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Glossary

Symbol De�nition

a†i , ai Boson reation and annihilation operators at rare earth site i
aas(ε) Asymmetry parameter varying with the kineti energy ε
abg Time-independent bakground term

ad Distane between the enter of two neighbouring tetrahedra

alat Lattie parameter

amag(q) Amplitude of the magneti interation

a0 Initial muon asymmetry or Bohr radius,

depending on the ontext

Ah(≡ A) Absorption fator

Ainc Weighing fator for inoherent nulear intensity

Amag Weighing fator quasielasti magneti intensity

Am
n (≡ Am

n (R)) CEF parameters of rare earth R
A143

hyp Hyper�ne onstant of isotope

143
Nd

bg,i Bakground intensity at the experimental point i
bj Fermi length of atom j
Bdem Demagnetising �eld

Bdip Dipolar magneti �eld

B′
dip Dipolar magneti �eld arising from magneti moments

inside the Lorentz sphere

Bhyp Hyper�ne magneti �eld

Bint Internal �eld

Bj Parameter desribing the amplitude of the isotropit

displaemen around the atomi mean position,

and involved in the Debye-Waller fator

BJ(x) Brillouin funtion

Bloc Loal magneti �eld

BLor Lorentz magneti �eld

Bmax Maximum amplitude of the loal �eld Bloc

Bm
n CEF parameters: Bm

n = Am
n 〈rn〉Θn

ca, cx Heat apaity of the platform and of the sample, respetively

cp Heat apaity at onstant pressure

C Constant

Cel Eletroni spei� heat

Cex Spei� heat of magnon-like exitations

Cnuc Nulear spei� heat
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Symbol De�nition

Cp Spei� heat at onstant pressure

Cph Lattie ontribution to the spei� heat

Csh Constant

Cv Spei� heat at onstant volume

Cα,β(q) Analytial funtion of q

d Dimension of a system/matrix/representation

dhkl(≡ d) Interplanar spaing

dpair Vetor joining a magneti ion to one of its nearest neighbours

d1, d2 Interlaed sublatties desribing a Heisenberg

ollinear antiferromagnet

d
(µ)
ν (gi) Matrix representation of the symmetry element gi

in the representation Γ
(µ)
ν

d̂
(µ)
ν (gi) Matrix representation of the symmetry element gi

in the representation Γ̂
(µ)
ν

D Dipolar energy sale

Dc(Bloc) Field distribution

Ddiff Di�usion oe�ient

DDM Dzyaloshinskii-Moriya vetor

Dnn Dipolar energy sale between two nearest neighbours

Dαβ
ri

Components of the �eld dipole tensor assoiated with site ri
D Constant

Dt Sale of the distortion

e+ Positron

Eex Exitation energy

Ef Neutron �nal energy

Ei Neutron inident energy or CEF energy levels,

depending on the ontext

Em Nulear energy levels

Emax Maximal energy of a magnon exitation

f Frustration index or �lling fator, depending on the ontext

fj(q) Atomi form fator (Fourier transform of the eletroni density)

fmag(q) Magneti form fator

F (x) Funtion desribing a CEF transition and taken as the

onvolution of a Gaussian and a Lorentzian funtion

Fmag(q) Magneti struture fator

Fn(q) Neutron struture fator

F ′
n(q) Unit-ell struture fator

Fp(q) X-ray struture fator

g Spetrosopi splitting fator or order of Gk,

depending on the ontext

g(ω) Density of states

geff E�etive spetrosopi fator

gi Symmetry operation

gJ Landé fator
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Symbol De�nition

gm(E) Magneti density of states

g‖ Longitudinal spetrosopi fator

g⊥ Transverse spetrosopi fator

G(x) Gaussian funtion

Gk Little group: subgroup of the spae group leaving

the magneti propagation wavevetor invariant

Gαβ
ri

Components of the tensor G representing the oupling

between the muon spin and the spins of the system

h Label of the Bragg peaks positions at the angle θh,
or translational part of a symmetry operator,

depending on the ontext

~ Redued Plank onstant (or Dira onstant)

Happlied Real applied magneti �eld at the sample

Hc Critial magneti �eld induing a phase transition

Hext External magneti �eld

HG Full width at half maximum of the Gaussian funtion

HL Full width at half maximum of the Lorentzian funtion

HAF Heisenberg ollinear antiferromagneti Hamiltonian

HCEF CEF Hamiltonian

H(J)
CEF CEF Hamiltonian ating on the multiplet de�ned by a

total angular momentum J

H(J),mix
CEF CEF Hamiltonian ating on the multiplet de�ned by a

total angular momentum J taking into aount the J-mixing

e�et arising from the oupling with other multiplets

HCSI Classial spin-ie Hamiltonian

(longitudinal exhange Hamiltonian)

HDB Dipolar spin-ie Hamiltonian in terms of

the dumbell model notation

HDSM Dipolar spin-ie Hamiltonian

Hex Anisotropi exhange Hamiltonian

HFM Hamiltonian for a ferromagneti system

Hper Perturbative Hamiltonian

HQ Quadrupolar Hamiltonian

HQSI Quantum spin-ie Hamiltonian (XXZ model)

HXYZ Anisotropi exhange Hamiltonian of the XYZ model

HZ Zeeman Hamiltonian

H⊥ Transverse exhange Hamiltonian (XXZ model)

I Nulear spin vetor operator

Ibg Bakground ontribution

Ic Critial urrent in a Josephson juntion

Ih Intensity at the Bragg position h

I Isotropi exhange oupling onstant

Ieff E�etive nearest-neighbour isotropi exhange oupling onstant

Inn(≡ Jnn) Nearest-neighbour isotropi exhange oupling onstant
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Symbol De�nition

I0 Saling fator

{I1, ..., I4} Anisotropi exhange onstants involved in Hex

Notations {Izz, I±, I±±, Iz±} are also used

I⊥ Transverse exhange oupling onstant

Ji Total angular momentum vetor operator of rare earth at site i
J1(x) Bessel funtion of the �rst kind

J± Raising and lowering spin operators

{J̃x, J̃y, J̃z} Exhange onstants involved in HXYZ

{J1, ...,J4} Anisotropi exhange onstants involved

in the e�etive spin-1/2 exhange Hamiltonian

k Vetor in the reiproal spae

kB Boltzmann onstant

ki,kf Inident and �nal wavevetors, respetively

kmag Magneti propagation wavevetor

K Dissoiation onstant for the nuleation of magneti monopoles

Kexp Normalised muon frequeny shift

K ′
dip Muon Knight shift that arises only from the dipolar �eld

reated by the magneti moments inside the Lorentz sphere

K0 Complex onjugation operator

K1, K2 Thermal ondutane between the ryostat and the platform,

and between the platform and the sample, respetively

Kµ Muon Knight shift

L Neutron �ight path

L(x) Lorentzian funtion

Li Total orbital momentum vetor operator of rare earth at site i
Lp,h Lorentz fator

me Eletron mass

mn Neutron mass

mpm Paramagneti moment

msat Saturation value of the magneti moment

msp Spontaneous magneti moment

m111 Projetion of the spontaneous magneti moment

over the [111℄ axis

mµ Muon mass

M Bulk magnetisation

Md Divergene-free part of the Helmholtz deomposition

Mh Multipliity of the re�etion h

MLor Magnetisation inside the Lorentz sphere

Mm Curl-free part of the Helmholtz deomposition

M⊥(q) Projetion of the Fourier transform of the

total magnetisation density

on a plane perpendiular to q

n Order of the operators or number of free parameters,

depending on the ontext

n(x) Distribution funtion
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Symbol De�nition

n(4f) Number of 4f eletrons

nb Number of bound magneti monopoles

nBE(x) Bose-Einstein distribution funtion

nFD(x) Fermi-Dira distribution funtion

nP(x) Plank distribution

nu Number of dissoiated magneti monopoles

n0 n0 = nb + nu

N Number of magneti ions in the system

N(t) Positron ounts in a detetor

N Demagnetising �eld tensor

Nc Number of unit ells in the system

NCu Number of Cu nulei in the sample holder

Nf Number of formula unit in the unit ell

NL Number of magneti moments inside the Lorentz sphere

Nmag Number of magneti ells

NNd Total number of

143
Nd nulei in the sample

Np Number of experimental points

N0 Sale of the positron ount

N± Positron ounts in the forward (+)/bakward (-) detetors

NZZ
Longitudinal omponent of the diagonal tensor N

NA Avogadro number

Om
n Stevens operators

p Magneti sattering length for a magneti moment of 1 µB

at q = 0
p Pressure or proton, depending on the ontext

pi Relative abundane of isotope i
pmn Prefator

P Thermal power

P (θ) Polarisation fator

Pn(x) Legendre polynomials

Pm
n (x) Assoiated Legendre polynomials

PX(t),PY (t) Transverse muon polarisation funtions

P exp
X (t) Experimentally measured transverse muon

polarisation funtion

PZ(t) Longitudinal muon polarisation funtion

P exp
Z (t) Experimentally measured longitudinal muon

polarisation funtion

P stat
Z (t) Stati longitudinal muon polarisation funtion

q Sattering vetor

qBZ Radius of the �rst Brillouin zone onsidered as a sphere

qi Eletri harge

qm Magneti harge arising from the fragmentation of

the magneti moment

Q Quadrupolar moment

Qex Quadrupole moment of the exited Mössbauer state
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Symbol De�nition

Qgs Quadrupole moment of the Mössbauer ground state

Qh Heat input brought to the sample

Qα(≡ Q) Total magneti monopole harge in a tetrahedron α

Q̃eff E�etive magneti harge arried by a magneti monopole

r Spin anisotropy ratio: r = g⊥/g‖
ri Vetor linking the muon to the rare earth site i
rij Vetor linking rare earth sites i and j
rnn distane between nearest neighbours

〈rn〉 Expetation values of the nth power distane between

the nuleus of the magneti ion and the 4f eletroni shell

R Ideal gas onstant or rare earth ion, depending on the ontext

R(x) Instrumental resolution funtion

Rexp, Rp, Rwp Pro�le, weight pro�le, and expeted weight pro�le fators,

respetively

Ri Distane between an eletri harge and the rare earth

S(q, ω) Sattering funtion

S′(≡ Sµ) E�etive spin-1/2

Sel Eletroni entropy

Si Total spin vetor operator of rare earth at site i
Siso(q, ~ω) Isotope-inoherent sattering funtion

Smag(q, ~ω) Magneti sattering funtion

Sspin(q, ~ω) Spin-inoherent sattering funtion

Sµ Muon spin

T Temperature

TC Curie temperature

Tc Transition temperature

T0, Ta, Tx Temperatures of the ryostat, the platform, and the sample,

respetively

{U, V,W} Half-width free parameters desribing the resolution funtion

Uαβ Anisotropi displaement parameters involved in

the Debye-Waller fator

vc(≡ v0) Volume of the unit ell

v⋆c Volume of the �rst Brillouin zone

vD Doppler veloity

vex Exitation veloity

vi, vf Neutron inident and �nal veloity, respetively

vmag Volume of the magneti ell

vTb Volume per terbium ion

V (rαβ) Magneti Coulomb interation between

two magneti monopoles

separated by a distane rαβ
VCEF CEF potential

VF(r) Fermi pseudo-potential at the r real spae position

Vmag Potential of magneti interation

Vp(x) Pseudo-Voigt funtion
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Symbol De�nition

Vzz Prinipal omponent of the eletri-�eld gradient tensor

W (θ) Probability of the positron to be emitted in a diretion θ
x Position of oxygen atom O1

X Isotropi strain parameter

yc,i Calulated intensity at the experimental point i
yc,0 Saling fator

yo,i Observed intensity at the experimental point i
Y Isotropi size parameter

Y m
n (x) Spherial harmonis

z Quantisation axis [111℄

znn Number of nearest neighbours

Zi(≡ Z) Partition funtion of isotope i
Z(θ) Peak pro�le funtion

Zm
n (x) Tesseral harmonis

α Parameter set involving the n free parameters:

α = (α1, ..., αn)
αc Critial exponent involved in the ritial behaviour of Cel

αd Instrumental balane parameter

αm αm = nu/n0

βc Critial exponent involved in the ritial behaviour of msp

αD Constant

βse Exponent of the strethed exponential funtion

δi Unit vetor belonging to a <111> axis at rare earth site i
χ Bulk magneti suseptibility

χ(q, ~ω) Dynamial suseptibility

χ′
ac Real part of the a.. magneti suseptibility

χ′′(q, ~ω) Imaginary part of the dynamial suseptibility

≡ Im{χαβ(q, ω)}
χ′(q) q-dependent stati suseptibility
δ(x) Dira funtion

δCEF Energy splitting between the low-lying CEF energy levels

δi,j Kroneker symbol

∆ Anisotropi energy gap

∆a Strength of the spin anisotropy

∆G Standard deviation of a Gaussian �eld distribution

∆N,i Energy splitting between nulear levels of isotope i
∆Q Nulear quadrupole splitting

∆so Energy splitting between the CEF ground state

and the �rst CEF exited energy level

∆Selec Eletroni entropy variation

∆t Time sale

∆X Standard deviation of the �eld distribution

η Mixing parameter involved in the pseudo-Voigt funtion

ϕ Phase shift

φn Neutron �ux
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Symbol De�nition

Φαβ(t) Symmetrised orrelation funtion of the �utuating part

of the loal magneti �eld at the muon site

Φ±
0 Ground state wavefuntions

γi Gyromagneti ratio of isotope i
γµ Muon gyromagneti ratio

γ∞ Sternheimer oe�ient

Γ(x) Gamma funtion

Γi,i′ Linewidths of the Lorentzian funtion aounting for the

lifetime of the i′ CEF energy level during the transition i → i′

Γq Quasielasti Lorentzian linewidth

ΓZ Inverse lifetime of the nulear level

Γ
(µ)
ν (≡ Γν) Irreduible representation of order µ

and labelled by the index ν

Γ̂
(µ)
ν Loaded irreduible representation

καm Magneti ondutivity illustrating

the motion of the magneti monopoles

λso Spin-orbit oupling onstant

λX Transverse (or spin-spin) relaxation rate

λZ Spin-lattie relaxation rate

λexp
Z Expeted spin-lattie relaxation rate

λZ,0 Constant

Λαβ(q, ω) Symmetrised spin orrelation funtion

µ Magneti moment or hemial potential,

depending on the ontext

µ0 Permeability of free spae

µB Eletroni Bohr magneton

µCF
CEF magneti moment

µCF
‖ CEF magneti moment along the z axis

µCF
⊥ CEF magneti moment perpendiular to the z axis

µn Magneti moment of the neutron

µN Nulear Bohr magneton

µ+
Muon with positive eletri harge

νe Neutrino assoiated to the positron

νext Muon preession frequeny around the external

magneti �eld Bext

νFC Fermi hopper frequeny

νM Relaxation rate of the magnetisation

ν0 Self energy aounting for the dipolar and exhange energy

between nearest neighbours

ναm Relaxation rate for reombination of the

nuleated magneti monopoles

νµ Muon neutrino or muon preession frequeny

around the loal magneti �eld Bloc, depending on the ontext

ν̄µ Antineutrino assoiated to the muon
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Symbol De�nition

ωµ Muon preession angular frequeny

Ω Solid angle

Ωm Number of mirostates

Ψj
i (≡ Ψi) Basis vetors of the irreduible representations taken at atom j

(the index i labels the di�erent basis vetors)
Ψ±

CEF wavefuntions of a given doublet state

π+
Positive pion

σ Neutron spin

σa,i Neutron absorption ross setion of atom i
σi Standard deviation of yi
σi
spin, σ

i
iso Spin-inoherent and isotope-inoherent ross setions of atom i

σ2 Sreening oe�ient

Σ,Σ′
Inident and �nal total absorption ross setions, respetively

τ Redued temperature: τ = T−Tc

Tc

τc Magneti orrelation time: τc = 1/νc
τ0 Spin �utuation time: τ0 = 1/ν0
τ1 Relaxation time of the sample temperature

τµ Muon lifetime

θ̂ Odd time-reversal symmetry operator

θCW Curie-Weiss temperature

θh Bragg peak angle

ΘD Debye temperature

Θn Stevens multipliative fators

ξ(x) Riemann funtion

|i〉 Eigenvetors of HCEF

|m〉 Zeeman states (−I ≤ m ≤ I, I nulear spin)

|mJ〉 Zeeman states (−J ≤ mJ ≤ J , J total angular momentum)

dσ
dΩ

Di�erential neutron ross setion

dσcoh(q)
dΩ

Di�erential oherent neutron ross setion

dσinc(q)
dΩ

Di�erential inoherent neutron ross setion

dσmag(q)

dΩ
Di�erential magneti neutron ross setion

d2σ
dΩdE′

Double di�erential neutron ross setion

(

d2σ
dΩdE

)

inc
Double di�erential inoherent neutron ross setion

(

d2σ
dΩdE

)

mag
Double di�erential magneti neutron ross setion

(

d2σ
dΩdE

)

se
Double di�erential neutron ross setion

from the sample environment

[A,B] Commutator of operators A and B: [A,B] = AB−BA

{A,B} Symmetrised orrelation funtion of operators A and B:

2 {A,B} = AB+BA

〈...〉 Thermal average
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A general introdution on magneti geometrial frustration and a non exhaustive

review of the di�erent exoti magneti states enountered in the two pyrohlore series

R2M2O7 (M= Ti, Sn) of interest in this work are provided in the following. Moreover,

a brief desription of the ontent of the manusript is given at the end of this hapter.

1.1 Geometrial frustration

Magneti ompounds usually undergo a transition to establish at low temperatures a

long-range magneti order and stabilise in a well-known magneti state suh as ferro-

magneti order where all the spins are parallel, antiferromagneti order where spins are

antiparallel or ferrimagnetism order where magneti moments of di�erent magnitudes

15
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are antiparallel. For instane, the ferromagneti order should appear below the Curie

temperature TC ≈ θCW, where θCW is the Curie-Weiss temperature haraterising the

nature and strength of the magneti interations.

The notion of frustration in magnetism refers to the inability to simultaneously

satisfy all the magneti interations. This originates from the ompetition of several

exhange paths between two magneti ions, i.e. frustration of interations, or from the

topology of the lattie where the spatial arrangement of the magneti atoms preludes

the satisfation of the magneti interations simultaneously. The latter ase, of interest

here, is alled geometrial frustration. An example is given in Fig. 1.1 where Ising

spins, i.e. spins allowed to point up or down, with nearest-neighbour antiferromagneti

interations are loated at the orner of a square and a triangle. In the former ase, all

the antiferromagneti interations are satis�ed whereas in the triangular ase, if one an-

tiferromagneti interation is satis�ed with two spins antiparallel, the orientation of the

third spin is unertain sine it annot satisfy simultaneously the two antiferromagneti

bonds with its two neighbours.

AF AF

AF

AF

AF AF

AF
?

Figure 1.1: Ising spins are loated at the orner of a square lattie (left) where all the

antiferromagneti interations between the �rst neighbours an be satis�ed and on a

triangle (right) where one of the AF bonds displayed by the blue bond is not satis�ed.

Geometrial frustration has foused a lot of attention from an experimental and

theoretial point of view in the past deades in front of the rihness of the magneti

ground states. This onept leads to unonventional magneti states, suh as omplex

magneti strutures or prevention of the long-range magneti order. Frustration usually

forbids the establishment of a single state, and the lowest energy spin on�guration is

realised by minimising the interation energies in several manners, i.e. the ground states

of frustrated ompounds are usually highly degenerated. The degree of frustration

an be evaluated through the ratio f = |θCW|/Tc, where Tc denotes the temperature

of the transition, if any, to a magneti order or a glassy state. Among the various

latties leading to frustration, the most popular two-dimensional strutures are the

triangular and the Kagome lattie, illustrated in the left and right panels of Fig. 1.2,

respetively. Wannier [1℄ �rstly introdued this onept notiing that ferromagneti and

antiferromagneti interations between Ising spins have very di�erent properties on a

triangular lattie: in the latter ase, no magneti transition is predited down to the

lowest temperatures. Three-dimensional geometrially frustrated lattie are displayed
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Figure 1.2: Two dimensional geometrially frustrated systems: the triangular (left) and

Kagome (right) lattie.

Figure 1.3: Examples of three-dimensional geometrially frustrated systems: the py-

rohlore lattie omposed of orner-sharing tetrahedra. Magneti ions are drawn by

blak spheres loated at the orners of tetrahedra. Reprinted �gure with permission

from Ref. [2℄. Copyright 2015 by the Amerian Physial Soiety. Right: hyperk-

agomé lattie (orner-sharing triangles) as found in the gadolinium garnet ompound

Gd3Ga5O12 [3℄.

in Fig. 1.3 in the ase of a orner-sharing tetrahedra (left) or triangles (right) network.

1.2 The pyrohlore ompounds

A realisation of a three-dimensional frustrated network is the pyrohlore lattie, illus-

trated in the left panel of Fig. 1.3 where magneti ions are loated in the verties of a

orner-sharing tetrahedra network. We will fous on insulator ompounds of hemial

formula R2M2O7 where R is a rare earth magneti ion, and M = Ti or Sn in this work.

They rystallise in the fae entred ubi lattie of spae group Fd3̄m. More details

of the unit ell rystallography are provided in App. A. However, we need to notie

that the [111℄ diretion is a loal trigonal symmetry axis whih will be taken as the

quantisation axis z in the following. Some rare earth properties will be given in the

introdution of Chapter 3.

The simplest model whih an be onsidered is the lassial isotropi nearest-neigh-
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Figure 1.4: The three spin on�gurations of the irreduible representation Γ7 de�ned

by the basis vetors Ψ4 (left), Ψ5 (middle), and Ψ6 (right), see Tab. D.1. Piture

reprodued from Ref. [9℄ with kind permission of IOP Publishing.

bour exhange Hamiltonian:

H = −I
∑

i,j

Si · Sj , (1.1)

where I is the nearest-neighbour exhange oupling, i.e. I > 0 in the ase of ferromag-

neti interations and I < 0 for antiferromagneti ones, and Si is a Heisenberg spin

loated at site i. In the antiferromagneti ase, the authors of Refs. [4�6℄ show through

Monte Carlo simulations that the system remains disordered at any �nite temperature,

i.e. a lassial spin liquid. Note that the ferromagneti ase does not lead to frustration

sine the minimal energy on�guration is ahieved when all the spins are parallel.

Nevertheless, still onsidering lassial Heisenberg spins interating through nearest-

neighbour antiferromagneti interations, and taking into aount dipolar interations,

Palmer and Chalker [7℄ show that the degeneray assoiated to the in�nite number

of spin on�gurations, previously predited in Ref. [8℄, is lifted. For a spei� range

of the ratio of the dipolar energy sale over the exhange energy, the system enters

a four-sublattie long-range magneti order with a magneti propagation wavevetor

kmag = (0, 0, 0) and a oplanar spin on�guration illustrated in Fig. 1.4 by the three

basis vetors of the Γ7 irreduible representation (see Tab. D.1).

However other aspets need to be onsidered. One important feature of the investi-

gated pyrohlore ompounds is the strong spin-orbit oupling, larger than the rystal-

eletri-�eld ating at the rare earth site and reated by the surrounding eletri harges.

As we will see in Chapter 3, the rystal �eld perturbation splits the ground state mul-

tiplet, leading in most ases to a ground state magneti doublet. This enfores a strong

anisotropy of the spin. With regard to the loal axis [111℄ at the rare earth site, spins

ould lie along or perpendiular to this axis, i.e. the Ising or XY anisotropy, respetively.

Considering Ising lassial spins, the Hamiltonian is written as:

Hex = −I
∑

i,j

Si · Sj −∆a

∑

i

(δi · Si)
2, (1.2)

where ∆a > 0 sales the strength of the anisotropy and δi is a unit vetor belonging to

a <111> axis. Monte-Carlo alulations predit [10, 11℄, within the approximation that

a strong anisotropy enfores spins to lie along the <111> axis (|I| ≪ ∆a), that with

nearest-neighbour antiferromagneti interations a long-range magneti order ours at
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Figure 1.5: Spins on�guration for a planar anisotropy in a single tetrahedron: the non

oplanar Ψ2 state (left) and the oplanar Ψ3 state (right). Blue spheres indiate rare

earth ions sitting on the orner of a tetrahedron and red arrows show the orientation

of the spins. Reprinted �gure with permission from Ref. [14℄. Copyright 2015 by the

Amerian Physial Soiety.

Tc ≈ |I| with a magneti propagation wavevetor kmag = (0, 0, 0) and a on�guration

where all the spins are pointing into or out the enter of the tetrahedra; the �rst

experimental realisation of this magneti order has been found in the orner-sharing

tetrahedra ompound FeF3 [12℄. On the ontrary, in the ase of nearest-neighbour

ferromagneti interations, the system does not display any long-range magneti order:

two spins are pointing into and two spins are pointing out the enter of a tetrahedron,

i.e. the lassial spin-ie ase (see below) [13℄. This absene of order results from the

high degeneray of the ground state sine several energy equivalent spin on�gurations

ful�l the "two-in/two-out" onstraint, see Se. 1.3.

In the ase of an XY spin anisotropy with nearest-neighbour antiferromagneti inter-

ations, two magneti strutures an be ahieved where spins lie in a plane perpendiular

to the loal axis [111℄, as shown in Fig. 1.5: a non oplanar spin on�guration de�ned

as the Ψ2 state (left panel) and a oplanar spin arrangement haraterised by the Ψ3

state (right panel). Note that these two states are the basis vetor of the irreduible

representation Γ5 allowed by the spae group Fd3̄m, see Tab. D.1. These states are

energy equivalent leading to the degeneray of the ground state. However, in a so-alled

order by disorder mehanism [15℄, thermal �utuations selet the Ψ2 states, i.e. whereas

the internal energy of the two states are equal, minimising the free energy whih takes

into aount thermal �utuations will selet the aforementioned state [16℄. Therefore

a �rst-order magneti transition is predited to our with a magneti propagation

wavevetor kmag = (0, 0, 0). When quantum �utuations are onsidered, a seond-order

magneti transition is predited [14, 17℄.

In summary, the magneti ground state of the pyrohlore is ruled by numerous

physial aspets: the nature of the nearest-neighbour exhange interation and the

harater of the spin anisotropy need to be onsidered, but also dipolar and further

neighbour interations, anisotropi exhange interations, and whether the spins are
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Figure 1.6: Illustration of the analogy between the spin-ie and the water ie model.

Left: Water ie struture where the oxygen ions (O

2−
) are displayed by the empty

spheres and the protons (H

+
) by the blak ones. Arrows show the proton displaement

from the middle of two oxygen atoms where two are near the entral oxygen ion whereas

the other two are far from it. Reprinted �gure with permission from Ref. [24℄. Copyright

2015 by the Amerian Physial Soiety. Right: Single tetrahedron obeying the ie rule:

two Ising spins are pointing into the enter of the tetrahedron and two spins are pointing

out. Reprinted �gure with permission from Ref. [18℄. Copyright 2015 by the Amerian

Physial Soiety.

lassial or quantum. The subtle balane between these onsiderations is at the origin of

the various exoti magneti states enountered in the pyrohlore series. In the following,

we endeavour ourselves to summarise brie�y di�erent magneti ground states at play

in the R2M2O7 families where M = Ti or Sn.

1.3 The lassial spin-ie

The terminology of spin-ie was �rst introdued by Harris et al. [18℄ for the pyrohlore

ompound Ho2Ti2O7 where no long-range order was evidened down to 50 mK by µSR
spetrosopy [19℄. Other pyrohlore ompounds, namely Dy2Ti2O7 [20℄, Ho2Sn2O7 [21℄

and Dy2Sn2O7 [22℄ have also been unambiguously lassi�ed as lassial spin-ie. In the

following, we will present some peuliar properties of these ompounds.

1.3.1 The water ie model

The rystal-eletri-�eld ating on the rare earth site onstrains the spins to lie along

the loal [111℄ diretion, i.e. de�ning the Ising model. The on�guration on a single

tetrahedron is two spins pointing into the enter of the tetrahedra and two spins pointing

out, de�ning the so-alled ie rule. This denomination originates from the analogy made

with the model of the water ie Ih originally proposed by Bernal and Fowler [23℄, as

illustrated in Fig. 1.6, where two protons are lose to the entral oxygen position and

two far from it.

The degeneray of the ground state of frustrated materials is a onsequene of

the peuliar lattie topology. For a given tetrahedron obeying the ie rule, only six

on�gurations are available as illustrated in Fig. 1.7. The orresponding entropy an be
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Figure 1.7: The six possible spin on�gurations obeying the ie rule illustrate the

degeneray of the ground state in a spin-ie ompound.

alulated [25℄: a system of N spins orresponds to

N
2
tetrahedra sine a spin belongs

to two tetrahedra. As Ising spins are onsidered, i.e. up or down, 24 on�gurations

should be onsidered for a single tetrahedron but only 6 of them are available in order

to satisfy the ie rule. Thus the number of mirostates aessible to the spin-ie is

alulated as Ωm = 2N( 6
16
)
N
2
and the entropy per spin is Sel/N = kB ln Ωm = kB

2
ln 3

2
,

orresponding to Pauling's result for water ie [26℄. The magneti entropy is dedued

from spei� heat measurements down to 0.2 K on Dy2Ti2O7 [20℄, illustrated in the

left panel of Fig. 1.8, and down to 0.34 K on Ho2Ti2O7 [27℄, after subtration of the

nulear ontribution arising from strong hyper�ne interations ating on the nuleus,

and is in agreement with this predition. The sibling stannate ompounds present the

same residual magneti entropy in Ho2Sn2O7 [28℄ and Dy2Sn2O7 [29℄.

The spin-ie ompounds do not exhibit any magneti long-range order as for instane

in Ho2Ti2O7 where no spontaneous osillations and no drop in the initial asymme-

try of the muon polarisation funtion are resolved by zero-�eld µSR experiments [19℄.

The eletroni spei� heat exhibits a broad hump roughly around T = 1 K below

whih it drops to almost zero, indiative of a spin freezing in Ho2Ti2O7 [27℄ and

Dy2Ti2O7 [20℄. This property was on�rmed by magnetisation measurements with the

presene of an hysteresis e�et between zero-�eld and �eld ooling proedures at 0.65 K

for Dy2Ti2O7 [30℄, and 0.75 K for Ho2Sn2O7 [31℄, the latter ase being illustrated in

the right panel of Fig. 1.8. An additional proof of this spin freezing lies in the presene

of a peak in the real part of the a.. suseptibility in Dy2Ti2O7 [30℄ and Dy2Sn2O7 [22℄

indiative of the development of spin orrelations.

1.3.2 The dipolar spin-ie model (DSM)

As disussed above, the ase of lassial spins with a strong Ising anisotropy, see the

Hamiltonian in Eq. 1.2, leads to the spin-ie on�guration if ferromagneti interations

are at play, whih is in agreement with the positive Curie-Weiss temperature dedued

from suseptibility measurements: θCW ≈ 1.9, 0.5, 1.8, and 1.7 K for Ho2Ti2O7 [18℄,

Dy2Ti2O7 [20℄, Ho2Sn2O7 [31℄, and Dy2Sn2O7 [33℄, respetively.

However, magneti ions arry a large magneti moment of about ≈ 10 µB. There-
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Figure 1.8: Left: Temperature dependene of the magneti entropy of Dy2Ti2O7 re-

vealing the same residual entropy as explained by Pauling in water ie [26℄. A �t to

the data is ahieved using the dipolar spin-ie model, see Eq. 1.3. Experimental data

are from Ref. [20℄. Reprinted �gure with permission from Ref. [32℄. Copyright 2015 by

the Amerian Physial Soiety. Right: Temperature dependene of the magnetisation

of Ho2Sn2O7 reorded in ZFC-FC and showing a spin freezing behaviour. Copyright

IOP Publishing. Piture reprodued from Ref. [31℄ by permission of IOP Publishing.

All rights reserved.

fore, dipolar interations are not negligible ompared to the weak exhange intera-

tion inferred from the Curie-Weiss temperature. An estimation of the dipolar energy

sale between two nearest neighbours is given by Dnn = 5
3
µ0

4π
µ2

r3nn
≈ 2.4 K [34℄, where

rnn = alat
√
2/4 is the nearest-neighbour distane and µ = 10 µB. Therefore, an e�etive

nearest-neighbour energy sale is put forward to take into aount both the e�et of the

exhange and dipolar interations: Ieff ≡ Inn+Dnn, where Inn is the nearest-neighbour

exhange onstant. Analysing spei� heat data, a negative value of the exhange

onstant is inferred indiative of nearest-neighbour antiferromagneti exhange intera-

tions, i.e. Inn = −0.52 and -1.24 K for Ho2Ti2O7 [27℄ and Dy2Ti2O7 [32℄, respetively.

Therefore, dipolar interations are of prime importane sine they restore the ferro-

magneti nature of the net nearest-neighbour interations, a mandatory ondition to

reover the spin-ie ase.

The dipolar spin-ie Hamiltonian was introdued in order to desribe the low tem-

perature properties of the lassial spin-ie ompounds [32℄:

HDSM = −I
∑

<i,j>

SiSjzi · zj +Dr3nn
∑

j>i

SiSj

(

zi · zj
|r3ij|

− 3(zi.rij)(zj.rij)

|r5ij|

)

, (1.3)

where the �rst term aounts for the nearest-neighbour exhange interation (I = 3Inn)
1

and the vetor zi refers to loal 〈111〉 diretion of spin Si loated at the rare earth

site i. The seond term arises from the dipolar interation (D = 3Dnn/5).
2

The

1

The fator 3 omes from the salar produt between the loal 〈111〉 diretions of two nearest

neighbour Ising spins loated at sites i and j.
2

The

3
5 fator omes from the salar produt between the 〈111〉 diretions and the vetor diretion

onneting two nearest neighbours.
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Figure 1.9: Zero-�eld phase diagram of the dipolar spin-ie model predited by Melko

et al. [38℄ with Monte Carlo simulations. Jnn and Dnn have been de�ned in the main

text and refer to the nearest-neighbor exhange and dipolar energy sales, respetively.

Here, Jnn ≡ Inn. Copyright IOP Publishing. Piture reprodued from Ref. [38℄ by

permission of IOP Publishing. All rights reserved.

role of the long-range dipolar interations was at stake for these frustrated systems to

understand why they do not lift the degeneray to establish a long-range ordering. If

the �rst Monte Carlo simulations fail to desribe the spei� heat and magneti entropy

results [35, 36℄, due to a trunated sum over the dipolar term [37℄, bulk properties of the

spin-ie ompound were �nally onsistent with simulations using the dipolar spin-ie

Hamiltonian for Ho2Ti2O7 [37℄ and Dy2Ti2O7 [32℄, the latter ase being illustrated in

the left panel of Fig. 1.8.

The orresponding phase diagram of the Hamiltonian written in Eq. 1.3 has been

omputed in Refs. [32, 38℄, see Fig. 1.9. When the nearest neighbour exhange energy

beomes su�iently large ompared to the dipolar one, we reover the all-in-all-out

antiferromagneti state with a magneti propagation wavevetor kmag = (0, 0, 0). Above
this value, the ferromagneti spin-ie ase is evidened where the upper dotted line refers

to the broad peak in spei� heat measurements orresponding to a slowing down of

the spin �utuations. Dereasing the temperature, the spin-ie ompound is predited

to undergo a �rst order transition at T/Dnn ≤ 0.08 with kmag = (0, 0, 1), whih has

never been evidened experimentally.

The experimental evidene of a signature of the existene of dipolar spin orrelations

was a hallenge over the past few years. Dipolar orrelations in the real spae are

haraterised by a 1/r3 deay, whih orresponds in the reiproal spae by Fourier

transformation to [39℄:

〈Si(−k)Sj(k)〉 ∝
(

δij −
kikj
k2

)

, (1.4)

where k is a vetor of the reiproal spae. This leads to singularities at the Brillouin

zone entres, the so-alled pinh points in neutron sattering measurements. Whereas

these pinh points were hardly seen with unpolarised neutron experiments on the spin-

ie ompounds Ho2Ti2O7 [34, 40℄ and Dy2Ti2O7 [41℄, Fennell et al. [42℄ sueeded to
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Figure 1.10: Di�use magneti sattering map reorded on the spin-ie ompound

Ho2Ti2O7 at 1.7 K in the (hhl) plane in order to evidene pinh points. From Ref. [42℄.

Reprinted with permission from AAAS.

evidene these peuliar pinh points on Ho2Ti2O7 using polarised neutrons, see Fig. 1.10,

revealing the dipolar nature of the spin orrelations. The omparison of data reorded

in the spin �ip and non spin-�ip hannels explains why previous measurements ould

not resolve these pinh points with unpolarised neutrons.

1.3.3 Magneti monopoles

The notion of magneti monopoles was �rstly introdued by Ryzhkin [43℄ in order to

desribe exitations in spin-ie. Then, the dumbbell model, see for instane Ref. [44℄, has

been developped in order to illustrate the DSM Hamiltonian and to desribe the thermal

�utuations breaking of the ie rule with emergent quasipartiles, i.e. the magneti

monopoles [43℄. The priniple lies on the fragmentation of the magneti dipole into

two magneti monopoles of opposite harges ±qm (dumbbell) as illustrated in Fig. 1.11,

and separated by a length ad =
√
3alat/2 whih is the distane separating the enter

of two neighbouring tetrahedra. Thus, the magneti moment arried by the dipole

µ = qmad is reovered. Therefore, the total magneti harge in a tetrahedron α is

Qα =
∑

i qm,i, where the sum runs over the four magneti harges inside the tetrahedra.

This resulting total magneti harge is the so-alled magneti monopole. Note that in

the ie rule ground state Qα = 0 and if a spin is �ipped Qα = ±2qm. Aording to

Refs. [44, 45℄, the magneti Coulomb interation between two monopoles is written as:

V (rαβ) =

{

µ0

4π

QαQβ

rαβ
if α 6= β

ν0Q2
α

2
if α = β,

(1.5)
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Figure 1.11: (a) Two neighbouring tetrahedra obeying the ie rule. (b) The spin shared

by the two tetrahedra is thermally �ipped to reate a pair of magneti monopoles of

opposite harge. Panels () and (d) are the illustration of panel (a) and (b) in terms of

the dumbbell model: a magneti moment is replaed by two opposite magneti harges

±qm. (e) Propagation of two magneti monopoles along a Dira string. Reprinted by

permission from Mamillan Publishers Ltd: Nature [44℄, opyright 2015.

where rαβ denotes the distane between two monopoles. The �rst line of Eq. 1.5 refers

to the dipolar interation of the DSM and the introdution of the self energy ν0 in the

seond line aounts for the dipolar and exhange energy between nearest neighbours.

The DSM Hamiltonian an be rewritten in terms of the dumbbell notation suh as:

HDB =
µ0

4π

∑

α6=β

QαQβ

rαβ
+

ν0
2

∑

α

Q2
α (1.6)

When the ie rule is satis�ed, the spin-ie state is de�ned as a Coulomb phase

sine the three riteria stated by Henley [46℄ are ful�lled: (i) the system is highly

disordered sine no long-range order is established, (ii) eah dumbbell is assoiated to a

magneti �ux, and (iii) the magneti �ux at the entre of the tetrahedron vanishes. The

last ondition an be rewritten as a divergene free oarse-grained �eld, i.e. ∇ · B =
µ0

∑

αQα = 0 in the spin-ie ground state. We should notie that in a more usual

ooperative paramagnet, the system enters in a phase without long-range magneti order

with spin orrelations dereasing exponentially, whereas in the so-alled Coulomb phase

spin orrelations are algebrai.

Therefore, this model allows to desribe spin dynamis in suh a system: to a spin

thermally �ipped orresponds the nuleation of two magneti monopoles of opposite
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harge loated in two orner-sharing tetrahedra. These monopoles interat through a

magneti Coulomb potential. The divergene-free ondition is broken, i.e. the ie rule

is not ful�lled anymore. Thus, one magneti monopoles are nuleated, their di�usion

along a path of reversed spins, i.e. the so-alled Dira string, see panel (e) of Fig. 1.11,

orresponds to the propagation of a zero energy ost spin reversal along the string, sine

eah tetrahedron tends to reover the ground state de�ned by the ie rule on�guration.

1.3.4 Experimental evidene for magneti monopoles

Bramwell et al. [47℄ have reently proposed by muon spetrosopy the presene of mag-

neti monopoles interating through a magneti potential in the spin-ie pyrohlore

ompound Dy2Ti2O7. The priniple lies on the inrease of the magneti monopoles

density when applying a magneti �eld, inspired from Onsager's work [48℄ on the seond

Wien e�et whih predits the inrease of the dissoiation onstant of water moleule

into H3O
+
and OH

−
ions under an applied eletri �eld whih overomes the Coulomb

energy barrier. Pursuing this analogy, the dissoiation onstant K for the nuleation

of magneti monopoles was assumed to take a similar form as in Onsager's theory for

weak magneti �eld B [47℄:

K(B) = K(0)

(

1 + b+
b2

3
...

)

, (1.7)

where b = µ0Q3B
8πk2BT

2 .
3

At the equilibrium, i.e. without applied magneti �eld, the number

of bound magneti monopoles nb is predominant ompared to the dissoiated ones nu.

Aording to Ref. [47℄, the dissoiation onstant is written as:

K(0) = n0
α2
m

1− αm
, (1.8)

where n0 = nb + nu and αm = nu/n0. The reombination of nuleated magneti

monopoles follows an exponential deay with a relaxation time 1/ναm . Sine ναm ∝
καm , where καm is the magneti ondutivity (illustrating the motion of the magneti

monopoles) proportional to the density of magneti monopoles, and realling that αm ≪
1, it follows [47℄:

ναm(B)

ναm(0)
=

καm(B)

καm(0)
=

αm(B)

αm(0)
=

√

K(B)

K(0)
≈ 1 +

b

2
. (1.9)

Furthermore, Bramwell et al. [47℄ put forward that the �utuations of the magneti

monopole density produes �utuations of the loal �eld. Therefore after a magneti

�eld perturbation, the relaxation rate of the magnetisation νM is proportional to the

relaxation rate of the magneti monopole density ναm .

ναm(B)

ναm(0)
=

νM(B)

νM(0)
(1.10)

3

Note that the index α labelling a tetrahedron has been dropped now, Q refers to the magneti

harge of an e�etive monopole.
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Figure 1.12: Temperature dependene of the alulated value of the e�etive mag-

neti harge Q̃eff inferred from the �eld dependene of the muon spin relaxation rate

in the ase of Dy2Ti2O7. Reprinted by permission from Mamillan Publishers Ltd:

Nature [47℄, opyright 2015.

In the transverse �eld muon spin relaxation tehnique, see Se. 2.6, the muon polari-

sation funtion is haraterised by osillations illustrating the preession of the muon

spin around the loal �eld, and an envelope giving information on dynamis of the loal

�eld at the muon site: in the ase of slow �utuations of the loal �eld, the relaxation

rate λ , harateristi of the exponential deay of the envelope, is proportional to νM.
Therefore, Bramwell et al. �nd an ingenious way to measure the magneti harge ar-

ried by the magneti monopoles. Hene, measuring the �eld dependene of λ allows to

extrat the e�etive magneti harge arried by the monopoles, see Fig. 1.12. A typial

value of Q̃eff = 5 µBÅ
−1

has been inferred in good agreement with Ref. [44℄ within

the temperature range Tlower ≤ T ≤ Tupper where Onsager's theory remains valid. The

authors of Ref. [49℄ draw the same onlusions with µSR experiments on the spin-ie

ompound Ho2Ti2O7.

Whereas these results were strongly debated [50, 51℄ in a �rst instane, additional

experimental proofs evidened a signature of magneti monopoles in spin-ie as for

instane the observation of Dira strings in Dy2Ti2O7 with neutron sattering experi-

ments under a magneti �eld applied along [100℄ [52℄. Existene of suh strings were

previously suggested in Ref. [42℄ from the broadening of pinh points. Furthermore,

the temperature dependene of the relaxation time inferred from a.. suseptibility on

Dy2Ti2O7 [30℄, previously misunderstood, has been desribed in terms of the motion of

magneti monopoles [53℄.

1.4 The quantum spin-ie

1.4.1 Beyond the lassial spin ie

The quantum spin-ie is de�ned by the same properties as its lassial ounterpart:

Ising spins along the trigonal axis [111℄ ful�l the ie rule onstraint, de�ning the same
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Figure 1.13: Illustration of the tunnelling between two spin on�gurations on an hexag-

onal plaquette, preserving the ie rule onstraint. Reprinted �gure with permission

from Ref. [56℄. Copyright 2015 by the Amerian Physial Soiety.

divergene free ondition, i.e. ∇ · B = 0. However, in the former ase, additional

transverse nearest-neighbour exhange interation I⊥ are at play with the usual lon-

gitudinal oupling Izz. To these in-plane interations result slight tilts of the spins

away from their initial diretion, sine I⊥ ≪ Izz. Note that the U(1) symmetry is pre-

served sine a rotation around the loal [111℄ axis leaves the system invariant. Hermele

et al. [54℄ �rstly introdued this planar interation as a perturbation of the lassial

spin-ie ground state. Following notations of Ref. [55℄, the nearest-neighbour exhange

Hamiltonian with e�etive spin-1/2 (or XXZ model) is thus written:

HQSI = HCSI +H⊥ where,

HCSI = Izz

∑

〈i,j〉
Sz
i S

z
j and,

H⊥ = I⊥
∑

〈i,j〉
(S+

i S
−
j + S−

i S
+
j ). (1.11)

The introdution of this small perturbation lifts the degeneray assoiated to the las-

sial spin-ie. Using perturbation theory on H⊥ shows that the �rst and seond order

terms lead to a vanishing or onstant ontribution to the energy. The third order term

involves, in order to preserve the ie rule onstraint, a tunnelling between a spei�

spin on�guration: a ring exhange running on an hexagonal plaquette as illustrated

in Fig. 1.13. The authors of Ref. [54℄ show that, for a �nite range of the ratio of the

strength of the tunnelling matrix element (whih involves the transverse omponent of

the nearest-neighbour interation) over the number of �ippable plaquettes in the sys-

tem, the U(1) quantum spin liquid phase is predited, the quantum spin ie state being

a peuliar ase of the latter.

Sine the ie rule is preserved, the divergene free ondition of the magneti �eld

allows to introdue a gauge �eld A, suh as ∇ × A = B. Therefore, the tunnelling

between ie on�gurations introdues time �utuations of A resulting on the emergene

of an eletri �eld E = −∂A
∂t

[57℄. Due to the U(1) symmetry, only transverse �utua-

tions are allowed for this gauge �eld. This state supports several kinds of exitations:

magneti monopoles, or spinons in the spin liquid literature, resulting from a spin �ip
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breaking the ie rule onstraint whih, unlike the lassial spin-ie, interat through

magneti and eletri �elds. By onstrution of the spin loops on a hexagonal plaque-

tte, eletri loops appear. Flipping a spin will not only generate magneti monopoles

but also will break these eletri loops: the extremities of these strings beome soure

of eletri harges, the so alled visons (see Ref. [55℄ and referenes therein). Finally,

at low temperatures, the emergene of a gapless magneti photon resulting from the

transverse �utuations of A is predited in Ref. [56℄.

1.4.2 The exhange Hamiltonian

As we will see in Chapter 3, the rystal eletri �eld ats as a perturbation of the spin-

orbit multiplet in the pyrohlore ompounds, leading for most of them to a well isolated

magneti ground state doublet whih enfores a strong anisotropy of the spins. There-

fore, the low temperature properties an be desribed by an e�etive spin-1/2. Looking
for a realisation of the quantum spin ie state, ompounds with a strong anisotropy

of the exhange interations is an asset to the existene of quantum �utuations, as

introdued above. Therefore, an anisotropi e�etive spin-1/2 Hamiltonian within the

ground state doublet was �rstly derived on symmetry grounds in Ref. [58℄ and mostly

taken over in the quantum spin ie literature.

4

Following the notations introdued in

Ref. [60℄, this exhange Hamiltonian takes the form:

Hex =
∑

〈ij〉
IzzS

z
i S

z
j − I±(S

+
i S

−
j + S−

i S
+
j )

+I±±[γijS
+
i S

+
j + γ⋆

ijS
−
i S

−
j ] + Iz±[S

z
i (ξijS

+
j + ξ⋆ijS

−
j ) + i ↔ j], (1.12)

where the e�etive spin is written in terms of loal oordinates, i.e. the z diretion is

taken along the trigonal axis [111℄ at the rare earth site, γ is a 4×4 omplex matrix (see

Ref. [60℄), and ξ = −γ⋆
. The spae desribed by the four oupling onstants onstitutes

a hallenge in order to theoretially desribe the exoti magneti phases observed in

the pyrohlore ompound. Note that the ase where I±± = Iz± = 0 has been treated

in Ref. [54℄ and presented in the former setion. We reognise Izz, the longitudinal or

Ising exhange onstant. Aording to Refs. [55, 61℄, the three other exhange oupling

terms illustrate di�erent interating proesses at play. Linear ombinations of these

parameters allow to retrieve an isotropi exhange interation, a pseudo-dipolar nearest-

neighbour interation of the form SiSj − 3(Si · rij)(Sj · rij) where rij is a unitary vetor
onneting two nearest neighbours and the Dzyaloshinskii-Moriya interation of the

form DDM · (Si × Sj) [62, 63℄. The latter interation depends on the symmetry of the

rystal: Moriya's rules [64℄ state that if the middle point between the two magneti

sites is a enter of inversion, there is no Dzyaloshinskii-Moriya interation. The authors

of Refs. [62, 63℄ have shown that only two ases are allowed in the pyrohlore lattie:

in both ases, vetors DDM must be perpendiular to the {110} planes.

The anisotropi exhange Hamiltonian in Eq. 1.12 has been analysed by means of

gauge mean �eld theory gMFT in order to ompute the phase diagram in the Kramers

(half-integer spin) [65℄ or non-Kramers (integer spin) [66℄ ases, illustrated in the left and

4

Note that a similar Hamiltonian is derived based on the superexhange interation �the hy-

bridization of the 4f orbital of the magneti ion and the 2p orbital of an oxygen� and alulating the

probability of an eletron (or a hole) to hop between the aforementioned orbitals [59℄.
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Figure 1.14: Left: Zero temperature phase diagram resulting from gMFT analysis of

the Hamiltonian written in Eq. 1.12 in the ase of Kramers (left) and non-Kramers ions

(right). Here Jzz ≡ Izz, Jz± ≡ Iz±, J± ≡ I±, and J±± ≡ I±±. Reprinted �gures with

permission from Refs. [65, 66℄ for left and right panels, respetively. Copyright 2015 by

the Amerian Physial Soiety.

right panels of Fig. 1.14, respetively. In Ref. [65℄, Izz > 0 has been taken, i.e. the spin

ie ground state manifold, and I±± = 0 to restrain the spae to two parameters. FM

and AFM denote the Higgs ferromagneti and antiferromagneti long-range order, QSL

refers to the quantum spin liquid (or quantum spin-ie ase sine Izz > 0) presented in

Se. 1.4.1� de�ned as a deon�ned phase sine Coulombi interation between e�etive

partiles is weak �, and CFM names the Coulomb ferromagneti state whih displays

the same exitations as in the quantum spin-ie and a dipolar long-range order [65℄.

Note that the non zero temperature phase diagram has been studied reently in Ref. [67℄.

On the other hand, the non-Kramers ase has been treated in Ref. [66℄, using Izz > 0.
The oupling between the Ising and planar omponents of the e�etive spin does not

ontribute to the Hamiltonian in the non Kramers ase sine |〈φ±
0 |S±|φ∓

0 〉| = 0, where
φ±
0 are the wavefuntions of the ground state. The resulting phase diagram leads to

the quantum spin-ie state, and two ordered phases: an XY antiferroquadrupolar order

and a non oplanar ferroquadrupolar order.

The most propitious and studied ompound over the past few years whih ould

exhibit a quantum spin liquid phase is Tb2Ti2O7: we will present a non exhaustive

review of it in Chapter 5. Other andidates to the quantum spin-ie state are Pr2Sn2O7

and Pr2Zr2O7 [68℄. The latter ompound belongs to a pyrohlore series whih will not

be disussed in this work. On the former ompound, inelasti neutron sattering mea-

surements reveal a non Kramers ground state doublet well isolated from the exited

ones, and rystal �eld alulations taking aount the low lying multiplets arising from

the spin-orbit oupling show an Ising anisotropy and a magneti moment ≈ 2.6 µB [69℄,

implying that dipolar interations are muh weaker than in the lassial spin-ie. Fer-

romagneti interations are dominant sine θCW = 0.3 K [33℄. The authors of Ref. [70℄

show a broad hump in the spei� heat at T = 0.86 K indiative of the development of

short range orrelations, as on�rmed by neutron di�ration where no magneti Bragg

peaks are evidened down to 0.2 K but rather a di�use magneti sattering intensity.

The residual entropy at 0.37 K is higher than the one found in spin ie, attesting the dy-
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namial nature of the ground state. A harateristi orrelation time ≈ 2 ps is inferred
from the quasielasti signal observed by inelasti neutron sattering measurements. A

small hysteresis in the �eld dependene of the magnetisation at T = 90 mK indiates

a slowing down of the �utuations, on�rmed by a.. suseptibility measurements [71℄.

Note that due to the non-Kramers nature of the ground state, �utuations have been

proposed to originate from quadrupolar interations [69, 72℄.

1.5 The pyrohlore series R2M2O7: a large variety of

magneti ground states

We present here a short review of the magneti states existing in the pyrohlore om-

pounds R2M2O7 (M=Ti, Sn) whih were not disussed yet. Note that the ase of

the thulium ion will not be disussed sine it exhibits a non magneti singlet ground

state, see Chapter 3. We �rst fous on ompounds having an Ising anisotropy, namely

Tb2M2O7 and then brie�y desribe those having a dominant planar anisotropy.

1.5.1 Tb2Ti2O7 vs Tb2Sn2O7

As already mentioned, Tb2Ti2O7 is a andidate for the quantum spin-ie phase and will

be largely disussed in Chapter 5. It does not display any magneti order. On the on-

trary, Tb2Sn2O7 is haraterised by a long-range magneti order at Tc = 0.87 K as seen

by magneti suseptibility measurements. The high temperature range (100 ≤ T ≤
300 K) of the suseptibility follows a Curie-Weiss law leading to θCW ≈ −12 K, india-
tive of antiferromagneti interations,

5

and a paramagneti moment lose to the value of

the free ion [33℄. Powder neutron di�ration experiments show that nearest-neighbour

antiferromagneti orrelations appearing below 100 K are progressively replaed by the

development of ferromagneti orrelations below T = 2 K. This reminds us the ase

of the lassial spin-ie ompounds where dipolar interations overome the nearest-

neighbour antiferromagneti exhange oupling resulting in an overall ferromagneti

interations. An ordered magneti phase is evidened with a magneti propagation

wavevetor kmag = (0, 0, 0) at Tc.
6

The magneti struture is seen with magneti

moments anted away from the loal axis [111℄ with an angle of ≈ 13◦ and their lon-

gitudinal omponents are arranged in the two-in/two-out on�guration, i.e. an ordered

spin-ie state, see the left panel of Fig. 1.15. A spontaneous magneti moment of 5.9 µB

is found [74℄. However, whereas a peak is observed at the transition in spei� heat

measurements [74, 75℄, the analysis of the low temperature part raises some questions.

Ions Tb

3+
arry a nulear spin I = 3

2
, and nulear levels are split by Zeeman e�et

from the hyper�ne �eld and a quadrupolar term arising from the eletri �eld gradient

ating at the rare earth site. Estimation of the hyper�ne �eld leads to a smaller mag-

neti moment, i.e. 4.5 µB, ompared to the one found by neutron di�ration [74, 76℄.

This feature was understood onsidering the spin �utuations � or �utuation of the

5

Note that an estimation of the rystal-eletri-�eld ontribution yields a weaker but still antifer-

romagneti Curie-Weiss onstant θCW ≈ −6 K [73℄

6

Note that irreduible representations allowed by the pyrohlore spae goup Fd3̄m annot aount

for the magneti di�ration pattern and a solution was found by lowering the symmetry of the rystal

(spae group I41/amd), i.e. magnetoelasti e�ets distort the rystal [74℄.
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Figure 1.15: Left: Magneti struture of Tb2Sn2O7: spins are slightly anted away from

the [111℄ axis and their longitudinal omponents are in the "two-in/two-out" on�gu-

ration. All tetrahedra are idential, de�ning the ordered spin-ie state. Reprinted from

Ref. [76℄, opyright 2015, with permission from Elsevier. Right: Temperature depen-

dene of the muon spin-lattie relaxation rate in zero-�eld µSR measurements and µSR
spetra reorded in zero-�eld at T = 0.17 and 2.4 K. No spontaneous osillations are

seen in the ordered phase. Data reprodued from Fig. 2 of Ref. [75℄.

hyper�ne �eld � leading to the non thermal equilibrium of the nulear levels, and

thus to a derease of the nulear spei� heat [74℄. Spin dynamis was on�rmed by

µSR experiments where no spontaneous osillations are observed in the ordered phase

and no lear evidene of a transition is seen in the temperature dependene of the

spin-lattie relaxation rate [75, 77℄, see the right panel of Fig. 1.15. A harateristi

�utuation time τc ≈ 10−10
s was found. Additional measurements with the neutron

spin-eho tehnique show the oexistene of stati (q = 0.08 Å) [78℄ and dynamial

spins [79℄ at larger wavevetors with a �utuation time τc = 2 × 10−11
s. Polarised

neutron di�ration experiments show that 60% of the spins remain stati, ontributing

to the observation of magneti Bragg peaks, whereas the remaining are responsible for

the liquid-like di�use magneti bakground and �utuating at τc ≈ 5 × 10−11
s [80℄.

Finally, the analysis of the Bragg peak widths, the di�use magneti sattering and the

small angle neutron sattering at T = 0.1 K yield several spin orrelation lengths [81℄,

using high-resolution neutron di�ration experiments. In the same referene, neutron

baksattering spetrosopy evidenes a �utuation time τc = 1.3 × 10−9
s. There-

fore, the ground state of Tb2Sn2O7 is haraterised by long and short-range orrelation

lengths and a distribution of �utuation times, attesting the presene of dynami spins

oexisting with a long-range magneti order.

1.5.2 Yb2Ti2O7 vs Yb2Sn2O7

Yb2Ti2O7 is believed to be a realisation of a three-dimensional quantum spin-liquid sys-

tem. It possesses a Kramers ground state doublet well isolated from the exited ones

and a dominant planar anisotropy, see Chapter 3. A sharp peak in the temperature

dependene of the spei� heat indiates a transition at Tc = 0.24 K [82℄. A broad
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hump is also observed at T ≈ 2 K, attributed to the development of short-range spin

orrelations and not to a Shottky anomaly sine the �rst exited rystal-eletri-�eld

energy level is predited to lie above 50 meV, see Chapter 3. Ferromagneti intera-

tions are inferred from the Curie-Weiss temperature θCW = 0.75(10) K [83℄. From the

hyper�ne �eld measured by Mössbauer spetrosopy, the magneti moment arried by

the Yb

3+
moments is found to be equal to ≈ 1.15 µB and therefore, dipolar interations

are negligible [84℄. In the same referene, magneti moments are shown to be anted

away from the loal axis [111℄ with an angle of 44(5)◦. The sharp transition observed

in the temperature dependene of the Yb

3+
magneti moments, and the oexistene of

paramagneti and stati moments, are indiative of a �rst-order transition [84℄. This

feature is on�rmed by µSR and Mössbauer spetrosopies sine the spin �utuation

rate undergoes a sharp derease at Tc of three orders of magnitude, with a persistene of

spin dynamis down to 40 mK with a harateristi �utuation time τc ≈ 10−6
s [84℄, see

left panel of Fig. 1.16. However, originally unpolarised and polarised neutron di�ra-

tion experiments seem to prelude the existene of a long-range magneti ordering, see

Refs. [84, 85℄. Therefore, this andidate attrats a lot of attention in order to under-

stand its magneti ground state as a possible andidate to a quantum spin-liquid. The

determination of the exhange ouplings introdued in Eq. 1.12 beomes of prime im-

portane. Analysing the spin wave dispersion measured by inelasti neutron sattering

at T = 30 mK under applied magneti �eld, the authors of Ref. [60℄ �nd a set of values

given in meV, i.e. Izz = 0.17(4), I± = 0.05(1), I±± = 0.05(1), and Iz± = −0.14(1),
putting this ompound deep in the ferromagneti state

7

shown in the left panel of

Fig. 1.14. Note that despite the strong planar anisotropy, the Ising exhange oupling

is dominant. These results allow to well desribe zero-�eld spei� heat data above

0.7 K [86℄ and the temperature dependene of the magnetisation under di�erent ap-

plied magneti �elds [87℄. The predition of a long-range ferromagneti order state is in

agreement with some earlier measurements: Yasui et al. [88℄ have evidened magneti

Bragg peaks at T = 0.03 K with a redution of the magneti moment (1.1 µB) ompared

to the saturation value of the magnetisation measured at T = 5 K (1.8 µB), indiative

of anted magneti moments. These results were strongly debated at the time sine

they ontradit the onlusions of the aforementioned Refs. [84, 85℄. Besides, neutron

spin eho measurements at T = 0.18 K show that the relaxation of the intermediate

sattering funtion ours out of the neutron spin eho time window, i.e. spin dynamis

haraterised by a �utuation time τc ≤ 4 ps [85℄ muh faster than the one inferred

from µSR (τc ≈ 10−6
s). However, polarised neutron experiments [89℄ supports the

existene of a ferromagneti state sine a magneti Bragg peak has been undoubtfully

evidened below Tc. An explanation for suh di�erent experimental results ould arise

from the possibility of stu�ng, i.e. site exhange between ytterbium and titanium ions,

or evaporation of the titanium, while growing single rystals by the optial �oating zone

tehnique [90℄. This goes in line with spei� heat measurements where a sharp peak

at Tc is observed or not for powder samples or single rystals [91℄.

On the other hand, the sibling ompound Yb2Sn2O7 exhibits very similar physial

properties: ferromagneti interations dedued from θCW = 0.51 K [33℄, a sharp tran-

sition at Tc = 0.15 K [92℄ in the temperature dependene of the spei� heat, together

7

Aording to Ref. [65℄, the phase diagram shown in the left panel of Fig. 1.14 is symmetri in

Iz± → −Iz±.
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Figure 1.16: Left: Flutuation rate of spin dynamis measured by µSR (νc,µ) and

Mössbauer (νc,M) spetrosopies for Yb2Ti2O7 [83℄ (blue symbols) and Yb2Sn2O7 [92℄

(red symbols). Note that µSR experiments are neessary to probe slower spin dynamis

sine the Mössbauer time windows is limited to time t ≤ 10−8
s. Right: Powder neutron

di�ration pattern of Yb2Sn2O7 reorded at 52 mK. Reprinted �gures with permission

from Ref. [92℄. Copyright 2015 by the Amerian Physial Soiety.

with a broad hump around 2 K [92, 93℄. The �rst-order nature of the transition is

on�rmed by µSR and Mössbauer spetrosopies where, similarly to Yb2Ti2O7, a sharp

inrease in the temperature dependene of the Yb

3+
magneti moments, the oexistene

of paramagneti and stati magneti moments and an abrupt redution of several orders

of magnitude of the spin �utuation rate is observed at the transition [92℄, see left panel

of Fig. 1.16 for the latter property. A persistene of spin dynamis down to the lowest

temperatures with a typial spin orrelation time τc ≈ 3× 10−6
s is also evidened [92℄.

From the measurement of the hyper�ne �eld with Mössbauer spetrosopy, the sponta-

neous magneti moment msp = 1.1 µB is tilted away from the [111℄ axis with an angle

of 65◦, leading to a stronger planar anisotropy ompared to Yb2Ti2O7 [92, 94℄. The

main di�erene ompared to the titanate ompound resides in the presene of magneti

Bragg peaks with a magneti propagation wavevetor kmag = (0, 0, 0): the di�ration
pattern, see the right panel of Fig. 1.16, is very well re�ned using the Γ9 irreduible

representation allowed by the Fd3̄m spae group: a spontaneous magneti moment

msp = 1.05(2) µB has been inferred, very lose to the Mössbauer value, with magneti

moments anted away from the z axis with the aforementioned angle [92℄. Therefore,

the name of splayed ferromagneti state is oined [92℄. However, no spontaneous osil-

lations are seen by µSR spetrosopy due to the persistene of spin dynamis [92, 94℄.

The latter assumption is supported by a.. suseptibility measurements where a be-

haviour of spin freezing rather than a magneti long-range order is put forward from

the analysis of the imaginary part of the suseptibility, with a harateristi time of

spin �utuations τc ≈ 1.5 × 10−6
s at 0.13 K, ompatible with the value inferred from

µSR measurements [94℄. Therefore, the magneti ground state of Yb2Sn2O7 is one of

the ferromagneti states (Coulomb ferromagnet or Higgs ferromagneti state) predited

in Ref. [65℄, see left panel of Fig. 1.14. The persistene of spin dynamis should plae

Yb2Sn2O7 lose to the quantum spin liquid state [94℄.



1.5. A LARGE VARIETY OF MAGNETIC GROUND STATE 35

1.5.3 Er2Ti2O7 vs Er2Sn2O7

Er2Ti2O7 has a strong planar anisotropy, i.e. spins lie in a plane perpendiular to the

loal [111℄ axis, see Chapter 3. A sharp peak at T = 1.2 K in the temperature de-

pendene of the spei� heat indiates a magneti transition [82℄. The analysis of the

high temperature range of the magneti suseptibility yields strong antiferromagneti

interations dedued from the Curie-Weiss temperature θCW = −15.9 K and a para-

magneti moment lose to the value of the free ion [95℄. Powder neutron di�ration

reveals the seond-order nature of the transition and a long-range magneti order with

a magneti propagation wavevetor kmag = (0, 0, 0) [96℄. The magneti struture is

haraterised by the so-alled Ψ2 state, see Tab. D.1, basis vetor of the irreduible rep-

resentation Γ5 [97℄. The orresponding spin on�guration over a tetrahedron is shown

in the left panel of Fig. 1.5. The authors of Refs. [96, 98℄ show that an order by dis-

order mehanism [15℄ through thermal �utuations selets the Ψ2 state. However the

transition is predited to be �rst order in ontradition with experimental results. The

four symmetry-allowed exhange ouplings introdued in Eq. 1.12 are determined from

the analysis of spin wave dispersion under magneti �elds [17℄ and given in 10−2
meV:

Izz = −2.5(1.8), I± = 6.5(8), I±± = 4.2(5), and Iz± = −0.88(1.5). Note here that the
transverse exhange onstants are dominant. We an mention that these parameters are

roughly similar to those determined from zero-�eld di�use neutron sattering intensity

maps [2℄. More importantly, the seond order nature of the phase transition is restored

with the introdution of quantum �utuations [14, 17, 99℄.

8

Coexistene of short-range spin orrelations and long-range order has been evidened

in Ref. [101℄ from the sharpening of the magneti Bragg peaks and redution of the

di�use sattering when applying a magneti �eld. The presene of spin dynamis in the

ordered phase has been on�rmed by the absene of spontaneous osillations by µSR
spetrosopy [2, 102℄, similarly to the ordered ompound Tb2Sn2O7. However, zero-

�eld µSR spetra annot be desribed by usual muon depolarisation funtions, and the

origin of its shape remains mysterious. Applying strong longitudinal magneti �eld �

but lower than the ritial �eld Hc = 2 T induing a phase transition [103℄� allows to

reover a usual exponential deay of the muon depolarisation septrum, as displayed in

the left panel of Fig. 1.17.

On the other side, the XY stannate ounterpart Er2Sn2O7 does not display any

long-range magneti order down to T = 0.13 K from magneti suseptibility measure-

ments [33℄ and down to T = 0.02 K from µSR experiments [102℄ whih suggests a

dynamial nature of the ground state. In the former referene, the analysis of the high

temperature range of the magneti suseptibility reveals that Er2Sn2O7 has a paramag-

neti moment very lose to the value of the free ion while the Curie-Weiss temperature

θCW = −14 K indiates antiferromagneti interations smaller than those in Er2Ti2O7.

The absene of magneti order was also on�rmed later by neutron di�ration down

to T = 100 mK, but di�use magneti sattering was evidened starting from T = 5 K

down to the lowest temperatures, indiative of the apparition of short-range spin or-

relations [105℄. This freezing of spin dynamis is on�rmed by the hysteresis e�et in

�eld ooling/zero-�eld ooling below T = 0.2 K in the temperature dependene of the

8

We should mention that authors of Ref. [100℄ propose an alternative explanation to the order by

disorder mehanism seleting the Ψ2 state and stabilizing a long-range magneti order by onsidering

an admixture of the low-lying exited rystal-eletri-�eld energy levels.
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Figure 1.17: Left: Zero and longitudinal �elds µSR spetra of a Er2Ti2O7 rystal sample

reorded deep into the ordered phase at T = 21 mK. For magneti �elds H ≥ 0.5 T,

an exponential deay is reovered. Reprinted �gure with permission from Ref. [2℄.

Copyright 2015 by the Amerian Physial Soiety. Right: Di�use magneti sattering

of Er2Sn2O7 analysed following spin orrelations desribed by the Γ5 (green line) or

the Γ7 (blue line) irreduible representations, the latter orresponding to the Palmer-

Chalker state. Reprinted �gure with permission from Ref. [104℄. Copyright 2015 by the

Amerian Physial Soiety.

magnetisation and the frequeny dependene of the peak observed in the imaginary part

of the a.. suseptibility [104℄. In the latter referene, the magneti di�use sattering

reorded at T = 1.5 K is analysed in terms of spin orrelations aording to the spin

on�guration orresponding to the three-dimensional Γ7 irreduible representation,
9

i.e.

the Palmer-Chalker state introdued in Se. 1.2, as shown in the right panel of Fig. 1.17.

However, it should be noted that an experimental report from ILL [106℄ suggests from

neutron di�ration experiments on Er2Ti2−xSnxO7 that Er2Sn2O7 enters a long-range

magneti order at Tc ≈ 0.1 K.

1.5.4 Gd2Ti2O7 vs Gd2Sn2O7

The ase of pyrohlore ompounds with gadolinium ion is slightly apart from the other

rare earths sine Gd does not posses an orbital momentum (the 4f eletroni shell

is half-�lled). Therefore, the spin anisotropy resulting from the rystal-eletri-�eld

should not play any role: thus, spins are expeted to be Heisenberg. Still, eletron

paramagneti resonane measurements reveal an XY anisotropy of the spins and with a

strength non negligible ompared to exhange and dipolar energies for Gd2Ti2O7 [107℄

and Gd2Sn2O7 [108℄. In the latter ompound, the strength of the anisotropy is about

one-third lower than in the titanate one.

Both ompounds display antiferromagneti interations with a Curie-Weiss temper-

9

Note that this analysis does not allow to distinguish whih basis vetors Ψ4,5,6 are involved.
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ature θCW ≈ −9.5 and −9.4 K for Gd2Ti2O7 [8, 109℄ and Gd2Sn2O7 [109, 110℄. The

paramagneti moment is very lose to the expeted value of the free ion, i.e. 7.94 µB.

Gd2Ti2O7 exhibits two transitions in spei� heat measurements [8, 111, 112℄ at

Tc,1 = 1 K and Tc,2 = 0.74 K. The omputed magneti entropy reahes ≈ 90% of

the expeted Rln(2S + 1) = Rln8 value for the free ion. Powder neutron di�ration

experiments initially revealed below Tc,2 a single kmag = (1
2
, 1
2
, 1
2
) magneti struture

where magneti moments lying in the Kagome planes are stati whereas those belonging

to the triangular planes remain dynami [113℄.

10

However, the authors of Ref. [114℄ show

that the only possible on�guration allowing to aount for a supplementary magneti

Bragg peak loated at (1
2
, 1
2
, 1
2
) and to be onsistent with the orrelation length dedued

from magneti di�use sattering intensity reorded with polarised neutrons is a 4-kmag

struture with spins perpendiular to the loal [111℄ axis. Furthermore, 25% of the spins

are not ordered in the temperature range Tc,2 ≤ T ≤ Tc,1 and this fration of the spins

partially orders at T = Tc,2, i.e. they arry a magneti moment of 1.9 µB whereas the

fully ordered spins arry a magneti moments lose to the value expeted for the free

ion. Hene, the magneti ground state is very peuliar, exhibiting a partially ordered

magneti struture with spins remaining strongly �utuating. The latter property was

on�rmed by µSR spetrosopy: whereas spontaneous osillations are observed in zero-

�eld measurements as a signature of a long-range magneti order, persistene of spin

dynamis is evidened down to 20 mK with a harateristi �utuation time τc =
0.7(2) ns [112℄.11 With the purpose of on�rming the proposed magneti ground state,

neutron spin eho measurements show at T = 110 mK that 80% of the intermediate

sattering funtion is onstant as a proof of stati spins behaviour. The remaining

20% of the signal is missing, meaning that spins �utuate faster than the NSE window

time [115℄.

On the other hand, Gd2Sn2O7 undergoes a single transition at T ≈ 1 K [117℄. From

Mössbauer spetrosopy, the spontaneous magneti moment in the ordered phase is

found to be ≈ 7 µB, and its temperature dependene indiates a �rst order transi-

tion [117℄. Neutron di�ration measurements reveals a magneti struture with kmag =
(0, 0, 0) and magneti moments with an XY anisotropy lying parallel to the edges of the

tetrahedron [9℄. This magneti struture orrespond to the Palmer-Chalker state [7℄

desribed earlier in Se. 1.2 for lassial Heisenberg spins interating through nearest-

neighbour antiferromagneti exhange and dipolar interations. An explanation to the

di�erene observed between the magneti ground states of these two gadolinium om-

pounds ould arise from a di�erent third-neighbour exhange oupling [9℄. Despite the

magneti long-range order on�rmed by the presene of spontaneous osillations ob-

served by µSR spetrosopy [116, 118℄, persistent spin dynamis down to ≈ 20 mK is

dedued in Mössbauer spetrosopy from the analyis of the relative intensities of Möss-

bauer lines leading to a population of the nulear levels more even than predited by

the Boltzmann population fator, indiative of spins �utuations [119, 120℄. These spin

�utuations are haraterised by a harateristi time out of the Mössbauer time win-

dow, i.e. τc < 1.2×10−8
s for Gd

3+
. The latter feature is on�rmed by the non vanishing

10

We refer to Fig. A.2 to see that looking in the <111> diretions, magneti ions belong altenatively

to triangular and Kagome planes.

11

A strethed exponential funtion is used to analyse µSR data with an exponent βse ≈ 0.5 and

βse ≈ 0.75 for T ≤ Tc,2 and T ≤ Tc,1, respetively [112℄.
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Figure 1.18: Left: Illustration of the 4-kmag magneti struture in Gd2Ti2O7. The

green spheres show magneti ions ordering for Tc,2 ≤ T ≤ Tc,1 and the orange ones

those remaining dynamis in this temperature range, and whih partially order below

Tc,2. Copyright IOP Publishing. Piture reprodued from Ref. [114℄ by permission

of IOP Publishing. All rights reserved. Right: zero �eld µSR spetrum of Gd2Sn2O7

reorded at 21 mK. A zoom over the shortest times displays the spontaneous osillations

of the muon spin attesting from the long-range nature of the magneti state, but still an

exponential deay is observed at longer times as a signature of persistent spin dynamis.

Reprinted from Ref. [116℄, opyright 2015, with permission from Elsevier.

plateau of the spin-lattie relaxation rate revealed by µSR spetrosopy [116, 118℄.

1.6 Content of the manusript

The present work fouses on low temperature properties of geometrially frustrated

magneti ompounds: the two pyrohlore series R2Ti2O7 and R2Sn2O7 where R is a

rare earth. We will outline in this setion the ontent of eah following hapters.

The seond hapter will introdue the di�erent experimental tehniques used in this

work in order to haraterise the physial properties of the investigated ompounds.

Laboratory experiments have been onduted at INAC, CEA-Grenoble, whih inlude

X-ray di�ration and bulk measurements suh as spei� heat and magnetisation mea-

surements. Large sale failities � the Institut Laue-Langevin (ILL), the Rutherford

Appleton laboratory (ISIS) and the Paul Sherrer Institut � allowed us to perform

experiments with a wide panel of tehniques: X-ray synhrotron radiation, neutron

di�ration, neutron time-of-�ight, neutron baksattering and µSR experiments will be

desribed.

The third hapter is devoted to the study of the rystal-eletri-�eld ating at the

rare earth site, whih is of prime importane sine it provides the energy levels sheme

of the rare earth, the spin anisotropy, and the wavefuntions of the di�erent states for

instane. Within the approximation that only the ground state term arising from the

spin-orbit oupling needs to be taken into aount, i.e. using the Stevens Hamiltonian,
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a global analysis of published and measured inelasti neutron sattering spetra aims

to haraterise eah pyrohlore series of interest with a single set of rystal-eletri-�eld

parameters.

The fourth hapter will present numerous results obtained on the pyrohlore om-

pound Nd2Sn2O7 with a wide panel of tehniques. This ompound undergoes a seond-

order magneti transition at Tc = 0.91 K, with an all-in-all-out spin on�guration. The

long-range order nature is on�rmed by the observation of spontaneous osillations in

µSR experiments. However, persistent spin dynamis is observed in the ordered state

and asribed to low-energy spin loops exitations. Anomalously slow spin �utuations

are also evidened in the paramagneti state.

The following hapter deals with one of the most intriguing pyrohlore ompound

over the past few years: Tb2Ti2O7. A review of its di�erent physial properties will

be presented before a disussion on the two possible magneti ground states: X-ray

synhrotron radiation and µSR Knight shift measurements are brought to shed light if

a Jahn-Teller transition ours or if this ompound is a realisation of a quantum spin-ie

state.

General onlusions and some perspetives for future work are given in the last

hapter.

Finally, several appendies are provided in order to give further information on: (i)

the rystallography of the pyrohlore ompounds, (ii) the point harge model support-

ing the existene of a saling law between rystal-eletri-�eld parameters of di�erent

ompounds and mandatory to a global analysis of the rystal-eletri-�eld properties,

(iii) the orretion of the neutron absorption inluded in the analysis of neutron time-of-

�ight data, (iv) some basis of group theory for the determination of magneti strutures

and an analytial evidene on�rming the seletion of the irreduible representation for

Nd2Sn2O7, and �nally (v) some neessary theoretial tools to understand and analyse

µSR data.

We �nish the overview of the manusript by mentioning some other aspets inves-

tigated during this PhD thesis whih are not inluded in the manusript. The spin

dynamis of Er2Ti2O7 in the ordered and paramagneti states has been probed using

the neutron spin-eho tehnique and results are urrently being analysed at the time

of writing. Spinel ompounds of hemial formula Cd2R2X4, where R = Ho or Yb and

X = S or Se, whih present the same frustrated network as the pyrohlore ompounds,

have been studied by means of X-ray di�ration, spei� heat, magnetisation, and µSR
measurements. These results are not disussed here in order to keep the oherene of

the manusript, fousing on the pyrohlore series.
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In this hapter are detailed the di�erent tehniques used in this work: spei� heat

and magnetisation measurements, X-ray and neutron di�ration, neutron time-of-�ight

and neutron baksattering spetrosopies and �nally positive muon spin relaxation

spetrosopy. The di�erent failities visited along this work will be brie�y introdued.

2.1 Bulk measurements

Bulk experiments suh as spei� heat and magnetisation measurements are brie�y

disussed in this setion.

2.1.1 Spei� heat

The spei� heat experiments have been onduted at CEA-Grenoble, using a Quantum

Design PPMS (Physial Property Measurement System) to perform experiments down

to 0.4 K. The temperature of 1.9 K is reahed with a �rst

4
He ooling equipment.

A

3
He stik an be inserted in the sample spae in order to extend the experimental

temperature down to 0.4 K. The system is kept adiabati with a seondary vauum

needed to ensure no heat losses by exhange gas.

The heat apaity haraterises the amount of heat to bring to the sample to inrease

its temperature and it is de�ned as follows [121℄:

cp = lim
δT→0

(

δQh

δT

)

p

, (2.1)

where Qh is a heat input brought to the sample, and the index p refers to onstant

pressure. Sine the heat apaity is an extensive quantity, one rather works with the

spei� heat Cp, being the heat apaity divided by the number of moles. Note that

di�erene between spei� heat measured at onstant volume (Cv) or pressure (Cp) is

not relevant due to the low ompressibility of the studied ompounds, i.e. Cp − Cv =
p
(

∂V
∂T

)

p
[122℄.

The PPMS employs the thermal-relaxation tehnique by measuring the response

of the sample after a heat perturbation. In the left panel of Fig. 2.1 is shown the

puk used for

3
He measurements: the sample is plaed at the entre of a platform

linked by four threads of thermal ondutane K1 to the ryostat. Apiezon N grease

ensures a good thermal ondutivity between the sample and the platform. Its spei�

heat temperature dependene is displayed in the left panel of Fig. 2.2. A simpli�ed

experimental set up sheme is given in the right panel of Fig. 2.1. We denote Tx, Ta

and T0 the temperatures of respetively the sample, the platform and the ryostat, P
the thermal power applied to the platform and cx and ca the heat apaity of the sample

and the platform. Performing the heat-balane [121℄ of the platform and sample, we
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sample, Tx , cx

platform, Ta , ca

cryostat, T0

K2

K1

Figure 2.1: Left: On the top panel is shown a piture of the puk used for

3
He measure-

ments. The sample is plaed on the entre of the platform as illustrated in the piture at

the bottom. Right: simpli�ed sheme of the PPMS. The heat transfer between the sam-

ple and the platform is ontrolled by a thermal ondutane K2. The ontat between

the platform and the ryostat is ensured by four threads of total thermal ondutane

K1.

derive:



















P = ca
dTa

dt
+K2(Ta − Tx) +K1(Ta − T0),

0 = cx
dTx

dt
+K2(Tx − Ta).

(2.2)

Considering the thermal ondution between the sample and the platform to be im-

portant, i.e. K2 ≫ K1, see right panel of Fig. 2.1, it results Tx ≃ Ta. Thus, Eq. 2.2

beomes:

P = (cx + ca)
dTx

dt
+K1(Tx − T0). (2.3)

A thermal power P is applied to inrease the sample temperature from T0 to T0 +∆T1

at a time tf → ∞. The solution of Eq. 2.3 is then:

Tx(t) = T0 +∆T1[1− exp(−t/τ1)], (2.4)

where∆T1 = P/K1 ≈ 0.01T0 and τ1 = (cx+ca)/K1 is the relaxation time. Then, utting

the heat power at a time t′, the sample temperature relaxes down to the temperature

set point from Tx(t
′) = T0 +∆T2 to T0. The solution of Eq. 2.3 beomes:

Tx(t) = T0 +∆T2 exp(−(t− t′)/τ1), (2.5)

As K1 is determined by the estimation of ∆T1 and ca is tabulated, the measure of

τ1 gives aess to the spei� heat of our sample. This tehnique is illustrated in the
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Figure 2.2: Left: Temperature dependene of the Apiezon N spei� heat measured by

Y. Chapuis [123℄. Right: Evolution of the temperature of a Nd2Sn2O7 sample powder

to illustrate the relaxation tehnique. Raw data are displayed by red irles, the full

blue line and the green dotted line are a �t using Eq. 2.4 and Eq. 2.5 respetively, the

blak dashed line is the asymptoti value of Eq. 2.4, the purple dashed-dotted line is

the tangent at the origin allowing to determine τ1.

right panel of Fig. 2.2. Pratially, it is also heked that the relaxation time between

the platform and the ryostat is negligible whih is indiative of the goodness of the

measurement as it justi�es the hypothesis K2 ≫ K1.

It has been observed that in some temperature range where the spei� heat of the

measured sample beomes small, the ontribution of the grease should be taken into

aount. Then, a preliminary measurement of the puk with an appropriate amount of

grease is performed. The grease ontribution is then interpolated and subtrated from

the total spei� heat.

2.1.2 Magnetometry

Magnetisation experiments have been performed with a Quantum Design MPMS (Mag-

neti Property Measurement System) at INAC, CEA-Grenoble. This magnetometer

gives aess to a temperature range from 300 to 2 K thanks to a

4
He ryostat and a

magneti �eld up to µ0Hext = 5.5 T. From this tehnique is obtained the magnetisation

urve M = f(H) and the bulk magneti suseptibility de�ned in the linear approxima-

tion (weak magneti �elds) as:

χ = lim
Hext→0

∂M

∂Hext
=

M

Hext
. (2.6)

The MPMS is equipped with a SQUID sensor (Superonduting QUantum Inter-

ferene Devie) and it is illustrated in the left panel of Fig. 2.3 whereas the relevant

onstituents are displayed in the right panel of Fig. 2.3. The magneti moment is

measured thanks to the extration method with a preision up to 1× 10−11
A.m

2
.

A superonduting eletromagnet applies a stati magneti �eld in whih the sample

is moved. The magneti �ux variation aused by the sample motion indues a urrent

in the three superonduting detetion oils on�gured as a seond order gradiome-

ter [124℄, thus avoiding external magneti �elds perturbations. These detetion oils
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Figure 2.3: Left: Shemati view of the Quantum Design MPMS [125℄. Right: Insight

on the relevant onstituents involved in the extration method [126℄: (1) Superondut-

ing eletromagnet applying a magneti �eld µ0Hext at the sample. (2) Superonduting

detetion oils. (3) Sample moving along the �eld diretion. (4) Input oils and SQUID

sensor.

are onneted to the input oil of the SQUID sensor loated outside from the sample en-

vironment. The sensor is onstituted by an annular superondutor with two Josephson

juntions inserted in the loop as illustrated in the left panel of Fig. 2.4 and providing a

high sensitivity for the detetion of magneti �eld.

This tehnique allows us to measure the magneti suseptibility. As this quantity

is measured at small applied magneti �eld µ0Hext to ful�l the linear approximation,

see Eq. 2.6, the real �eld µ0Happlied at the sample need to be preisely known, sine it

di�ers from the set up value due to the presene of a remanent �eld of several Oersted

in the superonduting magnet. The paramagnet ota-hydrate sulfate of gadolinium

(Gd2(SO4)3.8H2O) permits to preisely determine the real �eld: magneti interations

are negligible between the spins of the gadolinium S = 7
2
as they are magnetially

isolated by the H2O moleules. Through the temperature dependene of its magneti

moment, the real applied �eld an be measured.

The inverse magneti suseptibility is plotted in the right panel of Fig. 2.4. We

ompare preliminary measurements where two di�erent weakly diamagneti sample

holders were used: a ylindrial one in the �rst ase whereas in the seond ase a �at

pellet was introdued in a straw, applying the magneti �eld in the pellet plane. In

the latter ase, the measured magneti suseptibility is inreased sine the geometry

of our sample redues the demagnetising �eld. Therefore, measurements displayed in

Chapter ?? are performed with an ellipsoidal pellet.
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Figure 2.4: Left: Shemati illustration of the SQUID sensor. A superonduting loop

is interrupted by two Josephson juntions. The Josephson e�et is the ability to sustain

a urrent with a zero voltage through the tunnelling of Cooper pairs up to the ritial

urrent Ic. To a stati magneti �ux, the Josephson juntions urrent is enslaved to Ic.
The onept is based on the quantisation of the magneti �ux (Φ0 =

h
2e
). To a variation

of the magneti �ux inside the loop will appear a sinusoidal sreening urrent in the

superonduting ring with a period equal to the number of quantum �ux hanges, and

thus a voltage at the Josephson juntion with same harateristis as the sreening

urrent. Piture taken from Ref. [127℄. Right: Inverse of the magneti suseptibility

versus temperature: omparison of a powder �lling a ylindrial sample holder and

the ase where the �eld is applied in the plane of a �at pellet. In the latter ase, the

magneti suseptibility is inreased.

2.2 Failities for mirosopi probe measurements

We brie�y present the di�erent failities, illustrated in Fig. 2.5, where are loated the

di�erent instruments introdued in this hapter.

2.2.1 Institut Laue Langevin (ILL), a ontinuous neutron soure

Loated at Grenoble, the ILL is a nulear reator whih provides a high neutron �ux.

The neutron prodution is based on the �ssion of

235
U. A heavy water (D2O) moderator

at 300 K gives, through inelasti ollisions of the neutrons with the nulei of the mod-

erator, a ontinuous beam of thermal neutrons with a Maxwellian energy distribution

entred at λc = 1.2 Å and a �ux φn = 1.5 × 1015 n m

−2
s

−1
[128℄. The di�ratome-

ters desribed here are supplied by these thermal neutrons, see Se. 2.3.4, whereas the

baksattering spetrometer is fed with old neutrons loated in the guide H53, see

Se. 2.5, using a liquid deuterium moderator at 25 K.
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Figure 2.5: View of the di�erent failities enountered during this work: the Institut

Laue Langevin (left), ISIS (middle), and the Paul Sherrer Institut (right).

2.2.2 ISIS, a muon and neutron pulsed soure

ISIS is a neutron spallation and muon soure of the Rutherford Appleton laboratory,

United Kingdom. To produe neutrons and muons, H

−
ions are aelerated up to

70 MeV in a linear aelerator (Lina) with radiofrequeny avities providing a sinu-

soidal eletri �eld, and are stripped through an aluminium oxide target to produe

protons. Then a ontinuous beam of protons is injeted in the synhrotron. Protons

are aelerated up to 800 MeV with radiofrequeny avities where an osillating �eld

is applied to reate two bunhes of partiles separated by a time of 330 ns. Dipole

magnets bend the beam to ensure a irular trajetory in the ylotron and multipo-

lar magnets fous the beam. Four out of �ve bunhes are propelled to Target Station

1, where the neutron and muon spetrometers of interest are loated. About 3 % of

the inident �ux is dediated to the prodution of muons, as explained in Se. 2.6.2.

The remaining protons enounter a tantalum target to produe neutrons (≈ 4 × 1014

neutrons produed per proton pulse) through a so-alled spallation proess.

2.2.3 A neutron and muon pseudo-ontinuous soure at PSI

The Paul Sherrer Institut, loated in Switzerland, owns a neutron spallation and muon

soure. Three aelerators set up in asade provide a high energy proton beam up to

590 MeV: a Cokroft-Walton pre-aelerator (energy up to 870 keV) brings protons in a

4-setor injetor ylotron (energy up to 72 MeV) and then the main ylotron permits

to reah the �nal energy up to 590 MeV to produe a high intensity beam with bunhes

separated by a time approximately equal to 20 ns. The beam passes through two pion

targets to produe muons for the Swiss Muon Soure (SµS), see Se. 2.6.2. Thus, the
remaining protons are deviated to the neutron spallation soure (SINQ faility) where

the inident protons interat with a lead target to provide high energy neutrons that

are slowed down in a heavy water moderator. The resulting thermal neutron �ux is

φn ≈ ×1014 n m−2
s

−1
[129℄.

2.2.4 A third generation synhrotron at PSI

Not only a muon and a neutron soure, the Paul Sherrer Institut has a third-generation

synhrotron, the Swiss Light Soure (SLS). A 288 m irumferene storage ring produes

a very large light spetrum, from infrared to hard X-rays, thanks to an eletron beam

reahing an energy of 2.4 GeV. The synhrotron light is produed either with bending
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magnets resulting in photons with a wide energy spetrum, or with undulators in the

straight part of the ring whih are omposed of a periodi arrangement of permanent

magnets, and selet the desired wavelength by tuning the magneti �eld. A muh more

intense and narrow beam is ahieved ompared to the one resulting from the usual

bending magnet [129℄.

2.3 Di�ration experiments

Powder di�ration is a well suited tehnique for the identi�ation of rystalline phases

but also for a quantitative analysis of rystallographi strutures. A brief introdution

to X-ray and neutron di�ration, to the di�ratometers, and to the Rietveld method

employed to analyse data with the FullProf suite [130℄ will be presented.

2.3.1 Introdution to di�ration

2.3.2 Nulear or harge sattering

Let us onsider an X-ray or neutron beam as a plane wave di�rated by a periodial lat-

tie. The inident wavelength λ must be of the same order as the inter-atomi distane.

Inident and sattered waves must be in phase to get onstrutive interferenes. This

ondition of di�ration is desribed by the Bragg law 2dhkl sin θ = nλ, where dhkl =
2π
k

is the interplanar spaing and k = ha⋆+kb⋆+ lc⋆ (h, k, l integers) is a reiproal lattie
vetor, θ is the angle of the inident and di�rated beam with respet to the atomi

planes, and n is the order of di�ration. This di�ration ondition is illustrated in the

left panel of Fig. 2.6. The sattering vetor is de�ned as q = ki − kf , where ki and kf

are the inident and �nal wavevetor respetively (ki = kf = 2π
λ
in di�ration ondi-

tion). The Bragg law an be rewritten as q = 2πn
dhkl

; the di�ration ondition tells that

the sattering vetor q must be a vetor of the reiproal lattie, de�ning the diretion

of di�ration. This leads to the well-known Ewald onstrution, illustrated in the right

panel of Fig. 2.6, whih is a geometrial representation of the di�ration ondition.

The di�rated intensity is proportional to the square modulus of the struture fator

Fα(q) where α takes the index n or p for neutrons or photons, respetively. Photons

interat with the eletroni loud of the atoms whereas neutrons interat with the

nuleus through the Fermi pseudo-potential:

VF(r) =
2π~2

mn
bjδ(r− rj), (2.7)

where bj is the Fermi length of atom j and mn the neutron mass. Consequently, the

atomi form fator for photons is the Fourier transform of the eletroni density fj(q)
whereas for neutrons it is the Fourier transform of the nulear density taken as a Dira

funtion in real spae, sine a nuleus is onsidered as a point objet:

Fp(q) =
N
∑

j=1

fj(q) exp(2iπq.rj). exp

(

−Bj
sin2 θ

λ2
j

)

,

Fn(q) =

N
∑

j=1

bj exp(2iπq.rj) exp

(

−Bj
sin2 θ

λ2
j

)

, (2.8)
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Figure 2.6: Left: Shemati view of the Bragg law. Piture adapted from Ref. [131℄.

Right: Visualisation of the Ewald sphere with a radius 2π/λ. The inident beam passes

through the sample (green square) reahing the surfae of the sphere at the origin of

the reiproal lattie. A reiproal lattie point must lie on the surfae of the Ewald

sphere to be in di�ration ondition. Piture adapted from Ref. [132℄.

where the summation runs over the N atoms of the unit ell, rj is the position of atom

j and exp(−Bj
sin2 θ
λi

) = exp(−Wj(q)) is the Debye-Waller fator, where Bj ∝ 〈u2
j〉 is

the amplitude of an isotropi displaement around the atomi mean position. Ignoring

the Debye-Waller fator, the struture fator an be written as the produt of two

summations, one over the lattie points (xj , yj, zj) of the primitive ell and the seond

over the basis of atoms r attahed to a lattie point:

Fα(q) =

(

∑

j

aj,α exp[2iπ(hxj + kyj + lzj)]

)(

∑

r

exp[2iπ(hXr + kYr + lZr)]

)

,

(2.9)

where aα stands for the neutron or X-ray form fator, i.e. aj,n = bj and aj,p = fj(q).
Now looking at the �rst fator of the right hand-side of this equation, and onsidering

the fae entred Bravais lattie F of interest where the oordinates of the lattie points

are (0, 0, 0), (1
2
, 1
2
, 0), (0, 1

2
, 1
2
), (

1
2
, 0, 1

2
), it results a non vanishing struture fator only

if the Miller indexes (hkl) are of same parity.

The di�rated intensity is proportional to the di�erential ross setion. In the X-ray

ase, it is written as [133℄:

dσ

dΩ
= nc

2π3

v0

∑

k

δ(q− k)|Fp(q)|2P (θ), (2.10)

where nc is the number of unit ells, v0 is the unit ell volume. P (θ) = 1+cos2(2θ)
2

is the

polarisation fator assuming the inident beam is unpolarised, i.e. the eletri �eld is

in a plane perpendiular to the inident wavevetor. Sine the X-ray beam is polarised

during the sattering proess, the polarisation fator results from the projetion of the
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two omponents of the eletri �eld in the diretion 2θ of the sattered beam [134,

135℄. In the ase of synhrotron radiation, when the inident polarised beam is set up

perpendiular to the sattering plane, P (θ) = 1. The Dira term refers to the di�ration

ondition, i.e. the wavevetor transfer must be a vetor of the reiproal lattie.

For neutrons, the Fermi length of an isotope j will depend on the isotope onsidered

and on the nulear spin of the latter [136℄. To the di�erential ross setion will result a

oherent and inoherent ontributions, the latter resulting in a bakground in di�ration

experiment. We de�ne:

bj =
∑

ξ

cξbj,ξ,

|bj |2 =
∑

ξ

cξ|bj,ξ|2, (2.11)

where ξ labels an isotope of atom j with onentration cξ. The oherent and inoherent
di�erential ross setions are alulated as:

dσcoh(q)

dΩ
= nc

(2π)3

v0

∑

k

δ(q− k)|F ′
n(q)|2,

dσinc(q)

dΩ
= nc

∑

j

(|bj |2 − |bj|2) exp(−Wj(q)), (2.12)

with the so-alled unit-ell struture fator:

F ′
n(q) =

∑

j

bj exp(iq · rj) exp(−Wj(q)). (2.13)

2.3.3 Magneti sattering

In the ase where a ompound undergoes a magneti transition, the periodiity of the

magneti moment resulting from the spin of the unpaired eletrons leads to a magneti

struture. This periodiity is desribed by a magneti propagation wavevetor kmag.

The symmetry of the ordered phase is lowered ompared to the one of the rystallo-

graphi group. Note that even if kmag = (0, 0, 0), at least the time reversal symmetry

is broken. One has to �nd the symmetry operations leaving kmag invariant in order

to onstitute a subgroup Gk whose representation an be deomposed into irreduible

representations Γν , where ν labels the order of the representation. Aording to the

Landau theory, only one of these representations is seleted if the transition is seond

order, its basis vetors de�ning the orientation of the magneti moment [137℄. We refer

to App. D.1 for more detailed information.

The neutron spin interats with the magneti �eld B = µ0H reated by the distri-

bution of unpaired eletrons. The potential of interation is de�ned as:

Vmag = −µn · µ0H, (2.14)

where µn = −γµNσ is the magneti moment of the neutron, γ = −1.91, µN is the

nulear Bohr magneton, σ is the neutron spin, and H is expressed in A.m

−1
. Within



50 CHAPTER 2. EXPERIMENTAL TECHNIQUES

the dipolar approximation, the amplitude of the magneti interation is dedued for

unpolarised neutrons as [138, 139℄:

amag(q) = pfmag(q)σ ·M⊥(q), (2.15)

where 2p = |γr0| = 0.54 × 10−12
m is the magneti sattering length for a magneti

moment of 1 µB at q = 0, fmag(q) is the magneti form fator and M⊥(q) = q̂ ×
(M(q) × q̂) (with q̂ = q/q) is the projetion of the Fourier transform of the total

magnetisation density (orbital and spin ontributions) on the plane perpendiular to q.

In the ase of a periodi magneti struture with a magneti propagation waveve-

tor kmag, and onsidering only one type of magneti ion, a magneti moment an be

expanded in a Fourier series:

mj =
∑

kmag

mkmag exp(−ikmag · rj), (2.16)

Therefore, the elasti magneti ross setion is given by:

dσmag(q)

dΩ
= Nmag

(2π)3

vmag

∑

k,kmag

δ(q− k− kmag)|F⊥
mag(q)|2, (2.17)

where Nmag is the number of magneti ells and vmag their volume. The Dira fun-

tion refers to the di�ration ondition: if the magneti propagation wavevetor kmag =
(0, 0, 0), the magneti Bragg peaks are at the same positions as the nulear ones, oth-

erwise satellites peak appear at positions q = k + kmag. However, if kmag · rj 6= nπ,
Eq. 2.16 is no longer available sine the magneti moment need to remain a real quan-

tity. Therefore, the magneti propagation vetor −kmag has to be taken into aount,

see for instane Eq. D.7, and onsequently satellites peaks are observed at q = k±kmag.

The magneti struture fator has been introdued as:

Fmag(q) = pfmag(q)
∑

j

mj exp(iq · rj) exp(−Wj(q)), (2.18)

where F⊥
mag(q) = q̂× (Fmag(q)× q̂).

2.3.4 Powder di�ratometers

An overview of the X-ray and neutron powder di�ratometers is given here. As the

sample is onstituted of small randomly oriented rystallites, the main advantage of a

powder di�ration experiment is that all the Bragg positions will be observed in the 2θ
position of the detetor.

2.3.5 X-ray experiments

X-rays experiments were performed in the Bragg-Brentano on�guration, see Fig. 2.7,

with an Xpert Panalytial Phillips di�ratometer at INAC, CEA-Grenoble. A poly-

hromati X-ray beam is obtained with a opper anode. A nikel �lter permits to

mainly keep the opper Kα wavelength λ = 1.5406 Å. However a residual small wave-

length bandwidth persists taking into aount the KNi absorption edge of the nikel
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Figure 2.7: Left: illustration of the θ − 2θ geometry. Sample and detetor are moved

onomitantly to ensure that the detetor is always at 2θ from the sample and the

sample surfae is always at an angle θ from the inident beam. Piture taken from

Ref. [141℄. Right: shemati view of the high resolution powder di�ratometer of the

MS beamline in the Debye-Sherrer on�guration. Piture taken from Ref. [142℄

λK,Ni = 1.4881 Å and do not provide a purely monohromati beam. This results in a

step in the right side of the tail of the Bragg peak preluding a quantitative analysis of

the di�rated intensity. The beam is foused with several sets of slits: the �rst diver-

gene slits with variable size are used to keep onstant the irradiated area on the sample

and to restrit the beam to the sample size. Determining the size of the reeiving slits

loated in front of the detetor is a stake to get better resolution without reduing the

di�rated beam intensity. Additional Soller slits limit the axial (vertial) divergene of

the beam and inrease the resolution, espeially at low sattering angles.

Experiments were also onduted using the high resolution powder di�ratometer of

the Material Siene (MS) beamline of SLS whih is supplied by photons with an energy

raising up to 38 keV, see right panel of Fig. 2.7. It is equipped with a silion mirostrip

detetor of seond generation, MYTHEN II, made of more than 30000 Si-units to over

a total angle from 2 to 120

◦
with a maximum resolution of 3.7 mdeg [129, 140℄. An x-ray

beam of wavelength λ = 0.49646 Å, orresponding to an energy E = hc
λ

= 24.98 keV,

was used.

2.3.6 Neutron experiments

Neutron powder di�ration experiments were performed at the ILL on the D2B and D1B

di�ratometers, see Fig. 2.8, and at the PSI on the high resolution powder di�ratometer

HRPT.

D1B is a two-axis powder di�ratometer optimised for high resolution at low q and
high neutron �ux (φn = 6.5 × 106 n m−2

s

−1
at the wavelength λ = 2.52 Å thanks to

three graphite (002) monohromators). A

3
He multidetetor overs a sattering angle

from 2◦ ≤ 2θ ≤ 80◦, whih an be extended to 130◦ as the multidetetors an be moved.

Angular resolution reahes up to FWHM= 0.2◦ (FWHM: full width at half maximum)

at small angles. To determine the magneti struture of our sample deep into the
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Figure 2.8: Illustration of the D1B (left) and D2B (middle) di�ratometers, from

Ref. [128℄, and of HRPT (right), from Ref. [143℄.

ordered phase (down to 60 mK), we used a

3
He-

4
He dilution ryostat. As the atomi

magneti form fator dereases with inreasing q, this di�ratometer is well suited for

the determination of magneti strutures.

D2B is a high resolution two-axis powder di�ratometer overing a sattering angle

5◦ ≤ 2θ ≤ 165◦ thanks to 128

3
He detetors. A germanium (115) monohromator

o�ers a wavelength λ = 1.594 Å with a neutron �ux φn = 1 × 106 n m

−2
s

−1
in the

high resolution on�guration. As a wide angular range is overed with a high neutron

�ux and high resolution, this di�ratometer is well adapted for the determination of a

rystal struture and to perform a quantitative analysis of the di�rated intensities.

Additional neutron di�ration experiments have been onduted on HRPT. A ger-

manium (822) monohromator selets a neutron wavelength of 1.154 Å and as the

3
He

detetors over a sattering angle up to 165◦ with an angular step of 0.1◦, a wider

q-range has been explored ompared to the D2B di�ratometer. High resolution is

ahieved for thermal neutrons up to

∆d
d

≈ 1× 10−3
.

Note that for the D2B and HRPT di�ratometers, an additional osillating radial

ollimator redues the sattering from the sample environment.

2.3.7 The Rietveld re�nement

Analysis of di�ration data have been performed using the Rietveld method with the

FullProf ode [130℄. The re�nement routine minimises the funtion:

χ2 =

Np
∑

i=1

1

σ2
i

[yo,i − yc,i(α)]
2, (2.19)

where the summation runs over theNp experimental points, yo,i is the observed intensity,
σi is the standard deviation of yo,i, and yc,i is the alulated intensity where α =
(α1, ..., αn) is the parameter set involving the n free parameters. The alulated intensity

is de�ned as [144℄:

yc,i = yc,0
∑

h

MhAhLp,hIhZ(θi − θh) + bg,i, (2.20)
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where h labels the Bragg peak positions at the angle θh, yc,0 is a saling fator, bg,i is
the bakground intensity, Z(θi−θh) is the peak pro�le funtion modelling instrumental

and sample e�ets, Mh is the multipliity of the re�etion h and Ah is the absorption

orretion. The intensity Ih is proportional to the di�erential ross setion de�ned

in Eq. 2.10 and in Eq. 2.12 for X-ray and neutrons respetively. The Lorentz fator

Lp,h = 1
sin 2θ

desribes the fat that at high angle di�rated intensity is inreased as the

angular aperture of the Debye Sherrer one is higher and the intersetion between the

latter and the Ewald sphere is wider [134, 135℄.

For an estimate of the analysis goodness, we use three R fators and χ2
exp. They are

de�ned as follows [145℄.























Rp =

∑

i |yo,i − yc,i|
∑

i yo,i
, R2

wp =

∑

i wi(yc,i − yo,i)
2

∑

i wiy
2
o,i

,

R2
exp =

Np − n
∑

iwiy
2
o,i

, χ2
exp =

∑

i wi(yc,i − yo,i)
2

Np − n
.

(2.21)

Rp, Rwp, and Rexp are respetively the pro�le, weight pro�le, and expeted weight

pro�le fators, and wi =
1
σ2
i

has been introdued for larity in Eq. 2.21.

Two di�erent pro�le funtions have been utilised in the di�erent di�ration experi-

ments. The pseudo-Voigt funtion desribes the shape of the Bragg peaks as:

Vp(x) = ηL(x) + (1− η)G(x), (2.22)

where η is a free mixing parameter whih de�nes the shape of the Bragg peak between

the Gaussian (G(x)) or Lorentzian (L(x)) limits,

L(x) =
aL

1 + bLx2
,

G(x) = aG exp(−bGx
2), (2.23)

with aG = 2
√
ln 2

HG

√
π
, bG = 4 ln 2

H2
G

, aL = 2
πHL

, and bL = 4H2
L, where HL and HG are the

FWHM (Full Width at Half Maximum) for the Lorentzian and the Gaussian funtions,

respetively. They are here taken to be equal here and are related to the {U, V,W} half-
width free parameters whih desribe the resolution funtion of the instrument [144℄:

H2
G = H2

L = U2 tan2 θ + V tan θ +W. (2.24)

Note that no strain or size e�ets have been onsidered.

The Bragg peak shape an alternatively be desribed by the onvolution of a Thomps-

on-Cox-Hastings pseudo-Voigt funtion [146℄ with an asymmetri funtion resulting

from the intersetion of the di�ration ones with the ylindrial detetor [147℄. In this

ase, the Lorentzian and Gaussian funtions have di�erent FWHMs,

H2
G = U tan2 θ + V tan θ +W,

H2
L = Y/ cos θ, (2.25)

where {U, V,W, Y } are free parameters and Y refers to the Lorentzian isotropi size

parameter. The mixing parameter η introdued in Eq. 2.22 is no longer a free parameter

in this ase but it is alulated as a funtion of HL and HG [144℄.
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Figure 2.9: Shemati view of the MARI spetrometer [148℄ (left) and illustration of

the neutron path (right) in the time-of-�ight tehnique, explained in the main text. A

methane moderator at 100 K thermalises inident high energy neutrons.

2.4 Neutron time-of-�ight spetrosopy

The time-of-�ight (TOF) spetrometer is an instrument well suited to explore exi-

tations sine wide energy and momentum transfer ranges are overed. In the diret

geometry used here, where the inident energy of the neutron is �xed, the time of �ight

of the sattered neutron over a known distane is measured to dedue the energy trans-

fer in a given diretion. TOF spetrometers are optimal for pulsed soure like the ISIS

faility, where our experiments have been onduted.

2.4.1 The MARI spetrometer

TOF experiments were performed on the MARI spetrometer. A simple sheme of this

instrument and the neutron path is given in the left and right panels of Fig. 2.9, re-

spetively. Bakground oming from high energy neutrons and γ radiation is dereased

with a �rst nemati hopper. The inident energy is seleted with a gadolinium Fermi

hopper by phasing the neutron transparent urved slits with the neutron pulse, and

illustrated by the dotted blue line. The frequeny of this rotor raising up to 600 Hz

determines the resolution, i.e. the width of the elasti line. The hopper is magneti-

ally suspended to avoid mehanial ontat via frition. Several rotor hoppers exist

allowing us to selet inoming energies up to 2 eV. We only use the gadolinium Fermi

hopper, allowing to reah an inident energy up to 200 meV. Neutron trajetories from

the sample to the detetors are displayed for inelasti (green dash dotted line) or elasti

(blue dotted line) proesses. To determine preisely the neutron gain or loss of energy

and the resolution, the di�erent distanes separating the onstituents must be preisely

known. In the MARI ase, we have L1 = 11.05 m, L2 = 4.02 m and L3 = 1.689 m. Low

and high angle detetor banks, loated lose to the diret beam and under the sam-

ple respetively, are omposed of ylindrial

3
He detetors, overing sattering angles

3◦ ≤ 2θ ≤ 135◦. Samples were ooled down to 5 K with a top loading CCR ryostat.

The left panel of Fig. 2.10 illustrates the inelasti sattering proess at the sample.

An inident neutron of energy Ei and wavevetor ki is sattered in the detetor dire-

tion 2θ with a �nal energy Ef and wavevetor kf . From the momentum onservation
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Figure 2.10: Left: Neutron sattering triangle. Right: Illustration of the (q, ~ω) spae
probed by detetors loated in the 2θ diretions for neutrons of inident energy Ei =
200 meV in diret geometry.

q = ki − kf , we get:

q2 = k2
i + k2

f − 2kikf cos(2θ). (2.26)

Using the energy transfer relation ~ω = Ei −Ef , we get the (q, ~ω) spae probed by a

detetor in the diretion 2θ, see right panel of Fig. 2.10:

~
2q2

2m
= 2Ei − ~ω − 2[Ei(Ei − ~ω)]

1
2 cos(2θ). (2.27)

2.4.2 Energy resolution

The total energy resolution of the spetrometer arises from the onvolution of several

ontributions. The �rst one originates from the time distribution of neutrons in the

pulse. Whereas Gaussian funtions are usually introdued to take into aount the

resolution of spetrometers at a ontinuous soure, they are no longer adequate for a

pulsed soure where the moderator produes a strongly asymmetri time distribution

of the neutrons. The latter distribution has been modelled for a given inident energy

Ei with the onvolution of a slowing down term desribed by a χ2
distribution funtion

aounting for fast neutrons at short times whih are not thermalised and a storage

term depited by an exponential funtion to take into aount neutrons emerging after

thermalisation [149℄. As the distane between the moderator and the Fermi hopper is

signi�ant, the initial pulse shape spreads out in time due to the di�erent neutron ve-

loities. As explained above, phasing the Fermi hopper allows to selet neutrons with

a spei� energy and tuning the frequeny to determines the wavelength spread. This

hopper introdues a seond omponent to the resolution funtion due to the approx-

imately triangular transmission funtion whih takes into aount not only the phase

of the Fermi hopper but also the neutron speed and entry angle [150℄. An additional

omponent arising from size e�ets of the sample and detetors geometries has been al-

ulated through Monte Carlo simulations [151℄. The e�ieny of the detetor depends

on the neutron speed [152℄: the probability of a neutron to be deteted at a spei�
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Figure 2.11: Examples of the resolution urves as a funtion of the transfer energy for

two on�gurations with an inident energy Ei = 80 meV and a Fermi hopper frequeny

νFC = 600 Hz, and Ei = 80 meV and νFC = 400 Hz.

position within the detetor thikness depends on its energy and adds a supplementary

broadening in the resolution funtion.

As explained in Refs. [153, 154℄, the energy resolution for elasti sattering ∆E is

alulated as:

∆E

Ei

= 8.7478× 10−10

√
Ei

L
∆t, (2.28)

where L (in meters) is the total neutron �ight path, ∆t (in µs) is the time width of the

pulse at the detetor whih is the quadrati sum of the aforementioned time dispersion

ontributions, and Ei the inident energy (in meV). The total resolution of the MARI

spetrometer has been alulated using the MSLICE ode [155℄ supplied by ISIS. Some

plots are traed in Fig. 2.11. Note that the resolution is improved as the energy transfer

inreases.

2.5 Neutron baksattering spetrosopy

The baksattering experiments have been performed at the ILL with the IN16 spe-

trometer haraterised by a high energy resolution. This setion desribes the IN16

spetrometer and disusses the baksattering proess and energy resolution onsider-

ations.

2.5.1 The IN16 spetrometer

The IN16 spetrometer is illustrated in Fig. 2.12. A �rst graphite (002) de�etor sat-

ters a wide wavelength band of neutrons into a fousing neutron guide. A beryllium

�lter prevents high energy neutrons to enter the spetrometer and a bakground hop-

per pulses the neutron beam. In the so-alled primary spetrometer, a seond rota-

tive de�etor, whih is omposed alternatively of two open segments and two graphite

(002) monohromators, de�ets the beam towards a spherially urved baksattering

monohromator, moved by a Doppler drive at a hosen frequeny. Note that the same
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Figure 2.12: Shemati view of the IN16 spetrometer. The basi priniple and the role

of eah onstituent is desribed in the main text. Piture taken from Ref. [156℄.

material is used for the �rst de�etor and the seond rotative de�etor allowing to have

a baksattered beam parallel to the initial white beam in the neutron guide, simplify-

ing the setup of the spetrometer. Neutrons are baksattered onto the sample loated

behind the seond de�etor thanks to the open segments of the rotative de�etor, work-

ing as a hopper. In the so-alled seondary spetrometer, several banks of silion (111)

140 m high analysers loated at 2 m from the sample and overing an angular range of

8◦ ≤ θ ≤ 155◦, selet neutrons of an energy of about 2 meV sattered from the sample

and re�ets these in exat baksattering geometry bak through the sample to a set

of 320

3
He detetors plaed behind the sample. As the neutron beam being pulsed,

neutrons diretly sattered by the sample towards detetors are not taken into aount

sine detetors are eletronially losed when inident neutrons hit the sample.

2.5.2 The baksattering proess

The �rst baksattering proess ours at the Doppler monohromator in the primary

spetrometer to selet the inident neutron wavelength λi with a wavelength spread ∆λ.
The energy resolution is

∆E
E

= 2∆λ
λ
. The aim is to reah the highest energy resolution.

By di�erentiating the Bragg law we get the relation:

∆λ

λ
= cot θ∆θ +

∆d

d
. (2.29)
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Figure 2.13: Left: Darwin urve showing the neutron re�etion oe�ient of the

monohromator as a funtion of an arbitrary parameter y whih ould be a variation

of k, λ or θ. Right: Piture taken from Ref. [156℄ illustrating the nearly baksattering

geometry where a small angular deviation of the inident beam is introdued. Here τ
is a reiproal lattie vetor (τ ≡ k) and k0 ≡ ki.

In exat baksattering geometry (θ = 90◦), the angular term of the right hand side

of Eq. 2.29 vanishes. The quantity

∆d
d

= ∆k
k

an be alulated within the dynamial

theory of sattering, where interferene e�ets between the inident and sattered waves

are taken into aount. In the Bragg ase, i.e. where inident waves are re�eted, the

re�etivity oe�ient R an be alulated [157, 158℄, see the Darwin urve in the left

panel of Fig. 2.13. The so-alled Darwin width

∆k
k

de�nes the plateau where R = 1,
i.e. the loss of neutron �ux is minimised. It is alulated as [159℄:

∆k

k
=

16πF ′
n(k)N

k2
, (2.30)

where N is the number density of unit ells and F ′
n(k) is the unit-ell struture fator

de�ned in Eq. 2.13, and alulated at the reiproal lattie vetor k. Then, the energy

resolution is:

∆E =
2E∆k

k
=

~
24πF ′

n(k)N

mn
, (2.31)

where E = ~2(k2/4)
2mn

. To ensure a minimised energy resolution, the hoie of the material

onstituting the monohromator is of �rst importane. For Si (111) rystals, we get

∆k
k

= 1.86 × 10−5
orresponding to an energy resolution of ∆E = 0.077 µeV for λ =

6.2709 Å.
To alulate the true energy resolution, one has to onsider also a small divergene

of the beam due to a small deviation of the baksattering geometry, i.e. ε = 90◦ − θ
as illustrated in the right panel of Fig. 2.13. This divergene is alulated as the
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di�erene between the minimum and maximum inident ki vetors denoted kmin and

kmax, respetively. Therefore, we derive:

kmax =
k/2 + ∆k/4

cos(∆θ
2
+ ǫ)

, kmin =
k

2
−∆k

4
, and ki =

k/2 + ∆k/4

cos(ǫ)
≈ k/2+∆k/4. (2.32)

Assuming that ∆k/(k +∆k/2) ≈ ∆k/k, we get:

∆ki
ki

=
kmax − kmin

ki
≈ 1

cos(∆θ
2
+ ε)

− 1 +
∆k

k
,

≈ 1

2

(

∆k

2
+ ε

)2

+
∆k

k
, (2.33)

where the last line is obtained assuming small values of

∆θ
2

+ ε. Then, the energy

resolution is obtained as:

∆E

E
= 2

∆ki
ki

=

(

∆θ

2
+ ε

)2

+ 2
∆k

k
. (2.34)

The total energy resolution is then alulated as the onvolution of the values of Eq. 2.34

found for the primary and seondary spetrometers.

2.5.3 Spetrosopy

To perform spetrosopy measurements, one hanges the inident neutron energy. This

an be aomplished by hanging the lattie parameter via thermal yling or through

the Doppler e�et by moving the monohromator at a veloity vD parallel to the inident

neutron beam as set up on the IN16 spetrometer. The energy hange δE of the

baksattered neutrons is then linearly dependent of the Doppler veloity vD, assuming

vD ≪ vi [159℄:
δE

E
≈ 2

vD
vi

. (2.35)

On IN16, the maximum amplitude of the Doppler veloity is 2.2 ms

−1
. Neutrons of

wavelength λ = 6.2709 Å have a veloity vi ≈ 631 ms

−1
, whih results in a maximum

energy hange of the baksattered neutrons of δEmax = 14.5 µeV. We reall that the

analysers and the Doppler monohromator are idential. Therefore neutrons sattered

by the sample will be analysed, i.e. baksattered in the seondary spetrometer, if

λ = 6.2709 Å. The veloity pro�le of the Doppler drive is sinusoidal-like around the

mean value vD = 0, orresponding to zero energy transfer. Neutrons deteted with a

veloity di�erent from vi will have been inelastially sattered by the sample to ful�l the

baksattering ondition at the analysers. The variation of the position of the Doppler

monohromator is assumed negligible and thus the neutron �ight time from the Doppler

monohromator to the detetor tMD is onstant. Therefore, the �nal neutron energy at

a time tf is dedued from the Doppler veloity reorded at a time tf − tMD.

2.6 Muon spetrosopy

A brief introdution on the muon spin relaxation spetrosopy (µSR) is presented here.

For more detailed information, one has to refer to Ref. [160℄.
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Bloc

Sµ

Figure 2.14: Illustration of the muon spin preession around a loal magneti �eld Bloc.

Piture taken with kind permission from Ref. [160℄.

2.6.1 Introdution

This tehnique allows to probe the loal magneti �eld of a sample. Muon is an ele-

mentary partile of mass mµ = 1.88353 × 10−28
kg ≈ 200me where me is the mass of

the eletron. Here, muons posses a positive eletri harge and a lifetime τµ = 2.2 µs.
Polarised muons are implanted in the matter and due to their positive eletri harge

they are loalised at an interstitial site. The aim of this tehnique is to follow the time

evolution of the polarisation of these muons in a so-alled time-di�erential measure-

ment. As they arry a spin Sµ = 1
2
, muons interat with the loal magneti �eld Bloc

of the sample. Thus the spin of the muon undergoes a preession motion around Bloc,

as pitured in Fig. 2.14, desribed by the Larmor equation:

dSµ

dt
= γµSµ ×Bloc, (2.36)

where γµ = 8.51616× 108 rad s

−1
T

−1
is the muon gyromagneti ratio.

2.6.2 Experimental details

A high energy beam of protons provided by an aelerator hits a graphite target, see

Se. 2.2. Some reations involved in the ollisions of the inident protons p and neutrons
n and protons of the target are desribed by the following equations:

p+ p → π+ + p+ n,
p+ n → π+ + n+ n, (2.37)

where π is a pion, an instable partile with a lifetime τπ = 26 ns. This partile deays

into a muon µ and a muon neutrino νµ:

π+ → µ+ + νµ. (2.38)

As we onsider a pion at rest, i.e. with zero kineti energy, the muon and the neutrino

are emitted in opposite diretion due to momentum onservation. Sine the neutrino

has a negative heliity � the heliity being de�ned by the projetion of the spin over

the momentum � the spin of the muon is antiparallel to its momentum beause of
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PµPνµ Sµ

µ+π+νµ

Sνµ

Figure 2.15: Left: Deay of the pion π+
into a muon µ+

and a muon neutrino νµ. Right:
Probability of the positron emission diretion with respet to the muon spin.

onservation of angular momentum. This is illustrated in the left panel of Fig. 2.15.

The deay of the muon follows the reation:

µ+ → e+ + νe + ν̄µ, (2.39)

where νe and ν̄µ are respetively the neutrino and antineutrino assoiated with the

positron and the muon. The positron is the partile of interest whih is deteted by

a plasti sintillator to produe a photon whih is driven through a light guide to a

photomultiplier. As the emitted positrons have a large kineti energy, up to 52 MeV,

they weakly interat with the sample and are weakly absorbed by the surrounding

ryostat and vauum hamber walls.

The key point lies on the diretion of the emitted positron, whih is orrelated to

the muon spin orientation as shown in the right panel of Fig. 2.15. This panel illustrates

the probability W (θ) of the positron to be emitted in a diretion making an angle θ
with the muon spin and alulated as:

W (θ) ∝ [1 + aas(ε) cos θ], (2.40)

where aas is an asymmetry parameter varying with the kineti energy ε of the positron
as (2ε− 1)/(3− 2ε). Counting all the positrons and integrating over the energy range

available for the positron give 〈aas〉 = 1
3
.

2.6.3 Pseudo-ontinuous versus pulsed soure

The SµS soure at PSI is a pseudo-ontinuous soure, see Se. 2.2.3. A detetor is

plaed in the muon beam lose to the sample, and a lok is started when a muon is

deteted. The lok is stopped when the deay positron is deteted to onstitute a

so-alled event. If a seond muon is implanted before the positron arising from the �rst

implanted muon is deteted, the eletroni aquisition system pauses to avoid so-alled

oinidene. As the detetors do not over a 4π solid angle around the sample, there is

a non-negligible probability that the positron arising from the muon deay does not hit

the detetor. As a result, a timeout of few muon lifetimes is introdued (≈ 10 µs). In
spite of these eletroni onsiderations, the presene of a onstant residual bakground

due to the unertainty to know the muon of origin of the deteted positron annot be

avoided.
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The ISIS soure is a pulsed soure desribed brie�y in Se. 2.2.2. The muon beam

has the same time harateristis as the high energy proton beam hitting the graphite

target: approximately Gaussian shaped muon pulses are separated by a time of 20 ms

and a width of about 100 ns limiting the time resolution of the experiment. Contrary

to the SµS soure, a bunh of order thousands of muons is implanted in the sample

at a time taken at zero. The main advantages lie �rst that only a few bakground

partiles are deteted between the muons pulses whih permits to haraterise the

muon spin polarisation funtion to signi�antly longer times ompared to the SµS
soure as mentioned above, and thus to haraterise slow relaxation proess. However,

note that an eletrostati de�etor has been set up on the SµS line whih prevents any

additional muons to be implanted in the sample until its predeessor will be deteted.

This Muons-On-REquest (MORE) onept signi�antly redues the bakground of a

pseudo-ontinuous soure without dereasing the intensity [161℄.

As a result, a pseudo-ontinuous soure provides a high time resolution at short times

and allows to observe strongly damped signals but the detetion of weak magneti �elds

giving a low muon frequeny preession and the slow relaxation proess are perturbed

by the residual bakground. At the opposite, the latter proesses an be evidened on

a pulsed soure.

2.6.4 Muon spetrometers

The MuSR spetrometer, see Fig. 2.17, is one of the muon instrument loated at ISIS.

To ope with the high intensity muons pulse, 32 positron detetors in forward position

and 32 positron detetors in bakward position surround the sample environment. Only

a separator is present on the beam line to remove the bakground partiles arising from

the interation between the proton beam and the graphite target. The muon spin

is antiparallel to its momentum. Two possible on�gurations are available: zero or

longitudinal �eld geometry and transverse �eld geometry, where the magneti �eld is

applied parallel or perpendiular to the muon spin, as shown in Fig. 2.16.

The GPS (General Purpose Surfae) and LTF (Low Temperature Faility) spetrom-

eters, see Fig. 2.17, have been utilised at the SµS. Their harateristis are summed

up in Tab. 2.1. These spetrometers are designed to work also in zero, longitudinal or

transverse �eld. However, in transverse geometry, the magnitude of the applied �eld is

limited sine the Lorentz fore will deviate the muon beam out of the sample. Therefore,

a spin rotator is plaed between the muon prodution target and the spetrometers of

interest. Firstly, it is used as a separator to selet muons with a ertain veloity. The

aim is to remove bakground partiles suh as positrons arising from the pion deay

by de�eting partiles with a transverse magneti �eld to mainly selet muons. In the

transverse �eld geometry, the spin rotator rotates the muon spin by about 50◦. There-
fore, a omponent of the muon spin is perpendiular to its momentum. Note that now,

we apply the magneti �eld parallel to the muon momentum, giving aess to higher

�eld magnitude. However, the initial asymmetry deteted in the detetors is redued.

The zero-�eld ompensation proess enables to remove the remanent �eld at the

sample by applying hysteresis yle of 10 mT, omplemented with an ative ompensa-

tion devie to reah a remanent �eld lower than 3× 10−4
mT.
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Figure 2.16: Left: Illustration of the longitudinal (or zero) �eld geometry where a

magneti �eld is applied along the diretion of the muon spin. Right: Illustration of

the transverse geometry where a magneti �eld is applied perpendiular to the muon

spin. Pratially, intensity of transverse magneti �eld is low to prevent the de�etion

of the muon beam before implantation in the sample. Note that for both geometries,

the muon spin is antiparallel to its momentum. Pitures taken with kind permission

from Ref. [160℄.

Spetrometer Temperature Maximal longitudinal �eld Typial hannel time

GPS 1.5-300 K 0.56 T 1 ns

LTF 10 mK-10 K 2.8 T 1 ns

MuSR 40 mK-1000 K 250 mT 16 ns

Table 2.1: Summary of the harateristis of muon spetrometers of interest. GPS and

LTF are respetively equipped with �ve (Forward, Bakward, Up, Down, Right) and

four (Forward, Bakward, Right and Left) positrons detetors.

2.6.5 Polarisation funtions

The positron ounts in a detetor are modelled as:

N(t) = N0 exp(−t/τµ)[1 + a0Pα(t)] + abg, (2.41)

where N0 is the sale of the positron ount, the exponential term stands for the �nite

lifetime of the muon, a0 is the initial asymmetry, usually of order 0.25 and assumed

to be only dependent of the experimental onditions suh as the solid angle overed

by the detetor, Pα(t) is the time dependent muon polarisation funtion of interest

measured in the X, Y, Z detetor diretion, and abg is a time-independent bakground

term non negligible in the ase of a pseudo-ontinuous soure. In the longitudinal �eld

geometry, only PZ(t) is of interest whereas PX(t) and PY (t) are aessible in transverse

�eld geometry.

Labelling the forward detetor as �+� and the bakward one as �−�, then the number
of positrons deteted in eah of one is written as:

N±(t) = N0,± exp(−t/τµ)[1± a0Pα(t)] + abg,±. (2.42)

Then, assuming that abg,± = 0 and introduing a parameter αd = N0,+/N0,− taking

into aount the di�erene of e�ieny of the detetors, and usually determined ap-

plying a weak transverse �eld, the polarisation funtion of the muon is then obtained
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Figure 2.17: Pitures of the di�erent muon spetrometers of interest in this work: GPS

(left), LTF (middle) and MuSR (right).

ombining the ounts of eah detetors as:

a0Pα(t) =
N+(t)− αdN−(t)

N+(t) + αdN−(t)
, (2.43)

where t refers to the disretized time hannel. In the ase of a pseudo-ontinuous soure,

a time independent bakground must be introdued

The basi muons polarisation funtions will be introdued. Let us �rst onsider a

magneti sample with a spontaneous loal �eld Bloc. If no external magneti �eld is

applied, muon spins undergo a preession motion around the loal �eld Bloc oriented

at an angle θ with respet to the muon spin. Solving the Larmor equation displayed in

Eq. 2.36 leads to:

PZ(t) = cos2 θ + sin2 θ cos(ωµt), (2.44)

where ωµ = γµBloc is the Larmor pulsation. Performing a spatial average of Eq. 2.44

sine we are only interested in powder samples, we get:

PZ(t) =
1

3
+

2

3
cos(ωµt). (2.45)

In the paramagneti ase or if the spin �utuations are su�iently fast in the ordered

state not to keep a onstant value of Bloc, the muon polarisation relaxes through an

exhange of energy between the muon spin and the system. The polarisation funtion

of the muon spin is then desribed by:

PZ(t) = exp[−(λZt)
βse ], (2.46)

where λZ is the so-alled spin-lattie relaxation rate and βse = 1. In the ase where

a ontinuous distribution of relaxation hannels is involved, a strethed exponential

funtion is introdued with 0 < βse ≤ 1.
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Figure 2.18: Illustration of the transverse geometry used at the LTF spetrometer (PSI).

A spin rotator �ips the muon spin of about ≈ 50◦ from its momentum. Note that the

initial asymmetry is slightly redued in this on�guration, i.e. a0 ≈ 0.22 ompared to

the value expeted in zero or longitudinal �eld geometry (a0 ≈ 0.25). The magneti

�eld Bext is applied parallel to the inoming muon beam. Therefore, the muon spin

undergoes a preession motion around the loal �eld Bloc: the red arrow illustrates the

muon spin orientation at the muon implantation time in the sample t = 0 where it is

antiparallel and tilted from the muon beam diretion. The blue arrow is the muon spin

at a time t > 0 with a phase shift γµBloct. The red and blue ardioids represent the

probability W (θ) of positron emission along the muon spin axis, see Eq. 2.40, at times

t = 0 and t > 0, respetively. The blak parallelepipeds are the right and left positron

detetors of the muon spetrometer giving aess to the transverse muon polarisation

funtion a0PX(t).

2.6.6 Muon Knight shift measurements

We speify in this setion some details about the muon Knight shift tehnique, used at

the SµS (PSI). In order to prevent the de�etion of the muon beam out of the sample

and apply higher magneti �eld, the usual transverse �eld mode desribed in Se. 2.6

is not used here. We rather �ip the muon spin Sµ of about 50◦ from its momentum

with a spin rotator and use the transverse-�eld geometry pitured in Fig. 2.18. The

external magneti �eld Bext is applied parallel to the muon beam and its diretion

states the Z axis of the laboratory frame. The quantity of interest is the TF-µSR
asymmetry time spetrum a0P

exp
X (t), where P exp

X (t) desribes the evolution of the muon
polarisation under Bext. The muon polarisation funtion is desribed by the sum of

two osillating omponents: one aounting for the muons implanted in the sample and

preessing with a frequeny νµ around the loal �eld at the muon site Bloc, and the

seond for the muons stopped in the sample surroundings, essentially the silver sample

holder, whih preess around a �eld lose to the external �eld Bext with a frequeny

νext. The normalised muon frequeny shift Kexp is de�ned as [160℄:
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Kexp =
Bext · (Bloc −Bext)

B2
ext

. (2.47)

Usually measurements are performed in a �eld su�iently large suh as |Bloc −Bext| is
small ompared to Bext, and Eq. 2.47 beomes:

Kexp =
Bloc − Bext

Bext
. (2.48)

Note that the aforementioned ondition means that Kexp is a measure of the magneti

response of the system submitted to a magneti �eld, i.e. the loal magneti susepti-

bility at the muon site, along the diretion of Bext. Sine we have νµ = γµBloc/(2π)
and νext = γµBext/(2π), we get:

Kexp =
νµ − νext

νext
=

∆ν

νext
. (2.49)

Sine we are dealing with insulators, only the dipolar �eld Bdip arising from the rare

earth magneti moments ontributes to the loal �eld at the muon site. The dipolar

�eld at the muon site is alulated as:

Bdip =
gµ0µB

4π

N
∑

i=1

Ji

r3i
− 3(Ji · ri)ri

r5i
, (2.50)

where ri is the vetor linking the muon to the magneti ion at site i. Although the

dipolar �eld reated by a magneti moment at a distane r dereases as r3, the number
of magneti moments at this distane inrease as r2. This statement implies that all

the magneti moments of the sample need to be onsidered. This dipolar �eld at the

muon site an be deomposed in several ontributions [160℄:

Bdip = B′
dip +BLor +Bdem (2.51)

where B′
dip is the dipolar �eld arising from a disrete sum over the magneti moments

loated in a so-alled Lorentz sphere entered at the muon site and of radius su�iently

large so that the sum onvergene is reahed. The remaining magneti dipoles are

loated outside the Lorentz sphere and an be desribed in a ontinuous approah.

Therefore, two additional terms to the dipolar �eld at the muon site ontribute: the

Lorentz �eld BLor and the demagnetising �eld Bdem arising from the magneti harges

loated at the surfae of the Lorentz sphere and of the sample, respetively. Sine the

two latter ontributions are marosopi �elds, the muon Knight-shift Kµ is usually

desribed as [160℄:

Kµ = Kexp −
Bext · (BLor +Bdem)

B2
ext

. (2.52)

Therefore, Kµ arises only from the dipolar �eld reated by the magneti moments inside

the Lorentz sphere, i.e. Kµ = K ′
dip. Sine the Lorentz �eld arises from magneti harges

loated on the surfae of the Lorentz sphere, it is easily derived as:

BLor =
µ0MLor

3
, (2.53)
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whereMLor is the magnetisation per unit of volume inside the Lorentz sphere . Note that

we assume that the investigated ompound is magnetially saturated and MLor = M,

where M is the bulk magnetisation of the sample. Note that this equality does not

hold on anymore if magnetisation domains exist. In the ase of an ellipsoidal sample,

the demagnetising �eld is uniform and an be derived:

Bdem = −µ0NM (2.54)

where N is a diagonal tensor. Realling that Bext is ollinear to the Z axis so does

the magnetisation in a paramagneti sample, and ombining Eq. 2.53 and Eq. 2.54 in

Eq. 2.52 gives us:

Kµ = K ′
dip = Kexp − µ0

(

1

3
−NZZ

)

M

Bext
. (2.55)
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The study of the rystal-eletri-�eld (CEF) ating at the rare earth site is of entral

importane in the pyrohlore ompounds. It �xes the spin symmetry at the rare earth

site: Ising, XY, Heisenberg. The predition of the CEF energy level sheme teahes us if

the ground state is well isolated from the exited energy levels as in the spin-ie ase, or

if we should onsider a mixing between the ground state and the low-lying energy level

as in Tb2Ti2O7, see Chapter 5. Finally, the determination of the CEF wavefuntions is

neessary to provide a basis for the diagonalisation of the Hamiltonian of interest. We

will introdue in this hapter the Stevens Hamiltonian used in this work. Then, using

68
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Figure 3.1: Left: Loal environment of a given rare earth ion in the pyrohlore lattie

struture. The rare earth atoms are pitured with the largest red spheres, oxygen atoms

with the smallest blue spheres, and the atoms M =Ti or Sn with green intermediate

size spheres. Reprinted �gure with permission from Ref. [91℄. Copyright 2015 by the

Amerian Physial Soiety. Right: Illustration of the ground state multiplet arising

from the spin-orbit oupling split by the perturbative CEF Hamiltonian.

a simple model desribing the whole family of the titanate pyrohlore R2Ti2O7, we will

ompare our results to previous work and �nally we will apply the same methodology

on the stannate family of hemial formula R2Sn2O7 analysing our inelasti neutron

sattering measurements.

3.1 Introdution

3.1.1 Rare earth properties

At the rare earth site, an eletri �eld ats on the magneti ion. This rystalline �eld

arises from all the eletri harges arried by the surroundings ions as illustrated in the

left panel of Fig. 3.1. Magnetism in the rare earth ompounds arises from the loalised

4f eletroni shell. The eletroni on�guration of the ground state of the rare earth ions

is of the form [Xe℄4fn5d16s2. The number n of eletrons in the inomplete 4f eletroni

shell is given in Tab. 3.1. The degeneray assoiated to the ground state of the free

ion, haraterised by the kineti energy of the eletrons and the eletron-eletron and

nuleus-eletron oulombi interations, is alulated by the number of possibilities to

plae n eletrons in the inomplete 4f eletroni shell, i.e. 14!/(n!(14−n)!). The Russel-
Saunders oupling, whih arises from the interation between the spin and the orbital

momentum of the eletrons, splits the ground state of the free ion into multiplets.

1

The

spin-orbit Hamiltonian takes the following form:

Hso = λsoL · S, (3.1)

1

This is valid in the ase of the rare earth ions where the interation between the orbital angular

momentum of the 4f eletrons is weak. This assumption is not valid anymore for heavier elements for

whih the j − j oupling should be onsidered.
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Rare earth Pr

3+
Nd

3+
Gd

3+
Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

n(4f) 2 3 7 8 9 10 11 12 13

S 1 3/2 7/2 3 5/2 2 3/2 1 1/2

L 5 6 0 3 5 6 6 5 3

J 4 9/2 7/2 6 15/2 8 15/2 6 7/2

gJ 4/5 8/11 2 3/2 4/3 5/4 6/5 7/6 8/7

Ground state

3
H4

4
I9/2

8
S7/2

7
F6

6
H15/2

5
I8

4
I15/2

3
H6

2
F7/2

∆so (meV) 266 236 - 294 408 644 802 729 1271

Kramers ion no yes yes no yes no yes no yes

Table 3.1: Some rare earth properties: the number of eletrons in the 4f eletroni

shell, the total spin S, orbital momentum L and total angular momentum J of the rare

earth ions, the Landé fator, the ground state multiplet arising from the spin-orbit

oupling, the energy di�erene between the latter and the �rst exited term [162℄, and

the Kramers harater of the ion of interest are listed in this table. The ground state

term is labelled as

2S+1XJ where X=(S, P, D, F, G, H, I) for L=(0, 1, 2, 3, 4, 5, 6).

where L and S are the total orbital and spin angular momenta of the rare earth,

respetively, and λso is a onstant taking into aount the radial part of the eletron

wavefuntion. The matrix form of Eq. 3.1 is diagonal within the basis |L, S, J,mJ〉,
where J = L + S is the total angular momentum and −J ≤ mJ ≤ J . All these

quantum numbers are determined by Hund's rules,

2

and are gathered in Tab. 3.1 as

well as the orresponding denomination of the ground state term, the energy splitting

between the ground state and the �rst exited term, and the Landé fator gJ . The

latter is alulated as:

gJ =
1 + J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (3.2)

Eah multiplet is haraterised by a value of J with a degeneray equal to (2J + 1).
The ground state multiplet is de�ned in Tab. 3.1. The Kramers theorem should be

mentioned onerning ions having an odd number of eletrons, i.e. for half-integer J
values (Kramers ions): the multiplets arising from the spin-orbit oupling an only be

split into at least doubly degenerated states, where the degeneray an only be lifted

by a time-reversal symmetry breaking perturbation suh as an external magneti �eld.

A peuliar feature of the wavefuntions desribing these states is that they are time

onjugated, i.e. if |Ψ±〉 are the wavefuntions of a given doublet state, then |Ψ−〉 =
θ̂|Ψ+〉 where θ̂ is the odd time-reversal operator [163℄. On the other side, for non-

Kramers ions, i.e. for an even number of eletrons, no rule governs the splitting of the

multiplets: aidental degenerated states exist and the degeneray is suseptible to be

lifted by any perturbations.

We have introdued above the notion of loalised magnetism. The reason lies in the

fat that the 4f eletroni shell is more internal than the 5s, 5p, 5d and 6s eletroni

2

The three Hund's rules are for a given eletroni on�guration:

1 The ground state term is de�ned with the maximum multipliity, i.e. the highest value of S,

2 For a given multipliity, the term with the lowest energy is the one maximising L,

3 The lowest energy term for atoms with an eletroni shell equal or less than half-�lled is the one

with J = |L− S| whereas for atoms with an eletroni shell more than half-�lled, J = |L + S|.
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shells. Besides, the rare earth are usually in the 3+ valene state meaning that two

eletrons of the 5s shell and one of the 5p shell are missing. Therefore, 5s and 5p
eletroni shells are involved in the hemial bondings and the 4f eletroni shell is

shielded by the 5d and 6s external eletroni shells: thus, rystal-eletri-�eld e�ets

an be treated as a perturbation of the spin-orbit oupling. The multiplets are split into

rystal-eletri-�eld states, e.g. (2J + 1) states for the ground state multiplet. These

suessive splittings are illustrated in the right panel of Fig. 3.1 where an order of

magnitude of the overall energy splitting is given in units of temperature.

3.1.2 The Stevens Hamiltonian

The rystal-eletri-�eld HamiltonianHCEF an be written in terms of Stevens operators

Om
n (see App. B):

HCEF =
∑

nm

[Am
n 〈rn〉Θn]O

m
n , (3.3)

where Θn are the Stevens multipliative fator listed in Tab. B.1, 〈rn〉 are the expeta-
tion values of the nth power distane between the nuleus of the magneti ion and the

4f eletroni shell, listed in Tab. B.2, and the rystal-eletri-�eld parameters Am
n are

de�ned by Eq. B.18. We note that the Stevens operators are polynomial funtions of Jz

and J±. The aim is to alulate the matrix elements of HCEF within the ground state

multiplet de�ned by the basis |L, S, J,mJ〉, whih we will denote |mJ〉 in the following

sine L, S, and J are �xed values within a multiplet. We assume that the splitting

between the ground state and �rst exited multiplets is su�iently large not to on-

sider the latter. This hypothesis may not be valid for the lightest rare earths, see ∆so

in Tab. 3.1

We need to determine whih Stevens operators are involved in the CEF Hamiltonian.

First, all matrix elements for operators of order n > 2l vanish, where l is the orbital
quantum number of the eletron (for the 4f eletroni shell, l = 3) [164℄. Besides, the
CEF Hamiltonian needs to remain invariant under time reversal symmetry. We fous

on the operators Jn
z involved in the Stevens operator Om

n . The time reversal symmetry

operator is written within the |mj〉 basis as [163℄:

θ̂ = exp(iπJy)K0, (3.4)

where K0 is the omplex onjugation operator ating on a wavefuntion of the form

|Ψ〉 =∑mJ
αmJ

|mJ〉, where αmJ
are onstants, as:

K0|Ψ〉 =
∑

mJ

α⋆
mJ

|mJ〉. (3.5)

Therefore we alulate the ommutator of Jn
z and θ̂ within two wavefuntions de�ning

the ground state multiplet |mJ〉 and |m′
J〉:

〈m′
J |
[

Jn
z , θ̂
]

|mJ〉 = 〈m′
J |Jn

z θ̂ − θ̂Jn
z |mJ〉. (3.6)

From Ref. [163℄, the only non-vanishing matrix elements are:

〈−mJ | exp(iπJy)|mJ〉 = (−1)J−mJ . (3.7)
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This leads to:

〈m′
J |
[

Jn
z , θ̂
]

|mJ〉 = δm′

J ,−mJ
(mJ)

n(−1)J−mJ [(−1)n − 1]. (3.8)

In order to get the CEF Hamiltonian invariant under time reversal symmetry, we need

Eq. 3.8 to vanish. This ondition is ful�lled only if n = 2k, where k is an integer.

We reall that the loal point group symmetry at the rare earth site is D3d. One of

the symmetry elements belonging to this group is the

2π
3
rotation

3

around the z axis

[111℄ and its assoiated operator is de�ned as:

Rz

(

2π

3

)

= exp

(

−2iπ

3
Jz

)

. (3.9)

The CEF Hamiltonian needs to remain invariant under the symmetry operators asso-

iated to the loal point group. We fous on the operators Jm
± involved in the Stevens

operators Om
n . Therefore, we alulate the ommutator of Jm

± and the symmetry oper-

ator Rz

(

2π
3

)

within the |mJ〉 basis:

〈m′
J |
[

Jm
± , Rz

(

2π

3

)]

|mJ〉 = 〈m′
J |Jm

± exp

(

−2iπ

3
Jz

)

− exp

(

−2iπ

3
Jz

)

Jm
± |mJ〉

= α±,mδm′

J
,(mJ±m) exp

(

−2iπmJ

3

)[

1− exp

(∓2iπm

3

)]

, (3.10)

where δa,b is the Kroneker symbol (δa,b = 1 if a = b and 0 otherwise), and the onstants
α±,m have been introdued suh as:

Jm
± |mJ〉 = α±,m|mJ ±m〉, with for instance

J±|mJ〉 =
√

J(J + 1)−mJ(mJ ± 1)|mJ ± 1〉. (3.11)

Therefore, the invariane of the Hamiltonian is preserved, i.e. Eq. 3.10 vanishes, if

m = 3p, where p is an integer.

In onlusion, we have shown with these geometrial onsiderations that the CEF

Hamiltonian at the rare earth site is written as:

4

HCEF =
∑

nm

[Am
n 〈rn〉Θn]O

m
n =

∑

nm

Bm
n Om

n ,

= B0
2O

0
2 +B0

4O
0
4 +B3

4O
3
4 +B0

6O
0
6 +B3

6O
3
6 +B6

6O
6
6, (3.12)

where we have introdued:

Bm
n = Am

n 〈rn〉Θn. (3.13)

The useful Stevens operators are expressed as:

3

Other symmetry elements of this point group are not used here sine they are not useful to

determine whih Stevens operators are needed in the CEF Hamiltonian.

4

We reall that m ≤ n.
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O0
2 = 3J2

z − J(J + 1),

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2,

O0
6 = 231J6

z − 315J(J + 1)J4
z + 735J4

z + 105J2(J + 1)2J2
z

−525J(J + 1)J2
z + 294J2

z − 5J3(J + 1)3 + 40J2(J + 1)2

−60J(J + 1),

O3
6 =

1

4

{

[

11J3
z − 3J(J + 1)Jz − 59Jz

]

(J3
+ + J3

−)

+(J3
+ + J3

−)
[

11J3
z − 3J(J + 1)Jz − 59Jz

]

}

,

O3
4 =

1

4

[

Jz(J
3
+ + J3

−) + (J3
+ + J3

−)Jz

]

,

O6
6 =

1

2
(J6

+ + J6
−). (3.14)

Note that in the |mJ〉 basis, the Stevens operators O0
n are diagonal, and applying

operators O3
n and O6

n on a ket |mJ〉, give us only |J,mJ ± 3〉, and |J,mJ ± 3〉 and

|J,mJ ± 6〉, respetively. Therefore the matrix representation of the CEF Hamiltonian

of dimension (2J + 1) an be ordered in a blok form.

From the point harge model introdued in App. B, using Eq. B.18 and expressing

the tesseral harmonis Zm
n (θi, φi) in Cartesian oordinates,

5

the CEF parameters Am
n

are derived as:

A0
2 = − e

4πε0

(

1

4

)2(
5

π

) k
∑

i=1

4π

5
qi
3z2i −R2

i

R5
i

,

A0
4 = − e

4πε0

(

3

16

)2(
1

π

) k
∑

j=i

4π

9
qi
35z4i − 30z2iR

2
i + 3R4

i

R9
i

,

A3
4 = − e

4πε0

(

3

8

)2(
70

π

) k
∑

j=i

4π

9
qi
zi(x

3
i − 3xiy

2
i )

R9
i

,

A0
6 = − e

4πε0

(

1

32

)2(
13

π

) k
∑

i=1

4π

13
qi
231z6i − 315z4iR

2
i + 105z2iR

4
i − 5R6

i

R13
i

,

A3
6 = − e

4πε0

(

1

32

)2(
2730

π

) k
∑

i=1

4π

13
qi
(11z3i − 3ziR

2
i )(x

3
i − 3xiy

2
i )

R13
i

,

A6
6 = − e

4πε0

(

231

64

)2(
26

231π

) k
∑

i=1

4π

13
qi
x6
i − 15x4

i y
2
i + 15x2

i y
4
i − y6i

R13
i

, (3.15)

5

The useful tesseral harmonis are tabulated in Tab.IV of Ref. [164℄.
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where (xi, yi, zi) are the Cartesian oordinates of the k eletri harges loated at a

distane Ri = (x2
i +y2i +z2i )

1/2
from the magneti rare earth. Therefore, for isostrutural

ompounds, i.e. belonging to the same family R2M2O7 (M =Ti or Sn), a saling law

allows to dedue the CEF parameters for a rare earth R′
from those of a rare earth

R [164℄:

Am
n (R

′) =
an+1
lat (R)

an+1
lat (R′)

Am
n (R) (3.16)

where alat(R) is the lattie parameter of the ompound R2M2O7. Note that we have

impliitly assumed that the free parameter x, see Tab. A.1, whih governs the position

of the oxygen atoms labelled O1, see Tab. A.1, is approximatively onstant within the

series onsidered. This is the ase of the ompounds of interest here, with x ≈ 1/3 [165℄.
Within the framework of ab-initio alulations, the point harge model is learly

not reliable. The exhange harge model (ECM) has been introdued by Malkin et

al. (see for instane Ref. [166℄) to estimate the rystal-eletri-�eld parameters. The

latter are alulated from two ontributions: the �rst is the e�et of the eletri �eld

on 4f eletrons arising from a point harge distribution taking into aount shielding

e�ets of the external eletroni shells. The seond ontribution takes into aount the

exhange integrals arising from the overlap of the orbitals of 4f eletrons and those of

the nearest neighbours. Note that the CEF Hamiltonian is desribed with the tensor

spherial operators Cm
n rather than the Stevens operators. This is the ase for several

works in the literature. The two Hamiltonians are equivalent and only di�er from a

prefator in the CEF parameters. Relations between the two sets of parameters an be

found in Ref. [123℄. However, our goal is not to perform ab-initio alulations, and we

assume the relation introdued in Eq. 3.16 to be reliable.

3.1.3 Neutron ross setion

The most ommon method to determine CEF parameters is to analyse the CEF tran-

sitions revealed by inelasti neutron sattering experiments. The neutron partial dif-

ferential sattering ross setion is expressed in the dipole approximation as, see for

example Ref. [167℄:

d2σ

dΩdE ′ = C
kf
ki
S(q, ω), (3.17)

where S(q, ω) is the sattering funtion, Ω the solid angle, kf/ki the ratio of the mo-

menta of the sattered and inident neutrons and C a onstant. For a polyrystalline

sample only the modulus q of the sattering vetor has to be onsidered. For a set of

CEF transitions {i → i′} at a onstant sattering vetor and at temperature T , we have

S(q, ω) =
I0
Z

∑

i,i′

(

∑

α=x,y,z

|〈i|Jα|i′〉|2
)

exp [−Ei/ (kBT )]F (Ei − Ei′ + ~ω) , (3.18)

where Z =
∑

i exp [−Ei/ (kBT )] is the partition funtion. Here I0 is a onstant, |i〉 and
|i′〉 are eigenvetors of HCEF de�ned as:

|i〉 =
J
∑

mJ=−J

αmJ
|mJ〉. (3.19)
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Rare earth Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

alat (Å) 10.1475(1) 10.1248(1) 10.0986(1) 10.0727(1) 10.0537(2) 10.0204(1)

Table 3.2: List of the lattie parameters alat used in this work for the R2Ti2O7 series.

Data taken from Ref. [165℄.

The funtion F (Ei −Ei′ + ~ω) desribes the i → i′ CEF transition with a neutron

energy transfer ~ω = Ei′−Ei. It is taken as the onvolution of Gaussian and Lorentzian

funtions. The Gaussian stands for the resolution of the spetrometer. The Lorentzian

funtion is written as:

Li,i′(~ω + Ei − Ei′) =
1

π

Γi,i′

Γ2
i,i′ + (~ω − (Ei′ −Ei))2

(3.20)

where the FWHM Γi,i′ aounts for the lifetime of the i′ CEF energy level during the

transition i → i′.

3.2 CEF of the titanate series R2Ti2O7

In this setion, after a short review of published CEF parameters, we will present our

results of a global analysis leading to a single set of CEF parameters desribing the

whole R2Ti2O7 series. The following setions will fous on the details of the analysis of

inelasti neutron sattering spetra for Tb2Ti2O7, Er2Ti2O7, and Ho2Ti2O7.

3.2.1 Published CEF parameters

Many sets of CEF parameters have been proposed in the literature to desribe the CEF

properties of the titanate series. The most relevant are listed in Tab. 3.3. Mirebeau et

al. [73℄ and Rosenkranz et al. [168℄ have derived the CEF parameters analysing inelasti

neutron sattering spetra of a polyrystalline sample of Tb2Ti2O7 measured on a triple-

axis spetrometer, and of a powder sample of Ho2Ti2O7 measured on a time-of-�ight

spetrometer, respetively. The orresponding CEF energy levels sheme are shown in

the top left and right panels of Fig. 3.2. If omputed and experimental CEF energy

levels math very well for the investigated ompound, some notable disrepanies appear

looking at the other titanate ompounds of the series: for instane, CEF parameters

of Mirebeau et al. [73℄ aount very well for Tb2Ti2O7; however, inelasti neutron

sattering spetra of Er2Ti2O7 and Ho2Ti2O7 annot be desribed with this set of

parameters. Malkin et al. [169℄ have derived a set of CEF parameters with ab-initio

alulations using the ECM model brie�y introdued at the end of Se. 3.1.2. Looking

at the bottom left panel of Fig. 3.2, the mismath between experimental and alulated

energy levels does not allow to analyse inelasti neutron sattering spetra of ompounds

of the titanate series.

3.2.2 Proposal of a single CEF solution

Whereas rystal �eld parameters are determined in the literature for a single ompound,

we endeavour ourselves here to desribe CEF properties of the whole series of the ti-

tanate ompounds R2Ti2O7 with a single set of CEF parameters Am
n (related to the Bm

n
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Figure 3.2: Computed CEF energy levels drawn for theR ions in theR2Ti2O7 pyrohlore

series using CEF parameters listed in Tab. 3.3 proposed by Mirebeau et al. [73℄ (top

left), Rosenkranz et al. [168℄ (top right), Malkin et al. [169℄ (bottom left), and Hodges

et al. [83℄ (bottom right). Solid thin and thik lines stand for singlet and doublet

states, respetively. All the theoretial CEF levels have been drawn. They may not be

resolved on the �gure beause of the limited graphial resolution. The alulated energy

levels are ompared to experimental data extrated from inelasti neutron sattering

experiments presented in dashed lines. These data are reprodued from Refs. [73, 170℄

for Tb2Ti2O7, Refs. [96, 171℄ for Er2Ti2O7, Ref. [168℄ for Ho2Ti2O7 and Ref. [172℄ for

Tm2Ti2O7.

parameters through Eq. 3.13) using the saling law of Eq. 3.16. The lattie parameters

alat used in this work are listed in Tab. 3.2. The perturbative CEF Hamiltonian is

restrained to the ground state multiplet

6

whih allows us to signi�antly redue the

dimension d of the matrix elements, i.e. d = (2J + 1). The ode CEF [174℄ has been

developed in order to diagonalise the CEF Hamilton and simultaneously analyse pub-

lished inelasti neutron sattering spetra of di�erent rare earths with a single set of

Bm
n parameters. The �rst step of the analysis was to �nd solutions allowing a math

between experimental and alulated energy levels. The interval over whih the Am
n

CEF parameters have been varied is displayed in the last row of Tab. 3.3.

6

This assumption is valid for the heavier rare earth, but ould be debatable, in the ase of the lighter

rare earth sine ∆so beomes of the same order of magnitude as the whole CEF energy splitting, see

Tab. 3.1.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

This work [173℄ 40.5(1) 24(1) 213(13) 1.03(3) -17(1) 14(1)

Mirebeau et al. [73℄ 37 22 184 0.88 -11.2 13.6

Zhang et al. [170℄ 87 20.3 289 1.55 65.0 110.4

Rosenkranz et al. [168℄ 45 27 201 0.96 -16.4 17.6

Hodges et al. [83℄ 51.4 8.1 310 3.1 -20.7 23.8

Malkin et al. [169℄ 45 27 201 0.96 -16.4 17.6

Interval probed [0,85℄ [-34,50℄ [-300,455℄ [-3,3℄ [-34,34℄ [-25,30℄

Table 3.3: The Am
n parameters obtained from a global �t of the CEF levels deter-

mined by inelasti neutron sattering experiments are shown for Tb2Ti2O7 in the se-

ond row. The CEF parameters for the other ompounds of the series an be obtained

from Eq. 3.16. The units for Am
n are meV/an0 , where a0 is the Bohr radius. In the

subsequent four rows are listed the Am
n parameters derived from the works of Mirebeau

et al. [73℄ and Zhang et al. [170℄ on Tb2Ti2O7, from the work of Rosenkranz et al. [168℄

on Ho2Ti2O7, and from the work of Hodges et al. [83℄ on Yb2Ti2O7. For omparison the

Am
n values inferred from the exhange-harge model are listed in the seventh row [169℄.

All CEF parameters given here have been resaled for Tb2Ti2O7 using Eq. 3.16. The

last row gives the intervals over whih the Am
n parameters have been varied in our global

analysis.

A peuliar feature of the Hamiltonian given in Eq. 3.12 should be notied: in-

terhanging the A3
4 and A3

6 signs, or equivalently the B3
4 and B3

6 signs, has no in�u-

ene on its eigenvalues as well as on the neutron intensity of the CEF transitions.

As a onsequene, this enables to redue the numerial e�ort by a fator two when

sanning the CEF parameters looking for solutions diagonalising HCEF. This an

be understood as follows. For the sake of the derivation, the CEF Hamiltonian de-

�ned in Eq. 3.12 is denoted here as HCEF(B
0
2 , B

0
4 , B

3
4 , B

0
6 , B

3
6 , B

6
6). It an be eas-

ily shown that the matrix representation of this Hamiltonian in the Zeeman basis

{|mJ = J〉, . . . , |mJ = −J〉} is the same as that of HCEF(B
0
2 , B

0
4 ,−B3

4 , B
0
6 ,−B3

6 , B
6
6)

in the basis {|mJ = −J〉, . . . , |mJ = J〉}.7 Hene the eigenvalues, i.e. the energy levels,

are equal. As mentioned in Se. 3.1.3, we need to onsider |〈i|Jα|i′〉|2 for the neutron
intensity, where |i〉 and |i′〉 are eigenvetors. If |i〉 =∑J

mJ=−J αmJ
|mJ〉 is an eigenve-

tor of the Hamiltonian with the B3
4 and B3

6 parameters, the orresponding eigenvetor

of the seond Hamiltonian with −B3
4 and −B3

6 is |j〉 =
∑J

mJ=−J αmJ
| − mJ〉. Sine

〈−mJ |Jα| −m′
J〉 = p 〈mJ |Jα|m′

J〉 with p = 1 if α = x and p = −1 if α = y or z, the
transition intensities assoiated with the two Hamiltonians are equal.

The advantage of �tting the whole set of available level positions rather than the

levels for a single ompound is the inrease in the number of levels involved. Even for

the most favorable ase of Ho2Ti2O7 only �ve levels were experimentally measured. Our

global �t for four ompounds inludes twelve levels. The two highest CEF energy levels

of Tb2Ti2O7 revealed by Zhang et al. [170℄ are not inluded in the analysis sine they

were not yet published. The seond step was to simultaneously analyse the inelasti

neutron sattering spetra (details of the analysis are presented in the following setion).

Within the probed CEF parameters interval, we �nd a single solution listed in the �rst

7

Note the hange in the vetors sequene in the two bases
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Figure 3.3: Computed CEF energy levels drawn for theR ions in theR2Ti2O7 pyrohlore

series using our CEF parameters listed in the �rst row of Tab. 3.3 (left) and CEF

parameters proposed in Ref. [170℄ listed in the third row of Tab. 3.3 (right). More

details about the desription of these panels are given in the aption of Fig. 3.2.

row of Tab. 3.3 leading to a fair desription of the experimental data, see for instane the

orresponding omputed CEF energy levels sheme given in the left panel of Fig. 3.3.

Hodges et al. [83℄ have ombined

170
Yb Mössbauer spetrosopy,

172
Yb perturbed

angular orrelation, magnetisation and suseptibility measurements of Yb2Ti2O7 in

order to determine the CEF parameters. These parameters are listed in the �fth row of

Tab. 3.3 and the omputed CEF energy level sheme is displayed in the bottom right

panel of Fig. 3.2 whih learly annot aount for the inelasti neutron sattering data.

However, the three exited Kramers doublets of Yb2Ti2O7 are predited to lie at ≈ 53,
64, and 82 meV. Our set of CEF parameters listed in the �rst row of Tab. 3.3 leads

to energy levels lying at ≈ 57, 59, and 89 meV. These results are supported by the

work of Malkin et al. [169℄ where optial measurements on a polyrystalline sample of

Yb2Ti2O7 revealed CEF energy levels at 58 and 81 meV. We reall that our model does

not take into aount the in�uene of the �rst exited multiplet whih an explain the

di�erene observed between the highest omputed energy levels, as it is the ase here

for Yb2Ti2O7. On the other hand, Mazka et al. [175℄ performed Raman spetrosopy

on Dy2Ti2O7 and evidened at low temperatures a CEF transition from the ground

state to an exited level lying at ≈ 37.2 meV. This is onsistent with our alulations

sine we predit an energy level at 37.9 meV.

Conerning Tm2Ti2O7, CEF exitations are predited at around 10, 20, 27 and

51 meV; see the left panel of Fig. 3.3. Measurements by Zinkin et al. [172℄, indeed

observe a rystal �eld exitation at around 10 meV in an inelasti neutron sattering

spetrum reorded up to 14 meV. However, these authors laim that they looked for

other transitions up to a maximum energy of 54 meV, but fail to detet any. Our

simulation predits that the two highest exitations at 27 and 51 meV have a negligible

intensity, (≈ 6% and 4% of the intensity of the peak at 10 meV) whih ertainly explains

that they ould not be deteted. Still the intensity of the transition at 20 meV is

predited to be around 70% of the main peak and it should in priniple be visible. A

short lifetime of the assoiated level ould smear it out. In the following, we analyse

published inelasti neutron sattering spetra for several ompounds using, within the
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Figure 3.4: Left: Energy levels sheme of Tb2Ti2O7 obtained with our CEF parameters

listed in the seond row of Tab. 3.3. The di�erent energy levels are labelled by numbers

in order to identify the CEF transitions involved in inelasti neutron sattering spetra,

see Tab. 3.4 and Tab. 3.5. The numbers in parentheses (1) and (2) orrespond to

singlet and doublet states, respetively. The dotted lines indiate the experimental

CEF transitions revealed by inelasti neutron sattering spetrosopy [73, 170℄. Right:

Inelasti neutron sattering spetrum reorded on a powder sample of Tb2Ti2O7 at

T = 1.4 K and q = 2 Å

−1
. Data are extrated from Fig. 5 (left) of Ref. [73℄. The

blue dashed line is the bakground ontribution taken as a onstant value. The blak

solid line is a �t to the data using our CEF parameters listed in the seond row of

Tab. 3.3. Blak arrows indiate the CEF transitions: they are labelled by letters in

order to identify the CEF energy levels, see Tab. 3.4 and left panel of this �gure.

errors bars, our CEF parameters listed in the �rst row of Tab. 3.3.

3.2.3 Analysis of Tb2Ti2O7

The omputed CEF energy level sheme already shown in the left panel of Fig. 3.3 is

drawn in the left panel of Fig. 3.4 for Tb2Ti2O7 in order to label the CEF transitions

involved in the inelasti neutron sattering spetra of interest. First, we look at data

reorded by Mirebeau et al [73℄ on a polyrystalline sample of Tb2Ti2O7: (i) at T =
1.4 K and q = 2 Å

−1
, see the right panel of Fig. 3.4 and Tab. 3.4 for some details of

the analysis reporting the linewidths of the Lorentzian funtions desribing the CEF

transitions and their relative intensities, (ii) at T = 38 K and q = 2 Å

−1
, see Fig. 3.5

and Tab. 3.5, and (iii) at T = 4.1 K and q = 3 Å

−1
, see left panel of Fig. 3.6. The

instrumental resolution is taken as a Gaussian funtion with FWHM equal to 0.25 meV

for the right panel of Fig. 3.4 and Fig. 3.5, and to 1.08 meV for the left panel of

Fig. 3.6 [73℄. Before disussing goodness of the analysis, we should notie that the

small peak observed at ≈ 7 meV is attributed to two inequivalent Tb

3+
sites [176℄.

However, we note two issues in the analysis of Tb2Ti2O7. First, our model predits

that a CEF transition loated at 13.3 meV should be visible in the spetrum reorded

at T = 38 K, as illustrated in the left panel of Fig. 3.5, orresponding to the transition

2 → 4 (D) (from the �rst to the third exited energy level), see left panel of Fig. 3.4,

whih are not ompatible with data reorded by Mirebeau et al. [73℄. The �rst exited
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Transition (a → b) 1 → 3 (A) 1 → 4 (B)

Energy (meV) 10.7 14.9

Rel. Int. (arb. units) 6.6 2.1

Γab (meV) 1.0(1) 1.4(1)

Table 3.4: Results of the analysis of the inelasti neutron sattering spetrum of

Tb2Ti2O7 displayed in the right panel of Fig. 3.4. We give the CEF transitions be-

tween energy levels labelled (a → b) as indiated in the left panel of Fig. 3.4, their

alulated energy positions, and the linewidths of the Lorentzian funtions desribing

the CEF transitions. Relative intensities are also given.

Transitions (a → b) 1 → 3 (A) 1 → 4 (B) 2 → 3 (C) 2 → 4 (D)

Energy (meV) 10.7 14.9 9.1 13.3

Rel. Int. (arb. units) 4.0 1.4 8.6× 10−2
1.3

Lifetime Γab (meV) 1.2(F) 1(F) 1(F) 1(F) (left panel)/5(F) (right panel)

Table 3.5: Results of the analysis of the inelasti neutron sattering spetrum of

Tb2Ti2O7 displayed in Fig. 3.5. We give the CEF transitions between energy levels

labelled (a → b) as indiated in the left panel of Fig. 3.4, their alulated energy po-

sitions, and linewidths of Lorentzian funtions desribing CEF transitions. The letter

(F ) means that the variable is �xed to the indiated value. Conerning the CEF tran-

sition 2 → 4 (D), two values of the linewidth are given orresponding to the analysis

displayed in the left or right panel of Fig. 3.5.

CEF energy level, labelled (2), is strongly dispersive, as revealed in Refs. [177�179℄.

Sine our model does not take into aount the dispersion of the CEF energy level,

we ould have imagined that at the measured wavevetor value the experimental �rst

exited CEF energy level ould be shifted and thus the transition 2 → 4 (D) hidden

with an other CEF exitation. However, measurements displayed in Fig. 3.5 have been

performed at q = 2 Å

−1
, a value at whih the �rst CEF energy level lies at ≈ 1.6 meV

orresponding to the alulated value. Therefore, the only way to �t the model to the

data is to introdue a short lifetime to smear out the transition 2 → 4 (D), see the right
panel of Fig. 3.5 and Tab. 3.5. Note that the CEF parameters proposed in Ref. [73℄

lead to the same problem.

Furthermore, looking at the inelasti neutron sattering spetrum [73℄ displayed

in the left panel of Fig. 3.6, a supplementary exitation seems to be loated at ≈
16 meV. This exitation was better resolved in a reent work [170℄ where inelasti

neutron sattering experiments were performed with a time-of-�ight spetrometer on a

polyrystalline sample of Tb2Ti2O7, see right panel of Fig. 3.6. Sine these experiments

were performed at low temperatures, this exitation would orrespond to a transition

from the ground state to an exited one loated at 16 meV. None of the published

CEF parameters an desribe this exitation. Therefore, a set of CEF parameters

listed in the fourth row of Tab. 3.3 was proposed and allows to desribe this exitation,

as shown in the right panel of Fig. 3.6. However, the orresponding omputed CEF

energy levels sheme for the other titanate ompounds displayed in the right panel

of Fig. 3.3 is learly inompatible with other inelasti neutron sattering experiments.

The nature of this exitation is debatable. From Raman spetrosopy experiments,
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Lummen et al. [176℄ identify this exitation to be a CEF transition arising from a

seond Tb

3+
site: this disorder would arise from strutural �utuations as premises

of a Jahn-Teller transition, see Chapter 5. However, this exitation is still observable

at high temperature [180℄ whih does not orroborate the explanation proposed in

Ref. [176℄. Therefore, the origin of this exitation remains unlear: the authors of

Ref. [181℄ propose that this exitation originates from the oupling between an eletron

and a phonon. A reent paper [182℄ on�rms the presene of this additional exitation

with neutron time-of-�ight spetrosopy but also fails to inlude it in a rystal-eletri-

�eld analysis. The exitation lying around 70 meV and laimed to be of magneti

origin by the authors of Ref. [170℄ is shown in Ref. [182℄ to be of phononi nature.

Finally, in both papers, the authors agree to the existene of a rystal-eletri-�eld

transition lying at 49 meV, supporting our predition of a doublet at ≈ 47 meV. With

high temperature measurements, the authors of Ref. [182℄ argue that an energy level

should lie near 39 meV, also in agreement with our predited level at ≈ 40 meV.

3.2.4 Analysis of Er2Ti2O7

Champion et al. have reorded inelasti neutron sattering spetra for a polyrystalline

sample of Er2Ti2O7 at T = 1.8 K, see the right panel of Fig. 3.7. The analysis is

performed with our CEF parameters listed in the seond row of Tab. 3.3. The re�ned

CEF parameters providing a proper desription of the inelasti neutron sattering spe-

tra are given in the seond row of Tab. 3.6 and are losely related to the ones listed in
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Figure 3.5: Inelasti neutron sattering spetra reorded on a powder sample of

Tb2Ti2O7 at T = 38 K and q = 2 Å

−1
. Data are extrated from Fig. 5 (right) of

Ref. [73℄. In both panels, the blue dashed line is the bakground ontribution taken as

a onstant value. The blak solid line is a �t to the data using our CEF parameters

listed in the seond row of Tab. 3.3. Blak arrows indiate the CEF transitions: they

are labelled by letters in order to identify the CEF energy levels, see Tab. 3.5 and left

panel of Fig. 3.4. The di�erene between the analysis of the left and right panels lies in

the value hosen for the linewidth of the Lorentzian funtion desribing the transition

2 → 4. As shown in Tab. 3.5, Γ2→4 = 5 meV in the right panel in order to smear out

the supplemental CEF transition predited by our CEF parameters, and evidened in

the left panel of this piture.
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Figure 3.6: Left: Inelasti neutron sattering spetra reorded on a powder sample of

Tb2Ti2O7 at T = 4.1 K and q = 3 Å

−1
. Data are extrated from Fig. 7 (right) of

Ref. [73℄. The blak solid line is a �t to the data using our CEF parameters listed

in the seond row of Tab. 3.3. Blak arrows indiate the CEF transitions: they are

labelled by letters in order to identify the CEF energy levels, see Tab. 3.4 and left panel

of Fig. 3.4. Right: Inelasti neutron sattering spetrum reorded on a polyrystalline

sample of Tb2Ti2O7 at T = 1.5 K. The exitation loated at 16 meV is better resolved.

Data are extrated from the top left panel of Fig. 5 in Ref. [170℄. The blak solid line

is a �t to the data using CEF parameters of Zhang et al. [170℄ listed in the fourth row

of Tab. 3.3. In both panels, the blue dashed line is the bakground ontribution taken

as a onstant value.

Am
n (meV/an0 ) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Er2Ti2O7 40.1(2) 23.6(1) 224(1) 1.078(3) -16.9(2) 14.4(2)

Ho2Ti2O7 40.8(8) 24.2(3) 210(7) 1.07(2) -16.0(8) 15.4(4)

Table 3.6: Re�ned CEF parameters Am
n resaled for Tb2Ti2O7 and used to properly

desribe inelasti neutron sattering spetra of Er2Ti2O7 (seond row), see right panel

of Fig. 3.7, and of Ho2Ti2O7 (last row), see Fig. 3.9. These parameters are losely

related to thoses listed in the seond row of Tab. 3.3 within the error bars.

Tab. 3.3 within the errors bars. The orresponding omputed CEF energy levels sheme

is displayed in the left panel of Fig. 3.7 in order to not only ompare omputed and

experimental CEF energy levels but also in order to label the di�erent energy levels

for the identi�ation of the CEF transitions involved in the inelasti neutron satter-

ing spetrum, as reported in Tab. 3.7. The resolution of the instrument is taken as a

Gaussian with a FWHM equals to 4% of the energy transfer [183℄. Our set of CEF

parameters provide a very good analysis of the inelasti neutron sattering spetra re-

vealing transitions from the ground state to the two lowest CEF energy levels loated

at 6.3 and 7.3 meV. Our model predits also an energy level evidened by Shirai [171℄

at 15.4 meV aording to Ref. [184℄.
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Figure 3.7: Left: Energy levels sheme of Er2Ti2O7 obtained with the CEF parameters

listed in the seond row of Tab. 3.6. The di�erent energy levels are labelled by numbers

in order to identify the CEF transitions involved in the inelasti neutron sattering

spetra, see Tab. 3.7. The dotted lines indiate the experimental CEF transitions

revealed by inelasti neutron sattering spetrosopy [96℄. The highest experimental

energy level is listed by Ref. [184℄ from the PhD dissertation of Shirai [171℄. Right:

Inelasti neutron sattering spetra reorded on a powder sample of Er2Ti2O7 at T =
1.8 K. Data are extrated from Fig. 3 of Ref [96℄. The blue dashed line is the bakground

ontribution taken as a onstant value. The blak solid line is a �t to the data using

our CEF parameters listed in the seond row of Tab. 3.6. Blak arrows indiate the

CEF transitions: they are labelled by letters in order to identify the CEF energy levels,

see Tab. 3.7 and left panel of this �gure.

3.2.5 Analysis of Ho2Ti2O7

Starting from our CEF parameters listed in Tab. 3.3, we analyse simultaneously two

inelasti neutron sattering spetra of Ho2Ti2O7 reorded by Rosenkranz et al. [168℄

at T = 10 K, as shown in Fig. 3.9. The re�ned CEF parameters are listed in the last

row of Tab. 3.6 and orrespond within the errors bars to those determined in Tab. 3.3.

The instrumental resolution has been determined with a vanadium sample for eah

inident energy in Ref. [168℄, but no further information is given. Therefore, we hoose

a Gaussian funtion for the instrumental resolution and take a FWHM HG = 1 and

3 meV for inident energies Ei = 35 and 120 meV, respetively. The linewidths of

the Lorentzian funtions aounting for CEF transitions are given in the right panel of

Fig. 3.8 and Tab. 3.8 for the left and right panels of Fig. 3.9, respetively.
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Transition (a → b) 1 → 2 (A) 1 → 3 (B)

Energy (meV) 6.4 7.3

Rel. Int. (arb. units) 9.9/1.8 6.0/0.11

Γab (meV) 0.35(4) 0.16(1)

Table 3.7: Results of the analysis of the inelasti neutron sattering spetrum of a

polyrystalline sample of Er2Ti2O7 displayed in the right panel of Fig. 3.7. We give the

CEF transitions between energy levels labelled (a,b) as indiated in the left panel of

Fig. 3.7, their alulated energy positions, and the linewidths of Lorentzian funtions

desribing the CEF transitions. Relative intensities are also given: for a transition

involving two doublets, two neutron intensity values are provided.
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11(1)

Transition (a → b) 1 → 2 (A) 1 → 3 (B)

Energy (meV) 21.4 22.3

Rel. Int. (arb. units) 3× 10−2
0.14/0.53

Γab (meV) - 0.8(F)

Transition (a → b) 1 → 4 (C) 1 → 5 (D)

Energy (meV) 25.6 26.8

Rel. Int. (arb. units) 0.36/0.14 0.18

Γab (meV) 0.6(F) 0.5(F)

Figure 3.8: Left: Energy levels sheme of Ho2Ti2O7 obtained with the CEF parameters

listed in the third row of Tab. 3.6. The di�erent energy levels are labelled by numbers

in order to identify the CEF transitions involved in the inelasti neutron sattering

spetra, see right panel of this piture and Tab. 3.8. The dotted lines indiate the ex-

perimental CEF transitions revealed by inelasti neutron sattering spetrosopy [168℄.

Right: Results of the analysis of the inelasti neutron sattering spetrum of Ho2Ti2O7

displayed in the left panel of Fig. 3.9. We give the CEF transitions between energy

levels labelled (a,b) as indiated in the left panel of this �gure, their alulated energy

positions, and the linewidths of Lorentzian funtions desribing the CEF transitions.

Relative intensities are also given. The symbol �−� means that no Lorentzian funtion

desribes the CEF transition sine its relative intensity is negligible ompared to other

CEF transitions.
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Figure 3.9: Inelasti neutron sattering spetra reorded on a powder sample of

Ho2Ti2O7 at T = 10 K and Ei = 35 meV (left) and 120 meV (right). Data are ex-

trated from Fig. 2 of Ref. [168℄. The blue dashed line is the bakground ontribution

whih has been interpolated. The blak solid line is a �t to the data using CEF param-

eters displayed in the last row of Tab. 3.6. Blak arrows indiate the CEF transitions:

they are labelled by letters in order to identify the CEF transitions, see Fig. 3.8 and

Tab. 3.8.
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Transition (a → b) 1 → 6 (E) 1 → 7 (F) 1 → 8 (G)

Energy (meV) 61.0 69.7 71.2

Rel. Int. (arb. units) 1× 10−4
/4.0 0.10 (49/3.8)×10−3

Γab (meV) 2.5(F) 1.0(F) -

Transition (a → b) 1 → 9 (H) 1 → 10 (I) 1 → 11 (J)

Energy (meV) 71.2 76.3 79.6

Rel. Int. (arb. units) 0.20 1.4× 10−3
/0.77 3.6× 10−2

Γab (meV) 0.7(F) 4.0(F) -

Table 3.8: Results of the analysis of the inelasti neutron sattering spetrum of

Ho2Ti2O7 displayed in the right panel of Fig. 3.9. We give the CEF transitions between

energy levels labelled (a,b) as indiated in the left panel of Fig. 3.8, their alulated

energy positions, and the linewidths of Lorentzian funtions desribing the CEF tran-

sitions. Relative intensities are also given. The symbol �−� means that no Lorentzian

funtion desribes the CEF transition sine its relative intensity is negligible ompared

to other CEF transitions.

3.2.6 Conlusions

For ompleteness, we give in Tab. 3.9 the values of the Bm
n parameters for ompounds

of interest in the pyrohlore series R2Ti2O7 omputed with our set of Am
n parameters

listed in the seond row of Tab. 3.3. The orresponding ground state wavefuntions

φ±
0 are also provided in Tab. 3.10. This allows us to alulate the spetrosopi fators

along and perpendiular to the loal trigonal z axis, g‖ and g⊥, respetively:

g‖ = 2gJ |〈φ±
0 |Jz|φ±

0 〉|,
g⊥ = gJ |〈φ+

0 |J+|φ−
0 〉| = gJ |〈φ−

0 |J−|φ+
0 〉|. (3.21)

These spetrosopi fators are listed in Tab. 3.11. As expeted, Er2Ti2O7 and Yb2Ti2O7

have a strong planar CEF anisotropy and Tb2Ti2O7, Dy2Ti2O7 and Ho2Ti2O7 are Ising-

like. The g‖ value obtained for Yb2Ti2O7 is intermediate between the experimental

values 1.79 and 2.25 of Hodges et al. [83℄ and Cao et al. [185℄, respetively. This is

in agreement with the fat that the ratio g⊥/g‖ is expeted to be rather large, i.e.

g⊥/g‖ ≈ 2.4 [83℄ ompared to our value g⊥/g‖ = 2. Our g‖ result for Tb2Ti2O7 is on-

sistent with previous estimates [73, 179℄. When the ground state is well isolated from

the exited ones, we an desribe it with an e�etive spin-1/2. Therefore, we alulate
the omponents of the rystal �eld magneti moment along and perpendiular to the

trigonal axis [111℄ suh as:

µCF
‖ =

1

2
g‖µB and µCF

⊥ =
1

2
g⊥µB. (3.22)

The rystal-eletri-�eld magneti moment is dedued as:

µCF =
√

(µCF
‖ )2 + (µCF

⊥ )2. (3.23)

In the ase of the spin-ie ompounds, we reover µCF ≈ 10 µB whih is onsistent with

the literature, see Se. 1.3.
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B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

Tb −0.34(1) 4.9(2)× 10−3 4.3(3)× 10−2 −7.9(2)× 10−6 1.30(8)× 10−4 −1.08(8)× 10−4

Dy −0.20(1) −2.2(1)× 10−3 −1.9(1)× 10−2 6.6(2)× 10−6 −1.09(6)× 10−4 9.0(6)× 10−5

Ho −6.8(2)× 10−2 −1.13(5)× 10−3 −1.01(6)× 10−2 −7.4(2)× 10−6 1.23(7)× 10−4 −1.01(7)× 10−4

Er 7.5(2)× 10−2 1.41(6)× 10−3 1.25(8)× 10−2 1.09(3)× 10−5 −1.8(1)× 10−4 1.5(1)× 10−4

Tm 0.29(1) 4.8(2)× 10−3 4.3(3)× 10−2 −2.69(7)× 10−5 4.4(3)× 10−4 −3.7(3)× 10−4

Yb 0.87(2) −4.8(2)× 10−2 −0.43(3) 6.6(2)× 10−4 −1.09(6)× 10−2 8.9(6)× 10−3

Table 3.9: Values of Bm
n parameters for six ompounds of the R2Ti2O7 pyrohlore series

given in meV.

Tb |φ±
0 〉 = 0.266| ± 5〉 ∓ 0.133| ± 2〉 − 0.129| ∓ 1〉 ∓ 0.946| ∓ 4〉

Dy |φ±
0 〉 = ∓0.981| ± 15

2
〉 − 0.190| ± 9

2
〉 ± 0.022| ± 3

2
〉+ 0.037| ∓ 3

2
〉 ∓ 0.005| ∓ 9

2
〉 ± 0.001| ∓ 15

2
〉

Ho |φ±
0 〉 = −0.979| ± 8〉 ± 0.190| ± 5〉 − 0.014| ± 2〉 ± 0.070| ∓ 1〉 − 0.031| ∓ 4〉 ± 0.005| ∓ 7〉

Er |φ±
0 〉 = ∓0.471| ± 13

2
〉 − 0.421| ± 7

2
〉 ± 0.569| ± 1

2
〉+ 0.240| ∓ 5

2
〉 ∓ 0.469| ∓ 11

2
〉

Tm |φ0〉 = 0.148|6〉 − 0.691|3〉 − 0.691| − 3〉 − 0.148| − 6〉
Yb |φ±

0 〉 = 0.374| ± 7
2
〉 ± 0.923| ± 1

2
〉 − 0.093| ∓ 5

2
〉

Table 3.10: Ground-state wavefuntions for six ompounds of the R2Ti2O7 pyrohlore

series.

The CEF parameter A0
2 an be dedued from the measurement of the nulear

quadrupole splitting ∆Q arising from the eletri-�eld gradient in a gadolinium om-

pound from

155
Gd Mössbauer spetrosopy. From Refs. [117, 186℄, ∆Q = 1.62 ×

10−3
meV in Gd2Ti2O7. Sine the quadrupole moment of the exited Mössbauer

state of

155
Gd is negligible (Qex = 0.18 barns [187℄) ompared to the ground state

(Qgs = 1.27 barns [160℄), we only onsider the splitting of the latter. The nulear spin

of the ground state is I = 3
2
yielding two doublets | ± 3

2
〉 and | ± 1

2
〉. From the point

symmetry at the rare earth site, Vzz is the prinipal omponent of the eletri-�eld

gradient tensor and the asymmetry parameter vanishes. Therefore, the quadrupolar

Hamiltonian is written as:

HQ =
eQgsVzz

4I(2I − 1)
[3I2z − I(I + 1)]. (3.24)

Sine this Hamiltonian is diagonal, we diretly determine the nulear quadrupolar split-

ting between the two aforementioned Zeeman states ∆Q = −eQgsVzz/2. Besides, the

CEF parameter A0
2 is ommonly related to Vzz through the relation [188℄:

Vzz = −4A0
2

e

1− γ∞
1− σ2

, (3.25)

where γ∞ = −61 and σ2 = 0.67 are Sternheimer and sreening oe�ients [189℄. Using

Tb Dy Ho Er Yb

g‖ 9.6 19.6 19.6 2.1 2.04
g⊥ 0 0 0 7.7 4.09

Table 3.11: Spetrosopi fators g‖ and g⊥ for the ground state doublets of �ve

ompounds of the R2Ti2O7 series using Am
n parameters listed in the seond row of

Tab. 3.3. For Tm2Ti2O7 the thulium ion has a singlet ground state and therefore

g‖ = g⊥ = 0.
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this formula, we ompute A0
2 = 95meV/a20 for Gd2Ti2O7. From the saling law given in

Eq. 3.16, we then get A0
2 = 97meV/a20 for Tb2Ti2O7. This is 2.4 larger than the value

listed in the seond row of Tab. 3.3. We do not have a reliable explanation aounting

for suh a di�erene between our alulations and the value inferred from Mössbauer

experiment. We have tested if this large A0
2 ould provide a desription of the inelasti

neutron sattering data probing a relatively wide range of Am
4 and Am

6 without �nding

any solution.

To onlude, we have introdued a simple methodology using a saling law for a reli-

able determination of the rare-earth rystal-�eld parameters for a series of isostrutural

rare-earth ompounds. This requires the availability of inelasti CEF neutron satter-

ing data for a su�iently large number of ompounds of the series. We have found a

single set of CEF parameters within the interval probed, see last row of Tab. 3.3, whih

enables us to alulate CEF energy levels lose to the experimental ones revealed by

inelasti neutron sattering spetrosopy, at least at low energy. Not only energy levels

are alulated, starting from the proposed CEF parameters we are also able to desribe

intensities of inelasti neutron sattering spetra whih depend on the wavefuntions.

This suggests that we have at least reahed a reasonable phenomenologial model for

the low-energy loal properties of the R2Ti2O7 series. However, we have made the

strong approximation to only onsider the splitting of the ground state multiplet. The

perturbation of the �rst exited multiplet might not be negligible, espeially for the

lightest rare earth ions, see Tab. 3.1. This ould explain the mismath of the highest

omputed and experimental energy level of Tb2Ti2O7 for instane.

In the next setion, we intend to apply the same methodology in order to �nd a

single set of CEF parameters desribing the pyrohlore series R2Sn2O7.

3.3 CEF of the stannate series R2Sn2O7

In order to determine the CEF parameters of the pyrohlore stannate series R2Sn2O7,

we have performed measurements at the time-of-�ight spetrometer MARI (ISIS fail-

ity), see Se. 2.4, on three di�erent polyrystalline samples: Ho2Sn2O7, Tb2Sn2O7, and

Nd2Sn2O7. An amount of about 20 g of powder sample was rolled in an aluminium

foil and plaed in an annular sample holder. Data were orreted for absorption e�ets

as explained in App. C. Inelasti neutron sattering spetra are analysed following the

methodology introdued in Se. 3.1.3. The resolution of the spetrometer is approx-

imated as a Gaussian funtion with a FWHM alulated as a funtion of the energy

transfer, as explained in Se. 2.4, for eah on�guration of the experiment depending

on the inident energy Ei and on the Fermi hopper frequeny νFC.

3.3.1 Published CEF parameters

Several sets of CEF parameters have been published in the literature. Some of the most

relevant are listed in Tab. 3.12: measurements on powder samples of Tb2Sn2O7 have

been onduted by Mirebeau et al. [73℄ at a triple-axis spetrometer and by Zhang et

al. [170℄ at a neutron time-of-�ight instrument. Guitteny et al. [104℄ measured at a

triple-axis spetrometer a powder sample of Er2Sn2O7. Their data are fully onsistent

with those reorded previously by Sarte et al. [105℄. The omputed CEF energy levels
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A0
2 A0

4 A3
4 A0

6 A3
6 A6

6

This work 53.2(1.4) 22.4(4) -155(9) 0.84(2) 13.4(6) 17.7(3)

Mirebeau et al. [73℄ 23.8 17.1 128.9 -0.34 -5.292 15.5

Zhang et al. [170℄ 23.6 17.3 13 -0.37 -8.17 15.1

Guitteny et al. [104℄ 38.9 24.7 -146.3 0.79 14.3 16.0

Interval probed [0,85.9℄ [-43,43℄ [0,344℄ [-1.7,1.7℄ [-43,43℄ [-43,43℄

Table 3.12: The Am
n parameters dedued from the analysis of the inelasti neutron

sattering spetra of a polyrystalline sample of Ho2Sn2O7 are listed in the seond row.

The units for Am
n are meV/an0 , where a0 is the atomi unit. In the subsequent three rows

are listed the Am
n parameters derived from the works of Mirebeau et al. [73℄ and Zhang

et al. [170℄ on Tb2Sn2O7, and from the work of Guitteny et al. [104℄ on Er2Sn2O7. All

CEF parameters given here have been resaled for Tb2Sn2O7 using Eq. 3.16. The last

row gives the intervals over whih the Am
n parameters have been varied in the global �t.

sheme for some ompounds of the stannate series using CEF parameters of Mirebeau

et al. [73℄ and Zhang et al. [170℄ are displayed in the left and right panels of Fig. 3.10,

respetively. Notable disrepanies are evidened between alulated and experimental

CEF energy levels, exept for Tb2Sn2O7 whih is the investigated ompound in those

referenes. In Fig. 3.11, the CEF energy levels sheme is omputed using CEF parame-

ters proposed by Guitteny et al. [104℄ and dedued from the analysis of inelasti neutron

sattering spetra of Er2Sn2O7. If the orrespondene between alulated and exper-

imental CEF energy levels is roughly aeptable, we annot analyse inelasti neutron

sattering spetra of Ho2Sn2O7 and Tb2Sn2O7.
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Figure 3.10: Computed CEF energy levels drawn for the R ions in the R2Sn2O7 py-

rohlore series using CEF parameters listed in Tab. 3.12 proposed by Mirebeau et al. [73℄

(left panel) and Zhang et al. [170℄ (right panel). Solid thin and thik lines stand for sin-

glet and doublet states, respetively. All the theoretial CEF levels have been drawn.

They may not be resolved on the �gure beause of the limited graphial resolution.

The alulated energy levels are ompared to experimental data extrated from inelas-

ti neutron sattering experiments presented in dashed lines. Data for Er2Sn2O7 are

reprodued from Refs. [104, 105℄, and data for Ho2Sn2O7 and Tb2Sn2O7 are extrated

from our neutron time-of-�ight experiments.
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Figure 3.11: Computed CEF energy lev-

els drawn for the R ions in the R2Sn2O7

pyrohlore series using CEF parameters

listed in Tab. 3.12 proposed by Guitteny et

al. [104℄. More details about the desrip-

tion of this panel are given in the aption

of Fig. 3.10.

Rare earth Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

alat (Å) 10.4235(2) 10.3979(3) 10.3726(2) 10.3504(1) 10.3262(2) 10.3046(1)

Table 3.13: List of the lattie parameters alat used in this work for the R2Sn2O7 series.

Data taken from Ref. [190℄.

3.3.2 Analysis of Ho2Sn2O7

We apply the same methodology introdued in the aforegoing setion. We will see in

the following that the saling law given by Eq. 3.16 is still satisfatory in order to

desribe inelasti neutron sattering spetra of di�erent ompounds of the stannate

series. Useful lattie parameters are listed in Tab. 3.13. However, we have to note that

a global �t inluding energy levels of three ompounds, i.e. Er2Sn2O7, Ho2Sn2O7 and

Tb2Sn2O7 is not fully onlusive. We only extrat solutions allowing to analyse inelasti

neutron sattering spetra of a subset of aforementioned ompounds, namely two out

of the three ompounds. Nevertheless, we present here a set of CEF parameters listed

in the seond row of Tab. 3.12 whih gives a good orrespondene between alulated

and experimental CEF energy levels, see the left panel of Fig. 3.12. This set of CEF

parameters has been used to analyse simultaneously inelasti neutron sattering spetra

of a polyrystalline sample of Ho2Sn2O7 and we will see in the following that the CEF

parameters allowing to desribe spetra of Er2Sn2O7 and Tb2Sn2O7 only di�ers from

the initial ones by three error bars at worst.

The set of CEF parameters proposed in the seond row of Tab. 3.12 allows to desribe

the CEF exitations of Ho2Sn2O7. The orresponding CEF energy level sheme for this

ompound is shown in the right panel of Fig. 3.12. Not only the omparison between

omputed and experimental CEF energy levels is displayed, we also label the di�erent

energy levels in order to identify the CEF transitions involved in the analysis. With

neutron time-of-�ight experiments performed at low temperatures, we reveal energy

levels lying at 21.5 and 25.5 meV, whih are onsistent with published data of Ref. [21℄,

but also at 27.5, 55, 65, 68.5, and 74.5 meV. An inelasti neutron sattering intensity

map of Ho2Sn2O7 reorded at T = 5 K and showing the energy transfer versus the

wavevetor q is displayed in the left panel of Fig. 3.13 in order to evidene the low

lying CEF energy levels. Integrations of these data over several wavevetor ranges are

shown in the right panel of the same �gure. The following methodology, applied to all

our reorded inelasti neutron sattering spetra, allows to determine the phononi or
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Figure 3.12: Left: Computed CEF energy levels drawn for the R ions in the R2Sn2O7

pyrohlore series using our CEF parameters listed in the seond row of Tab. 3.12 and

omparison with experimental values extrated from inelasti neutron sattering mea-

surements. More details about the desription of this panel are given in the aption

of Fig. 3.10. Right: Zoom over Ho2Sn2O7. The di�erent energy levels are labelled by

numbers in order to identify the CEF transitions involved in inelasti neutron sat-

tering spetra, see Tab. 3.14 and Tab. 3.15. The numbers in parentheses (1) and (2)
orrespond to a singlet and doublet states, respetively. The dotted lines indiate the

experimental CEF transitions revealed by inelasti neutron sattering spetrosopy.

eletroni nature of the observed exitations: sine the magneti form fator dereases

when q inreases whereas the phonon intensity grows as q2, we an onlude that the

two exitations revealed at 10 meV and 17 meV are attributed to phonons, whereas

those at 21.5, 25.5, and 27.5 are asribed to CEF transitions. Integration of these

data over the wavevetor range 0.26 ≤ q ≤ 4 Å

−1
is shown in Fig. 3.14. Our set of

CEF parameters aounts very well for this spetrum. Some details of this analysis are

summed up in Tab. 3.14 suh as the CEF transitions involved, their relative intensities

and the linewidths of the Lorentzian funtion needed to properly desribe the peak

shapes.

An inelasti neutron sattering intensity map of Ho2Sn2O7 reorded at T = 5 K

and displayed in the left panel of Fig. 3.15 reveals the highest CEF energy levels ob-

served during the experiment. The right panel of Fig. 3.15 shows the analysis of these

Transition (a → b) 1 → 2 (A) 1 → 3 (B) 1 → 4 (C) 1 → 5 (D)

Energy (meV) 20.1 21.5 25.4 27.1

Rel. Int. (arb. units) 0.13 0.76/0.27 0.55/0.38 0.23

Γab (meV) 1.0(F) 0.25(2) 0.30(2) 0.20(3)

Table 3.14: Results of the analysis of the inelasti neutron sattering spetrum of

Ho2Sn2O7 displayed in Fig. 3.14. We give the CEF transitions between energy levels

labelled (a,b) as indiated in the right panel of Fig. 3.12, their alulated energy po-

sitions, and linewidths of Lorentzian funtions desribing CEF transitions. The letter

(F ) means that the variable is �xed to the indiated value. Relative intensities are also

given.
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Figure 3.13: Left: Inelasti neutron sattering spetrum of Ho2Sn2O7 reorded at T =
5 K, Ei = 40 meV and νFC = 300 Hz. Right: Integrations of these data over 0.26 ≤ q ≤
4 Å

−1
(red empty irles), 4 ≤ q ≤ 8.1 Å

−1
(blue full irles) and 0.26 ≤ q ≤ 8.1 Å

−1

(blak empty squares) in order to determine the nature of the observed transitions.
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Figure 3.14: Integration of the data dis-

played in the left panel of Fig. 3.13 over

the wavevetor range 0.26 ≤ q ≤ 4 Å

−1
.

The blak solid line is a �t to the data us-

ing CEF parameters displayed in the se-

ond row of Tab. 3.12. Blak arrows indi-

ate the CEF transitions: they are labelled

by letters in order to identify the CEF en-

ergy levels, see Tab. 3.14 and right panel

of Fig. 3.12.

Transition (a → b) 1 → 6 (E) 1 → 7 (F) 1 → 8 (G) 1 → 10 (H)

Energy (meV) 55.1 65.1 67.5 74.6

Rel. Int. (arb. units) 3.4× 10−4
/4.2 0.18 0.11 3.0× 10−3

/0.30

Γab (meV) 0.50(2) 0.1(F) 0.1(F) 0.1(F)

Table 3.15: Results of the analysis of the inelasti neutron sattering spetrum of

Ho2Sn2O7 displayed in the right panel of Fig. 3.15. We give the CEF transitions between

energy levels labelled (a,b) as indiated in the right panel of Fig. 3.12, their alulated

energy positions and linewidths of Lorentzian funtions desribing CEF transitions.

The letter (F ) means that the variable is �xed to the indiated value: indeed most

of the Lorentzian linewidths were �xed to arbitrary values sine the alulated energy

resolution funtion dominates the width of the inelasti CEF transitions. Note that

the linewidths of the Lorentzian funtions desribing CEF labelled (A), (B), (C), (D)

have been bloked to 0.2 meV in this spetrum. Relative intensities are also given to

show whether or not a CEF transition is observed in the inelasti neutron sattering

spetrum.
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Figure 3.15: Left: Inelasti neutron sattering spetrum of a polyrystalline sample

of Ho2Sn2O7 reorded at T = 5 K, Ei = 100 meV and a Fermi hopper frequeny

νFC = 400 Hz. Right: Integration over the wavevetor range 0.42 ≤ q ≤ 6 Å

−1
. The

blak solid line is a �t to the data using CEF parameters displayed in the seond row

of Tab. 3.12. Blak arrows indiate the CEF transitions: they are labelled by letters in

order to identify the CEF energy levels, see Tab. 3.15 and right panel of Fig. 3.12.
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Figure 3.16: Zoom over the exitation lying

at 55 meV extrated from an inelasti neutron

sattering spetrum of Ho2Sn2O7 reorded at

T = 5 K, Ei=80 meV and νFC = 600 Hz.

Integrations over two wavevetor ranges are

shown, 0 ≤ q ≤ 5 Å

−1
(red symbols) and

7 ≤ q ≤ 12 Å

−1
(blue symbols), in order to

haraterise the phononi or eletroni nature

of the observed exitations. The blak solid line

is a �t to the data reorded over 0 ≤ q ≤ 5 Å−1

using CEF parameters listed in the seond row

of Tab. 3.12.

data integrated over the wavevetor range 0.42 ≤ q ≤ 6 Å

−1
using our set of CEF

parameters. Details of the analysis are gathered in Tab. 3.15. However, fousing on

the CEF transition lying at 55 meV, a seond CEF transition is loated at ≈ 53 meV,

as illustrated in Fig. 3.16. The nature of the transition seems to be eletroni sine its

intensity dereases with q. Note that our CEF model does not predit any transition

at this spei� energy.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Tb2Sn2O7 50.0(2.0) 21.2(8) -159(7) 1.01(7) 14.4(2.0) 17.5(5)

Table 3.16: CEF parameters Am
n dedued from the analysis of the inelasti neutron

sattering spetra of Tb2Sn2O7 and given in units of meV/an0 , where a0 is the atomi

unit.

Transition (a → b) 1 → 2 (A) 1 → 3 (B)

Energy (meV) 1.2 10.6

Rel. Int. (arb. units) 7.0 3.6

Γab (meV) 0.60(2) 1.00(7)

Table 3.17: Results of the analysis of the inelasti neutron sattering spetrum of

Tb2Sn2O7 displayed in the right panel of Fig. 3.18. We give the CEF transitions between

energy levels labelled (a,b) as indiated in Fig. 3.17, their alulated energy positions,

and linewidths of Lorentzian funtions desribing CEF transitions. Relative intensities

are also given.

3.3.3 Analysis of Tb2Sn2O7

Starting from the CEF parameters listed in the seond row of Tab. 3.12, we analyse

inelasti neutron sattering spetra of a polyrystalline sample of Tb2Sn2O7. A new set

of CEF parameters is listed in Tab. 3.16, lose to the initial one, and the orresponding

omputed CEF energy level sheme for this ompound is displayed in Fig. 3.17 in order

to ompare with experimental data and identify the di�erent observed CEF transitions.

Our measurements are onsistent with those of Refs. [73, 170℄.

An inelasti neutron sattering intensity map of Tb2Sn2O7 reorded at T = 5 K

is shown in the left panel of Fig. 3.18, revealing CEF transitions lying at 1.2 and

10.5 meV. In the right panel of the same �gure, data are integrated over the wavevetor

range 0.16 ≤ q ≤ 2 Å

−1
and analysed using CEF parameters listed in Tab. 3.16. Some

details of the analysis are gathered in Tab. 3.17.

In the left panel of Fig. 3.19, we show an inelasti neutron sattering intensity map

of Tb2Sn2O7, reorded at T = 5 K, exhibiting the highest CEF transitions that we have

aessed during the experiment, revealing exitations lying approximately at 10.5, 15
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Figure 3.17: Energy levels sheme of

Tb2Sn2O7 obtained with the CEF param-

eters listed in Tab. 3.16. The di�erent en-

ergy levels are labelled by numbers in order

to identify the CEF transitions involved in

the inelasti neutron sattering spetra, see

Tab. 3.17 and Tab. 3.18. The numbers

in parentheses (1) and (2) orrespond to

a singlet and doublet states, respetively.

The dotted lines indiate the experimental

CEF transitions revealed by inelasti neu-

tron sattering spetrosopy.
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Figure 3.18: Left: Inelasti neutron sattering spetrum of a polyrystalline sample of

Tb2Sn2O7 reorded at T = 5 K, Ei = 15 meV and a Fermi hopper frequeny νFC =
300 Hz. Right: Integration of these data over the wavevetor range 0.16 ≤ q ≤ 2 Å

−1
.

The blak solid line is a �t to the data using CEF parameters displayed in Tab. 3.16.

Blak arrows indiate the CEF transitions: they are labelled by letters in order to

identify the CEF energy levels, see Tab. 3.17 and Fig. 3.17.

and 33 meV. In the right panel of Fig. 3.19, data are integrated over the wavevetor range

0.32 ≤ q ≤ 4 Å

−1
and analysed using the set of CEF parameters listed in Tab. 3.16.

Some details of the analysis are given in Tab. 3.18. Exept for the highest exitation

loated at 33 meV, our set of CEF parameters aounts very well for the data.

3.3.4 Analysis of Er2Sn2O7

In the following, we intend to analyse inelasti neutron sattering spetra reorded by

Guitteny et al. [104℄ on a polyrystalline sample of Er2Sn2O7 at the 4F2 triple-axis

spetrometer loated at the Léon Brillouin laboratory (LLB, Salay). Starting from

the CEF parameters given in the seond row of Tab. 3.12, we suessfully analyse a

spetrum reorded at T = 1.5 K, see left panel of Fig. 3.21 using the CEF parameters

listed in Tab. 3.19, whih are relatively lose to the initial ones. The orresponding

CEF energy levels sheme for this ompound is shown in Fig. 3.20 in order to not only

ompare experimental and omputed CEF energy levels but also to label the di�erent

energy levels for the identi�ation of the involved CEF transition. Details of the analysis

are gathered in Tab. 3.20. A simulation/omparison of data reorded at T = 100 K

is displayed in the right panel of Fig. 3.21, and additional information is provided in

Tab. 3.21.
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Figure 3.19: Left: Inelasti neutron sattering spetrum of Tb2Sn2O7 reorded at T =
5 K, Ei = 60 meV and νFC = 600 Hz. Right: Integration over the wavevetor range

0.32 ≤ q ≤ 4 Å

−1
. The blak solid line is a �t to the data using CEF parameters

displayed in Tab. 3.16. Blak arrows indiate the CEF transitions: they are labelled by

letters in order to identify the CEF energy levels, see Tab. 3.18 and Fig. 3.17.
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8(2) Figure 3.20: Energy levels sheme of

Er2Sn2O7 obtained with the CEF parame-

ters listed in Tab. 3.19. The di�erent en-

ergy levels are labelled by numbers in or-

der to identify the CEF transitions, see

Tab. 3.20 and Tab. 3.21. The dotted

lines indiate the experimental CEF tran-

sitions revealed by inelasti neutron sat-

tering spetrosopy [104, 105℄.

Transition (a → b) 1 → 3 (A) 1 → 4 (B) 1 → 5 (C) 1 → 6 (D)

Energy (meV) 10.6 15.5 31.5 34.0

Rel. Int. (arb. units) 3.7 0.3 0.18 1.5

Γab (meV) 1.2(F) 0.5(F) 0.5(F) 1.0(F)

Transition (a → b) 2 → 3 (E) 2 → 4 (F) 2 → 5 (G) 2 → 6 (H)

Energy (meV) 9.4 14.3 30.3 32.8

Rel. Int. (arb. units) 0.13 0.24 0.13 4.9× 10−2

Γab (meV) 0.1(F) 0.9(F) 0.5(F) -

Table 3.18: Results of the analysis of the inelasti neutron sattering spetrum of

Tb2Sn2O7 displayed in the right panel of Fig. 3.19. We give the CEF transitions be-

tween energy levels labelled (a,b) as indiated in Fig. 3.17, their alulated energy po-

sitions, and linewidths of Lorentzian funtions desribing CEF transitions. The symbol

�−� means that no Lorentzian funtion desribes the CEF transition sine its relative

intensity is negligible ompared to other CEF transitions. Relative intensities are also

given.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Er2Sn2O7 52.1(1.5) 24.6(3) -180(4) 0.89(1) 14.6(5) 15.9(4)

Table 3.19: CEF parameters Am
n resaled for Tb2Sn2O7 and dedued from the analysis

of the inelasti neutron sattering spetrum of Er2Sn2O7 reorded at T = 1.5 K, see

left panel of Fig. 3.21.
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Figure 3.21: Inelasti neutron sattering spetra of Er2Sn2O7 reorded at T = 1.5 K

(left) and 100 K (right). Data are reprodued from Fig. 3 of Ref. [104℄. The blak solid

line is a �t to the data (left) or a simulation and omparison to the data (right) using

CEF parameters displayed in Tab. 3.19. Blak arrows indiate the CEF transitions: see

Fig. 3.20, and Tab. 3.20 and Tab. 3.21 for the left and right panels, respetively.

Transition (a → b) 1 → 2 (A) 1 → 3 (B) 1 → 4 (C)

Energy (meV) 5.2 7.6 17.3

Rel. Int. (arb. units) 2.16/10.5 0.66/5.4 3.6× 10−3
/3.3

Γab (meV) 0.25(F) 0.3(F) 0.3(F)

Table 3.20: Results of the analysis of the inelasti neutron sattering spetrum of

Er2Sn2O7 displayed in the left panel of Fig. 3.21. We give the CEF transitions between

energy levels labelled (a,b) as indiated in Fig. 3.20, their alulated energy positions

and linewidths of Lorentzian funtions desribing CEF transitions. Relative intensities

are also given.

Transition (a → b) 1 → 2 (A) 1 → 3 (B) 1 → 4 (C)

Energy (meV) 5.2 7.6 17.3

Rel. Int. (arb. units) 1.0/5.0 0.3/2.5 1.7× 10−3
/1.6

Γab (meV) 0.2(F) 0.5(F) 0.4(F)

Transition (a → b) 2 → 3 (D) 2 → 4 (E) 3 → 4 (F)

Energy (meV) 2.4 12.1 9.7

Rel. Int. (arb. units) 0.7/2.6 2.4× 10−2
/0.5 1.8× 10−2

/2.0

Γab (meV) 0.1(F) 0.1(F) 0.2(F)

Table 3.21: Results of the simulation of the inelasti neutron sattering spetrum of

Er2Sn2O7 displayed in the right panel of Fig. 3.21. We give the CEF transitions between

energy levels labelled (a,b) as indiated in Fig. 3.20.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Ho2Sn2O7 53.2(1.4) 22.4(4) -155(9) 0.84(2) 13.4(6) 17.7(3)

Tb2Sn2O7 50.0(2.0) 21.2(8) -159(7) 1.01(7) 14.4(2.0) 17.5(5)

Er2Sn2O7 52.1(1.5) 24.6(3) -180(4) 0.89(1) 14.6(5) 15.9(4)

Table 3.22: Summary of the CEF parameters Am
n resaled for Tb2Sn2O7 and dedued

from the analysis of the inelasti neutron sattering spetra of Ho2Sn2O7 (seond row),

Tb2Sn2O7 (third row), and Er2Sn2O7 (last row).

Tb |φ±
0 〉 = ±0.895| ± 5〉+ 0.224| ± 2〉+ 0.000| ∓ 1〉+ 0.386| ∓ 4〉

Dy |φ±
0 〉 = ±0.988| ± 15

2
〉 − 0.144| ± 9

2
〉 ∓ 0.041| ± 3

2
〉+ 0.030| ∓ 3

2
〉 ± 0.006| ∓ 9

2
〉 − 0.004| ∓ 15

2
〉

Ho |φ±
0 〉 = 0.981| ± 8〉 ± 0.156| ± 5〉+ 0.074| ± 2〉 ± 0.073| ∓ 1〉+ 0.053| ∓ 4〉 ± 0.007| ∓ 7〉

Er |φ±
0 〉 = ∓0.392| ± 13

2
〉+ 0.431| ± 7

2
〉 ± 0.566| ± 1

2
〉 − 0.266| ∓ 5

2
〉 ∓ 0.520| ∓ 11

2
〉

Tm |φ0〉 = 0.108|6〉+ 0.699|3〉+ 0.699| − 3〉 − 0.108| − 6〉
Yb |φ±

0 〉 = −0.269| ± 7
2
〉 ± 0.960| ± 1

2
〉+ 0.074| ∓ 5

2
〉

Table 3.23: Ground-state wavefuntions for six ompounds of the R2Sn2O7 pyrohlore

series omputed with the CEF parameters listed in the seond row of Tab. 3.12 exept

for Tb2Sn2O7 and Er2Sn2O7 omputed with those listed in Tab. 3.16 and Tab. 3.19,

respetively. Note that we do not inlude Nd2Sn2O7 and Pr2Sn2O7.

3.3.5 Conlusions

To onlude, from a global �t inluding energy levels of the three aforementioned om-

pounds, we �nd a set of CEF parameters desribing inelasti neutron sattering spetra

of Ho2Sn2O7. This onstitutes a good starting point for the analysis of Tb2Sn2O7 and

Er2Sn2O7 sine the re�ned CEF parameters for eah ompound do not di�er very muh

from the initial ones, as summed up in Tab. 3.22.

For ompleteness, we give the ground state wavefuntions and the spetrosopi

g fators, omputed using Eqs. 3.21, of several ompounds of the R2Sn2O7 series in

Tab. 3.23 and Tab. 3.24, respetively. We �nd a similar anisotropy between titanate

and stannate ompounds sine we reover a strong Ising anisotropy for the spin-ie

ompound Ho2Sn2O7 and Dy2Sn2O7 and a rystal �eld magneti moment of order of

10 µB. The XY anisotropy of Yb2Sn2O7 is stronger than found in Yb2Ti2O7 (r =
g⊥/g‖ ≈ 2.7 and 2 for the stannate and titanate ompound, respetively), and the

spetrosopi fators are onsistent with those dedued from Mössbauer spetrosopy,

i.e. g‖ = 1.1 and g⊥ = 4.2 [92℄. Finally, we �nd that Er2Sn2O7 (r ≈ 19.3) has a stronger
planar anisotropy than Er2Ti2O7 (r ≈ 3.7).

Similarly to the titanate series, we use the nulear quadrupole splitting∆Q = 1.15×
10−3

meV measured by

155
Gd Mössbauer spetrosopy in Gd2Sn2O7 [117℄ to dedue

A0
2 = 67.7meV/a20. Using the saling law given in Eq. 3.16 with alat = 10.4644 Å for

Gd2Sn2O7, we then get A0
2 = 68.2meV/a20 resaled for Tb2Sn2O7. This A

0
2 value is still

larger than the result of our model, although the disrepany is smaller than in the

titanate ase. This value is inluded in the range of explored CEF parameters given in

the last row of Tab. 3.12 and does not provide any solution.

Finally, note that inelasti neutron sattering spetra of the pyrohlore ompound

Nd2Sn2O7 were not disussed in this setion. We fail to inlude it in a global analysis.

As for the pyrohlore ompound Pr2Sn2O7 [69℄, the e�et of the �rst exited multiplet
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Tb Dy Ho Er Yb

g‖ 10.5 19.7 19.5 0.4 1.6
g⊥ 0 0 0 7.7 4.3

Table 3.24: Spetrosopi fators g‖ and g⊥ for the ground state doublets of �ve

ompounds of the R2Sn2O7 series using Am
n parameters listed in the seond row of

Tab. 3.12 exept for Tb2Sn2O7 and Er2Sn2O7 omputed with those listed in Tab. 3.16

and Tab. 3.19, respetively. Note that we do not inlude Nd2Sn2O7 and Pr2Sn2O7 sine

the hypothesis onsisting of negleting the e�et of the �rst exited multiplets is not

valid anymore. For Tm2Sn2O7 the thulium ion has a singlet ground state and therefore

g‖ = g⊥ = 0.

annot be negleted and should be onsidered to orretly analyse inelasti neutron

sattering spetra, see for instane Ref. [69℄, resulting in a J-mixing of the ground state

wavefuntions.
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4.1 Introdution

Whereas most of the pyrohlore ompounds have been extensively studied, the ground

state of Nd2Sn2O7 is still unknown. Sine the neodynium possesses a total angular

momentum J = 9/2, it is lassi�ed as a Kramers ion. The sign of the Stevens multi-

pliative fator Θ2, see Tab. B.1, teahes us about the Ising harater of the magneti

moment. Blöte et al. [82℄ have studied this ompound with spei� heat measurements

and evidened a seond-order magneti transition at Tc = 0.91 K. On the other hand,

Bondah-Jagalu and Bramwell [110℄ revealed with magneti suseptibility measurements

the antiferromagneti nature of the exhange interations. The ombination of these

features has not been enountered yet in the pyrohlore series of interest. Therefore,

looking for new magneti ground states, we have performed a full haraterisation of

this ompound with a wide panel of tehniques. Hene, we report in this hapter our

study of the pyrohlore ompound Nd2Sn2O7 with spei� heat, magnetisation, neutron

and X-ray di�ration, inelasti neutron sattering and µSR measurements.

4.2 Powder synthesis

Powder samples of Nd2Sn2O7 were synthesised by C. Marin from CEA-Grenoble and

by A. Forget from CEA-Salay. We brie�y disuss the proedure of C. Marin to get

powder sample of Nd2Sn2O7. A stoihiometri mixture of oxides Nd2O3 (quality 4N7,

i.e. 99.997 % pure) and SnO2 (quality 5N, i.e. 99.999 % pure) were arefully weighed

and ground with aetone in an agate mortar in order to get an homogeneous mixture.

A heat treatment under air atmosphere in an alumina ruible (hemially inert at heat

treatment temperatures) ensures a solid phase di�usion aording to the reation:

Nd2O3 + 2SnO2 → Nd2Sn2O7 (4.1)

To get a single phase polyrystalline sample, suessive heat treatments (2 days at

900◦C, 2 days at 1150◦C, and 4 days at 1300◦C) were intersperse with grindings. At

Salay, the temperature for the heat treatment reahes 1400◦C, whih onstitutes the

main di�erene ompared to the method displayed here.

X-ray di�ration measurements were performed at CEA-Grenoble, as desribed in

Se. 2.3.5, to hek the quality of our samples. Powder samples were plaed with a small

amount of grease on an almost transparent Pyrex plate, whih gives a very low di�use

sattering at small angles. The single phase harater of our samples was evidened

sine only traes of Nd2O3 and SnO2 in the sample from Salay and SnO2 in the sample

from Grenoble were deteted.

Note that single rystals annot be synthesised by vertial rystal growth with an

image furnae sine the SnO2 oxide is very volatile and evaporates at high temperature.

We ould imagine to get small rystals in a losed airtight ruible, withstanding to the

fusion temperature of the oxides of interest, in an atmosphere saturated with SnO2.

Results displayed in this hapter were aquired with Salay's sample, exept for the

neutron time-of-�ight measurements.
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Figure 4.1: Left: X-ray di�ration pattern of Nd2Sn2O7 reorded at room temperature.

At large sattering angle, the peaks are twinned, resulting from the presene of the Cu

Kα1 and Kα2 radiations in the inident beam. Right: Neutron di�ration diagram of

Nd2Sn2O7 reorded at T = 15 K with a neutron wavelength of λ = 1.1545 Å. For both
panels, the solid line is the result of a Rietveld analysis using the FullProf ode and the

blue solid line at the bottom gives the di�erene between the data and the model. The

vertial markers indiate the positions of the Bragg peaks.

4.3 Crystal struture analysis

An X-ray pattern reorded at room temperature is shown in the left panel of Fig. 4.1.

Our ompound rystallises in the Fd3̄m fae entered ubi spae group. The desription

of its primitive ell is summed up in Tab. A.1. A Rietveld analysis is performed with

the FullProf suite [130℄, as detailed in Se. 2.3.7, using a pseudo-Voigt funtion, see

Eq. 2.22. Here, the oupation of the di�erent sites was �xed to their nominal values.

The lattie parameter and the position x of oxygen atom O1 are gathered in Tab.4.1.

Type Di�ratometer Temperature (K) alat (Å) x Rp Rwp Rexp χ2

X-ray Xpert Panalytial 300 10.5744(1) 0.3274(3) 10.8 11.8 1.28 84

Neutrons D2B 300 10.5679(3) 0.33250(8) 11.5 10.5 4.51 5.1

Neutrons HRPT 15 10.5586(6) 0.33259(8) 7.28 7.22 4.90 2.2

Table 4.1: Lattie parameter alat and position x of oxygen atom O1 determined by X-ray

and neutron di�ration. R-fators are listed as indiators of the analysis goodness, see

Se. 2.3.7. Note that the di�ulty to modelise the distribution of wavelength in the X-

ray beam indues slightly di�erent values from those determined by neutron di�ration.

A slight redution of the lattie parameter dedued from HRPT measurements arises

from the lattie ontration sine measurements were performed at T = 15 K. Results

are in good agreement with Ref. [190℄.

However, as mentioned in Se. 2.3.5, the X-ray beam is not fully monohromati

whih forbids a deeper analysis of the data. Neutron di�ration experiments were also

performed at the D2B di�ratometer of Institut Laue Langevin and at the high reso-

lution di�ratometer HRPT of the SINQ neutron soure at the Paul Sherrer Institute

(Se. 2.3.6). A Rietveld analysis of data reorded on HRPT at T = 15 K is displayed on

the right panel of Fig. 4.1. The shape of a Bragg peak was modelled with a Thompson-
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Atom U11(×10−3) U22(×10−3) U33 U12(×10−4) U13 U23(×10−3)
Nd 0.17(2) E(U11) E(U11) −0.2(2) E(U12) E(U12)

Sn 0.25(2) E(U11) E(U11) −0.5(2) E(U12) E(U12)

O1 0.64(3) 0.58(2) E(U22) 0(F) 0(F) −0.18(3)
O2 0.69(2) E(U11) E(U11) 0(F) 0(F) 0(F)

Table 4.2: The displaement parameters Uij in Å

2
units dedued from the analysis of

the neutron di�ration pattern reorded at T = 15 K for Nd2Sn2O7. The oupations

of the di�erent sites have been released as explained in the main text. When we write

0(F) the parameter was �xed to zero during the �t. E(Uij) means that the parameter

was taken equal to Uij .

Cox-Hastings pseudo-Voigt funtion, see Se. 2.3.7. The Debye-Waller fators were

expressed in terms of the symmetry-allowed anisotropi displaement parameters Uαβ ,

listed in Tab. 4.2. In a seond step we analysed our data in searh for a deviation of

the nominal stoihiometry of our sample. We have onsidered the possibility of stu�-

ing, i.e. a fration of the Nd atom sitting at the Sn site or reiproally. This leads

to the hemial formula Nd2+ySn2−yO7+δ. Sine there are two rystallographially non

equivalent oxygen sites, a stoihiometri ompound is atually more expliitly named

as Nd2Sn2(O1)6(O2) where O1 and O2 are the two oxygen sites [191℄. For our inves-

tigation of the non-stoihiometry of our sample we need to deide where to loate the

exess/lak of oxygen. We have tried three models:

- Model 1: Nd2+ySn2−y(O1)6(O2)1+δ,

- Model 2: Nd2+ySn2−y(O1)6+δ(O2),

- Model 3: Nd2+ySn2−y(O1)6+ 6δ
7
(O2)1+ δ

7
.

Eletri harge onservation enfores y = − δ
2
. Within the errors bars, these three

models provide equivalent �ts to the data with the following values y = 0.013 (7) and
δ = −0.006 (3). These are extremely small deviations from stoihiometry and we an

assume our sample to be stoihiometri thereafter.

4.4 Neutron time-of-�ight spetrosopy

In order to determine the rystal-eletri-�eld energy levels sheme of Nd2Sn2O7, we

report measurements performed at the MARI spetrometer, see Se. 2.4 for tehnial

details. We display in the left panels of Fig. 4.2 and Fig. 4.3 the whole (q, ~ω) spae
probed at T = 5 K. Spetra in the right panels result from an integration over a seleted

low-q range to avoid the phonon ontribution, sine the magneti form fator dereases

when q inreases whereas the phonons intensity grows as q2. Furthermore, data have

been orreted for absorption e�ets as explained in App. C. Sine neodymium is a

Kramers ion (J = 9
2
), we expet �ve doublets. All the energy levels are resolved: four

exited doublets lie at 26, 38.5, 39.8 and 110 meV. Therefore, the ground state doublet

is well isolated from the exited ones.
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Figure 4.2: Left: Inelasti neutron sattering spetrum of a Nd2Sn2O7 powder sample

reorded at T = 5 K with an inident energy Ei = 60 meV and a Fermi hopper

frequeny νFC = 600 Hz. Right: Integration of the data on the left over wavevetor

range 0.32 ≤ q ≤ 4.02 Å

−1
. Crystal-eletri-�eld energy levels are observed at 26, 38.5

and 39.8 meV.

4.5 Bulk measurements

Spei� heat and magnetisation measurements reported here were performed at CEA-

Grenoble. One refers to Se. 2.1.1 and Se. 2.1.2 for more details on the tehnial

aspets of the PPMS and the MPMS, respetively.

4.5.1 Spei� heat

The heat apaity measurements are displayed in Fig. 4.4, in good agreement with

those performed by Blöte et al. [82℄. A λ-type peak ours at Tc ≈ 0.91 K, onsistent

with a seond order phase transition. This goes in line with the peak in the magneti

suseptibility previously observed [33℄. There is no broad hump above Tc, as sometimes

found for geometrially frustrated magneti materials and interpreted as the signature

of short-range orrelations [192℄. To desribe the low temperature behaviour of the

spei� heat, we assume gapless exitations desribed by a linear dispersion law in a

three-dimensional system, similarly to the ontribution of antiferromagneti magnons

to the spei� heat [193℄:

ω(q) = vexq, (4.2)

where vex aounts for the exitation veloity and we have assumed an isotropi q
dependene of the dispersion law. We an write the density of states g(ω)dω =

1
(2π)3

4πq2( dq
dω
)dω. Therefore, the energy assoiated to these exitations is written as:

Eex =

∫ ∞

0

~ωg(ω)nP

(

~ω

kBT

)

dω,

=

∫ ∞

0

~ω
1

2π2

(

ω

vex

)2
1

vex
nP

(

~ω

kBT

)

dω, (4.3)
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Figure 4.3: Left: Inelasti neutron sattering spetrum of a Nd2Sn2O7 powder sample

reorded at T = 5 K with an inident energy Ei = 200 meV and a Fermi hopper

frequeny νFC = 400 Hz. Right: Integration of the data on the left over wavevetor

range 0.59 ≤ q ≤ 7 Å

−1
. This on�guration allows to detet the highest energy level

lying at 110 meV.

where nP

(

~ω
kBT

)

is the Plank distribution funtion, assuming here these exitations are

desribed by bosons, analogously to the magnons:

nP

(

~ω

kBT

)

=
1

exp
(

~ω
kBT

)

− 1
. (4.4)

Note that this funtion is the partiular ase of the Bose-Einstein funtion with the

hemial potential µ = 0. With x = ~ω
kBT

, Eq. 4.3 beomes:

Eex =
1

2π2
(kBT )

4

(

1

~vex

)3 ∫ ∞

0

x3

exp(x)− 1
dx. (4.5)

Sine [194℄:

∫ ∞

0

x3

exp(x)− 1
dx = Γ(4)ξ(4) =

π4

15
, (4.6)

where Γ is the well-known Gamma funtion and ξ the Riemann zeta funtion. We get

the T 3
dependene of these magnon-like exitations to the spei� heat:

Cex =
dEex

dT
= N

2π2

30

k4
B

~3v3ex
T 3 = BT 3, (4.7)

where N is the number of magneti atoms, i.e. N = NA
a3latt
8
. This law aounts well

for the data at low temperatures with B = 11.0 (7) JK

−4
mol

−1
. Therefore, from

B = π2

120
NA

k4Ba
3
lat

~3v3ex
, we infer an exitation veloity vex = 55 (1) ms

−1
in line with the

value found for Er2Ti2O7 [195℄.

The uprise of the spei� heat above ≈ 10 K is attributed to the ontribution of the

phonons. Indeed, as the �rst exited rystal-eletri-�eld (CEF) doublet lies at 26 meV

above the ground-state doublet, see Se. 4.4, no CEF ontribution to the spei� heat
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Figure 4.4: Left: Temperature dependene of the spei� heat of a Nd2Sn2O7 powder

sample. The blak solid, the purple dashed-dotted and the green dotted lines are the

phonons, rystal-eletri-�eld and nulear ontributions to the spei� heat, respe-

tively. For both panels, the transition temperature is indiated by a vertial blak

dashed line. Our data are displayed with full red irles whereas those of Ref. [82℄ are

reprodued with open blue irles. Right: Zoom over the lowest temperatures with a

double logarithmi sale. The blak solid line is a �t of Eq. 4.7 to the data.

is expeted in the displayed temperature range. The eletroni spei� heat variation

provides us with a measure of the degeneray of the ground state through the entropy.

Realling that the eletroni entropy variation ∆Sel(T1, T2) between temperatures T1

and T2 is given by the well known formula

∆Sel(T1, T2) =

∫ T2

T1

Cel

T
dT, (4.8)

we obtain ∆Sel(T1 = 0.2 K, T ) as shown in the left panel of Fig. 4.5. Assuming the

Debye model to be valid, the lattie ontribution Cph to the spei� heat has been

subtrated from Cp in the temperature range 5 ≤ T ≤ 20 K to obtain Cel following a

T 3
law [193℄:

Cph =
12π4

5
NkB

(

T

ΘD

)3

, (4.9)

We infer the Debye temperature ΘD = 385(2) K. We have also determined the nulear

ontribution Cnuc to the low temperature spei� heat whih should also be subtrated.

It originates from the nulear splitting arising from a Zeeman interation between the

nulear spin and the hyper�ne �eld Bhyp reated by the unpaired eletrons, and a

quadrupolar interation whih is negligible, see Se. 4.7. Note that two isotopes, labelled

by the index i, 143Nd and 145
Nd, with the same nulear spin I = 7

2
, need to be taken into

aount sine they have a di�erent gyromagneti ratio γi. Therefore, (2I + 1) energy
levels are equally separated by ∆N,i = ~γiBhyp where Bhyp is inferred from neutron

baksattering spetrosopy, see Se. 4.7. Thus, the nulear ontribution to the spei�

heat is derived as:

Cnuc =
d

dT

{

∑

i

pi
Zi

∑

Ei

Ei exp[−Ei/(kBT )]

}

, (4.10)
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Figure 4.5: Left: Temperature dependene of the variation of the eletroni entropy

∆Sel. The data are plotted in units of R ln 2 where R is the ideal gas onstant. Right:

Spei� heat plotted versus the redued temperature τ = T−Tc

Tc
in the paramagneti

regime. The blak solid line is a �t to the data as explained in the main text.

where Ei = n~γiBhyp (0 ≤ n ≤ 2I) refers to the energy levels of the nulear spin of

isotope i with relative abundane pi and Zi denotes the partition funtion. We ompute

a value of Cnuc = 0.06 J/(K mol Nd) for the nulear spei� heat at 0.25 K. Sine Cnuc

dereases as T−2
in the high-temperature limit whih applies in the temperature range

of interest here, we an safely neglet it.

The left panel of Fig. 4.5 indiates that well above the transition temperature the

entropy per mole of Nd is R ln 2, a value expeted when only the ground state doublet is

populated. The eletroni entropy dereases to zero deep in the ordered magneti phase.

Therefore, no marosopi degeneray is present ontrary to the spin-ie pyrohlore

haraterised by a non vanishing entropy at zero temperature, see Se. 1.3.1.

In the right panel of Fig. 4.5 is displayed the spei� heat versus the redued tem-

perature τ = (T − Tc)/Tc in the paramagneti phase in order to investigate the ritial

regime. Aording to Refs. [196, 197℄, we expet to observe the power-law ritial

behaviour:

Cel(T ) =
Csh

αc

[

(

T − Tc

Tc

)−αc

− 1

]

, (4.11)

where Csh is a onstant and αc a ritial exponent expeted to be equal to 0.110, −0.015
and −0.134 for three-dimensional Ising, XY and Heisenberg magnets, respetively [198℄.

The �t displayed in the right panel of Fig. 4.5 orresponds to the three dimensional

Ising ase (αc = 0.110). We found Csh = 0.88(2) J K

−1
mol

−1
and Tc = 0.913(1) K.

The ritial regime is observed up to τ ≈ 0.1. In the ase of αc = −0.015 and −0.134,
aeptable �ts lead to Tc = 0.917(1) and 0.926(1) K, respetively, suh that we annot

determine with ertainty the spin symmetry with this analysis.

4.5.2 Magnetisation

As explained in Se. 2.1.2, a sample pellet lose to an ellipsoidal shape is introdued

in a weak diamagneti sample holder. The external �eld is applied along a major axis

of the ellipsoid. This geometry redues the demagnetising �eld. Aording to Eq. 2.6,
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Figure 4.6: Left: Inverse of the magneti suseptibility at 0.95, 5, and 10 mT: evidene

of the �eld invariane below 5 mT. Right: Temperature dependene of the inverse of

the magneti suseptibility 1/χ measured in a �eld of 0.95 mT. The insert displays the

low temperatures data. In the two panels, the solid lines are results of �ts as explained

in the main text.

determining the weak �eld limit, i.e. M ∝ Happlied,
1

is of �rst importane to extrat the

intrinsi magneti suseptibility. In the left panel of Fig. 4.6, we ompare measurements

for µ0Happlied = 0.95, 5, and 10 mT. The �eld invariane of the magneti suseptibility

is then no longer veri�ed for magneti �elds higher than 5 mT. However, we must note

that measurements at very low magneti �elds ould be more in�uened by the presene

of magneti impurities than at higher magneti �elds, explaining the �eld dependene

of the magneti suseptibility reorded at µ0Happlied = 5 and 10 mT.

In the right panel of Fig. 4.6 is displayed the inverse of the stati suseptibility 1/χ
measured in a �eld of 0.95 mT. In the temperature range 150 ≤ T ≤ 290 K χ follows

a Curie-Weiss law, i.e. χ = C/(T − θCW), with a Curie-Weiss temperature θCW =
−46.3 (1.9) K and a paramagneti moment mpm = gJµB

√

J(J + 1) = 3.57 (4) µB

omparable with the value mpm = 3.62 µB for a free Nd

3+
ion. As shown in the insert,

assuming χ to follow a Curie-Weiss law for 5 ≤ T ≤ 15 K we get θCW = −0.32 (1) K,
indiating a weak net antiferromagneti exhange interation and mpm = 2.63 (3) µB, in

very good agreement with results of Ref. [110℄. As the �rst exited rystal-�eld doublet

is loated at ≈ 26 meV above the Kramers doublet ground-state of Nd

3+
, an e�etive

spin S ′
= 1/2 model is justi�ed for the ion desription at low temperatures. We dedue

a spetrosopi fator geff = mpm/(
√

S ′(S ′ + 1)µB) = 3.04 (3). Assuming the Nd

3+

magneti moments to interat through nearest-neighbour Heisenberg interation, the

exhange integral I an be omputed as [199℄:

I
kB

=
3|θCW|

znnS ′(S ′ + 1)
= 0.213(7) K, (4.12)

where znn = 6 is the number of nearest neighbour Nd

3+
ions to a given Nd

3+
ion.

The �eld dependene of the magnetisation in the paramagneti phase is displayed in

Fig. 4.7. In the paramagneti regime, i.e. in a system without any magneti interations,

1

We refer to Se. 2.1.2 for the de�nition of the real applied �eld Happlied at the sample
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Temperature (K) 2 5 10 25 100

msat(µB) 1.17(3) 1.35(5) 1.4(1) 1.4(1) 1.6(1)

Table 4.3: Saturation value of the magneti moment resulting from the analysis of the

magnetisation urves using Eq. 4.14 for several temperatures.
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Figure 4.7: Field dependene of the magneti moment in the paramagneti phase at 2

and 5 K (left) and at 10, 25 and 100 K (right). Solid lines are �ts of Eq. 4.14 to the

data.

the ground state multiplet arising from the spin-orbit oupling is split in (2J + 1)
energy levels by Zeeman e�et. Therefore, the �eld dependene of the magneti moment

follows [199℄:

m = gJJµBBJ(x), and x =
gJJµBBext

kBT
(4.13)

where msat = gJJµB is the saturation value of the paramagneti moment and BJ(x) is
the Brillouin funtion. This model is only valid for equally distributed energy levels,

whih is not the ase here looking at the rystal-eletri-�eld energy levels, see Se. 4.4.

However, the ground state energy level is well isolated from the exited ones and we

an tentatively desribe it with an e�etive spin S ′ = 1
2
. Therefore, Eq. 4.13 beomes

for a two energy levels system:

m = msat tanh(x), and x =
msatBext

kBT
. (4.14)

In Fig. 4.7, magnetisation urves are displayed for several temperature. Solid lines are

�ts of Eq. 4.14 to the data. Results are summed up in Tab. 4.3.

Note that the saturation values of the magneti moment are far below the value of

the paramagneti moment dedued from the analysis of the inverse magneti susep-

tibility in the low temperature region, i.e. mpm = 2.63(3) µB. However, as previously

mentioned, this model is valid in a system without any magneti interations. As we

will see in the following setions, strong magneti orrelations are at play sine spin

dynamis is muh slower than expeted.
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4.6 Determination of the magneti struture

We performed magneti powder neutron di�ration measurements at the D1B di�ra-

tometer loated at ILL, see Se. 2.3.6, to determine the magneti struture of Nd2Sn2O7.

A magneti di�ration diagram reorded at 60 mK is presented in the left panel of

Fig. 4.8. It was reorded with neutrons of wavelength 2.524 Å using a ylindrial

opper sample ontainer. Experimental data nearby 2θ = 74.4

◦
and 88.5

◦
are not

shown beause they are strongly in�uened by neutrons sattered from the ontainer.

Data reorded in the paramagneti phase at 1.2 K were subtrated to only exhibit the

magneti signal. The presene of Bragg re�etions implies that a long-range stru-

ture of the Nd

3+
magneti moments is established. The re�etions only ourring at

the nulear Bragg peak positions, the magneti propagation vetor of the struture is

kmag = (0, 0, 0). Among all the symmetry allowed operations, those leaving kmag in-

variant onstitute the little group Gk, the representation of whih an be deomposed

in terms of irreduible representations (IR) Γ
(µ)
ν where ν labels the di�erent represen-

tations of dimension µ. For the Nd atomi Wyko� site 16d of symmetry .3̄m in the

ubi spae group Fd3̄m in whih Nd2Sn2O7 rystallises:

Γ(Gk) = 1Γ
(1)
3 + 1Γ

(2)
5 + 1Γ

(3)
7 + 2Γ

(3)
9 . (4.15)

The Γ3, Γ5, Γ7, and Γ9 representations are one-, two-, three-, and three-dimensional IR

respetively. More details are given in App. D.1. We perform a Rietveld re�nement,

see Se. 2.3.7, with the FullProf suite [130℄. The peak shapes are desribed with a

pseudo-Voigt funtion (Eq. 2.22). The results of the Rietveld analysis are summed up

in Tab. 4.4. The symmetry of the magneti phase is desribed by the Γ3 irreduible

representation with a basis vetor Ψ1,j tabulated in Tab. D.1. It orresponds to the

nonoplanar all-in-all-out magneti moment arrangement pitured in the right panel

of Fig. 4.8: orner-sharing tetrahedra possess alternatively four spins pointing into the

diretion of the enter of the tetrahedron and four spins pointing out. Not only the

Rietveld re�nement predits the Γ3 IR, we have analytially shown in App. D.3 that

only this IR an provide a proper desription of our data. This struture should not give

IR Rp Rwp Rexp χ2

Γ3,Ψ1,j 16.5 7.46 4.64 2.59

Γ5,Ψ2,j 81.3 79.6 4.65 292

Γ5,Ψ3,j 81.4 79.6 4.65 292

Γ7,Ψ4,j 97.2 91.5 4.65 386

Γ7,Ψ5,j 97.2 91.5 4.65 386

Γ7,Ψ6,j 97.2 91.5 4.65 386

IR Rp Rwp Rexp χ2

Γ9,Ψ7,j 80.3 80.3 4.65 298

Γ9,Ψ8,j 106 95.8 4.65 423

Γ9,Ψ9,j 80.3 80.3 4.65 298

Γ9,Ψ10,j 106 95.8 4.65 423

Γ9,Ψ11,j 80.3 80.3 4.65 298

Γ9,Ψ12,j 106 95.8 4.65 423

Table 4.4: Indiators of the goodness of the analysis using basis vetors of eah possible

IR. See Se. 2.3.7 for a de�nition of the R-fators. Basis vetors Ψi,j are tabulated

in Tab. D.1. The seleted IR used to performed the analysis of magneti neutron

di�ration patterns is highlighted in red. Note that for a given IR of dimension d > 1,
we should use a linear ombination of the basis vetors. However, suh a ombination

of the resulting alulated intensity annot desribe the data.

rise to a strutural distortion, onsistently with the seond order nature of the magneti
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Figure 4.8: Left: Powder magneti neutron di�ration diagram versus the sattering

angle 2θ resulting from the di�erene between 60 mK and 1.2 K data sets. The blak

line results from a Rietveld re�nement assuming an all-in-all-out magneti struture.

The positions of the magneti re�etions are indiated by the green vertial markers.

The di�erene between the experimental data and the re�nement is shown by the blue

bottom line. Right: Illustration of the all-in-all-out magneti struture. The (X,Y,Z)

frame refers to the ubi axis. The spheres represent the Nd

3+
ions and the arrows their

magneti moments oriented along the loal trigonal <111> axes of the ubi rystal

struture. Two orner-sharing tetrahedra are shown, one with the magneti moments

pointing inwards and an adjaent tetrahedron with moments pointing outwards.

phase transition, sine this struture belongs to the symmetri Ag group [200℄. This is

understood physially beause the magneti moments are oriented along the trigonal

axes of the ubi rystal struture.

The left panel of Fig. 4.9 presents msp(T ) resulting from the Rietveld analysis. The

spontaneous magneti moment for T → 0 is msp(0) = 1.708 (3)µB. In the right panel of

Fig. 4.9, is displayed the analysis of msp(T ) lose to the transition using the equation:

msp(T ) = msp(0)

( |T − Tc|
Tc

)βc

. (4.16)

We �nd βc = 0.28 (2) and Tc = 0.916 (6) K. The exponent βc is smaller than for any

three-dimensional magneti system, i.e. βc = 0.325 (2), 0.346 (2), and 0.365 (3) for Ising,
XY, and Heisenberg systems, respetively [201℄. This may not be totally surprising sine

we did not approah Tc lose enough to probe the ritial regime.

As introdued in Se. 4.5.1, we assume exitations to be responsible for the deay

of the magneti moment in the ordered phase, similarly to antiferromagneti magnons.

Although our system onsists of four non ollinear sublatties, let us onsider for sim-

pliity an Heisenberg ollinear antiferromagneti system whih an be desribed in the

most simple ase by two interlaed sublatties d1 and d2, see Se. E.2, where all the

spins of one sublattie point in the same diretion, the spins of the seond sublattie

being in the opposite diretion. Note that for an ion belonging to sublattie d1, all its
nearest neighbour belong to sublattie d2, and reiproally. In the following, we fous
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Figure 4.9: Left: Temperature dependene of the spontaneous magneti moment

msp(T ). Note that error bars are smaller than the symbols. The solid line is a �t

of Eq. 4.32 to the data. Right: Magneti moment versus the redued temperature in

the ritial regime in order to determine the ritial exponent βc.

on sublattie d1. The z omponent of spin J loated at site i is de�ned as, see Eq. E.41:

JZ
i = a†iai − J, (4.17)

where a† and a are the boson reation and annihilation operators. Using Eq. E.42, we

perform the following spae Fourier transform:

JZ
i =

1

nc

∑

qq′

a†q′aq exp[i(q− q′) · i]− J, (4.18)

where nc is the number of unit ells, i is the vetor linking the magneti ion at site i to
the origin of the sublattie.

JZ =
∑

i

JZ
i =

1

nc

∑

qq′

a†q′aq
∑

i

exp[i(q− q′) · i]−NJ,

=
∑

q

a†qaq −NJ, (4.19)

where N is the number of magneti ions in the sublattie. We have used the following

relation:

∑

i

exp[i(q− q′) · i] = ncδ(q− q′). (4.20)

Then introduing the Bogoliubov transformation, see Eq. E.43, we derive:

JZ =
∑

q

u2
qα

†
qαq + v2qβqβ

†
q + uqvq(α

†
qβ

†
q + βqαq)−NJ. (4.21)

Sine βq ommutes with αq, realling that α†
qβ

†
q + αqβq = 0, see Se. E.2, and using

the usual ommutation rules for boson operators, see Eq. E.44, we obtain:

JZ =
∑

q

u2
qα

†
qαq + v2q(1 + β†

qβq)−NJ. (4.22)
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We reall that 〈α†
qαq〉 = 〈β†

qβq〉 = nP

(

~ωq

kBT

)

where 〈...〉 denotes the thermal average and

nP(x) is the Plank distribution funtion, see Eq. 4.4. Note that limT→0 nP

(

~ωq

kBT

)

= 0.

Therefore the temperature dependene of the sublattie magnetisation is:

−〈Jz〉T=0 + 〈Jz〉T =
∑

q

nP

(

~ωq

kBT

)

(u2
q + v2q). (4.23)

In App. E.2.2, we have introdued a funtion xq suh as:

uq = cosh(xq) and vq = sinh(xq), (4.24)

sine from the Bogoliubov transformation, we have u2
q − v2q = 1. Consequently, we get:

−〈Jz〉T=0 + 〈Jz〉T =
∑

q

nP

(

~ωq

kBT

)

cosh(2xq). (4.25)

Using the relation cosh(x) = [1 − tanh(x)]−
1
2
, ombined with Eq. E.51 where we have

assumed the gap of the exitations to be extremely small, i.e. tanh(2xq) = −γq, leads
to:

−〈Jz〉T=0 + 〈Jz〉T =
∑

q

nP

(

~ωq

kBT

)

(1− γ2
q)

− 1
2

(4.26)

One again, negleting the energy gap ∆ in Eq. E.48 give:

~ωq = ~ωex

√

1− γ2
q (4.27)

Finally, we get the temperature variation of the magneti moment as:

msp(0)−msp(T ) = gµB(−〈Jz〉T=0 + 〈Jz〉T ) =
∫

nP

(

~ωq

kBT

)

ωex

ωq

d3q

(2π3)
, (4.28)

where we have assumed the exitation energy ~ωq to only depend on the modulus of

q. Introduing x = ~ωq

kBT
, and using a dispersion law valid at small q, see Eq. E.50 with

∆ = 0, Eq. 4.28 beomes:

∆msp(T ) = msp(0)−msp(T ) =

√
2

4π2

gµB

D2
AF

(kBT )
2

∫ ∞

0

x

exp(x)− 1
dx, (4.29)

where we have introdued DAF =
√
2~ωex = 2

√
2IznnJ and I the exhange integral

between the znn nearest neighbours. Following Ref. [194℄,

∫ ∞

0

x

exp(x)− 1
dx = Γ(2)ξ(2) =

π2

3
. (4.30)

Therefore we have evidened the T 2
variation of the magneti moment in the ase of

spin-waves like exitations with a negligible energy gap:

msp(T ) = msp(0)

[

1−
√
2

12

gµB

D2
AFmsp(0)

(kBT )
2

]

(4.31)
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Fitting Eq. 4.31 to the data displayed in the left panel of Fig. 4.9 in a temperature

range up to 0.8 K allows us to determine DAF/kB = 0.70(1) K and the exhange

integral I/kB = 0.083(1) K,2 using an e�etive spin-1/2 and geff = 2.97, previously
determined in Se. 4.5.2. Consequently, the solid line in the left panel of Fig. 4.9 is the

result of the �t with the phenomenologial formula:

msp(T ) = msp(0) [1− (T/Tc)
αc]βc , (4.32)

where αc = 2. It enompasses the ritial behavior near Tc and the quadrati deay of

the magneti moment at low temperatures.

4.7 Neutron baksattering measurements

For an independent estimate of msp(0) and to gather information on spin dynamis we

performed neutron baksattering measurements at the IN16 spetrometer of ILL, see

Se. 2.5. Neutrons interat with the unpaired eletrons and the nulei of matter. As

far as eletrons are onerned we expet magneti sattering from the un�lled shell of

the Nd

3+
ions. Sine we only onsider data outside the Nd2Sn2O7 Bragg sattering

positions, only inoherent sattering proesses are relevant for the nulear ontribution

to the signal. In the following we will therefore desribe the spin Hamiltonian of the

neodymium nulei, examine the nulear and magneti sattering ross-setions and

�nally, we will report our data analysis.

4.7.1 Spin Hamiltonian for

143
Nd

The only hemial element entering the omposition of Nd2Sn2O7 with a notable ino-

herent sattering ross-setion is Nd. Among the natural Nd isotopes two of them are to

be onsidered:

143
Nd and

145
Nd of abundane 12.2% and 8.3% and inoherent sattering

ross-setions 55 (7) and 5 (5) barns, respetively. The spin of both isotopes is I = 7/2.

Due to the presene of several isotopes, isotope-inoherent as well as spin-inoherent

ross-setions must be onsidered. We will write below the di�erential ross-setions

assoiated with the two proesses. Before, we examine the sattering intensity related

to the

143
Nd spin, negleting

145
Nd due to its relatively small ross-setion.

The

143
Nd isotope is haraterised by a quadrupolar moment Q = −0.630 barn and

a gyromagneti ratio γ143 = −14.57 × 106 rad s

−1
T

−1
[202℄. The spin Hamiltonian

relevant for the

143
Nd nuleus is the sum of two terms: one aounts for the Zeeman

interation between the nulear spin and the magneti hyper�ne �eldBhyp, and the other

for the quadrupolar interation between the nulear harge density and the eletri �eld

gradient at the nuleus reated by the surrounding eletroni shell and the neighbouring

ions. We write for the Zeeman Hamiltonian,

HZ = −~ωZIz with ωZ = γ143Bhyp, (4.33)

where the index z refers to the <111> loal axis at the Nd

3+
site. The hyper�ne splitting

~ωZ is related to the Nd

3+
magneti moment msp through the relation ~ωZ = mspA143

hyp

2

Note that this exhange onstant di�ers from the value inferred from the Curie-Weiss analysis of

the magneti suseptibility at low temperatures, and listed in Eq. 4.12.
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where the hyper�ne onstant of isotope

143
Nd, A143

hyp = 20.9 (3) mT has been aurately

measured by eletron spin resonane measurements [203℄. The point symmetry at the

rare earth site ditates that the loal <111> axis belongs to the eigen basis of eletri

�eld gradient tensor and that Vzz is the prinipal omponent of this tensor whih in

addition has a zero asymmetry parameter. Therefore the quadrupole Hamiltonian is

written as:

HQ = ~ωQ(3I
2
z − I2) and ~ωQ =

eQVzz

4I(2I − 1)
(4.34)

This means that H is diagonal and the eigenvetors are the Zeeman funtions |m〉
assoiated with the eigenvalues Em, H|m〉 = Em|m〉, with −I ≤ m ≤ I.

We estimate now the intensity of these two interations. The analysis displayed

below leads to ~ωZ = 2.027 (7) µeV. Sine Nd2Sn2O7 is an insulator, Vzz is the sum of

two terms:

Vzz = V 4f
zz + V lat

zz , (4.35)

where the �rst and seond term aounts for the 4f -eletron and lattie ontributions,

respetively. Estimates of these quantities to Vzz are V 4f
zz = 1.0 × 1022 Vm

−2
and

V lat
zz = −1.0 × 1022 Vm

−2
, whih lead to a vanishing eletri �eld gradient at the

nuleus. Still, we note that a value Vzz = 1022 Vm

−2
for the total eletri �eld gradient

would lead to ~ωQ = −7.5 × 10−3 µeV, a value two orders of magnitude less than the

Zeeman interation. Consistently, �tting the model to the neutron baksattering data

with ~ωQ as a free parameter also leads to a negligible value of this parameter.

4.7.2 Inoherent sattering ross-setion

As stated earlier, the double di�erential inoherent sattering ross-setion is the sum

of the spin-inoherent and isotope-inoherent ontributions,

(

d2σ

dΩdE

)

inc

=
kf
ki

[

σNd
spinSspin(q, ~ω) + σNd

isoSiso(q, ~ω)
]

, (4.36)

where ki and kf are the inident and sattered neutron wavevetors. The transfer of

energy being extremely small we an safely set ki = kf . In the magnetially ordered

phase, i.e. for a �nite hyper�ne �eld, following Ref. [204℄, we write the spin-inoherent

sattering funtion,

Sspin(q, ~ω) =
NNd exp(−2W (q))

4πI(I + 1)

1

Z

×
I
∑

m=−I

e−Em/kBT

[

1

2
[I(I + 1)−m(m+ 1)]δ(~ω − (Em+1 − Em))

+
1

2
[I(I + 1)−m(m− 1)]δ(~ω + (Em − Em−1)) +m2δ(~ω)

]

,

(4.37)

where Z is the partition funtion:

Z =
I
∑

m=−I

exp(−Em/kBT ). (4.38)



116 CHAPTER 4. EXPERIMENTAL STUDY OF Nd2Sn2O7

NNd is the total number of
143

Nd nulei in the sample, and exp(−2W (q)) is the Debye-
Waller fator. As disussed above, we an safely neglet the quadrupolar interation and

set |Em±1−Em| = |~ωZ|, ∀m. In order to aommodate the small observed broadening

of the inelasti peaks due to a �nite lifetime of the nulear levels, the Dira delta

funtions in Eq. 4.37 are replaed by Lorentzian funtions entered at ±~ωZ or 0,

L(~ω ± ~ωZ) =
1

π

ΓZ

(~ω ± ~ωZ)2 + Γ2
Z

, (4.39)

where ΓZ is the half-width at half-maximum, whih orresponds to the inverse lifetime

of the nulear level. For simpliity, we assume that the lifetime is idential for all the

levels.

In the paramagneti phase, Bhyp is zero and the nulear levels are degenerate. It is

straightforward to hek that Eq. 4.37 beomes

Sspin(q, ~ω) =
NNd exp(−2W (q))

4π
δ(~ω) (4.40)

whih is the expeted expression for the spin-inoherent sattering funtion.

The isotope-inoherent sattering funtion is written as

Siso(q, ~ω) =
NNd exp(−2W (q))

4π
δ(~ω), (4.41)

a relation whih naturally holds both in the paramagneti and ordered phases.

The values of the σNd
spin and σNd

iso ross-setions are evaluated from Ref. [136℄. We

have σNd
spin = 6.8 barns and σNd

iso = 1.8 barns. At the temperature of our experiments

the Debye-Waller fator is lose to 1 and was set to this value in the �tting proedure.

4.7.3 Magneti sattering ross-setion

The double di�erential ross-setion for inelasti magneti sattering is expressed as

(

d2σ

dΩdE

)

mag

=
kf
ki
(γr0)

2Smag(q, ~ω), (4.42)

where again kf/ki ≈ 1, |γr0| = −0.54×10−12 cm is the magneti sattering length

3

, and

Smag(q, ~ω) the inelasti magneti sattering funtion. From Refs. [205, 206℄, assum-

ing an isotropi dynami suseptibility and performing a spatial average for a powder

sample:

Smag(q, ~ω) =
2

3

[

1

2
gJfmag(q)

]2

NNde
−2W (q) 1

1− exp
(

− ~ω
kBT

)χ′′(q, ~ω), (4.43)

where gJ is the Landé fator (g = 8/11 for Nd

3+
), and χ′′(q, ~ω) stands for the imaginary

part of χ(q, ~ω). This quantity is taken as

χ′′(q, ~ω) =
~ω

π

χ′(q)Γq

(~ω)2 + Γ2
q

, (4.44)

with χ′(q) being the q-dependent stati suseptibility and Γq the quasielasti Lorentzian

linewidth. Again the Debye-Waller fator was set equal to 1.

3|γr0| = 2p aording to Eq. 2.15.
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Figure 4.10: Baksattering spetra reorded at 0.60 K (left) and 1.2 K (right) The

blak full line is a �t of Eq. 4.45 to the data. The blue full, green dashed-dotted, purple

dotted and orange dashed lines are respetively the magneti, isotope inoherent, spin

inoherent and sample environment inoherent sattering ontributions to the signal.

4.7.4 Data analysis

The ode BS_�t [207℄ was developed to analyse data from baksattering experiments.

The measurements were performed for a range of wavevetors 0.38 < q < 1.95 Å

−1
ex-

luding the region between 1.60 and 1.725 Å

−1
whih orresponds to the (220) Nd2Sn2O7

Bragg peak. For the quantitative analysis of the spetra we express the total ross-

setion. Taking into aount the instrumental resolution R(~ω) measured with a vana-

dium speimen of the same geometry as the Nd2Sn2O7 sample, we have:

I(q, ~ω) = I0R(~ω)⊗
[

(

d2σ

dΩdE

)

mag

+

(

d2σ

dΩdE

)

inc

+

(

d2σ

dΩdE

)

se

]

+ Ibg, (4.45)

where the symbol ⊗ stands for the onvolution produt, I0 is a proportionality onstant
and Ibg is a small bakground ontribution. The �rst two terms in the brakets are

desribed by Eq. 4.42 and Eq. 4.36, respetively. The last term in the brakets is

the ontribution to the measured intensity arising from the sample environment, i.e.

essentially the sample ontainer, the inner alorimeter and the ryostat windows. The

last two, aluminium made, have a negligible ross-setion. The ross-setion assoiated

with the Cu sample holder is inoherent and is written as:

(

d2σ

dΩdE

)

se

=
kf
ki

[

NCu

4π
σCu
incδ(~ω)

]

, (4.46)

where NCu is the number of Cu nulei in the sample holder part impinged by the neutron

beam and σCu
inc the Cu inoherent sattering ross-setion. From the sample mass, we

estimate σCu
incNCu/(σ

Nd
spin + σNd

iso )NNd ≈ 11%. This ratio allowed us to link the amplitude

of the sample environment ontribution in Eq. 4.45 to that of the

143
Nd nulei. To

�nish with the quantitative analysis, a small energy o�set of the spetrometer, of order

0.03 µeV, was an additional �tting parameter not appearing in Eq. 4.45 for the sake of

simpliity. Fig. 4.10 displays examples of data reorded in the ordered and paramagneti

phases, together with the result of �ts aording to Eq. 4.45.
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Figure 4.11: Neutron baksattering spetra reorded at seleted temperatures in a

±4 µeV energy window and integrated over all the available wavevetors outside the

Bragg peak region. While at 1.2 K, i.e. in the paramagneti phase, the neutron intensity

is only observed near zero energy, for T < Tc inelasti inoherent sattering from the

143
Nd nulei is deteted. The blak solid lines orrespond to �ts as explained in the

main text, with the instrument resolution displayed by the blue dotted lines taken into

aount.



4.7. NEUTRON BACKSCATTERING MEASUREMENTS 119

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

0

50

100

150

200

Temperature (K)M
ag

ne
tic

 m
om

en
t m

S
P (

µ B
) H

yperfine field  B
hyp  (T

)

Nd2Sn2O7
diffraction
backscattering

0.01 0.1 1 10

0.1

1

10

0.1

1

10

Temperature (K)

 In
co

he
re

nt
 w

ei
gh

t  
(1

0−2
) Q

uasielastic w
eight (m

eV
−1)

Nd2Sn2O7
incoherent
quasielastic

Figure 4.12: Left: Temperature dependene of the spontaneous magneti moment

msp(T ) derived from the di�ration measurements and of the hyper�ne �eld Bhyp(T )
obtained from the analysis of the baksattering spetra. Note that error bars are

smaller than the symbols. The blak solid line is a �t as explained in Se. 4.6. Right:

Temperature dependene of the weighing fators Ainc and Amag for the inoherent nu-

lear and quasielasti magneti intensities. The blak solid line follows a Curie-Weiss

law.

Apart from a weak evolution of the quasielasti width in the paramagneti phase

whih will be disussed below, the spetra are essentially independent of the waveve-

tor in the available range 0.38 � 1.95 Å

−1
, exluding the wavevetor region around the

(220) Bragg peak at 1.69 Å

−1
. Therefore the data shown in Fig. 4.10 and Fig. 4.11 are

integrated over this range. We present in Fig. 4.11 the di�erent baksattering spetra

reorded at several temperatures in order to exhibit the nulear splitting progressively

vanishing as the temperature inreases. Sine the magneti moment is proportional

to the nulear splitting ~ωZ, we extrat the temperature dependene of the hyper�ne

�eld Bhyp(T ), see left panel of Fig. 4.12. The splitting ~ωZ(T → 0) = 2.027 (7) µeV
orresponds to msp(0) = ~ωZ(0)/A143

hyp = 1.68 (3) µB, onsistent with the one found with

neutron di�ration experiments, see Se. 4.6. Sine the di�ration, whih measures a

volume average [208℄, and the loal probe determinations of msp(0) are in agreement,

no phase segregation ours in our sample. Surprisingly, Bhyp(T ) does not trak msp(T )
when approahing Tc. Although this di�erene alls for a more detailed interpretation,

it ould be understandable that the two tehniques lead to di�erent values ofmsp(T ). It
may originate from the di�erene in the time sales at whih the two tehniques probe

the system under study. However, the explanation does not go in the right way sine

the interation time between the neutron and the system is around 10−12
s for di�ra-

tion and 10−9
s for baksattering. Therefore, if the loal �eld was �utuating with a

harateristi time omprised between the typial time sale of the two tehniques, the

magneti moment inferred from baksattering measurements will be lowered ompared

to the one dedued from magneti di�ration experiments. An alternative explanation

may lie from di�erenes in the temperature dependenes of the 4f and other eletroni

shell magneti moments. While di�ration essentially probes the 4f shell magneti

moment sine the magneti form fator of the deloalised 5d eletroni shell vanishes

extremely rapidly with inreasing Q, the latter eletroni shell ontributes to Bhyp(T ).
In this ase, msp(0) inferred from the two tehniques would be di�erent.

In addition to the inoherent nulear ontribution, a quasielasti magneti signal
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Figure 4.13: Baksattering spetra reorded at 1.2 K for a wavevetor range 0.37 ≤ q ≤
0.59Å−1

entered around 0.48 Å

−1
(left) and for a wavevetor range 1.87 ≤ q ≤ 1.95Å−1

entered around 1.91 Å

−1
(right). The full line is a �t to the data as explained in the

main text and the dotted line orresponds to the resolution of the spetrometer.

arising from the Nd

3+
eletrons is observed in neutron baksattering. Note that the

internal alibration provided by the

143
Nd inoherent nulear sattering gives a measure

of the magneti ontribution, i.e. the suseptibility, in absolute value. Therefore, we

de�ne the weight of the nulear ontribution Ainc and of the magneti sattering Amag

as:

Ainc = I0NNd, and Amag =
2

3
I0NNd

[

1

2
gJfmag(q)

]2

χ′(q). (4.47)

Fitting the inoherent and quasielasti ontributions to the data, see Se. 4.7.2 and

Se. 4.7.3, we �nd Ainc to be temperature independent within experimental unertain-

ties, and Amag dereasing as the inverse temperature, as illustrated in the right panel of

Fig. 4.12. The result of the �t gives χ′(q) = C/(kBT ) with C = 26 (1), i.e. χ′(q) follows
a Curie law in the investigated wavevetor range.

As already mentioned, no notable q dependene was notied for the spetra reorded
in the magnetially ordered phase. In the paramagneti phase, we observed a small

broadening of the spetra at small wavevetors. It an be seen from a omparison of

the spetra displayed in Fig. 4.13. The wavevetor dependene of the quasielasti half-

width at half-maximum Γq measured at 1.2 K is plotted in Fig. 4.14. A linear �t yields

a fair desription: Γq = Γ0 + aqq with Γ0 = 0.271 (9) µeV and aq = −0.070 (2) µeVÅ.
To Γ0 is assoiated a �utuation time τ0 = ~/Γ0 = 2.43 (8) × 10−9

s. This value is

relatively large for a temperature outside the ritial regime. We would have expeted

a value in the range of ~/(kB|θCW|) = 2.4 (1) × 10−11
s, where we take the θCW value

derived from the χ(T ) �t at low temperatures. Even slower paramagneti �utuations

are revealed by the µSR study disussed in Se. 4.8.

4.8 µSR spetrosopy

To get further information on the system, µSR measurements were performed at the

MuSR spetrometer of the ISIS pulsed muon soure (Rutherford Appleton Laboratory,

United Kingdom) and at the GPS and LTF spetrometers of the Swiss Muon Soure

(Paul Sherrer Institute, Switzerland), see Se. 2.6. First, we will disuss the signature
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Figure 4.14: Wavevetor dependene of the quasielasti half-width at half-maximum

(HWHM) Γq of the magneti sattering in the paramagneti phase at 1.2 K. The solid

blak line is a �t as explained in the main text.

of a long-range order. Then, persistene of spin dynamis in the ordered phase and

anomalously slow spin dynamis in the paramagneti regime will be evidened.

4.8.1 Evidene of long-range order

A µSR asymmetry spetrum reorded deep into the ordered phase is displayed in the

left panel of Fig. 4.15. The inset evidenes the presene of spontaneous osillations,

i.e. in the absene of external magneti �eld, up to T ≤ 0.65 K ≈ 0.7 Tc whih re�et

the Larmor preession of the muon spin around a loal magneti �eld Bloc. This is a

signature of a magneti long-range order. Although a spontaneous muon spin preession

is expeted and often observed in the ordered phase of magnets as for Gd2M2O7 with

M =Sn or Ti [112, 116℄, it is not present for Tb2Sn2O7 [75, 77℄, Er2Ti2O7 [2, 102℄,

and Yb2Sn2O7 [92, 94℄. In Fig. 4.16 is ompared the ase of Nd2Sn2O7 (left panel) and

Tb2Sn2O7 (right panel) whih both exhibit magneti Bragg peaks (kmag = (0, 0, 0)) as
a signature of a long-range order, see magneti neutron di�ration pattern in the insets.

However, whereas spontaneous osillations are observed in the neodymium ase, only

an exponential-like relaxation of the muon spin polarisation is evidened in the ase

of Tb2Sn2O7. In the latter ase, the absene of spontaneous osillations was explained

with the dynamial nature of the loal �eld, jumping from a on�guration to an other.

A �utuation time τc = 8 × 10−11
s was inferred, onsistent with the observation of

magneti Bragg peaks with neutron di�ration sine the magneti struture is probed

with a time sale ∆t ≈ 10−12
s.

The measured asymmetry is a0P
exp
Z (t) where a0 is an experimental parameter and

P exp
Z (t) the muon polarization funtion whih re�ets the physis of the ompound under

study [160℄:

a0P
exp
Z (t) = asPZ(t) + abg, (4.48)

where the �rst term aounts for muons probing the sample and the time-independent

seond term re�ets muons implanted in the sample surroundings, essentially in the
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Figure 4.15: µSR spetra reorded for a powder sample of Nd2Sn2O7 at the LTF spe-

trometer (PSI) in zero �eld deep into the ordered phase at T = 0.06 K (left) and at

T = 0.800 K (right). The insets fous on the short time details in order to evidene the

presene of spontaneous osillations or not. The blak solid lines are �ts as explained

in the main text.

silver baking plate. Spetra up to 0.65 K were well �tted with the e�etive following

funtion:

asPZ(t) = a1P⊥,1(t) + a2P⊥,2(t) + a3 exp(−λZt) (4.49)

= a1 exp(−λXt) cos(γµBloct+ ϕ) + a2 exp(−γ2
µ∆

2
Xt

2/2) + a3 exp(−λZt).

The �rst two terms, labelled P⊥,i, refer to the omponent of PZ(t) perpendiular to the
loal �eld Bloc. Introduing two funtions an be understood as the existene of two

muon sites (1, 2) probing a di�erent �eld distribution. However, this equation remains

a purely phenomenologi desription sine the muon site is not preisely known. The

summation of their amplitude aounts for about 2/3 of the total amplitude. The third

omponent of amplitude a3 ≃ as/3 is asribed to the spin-lattie relaxation hannel,

and will be disussed in Se. 4.8.2.

Let us fous on the omponents of PZ(t) perpendiular to the loal �eld Bloc. Con-

sidering an isotropi, stati, Gaussian �eld distribution, we an easily derive the orre-

sponding stati polarisation funtion [160℄:

P stat
⊥ (t) = exp

(

−γ2
µ∆

2
Gt

2

2

)

cos(γµBloct), (4.50)

where ∆2
G is the variane of the Gaussian �eld distribution. However, usually the �eld

distribution is not stati and assuming dynamis with a single magneti orrelation

time τc = 1/νc, the polarisation funtion is desribed by the Abragam funtion within

the weak ollision model [160℄:

P⊥(t) = exp

{

−γ2
µ∆

2
G

ν2
c

[exp(−νct)− 1 + νct]

}

cos(γµBloct). (4.51)

In the so-alled motional narrowing limit, i.e. νc ≫ γµ∆G, we retrieve the �rst term of

the right-hand side of Eq. 4.49:

P⊥,1(t) = exp(−λXt) cos(ωµt), (4.52)
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Figure 4.16: Comparison of µSR spetra of Nd2Sn2O7 (left) and Tb2Sn2O7 (right)

reorded in the ordered phase. The two oumponds exhibit magneti Bragg peaks

with kmag = (0, 0, 0) (see insets). However, spontaneous osillations are resolved for

Nd2Sn2O7 whereas only an exponential relaxation of the muon spin polarisation is

observed for Tb2Sn2O7. Right panel is adapted from Ref. [75℄.

where the damping rate is λX = γ2
µ∆

2
Gτc and ωµ = γµBloc. By analogy with NMR

(nulear magneti resonane), the transverse relaxation rate λX is also alled spin-spin

relaxation rate sine the surrounding spins at the origin of the �eld distribution and

their dynamis lead to a spread in muon frequenies. We have found λX ≈ 45 µs−1
at

low temperatures. The osine funtion desribes the Larmor preession of the muon spin

around this loal �eld. The observation of these osillations implies that the magnitude

of the �eld Bloc at muon site (1) is su�iently large relative to the �eld distribution

width.

On the other hand, in the ase of νc ≪ γµ∆G, Eq. 4.51 beomes:

P⊥,2(t) = exp

(

−γ2
µ∆

2
Gt

2

2

)

cos(ωµt),

= exp

(

−γ2
µ∆

2
Gt

2

2

)

, (4.53)

where the seond line is obtained onsidering the �eld distribution of the loal �eld at

the muon site (2) to be su�iently large to not resolve any spontaneous osillations,

i.e. ∆G ≫ ωµ/γµ. Hene, we reognise the seond term of the right-hand side of

Eq. 4.49 with ∆X = ∆G. This seond omponent is neessary in order to desribe the

fast depolarisation of a0P
exp
Z (t) at short times. The temperature dependene of ∆X and

Bloc are displayed in the left and right panels of Fig. 4.17, respetively, together with the

temperature dependene of the magneti moment inferred from magneti di�ration.

We found Bloc(T → 0) = 127.5(1.3) mT and ∆X(T → 0) = 84.7(6.6) mT. Sine these

quantities arise from the spin distribution at the muon site, this is not surprising that

they follow the same temperature behaviour as the magneti moment.

For ompleteness, osillations are not resolved for T ≥ 0.65 K, as shown in the right

panel of Fig. 4.15. This is probably due to the broadening of the �eld distribution arising

from sample inhomogeneities and dynamial e�ets. Therefore, spetra are analysed
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Figure 4.17: Temperature dependene of the loal �eld inferred from the osillations

frequeny at muon site 1 (left) and of the variane of the �eld distribution ∆X (right).

The temperature variation of the magneti moment inferred from magneti di�ration

is displayed by full blue irles.

with the following funtion:

asPZ(t) = aX exp(−γ2
µ∆

2
Xt

2/2) + a3 exp(−λZt), (4.54)

where aX = 2
3
aS.

Note that a phase ϕ ≈ −135◦ has been introdued in the osine funtion of Eq. 4.49.

The magneti ollinear strutures are usually assoiated with a single value of Bloc, pro-

portional to the magneti moment and no phase shift should be introdued. However,

an inommensurate modulation of the amplitude of the �eld ould introdue a shift of

the osillations, as it is the ase for instane for inommensurate magneti struture.

In Ref. [160℄, a generalised �eld distribution has been developed to ontrol the phase

shift ϕ. Note that it was pointed out that suh a �eld distribution is not neessarily a

signature of an inommensurate magneti struture, whih would be inompatible with

the ollinear all-in-all-out struture evidened in Se. 4.6. In our ase, the following

�eld distribution leads to ϕ = −3π
4
:

Dc(Bloc) =
[1− (Bloc/Bmax)

2]1/2

π1/2Γ(1/2)Bmax
, (4.55)

where Bloc is modulated between −Bmax ≤ Bloc ≤ Bmax. This possible �eld distribution

is illustrated in Fig. 4.18. This will lead to to the polarisation funtion:

asPZ(t) = a1

(

2

γµBmaxt

)

J1(γµBmaxt) + a2 exp(−λZt), (4.56)

where J1 is a Bessel funtion of the �rst kind. Note that for t ≫ 1/(γµBmax), the latter
funtion an be expanded suh as:

J1(γµBmaxt) ≈
√

2

πγµBmaxt
cos

(

γµBmaxt−
3π

4

)

, (4.57)

and we reover the phase shift ϕ = −3π
4
introdued above. More information is needed

to understand the �eld distribution leading to the observed muon spin polarisation
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Figure 4.18: Illustration of the possible �eld distribution at the muon site (1), depited

by Eq. 4.55.
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Figure 4.19: Illustration of the Zeeman splitting of the two muon spin states. From

a fully polarised state, the system relaxes towards an equilibrium state where the two

muon states are equally populated. Reprodued with kind permission from Ref. [160℄.

funtion. It is important to keep in mind that Eq. 4.49 is a phenomenologial equation

to analyse at best our data, sine introduing two muon sites probing two di�erent

�eld distributions is purely speulative and just aounts well spetra in the ordered

phase. The next step would be to alulate the atual muon site and simulate the �eld

distribution reated by our magneti struture to derive a true polarisation funtion,

sine no usual ones derived from standard �eld distributions ould desribe our spetra.

Due to the positive eletri harge, the muon should be loated in a site lose to an

oxygen atom.

4.8.2 Persistene of spin dynamis

We will fous here on the third term of Eq. 4.49. The spin-lattie relaxation rate λZ

arises from exhange energy between the muon spin and the system. The spin muon

state is a two-level system (up and down) with a Zeeman splitting of ~ωµ = ~γµBloc ≈
70 neV where Bloc = 127.5 mT at 37 mK. At thermodynamial equilibrium the two

states are equally populated as shown in Fig. 4.19 and λZ illustrates the relaxation from

the initial polarised muon state to this equilibrium. This is a diret probe of the spin

dynamis in the system. The temperature dependene of the spin-lattie relaxation

rate is displayed in Fig. 4.20, in zero �eld and 50 mT longitudinal �eld. At T ≪ Tc

we would expet λZ to vanish, see App. E.2. Nevertheless, a temperature independent



126 CHAPTER 4. EXPERIMENTAL STUDY OF Nd2Sn2O7

0.01 0.1 1 10 100

0.1

1

10

Temperature (K)

R
el

ax
at

io
n 

ra
te

 λ
Z
 (

µs
−1

) Nd2Sn2O7

ZF 50 mT
MuSR
GPS
LTF

Tc

Figure 4.20: Temperature dependene of the spin lattie relaxation rate λZ in zero �eld

(empty symbols) and for Bext = 50 mT (full symbols). The data have been reorded

at di�erent spetrometers as indiated in the �gure. The Tc value is shown as a dotted

line and the full line emphasises the temperature independent zero-�eld λZ at low

temperatures. The dashed line is a �t of Eq. 4.72 to the data, illustrating an Orbah

relaxation mehanism, see Fig. 4.21, and involving the third exited rystal-eletri-�eld

energy level lying at 39.8 meV.

plateau is observed in the ordered phase. Sine the muon energy ~ωµ ≈ 70 neV for

Nd2Sn2O7 is muh lower than any energy gap expeted for exitations in the ordered

phase, a single exitation annot be at the origin of the muon spin relaxation pro-

ess. Therefore, this relaxation is desribed by a Raman proess, i.e. a two exitation

sattering, see Fig. E.1. In App. E.2, we have derived the expression of the spin lat-

tie relaxation rate for the ase of ferromagneti and antiferromagneti magnons, see

Eq. E.39 and Eq. E.54, respetively. We have shown that these onventional exitations

in the ordered phase annot be at the origin of a temperature independent behaviour

of λZ . For the desription of the exitations at the origin of this plateau, we generalise

Eq. E.54:

λZ = C
∫ ∞

∆

n

(

E

kBT

)[

n

(

E

kBT

)

± 1

]

g2m(E)dE, (4.58)

where C is a temperature independent onstant involving the oupling tensor between

the muon spin and the spins of the systems. Whereas the exitations are bosoni

(+) or fermioni (−), we introdue n(x) the Bose-Einstein or Fermi-Dira distribution

funtions, respetively. We reall that:

nBE

(

E

kBT

)

=
1

exp
(

E−µ
kBT

)

− 1
,

nFD

(

E

kBT

)

=
1

exp
(

E−EF

kBT

)

+ 1
, (4.59)
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where EF and µ aounts for the energy Fermi level and the hemial potential of

bosons, respetively. Note that in the ase of magnons or photons the hemial potential

µ = 0 sine we do not need to limit the number of bosons. To these exitations

are assoiated a magneti density of states gm(E) and an energy gap ∆. To get λZ

temperature independent, we need gm(E) = bE−1/2
and (∆−EF) or (∆−µ) proportional

to temperature, i.e. equal to akBT , where a and b are �nite onstants. For the bosoni
ase, within the approximation (E − µ) ≪ kBT , we derive [112℄:

λZ =
Cb2

a2
. (4.60)

The inverse square root form for gm(E) needs to be veri�ed only at low energy.

Expressing gm(E) in terms of the spin orrelation funtion 〈J(q, t)J(−q, 0)〉 we obtain
in the ase where a single energy mode is available for a given q wavevetor:

gm(E) =
∑

q

∫ ∞

−∞

〈J(q, t) · J(−q, 0)〉
〈J(q, 0) · J(−q, 0)〉 exp

(

iEt

~

)

dt

2π~
. (4.61)

The sum runs over the �rst Brillouin zone vetors. We reall that:

〈J(q, t) · J(−q, 0)〉 =
∑

i

exp(−iq · i)〈J0(t) · Ji(0)〉, (4.62)

where Ji and J0 are the spins at the lattie point i and at the origin of the lattie,

respetively. Sine muons probe the very low energy spin exitations it is justi�ed to

onsider the orrelation funtion at long times. In this limit it is governed by a di�usion

equation for a Heisenberg Hamiltonian system, [209�211℄:

〈J0(t) · Ji(0)〉 ∝ 1/(Ddiff |t|)d/2 (4.63)

where d is the dimensionality of the spin system and Ddiff a di�usion oe�ient. We

alulate the following Fourier transform:

∫ ∞

−∞
exp(iωt)

1√
t
dt =

√

2π

ω
=

√

2π~

E
. (4.64)

It follows that for a magneti density of states gm(E) ∝ E− 1
2
orresponds unidimensional

spin orrelations (d = 1), at the origin of the observation of a temperature independent

behaviour of λZ . We tentatively assoiate the low energy unidimensional exitations

inferred from the temperature independent relaxation rate to loop spin strutures. An

illustration for a possible spin loop struture running on an hexagonal plaquette is

displayed in the left panel of Fig. 4.21. This reminds the introdution of �ippable

plaquette to desribe the quantum spin-ie state, see Se. 1.4.

4.8.3 λZ behaviour in the paramagneti phase

In the ase of a stati isotropi Gaussian �eld distribution with a variane ∆2
G, the

longitudinal polarisation funtion is desribed by the well-known Kubo-Toyabe fun-

tion [160℄:

P stat
Z (t) =

1

3
+

2

3
(1− γ2

µ∆
2
Gt

2) exp

(

−γ2
µ∆

2
Gt

2

2

)

(4.65)
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Figure 4.21: Left: Rare-earth ion lattie in the pyrohlore R2M2O7. The thiker

light blue (thinner dark blue) bold line represents a 6 (10)-site loop aounting for 1-

dimensional exitation possibly responsible for the non vanishing spin-lattie relaxation

rate at low temperatures. Reprinted �gure with permission from Ref. [212℄. Copyright

2015 by the Amerian Physial Soiety. Right: Illustration of the Orbah relaxation

mehanism resulting from the magnetoelasti oupling between the rare earth ion and

two real phonons and involving an exited rystal-eletri-�eld energy level. A mag-

neti ion lies in the doublet ground state de�ned by two wavefuntions |Ψ0
+〉 and |Ψ0

−〉.
Diret transitions are forbidden between these wavefuntions of the Kramers doublet,

i.e. 〈Ψ0
±|J±|Ψ0

±〉| = 0. Therefore, a phonon of energy E(q1) is absorbed, exiting the

magneti ion in an exited CEF state, loated here at ∆CEF = 38.9 meV, see Se. 4.4.

Emitting a phonon of energy E(q2) = E(q1), the magneti ion relaxes to the ground

state. Therefore, the relaxation proess of the magneti ion from the state |Ψ0
+〉 to

|Ψ0
−〉 involves a �ip of the muon spin. Sine both the muon spin states and the rystal-

eletri-�eld ground state are not split by Zeeman e�et (in the paramagneti regime),

the relaxation of the muon spin is a zero energy proess. Piture adapted from Ref. [160℄.

In the extreme motional narrowing limit, we derive:

PZ(t) = exp(−λZt), (4.66)

where λZ = 2γ2
µ∆

2
Gτc. In the ase where a ontinuous distribution of relaxation hannels

is involved, the strethed exponential funtion needs to be introdued:

PZ(t) = exp[−(λZt)
βse ], (4.67)

where 0 < βse ≤ 1. Above Tc, spetra are well aounted with Eq. 4.67 with here

0.7 ≤ βse ≤ 1. We refer to Se. 4.8.4 for a disussion on the �eld behaviour of λZ . In

zero �eld λZ(T ) displays a pronouned maximum at Tc. This re�ets the slowing down

of the ritial �utuations at the approah of a seond-order magneti phase transition.

We now fous our attention on the behaviour of λZ above the magneti transition. The

general expression of λZ is given by Eq. E.16. Thanks to the �utuation-dissipation the-

orem, paramagneti �utuations desribed by the symmetrised spin orrelation funtion

Λαβ(q, ω), see Eq. E.14, are related to the generalised suseptibility χαβ(q, ω) [213℄:

Λαβ(q, ω) =
~vc

µ0g2µ2
B

coth

(

~ω

kBT

)

Im{χαβ(q, ω)}
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=
2kBTvc
µ0g2µ2

B

Im{χαβ(q, ω)}
ω

(4.68)

where the seond line has been obtained in the limit ~ω ≪ kBT , valid sine the

Zeeman splitting of the two spin muon states is ~ωµ = 0 in zero �eld experiments,

i.e. only zero energy transfers are probed by the spin-lattie relaxation rate. Fol-

lowing the de�nition introdued for the imaginary part of the generalised susepti-

bility (Im{χαβ(q, ω)} = χ′′(q, ω)), see Eq. 4.44, and assuming the suseptibility to be

isotropi, the spin orrelation tensor beomes salar, i.e. Λαβ(q, ω) = Λ(q, ω)δα,β:

Λ(q, ω) =
2vc

µ0g2µ
2
B

kBTχ
′(q)

Γq

ω2 + Γ2
q

, (4.69)

where Γq is the linewidth of a Lorentzian funtion desribing the quasielasti exitations,

i.e. the spin orrelation funtion dereases exponentially. Sine λZ probes here zero

energy exitations, Eq. 4.69 beomes:

Λ(q, ω = 0) =
2vc

µ0g2µ
2
B

kBT
χ′(q)

Γq

(4.70)

In the paramagneti regime at high temperature, the suseptibility is expeted not to

depend on q, i.e. χ′(q) = χ′
, sine the thermal energy is muh higher than the ex-

hange energy [213℄. Within this approximation, only the spin autoorrelation funtion

is probed, i.e. Γq = Γ and it is also temperature independent meaning that the har-

ateristi time of the spin orrelations is temperature independent. Therefore Eq. E.16

simpli�es as:

λZ =
D
2

2vc
µ0g2µ2

B

kBT

Γ
χ′
∫

v⋆c

∑

β,γ

Aβγ(q)
d3q

(2π3)
(4.71)

Sine the suseptibility is expeted to follow a Curie-Weiss law, the spin lattie relax-

ation rate should be found temperature independent, as it is the ase for the gallium

garnet ompound Yb3Ga5O12 [192℄. A temperature independent behaviour of the spin

lattie relaxation rate appears when applying a small magneti �eld Bext = 50 mT in

the range 2 ≤ T ≤ 100 K, see Fig. 4.20. However, no plateau is evidened in zero �eld

measurements. This is due to the development of spin orrelations in the low tempera-

ture region of the paramagneti regime whih unexpetedly extends up to about 30 K,

i.e. ≈ 30 Tc. The strong dependene of the relaxation rate on Bext will be disussed in

the next setion.

An Orbah loal relaxation mehanism [192℄ ould be at the origin of an in�exion

point loated at ≈ 100 K, i.e. the relaxation of the magneti moments through a real

two-phonons proess with an exited rystal-eletri-�eld as intermediate state as ex-

plained and illustrated in the right panel of Fig. 4.21. Following Ref. [192℄, data are

desribed by the following equation:

λ−1
Z = A +Bme exp

[−∆CEF

kBT

]

, (4.72)

where ∆CEF = 39.8 meV is the energy splitting between the ground state and the

third exited rystal-eletri-�eld energy level

4

revealed in Se. 4.4, A is the saturation

4

Analysis using other CEF energy levels leads to a worse χ2
.
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value of λ−1
Z expeted at low temperatures in the paramagneti regime, and Bme refers

to the strength of the spin-lattie interation. We �nd Bme = 118(6) µs and A−1 =
0.28(1) µs−1

, whih is the plateau value inferred from longitudinal �eld measurements.

4.8.4 Anomalously slow paramagneti �utuations

In order to evaluate the harateristi time of the magneti �utuations in the param-

agneti phase, experiments in longitudinal �eld geometry are performed. Within the

approximation that the applied magneti �eld has no in�uene on the system, in the

extreme motional narrowing limit, i.e. νc ≫ γµ∆G where νc is the harateristi spin

�utuations rate and ∆2
G the variane of the Gaussian �eld distribution at the muon

site, the spin-lattie relaxation rate is given by the Red�eld formula [214℄:

λZ(ωµ = γµBext) =
2γ2

µ∆
2
Gνc

ω2
µ + ν2

c

,

⇔ λZ(ωµ = γµBext)

∆2
G

=
2νc

B2
ext +

(

νc
γµ

)2 . (4.73)

Spetra reorded in the paramagneti phase in zero or longitudinal �eld geometry were

analysed with the strethed exponential funtion introdued in Eq. 4.67. The results of

the �ts at Bext = 50 mT are displayed in Fig. 4.20. From baksattering experiments,

we have found a �utuation time τ0 ≈ 2×10−9
s. Following the seond line of Eq. 4.73,

the �eld dependene of the spin-lattie relaxation rate λZ(Bext) is expeted to be a

Lorentzian funtion with a half width at half maximum (HWHM) ν0/γµ at 1.2 K, as

displayed in Fig. 4.22. Therefore, the expeted value of λexp
Z at low �eld should be very

lose to the zero-�eld value. Surprisingly, this small magneti �eld of 50 mT strongly

modi�es the response of the system. Its in�uene extends up to about 30 K, i.e. ≈ 30 Tc.

Beause of this strong Bext dependene of λZ at low �eld for 2 < T < 30 K, we infer

the presene of spin �utuations with a orrelation time τc in the 100 ns range. The

�eld dependene of the spin-lattie relaxation rate λZ has been performed for several

temperatures, see Fig. 4.23. Data were analysed using the �rst line of Eq. 4.73 with

an additional onstant λZ,0 and the results are summed up in Tab. 4.5. They on-

�rmed the 100 ns time sale of the paramagneti �utuations introdued above. In

T (K) τc (µs) ∆G (mT) λZ,0 (µs
−1
)

2 0.32(3) 1.64(41) 0.211(20)

2.3 0.28(4) 1.72(14) 0.321(28)

5 0.3(5) 1.12(9) 0.197(8)

20 0.12(2) 1.03(11) 0.190(12)

Table 4.5: Results of the analysis of the �eld dependene of λZ . The orrelation time

τc = 1/νc, the variane of the �eld distribution ∆2
G and λZ,0 are reported here.

the inset of the left panel of Fig. 4.23 is shown a possible maximum around 0.002 mT.

We should expet a slowing down of the spin �utuations as the �eld inreases, and
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Figure 4.22: Field dependene of the spin-lattie relaxation rate at 1.2 K modelled with

a Lorentzian funtion with a HWHM of ν0/γµ = 0.49 T expeted from baksattering

measurements where a �utuation time τ0 ≈ 2.4× 10−9
s has been inferred. Therefore,

as shown by the red dotted line, the in�uene of a small magneti �eld, i.e. Bext = 50mT

should not in�uene the value of λZ . This is not the ase experimentally, referring to

Fig. 4.20.

therefore a derease of λZ . A low-�eld maximum has already been reported for in-

stane in Tb2Sn2O7 [75℄ and Tb2Ti2O7 [215℄, but also in the spinel ompound�the

magneti ions form the same lattie of orner-sharing tetrahedra as in the pyrohlore

ompounds � CdHo2S4 [212℄, the gallium garnet ompound Yb3Ga5O12 [192℄ or the

Kagome antiferromagnet Nd3Ga5SiO14 [216℄. An avoided level-rossing resonane might

be at play [217℄.However, this maximum was negleted in the analysis with a Lorentzian

funtion. Above 0.2 T, a slight inrease is observed assoiated with rystal-eletri-�eld

e�et (not shown).

Hene, the zero-�eld �utuations probed by µSR are haraterised by τc muh larger
than the time estimated from our quasielasti neutron sattering data, i.e. τ0. Nd2Sn2O7

is not a unique example of this feature [85℄. In fat, a wide range of orrelation times
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seems to be a signature of geometrially frustrated magneti materials.

4.9 Conlusions

Nd2Sn2O7 rystallises in the Fd3̄m rystallographi struture. It belongs to the geo-

metrially frustrated magneti family of the pyrohlore ompounds where the frustrated

lattie onsists of magneti ions sitting on a orner-shared tetrahedra network. No de-

viation of the stoihiometry has been shown by high resolution neutron di�ration

attesting the good quality of our sample. Nd2Sn2O7 exhibits a seond order magneti

phase transition at Tc = 0.91 K. Neutron time-of-�ight measurements have revealed an

isolated Kramers ground state doublet. No residual entropy was found at low temper-

atures, ontrary to the spin-ie ompound family. The study of magneti suseptibility

allows to extrat a Curie-Weiss temperature muh larger than the transition tempera-

ture, whih is not surprising in frustrated magnets, and predominant antiferromagneti

interations at play between the rare-earth ions. A long-range order has been evidened

with the presene of spontaneous osillations by zero-�eld µSR measurements and mag-

neti neutron di�ration experiments reveal an all-in-all-out magneti struture with

a spontaneous magneti moment at low temperatures mSP(T → 0) ≈ 1.7 µB. From

neutron baksattering measurements, we on�rm the value of the spontaneous mag-

neti moment at low temperatures as a proof of the absene of phase segregation in the

sample, but its temperature variation does not trak the one inferred from magneti

di�ration. No reliable interpretation an explain this di�erene yet. The time range

probed by this tehnique does not allow to exhibit the presene of spin dynamis in

the ordered phase whereas a spin orrelation time τ0 ≈ 10−9
s is found in the paramag-

neti phase. With µSR experiments, a strong in�uene of a small longitudinal applied

magneti �eld Bext = 50 mT on the temperature variation of the spin-lattie relaxation

rate λZ was not expeted and is a signature of magneti �utuations with a orrelation

time of order 100 ns in the paramagneti phase. Interestingly, the persistene of spin

dynamis in the ordered phase as evidened by the temperature independent plateau

in zero-�eld measurements was asribed to 1-dimensional spin �utuations. The T 3
de-

pendene of the spei� heat at low temperatures and the T 2
derease of the magneti

moment in the ordered phase supports the existene of antiferromagneti spin waves-

like exitations. These results do not go in line with a purely Ising system and ould

be understood with the existene of anisotropi exhange interations, as it has been

introdued in the exhange Hamiltonian desribing the quantum spin-ie, see Eq. 1.12.

Therefore, it an be pitured that quantum �utuations of the Ising spin lead to the

existene of a transverse spin oupling term. This hypothesis should be resolved with

the full haraterisation of the rystal-eletri-�eld Hamiltonian. The determination of

the ground state wavefuntions will determine the type of Kramers ions we are dealing

with.
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Tb2Ti2O7 is one of the most extensively studied pyrohlore ompound sine its mag-

neti ground state arouses questions: is it a realisation of a quantum spin-ie or does

a Jahn-Teller transition our at low temperatures? After an introdution on previ-

ous experimental and theoretial results, we will report X-ray synhrotron radiation

di�ration and µSR measurements.

5.1 Introdution

The pyrohlore titanate Tb2Ti2O7 has been one of the most intriguing ompounds over

the past few years. A Curie-Weiss law desribes the bulk suseptibility down to 50 K

with a Curie-Weiss temperature θCW = −19 K indiative of strong antiferromagneti

interations and a Tb

3+
magneti moment of 9.6 µB [109, 179℄. The analysis of the

rystal-eletri-�eld transitions measured by inelasti neutron sattering shows that

this ompound is haraterised by Ising spins, i.e. they are oriented along the trigonal

axis <111>, and the �rst exited energy level is a doublet loated at ≈ 1.5meV from the

ground state doublet, see Chapter 3. Usual Ising pyrohlore models introdued in Chap-

ter 1 annot aount for the paramagneti di�use sattering at T = 9 K [218℄. No long-

range magneti order was evidened by µSR spetrosopy down to T = 50 mK [219℄, in

agreement with previous measurements [178, 220℄, or neutron di�ration also down to

133
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Figure 5.1: Left: Neutron di�ration pattern reorded at T = 2.5 K (top) and neutron

di�ration patterns at T = 2.5 K (losed symbols) and 50 K (open symbols) where

data reorded deep into the paramagneti state at 100 K (bottom) were subtrated:

sinusoidal-like neutron di�use sattering is exhibited. Reprinted �gure with permission

from Ref. [178℄. Copyright 2015 by the Amerian Physial Soiety. Right: Normalised

intermediate sattering funtion measured by neutron spin eho experiments on a pow-

der sample of Tb2Ti2O7. Reprinted �gure with permission from Ref. [221℄. Copyright

2015 by the Amerian Physial Soiety.

T = 50 mK [221℄. Powder neutron di�ration data reorded at T = 2.5 K evidene dif-

fuse magneti sattering attributed to liquid-like spin orrelations restrited to a single

tetrahedron [178℄ as shown in the left panel of Fig. 5.1. Neutron sattering experiments

on a single rystal of Tb2Ti2O7 reveal strong anisotropi di�use sattering below 100 K

and down to 50 mK in the (hhl) sattering plane, whih ontains the following high

symmetry diretions for a ubi system: <00l>, <hh0>, and <hhh> [222℄; a di�use

sattering map reorded at T = 9 K is displayed in the left panel of Fig. 5.8, whih will

be disussed later. The observed magneti di�use sattering overs a broad region in re-

iproal spae, with a very high intensity at the reiproal point (0,0,2). Hene, the spin

orrelation length was dedued to be muh smaller than the unit ell lattie parameter

and assumed restrited to a single tetrahedra [221, 222℄. Therefore the name ooperative

paramagnet was oined, sine spin orrelations start to develop at high temperature and

persist down to the lowest ones. Sine then, the spin dynamis of Tb2Ti2O7 was inves-

tigated, �rstly by neutron spin eho revealing a slowing down of the spin �utuations

in the nanoseond time range [221℄ in a temperature range 400 ≤ T ≤ 600 mK, see

right panel of Fig. 5.1. At lower temperatures, a fration of roughly 10% of the total

magneti moments is frozen. The neutron spin eho results are onsistent with µSR
spetrosopy measurements [178, 219, 220℄. Weak longitudinal-�eld µSR experiments

have been performed on a rystal of Tb2Ti2O7 in Ref. [219℄: ontrary to the work of

Refs. [178, 220℄, the spetra were analysed with an exponential-power funtion, see

Eq. 4.67. The temperature dependene of the spin-lattie relaxation rate λZ and of the

exponent βse is displayed in Fig 5.2. An inrease of λZ is found in the temperature range

1 ≤ T ≤ 10 K, whih illustrates a signi�ant slowing down of the spin �utuations. The
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Figure 5.2: Investigation of the spin dynamis in Tb2Ti2O7 with 13 mT longitudinal

�eld µSR measurements: temperature dependene of the spin-lattie relaxation rate

λZ and the exponent βse. A slowing down of the spin �utuations is evidened as

the system enters in a paramagneti state haraterised by strong spin orrelations.

Reprinted �gure with permission from Ref. [219℄. Copyright 2015 by the Amerian

Physial Soiety.

temperature Tcp ≈ 2 K is indiated by a blak arrow in order to point out that the

ompound enters a strongly orrelated paramagneti state. An inrease of the exponent

βse is also evidened in the same temperature range, whih an be interpreted as an

additional proof of the progressive slowing down of the spin �utuations: indeed, in the

motional narrowing limit, i.e. if the spin dynamis is su�iently fast, spetra are usually

desribed with an exponential funtion (βse = 1) whereas a value of βse = 2 means that

the loal �eld at the muon site is stati. Finally, the temperature independent plateau

of λZ is indiative of persistent spin �utuations.

Independently, this spin freezing has also been evidened with neutron sattering ex-

periments on a triple axis spetrometer, where a redution of the quasielasti linewidth

ours for T ≤ Tcp [219, 223℄ near the spei� q-value (0,0,2) where previous neutron
sattering experiments found strong magneti di�use sattering [222℄. The tempera-

ture dependene of the magnetisation shows an irreversibility between zero-�eld and

�eld ooling below ≈ 200 mK [109, 224, 225℄, indiative of a spin freezing. A peak is

revealed in the real part of the a.. suseptibility at T ≈ 0.2 K [225, 226℄. The analysis

of the frequeny dependene of this maximum annot be performed with usual rela-

tions harateristi of a spin-glass transition [225, 227℄. Therefore, this maximum was

assoiated with a glassy behaviour rather than a spin-glass transition. The analysis of

the dissipative part of the suseptibility show two distint frequeny regimes: at low

frequeny, a peak ours at the same temperature as the one observed for the real part

of the suseptibility. However, in the high frequeny regime, the dissipative part of

the suseptibility vanishes at temperatures larger than 4 K, whih is higher than the

freezing temperature Tcp: this behaviour is asribed to the existene of very slow spin

dynamis. To onlude, spins orrelations start to develop at T = 50 K. A wide panels

of tehniques evidene a slowing down of the spin �utuations at a freezing tempera-

ture Tcp ≈ 2 K. Looking at the time sales probed by neutron sattering (≈ 10−11
s),
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neutron spin eho (≈ 10−9
s), µSR (≈ 10−8

s) and a.. suseptibility (≈ 10−2
s) experi-

ments, a broad range of spin orrelation times are involved whih is a ommon feature

of frustrated magnets.

The hallenge of the past few years was to determine the ground state of Tb2Ti2O7

and thus explain the lak of magneti ordering. Two proposals have been reently

disussed: the ompound would be an experimental realisation of the quantum spin-ie

state, see Se. 1.4, and the seond suggests a Jahn-Teller like strutural distortion at

low temperatures. Therefore in the following, we will disuss the two aforementioned

proposals.

5.2 Tb2Ti2O7: a Jahn-Teller transition?

5.2.1 Context

With the purpose to explain the lak of magneti long-range order in Tb2Ti2O7, Cha-

puis et al. [228℄ �rstly suggest from the analysis of the variation in the magneti entropy

that the ground state doublet is split, a reasonable hypothesis sine terbium is a non-

Kramers ion. This assumption ould support the existene of a strutural distortion at

low temperatures. The left panel of Fig 5.3 displays the temperature dependene of the

spei� heat Cp, whereas the inset shows the eletroni spei� heat, after subtration

of the nulear and phonons ontributions to Cp. An anomalous minimum is learly

evidened at Tt ≈ 0.15 K. The right panel of Fig. 5.3 displays the temperature depen-

dene of the entropy derived from the eletroni spei� heat. The overall variation

of the eletroni entropy variation ∆Selec = Rln(4) is not onsistent with the predi-

tions of the rystal-eletri-�eld energy levels sheme of Ref. [73℄ and Chapter 3 for

instane, sine the eletroni entropy should saturate at R ln(2) at low temperatures,

see Fig. 3 in Ref. [228℄. A splitting δCEF ≈ 2 K of the low-lying rystal-eletri-�eld

energy levels needs to be introdued to desribe the magneti entropy, as illustrated by

the blak dashed line. The lifting of the degeneray of the ground state has been inter-

preted as a signature of a strutural distortion, ruled by the perturbative Hamiltonian

Hper = −DtJ
2
Z , where Z refers to a ubi axis and Dt ≈ 0.27 K sales the strength of the

distortion [228℄. The latter value is onsistent with the one introdued in Ref. [229℄ in

order to desribe the quasielasti signal in inelasti neutron sattering measurements as

a CEF exitation lying at ≈ 2 K, and resulting from the splitting of the ground state.

The latter results were strongly debated in Ref. [230℄, laiming that the quasielasti

signal does not originate from a splitting of the ground state. They also argue that the

lak of entropy resulting from the simulation of an unsplit ground state doublet ould

be ompensated by the introdution of spins orrelations. This idea is supported by the

strong derease of the elasti onstants with temperature [231, 232℄, as illustrated in

the left panel of Fig. 5.4. Therefore, a Jahn-Teller transition driven by magnetoelasti

e�ets has been suggested.

Additional transverse �eld µSR measurements report the temperature dependene

of the normalised muon spin frequeny shift ∆ν/νext, where ∆ν = νµ − νext, νµ is

the frequeny of the muon spin preession around the loal �eld at the muon site

Bloc, and 2πνext = γµBext, with Bext being the transverse �eld applied along the [110℄

diretion. More details on this tehnique are given in Se. 2.6.6. The temperature
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Figure 5.3: Left: Temperature dependene of the spei� heat for a Tb2Ti2O7 rystal.

The inset displays a zoom over the lowest temperatures in order to show the unusual

upturn of the eletroni spei� heat, after subtration of the nulear and phonons on-

tributions to Cp. Therefore this behaviour is asribed to additional degrees of freedom.

Right: Temperature dependene of the entropy of eletroni origin Selec. The blak

dashed line is a predition following the rystal-eletri-�eld energy sheme desribed

in the main text. The inset shows the low temperatures part of the magneti entropy.

A plateau is exhibited at Tt, to be onneted with the uprise of the spei� heat below

Tt. Reprinted �gures with permission from Ref. [219℄. Copyright 2015 by the Amerian

Physial Soiety.

dependene of the normalised frequeny shift is shown in the right panel of Fig. 5.4.

The frequeny shift is negative and dereases with temperature from 10 K down to

the lowest temperatures, whih is onsistent with an inrease of the mean value of the

loal �eld at the muon site. However, an extremum is evidened at Tt = 0.15 K, as

a signature of an exoti transition. In the inset of Fig. 5.4 an irreversibility between

�eld ooling and zero-�eld ooling is shown, meaning the system enters a glassy state.

Moreover, the signi�ant value of λZ at low temperatures, see Fig. 5.2, is not onsistent

with a spin-glass transition, supporting the results of a.. suseptibility presented in

Se. 5.1.

Looking for suh a strutural transition, high resolution X-ray di�ration has been

performed by Ru� et al. [233℄ on a single rystal of Tb2Ti2O7. As illustrated in the left

panel of Fig. 5.5, they found a broadening of the Bragg peaks from 20 K down to 0.3 K,

interpreted as the development of spatial orrelations. The temperature dependene of

the inverse orrelation lengths are displayed in the right panel of Fig. 5.5. Furthermore,

as illustrated in the right panel of Fig 5.6, an anomaly in the temperature dependene

of the lattie parameter ours around T ≈ 15 K: the latter does not follow the usual

lattie ontration as the temperature is dereased. The authors of Ref. [233℄ laim

that below T ≈ 20 K, the system develops spatial orrelations as a signature of a Jahn-

Teller transition ourring at lower unreahable temperatures. On the other hand, X-ray

powder di�ration on a polyrystalline sample of Tb2Ti2O7 [234℄ shows no anomalous

negative lattie expansion [234℄, and does not support the onlusions of Ru� et al. [233℄.
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Figure 5.4: Left: Temperature dependene of the elasti onstants of Tb2Ti2O7. Data

reprodued from Ref. [232℄. Right: Temperature dependene of the normalised µSR
frequeny shift ∆ν/νext reorded for two applied magneti �elds along the [110℄ dire-

tion. An exoti transition is exhibited at Tt ≈ 0.15 K, whih ould be a signature

of a strutural transition. The inset fouses on the lowest temperatures to exhibit

an irreversibility between zero and �eld ooling, harateristi of a glassy behaviour.

Reprinted �gure with permission from Ref. [219℄. Copyright 2015 by the Amerian

Physial Soiety.

Figure 5.5: Left: Bragg peaks of a rystal of Tb2Ti2O7 reorded on a four-irle X-ray

di�ratometer for T = 0.3 and 20 K. The broadening of the Bragg peaks loated at

(12, 0, 0) (top) and (8, 8, 0) (bottom) is highlighted. Right: Temperature dependene of

the longitudinal and transverse parts of the inverse spatial orrelation lengths dedued

from the broadening of the (12, 0, 0) and (8, 8, 0) Bragg peaks. Reprinted �gures with

permission from Ref. [233℄. Copyright 2015 by the Amerian Physial Soiety.
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5.2.2 X-ray synhrotron radiation measurements

In order to orroborate or refute the results provided in Refs. [233, 234℄, we performed X-

ray synhrotron radiation measurements at the high resolution powder di�ratometer of

the Material Siene beamline (MS) at the Swiss Light Soure of PSI, see Se. 2.2.4. An

X-ray beam of wavelength λ = 0.49646 Å was used, where the �ux was maximum [140℄.

For this experiment, we used a sample of Tb2Ti2O7 denoted "C" in Refs. [123, 225, 228℄.

Details of the synthesis of this rystal an be found in Ref. [123, 228℄. A rushed

fragment of the Tb2Ti2O7 rystal and ≃ 18wt.% of silion powder was mixed and

ground to obtain a homogeneous mixture. The presene of silion helps in reduing the

Tb2Ti2O7 sample X-ray absorption. The speimen was loaded into a 0.3 mm diameter

glass apillary. The data were taken from room temperature down to 4K. A synhrotron

X-ray di�ration pattern reorded at T = 6 K is displayed in the left panel of Fig. 5.6.

Data were analysed with the FullProf ode [130℄ and Bragg peak shapes of both silion

and Tb2Ti2O7 were desribed by a Thompson-Cox-Hastings pseudo-Voigt funtion, see

Se. 2.3.7. Note that an additional free parameter was introdued and the seond line

of Eq 2.25 beomes:

H2
L = X tan θ + Y/ cos θ, (5.1)

where HL is the FWHM of the Lorentzian funtion, and X and Y refer to isotropi

strain and size parameters, respetively. Note that the geometry of our sample holder

lead to a strong absorption in the enter of the apillary. This gives a strong asym-

metry to the Bragg peaks at small angles, whih onsequently were analysed using two

idential phases for both the silion and Tb2Ti2O7 ompounds, introduing opposite

o�set perpendiular to the beam. Furthermore, isotropi Debye-Waller fators have

been used.

Results of the analysis of a spetrum reorded at 4 K are displayed in Tab. 5.1. We

have investigated the temperature dependene of the lattie parameter looking for the

emergene of a Jahn-Teller like transition. The relative hange of the lattie parameter

as a funtion of the temperature is shown in the right panel of Fig. 5.6. We de�ne:

∆alat
alat

=
alat(T )− alat(T = 20 K)

alat(T = 20 K)
, (5.2)

where alat(T = 20K) = 10.13681(7)Å. The ompound shows the expeted smooth ther-

mal ontration as it is ooled down with a plateau below ≈ 25 K to alat ≃ 10.1368 Å.

This goes in line with the work of Goto et al. [234℄ and does not follow the uprise of

∆alat
alat

put forward in Ref. [233℄. Data of Ru� et al. [233℄ predit

∆alat
alat

≈ 0.4×10−4
at T = 4 K.

Therefore, the lattie parameter would be at this temperature alat = 10.13700 Å. We

performed a Rietveld re�nement using this value (see Tab. 5.1) that shows that the

goodness of the analysis dereased when �xing the lattie parameter to this value.

This experiment was espeially designed to study the Bragg peak pro�les. In

Ref. [233℄, a broadening of the Bragg peak is laimed to appear at 20 K, whih inreases

with temperature dereasing down to 300 mK, see Fig. 5.5. This was interpreted as a

preursor of a strutural transition. In Fig. 5.7, we ompare the pro�les of the (8, 8, 0)
(left panel) and (12, 0, 0) (right panel) Bragg peaks reorded at 20 and 4 K, where learly
no broadening is shown. The full width at half maximum (FWHM) of the Bragg peaks

is of the order of 9 × 10−3
in reiproal units, to be ompared with the Bragg peaks
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Figure 5.6: Left: Synhrotron X-ray powder di�ration pattern of Tb2Ti2O7 reorded

at T = 6 K with a photon energy of 25 keV. The red solid line is the result of a

Rietveld analysis using FullProf and the blue solid line at the bottom gives the di�erene

between the data and the model. Tiks below the graph show the alulated peak

positions for Tb2Ti2O7 and Si (upper and lower rows respetively). The intensities

beyond 2θ = 40◦ have been enlarged by a fator of 10 in order to illustrate the quality of
the re�nement at higher angles. Piture reprodued from Ref. [235℄ with kind permission

of IOP Publishing. Right: Relative hange in the lattie parameter alat as a funtion of

temperature. The green squares refer to data obtained by Ru� et al. [233℄ on a rystal

of Tb2Ti2O7 reorded on a four-irle di�ratometer X-ray di�ratometer. The blue full

irles are data from Goto et al. [234℄ reorded on a polyrystalline sample of Tb2Ti2O7

with a X-ray powder di�ratometer. Finally, our data are displayed by red open irles.

displayed in Fig. 5.5, having a FWHM ≈ 0.02 in the same units. Therefore, we an

onlude that no broadening of the Bragg peaks is visible down to 4 K. Therefore, sine

the instrumental resolution is better in our ase rather than in Ref. [233℄, the response

of the samples used in Ref. [233℄ and here is di�erent. Consequently, no lear exper-

imental evidene an be brought to the existene or not of a Jahn-Teller transition.

5.3 Tb2Ti2O7: a quantum spin-ie realisation?

Some reent theoretial works have been developed to desribe the ground state of

Tb2Ti2O7, and they onlude that this ompound is a quantum spin-ie, see Se. 1.4.

First, we will present the exhange Hamiltonian introdued by S. Curnoe [58, 237℄.

Then following these works, a magnetisation plateau has been put forward as a signa-

ture of spin-ie orrelations, similarly to the lassial spin-ie. Finally, we will disuss

experimental results on the existene or not of this peuliar feature.

5.3.1 The exhange Hamiltonian

Sine the simple Ising model with antiferromagneti isotropi interations and the dipo-

lar spin-ie model both fail to desribe the di�use magneti sattering in the paramag-

neti phase [218℄, we present here some piees of the work of Curnoe [237℄, where an
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T (K) alat (Å) x Rp Rwp Rexp χ2

4 10.13688(5) 0.32777(9) 8.53 8.66 2.61 11.0

4 10.13700(F) 0.32779(12) 10.6 12.0 2.61 21.1

295 10.15735(10) 0.32720(11) 10.2 10.6 4.76 5.0

Table 5.1: Lattie parameter alat and position x of the oxygen atom O1 determined by

synhrotron X-ray di�ration at T = 4 and 295 K. R-fators are listed as indiators

of the quality of the �t, see Se. 2.3.7. The seond line refers to a Rietveld analysis

with the lattie parameter alat �xed to the value expeted from the anomalous lattie

expansion evidened in Ref. [233℄. This value is not onsistent with a good quality of

the re�nement. Note that the value of alat is slightly larger than the one usually found

in the literature. Reently it was reported that alat = 10.15529(1) Å [236℄.
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Figure 5.7: Comparison of the (8, 8, 0) and (12, 0, 0) X-ray Bragg peak pro�les measured

at 20 and 4 K for our Tb2Ti2O7 powder sample. The full width at half maximum of the

Bragg peak is 9 × 10−3
in reiproal lattie units. Pitures reprodued from Ref. [235℄

with kind permission of IOP Publishing.

e�etive spin-1/2 anisotropi exhange Hamiltonian has been developed, similar to the

one introdued in Eq. 1.12:

Hex = J1X1 + J2X2 + J3X3 + J4X4, (5.3)

where Ji are four independent anisotropi exhange interation onstants and Xi are

the exhange terms whih are invariants under spae group symmetries:

X1 = −1

3

∑

〈i,j〉
JizJjz,

X2 = −
√
2

3

∑

〈i,j〉
[Λij(JizJj+ + JjzJi+)

+Λ∗
ij(JizJj− + JjzJi−)

]

,

X3 =
1

3

∑

〈i,j〉

(

Λ∗
ijJi+Jj+ + ΛijJi−Jj−

)

,

X4 = −1

6

∑

〈i,j〉
(Ji+Jj− + Jj+Ji−), (5.4)
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where Λ12 = Λ34 = 1, Λ13 = Λ24 = exp(2iπ
3
) and Λ14 = Λ23 = exp(4iπ

3
). Note that for

X2, X3, X4 = 0, we reover the lassial Ising ase where all spins are pointing into or

out of the enter of the tetrahedron (J1 > 0), or the spin-ie ase with the two-in/two-

out spin on�guration (J1 < 0). The subsript z stands for the loal [111℄ axis and x, y
have been hosen to de�ne an orthonormal basis. The single tetrahedron approximation

is adopted here so that the summation over 〈i, j〉 in Eq. 5.4 is restrited to the four

magneti sites of a tetrahedron.

In order to understand the ground state of Tb2Ti2O7, four oupling onstants need

to be determined. This was suessfully done for the ase of Yb2Ti2O7 by analysing

the spin-wave dispersion in a magneti �eld [60℄ and for Er2Ti2O7 using the same

methodology [17℄ as well as analysing the di�use sattering intensity [195℄. In these

examples, the ground state doublet was desribed with an e�etive spin-1/2.
In the ase of Tb2Ti2O7, the total angular momentum is J = 6. Sine the ground

state is not well isolated from the �rst exited rystal-eletri-�eld energy level, the

ground state wavefuntions an no longer be ±1
2
but those introdued in Se. 3.2. Fol-

lowing the notations of Ref. [237℄, the exhange Hamiltonian for Tb2Ti2O7 is desribed

by oupling onstants labelled Ii rather than Ji, the latter notations kept for the e�e-

tive spin-1/2 ase:

HTb
ex = I1X1 + I2X2 + I3X3 + I4X4. (5.5)

Sine we fous on a single tetrahedron, and sine only two states are available for a

magneti ion with a ground state doublet, it results 24 = 16 olletive states. They are

ommonly written as [58, 238℄:

| ± ± ±±〉α ≡ |±〉1 ⊗ |±〉2 ⊗ |±〉3 ⊗ |±〉4, (5.6)

where α ≡ 1/2,Tb denotes whether we are using e�etive spin-1/2 or the whole wave-

funtions to desribe the ground state, and the indies (1,2,3,4) label the tetrahedron

magneti sites. An important property has been pointed out in Ref. [58℄: the deom-

position in terms of irreduible representations of the symmetry group of a tetrahedron

in the pyrohlore lattie is the same using tetrahedron states de�ned by the e�etive

spin-1/2 or the ground state wavefuntions of Tb2Ti2O7. This property holds for the

kind of non-Kramers ions involved here as it requires the Zeeman ket |1/2〉 to appear

in the ground state wavefuntions. Therefore a map between the states | ±±±± >1/2

and | ± ± ± ±〉Tb an be established. Using the ground state wave funtions |±〉 de-
termined in Se. 3.2, the matrix elements for J± vanish and therefore, omparing the

matrix elements of HTb
ex and Hex leads to:

J1 = 4I1j
2
1 , where j1 = 〈+|Jz|+〉 and J2,3,4 = 0. (5.7)

This orresponds to the lassial spin-ie ase or the all-in-all-out ase if I1 < 0 or

I1 > 0, respetively: none of these two states are aeptable for Tb2Ti2O7. However,

ontrary to the spin-ie ompounds, the ground state is not well isolated and an exited

rystal-eletri-�eld energy level lies at ∆ ≈ 1.5 meV, see Se. 3.2. Therefore, using

wavefuntions of the ground state (|±〉) and �rst exited ones (|↑↓〉), S. Curnoe [237℄
alulates the following matrix elements:

j1 = 〈+|Jz|+〉 = −3.21, j3 = 〈↑ |Jz|+〉 = −2.37,
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Figure 5.8: Left: Di�use sattering map reorded in the (hhl) plane at T = 9 K for

Tb2Ti2O7. Data at 100 K have been subtrated in order to only show di�use magneti

sattering. Reprinted �gure with permission from Ref. [222℄. Copyright 2015 by the

Amerian Physial Soiety. Right: the orresponding alulated di�use sattering map.

Reprinted �gure with permission from Ref. [237℄. Copyright 2015 by the Amerian

Physial Soiety.

j2 = 〈↑ |Jz| ↑〉 = 4.05, t = 〈↑ |J+|−〉 = 4.72. (5.8)

Note that the relative importane of the matrix element t is indiative of the signi�-

ant admixture of the �rst rystal-eletri-�eld level to the ground state. Consequently,

four states need to be onsidered per magneti ion site, leading to 256 states per tetra-

hedron. The exhange Hamiltonian HTb
ex is treated as a perturbation of the Stevens

Hamiltonian HCEF introdued in Se. 3.1. Therefore an e�etive Hamiltonian HTb
eff is

inferred restrited to the rystal-eletri-�eld ground state. The resulting exhange ma-

tries found using perturbation theory take the same form as the ones from the 1/2-spin
model. Consequently, a map between the 16 lowest energy eigenstates of HTb

eff and the

16 tetrahedron states of Hex is established. Analysing the di�use sattering maps for

Tb2Ti2O7 provides the exhange onstants Ii involved in HTb
eff (and HTb

ex ). Using the

map established between HTb
eff and Hex, and the matrix elements alulated in Eq. 5.8,

lead to the exhange onstants involved in the spin-1/2 model. Consequently, due to

the property of the wavefuntions of this kind of non-Kramers ion, the problem an be

mapped onto an e�etive spin-1/2 Hamiltonian.

The di�use sattering map in the (hhl) plane reorded at T = 9 K by Gardner

et al. [222℄ is displayed in the left panel of Fig. 5.8. In the right panel of the same

�gure is the orresponding alulated di�use sattering [237℄, in good agreement with

experimental data. The dedued exhange oupling onstants given in Kelvin units for

the spin-1/2 model in the single tetrahedron approximation are:

J1 = −10.2, J2 = −0.4,
J3 = 0.2, J4 = 0.6. (5.9)

Note that in the single tetrahedron approximation, half of the exhange paths are

omitted: the pyrohlore lattie an be deomposed into two tetrahedra networks A and
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Figure 5.9: Left: Illustration of the pyrohlore lattie where the existene of two dif-

ferent network of tetrahedra is highlighted. The network labelled A (red tetrahedra)

an be rotated by

π
2
along a ubi axis to reover the network labelled B (blue tetrahe-

dra). Reprinted �gure with permission from Ref. [2℄. Copyright 2015 by the Amerian

Physial Soiety. Right: Calulated di�use sattering map at T = 9 K to be ompared

with the experimental data displayed in the left panel of Fig. 5.8. Reprinted �gure with

permission from Ref. [239℄. Copyright 2015 by the Amerian Physial Soiety.

B di�ering from their orientation (a rotation of

π
2
along a fourfold ubi axis transform

a tetrahedra of network A into a tetrahedra of network B) as illustrated in Fig.5.9. A

magneti ion belongs to one tetrahedron of network A and one tetrahedron of network

B. Therefore, to ompensate for the missing exhange paths, it is a fair approximation

to divide the exhange oupling onstants in Eq. 5.9 by a fator two. To onlude,

Tb2Ti2O7 an be desribed by an e�etive spin-1/2 model revealing a spin-ie on�gu-

ration (J1 < 0). The existene of small transverse oupling terms are revealed that lift

the degeneray assoiated with the lassial spin-ie state. These transverse terms are

at the origin of quantum spin �utuations, ontrary to the lassial spin-ie where �ips

of the Ising spins only arise from thermal �utuations. To ompare with the e�etive

spin-1/2 nearest-neighbour exhange Hamiltonian introdued in Ref. [65℄ and disussed

in Se. 1.4, the following equations relate the exhange ouplings given in Kelvin units

in the two Hamiltonians as:

Izz = −1

6
J1 = 1.7, Iz± =

1

3
√
2
J2 = −0.094,

I±± =
1

6
J3 = 0.033, I± =

1

12
J4 = 0.05. (5.10)

For non-Kramers ion, Lee et al. [66℄ have predited a phase diagram by mean-�eld

theory at zero temperature as illustrated in Fig 5.10. With the exhange parameters

listed in Eq. 5.10, the quantum spin-ie phase is predited for Tb2Ti2O7.

Note that early work sueeded in desribing the spin orrelations in the param-

agneti phase at T = 9 K. In Ref. [240℄, isotropi exhange and dipolar interations

were taken into aount within the two �rst rystal-eletri �eld doublets. However,

this model predit the all-in/all-out magneti ordering at Tc = 1.8 K. For ompleteness,
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Figure 5.10: Zero-temperature phase diagram for non-Kramers ions predited in

Ref. [66℄. Here J‖ ≡ Izz, Jz± ≡ Iz±, J± ≡ I±, and J±± ≡ I±±. Note that Jz±
is taken to be zero. The red sphere roughly indiates the position of Tb2Ti2O7 in

the quantum spin-ie phase, using the parameters of Eq. 5.10. Piture modi�ed from

Ref. [55℄.

a work very similar to the one of Curnoe [237℄ has been developed in Ref. [239℄, and

lead to the same onlusions. The alulated di�use sattering intensity at T = 9 K is

displayed in the right panel of Fig. 5.9, also in good agreement with experimental data

shown in the left panel of Fig. 5.8.

Experimental proofs of a spin-ie on�guration have been brought out by Fennell

et al. [241℄ using polarised neutrons at T = 50 mK: pinh points have been observed

in the �non-spin �ip� hannel orresponding to the Ising ontribution of the spin to the

neutron sattering intensity. These pinh points are harateristi of algebrai dipolar

orrelations, and usually observable in lassial spin-ie ompounds, see Se. 1.3. There-

fore, two-in-two-out spin on�gurations are at play in Tb2Ti2O7. Besides, anisotropi

exhange interations slightly moving the spins out of the [111℄ diretion exist. These

transverse omponents have been evidened in the �spin-�ip� hannel, also with alge-

brai orrelations leading to pinh points at the Brillouin zone enter and haraterised

by a "two-up/two-down" spin on�guration. These observations have reently been

on�rmed in Refs. [242, 243℄.

5.3.2 Predition of a magnetisation plateau

An interesting property of the spin-ie ompounds has been established in Refs. [13,

244℄, whih predits the presene of a plateau in the �eld dependene of the magnetisa-

tion when a magneti �eld is applied in the [111℄ diretion. To understand this property,

the pyrohlore lattie an be seen as a superposition of triangular and Kagome planes

when we are looking along the [111℄ diretion, see the left panel of Fig. 5.11. Let us

onsider a tetrahedron: the magnetisation plateau orresponds to the alignment of one
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[111]

Figure 5.11: Left: Projetion of the network of orner-sharing tetrahedra along the

[111℄ axis in order to evidene the suession of triangular and Kagome planes. Spheres

of same olour represents magneti ions belonging to the same plane. Right: Field

dependene of the magnetisation for the lassial spin-ie Dy2Ti2O7 exhibiting a distint

plateau at low temperatures. Copyright IOP Publishing. Reprodued from Ref. [245℄

by permission of IOP Publishing. All rights reserved.

of the Ising spins in the diretion of the applied magneti �eld. Sine this spin an

be viewed as belonging to a triangular plane perpendiular to the [111℄ diretion, the

three remaining spins of the tetrahedron belong to a Kagome plane. They ful�l the

ie rule with two spins pointing into and two spins pointing out of the enter of the

tetrahedron. Therefore, the degrees of freedom live in the Kagome planes, de�ning the

so-alled "Kagome ie" state. This leads to a low temperatures residual entropy that

is lower than the one found in zero-�eld. As the �eld inreases, the ie-rule onstraint

is broken and the system hooses a on�guration where the magnetisation is saturated,

i.e. three spins pointing into and one pointing out of the enter of the tetrahedron, or

onversely. This property has been experimentally veri�ed in the ase of the lassial

spin-ie ompound Dy2Ti2O7 [245, 246℄, see the right panel of Fig. 5.11.

As explained in Se. 5.3.1, Tb2Ti2O7 ould be a realisation of a quantum spin-ie,

i.e. an ie rule spin on�guration with the existene of transverse exhange oupling

terms. Therefore, similarly to the lassial spin-ie, the observation of a plateau in the

�eld dependene of the magnetisation when a magneti �eld is applied along the [111℄

diretion would provide an experimental evidene of "two-in/two-out" spin orrelations

restrited to a single tetrahedron [247℄. Consequently, using the rystal-eletri-�eld

parameters for Ho2Ti2O7 [168℄ and resaled for Tb2Ti2O7, the wavefuntions of the

rystal-eletri-�eld states are alulated to de�ne a basis where the Hamiltonian of

interest is diagonalised. The latter takes into aount the Zeeman interation due to the

applied magneti �eld, antiferromagneti isotropi exhange (oupling I) and dipolar

interations. Calulations were restrited to a single tetrahedron (ITA approximation).

The alulated magnetisation urves are shown in the left panel of Fig. 5.12. An
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Figure 5.12: Left: Calulated �eld dependene of the magnetisation of Tb2Ti2O7 in

the single tetrahedron approximation (ITA) when Bext is applied along the trigonal

axis [111℄ for several temperature T= 20, 50, and 100 mK. Right: Same quantity

at T = 20 mK for several values of the exhange integral I. Data reprodued from

Ref. [247℄.

in�etion point is predited for T = 50 mK whereas at T = 20 mK a magnetisation

plateau should appear. In the right panel of Fig. 5.12, the magnetisation plateau at

T = 20 mK is shown as a funtion of the applied �eld for di�erent values of the

antiferromagneti exhange oupling onstant. The Curie-Weiss temperature in the

paramagneti regime is θCW = −0.19 K. To dedue an isotropi exhange onstant

between nearest neighbours, the rystal-eletri-�eld ontribution has been subtrated

of to give θexCW = −0.14 K, whih orresponds to I = −0.167 K [240℄. Note that a lower

value of the exhange oupling onstant, I = −0.083 K [73℄, has been put forward

from the analysis of the �eld dependene of the magnetisation and the temperature

dependene of the magneti suseptibility at high temperatures, i.e. negleting spin

orrelations. Nevertheless, a magnetisation plateau is expeted for values |I| ≤ |Ic| =
0.187 K [247℄. As for the lassial spin-ie ase, the interpretation of this magnetisation

plateau is attributed to the transition from the two-in/two-out Ising spin on�guration

in a single tetrahedron to a saturated state with a "three-in-one-out" spin on�guration.

These preditions have generated a lot of experimental studies searhing for the

magnetisation plateau as a signature of spin-ie like spin orrelations. Magnetisation

measurements have been performed by Lhotel et al. [225℄ and are reported in the left

panel of Fig. 5.13 for a single rystal of Tb2Ti2O7. The magneti �eld was applied in the

[111℄ diretion in the plane of a disk geometry to minimise demagnetisation e�ets. No

evidene of a magnetisation plateau is found down to 57 mK for a magneti �eld up to

8 T (not shown). Curves reorded at 57 mK and 100 mK (not shown) are very similar,

whih is not predited in Ref. [247℄ (see the left panel of Fig. 5.12). However, sine

anisotropi exhange is established, the isotropi exhange oupling I used in the left

panel of Fig. 5.12 to alulate the magnetisation urve ould be larger, and aording

to the right panel of Fig. 5.12, the predited magnetisation plateau is expeted at lower

temperatures. These experimental results are on�rmed by the work of Legl et al. [224℄,

where a vibrating-oil magnetometer was used in order to measure the magnetisation

down to 43 mK in applied magneti �eld along [111℄ up to 5 T. Further a.. magneti
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Figure 5.13: Left: Field dependene of the magnetisation of a rystal of Tb2Ti2O7 with

a magneti �eld applied along the [111℄ diretion at T = 57 mK (open red irles)

and 500 mK (full blue irles). Data reprodued from Lhotel et al. [225℄. Right:

Field dependene of the real part of the suseptibility for a rystal of Tb2Ti2O7 with

a magneti �eld applied along the [111℄ diretion at T = 16 mK. The blak arrows

loate the two peaks in µ0dM/dBext that delimit the weak magnetisation plateau. Data

reprodued from Yin et al. [226℄.

suseptibility measurements have been performed by Yin et al. [226℄ on a single rystal

of Tb2Ti2O7 with Bext parallel to the three-fold axis [111℄. The �eld dependene of

the real part of the suseptibility measured at T = 16 mK with an a.. �eld amplitude

of 0.94 mT is displayed in the right panel of Fig. 5.13. This quantity is a measure

of µ0dM/dBext: the two blak arrows indiate an in�etion point in the magnetisation

urve and therefore the �eld range delimited by these arrows is asribed to the predited

magnetisation plateau. However, this data should be integrated over Bext to give a more

signi�ant insight onto the magnetisation urve, see Se. 5.3.3.

5.3.3 µSR frequeny shift measurements

In this setion, we report transverse-�eld µSR measurements performed at the LTF

spetrometer of the SµS (PSI) in the temperature range 20 ≤ T ≤ 500 mK. We refer to

Se. 2.6.6 for tehnial details. On a silver dis is deposited a mosai of rystal plates

whose normal axis is a [111℄ axis: their thikness is about 1/3 mm and their lateral

size is up to 6 mm. The external magneti �eld Bext is applied parallel to the muon

beam whih is along one of the threefold <111> axis of the rystal. Fig. 5.14 shows

a µSR spetrum reorded at T = 20 mK with a magneti �eld Bext = 800 mT. We

reall that the muon polarisation funtion is desribed by the sum of two osillating

omponents: one aounting for the muons implanted in the sample and preessing

around the loal �eld at the muon site Bloc, and the seond for the muons stopped

in the sample surroundings, essentially the silver sample holder, whih preess around

a �eld lose to the external �eld. Therefore the data are desribed by the following

funtion:

a0P
exp
X (t) = a1 exp(−λX,1t) cos(2πν1t + ϕ) + a2 exp(−λX,2t) cos(2πν2t+ ϕ). (5.11)
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Figure 5.14: A typial transverse-�eld µSR asymmetry time spetrum reorded at T =
20 mK for a mosai of Tb2Ti2O7 rystals with Bext applied along a three-fold axis and

Bext = 800 mT. The blak solid line is a �t of Eq. 5.11 to the data. Piture reprodued

from Ref. [235℄ with kind permission of IOP Publishing.

The transverse relaxation rates λX,1 and λX,2 illustrate the damping of the osillations

and re�et the spread of muon frequenies arising from the �eld distribution, as already

explained in Se. 4.8. The analysis of the measured spetrum gives a1 = 0.192(13)
and a2 = 0.028(2). These initial asymmetries are found to be onstant when varying

the magneti �eld. Note that only ≈ 13% of the inoming muons are stopped in the

surroundings of the sample with ν2 = 108.46(1) MHz. This value is very lose to the

preession frequeny νext = γµBext/(2π) = 108.43 MHz expeted for muons subjet to

a �eld of Bext = 800 mT.

The purpose of this experiment was not to fous on the muon frequeny ν1 but on the
normalised muon frequeny shift Kexp = (ν1 − νext)/νext, introdued in Se. 2.6.6. The

�eld dependene of this quantity is displayed in Fig.5.15 at T = 20 and 500 mK. Below

Bext ≈ 0.6 T, an extra ontribution to Kexp appears for data reorded at T = 20 mK,

ompared to data reorded at 500 mK. This goes in line with the �rst magnetisation

urves reorded in Ref. [225℄ and displayed in the left panel of Fig. 5.13.

Note that the orretions of the demagnetising �eld are ompliated in our ase

sine the sample is not a pure ellipsoid, leading to an inhomogeneous demagnetisation

�eld. Consequently, we refrain to do it for our data. However, we reall the de�nition

of the frequeny shift introdued in Se. 2.6.6, see Eq. 2.48:

Kexp = Kµ + µ0αD
M

Bext

, (5.12)

where αD is a onstant, M is the magnetisation, and Kµ = K ′
dip is the muon Knight

shift that arises only from the dipolar �eld reated by the magneti moments inside the

Lorentz sphere. This �eld an be de�ned in terms of a �eld dipole tensor Dαβ
ri

assoiated

with site ri [160℄:

B′α
dip =

µ0

4π

1

vTb

∑

β

NL
∑

i=1

Dαβ
ri
mβ

i , (5.13)
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Figure 5.15: Field dependene of the normalised muon frequeny shift Kexp reorded

at T = 20 and 500 mK. The errors bars are smaller than the symbols. The data at

T = 20 mK shown by open blue irles have been measured after zero-�eld ooling in

inreasing Bext up to 1.5 T. Further data (lose blue irles) reorded after dereasing

Bext from 800 to 40 mT show no hysteresis. This is in ontrast to the temperature

dependene of Kexp measured at 60 mT after zero-�eld and �eld ooling, see inset of

the right panel of Fig. 5.4. Data at T = 500mK shown by red irles have been reorded

after heating the sample from T = 20 mK and Bext = 40 mT to T = 500 mK, after

whih the �eld was gradually inreased up to 1.5 T. Piture reprodued from Ref. [235℄

with kind permission of IOP Publishing.

where the sum runs over the NL magneti moments inside the Lorentz sphere, vTb is

the volume per terbium ion

1

and:

Dαβ
ri

= vTb

(

−δα,β
r3i

+
3rαi r

β
i

r5i

)

. (5.14)

The muon Knight shift an be expressed as:

Kµ = K ′
dip =

Bext ·B′
dip

B2
ext

. (5.15)

With our assumption,

1 mβ
i = vTbM

β
, where Mβ

is the β omponent of the total

magnetisation M per unit volume. In the paramagneti regime, Mβ = Mδβ,Z , where
the magneti �eld is applied along the Z axis. We derive:

Kµ = K ′
dip =

µ0

4π

(

NL
∑

i=1

DZZ
ri

)

M

Bext
, (5.16)

Therefore, ombining Eq. 5.12 and Eq. 5.16, the frequeny shift an be written as:

Kexp = µ0

[

αD +
1

4π

(

NL
∑

i=1

DZZ
ri

)]

M

Bext
. (5.17)

1

Note that we assume all the terbium ions to be magnetially equivalent, i.e. we onsider only one

type of magneti ion per magneti unit ell. Therefore, we adopt formula valid for Bravais latties.
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Figure 5.16: Open irles and bullets: produt −BextKexp = −2π∆ν/γµ dedued from

the 20 and 500 mK data displayed in Fig. 5.15, versus Bext. The experimental points

are linked by segments. Solid line: �eld dependene of the terbium magneti moment

measured at 16 mK for Bext applied along a [111℄ rystal diretion. As explained in

the main text, the latter urve is omputed from the data published by Yin et al [226℄.

Piture reprodued from Ref. [235℄ with kind permission of IOP Publishing.

Consequently, realling that Kexp < 0 here, we expet the produt −KexpBext to be

proportional to M . This quantity is displayed in Fig. 5.16. As disussed in Se. 5.3.2,

if there was a de�nitive plateau in the magnetisation, the produt would be �eld in-

dependent in a �nite �eld range. This is not observed. However, as indiated by the

up-arrow, a weak in�etion point is present for the 20 mK data at Bext ≃ 0.66 T. It

has disappeared at 500 mK. Yin et al. [226℄ have performed a.. magneti suseptibility

measurements on a rystal of Tb2Ti2O7 with the external �eld applied along [111℄. The

real part of the suseptibility, outside the linear regime, is expressed as:

χ′
ac = µ0

dM

dBext

, (5.18)

and therefore the magneti moment (see the blak solid line in Fig. 5.16), is dedued

by �eld integration of the data displayed in the right panel of Fig. 5.13 as:

m =

∫ Bmax

0

vTb

µ0
χ′
acdBext, (5.19)

where Bmax = 1.5 T. The blak down arrow indiates an in�etion point loated at

Bext = 0.4 T. Note that the data were orreted from demagnetising e�ets aording

to Ref. [248℄. However, the real part of the suseptibility is plotted versus the external

�eld. Following the note 35 of Ref. [226℄, the internal �eld at Bext = 0.59 T, i.e. the

seond maximum in the urve of the magnetisation derivative, is Bint = 0.53 T, i.e. a

relatively small shift of 60 mT. The geometry of our experiments gives rise to a muh

more important demagnetising �eld. As we found an in�exion point at 0.66 T while it

is found at ≈ 0.4 T in Ref. [226℄, we assume a demagnetising �eld of ≈ 0.3 T so that the

in�etion point of our data and those of Ref. [226℄ would oinide. Therefore, our µSR
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measurements and a.. suseptibility measurements of Ref. [226℄ reveal an in�etion

point loated in terms of the internal �eld at Bint ≈ 0.3 T. However, this result annot
allow us to draw a de�nitive onlusion whether the magnetisation plateau exists or

not.

5.4 Conlusions

The pyrohlore ompound Tb2Ti2O7 fails to order down to the lowest temperatures

despite a signi�ant Curie-Weiss onstant. Spin orrelations restrited over a single

tetrahedron exist deep in the paramagneti regime. On ooling the sample, a slowing

down of the �utuations was revealed by a large panel of tehniques overing an ex-

tended time range (neutron sattering, neutron spin eho, µSR and a.. suseptibility

measurements), suggesting that the ompound would enter a ooperative paramagneti

(or spin-liquid) state at roughly Tcp = 2 K.

Two di�erent ground states were proposed. One is that Tb2Ti2O7 would be an

experimental realisation of a quantum spin-ie. Pinh points evidened by polarised

neutron sattering are a proof of algebrai spins orrelations, harateristi of a spin-ie

on�guration. An anisotropi exhange Hamiltonian, onsidering an admixture of the

ground state and the �rst exited rystal-eletri-�eld level, and within the approxi-

mation of non-interating tetrahedra, leads to the predition of Ising spins onstrained

to satisfy the ie rule, with the existene of small transverse spin interation terms

lifting the degeneray expeted in a lassial spin-ie, i.e. the quantum spin-ie state.

This model aounts very well for the di�use neutron sattering in the paramagneti

regime. A magnetisation plateau has been predited when a magneti �eld is applied

along the [111℄ diretion, similarly to what is predited and observed in the ase of

the lassial spin-ie state. However, neither a.. suseptibility nor transverse �eld µSR
measurements were able to on�rm this predition. Only a weak in�etion point in the

�eld dependene of the magnetisation is found at ≈ 0.3 T. The model uses an isotropi

nearest-neighbour exhange onstant although the pyrohlore ompounds are found to

interat strongly anisotropially. As suggested in Ref. [225℄, inreasing the mean value

of the exhange onstant might derease the temperature at whih the magnetisation

plateau is expeted.

A seond proposal is the existene of a low-temperature tetragonal distortion along

the ubi axis, as suggested by spei� heat and inelasti neutron sattering measure-

ments. An anomaly in the frequeny shift of the muon spin preession revealed by

transverse µSR experiments and in the spei� heat ours at Tt ≈ 0.15 K. The om-

pound enters a glassy state, as on�rmed by d.. and a.. suseptibility measurements.

However, the latter experiments preludes a spin-glass transition. This anomaly ould

be a signature of a Jahn-Teller transition. The broadening of the Bragg peaks observed

for T ≤ 20 K as well as an anomalous lattie parameter expansion [233℄ support this

senario. However, these onlusions are not on�rmed by our synhrotron measure-

ments and X-ray powder di�ration results of Ref. [234℄. Therefore, no evidene of suh

a transition is revealed, at least down to 4 K.

As pitured in the left panel of Fig. 5.4, the elasti onstants derease below ≈
50 K [232℄. This property was also evidened in Ref. [249℄ where the Young modulus

strongly dereases in the same temperature range. Therefore strong magneto-elasti
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e�ets are at play in Tb2Ti2O7 and should be onsidered.



Chapter 6

General onlusions

This work was dediated to the study of geometrially frustrated magnets on a py-

rohlore lattie of hemial formula R2M2O7, where R is a rare earth and M = Ti

or Sn. We have foused our attention in this manusript on the rystal-eletri-�eld

ating at the rare earth site, the haraterisation of the ompound Nd2Sn2O7 with a

large panel of bulk and mirosopi measurements, and �nally added some information

on the puzzling ompound Tb2Ti2O7. In this �nal hapter, we sum up some important

results and disuss some perspetives of interest.

6.1 Beyond the Stevens Hamiltonian

We have �rst studied the rystal-eletri-�eld ating at the rare earth site in the py-

rohlore series R2M2O7. The aim was to analyse simultaneously, using a simple saling

law, published inelasti neutron sattering data and our own neutron time-of-�ight

measurements in the ase of the titanate or stannate ompounds, respetively, in order

to determine a single set of CEF parameters. The analysis of the CEF is important in

order to understand the low temperature properties of frustrated magnets: it provides

information on the magneti ground state through the CEF energy levels: in�uene or

not of the exited energy levels as in the terbium ase. It also gives the harater of the

spin anisotropy and the magnitude of the ground state magneti moment: redution of

the magneti moment in the ordered phase, strength of the dipolar interations. Finally,

it gives aess to the ground state wavefuntions used to determine the presene or not

of transverse exhange ouplings involved in the anisotropi exhange Hamiltonian for

instane. In the ase of the titanate series, a reliable set of CEF parameters allows us

to desribe the full set of available inelasti neutron sattering spetra and provides

spetrosopi fators in agreement with the spin anisotropy proposed in the literature.

The ase of the stannate series is slightly less onlusive: a single set of CEF parameters

predits an energy level sheme in agreement with the CEF transitions measured by

inelasti neutron sattering spetrosopy and onstitutes a good starting point to the

analysis of the neutron intensities. However, we should note that a lose but di�erent

set of CEF parameters is neessary in order to analyse inelasti neutron spetra for eah

investigated ompound, namely Tb2Sn2O7, Ho2Sn2O7 and published data of Er2Sn2O7.

Neutron time-of-�ight measurements have also been performed on Nd2Sn2O7. We

did not sueed to involve it in a global analysis with the aforementioned ompounds

154
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and also did not sueed to analyse simultaneously inelasti neutron sattering spetra

overing the full CEF energy levels. Sine the splitting between the ground state and the

�rst exited multiplets arising from the spin-orbit oupling ∆so = 236 meV is roughly

of the same order of magnitude as the overall splitting of the ground state multiplets,

i.e. the highest CEF energy level lies at ≈ 110 meV, at least a mixing between the

4I9/2
ground state and the

4I11/2 �rst exited multiplet

1

should be onsidered. Therefore, the

CEF Hamiltonian ating within both multiplets needs to be onsidered. Following the

work of Ref. [250℄, matrix elements within the two multiplets are omputed as:

〈J,mJ |H(J)
CEF|J,m′

J〉 =
∑

n,m

Bm
n 〈J,mJ |Om

n |J,m′
J〉, (6.1)

and,

〈(J + 1), m(J+1)|H(J+1)
CEF |(J + 1), m′

(J+1)〉 = ∆soδm(J+1),m
′

(J+1)
+

∑

n,m

Bm
n 〈(J + 1), m(J+1)|Om

n |(J + 1), m′
(J+1)〉, (6.2)

where H(J)
CEF and H(J+1)

CEF refer to the Stevens Hamiltonian determined in Eq. 3.12 and

ating on the ground state and �rst exited multiplets within the Zeeman basis |J,mJ〉
and |(J + 1), m(J+1)〉, respetively.2 The J-mixing e�et arising from the oupling

between the two multiplets is aounted for with the mixing HamiltonianH(J),mix
CEF ating

on the ground state multiplet. However, we annot use anymore the CEF Hamiltonian

de�ned in terms of Stevens operators in Eq. 3.12, sine the operator equivalent method

derived from the Wigner-Ekart theorem used in App. B is only available within the

|J,mJ〉 basis. Here, we have to alulate o�-diagonal matrix elements between the

|J,mJ〉 and |(J + 1), m(J+1)〉 basis: we need to go bak to a general expression of the

CEF Hamiltonian introdued in Eq. B.11, and ombining Eq. B.10 and Eq. B.12:

HCEF = − e

4πε0

∑

j

∑

n

n
∑

m=−n

γnmp
m
n f

m
n (xj, yj, zj), (6.3)

where pmn is a prefator, fm
n (xj , yj, zj) a polynomial funtion, and the index j refers to

the sum over the 4f eletrons (see App. B). Therefore, H(J),mix
CEF is omputed as:

〈J,mJ |H(J),mix
CEF |(J + 1), m′′

(J+1)〉 =

− e

4πε0

∑

n,m

γnmp
m
n 〈J,mJ |

∑

j

fm
n (xj, yj, zj)|(J + 1), m′′

(J+1)〉. (6.4)

The latter equation is simpli�ed using the Wigner-Ekart theorem in its more general

form:

1

For a given ion with a 4f eletri shell less than half-�lled, the total angular momentum of the

�rst exited multiplet is equal to (J + 1) [163℄.
2

We reall that −J ≤ mJ ≤ J and −J − 1 ≤ m(J+1) ≤ J + 1
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〈J,mJ |
∑

j

fm
n (xj , yj, zj)|(J + 1), m′′

(J+1)〉 =

(−1)J−mJ
√
2J + 1〈J ||f 0

n(xj , yj, zj)||J + 1〉
(

J n J + 1
−mJ m m′′

J+1

)

, (6.5)

where 〈J ||f 0
n(xj , yj, zj)||J + 1〉 are oe�ients tabulated in Ref. [163℄, and the matrix

element is the 3j Wigner oe�ient. These oe�ients vanish if m′′
J+1 +mJ −m 6= 0.

Therefore, the total CEF Hamiltonian an be written in the following matrix form:







〈J,mJ |H(J)
CEF|J,m′

J〉 〈J,mJ |H(J,mix)
CEF |(J + 1), m′′

(J+1)〉

〈(J + 1), m(J+1)|H(J+1,mix)
CEF |J,m′

J〉 〈(J + 1), m(J+1)|H(J+1)
CEF |(J + 1), m′′

(J+1)〉






.

Note that in the ase of the neodymium ompound, the dimension of this matrix is

d = (2J + 1)(2J + 2) = 110. To ompare with the approximation made in Chapter. 3,

the highest matrix dimension is in the ase of the holmium ion where d = 2J +1 = 17.

6.2 Observation of spontaneous osillations

We have reported in this work that the pyrohlore ompound Nd2Sn2O7 exhibits a

seond-order magneti transition at Tc = 0.91 K. Neutron di�ration experiments re-

veal an all-in-all-out spin on�guration. The long-range nature of the magneti order

is on�rmed by the observation of spontaneous osillations in zero-�eld µSR measure-

ments. If the latter result is not surprising for a magnetially ordered ompound as seen

in Gd2Ti2O7 [112℄ and Gd2Sn2O7 [116℄, other pyrohlore ompounds do not display any

spontaneous wiggles despite the presene of magneti Bragg peaks suh as Yb2Ti2O7,

Yb2Sn2O7 and Tb2Sn2O7. An explanation for the latter ompound has been put for-

ward onsidering the dynamial nature of the loal �eld jumping between two opposite

on�gurations [75℄. Following the piture of the dumbell model introdued in Chap-

ter 1, the authors of Ref. [251℄ generalise in a reent paper the onept of fragmentation

of the magneti �eld assoiated to the magneti moments for Ising-like pyrohlore om-

pounds. Fousing on a single tetrahedron, the magneti moment density M an be

written aording to the Helmholtz deomposition, i.e. a url-free � or divergene-full

� and a divergene-free omponents [251℄ that is to say a transverse and a longitudinal

part of the loal magnetisation:

M = ∇Ψ+∇×Q = Mm +Md. (6.6)

The �rst ontribution Mm arises from the gradient of a salar potential and repre-

sents the resulting magneti harge of the dumbell model, and the seond one Md, the

divergene-free part, is a dipolar �eld. In the trivial ase of the ie rule, i.e. the two-

in/two-out spin on�guration, the longitudinal part of the deomposition vanishes, i.e.

Mm = 0 and we have ∇ ·B = ∇ ·M = 0. In the spin-ie ase, an exitation onsists

on breaking the ie-rule by �ipping a spin, and thus lead to the nuleation of a pair

of magneti monopoles. The two omponents of the deomposition of Eq. 6.6 do not
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Figure 6.1: Illustration of the three-in-one-out spin on�guration (left) in terms of the

dumbell model (middle) and Helmholtz deomposition into a stati magneti harge

modelling the long-range order and a �utuating dipolar �eld illustrating monopole

dynamis. Piture taken from Ref. [251℄.

vanish, as illustrated in Fig. 6.1, leading to the oexistene of a stati �eld arising from

the magneti harge at the enter of the tetrahedron and a dipolar �eld illustrating the

dynamial nature of a �uid of magneti monopoles. Then, when two monopoles are nu-

leated, i.e. the all-in-all-out spin on�guration, the divergene-free part is suppressed

and only the longitudinal part of the deomposition survives, i.e. a loal stati �eld

arising from the entral magneti harge leading to a magneti long-range order, with-

out a dynamial dipolar �eld. Therefore, sine the muon spin preession ours around

only a stati �eld, spontaneous osillations are observed as in the ase of Nd2Sn2O7.

On the other side, the �utuations of the dipolar �eld driven by the magneti monopole

dynamis ould lead to the absene of the expeted osillations in zero-�eld µSR mea-

surements. Let us fous on the ase of Yb2Ti2O7 and Yb2Sn2O7 where the spontaneous

magneti moment msp(0) has been found to lie at 44◦ and 65◦ with a magnitude of 1.15

and 1.1 µB, respetively, see Chapter 1. The projetion of the spontaneous magneti

moment over the [111℄ axis lead to m111(0) = 0.83 and 0.46 µB, respetively. Hene,

the magnitude of the transverse part of the Helmholtz deomposition is not negligible

and may explain the absene of spontaneous osillations in the magneti ordered state.

In ontrast, m111(0) = 5.3 µB for Tb2Sn2O7 and the origin of the dynamial nature of

the loal �eld ould not be supported with this interpretation.

Note that we do not disuss the ase of Er2Sn2O7 sine the long-range nature is

not fully established at the time of writing, and Er2Ti2O7 where the shape of the µSR
spetra is misunderstood and ould be assoiated to a omplex �eld distribution at the

muon site.

6.3 Origin of spin dynamis

In the ase of Ising spins with antiferromagneti interations, the all-in-all-out magneti

struture has been predited with a magneti propagation wavevetor kmag = (0, 0, 0),
see Chapter 1, in agreement with our neutron di�ration analysis on Nd2Sn2O7. How-

ever, this piture is barely ompatible with �rst, the persistene of spin dynamis re-

vealed by the temperature independent behaviour of the spin-lattie relaxation rate

inferred from µSR experiments and asribed to one-dimensional spin loops exitations,

and seondly with the magnon-like dependene observed in the low temperature range

of the spei� heat.

Nd2Sn2O7 is a Kramers ion, i.e. energy levels are at least double degenerate. Hene,
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the ground state doublet an be desribed by an e�etive spin Sµ
(µ = x, y, z) [163℄.

As mentioned in Chapter 3, wavefuntions of a given doublet are related by an odd

time reversal operator. However, the nature of the Kramers ground state doublet is

de�ned by the symmetries of the loal point group at the rare earth site, here D3d whih

are generated by a threefold symmetry axis C3, a mirror M and an inversion enter I.
Looking how the e�etive spin operator is transformed under these symmetries de�nes

the nature of the doublet. In most ases, these transformations operate as follows:

C3, I : Sµ → Sµ

M : Sµ → −Sµ. (6.7)

Therefore, the e�etive spin behaves as a magneti dipole and the ground state doublet

is alled dipolar. The authors of Ref. [252℄ have onsidered an other kind of Kramers

doublet, the dipolar-otupolar doublet where the symmetries of the point group at on

the e�etive spin in the same manner as de�ned in Eq. 6.7 exept for the y omponent

of the e�etive spin under a mirror operation:

M : Sy → Sy. (6.8)

The authors of Ref. [252℄ have expressed Sy
in terms of an otupolar tensor, hene

the doublet denomination. Moreover, they have shown that in the ase of the point

group D3d, if J = 9/2 or 15/2, if the rystal �eld parameter B2
0 < 0, and if this pa-

rameter is larger than the other rystal-eletri-�eld parameters involved in the Stevens

Hamiltonian of Eq. 3.12, then the Kramers ground state is a dipolar-otupolar dou-

blet. As seen in Chapter 3, this is the ase of Dy2(Ti,Sn)2O7. Whether Nd2Sn2O7 is

a dipolar-otupolar ground state doublet or not is an open question. Despite the fat

that we do not sueed to inlude this ompound in our global analysis looking for

a single set of CEF parameters, and sine onsidering the e�et of exited multiplets

was out of the sope of this work, we may assume that Nd2Sn2O7 is losely related to

Nd2Ir2O7, the latter ompound ful�lling the ondition of a dipolar-otupolar Kramers

ground state [253℄.

The aim is to diagonalise the general anisotropi exhange Hamiltonian introdued

in Eq. 1.12 in the spei� ase of a dipolar-otupolar doublet. This Hamiltonian an

be redued by means of the symmetry properties of the e�etive spin to the so-alled

XYZ model:

HXYZ =
∑

i,j

J̃xS
x
i S

x
j + J̃yS

y
i S

y
j + J̃zS

z
i S

z
j , (6.9)

where Izz = J̃z, I± = −1
4
(J̃x + J̃y), I±± = 1

4
(J̃x − J̃y), and Iz± = 0. Therefore, using

quantum Monte Carlo alulations, the authors of Ref. [252℄ have omputed the XYZ

phase diagram, illustrated in Fig. 6.2. In a spei� range of parameters the all-in-all-out

phase is predited, thus oexisting with the presene of transverse exhange oupling

onstants and ould slightly tilt the spins away from its Ising diretion, explaining

the dynamis observed in the ordered phase. Therefore, the determination of these

exhange parameters should be interesting for Nd2Sn2O7.
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Figure 6.2: Phase diagram resulting from the XYZ model. The dotted line refers to the

XXZ model introdued by Hermele et al. [54℄, see Chapter 1. All-in-all-out, quantum

spin ie, and otupolar antiferromagneti phases are predited. Reprinted �gure with

permission from Ref. [252℄. Copyright 2015 by the Amerian Physial Soiety.

6.4 A magneto-elasti mode: solving the Tb2Ti2O7

ase

We have seen in Chapter. 5 that no broadening of Bragg peaks exist down to T = 4 K

and thus the Jahn-Teller transition expeted at lower temperatures is not on�rmed.

The senario proposing that Tb2Ti2O7 is a realisation of a quantum spin ie is put in a

di�ult position sine no lear evidene of a magnetisation plateau has been evidened.

Using polarised neutrons on a triple-axis spetrometer, a reent work [236℄ has revealed

the existene of a dispersive exitation slightly above the �rst exited rystal-eletri-

�eld energy level at T = 50 mK. This mode arries magneti transverse �utuations

in the wavevetor region (220) whereas a transverse phonon-like mode ontributes at

higher q-values. Sine these two ontributions overlap, the authors of Ref. [236℄ suggest
they have a ommon origin, i.e. a magneto-elasti mode (MEM) as it arries both

magneti and strutural �utuations.

6.5 New perspetives: the spinel ompounds

An interesting diretion to prospet is the study of spinel ompounds of hemial for-

mula CdR2X4 where R is a lanthanide and X = S or Se. They have the same magneti

frustrated lattie as the pyrohlore ompounds, i.e. magneti ions sit on a orner-

sharing tetrahedra network, but the loal environment around the rare earth ion is dif-

ferent leading to di�erent rystal-eletri-�eld properties, see the left panel of Fig. 6.3.

For instane, whereas the pyrohlore ounterpart Er2Ti2O7 exhibits a magneti long-

range order at Tc = 1.2 K, see Chapter 1, a spin-ie behaviour has been disovered in

CdEr2Se4 [254℄ sine no long-range order is evidened by spei� heat measurements and

the residual magneti entropy is in agreement with the predition of the two-in/two-out

lassial spin ie ground state. Hene, the spin anisotropies in spinel ompounds that

arise from the rystal-eletri-�eld seem drastially di�erent to those of the pyrohlore
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Figure 6.3: Left: loal environment at the rare earth site of spinel ompounds of hem-

ial formula CdR2X4, where R is a lanthanide and X = S, Se. Cd, R, and X are

displayed by green, blue, and red spheres respetively. Right: temperature depen-

dene of the spei� heat measured on CdHo2S4 showing the magneti transition at

Tc = 0.87 K, and displayed on the left ordinate axis by half-�lled blue irles. The

temperature behaviour of the spin-lattie relaxation rate dedued from zero and 5 mT

longitudinal �eld µSR measurements is reported on the right ordinate axis with empty

and full red irles, respetively. Piture modi�ed from Ref. [212℄.

ompounds. Therefore, looking for new exoti magneti ground states, a systemati

study of the ompounds Cd2R2X4 (where R = Ho or Yb and X = S or Se) has been

undertaken during this PhD thesis inluding bulk and µSR measurements. As an ex-

ample, if holmium based pyrohlore ompounds are undoubtedly lassi�ed as lassial

spin-ie, CdHo2S4 shows a magneti transition at Tc = 0.87 K. In addition, and simi-

larly to Nd2Sn2O7, unidimensional spin loops exitations are argued to be at the origin

of spin dynamis, sine the spin lattie relaxation rate inferred from µSR experiments

is temperature independent, as shown in the right panel of Fig. 6.3.



Appendix A

Crystallography of the pyrohlore

ompounds

Details of the rystallographi struture of the pyrohlore ompounds are provided in

this appendix. We reall that magneti ions lie at the verties of a orner-sharing tetra-

hedra network giving rise to a realisation of a three dimensional geometrially frustrated

lattie. The generi hemial formula is R2M2(O1)6(O2) � the two nonequivalent rys-

tallographi sites for oxygen atoms are labelled O1 and O2 � where R is a magneti

ion, a rare earth, and M = Ti or Sn in this work. The pyrohlore ompounds rys-

tallise in the fae entred ubi lattie (f), labelled F in the Bravais notation. The

spae group is Fd3̄m, where the rare earth ions oupy the trigonal Wyko� site 16c,
haraterised by the loal point group D3d. We have hosen the origin of the lattie at

the site symmetry .3̄m, and at the Wyko� site 16c of the atom M : this orresponds

to the origin 2 in the International Tables for Crystallography. The list of the atomi

positions in the Wyko� notations, the loal site symmetry and oordinates in the unit

ell are given in Tab. A.1. To reover all the atomi positions in the unit ell, one has

to apply the lattie translations assoiated to the f struture (1
2
, 1
2
, 0), (1

2
, 0, 1

2
), and

(0, 1
2
, 1
2
). The unit ell gathering all the atoms is shown in the left panel of Fig. A.1.

Oxygen atoms O1 loated in the 48f site in Wyko� notations have a parameter x to be

de�ned, i.e. x ≈ 1/3 in our ase, and are rare-earth neighbours loated in the viinity

of a plane perpendiular to the loal trigonal [111℄ axis, as illustrated in the right panel

of Fig. A.1, where the loal environment at the rare earth site is shown. We will de�ne

this diretion as the quantisation axis z. In Fig. A.2 is displayed a projetion along the

[111℄ axis of the pyrohlore struture revealing a sequene of alternatively triangular

and Kagome planes, where the magneti ions sit.

161
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Atoms Wyko� sites Site symmetry oordinates

R 16d .3̄m
1

2
,

1

2
,

1

2

1

4
,

3

4
,0

3

4
,0,

1

4
0,
1

4
,

3

4

M 16c .3̄m 0,0,0
3

4
,

1

4
,

1

2

1

4
,

1

2
,

3

4

1

2
,

3

4
,

1

4

x,
1

8
,

1

8
x̄+

3

4
,

1

8
,

5

8

1

8
,x,

1

8

5

8
,x̄+

3

4
,

1

8

1

8
,

1

8
,x

O1 48f 2.mm
1

8
,

5

8
,x̄+

3

4

7

8
,x+

1

4
,

3

8

7

8
,x̄,

7

8
x+

3

4
,

3

8
,

3

8

x̄+
1

2
,

7

8
,

3

8

7

8
,

3

8
,x̄+

1

2

3

8
,

3

8
,x+

3

4

O2 8b 4̄3m
3

8
,

3

8
,

3

8

1

8
,

5

8
,

1

8

Table A.1: Atomi positions in Wyko� notations, point symmetry and Cartesian o-

ordinates of atoms belonging to the primitive ell. The two types of oxygen atoms are

labelled O1 and O2. Note that x, whih is used to speify the O1 oxygen oordinates, is

a free parameter. Both the rare earth ions R and the atoms M are loated at positions

of symmetry 3̄m. We take the atom M at the origin of the lattie.

[111]

R

M

O

Figure A.1: Left: Crystallographi struture of the pyrohlore ompound R2M2O7. The

blue, red and green spheres show the rare earth magneti ions, the atoms M =Ti or Sn,
and the oxygen atoms, respetively. Right: Loal environment at the rare earth site.

The threefold symmetry axis [111℄ is the quantisation axis.
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[111]

Figure A.2: Projetion of the pyrohlore

struture along the [111℄ axis: in this

panel is only shown magneti ions belong-

ing alternatively to triangular (red and

green spheres) and Kagome (blue spheres)

planes.



Appendix B

The point harge model

In this appendix, we fous our attention on the determination of the rystal-eletri-

�eld Hamiltonian HCEF. The rystal-eletri-�eld ating at the rare earth site results

from the surrounding eletri harge distribution, see the left panel of Fig. 3.1. The

symmetry at the rare earth site is de�ned by the point group D3d. The z axis is taken

to be the loal trigonal axis [111℄. We will assume that the eletri �eld distribution

results from point harges surrounding the magneti ions. The CEF potential taken at

a lattie point (r, θ, φ) lose to a magneti ion is alulated as:

VCEF(r, θ, φ) =
∑

i

qi
|Ri − r| , (B.1)

where the sum runs over the surrounding harges loated at a distane Ri from the rare

earth site. The origin is taken at the rare earth site. Fig. B.1 skethes the di�erent spa-

tial variables of the problem. Thus, within the assumption that Ri ≫ r the Coulombi
potential an be developed as [255℄:

1

|Ri − r| =
∞
∑

n=0

rn

Rn+1
i

Pn(cosωi), (B.2)

where Pn(cosωi) are the Legendre polynomials, ωi is the angle between Ri and r and

related to their spherial oordinates as:

cosωi = cos θ cos θi + sin θ sin θi cos(φ− φi) (B.3)

Thus, using the formula known as the spherial harmoni addition theorem, see for

instane Ref. [256℄, Legendre polynomials are related to the spherial harmonis as:

Pn(cosωi) =
4π

(2n+ 1)

n
∑

m=−n

(−1)mY −m
n (θi, φi)Y

m
n (θ, φ). (B.4)

The Legendre polynomials are de�ned with the Rodriguez formula [256℄:

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n, (B.5)

where here z = cosωi. The assoiated Legendre polynomials are de�ned as:

Pm
n (z) = (−1)m(1− z2)m/2 dm

dzm
Pn(z). (B.6)

164
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z  || [111]
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θ i
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Figure B.1: Loal frame with the origin taken at the rare earth site. The z axis is

parallel to the [111℄ diretion, a loal trigonal symmetry axis at the rare earth site.

The rystal-eletri-�eld potential is alulated at the lattie point (r, θ, φ), displayed
in blue. The oordinates (Ri, θi, φi) of a surrounding eletri harge are shown in red.

Note that Pn(z) ≡ P 0
n(z). Thus, the spherial harmonis result from the assoiated

Legendre polynomials as [164℄:

Y m
n (θ, φ) = (−1)(m+|m|)/2

[

(2n+ 1)(n− |m|)!
2(n+ |m|)!

]
1
2 1

(2π)
1
2

P |m|
n (cos θ) exp(imφ). (B.7)

Therefore the CEF potential is written as:

VCEF(r, θ, φ) =
∑

n

n
∑

m=−n

rnγ′
nmY

m
n (θ, φ) where,

γ′
nm =

∑

i

4π

(2n+ 1)

qi

R
(n+1)
i

(−1)mY −m
n (θi, φi). (B.8)

Looking at Eq. B.7, imaginary oe�ients are present. In order to avoid them later, we

reast Eq. B.8 in terms of tesseral harmonis Z l
n de�ned as:

Z0
n = Y 0

n ,

Z±|m|
n =

√

±1

2
[Y −|m|

n ± (−1)|m|Y |m|
n ], (B.9)

where we use the onvention

√
−1 = i. Therefore, Eq. B.8 transforms into:

VCEF(r, θ, φ) =
∑

n

n
∑

m=−n

rnγnmZ
m
n (θ, φ), where

γnm =
∑

i

4π

(2n+ 1)

qi

R
(n+1)
i

Zm
n (θi, φi). (B.10)
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Then, the perturbative CEF Hamiltonian ating on the magneti ion is:

HCEF = − e

4πε0

∑

j

VCEF(rj, θj , φj), (B.11)

where the summation runs over eletrons of the un�lled 4f eletroni shell.

We fous in the following on the ground state multiplet de�ned by the basis |L, S, J,mJ〉.
In order to alulate matrix elements of HCEF within this basis, we use the operator

equivalent method whih derives from the Wigner-Ekart theorem [163℄. The tesseral

harmonis an be expressed in terms of Cartesian oordinates:

∑

j

rnZm
n (θj , φj) =

∑

j

pmn f
m
n (xj , yj, zj), (B.12)

where pmn is a prefator and fm
n (xj , yj, zj) a polynomial funtion (see Tab.8 of Ref. [164℄

for instane). The expressions of Zm
n an be found for instane in Ref. [164℄. The

method onsists in replaing oordinates x, y, and z by the operators Jx, Jy, and Jz.
1

Note that we must take into aount the nonommutation of these operators. Therefore,

produts involving for instane xy must be replaed by a linear ombination of JxJy.

Consequently, we have:

〈L, S, J,mJ |
∑

j

rnZm
n (θj , φj)|L, S, J,mJ〉 ≡ Θn〈rn〉〈L, S, J,mJ |Om

n |L, S, J,mJ〉,

(B.15)

where Θn (denoted in Ref. [164℄ as αJ , βJ and γJ for n = 2, 4, 6, respetively) are the
Stevens multipliative fators given in Tab. B.1, 〈rn〉 is the expetation value of the

nth power distane between the nuleus of the magneti ion and the 4f eletroni shell.

The latter has been omputed in Ref. [257℄ and is listed in Tab. B.2.

The Stevens operators are labelled Om
n and are expressed in terms of powers of Jz,

J+, and J−. As example, we fous on Z0
2 :

∑

j

r2jZ
0
2 (θj, φj) =

∑

j

f 0
2 (xj , yj, zj) =

1

4

√

5

π
(3z2−r2) ≡ Θ2〈r2〉[3J2

z −J(J+1)]. (B.16)

Therefore, the CEF Hamiltonian an be expressed in terms of Stevens operators:

HCEF =
∑

nm

[Am
n 〈rn〉Θn]O

m
n (B.17)

1

Rather than using Jx and Jy, we introdue the raising and lowering spin operators de�ned as:

J+ = Jx + iJy,
J− = Jx − iJy. (B.13)

Therefore, matrix elements an be omputed as:

J+|L, S, J,mJ〉 =
√

J(J + 1)−mJ(mJ + 1)|L, S, J,mJ + 1〉,
J−|L, S, J,mJ〉 =

√

J(J + 1)−mJ(mJ − 1)|L, S, J,mJ − 1〉,
Jz|L, S, J,mJ〉 = mJ |L, S, J,mJ〉. (B.14)
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Rare earth Pr

3+
Nd

3+
Tb

3+
Dy

3+

Θ2(−) −2.101.10−2 −6.428.10−3 −1.010.10−2 −6.349.10−3

Θ4(−) −7.346.10−4 −2.911.10−4 1.224.10−4 −5.920.10−5

Θ6(−) 6.099.10−5 −3.799.10−5 −1.121.10−6 1.035.10−6

Rare earth Ho

3+
Er

3+
Tm

3+
Yb

3+

Θ2(−) −2.222.10−3 2.540.10−3 1.010.10−2 3.175.10−2

Θ4(−) −3.330.10−5 4.440.10−5 1.633.10−4 −1.732.10−3

Θ6(−) −1.294.10−6 2.070.10−6 −5.606.10−6 1.480.10−4

Table B.1: Stevens multipliative fator Θn for some rare earths of interest [258℄.

〈rn〉(an0 ) Pr

3+
Nd

3+
Gd

3+
Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

〈r2〉(a20) 1.086 1.114 0.8671 0.8220 0.7814 0.7446 0.7111 0.6804 0.6522
〈r4〉(a40) 2.822 2.910 1.820 1.651 1.505 1.379 1.270 1.174 1.089
〈r6〉(a60) 15.73 15.03 7.831 6.852 6.048 5.379 4.816 4.340 3.932

Table B.2: List of the expetation values of the nth power distane between the nuleus

of the magneti ion and the 4f eletroni shell for some rare earths of interest. They

are expressed in atomi units (a0 = 52.9 pm). Data are taken from Ref. [257℄.

where we have introdued:

Am
n = − e

4πε0
pmn γ

m
n = − e

4πε0
pmn
∑

i

4π

(2n + 1)

qi

R
(n+1)
i

Zm
n (θi, φi). (B.18)



Appendix C

Neutron absorption orretion

Here are presented how the neutron absorption has been taken into aount in the

neutron time-of-�ight experiments. The powder samples �ll an annular sample holder.

We �rst introdue the ase of a retangular sample sine, in the following, we will on-

sider an elementary retangular setion to alulate the absorption in a more omplex

geometry.

C.1 Retangular geometry

First we onsider a retangular sample of thikness d. An inident neutron with a

wavevetor ki is sattered at the position x with a wavevetor kf , see Fig.C.1.

Assuming a sattering angle φ = 0, the absorption orretion fator is alulated as

the inverse of the transmission fator A = I
I0
[259℄:

A =
1

d

∫ d

0

e−Σxe−Σ′(d−x)dx =
1

d

e−Σ′d − e−Σd

Σ− Σ′ , (C.1)

where Σ and Σ′
are respetively the inident and �nal total absorption ross setions

de�ned as:

Σ =
Nf

v0
f

λ

1.8

∑

i

ciσa,i, (C.2)

where Nf is the number of formula units in the ell of volume v0, f is the �lling fator

de�ned as the ratio of the powder density over the rystal density, σa,i is the absorption

ross setion of atom i ontained ci times in the hemial formula. Note that λ = λi

(in Å in the formula) for the alulation of Σ and λ = λf for Σ
′
.

C.2 Annular geometry

One of the advantages to hoose a annular geometry is that the angular dependene of

the absorption orretion fator is very small, as shown by simulations. We will neglet

it in the following whih permits to alulate analytially the absorption orretion

fator. A setion of a half-ylinder is displayed in Fig. C.2. We �rst onsider an

elementary area with a length d where the neutron sattering proess ours. The

sample mass has been alulated suh that the probability of neutron sattering is lower
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Figure C.1: Neutron sattering in a retangular sample.

than 10 % and therefore multiple sattering proesses are negleted. As Rin → Rout, we

estimate the elementary setion to be retangular and the absorption orretion fator

is then alulated as the inverse of the transmission fator α′ =
∫

α(y)dy, where α(y)
is the elementary retangular transmission fator alulated with the help of Eq. C.1.

Two ases are onsidered, see Fig.C.2: either the neutron passes through the sample

without disontinuity (1) or not (2). In the �rst ase, the neutron path is alulated as:

d1(y) = 2
√

R2
out − y2 (C.3)

In the seond ase, two situations have to be taken into aount whether the neutron

is sattered in its �rst or seond path in the sample. In both ases the neutron path is

alulated as:

d2(y) = L =
√

R2
out − y2 −

√

R2
in − y2 (C.4)

Then, integrating over the half-ylinder, we get the transmission fator:

A′

2
=

2

π(R2
out −R2

in)

{
∫ Rin

0

dy
e
−Σ′

(√
R2

out−y2−
√

R2
in−y2

)

− e
−Σ

(√
R2

out−y2−
√

R2
in−y2

)

Σ− Σ′

×e
−Σ

(√
R2

out−y2−
√

R2
in−y2

)

+

∫ Rin

0

dy
e
−Σ′

(√
R2

out−y2−
√

R2
in−y2

)

− e
−Σ

(√
R2

out−y2−
√

R2
in−y2

)

Σ− Σ′ e
−Σ′

(√
R2

out−y2−
√

R2
in−y2

)

+

∫ Rout

Rin

dy
e−2Σ′

√
R2

out−y2 − e−2Σ
√

R2
out−y2

Σ− Σ′

}

(C.5)
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Figure C.2: Sheme of a setion of an half-ylinder where neutron sattering ours in an

elementary surfae (red). Rin and Rout are the internal and external radii, respetively.

The index (1) and (2) refer to the two possible neutron paths, as explained in the text.

The �rst and seond integrals of Eq. C.5 aount for the neutron path labelled (2)

in Fig.C.2. Two integrals are needed to take into aount whether the neutron is

inelastially sattered the �rst or seond time it enounters the sample. The third

integral aounts for the neutron path labelled (1). Thus Eq. C.5 is simpli�ed as:

A′

2
=

1

π(R2
out −R2

in)

{
∫ Rin

0

dy
e
−2Σ′

(√
R2

out−y2−
√

R2
in−y2

)

− e
−2Σ

(√
R2

out−y2−
√

R2
in−y2

)

Σ− Σ′

+

∫ Rout

Rin

dy
e−2Σ′

√
R2

out−y2 − e−2Σ
√

R2
out−y2

Σ− Σ′

}

(C.6)



Appendix D

Complements to magneti di�ration

D.1 Elements of group theory

In this setion, some basi onepts of group theory applied to the determination of the

magneti struture of a pyrohlore ompound are introdued.

In the paramagneti phase, magneti moments are disordered but magneti �u-

tuations exist at short length and are lassi�ed by modes ompatible with the rystal

symmetries. When a ompound undergoes a seond-order magneti phase transition,

aording to the Landau theory, one of these modes is seleted while the others vanish.

Using group theory, to eah mode orresponds an Irreduible Representation (IR) of

the group symmetry. Thus the symmetry in the ordered phase is lowered to a subgroup

of the rystallographi group.

The pyrohlore ompounds rystallise in the fae-entred ubi lattie (Fd3̄m spae

group). This spae group gathers 48 symmetry operations gi. Considering a magneti

propagation wavevetor kmag = (0, 0, 0), the subgroup Gk, alled the little group is

determined by gathering all the symmetry operations leaving kmag invariant, i.e. it is

the whole spae group Fd3̄m. With the help of Kovalev's book [260℄, we �nd the IR

Γ
(µ)
ν where µ is the order of the representation and ν an arbitrary index to label the

di�erent IRs. Note that in this book are atually tabulated the loaded representations

Γ̂
(µ)
ν de�ned as:

d(µ)ν (gi) = d̂(µ)ν (gi) exp(−kmag.h), (D.1)

where d
(µ)
ν (gi) and d̂

(µ)
ν (gi) are respetively the matrix representation of the symmetry

element gi in the representation Γ
(µ)
ν and Γ̂

(µ)
ν , and h represents the translational part

of the symmetry operator to whih d
(µ)
ν (gi) is assoiated [261℄. Gk an be deomposed

into ten one-, two- or three-dimensional IR Γ
(µ)
ν (µ = 1, 2, 3). Calulating the trae of

the matrix representations of all the symmetry operators written for a IR permits to

extrat the harater χ
Γ
(µ)
ν

of the onsidered IR.

On the other hand, we determine the magneti representation Γ(Gk) ofGk desribing

the results of the symmetry operators on the omponents of the magneti moments.

As the rystallographi ell ontains four magneti ions, the 48 symmetry operators are

desribed by matries of dimension 4 × 3 = 12. To get the harater table of Γ(Gk),
we alulate the trae χΓ for eah matrix representation of symmetry operators. This
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IR basis Atom j = 1 Atom j = 2 Atom j = 3 Atom j = 4
vetor

mx my mz mx my mz mx my mz mx my mz

Γ3 Ψ1,j 1 1 1 −1 −1 1 −1 1 −1 1 −1 −1

Γ5 Ψ2,j 1 e
4iπ
3 e

2iπ
3 −1 e

iπ
3 e

2iπ
3 −1 e

4iπ
3 e

5iπ
3

1 e
iπ
3 e

5iπ
3

Ψ3,j e
2iπ
3

1 e
4iπ
3 e

5iπ
3 −1 e

4iπ
3 e

5iπ
3

1 e
iπ
3 e

2iπ
3 −1 e

iπ
3

Γ7 Ψ4,j 1 −1 0 −1 1 0 1 1 0 −1 −1 0

Ψ5,j 0 1 −1 0 1 1 0 −1 −1 0 −1 1

Ψ6,j −1 0 1 −1 0 −1 1 0 −1 1 0 1

Γ9 Ψ7,j 1 1 0 −1 −1 0 1 −1 0 −1 1 0

Ψ8,j 0 0 1 0 0 1 0 0 1 0 0 1

Ψ9,j 0 1 1 0 1 −1 0 −1 1 0 −1 −1
Ψ10,j 1 0 0 1 0 0 1 0 0 1 0 0

Ψ11,j 1 0 1 1 0 −1 −1 0 −1 −1 0 1

Ψ12,j 0 1 0 0 1 0 0 1 0 0 1 0

Table D.1: The non-normalised basis vetors assoiated to the IRs using the BasIREPS

program [130℄. The rare-earth atoms 1, 2, 3 and 4 are loated respetively at positions

(x, y, z), (−x+ 3
4
,−y + 1

4
, z + 1

2
), (−x+ 1

4
, y + 1

2
,−z + 3

4
), and (x+ 1

2
,−y + 3

4
,−z + 1

4
).

representation is reduible if

1

d

∑

gi

|χΓ|2 6= 1, (D.2)

where d is the order of Gk (in our ase, d = 12). Expressing the matrix of Γ(Gk) in a

blok form permits to deompose it along the allowed irreduible representations Γ
(µ)
ν :

Γ(Gk) =
∑

ν

aνΓ
(µ)
ν , (D.3)

with

aν =
1

d

∑

gi∈Gk

χΓ(gi)χ
⋆

Γ
(µ)
ν

(gi), (D.4)

whih denotes the number of times a IR appears in the deomposition. In the ase

onsidered, we get:

Γ(Gk) = 1Γ
(1)
3 + 1Γ

(2)
5 + 1Γ

(3)
7 + 2Γ

(3)
9 . (D.5)

IR Γ3, Γ5, Γ7 and Γ9 are respetively of dimension 1, 2, 3 and 3. Thus the basis vetors

Ψν,j (ν labelling the basis vetor and j referring to the atom onsidered) of eah IR

are alulated with the projetion operator formula [261, 262℄. These group-theory

alulations are aomplished for instane by the BasIREPS [130℄ or SARAh [263℄

programs. The basis vetors Ψν,j of eah IR of interest are listed in Tab D.1.

The magneti moment mj at site j is a linear ombination of the basis vetors Ψν,j

of the IR of interest. Realling that kmag = (0,0,0), when the omponents of Ψν,j are

real numbers,

mj =
∑

µ

aµΨµ,j , (D.6)
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where aµ are real numbers to be determined. There are as many µ values as the number

of Ψµ,j vetors in the seleted IR. For example, µ runs from 4 to 6 for the Γ7 IR; see

Table D.1. In the ase where the omponents of Ψµ,j have imaginary parts, the magneti

moment being a real quantity, we have to introdue a orresponding basis vetor for

propagation vetor −kmag (see, e.g. Ref. [137℄) with

mj =
∑

µ

aµ
2

[

2Re{Ψkmag

µ,j } cos(−2πkmag · τ ) + 2Im{Ψkmag

µ,j } sin(−2πkmag · τ )
]

, (D.7)

where τ is a lattie translation vetor. Sine here kmag = (0, 0, 0):

mj =
∑

µ

aµRe{Ψkmag

µ,j }, (D.8)

where aµ are real numbers.

D.2 BasIREPS vs SARAh

For the sake of larity, we report here some minor di�erenes in the use of the two

programs previously ited.

For a magneti ion plaed in (x, y, z), BasIREPS alulates the positions of the three
other magneti ions in (−x+ 3

4
,−y+ 1

4
, z+ 1

2
) (−x+ 1

4
, y+ 1

2
,−z+ 3

4
), and (x+ 1

2
,−y+

3
4
,−z + 1

4
) for atomi sites labelled 1, 2, 3 and 4 respetively. Using SARAh, with the

same labelling, the three other magneti ions are loated in (x + 1
2
,−y + 3

4
,−z + 1

4
),

(−x+ 1
4
, y+ 1

2
,−z + 3

4
) and (−x+ 3

4
,−y+ 1

4
, z+ 1

2
) (atomi sites 2 and 4 are inverted).

Furthermore, for IR Γ5, Γ7 and Γ9, the basis vetors Ψ
S
given by SARAh are a linear

ombination of basis vetors Ψ given by BasIREPS:































ΨS
2 = 1

3
(Ψ2 −Ψ3), ΨS

8 = −Ψ9 + 2Ψ10,
ΨS

3 = Ψ2 +Ψ3, ΨS
9 , = Ψ11 +Ψ12,

ΨS
4 = −Ψ5, ΨS

10, = −Ψ11 + 2Ψ12,
ΨS

5 = −Ψ6, ΨS
11, = Ψ7 +Ψ8,

ΨS
6 = −Ψ4, ΨS

12, = −Ψ7 + 2Ψ8,
ΨS

7 = Ψ9 +Ψ10.

(D.9)

D.3 Analytial evidene for IR Γ3 seletion in Nd2Sn2O7

In the following, using analytial omputations we show that only the Γ3 IR an provide

a proper desription of Nd2Sn2O7 magneti di�ration data. Our derivation is based

on the experimental fat that a large magneti intensity is observed at Bragg re�etion

(220), while no magneti intensity is found at positions (111), (200), and (400) (see left

panel of Fig. 4.8).

1

We �rst reall the de�nition of the magneti struture fator Fmag(q) introdued in

Eq. 2.18, when only one type of magneti ion is present as in our ase,

Fmag(q) = pfmag(q)Smag(q), (D.10)

1

Magneti re�etions (111), (200), (220), and (400) are expeted at angles 2θ = 23.9, 27.7, 39.5,

and 57.1 degrees respetively.
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where the magneti sattering length p is de�ned in Eq. 2.15, and we have introdued:

Smag(q) =
∑

j

m
kmag

j exp(iq · rj) exp(−Wj(q)). (D.11)

Here rj labels the j magneti ion position in the unit ell. We have introdued the mag-

neti form fator fmag(q) of the magneti ion. The Fourier omponent of the magneti

moment m
kmag

j has been introdued in Eq. 2.16. We will neglet in the following the

Debye-Waller fator exp(−Wj(q)). Obviously the omputed sattered intensity does

not depend on the hoie of the origin for the atomi positions. Therefore, up to the

end of this setion we take a rare-earth ion at position (0,0,0). From the site positions

mentioned in the aption of Table D.1, and after applying the lattie translation of the

fae-entred-ubi struture, the three other magneti ions are in the relative positions

(1
4
, 1
4
, 0), (1

4
, 0, 1

4
), and (0, 1

4
, 1
4
). Note that for the sake of simpliity the diret lattie

oordinates are given here in units of alat and those in the reiproal lattie will be

expressed in units of 2π/alat. We also reall that the magneti ross setion is only

sensitive to the omponents of Fmag(q) perpendiular to q, i.e. to the omponent of

Smag(q) perpendiular to q sine Fmag(q) and Smag(q) are ollinear.

We begin with the Γ5 IR. We note that the basis vetors assoiated to this IR have

omplex number omponents; see Table D.1. Applying Eq. D.8 together with Eq. D.11

for q = (111) we ompute

Smag(111) =





2a2 − a3
−a2 + 2a3
−a2 − a3



 . (D.12)

Exept for the trivial ase a2 = a3 = 0, Smag(111) is never ollinear to (111). Therefore,
a non vanishing magneti intensity is expeted at the sattering vetor q = (111) in
ontrast to the experimental observation, ruling out the Γ5 IR.

Looking at the Γ7 IR, we write m
kmag

j = a4Ψ4,j + a5Ψ5,j + a6Ψ6,j (Eq. D.6). For

q = (200), we ompute

Smag(200) =





0
−4a4
4a6



 . (D.13)

Unless a4 = a6 = 0, the vetor Smag(200) is perpendiular to (200), yielding magneti

intensity. Sine no magneti intensity is experimentally observed at re�etion (200), we

must set a4 = a6 = 0. Then only the basis vetors Ψ5,j are involved. Let us ompute

Smag(q) at q = (111). We get

Smag(111) =





0
2a5
−2a5



 . (D.14)

Obviously, Smag(111) is not ollinear to (111). This implies a non vanishing magneti

intensity at this q-value, in ontrast to experimental result. Therefore the magneti

struture annot be represented by the Γ7 IR.
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We now onsider the Γ9 IR. We write m
kmag

j = a7Ψ7,j + a8Ψ8,j + a9Ψ9,j + a10Ψ10,j +
a11Ψ11,j + a12Ψ12,j . Then at q = (200),

Smag(200) =





0
4a7
4a11



 . (D.15)

Sine no intensity is measured at this Bragg position, we set a7 = a11 = 0. Considering
now the q = (020) re�etion whih would give intensity at the same angle as q = (200)
in our powder measurement, we dedue a9 = 0.

At q = (400) we alulate

Smag(400) =





4a10
4a12
4a8



 . (D.16)

Sine no magneti intensity is deteted at this position, we derive a8 = a12 = 0. If we
add the ondition that no intensity is observed at q = (040) we have a10 = 0.

Altogether, the magneti moments m
kmag

j vanish. Hene the magneti struture of

Nd2Sn2O7 annot be desribed by the Γ9 IR.

We are left with the Γ3 IR. Aording to Table D.1 and Eq. D.6, m
kmag

j = a1Ψ1,j.

For q = (111) we get,

Smag(111) = 2a1





1
1
1



 . (D.17)

Hene Smag(q = (111)) is ollinear to q. This is also the ase for all the wavevetors

equivalent to q = (111), e.g. q = (1̄11). For the q = (200) and symmetry equivalent

positions we also �nd that Smag(q) is ollinear to q. Conerning q = (400) and equiva-

lent re�etions, Smag(q) = 0. Therefore no magneti intensity is expeted at positions

(111), (200) and (400) in the ase of the Γ3 IR, in aord with the experimental result.

Now, for q = (220) we ompute

Smag(220) =





0
0
4a1



 , (D.18)

whih is perpendiular to q. A similar results holds for the Braggs re�etion equivalent

to (220). Therefore the magneti neutron intensity will not vanish for this wavevetor

sine q is obviously perpendiular to Smag(q).



Appendix E

Complements to µSR

In this appendix, we give some details about the spin-lattie relaxation rate λZ involved

in the analysis of µSR experiments. In the following, the Z axis refers to the diretion

of the muon polarisation, see Se.2.6.

E.1 Derivation of the spin lattie relaxation rate

From the strong ollision model, the polarisation funtion PZ(t) is ontrolled by the

following integral equation:

PZ(t) = P stat
Z (t) exp(−νct) + νc

∫ t

0

PZ(t− t′)P stat
Z (t′) exp(−νct

′), (E.1)

where νc is the �eld orrelation rate. In the ase of a stati Gaussian �eld distribution,

with a �eld variane ∆2
G, the longitudinal stati polarisation funtion is given by the

Kubo-Toyabe funtion [160℄:

P stat
Z (t) =

1

3
+

2

3
(1− γ2

µ∆
2
Gt

2) exp

(

−γ2
µ∆

2
Gt

2

2

)

, (E.2)

where γµ = 8.51616× 108 rad s

−1
T

−1
is the muon gyromagneti ratio. In the motional

narrowing limit, i.e. νc ≫ γµ∆G, Eq. E.1 beomes:

PZ(t) = exp(−λZt), (E.3)

where the spin-lattie relaxation rate is λZ = 2γ2
µ∆

2
Gτc and τc = 1/νc. A physial

interpretation of λZ is given in Se. 4.8.2. In the ase where a longitudinal �eld Bext =
ωµ/γµ is applied, the longitudinal polarisation funtion remains an exponential funtion

within the extreme motional narrowing limit, i.e. νct ≫ 1 and the spin-lattie relaxation
rate is given by the Red�eld formula:

λZ(ωµ = γµBext) =
2γ2

µ∆
2
Gνc

ω2
µ + ν2

c

, (E.4)

Within a quantum approah, the longitudinal polarisation funtion is expressed

as [160℄:

PZ(t) = exp[−ΨZ(t)], (E.5)
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where:

ΨZ(t) = 2π2γ2
µ

∫ t

0

(t− τ) cos(ωµt)[Φ
XX(τ) + ΦY Y (τ)]dτ, (E.6)

where (X, Y ) refers to the oordinates perpendiular to the Z axis. The symmetrised

orrelation funtion of the �utuating part of the loal magneti �eld at the muon site

is introdued as:

Φαβ(t) =
1

2π
〈{δBα

loc(t)δB
β
loc}〉, (E.7)

where {α, β} = {X, Y, Z} and the symbol 〈{AB}〉 stands for the thermal average of

the symmetrised orrelation funtion of operators A and B de�ned as:

2〈{AB}〉 = 〈AB〉+ 〈BA〉. (E.8)

The �utuations of the loal �eld δBloc(t) are responsible for the transitions between the
two muon states, see Fig 4.19. From Eq.E.6, the approximation that the harateristi

time of the spin orrelation is muh shorter than the experimental time window, i.e.

τ ≪ t, and assuming that Φαα(t) are even funtions of time, leads to ΨZ(t) = λZt with:

λZ =
γ2
µ

2

∫ ∞

−∞
dτ [ΦXX(τ) + ΦY Y (τ)]. (E.9)

Therefore, Eq. E.9 an be written in terms of a time Fourier transform:

λZ = πγ2
µ[Φ

XX(ω) + ΦY Y (ω)]. (E.10)

Following the work of Ref. [160℄, we express the �utuating part of the loal �eld at the

muon site in terms of a tensor G whih represents the oupling between the muon spin

and the spins of the system:

δBα
loc =

µ0

4π

gµB

vc

∑

i

∑

β

Gαβ
ri
δJβ

i , (E.11)

where only one type of magneti ion per unit ell is onsidered, vc is the volume of the

unit ell, g the spetrosopi splitting fator, and µB the eletroni Bohr magneton.

The index i runs over the lattie sites, δJβ
i is the omponent of the �utuation of spin

Ji, loated at site i and at a distane ri from the muon site. Therefore the symmetrised

�eld orrelation funtion an be expressed in terms of the symmetrised spin orrelation

funtion as:

Φαβ(ω) =
1

2π

(µ0

4π

)2 (gµB)
2

v2c

∑

γ,γ′

∑

i,i′

Gαγ
ri
Gβγ′

ri′
Λγγ′

i,i′ (ω), (E.12)

where {γ, γ′} = {X, Y, Z}. The symmetrised spin orrelation funtion has been de�ned

as:

Λγ,γ′

i,i′ (ω) = 〈{δJγ
i (ω)δJ

γ′

i′ }〉. (E.13)

The spin orrelation funtion in the (q, ω) spae is expressed as follows:

Λγγ′

(q, ω) =

∫ ∞

−∞
〈{δJγ(q, t)δJγ′

(−q)}〉 exp(iωt)dt, (E.14)
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→+ +
hωq- hωq’-

Sµ Sµ

Figure E.1: Illustration of the Raman proess involved in the muon spin relaxation. A

magnon of energy ~ωq is absorbed allowing the spin �ip of the muon and the emission

of an other magnon with an energy ~ωq′. Piture reprodued with kind permission from

Ref. [160℄.

where the Fourier transformation of the omponent of the spin �utuation is set as:

δJγ
i =

1√
nc

∑

q

exp(iq · i)δJγ(q). (E.15)

Assuming q as a ontinuous variable leads to the following formula of the spin-lattie

relaxation rate:

λZ =
D
2

∫

v⋆c

∑

β,γ

Aβγ(q)Λβγ(q, ω)
d3q

(2π3)
, (E.16)

where D = (µ0/4π)
2γ2

µ(gµB)
2/vc. The integration runs over the �rst Brillouin zone of

volume v⋆c and we have introdued for simpliity:

Aβ,γ(q) = GX,β(q)Gγ,X(−q) +GY,β(q)Gγ,Y (−q). (E.17)

E.2 Relaxation by exitations

We will fous here on the temperature behaviour of λZ in the ordered phase. The

most ommon exitations are spin waves. We reall that the energy splitting of the

muon spin states has been found to be ≈ 70 neV in Nd2Sn2O7, whih is muh lower

than the energy gap of spin waves. Thus, a single exitation annot be at the origin of

the relaxation of the muon spin. Therefore, a Raman sattering proess involving two

magneti exitations has been put forward, where a magnon is absorbed and an other

one is emitted to ahieve the muon spin �ip, see Fig E.1.

E.2.1 Ferromagneti magnons

Let us onsider a ferromagneti system ruled by the following Hamiltonian [193℄:

HFM = −I
∑

〈i,i′〉
Ji · Ji′ +∆

∑

i

JZ
i , (E.18)

where I is the isotropi exhange integral between nearest neighbour, and ∆ is an

energy gap related to the anisotropy of the spin. We reall the dispersion law at small

wavevetor for ferromagneti magnons:

E(q) = DFMq
2 +∆, (E.19)

where DFM = 2IJa2lat. Following Eq. E.19, the magnon energy is minimum at small

wavevetors. Realling that the energy splitting between the two states of the muon
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spin is extremely small, only magnons at low energy are involved during the relaxation

proess, i.e. only magnons with a small wavevetor. We will onsider the ase of q → 0
in the following. Let us fous now on the muon-system oupling tensor G(q). Sine

the pyrohlore ompounds are insulators (no ondution eletrons), we neglet the

hyper�ne interation and therefore the muon spin and the spins of the system interat

only through a dipolar �eld. Aording to Ref. [160, 264℄:

Gα,β(q → 0) = −4π

[

qαqβ

q2
− Cα,β(q = 0)

]

, (E.20)

where Cα,β(q) is an analytial funtion of q. Note that in fae-entered ubi (f)

rystal struture, if the muon is loated at a tetragonal or otahedral site, Cα,β(q = 0) =
1
3
δαβ [264℄. Beause of the energy onservation during a �ipping proess, the omponents

of J perpendiular to Z do not ontribute to the muon spin �ip. Therefore, only ΛZZ

is needed. Furthermore, we will assume in the following that the symmetrised spin

orrelation tensor probes the relaxation at zero energy, i.e. ~ωµ = 0. The wavevetor is
de�ned in spherial oordinates as:

qX = q sin θ cosφ, qY = q sin θ sin φ, qZ = q cos θ. (E.21)

Combining Eq. E.20 and Eq. E.16, with β = γ = Z in Eq. E.16, leads to:

λZ =
D
2

1

(2π)3

∫ qBZ

0

q2ΛZZ(q, ω = 0)dq

∫ π

0

dθ sin θ

∫ 2π

0

dφ(4π)2
{

sin2 θ cos2 θ − 2 sin θ cos θ

×[cos φCXZ(q = 0) + sinφCY Z(q = 0)] + [CXZ(q = 0)]2 + [CY Z(q = 0)]2
}

= 4D
{

2

15
+ [CXZ(q = 0)]2 + [CY Z(q = 0)]2

}
∫ qBZ

0

ΛZZ(q, ω = 0)q2dq, (E.22)

where it is assumed that ΛZZ(q, ω = 0) only depends on the modulus of q. We have

onsidered the �rst Brillouin zone to be a sphere with a radius qBZ. We will fous now

on the symmetrised spin orrelation tensor, realling its expression in the (q, ω) spae:

ΛZZ(q, ω = 0) =
1

2
[〈δJZ(q, ω = 0)δJZ(−q)〉+ 〈δJZ(−q)δJZ(q, ω = 0)〉]. (E.23)

Using the linear approximation of the Holstein-Primako� transformation:

δJZ(q) =
1√
nc

∑

q1,q2

δq+q1−q2,0a
†
q1
aq2 , (E.24)

where nc is the number of unit ells, a
†
q1
refers to the reation of a boson with wavevetor

q1 and aq2 to the annihilation of a boson with wavevetor q2. The Kroneker symbol

δi,j is de�ned suh as δi,j = 1 if i = j, and δi,j = 0 otherwise. It stands here for the

onservation of the momentum, i.e. q = q2−q1. Considering that aq(t) = exp(−iωqt)aq
and a†q(t) = exp(iωqt)a

†
q, we derive:

δJZ(q, ω = 0) =
2π√
nc

∑

q1,q2

δq+q1−q2,0δ(ωq1 − ωq2)a
†
q1
aq2 , (E.25)
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where δ(ω) = 1
2π

∫∞
−∞ exp(iωt)dt is the Dira distribution. It follows that:

〈δJZ(q, ω = 0)δJZ(−q)〉 =
∑

q1,q2

∑

q′

1,q
′

2

δq+q1−q2,0δ−q+q′

1−q′

2,0

×δ(ωq1 − ωq2)〈a†q1
aq2a

†
q′

1
aq′

2
〉. (E.26)

The mode oupling approximation states that:

〈a†q1
aq2a

†
q′

1
aq′

2
〉 ≈ δq1−q′

2,0
δq2−q′

1,0
〈a†q1

aq1〉〈aq2a
†
q2
〉

+δq1−q2,0δq′

1−q′

2,0
〈a†q1

aq1〉〈aq′

1
a†
q′

1
〉. (E.27)

The Kroneker symbols in the seond term of Eq. E.27 lead to q1 = q2 and q′
1 = q′

2,

ombined with Kroneker symbols of Eq. E.26 give q = 0 whih obviously is not of

interest. We fous on the �rst term of Eq. E.27. On the �rst hand, we have 〈a†qaq〉 =
nP(x) where nP refers to the Plank distribution, see Eq. 4.4, and x = ~ωq

kBT
. On the other

hand, the well-known ommutation relation [a†i , aj ] = δij leads to 〈aqa†q〉 = 〈a†qaq〉 + 1.
Consequently, we derive:

∫ qBZ

0

ΛZZ(q, ω = 0)q2dq = (E.28)

1

2

vc
(2π)3

∫

v⋆c

nP

(

~ω(q)

kBT

)[

nP

(

~ω(q)

kBT

)

+ 1

]{
∫

v⋆c

δ[ω(q)− ω(q1)]d
3q1

}

d3q.

An ingenious method is to introdue the magneti density of states suh as:

gm[E(q)] =

∫

v⋆c

δ[E(q)− E(q1)]
d3q1

(2π)3
, (E.29)

where E(q) = ~ω(q) and therefore Eq. E.28 beomes:

∫ qBZ

0

q2ΛZZ(q, ω = 0)dq =
~vc
2

∫

v⋆c

nP

(

~ω(q)

kBT

)[

nP

(

~ω(q)

kBT

)

+ 1

]

gm[E(q)]d3q.

(E.30)

For onveniene, we should pass from an integration over the �rst Brillouin zone to

an integration over the energy. Assuming a dispersion law of the form E = f(q) and
the usual relation for a density of states g(E)dE = 4πq2dq/(2π)3, we use the following
expression for a substitution of variables in a funtion A [160℄:

∫

v⋆c

A(q)d3q = (2π)3
∫

A[f−1(E)]g(E)dE. (E.31)

Therefore, Eq. E.28 beomes:

∫ qBZ

0

q2ΛZZ(q, ω = 0)dq =
(2π)3~vc

2

∫

nP

(

E

kBT

)[

nP

(

E

kBT

)

+ 1

]

g2m(E)dE. (E.32)

We thus obtain the expression of the spin relaxation rate in the ase of a relaxation

indued by ferromagneti magnons:

λZ = 2(2π)3~Dvc

{

2

15
+ [CXZ(q = 0)]2 + [CY Z(q = 0)]2

}
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×
∫

nP

(

E

kBT

)[

nP

(

E

kBT

)

+ 1

]

g2m(E)dE. (E.33)

From Eq. E.19 we derive the assoiated magneti density of states:

gm(E) =
1

4π2

1

D
3
2
FM

√
E −∆. (E.34)

Assuming∆ ≪ kBT ≪ Emax, where Emax is the maximal energy of a magnon exitation,

and introduing x = E/kBT , allows to alulate the following integral:

I =

∫ Emax
kBT

∆
kBT

n(x)[n(x) + 1)]g2m(x)kBTdx

=
1

(4π2)2
1

D3
FM

∫ Emax
kBT

∆
kBT

exp(x)

[exp(x)− 1]2
(kBTx−∆)kBTdx. (E.35)

We use the following equation:

∫

(ax− b) exp(x)

(exp(x)− 1)2
dx =

b− ax

exp(x)− 1
− ax+ aln[exp(x)− 1], (E.36)

to obtain:

(4π2)2D3
FM

kBT
× I = (∆−Emax)





exp
(

Emax

kBT

)

exp
(

Emax

kBT

)

− 1



+ kBT ln

[

exp

(

Emax

kBT

)

− 1

]

−kBT ln

[

exp

(

∆

kBT

)

− 1

]

. (E.37)

Sine kBT ≪ Emax, we set exp
(

Emax

kBT

)

/
[

exp
(

Emax

kBT

)

− 1
]

≈ 1 and

ln
[

exp
(

Emax

kBT

)

− 1
]

≈ Emax/kBT . Sine ∆ ≪ kBT , we neglet the residual term ∆ and

with a linear expansion of exp
(

∆
kBT

)

≈ 1 + ∆
kBT

in the last logarithm expression, we

get:

I =
1

(4π2)2
(kBT )

2

D3
FM

ln

(

kBT

∆

)

, (E.38)

and we derive λZ in the ase of ferromagneti magnons:

λZ =
~Dvc
π

{

2

15
+ [CXZ(q = 0)]2 + [CY Z(q = 0)]2

}

k2
BT

2

D3
FM

ln

(

kBT

∆

)

∝ T 2ln

(

kBT

∆

)

. (E.39)

This result has some importane sine it predits that the relaxation of the muon spin

indued by ferromagneti magnons has a vanishing spin-lattie relaxation rate when

T → 0.
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E.2.2 Antiferromagneti magnons

The derivation of λZ in the ase of antiferromagneti magnons is a bit more ompliated

and we only give some piees of the derivation of λZ , referring to the work of Ref. [160℄

for a omplete study. We will also introdue some equations that will be needed else-

where. For simpliity, we onsider an antiferromagneti lattie whih an be viewed

as two interlaed sublatties d1 and d2, eah ontaining magneti atoms with opposite

spins. This implies that all the nearest neighbours of a magneti ion belonging to a

magneti sublattie belong to the other magneti sublattie. We onsider the following

Hamiltonian:

HAF =
∑

i,i′

∑

d1,d2

Ii+d1,i′+d2Ji+d1 · Ji′+d2 + gµB

∑

i

∑

d1

Bani,d1 · Ji+d1 , (E.40)

where Ii+d1,i′+d2 ≡ I is the exhange integral. The notation i+ d1 and i′ + d2 refers to
two nearest neighbours belonging to eah sublattie.

The Holstein-Primako� transformations need to be introdued for the two types of

magneti ions, i.e. two magnon modes are introdued:

J+
i+d1

=
√
2Ja†i+d1

, J−
i+d1

=
√
2Jai+d1 , JZ

i+d1
= a†i+d1

ai+d1 − J,

J+
i+d2

=
√
2Jbi+d2 , J−

i+d2
=

√
2Jb†i+d2

, JZ
i+d2

= J − b†i+d2
bi+d2 ,

(E.41)

where a†, b† and a, b are the boson reation and annihilation operators for the magneti

sublatties d1, d2 respetively. The spae Fourier transform of the boson operators is

de�ned as:

ai+d1 =
1√
nc

∑

q

aq exp[iq · (i+ d1)],

a†i+d1
=

1√
nc

∑

q

a†q exp[−iq · (i+ d1)]. (E.42)

We also introdue the Bogoliubov transformation:

aq = uqαq + vqβ
†
q, bq = uqβq + vqα

†
q,

a†q = uqα
†
q + vqβq, b†q = uqβ

†
q + vqαq, (E.43)

where αq, α
†
q, βq, β

†
q are bosons operators ful�lling the relations:

[αq, α
†
q′ ] = δq−q′,0, and [βq, β

†
q′ ] = δq−q′,0. (E.44)

Note that αq1, α
†
q2

ommutes with βq3 , β
†
q4
. This leads to the relation:

u2
q − v2q = 1. (E.45)

Therefore, we an introdue a funtion xq suh as:

uq = cosh(xq) and vq = sinh(xq). (E.46)
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The Hamiltonian de�ned in Eq. E.40 an be redued as:

HAF =
∑

q

~ωq(α
†
qαq + β†

qβq + 1). (E.47)

The most general dispersion law for antiferromagneti magnons is:

(~ωq)
2 = (~ωex +∆)2 − (~ωexγq)

2, (E.48)

where ∆ is the energy gap of the magnons due to the anisotropy of the spins, and

~ωex = 2IznnJ . We have introdued:

γq =
1

znn

∑

dpair

exp(iq · dpair), (E.49)

where dpair is the vetor joining a magneti ion to one of its nearest neighbours. At small

wave vetors for a ubi ompound, we simplify Eq. E.48 to the well-known dispersion

law for antiferromagneti magnons, assuming the energy to only depend on the modulus

of q:

(~ωq)
2 = D2

AFq
2 +∆2, (E.50)

where DAF = 4
√
3IJalat. Note that the Hamiltonian has been rendered diagonal with

α†
qβ

†
q + αqβq = 0 whih leads to:

tanh(2xq) = −γq
ωex

ωex +∆
, (E.51)

After the introdution of these de�nitions, let us go bak to the derivation of the

spin-lattie relaxation rate whih is rewritten as:

λZ =
D
2

1

V

∑

q

∑

d1d2

(GX,Z
d1

(q)GZ,X
d2

(−q) +GY,Z
d1

(q)GZ,Y
d2

(−q))ΛZZ
d1d2

(q, ω = 0). (E.52)

Note that we have diretly onsidered that only the spins orrelations along the Z axis

ome at play in the Raman proess. To evaluate the spin orrelation tensor, we need

to introdue:

δJZ
d1
(q) =

1√
nc

∑

q1,q2

δq1+q2−q,0a
†
q1
aq2 ,

δJZ
d2
(q) =

1√
nc

∑

q1,q2

δq1+q2−q,0b
†
q1
bq2 , (E.53)

After some alulations, the following expression is derived [160℄:

λZ =
8

15
(2π)3~Dvc

∫

nP

(

E

kBT

)[

nP

(

E

kBT

)

+ 1

]

g2m(E)dE. (E.54)

From Eq. E.50, we infer the assoiated magneti density of states as:

gm(E) =
1

2π2

E

D3
AF

√
E2 −∆2

(E.55)



184 APPENDIX E. COMPLEMENTS TO µSR

Introduing x = E
kBT

, we derive:

λZ ∝ 2(2π)3~Dvc
1

4π4

1

D6
AF

kBT

∫ ∞

∆
kBT

{

exp(x)

[exp(x)− 1]2
(kBTx)

2[(kBT )
2x2 −∆2]

}

dx

∝ 1

π
~Dvc

(kBT )
3

D6
AF

[(kBT )
2I4 −∆2I2] (E.56)

where we have introdued the following integral:

I2m =

∫ ∞

0

x2m exp(x)

[exp(x)− 1]2
dx (E.57)

Note that ompared to the ferromagneti ase, we do not introdue a maximum energy

for the magnons sine no onvergene problem appears in the integral. We also assumed

that ∆ ≪ kBT , leading us to neglet the term ontaining I2. Sine I4 = 4π2/15, we get
the expression of λZ in the antiferromagneti ase:

λZ ∝ 4π3

15
~Dvc

1

D6
AF

(kBT )
5. (E.58)

One again, the muon spin relaxation driven by antiferromagneti magnons has a van-

ishing spin lattie relaxation rate when T → 0.
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Abstrat

This Phd thesis fouses on the study of magnetially frustrated ompounds where magneti

ions lie at the verties of a orner-sharing tetrahedra network: the pyrohlore ompounds.

The two series of hemial formula R2M2O7, where R is a lanthanide and M = Ti, Sn, are of

peuliar interest sine they display a large variety of exoti magneti ground states. First, we

have studied the rystal-eletri-�eld ating at the rare earth within the Stevens approximation

where only the ground state multiplet is onsidered. A single set of parameters for eah families

of interest has been determined through a global analysis inluding several inelasti neutron

sattering spetra of various ompounds. Then, we have haraterised with a large panel of

tehniques the low temperature physial properties of Nd2Sn2O7. This ompound enters a

long-range magneti order at transition temperature Tc = 0.91 K with an �all-in-all-out� spin

on�guration. A persistene of spin dynamis has been found in the ordered phase, asribed

to one-dimensional spin loops exitations. Anomalously slow paramagneti spin �utuations

are also reported. Finally, we have brought information on the two proposed ground states of

the widely studied ompound Tb2Ti2O7: �rst, a Jahn-Teller transition is laimed to our at

low temperatures but no broadening of the Bragg peaks is seen down to T = 4 K preluding

premises of a strutural transition. Seondly, this ompound ould be a realisation of a quan-

tum spin-ie but no de�nitive evidene of a magnetisation plateau is found down to T = 20mK.

Key words: magnetism - geometrial frustration - pyrohlore - rystal-eletri-�eld - spin

dynamis - di�ration - inelasti neutron sattering - muon spin relaxation

Résumé

Cette thèse se onentre sur l'étude de omposés magnétiques géométriquement frustrés où les

ions magnétiques se situent aux sommets d'un réseau de tétraèdres partageant leurs sommets:

les omposés pyrohlores. Deux familles de formule himique R2M2O7, où R est un lanthanide

et M = Ti, Sn, sont partiulièrement intéressantes puisqu'elles présentent une grande variété

d'états magnétiques exotiques. Premièrement, nous avons étudié le hamp ristallin agissant

au site de la terre rare dans l'approximation de Stevens où uniquement le terme fondamental est

onsidéré. Un jeu unique de paramètres a été déterminé pour haque famille onsidérée grâe

à une analyse globale inluant des spetres de neutrons inélastiques de plusieurs omposés.

Ensuite, nous avons aratérisé ave un large éventail de tehniques les propriétés physiques

à basse température de Nd2Sn2O7. En dessous de la température de transition Tc = 0.91 K,

e omposé possède un ordre magnétique à longue portée dans la on�guration de spins dite

�all-in-all-out�. Une persistane de la dynamique de spins a été révélée dans la phase ordonnée,

attribuée à des exitations unidimensionnelles de spins. Une dynamique de spins anormale-

ment lente est également reportée dans la phase paramagnétique. En�n, nous avons apporté

quelques informations sur les deux états fondamentaux proposés pour le omposé très étudié

Tb2Ti2O7: premièrement, l'apparition d'une transition Jahn-Teller à basse température est

suggérée mais l'absene d'élargissement des pis de Bragg réfute la présene d'une transition

struturale. En�n e omposé pourrait être un exemple d'une glae de spin quantique mais

l'existene d'un plateau d'aimantation n'est pas évident jusqu'à T = 20 mK.

Mots lefs: magnétisme - frustration géométrique - pyrohlore - hamp ristallin - dynamique

de spins - di�ration - di�usion inélastique de neutrons - relaxation du spin du muon


