the quadratic process )/(t?‘t Whereas the QKF evaluates this quantity directly
in the algorithm, we recompute its underlying value for the other filters with the formula

—_—

—2 —~
Xf‘t = Xy + P,p. The RMSE measures for any of our estimated values are normalized

18. Note that in the general quadratic models that we consider here, we have Cov(X¢, Vee(X: X{)) = 0.

19. This is in fact not obvious for the UKF, and the proof is provided in Appendix 2.H.

20. Thus we set, Xgo = 0 and Po)l(O = 0 for the EKFs and UKF, and Zy)g = Og= and POZ|O = Op2x2 for
the QKF.

21. See Appendix 2.1 for a proof.
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by the standard deviation of the simulated process :

T 1/2
Tﬁlz(Wt — @)2
S RMS Ey, =1
RMSEw = =
v ow V(W)

where W, = X, or Xf and @ = )/(t\‘t or )/(E This measure converges to 1 if the fil-
tered values are equal to the unconditional mean of the latent process for all periods.
Consequently, if any filter yields a normalized RMSE greater than 1, a better filtering
result would be obtained by setting I/I//t\‘t = E(W};), for all ¢. Lastly, we compare the filters
capacities to discriminate between the explanatory process and the measurement noise by
computing non-normalized RMSEs of implied 7;. The results are respectively presented

on Figures 2.1, 2.2, and 2.3.
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Result 1. When the measurement equation is fully quadratic (85 = 0), The QKF is the
only considered filter capable of both :
(i) Filtering out a substantial part of the measurement noise,

(i1) Yielding accurate evaluations of th‘t.

We first analyse the case where the measurement equation is only quadratic (0 = 0, left
column of all figures). As already noted for a specific case in the previous section, all filters
are "blind" on the evaluation of X,; producing a flat )/(t\‘f = 0, and normalized RMSEs are
equal to 1 whatever the values of ® and 6; (see Figure 2.1, left column). However, looking
at Figure 2.2, we see that for any relative size of the measurement errors and any per-
sistence, the QKF yields more accurate evaluations of X t2|t than the other filters, showing
5% to 60% smaller RMSEs depending on the case. Two patterns can be observed here.
First, the smaller the measurement errors, the stronger the outperformance of the QKF
filter compared to the others. Second, the outperformance of the QKF increases with the
persistence of the latent process. 2 This better performance is confirmed by looking at the
evaluation of the measurement noise, where the QKF also provides the smallest RMSEs
for all values of (®,6,) (see Figure 2.3, first column). The reduction in the measurement
noise RMSEs for the QKF compared to the others can reach 70%. This result emphasizes
the substantial improvement of the fitting properties of the QKF compared to those of
the other filters.

Result 2. For measurement equations where the linearity degree goes from 256% to 50%,
the QKF beats the other filters, especially for the evaluation of Xf‘t. FEuventually, for levels
of about 75% of linearity in the measurement equation, the RMSFEs of all filters converge

to the same values.

We turn now to the cases where the measurement equation has from 25% to 50% of
linearity degree (A = {0.25,0.5}, second and third columns of all figures). We first leave
aside the EKF 1 (see result 3). For )/(;, normalized RMSEs are more or less the same for
the EKF 2 and the UKF in all cases. In comparison, the QKF is either equivalent, either
showing smaller RMSEs for high-persistent cases (® = 0.9 or ® = 0.95, third and fourth
rows of Figure 2.1). This better performance is confirmed when looking at Figure 2.2. In
all cases, the QKF possesses lowest RMSEs for )/(E For example, for ® = 0.9, §; = 0.2 and
0, = 0.25, the QKF shows RMSEs slightly below 60% of X? standard deviation whereas
the others are all above 70% (see Figure 2.2, third row of panel (b)).

Unsurprisingly, this evidence places the QKF ahead of its competitors for the de-noising

exercise : for panels (b) and (c) of Figure 2.3, RMSEs of 7; are always below the others

22. We see this as a pleasant feature for term-structure modelling applications where yields are typically
highly persistent and measured with low errors.
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for the QKF. Looking at panel (d) where the measurement equation is 75% linear (fourth
column of all figures), we see that all RMSEs eventually converge to each other for all
filters. This is consistent with the fact that all filters reduce to the standard Kalman filter

when the measurement equation is fully linear.

Result 3. The EKF 1 should be discarded for filtering, especially when the variance of

the measurement errors is low (cases where 0y is low).

Looking at Figures 2.1 and 2.2, we notice a very unpleasant behaviour of the EKF 1. For
low measurement errors, RMSEs of both )/(t\‘t and )/(tz‘\t can reach values greater than 1,
especially in panels (b) and (c) where the measurement equation shows medium linearity
degree (see second and fourth columns of Figures 2.1 and 2.2). This catastrophic per-
formance can be particularly observed for low persistence, low linearity degree, and low
measurement, errors : when ® = 0.3, ; = 0.2 and 6, = 0.25, )/(t\‘t and )/(t?‘t show respecti-
vely 120% and 200% normalized RMSE values. That is to say filtered values yielded by

the EKF 1 prove to be very poor in some cases.

This Monte-Carlo experiment provides evidence that in terms of filtering, the QKF largely
dominates both EKFs and the UKF for evaluating X; and X7, as well as for de-noising the
observable y;. This is particularly the case when the degree of linearity in the measurement
equation is low. Increasing the degree of linearity produces closer RMSEs for the QKF, the
EKF2, and the UKF; the EKF1 shows a very unstable behaviour. In the next section, we

explore the characteristics of the different techniques in terms of parameter estimation.

2.5.3 Quasi maximum likelihood parameter estimation

To compare the filters with respect to parameter estimation, we simulate the same
benchmark model given in Equation (2.9). We estimate the vector of parameters § =
(A, B,C,D,®) (see the notations of Equations (2.1a - 2.1b)) for some specific values
of (®, 0, 03). To explore the finite sample properties of the different estimators, we set
T = 200 and simulate 1000 dynamics for a given set of (®, 6, 65). This provides us with
the empirical marginal distributions of the estimators. As usual in non-linear filter esti-
mation, the technique is only quasi maximum likelihood as the distribution of Y, given

Y,_; is approximated as a Gaussian.??

To avoid local maxima, a two-step estimation is performed. First, a stochastic maximiza-

tion algorithm is launched to select a potential zone for the global maximum. Second, a

23. It should be noted here that none of the filters produce exact first-two conditional moments of Y;
given Y;_;1. The asymptotic properties of the quasi maximum likelihood are therefore not relevant.
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simplex algorithm is used to refine the estimates in the selected zone.?* This procedure
makes the results reliable at the cost of extended computational burden. This particular
reason leads us to select three paradigmatic cases for the simulated processes. The first
considered case is fully quadratic with high persistence and low measurement error va-
riance (® = 0.9, 6; = 0.05, and 0 = 0). In the second case, we decrease the persistence of
the latent process and increase the size of measurement errors setting & = 0.6, 6; = 0.2,
and keeping 6, = 0. In the last case we introduce a linear component in the measurement
equation, with the parametrization : ® = 0.6, 6; = 0.2, and 0, = 0.25. More linear cases
(A2 > 0.25) were not considered as we emphasized in Section 2.5.2 that the four filters yield
closer results in those cases. For identification purpose, we also impose B > 0. Results in
terms of bias, standard errors, and RMSEs are presented in Table (2.5). Comparisons of

filters on average across panels are provided in Table 2.6.

24. The stochastic algorithm used is the articificial bee colony of Karaboga and Basturk [2007]. In order
to limit computational time, we consider 256 people in the population, and only 10 iterations. Then, the
best member of the population is selected as initial conditions for the Nelder-Mead algorithm.
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Chapter 2. Estimation and Filtering in Quadratic Factor Models

Result 4. The QKF quast mazimum likelthood estimates are either the less biased, either
possess the lowest RMSFEs for all parameters. In addition, on average across panels, the
QKF 1s the less biased filter and possesses lowest RMSEs. This superiority is robust to the
degree of persistence of the latent process, to the degree of linearity of the measurement

equation, and to the size of the measurement errors.

Over the three panels, the results of Tables 2.5 and 2.6 are in favour of our QKF maximum
likelihood estimates. We first concentrate on panel (a) results. For the five estimated pa-
rameters, the QKF shows smaller bias than the other filters : for ﬁ, E, and </13, the bias of
the QKF estimates corresponds to half the bias of the EKF 2 and the UKF. In addition, for
four out of the five parameters, the QKF estimates yield smaller RMSEs even though it
often entails higher standard deviation than its competitors (see Table 2.5, panel (a)). The
same general pattern can be observed for panel (b), where persistence degree is smaller.
Consistently with the intuition, the QKF always outperforms its competitors for estima-
ting parameters B and C. This shows a better capacity to discriminate the influence of
linear and quadratic terms in the observable. While panel (c¢) introduces some linearity
in the measurement equation (B # 0), the QKF still beats the other filters for four (resp.
three) out of five parameters in terms of bias (resp. RMSEs). In the end, looking at Table
2.6, we observe the superiority of the QKF across all cases : on 13 (resp. 11) out of 15
parameters, the QKF estimates possess the lowest bias (resp. RMSEs) compared to the

others.

Result 5. On average across cases,
— The QKF never yields the worst bias or RMSEs of all filters.
— The EKF 1 estimates possess the largest RMSEs and standard deviations.
— The UKF estimates possess the lowest standard deviations, but are the most biased.
— The EKF 2 is rarely the best in terms of both bias, standard deviations and RMSEs,

but is also rarely the worst.

We turn now to comparing the average results of the different filters. Table 2.6 presents
the number of times each filter is best and worst in terms of bias, standard deviations
and RMSEs. We have already emphasized that the QKF estimates surpass the others on
average in terms of bias and RMSEs. A striking feature presented in Table 2.6 is also
that QKF estimates are never the most biased, neither possess the biggest RMSEs (see
first column). Overall, these results underline a better bias/variance trade-off for the QKF

compared to the other filters.

The results of Tables 2.5 and 2.6 also confirm the concerns about the EKF 1 performance :

out of 15 estimates, 6 are the most biased, 10 possess the biggest standard deviations,
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TABLE 2.6 — Maximum likelihood performance over the three panels

QKF EKF 1 EKF 2 UKF

Number of times being less biased 13 2 0 0
Number of times being most biased 0 6 2 7
Number of times having smallest std. 2 4 0 9
Number of times having biggest std. 3 10 2 0
Number of times having smallest RMSEs 11 2 1 1
Number of times having biggest RMSEs 0 9 2 4

Notes : Cases are taken from Table 2.5 estimates. Total number of estimated parameters are 15. Note
that the sum of the second row however yields a result of 16 due to equality of the EKF 2 and the UKF
possessing the worst bias.

and 9 possess the highest RMSEs. This poor performance is particularly observable for
the estimation of C' in panel (b) and (c) of Table 2.5 : the standard deviations of the es-
timates are respectively 18 and 10, and their RMSEs are more than 10 times bigger than
those of the other filters. This can be explained by the fact that the curvature of the EKF
1 log-likelihood along the C-axis is very close to zero. Hence the estimate C can move
a lot along the line with very little change in the log-likelihood. This corroborates the
incapacity of the EKF 1 to deal with high non-linearities in the measurement equation,

as already noted in the filtering performance comparison (see previous section).

Interestingly, the UKF also shows some concerning features for parameter estimation. It
is the most biased for 8 parameters out of 15, which is the worst bias performance among
all filters. However, it is also the filter that produces on average the smallest standard
deviations for 9 parameters (see last column of Table 2.6). Looking at Table 2.5), we
observe that those cases where the standard deviation is low tend to correspond to cases
where the bias is highest. This bias/variance trade-off hands up being very poor regarding
the RMSEs : the UKF is the best only once, and four times the worst out of the 15 pa-
rameters. Consequently, we argue that the use of the UKF should be made with caution
in the linear-quadratic state-space model since it tends to result in parameter estimates

that are "tightly" distributed around biased values.
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Finally, the EKF 2 seems to yield better average results than both the EKF 1 (unsurpri-
singly) and the UKF : although it is never the less biased and possesses the lowest RMSE
for only one estimate, it is also rarely the most biased or rarely shows the biggest RMSE
(see Table 2.6). Still, those results are far less encouraging than those of the QKF and the

latter should be preferred in linear-quadratic state-space model estimations.

On the whole, for most estimates, the QKF is less biased and possesses the lowest RMSEs.
Despite a slightly poorer performance on the standard deviations, the QKF maximum
likelihood estimates show a better bias/variance trade-off than its competitors. Also, the
consideration of 3 different panels provide evidence that these results are neither altered
by the degree of curvature in the measurement equation, nor by the persistence of the
latent process or by the size of the measurement errors. These finite-sample estimation

properties emphasize the superiority of the QKF for practical applications.

2.6 Conclusion

In this paper, we develop the quadratic Kalman filter (QKF), a fast and efficient
technique for filtering and smoothing state-space models where the transition equations
are linear and the measurement equations are quadratic. Building the augmented vector
of factors stacking together the latent vector with its vectorized outerproduct, we provide
analytical formulae of its first-two conditional and unconditional moments. With this new
expression of the latent factors, we show that the state-space model can be expressed in
a fully linear form with non-Gaussian residuals. Using this new formulation of the linear-
quadratic state-space model, we adapt the linear Kalman filter to obtain the Quadratic
Kalman Filter and Smoother algorithms (resp. QKF and QKS). Since no simulation is
required in the computations, both QKF and QKS algorithms are computationally fast and
stable. We compare performance of the QKF against the extended and unscented versions
of the Kalman filter in terms of filtering and parameter estimation. Our results suggest
that for both filtering and quasi maximum likelihood estimation, the QKF outperforms
its competitors. For filtering, the higher the curvature of the measurement equation, the
more effective the QKF compared to the other filters. For parameter estimation, the QKF

shows either smaller bias or smaller RMSEs than its competitors.
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Appendices to Chapter 2

2.A Useful algebra

We detail hereby some properties of both the Kronecker product and the Vec(e)
operator. Their proofs are available in Magnus and Neudecker [1988]. These properties

will be used extensively in the proofs presented in Appendices 2.B, 2.C and 2.D.

Proposition 2.A.1. Let my; and my be two size-n vectors, M; and My be two square
matrices of size n. Let also P, Q, R, and S be four matrices with respective size (p X q),
(gx7), (rxs), and (s x t). We have:

() Veclmmb) = msm.
(i1)  Vece(My ® Ma) = (I, ® Ay, ® I,) [Vee(M1) ® Vec(Msz)] Ay, given in Lemma 2.B.1.
in particular:  Vec(My; @ my) = Vec(My) @ my,
and Vec(My @m}) = (I, ® Ay) [Vee(My) ® my]
(it1i)  Vec(PQR) = (R' @ P)Vec(Q)
() Ve PQ) = (I, @ P)Vee(Q) = (' @ I,)Vee(P)
(v)  (PQ)®(RS) = (P®R)(Q®YS).

2.B Properties of the commutation matrix

Lemma 2.B.1. Let A, be the (n? x n?) commutation matriz partitioned in (n x n) blocks,
whose (i,7) block is eje,. Let My and My be two square matrices of size n, and m be a

vector of size (n x 1). We have:

n

(@) A=) (eeh) © (ee))

ij=1
) Ay s ojrthogonal and symmetric: A,V = A, = A,
) AVec(My) = Vec(M)

() A (M; ® My)A,, = My @ M,y
) A(My@m)=m® M.

Proof. (7) Straightforward by definition.

(7i) A, is symmetric:
n

K, = 37 (06 ® (ere)) = A,

ij=1
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A,, is orthogonal:

Ammf-jiuaéwgwﬁngqwgwwwk—jiww9®<%%>—Lﬁ
(434
A Vec(My) = zn:l [(e:€)) @ (ej€})] Vee(My)
- E;V%quwﬁ@%ﬂ

= Z Vec [ele("’j)e;} = Vec(M).
ij=1

(1v) By definition,

M@ M, =Y (M o My”)(e; ® ),

ij=1

where M and M7 are respectively the it" and j* columns of matrices M; and

M,. Therefore we have:

An(My @ Mo)Ay = 3 Au(ME) @ MSD)(e; ® ) Ay

ij=1

= 3 [A @ M) [Aner @ ey
i,7=1

= Z [AnVec(MQ(’j)Ml(’i)/)} [AnVec(e;e;)]
i,j=1

= Y (M @ M) (e; @ e)
ij=1

= My ® M.
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(v) With the same notations,
A(My@m) = A (M€ @m
i=1

= A (MY @m)e

=1

= A, Z Vec(li(’i),)eg

i=1

= Z VecMSm!e!
i=1

= Y (me M)
=1

= m®M1

2.C Z; conditional moments calculation

Lemma 2.C.1. If ¢ ~ N(0,1,,), we have
V[Vec(ee")] = T2 + Ay,

where A, is given in Lemma 2.B.1.

Proof.

Vec(ee') = |(eey), (ega)’, ..., (eg,) /

V [Vec(ee')] is a (n? x n*) matrix, partitioned in (n x n) blocks, whose (4, j) block is V; ; =
cov(eg;, g;6). The (k,£) entry of V ; is cov(ege;, j6¢). Two cases can be distinguished:

— Case 1: if i # j, then the only non-zero terms among the cov(exe;, €¢¢) are obtained
for k = 7 and ¢« = (. By the properties of standardized Gaussian distribution, we
have cov(e;e;,e:6;5) = V(gie;) = 1. Finally, V; ; = ejel.

— Case 2: if i = j, then the non-zero terms among the cov(eye;, £;¢¢) are obtained
for k = ¢ = i and its value is 2, or for k = ¢ # ¢, and its value is 1. Finally,
Vii=In + ei€;.

Putting case 1 and 2 together, we get V [Vec(ee')] = T2 + A,,. [
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Proposition 2.3.1 E, {(Z;) =+ ZIVDZt_l and V, ((Z,) = it_l, where:

I ~ P 0

Vec(up' + %) pURP+PRu | PR P

) : S
Y1 = E<Zt—1):

LS [T 2T + [T + A (B0 %)

Iy = L, (p+9Xq)+ (p+2X,1) ® 1,

A,, being the n? x n? matrix, defined in Lemma 2.B.1.

Proof.

Ei1(Xy) = p+0X
Etfl[XtXt/] = Et,1 (/UL + (I)Xt,1 + QEt) (,u + (I)Xt,1 + Qgt)/
= pp' +pX P+ X, gy 4+ X, 1 X, P+ X

Using the Vec(e) operator properties of Proposition 2.A.1, (7it), we obtain:
Ei1 [Vee(X: X)) = Vee(up' + ) + (1 ® @) Xem1 + (P @ 1) Xeo1 + (P @ P)Vec( X1 X7_y)

Finally,

1 P 0
Ei1(Zy) = +

Zi
Vec(up + X) URP+ PR u | PR D

For the conditional variance-covariance matrix, we have V,_;(X;) = 3 and

deterministic given Z;

Vi [Vee X, X)) = Vi [Veelu + pX[_ @ + X, 1 + 0X, 1 X|_, &
(4 PX1)el Y + Qe (1 + X, @) + QeyelY)]
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Using properties Proposition 2.A.1, (i1 — iv),

Vi [Vee(Xi X)) = Vi, [(In QU pIl,+1, 00X, 1+ PX, 1 ®1,)Q + Vec(QetggQ)}
= Vi1 Ti1Qe + Vee(Qeei )]
= [y 2T+ Vi [(Q0 Q) Vec(ee;)] as  Covyiler, Vec(ee))] =0
= T X0, + Q)L + A)(Q ® Q) (using Lemma 2.C.1.)

Proposition 2.A.1, (v) implies that (2 ® Q)(Q ® Q) = ¥ ® X. Therefore, we have:

QM2 Q2) =Qe YA (Q® Q) A, (using Lemma 2.B.1, (iv))
— QVNOQ292) =A%) since A, =A"
— QVNL:+M)QRQ) =2+ A)(Z@X).

Hence:
Vt—l [VQC(Xth)] == Ft_12F;,1 + (]nZ + An)<2 X E)

Using again the fact that g; and Vec(Qee}2) are non-correlated, we have:

COV¢_1 [V@C(Xth), Xt] = COVy_1 [Ft_198t7 szt]
= IiaX

Finally, the conditional variance-covariance matrix of Z; given X; 1 is

- ) Sr_
Y=

(2.10)
Ty | Tya ST+ (I + A)(S® X))

2.D Proof of Proposition 2.3.2

We want to explicitly disclose the affine form of f](Zt,l). In order to achieve this, we
consider the four blocks of the matrix in Equation (2.10) and express the vectorized form
of each block. First, let us show that Vec(I';,_1X) is affine in Z; ;. We have:

thl = [n & (,U + (I)thl) + (,LL + (I)Xt,1> X In
= I, (u+PX; 1)+ A, [[, @ (n+PX; 1)] (using Lemma 2.B.1, (v))
= (L +A)[L®(p+ PX1)].

Guillaume ROUSSELLET 93



Chapter 2. Estimation and Filtering in Quadratic Factor Models

Therefore we have:

Vec(l'y_1%)

Vec(Xl_,)

Vec{(In2+ Ap) [, @ (u+ X, 1) X}

X ® (I +A)]Vee{l, @ (u+PX; 1)} (Prop.
S ® (L2 + Aw)] [VeeI) ® (i + ®X,_1)] (Prop.
2 ® (T2 + An)] Vee (1 + ®X,_1)Vee(I,)] (Prop.
2 ® (L2 + An)] [Vee(l,) ® L] (1 + ®X,_y) (Prop.

Vec{S[(L2 + An) (I, @ (n+ ©X,1))]'}

Vec{X [, @ (u+ ®X; )] (In2 + Ay)}

(T2 + Ay) @ X Vee I, @ (u+ PX;—1)] (Prop.
(L2 + Ap) @ E] (I, @ Ay) [Vee(l,) @ (n+ PX;q)] (Prop.

(L2 +Ap) @E] (1, @ Ay) [Vee(l,) @ L] (u+ ©X;—1) (Prop.

2.A.1, (idi))
2.A.1, (id))
2.A.1, (i)

2.A.1, (iv))

2.A.1, (iii))
2.A.1, (i)

2.A.1, (i — ).

We turn now to the lower-right block of the conditional variance-covariance matrix of Z;.

94
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We have:

Vee(T,_1 3T )

= Vee{(Ip + M) [ @ (4 DX, 1) S L © (1 + DX1)] (L2 + An)}
= [(n2 + An) ® (L2 + An)] %

Vec{ll, ® (n+®X,_ )] X[, ® (u+ PX;_1)]} (Prop. 2.A.1, (4i1))
= (2 + An) ® (L2 + An)] %

Vee{[S® (1 + DXi1)] [In ® (u+ DX;_1)]} (Prop. 2.A.1, (v))
= [(In2 + Ap) ® (T2 + A)] X

Vec{S @ [(n+ ®X,_1)(n + DX, 1))} (Prop. 2.A.1, (v))
= [(Ln2+A) ® (L2 + Ay)] ¥

[, ® Ay @ 1] [Vee(X) @ Vee {(p+ DXi—1) (1 + ©Xi-1)'}] (Prop. 2.A.1, (ii))
= (2 + An) ® (L2 + An)] %

[, ® Ay @ L) Vee[Vee{(n+ X, 1) (u+ X, 1)} x Vee(S)]  (Prop. 2.A.1, (i))
= [Tz + Ap) ® (Inz + A)] X

[, @A, @ L) [Vec(X) @ L] Vee{(n+ X, 1) (n+®X; 1)} (Prop. 2.A.1, (iv))

Finally we obtain the affine formulae for the four blocks of the conditional variance-

covariance matrix i?_ﬁ) fori,j ={1,2}:

Vec (iﬁl_})) = Vec(Y)

Vec (2§ 3) = (2@ (Le+ A [Vee(l,) ® L] {u + Zﬁth_l}
Vee (ig%})) = (Lo + Ay) @ 2] (I, ® Ay) [Vee(I,) @ I, { [+ &MH}
Vec (iﬁ%?) = (Lo + M) ® (Inz + M) [T ® An ® L)) [Vee(E) @ 1] { 1+ &>QZH}

+ 12 @ (L2 + Ay)] Vee(X @ %),

where &)1 and <T>2 are respectively the upper and lower blocks of 5, thus &)1 = (<I> 0) and
Oy=(uRe+0ou PR D).
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It should be noted that the computation of Vec [i(Zt,l)] — i.e. the analytical expres-
sions of v and ¥ — involves, in theory, a permutation of the previous vectorized-blocks

formulae ; however, we describe hereafter a simple and pragmatic method to reconstruct
Vec [i(Zt_l)] in the QKF algorithm:

1. Use the formulae of Proposition 2.3.2 to construct the four vectorized blocks of
i(Zt_l) as explicit affine functions of Z;, ; (or i](Zt,”t,l) as affine functions of

Zy_1jt—1 in the QKF algorithm).
2. Reconstruct the square matrix $(Z,_;) from the previous vectorized blocks.
3. Vectorize the reconstructed matrix.

Using the aforementioned method does not require an analytical expression of v and ¥
and is a fast technique to calculate both the conditional and unconditional variances in

the algorithm.

2.E Unconditional moments of 7,

Proposition 2.3.3 We have:

= -

E(Z,) i & 0 E(Z-1)
Vec[V(Zy)] v v

O D VecV(Z; 1))

Proof. The first set of equation is immediately obtained from the state-space representa-

tion. For the second set, the variance decomposition writes:

V(Z) = E|V(Z|Zy)| +V [E(Z1Z)]
Zy\ Zy_1) —I—V(ﬁ%—&)Zt_l)

Zi| Zo1)| + BV (Z_y) D'

E
E

- E|v
E

Z1)] V()

—  Vee[V(Z) =E {Vec [i(zt_l)} } (B0 d)WVec[V(Ziy)]
Denoting Vec[S(Z,_1)] by v+ UZ,_, we get:
E {Vec [i(zt_l)} } — v+ WE(Z,)

and the result follows.
[ |
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2.F Selection and duplication matrices

Definition 2.F.1. Let P be a (n X n) symmetric matriz. Let us define a partition of
I, = [un, U,] where u, is the first column of I,, and U, is the (n x (n — 1)) other sub-
matriz. Let Q, be a (n* x n?) matriz defined as Q, = (Q1.n, Qa.n) such that:

Ql,n = [n X Uy, and QQ,n = In ® Un

A duplication matriz G, and a selection matrixz H,, are such that:

Vec(P) = G,Vech(P)
Vech(P) = H,Vec(P)

and can be expressed recursively by:

1 0 0 - -
100 0
01, 0
Gni1 = Qni1 and  Hyp=|0 1, 0 0 |Q@n
01, 0
00 0 H,
00 G, - -

with G; = Hy = Q1 = 1. These definitions can be found in Magnus and Neudecker [1980]
or Harville [1997].

2.G EKF and UKF general algorithms

Let us consider a state-space model with non-linear transition and measurement equa-

tions.

Xy = filXeo1) +9(Xio1)e (2.11)
i = h(Xy) + d(Xo)m, (2.12)
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where f;, g;, hy, d; are functions of Y;_; and possibly a vector of exogenous variables.
Also, (¢},m,) ~ZZN(0,I). We use the following notations:

0 ~ Oh, ~
F = %(XHH), Ht:a—xz<xt|t_1)
02 f, N Ph;  ~
e - e (o ), HY = L (X
it axt—lax;_l( t—1Jt 1)7 it axtaxg( tlt 1)

Gy = gt<5€t71\t71)7 and Dt:dt<5€t\t71)

") the vector of size k whose components are equal to 0 except

Let us also denote by ez(»
the i'" one which is equal to 1. The EKF1 and EKF2 algorithms are respectively given in
Tables 2.7 and 2.8. Keeping the same notations, Table 2.9 presents the recursions of the

UKF.

Table 2.7: EXF1 algorithm in the general non-linear case

Initialize: Xojo = E(Xp) and Po)|(0 = V(Xp).
X1 | fe(Xe—1e-1)

PX

tlt—1

State prediction.:
FtPt)EHt—lFt/ + GG}

Yie1 |he( Xy
Measurement prediction: e | P (Xpjen)

Mt|t—1 HtP)‘i_l,H; + Dt.D;/

t

Gain: K, |PX

tlt—1

Ht’Mﬂ—t{1

X | Xypor + K (Y — Yy

State updating: bt |1 t(Ye = Vi)
PX |PX

t)t tlt—1

— Ky My K

Note: See Jazwinski [1970], Anderson and Moore [1979], or Gelb [1974] for a proof of the recursions.
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Table 2.8: EKF2 algorithm in the general non-linear case

Initialize: Xoj0 = E(Xo) and Pyl = V(Xo).

\
1N (n

Xije—r | fe(Xe—1je—1) + 52 ") Ty <Fz(t)Pt)£1|t—1)

= 1

t|t—1 Ftpt 1[t— 1Ft+ Ze(n Tr <Fz(t)PtX1\t 1F( )P t—1|t— 1) §")
,j=1

State prediction:

’

+ GG

15~ (m) )
Vit |he(Xolt — 1) + =3 el™ Ty (H P )
Measurement prediction: =t (X ) Z K -1

k=1
I o ) (2) (n)
2 !
Mt|t—1 H,P, t|t 1Ht izekn (H P|t 1H Pt|t 1> ln
k=1
. . X p—
Gain: K; Pt|t 1HtMt|t 1

Xy [ Xyt + Ke(Ye — Yy
State updating: e tlt=1 +(Ye Hi-1)

tlt t|t p — KMy, 1K

Note: See Athans, Wishner, and Bertolini [1968] or Maybeck [1982] for a proof of the recursions.
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Table 2.9: UKF algorithm in the general non-linear case

Initialize: Xojo = E(Xp) and POX‘0 = V(Xp) and choose (a, k, 3).
Sigma points: {Xi t—1p—1(Xe—1je—1, PtX1 )} according
’ A1 f 1 2n)

to Definition 2.4.1.

2n
Xyi— Wi fe( X 41—
State prediction: -1 ZZ; i J(Xptje-1)

2n
P IS W [l Xiemaje-1) — Xgear] [fi(Xiemtje1) = Xejeea]'
=0
+ GG
Sigma points: {Xi,t\t—l(Xt\t—l’Pt)ﬁfl)}i:{l - according

to Definition 2.4.1.

2n
Vijeot | Y Wi (X g-1)
i=0

Measurement prediction.:

2n
My ZWZ-(C) [he(Xip—1) = Vi) [Pe(Xigg—1) — Yapoa]”
=0

+ DD

2n
Gain: Ky ZWZ'(C) [Xi,ﬂt—l - Xt\t—l] [ht(Xz‘,t\t—l) - Yt\t—l]/Mtﬁl_l
i=0

Xy | Xppo1 + Ko (Ye — Yy
State updating: e et t(Ye = Yyje—1)

Py, | Py — KMy, 1 K]

Note: See Julier, Uhlmann, and Durrant-Whyte [2000], Julier [2002], Julier [2003], or Julier and Uhlmann
[2004] for proofs of the recursions.
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2.H The UKF in a linear state-space model

Let us consider a linear state-space model which is given by Equations (2.1a) and (2.1b)
putting all the C®)s to 0. Taking the notations of Table 2.9, we have f;(X) = pu+ ®X
and hy(X) = A+ BX. As for i = {1,...,2n}, all the weights are equal, the sigma points

: 2
are symmetrical and ) ;" W, = 1, we have:

2n

Xijp—1 = ZWz (1 + P 1 1je-1)

=0

_ anwz.@q) (Vo VRS (it A)Pg”_l); @

+ 2Zn WO <\/(n + A)ngl't_l)m (\/(n + A)nglt_l);n o + GG,

i=n+
- oy e (), () v o

= (I)Pt_”t_lcbl + GtG;

which proves the exact matching of the UKF and the Kalman filter for the state prediction
phase. The same argument holds by linearity for the measurement prediction phase. In
the linear case, the UKF shows exactly the same recursions that the linear Kalman filter,

whatever the values of (a, &, 3).

2.1 The UKF in a quadratic state-space model: scalar

case

Let us consider the quadratic state-space model given by Equations (2.1a) and (2.1b).
Let us set the vector of tuning parameters («, k, ) = (1,0,2) and n = m = 1. From
Appendix 2.H, we know that the state prediction phase is exactly the same as in the
linear Kalman filter, and is a fortiori the same as in the EKF2. Let us prove that the

measurement prediction phase is the same for both filters for those values of («, k, ).

First, those tuning parameters imply A = 0, thus:
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0 for i=0
Xijt—1 for i=0 Wi =
1/2 for i#0
Xigjt—1 = X1+ Pt)|§—1 for i=1
< . © 2 for i=0
tht—l — Pt|t—1 fOI' 1 = 27 )/Vz =
1/2 for ©#0

Then, using the recursion of the UKF algorithm, we obtain:

Yije—1

My

1

9 [h(tht—l + Pt\t 1) A (X1 — \/ Pt)|§—1)i|

1 2 2

5 {QA + B (2Xy) +C {(Xtt L+ 4/ PE 1) + (Xt\t_l - \/Pfﬁ_l) } }

A‘i‘BXﬂt 1+CXt\t 1+C |t 1
h(XtIt—l) + CPt|t—l
2 [h(Xp—1) — Y;‘,|t71]2

g { [+ R Yan] o [ = B Y] 4
202(PX_,)? %{ [B/PE_ +C (P +2Xy /P, - P 1)]2
+[-myB + 0 (P - X B - R
2C%(Py 1) +V + %{
B*P}_, +C” (2Xt‘t_1\/ﬁ) +20B\/P_, (2Xu1y/ P )
+B’PY_, +C? (—2Xt|t_1\/ﬁ) +20B, /P, (2Xy 1@)}

202<P|t 1) +V+B2P‘t 1+402 |t 1P|t 1+2B0Xt‘t—1pt)|§_1
gt|t 1 |t 207 (P tli— P+ V

Both Y, and My,_, yield the same result as in the EKF2 recursions. Let us now turn

to the Kalman gain computation.

Kt -

1 _
9 { [\/ ]Dt)ﬁfl Pt)\ifl B + ZCthtfl) Y, Pt)\ifl\/ pt)|§71 (_B - QCthtfl)} } Mt|t 1

Py (B +20Xy,-1) M;}!
t\t—lgtlt 1Mtﬁ 1

tlt—1

which is also the same gain as in the EKF2. Therefore, for (a, , ) = (1,0, 2) and scalar

transition and measurement equations, The UKF and the EKF2 possess exactly the same
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recursions.
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Chapter 3

A QTSM for Disentangling Credit and
Liquidity Risks in Interbank Spreads

This chapter is based on the article “Credit and Liquidity in Interbank Rates: A Quadratic
Approach” of Dubecq, Monfort, Renne, and Roussellet [2014].

Abstract

A bank that lends on the unsecured market requires compensations for facing
(a) the risk of default of the borrowing bank (credit risk) and (b) the risk of its
own possible future funding needs (liquidity risk). In this paper, we propose a
quadratic term-structure model of spreads between unsecured interbank rates
and risk-free ones. Our approach allows us to decompose the whole term
structure of spreads into credit and liquidity components. Our no-arbitrage
econometric framework makes it possible to identify risk premia associated
with each of these two risks. Our results shed a new light on the effects of
unconventional monetary policy carried out in the Eurosystem. In particular,
our findings suggest that most of the recent easing in the euro interbank market

comes from a decrease in liquidity-related risk premia.
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Résumé

Entre 2007 et 2008, la perception du risque interbancaire, mesurée par 1’écart entre les
taux des emprunts interbancaires non sécurisés et sécurisés, est passée de proche de zéro
& un niveau trés élevé. Ce saut a été particulierement marqué au moment de la faillite
de la banque Lehman Brothers, en septembre 2008. Dans ce contexte, les banques cen-
trales ont eu recours a des mesures dites non conventionnelles (MNC) afin de restaurer les
mécanismes de transmission de la politique monétaire. Pré-2014, trois différentes phases
de mesures non conventionnelles ont été mises en ceuvre : le Securities Market Program
(SMP) en mai 2010 et aott 2011 consistant en 'achat stérilisé d’obligations d’état, les Very
Long Term Refinancing Operations (VLTRO) en décembre 2011 et février 2012 visant a
fournir des liquidités aux banques a taux réduit, et les Qutright Monetary Transactions
(OMT) en juillet 2012, assurant I'intervention illimitée de la BCE sur le marché secondaire

des obligations d’Etat si besoin est et conditionnellement & des contraintes budgétaires.

Deux types de risque sont visés par ces mesures : le risque de crédit et le risque de liquidité.
Du point de vue du préteur, la banque débitrice peut faire défaut et ne pas rembourser
son emprunt. Par ailleurs, lorsqu’elle préte sur le marché interbancaire, une banque se
prive de liquidités dont elle pourrait avoir besoin pendant la durée du prét pour faire face
a de possibles besoins de financement. Les risques de crédit et de liquidité sont tous les
deux pris en compte par I'entité préteuse lors de la négociation des conditions de prét :
plus les risques sont forts, et plus le taux demandé & 'emprunteur est élevé. Ces deux
risques se traduisent par des compensations spécifiques présentes dans les taux auxquels
les banques se prétent de facon non sécurisée (sans collatéral). Ces derniers taux sont
supposés proches des taux Euribor (Furo Interbank Offered Rate), qui sont calculés pour

différentes maturités (de quelques jours a quelques semaines).

Il existe des taux Euribor pour chaque maturité allant de une semaine a douze mois, qui
sont influencés par ces risques de crédit et de liquidité. Ces deux sources de risque ne sont
toutefois pas les seules a déterminer le niveau de ces taux. En effet, ce niveau dépend éga-
lement des anticipations de taux d’intérét a court terme : en ’absence de risques de crédit
et de liquidité, le taux de I'Euribor serait égal au taux sans risque, ce dernier pouvant
étre vu comme la moyenne des taux courts qui courront d’ici la maturité considérée. Dans
le cadre de notre analyse, le taux sans risque est donné par le taux des OIS (OQuvernight
Indexed Swap).

Ce chapitre propose un modéle quadratique de structure par terme pour rendre compte de

I’évolution des écarts entre les taux Euribor et OIS, les décomposer en risque de crédit et
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liquidité et analyser les effets des MNC menées par la BCE sur chacune des composantes
de risque. Notre modélisation prend en compte deux facteurs de risque inobservables pour
I’économétre : I'un est relatif au risque de défaut, 'autre au risque de liquidité. Seuls ces
facteurs sont endogénes et causent les fluctuations des écarts de taux Euribor-OIS pour
chaque maturité. Ils sont construits a partir de variables que nous savons liées aux risques
de défaut et de liquidité. Le facteur de crédit est fondé sur les CDS (Credit Default Swaps)
de banques de la zone euro. Le facteur de liquidité est une combinaison de variables cen-
sées capturer différents aspects du risque de liquidité : la liquidité de marché d’une part
(KfW-Bund spread) et la difficulté a se financer d’autre part (Bank Lending Survey data).
Les écarts de taux sont modélisés comme des combinaisons quadratiques des facteurs de

crédit et liquidité, que nous imposons positives en cohérence avec l'intuition économique.

Exprimé sous la forme espace-état linéaire-quadratique, le modéle peut étre estimé a ’aide
du Filtre de Kalman Quadratique (voir Chapitre 2). Ce modéle nous permet de décom-
poser les effets de chacun des facteurs de risque sur les écarts de taux Euribor-OIS pour
chaque maturité. Deux types de décompositions sont réalisées : les écarts de taux Euribor-
OIS observés sont divisés (1) en composante de crédit et liquidité, et (2) en composante
anticipée et prime de risque. Les primes de risque sont des composantes qui seraient ab-
sentes de I'écart de taux si (a) les investisseurs étaient neutres aux risques ou si (b) la
totalité des risques présents dans I’économie était diversifiable. Nos estimations montrent
que la majorité des variations de I'écart de taux est attribuable a des variations du risque
de liquidité, notamment au moment de la faillite de Lehman Brothers, fin 2008, et lors de
la crise de la dette européenne, fin 2011. La composante de risque de crédit, quant a elle,
croit de fagon quasi monotone pendant la période. Les primes de risque correspondent
a une part substantielle de I'écart de taux, ce qui suggére que les préts interbancaires

contiennent beaucoup de risque non diversifiable.

Si le SMP ne provoque quasiment aucun effet sur les écarts de taux, ni sur leur compo-
sition, I’annonce et la mise en place des VLTRO provoque une décroissance substantielle
des écarts de taux. Cette baisse s’explique essentiellement par une quasi-disparition du
risque de liquidité dans les taux interbancaires aprés ’annonce des VLTRO puis celle
des OMT par Mario Draghi. De plus, les primes de risque ont pratiquement disparu des
taux interbancaires a la suite de ces deux événements, soulignant 'importance des actions
non conventionnelles de politique monétaire comme outil de couverture face a la nature

systématique des risques interbancaires.
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3.1 Introduction

Since the beginning of the financial crisis, the interbank market has been carefully
scrutinized by commentators and policy-makers, both in Europe and in the US. This
paper focuses on the spreads between the Furo Interbank Offered Rates (EURIBORs)
and their risk-free counterparts, proxied by the Overnight Indexed Swap rates (OIS). This
spread is considered as a crucial indicator at the very core of the financial crisis: it reveals
not only banks’ concerns regarding the credit risk of their counterparts, but also their

own liquidity needs.

Disentangling those credit and liquidity effects has essential policy implications. If a
rise in spreads reflects poor liquidity, policy measures should aim at improving funding
facilities. On the other hand credit concerns should be treated by enhancing debtors’
solvency (see Codogno, Favero, and Missale [2003]). This question is very important in
the euro area, where most of the unconventional monetary operations conducted by the
European Central Bank focused on the curbing of interbank risk (see Gonzales-Paramo
[2011]). Many attempts have been made to provide a credit/liquidity decomposition of
the interbank risk (see next Section), but whereas most studies reckon that liquidity risk
has been an important driver of interbank yields during the last 5 years, there is no con-
sensus on the precise size of these effects: Schwarz [2009] estimates that one third of the
EURIBOR-OIS 1-month spread is linked to liquidity in January 2008, whereas Filipovic
and Trolle [2013] find that nearly all the spread is liquidity-related at that date.

In this paper, we present a new technique to investigate credit and liquidity risks in in-
terbank markets. Our method is based on a reduced-form no-arbitrage term-structure
model of the EURIBOR-OIS spreads. Considering the whole term structure of spreads
to perform such an exercise is important for at least two reasons. By including several
maturities in our sample, we first improve the quality and precision of our model estima-
tion. Second, the term structure dimension of our analysis can be exploited to identify
the part of the spreads that corresponds to risk premia, thereby extending the existing
literature on interbank risks. Risk premia are the components of yields or spreads that
would not exist if (a) economic agents or investors — in our case, banks — were risk-neutral
or (b) the risks involved in the considered asset were not systematic, i.e. if they could be
diversified away (see e.g. Longstaff, Pan, Pedersen, and Singleton [2011]). Since (a) and
(b) are not likely to hold in the case of euro-area interbank risks, risk premia are expected
to be present in the EURIBOR-OIS spreads. At the same time, these risk premia cannot
account for the whole spreads. Indeed, even if agents were risk-neutral, the EURIBOR-

OIS spread would not be zero. In that case, the spreads would just equal expected losses
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stemming from the total amount of risk — credit- and liquidity-related — that a bank faces

when lending to another bank.

Our methodology aims at decomposing the spreads along two dimensions: credit vs. lig-
uidity and expected vs. risk-premia parts. This is achieved with the use of a no-arbitrage
framework involving credit and liquidity intensities. In order to clarify the interpretation
of the latter, we propose a stylized interbank-market model where these intensities appear
naturally. In this model, when a bank lends to another bank, it is exposed to two kinds of
risks: the first corresponds to the default of the borrowing bank and the second pertains
to the difficulty to meet potential liquidity needs the lending bank may face over the loan
period. In order to respect the non-negativity of the intensities, we take them equal to
non-negative quadratic functions of two Gaussian latent factors. Hence, our model be-
longs to the class of quadratic term-structure models (QTSM). Our identification scheme
and the interpretation of the factors rely on credit and liquidity proxies. The estimation
is performed using a recently-introduced quadratic Kalman filter (see Monfort, Renne,
and Roussellet).

The model is estimated over a 6-year period, between August 2007 and September 2013.
Both credit and liquidity components account for the fluctuations of the spreads over that
period, with a higher average contribution of liquidity risks. Our results suggest further
that both kinds of risk command substantial risk premia, pointing towards the system-
atic nature of credit and liquidity interbank risks. We illustrate how the existence of
credit-risk premia translates into substantial differences between model-implied physical

and risk-neutral probabilities of default.

The spreads’ decomposition allows us to explore the consequences of unconventional mon-
etary policies conducted by the ECB during this period. Our findings support the claim
that the recent 3-year ECB loans to euro commercial banks (i.e. the Very Long-Term
Refinancing Operations, or VLTROs) and the announcement of the still-unused ECB
sovereign-bond purchase program (i.e. the Outright Monetary Transactions, or OMTs)
have helped to reduce the perception of liquidity risk and its related risk premium. How-
ever, we find little evidence that the ECB large-scale asset-purchase programs of 2010
and 2011 (i.e. the Securities Market Programs, or SMP 1 & 2 ) have had any significant
impact on the interbank risk. Eventually, we find that unconventional monetary policies

have had very modest, if any, effects on the credit part of the spreads.

The remainder of the paper is organized as follows. Section 2 discusses the related liter-

ature. Section 3 presents the interest rate data and the proxies. Section 4 develops the
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quadratic term-structure model. Section 5 describes the identification strategy and shows
the estimation results. Section 6 performs the decomposition of EURIBOR-OIS spreads
and discusses the impact of the ECB unconventional monetary policies; it also derives
risk-premia-corrected default probabilities of banks. The last section concludes. Proofs

are gathered in the Appendices.

3.2 Literature Review

In most term structure models, the authors assume that the default intensity and/or
the short-term rate are affine functions of the underlying factors. A quadratic specifica-
tion however possesses several advantages over the standard affine case. Constantinides
[1992]| shows that a standard QTSM with a specific quadratic short-term interest rate
can generate positive yields for all maturities and more flexibility in the term structure
to fit bond data. Leippold and Wu [2002| generalize the quadratic term structure models
showing that this specification provides closed-form or semi closed-form formulas for bond
pricing of most fixed-income derivatives. Ahn, Dittmar, and Gallant [2002] provide fur-
ther empirical evidence that QTSM often outperforms the standard affine term structure
specification (ATSM). Leippold and Wu [2007] study the joint behavior of exchanges rates
and bond yields using QTSM models for Japan and the US. More recently, Andreasen
and Meldrum [2011] and Kim and Singleton [2012] exploit the QTSM framework to model
the term structure of interest rates in a context of extremely low monetary-policy rates.
Turning to the credit literature, Hordahl and Tristani [2012| use a quadratic specifica-
tion to model euro-area sovereign spreads, and Doshi, Ericsson, Jacobs, and Turnbull
[2013] consider a quadratic intensity to price corporate credit default swaps. Our paper
also adopts a quadratic approach in order to impose positivity of the risk intensities and
spreads, and it takes advantage of a new well-suited technique to estimate the model,

namely the quadratic Kalman filter (see Monfort, Renne, and Roussellet).

Our identification scheme follows several studies that rely on reduced-form no-arbitrage
models to identify credit and liquidity components in the term structures of yields or
spreads (e.g. Liu, Longstaff, and Mandell [2006], Feldhutter and Lando [2008|, Longstaff,
Mithal, and Neis [2005]). At the heart of these studies are credit/liquidity intensities
whose fluctuations affect the whole term structure of spreads. As in Monfort and Renne
[2014], the present paper allows for some dynamic interactions between credit and lig-
uidity risks, consistently with the theoretical predictions of, among others, Goldstein and
Pauzner [2005] or He and Xiong [2012].

Our paper also relates to the interbank spreads literature. A wide range of studies deals
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with the determinants of interbank spreads: Taylor and Williams [2009] claim that coun-
terparty risk was the main driver of the LIBOR-OIS spread, Michaud and Upper [2008|
and Gyntelberg and Wooldridge [2008] find that credit and liquidity factors both played
a role, while the results by Schwarz [2009] and Filipovic and Trolle [2013] suggest that
liquidity risk has accounted for most of the LIBOR-OIS and EURIBOR-OIS spread vari-
ations over the period 2007-2009. In comparison, Smith [2010] emphasizes that most of
the variation in the risk premia of interbank spreads is explained by credit risk. Finally,
Angelini, Nobili, and Picillo [2011] highlight the main role of macro-factors to account
for the dynamics of unsecured/secured money-market spreads. The measured impact of
unconventional monetary policies is ambiguous: Taylor and Williams |2009] find no ef-
fects of the Fed’s intervention in 2008, contrary to Christensen, Lopez, and Rudebusch
[2014]. According to the latter, Fed’s liquidity injections (TAF, for Term Auction Fa-
cility) reduced significantly the 3-month maturity interbank spread by about 70 basis
points. Carpenter, Demiralp, and Eisenschmidt [2014] find that non-standard monetary-
policy measures contributed to sustained lending activity by lowering funding volatility.
Angelini, Nobili, and Picillo [2011] measure a modest impact of ECB exceptional 3-month
refinancing operations, in contradiction with Abbassi and Linzert [2012]. Cecioni, Ferrero,
and Secchi [2011] provide a comprehensive review of the quantitative assessment regard-
ing the relative importance of the interbank spreads’ drivers, as well as of the effects of

unconventional monetary policies in the U.S. and euro-area interbank markets.

3.3 Interbank market rates and risks

3.3.1 The unsecured interbank rates

The interbank money market is at the heart of bank funding issues. It is an over-
the-counter market (OTC) where interbank loans are negotiated with maturities ranging
from one day to to twelve months. As banks do not possess the same characteristics and
underlying risks, there is no uniqueness of interbank rates. Only the disaggregated rates
are really representative of the funding issues of each institution. However, such data
are not publicly available and in order to conduct an analysis on interbank risks, a more

aggregated measure must be considered.

The Euro Interbank Offered Rate (EURIBOR) provides a daily measure of the interest
rates at which banks can raise unsecured funds from other financial institutions in the
euro wholesale money market, for maturities ranging from one week to twelve months.
A daily survey is sent to a panel of 30 to 50 creditworthy banks in the Euro area; the

question of the survey is: what are the rates at which euro interbank term deposits are
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being offered within the Eurozone by one prime bank to another? The EURIBORSs are

then trimmed means of the contributed rates, the 15% of each tail being erased.

While there are no reliable data on volumes in term money markets, anecdotal evidence
suggests that the financial crisis has resulted in a sharp decline in unsecured term money
market volumes (see Eisenschmidt and Tapking [2009]). In spite of this, there is evi-
dence that EURIBOR rates remain reliable proxies for bank funding costs. Typically,
data collected from the ECB Short Term European Papers (STEP) database suggest
that EURIBORSs are very close to quotations of certificates of deposits issued by banks.
Moreover, using U.S. data, Kuo, Skeie, and Vickery [2012] find that public interbank yield

data beyond Libor are moderately informative about bank funding costs.

The loans that underlie the EURIBOR expose lending banks to both credit and liquidity
risks. First, these loans are unsecured, that is the lending bank does not receive col-
lateral as protection against default by the borrowing one. Therefore, these rates carry
some compensation for solvency issue that we refer to as credit risk. Second, through
an interbank loan, a lending bank exposes its funds during the time-to-maturity of the
loan although those funds might be needed to cover the bank’s own shortfalls. Since
an unsecured interbank loan is highly specific to the identity of both counterparties, its
unwinding is a costly task. This is taken into consideration by the lending bank at the
inception of the loan, which gives rise to an extra (liquidity-related) compensation in the

loan rate.

Figure 3.1 presents the evolution of the 3-month EURIBOR from August 2007 to Septem-
ber 2013. During the first year, the rate is stable around 500 basis points. The Lehman
bankruptcy of September 2008 is followed by a sharp decline in EURIBOR, of about 400
basis points, to 80 basis points. From mid-2010 onwards, the EURIBOR rises slowly to
150 basis points in September 2011 and decays to nearly 20 basis points during the recent
period. Table 3.1 presents the descriptive statistics for 3, 6, 9, and 12-month EURIBORs.

3.3.2 The interbank risk-free rate

In this paper, the risk-free rates are proxied by the Overnight Indexed Swap (OIS)
rates. An OIS is a fixed-for-floating interest rate swap with a floating rate leg indexed on
overnight interbank rates, the EONIA (Euro OverNight Index Average) in the euro-area

case. OIS have become especially popular hedging and positioning vehicles in euro finan-

1. Indeed, it appears that the average of the spreads between (a) the issuance yields for certificates of
deposits with an initial maturity comprised between 101 and 200 days and (b) the 5-month EURIBOR
rate was lower than 3 basis points over the 2008-2012 period.
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Figure 3.1: Level of 3M rates and spreads
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cial markets and grew significantly in importance during the financial turmoil of the last
few years. The OIS curve is more and more seen by market participants as a proxy of the
risk-free interbank yield curve.? As no principal is exchanged, the OIS requires nearly no
immobilization of capital. Further, due to netting and credit-enhancement mechanisms
(including call margins), the counterparty risk is limited in the case of a swap contract
(Bomfim [2003)]).

The upper panel of Figure 3.1 displays the 3-month OIS rate from August 2007 to Septem-

2. See e.g. Joyce, Lasaosa, Stevens, and Tong [2011] or Bank of International Settlements [2005].
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ber 2013. While this chart shows that EURIBOR and OIS rates present strong common
fluctuations, the middle panel also highlights that the spread between the two rates has

undergone substantial variations over the last five years. In the next subsection, we discuss
the term structure of the EURIBOR-OIS spreads.

3.3.3 Preliminary analysis of the EURIBOR-OIS spreads

Being mostly stable before August 2008, the spread abruptly increased during Lehman
crisis until December 2008, the 3-month spread peaking at 200 basis points, where a slow
decay begins (see Figure 3.1, middle panel). For sake of comparison, before summer 2007,
the EURIBOR-OIS spread was around ten basis points; part of this deviation was ac-
counted for by the fact that the EURIBOR is an offer rate while the OIS is a mid rate
(average of bid and ask yields). Then, following a long stabilization period between Au-
gust 2009 and 2010, a sharp rise stroke again in mid-2011. Since the beginning of 2012,
the EURIBOR-OIS spreads have decreased, alternating between a linear decreasing trend
and stable phases.

Table 3.1: Descriptive statistics of EURIBOR and OIS rates

min max amplitude  mean std skewness  excess kurtosis
bps
EURIBOR 3M 18.4 538.1 519.7 172.0  165.1 1.12 —0.35
EURIBOR 6M 294 543.1 513.7 190.8 158.9 1.10 —0.32
EURIBOR 9M 38.8 546.3 507.5 202.3  155.1 1.07 —0.31
EURIBOR 12M | 47.4 549.3 501.9 213.0 152.1 1.06 —0.29
OIS 3M 4.5 434.6 430.1 123.6 145.7 1.29 —0.03
OIS 6M 2.35  442.85 440.5 125.1 1449 1.30 0.03
OIS 9M —0.5 453.5 454 127.9  143.7 1.29 0.05
OIS 12M —-1.1 465.3 466.4 131.2 142.2 1.27 0.07
Spread 3M 9.9 206.9 197 48.4 34.9 1.61 3.37
Spread 6M 19.6 222.5 202.9 65.7 36.5 1.62 3.44
Spread 9M 26.8 227.9 201.1 74.4 38.1 1.63 3.05
Spread 12M 32.9 239 206.1 81.8 40.0 1.54 2.38

Notes: Those figures are computed with weekly data ranging from August, 31 2007 to September, 13
2013.

Standard descriptive statistics of spreads are provided in Table 3.1. The means of spreads
increase with respect to maturity, from 48 basis points (3-month maturity) to 82 ba-

sis points (12-month maturity). This indicates a positive slope in the term structure of
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spreads, which is graphically illustrated by the middle panel in Figure 3.1: except at the
very beginning of the sample, the 12-month spread is always larger than the 3-month

spread, up to around 50 basis points in late 2011.

Whereas the standard deviations are respectively stable and decreasing with maturity
for OIS and EURIBOR rates, the standard deviations of spreads slightly increase with
maturity. Regarding higher-order moments, Table 3.1 indicates that spreads are more
positively skewed than the rates in level; also, contrary to the latter, spreads are heavy-
tailed (positive excess kurtosis). The heavy-tail behavior is typically illustrated during
the Lehman crisis on Figure 3.1, where both 3-month and 12-month spreads peak to 207
and 239 basis points, respectively. These levels are about 4 standard-deviation far from

their respective sample means.

A principal component analysis performed on the four EURIBOR-OIS spreads proves that
the first two principal components captures most of spread fluctuations, explaining 99.7%
of the whole variance of the spreads (96.4% and 3.3% for the first and second principal
components respectively). This suggest that two factors are sufficient to capture the bulk

of spread fluctuations.

3.3.4 Credit and liquidity proxies

In this subsection, we introduce credit and liquidity proxies on which we will base our
identification of credit and liquidity parts of EURIBOR-OIS spreads. In the next sections,

we relate these proxies to the factors driving our term structure model.

The liquidity proxy we will use in our term-structure model is the first principal component
of a set of three liquidity-related variables. These variables are chosen in order to capture
different aspects of liquidity pricing, namely market and funding liquidity.® Specifically,
our first two proxies are mostly related to market liquidity whereas the last one is mostly
related to funding liquidity. Nearly 60% of the total variance is explained by the first
principal component.

— A first liquidity-pricing factor is the KfW-Bund spread (5-year maturity). KfW is a
public German agency. KfW bonds are guaranteed by the Federal Republic of Ger-
many. Hence, they embed the same credit quality as their sovereign counterparts,
the so-called Bunds. KfW bonds being less liquid than their sovereign counterpart,
the KfW-Bund spread essentially reflect liquidity-pricing effects. *

3. While market liquidity is reflected by the difference between market and fundamental value of an
asset, funding liquidity relates to the scarcity of capital (see Brunnermeier and Pedersen [2009]).
4. See Schwarz [2009], Monfort and Renne [2013] or Schuster and Uhrig-Homburg [2012]). In the
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— A second liquidity factor is the Thbill-repo spread, computed as the yield differential
between the 3-month German T-bill and the 3-month general-collateral repurchase
agreement rate (repo). From an investor point of view, the credit qualities of the
two instruments are comparable (as argued by Liu, Longstaff, and Mandell [2006]).
The differential between the two rates corresponds to the convenience yield, that
can be seen as a premium that one is willing to pay when holding highly-liquid
Treasury securities (see Feldhutter and Lando [2008]).

— A third factor is based on the Bank Lending Survey conducted by the ECB on a
quarterly basis. This survey is addressed to senior loan officers of a representative
sample of around 90 euro-area banks; it addresses issues such as credit standards
for approving loans as well as credit terms and conditions applied to enterprises and
households. Our indicator is based on the following specific question of the survey:
QOver the past three months, how has your bank’s liquidity position affected the credit
standards as applied to the approval of loans or credit lines to enterprises?.®

The credit proxy is the first principal component of a set of 36 Euro-zone bank CDS. We
use 5-year CDS denominated in USD since these are the most traded — and therefore the
most liquid — ones. Eight are German, six Italian, five Spanish, four French, four Dutch,
three Irish, three Portuguese, two Austrian, and one Belgian. Nearly 72% of the total

variance is explained by the first principal component.

3.4 The model

In this section, we propose a reduced-form asset pricing model of the term structure of
EURIBOR-OIS spreads. Credit and liquidity risks are introduced by means of the spec-
ification of two respective risk intensities. The model implies that spreads are quadratic

functions of factors; the estimation of the latter be detailed in the next section.

3.4.1 Notations

We consider the pool of the N banks of the EURIBOR panel. At date ¢, market
participants get the new information w, = {r, X{, d;, ¢;}', where r; is the short-term risk-
free rate between dates t and t + 1, X; = (x4, 214)" is a (2 X 1) vector whose components
are respectively credit- and liquidity-related factors, and where d; and ¢; are two IN-
dimensional vectors of binary variables dii) and ¢\ with i € {1,...,N}. While dgi) defines

same spirit, Longstaff [2004] computes liquidity premia based on the spread between U.S. Treasuries and
government-guaranteed bonds issued by Refcorp.

5. The respondents can answer ++, 4, 0, — or —— to that question. We compute the proportion of
— and —— as a ratio of total answers. To obtain weekly series, we assign the same value to all weeks in
a quarter (step function).
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the credit state of bank i at date ¢, 129 defines its liquidity status. In the following,

we will make more precise the implications of defaults (dgl) = 1) or liquidity shocks

(Egi) = 1) for interbank-loan payments. For any random vector z;, we will use the notation

ﬁ == (ththl; .. )

3.4.2 Historical and risk-neutral dynamics

Let us first define the historical dynamics of w;. Following Berndt, Douglas, Duffie,
Ferguson, and Schranz [2005], Pan and Singleton [2008| or Longstaff, Pan, Pedersen, and
Singleton [2011], we assume that the processes r; and (X/, d}, ¢;)" are independent. As will
be seen in Subsection 3.4.4, we will not have to specify the dynamics of r,. We assume
further that (d}, ¢;)" does not cause X; and that X; has a VAR(1) dynamics defined by:

Xt = U + (I)Xt,1 + €, (31)

where €, = (€., €74)" is a Gaussian white noise such that E(e;) = 0 and V(e;) = 1.

Finally, we assume that, conditionally on (Xi,d;_1,¢;_1), the vectors d; and ¢, are inde-

pendent, and such that:

exp[—Ac(zeyr)] if d§@1:0

P = 11X dir ) = o
- 0 if d¥, =1

exp[—Ae(ze,)] if €9 =0

]P)(El(gj) - 1|&a dt—17€t—1) - )
— 0 if (¥ =1.

The intensity functions A\.(z.;) and A\¢(z,;) will be specified in Subsection 3.4.5.

In order to derive the risk-neutral (R.N.) dynamics of w;, we introduce a stochastic dis-

count factor between t — 1 and ¢ of the form:
/ 1 /
M1y =exp |I'_je — §Ft_1rt71 — 11+ 9(r) |
where g(r,) is any function such that E;,_;[¢g(r;)] = 1, and
iy =T+ T Xy

where [y is a (2 x 1) vector and T"is a (2 x 2) matrix. it is easily seen (see Appendix 3.A)

that with such a SDF, we have the following properties:
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- ry and (X, d}, ¢}) are independent in the R.N. world.
— The R.N. dynamics of X, is defined by:

Xt = M* + q)*Xt_l + 6:, (32)

where y* = i+ Ty, ®* = &+ T and € ~ I[INY(0, ). In particular, (d},¢}) does not
cause X; in the R.N. world.

— The R.N. conditional distribution of (d}, ¢;) given (X;,d;—1,/¢;—1) is the same as in
the historical world; in particular, the R.N. intensities A%(z.,) and A& (z¢,) are the

same functions as in the historical world; therefore we will denote them by A.(z.:)
and Ag(x4).

3.4.3 Intensities and EURIBOR rates

We have assumed that the panel of banks is homogeneous, in the sense that, condi-
tional on (X, di1, Et__l), the default probabilities and the probabilities of being affected
by a liquidity shock are the same for all the banks of the EURIBOR panel. This assump-
tion notably implies that, at each date ¢, there is a single rate prevailing for interbank
unsecured loans between ¢ and a future date ¢ + h. This interest rate is denoted by
RV By definition of this rate, an interbank loan between dates ¢ and t + h of unit face
value provides the borrower with the amount B(t,h) = exp(—hR[/") at date t. Note
that the pricing formulas derived in this paper feature continuously-compounded interest
rates: denoting by z a market-quoted interest rate and applying the money-market day-
count convention (ACT/360), the corresponding continuously-compounded rate is given
by In(1+d x z/360) x 365/d where d is the residual maturity of the considered instrument,

expressed in days.

Suppose that, at date ¢, bank ¢ lends B(t,h) to bank j for a period of length h. The
maturity date is £+ h and, assuming no premature termination of the loan, the repayment
is 1. Now, consider an intermediary date t* (i.e. ¢ < t* < ¢+ h). At date t*, if bank j
defaults or if bank i is hit by a liquidity shock, this terminates the interbank loan and the
resulting payoffs are as follows:

— If bank j defaults at date t* (dg) = 1), then bank ¢ will not obtain full repayment
at t + h. Instead, at date t*, it recovers a fraction 6. < 1 of the "market value"
of the loan that would have prevailed at date ¢* in the absence of default. This
market value corresponds to the face value of the loan discounted by the EURIBOR
REYE,. This set up builds on the "recovery at market value" assumption of Duffie

and Singleton [1999].
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— When bank i is hit by a liquidity shock at date t* (i.e. £§? = 1), bank ¢ has to
find some cash in a limited period of time to meet an unexpected liquidity need. It
may do so by negotiating a premature termination of the loan with bank j. The
latter agrees, but at a discount: the repayment at date t* is expressed as a fraction
0; < 1 of the aforementioned "market value" of the loan. Such a mechanism of
costly liquidation is in the spirit of Ericsson and Renault [2006] or He and Xiong
[2012].

In that context, the value of the loan at date ¢t + 1 writes:
B(t+1,h— 1) (1 —d@ +0.d7)) 1 — €, + 6,08
) t+1 41 t+1 1) (o

where B(t + 1,h — 1) is the price prevailing in the absence of credit or liquidity event at
date t 4+ 1. Since its price at t is B(t, h), we get:

B(t, h) = exp(—r¢) X
B [Bt+1,h - 1) {(1—d +0.a2) (1 — ) + 0t b ], (33)

where EQ denotes the expectation under the risk-neutral (pricing) measure.

Given the definitions of A\.(z.;) and A¢(x,;), we have:

EQ(dgi)J%? Xt+17 Tt41, dzgj) = O?&@ = O) = 1- exp[_)‘C(xC,t+1)] (3 4)

E@@gﬂ%v Xest, e, dy) = 0,60 =0) = 1 exp[—Ae(ze,41)]-

exp[—Ac(Tert1)] and exp[—Ag(z4+41)] are probabilities and, therefore, Ao(xc141) and Ap(2p441)
must be positive at all times. When these intensities are small, they are close to the de-
fault probabilities and to the probabilities of being hit by the liquidity shock, respectively.

Besides, a first order approximation yields:

EQ((1 - 0.)d7))w, Xer1) = 1—exp[—(1 — ) Ae(@eir1)]
(3.5)

EQ((1 - 0)0) ) Jwy, Xi1) = 1 —exp[—(1 — ) Ae(011)],

Introducing the total intensity Ay = (1 — 0.)Ae(xes) + (1 — 0p)Ae(z4) in Equation (3.3)
implies (see Appendix 3.B):

B(t,h) = E&[exp(—ri — A1 — -+ = Pipn1 — Asn)] (3.6)
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Since B(t, h) = exp(—hR}}"), we have:

1
Rf}?R - Ty In {Ei‘,@ [exp(=7 — Aeyr — = = Teqno1 — )\t+h)]} : (3.7)

3.4.4 OIS swap rates and the EURIBOR-OIS spreads

An OIS is an interest-rate derivative that allows for exchanges between a fixed-interest-
rate cash flow and a variable-rate cash flow. More precisely, the floating leg of an OIS
is indexed on the EONIA. At maturity, the payoff received by the fixed-rate payer is the
difference between (a) the notional (W, say) inflated with the date-t OIS (fixed) rate
(i.e. Wexp {hRD!®}) and (b) the same notional capitalized with the realized short-term
rates (i.e. Wexp{r;+ ...+ rn_1}). Note that the latter expression implicitly reckons
that the OIS reference rate —that is the EONIA rate— corresponds to the risk-free rate r;,
thereby assuming that lending on the overnight interbank market preserves the lending
bank from (i) liquidity and (ii) credit risk. The rationale behind (i) and (ii) are the

following:

(i) By rolling its cash on the overnight market (at the EONTA rate), a bank is not ex-
posed to the risk of having to liquidate longer-term investments upon the realization
of the liquidity shock.

(i) While the EONIA is an unsecured-transaction rate, the extremely-short matu-
rity of these transactions substantially reduces the credit-risk exposure of the lend-
ing bank. This point is corroborated by a comparison of EURIBOR-OIS spreads
with spreads between Repo rates — where credit-risk effects are kept at a minimum
through collateralization schemes — and OIS rates: over 2007-2013, the mean abso-
lute value of the 3-month Repo-OIS spread is about 10 times smaller than the one
of the EURIBOR-OIS spread of the same maturity (the former being of a few basis
points).

At the inception date of the swap, there is no cash-flow exchange between the two coun-

terparties, that is, the discounted values of the two legs are initially the same:

W]E(t@ [eXp(hRg}{s) exp {—Tt — ... — Tt+h_1}] = ‘/I/,
or: 1
Rf;{s =- log ]E;Q lexp{—ri — ... —Tern_1}]- (3.8)

Since, as in, e.g., Berndt, Douglas, Duffie, Ferguson, and Schranz [2005|, Pan and Single-
ton [2008| or Longstaff, Pan, Pedersen, and Singleton [2011], we have assumed that the

short-term risk-free interest rate and the intensity processes are independent under Q,
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) . (3.9)

Equation (3.9) shows that, under these assumptions, the study of EURIBOR-OIS spreads

does not require the modeling of the short-term risk-free interest rate r,. In the following,

denoting by S(t, h) the EURIBOR-OIS spread of maturity A, we have:

(3 0)

i=1

1
S(t,h) = RE,?R — Rg,{s = —Elog (E?

we impose a factor structure and a specification for the modeling of both the credit and

liquidity intensities to obtain pricing formulas for the interbank spreads.

3.4.5 Intensity specification

Now, it remains to specify the intensity functions A\. and A\, and the factors (z., zs;)".
In a preliminary analysis, whose results are not reported here for sake of brevity, we pos-
tulated a linear relationship between the intensities and the factors, within a standard
Gaussian affine term-structure model. However, the results were not satisfying, the model
clearly violating the non-negativity of spreads. The model-implied frequencies of generat-
ing negative spreads (i.e. considering their marginal densities) was huge and close to 50%
for all maturities. This comes from the facts that (a), in such a model, the distribution of
model-implied spreads is Gaussian and that (b) consistently with the high persistence of
observed spreads, the resulting model-implied variance of the spreads is large. This failure
illustrates the inappropriateness of Gaussian ATSM to model such spreads. Therefore,
following Doshi, Ericsson, Jacobs, and Turnbull [2013] or Gouriéroux and Monfort [2008],

we set a quadratic relationship between the intensities and the associated factors:
Ae(Ter) = Acxit and  A(zg) = Agilf?’t. (3.10)

This ensures that the underlying probabilities of liquidity and default events are con-
strained between 0 and 1, both A.(z.:) and \,(z,:) being positive (see Equation 3.4). In
turn, this implies that the spreads at any maturity are positive, which can be seen from
Equation (3.9). Besides, an additional advantage of this modeling is that it allows to

accommodate heteroskedasticity in the spreads (see Ahn, Dittmar, and Gallant [2002]).

3.4.6 Recursive pricing formulas

Putting together the risk-neutral dynamics of X; given by Equation (3.2) and the
intensity specifications of Equation (3.10), it can be shown that our model belongs to
the class of Quadratic Term Structure Models (QTSM). We show in Appendix 3.C
that the spreads S(¢,h) of Equation (3.9) can be expressed as a quadratic combina-
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tions x.; and ;. This results from the fact that the conditional Laplace transform of

" (see

the vector (X7, |, Vec(Xi41X[,,)") given X, is exponential affine in (z}, Vec(xz}))
Gouriéroux and Sufana [2011] or Cheng and Scaillet [2007]) and, therefore, the process
(X1, Vee( X1 X[, 1)) is affine. We have:
1
S(t,h) = -7 (Oop + O, X: + X{0:,,Xy)

2 o+ 0, X + X[0p X (3.11)
The factor loadings 6y 5, 61, and 6,5 are maturity-dependent and are functions of risk-
neutral dynamics parameters and of A, which is the (2 x 2)-dimensional diagonal matrix
containing (1 —#6.)A. and (1 —6,)A, on its diagonal. The loadings O, 1 and Oy, can

be computed recursively as (see Appendix 3.C):

(

_ 1
Oon = Oon1+0O7, 1 [[ —2(Og1 —A)] ! (u* + 591,h—1>

, _ 1
+ " (Ogpy 1 — AL, —2(O0p 1 — M = =log|l, —2(Og) 1 — A
p (Ogn1 —A) | (B2 —A)] 5 og | (O2,n-1 >3.12)

Orp = @ {[In —2(Ogp1 — AN Ot +2 (21 — A) 1]}

Oy = i (@2,h71 - A) [In —2 (627}1'71 - A>]_1 o,

where initial conditions are given by ©g = 0, ©1 = (0,0)', and O, = [0]; jeq1,23. One
of our main objectives is to decompose spreads into a credit and a liquidity component.
A necessary condition to obtain such twofold decomposition is that ©4 ), is diagonal for

all maturities h. This condition constrains ®* to be diagonal.

3.5 Estimation procedure

3.5.1 Identification strategy: linking proxies and latent factors

In the following, we relate latent factors z., and xy; to our credit and liquidity proxies,
that we respectively denote by P.; and Pr;. Recall that these proxies are first principal

components of sets of credit- and liquidity-related variables.

We assume that — up to a measurement error term — the proxies are quadratic functions
of the corresponding latent factors. This relationship, of the same kind of the one relating

the latent factors to modeled spreads, is consistent with the fact that several variables
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used in the computation of proxies are also homogeneous to interest rates. Formally:

_ 2
Pc,t = Tc0 + Te1Legt + 71-12,21‘(;’15 + Op. Vet

(3.13)

_ 2
Pop = moo+ TeaZer + T2k, + 0y,

where v.; and v, are Gaussian standardized and uncorrelated noises. These measurement
errors authorize the proxies to imperfectly represent the underlying corresponding risk,
addressing potential concerns regarding the fact that our proxies are not pure measures of
credit and liquidity risks. For instance, CDS contracts may be affected by liquidity issues.
It is also worth stressing that, even though risk factors z.; and z,, are contemporaneously
uncorrelated, their VAR(1) dynamics authorizes the presence of lagged Granger causality
between them. Equations (3.13) therefore imply that the credit (resp. liquidity) proxy is
a combination of past (resp. past and current) liquidity shocks, of past and current (resp.

past) credit shocks and of an error v, (resp. v.).

3.5.2 State-space model and estimation strategy

The state-space representation of the model is obtained by gathering: (a) the P-
dynamics of the factors z.; and x,; (Equation (3.1)), (b) the spread formulas (Equation
(3.11)) and (c) the proxies measurement equations (Equation (3.13)). More specifically,

the measurement equations are:

S(t,h) = Oon+ 01, X + X025 X; 4 0y Vh € {13,26, 39,52 weeks}
Py = mio+maTie+ 771’,237?715 + Ovilig Vi = {c,(}, (3.14)

where the components of the vector of pricing errors 7, and v;; are independent Gaussian
white noises with unit variance. Parameters 7, 71, and ;> are not constrained by
model-implied restrictions, contrary to the loadings 0y, 615, and 6, that derive from
Equations (3.11) and (3.12). Appendix 3.E presents additional restrictions that we im-
pose on model parameters in order to ensure a positive correlation between the proxies

and the corresponding intensities.

The estimation data cover the period from August 31, 2007 to September 13, 2013 at the
weekly frequency (end of week data). Interest rates and CDS data are extracted from
Bloomberg. The EURIBOR-OIS spreads of the following maturities enter the measure-

ment equations: 3, 6, 9, and 12 months.

The model parameters are estimated by maximizing the likelihood function, which is ap-

Guillaume ROUSSELLET 123



Chapter 3. A QTSM for Disentangling Credit and Liquidity Risks in Interbank Spreads

proximated by means of a Kalman-type algorithm. Whereas recent articles use extensively
the so-called Unscented Kalman Filter (UKF, see for instance Filipovic and Trolle [2013]
or Christoffersen, Dorion, Jacobs, and Karoui [2014]), we rely on the Quadratic Kalman
filter (QKF) of Monfort, Renne, and Roussellet, which is specifically fitted to quadratic
measurement equations and which shows nice performances in this context. The filtering
algorithm is detailed in Appendix 3.D. Once the model parameters are estimated, a final

call of the algorithm provides us with filtered values of the latent factors.

3.5.3 Estimation results

Table 5.3 reports the estimates of the physical and risk-neutral dynamics parameters
of z.; and xy;. Both processes are highly persistent, especially under the risk-neutral
measure (with eigenvalues of 1 and 0.998). The fact that risk factors are more persistent
under the pricing measure than under the physical measure is common in the literature
(see e.g. Pan and Singleton [2008]). Intuitively, this feature implies that bad times tend
to last longer under Q than under P, which translates into risk premia. In a preliminary
estimation, we found that the Granger causality from credit to liquidity was insignificantly
different from zero. Hence it has been imposed exactly to zero in a second pass of maxi-
mization. On the other hand, the liquidity factor significantly Granger causes the credit
factor, which implies some liquidity feedback in the credit risk. Table 5.3 also reports
the market prices of risk parameters, which can be directly backed out from physical and

risk-neutral parameters (see Equation (3.2)).

Figure 3.2 presents the filtered time-series of the factors. Whereas they possess roughly
the same patterns as the credit and liquidity proxies, the quadratic specification and the
measurement errors allows for a greater flexibility in the factor’s behavior. In particular,

the liquidity factor peaks are shorter in duration than those of the corresponding proxies.

The remaining parameter estimates are gathered in Table 3.3. Both intensities loadings
are significantly different from zero, and we observe that (1 —6,)A, > (1 —6.)A. (last row
of Table 3.3). This means that liquidity shocks are the main drivers of the short-term
fluctuations in the total intensity since the innovations (e.., €s,) of factors (x4, xe4) are of
unit variance and given that the total intensity ), is given by (1—0.)Acx2, + (1—0,)Apz7,.
However, the credit factor is more persistent than the liquidity one under Q (see the diag-
onal elements of ®* in Table 5.3); the relative importance of credit in the spread therefore

increases with maturity. This will be illustrated below.

The variance estimate Ef] associated with the error terms in the spread equation is 0.007,
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Figure 3.2: Filtered credit and liquidity factors
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Notes: Time ranges from August 31, 2007 to September 13, 2013. The grey shaded areas are the 95%
confidence intervals of the latent factors (this uncertainty is the one associated with the filtering
technique).

which translates into an average pricing error of 8 basis points for all maturities. This

implies that the model captures 95% of the variation of the spreads.

Besides, the estimated model proves to be able to capture part of the heteroskedasticity in
spreads. Indeed, unreported results suggest that the model-implied conditional volatility
of spreads exhibits a 60% correlation with realized volatility (measured using daily data on
a 2-month rolling window). Note that this is due to our quadratic framework, a standard

(Gaussian model being unable to generate time-variation in conditional yields’ variance.

3.6 Decomposing EURIBOR-OIS spreads

In this section, we present the model-implied decomposition of EURIBOR-OIS spreads
for all maturities. We can perform our spread decomposition along two dimensions: credit
vs. liquidity on the one hand (as in e.g. Filipovic and Trolle [2013]) and risk premia vs.
expected components on the other hand (as in e.g. Pan and Singleton [2008]).

3.6.1 The decomposition method

First, we decompose observed spreads into credit and liquidity components. Remember
from Equation (3.9) that the spread of maturity h involves the conditional Q-expectations

of both credit and liquidity intensities up to maturity. To obtain the effects on credit only
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Table 3.2: Factor parameter estimates

P—dynamics Q—dynamics Market prices of risk

0 Teto1  Tot—1 W Tepo1 T Lo @er—1 T

zer 0.107 0960 0.023 1.097 1 0 0.990 0.040 —-0.023
(0.020) (0.009) (0.005) (0.311) ~ (0.318) (0.010) (0.005)
e 0.210 0 0.962  0.168 0 0.998 —0.042 0 0.036
(0.011)  —  (0.004) (0.040) (0.001) (0.043) —  (0.004)

Notes: Standard errors are in parentheses. The '—’ sign indicates either that the constraint is binding
or that the value is calibrated, thus the parameter is not estimated and its estimator has therefore no
standard deviation.

Table 3.3: Parameter estimates of measurement equations

Equation | Parameter Estimate Parameter Estimate Parameter Estimate
Py Te,0 —1.977 w1 0.132 7.9 0.00001
(0.217) (0.024) (0.0007)
Py Te,0 —1.370 w1 0.039 o 0.002
(0.092) (0.008) (0.0002)
noise U?,C 0.1 03@ 0.1 0% 0.007
- - (0.0004)
At (1—-86.)A. 0.00009 (1-—6,)A, 0.00134
(0.00002) (0.00009)
Notes: Standard errors are in parentheses. The '—’ sign indicates that the value is calibrated.
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(say), we simply put A, = 0 and recompute the counterfactual spread implied by this
restriction. More formally, if we denote by S.(t,h) and Sy(¢, h) the respective credit and

liquidity components of the observed spread, we have:

_ L -
Sc(ta h) = _% 1Og <E9 exXp {Z - (1 - 90>/\c(xc,t+i)} )

=1
L0 0wy + 05007, (3.15)
1 [ h ]
Sg(t, h) = —E log <]E9 eXp {Z ]_ — 9@ Ag .Tg t'H)} )
A 05 + 0\ e, + 08027, (3.16)

where 9(()(})“ 09” (95?,{ ; and 9(()172,)1, Gﬂ, and 9;2 are the entries of 6y, 61 and 0y, that cor-
respond to credit and liquidity risks, respectively. We then have an exact decomposition

of the modeled spread and, for the observed spread we get:
S(t,h) = S.(t,h) + Se(t,h) + oy (3.17)

where 0,7, ;, exactly matches the measurement errors included in the measurement equa-
tions (Equation (3.14)). Given their relative small size and following the usual approach,
we neglect those measurement errors in the analysis and consider only the decomposition
of the modeled spread S(¢,h) — o, .

Spreads can be split in an other dimension. Indeed, our estimation strategy provides
us with both the physical and the risk-neutral dynamics of the factors. This knowledge
enables us to extract risk premia from observed spreads. Risk premia are defined as the
differentials between observed (or model-implied) spreads and the ones that would prevail
if investors were risk-neutral. In the latter case, which corresponds to the expectation
hypothesis, spreads would be those obtained by using the physical dynamics to compute
the expectation term in Equation (3.9). Using the estimated P-dynamics parameters
and the fact that the total intensity A; is the same function of X; under both measures
(see Subsection 3.4.2), we calculate a new set of factor loadings under the expectation
hypothesis. To perform the credit/liquidity decomposition of this expected component,
we use the same formulas as in System (3.15-3.16), replacing the Q dynamics by the P
dynamics. ® We denote these components by SE (¢, h) and Sy (¢, h).

6. Specifically, we impose respectively Ay = 0 and A, = 0 and then compute associated sets of factor
loadings 0; 5 (i € {0,1,2}) by using the recursive fomulas of System (3.12).
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3.6.2 Decomposition results

The decomposition of the 6- and 12-month maturity spreads are represented in Figure
3.3. On average, the liquidity component accounts for most of the spread averages over
the sample period, representing more than 75% of spreads’ levels for all maturities (see
Table 3.4). The average share of spreads that is associated to credit risks, which is com-
prised on average between 10% and 25%, increases with respect to maturity. The first
row of charts in Figure 3.3 illustrates that the liquidity factor accounts for much of the
high-frequency variations in the spreads, in particular during the distress period of late
2008 (after the Lehman collapse) and in end 2011 (in a period of particular strain in the

European sovereign markets) no matter the maturity.

Table 3.4: Descriptive statistics of EURIBOR-OIS components

Total spread Risk premium

Credit Liquidity Credit Liquidity

Spread 3M  5.43 48.22 4.22 15.50
average gpread 6M  9.35 53.70 8.28 28.21
level (in
bps) Spread 9M  14.49  59.42  13.53  38.47
Spread 12M 20.82  65.36  19.97  47.44
Spread 3M  10.21  90.73 7.86 28.89
average
(% of Spread 6M 1497  85.94  13.14  44.74
spread  guread OM 1977 81.09 1831  52.05

avg)
Spread 12M 24.36 7646  23.17  55.04

Notes: The modeled spreads are decomposed into four components, along two dimensions: credit vs.
liquidity and expected part vs. risk premium. The risk premia are the parts of the spreads that would
not exist is investors were risk-neutral. The table shows for instance that for the 9-month maturity, 70%
of the EURIBOR-OIS spread correspond to risk premia, a quarter of which (~ 18/(18 + 52)) being
accounted for by aversion to credit risk.

The second row of Figure 3.3 displays the decomposition of the observed spread into the
risk premium and the expected component: the risk premium component and the observed
spread have very similar features, and are positively and highly correlated. Together with
Table 3.4, we see that the share of the spreads explained by risk premia is increasing with
the maturity: for the 3-month spread, credit and liquidity risk premia account respectively
for 8% and 29% of the total spread average ; and for the 12-month spread, respectively
23% and 55% (see third and fourth columns of Table 3.4). In times of distress (Lehman

collapse or the European debt crisis), the level of risk premia, which are the compensations
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Figure 3.3: 6M EURIBOR-OIS spreads decomposition
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Notes: Date ranges from August 31, 2007 to September 13, 2013. Units are in basis points. Top panel
represents the stacked components of the spread: light grey component is the liquidity component and
the dark grey corresponds to the credit component. Bottom panel represents the modeled spread and
its term premia. The black vertical axes stand from left to right for: SMP program announcements
(first two axis), VLTRO announcement and allotments (next three axis), and Mario Draghi’s London
speech (last axis).

for exposures to non-diversifiable systematic risk, increases for all maturities.

Figure 3.4 confirms the previous statements by presenting decompositions of the term
structure of EURIBOR-OIS spreads at different dates. In particular, the second and
third rows show respectively the decomposition of the expected component of spreads
and of risk premia. Under the expectation hypothesis (i.e. in the absence of risk premia),
the liquidity risk term structure is downward sloping whereas the credit component is
smaller and almost constant with respect to maturity. Conversely, looking at the last row
of Figure 3.4, both credit and liquidity risk premia are upward sloping with respect to

maturity. Note that these features are not specific to the four chosen dates.

In the next section, we exploit the time series and the term structure of the spreads com-

ponents to analyze the effectiveness of unconventional monetary policies in the Eurozone.
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3.6.3 The impact of unconventional monetary policy on interbank

risk

The main programs of unconventional monetary policies in the Eurozone can be
broadly separated into three periods. The Securities Market Program (SMP) consisted
in sterilized bond-buying on the secondary market. It was designed to "ensure depth
and liquidity in [...] market segments that are dysfunctional" and was implemented in
May 2010 and August 2011. Later, on the December 8, 2011, the ECB disclosed the
design of Very Long Term Refinancing Operations (VLTRO), whereby 3-year maturity
open market operations were proposed in the form of reverse repo. Two allotments were
granted on December 21, 2011 and on the February 29, 2012, of respectively EUR 489bn
and EUR 530bn to 523 and 800 banks. More recently, during August 2012, Mario Draghi
announced the setting of Outright Monetary Transactions (OMT) in his London speech.
Conditionally on fiscal adjustments or precautionary programs enforcement by candidate
countries, the ECB is ready to trade in secondary sovereign bond markets with "no ex
ante quantitative limits". Whereas this framework has been announced it has not been

applied in practice yet.

Interestingly, the EURIBOR-OIS spreads have decreased continuously since the VLTRO
announcement in December 2011. This drop has led many commentators (and central
bankers) to claim that the ECB unconventional refinancing operations were successful in
alleviating interbank market tensions. In particular, according to ECB officials, the non-
standard VLTRO operations addressed "only the liquidity side of the |interbank market]
problem" (see Draghi [2012]’s interview with the Wall Street Journal, published on Febru-
ary 24, 2012). Our results support this view as the liquidity component of the spreads
has slowly faded away since the VLTRO announcement date (see Figure 3.3, first row). A
further positive effect can also be attributed to the OMT announcement through liquidity

(see the last vertical bar in the charts).

The same pattern can be observed in Figure 3.4. After the SMP and before the VLTRO
announcement (second column of charts), liquidity risk still accounts for most of the term
structure of interbank spreads with between 90 to 120 basis points depending on the ma-
turity. However, after the VLTRO allotments, liquidity risk represents only 40 to 60 basis
points across maturities (see third column of Figure 3.4) and further drops to around 20
basis points for all maturities after the OMT announcement (fourth column). In compar-
ison, looking at both Figures 3.3 and 3.4, those policy measures had only a small impact
on the credit components of the spreads: between November 2011 and October 2012, its
range goes from [10 bps, 50 bps| to [5 bps, 40 bps|]. Even though there is a small drop
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in the credit component, the evidence of the effectiveness of unconventional monetary

policies on credit risk is far thinner than on liquidity risk.

Turning to the second and third rows of Figure 3.4, it appears that unconventional mon-
etary policies were followed by decreases in both the expected components and the risk
premia. Furthermore, we observe that these drops mainly come from the liquidity parts of
the spreads, showing that the VLTROs and OMT have had an effect on both decreasing
the expectations of credit and liquidity risks, and were successful in alleviating the effects

of aversion to this source of risk.

All in all, even if the EURIBOR-OIS spreads have not really reacted to the 2010 SMP pro-
gram, our results suggest that the more recent unconventional monetary policy measures
undertaken within the Eurosystem have contributed to improve bank liquidity positions
and to stabilize the credit risk in the Eurozone. The next subsection focuses on this latter

aspect by showing how these measures have affected the bank probabilities of default.

3.6.4 Model-implied probabilities of default

Following Doshi, Ericsson, Jacobs, and Turnbull [2013|, we present an additional by-
product of our framework, which is the computation of model-implied probabilities of
default (PDs). In our model, the panel of banks is homogeneous and the probabilities of

default are not bank-dependent. Formally, for any bank i, we have:

P, =1d" =0,w) = 1-Pd), =0,....d, =0/d" = 0,w,)

t+
= 1- EED(GXP(_)‘C(ICJ-H) - )‘C(xc,t-&-h)))
= 1-E (exp (Acfal g+ +22,,4])) - (3.18)

The last term of the previous equation is a multi-horizon Laplace transform of xat, which
can be computed analytically by means of recursive formulas of the same kind as those
presented in System (3.12) (replacing p* and ®* by p and ®, and redefining A as the
matrix with (A, 0) on its diagonal.). The computation requires an estimate of the de-
fault recovery rate .. To the best of our knowledge, the existing literature presents no
euro-area figure that can serve as a basis for the calibration of such a parameter. Hence,
we set it to 91.25%, which is the recovery rate on unsecured deposits on U.S. banks with

at least $5bn assets (see Kuritzkes, Schuermann, and Weiner [2005]).

7. Christensen, Lopez, and Rudebusch [2014] note that such a recovery rate is high — compared to usual
corporate-bond recovery rates — because an unsecured deposit is more senior in the liability structure of
a bank than senior unsecured debt.
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Figure 3.5 displays the physical (upper plot) and risk-neutral (lower plot) one-year PDs
resulting from this computation. Confidence bands are added on the plots; these bands
reflect the uncertainty regarding the model parameterization. These confidence bands
are obtained by drawing 1000 sets of model parameters from their asymptotic joint dis-
tribution. For each set of parameters, we use the quadratic Kalman filter to estimate
time series of (.4, 2¢;) and compute the implied (time series of) PDs. For each date, the
confidence intervals are based on the percentiles of the 1000 simulated PDs. It appears
that risk neutral probabilities are very far from their physical counterparts, the deviations
being accounted for by sizable credit-risk premia. These findings are in line with those of
a large body of empirical studies highlighting the substantial deviations existing between
physical and risk-neutral PDs.® The existence of credit-risk premia constitutes one of the
main explanations for the so-called credit-spread puzzle (see e.g. Amato and Remolona
[2003]). This puzzle corresponds to the observation that observed credit spreads tend to
be higher than average credit-losses (while they should be equal under some conditions,

that notably include the risk-neutrality of investors).

Our estimated physical probabilities of default are roughly comprised between 0.1% and
0.4%. While small, this order of magnitude is however consistent with historical default
data of investment-grade issuers. For instance, Moody’s [2011] reports that, on average
over the period 1983-2010, the one-year default rate of a A-rated financial institutions
is of 0.1%. (The median rating of EURIBOR-panel banks is A across the three main
rating agencies.) On a longer time-scale, Moody’s [2013] indicates that the default rate
of A-rated corporates has been of 0.10% (respectively 0.06%) over the period 1920-2013
(respectively 1970-2013).% Figure 3.5 illustrates that VLTROs and the OMT announce-
ment (represented by the last four vertical bars on the chart) were effective in reducing
bank probabilities of default whether corrected from risk premia or not. However, at the

end of the sample, these probabilities remain higher than their mid-2007 value.

Conclusion

We develop a no-arbitrage two-factor quadratic term structure model for the EURIBOR-
OIS spreads across several maturities, from August 2007 to September 2013. To identify
credit and liquidity components in the spreads, we exploit credit and liquidity proxies

based on CDS prices, market liquidity and funding liquidity measures. Our decomposi-

8. See for instance Monfort and Renne [2014] in the case of sovereign issuers and Elton, Gruber,
Agrawal, and Mann [2004] in the case of corporate issuers.

9. For lower-rated investment-grade issuers (Baa using the Moody’s rating system, which is equivalent
to the BBB rating of S&P), the default rates for these two periods are respectively of 0.27% and of 0.17%.
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Figure 3.5: Default probabilities of banks under the physical and pricing measures
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Notes: Time ranges from August 31, 2007 to September 13, 2013. The upper plot show the
model-implied one-year probability of default of a bank of the panel (banks are assumed to share the
same characteristics). This probability is derived using Equation (3.18). The lower chart shows the
risk-neutral probability of default, which is obtained by using the same formula replacing the physical
dynamics parameters by the risk-neutral ones. Shaded areas are the 50% to 99% confidence bounds of
these probabilities. The black vertical axes stand from left to right for: SMP program announcements
(first two axis), VLTRO announcement and allotments (next three axis), and Mario Draghi’s London
speech (last axis).
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tion handles potential interdependence between credit and liquidity risks and is consistent
across maturities. We find that the liquidity risk generates most of the variance of the
spread over the estimation period. The credit risk is less volatile, but represents more
than half of the spread level in late 2012. Our decomposition allows us to shed new light
on the effects of unconventional monetary policy of the ECB on the interbank risk. We
show that whereas the bond-purchase programs of 2010 and 2011 were not followed by
decreases in any of the EURIBOR-OIS spread components, the VLTROs and the OMT
announcements have had a substantial impact, mainly on the liquidity risk. At the end

of the sample, the liquidity risk is at its lowest since the beginning of the financial crisis.
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Appendices to Chapter 3

3.A Risk neutral distribution of w;

The R.N. conditional distribution of w, given w;_; has a p.d.f., with respect to the

same historical distribution, which is given by:

1
exp [T (Xy —p— X, 1) — §FQ,1Ft71 + (1)

Since this p.d.f. factorizes into a function depending on process X; and a function de-
pending on process 7, the independence between these processes is preserved under the
R.N. world. The derivation of the dynamics of X; is standard (see e.g. Ang and Piazzesi
[2003]). Moreover, since (d;, ¢;) does not appear in the S.D.F., the conditional distribution
of (di, 0;) given (Xy,d;1,(;1) are the same in both worlds. Indeed, it is a consequence of

the following lemma.

Lemma 3.A.1. If w; = (w},,wy,)" and if the S.D.F. M; 1, is a function of wy; only,

the conditional distribution of way given (wyt, wayr—1) is the same in both worlds.

Proof. We have:
f;@(wlilE)fzp(w?,tl%v %) = Mt,l,t(%) eXP(—thl(E))ff(wl,t’%)f?(wzﬂwa %)-
Integrating both sides w.r.t. wq, gives:

fwig|wi) = M1y (wag) exp(—ri 1 (wi1)) ff (wi | wi )

and the result follows. [ |

3.B Pricing recursions and non causality
For any 7 € {0,...,h}, we have:
B(t+7,h—7) = exp(—ry )EQ|B(t+7+1,h—7—1)(1—d?. ., —0.d7 )
X (1 - 6(27—&—1 + efgl(fizﬂ'-‘rl) Wi r, dg—)T = O7€£27 =0

Assumption A: B(t + 7+ 1,h — 7 — 1) is a function of (X;i,411,7711) but not of
(dil,, 62,).
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We get, using the law of iterated expectations:
B(t+7,h—7) = exp(—7,,)EC {B(t +7+1,h—7—-1) X%

EQ{ (1-(1-0 )dg-)'r-‘rl) 1-0- 6‘5)67&27“)

wt+T7Xt+T+1; Tt+7r+1, d§+)¢ 0 £§JZT = 0}

Witr, dgj) =0, 427 = 0:|

Using the conditional independence of dEQT 41 and eﬁQT 41 and the approximations:

E? [(1 (1-0 )dﬁ‘fm) |\ Witr, Xeprt1, Tegrs1s dii)T =0 51(527 = 0} = exp{—(1 —0c)Actrri1}
E® {( (1— 0£)£§+T+1) |\ Wetr, Xepr1, P41, dgﬁf =0, fﬁfﬁf = O} = exp{—(1 =0 Aetyri1},
we get:

Bt+1,h—1)= EQ [B(t +7+1L,h—7—1)exp(—rirr — Netr41) ‘wt+7,d£37 0, ZI(QT = 0}
(3.19)
Moreover, since (dﬁj), eﬁ“) does not Granger-cause (1, X¢), B(t+7, h—7) is not a function
of diyr, s~ and Assumption A is confirmed. In order to use Equation (3.19) recursively
backward, starting at 7 = h — 1, we have to check assumption A for B(t + h,0) which
is obviously satisfied since B(t + h,0) = 1. The recursive use of Equation (3.19) for
T=h—1,h—2,...,0 gives:

B(t,h) = E? [QXP{—Tt — N1 — o = Tepho1 — )\t+h}’%; dﬁj) = O,Kf) = O] ,

which depends on (¢, X;), not on (ﬁ, ﬁ), and gives formula (3.6).

3.C Solving for yield/spread loadings in a QTSM

3.C.1 Computing the Laplace transform of Z;, = [X], Vec(XtXLf)]/

Lemma 3.C.1. Ife; ; ~ N(0,1), we have

* * * 1 1 _
Et [exp(@lstH + €;+1V€t+1):| = m exXp |:§9/<I — ZV) 19:| . (320)
Proof. 1t can be shown that
n / / ,n_n/2 1 /—1
Yu € R”, exp(—u'Qu + v'u) du = Wexp ZVQ v. (3.21)
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Therefore, we have:

1 1
E; [exp(@ery + ey Very)] = /R exp(f'e +'Ve) O exp (—;5’[5) de’

1 (1 /
= n) 72 /Rnexp {—5 (§[—V>8+9€} du

B 1 L, oo
- TETIE exp {20(1 2V) 9]

Let X; be a random vector of size n following Gaussian VAR(1) dynamics: X; = u +
®X;_1 + Qey, where ¢, are i.i.d. normalized Gaussian vectors, and X = Q€ is the condi-
tional variance-covariance matrix of X;. We define Z; as the augmented vector of factors
composed of X; and of its vectorized outer-product, that is: Z; = [X], Vec(Xth)}/.

Let us consider v € R™ and V a square symmetric matrix of size n. The conditional

Laplace transform of Z;,; is denoted by ; and defined by:
er(u, V) =E{exp [(W,Vec(V)) X Zys1]} = Eef exp [/ X1 + X,V Xii1] }

In the following, we compute the explicit affine form of the conditional Laplace transform
of Z;,1. Let us first consider the term in the expectation; substituting u + ®X; + Q&1

for X; 1 leads to:

exp{u/Xoo1 + X\ VXin} = exp{u/(p+0X,) + 'V + 20 VOX, + X;P'VOX,}
x exp {[WQ+2(u+ ®X)VQl g1 + ey, [QVQ e }

Taking the conditional expectation leaves the first part of the previous expression un-
changed as everything is known in ¢. For the second part of the previous expression, we
apply Lemma 3.C.1 and algebraic computation leads to:
Et [eXp {[U/Q + 2(M + (I)Xt)/VQ] Etrl + 5;+1 [Q/VQ] €t+1}}
1 1
— exp { —5log I, = 2Q'VQ| + §U/Q(In — 20V Q' + 20/ Q(1, — 20V )YV
+ 2uVQI, = 20VQ) AV
+ {Qu’Q(In —20VQ) I AVE + 4 VAT, - 20V IQAVE| X,

+ X {2@’1/9(1” - ZQ’VQ)*Q’WD] Xt}.
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Putting together the first and the second part in the expectation, we obtain: ;(u, V) =
exp {a1(u, V) Xy + X[as(u, V) Xy + b(u, V') }, where:

ar(u,V) = @ [u+2Vu+2VQIL, — 20V Qu+4VQ(L, — 2Q'VQ) ' Q'V ]
az(u,V) = @[V +2VQI, -20VQ)'QV]
1 1
bu, V) = u'p+p'Vu— 5 log |1, = 2Q'VQ| + 5u’Q(Jn —20'VQ) Q'
+ 2L, - 20V QV i+ 20 VO, - 22VQ) V.
Then, noticing that:

/ —1
O(I, — 20V~ = [ (1, — QQ’VQ)—lﬁ—l] =[x —2v]

we can simplify the previous expressions and obtain:

ar(u,V) = ®V(I,—-2%V)'®
ar(u,V) = @ [(I, —2VE) " (u+2Vp)]

1 1
bu,V) = u/'(I,—2%V)7! <u + §Eu) + WV (L, = 2%V) ty — 3 log |1, — 28V/|.

3.C.2 Calculation of our model’s loadings

Let us denote by \; the total intensity, that is: A\, = (1 — 0.)Acr + (1 — 0p)Ary. We
have: A\, = X/AX; where A = diag[(1 — 0.)A., (1 — 0,)Ay]. We can then re-express the

pricing formula (3.9) as:
h
exp {— ZXéJrZ-AXtH}] ) ,
i=1

which is the log of the multihorizon Laplace transform of a quadratic combination of
Gaussian variables. Let us postulate that: S(t,h) = Oy + 0 , X + X{02, X;. (We know

that the model belongs to the class of quadratic term structure models, and that the

S(t,h) = —% log (E;Q

spreads at all maturities can be expressed as a quadratic combination of X;.) Using the
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law of iterated expectation, we obtain the following recursion:

B h
1 /
S(t.h) = —log (EQ EY <exp{—§ XHZ.AXM} ‘Xth)])

= ——1og (EQ exp ZXHZAXHZ}(th 1(0,—A) )

07 A)/Xt—i-h 1+ Xt+h 109 (0 A)Xt+h 1}:|)

>

1
E EQ {exp t+zAXt+l} (620, —A) +

1

Eventually, the recursive equations of system (3.12) are obtained by using the closed-form
coefficients of the conditional Laplace transform of the previous section, plugging the

risk-neutral parameters p* and ®* (and recalling that we have we have Q = I).

3.D The Quadratic Kalman Filter

The QKF is based on the fact that the measurement equations are quadratic in the latent
factor X; = (x4, x;4) but affine in the augmented vector Z; = (X/, Vec(X;X}))". Let Y; be
the set of measured variables, thus Y; = [S(t, 13), S(t,26), S(t,39), S(t,52), P.4, Pg,t]/.

The measurement equations can be transformed in affine functions of Z;:

S(t, h) Oo.1 0 Oin G5y 0 0 05 o
Pqt = Te,0 + Te,1 0 Te,2 0 0 0 Zt + Oy Vet ?
Py 10 0 mp 0 0 0 me OVt

)

—Y, 2 A+ BZ + D¢

Approximating the conditional distribution of Z;,; given Z; by a Gaussian distribution
and considering the augmented state-space model based on Z;, we can use the exact same
method as is presented in Chapter 2. In order to get the global likelihood maximum, the
estimation is achieved in two steps. The Artificial Bee Colony stochastic algorithm (see
Karaboga and Basturk [2007]) is used to find the potential maxima areas of parameters.
The results are then used as starting values for a usual simplex maximization algorithm

and the best estimate is selected.
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3.E Identifiability and estimation constraints

3.E.1 Parameter contraints

For interpretation purposes, the fluctuations of credit and liquidity proxies are re-
quired to correlate positively with the associated intensities. Formally, this is obtained by
imposing that, for most values of the factors z.; and x;, the intensities and the proxies
are monotonously increasing with respect to the corresponding factor (z.; or z4:). Recall
that the intensity functions are purely quadratic, i.e. of the form Aixit, with A, and
Ay strictly positive to ensure that the intensities are always non-negative. We therefore

impose that each z;; is positive most of the time.

Vi = {c, (}, P(ziy <0) =a <= E(xi) = —qvon(a)/V(z,),

where E(e) and V(e) are the unconditional expectation and variance operators (under
the physical measure), and guo,1)(c) is the level-o quantile of the normalized Gaussian
distribution and « is typically a small number. We impose the same thing for the proxies,

namely:

. T T
Vi ={c, (}, P (xw < — 7_1 > =a = E(z,,)= _277’1 — qn(0,1) () V().

©,2

We impose m;; > 0 and m; 5 > 0, which implies that the constraints on the proxies are
over-verified. Then, since our factors are jointly Gaussian, the first two unconditional

moments are easily computed:

E(X) = (Ia—®) (e p1e)’
VecV(Xy)] = (Is—®® @) 'Wec(lz) =: (ve, Ver, Ver, 0r)'

Eventually, we get the condition:

(Hes o) = (I — @) [—qno) () (/0o v/Ur)' ] - (3.22)

In the estimation, we set o = 0.025. We also control the accuracy of the fit of the proxies,

and impose that both ¢ and afl equal 0.1 (a tenth of the proxies’ variance).

3.E.2 Identifiability

In order to see if our model parameters are identifiable, we consider an affine trans-
formation )?t of Xy, i.e. )?t =m+ MX,, and we check that, if we have an observationally

equivalent model when X, is replaced by )~Q, then we necessarily have m = 0 and M = I
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(ie. X, = X,).

As the proxies are respectively functions of only one component of X;, M has to be
diagonal. Hence the alternative factors can be written: z;; = M;x;; + m; for i = {c, (}.
The conditional variance of )?t must be equal to I, thus M = I,. At that stage, we have
that X; = m + X;. X, therefore follows a VAR(1) with the same autoregressive matrix
than X;. Since Equation (3.22) also has to apply for )?t, the latter necessarily features

the same dynamics as X;; therefore m = 0 and Xt = X,
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Chapter 4

Recursive Compound Autoregressive

Processes

Abstract

This Chapter develops a new general class of multivariate affine processes
called recursive affine. We define these processes considering a multivariate
process partitioned in different blocks. The conditional Laplace transform of
each block given (i) the past values of the total vector, and (ii) the present
values of blocks located above in the total vector, is an exponential-affine
combination of the conditioning variables. This recursive definition allows to
consider a broad class of distributions where conditional independence between
components can be abandoned while the entire process still belongs to the
affine class. After providing examples of recursive affine processes (such as
stochastic volatility processes), we derive the statistical properties of this new
class. Conditional and marginal first two moments are shown to be available
in closed-form, leading to simple forecasting formulas. As for pricing, we
provide the closed-form change of measure formulas using an exponential-affine
stochastic discount factor. Finally we discuss the estimation issues depending

on the observability of the process.
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Résumé

Comme souligné dans 'introduction de la thése, les processus dits affines sont couram-
ment utilisés dans les modéles de valorisation des actifs car ils permettent d’obtenir les
taux d’intérét des obligations en formule fermée. Ils sont aisément définis & ’aide de leur
transformée de Laplace conditionnelle. On dit qu'un processus est affine si sa transformée
de Laplace conditionnelle & son passé est une fonction exponentielle-affine de son passé. Il
existe un ensemble vaste de processus affines univariés, comme par exemple ’auto-régressif
gaussien, 'auto-régressif Poisson, ou I'auto-régressif gamma. Hormis dans le cas purement
gaussien, il peut étre difficile de construire des processus affines multivariés. Une maniére
triviale est de considérer plusieurs processus affines univariés et de les supposer indépen-
dants entre eux. Le vecteur composé de ces différents processus est évidemment affine. La
plupart du temps, on peut relacher cette hypothése pour considérer des processus univa-
riés affines que 'on suppose indépendants conditionnellement a leur passé. Sous réserve
que la distribution ainsi produite soit bien définie, cette approche permet d’introduire de
la causalité de Granger entre les différentes composantes du processus multivarié tout en
conservant la propriété affine du vecteur. En revanche, aucune méthode générale n’a été
considérée pour construire des processus multivariés a composantes non conditionnelle-

ment indépendantes, tout en restant dans la classe affine.

Dans ce chapitre, on introduit une nouvelle méthode de construction de processus affine
multivarié par récurrence. On appelle ces processus affines récursifs. De méme que pour
les processus affines décrits ci-avant, les processus affines récursifs sont définis grace a
leur transformée de Laplace conditionnelle. Supposons un vecteur aléatoire X; divisé en
plusieurs blocs (X, ;) de dimension supérieure ou égale & 1. Chaque bloc est un processus
récursif affine si sa transformée de Laplace conditionnelle au passé du processus X; 1
et aux blocs situés avant lui dans le vecteur, i.e. les X;; avec j < 14, est une fonction
exponentielle-affine des variables conditionnantes. La dépendance conditionnelle entre les
différents blocs est donc définie par récurrence : le second bloc dépend conditionnellement
du premier, le troisiéme bloc dépend conditionnellement des deux précédents, etc. Il est
facile de montrer que les processus récursifs affines appartiennent a la classe des processus
affines : la transformée de Laplace conditionnelle de n’importe quel bloc étant donné le

passé du processus multivarié complet X;_; est une fonction exponentielle-affine de X;_;.

Grace a la définition précédente, on montre que la classe des processus récursifs affines
contient de nombreux exemples. On considére dans un premier temps des processus a vola-
tilité stochastique, en utilisant des combinaisons entre des processus gaussiens, gamma, et

Wishart. Plusieurs cas sont présentés, en utilisant des combinaisons différentes des proces-
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sus précédents. On peut aussi considérer des processus multivariés a valeurs discrétes, des
processus avec changement de régime, ou des processus vectoriels auto-régressifs gamma

(voir Chapitre 5).

Etant donné que les processus récursifs affines font partie de la classe des processus affines,
ils possédent les mémes propriétés. En particulier, les deux premiers moments condition-
nels (au passé) des processus récursifs affines sont des fonctions affines du passé du proces-
sus. En revanche, la matrice de variance-covariance conditionnelle au passé du processus
n’est pas forcément diagonale ou bloc-diagonale, contrairement au cas oil les blocs sont
conditionnellement indépendants. La possession des deux premiers moments condition-
nels en formule fermée permet d’exprimer la dynamique des processus multivariés sous la
forme d’un VAR semi-fort, ou les chocs sont des différences de martingales de moyenne
nulle et de variance unitaire. Sous cette forme, il est facile d’obtenir les conditions de
stationarité, les deux premiers moments marginaux du processus, et les formules de pré-

diction optimale ainsi que la variance des erreurs de prédiction.

Les processus récursifs affines peuvent naturellement étre utilisés a des fins de valorisa-
tion des actifs. On utilise pour cela une approche de back modeling, ou 1'on spécifie la
dynamique des facteurs sous la mesure risque neutre sous la forme d’un processus récursif
affine et le facteur d’escompte stochastique comme une fonction exponentielle-affine du
processus. Grace aux transformées d’Esscher, on montre que la transition de la dynamique
risque-neutre a la dynamique historique est disponible en formule fermée. De plus, si les
coefficients de sensibilité au risque dans le facteur d’escompte stochastique sont constants
dans le temps, le processus est aussi récursif affine sous la dynamique historique. Dans
ce cas, il est possible d’appliquer des méthodes classiques d’estimation. Si le processus
récursif affine est directement observable, I’estimation peut étre effectuée par maximum
de vraisemblance ou pseudo maximum de vraisemblance. Si certaines composantes du

vecteur ne sont pas observables, des méthodes de filtrage peuvent étre considérées.
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4.1 Introduction

Affine processes are widely used in asset pricing models since they are able to provide
simple closed-form formulas in many situations (see for instance Duffie and Kan [1996]
or Darolles, Gouriéroux, and Jasiak [2006]). They can be defined as processes which
possess an exponential-affine conditional Laplace transform given their past (see general
introduction of the Thesis). This class is indeed very broad, containing for instance the
autoregressive Gaussian, the autoregressive Poisson, or the autoregressive Gamma univari-
ate processes (see Gouriéroux and Jasiak [2006]). Except in the Gaussian case, building
multivariate affine processes can be a challenging task. A first possibility is to assume
independence between several univariate affine processes and stack them in a single vec-
tor. ! Obviously such a multivariate process is affine. This independence assumption can
often be loosened to impose only conditional independence between univariate compo-
nents given their past. Provided that the conditional distribution is well-defined, such
a process is, again, affine. However, building conditionally dependent multivariate affine

processes in a general fashion has not yet been explored.

This paper provides a new class of multivariate affine processes that we call recursive
affine, which allows for conditional dependence between elements in a recursive way. They
can be defined as follows. We consider a vector of random variables that we denote by X;.
This vector is partitioned in several blocks X, of dimension one or greater than one. The
conditional Laplace transform of X;, given the past values X;_; and the present values
of blocks located above the block i in the vector (namely { X, j < i}) is an exponential-
affine function of the conditioning variables. Therefore, recursive affine processes are such
that the conditional dependence goes from the first to the second block, from the first
and second to the third block, and so on. recursive affine processes are shown to be affine
as well, that is the conditional Laplace transform of any set of blocks given the past X; ;

is an exponential-affine function of X;_;.

We are able to provide a large set of examples of recursive affine processes one can build,
such as stochastic volatility processes. We consider for example vectorial autoregressive
processes with conditionally Gaussian shocks. The conditional variance-covariance matrix
of the shocks can be defined as any semi-positive matrix process, such as a Wishart au-

toregressive process. A second important example is the vectorial autoregressive gamma

1. This is often the case for the multivariate Cox, Ingersoll, and Ross [1985] process, the continuous-
time equivalent of the autoregressive gamma process. In most asset pricing models, authors usually
assume that the short-term risk-less interest rate is an affine combination of several independent CIR
processes, see for instance Longstaff and Schwartz [1992], Dai and Singleton [2000] or Kim and Singleton
[2012].
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process (VARG), where components can be cross-correlated. This can help modeling

stochastic volatility matrices or formulating positive factor models (see Chapter 5).

Using the properties of affine processes, we are able to derive closed-form formulas for
conditional and marginal first two moments. As for every affine process, the conditional
first two moments of recursive affine processes given the past are affine functions of the
past values of the process. This allows us to formulate the dynamics of the process X; in
a semi-strong VAR representation, where the vector of shocks is a martingale difference
with zero mean and unit variance. In particular, the conditional variance-covariance ma-
trix can be time-varying and non-diagonal. This representation is convenient to obtain
the second-order stationarity conditions, the first two marginal moments, the optimal

forecast, and the variance of forecasting errors in closed-form.

Since affine processes are mostly used for asset pricing purposes, we show that it is pos-
sible to obtain closed-form change of measure formulas between the risk-neutral and the
physical world using an exponential-affine stochastic discount factor. Considering a back
modeling strategy, we define X; as an affine process in the risk-neutral world. With the
exponential-affine specification of the stochastic discount factor, the physical dynamics of
X, are easily obtained using the properties Esscher transforms (see Bertholon, Monfort,
and Pegoraro [2008]). When the prices of risk are time-invariant, we obtain that X is
recursive affine in the physical world as well. When that is the case, estimation strategies
are easier to obtain. On the one hand, when the process is entirely observable, pseudo
MLE or MLE can be performed; on the other hand, when X; is only partly observable,

Kalman filtering approximations can be readily obtained.

The remainder of the paper is organized as follows. We define the recursive affine pro-
cesses in Section 4.2, and present several useful examples. In Section 4.3, we present the
weak VAR representation of recursive affine processes and provide first two conditional
moments, first two marginal moments, and forecasting formulas. Section 4.4 treats the
use of recursive affine processes for asset pricing. Finally, we consider the estimation

issues in Section 4.5.

4.2 The Class of Recursive Affine Processes

In this section, we define the class of recursive affine processes through their conditional
Laplace transforms in the most general form. We show that these processes authorize a
recursive structure for the conditional dependence between the components of the process

while preserving the affine properties of the total process. We then present useful exam-
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ples of recursive affine processes, such as stochastic volatility processes, discrete-valued

multivariate processes, and vectorial autoregressive gamma processes.

4.2.1 Definition of Recursive Affine Process

Let us consider a multivariate discrete-time stochastic process (X;)iez. The vector
X is partitioned into N subvectors X, i € {1,..., N}, of size n;. The total size of
N

Xi = (Xi4,...,Xy,) is denoted by n := an We also denote by X, = (X;, Xi—1,...)
i=1
the set of information at date t.

Definition 4.2.1. The process (X;)iez is said recursive affine if the conditional Laplace

transforms:
E [exp (u; Xi0) [ Xicvpo o, Xio X |, i€ 42,0, (4.1)

are of the form:

—_

eXp [ C;,j(ui)Xjﬂf + a;(ui)Xt—l + bl(uz)] ) f07" (S {2a s 7N} ) (42)

Jj=1

and, fori=1,

E [exp <u/1 X17t> ’h} = exp [all (ug)Xiq + bl(ul)] : (4.3)

where the functions a;(e), bi(e) and c; j(®) transform vectors of size n; in vectors of re-

spective size n, 1, and n;.

This definition thus implies that, for i € {2,..., N}, the conditional Laplace trans-
form of X;; given the present values (X;_Lt, o ,X17t)’ and all the past values X; i, are
exponential-affine in X, _14,..., X5, and X;_4. A first important result is that, for any
i € {1,..., N}, the joint conditional Laplace transform of (X ,,...,X;,), given Xia, is
exponential-affine in X;_;. In particular, this is true for ¢ = N and, therefore, the process

(X})iez is affine. We have the following result.

Proposition 4.2.1. For any i € {1,..., N}, the joint conditional Laplace transform of

’

(X100 ---,X;,t)/; given X;_1, is given by:

E [exp(u’lXLt + .o uiXy) } Xt—l] = exp [’dg(ul, coou) Xy +R~(u1, ) (4.4)
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where the functions a;(e) and E(o) are obtained recursively from:

Zil(ul) = al(ul), 51(u1>:b1(ul)

Eiz-(ul, Ce ,ui) = 51’—1 [Ul + ci,l(ui), ey, Ujq -+ Ciﬂ'_l(ui)] + CLZ(UL) (45)
\ Bi(ul, e ,ui) = gi,1 [Ul + Ci1 (ul), ey Ui + Cm;l(ui)] + bl(ul) s
Proof. See Appendix 1. [ |

Corollary 4.2.1.1. The n-dimensional stochastic process (Xi)iez is affine and the con-

ditional Laplace transform of X, given X, 4, 1s:

o1 (u) = E [exp(u' X)) |h} = exp [a;(u)xt_l +’5n(u)]

/

where u = (uy,...,ux) .
Proof. Straightforward consequence of Proposition 4.2.1. [

The previous results provide a convenient way to specify a general multivariate affine pro-
cess (X¢)iez of dimension n = Zfil n;. Indeed, it is possible to decompose this specifica-
tion into N specifications of conditional distributions of the subvectors X, ;. In particular,
if n; = 1 for any ¢ (N = n), we see that the specification of a n-variate affine process
can be decomposed into the specification of n univariate conditional distributions. The
multivariate processes thus obtained possess all the important properties characterizing

the affine class (see Darolles, Gouriéroux, and Jasiak [2006]).

4.2.2 Examples

The previous method for specifying multivariate affine processes is extremely flexible.
In the following section, we provide an extensive yet not exhaustive list of examples of

recursive affine processes.

Stochastic Volatility Gaussian Processes

Let us assume that X;, is a univariate Extended Autoregressive Gamma process,
denoted by ARG, («, 3, 1) with parameters v > 0, « >0, f > 0 and p > 0 (cf Chapter 5
or Monfort, Pegoraro, Renne, and Roussellet [2014]). The conditional distribution of X7
given X, ;_1, is a non-central Gamma distribution 7, (o + 8 X1 ;-1, ). In other words, the
conditional distribution of X ; can be defined by the mixture ~,.,(1), where z; follows
a Poisson distribution P(a + 5 X;,-1) conditionally on X;,; ;. The conditional Laplace
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transform of X4, given X, 4, is given by:

up
— Ui

1
Vup < . E [exp (u1X1¢) [X1,6-1] = exp [1 (a4 BX14—1) —vilog(l — Ul:u):| . (4.6)

We assume that the conditional distribution of Xy, given X, ; and Xs;_1, is the Gaussian

distribution N (p X241, X;,) with the associated conditional Laplace transform:
L,
E |exp (U2 X2,t) ’Xl,t >X2,t—1] = €Xp | U2 pXQ,tfl + 5 Ug Xl,t . (4~7)
The process X; = (X4, X,,)" is recursive affine, therefore affine.

Stochastic Volatility VAR Processes

The previous example can easily be extended in order to get a VAR process with
stochastic conditional variance-covariance matrix. We define m independent univariate
Extended Autoregressive Gamma processes (X, ..., Xmt). We consider m other uni-

variate processes (X114, ..., Xomt) and assume that, for any ¢ € {1,...,m}:

i—1 m
Xonit | Xontictty oo s Xy Xem1 ~ N ( E Vi Xenjt + E Cik XmAkt—1, Xi,t) .
k=1

j=1
The process Xy = (Xig, ... 7X2m7t)/ is recursive affine, therefore affine. A second method
would be to assume that, conditionally on (X, ..., X,,:) and )?t,l, the stacked vector

X, = (Xons1ty - ,ngn’t), is distributed, as follows:

ji\:t‘)(l,tw"7)(Tn,ta)(t—1 NN (V_‘_q)jzt—leXj,t Q]) )

j=1

where the matrices ; are symmetric of size (m x m), positive semi-definite. These
matrices might be degenerated, of any rank greater or equal to 1. The number of Extended
ARG processes entering the variance of the Gaussian VAR can also be smaller than m.

Another possible stochastic volatility VAR process is presented hereafter.

Processes with Wishart Variance-Covariance Matrices

m(m+1)
2

(Wi)iez is a size (m x m) Wishart autoregressive (WWAR) process. It is well known that

Let us consider here the case where X;; = vec(W;) is a vector of size , and
(Xi4)tez is an affine process (see Gouriéroux, Jasiak, and Sufana [2009], Gouriéroux,
Monfort, and Sufana [2010], Gouriéroux and Sufana [2010] and Gouriéroux and Sufana
[2011]). Let X5; be a no-dimensional vector. We define the conditional distribution of
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Xoy given X;_ and X, by:

Xot| Xi4, Xec1 ~ N (v 4+ D1 Xy + Py Xy, QwQ')

m(mTH)) and

where v is a vector of size ny, 1 and ®, are matrices of respective sizes (ny X
(ny X ng), and €2 is a matrix of size (ngy X m). We get a conditionally Gaussian VAR(1)

. . . . . !/ ! .
process with a stochastic variance-covariance matrix The process X; = (X, X,,) is

recursive affine, therefore affine.

Vector Autoregressive Gamma Processes

A vector Autoregressive Gamma process X; = (X4, .. aXn,t)l with all X, of scalar
size, denoted VARG, with v = (v4,...,1,)’, can be defined as:

i1
Vie{l,...,np, X Xicagy oo, Xog, Xet ~ (Oéi + Zﬁ” Xjo 47 Xio, Mi) ;

j=1

with v; > 0, a; > 0, 8;; > 0, v have all entries non-negative, and p; > 0. It can be easily
shown that the VARG is a recursive affine process, therefore affine. All components of
X, are non-negative. In addition, if v; = 0, X;; can stay at zero for an extended period

of time (see Monfort, Pegoraro, Renne, and Roussellet [2014] for further details).

Discrete Value Processes

Multivariate processes with some scalar components taking discrete values can also
be obtained easily. Consider for instance a univariate autoregressive gamma process X,
and the conditional distribution of X5, given X;, and the past is a Poisson distribution

with parameter o + 5 X1 + 7/ X;_1. Its conditional Laplace transform is given by:
E [exp(u ngt)‘let, Xt_l] =expl(a+ X1t + 'y/ Xi-1) (exp(u) — 1)],

which is exponential-affine in X;,; and X;_;. Another possibility might be to give this
form to the parameter of the Poisson distribution appearing in the specification of a
compound Poisson process (see Darolles, Gouriéroux, and Jasiak |[2006| for details). We
could also define in an obvious way multivariate recursive Poisson processes. Clearly, all

these processes are affine.
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Processes with Quadratic Terms

Let us consider a Gaussian VAR(1) process:
Xiy=v+PXy, 1+, & ~ IIN(0,Y),

and let us define X5, = vec(X1, X7 ,). It is well known that the process (X17t,Xé7t)/ is
affine (see Cheng and Scaillet [2007], Gouriéroux, Jasiak, and Sufana [2009] and Gouriéroux
and Sufana [2011]). We introduce a third vector X3 ,, with non-negative components such
that:

i1
Xait | Xsimrts - Xa e, Xug ~ (041' + Z B Xz 0+ 7 X1 + XLt L' X4, Mz‘) (4.8)

J=1

where I'; is a symmetric semi-definite positive matrix, o; > 0, 8;; > 0, , u; > 0 and, in
order to impose that the term o; + 7; X+ Xi i X1 is non-negative, we can impose
a; > 17/ T 7. The process X, = (X1, X;,, X5,)" is recursive affine. Moreover, if v; = 0,

the non-negative components X3, may stay at zero for some periods.

Processes with Switching Regimes

Let us assume that X, ; is a homogeneous Markov chain valued in {ey, ..., er}, where
e, £ € {1,..., L}, is the £ column of the identity matrix /7. Denoting 7, = P(X;, =
er| X1:-1 = ex) the transition probabilities, we know that (X )iz is an affine process

with conditional Laplace transform equal given by:

E [exp(u/Xl,t)’Xl,t—l} = €exp [a/(u)Xl,t—l] )

with a' (u) = [ai(u),...,aL(w)]
and ai(u) = log <Z exp(u ) 7rk74> , ke{l,...,L}
=1

It is possible to incorporate X ; into a recursive affine process in many ways. For instance,
we can introduce the m-dimensional process (X3 )iz such that the conditional distribu-
tion of Xo, given X1, and Xy 1 is N (A X1, 4+ ® Xoy1, 2(X1,)) and X, = (X ,, X,,) is

recursive affine, since the Laplace transform of the previous distribution is given by:

! ! 1 ! !
E [eXP(U/XQ,t)‘Xu, th] = exp {U AXii+u®Xy, g+ 5 (U Y(eu, ... u Z(GL)U) Xl,t:| ;
(4.9)

where A is a size (m x L) matrix whose rows are the (regime-dependent) constant terms

of the VAR dynamics, @ is the size (m x m) autoregressive matrix, while 3(e;) is the size
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(m x m) regime-¢ conditional variance-covariance matrix of X,,. We get a switching level
and switching volatility Gaussian process. It is an example, among many others, of the

introduction of switching regimes within recursive affine processes.

All the features of the previous examples may be combined and we can consider processes
with some components taking real values, other components remaining non-negative and
some of them being able to stay at zero, other components taking discrete values, with a
Markov chain inducing switching regimes. In summary, the recursive affine class is very

wide. In the following sections we develop their specific features.

4.3 Moments, VAR Representations, Stationarity Con-

ditions and Prediction

This section provides moments, VAR representation, stationarity conditions and fore-
casting formulas for recursive affine processes exploiting the exponential-affine form of
their conditional Laplace transform. For sake of notational simplicity, we will first con-
sider the case where the components X, ;, for any ¢ € {1,..., N}, are univariate, so N = n.

The general case will be considered in Section 4.3.4.

4.3.1 Conditional Moments and VAR representations

Using Definition 4.2.1, the log-Laplace transform of X ¢, given X;_14,..., X4, X3 is

given by:
i—1
wt(ul) = Z Cij (ui)Xj,t + a;(ui)Xt,1 -+ bl(uz) . (410)
j=1
The recursive conditional mean and variance of X;;, given X;_14,..., X1, X¢—1, are re-

spectively given by:

i—1
. 601-7]4 (U1> 8(1 (UZ) 8bl(ul)
Mit = Z ( Ju; ) 0 Xje ¥ ( Ou; Aot ou;

J=1

Y

u; =0

(4.11)

i—1

02c; (u;) d%aj ; 0?b; 07b;(u;)
—o 1,5 \ Wi v
e ;( QuiOu; )m: t+z( a“za“ )m:oX " ouou; Ouidu;

(]

7
u; =0
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with obvious derivative notations. Denoting by m; and 7 the vectors whose components

are, respectively, m,; ; and 5?7,5, ie{l,...,n}, we have:

my = Cpn X+ A X1+ by, ( )
4.12

5? - CaXt—i_Aathl—i_baa

where C,, and C, are lower triangular matrices with 0 on the main diagonal. Denoting

by ¢, = X; — my, we have:
E <5i,t ‘ Xi—l,t; .. >X1,t, Xt—1> =0
\Y <5i,t | Xi165 -5 Xug, Xt—l) = 04,

and therefore B(e;; | Xi—1) = 0, V(e;¢ | X4—1) = E(37, | Xi—1) and Cov(eiy, 54| Xim1) = 0,
since ]E(gi,tgj,t ‘ Xt71> = E |:€i,t]E(5j,t ’ Xjfl,ta Ce 7X1,t7 thl) ’thl] = O, lf 7 < j We thUS

have the recursive VAR representation:
Xt = Cm Xt+Am Xt—l +bm+€t7 (413)

where ¢, is a martingale difference whose conditional variance-covariance matrix given the

past is diag[E(a}, | X;—1)]. From relation (4.13) we get:
X, = A Xog + by + (In — C) ey, (4.14)

where A, = (I, — C,,) A, and by = (I, — Cy) " tby,. Since C,, is lower triangular with
diagonal terms equal to zero, it is nilpotent, i.e. C" = 0 for any h > n and, therefore,
(I, —Cp) ' =1,+Cp+ ...+ C* 1. We get the conditional moments:

my = E(Xy | Xiq) = A Xy +Em
— (4.15)
S o= V(X¢ | Xi1) = (In — Cp) M diag[E(6?, | Xi—1)] (I, — Cr) 7V

In addition, from relations (4.12) and (4.15) we have:

E(E? ‘ Xt71> = CO’ my + Ao thl + bo = (Ca gm + Aa) thl + Cogm + ba

= AX, 1+ (say)
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and therefore:

/

S = (In—Cn) M diag[A Xy + 8] (I, — Cr) ™"

So, if we denote by € = (I,, — C,,) ! diag[A X;_; + b]'/?, we have the semi-strong VAR

representation:

Xy = Avm X1 +gm + Qe (4.16)

where 7; is a martingale difference with a unit conditional variance-covariance matrix.

4.3.2 Unconditional Moments and Stationarity Conditions

Let us denote by m; and f]t the unconditional mean and variance-covariance matrix
of X;. From (4.16) we have:

my = Ammt—l _’_,gm
Seo= V(me) +E(Z) (4.17)

= AnSia A, + (I = Cp) diaglAiyy + 0] (I — Cp)™"

or, written in vectorial form, we get:

vee(S,) = (me ® me) vee(Si )+ [(In — C) ™ @ (In — Co)™Y] (D ity +d)

(4.18)
where Dmy_1 + d = vec [diag(Am;—1 + b)]. We get the linear recursive system:
o Am 0 M1
vee(S) (L, —Cp) ™ @ (I, —Cp) Y| D A, ® A, vee(S_1)
b
+ . (4.19)

[(In - Om)il ® (]n - Om)il] d
Since the eigenvalues of A,, @ A, are all the products of the eigenvalues of Em, we get

the following result:

Proposition 4.3.1. The system (4.19) is convergent iif the moduli of the eigenvalues of

Em are all strictly smaller than one.

Corollary 4.3.1.1. When they exist, the stationary unconditional moments m and 5 of
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the process (Xi), obtained as the limits of the system (/.19), are:

o= (L= Ap) by

(4.20)
vee(X) = (L2 —An @A) (L, —Cp) ™t @ (I, —Cp) '] (Dm+4d).
In addition, if we iterate relation (4.14) we get:
Xirn = Al Xi+ Z AL |:bm + (In— Cp) ! 5t+h7i}
=0 (4.21)

h—1
= Azzn Xt + (In - AVZ’L)(IH - AVM)_I/gm + Z Avjn (In - Cm>71 Et+h—i
=0

and thus Cov(Xyip, X;) = Avfn 3. Therefore, we obtain the following result:

Proposition 4.3.2. If all the eigenvalues of /Tm have a modulus strictly smaller than
one, the process (X3) is (asymptotically) second order stationary, with mean m and auto-

covariance function AR .

A particular case occurs when Vu;, a;;(u;) = 0 for j > . In this case, the element X,
depends (conditionally and unconditionally) only on the elements located above him in
the vector X;. In other words this means that X;,; does not Granger cause X, (for any
j >1). The matrix A,, is then lower triangular and, since (I,,—C,,) is lower triangular with
diagonal terms equal to 1, the same is true for (I — Cy,)~L. Finally, A,, = (I — Cp) ™ Ap,
is lower triangular with the same main diagonal elements as A,,. This result implies that

the eigenvalues of Avm are the diagonal terms of A,, thus we have the following:

Corollary 4.3.2.1. If a; ;(u;) = 0 for j > i, (Xi)ez is second-order stationary iif:

(‘3%2- (Uz)

Vie{l,...,n}, D0

<1,
u; =0

that is the i’ element of the gradient of a;(u;), setting u; = 0, has a modulus strictly

smaller than 1.

4.3.3 Forecasting
From relation (4.21) we see that the optimal forecast of X, at ¢ is:

h—1
Xegnp = Ei(Xipn) = Ab Xi+ > Al b, (122)
i=0 22

= A" X, + (I, — Ah (I, — A,) by
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and the conditional variance-covariance matrix of the prediction error is given by:

h
vee [Vi(Xpp)] = 3 (A @ A, ) [(In = Co) ™ @ (I = C) '] (DXygsap +d) . (4.23)

i

|
—

Il
o

where Xjp_;_1; is given in (4.22). In summary, we have explicit forms for both the

optimal forecasts and the variance-covariance matrices of the prediction errors.

4.3.4 Extension to the General Case

/

. / / . .
Consider now the general case where X; = (X,,,..., Xy,), each X, is of size n; > 1.

The conditional log-Laplace transform of X, ;, given X;_;,,..., X, X;_1 is:

i—1

Yo(wi) =Y ;5 (i) X5 + ag(wi) Xo oy + by(ws), (4.24)

J=1

where w; is of size n;, and ¢; ;(e) and a;(e) transform vectors of size n; in vectors of
respective size n; and n. If we denote by m;; = E(X;+| Xi—14,..., X1, X4—1), we have

again:

i—1
oc (uy;) oal(u; Ob; (u;
ma= 3 (L) () B
3 u; =0 U; u; =0 U; u; =0
with obvious derivative notations. The Jacobians of ¢ ;(u;), aj(u;) and b;(u;) are now
respectively a matrix of size (n; X n;), a matrix of size (n; x n), and a vector of size n;.

Stacking the m;, for any i € {1,..., N} we get the same equation as (4.12):
mt - Om Xt + Am Xt—l + bm y (426)

where now the C,, and A,, are (nxn) matrices being defined by the blocks of the Jacobians
of ¢; ;(u;) and of a;(u;) respectively, setting u; = 0. Note that C,, is block-lower triangular,
the diagonal blocks being equal to zero. We have the block-recursive VAR representation

equivalent to Equation (4.13):

X, = CoXi+ Ay Xy1 + b + 61, (4.27)

the error term &; being a martingale difference whose conditional variance-covariance

matrix given X, ; is block-diagonal. The " block of this matrix can be expressed as
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E(ii,t | Xy_1) where Ei,t is defined by:

B3 () V& (0l (w) 0%bi ;)
i,j \7 (k) ij \ (k) i\t
it Z Z( Ou,;0u; N it +Z Ou,; Ou; - K Ou;Ou; ’

j=1 k=1 j=1 k=1 i i lu=0

(4.28)
where the exponent *) stands for the k' element of the considered vector. From Equa-
tion (4.28), it is clear that 3, is an affine function of the X+ and X;, ;. The VAR

representation of Equation (4.14) remains valid:

i

X, = A Xo g + by + (I —Cp) ey (4.29)

Also, we still have:

my = E(X¢|Xe) = Zm Xi1 +Em
== (4.30)

/

Y = V(Xi| Xi1) = (I, — Cp) L bdiag[E(Siy | Xio1)] (I, — C) Y,

the matrix bdiag[E(Z;; | X;—1)] being the block-diagonal matrix whose diagonal blocks
are E(X;;| X;—1), which are affine functions of the X, 1’s (see Equation (4.28)). The
stationarity conditions remain the same and, in the particular case where X, does not
cause X, for j > i, these conditions boil down to, for any ¢ € {1,..., N}, the eigenvalues
of the (n; x n;) Jacobian matrix of a;;(u;), setting u; = 0, must have a modulus strictly

smaller than one.

4.4 Pricing

Affine processes are well-known to be particularly useful for asset pricing purposes.
They constitute the basis of the so-called affine models (see e.g. Duffie and Kan [1996]
or Duffie and Singleton [1997]) where interest rates on assets are obtained as closed-form
affine combinations of the components of an affine process. In this section, we present the
properties of recursive affine processes for asset pricing considering an exponential-affine
stochastic discount factor. Notably, the change between the historical and the pricing

measure is available in closed-form.

4.4.1 Basic tools

Any no-arbitrage asset pricing model involves four basic mathematical tools (see gen-
eral Introduction of the thesis): the nominal short-term interest rate between ¢ — 1 and ¢

(known at ¢t — 1), denoted by 7,_1, which is specified as a function of X;; the family of his-
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torical conditional probability density functions f*(X; | Xi—1); the family of risk-neutral
conditional probability density functions fQ(X; | Xi-1) and the family of stochastic dis-
count factors (s.d.f.) between t — 1 and ¢ specified as a function of X; and denoted
by M;_14(X;). Under no-arbitrage assumptions, these tools are related by the following

expression:
SR X)) = FAUX | Xom1) MY (Xema) exp[—re—1(Xe1)] - (4.31)

We adopt the back modeling strategy (see Bertholon, Monfort, and Pegoraro [2008]). We
first specify a recursive affine risk-neutral dynamics in order to benefit from all the nice
properties of affine processes. In particular we have quasi-explicit forms for the multi-
horizon Laplace transform (see Gouriéroux, Monfort, Pegoraro, and Renne [2014]) and
multi-horizon truncated Laplace transforms, implying quasi-explicit equations for many
asset pricing formulas when the short rate is an affine function of X;. Once the risk-
neutral dynamics and the short-rate are specified, we see from Equation (4.31) that we
can choose to specify either any one-period stochastic discount factor M;_; ;(X,) satisfying
E;Q_I(Mt__lu(&)) = exp[r;—1(X;_1)], or the historical dynamics. At this stage, key consid-
erations are the interpretability of the s.d.f. and the tractability of the historical dynamics
in terms of inference. We follow a large literature recommending an exponential-affine
specification of the s.d.f.:

My11(X,) = exp[—re 1 (X, 1) = Mo Xo + 02 (M) (4.32)

where A;_; is a vector of risk sensitivity parameters, function of X;_;, and Y2 | (u) is the
risk-neutral conditional log-Laplace transform of X; given X;_;. We immediately see from
Equation (4.32) that the constraint E;,Q_1<Mt__l1,t(it)) = exp|r_1(X, ;)] is automatically
satisfied. Let us know examine the properties of the family of historical dynamics which
are obtained if we choose a recursive affine risk-neutral dynamics and a s.d.f. given by
Equation (4.32).

4.4.2 Recursive historical dynamics and Esscher transforms
From Relations (4.31) and (4.32) we see that:
R X)) = FAXG | X)) exp[ o X — 2 ()] (4.33)

In other words, fF(X;|X, 1) is the conditional Esscher transform of fQ(X;|X, ;) as-

sociated with the parameter vector A\;—;. From Equation (4.33) we also see that the
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conditional Log-Laplace transform in the historical world is given by:

Ui () = 9 (ut Ar) = 9y (M) - (4.34)

An important issue is now the tractability of the historical dynamics. In the next propo-
sition we show that the historical dynamics has a recursive structure in which each con-

ditional distribution is easily derived from the corresponding risk-neutral one.

Proposition 4.4.1. Let us suppose that the risk-neutral dynamics of the n-dimensional
stochastic process Xy = (XLt, o ,X}V7t)’ 18 recursive affine and that the one-period stochas-
tic discount factor is given by Fquation (4.32). The prices of risk \y_1 are expressed as
a block vector \i—1 = ()‘,1,1&717 o 7/\/]V,t—1)/' Then, the historical conditional distribution of
Xn-it, given (Xn—i—1t,. .. ,let,ﬁ) s the conditional Esscher transform of the corre-
sponding risk-neutral distributions associated with the parameters XN—i,t—l; obtained from

Ait—1's by the backward recursion:

ANE-1 = ANg-1
B i _ (4.35)
AN—it—1 = AN—ig—1+ Z CN—k+1n—i(AN—kt14-1), 1€ {1l,...,N —=1}.
k=1
Proof. See Appendix 2. [ |
From proposition 4.4.1 it is clear that if the components Xivt, e 7X]/V7t are conditionally

independent in the risk-neutral world given X;_;, the same is true in the historical world.

In this case, we obtain XN_i,t_l = Ay_it—1 foranyi € {0,..., N—1}. Moreover, if up to a
certain order p < N, we have Ax_;;—1 = 0 for i € {0,...,p}, we have XN_M_I =0forie
{0,...,p} and thus, the conditional distributions of Xy _;¢, given Xy 14,..., X1, Xy
are the same under both measures, for all i € {0,...,p}.

Corollary 4.4.1.1. If we denote by w;@t(ul) the risk-neutral log-Laplace transform of X,

given X;_14,..., X1, Xi—1, the corresponding historical log-Laplace transform is:
P ) = 02 (u; + N — 2\, 4.36
z,t(ul) wz,t(“l“‘ it-1) wz,t( it-1) - (4.36)
Proof. Straightforward consequence of Proposition 4.4.1. [ |

Corollary 4.4.1.2. Ith_l does not depend on X,_1, then the historical dynamics of (X;)

18 recursive affine.

Proof. Tt N1 = X, it is immediately seen from Equation 4.36 that wft(ui) is affine in
Xi—l,t7 s 7X1,t7 Xt—l' n
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The previous results show that a recursive structure of the historical dynamics is easily
derived from the risk-neutral one. Moreover, as shown below, the results about recursive
conditional moments and VAR representations are easily transposed to the historical

dynamics.

4.4.3 Moments and VAR representation of the historical dynam-
ics

Let us consider the risk-neutral conditional log-Laplace transform of X; ;, given X; 4, ...
X141, X¢—1, introduced in Equation (4.24):

i—1

” (u;) Z ¢;j(ui) Xji + a () Xy A+ bi(u) (4.37)

Jj=1

=P , e "
and let us denote by mﬁft and 2, , the corresponding recursive historical conditional mean

and variance-covariance matrix. Then, we have the following proposition:

Proposition 4.4.2.

6¢ (wi) =P 32?/1 (wi)
—P 1,0 . 1,t
it = ( u; ) o Ee= ( A

i=Xit—1 =i t—1

Proof. We know that 7;, is the gradient of ¢7,(u;) setting u; = 0 and f]zt is the matrix
of second order derivatives of ¢, (u;), setting u; = 0. The result follows directly from the

expression of ¥}, (u;) given in Corollary 4.4.1.1. [ |

Proposition 4.4.2 has several interesting consequences. Considering the case n; = 1 for
the sake of notational simplicity (the results in the general case are easily obtained), we
have:

(i) the expressions of m; and if) are given by the same equations as in Equation (4.12)
in which the matrices C,,, A,., b, Cs, A, and b, are replaced by the equivalent
matrices computed from the first-order and second-order derivatives of the (risk-
neutral) functions ¢; ;(e) and a;(e) evaluated in Xm_l.

(#7) the recursive form of Equation (4.13) and the VAR of Equation (4.16) are still
valid representations, the only difference being that the new matrices C,,, A.., b,
A, b, ﬁm and Zm may depend on X1 if \;j4—1 depends on X, ;.

(4ii) if the A;;1’s do not depend on X;_,, Proposition 4.3.2, Corollary 4.3.2.1 and the

forecasting formulas (4.22) and (4.23) remain valid using the new matrices.
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4.5 Inference

Let us denote by 6 the set of unknown parameters. The estimation methods of 6
primarily depend on the observability of the vector X; and on the availability of other

observations.

4.5.1 The observable process case

If the process (X;)cz is entirely observable, and if the p.d.f.’s fF (X, | Xj_ 1.4, ..., X14, Xy—1;0)
are tractable, then the log-likelihood function L£1(f) given by:

T [N
Lr(0) = Z [Z (log fr (Xio | Xy - - - ,X1,t>Xt—1;9)> +log (X1, Xi-1;0)| (4.38)

1=2

is available in closed-form, and the maximum likelihood estimator (MLE) can be com-
puted. If the aforementioned p.d.f.’s are untractable, we can use the pseudo maximum
likelihood of order two (see Gouriéroux, Monfort, and Trognon [1984]) since the exact
expressions of the recursive conditional mean and variance-covariance matrices in the
historical world, namely 7; ,(0) and iﬁt(ﬁ), are easily deduced from the risk-neutral con-
ditional log-Laplace transforms wi@t(ul) (see Proposition 4.4.2). The pseudo maximum
likelihood method thus consists in minimizing the following criterion with respect to 6:

R T N / 1
§= arg;mnz S {log ‘iﬁ t(e)‘ + [XM - mﬁt(e)} (ifft(e)) [Xi,t - mﬁft(e)] } . (4.39)

t=1 i=1

4.5.2 The (partially) latent process case

In some cases the maximum likelihood method can still be used when X, is partially
observable. For instance, if X; = (Xi,t, X;J)/, where X5, is observable and X ; is a latent
Markov chain (with a transition probability matrix possibly depending on Xy, ;) it may
be possible to compute the MLE using the Kitagawa-Hamilton algorithm. I@ral, it is
always possible to consider the equivalent of the VAR representation (4.16) in the historical
world as a set of transition equations and to add measurement equations which depend
on the particular asset pricing model we consider. Since the risk-neutral dynamics is
affine, we could for instance obtain interest rate formulas (based on risk-less or defaultable
bonds) as affine functions of X; and the introduction of additive measurement errors would
provide a set of affine measurement equations. Finally, we obtain a state-space model.
The estimation of this state-space model would depend in particular on the quantitative

or qualitative nature of the components of X;. A mixture of (extended) Kalman filter,
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Kitagawa-Hamilton filter or inversion techniques (see Chen and Scott [1993], Pearson and
Sun [1994], Monfort and Renne [2013|, Monfort and Renne [2014]) can provide a solution

to the estimation problem.

4.6 Conclusion

This chapter develops a new class of multivariate affine processes that we call recursive
affine. We define the dependence between the components of the entire vector in a block
recursive fashion. More specifically, recursive affine processes are defined through their
conditional Laplace transform: a process is said to be recursive affine if the conditional
Laplace transform of each block composing the total process, given the past values of the
process and the present values of blocks located above the considered block in the vector,
is an exponential-affine function of the conditioning variables. The first block therefore
depends only on the past values of the whole process, while the second block depends on
the past values of the whole process and on the present values of the first block. This
definition allows these processes to depart from the conditional independence assumption

to build multivariate affine processes.

We show that this class is very wide providing several examples, such as stochastic volatil-
ity processes, multivariate discrete-valued processes, or vectorial autoregressive gamma
processes. Since recursive affine processes are affine, we derive the usual properties as-
sociated with this class of processes. We show that recursive affine processes possess a
weak VAR representation, leading to simple closed-form formulas for both conditional
and marginal first two moments of the entire process. This representation also allows for

a straightforward computation of forecasting formulas.

Last, we show how the recursive affine processes can be used for asset pricing purposes con-
sidering an exponential-affine stochastic discount factor. We provide closed-form change
of measure formulas using the Esscher transform of the conditional density functions. In
the end, we document estimation techniques that can be used to estimate models with

recursive affine processes.
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Appendices of Chapter 4

4.A Proof of Proposition 4.2.1

The result is obvious for ¢ = 1. Let us assume that it is true ¢ — 1, and let us show that

is also true for 7. We have:

E [exp ulet + ...+ U;Xi,t) | Xt71i|

{exp (Z Uka,t> E [eXP(Uin‘,t) | Xigy ooy Xic1 Xt71i| |Xt1}

= E {exp (Z ukat> exp (Z Ci (i) Xt + a; (ul)Xt 1+ b (ul)> |Xt1}
i—1

= exp a;(u;) X1 + b; (uz)) E {exp (Z(uk + Ci,k(ui))le,t> \th}

= E

k=1
= exp (a;(ui)Xt_l + bz(ul))
X exp [Zii_l(ul + cm(ui), e, Ui + Ci7i_1(ui>)/Xt_1
+gi—1(u1 +cin(ug), .. uimg + Ci,i—l(ui))}

’

= exp { [52‘—1(1&1 +cin(u), .o uimr + (W) + ai(w) | Xioq

+ bi,1<ul + Ci71<ui), e, Ui + Cm',l(ui)) + bl(ul)] } .

The result follows by identification.

4.B Proof of Proposition 4.4.1

Let X be a random variable. The Esscher transform of any density function fx(z) is

given by the family of functions:

_ exp(Az) fx(z)
Ix(@) =g [exp(AX)]

The proof of this proposition is based on the two following lemmas.

Lemma 4.B.1. Let us consider a random vector (X, X,) with p.d.f. f(X1,Xs) and the
Esscher transform of f(X1,Xs) associated with parameters X\ = (X}, \y) and denoted by
fMNX1, Xs). Then, the conditional distribution fA(Xo|X,) is the Esscher transform of
f(Xo| X1) associated with parameter the 5.
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Proof. We have by definition, using the notation o for indicating proportionality:

f/\(Xl, XQ) X f(Xl, XQ) exp <)\/1X1 + )\/2X2>
or fANX1,Xo) o f(X1) exp(A;X1) f(Xa| X1) exp(ApXo) (4.40)

and fA(Xo|X1) o< f(Xo|X1) exp(AyXa),

which gives the result. |

’

Lemma 4.B.2. Let us consider a n-dimensional random vector X = (X,,..., X)), with

p.d.f. f(X1,...,X,), and the Esscher transform of f(Xi,...,X,) associated with param-

eters X = (N\},...,\,) is denoted by fA(X1,...,X,). Let us assume that the Laplace
transform associated to the conditional p.d.f. f(X;| Xi—1,...,X1) is of the form:

/

, 1€{2,...,n},

(4.41)

pi(u) = Elexp(u'X;)| Xio1,...,X1] = exp [ZCH )X + bi(u)

with ¢1(u) = E [exp(u' X1)] = exp [b1(u)]. Then, the following results hold:

(a) The marginal p.d.f. fN( X1, ..., X,_;) is the Esscher transform of f(X1,..., Xn )
associated with the parameters

)\j + Z Cn—k+1,5 (Xn—k+1) ) j € {17 s — Z} ) (442)
k=1

(with the convention ZCH_HLJ(X”_;CH) =0, for i = 0) where the Xj are obtained
k=1
recursively from:

)\n = )\n
i B (4.43)
A—i = A—i + ch—k+1,n—i(>\n—k+l) , 1€ {1, e, — 1} .
k=1
(b) The conditional distribution fA(Xn_i| Xn_i_1,...,X1) is the Esscher transform of
f(Xp—i| Xn—iz1,...,X1) associated with the parameter Xn_i obtained from (4.43).

Proof. Let us consider, first, the computation of f(Xi,..., X, ), and then the compu-
tation of the associated fA( X, ;| Xp_ i1, ..., X1).

— if i =0, (a) is true.
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— Let us assume now that a) is true for i

/

X X)) o f(Xn, -, Xosg) exp Z </\j + Z Cn—k+1,j(xn—k+1)> X;
j=1 k=1
(4.44)
Replacing f(Xl, PN ;Xn—i) by f(Xh PN aXn—i—l) f(Xn—z | Xl, ce 7Xn—i—1) on the I'lght—

hand side of the previous relation and integrating with respect to X,,_; gives:

fA<X17 s 7Xn7i71>

’

n—i—1 i
o< f(Xi1,. .. Xp—i—1) exp Z <)\j + Z an+1,j()\nk+1)> X;

j=1 k=1

/

X /f(Xn—i | Xi,... ’Xn—i—l) exp <>\n—i + Z Cn—k+1,n—i(Xn—k+l)> Xn—i| dXy;

k=1

’

n—i—1 A
XX f(Xl, Ce aXn—i—l) €xXp Z <)\J + Z Cn—k-l—l,j()\n—k—i-l)) Xj

j=1 k=1

!

X E § exp <>\ni =+ Z an+1,ni()\nk+1)> Xn—i ’ Xy Xpoin

k=1

n—i—1 i
X f(le e 7Xn7i71> exp [ Z <)\j + Z an+1,j<)\nk+1)> Xj]
j=1 k=1
n—i—1 i _ '
X exXp Z Cn—i,j <)\n—i + ch—k—i-l,n—z’(/\n—k-l—l)) X;
j=1 k=1

’

n—i—1 i+1
XX f(Xl, Ce aXn—i—l) €exXp Z <)\J + Z Cn—k-l—l,j()\n—k—i-l)) Xj

j=1 k=1

which is the result for i+1. Finally, Lemma 4.B.1 and the formula for fA(Xy,..., X,_;)
show that fA(X,_;| X1,..., X,_i_1) is the Esscher transform of f(X,_;| X1, ..., Xn_i_1)

associated with the coefficient:

)\n—i + Z Cn—k+1,n—i<>\n—k+1> = Xn—i . (445)

k=1
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Now, the proof of Proposition 4.4.1 is a direct consequence of part (b) of Lemma 4.B.2

and of formula (4.43), if we consider the conditional distribution given X;_;.
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Chapter 5
Staying at Zero with Affine Processes

This chapter is based on the article “Staying at Zero with Affine Processes: An Application
to Term Structure Modeling” of Monfort, Pegoraro, Renne, and Roussellet [2014].

Abstract

We build an Affine Term Structure Model that provides non-negative yields at
any maturity and which is able to accommodate a short-term rate that stays
at the zero lower bound (ZLB) for extended periods of time while longer-
term rates display high volatility. We introduce these features through a
new univariate non-negative affine process called ARG-Zero, and its multi-
variate affine counterpart (VARG), entailing conditional distributions with a
zero-point mass. The affine property of this new class of processes implies
both explicit bond pricing and quasi-explicit lift-off probability formulas. We
provide an empirical application to Japanese Government Bond (JGB) yields,
observed weekly from June 1995 to May 2014 with maturities from six months
to ten years. Our four-factor specification is able to closely match yield levels

and to capture conditional yield volatilities.
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Résumé

L’hypothése de non-arbitrage des actifs financiers implique que les taux d’intérét des
obligations sans risque ne peuvent théoriquement atteindre des niveaux négatifs. En effet,
si les taux d’intérét devenaient négatifs, les investisseurs préféreraient conserver de la mon-
naie et bénéficier d’un taux d’intérét nul. Ce phénoméne est appelé “taux plancher & zéro”
(zero lower bound). En réalité, les frictions financiéres peuvent conduire les taux d’intérét
a devenir négatifs, mais il existe toujours une borne inférieure. On considére arbitraire-
ment cette borne basse a zéro dans ce chapitre. A la suite de la récente crise financiére,
les principales zones monétaires mondiales (Etats-Unis, zone Euro, Japon, Royaume-Uni)
ont vu le taux d’intérét a court terme de leurs obligations sans risque chuter a des valeurs
proches de zéro. Cette situation, résultat d’une politique monétaire la plus accommodante
possible, est associée a un fait stylisé majeur : lorsque les taux d’intérét a court terme
tombent au plancher, ils restent & zéro pendant de longues périodes. Le Japon en est un
parfait exemple : les taux d’intérét japonais (JGB) ont atteint le taux plancher a zéro
entre 2001 et 2006 et depuis 2008, malgré une courte remontée entre les deux périodes.
En conséquence, la partie longue de la courbe des taux d’intérét décroit car I’anticipation
des taux d’intérét a court terme futurs est plus basse et la totalité de la courbe des taux

s’aplatit.

Ce comportement pose probléme a la majorité des modéles de taux d’intérét usuels. Le
modéle affine gaussien implique une probabilité strictement positive d’obtenir des taux
d’intérét négatifs; les modeéles quadratiques de structure par terme (QTSM) ou Cox-
Ingersoll-Ross produisent des taux d’intérét positifs, mais traitent le plancher a zéro
comme une barriére réflexive, et sont incapables de générer des taux d’intérét a court
terme restant ancrés a zéro pour de longues périodes. Récemment, les modéles de taux
shadow' ont permis de prendre en compte simultanément la positivité des taux et la
persistance des taux au plancher. En revanche, ces modéles sortent de la classe des mo-
déles affines de taux d’intérét et perdent les propriétés associées : les taux d’intérét a
long terme ne peuvent plus étre obtenus par une combinaison des facteurs disponible en
formule fermée et doivent donc étre simulés. Ces modéles sont donc associés a une com-

plexité computationnelle plus élevée, notamment pour la phase d’estimation.

Ce chapitre introduit un modéle affine de taux d’intérét capable de produire des taux
positifs & toutes maturités, un taux d’intérét & court terme pouvant atteindre et rester
au plancher, et dont les taux longs peuvent varier méme lorsque le taux court est au

plancher et sont exprimés comme des combinaisons affines des facteurs disponibles en

1. Terme non traduit pour désigner le shadow rate model.
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formule formée. Ce modéle s’appuie sur un nouveau processus univarié affine appelé auto-
régressif Gamma-zéro (ARGq). Ce nouveau processus est défini a 'aide de la distribution
statique gamma-zéro. Une variable aléatoire est gamma-zéro si elle est distribuée comme
une gamma décentrée a parameétre de degré de liberté Poissonien. Lorsque la variable de
mixage Poissonienne vaut zéro, la variable gamma est tirée dans une distribution conver-
geant vers la masse de Dirac en zéro. De cette maniére, on obtient une variable aléatoire
continue sur R, dont la probabilité d’étre exactement égale a zéro est non-nulle. On intro-
duit la dynamique auto-régressive en supposant que l'intensité de la variable de mixage
Poissonnienne est une fonction affine de la réalisation de la variable gamma-zéro a la pé-
riode précédente. On obtient un processus univarié continu sur R, pouvant atteindre zéro
et y rester pour des périodes prolongées. La premiére section montre que les processus
gamma-zéro sont affines ce qui permet de dériver aisément leurs conditions de stationarité,
leurs deux premiers moments conditionnels et leurs deux premiers moments marginaux
(voir Chapitre 4). De plus, on montre que les probabilités que ces processus atteignent

zéro et restent a zéro sont disponibles en formules fermées.

Afin de relier les processus ARGq aux processus auto-régressifs gamma, on introduit une
classe générale de processus appelés ARG étendus. Cette classe de processus est définie a
I’aide de quatre parameétres. En imposant certains de ces parameétres a zéro, on retrouve
les processus ARG classiques (sans masse en zéro) et les processus ARGy (avec masse en
zéro). De la méme maniére, on montre que les ARG étendus sont des processus affines et

on dérive leurs différentes propriétés.

A Tlaide de ces processus, on développe un modéle affine de structure par terme des taux
d’intérét. En utilisant la stratégie du back modeling, on crée un processus multivarié affine
sous Q en empilant des composantes ARGq et ARG dans un méme vecteur (voir Cha-
pitre 4). On suppose les différentes composantes conditionnellement indépendantes. En
revanche, on impose une forme triangulaire supérieure a la matrice auto-régressive, autori-
sant de la causalité de Granger des composantes gamma vers les composantes gamma-zéro.
Le taux d’intérét a court terme est défini comme une combinaison linéaire des variables
ARG uniquement. Comme toutes ces variables possédent une masse en zéro, le taux
d’intérét a court terme posséde lui aussi une masse en zéro, conformément a son com-
portement au plancher. En introduisant une constante négative dans la spécification du
taux d’intérét a court terme, on peut aussi considérer une borne basse négative. Le mo-
déle ainsi formulé est affine et les taux d’intérét a toutes les maturités sont des fonctions
affines de I'ensemble des facteurs gamma et gamma-zéro. En conséquence, méme lorsque
le taux court est a zéro, i.e. lorsque les composantes gamma-zéro sont a zéro, les taux

longs peuvent continuer a fluctuer grace aux composantes gamma. En utilisant un fac-
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teur d’escompte stochastique exponentiel-affine, on obtient le méme type de dynamique
sous la mesure physique, avec des paramétres différents. Comme dans le cas univarié, les
probabilités que le taux d’intérét & court terme atteigne zéro et y reste sont disponibles
en formule fermée sous les deux mesures. En revanche, elles peuvent varier dans le temps

dans le cas multivarié.

On estime ce modéle avec quatre facteurs latents en considérant des taux d’intérét sur
obligations souveraines japonaises de 1995 a 2014. Afin d’obtenir des résultats empiriques
satisfaisants, on inclut dans I’ensemble de variables observables des anticipations de taux
futurs issues de sondages, ainsi que des indicateurs de la variance conditionnelle des taux
d’intérét. Le modéle montre une performance satisfaisante a reproduire le comportement
des taux d’intérét, de leur volatilité et des anticipations de taux d’intérét. A I'aide des es-
timations, on calcule les probabilités que les taux restent au plancher a différents horizons
(2 et 5 ans), sous la mesure historique et risque neutre. Nos calculs montrent que ces pro-
babilités varient substantiellement au cours du temps et la différence entre les probabilités

calculées sous les deux mesures peut atteindre les 30 points de pourcentage.
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5.1 Introduction

Assuming that storing cash is costless, nominal interest rates cannot turn negative
since cash provides a zero interest rate and is always an alternative investment to bonds
(see e.g. Black [1995]). In other words, the sole existence of currency implies a zero lower
bound (ZLB) on bond yields. > Before the outbreak of the 2008 financial crisis, the Bank
of Japan was the only large central bank that had brought its policy rates — which drive
the short-end of the yield curve — to zero. From 2010 on however, bringing policy rates
close to the ZLLB has become a common situation for the Fed, the ECB, and the BoE.
In all of these currency areas, sharp decreases of short-term interest rates have led the
medium- to long-term yields to drop deeply, pushing the entire yield curves to unprece-

dented low levels.

In this context, reproducing low but non-negative interest rates has become a great con-
cern for the specification of term structure models, and still represents a challenging
task.? Specifically, to the best of our knowledge, no existing term-structure model is able
to simultaneously match the three following characteristics:

(i) consistency with non-negative yields;

(#7) availability of closed-form bond pricing formulas; and

(7ii) the ability to accommodate extended periods of zero short-term rates and to

evaluate associated of leaving the zero lower bound (lift-off probabilities).

In this paper, we first introduce a new affine process that opens the way to term-structure
models consistent with (3), (9i), and (4ii) simultaneously. This process, which we call Au-
toregressive Gamma-zero (ARGy), builds on the original ARG process (see Gouriéroux
and Jasiak [2006], Le, Singleton, and Dai [2010] or Creal and Wu [2015]) by extending it
to a zero degree-of-freedom parameter. This process has a crucial distinctive feature: its
conditional distribution given the past values encompasses a point-mass at zero.” This

attractive property allows its dynamics to satisfy (i) and (44).° We explore the properties

2. In reality, holding cash is not costless since it is subject to theft or physical distraction and is
complicated to use for large transactions. These features, along with flight-to-safety phenomena or non-
conventional monetary-policy measures, may result in negative interest rates. The framework we develop
in the present paper is consistent with the existence of a lower bound which can be negative.

3. Typically, in the widely-used Gaussian no-arbitrage models, the yields of all maturities can take
negative values with a strictly positive probability (see e.g. Dai and Singleton [2003], Piazzesi [2010],
Diebold and Rudebusch [2013], Duffee [2012] or Gurkaynak and Wright [2012]).

4. While the model proposed by Renne [2012] is consistent with these three points, it can only generate
a discrete number of positive yield curves. That is, in Renne’s framework, the support of the positive
short-term (policy) rate is discrete. Here, we consider short rates whose support is the set of non-negative
real numbers (denoted by RT).

5. This appealing feature is obtained by building on Siegel [1979], who introduces a non-central Chi-
squared distribution with zero degree of freedom. This distribution has also a Dirac mass at zero.

6. As noted by Kim [2008], coping with those two features for a short-term interest rate is of utmost
importance when building a term-structure model with observed option prices.
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of this univariate process, explicitly disclosing its exponential-affine conditional Laplace
transform and its first two conditional and unconditional moments. This univariate affine
process is then extended to a multivariate affine process which we call Vectorial Autore-
gressive Gamma (VARG). We adequately exploit these processes to build a multi-factor
term-structure model in which the yields at all maturities are non-negative, the short-term
interest rate can stay at zero for extended periods of time, and the lift-off probabilities

are easily computed under both the historical and pricing measures.

We directly address the issue of point (i), making closed-form bond-pricing formulas
available. Indeed, our short-term interest rate is specified as a linear combination of
components that follow VARG processes under both historical and risk-neutral measures.
Hence our framework boils down to an Affine Term-Structure Model (ATSM) and the
zero-coupon yields for all maturities are explicit affine functions of the factors where
the loadings are computable recursively (see e.g. Duffie and Kan [1996] or Darolles,
Gouriéroux, and Jasiak [2006]).

The historical and risk-neutral affine property of our term-structure model allows for a
great flexibility at the estimation stage. First, assuming the presence of latent factors,
the estimation technique is computationally simple using Kalman filtering techniques.
Indeed, transition equations of the underlying state-space model are simply given by the
VAR representation of our factors’ dynamics. Second, it implies that (a) forecasts and (b)
conditional variances of yields are affine functions of the factors. Accordingly, this allows
us to easily augment the set of measurement equations by relating linear combinations
of our latent factors with observable proxies of (a) surveys of professional forecasters and
(b) conditional (GARCH-based) yield variances. Including these equations respectively
improves (a) the estimation of the factors’ physical dynamics (see Kim and Orphanides
[2012]) and (b) the consistency of the estimated model with sample moments of order

two. ”

As Japan has been confronted with extremely low interest rates since the mid-90s, its
sovereign bond yields constitute a relevant source of data to examine the ability of term-
structure models to handle the ZLB.® Our estimated model both shows a very good fit

of yields and of conditional yield volatilities across maturities. We also find differences

7. Among others, Collin-Dufresne and Goldstein [2002], Adrian and Wu [2009], Andersen and Benzoni
[2006], Trolle and Schwartz [2009], Jacobs and Karoui [2009], Almeida, Graveline, and Joslin [2011],
Bikbov and Chernov [2011], Creal and Wu [2014] and Christensen, Lopez, and Rudebusch [2014] study
the ability of term-structure models to fit conditional volatilities of yields.

8. See e.g. Gorovoi and Linetsky [2004], Ueno, Baba, and Sakurai [2006], Ichiue and Ueno [2007], Kim
and Singleton [2012], Christensen and Rudebusch [2013], Kim and Priebsch [2013], Krippner [2013].
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between historical and risk-neutral lift-off probabilities. Our model’s estimates imply that
at the b-year horizon, the difference between the risk-neutral and historical probabilities

of exiting the ZLLB can be as large as 35 percentage points.

The present article relates to the small but fast-growing literature that develops and inves-
tigates ZLB-consistent models. Three main approaches stand out: shadow-rate models,
quadratic term-structure models (QTSM) and models involving square-root (CIR) pro-
cesses. The shadow-rate model was introduced by Black [1995] and has been adopted by
several recent contributions (see e.g. Ueno, Baba, and Sakurai [2006], Ichiue and Ueno
[2007], Ichiue and Ueno [2013], Kim and Singleton [2012|, Krippner [2012, 2013|, Bauer
and Rudebusch [2013], Christensen and Rudebusch [2013], Kim and Priebsch [2013] and
Wu and Xia [2013]). In this model, the short-term rate is defined as the maximum between
zero and the so-called shadow rate and ZLB periods occur when the latter turns negative.
Typically, if the shadow rate follows a Gaussian process, the model can generate prolonged
periods of ZLB, making it consistent with features (i) and (iii). However, there are no
closed-form formulas available for bond prices (this inadequately adresses point (7)) and
one has to resort to simulation or approximation techniques to estimate the model (see
Kim and Priebsch [2013] or Wu and Xia [2013]). By contrast, QTSM and models based
on square-root processes provide closed-form bond pricing formulas and positive yields
(seminal contributions are those of Ahn, Dittmar, and Gallant [2002], Leippold and Wu
[2002], Cox, Ingersoll, and Ross [1985], Pearson and Sun [1994] and Dai and Singleton
[2000]). Nevertheless, these models treat the ZLB as a reflecting barrier. In that case, the
probability of having an unchanged short-term rate for two subsequent periods is zero,

which makes them inconsistent with feature (4).°

The remainder of the paper is organized as follows. Section 5.2 introduces the non-negative
ARGy process and highlights its ability to stay at zero. Section 5.3 presents the associated
affine term-structure model and derives tractable lift-off probability formulas. Section 5.4
describes the estimation strategy and presents the empirical results. Section 5.5 examines
the distributions of future lift-off dates. Section 5.6 concludes and an Appendix gathers

proofs and technical results.

9. More precisely, in the case of the CIR process, zero is either a reflecting barrier or an absorbing
state [see Karlin and Taylor [1981] and Longstaff [1989]].
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5.2 Non-negative affine processes with zero lower bound

spells

In this section we introduce the univariate Gamma-zero distribution and extend it
to the dynamic case with a new class of processes that we call Autoregressive Gamma-
Zero (see Section 5.2.1). A multivariate generalization will be considered in Section 5.3.
Like the continuous-time Cox, Ingersoll, and Ross [1985] process — or its discrete-time
counterpart, the Autoregressive Gamma process of Gouriéroux and Jasiak [2006] — it
cannot take negative values. However, the Autoregressive Gamma-zero can reach the
zero value with a strictly positive probability, stay at this lower bound for an extended
period of time and become positive again. We present its main properties in Section
5.2.2 and a generalization to the Extended Autoregressive Gamma process is developed

in Section 5.2.3.

5.2.1 The ARG process and the zero lower bound

Let us first recall that a Gamma distribution ~, () is a positive distribution defined
by a shape (or degree of freedom) parameter v > 0 and a scale parameter p > 0. Its

probability density function (p.d.f.) is given by:

v—1
exXpl—x/u)x
ey S

Note that 7, (p) converges in distribution to the Dirac distribution at zero when v goes
to zero. A non-central Gamma distribution can be defined as an extension of the gamma
distribution. Consider a Poisson random variable Z of positive parameter A, the non-
central Gamma distribution 7, (A, ) is a mixture of 7,4 z(u) distributions (Z being the
mixing variable), defined on the set of strictly positive real numbers (denoted by R*T),
where v, A and p are strictly positive. Remarkably, although its p.d.f. is complicated, its
Laplace transform is extremely simple. Indeed, if X ~ ~, (A, 1), we have:

u 1

, for u<—.
I—up Iz

ox(u) = Elexp(uX)] = exp |—vlog(l —up) + A

This distribution can be adapted to the case v = 0 if vy(u) is considered as the Dirac
distribution at zero. We obtain, by definition, a Gamma-zero distribution featuring a

point mass at zero.

Definition 5.2.1. Let X be a non-negative random variable. X follows a Gamma-zero

distribution with parameters X\ > 0 and p > 0, denoted X ~ ~o(\, 1), if its conditional
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distribution given Z ~ P(N) is
X7~ aa). 6.1)

The p.d.f. and the Laplace transform of X, respectively fx(x; A\, pu) and px(u; A\, ), are
given by:

+

exp(—x exp(—A)\*

fx@s Ap) = > [ i_{” X (Z, ) Lizsop + exp(—=A)L{z=0}(5.2)
z=1 )

wp 1
ox(u; A\, pu) = exp {A—} for u< —.
(1 — up) p
(Note that the p.d.f. is with respect to the sum of the Lebesgue measure on R and the

unit mass at zero.)

Again, despite the complexity of the density function of Equation (5.2), the Laplace trans-
form of the Gamma-zero distribution is very easy to manipulate. Also, Equation (5.2)
sheds light on a key feature of the Gamma-zero distribution: it has a point-mass located
at £ = 0, and P(X = 0) = exp(—A). It is extremely easy to simulate in yo(\, p) by first
simulating Z in P(A) and then X in v,(u), where z is the result of the first simulation.
As Z equals zero with a strictly positive probability, X also equals zero with a strictly

positive probability.

We now turn to the dynamic case, where (X;) is a discrete-time random process that we
call Autoregressive Gamma-zero (ARG-Zero) process, denoted by ARGq(a, 8, p) (where
a>0,8>0,pu>0).

Definition 5.2.2. The random process (X;) is a ARGy(a, B, 1) process of order one
if the conditional distribution of X1, given Xy = (X4, Xy—1,...), is the Gamma-zero

distribution:
(Xt+1|&) ~ ’70(05 + /BXt7M) fO’f’ Q 2 07 n > 07 6 > 0.

The conditional probability density function f (xi1 | Xy; 0, 8, 1) and the conditional Laplace

10. Observe also that ~o(A,p) is an infinitely divisible distribution given that ox(u;A,pu) =
[ox (u; A/n, 1)]™ (see Filipovic and Zabczyk [2002]).
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transform ox(u; o, B, 1) of the ARGy(a, B, u) process are respectively given by:

f x| X0, 8,p) = JFZ‘X: exp((_;fll)/!i)ff;ll X eXp[_(aJrﬁ);t)](aJrﬁXt)z Lai>03
+  exp(—a— X)), 0} (5.3)
oxi(u; o, Bp) = E[exp(uXiy1) | Xi]
= exp [1_uu(a+ﬂXt) ,  for u</i. (5.4)

As for the static Gamma-zero distribution, the second element of Equation (5.3) empha-
sizes the zero-point mass of the ARGq process. The conditional probability of the process
reaching zero at date ¢ + 1 is time-varying and given by exp(—a — 3 X;). Note that there
are two main differences between this family of processes and the ARG processes intro-
duced in Gouriéroux and Jasiak [2006]. First, in our case we take the shape parameter
equal to 0, which allows the presence of the zero-point mass. Second, we introduce a
positive intercept « in the Poisson intensity parameter, preventing the zero lower bound
from being an absorbing state. Indeed, when X; = 0, the value X,;,; equals zero with
probability P (X1 = 0| X; = 0) = exp(—a) < 1. (In the multivariate case, this proba-

bility will depend on the information available at date t).

It is also readily seen from relation (5.4) that (X;) is a discrete-time affine, or Car(1),
process (see Darolles, Gouriéroux, and Jasiak [2006]) since ¢x+(u; o, 5, 1) is exponential-
affine in X;. This class of processes is particularly useful for building term structure
models of interest rates, allowing for simple computation of moments and closed-form
tractable pricing formulas. In the next sections, we use the fact that recursive formulas

are available for the computation of multi-horizon Laplace transforms defined as:
Oen(ug, ... up) = Ey[exp(ug Xegr + - oo+ up Xegn)] -

We illustrate the aforementioned properties of the ARGq(a, 3, pt) process and its relevance
for interest rate modeling in a ZLB setting with a simple simulation exercise. Let us denote
by 7, the risk-free rate between ¢ and t+1 (known in ¢) and let us assume that its dynamics

is given by the following univariate ARG process:
(re|re-1) ~vola+ Bri-1, p1), (5.5)

where a and [ are positive scalars. A model for the short-term rate dynamics described
by relation (5.5) can accommodate both protracted periods of zero short-term rates and

periods of fluctuations. We simulate this process for 500 periods with parameters cali-
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brated as a = 0.1, f = 990 and p = 0.001. These parameters are such that the marginal
mean and standard deviation of process (r;) are about 0.01 and 0.001, respectively. For
such parameters, the conditional probability of staying at the zero lower bound is around
0.9. Figure (5.1) presents the simulated trajectory (left panel) and the computation of

the marginal cumulative distribution function (right panel).

As expected, several episodes of prolonged zero lower bound are observed among the 500
simulated values. The grey-shaded areas emphasize the large persistence of the process,
which hardly takes off from zero for the first 150 periods. Over the sample, the simulated
process hits zero for about 250 periods, that is half of the sample length. The right panel
of Figure (5.1) shows that the unconditional probability of the process to be at zero is
0.6. When it is not at zero, the process experiences persistent spikes of between 100 to
150 periods. This behavior of the ARGq process appears particularly appealing to model

the dynamics of short-term interest rates in a zero lower bound environment.

Figure 5.1: Simulation of an ARGq process: a short-term rate with zero lower bound
spells

Simulation of an ARGo process Cumulative distribution function
0.15+ 1.004
0.75+
0.10+ >
= P(R=0) = 0.6
] 050
=]
e
0.05- o
0.254
0.00+ 0.00+
0 100 20 . .300 400 500 0.00 0.05 0.10 0.15
%erlods Values

Notes: This figure displays on the left panel the simulated path of a short-term rate dynamics defined
by the following conditional distribution: 7¢|r;—1 ~ v0(0.1 + 9907r;_1,0.001). The grey zones correspond
to periods where the simulated short rate hits zero. On the right panel we have the associated marginal
cumulative distribution function.

5.2.2 Moments, stationarity and lift-off probablities of ARG pro-

cesses

The exponential-affine form of the Laplace transform given in Equation (5.4) allows
for an easy derivation of the properties of ARGg(«, 5, 1) processes. In this subsection,
we show that ARGq processes possess simple closed-form formulas for conditional and

unconditional moments, stationarity conditions, and especially for calculating conditional
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probabilities of reaching zero, staying at zero or leaving zero (lift-off).

First, note that the affine property of the ARGy process implies that all conditional
cumulants are affine functions of the lagged value of the process. Their derivation is
made simple by the use of the log-Laplace transform. Proposition (5.2.1) and associated

corollaries derive the first two conditional and unconditional moments of an ARG process.

Proposition 5.2.1. Let (X;) be an ARGy(«, B, 1) process. We use the notation p =
B u. The conditional mean Ey(X,11) and variance Vi(Xy11) of Xyi1 given its past are

respectively given by:
Ei(Xiv1) = ap + pX; and  Vi(Xy41) = 2pPa + 2upX, = 2uEy(X1) . (5.6)
Corollary 5.2.1.1. (X;) has the following weak AR(1) representation:
X1 =ap+ pXy + €441, (5.7)

where (4) is a conditionally heteroskedastic martingale difference, whose conditional vari-

ance is V(e | &) = 2pP o+ 2upX;.
Corollary 5.2.1.2. (X;) is stationary if and only if p < 1 and, in this case, its uncondi-

tional mean and variance are respectively given by:

200 ”
(L=p)(1—=p?)

Proof. See Appendix 5.A. [ |

E(X)=—— and V(X)) = (5.8)

In particular, from the conditional moments given in Proposition 5.2.1, we derive simple
expressions for a weak AR(1) representation that helps calculating the unconditional first-
two moments of the process. Two key features of the ARG are worth noticing. First,
the time-varying conditional variance is proportional to the conditional mean and, thus,
it linearly shrinks with the level of X;. This implies that, in a low-level environment, the
ARGy process shows low conditional volatility, a typical feature of interest-rates during
zero lower bound periods (see Filipovic, Larsson, and Trolle [2013]). Note also that the
conditional variance of the ARG process is bounded from below by 2u%a when X; reaches
zero. Second, the closed-from availability of the first-two conditional and unconditional
moments implies that simple estimation procedures can be used such as the generalized

method of moments, or pseudo-maximum likelihood techniques.

We concentrate now on conditional probabilities of an ARGy process to reach zero, to

stay at zero for more than a certain number of periods, or to lift-off in exactly h periods.
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To investigate this sojourn time in state zero and the associated lift-off probability, the

following lemma proves useful.

Lemma 5.2.1. Let Z be a random variable valued in R™ and pz(u) is its Laplace trans-

form. Then, we have:
Pz{0} = lim ¢z (u). (5.9)

Proof. See Appendix 5.B. [ |

This Lemma makes the computation of the conditional probabilities of hitting zero very

simple. The main formulas are presented in the following proposition.

Proposition 5.2.2. Let (X;) be an ARGy(av, 5, j1) process and let us denote by oy p(uy, ..., up) =
Eilexp (w1 Xey1 + ... + upXyn)] its multi-horizon conditional Laplace transform. Then,

the following properties hold:

(Z) P(Xt+h =0 | Xt) = UEIEIOOSOt7h(O, ce ,0, U)

:exp{—(l—p) [—u(lp—ph) + P

(i) P[XtJrl =0,..., X4 =0 | Xt} = ul_if_ﬂoo%,h(ua o)
= exp(—ah —(Xy),
(i11)  P[Xpp1=0,..., Xpyn =0, Xpyp1 >0 ‘ X;)] =exp[—ah—BX,] [1—exp(—a)].

Q
ol >
I |
() —
—_
|
i) >
Ead
+
=
_ 1
—

Proof. See Appendix 5.B. [ |

Corollary 5.2.2.1. If X; = 0, the probability to stay in state 0 for the next (h—1) periods

only is (1 — p)p"~! with p = exp(—a), and the average sojourn time in zero is given by:

+00 1
(1—p) Y W' = T [1—exp(—a)] "
h=1

When o = 0, this average sojourn time is 400 and the zero lower bound becomes an

absorbing state.

Proposition 5.2.2 is key for calculating lift-off probabilities in economic applications.
Corollary 5.2.2.1 stresses the role of the o parameter: the average sojourn time in zero is
entirely controlled by « for univariate ARGq processes. From an economic point of view,
if the short-term interest rate is modeled by an ARG process, a quantifies the average

persistence of zero lower bound regimes.
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5.2.3 The Extended ARG, («, 3, ;1) process

The ARGo(av, B, i) process described in the previous section and the ARG, (3, ) pro-
cess of Gouriéroux and Jasiak [2006] are nested in a general class of Extended ARG, (v, 3, 1)
processes characterized by a degree of freedom parameter v > 0 and a parameter @ > 0.

Combining the definitions of Sections 5.2.1 and 5.2.2, we obtain the following:

Definition 5.2.3. The univariate random process (X;) is an Extended ARG, (v, B3, 1)
process of order one if the conditional distribution of X1, given Xy = (Xy, X4—q,...), is

a non-centered Gamma distribution such that:
(Xent|X0) ~ vl + X ), Jor  a>0,020,u>0,3>0.

The conditional probability density function f (x| Xy v, o B, 1) and the conditional
Laplace transform px(u;v, o, B, 1) of the Extended ARG, (c, B, ) process are respec-
twely given by:

+o0 v+z—1

. B exp(—zeq1/p) T4 exp[—(a + BXy)] (o + BXy)*

f($t+1|Xt7V7a767:u’) - ; F(V+Z)MV+Z X Z! ]l{zt+1>0}
+  exp(—a— B X))y, —0,0=0} »
pxa(uiv,a,Bop) = E[exp(uXi1) | X]

1
= exp ur BX: + « o viog(l —up)| , for u<—. (5.10)

1 —up 1 —up I

Note that the difference with the ARG process, in terms of conditional Laplace transform,
is the additional term [—vlog(l — uu)| in the exponential. However, a process with
Extended ARG dynamics and v > 0 does not experience prolonged periods of zero. In
line with Proposition 5.2.1, and following the same steps as in Appendix 5.A, we derive

the conditional and unconditional first two moments of an Extended ARG process.

Proposition 5.2.3. Let (X;) be an Eztended ARG, («, B, ) process and p := Bu. The

conditional mean and variance of X1 are respectively given by:
E (X)) =p(v+a)+pX, and V(X)) = p*(v +2a) +2upX,. (5.11)

Corollary 5.2.3.1. (X;) is stationary if and only if p < 1 and, in this case, its uncondi-
tional mean and variance are respectively given by:
_ 2ap® + pPr(1+ p)

I e ()

Setting v = 0, we get the ARGq(a, 3, ) family presented in Section 5.2.1 and, assuming
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a = 0 with v > 0, we obtain the classical ARG, (3, ;) family. It is also worth noting
from relation (5.10) that, using the extension to random coefficients models, in particular
regime-switching models (see Gouriéroux, Monfort, Pegoraro, and Renne [2014]), it would
be possible to make the parameters o and v exogenously random and affine, or linearly

dependent on X, while staying in the class of affine processes for the augmented process.

In the following sections, we use the previous univariate distributions to construct our
multivariate non-negative affine term-structure model where the state vector is composed
(under both the risk-neutral and historical probability) of conditionally independent fac-
tors with Gamma-zero and Extended Gamma distributions. This assumption of condi-
tional independence characterizing the so-called Vector Autoregressive Gamma process
(VARG, say) makes the zero-coupon bond pricing model specification simple while guar-
anteeing at the same time enough flexibility to match relevant ZLB-linked interest rates

stylized facts (see Section 5.4). !

5.3 The Non-Negative Affine Term Structure Model

5.3.1 The VARG risk-neutral state dynamics and the affine yield

curve formula

In this section we introduce the multivariate non-negative affine term-structure model
(NATSM) by directly specifying the risk-neutral (Q) dynamics of the n-dimensional latent
state vector X; = (Xt(l)/,lez),>/, where dim (Xf”) = ny, dim <Xt(2)> = no, and n =
n1 + ng. We also denote by r; the unobservable short-term rate between ¢ and ¢ + 1,

known at date t. More specifically, we assume that the risk-neutral dynamics of X; is a
Vector ARG (or VARG) process.

Assumption 1. The risk-neutral distribution of X, i1, conditionally on X, is given by

the product of the following conditional distributions:

(Xj,t+1 ’&) g PYV]' (Oé(j@ + 5;@/Xt7ﬂ;Q) ) j € {17 ce 7n} ) (512)

where v; =0 for any j € {1,...,m}, whilev; >0 if j € {n1+1,...,n}; a}Q >0, [L;Q >0
and ﬁ;@ s an n-dimensional vector of positive components.

In other words, conditionally on Xy, the ny components oth(Jlr)1 follow independent Gamma-
zero distributions, while the ny components oth(i)l follow independent Non-central Gamma

distributions.

11. A general specification of the VARG process with conditional dependence is proposed in Chapter
4 (see also Monfort, Pegoraro, Renne, and Roussellet [2014]).
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Given the conditional (given X;) independence between the scalar elements of X4, the

risk-neutral conditional Laplace transform of X;,; given X, is immediately obtained:

Proposition 5.3.1. The risk-neutral Laplace transform of X1, conditionally on X, is

given by:
o20) = B [exp (zxm) \x] ~exp [za WX )| G
J=1
where, for any j € {1,...,n}, we have:
Q Q
Uity g0 Q Uikt o Q
a(u;) = and b (u;) = ar —v; log(l— u
]( ]) 1—UjM;Q i g( J) 1—u]u9 g j g( J,uj)

The process (X;) is therefore a discrete-time affine (Car(1)) process.

Corollary 5.3.1.1. The process (X;) is Q-stationary if and only if, for all j € {1,...,n},
we have p; = ﬁ;@j I

Proof. See Chapter 4. [ |

Assumption 2. The nominal short rate process (ry) is given by the linear combination

of the first ny components of X; only, that is:
ry = Z(Sij,t =Xy, (5.15)
j=1

where § = [(53-);.:{17”.’”1}, On,|" has the first ny entries strictly positive, the remaining ones

being equal to zero.

It is straightforward to see that the short-term interest rate still possesses the zero-point
mass property given that it is a linear combination of conditionally independent variables
following Gamma-zero distributions. Besides, observe that a non-zero short rate lower
bound is allowed (as, for instance, in Priebsch [2013]) by simply adding 7, # 0 (say) on
the right hand side of Equation (5.15).

In matrix form, the conditional Laplace transform presented in Proposition 5.3.1, can be

written as:

AR = e [ X+ B

12. Note that §; and p; cannot be both identified. In the application, we impose that p; =1 for all j
to ensure identification constraints.
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where:

Q) = B° (—”QMQ >

l—uou?
~ , u@ Q
/’LQ = (:[j’??"'?ﬂg)/? /BQ:(/BPJ"'7B9)7
a? = (... 0%, v=(0,...,0,Vn 41, 1),

and where ©® denotes the element-wise product and where, with abuse of notations, the

division and log operators work element-wise when applied to vectors.

Given the exponential-affine form of the risk-neutral conditional Laplace transform of
(X;), it is easy to obtain the following explicit zero-coupon bond pricing formula (see

Appendix 5.C for a proof):

Proposition 5.3.2. If the n-dimensional state vector (X;) has a risk-neutral dynamics
defined by Equation (5.13) and if the short-term interest rate is defined as in Assumption
2, then the price at date t of the zero-coupon bond with residual maturity h, denoted by
P,(h), is given by:

Py(h) = exp (A;l X, + Bh> , (5.16)

where Ay and By, satisfy the following recursive equations:

A, = —(5+6Q(Ah_1)
Ap O p@ )
= —§+p9 5.17
b <1—Ah1®MQ (5:17)
B, = Bh71+bQ(Ah71)
/ Apq O pP
= Bj_ Q —'log (1 — A, Q 1
ho1+ (1—Ah1®MQ V' log ( he1 O ), (5.18)

with starting conditions Ag = 0 and By = 0. The date t continuously-compounded yield
associated with a zero-coupon bond maturing in h periods is therefore given by the following

non-negatiwe affine function of X;:

Ri(h) = A, X,+ By,

— 1 — 1
Ah = ——Ah, and Bh:_EBha th

(5.19)

The non-negativeness of our NATSM can be easily established from the usual no-

arbitrage formula R,(h) = —3 log E2 [exp (—ry — ... — r4_p11)] since the short-term rate
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is a positive combination of the X;,’s which are all positive.

5.3.2 The VARG historical state dynamics

We have defined the risk-neutral dynamics of X; in Assumption 1. Let us now deter-
mine the historical () dynamics of the state vector (X;). For this, we assume that the

one-period stochastic discount factor is based on an exponential-affine change of prob-

dP
ability measure (@f—tﬂ = exp [0' Xy — ¢9(9)}, where 2(u) = logp(u) denotes the
tt+1
risk-neutral conditional log-Laplace transform of (X;), and 0 = (64, ...,6,)" denotes the

n-dimensional vector of market prices of risk factors. Then, we have:

Proposition 5.3.3. The historical distribution of X,11, conditionally on X, is given by

the product of the conditional distributions:

(Xj,t+1 ‘&) "]I:;f)/ljj (aI]P+ﬂ£P’ Xtalugp) ) fOT' j S {1,...,71/}, (520)

where a >0, ,LLJ > 0, and BP is an n-dimensional vector of strictly positive components

and the historical Laplace transform of X1, conditionally to Xy, is given by:

oF (u) = exp | > af (u;) X, + 05 (uy) (5.21)

J=1

where, for any j € {1,...,n}, we have:

uj P p uj H P
aj (u;) = — ujj/ﬁ’ 5 and b (u;) = — ujju? oy — v log(1 — uj )
Q Q
[ 1 Iu
with  of = —J r=—— g% and ="
! 1—9J,uj ! 1—0j,u? / ’ 1—9j,LL;Q

(5.22)
Proof. See Appendix 5.D. [ |

Note that the v;’s are the same in the risk-neutral and the historical worlds. In particular,
if v; = 0 in the risk-neutral world, it is also true in the historical one, since the negligible
sets must be the same for both conditional distributions in order to guarantee the equiv-
alence of the associated probabilities. In line with the notation adopted in the previous

section, this historical conditional Laplace transform can be represented in matrix form:

i (u) = expla (u)X, +gp(u)
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where:

) = ()

1—u®uPf
~ , @/,LP
bP = P u— _ ,]_ 1_ P
(u) o (1—U®MP V'og (1 —u®uh)
uto= (Y B =BT, 8, and of =(af,...,ak) .

5.3.3 Lift-off Probabilities

Let us move now to the problem of investigating the sojourn in state zero of the short
rate process (r;), and the associated lift-off probability. As seen in the previous sections,
our multivariate non-negative yield curve model has the convenient property of being
affine under both the risk-neutral and historical dynamics. Consequently, our model al-
lows to easily compute multi-horizon Laplace transforms in both worlds and, thus, to

explicitly calculate lift-off probabilities.

Let us first remember that, given the exponential-affine nature of the conditional historical
Laplace transform of (X;) (see relation (5.23)), its multi-horizon Laplace transform until

t + k is given by:

gplfzk(ul, CoUg) = EF {exp (u;XtH 4+ ...+ u;fXHk) ‘ Xt}

= exp [.A;c X+ Bk] (5.23)

where, for any ¢ € {1,...,k}, u; is an n-dimensional vector. The A, and B, loadings are
obtained as the final values A, = A;’“), B, = B,Ek) of the k-step recursion:

;

.A(()k) =0 and B(()k):(),

~ Uk+1—i + Aglj) ol
AP = aF (“’““*i + AZ@I) -7 (1 ( (1;1_1» + -A;k))l> © “P> |

Bz(k) = ZP <uk+1,¢ + AEE%) + Bz(ﬁ)l

. (k)
= o (1 (u(ij1z —i—:l:lzk)) ()Dgip) — V' log [1 - (ukﬂ_i + Ag’i) ® MIP] n Bgﬂ '
— \Yk+1-d i1

(5.24)

Proof. See Proposition 3 in Gouriéroux, Monfort, Pegoraro, and Renne [2014]. [ |
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Given that the yield R;(h) is an affine function of X, it is easily seen that, for any

k-dimensional vector v:

P () = QW (or,. .. o8) = Efexp (1 Resa(h) + .. + v Res()) | X
k
= @1 Ap, ... v Ay) exp <§h Zv;) : (5.25)
j=1
where vy, ..., v, are the scalar entries composing v. Therefore, Equation (5.23) can be

used to calculate the yields’” multi-horizon conditional Laplace transform. In order to
determine lift-off probability formulas, let us introduce the following lemma, generalizing

Lemma 5.2.1 to the multivariate framework.

Lemma 5.3.1. If Z is an n-dimensional random variable valued in R’} and wz(Ur, ... Up)

18 its Laplace transform, we have:
P.{0,...,0} = lim ¢z(u,...,u).
U——00

Proof. Straightforward generalization of the proof of Lemma 5.2.1 using the fact that,
here, Z = 0 is equivalent to €' Z = 0 (with e = (1,...,1)"). |

Then, as far as the lift-off probabilities for the short rate are concerned, we have the

following proposition:

Proposition 5.3.4. Let us consider the short rate process (ry). The following properties

hold:
(i)  Plros =0]X,] = ul_i)r_n@(p%?i((], L, 0,u);
(1)) Pl =0,...,r0:=0]|X;] = ugrinoogog,)fk(u, co W) =DPreg (Say);
(447) Plrigi =0, .m0 = 0,705 > 0| Xo] = prok—1 — Drik

where py 0 = 1.

The last relation gives the distribution of the first lift-off date. The average sojourn time

in state zero is then given by:

Z h (pr,t,k—l - pr,t,k) .

00
k=1

In the previous proposition we have introduced explicit formulas concerning the probabil-

ity of lift-off from the zero lower bound for the short rate process. Using the formula for
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truncated Laplace transform in the case of affine processes (see Duffie, Pan, and Single-
ton [2000] for details), it is possible to provide some tractable formulas if the zero lower
bound is replaced by a positive floor A > 0 (e.g. A = 10 bps). Besides, such formulas are

available for interest rates of any maturity. More precisely:

Proposition 5.3.5. Let us consider the yield process (Ri(h)) of maturity h with the multi-
horizon conditional Laplace transform given in Equation (5.25). The following properties
hold:

dzx;

(R)P . .
too Im |@py  (tvx)exp(—iAx)
() BN =P[R m) > A x] = / i |
0

T
(i) PlRepn(h) > A Xe) = By (en, V)

_ h _ h)+... h 1
(i) P <Rt+k m+1(h) + Reyp—mr2(h) + ... + Repp(h) S A!Xt> :ﬁﬁ) <6,(€k_)m+1’/\> :

m

where Rgik)(h) = (Rep1(h), ..., Riyrx(h)) and v = (v, ...,v) ; ey is the k™ column of
the (k, k) identity matriz and e,(f_)mﬂ =(0,...,0,1,...,1) denotes here a k-dimensional
—— Y——

k—m times m times
vector of zeros for the first k —m components and ones for the m others.

Observe that these formulas do not determine the probability that ¢ 4+ k be the first date
(between ¢ and ¢ + k) at which Ryyx(h) > A. Nevertheless, this latter information can

always be obtained by simulation.

5.4 Empirical analysis of NATSMs

5.4.1 Data and stylized facts

As in Kim and Singleton [2012] and Christensen and Rudebusch [2013], we concen-
trate on zero-coupon Japanese Government Bond (JGB) yields. The data are weekly
(Fridays) and cover the period from June 16, 1995 to May 30, 2014, with residual matu-
rities of six months and one, two, four, seven and ten years. '® A graphical representation

of the yields is provided on Figure 5.2 and descriptive statistics are presented in Table 5.1.

During the first years of our sample, we observe a large decrease in the yields at all ma-
turities. From 1996 to 2001, the 6-month yield stabilizes around 40bps whereas other
maturities continue to decrease until 1999, and experience large fluctuations after. From

2001 to 2006, yields literally enter the zero-lower-bound phase, with the 6-month rate

13. The data are extracted from Bloomberg, the tickers of the time series are F10506M, F10501Y,
F10502Y, F10504Y, F10507Y, F10510Y.
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Figure 5.2: Japanese yields data
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Notes: Yields are weekly data from June 16, 1995 to May 30, 2014. Yields are expressed in annualized
percentage points figures, with maturity from 6 months (darkest line) to 10 years (lightest line).

stable at virtually zero.'* As already noted in Kim and Singleton [2012], during this pe-
riod, the longer-term yields continued showing large variance. We examine more closely
this behavior by computing three different measures of univariate conditional variances.
For each yield in the data, we fit a GARCH(1,1) and a EGARCH(1,1) models and extract
the associated fitted variances. We also compute a two-month rolling-window variance
measure on daily data. All those measures are normalized in the same fashion, taking
volatilities expressed in annualized terms. Standard descriptive statistics of those proxies
are presented in Table 5.1, and they are represented in Figure 5.3 (for the 2-year and
10-year maturities). This figure illustrates that, for a given maturity, the three variance
proxies are close to each other. We hence consider them to be coherent and credible
proxies of conditional volatilities of interest rates. This proximity is confirmed by Table
5.2, which presents the correlations between the level of interest rates and the conditional
volatility proxies. The correlations between the three volatility proxies exceed 0.75 for all

maturities.

Besides, we observe that the behaviors of conditional volatility proxies differ substantially
across maturities. For the 2-year maturity (Figure 5.3, top panel), the conditional volatil-
ity proxies drop very close to zero when the 6-month rate hits the zero lower bound in
2001. For the longest maturity, the behavior of the three proxies does not show the same
decreasing trend (from 1999 to 2004) as for the 2-year yield, even though they experience
large spikes in 1995, 1999, and at the end of 2003.

The previous observations allow us to exhibit three important stylized facts: short-

term yields can stay at zero for extended periods of time; longer-term yields show sub-

14. Between May 2001 and February 2006, the 6-month yield has mean and standard deviations re-
spectively equal to 1.37bps and 1.42bps.
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Figure 5.3: Conditional volatility proxies

Model
— EGARCH(1,1)
1.5+ ] GARCH(1,1)
| Rolling window (60 days)
J\ P
2107 E
g ! !' r, *<<c_:.

o 3 ‘ : o)

[«}) \ ! a

e W A Mg [

=2 iy ety I, V\/,\/‘ \\b i, (" .

g g \‘\’--\-\-\_‘P J‘k | \ W .,~\\ff'\»w» .M,\.r‘\%

=

S £

s %1 5- ’

23 m S
©1.0- x‘ | 0 5
~ 1 i ‘ G

Wy j‘" L1y I\ :
) W) A | N [ \) J (L5 A a
0.5- sl | P Word fm q;'\,‘,&.,.\, AT /
) W S\ RSSO ety R b A
v R | i v g
0.0+
1995 2000 2005 2010 2015

Dates

Notes: Top and bottom panels respectively present the volatility proxies for the 2-year and the 10-year
yields. GARCH and EGARCH conditional volatility models are computed on weekly yield changes
whereas the rolling-window volatility is computed on a 2-month window of daily data. We take the
square-root of estimated proxies of conditional variance and obtain our conditional volatility proxies.
We normalize them to be comparable to annualized yields. We take estimated proxies and normalize
them to be comparable to annualized yields.

stantial variations even in a ZLB period and proxies of conditional yield variances show
different profiles across the maturity spectrum. A well-specified term structure model

should be able to replicate these empirical features.

5.4.2 Estimation Strategy

Since our term-structure model is affine, a natural estimation technique is to use the lin-
ear Kalman filter (as in Duan and Simonato [1999] and De Jong [2000]). The model can
be easily represented in a (linear) state-space form where the measurement equations are
the yield formula (Equation (5.19)) and the transition equations are given by the factor
dynamics. Moreover, the affine nature of yields forecasts and of conditional variances nat-
urally provided by our model opens the way to easily introduce new affine measurement

equations while preserving the linear specification of the state-space model.

Our first kind of additional measurement equations relate the 2-year and the 10-year con-

ditional variance proxies to their model-implied counterparts (specifically, we retain the
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Table 5.1: Mean and standard deviations of yields and volatility proxies

Maturity 6m ly 2y 4y Ty 10y
Yields 0.2142 0.2581 0.3811 0.7091 1.2025 1.5850
Mean GARcH(1,1) 0.0019 0.0020 0.0029 0.0040 0.0052 0.0047
EGArcH(L,1) 0.0020 0.0021 0.0030 0.0042 0.0052 0.0046
rolling-window 0.0022 0.0023 0.0028 0.0040 0.0055 0.0051
Yields 0.2082 0.2440 0.3347 0.5025 0.6799 0.6576
Std. GARCH(1,1) 0.0017 0.0019 0.0024 0.0025 0.0024 0.0022
EGARCH(1,1) 0.0017 0.0019 0.0024 0.0025 0.0021 0.0020

rolling-window 0.0021 0.0021 0.0023 0.0027 0.0029 0.0026

Notes: Yields are expressed in annualized percentage points. GARCH and EGARCH models are
computed on weekly data whereas the rolling-window volatility is computed on a 60-day window of
daily data and converted to the weekly frequency keeping only Fridays data. Our volatility proxies are
the square roots of the estimated conditional variance proxies; they are normalized to make them
homogeneous to annualized yields. 'Mean’ and ’Std.” respectively present sample means and standard
deviations of our proxies.

EGARCH-based proxy). Recent papers in the term structure literature have highlighted
that the estimations of term-structure models based only on yield in levels fail to satisfy-
ingly replicate fluctuations in conditional volatilities (see for instance Jacobs and Karoui
[2009] and Cieslak and Povala [2015]).

Second, we augment our state-space model with measurement equations relating the
model-implied yields forecasts and survey-based ones. This approach, introduced by Kim
and Orphanides [2012], is aimed at handling the persistence problem affecting the esti-
mation of term-structure models (see Kozicki and Tinsley [2001a], Kozicki and Tinsley
[2001b] and Jardet, Monfort, and Pegoraro [2013|). More precisely, we use three- and
twelve-month-ahead forecasts of the ten-year yield coming from the Consensus Forecasts
by Consensus Economics. The latter forecasts are available only from 1999 onward and
at the monthly frequency. This missing-data issue is nevertheless easily handled with the

Kalman Filter.

In summary, directly fitting survey-based forecasts and conditional variances of yields help
to estimate historical and risk-neutral parameters of the factor X,;. This contributes to
get reliable model-implied measures of long-horizon interest-rate forecasts and of lift-off

probabilities under both measures (P and Q).

Let us now detail the chosen specifications of the factor dynamics. Preliminary estimations

have suggested that the data call for the inclusion of a single factor in the specification
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Table 5.2: Correlation between rates and volatility proxies

Maturity 6m ly 2y

level volatility level volatility level volatility

GARCH EGARCH GARCH EGARCH GARCH EGARCH

GArRcH  0.63 1 0.68 1 0.74 1
EcArcH 0.68 0.96 1 0.72 0.98 1 0.78 0.97 1
Rw 0.58 0.75 0.76 0.65 0.88 0.89 0.70 0.92 0.92
Maturity 4y Ty 10y
GARCH 0.72 1 0.54 1 0.31 1
EGARCH 0.74 0.95 1 0.56 0.95 1 0.35 0.93 1
Rw 0.67 0.90 0.90 0.60 0.87 0.86 0.54 0.80 0.80

Notes: Yields are expressed in annualized percentage points. GARCH and EGARCH models are computed
on weekly data whereas the rolling-window volatility is computed on a 60-day window of weekly data.

of the short-term rate and four factors seem necessary to get a satisfying fit for both the
levels and the conditional variances of yields. Accordingly, we present in the following the
estimation of the model where n; = 1 and n, = 3. However, since there are causal rela-
tionships between the four factors, longer-term yields are combinations of all four factors,
which allows them to vary even if Xt(l) and the short rate are equal to zero. Moreover, we
set v at zero for all components; that is, the conditional distributions of the four factors

are 7.

In the following, we formally present our state-space model. Using the multivariate adap-
tation of Equation (5.11) and the historical dynamics given in Section 5.3.2, the transition

equations can be expressed as follows:

, . , 1/2
Xi1 = HP ©a’ +u" 0" X, + {dlag [MP Ou e (204P +2p" Xt)] } Et41

- s

E:(Xt41) Vt(X:rl)l/Q

= m+MX,+ %%, (5.26)

where (g;) is a martingale difference with zero-mean and identity variance-covariance ma-

trix.

The measurement equations describe the relationship between three types of observable
variables and their model-implied (affine) counterparts: the JGB yields described previ-
ously, the EGARCH(1,1) conditional variance proxies for the two and ten-year maturities

as well as the three and twelve months-ahead surveys of professional forecasters of the
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ten-year yield. Observed variables are replicated by the model up to some measurement

errors, that we assume to be mutually independent and serially uncorrelated.

We denote by H = {26, 52,104, 208,364,520} is the list of available maturities in weeks.
The vector of observed yields is denoted by Ry = [Ri(h)|her. Besides, V; = [Vi(h)]heqi04,520)
denotes the conditional variance proxies for yield of maturity h, S; = [St(q) (h)]h=520,qc{12,52}
denotes the survey of professional forecasters g-periods ahead for the h-maturity yield.
The measurement equations for the yields and the survey variables are directly derived
from Equation (5.19):

Ri(h) = Bn+A, X, +0gnpny, heH (5.27)
—= —
S (h) = Bu+ A E(Xeg) + 08y 0

g—1 =
= B+ 4, [ Y Mm+MX |+l nd), f =020, (5.28)
= Dn h t ShMspe 10T :
=0 q € {13,52}

where op is the same for all maturities h, and ng, and nnglt are i.i.d. Gaussian white

noises.

Eventually, we introduce measurement equations for the volatility proxies based on the
conditional variance-covariance matrix of the latent process X;. As already empha-
sized, the affine property of the VARG distribution implies that the conditional variance-
covariance matrix of X;,; given its own past is affine in X;. Specifically, the new mea-

surement equations write:

Vi(h) = 4, {diag [MP ou’ e (V +2a" + 25P/Xt)} }Zh + OVR NV bt

= (A, 04, [u”” ou' (u + 20" + 26P’Xt)} +ovanvage, e {104,520}, (5.29)

where 1y, is a 1.i.d. Gaussian white noise. The total vector of observable variables is
denoted by Y; = [R},S;,V/]". Our vector of observables therefore contains 10 different
variables (6 yields, 2 conditional variance proxies and 2 survey-based forecast series).
Stacking the transition and measurement equations, we obtain the following state-space

model representation:

X1 = m+MX, + 5%,
(5.30)

Y, = o+ T X +Qny

194 Guillaume ROUSSELLET



Chapter 5. Staying at Zero with Affine Processes

where 0, = (g4 sy, Myy) ~ ZIN(0,1), and T’y and Ty are based on Equations (5.27-
5.29).

To estimate the model, we use pseudo-maximum likelihood where an approximation of the
likelihood function is derived from the linear Kalman filter. The latter is slightly modified
to accommodate the fact that the latent factor X, is conditionally heteroskedastic. To
do so, we run the Kalman filter replacing the real — intractable — log-likelihood derived
from conditional Gamma distributions by that obtained from Gaussian distributions, i.e.
we approximate ¢,.1 by a standard Gaussian white noise. The availability of a linear
state-space model makes the application of such a procedure very easy (see e.g. Kim
=(1,...,1). In
(2)

addition, we take a lower-triangular SF matrix, which implies that X, (that does not

and Singleton [2012]). For identification purposes, we impose that p*

enter directly the short-term interest rate specification) Granger-causes Xt(l) = X (that

does enter directly the short-term interest rate), but Xt(l) does not Granger-cause Xt(2).

We estimate all risk-neutral parameters and the four market prices of risk in a sin-
gle step. Historical parameters are then deduced from the estimated parameters. We
also estimate the short-term interest rate loading J; (we have r, = (51Xt(1)) and the
measurement-noise standard deviations of the yields. The computation of the param-
eters standard errors for a preliminary fully-parameterized specification pointed to the
non-statistical significativity of some parameters. The latter were further constrained to
zero and we eventually end up estimating 16 parameters in an embedded specification.

The estimation results are presented in Table 5.3.

5.4.3 Cross-sectional fit

Most of the parameter estimates are highly significantly different from zero. We observe
that most of the factors are highly persistent under both measures with the p; = ;5
parameters being close to one. We present a graphical representation of the filtered fac-

tors on Figure 5.4.

The first three factors experience long periods at zero, notably during those periods when
the 6-month interest rate is at its lowest level (2001 to 2006). By contrast, Factor 4 expe-
riences large and persistent fluctuations during the whole sample. The interpretation of
the factors is facilitated by the analysis of the so-called factor loadings, that describe the
affine relationships between the levels and conditional variances of yields on the one hand
and the factors on the other one. These loadings are plotted in Figure 5.5. Panel (a) of

this figure shows for instance that the first and fourth factor are particularly important
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Table 5.3: Parameter estimates

Q-parameters P-parameters
Estimates Std. Estimates Std.
oy 3.2455 0.1118 3.2347 0.1113
B 0.9663 0.0078 0.9794 0.0042
B2,2 0.9978 0.0005 0.9957 0.0006
B3,3 0.9486 0.0044 0.9705 0.0023
Ba,a 0.9967 0.0005 0.9933 0.0003
B2,1 0.0308 0.0041 0.0308 0.0041
B3,2 0.1094 0.0059 0.1120 0.0061
Bss  3.88107*  2.28107° 3.87-107*  2.27.107°
1 1 - 1.0135 0.0040
1o 1 - 0.9980 0.0005
13 1 - 1.0231 0.0023
b 1 - 0.9967 0.0003
Other Parameters
01 0.0030 0.0003
01 -0.0133 0.0039 02 0.0020 0.0005
03 -0.0226 0.0022 04 0.0033 0.0003
OR 0.0407 0.0003
ov 3-1073 — os 0.15 —

Note: This table reports the estimated parameters of a four-factor model where r, = §; X, ;. Standard
deviations (Std.) are calculated from the outer product of the log-likelihood gradient at the estimated
parameter values. The symbol -’ in the standard-deviation column indicates that the parameter has
been calibrated. The oy’s are set to twice the standard deviations of the differences between the
GARCH, EGARCH and rolling window variance proxies. The og’s are set at the in-sample mean of
standard-deviations of forecasts among the professional forecasters. og and og are expressed in
percentage points. Last, we impose that the unconditional mean of the short-term interest rate is equal
to 100bps.

to account for the fluctuations of short-term and long-term yields, respectively. The in-
fluence of the second factor is more evenly spread across the yield curve. Moreover, Panel
(b) suggests that changes in the second and third factors have more important impacts

on the conditional variances of medium- to long-term yields than the first two factors.

We now turn to the empirical performances of the VARG term-structure model. First,
we observe a remarkable cross-sectional fit of the JGB yields with the measurement-noise
standard deviations of yields being 4bps and the differences between the oberservable and

model-implied yields are nearly indistinguishable to the naked eye (see Figure 5.6).
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Figure 5.4: Estimated Factors
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Notes: Factors are filtered estimates from the linear Kalman filter on the full sample (June 1995 to May
2014). The short-term rate 7, is equal to 61 X7,,. For all j > i factor X, Granger-causes factor X ;.

The top panel of Figure 5.7 presents the fit of the observable conditional variance prox-
ies obtained by our term structure model. The main periods of volatility spikes are
well-captured by the model. Also, these plots demonstrate the ability of the model to

accommodate different patterns in the volatilities of yields across maturities.

The second panel of Figure 5.7 presents the fit obtained on the survey of professional
forecasters equations. For both the 3-month and 1-year horizons, model-implied fore-
casts of the 10-year yield nicely reproduces the behavior of observed surveys. Note that
the standard errors on the survey measurement noise are parameterized with values that
are commensurate with the disagreement among forecasters, as measured by the average

standard deviations of the professional forecasters declarations (10bps).

On the whole, these results show a great flexibility of our VARG term-structure model,
being able not only to closely reproduce both the level and the conditional volatility
behavior of yields across maturities, but also to provide expectations under the historical

measure that are coherent with survey-based forecasts.
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Figure 5.5: Estimated Factors
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Notes: This figure displays the factor loadings of the levels (Panel (a)) and the conditional variances
(Panel (b)) of yields. These levels and variances are affine in factors X;. Panel (a) relate to Equation
(5.27) and Panel (b) to Equation (5.29). The loadings are divided by the sample standard deviations of
the estimated factors, that is, using the notations of Equation (5.30), the plotted loadings are of the

form Ty ; ;/v/Var(X,,), where I'y ; ; is the entry {7, j} of matrix I'y.

5.5 Lift-off probabilities

As described in previous sections, our specifications entail closed-form and semi closed-
form formulas for calculating distribution of future yields. As an application, we compute
the model-implied probabilities that the short-term interest rate will remain low for a cer-
tain amount of time. We can compute such probabilities under both P and @Q measures.
The discrepancies existing between the P and Q probabilities stem from the risk aversion

of investors.

We first consider the time-series behavior of such probabilities in Figure 5.8. Specifically,
this exercise is based on the probability formula of the short-rate hitting zero in k periods
(repe = 0, see Proposition 5.3.4, (i)). We apply the expression for 2- and 5-year-ahead
forecasts (i.e. with & = 104 and k& = 260) for both the historical and risk-neutral probabil-
ities (resp. red and black lines of top panels of Figure 5.8). A second exercise exploits the
Duffie, Pan, and Singleton [2000] formula to calculate the probabilities of the short-term

interest rate being below 25 bps 2- and 5-years ahead, also for both measures (bottom

198 Guillaume ROUSSELLET



Chapter 5. Staying at Zero with Affine Processes

Figure 5.6: Observed and model-implied yields
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Notes: Yields are observed at the weekly frequency from June 16, 1995 to May 30, 2014. Yields are
expressed in annualized percentage points, with maturities from 6 months to 10 years. The black solid
lines are the observed yields and the grey dashed lines are the model-implied (or fitted) yields using the
term structure framework of Section 5.3 with 4 factors (ny =1 and ny = 3).

panels of Figure 5.8).

Let us focus first on the top-left panel, representing both P;(r; 1 = 0) and Q;(rix = 0)
for a 2-year horizon. Until 1998, both probabilities are small and begin experiencing
fluctuations from that date on. In 1998, coherently with the low level of yields and of
with the increase in yield volatilities (see Figure 5.3), we obtain a dramatic increase in
the probability to hit the ZLB. After that volatility spike, the probability decreases until
2001. The ZLB period of 2001-2006 corresponds to large increases in both probabilities,
reaching levels highest than 75% during 2003. This peak is coherent with a flattening of
the yield curve at that date: as short rates stay low and long-term rates begin to drop,
agents expect a higher probability of the short rate staying at zero for 2 years on. In some
sense, those probabilities are a convenient way to represent information contained in the
yield curve. The probability to reach and/or stay at the ZLB increases again at the end

of the sample, amid the last financial crisis (from 2009 onwards).

We turn now to the same probabilities for a 5-year horizon (top-right plot of Figure 5.8).
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Figure 5.7: Fitted conditional variance proxies and surveys
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Notes: The top panel presents the two conditional variance proxies V;(h) estimated with an
EGARCH(1,1) model on 2- and 10-year yields (left and right tiles) of weekly data from June 30, 1995 to
May 30, 2014. The black solid lines are the observed variance proxies and the grey dotted lines are the
model-implied (or fitted) equivalent. The bottom panel presents the survey of professional forecasters
for the 10-year yield, 3- and 12-months ahead. Survey-based data are available at the monthly
frequency from 1999 to the end of the sample. The black dots correspond to the observed data, and the
grey solid lines are the fitted equivalent.

First and unsurprisingly, the probabilities under both measures are on average lower than
for the 2-year horizon. Second, the differences between P and QQ probabilities under the
two measures are smaller than for the previous horizon. This being said, the difference
between P and QQ probabilities are not negligible. In particular, in 2007, in a context of
rising short-term rates, Q probabilities are twice lower than their physical counterparts.
This implies that neglecting the existence of risk premia results in a substantial under-
estimation of the persistency of the ZLB regime. In other words, the short-term interest
rate is expected to stay at zero for a longer period under the physical measure. Third, it
is interesting to note that over the last five years of data, even if the observed short- to
medium-term yields (up to 4 years) are fairly stable (see Figure 5.6), the probability of
the short-rate being at zero in years has substantially grown. This phenomenon is consis-
tent with the decrease in longer-term yields, which points to an increase in the perceived

expected length of the low-interest rate environment.
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Figure 5.8: Time-series of ZLB probabilities: Py(ry1r < A) and Qu(rer < A)
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Notes: Probabilities are computed with weekly data from June 16, 1995 to May 30, 2014. The top
panels present the probabilities of the short-rate hitting zero in two years (top-left panel) and 5 years
(top-right panel). On bottom panels, we represent the probabilities of the short-rate being below 25 bps
in 2 years (bottom-left panel) and 5 years (bottom-right panel). Black solid lines are the risk-neutral
probabilities whereas red dashed lines are the historical ones; grey-shaded areas are the difference
between the two probabilities.

The bottom panels of Figure 5.8 confirm the previous results. Since the threshold is now
different from 0 (25 bps), we observe higher probability values under both measures. For
instance, the historical and risk-neutral probabilities of going below 25 bps at the 2-year
maturity (bottom-left tile) are close to 1 in 2003, and fluctuates between 0.5 and 1 dur-
ing the ZLB period. The divergence between P and QQ probabilities are larger than for
the upper two plots: in many instances, the physical probabilities of being in a low-rate

environment are two to three times larger than the risk-neutral ones.

Figure 5.9 shows conditional P and Q probabilities of having low short rates over a richer

spectrum of horizons. We consider two dates, the first in late 2007 and the second at
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Figure 5.9: Horizon structure of ZLB probabilities: Py (r;rr < A) and Qu (i < N).
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tile). Black and red curves correspond distinguish the date at which these probabilities are evaluated,
and respectively correspond to November 30, 2007 and May 30, 2014. Solid and dashed lines represent
respectively to Q and P-probabilities.

the end of the sample (respectively black and red lines, Figure 5.9). For each date, the
forecast horizon varies between 6 months and 5 years. Our term-structure model gen-
erates different profiles of low-rate probabilities with respect to the forecast horizon: for
the earlier date, the horizon structure is globally increasing whereas it is hump-shaped for
the latest date of the sample. This illustrates the ability of the model to generate flexible

expected paths of future short-term interest rates.

5.6 Conclusion

In this paper, we introduce a new class of Affine Term Structure Models able to pro-
vide at the same time non-negative yields at any maturity and a short rate which can
at zero for extended periods of time (the ZLB being a non-absorbing state) while the
longer-term rates can still vary. These characteristics are obtained by the introduction of
a new univariate non-negative affine process called Autoregressive Gamma-zero and its
multivariate affine extension (VARG), involving conditional distributions with zero-point
masses. The affine nature of our model allows for a great flexibility at the estimation
stage. First, a Kalman-filter-based maximum likelihood approach is allowed. Second, the
estimation procedure is easily enhanced by explicitly taking into account relevant infor-
mation like interest rate survey-based forecasts, conditional yield variance proxies. Third,

explicit and quasi-explicit formulas are easily derived for calculating the physical and
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risk-neutral probabilities of the short-term rate staying at —or close to— zero at different

forecast horizon.

We assess the model performances with an application to Japanese government bond
yields. Our four-latent-factors VARG term-structure model is able to fit both yield levels
and conditional volatilities of yields. We also compute time-varying probabilities of being
at the ZLB in the future under the historical and risk-neutral measures. Our results show

that differences between such physical and risk-neutral probabilities can be substantial.

The affine framework we develop in this paper can also be used to easily price fixed-income

derivatives. We left those different directions for further future research.
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Appendices to Chapter 5

5.A  Conditional moments of the ARG(a, 5, ;) process

up
1 —up

The conditional cumulant-generating function is ¥ (u) = log(yi(u)) = BX: +

up

1 —up
and variance of X;,; given Xj:

«. Deriving this function with respect to u gives us the conditional expectation

d p(1 — up) + p(up) po(l — up) + plupa)
- — X
0 T—wp 7 G-wr? |
p piov
= X
T |
= ap+ pX,

d ) 202
= (0) =
P R E R TR

= 2p’a+2upX,

Let us introduce now the following notations: mi; = E(X;) and my; = V(X;). It easily
seen that these unconditional moments are defined by the following system of difference

equations:

miy = pMig—1 +

Moy = 20+ 2upmyyy + p° Moy

that can be represented in matrix form as:

mig p 0 myit—1 pno
= + ) (5.31)

Moy 2up p? M1 21

This system admits a stationary solution if and only if p < 1, and it is given by:

apu
ml 1 _
_ p
" . (5.32)
m
? (1—p)(1—p?)

my and my are therefore the marginal mean and marginal variance of the stationary

ARG(av, B, i) process.
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5.B  Sojourn time and lift-off probability of the ARG(«, 5, 1)

process

Proof. of Lemma 5.2.1

ox(u) = /]R+ exp(uz) dPy(x) = Px{0} +/ exp(uz) dPx (x)

>0

Since x > 0, exp(uzx) — 0 when u — —o0, and, using Lebesgue theorem, the integral
tends towards 0. |

Proof. of Proposition 5.2.2

(7) Let us consider an ARG(a, B, ) process X; and let us study, first, the limit of:

E [exp(uXiin) | Xi] = exp {aOh(u) X+ i: b[aOk(u)]} ,

when u — —oo, in order to calculate P(X;, = 0| X;). It can be shown recursively that:

h

aoh(u) — pu -
=]
1 —up
I—p
h—1 h—1 pk
bla* = (1-—
e [CL (U/)] ( p)auﬂ; 1 —p—u,lL+U/ka+l )
and, when u — —oo, we have:
h h-1 k
Pt X p
P(Xi1n =0[Xy) = exp —1—%_(1_P>O‘ZW
- P L P
1-p (5.33)

and the result is proved.

(77) From Definition 5.2.2 we know that, when X, follows an ARG(«, 3, 1) process,
P(Xi1 = 0]Xy) = exp(—a — X;). Then, if we denote by fn(X:) = P(Xipn =
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0,..., X1 = 0] Xy), we can always write:

m(Xy) = P(Xppn=0,..., X1 =0]Xy)
= P(Xipnh =0 Xppn1=0,..., Xep1 = 0, Xy) fr1(Xy)
= P(Xyyn =0 Xepn1=0) fa1(Xs)
and the result is easily proved by recursion.
(131)
P(Xeon >0, Xeip1=0,..., X441 =0]| Xy)
= PXyn >0 Xpin1=0,.... Xi11 =0, X)) P(Xyyp1=0,..., X411 = 0| Xy)
= [1=P(Xpn =0 Xypp—1 = 0)] exp [~a(h — 1) — B X{]

= [1—exp(=a)] exp[-a(h—1) = SX,] .

5.C Risk-neutral conditional Laplace transform and yield-

to-maturity formula

Proof. of Proposition 5.3.2
Given that, from Assumption 2, we have r;, = ¢’ X;, where the first n; components are
different from zero and the remaining ones are equal to zero, we can write:

Pi(h) = exp (Ah + B;L Xt) = E(t@ [exp(—rt) exp (Ah_l + B;z—l Xt+1)]

= exp(—ri+ Ap_y) B2 [exp (Bj,_y Xi41)]

= exp Ah—l + Zb?(Bj,h—l) + (Z (I;Q(Bjﬁ_l) — 5) Xt]
j=1

j=1

and the result follows by identification. [

5.D Historical conditional Laplace transform of the state

vector

First of all, the following result holds:
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Proposition 5.D.1. Let us consider a scalar Extended ARG, (o, B, 1) process (X;) with

conditional log-Laplace transform y(u) = . pu X + 7 Y - log(1 — up), with
— —

p = B u. The associated conditional Esscher transform, with parameter 6 € R, generates

the family of probability distributions characterized by the following conditional log-Laplace

transform:
Yy (u) = ur Xt—i—l_uu*oz — v log(1l —up*), (5.34)

which is the log-Laplace transform of an EARG, (o, 5%, u*) process with

1—6u’ 1—6u’

Proof. of Proposition 5.3.3

dP ~
If we consider our change of probability measure d@”“ = exp [9/ X1 — 02(0)|, where
tt+1

P, ;41 is the conditionalEsscher transform of Q41 associated with 6, we have L/J]Hi (u)) =
w;%(uj +6;)— w;%(ej) for any j € {1,...,n}, and applying Proposition 5.D.1, Proposition
5.3.3 is easily proved. [ |
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