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Thèse de Doctorat de
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Acknowledgements
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Je tiens également à remercier tous les membres du jury pour avoir accepté d’évaluer
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sous-sol, aujourd’hui toutes les deux en thèse à Langevin. Enfin, je tiens à remercier
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Abstract

In this thesis work, we present a novel stochastic microscopy technique based on Digital

Holography for the 3D mapping of optical intensity distributions. We show that this

far-field, wide-field, 3D microscopy can be turned into both a superresolution and a near-

field imaging technique. To do so, we use metallic nanoparticles undergoing Brownian

motion as stochastic local field probes that we localize in three-dimensions in order to

overcome the diffraction limit. The random motion of the particles allows for a complete

exploration of the sample. Beyond simple localization, the gold markers can actually

be envisaged as extremely local electromagnetic field probes, able to scatter light into

the far-field. The technique we propose here is therefore a combination of the concepts

of superlocalization and NSOM microscopies. The possibilities of the technique are

illustrated through the 3D optical mapping of an evanescent and a propagative wave.

Fast computation methods allow us to localize hundreds of particles per minute with

accuracies as good as 3 × 3 × 10 nm3 for immobilized particles. In addition to optical

intensity mapping, we show a particular application in electrochemistry, by coupling our

high resolution images with electrochemical oxidation measurements on silver nanopar-

ticles in solution at the vicinity of an electrode.

Our results pave the way for a new subwavelength imaging technique, well adapted to op-

tical characterization in water-based systems (such as in emerging microfluidics studies),

which are mostly inaccessible to electron microscopy or local probe microscopies.

Keywords: Digital holography, Three-dimensional microscopy, Optical scattering, Su-

perresolution, Near-field microscopy, Metallic nanoparticles.
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Résumé

Nous présentons dans ce manuscrit une nouvelle technique de microscopie stochastique

basée sur un montage d’Holographie Digitale pour l’imagerie des distributions d’intensité

optique. Nous montrons comment cette technique de champ lointain peut être adaptée

afin d’obtenir des images de superrésolution ainsi que de champ proche. En pratique,

nous imageons des nanoparticules métalliques en mouvement Brownien dans un liquide,

que nous localisons ensuite dans le but de contourner la limite de diffraction. Le mou-

vement aléatoire des particules nous permet une exploration complète de l’échantillon.

Au-delà de la simple localisation, ces marqueurs métalliques agissent comme des son-

des locales du champ électromagnétique environnant, pouvant notamment diffuser la

lumière confinée vers le champ lointain. La technique que nous proposons ici est donc

une combinaison des concepts de superlocalisation et de NSOM. Les possibilités de cette

nouvelle technique sont illustrées à travers l’imagerie de l’intensité optique d’une onde

évanescente et d’une onde propagative.

Grâce à des méthodes de calcul très performantes, nous sommes capables de localiser des

centaines de particules par minute, avec une précision de l’ordre de 3× 3× 10 nm3 pour

des particules immobiles. En plus de l’imagerie des distributions de champ optique,

nous présentons une application combinant nos mesures superrésolues et des mesures

d’électrochimie pour l’étude des processus d’oxydation de nanoparticules d’argent à

proximité d’une électrode.

Nos résultats ouvrent la voie à une nouvelle technique d’imagerie superrésolue, partic-

ulièrement bien adaptée à la caractérisation optique dans des milieux liquides (comme

des systèmes microfluidiques), qui étaient jusqu’à présent inaccessibles par microscopie

électronique ou par des microscopies à sonde locale.

Mots clé: Holographie digitale, Microscopie tridimensionnelle, Diffusion optique, Su-

perrésolution, Microscopie de champ proche, Nanoparticules métalliques.
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Résumé Substantiel

Le travail de thèse développé dans ce manuscrit consiste principalement à utiliser la

localisation de Nano Particules Métalliques (NPMs) pour obtenir une imagerie optique

super-résolue. Comparés aux marqueurs fluorescents, les NPMs offrent des nombreux

avantages. Notamment, la cohérence de la lumière diffusée par ces nanoparticules permet

leur détection interférométrique et donc l’obtention d’une image volumétrique. En outre,

elles présentent une grande section efficace de diffusion (à la longueur de résonance plas-

mon de la particule) et permettent une grande stabilité des signaux diffusés grâce à leur

réponse linéaire au champ électromagnétique incident (absence d’effet de désactivation,

saturation ou photoblanchiment comme dans le cas des fluorophores). Ces nanopartic-

ules sont donc d’excellentes candidates pour sonder des distributions de champs optiques

à l’échelle nanométrique.

Ce manuscrit est structuré en quatre chapitres. Le premier chapitre introduit le principe

général de l’holographie numérique hétérodyne (en Anglais Digital Heterodyne Holog-

raphy, DHH).Dans un premier temps, cette technique est appliquée à l’imagerie plein

champ de la lumière diffusée par des nano-antennes plasmoniques en champ lointain.

Les structures à l’étude étaient des chaines de nano-trous percés dans une couche d’or

de 50 nm d’épaisseur via lithographie électronique. Les paramètres comme le nom-

bre de trous de la chaine, leur diamètre et la distance entre les trous ont été ajustés

afin d’obtenir une structure résonante à la longueur d’onde utilisée par notre système

holographique (dans cette expérience en particulier, λ = 660 nm). Afin d’illustrer la va-

lidité de la DHH pour l’obtention de diagrammes de rayonnement de ces nanostructures

résonantes, nous avons comparé nos mesures holographiques avec des mesures de micro-

scopie de champ proche à balayage (Near-field Scanning Optical Microscopy, NSOM).

Nos résultats expérimentaux montrent comment, malgré la résolution limitée par la

diffraction de notre système holographique plein champ, on peut facilement obtenir par

DHH des informations importantes à propos des nanostructures résonantes, et ce de

façon non invasive. L’intérêt de l’information tridimensionnelle ainsi que l’étude de la

phase du champ diffusé sont mis en avant pour améliorer la compréhension de telles

nanostructures.

ix



Résumé Substantiel

Le deuxième chapitre décrit le cas particulier de la diffusion optique par des nanopartic-

ules métalliques (toujours inférieures à 100 nm de diamètre), introduisant les concepts

fondamentaux à l’origine de ce processus, notamment la présence de la résonance plas-

mon qui donne à ces nano-objets une section efficace de diffusion importante. Cette

réponse optique est ensuite utilisée pour élucider des processus de modifications chim-

iques des nanoparticules d’argent en contact avec une électrode en or, grâce à l’étude

simultanée de ces NPMs via électrochimie et holographie. Ces expériences ont été

effectuées à l’intérieur de chambres microfluidiques dont l’une des surfaces était re-

couverte d’une couche d’environ 70 nm d’or utilisée comme électrode. En particulier,

nous avons montré comment le couplage entre ces deux techniques apporte des infor-

mations complémentaires sur la nature des nanoparticules à l’étude. D’un côté, les

expériences d’électrochimie permettent l’étude de l’oxydation d’un ensemble de nanopar-

ticules d’argent en contact avec l’électrode. De l’autre côté, les images holographiques

permettent d’élucider le comportement des nanoparticules en suspension dans tout le vol-

ume de la chambre microfluidique, tout en permettant la détermination précise de leur

taille par des calculs de déplacement quadratique moyen (mean square displacement,

MSD). De plus, l’holographie permet de détecter d’autres transformations chimiques

telles que la dissolution des particules, qui ne sont pas mesurables par électrochimie car

ce type de processus n’impliquent pas d’échange de charge électrique entre la particule

et l’électrode.

Le chapitre trois, qui constitue le centre de ce travail, étudie la capacité de la méthode de

DHH pour l’imagerie de super-résolution. La première partie examine les performances

de cette technique en termes de précision de localisation sur des nanoparticules immo-

biles. Une estimation théorique de cette précision montre qu’elle dépend principalement

du nombre de photons détectés par particule. Une seconde partie est centrée sur la

localisation de particules en mouvement, de manière à obtenir une information 3D par

l’accumulation des données de localisation de particules uniques obtenues à différents

positions et divers instants. La question de la rapidité des algorithmes a été également

abordée, conduisant à l’utilisation de cartes graphiques (Graphic Processing Unit, GPU)

pour la parallélisation du traitement des hologrammes et la superlocalisation des partic-

ules, réduisant le temps de calcul à moins d’une seconde là où les algorithmes séquentiels

classiques requièrent plusieurs dizaines de secondes.

Enfin, le chapitre quatre porte sur les premières démonstrations expérimentales de re-

constitution d’images 3D pour la caractérisation des distributions d’intensité optiques

utilisant le suivi de nanoparticules métalliques. Le premier exemple choisi démontre

la reconstitution d’une onde évanescente, qui devient accessible en champ lointain par

DHH grâce à la présence des nano-diffuseurs métalliques en mouvement agissant comme

des sondes locales multiples. La distribution d’intensité d’un faisceau laser focalisé sous
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Résumé Substantiel

incidence oblique est ensuite imagée en 3D, mettant l’accent sur la grande étendue ax-

iale qui peut être imagée par cette technique. Enfin, nous avons revisité la question

centrale de ce travail à long terme : l’utilisation de cet outil pour explorer des concen-

trations de champs proches optiques aux abords de nanostructures plasmoniques avec

une résolution nanométrique. Un problème majeur apparait à l’issue de cette question,

qui est la lumière diffusée vers le champ lointain par la nanostructure plasmonique elle-

même. Diverses stratégies de filtrage ont été explorées pour la différentiation de cette

lumière parasite par rapport à la lumière diffusée par les sondes locales en mouvement.

En particulier, des expériences reposant sur un filtrage hétérodyne de la lumière diffusée

par les structures statiques montrent des premiers résultats très encourageants.

xi





Contents

Acknowledgements iii

Abstract v
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Introduction

The use of nanostructured systems, ranging from simple fluorescent molecules to sophis-

ticatedly nanofabricated devices, has considerably spread in recent years, either for the

imaging of living cells and tissues or for technological applications such as nanoelectron-

ics. In parallel, a great deal of attention is devoted to advancing the field of optics on

the nanometer scale. The diffraction of light in conventional optical microscopes, how-

ever, hampers our ability to selectively address nanoscale features separated by less than

half the wavelength of light. Numerous strategies have been proposed to overcome this

fundamental limit, many of them relying in turn in nanosystems to make this tiny world

visible to the eye. Indeed, nanosystems offer interesting possibilities as local probes of

their surrounding environment. It is the case of single-molecule studies in Biology, for

example, which use nanoscopic markers to study cellular processes with nanoscale pre-

cision. Such is the case as well for Near-Field Scanning Optical Microscopies (NSOM)

[48], which are able to unravel strongly confined electromagnetic fields with nanometer

resolution by using nanoscopic probes.

Most superresolution imaging techniques, however, manage to achieve a resolution en-

hancement at the expense of other performances: long acquisition times, denaturation of

the sample under study, difficult experimental implementation or high sample specificity,

among other disadvantages. Particularly, for superresolution optical field mapping, cru-

cial for plasmonic sensing [80] or SERS studies [101], the lack of local characterization

techniques usable in water-based systems is a key issue. Analysis techniques involv-

ing electrons as probes are unsuited as they need to operate in vacuum environments,

while scanning optical probes used by NSOM suffer from strong damping of mechan-

ical oscillations when working in liquids. A large range of studies in microfluidics or

in the emerging field of opto-fluidics would greatly benefit from the availability of high

resolution imaging techniques.

Techniques using fluorescent markers such as PALM [15] and STORM [74] are nev-

ertheless capable of imaging in liquid environments with excellent accuracies and are

extensively used for imaging in biological media. They are based on single-molecule
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Introduction

localization methods, obtaining outstanding position accuracies by pointing the center

of mass of the diffraction pattern of individual fluorescent probes. However, although

these methods rely on optics for detection, few of them have been used to image elec-

tromagnetic fields, i.e. to retrieve an optical information with subwavelength resolution.

Yet, for this purpose, the use of fluorophores presents some disadvantages, since the flu-

orescence intensity can suffer from non-linear effects such as saturation, photo-bleaching

and quenching. In addition, the extension of these methods to 3D imaging [43] is still

limited to a few micrometers in depth.

Some years ago, our laboratory applied the technique of (off-axis) digital heterodyne

holography (DHH) to the characterization of the field scattered by plasmonic nanoob-

jects. Using this interferometric technique, Suck et al. [82, 83] were able to recover the

whole 3D information carried by the scattered light, particularly establishing a clear

distinction between resonant and non-resonant nanoantennas in the far field. Moreover,

the angular scattering pattern of the nanostructure could be obtained from a single

snapshot. Although being diffraction-limited, DHH was therefore shown to be capable

to extract relevant information about nanoscopic systems.

DHH was also shown by our research group, among others, to be well adapted to the

detection of weakly scattering nanoobjects [8, 50]. Owing to its excellent sensitivity

[36], this technique was successfully applied to image and localize metal nanoparticles

of 50 nm diameter in three-dimensions, either for fixed particles spin coated on a glass

substrate or in free motion within a water suspension [4, 91]. Besides, it was shown

that gold nanobeads, functionalized and fixed on the membrane of living cells, could

be detected by DHH in order to obtain a three-dimensional image of the cell surface

[44, 100].

In this thesis work, the main motivation has been to turn this far-field, wide-field, 3D

imaging technique into both a superresolution technique and a near-field imaging tech-

nique. To do so, we have used metallic nanoparticles (MNPs) undergoing Brownian

motion as stochastic local field probes that we have localized in three-dimensions in

order to overcome the diffraction limit. The technique we propose here is therefore

a combination of the concepts of superlocalization and NSOM microscopies. Beyond

simple localization, the gold markers can actually be envisaged as extremely local elec-

tromagnetic field probes, able to couple light into the far-field. Instead of scanning the

probe across the sample under study (like do NSOM techniques), we propose here to use

probe particles at low concentrations and allow them to move randomly in the imaged

volume: given sufficient time, these probes stochastically visit each (or most) voxel(s) of

the investigated volume. In addition, the coherent light scattering by MNPs allows the
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Introduction

direct extension of these methods to 3D imaging, with an unprecedentedly large depth

range.

This work is organized as follows: Chapter 1 starts out by providing an introduc-

tion to digital heterodyne holography, as well as the basics of numerical reconstruction.

Particularly, we depict our holographic microscope setup and detail the specific recon-

struction algorithm used throughout this thesis work. In the context of previous work

in our group, we present a further validation of DHH measurements for the study of

plasmonic nanoantennas in the far-field by comparing them to measurements performed

with a well-established technique in the field: aperture NSOM (aNSOM).

We then proceed, in Chapter 2, with the discussion of the electromagnetic response

of nanoparticles to an incident light, addressing the main phenomena of light scattering

and absorption. We particularly study the case of MNPs, for which a resonant response

known as Localized Surface Plasmons can arise, giving them relatively large scattering

cross sections. By imaging this scattered light, we finally show the capabilities of our

holographic microscopy setup to explore the behaviour of silver NPs in solution, as

well as to elucidate their chemical transformations in contact with a gold electrode by

coupling our technique to electrochemical measurements.

To set the basis for further discussion, in Chapter 3 we analyse the smallest resolu-

tion that can be achieved by localization methods. We first review various wide-field

sub-diffraction microscopy techniques based on single-particle localization, giving par-

ticular attention to the recent achievements of digital holographic microscopy in this

field. Then we present different strategies that have been proposed not only towards the

tracking and dynamic study of single sub-diffraction objects, but also for superresolu-

tion imaging obtained point-by-point by accumulating data from thousands of individual

localizations. This leads us to introduce our approach: the 3D imaging of MNPs under-

going Brownian motion to stochastically probe a certain volume under study. Besides,

we study by statistic means the minimum time necessary to recover a 2D image with

our stochastically moving particles. Finally, we complete our discussion with a technical

section about our fast particle detection algorithm, based on parallel calculations using

a Graphics Processing Unit.

Chapter 4 then deals with the central question of this PhD work, that is to use gold

nanoparticles as local EM field probes. After a brief discussion about the concepts of

near-field and evanescent waves, we illustrate the near-field imaging potential of our

holographic system by imaging the evanescent wave decay in a Total Internal Reflection

(TIR) configuration. Then, highlighting the large 3D volume that can be imaged with

our technique, we reconstruct the intensity profile of a focused Gaussian laser beam inside

a microfluidic chamber. However, some key issues remain when trying to characterize the
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electromagnetic field distribution around plasmonic nanostructures with subwavelength

resolution using MNPs. The light scattered to the far field by the plasmonic object itself

degrades the detection of the metallic nanoprobes. Two filtering methods are therefore

presented, relying on the differentiation of each type of scattering: that from static,

generally bigger features, from the scattering of small moving NPs. The preliminary

results are discussed as well as further possible improvements.
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Chapter 1

Holographic microscopy for

far-field optical mapping

Holography is an interferometric technique for the three-dimensional characterization

of the wavefield diffracted by an object upon illumination by a coherent incident wave.

It was invented by physicist Dennis Gabor in 1948 [32] while trying to enhance the

resolving power of electron microscopes. The development of the laser in the early 1960s

provided suitable coherent illumination sources enabling the rise of optical holography.

In the beginning, holograms were recorded on a photographic plate that needed to

be chemically developed. Later improvements in large photosensitive detectors arrays

such as CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semi-

conductor) cameras, associated to an increase in computing power, made possible its

digital and dynamic implementation for many industrial purposes such as deformation

measurements and vibrometry [89, 90, 94], flow visualization [95], removal of wavefront

distortions in optical communications [67] and high density data storage [46], among

others.

In this chapter, we first introduce the principles of digital holography, as well as the

basics of numerical reconstruction. Particularly, we depict our holographic microscope

setup and detail the specific reconstruction algorithm used throughout this thesis work.

Finally, we show how holographic microscopy can be used for the characterization of

plasmonic structures and, notably, to image the three-dimensional scattering pattern of

nanoantennas in the far-field, from a single snapshot.
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1.1 Principles of digital holography

Holography is based upon diffraction and interference principles: the amplitude and

phase of the diffracted wavefield under study are encoded owing to its interference with

a well-known local oscillator, which is usually called the reference wave. The resulting

interference pattern is referred to as the hologram and corresponds to a fringe-like in-

tensity distribution. The analytical expression of the recorded intensity at the detector

plane can be written as the square modulus of the sum of the two complex fields:

IH(x, y, zp) = |EH(x, y, zp)|2

= |ER(x, y, zp) + ES(x, y, zp)|2

= E∗RER + E∗SES + ERE
∗
S + E∗RES

(1.1)

where ER and ES are the complex field of the reference and the scattered wave, respec-

tively, and zp indicates the position of the recording plane, perpendicular to the optical

axis. The first two terms in the last equation correspond to the reference and scattered

intensities (also called autocorrelation terms, or 0 order) and do not contain any phase

information. The last two terms are the conjugate of each other (ERE
∗
S , -1 order also

called the twin image of E∗RES , +1 order or virtual image) and, conversely to the first

two terms, both carry the whole information about the unknown complex scattered field

under study.

Historically, in the experimental configuration that was first proposed, later called in-

line holography, the interferences took place between the light scattered by a weakly

scattering object (semitransparent) and the strong coherent background due to the direct

transmission of the incident light through the object itself (see Fig. 1.1). Consequently,

all four terms from Eq. 1.1 were recoded in the hologram plane and the reconstruction of

the scattered field ES was deteriorated by the autocorrelation components and the twin

image which overlapped with the signal image. In the following section, we present two

techniques enabling us to suppress these undesired diffraction orders from the recorded

interference.

1.1.1 Experimental suppression of parasite diffraction orders

Off-axis holography

In 1964 Leith and Upatnieks [51, 52] proposed to divide the incident illumination wave

into two separate arms and to introduce a small tilt θR in the reference beam (see Fig.

1.2), so that kR = kRx +kRz and kRx = k sin θR . For simplicity, we define the recording
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Figure 1.1: In-line holography configuration scheme. Interference takes place between
the light scattered by a weakly scattering object (semitransparent) and the strong
coherent background due to the direct transmission of the incident light through the

object itself.

Figure 1.2: Off-axis holography configuration scheme. The propagation direction of
the reference wave ER is tilted by an angle θR with respect to the optical axis.

plane as z = 0. The small angle between the two beams transforms Eq. 1.1 as follows:

IH(x, y) = |ER(x, y)e−ikx sin θR + ES(x, y)|2

=
(
IR + IS(x, y)

)
+ eikx sin θRE∗RES(x, y) + e−ikx sin θRERE

∗
S(x, y)

(1.2)

where k = 2π/λ. Note that the z -component of the reference wave vector introduces

a constant phase shift on the hologram plane kRz = k cos θR that can be ignored. In
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this case, the different terms vary at different spatial frequencies and therefore they

will split in the Fourier space. In other words, the phase delay in the real space in-

duces a simple shift in the spatial frequency domain. Consequently, the +1 order can

be numerically selected by computing the spatial Fourier transform of our hologram

Ĩ(kx, ky) = F [IH(x, y)] and we obtain:

ĨH(kx, ky) = ĨR + ĨS(kx, ky) +E∗RẼS(kx + k sin θR, ky) +ERẼ
∗
S(kx − k sin θR, ky) (1.3)

Figure 1.3 represents the four terms obtained in Eq. 1.3 in the spatial frequency domain

along the kx axis. The first term, ĨR, corresponds to the spectrum of the reference wave,

assumed to be uniform. Its Fourier transform is thus a Dirac peak centred at 0 in Fig.

1.3. The second term, ĨS , is the intensity spectrum of the scattered wave and its width

is twice the spectral width of ES , which we write as 2∆k and is also centred at 0. The

last two terms in Eq. 1.3 also have a spectral width equal to ∆k but are frequency

shifted towards ±k sin θR. They are represented by the two side lobes in Fig. 1.3.

Figure 1.3: Representation of the diffraction orders splitting in the Fourier space.

Phase-shifting Holography

In 1997, Yamaguchi and Zhang [102, 103] proposed another strategy to retain only the +1

diffraction order that was independent of the geometry of the setup (valid for either in-

line or off-axis configuration). It consists in the combination of multiple images acquired

with different phase shifts introduced between the reference and the object beams, in

order to extract only the relevant E∗RES term.

If we denote as φ the relative phase between the reference and the object arm at the

detector plane, the hologram intensity can now be written as:

IH(x, y)(φ) = IR + IS(x, y) + eiφE∗RES(x, y) + e−iφERE
∗
S(x, y) (1.4)
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Several strategies can be implemented to appropriately sample this phase shifted holo-

grams. Nyquist-Shannon’s sampling theorem states that more than two images are

necessary to correctly measure the hologram modulation. Consider a phase-shift set to

φ = π
2 between two snapshots on a series of four successive acquisitions (what is called a

4-phase demodulation method): we obtain four different holograms, referred as I
(nπ/2)
H ,

where n is an integer going from 0 to 3. The following linear combination of these 4

images allows us to extract the term E∗RES :

IH =
1

4
[(I

(0)
H − I

(π)
H ) + i(I

(π/2)
H − I(3π/2)H )]

= E∗RES

(1.5)

N = 4 images is a simple case, but for a more general case of a N -phases demodulation,

the phase-shift that needs to be imposed between two successive snapshots is φn = 2πn
N

with n being an integer going from 0 to N − 1, from a series of N acquisitions. The

linear combination that allows the suppression of all the diffraction terms except from

the +1 order is:

IH =
1

N

N−1∑
n=0

eiφnI
(φn)
H

=
1

N

[
N−1∑
n=0

e
4iπn
N

]
︸ ︷︷ ︸

=0

(IR + IS) +
1

N

[
N−1∑
n=0

e
4iπn
N

]
︸ ︷︷ ︸

=0

ERE
∗
S + E∗RES

= E∗RES

(1.6)

The main disadvantage of this technique is, however, the need to acquire multiple images,

which slows down the acquisition rate.

Off-axis Digital Heterodyne Holography (DHH)

Gross and Atlan [36] first proposed in 2007 to combine the two strategies previously

detailed to remove aliases, associating both off-axis geometry and phase-shifting holog-

raphy in a single experimental setup. This double filtering in both the spatial and the

frequency domain enables the recording and reconstruction of holographic images at

very low light levels. The scope of this work being the imaging of nanoobjects, this low

noise configuration is currently used by our group.

To better illustrate this double filtering process in both the spatial and temporal fre-

quency domains, Fig. 1.4 shows the image obtained by performing a spatial Fourier

transform of one our our holograms. In (a) we can see the splitting of the three diffrac-

tion orders due to the off-axis configuration. In (b), phase shifting has been added and
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a better filtering is obtained by calculating a linear combination of four successive im-

ages with a relative phase-shift of π/2. Especially, the zero-order term in the middle

of the k -space is largely removed in (b) as compared to (a), which reduces the overlap

between the zero-order and the +1 order containing ES . In order to remove efficiently

the parasitic diffraction orders, we apply digitally an additional circular mask to select

only the +1 order. This diffraction order is then recentred, which effectively cancels the

spatial frequency shift induced by the off-axis geometry. Note that, for a given CCD

detector area, off-axis holography suffers from a four-fold loss in resolution with respect

to in-line holography, as we finally use only one quarter of the detector surface. However,

(c)(b)(a)

Figure 1.4: Double filtering in the Fourier space. (a) Splitting of the three diffraction
orders due to the off-axis configuration. (b) Additional phase shifting and 4-phase
demodulation of the same hologram. (c) Recentring of the +1 order containing the

relevant E∗
RES term in order to cancel the effect of off-axis geometry.

although phase shifting holography is an powerful technique for noise reduction when

imaging static samples, it is not always well-suited when imaging moving objects. As we

further discuss in Chapter 3, the minimal acquisition delay between two frames (which

is driven by our camera transfer time) is, in some cases, too long with respect to the

object mean displacement during the same time-lapse, which can blur the object recon-

struction. In this work, either 1, 2 or 4-phase schemes have been used depending on the

objects under study.

1.1.2 Experimental setup

Throughout my thesis work, I have contributed to the implementation of two different

Olympus microscopes: an upright BX-URA2 and an inverted IX-71, equipped with

various microscope objectives. With few differences between the two setups around

each microscope, the overall holographic configuration is sketched in Fig. 1.6. Long

coherence length lasers (a single mode laser diode and a diode pumped solid-state laser)

were used in order to avoid arm length compensation adjustments. We used two different

wavelength: λ = 532 nm and λ = 660 nm. Both the illumination source and the

microscope objective will be detailed before each experiment.
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Figure 1.5: Inverted microscope Olympus IX71.
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Figure 1.6: Setup scheme.
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First, the excitation laser beam is split with a polarizing beam splitter (PBS) in a

reference and an illumination arm in a Mach–Zehnder configuration manner. A first λ/2

waveplate (half wave plate, HWP) and variable optical densities (OD) allow the control

of the optical power in each arm. Additional HWPs in each arm allow us to adjust

the polarization state impinging the sample as well as to maximize the holographic

modulation depth by aligning the polarization iof ES and ER. The reference beam

passes through a beam expander (BE) so that it covers the whole detector surface. In

the object arm, the sample is illuminated under total internal reflexion (TIR) using

a glass prism, ensuring dark-field illumination. Thus, only the field scattered by the

structures under study is collected by the microscope objective (MO) and reaches the

EMCCD camera (Andor iXon3 885, cooled at 10◦C, up to 40 Hz acquisition rate for 512

× 512 images, square pixels of 8 µm) and it interferes with the reference beam in an

off-axis configuration.

Finally, we have the possibility to introduce an accurate phase-shift between the two

arms. For that, we use acousto-optic modulators working at frequencies in the MHz

range. Such a high frequency modulation is unfortunately too fast for existing digital

cameras. One solution, which we use in our setup, consists in frequency-shifting both

arms by two acousto-optic modulators (AOM1, AOM2) at frequencies fAOM1 = 80 MHz

and fAOM2 = 80 MHz−∆f , with ∆f values of a few tens of Hz, within the acquisition

rate of the camera. The resulting interference pattern thus bears a modulation at a

beating frequency ∆f = fAOM1 − fAOM2 = ∆f , while the acquisition rate is set to

fCCD = 4∆f in order to perform a frequency filtering by means of a four-phase demod-

ulation method. Each holographic image is then reconstructed from a sequence of four

consecutively phase-shifted intensity images.

1.1.3 Digital reconstruction process

As mentioned in the introduction, holography consists in recording the optical field

diffracted by an object at a certain distance from it. Numerical calculations to retrieve

the optical field emerging from the object at any distance from a single hologram is what

is called the reconstruction process. There exist a number of different approaches [92]

to calculate the backward propagation of light from the hologram to the reconstruction

plane, all based on diffraction theory.

The field scattered by the object in any given plane can be written using the Kirchhoff

diffraction integral:

E(x′, y′, z) =
1

iλ

∫∫ +∞

−∞
E(x, y)

eikr

r
cos(n, r) dxdy (1.7)
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where (x′, y′) and (x, y) denote the spatial coordinates in the hologram and the object

plane, respectively (see Fig. 1.7). This expression can be understood as the addition

(integral) of spherical secondary waves coming from every point in the object as stated

by the Huygens principle. The factor 1/iλ is a phase and amplitude factor, and cos(n, r)

is a polarization factor.

Since the direct numerical processing of the Kirchhoff integral is time consuming, more

efficient computational schemes have been developed. In the paraxial limit, i.e. for

reconstruction distances much larger than the object dimensions, expression 1.7 can be

simplified, leading to a single fast Fourier transform (FFT) calculation, know as the

Fresnel approximation. This alternative is unfortunately not suitable for microscopy

images, as the reconstruction distances are of the order of the dimensions of the objects

and angular collection apertures are too large for the paraxial approximation to remain

valid. Moreover, in this approach, coordinates in the reconstruction plane scale linearly

with the distance to the object. Consequently, the reconstruction of a thick object leads

to a distorted image.

x x'

y y'

z

zr

r

Hologram
Oject/ Reconstruction

plane

Figure 1.7: Coordinate system.

As a result, methods using more than one FFT are more suitable. The so-called “Three-

FFT Algorithm” is based on convolution methods: the field at the recording plane can

be understood in this approach as the convolution between the field at the object plane

and the impulse response of the system, hz(x, y). The field scattered by the object in

any given plane can now be written as:

E(x′, y′, z) = E(x, y, 0) ∗ hz(x, y) =

∫∫ +∞

−∞
E(x, y, 0)hz(x

′ − x, y′ − y) dxdy (1.8)

The hz(x, y) impulse response function, analogous to the Huygens secondary wavelets,

can take many forms depending on the chosen approximations. It is possible to link
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Fourier-based approaches and convolution methods by writing, for instance:

hz(x
′ − x, y′ − y) =

1

iλ

eikr

r
cos(n, r) (1.9)

where r = |r| =
√
z2 − (x′ − x)2 − (y′ − y)2. In the Fourier domain, it is easy to see

that Eq. 1.8 becomes:

E(x′, y′, z) = F−1[F{E(x, y, 0)} × F{hz(x, y)}] (1.10)

therefore involving the calculation of three Fourier transforms.

Angular spectrum method

A better compromise for us is yet a third approach, known as the angular spectrum

method, which involves two FFTs and does not require any approximations to reach a

simple computational expression. It consists in a mathematical representation in which

an optical field in a homogeneous medium can be described as a superposition of plane

waves with variable amplitudes and propagation directions.

Let us assume that we know the field distribution at the object plane ES(x, y, 0), the z

axis being the optical axis. The field amplitude for every spatial frequency of the object

(i.e., its spectrum) can be expressed as:

A0(kx, ky) = F{E(x, y, 0)} =

∫∫ +∞

−∞
ES(x, y, 0)ei2π(kxx+kyy)dxdy (1.11)

Accordingly, the inverse Fourier transform of Eq. 1.11 reads as:

E(x, y, 0) = F−1{A0(kx, ky)} =

∫∫ +∞

−∞
A0(kx, ky)e

−i2π(kxx+kyy)dkxdky (1.12)

We consider now a simple plane wave eikzzr , with a known amplitude at z = 0 along the

plane (x, y, 0) that propagates until the recording plane (x, y, zr) at a distance zr from

the original plane. This free-space propagation simply leads to a phase change of the

field that can be expressed by multiplying E(x, y, 0) by this propagation term eikzzr :

ES(x, y, zr) = ES(x, y, 0)eikzzr = ES(x, y, 0)ei
√
k2−k2x−k2yzr (1.13)

Taking into account all the different plane waves in which the field has been decomposed,

we obtain:

ES(x, y, zr) =

∫∫ +∞

−∞
A0(kx, ky)e

i2π(kxx+kyy)ei
√
k2−k2x−k2yzrdkxdky (1.14)
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If we denote Azr(kx, ky) the spectrum of the scattered field at the recording plane (i.e.

the spectrum of the hologram), in analogy to Eq. 1.13 we have:

Azr(kx, ky) = A0(kx, ky)e
i
√
k2−k2x−k2yzr (1.15)

and we can simplify Eq. 1.14 as follows:

ES(x, y, zr) = F−1{Azr(kx, ky)} (1.16)

Eq. 1.16 shows that, using the angular spectrum method, only two FFTs need to be

computed: a first Fourier transform of the hologram, that we can then propagate to

any z-plane through multiplication by a pure imaginary propagation term, prior to

computing a second Fourier transform (inverse FT) to obtain the scattered field in that

particular plane, as illustrated in Fig. 1.8.

zzr0

Azr 
(kx,ky)

A0 (kx,ky)

x exp (i kz zr )  

kx

ky

FTFT -1

kx

ky

Figure 1.8: Angular spectrum method, also called “Two-FFT Algorithm”.

Practical implementation of the reconstruction process

Fig. 1.9 depicts the different steps of our numerical reconstruction process, detailed

here:

Step 1. Numerical correction of the signal wave sphericity: the hologram Iccd

is multiplied by a complex phase matrix, M, to compensate for the sphericity

induced by the microscope tube lens both on the signal wave and the reference

wave:

M(x, y, d) = exp
( iπ(x2 + y2)

λd

)
(1.17)
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Figure 1.9: Practical implementation of the numerical reconstruction process. The
number in circles correspond to the different steps of the reconstruction algorithm.

where d is the local radius of curvature of the wave on the CCD plane. If the

reference wave was a plane wave after the tube lens, the distance d would simply

be the virtual distance between the recording plane and the back focal plane of

the objective trough the tube lens.

Step 2. First FFT (Fast Fourier Transform): the discrete Fourier transform of the

corrected hologram is calculated:

H̃(kx, ky) = FFT [Iccd ×M ] (1.18)
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Step 2 in Fig. 1.8 shows the intensity |H̃| in the k-space, in logarithmic scale, in

the case where there is no phase-shifting between the object and the reference. For

particles in motion, we need to implement different strategies for noise reduction

(see Chapter 3 for further discussion). The term related to ES is at the top-

right corner, centred on the spatial frequency induced by the off-axis geometry.

At this step, the calculation is equivalent to the one-FFT reconstruction (Fresnel

approximation presented earlier) of the hologram at the distance d described in

the previous step. Since the back focal plane of our microscope objective coincides

with the output pupil plane, which is common for high magnification objectives,

what we see for this +1 order is the sharp reconstruction of the output pupil

plane. Likewise, the virtual image term related to E∗S is centred on the conjugate

frequency (bottom-left corner). If we changed in Step 1 the parameter d to -d, the

image of the output pupil would be sharp in the bottom-left corner, while the term

related to ES would be blurred. In the middle of |H̃|, the zero-order appears as a

square instead of a circle because of the multiplication by the matrix M as well.

Figure 1.4(a) shows an example in which no correction of the wavefront sphericity

has been applied.

Step 3. Spatial filtering and centring: to remove the zero-order term and replace

the term related to ES in the middle of the Fourier plane, a round numerical filter

is applied, which matches the output pupil of the objective. Since the shape of

the pupil is sharp in the k-space, we can isolate precisely the pixels containing

the signal, minimizing the loss of information. The filtered part is then translated

to the middle of a 512 × 512 calculation grid in order to compensate the off-axis

shift.

Step 4. Second FFT:

Step 4a: The back focal plane of an objective shows nothing more than the Fourier

transform of the object placed in its object plane. Therefore, to reconstruct the

field scattered at this plane, only one last step is needed, that is, an inverse Fourier

transform.

Step 4b: In order to reconstruct any plane different from the objective focal plane, we

need to multiply H̃ by a propagation matrix K̃(kx, ky, z) of the form:

K̃(kx, ky, z) = exp(izkz) = exp
(
iz ×

√
k20 − k2x − k2y

)
(1.19)

where

k0 =
2πn

λ
, kx =

2π(x− 256)

512×∆pix
, ky =

2π(y − 256)

512×∆pix
(1.20)
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to propagate the hologram by a distance z in the axial direction. ∆pix is the

magnified pixel size. Equations on 1.20 are suited for holograms of 512 × 512 pixels

but are easy to generalize. Finally, as in Step 4a, the inverse FFT is calculated to

recover the real-space image at the specific z -plane. For each hologram, this step

is repeated n times (n being an integer) in order to get a stack of the scattered

field at different depths, with a propagation step of δz:

H(x, y, n · δz) = FFT−1[H̃(kx, ky)× K̃(x, y, n · δz)] (1.21)

Figure 1.9 shows reconstruction for n = 1 and n = 3, but any number of planes can be

calculated to obtain a 3D stack of images.

1.2 Mapping optical fields with DHH

Among the numerous applications of off-axis DHH microscopy, in 2011 our group first

addressed the characterization of plasmonic structures using this far field technique

[82, 83]. Plasmonics is a branch of nanophotonics that is primarily concerned about

the coupling of light to electronic charges in metals. Under specific illumination condi-

tions, charge oscillations inside nanostructurated metals enable strongly localized field

enhancements of subwavelength dimensions. This ability to squeeze light into subd-

iffraction volumes has stimulated many attractive applications such as extremely high

sensitivity spectroscopy and sensing of chemical agents, novel drug-delivery designs,

original strategies for high-resolution microscopy, compact metal-based waveguides for

miniaturized photonic devices and more efficient solar cells, among others [80].

A characteristic fingerprint of plasmonic nanostructures is their ability to work as

nanoantennas, being able to convert freely propagating optical radiation into strongly

localized energy, and vice versa [66]. Therefore, in order to understand and exploit the

plasmonic properties of nanostructures, it is fundamental to obtain the full knowledge

of the three-dimensional electromagnetic field around a nanoobject interacting with a

light source. Although being diffraction-limited, DHH microscopy has been shown to

be a useful tool to image nanoantennas’ three-dimensional scattering patterns from a

single snapshot. In addition, just as with back focal plane microscopy [54], the angular

radiation pattern can also be obtained straightforwardly by computing a simple Fourier

transform of the hologram [82]. Heterodyning is indeed another driving force of DHH

as it offers the possibility to perform phase measurements and to investigate frequency

modulated phenomena, although it has not been the main purpose of my work, presented

hereafter.
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While our group first studies were mainly centred on establishing a clear distinction

between resonant and non-resonant nanoantennas in the far field [83], the present work

aims at further validating DHH measurements by comparing them to measurements

performed with a well-established technique in this field, aperture Near-field Scanning

Optical Microscopy (aNSOM). Particularly, working in collaboration with an NSOM

research group from our laboratory, directed by Dr.Yannick DeWilde, we characterized

the same nanoantennas using both imaging techniques.

Samples under study

Similar to nanodisk chains, series of disk-like nanoholes (see Fig. 1.10) can likewise

present characteristic nanoantenna features (i.e. high directivity and enhanced scatter-

ing). Our samples were fabricated by thermal evaporation of a 2 nm thick Cr layer

for adhesion, prior to a 40 nm gold deposition forming a thin, partially transparent

layer. Several nanohole chains were drilled by electron beam lithography in a poly-

(methylmethacrylate) resist and transferred into the metal layer by ionic beam etching.

A set of different chains was fabricated by varying three parameters, in order to find

nanostructures resonating at our laser wavelength (λ = 660 nm): the number of holes,

the hole diameter and the edge-to-edge distance between holes. This was the case for

chains composed of 17 nanoholes, 150 nm diameter, spaced by around 20 nm, for an

incident polarization along the chain axis. The total length of the nanoantenna is about

3 µm. The nanofabrication was performed at the Laboratoire Photonique et Nanostruc-

tures facility by Dr. Nathalie Bardou and Dr. Stéphane Collin.

Figure 1.10: (a) SEM image of a Au nanohole chain consisting of 17 disks of 150 nm
diameter and ∆ = 30 nm edge-to-edge spacing. (b) Corresponding far-field transmission
scattering spectra obtained with an incident polarization along the chain axis (solid

curve) and perpendicular to it (dashed curve). The blue dot indicates λ = 660 nm.
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Experimental conditions

In both experimental setups, the light source is a single longitudinal mode laser diode

(λ = 660 nm, Pmax = 120 mW). For the holographic measurement, the reference ER and

the object arm EO were frequency-shifted at frequencies fAOM1 = 80 MHz and fAOM2 =

79, 999996 MHz. To avoid saturation of the sensor, the sample was illuminated under

total internal reflexion (TIR), ensuring dark-field conditions. Only the field scattered by

the nanostructures was then collected by the microscope objective (100× magnification,

N.A.=0.8) and reached the EMCCD camera (Andor iXon3 885), where it interfered with

the reference beam in an off-axis configuration. The resulting interference pattern was

modulated at a beating frequency ∆f = fAOM1 − fAOM2 = 4 Hz while the acquisition

rate was set to fCCD = 4∆f = 16 Hz in order to perform a frequency filtering by means

of the four-phase demodulation method. Each holographic image shown in this section

was thus reconstructed from a sequence of four consecutively phase-shifted holograms,

acquired at the EMCCD plane with an exposure time of τexp = 1 ms and subsequently

numerically reconstructed to any plane.

The near-field measurements were performed with a modified commercial NSOM (WITec

GmbH alpha300S, see Fig. 1.11) using a hollow silicon square-based pyramid with a

nanoaperture at its apex (diameter ∼ 100 nm) acting as the probe, mounted at the

end of a cantilever [22]. The optical signal transmitted through the nanoaperture was

collected by a microscope objective and focused on a photomultiplier tube detector

(PMT). The sample stage was translated using piezoelectric translators, while the tip

and the illuminator were maintained at a fixed position. The studied objects being

much smaller than the illuminated region (3 µm and 60 µm, respectively), we assume

that similar illumination conditions were maintained throughout the experiment in spite

of the sample translation.

Regarding the DHH measurements, direct illumination in transmission mode, even

through a thin film of gold, can blind the detector and cause strong interference with

the measured fields which are weak for a single nanoobject. This is the reason why we

chose an excitation beam at an incidence angle of 45◦ for the holographic measurement.

In this TIR configuration, the s-polarization remains in the plane of the sample, whereas

p-polarization has a component across its surface. We therefore chose to excite the chain

with an s-polarized incident wave (see schemes on Fig. 1.12(a) and 1.13(a)) and to ro-

tate the sample in order to analyse both longitudinal and transverse polarizations with

respect to the chain axis. Regarding the NSOM measurements, the metallized lateral

facets of the pyramid nanoaperture act as a screen, efficiently removing stray light, and
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therefore allowing excitation under normal incidence. The difference in excitation con-

ditions between the two techniques (oblique and normal incidence) only play a role in

the case of a transverse polarization, as detailed below in the non-resonant case.

PMT

Probe (hollow pyramid 

+ cantilever)

Sample

Scanning unit                    (XYZ)

Coarse 

positioning                           (XY)

50µm core

Fiber

Tube lens

Objective x50

N.A. = 0.65

Linear

polarizer

LASER

.x

z

MO

x20

Figure 1.11: NSOM setup using a hollow silicon square-based pyramid with a
nanoaperture at its apex (diameter ∼ 100 nm) acting as the probe, mounted at the

end of a cantilever.

Comparison between DHH and NSOM images

Resonant case

Let us first look at the resonant case, i.e. under a polarization along the chain axis, shown

in Fig. 1.12. On the one hand, we acquired in-plane xy images with both techniques.

While with DHH we only needed to reconstruct the xy-plane containing the nanohole

antenna by propagating the demodulated hologram to the corresponding z distance, with

the NSOM device the tip had to be laterally scanned along the whole surface, with the

apex of the hollow pyramid permanently in contact with the surface. This way, near-field

in-plane images as well as topographic images were collected simultaneously. The images

obtained using each of these techniques were very similar (see Fig. 1.12(b)), despite the

fact that the holographic image was obviously less resolved, the NSOM lateral resolution

being determined by the tip aperture, around 100 nm. Both showed an homogeneous

intensity distribution, suggesting coupling between neighbouring nanoholes.
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Figure 1.12: Resonant case. (a) Experimental configuration for the holographic far-
field measurement of a 40 nm thick gold film (17 holes, 150 nm in diameter, separated
by 20 nm) for an electric field polarization parallel to the axis of the antenna. (b)
In-plane holographic reconstruction of the intensity in the plane of a nanohole chain
antenna, under TIR illumination, and the corresponding near-field images obtained for
an incident wave vector perpendicular to the plane of the gold layer. (c) Intensity in a

plane perpendicular to the gold layer.

On the other hand, regarding the cross-plane images (xz ), after the DHH measurement

the reconstruction of one single hologram was performed in several z planes by steps

of 100 nm, although the axial resolution of this diffraction-limited technique is of the

order of 1.5 µm at the present wavelength. The corresponding NSOM acquisition (Fig.

1.12(c)) was performed by retracting the tip and recording the measured intensity as

a function of the tip-to-surface distance (z coordinate, 10 nm steps) at several lateral

positions (x coordinate, 10 nm steps) along the nanoantenna. The NSOM resolution

in the axial direction is expected to be at best of the order of the skin depth of the

pyramid metal (a few 10 nm). Both axial cross-sections obtained with each of the
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two techniques qualitatively agree and we distinguish three main radiation lobes with a

marked directivity.

Such NSOM microscopes are mostly designed to deliver xy-plane images. However,

Costantini et al. [22] recently showed that series of intensity profiles performed by re-

tracting the tip at different locations can provide optical images in a plane perpendicular

to the sample surface in order to record cross-sections (xz ) of the scattered field. Other

approaches in which several xy-planes are recorded at different heights have also been

proposed [21]. However, taking series of vertical lines, as proposed here, has the impor-

tant advantage of allowing contact, and therefore a correct value of z, at the beginning of

each vertical line acquisition. Note that the vertical intensity modulation in the NSOM

image is a perturbation due to interference between light directly transmitted through

the nanoholes and through the thin film and light scattered by the pyramid apex and

back-reflected on the metallic surface of the sample into the aperture, as had already

been observed in [22, 53].

Non-resonant case

For an excitation light polarized orthogonally to the chain axis, the in-plane NSOM

image (Fig. 1.13(b)) shows an intensity distribution in which bright spots appear on the

two rims of the chain. Such a spatial field distribution suggests a dipolar charge oscilla-

tion in the hole walls along the incident polarization direction. Indeed, electrodynamic

simulations demonstrated the analogy between LSP resonances induced in isolated gold

nanodisks and the very similar charge distribution in disk-like nanoholes of complemen-

tary dimensions [73].

However, the near-field and the far-field images for the non-resonant case significantly

differ. In the far-field, we do not see the dipolar distribution at every nanohole location

but only two bright spots at the edges of the chain. We attribute this asymmetry between

the near- and far-field images to the oblique incidence in the DHH measurement. Indeed,

under TIR illumination and for transverse polarization, all the nanoholes in the chain

are not excited in phase (as opposed to a polarization parallel to the chain axis, for

which all elements are excited in phase despite the oblique angle of incidence). The

length between the center of the first and the last nanohole of the chain is equal to

L = 150 nm × 16 holes + 20 nm × 16 gaps = 2720 nm. For an incidence angle of 45◦,

the path difference between them is very approximately three times the wavelength of

the exciting wave, i.e. δ = L sin(45◦) ' 3λ. Thus, the central nanohole sees an incident

field phase shifted by φ = kδ/2 = 3π rad.

Phase-imaging

We took advantage of our interferometric technique to look at the holographic phase
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Figure 1.13: Non-resonant case.(a) Experimental configuration for the holographic
far-field measurement of a 40 nm thick gold film (17 holes, 150 nm in diameter, separated
by 20 nm) for an electric field polarization perpendicular to the axis of the antenna. (b)
In-plane holographic reconstruction of the intensity in the plane of a nanohole chain
antenna, under TIR illumination, and the corresponding near-field images obtained for
an incident wave vector perpendicular to the plane of the gold layer. (c) Unwrapped

holographic phase image in the plane of the antenna.

image reconstructed at the plane of the antenna (see Fig. 1.13(c)). However, the peri-

odicity of the phase causes problems in the recovery known as wrapping effects. If the

phase difference is larger than 2π, then the measured phase will be wrapped modulo 2π

and the computed value will be φw = φ − 2πn, where n is an integer number. There

exist several unwrapping algorithms allowing the recovery of the true phase [19, 97], so

that the real physical quantities can be extracted from a given phase map. One of these

methods, developed by Dr. Marc Guillon, from the research centre of Neurophysiologie

et Nouvelles Microscopies (in Paris), allowed the phase unwrapping of this particular

image using the Helmholtz Hodge decomposition approach [12]. As expected consider-

ing the length of the antenna and the angle of incidence, we measure a relative π-shift

between the central nanohole and the two nanoholes at the chain edges. The gray scale

indicating the relative phase, the two edges of the chain appear dark while the central

position is bright. Thus, under this out-of-phase excitation, only two bright spots appear

in the scattered far-field intensity image, owing to the coherent far-field superposition

of the light scattered by the different individual dipoles.

Conclusions

In this chapter, we have introduced the working principles of digital heterodyne holo-

graphic microscopy. After presenting our specific experimental implementation, we have
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described the hologram reconstruction algorithm used throughout this thesis work, to-

gether with some practical considerations regarding the computational steps. Finally, in

the context of our group’s previous research, we have shown that optical intensity distri-

butions near the plane of a diffracting nanoantenna can be accurately reconstructed by

DHH microscopy. For an in-phase illumination of all the elements in the nanoantenna,

good qualitative agreement has been demonstrated by comparing our holographic mea-

surements to near-field images performed using the well-established technique of aperture

near-field scanning optical microscopy, both in the plane of the nanoantenna and across.

Consequently, although being diffraction-limited, we believe that DHH microscopy is a

promising tool for the fast, easy and non-invasive characterization of plasmonic nanoan-

tennas in many cases. Particularly, we have seen that cross-plane images are cumbersome

to achieve with scanning techniques, whereas DHH allows for a whole volume reconstruc-

tion from a single acquisition. In addition, DHH simultaneously gives access to the phase

of the nanoantenna, helping to gain more insight about its scattering pattern.
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Chapter 2

Metallic nanoparticles

Small objects from 10 nm and up to 100 nm in size are widely referred as nanoparticles.

At this scale, size-related properties that differ from bulk materials may arise. Particu-

larly, we focus our interest on metallic nanoparticles (MNPs) in solution. They are most

commonly chemically synthesized through the reduction of a metal salt in the presence

of a stabilizer, which limits the growth of the particles, directs their shape and provides

colloidal stability.

Throughout this thesis work, nanoparticles are used as optical probes, which requires

a good knowledge of their optical properties. In this chapter, we first report the basic

principles accounting for the electromagnetic response of a nanoparticle under an inci-

dent light wave. Absorption and scattering are the two main phenomena discussed here.

Using the holographic tools presented in the previous chapter and this description of

the optical properties of MNPs, we present a first set of results regarding the optical

investigation of chemical transformations of individual MNPs. We particularly focus

on oxidation reactions initiated by electrochemistry, by simultaneously investigating the

system via holography and electrochemistry techniques.

2.1 Overview of the electromagnetic response of nanopar-

ticles

When light waves encounter an object of any size, their energy propagation changes.

Matter being composed by discrete electrical charges, these charges oscillate upon il-

lumination by the incident electromagnetic field and radiate in turn electromagnetic

energy, what is called scattered light. Besides this elastic re-emission of light, matter can
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b)a)

Figure 2.1: a) Superposition of the wavelets scattered by elementary dipoles inside
the object at an observation point P. b) Scattering diagrams for spherical particles of
different size under white light illumination. Amplitudes are not proportional between

diagrams.

also absorb part of the incident energy and convert it into other forms such as heat or

vibrations.

Before we go into any mathematical formalism, it is useful to discuss which parameters

determine the amplitude and phase relations between the multiple individual dipoles

induced in an object by an incident light wave. One can easily imagine that the number

of possible phase relations between elementary dipoles increases for bigger particles and

that the shape of the object also plays a major role (see Fig. 2.1). Strictly speaking,

it is the size and shape of the particle versus the wavelength and the polarization of

the incident light that determines the particle’s response. But phase relations will also

be governed by the object composition, which determines the medium permittivity, i.e.,

the resistance of the medium to be polarized. To summarize, the factors that determine

the scattering and absorption efficiencies of the object under study are:

• the object characteristic size, a, and shape

• ε1(ω) and ε2(ω) the dielectric functions of the object and the surrounding medium,

respectively

• the wavelength of the incident light, λ, the polarization and the wavevector

However, calculating the analytical expression of the field scattered by an object can be

very cumbersome, as it requires solving Maxwell’s equations for the particular object

shape and composition. In 1908, Gustav Mie analytically solved the scattering problem

for spherical particles of any size [59], by decomposing the incident field in its multipolar

infinite series under spherical coordinates. Nowadays, the term “Mie scattering” is

commonly used to describe cases in which the size of the particle is comparable to the

26



Metallic nanoparticles

wavelength of the incident light, i.e. for a ∼ λ. A later version of this theory, called

“generalized Mie theory” is also able to account for non-spherical particle shapes.

For the scattering of particles much smaller than the incident light, Lord Rayleigh de-

veloped in 1871 a simpler formalism [72]. In Rayleigh’s regime, when a� λ, the phase

of the incident electromagnetic wave is practically constant over the particle volume.

Consequently, all points of the object respond simultaneously and the particle can be

considered as an individual radiating dipole. Accordingly, this regime is also commonly

called the dipolar regime.

One can adopt an even simpler analysis by considering the dipolar regime in the elec-

trostatic limit. For very small particles, owing to the absence of retardation effects,

total spatial field distribution can be calculated by assuming the simplified problem of

an electric dipole in an electrostatic field. The harmonic time dependence can then be

added to the solution once the field distributions are known. This approach is therefore

called the quasi-static approximation.

As the particle size used in this thesis work ranges from 60 nm to 100 nm, this size can

no longer be considered negligible compared to our excitation wavelengths in the visible

domain. Hence, we should use Mie’s rigorous formalism to solve the full scattering

problem. Still, the quasi-static approximation describes quite adequately the optical

properties of nanoparticles up to 100 nm for many purposes [55]. Although not fully

accurate, the quasi-static approximation is also particularly useful to give a qualitative

idea about the scattering and absorption behaviour of nanoparticles.

2.1.1 Quasi-static approximation

a

Figure 2.2: Spherical particle of radius a located at the origin in a uniform, static
electric field.

In the electrostatic problem, the Helmholtz equation reduces to the Laplace equation,

which is much easier to solve. We are thus interested in the solution of the Laplace
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equation for the potential, ∆Φ = 0, from which the electric field can be calculated:

~Einc = −OΦ. As an example, let us consider the analytical solution for the easiest

geometry: an homogeneous sphere of radius a located at the origin in a uniform, static

electric field ~E = E0ẑ (see Fig. 2.2). The surrounding medium is assumed to be isotropic

and non-absorbing with dielectric constant εm, and the field lines are parallel to the z -

direction. The dielectric response of the sphere is described by the dielectric permittivity

ε which is, in general, a complex number. Under these conditions, the solution for the

field distribution outside the nanosphere is the following [55]:

~Eout(r, θ) = E0êz + E0a
3 ε− εm
ε+ 2εm

3 cos θêr − êz
r3

(2.1)

The total external field is thus the superposition of the applied field plus a second term

which takes the same form as the electric field created by a dipole located at the sphere

center and oriented along the direction of the incident electric field:

~Edipole(~r) =
1

4πε0εm

3(~p · êr)êr − ~p
r3

(2.2)

By matching equations (2.1) and (2.2), we can express the dipolar moment induced

inside the sphere, which is proportional to |E0| in magnitude:

~p = 4πε0εma
3 ε− εm
ε+ 2εm

~E0 (2.3)

Here, we can introduce the polarizability α0, defined via ~p = ε0εmα0
~E0

α0 = 4πa3
ε− εm
ε+ 2εm

(2.4)

Thus we see that the polarizability, for a given particle shape, embraces three of the key

parameters playing a role in the electromagnetic response of the particle: the particle

size and both the composition of the particle and that of the surrounding medium. We

discuss the limits of this electrostatic polarizability in the following section.

2.1.2 Oscillating electric dipole fields

In the dynamic case, e.g. under plane-wave illumination with ~E(~r, t) = E0e
−iωt, the

incident field induces an oscillating dipole moment ~p = ε0εmα(ω) ~E0e
−iωt . Here, the

frequency dependence of the permittivity (ε(ω)) has to be taken into account. The

radiation of this dipole leads to the scattering of the incident plane wave by the sphere.

Many reference books, which describe the extinction efficiency (energy removal from

the incident beam due to the presence of the particle) by small spherical particles,
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consider the dipolar approximation in the electrostatic limit. However, the electrostatic

polarizability α0 given by Eq. 2.4 violates the principle of energy conservation.

Let us briefly review the basics of the electromagnetic fields associated with an oscillating

electric dipole. The total fields ~H(t) = ~He−iωt and ~E(t) = ~Ee−iωt in any point in space

are (see Ref.[41] for demonstration):

~E =
1

4πε0εm

{
k2(~n× ~p)× ~ne

ikr

r
+ [3~n(~n · ~p)− ~p]

( 1

r3
− ik

r2

)
eikr
}

(2.5)

~H =
ck2

4π
(~n× ~p)e

ikr

r

(
1− 1

ikr

)
(2.6)

with k = 2π/λ and ~n the unit vector in the direction of the observation point r. There

are two main spatial regions of interest, depending on the distance to the dipole. Very

close to the dipole, kr � 1, is what is called the near-field region. Far from it, kr � 1,

the region is known as the radiative far-field zone.

In the far-field zone, the dipole fields are of the well-known spherical-wave form:

~E =

√
µ0
ε0εm

~H × ~n (2.7)

~H =
ck2

4π
(~n× ~p)e

ikr

r
(2.8)

whereas in the near-field zone limit, the fields approach:

~E =
3~n(~n · ~p)− ~p

4πε0εm

1

r3
(2.9)

~H =
iω

4π
(~n× ~p) 1

r2
(2.10)

We can see that within the near-field, the fields are predominantly electric in nature,

since the magnitude of the magnetic field is about a factor
√
ε0εm(kr) smaller than

that of the electric field. For static fields (kr → 0), the magnetic field simply vanishes.

Moreover, with Eq.2.9 we recover the expression obtained for the quasi-static approxi-

mation. This means that in the derivation of the electrostatic polarizability no radiative

components of the oscillating dipole were taken into account. Consequently, α0 can-

not take into account the particle’s scattering and therefore radiative corrections to the

electrostatic polarizability need to be included in order to solve the problem of energy

conservation [5]. Still, the simple expression of α0 is often used to roughly estimate the

order of magnitude of an absorbing particle’s polarizability in many cases.
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2.1.3 Scattering and absorption cross-sections

Scattering and absorption cross-sections have area units; they determine quantitatively

the object effective area that interacts with the incident field. They are described as

follows:

Cscat =
Pscat
Iinc

Cabs =
Pabs
Iinc

(2.11)

where Pscat and Pabs are the power scattered/absorbed by the particle, respectively, and

Iinc is the incident power per unit surface (irradiance), defined as the time averaged

modulus of the Poynting vector:

Iinc =
∣∣∣〈~Sinc(~r)〉∣∣∣ =

∣∣∣∣12<{ ~Einc(~r, t) ∧ ~H∗inc(~r, t)}
∣∣∣∣ (2.12)

For a spherical particle in the dipolar regime and under the quasi-static approximation,

Cscat and Cabs can be calculated via the Poynting vector determined from Ref. [16] as:

Cscat =
k4

6π
|α0|2 =

8π

3
k4a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2
Cabs = k Im[α0] = 4πka3 Im

[
ε− εm
ε+ 2εm

] (2.13)

We point out that no explicit assumptions were made in our derivations so far about

the sphere material. The expressions for the cross-sections in Eq. 2.13 are thus valid

for dielectric as well as for metallic scatterers (the only difference lies in the the real or

complex value of ε), and demonstrate a very important problem for practical purposes.

Due to the rapid scaling of Cscat ∝ a6, very little light is scattered by small particles,

hindering their optical detection. Particularly, imaging small nanoparticles immersed in

a background of larger scatterers can in many cases only be achieved using photothermal

techniques relying on the slower scaling of the absorption cross section with size [4]. In

the next section, we discuss the advantages of using metallic nanoparticles.

2.1.4 Localized surface plasmon resonances

The optical properties of metals can be described by their complex dielectric function,

which depends on the frequency of light, ε(ω) = ε1(ω)+iε2(ω). Without going into much

detail, these properties are mainly determined by two phenomena. On the one hand,

conduction electrons can move freely inside the metal, as opposed to bound electrons
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in dielectric media. The Drude-Sommerfeld theory describes reasonably well the contri-

bution of this conduction electrons, called the free-electron gas, by solving the equation

of motion for free electrons under the influence of an external harmonic field. On the

other hand, high-energy incident photons at optical frequencies can promote electrons

from lower-lying bands to the conduction band, inducing interband transitions, therefore

modifying the behaviour of the material as compared to an ideal Drude metal.

Figure 2.3: Real and imaginary parts of the dielectric function of gold. Circles:
Experimental values from [42]. Squares: Model of the dielectric function taking into
account the free-electron contribution and the contribution of a single interband transi-
tion. A better reproduction of the experimental values at high energies can be obtained

by integrating more interband transitions.

Both contributions, from free and bound electrons, lead to a negative value of the real

part of the dielectric constant [65]. Consequently, for metals, and particularly for the

case of a sphere derived in Eq. 2.4, the polarizability experiences a resonant enhancement

under the condition that |ε(ω)+2εm| is minimum, which for the case of a non-absorbing

medium (at least around the resonance frequency) simplifies to

Re[ε(ω)] = −2εm (2.14)
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This relationship is know as the Fröhlich condition. For gold and silver, this resonance

falls into the visible region of the spectrum. The collective oscillating response of the

electrons in resonance with the incident light is known as the plasmon resonance, plas-

mons being by definition the quanta of surface-charge-density oscillations coupled to

electromagnetic waves. The associated resonant frequency, derived in the present case

from the quasi-static approximation, is called the dipolar surface plasmon resonant fre-

quency of the metal nanoparticle.

On the one hand, for a planar metal surface, the excitation of this resonance is known as

a Surface Plasmon Resonance (SPR): the coupling of an incident electromagnetic field

with oscillations of the conductor’s free-electron gas leads to p-polarized surface waves

propagating along the interface between the conductor and the surrounding electromag-

netic medium. In the direction perpendicular to the interface, these surface plasmons

waves are evanescently confined. On the other hand, an incident EM field on a metallic

nanoparticle induces as well a coherent oscillation of the free-electron cloud (see Fig. 2.4).

Due to the particle finite size, the displacement of the electron cloud inside the nanopar-

ticle induces a depolarizing force, governed by Coulomb’s law. A resonant coupling with

the incident electromagnetic field arises for an incident frequency appropriately tuned

with the characteristic frequency of the charge oscillation inside the nanoparticle. This

resonance is then called a Localised Surface Plasmon Resonance (LSPR). When one of

Figure 2.4: Sketch of a homogeneous metal sphere placed into a harmonically oscil-
lating electromagnetic field, at two different moments of the field passage.

these LSPRs arises, it leads to a field enhancement both inside and in the near-field

zone outside the particle [75]. This field is highly localized at the nanoparticle and de-

cays rapidly with distance (since Eout ∝ 1/r3), as far-field scattering and absorption by

the particle are greatly enhanced by the resonance. Equations 2.13 show that, indeed,

for metal nanoparticles both absorption and scattering are resonantly enhanced at the

dipole particle plasmon resonance, as both cross-sections depend on the polarizability.
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Gold nanoparticles spectra

Experimentally, optical spectroscopy based on scattering or extinction (absorption to-

gether with scattering) measurements is the simplest method to detect LSPR. Alterna-

tively, we used an on-line open-source Mie calculator [1] to plot the accurate spectra of

the gold nanoparticles used in this thesis work (see Fig. 2.5). Our first experiences were

performed using a diode laser at 660 nm (Opnext HL6545MG, max. power 120 mW)

to image 100 nm particles. Despite not being at the plasmon resonance of the beads,

their scattering cross-section was beyond our sensitivity threshold, so we were able to

detect them. Conversely, when we tried to image smaller particles, reducing the size to

60 nm diameter particles, we were obliged to adapt our wavelength. For this size we

chose to excite the NPs close to their scattering resonant wavelength with a single-mode

solid-state laser at 532 nm (CNILASER, max. power 80 mW).

60nm

100nm

Figure 2.5: Spectra from http://www.lightscattering.de/MieCalc/eindex.html, calcu-
lated for the two main sizes of NPs used throughout this PhD work. The green and
red dots indicate our two excitation wavelengths at 532 nm and 660 nm, respectively.

If we denote A = πa2 the geometrical area of the particle, an even more intuitive

dimensionless parameter is the scattering efficiency coefficient:

Qscat =
Cscat
A

(2.15)

Finally, Fig. 2.6 shows the scattering dependence on the incident polarization direction.
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Light polarization state:

Incident light

Figure 2.6: Simple polar graph of the scattering pattern, from
http://omlc.org/calc/mie calc.html (radial distance is plotted on a log scale).

Light is incident from the left on a sphere located at the center of the polar plot.

2.2 Electrochemistry studies coupled to holographic imag-

ing

Electrochemistry, as its name suggests, is the study of chemical reactions between an

electrode (a solid metal or a semiconductor) and an electrolyte (usually ionic species

in a liquid solution). In other words, it deals with the interaction between electrical

energy and chemical change: it studies both chemical reactions caused by an externally

supplied current, and electrical currents produced by a spontaneous chemical reaction

(as in a battery). Recently, nanoparticle detection capabilities using electrochemistry

have been reported, involving the observation of Faradaic charge transfer associated

with the quantitative destructive oxidation of nanoparticles colliding with (or becoming

adsorbed to) an electrode surface [81].

However, nanoparticle suspensions exhibit properties that can vary dramatically depend-

ing upon the synthesis methodology. Even for a highly characterised nearly monodis-

perse nanoparticle system, the particle size distribution can be significant. Therefore,

single particle electrochemical studies are a particularly crucial area. Unfortunately, a

number of key issues remain, specially concerning the particles behaviour within solution

(when not in contact with the electrode), such as possible agglomeration or aggregation

of particles.

The work presented in this section was done in collaboration by an electrochemistry

group from the ESPCI Paristech in Paris and a research group from the Department of
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Chemistry, Physical and Theoretical Chemistry Laboratory from the University of Ox-

ford. The aim of the collaboration was to study the chemical reactions of colloidal silver

NPs adsorbed onto a thin-film gold electrode by simultaneously investigating the system

via digital holography and electrochemistry. While electrochemistry can easily provide

ensemble measurements, holography allows to individually visualize many single parti-

cle stochastic events. Moreover, holography being a non-invasive 3D imaging technique

capable of imaging inside a water-based system, the particles can be investigated in situ

in a typical electrochemical situation. The change in the optical response of the silver

nanoparticles during their chemical reaction may as well help us elucidate the particles’

transformation. Hereafter, we show how the coupling of both techniques can offer more

chemical and physical insight. This work led to a joint publication [13].

Electrochemical setup

A standard three-electrode setup was used, comprising a thin (40 nm) evaporated gold

film working electrode supported on a glass slide, a coiled platinum wire acting as the

counter, and a AgCl modified silver wire as a reference. The working electrode potential

was controlled and the electrode current was measured using a CH660B potentiostat

(CH Instruments, IJ Cambria), with the electrochemical experiments being performed

at room temperature (25± 2◦C). Citrate capped silver nanoparticles were synthesised,

with an average radius of 23± 9 nm. The experiments were performed in 0.1 M NaCl,

with 200 µL of the silver nanoparticles solution being diluted to a total volume of

1 mL of ultrapure water (resistivity not less than 18.2 MΩ · cm at 25◦C). In order

to enclose and protect the nanoparticles, we fabricated microfluidic chambers using a

glass slide/parafilm R©/cover-slip stack: a double-layer ring of parafilm was heated to its

melting point to serve as waterproof spacer of ∼ 150 µm thickness, and to seal tightly two

plastic micropipettes which were used to fill the chamber after fabrication. A schematic

of the fabricated thin-layer electrochemical cell is shown in Fig. 2.7.

Results

Electrochemistry of individual Ag NPs

Inside the electrolytic solution and for a given applied voltage, the silver NPs that are

in contact with the gold electrode can be oxidized. This oxidation implies the donation

of an electron by the NP to the gold surface, according to the following electrochemical

equation:

Ag (NP) → Ag+(sol) + e−(electrode) (2.16)
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Figure 2.7: Schematic description of the microfluidic chamber/cell. The green arrow
shows the direction of the laser propagation and, as can be seen in the side view, the

working gold electrode is situated on the upper plane.

Basically, upon oxidation, one expects to transform the Ag NP into Ag+, which may

be dissolved into the solution while an electron is injected into the electrode per Ag

transformed atom. Consequently, this oxidation induces a measurable current [81].

A
V

Ag/AgCl PRE
Pt CE

Au-Coated Coverglass WE
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Figure 2.8: Schematic diagram illustrating a silver nanoparticle with a potentiostatted
electrode. The silver nanoparticle is oxidised upon contact to the electrode, leading to

the formation of a silver chlorite particle.
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In our case, due to the presence of chloride in the solution (NaCl, sodium chloride

solution), the transfer of an electron to the electrode during the oxidation process is

expected to transform the Ag NPs into AgCl NPs (silver chloride NPs, as schematically

depicted in Fig. 2.8) according to:

Ag (NP) + Cl−(sol) → AgCl (NP) + e−(electrode) (2.17)

Figure 2.9: (a) 3D volume representations of scattered intensity isosurfaces, along
with (b) XY plane section and (c) scattering intensity, showing the object to be
diffraction-limited in size. In (a) the upper white plane corresponds to the electrode

plane.

Holographic tracking and NP’s size estimation

Before performing any electrochemistry measurements, we acquired holographic films of

the silver NPs freely moving inside the cell at an acquisition rate of 12 Hz. Using holog-

raphy, we were able to detect and track the NPs in solution as well as the features (either

NPs or defects) immobilized at the electrode surface. For instance, Fig. 2.9 shows the

reconstruction of one of the recorded holographic frames, which features two fixed bright

spots corresponding to two scattering defects at the electrode plane and one colloidal

NP in the solution. With this 3D temporal information we were able to track this NP

until it was adsorbed at the electrode surface (see Fig. 2.10). The tracking allowed us

to estimate quite accurately the NP size by fitting its Mean Square Displacement (see

Chap. 3 for tracking details). In particular, this allowed us to demonstrate that all

detected NPs were aggregates (radius > 50nm) instead of individual 23 nm radii NPs.

This is mainly due to the use of high concentrations of electrolyte, which decreases the

Debye length and favours inter-NP interactions and aggregation [28, 79].

Next, we launched simultaneously the optical and electrochemical measurements.
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Figure 2.10: An example of 3D nanoparticle tracking over 8 s, depicting the particle
adsorption onto the electrode surface situated on the upper plane of the volume.

Electrochemical observations

Figure 2.11 shows the voltammogram obtained by sweeping the potential applied to the

gold electrode in a cyclic manner. In the forward sweep, one can see that an oxidation

peak appears, corresponding to the oxidation of silver NPs previously adsorbed on the

gold electrode. At larger voltage values, a second broad feature can be found due to the

onset of the oxidation of the gold surface itself. In the backward sweep, there is also

a reduction peak associated with the silver NPs’ reaction, which indicates that their

oxidation process is reversible:

AgCl (NP) + e−(electrode) → Ag (NP) + Cl−(sol) (2.18)

Optical intensities

During this oxidation reaction, both the size and the refractive index of the transformed

NPs should be modified, leading to a change in the optical scattered power. On the one

hand, AgCl formed NPs should be bigger than the initial Ag NPs, with an increased

radius given by:

rAgCl = rAg

(MAgCl

ρAgCl

ρAg
MAg

)1/3
≈ 1.36 rAg (2.19)

where M is the molar mass and ρ is the material density. On the other hand, silver

chloride particles have a refractive index
(
nAgCl(λ = 587nm) = 2, 067

)
[2] closer to the

solvent than the initial silver particles (nAg = 0.14− 3.05i). Hence, we expect to detect

some alterations in the observed optical power during the electrochemical reaction.

Overlaid (in black) in Fig. 2.11, we plot the recorded light scattering intensity for an Ag
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Figure 2.11: Voltammogram. Presence of an oxidation peak in the forward potential
sweep corresponding to the oxidation of the silver NPs and the associated reduction
peak in the backward sweep, indicating a quasi-reversible process. At larger voltage
values, a second broad feature can be found due to the onset of the oxidation of the
gold surface itself. Overlaid (in black) is the recorded light scattering intensity for the

adsorbed particle tracked in Fig. 2.10

particle adsorbed on the electrode surface. From the tracking previous to its adsorption

onto the electrode, the hydrodynamic radius of this particle was found to be 71 nm.

Contrary to our expectations, no remarkable alteration of the measured intensity was

recorded during the oxidation process. For an initial Ag NP of 71 nm radius, a Mie scat-

tering calculation [1] gives a ratio between the initial and final scattering cross-sections

of CscatAgCl = 0.78 CscatAg , which indicates an intensity decrease due to the chemical reaction

when going from Ag to AgCl. Yet, we did not observe any decrease, suggesting that the

two competing factors mentioned above (i.e. the change in size and composition involved

in the transformation from Ag to AgCl) may compensate optically one another. The

influence of the highly reflective gold electrode on the scattering cross-section of the NPs,

in addition to possible plasmonic coupling of the particle with the gold surface, are likely

to result in a non-linear relationship between particle size/nature and optical intensity.

A detailed model of the particle/surface system (using the nature of the particle, its size

and its distance to the gold electrode as parameters) is being developed by Dr. Robert

Kuszelewicz (at Université Paris Descartes) using the Simphotonics Boundary Elements

Model developed by Dr. Mondher Besbes (at the Institut d’Optique). This model will

soon be able to predict the exact ratio between the scattering cross-sections CscatAgCl and

CscatAg in the vicinity of a reflecting surface. However, in the case of this particular ex-

periment, the fact that the transformations under study involve agglomerates instead of

single NPs may induce some error in the calculation of the transformed NP radius in
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Eq. 2.19.

Figure 2.12: Scattered light intensity for three separate particles situated on the
surface as a function of time. The black trace corresponds to the same particle shown
in Fig. 2.10 and the vertical dashed line represents the end of the electrochemical
experiment. In the insight, we show the scattered light intensity from defects in the
gold electrode. The intensity of these features does not alter significantly over the
experimental time frame, thus confirming that the observed decrease in intensity of the

particles is not an artefact.

Figure 2.12 shows the scattered light intensity recorded for three other adsorbed par-

ticles both during and after the electrochemical oxidation. The dashed line indicates

the end of the cyclic potential sweep, where many Ag particles have been oxidized into

AgCl. The particles optically monitored in Fig. 2.12 do not show a significant variation

in the scattered intensity during the oxidation process. Instead, the scattered light di-

minishes significantly only after the end of the voltammetric experiment. This decrease

in the scattering intensity is attributed either to the dissolution of the electrochemically

formed AgCl NPs into ions or to the formation of smaller solution-phase crystals. As

these crystals are not detected by holography, it is suggested that they are smaller than

20 nm in radius. Such a chemical dissolution cannot be directly studied via electro-

chemical methods, as the process does not involve any electrode charge transfer, but it

is clearly evidenced optically. Particularly, Fig. 2.12 shows that the dissolution process

is sequential and last several seconds.

Conclusions

We have shown that the coupling of electrochemical measurements with holographic

microscopy provides complementary chemical information. The ensemble response of
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the oxidation of surface-adsorbed Ag NPs to AgCl NPs is monitored electrochemically,

whereas this process is difficult to observe optically. Conversely, the subsequent chemical

dissolution of individual AgCl nanocrystals can be tracked optically due to the associated

decrease in the scattered light intensity. Here the dissolution mechanism is found to be

highly complex, involving chemical rather than electrochemical processes and since ag-

gregates instead of individual NPs are concerned. These results were recently published

in the scientific journal Chemical Physics Letters [13].

In addition, owing to the dependence of the NP optical response on its size and compo-

sition, the rate of the chemical process (evolution of the particle radius with the reaction

time) could be a priori addressed at the level of individual NPs/aggregates. Once again,

it requires the precise knowledge of the dependence of the NP scattering cross-section in

contact with a highly reflecting surface, which we are currently studying. Other present

motivations include the use of microelectrodes, with sizes similar to the field of view of

our microscope, that would allow us to correlate the optical and electrochemical response

of individual NP impacts on the electrode.
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Chapter 3

Holography for particle

localization, tracking and

superresolution imaging

As for any other wide-field imaging technique, the raw images that we obtain with holo-

graphic microscopy are diffraction-limited, meaning that we are not able to distinguish

two separate point-like objects that are closer than roughly λ/2. Fortunately, there exist

ways to overcome this resolution limit, enabling us to image subdiffraction objects with

high position accuracy. Just last month, the Nobel Prize in Chemistry 2014 was awarded

jointly to Eric Betzig, Stefan W. Hell and William E. Moerner for the development of

striking sub-diffraction microscopy techniques [14, 38, 62].

In this chapter, we first review various wide-field sub-diffraction microscopy techniques

based on single-particle localization. Particular attention is given to the recent achieve-

ments of digital holographic microscopy using localization methods. Then we present

different strategies that have been proposed towards not only the tracking and dynamic

study of single sub-diffraction objects, but also for superresolution imaging obtained

point-by-point by accumulating data from thousands of individual localizations. In this

context, we present our approach through the 3D imaging of metallic nanoparticles un-

dergoing Brownian motion. Finally, we detail the methods used in this thesis work for

particle tracking and we present our multiple-particle localization procedure using a fast

Graphics Processing Unit.
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3.1 Wide-field microscopy: beyond the diffraction limit

An optical system (in our case a microscope) does not image a point source into a point

but into a 3D light distribution called the Point Spread Function (PSF). In the case of

aberration-free imaging, the 2D light distribution in the image focal plane is an Airy

disk. The radius of the central lobe of the Airy disk is given by Abbe’s formula [3]:

∆r =
1.22 λ

2 N.A.
(3.1)

with N.A. is the numerical aperture of the imaging system, which corresponds to N.A. =

n sin(α), with n being the refractive index of the imaging medium and α the half-angle

of collection. As a result, the transverse (also called lateral) resolution of the imaging

system is limited. The only mechanisms for reducing this spot size are to decrease the

imaging wavelength, increase the numerical aperture, or to use an object medium having

a larger refractive index. In any case, light diffraction represents a fundamental limit.

The Rayleigh criterion states that two point sources of equal intensity separated by a

distance d can be resolved down to distances such that the maximum of the Airy disk

due to one of the sources coincides with the first minimum of the other. In other words,

we can only distinguish two sources separated by, at least, Abbe’s radius (Eq. 3.1).

y

x

z

r

Figure 3.1: Image from [26]. Calculated PSF for a point-like source imaged by means
of a wide-field microscope. Intensity distributions for x-y (left) and r-z (right) planes
in logarithmic scale, for an emission wavelength of 520 nm; numerical aperture is 1.3

for an oil immersion objective with oil refractive index value set at 1.515.

Axial resolution (also called longitudinal resolution) in optical microscopy is even worse

than transverse resolution, leading to a poor axial sectioning capability. The axial

dimension of the Airy disk forms an elongated pattern (see Fig. 3.1), with a main lobe
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Figure 3.2: Experimental Intensity profiles of the light scattered by a 100 nm gold
bead in the x and z -direction with our holographic microscope.

radius along the z axis of:

∆z =
λ

2n sin2(α/2)
(3.2)

It is common to measure experimentally the PSF of a microscope by imaging an in-

dividual scatterer small enough to be assimilated to a point source. Measurements of

resolution usually utilize the Full Width at Half Maximum (FWHM) values of the PSF,

which are slightly smaller than those calculated employing the Rayleigh criterion. Figure

3.2 shows the experimental intensity profiles obtained with our holographic microscope

for the light scattered by a 100 nm gold bead in the x and z directions under an incident

laser light at λ = 532 nm, using a collection objective of N.A.=0.85 and 100× magnifi-

cation. In the transverse direction we measure a FWHM of about 400 nm, whereas in

the axial direction it is of 1.25 µm, as expected for the PSF of our microscope objective

(see Table 3.1).

Illumination λ = 532 nm λ = 660 nm

Objective 100× N.A.=0.85 60× N.A.=0.7

Transverse resolution (nm) 381 575

Axial resolution (nm) 1125 2312

Table 3.1: Summary of the expected resolution values for different illumination wave-
lengths and different objectives at our disposal.

The PSF depends as well on the orientation of the dipole moment of the emitting point

source. Equations 3.1 and 3.2 correspond to a dipole moment laying in the imaging

plane. The situation is very different for a dipole with its axis along the optical axis.

In this case, the transverse PSF shows two main lobes (see Fig. 3.3) and a vanishing

field amplitude on the optical axis at the image plane (z=0), which makes it difficult to

define a characteristic width for the PSF [60].
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Figure 3.3: Image from [65]. Point-spread function depicted in the image plane of
a dipole with moment oriented parallel to the optical axis (ρ indicates the transverse
distance andM is the object magnification). The solid curve corresponds to the paraxial

approximation and the dashed curve is the exact result for NA =1.4.

So far, we have considered the paraxial approximation, but exact calculations demon-

strate that these expressions are a good approach for apertures up to N.A.=1.4 [65].

Despite the diffraction barrier, the Airy disk for an isolated point source can be mathe-

matically fitted so that its central position can be determined with an arbitrary precision,

limited only by the Signal-to-noise ratio (SNR). Hence, the imaging resolution can be

greatly enhanced, provided we address a single point source at a time. This strategy is

called localization microscopy. It is extensively used for the detection and tracking of

subdiffraction objects because of its simple implementation and sub-λ accuracy. How-

ever, while the transverse PSF can easily be obtained, the axial PSF is only accessible

to techniques which can provide 3D information.

3.1.1 3D localization microscopy

Most commonly, 3D information is obtained by imaging a transverse plane and inferring

the axial coordinate from the transverse width of the PSF. As mentioned above, the

natural PSF of a wide-field microscope being axially symmetric and quite insensitive to

axial changes close to the focus, the PSF has to be modified in order to contain axial

information from a transverse cut. Several methods have been used to engineer the

PSF to be more responsive to axial variations, among which we can cite: lobe splitting,

biplane imaging and astigmatic imaging. For lobe splitting approaches like the double-

helix PSF [87] and phase ramp imaging localization microscopy (PRILM) [11], the PSF

is split into two lobes whose relative distance encodes the axial position. For the biplane

approach [45], the emission beam is split equally and projected onto two cameras. The

focal planes in each path are calibrated to be a few hundred nanometers apart, and
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recorded simultaneously. In this way, two sections of the PSF with known axial offsets

are provided. The astigmatic approach [39] inserts a cylindrical lens into the optical

detection path, which leads to slightly different focal planes in the x and y directions.

This results in elliptically shaped PSFs whose ellipticity changes with respect to z.

Depending on the shape of the modified PSF, different fitting procedures are needed

[70], and resolutions of 15-20 nm transversely and 40-80 nm axially are achieved [39, 45]

(values expressed as FWHM). However, the axial range of these techniques is tipically

restricted to a few micrometers.

In the past ten years, various research teams from the Laboratoire Kastler Brossel-

Laboratoire Charles Coulomb (LKB-L2C) and ESPCI in Paris have buildt a solid foun-

dation of knowledge on the 3D wide-field localization of metallic nanoparticles (MNPs)

using digital holographic microscopy. Light scattering by MNPs preserves the coherence

of light, thus allowing interferometric detection. This technique has been shown to be

able to reconstruct the 3D image of several metallic nanoparticles, resulting in multiple

PSF spots, from a single snapshot. Superlocalization can then be achieved in 3D on

these PSFs with excellent accuracy with no need to modify the standard PSF of the

microscope. Particularly, Warnasooriya et al. [100] demonstrated the ability of digital

heterodyne holography to locate 40 nm gold nanoparticles in living cells environment

with a position accuracy of 5 nm and 100 nm in the xy and in the z directions, respec-

tively. More recently, the group of Verpillat et al. [91] was able to reconstruct 100 nm

gold particles trajectories in water, evidencing the Brownian nature of the motion and

determining the related diffusion coefficient.

In addition to direct 3D information, the main strength of digital holography with

respect to other 3D localization techniques is that it provides a constant localization

accuracy along tens or even a few hundred micrometers (see Sec. 3.1.2.2 for detail).

For holographic 3D localization, two main strategies have been proposed, with similar

accuracies. One approach consists in working on the hologram itself by building a

numerical library of the holographic signatures of objects at different depth positions.

The localization is then performed by matching the experimentally recorded hologram

with the reference patterns from well-known z -positions [76, 99]. Instead, the second

approach works in real space: the hologram is reconstructed into a volume prior to

localizing the particle’s accurate position. Although it requires an additional step, we

chose this approach as it makes easier the visual identification of features or artefacts,

as well as the choice of parameters with which to avoid them.
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3.1.2 Holographic microscope: localization accuracy on immobilized

NPs

Once the hologram has been reconstructed, we localize the particles by pointing the

local maxima of the scattered field intensity. A threshold is applied to the reconstructed

Iscat(x, y, z) in the full volume of the sample in order to detect likely particles. Then,

for each region above the threshold, we perform the following steps:

• We determine the reconstruction plane along zp and the xpyp transverse pixel for

which the intensity is highest.

• Using this coarse xpyp position, we perform a Gaussian fit in the transverse direc-

tion to localize precisely the particle transverse position, yielding its xy coordinates

with subdiffraction resolution.

• We adjust a parabolic fit along the axial direction using the coarse xpypzp pixel

for which the intensity is maximum and the two axially adjacent pixels zp− 2 and

zp + 2 to localize the particle axial position z of the particle with subdiffraction

resolution.

• We record the intensity of the detected particle.

The ensemble of these steps yields sets of I(x, y, z) values which reflect the intensity of

the light scattered by each particle at a given instant in a given position, determined

with sub-diffraction accuracy.

3.1.2.1 Signal-to-noise ratio

In order to study the achievable localization accuracy of our setup, we imaged gold

NPs immobilized on a substrate, in air. The aim was to compare the experimentally

scattered intensity and the variations of the measured positions to models. For this

purpose, we fixed gold beads of 30 nm radius in a polyvinyl alcohol (PVA) matrix

deposited by spin coating onto a glass slide. The bead concentration was chosen so as to

obtain above-diffraction spacing between particles (average distance 10 µm). The spin

coating conditions ensured a thin PVA film, with all particles lying in the plane of the

glass substrate, as shown in an earlier study [4]. These slides were set onto a prism and

illuminated at an angle larger than the critical angle at the glass-air interface θ > θc−ga =

arcsin(nglass/nair) = 41.8◦ to create TIR at the PVA-air interface. The evanescent

wave locally frustrated by the beads was therefore scattered into a propagative field ES

collected by the objective (Olympus ×100, NA=0.85).
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Under these conditions, the bead diffraction spot spread along a 40×40 pixel area, with

an integrated intensity, expressed in arbitrary units (a.u.) as given by direct camera

output of 2.7 × 1018 a.u. As previously shown by Gross et al. [36], this intensity value

can be converted to an absolute number of photo-electrons. For low light holographic

images, the noise level is related to the shot noise of the reference beam and corresponds

to 1 photo-electron per pixel. We thus determined the noise floor of our images by

integrating the intensity of a 40×40 pixel area from the darkest region of the same axial

plane containing the NPs. This relative value, measured at 4 × 1016 a.u., corresponds

quantitatively to 40 × 40 = 1600 photo-electrons. With this simple calibration step,

we obtained an absolute value of 1.1× 105 photo-electrons scattered per particle in our

reconstructed holograms. This method has the advantage of being independent of any

direct optical power measurement, which is delicate for such weak signals.

The expected number of photons scattered by an individual immobilized NP under these

conditions can also be expressed theoretically. For an incident laser power of 14 mW

and an exposure time of τexp = 1 ms, we get 3.6× 1013 photons impinging the plane of

the NPs. The total illumination area is assimilated to a uniform disk of 20 µm radius

(∼ 1250 µm2). The scattering cross section of r = 30 nm gold particles, 4×10−4 µm2,was

calculated using Mie theory with the bulk optical properties of gold (n = 0.467−2.41j at

532 nm). Thus we get 1.2×107 scattered photons per bead. Since the bead is located at

an air-glass interface, most of the light (85%) is scattered towards the highest refractive

index half-space, i.e. the glass substrate [8], and 2× 106 photons are scattered forward

within a 2π solid angle. The collection solid angle of a NA = 0.85 objective is ∼ 0.5

Steradian. We then get 8.4 × 105 photons on the detector, yielding an expected signal

of 4.6 × 105 photo-electrons (using the 55% quantum efficiency given by the EMCCD

manufacturer at 532 nm), which is in good agreement with the measured values, of

1.1× 105 photo-electrons.

The central position of a diffraction spot (and thus the position of the subdiffraction

object originating it) can be determined with arbitrarily high accuracy given a sufficient

number of photons in the spot. Owing to our off-axis filtering, our reconstructed images

are mainly limited by shot noise. As shown by Thompson et al. in the case of fluorescent

particles [88], each photon collected in the image gives a measure of the position of the

object and its position error is the same as the standard deviation of the PSF of the

microscope. The best estimate of the position of the object is then given by the average

of the positions of the individual photons, with a standard error σ of the mean position

µ along the z direction of

σ =
√
〈(z − µ)2〉 =

α√
N

(3.3)
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given that the shot noise scales with the number of detected photons N as N−1/2, where

z is the position of each photon in the spot, α is the standard deviation of the PSF and

〈 〉 indicates the average.

With the signal level experimentally measured as discussed above, and using Eq. (3.3),

we find a theoretical estimate of the error in the localization position of 0.3 nm in the

transverse xy-direction and 1.2 nm in the axial z-direction.

Statistical analysis

To test this prediction, sets of 200 holograms of these immobilized beads were recorded.

After reconstruction of the thin volume containing the NPs, the algorithm previously

described was applied to detect the bright spots and to fit precisely each bead position in

the transverse and axial directions. For each bead, we calculated the standard deviation

over the successive 200 localizations in order to statistically determine our localization

accuracy (see Fig. 3.4). As previously reported [91], the optimal localization precision

is obtained for an hologram acquisition with particles slightly out of focus (typically

±10 µm off the optimal focusing position), as the particle scattering is encoded over a

larger portion of the hologram and it is recorded by more pixels (see following subsec-

tion). At this optimal position, we found that the standard deviation was of 3 nm in

the transverse xy-direction and 10 nm in the axial z -direction for a signal level of the

order of 105 scattered photons per particle.

Signal level (photo electrons)
Localization Accuracy with 1.1× 105 (nm)

x y

Theory 4.6× 105 0.3 1.2

Experiment 1.1× 105 3 10

Table 3.2: Localization accuracy summary.

This statistical limit on the localization accuracy is almost one order of magnitude big-

ger than the theoretical values obtained for the same signal level, that is 0.3 nm and 1.2

nm along xy and z, respectively (see Table 3.2). Our experiments were conducted on

standard vibration-isolated optical tables but residual vibrations, acoustical perturba-

tion and thermal drifts, in addition to possible unaccounted noise sources, are very likely

to be the limiting factors here. However, our 10 nm accuracy value along the axial di-

rection is still a noticeable improvement over previously reported performances for even

bigger gold NPs: in Ref. [91], a precision of 70 nm was reported for 50 nm radius par-

ticles instead of our smaller 30 nm. We attribute this improvement to the higher NA of

the microscope objective and to the improved PSF of refractive objectives as compared

to Cassegrain objectives used in [91]. Better localization accuracies could be obtained
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a) b)
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Figure 3.4: a) Position histograms for 200 successive localizations of the same immo-
bilized NP. The values are centred around their mean position to highlight the standard
deviation on the localization position. b) Sample defocusing during the acquisition time
is corrected by subtracting a smoothed z position. c) 3D reconstructed intensity iso-
surfaces from a single snapshot. The shadowed gray plane indicates the position of the

glass substrate.

by accumulating more photons, or adopting a heterodyne phase shifting configuration

associated to a 4-buckets-based lock-in detection (see Sec. 1.1.1) to decrease the noise

floor. Unfortunately, this requires that the particle stays still during the acquisition of

4 images, which is rarely possible in the case of moving particles undergoing Brownian

motion, as we predominantly address in this PhD work.

3.1.2.2 Axial range

As mentioned above, the main strength of digital holography with respect to other 3D

localization techniques is that it provides an excellent localization accuracy along an un-

precedented large axial depth. In fact, with an holographic microscope, the localization

accuracy is only limited by the degradation of the PSF by the objective aberrations when

working far from the plane of best focus. Verpillat et al. [91] showed the localization

accuracy for 100 nm gold beads as a function of the distance between the bead and the

focal plane obtained with a dark-field reflecting objective of N.A.= 0.5 and 36× magni-

fication (Fig. 3.5). While the transverse accuracy is shown to be constant (∼3 nm) for

| z |< 250 nm, the axial accuracy is about ∼150 nm around z = 0, then decreases to

∼70 nm for | z |< 250 nm. This accuracy strongly deteriorates for |z| > 250 µm, and for

|z| > 400 µm, the localization of the particle is not possible because the scattered signal
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Figure 3.5: Figure from [91]. Localization accuracy as a function of the distance
between the bead and the focal plane. (a) Transverse localization accuracy in X (blue

line) and Y (red line). (b) Axial localization accuracy.

level reaches the noise level. The local maximum at z= 0 observed on the axial accuracy

curve shows that the localization is not optimal when the gold particle is the focal plane

of the objective. In this case the particle is imaged on a small area of the CCD chip, so

that the interference pattern spreads on a small number of pixels, which degrades the

quality of the reconstruction [31]. For higher N.A., the best achievable accuracy will

be improved, but the acceptable range along z will decrease. We repeated this experi-

ment with our own holographic microscope, equipped with a transmission objective of

Figure 3.6: Localization accuracy of our holographic microscope as a function of
the distance between the bead and the focal plane. Note that for values of z < 0
the objective was focused inside the glass coverslip, which induces a larger localization

error.
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N.A.=0.85 and 100× magnification. As in the previous subsection, we calculated the

standard deviation of sets of 200 positions of the bead obtained from successive frames,

but this time we increased the distance between the particle and the focal plane by small

steps. Figure 3.6 shows our results for the localization accuracy of 100 nm gold particles

under an incident power of ∼ 2 mW at 532 nm and for an exposure time of 1 ms. The

degradation in the axial accuracy occurs for z = ±30 µm from the focusing plane, while

the accuracy in the xy plane is still an excellent 10 nm.

The accuracy achieved by our setup is thus comparable with that reached by other super-

resolution microscopy techniques while it has the advantage of remaining constant over

a larger axial range (a few tens of micrometers instead of a few micrometers).

3.2 Superresolution imaging by point-by-point data accu-

mulation: from 2D to 3D

3.2.1 Densely labeled samples

In recent years, numerous techniques for far-field superresolution imaging have emerged,

specially using fluorescent labels. For a densely labelled sample, there exists one main

wide-field localization strategy which takes advantage of the photophysics of fluorescent

emitters to selectively switch on/off close-by fluorophores. Fluorescence superresolution

techniques using localization methods such as Stochastic Reconstruction Microscopy

Figure 3.7: Image from [98]. Working principle of STORM and PALM: The sequential
switching of fluorphores in a densely labelled sample allows their individual localization.
The reconstruction of an image is then possible from the accumulation of thousands of

individual positions.
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(STORM) [74] or Photo-Activated Localization Microscopy (PALM) [15] overcome the

diffraction limit by randomly activating only a sparse subset of emitters at the same

time, so that they can localize very precisely the center of the Airy function coming

from isolated emitters. By repeating this process several times, a computer is finally able

to reconstruct a super-resolved image by accumulating data coming from thousands of

individual localizations. However, the extension of these methods to 3D imaging [43, 68]

is still limited to a few micrometers in depth.

An interesting alternative to fluorophores is to use metallic nanoparticles (MNPs) as

markers, since they are photostable and easy to chemically functionalize. Morever,

MNPs support localized surface plasmon resonances (LSPR), which can give them rel-

atively large scattering cross sections. Recently, 2D superresolved images have been

obtained using anisotropic MNPs as contrast agents [20]. Rotating the polarization of

the incident light plays the same role as the random activation of the fluorophores, since

LSPR of asymmetric nanoparticles are highly polarization-dependent.

3.2.2 Our approach: moving labels

Another type of strategy has been recently developed to ensure that only sparse fluo-

rophores emit at a time in the whole field of view. This approach exploits the Brownian

motion of dye molecules in a solution to let the dyes scan the surface under study in a

stochastic manner [18, 77]. Here, we propose to extend this concept to metallic NPs:

the random motion of these scatterers allows for a complete exploration of the sample,

hence playing the same role as the random activation of the fluorophores for PALM

and STORM microscopy. Besides, light scattering by MNPs preserves the coherence of

light, allowing interferometric detection and therefore (provided a sufficient interparticle

distance) the direct 3D localization of isolated particles.

However, imaging NPs undergoing Brownian motion is extremely challenging due to the

very low number of available photons and the incessant motion of these nanoobjects.

In order to obtain sharp images of moving objects, a short CCD integration time τ is

essential. Over a time τ , Brownian particles travel by a distance r(τ) = (6DBτ)1/2,

where DB is the Stokes-Einstein diffusion coefficient (see next section for detail). Any

distance r(τ) substantially larger than the PSF of the microscope will therefore cause a

blurring of the image of the particle, effectively reducing the accuracy of the localization.

Moreover, the scattering cross section of nanoparticles, which varies as the sixth power

of their radius, is extremely low for small particles. In low light conditions, holography

offers the possibility to increase the power of the reference beam ER in order to increase
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the measured interference term ESER and take maximum advantage of the CCD dy-

namic range. The detection of small moving particles, however, remains a compromise

between exposure time and particle size.

3.2.2.1 Brownian motion

Brownian motion is therefore an important selectivity mechanism in our method. It

refers to the random trajectories of particles suspended in a liquid resulting from their

collision with the atoms in the liquid. The particles stochastic movement can be math-

ematically described using the Stokes-Einstein diffusion coefficient:

DSE =
kBT

6πηa
(3.4)

where kB is the Boltzmann constant, T is the fluid temperature, η is the fluid viscosity

t+ t

t

L(3)

L(2xy)

L(1x)

X
Y
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Figure 3.8: Average distance travelled by a Brownian particle.

and a is the particle radius. Knowing this coefficient, one can calculate the the average

distance travelled by a moving particle during a given time interval ∆t along one, two

or three dimensions (see Fig. 3.8) by:

L(d)(∆t) =
√

2d D∆t (3.5)

where d = 1, 2, 3 is the dimension.

The Brownian diffusion character of a particle can be revealed by plotting the mean

square displacement MSD of the particle from its trajectory:

MSD(∆t) =
〈
[~r(t+ ∆t)− ~r(t)]2

〉
(3.6)
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where ~r is the particle position (~r = (x, y, z)) and 〈...〉 is the time average. The MSD

is therefore linear with time, with a slope 2dD. It can be experimentally calculated by

the time averaged displacements between a set of measured positions as:

MSD(n ·∆t) =
1

N − n

( n−N∑
i=1

(xi+n − xi)2 + (yi+n − yi)2 + (zi+n − zi)2
)

(3.7)

with N corresponding to the total number of positions. All these parameters being

well-known, we decided to track colloidal gold nanoparticles in water in order to check

the reliability of our tracking. Figure 3.9(a) shows 100 data points of the trajectory of

a 50 nm radius particle acquired at 40 Hz (particle followed for 2.5 s). Figure 3.9(b)

shows the corresponding MSD calculation. We performed a linear regression fit over the

first 10% of the data, avoiding the first point [29] and we obtained a R2 coefficient of

determination of 0.9992 and a slope of 27.88, from which we can extract a value of the

radius of r = 46, 3nm (using a water viscosity value of 1.0 mPa.s at 20◦).
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Figure 3.9: Experimental tracking of a gold NP of r = 50 nm radius undergoing
Brownian motion.
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3.2.2.2 Covering time for 2D stochastic image formation

One practical question quickly arises when using stochastically moving particles for

data accumulation, that is, what should be the full duration of the experiment? More

precisely, how much time do our stochastic particles need in order to visit the whole sur-

face/volume under study? To answer this question, we collaborated with Jean-François

Rupprecht, a PhD student from the Laboratoire de Physique Théorique de la Matière

Condensée, in Paris, working on the optimization of search processes by random walk.

For simplicity, we only considered here the problem of a 2D image.

In this section, we show that the answer is closely related to the coupon collector’s

problem (CCP) [17], which is to determine the minimal number of coupon boxes to

buy in order to obtain a complete collection. Imagine for example a set of pictures of

your favourite sports team. From this familiar childhood occupation, we can intuitively

derive some of the consequences: when buying the first boxes of pictures, we have the

impression that our collection is being filled very quickly, while obtaining the last missing

pictures takes much longer to achieve. In addition, while waiting for the last pictures,

we will have accumulated many doubles. The mean expected number, E [T ], of boxes

which must be purchased before we can complete one collection of N pictures is known

to take the asymptotic form [30]:

E [T ] = N ln(N) + constant (3.8)

for the case with one coupon per box.
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Figure 3.10: Map of the cumulated experimental number of observations per pixel
after a 200 s acquisition (see Section 4.2.1 for experimental details). Color represents
the number of particle observed in each box, each pixel counter stops when it reaches

10.
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However, many subtleties need to be added to this simplified reasoning. In our case, in

order to obtain a reliable measurement, every location in our image should be visited

more than once, so that we can calculate an average value of the measured quantity at

every point. For example, imagine that we want every pixel of our image to be visited

r times before we can say that the whole 2D image is complete (see Fig. 3.10). In the

coupon collector analogy, our case would not only concern a single collection with N

pictures, but a group of r collectors who exchange pictures. The mean time for all of

them to complete the ensemble of the r collections follows a linear relationship with r

[64]:

E [T ] = N(lnN + (r − 1) ln(ln(N)) + constant) (3.9)

In addition, in our case and due to the nature of Brownian motion, one particle often

visits the same pixel many times, swivelling around a small region for some consecutive

snapshots. To continue with the coupon collector analogy, our case would correspond

to a box of pictures where there are usually many doubles. This would make us quite

frustrated collectors in real life, which may explain why (to our knowledge) there has

not yet been any analytical calculation to this problem.
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Figure 3.11: Scheme of our degenerated coupon collector problem.

Consequently, our aim has been to derive an expression of the full duration of the

experiment for this degenerated coupon collector’s problem. Rather than studying the

mean time, E [T ], we chose to study the minimum time tθ which guarantees that each

pixel has been observed r times with a given tolerance risk θ. The reasons for this

choice were twofold: first, mean-time calculations for the case of r > 1 are complicated;

second, for our experimental purposes it seemed more appropriate to calculate a given

uncertainty degree rather than calculating a mean value, as the mean value can give us

different uncertainties depending on the specific shape of the probability distribution.
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In particular, we focus on the 95th centile, a magnitude that guarantees that our time

estimation is verified by a number of events larger than 95% of the total number of

events. We present the mathematical development of our approach using centiles in

Appendix A. We first derive an expression for the case of a single collection, analogue to

Eq. 3.8, showing that we retrieve the same scaling as that of the well-known mean-time

calculation approach but in an easier way. Then, we establish some hypotheses for the

case of a single particle leading to a random number of observations of the same pixel

(see Fig. 3.11), from which we derive our own expression for the minimum covering time

tθ that we finally compare to our experimental data.

Comparison to our experimental data

Here, we emphasize the experimental validation of our model by testing it against a

statistical analysis of one of our stochastic imaging experiments. We chose to image 60

nm diameter gold particles freely moving in water inside a fluidic microchamber. With

a detector surface of N = 512 × 512 pixels of area 8 × 8 µm2 each and a microscope

objective of 100× magnification, the transverse field-of-view of our microscope objective

was of 40× 40 µm2. In the axial direction, only a thin water layer of about z = 500 nm

thickness was illuminated by means of a Total Internal Reflection configuration (see

Section 4.2.1 for more details on this experiment). We thus reduced our 3D problem

to 2D by considering a 2D array of voxels of volume V = 80 × 80 × 500 nm3. In these

conditions and for a low particle concentration (c = 1.3 × 109 NPs/mL) we calculated

an expected average number of particles per snapshot, µ, to be of one single particle in

the whole field-of-view, µ = c × V = 1. After our post-acquisition particle localization

procedure, histograms of the detection probability showed a mean number of particles

per snapshot of µ = 0.5, a little smaller than the expected value, most probably due to

the applied optical detection threshold.

The probability p to observe a particle in a given pixel within a single snapshot was

then p = µ/N , provided that the considered thin volume was homogeneous and that

independence from events in previous snapshots could be assured. This was indeed

the case, as our stochastic particles have a diffusion coefficient of D = 7.2 µm2/s and

showed a MSD of 1.45 µm between two snapshots, which most likely threw them out of

the illuminated volume from one snapshot to the next, although they might return in

subsequent snapshots.

Given these hypotheses, Fig. 3.12 shows the result of adding the observations in each

pixel for different size fragmentations of our initial field-of-view (i.e. dividing the initial

surface by different number of pixels N) in order to compare our theoretical model to
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the experiment. Variable r indicates the minimum number of observations in a pixel

needed to consider the pixel as completed. Straight lines show our theoretical model of

the 95th centile taking into account our particular degenerated case where one particle

can be observed a random number of times in the same pixel. We can see that theory

matches our experimental values fairly well.
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Figure 3.12: Minimum time tθ (expressed in number or acquisitions) needed to collect
r observations per pixel, with a variable number of N pixels. The blue crosses indicate
our experimental values and the red straight lines corresponds to our model (obtained

with Eq. A.15).

From this model, we can therefore extract a reliable estimation of the number of acqui-

sitions needed to supply a sufficient amount of stochastic observations (determined by

the parameter r) and for a given spatial resolution (defined by the fragmentation of the

field-of-view in N compartments).

3.3 Speeding up data processing: parallel programming

A complete analysis including the hologram reconstruction and the localization of multi-

ple particles, and repeating these steps for multiple time frames is very time consuming

in terms of computation, even using recent multi-core processors. That is why we have

chosen to treat our data using a Graphics Processing Unit (Nvidia GeForce GTX560),

accelerating our calculations by almost two orders of magnitude as compared to classical

CPU-based methods. In these conditions, the volume reconstruction and the localization

of several particles is achieved in typically 200 ms per hologram.
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Figure 3.13: Graphics Processing Unit.

A Graphics Processing Unit (GPU) is a hardware device composed of multiple processing

units (also called cores) that can perform basic arithmetical, logical, and input/output

operations simultaneously. While the main Central Processing Unit (CPU) of a com-

puter carries out the different instructions of a computer program one after the other

(i.e. in a sequential manner), GPUs are meant to conduct simple instructions in parallel

on a large set of data. In particular, they were specially designed to accelerate image

manipulation and display, where frequently the same instruction needs to be carried

out over multiple pixels. In other words, CPUs and GPUs have significantly different

architectures that make them better suited to different tasks. Consequently, an heteroge-

neous programming schedule that switches between sequential and parallel calculations

depending on the program needs is the commonly used method.

Figure 3.14 depicts the transition from the CPU (host) to the GPU (device) for certain

instructions. Inside the device, the multiple cores are gathered in blocks. The same

instruction can be conducted by many blocks simultaneously. Thus, each instruction

launches a determined bunch of blocks, and every core inside a block runs the same

code over one memory address (in our case, a pixel).

For this thesis work, we took advantage of the hologram reconstruction program elab-

orated by Dr. Frédéric Verpillat, a former PhD student from the Laboratoire Kastler

Brossel. Verpillat wrote a C++ based algorithm using a GPU and the Nvidia CUDA

library to decompose the calculations on the graphics card and to copy data from the

CPU to the GPU and vice-versa. His heterogeneous program aimed at optimizing the

hologram’s reconstruction time by attributing to the GPU all the image calculations

suitable for being parallellized. As a result, this accelerated the whole data treatment

by factors of many hundreds with respect to conventional 100% CPU-based calcula-

tions, enabling real-time single tracking (i.e. tracking at the same speed as the image

acquisition), although performed in post-processing [91].
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Figure 3.14: Heterogeneous Programming.

The program designed by Verpillat aimed at tracking single particles, with a manual

initial designation of particle candidates by the user. However, the aim of the present

work is to localize several particles simultaneously, so the requirements are somewhat

different. In particular, in our case there is no need to track one same particle along

time, since stochastic independent localizations are enough for our purpose of scanning

a specific field-of-view. This means that we are not limited to short acquisition times:

every Brownian particle can exit the imaged region from one snapshot to the next,

which relaxes conditions on the acquisition rate. Besides, initial manual designation

of the particles is not feasible, due to the huge number of individual localizations that

are needed. Hence, it has been necessary to extend Verpillat’s work in order to code for

automatic multiple localizations, as well as adapting the reconstruction algorithm to our

particular setup. In the following, we detail one small part of the parallel programming

that we added to Verpillat’s initial code, in collaboration with Dr. Benjamin Samson.
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Although quite technical, we consider it useful to exemplify the GPU calculation power.

The fist step to automatically detect bright particles is to define an intensity threshold.

As a result, for one single particle spot our thresholding step detects multiple pixels

over the defined value. Consider the transverse PSF spot from one particle on one of

our reconstructed images, as depicted in Fig. 3.15. The pixels with an intensity over

the threshold are indicated by numbers on the figure’s inset. Before we can run the

subdiffraction localization of the spot center, we need to determine which pixel has a

maximum intensity inside this bunch of pixels. Instead of invoking a recursive instruction

to compare the intensity of each pixel with one another, we use what is called a parallel

reduction algorithm. For this kind of algorithm, the characteristic working mechanism

of GPU’s is underlined.
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Figure 3.15: Detection of the position of the brightest pixel inside a bunch of pixels
with intensities over the threshold value.

For our particular problem of finding the brightest pixel, the reduction algorithm can be

imagined as a sort of origami game. We take, for pixel number 1 over the threshold, a

square of size 4×4 pixels around it. We have thus a surface of 16 pixels. We then create

blocks of 8 cores, as we only need 8 processors to compare two-by-two intensity values

inside the 16 pixels square. Consequently, this procedure is the analogue of folding our

square in two rectangular halves. Each of the 8 processors retains the position and value

of the brightest of the two pixels. For the next iteration, only 4 cores are needed to

compare the remaining 8 values (like in the tree-structure of Fig. 3.16), and in the next

step only one half is used again, and so on.

Following the origami analogy, we keep folding the paper until only the intensity and

the position of one pixel remains. For the square around pixel 1, the result will be the
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Figure 3.16: Tree structure.

intensity and position of pixel 6. This result will be reached in 4 steps. For a bigger

square area with S pixels, the number of steps needed is thus log2 S.

For the case with 16 pixels above threshold from a single PSF spot, we run 16 times

the value comparison previously described, creating a square around each pixel above

threshold. It is only when the maximum value of the square coincides with the pixel

being tested that we know whether it is the brightest pixel in the spot. In our example in

Fig. 3.15, the maximum value for the square around pixel 1 gives pixel 6 as the output;

this is not the pixel being tested, so we reject pixel 1 as the maximum pixel. Instead,

the output of the investigation of the square around pixel 6 gives pixel 6 itself, as it is

the brightest pixel in the spot.

This might seem a very time consuming task, but in practice it is not. As we only need

a block of 8 cores from a total of 512 cores in the GPU in order to investigate one pixel,

we can create 512/8 = 64 blocks to investigate 64 pixels in parallel. With a threshold

value giving 16 possible pixels per particle spot, it means that we can find the central

pixel of 64/16 = 4 particles in a 512×512 pixels field-of-view with only 4 steps. It is thus

straightforward that this parallel calculation is much faster than a sequential algorithm

that would investigate one pixel at a time.

Conclusion

In this chapter, we have first discussed several existing techniques based on single-

molecule localization methods in order to beat the diffraction limit, mainly for accurate

particle tracking. In addition, we have seen how some of these techniques use the

accumulation of multiple single-particle localizations to recompose a 2D image with

subdiffraction resolution. This has led us to introduce our present approach, which

consists in localizing, in 3D, metallic nanoparticles in solution by digital holographic

microscopy. These MNPs undergo Brownian motion, which allows them to scan the

whole surface or volume under study, and can be individually localized provided they

are sufficiently dispersed.

64



Holography for particle localization, tracking and superresolution imaging

In particular, we have studied the localization accuracy obtained with our holographic

setup on immobilized MNPs. For a signal level of the order of 105 scattered photons

per particle, we have demonstrated an excellent 3 × 3 × 10 nm3 localization accuracy

for 30 nm radius NPs. This accuracy strongly depends on the available illumination

and could be further improved using higher laser power while staying under the particle

or solvent damage thresholds. Moreover, this value of the position accuracy has been

shown to remain constant over an unprecedentedly large axial range of |z| = 40 µm as

compared to other existing techniques using fluorescent probes.

Besides, we have studied the minimum covering time necessary to recover a 2D image

with our stochastically moving particles. We have statistically calculated the minimum

number of snapshots by using an original approach based on centiles instead of the com-

plex mean-time calculations, in good agreement with our experimental values. Finally,

we have presented our fast particle detection algorithm, based on parallel calculations

using a Graphics Processing Unit.
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Chapter 4

Gold NPs for superresolution

stochastic optical mapping

In Chap. 1 we described the use of digital holographic microscopy for the far-field imag-

ing of the light scattered by a nanostructured gold film in three dimensions. Although

being diffraction-limited, DHM was shown to be able to extract relevant information

about nanoscopic systems. In the present chapter, we focus on the main motivation of

this thesis work, which is to turn this far-field, wide-field 3D imaging technique into

both a superresolution technique and a near-field imaging technique. To do so, we use

Brownian metallic nanoparticles as local field probes and we localize them in space in

order to overcome the diffraction limit.

In order to illustrate the near-field imaging potential of our system, we then image

the evanescent wave decay in a Total Internal Reflection (TIR) configuration. Finally,

highlighting the large 3D volume that can be imaged with our technique, we reconstruct

the intensity profile of a focused Gaussian laser beam inside a microfluidic chamber.

4.1 Framework

4.1.1 Propagating versus evanescent waves

Free-space propagation acts as a band-pass filter, since only light with wavevectors

under the dispersion curve (ω(k) = ck/n) of the medium are permitted. Light waves

with wavevectors larger than this limit (i.e. for k ≥ nω/c) are known as evanescent

waves and they are forbidden in free space. Instead, evanescent waves can arise due to

some inhomogeneity, such as a change of propagation medium, as is the case for Total
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Internal Reflection or Surface Plasmon Polaritons. Alternatively, light diffraction by a

small object may also contain wavevectors larger than nω/c, leading evanescent waves

to occur. In any case, these evanescent waves remain bound to the interface or to the

diffracting object which has originated them. Their surrounding electromagnetic field is

then formed of a combination of propagating and evanescent waves.

Let us have a mathematical glimpse on those statements. For simplicity, we consider

light propagation in air (n = 1). The angular spectrum representation allows us to

describe a given optical field as a superposition of plane waves with variable amplitudes

and propagation directions, as we already used in Chap. 1 to study the light propagation

from an object to the hologram plane. Particularly, Eq.1.15 showed that the Fourier

spectrum Az(kx, ky) of a given optical field evolves along the optical axis (z -axis) as

A(kx, ky; z) = A(kx, ky; 0)e±ikzz (4.1)

which tells us that the Fourier spectrum in an arbitrary image plane located at z = const

can be calculated by multiplying the spectrum in the object plane at z = 0 by the factor

exp(±ikzz). The + sign refers to a wave propagating into the half-space z > 0 whereas

the − sign denotes a wave propagating into z < 0. By definition, we can write kz as

kz ≡
√
k2 − k2x − k2y (4.2)

The electric field in the angular spectrum representation can then be expressed as the

inverse Fourier transform of its spectrum:

E(x, y, z) =

∫∫ +∞

−∞
A(kx, ky; 0)ei[kxx +kyy ±kzz]dkxdky (4.3)

Hence, for a certain (kx, ky) pair, two different characteristic solutions are possible, for

which the wavevector component kz is either real or imaginary and turns the factor

exp(±ikzz) into an oscillatory or an exponentially decaying function:

Plane waves : ei[kxx +kyy]e±i|kz |z, k2x + k2y ≤ k2,

Evanescent waves : ei[kxx +kyy]e−|kz ||z|, k2x + k2y > k2.

Figure 4.2a shows a schematic representation of the transverse spatial frequencies (k2‖ =

k2x + k2y) of plane waves incident from different angles. A plane wave propagating in

the direction of z will have no oscillations in the transverse plane (k‖ = 0), whereas, in

the other limit, a plane wave propagating at a right angle with respect to z will show

the highest spatial oscillations in the transverse plane (k2‖ = k2). Even higher spatial

frequencies are possible within the domain of evanescent waves, but they are lost upon
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propagation from the source to the detector due to their exponentially decaying form.

Moreover, the higher the spatial frequencies of an evanescent wave are, the faster the

field decay along the z-axis will be.

x

z

(a) (b)

(c)

near-field
zone

far-field
zone

Figure 4.1: (a) Illustration of the transverse spatial frequencies of plane waves incident
from different angles. The transverse wavenumber (k2x+k2y)1/2 depends on the angle of
incidence and is limited to the interval [0...k] . (b) The transverse wavenumbers kx, ky
of plane waves are restricted to a circular area with radius k. Evanescent waves fill the
infinite space outside the circle. (c) Schematic representation of the near- and far-field
zones above a rough diffracting surface. The boundary between the two regions is only
vaguely defined, and it depends on the dominant wavelength λ emitted by the source.

4.1.2 Spatial resolution versus spatial frequency bandwidth

Heisenberg’s uncertainty relation (∆kx ·∆x ≥ 1/2) can be interpreted in terms of mi-

croscopic imaging resolution so that the spatial resolution that can be achieved with

an imaging system is inversely proportional to the available bandwidth for every spa-

tial direction. If only propagating waves are taken into account, the maximum possible

spread in the wavevector component kx is the total length of the free-space wavevector

k = 2π/λ, which leads to a resolution of ∆x ≥ λ/4π. This is very similar to the expres-

sion of Rayleigh diffraction presented in Eq. 3.1. Conversely, if one manages to retain

the higher spatial frequencies associated to evanescent waves, the collection bandwidth
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Figure 4.2: Schematic representation of the diffraction of a monochromatic plane
wave by a slit of variable width, L. (a) L� λ. (b) L ∼ λ (c) L = λ. (d) L < λ. kmax
represents the maximum value of the diffracted wavevector in the associated spatial

direction.

of spatial frequencies increases and infinite resolution is a priori possible. However,

practical limitations make the bandwidth finite.

Let us briefly analyse a theoretical example corresponding to the diffraction of a monochro-

matic plane wave of wavelength λ which is diffracted by a slit of variable width L. While

L� λ, we can consider that the incident rays are not deviated by the slit (diffraction on

the slit edges is negligible). Therefore, the transverse wavevector component kx is zero.

When the size of the slit becomes comparable to the incident wavelength, L ∼ λ, the

diffraction phenomenon over the slit edges starts to be visible. The more we reduce the

slit width, the more the diffracted rays will spread. In this way, when L = λ (which cor-

responds approximatively to the Rayleigh criterion), the diffracted rays spread all over

the half-space above the slit and the transmitted waves thus have a transverse wavevec-

tor that spans between kx ∈ [0, ω/c] or, equivalently, kx ∈ [0, 2π/λ]. For a slit width

even smaller, when L < λ, the maximum transverse wavevector is then kmax > ω/c.

Within this 2D simplified problem, kz can be written as kz =
√
ω2/c2 − k2x (alike Eq.

4.2). As we have seen in the previous section, the wavevectors such that kx > ω/c

give rise to evanescent waves which remain bound to the slit surface. Consequently,
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when L < λ, the spectrum of the diffracted light is thus formed by a combination of

propagating and evanescent waves. In 1928, Synge [86] first proposed a setup composed

of a minute aperture in an opaque plate illuminated from one side like in the previous

example. He stated that a sample surface placed in the near-field zone of a tiny aperture

would therefore be illuminated by a light spot not limited by diffraction. The transmitted

light should then be collected with a microscope. In order to establish an image of the

sample, the aperture would have to be moved in small increments over the surface.

Synge correctly asserted that the resolution of such an image should be limited by the

size of the aperture and not by the wavelength of the illuminating light.

But how exactly would the information about subwavelength-sized structures from the

surface get encoded in the diffracted radiation (propagating waves)? How is it possible

at all to retrieve near-field information with a collection objective in the far-field where

evanescent waves do not propagate? Actually, the underlying idea here was that, when

using a confined field source with a large bandwidth of spatial frequencies to illuminate

the sample, the large spatial frequencies of the sample itself are shifted. In a very

simplified reasoning, we consider the case of a thin transparent sample characterized

by a transmission function T (x, y) (we ignore the topography as well as the specific

properties of the sample). Immediately after being transmitted, the transmitted light

field can be calculated as

Esample(x, y; 0) = T (x, y)Esource(x, y; 0) (4.4)

The product of T and Esource in direct space becomes a convolution in Fourier space.

Therefore, the Fourier spectrum of Esample can be written as

Ẽsample(κx, κy; 0) =

∫∫ +∞

−∞
T̃ (κx − kx, κy − ky)Ẽsource(kx, ky; 0)dkxdky (4.5)

with T̃ (k′x, k
′
y) being the Fourier transform of T and k′x,y = κx,y − kx,y, respectively.

This convolution means that the spectrum of the sample is shifted and the resulting

transverse wavenumber κ‖, defined as κ =
√
κ2x + κ2y is now

κ‖ = k′‖ + k‖ (4.6)

i.e. the spectrum T̃ is translated by the transverse wavenumber of the source spectrum,

k‖. Hence, the large spatial frequencies of the sample are combined with the large spatial

frequencies of the source field such that the difference wavevector may correspond to the

far-field detection window where only propagating plane waves exist. This effect is

somehow similar to the creation of the long-wavelength Moiré patterns that occur when

two high-frequency gratings are shifted against each other. We can conclude that by
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using a confined source field with a large bandwidth of spatial frequencies, high spatial

frequencies of the sample become accessible in the far-field. The better the confinement

of the source field is, the better the resolution of the sample will be.

In a more realistic approach, we would need to develop a detailed model for the sample

and take multiple interactions between source and sample (probe-sample coupling) into

account. However, this simplified reasoning gives an intuitive idea of how the high

spatial frequencies of a sample can get encoded in the propagating part of an angular

spectrum. Finally, this approach qualitatively indicates that it is the source confinement

what entirely defines the highest detectable spatial frequencies of the sample and thereby

the resolution of the optical system. Similarly, an equivalent discussion could be held in

the case of a small light-collecting device such a sub-λ aperture probe.

4.1.3 Near-field optical microscopy

The central idea of near-field optical microscopy is indeed to retain the spatial frequen-

cies associated with evanescent waves. After the first experiments measuring evanescent

waves in 1984 [57], it was soon realized that the inclusion of near-fields could not only

allow for arbitrary spatial resolutions in optical imaging, but could also be of great in-

terest for a large span of applications, ranging from fundamental physics and materials

science to biology and medicine. Particularly, the strong interest in near-field optics gave

birth to the fields of single-molecule spectroscopy [61] and plasmonics [35], and inspired

new theoretical work associated with the nature of optical near-fields. In parallel, rely-

ing on the flourishing development of nanotechnology and nanofabrication, researchers

started to tailor nanomaterials with novel optical properties, such as photonic crystals,

single-photon sources and optical microcavities. The characterization of various optical

near-field distributions around these new materials is thus of interest in itself, both aim-

ing to ease the way to a better understanding of their properties as well as to improve

their design for multiple applications.

In general terms, a near-field microscope is formed of a nanoscale optical probe which is

raster scanned across the surface under study much as in AFM or STM. The probe can be

either a pointed tip or a minute aperture which is “pounded” against the sample surface

where the evanescent fields are confined (either for near-field excitation or near-field

collection). The main difference between AFM/STM and near-field optical microscopy

is that in the latter an optical near-field has to be created at the sample or at the probe

apex before any interaction can be insured (i.e. they must provide a confined photon

flux between probe and sample). However, this is at the expense of strong coupling

between the source and the sample [33], a feature not present in standard microscopy
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where the properties of the light source (e.g. laser) are negligibly affected by the light-

matter interaction with the sample. Moreover, in order to be detectable, the confined

photon flux between the probe and the sample needs to have a minimum intensity. This

requirement, together with the sample-probe coupling are two of the main challenges of

near-field optical microscopy techniques.

There is a variety of possible experimental realizations in near-field optical microscopy.

Depending on how the near-field is measured, one distinguishes between different con-

figurations. Over the years, various techniques have been proposed, such as the photon

scanning tunnelling microscope [25, 58], the near-field reflection microscope [23], micro-

scopes using luminescent centres as light emitting sources [47, 49], microscopes based

on local plasmon interaction [6, 71], and microscopes relying on the field enhancement

effect near sharply pointed metal tips used as sub-wavelength scatterers [40]. All these

techniques provide a confined photon flux between probe and sample.

4.2 Optical mapping by holographic localization of Brow-

nian scatterers

As announced in the previous chapter, one of the goals of this PhD work is to develop

a 3D superresoltution technique by imaging metallic nanoparticles (MNPs) undergoing

Brownian motion, based on the fact that individual MNPs can be localized with a few

nanometres accuracy from the optical far-field. But our purpose is not only to retrieve

the accurate position of the MNPs but to utilize them to access an optical information

with subwavelength resolution.

Like initially suggested by Synge [86], we propose the use of small objects to scatter

light from wavevectors that were originally lost through propagation towards our far-field

detector. Every Brownian MNP, when getting close to a given local field distribution, will

be excited by the evanescent and propagating fields. In the case of confined evanescent

fields, the MNP will scatter them, therefore coupling them to the far-field, as it is done

with scattering-type NSOM techniques. For monodisperse particle sets (i.e. at fixed

scattering cross section Cscat), the power scattered by the particle Pscat provides direct

optical information on the local field intensity I(x, y, z) at the position of the particle,

since I(x, y, z) = Pscat(x, y, z)/Cscat (see Sec. 2.1.3). This information gives a unique

opportunity to map propagative and non-propagative optical fields with subwavelength

accuracy.

Cang et al. [18] showed a similar technique, although limited to 2D imaging, using

Brownian fluorescent molecules as local probes. They were able to map strongly localized
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hot spots arising at a rough metal surface by recording the fluorescent intensity as a

function of the fluorophore position. However, this optical information contained in

the probes’ emission is often overlooked, most fluorescence studies only focusing on the

presence or absence of a fluorophore at a given position.

In summary, the technique we propose here was inspired by combination of superlocal-

ization techniques such as STORM and PALM together with near-field optical micro-

scopies. In our case, it is the random motion of the Brownian MNPs that allows for a

complete exploration of the sample, while the monitoring of their position is performed

by post-acquisition superlocalization, as discussed in Chap. 3. Some of the advantages

of using moving MNPs as probes instead of scanning a scattering tip include:

• Ease of use in water-based systems.

• No sample damage by the proximity of the probe.

• Weakly perturbative (as compared to an sNSOM tip supported by a comparatively

large cantilever) and relatively easy to model for sample-probe coupling investiga-

tions.

Besides, the use of fluorophores instead of MNPs as local field probes presents some

disadvantages, since fluorescence intensity depends on numerous parameters:

• The orientation of the electric dipole associated to a fluorescent molecule.

• The quantum efficiency of the fluorophore, related to its radiative and non-radiative

decay rate. Non-radiative decay processes not being exclusively related with the

incident field properties, prior knowledge of the sample characteristics is needed

to account for a decrease in the fluorescence intensity (such as quenching).

• The saturation intensity, beyond which the fluorescent intensity is no longer lin-

early proportional to the incident field intensity.

• The eventual destruction of the dye or molecule caused by photobleaching.

Finally, the signal emitted by the fluorophores is not coherent with the incident illumi-

nation, conversely to light scattering by metallic NPs. Coherence is a great advantage

since it allows one to perform heterodyne detection, useful both for the 3D reconstruc-

tion of the scattered field as well as for the amplification of the weak scattered signals

by measuring the interference term E∗RES .

Of course the electromagnetic response of MNPS to an incident field also depends on

many parameters. For example, the response of the localized surface plasmons excited at
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the MNP strongly depends on the composition of the surrounding medium. Moreover,

the coherent character of the scattered light can lead to a modulation of the measured

intensity when imaging MNPs in close proximity to a highly reflecting substrate: as

a function of the NP-surface distance, an interference pattern between the NP and its

mirror image can arise. But these characteristic responses are arguably simpler to control

than photobleaching, quenching, non-linear intensity response and dipole orientation

effects linked to the use of fluorophores.

In the following sections, we present our results on the use of Brownian MNPs as local

probes of the surrounding electromagnetic field. On the one hand, we chose to study

the evanescent wave decay in a Total Internal Reflection (TIR) configuration, with par-

ticular interest along the decay direction. On the other hand, we investigated the field

distribution around a focused laser in a large 3D volume. The following results have

been accepted by Optics Express journal [56].

Experimental preamble

Our system can easily be adjusted to switch between a propagative and a non-propagative

illumination of the colloidal particle solution. We can do so by varying the angle of in-

cidence, θ, of the laser on the glass prism. When θ is larger than the critical angle at

the glass-water interface, θc−gw = arcsin(nwater/nglass) = 62.5◦ (Fig. 4.3(a)), we create

an evanescent wave decaying inside the water medium (see Fig. 4.3), while for smaller

angles such that θ < θc−gw we obtain a propagative illumination (Fig. 4.3(b)). In any

case, total internal reflection conditions can be preserved at the last glass-air interface

provided that θ > θc−ga = asin(nglass/nair) = 41.8◦.

CCDCCD

a) Evanescent wave imaging b) Focused laser beam imaging

f ' =50 mm

Figure 4.3: a,b) Microfluidic chamber containing MNPs in water. Above the glass/wa-
ter total reflection angle (a), the particles are only illuminated by the evanescent wave,
whereas below this critical incidence angle (b), propagative light directly illuminates
the particles and is then reflected at the glass chamber/air interface. In both cases,

only the light scattered by the particles is collected by the objective.
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In order to prevent particles from adhering to the walls, the glass chambers were treated

with Bovine Serum Albumin (BSA) and washed prior to being filled with colloidal

nanoparticle suspensions. In the following experiments, we used suspensions of citrate-

coated gold nanoparticles purchased from BBI, with radii of r = 30 and 50 nm, and

initial concentrations C = 2.6× 1010 and 5.6× 109 particles/ml, respectively.

4.2.1 Imaging an evanescent wave

A simple way to produce an evanescent wave from a propagative incident beam is to

induce Total Internal Reflection at the interface between two different refractive index

mediums. For θ > θc−gw, as shown in Fig. 4.3(a), all the λ = 532 nm illumination light

is reflected off the glass/water interface and an exponentially decaying evanescent wave

illuminates the nanoparticle-seeded water in the vicinity of the interface. In the weakly

perturbative approximation, i.e. neglecting field disruption by the particles, the intensity

in water is simply I(z) = I0 e
−z/β , where β = λ/4π(n2s sin2 θ−n2m)−1/2 is the evanescent

field penetration depth, ns = 1.5 is the substrate refractive index, nm = 1.33 is the

liquid medium refractive index, and I0 is the incident field intensity at the glass-water

interface. In our experimental conditions, the angle of incidence θ = 72◦ corresponds to

a penetration depth of β = 80 nm.

Experiment

The glass chamber was filled with a solution of r = 30 nm particles with a concentration

of 1.3× 109 particles/ml (1:20 dilution). Particle detection was achieved using a 100×,

NA=0.85 objective, with adjustable correction to reduce the aberrations induced by the

glass and water thickness, and imaged on the EMCCD at a frame rate f = 20 Hz and

an exposure time τ = 1ms. The position of the glass/water interface, corresponding to

z = 0, was determined by localizing particles (or defects) fixed to the interface wall.

This allowed us as well to correct for the sample drift: for every moving particle, we

subtracted to the detected position a smooth of the position of the fixed particle for the

corresponding time iteration (like already shown in Fig. 3.4).

In addition, in order to increase the signal-to-noise ratio when detecting moving NPs,

we performed a subtraction of the background: before reconstructing the hologram, we

systematically subtract the average of the ten previous frames. This step is skipped for

fixed NPs, as it removes most of the scattering from immobile features in the hologram.

A series of 2000 holograms was acquired, for a total duration of 100 s. From these

holograms, after reconstruction and localization, we extracted a set of 1500 localization

coordinates corresponding to isolated particles at different locations and instants, and

we measured for each of them the scattered intensity in the plane of best focusing,
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I(x,y,z). Since the sample has no lateral structuring, the problem is x - and y- invariant,

and the data can be reduced to a set of I(z) values. The 1500 measured values of I(z)

are plotted in Fig. 4.4(a) (linear scale) and Fig. 4.4(b) (logarithmic scale), showing

a general exponential decay well distributed around the expected exponential decay

I(z) = I0 e
−z/β, with β = 80 nm (solid black line, no adjustment).

Figure 4.4: Normalized intensity I(z) of the light scattered by r = 30 nm NPs
represented in a) linear and b) logarithmic scale. 1500 individual localization events
were extracted from a total of 2000 holograms (total acquisition time 100 s). Detection
events located in the z < 0 region result from noise in the localization. The solid
black line corresponds to the theoretically expected exponential decay (β = 80nm for
θ=72◦, no adjustment). In red, mean position values calculated from events inside the
logarithmically distributed boxes indicated by thin gridlines. In (b), 95% confidence
intervals are represented as horizontal error bars. The size of the experimental data
symbols in a) is in real scale with the z axis, to give a pictorial flavour of a 60 nm NP
proving an intensity decay characterized by an 80 nm decay length . Alternatively, in
b) symbols are intendedly smaller to emphasize the high number of localization events.

Statistical analysis

As discussed in detail with immobilized particles, the localization accuracy is limited

by the SNR of the recorded intensity. This explains the broadening, in Fig. 4.4, of the

localization precision at low light levels as particles that are further away from the glass

surface (z = 0) scatter less light. More precisely, we normalised the scattered intensity of

each localized particle by the intensity of the brightest particle, assuming that the error

on the localization of the latter was minimal due to its higher SNR. In the following we

propose a statistical method to verify quantitatively that the stochastic I(z) scattered

by the nanoparticles follows indeed an exponential decay with the expected decay length,
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by taking into account the localization precision discussed in Sec. 3.1.2.1, which is our

main source of error.

Let us call zr the real particle distance to the surface (e.g. zr = 0 corresponds to a

particle in contact with the surface). Our hypothesis is that the scattered intensity,

denoted I(zr), follows the law:

I(zr) = I0 exp(−zr/β). (4.7)

Due to the uncertainty in the detected position of the particle, the measured distance

to the interface is a random variable denoted Z0. Accordingly to Eq. (3.3), we make

the assumption that the error on the measured position can be written as:

Z0 = zr + σ = zr +
α√
I(zr)

η (4.8)

where η is a Gaussian noise of variance 1. The term accounting for the shot noise in the

denominator of Eq. (3.3), N−1/2, can be replaced by I(zr)
−1/2, with I(zr) the scattered

intensity by a gold particle at a real height zr, because the number of detected photons

will decrease as the field intensity seen by the nanoparticle decays. Note that, for our

normalized intensity data, we assume a minimum uncertainty value on the position of

the brightest particle, αη.

The statistical validation for the relation in Eq. (4.7) with a specific value β relies on

the following method:

1. Layer the data set into M boxes (Bi)i∈[1,M ] according to the value of the intensity

I. The width of each box should be logarithmically distributed (i.e. boxes of

shorter width for smaller values of I) to ensure a fair distribution of the number

of events Ji per box.

2. For each box Bi, compute the empirical mean Ẑi of the detected heights Z
(j)
0 :

Ẑi =
1

Ji

∑
j∈Bi

Z
(j)
0 = zr(Bi) +

α√
Ji I(zr)

η, (4.9)

where the second equality is a consequence of Eq. (4.8). From Eq. (4.9), a 95%

confidence interval for the value zr(Bi) is:

zr(Bi) ∈
[
Ẑi − 1.96α/(JiI(Ẑi))

−1/2, Ẑi + 1.96α/(JiI(Ẑi))
−1/2

]
(4.10)

3. Check that the M values for zr(Bi) given by Eq. (4.8) are consistent within most

of the M confidence intervals.
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In Fig. 4.4, we show that the hypothesis of Eq. (4.7) is validated by the experimental

data, for our theoretical penetration length of β = 80 nm. Grid lines in both figures

show the N = 20 boxes, logarithmically distributed, used to compute the empirical

mean values Ẑi. In the logarithmic plot (Fig. 4.4(b)) we have represented the confidence

interval for each mean value: the only values not matching the theoretical exponential

decay within a 95% confidence are those for very high and very low intensities. For very

high intensities, it is due to the scarce number of events to compute the mean position;

for low light intensities, the detected positions are not reliable any more and other low

scattering artefacts may have been detected by our localization algorithm instead of

nanoparticles.

4.2.2 Imaging a laser beam distribution

The previous analysis neglected the x- and y-dependence of the intensity, since there

was no lateral structuring in the geometry of the system. In order to illustrate the

3-dimensional abilities of the technique, we investigate here the case where the angle

of incidence θc−ga < θ = 45◦ < θc−gw allows light propagation inside the water-filled

chamber (see Fig. 4.3(c)). This light is then reflected off the last glass-air interface,

preserving a dark-field illumination. The experiment was conducted on a similar setup,

using an illumination wavelength of λ= 660 nm from a laser diode (Opnext HL6545MG,

max. power 120 mW). The diode was expanded by a collimated telescope and focused

inside the microfluidic chamber with a f ′ = 50 mm converging lens.

Without nanoparticles, no light propagation occurred beyond the sample in these dark-

field conditions and the laser beam was not observable. A colloidal solution of 50 nm

radius particles with a concentration 5.6× 108 particles/ml (1:10 dilution) was used to

scatter light to the microscope objective (Olympus 60×, NA 0.7, adjustable coverslip

correction) and the camera. The holographic detection of the particles on a dark back-

ground was repeated over 6000 holograms acquired with an integration time τ = 1ms

and a frame rate of 12 Hz, for a total recording time of 8.3 min. After processing

with a detection threshold fixed at 45 times the background intensity (average signal

measured in regions devoid of any particle) in order to avoid false detections, 36000

localization events were obtained. On average, 6 nanoparticles were therefore detected

simultaneously in the volume reconstructed from each hologram. The corresponding

(x, y, z) positions are shown in Fig. 4.5(a), with intensities I(x, y, z) coded by the size

of the dots.

Although the whole microchamber was filled with Brownian nanoparticles, only those

which passed through the propagating laser beam were detected, and the scattered
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Figure 4.5: a) Position of 36000 localization events detected when illuminating gold
particles 50 nm in radius in Brownian motion in water, with a λ = 660 nm diode laser
beam. The intensity I(x, y, z) recorded at each location is represented by the size of
the spheres. The red line L corresponds to a 3D linear regression on the positions and
indicates the direction of the laser beam. b) Projection of the values I(x, y, z) onto a
plane perpendicular to the propagation axis, L. The two axis of the laser diode beam
are clearly identified (red and green lines). Fitted profiles along these axis allow the

retrieval of the Gaussian characteristics of the beam (see text).

intensity was stronger when the particle was close to the center of the beam. The beam

propagation axis was determined by a 3D linear fit on the whole set of coordinates

(x, y, z), as indicated by the red line L in Fig. 4.5(a).

Figure 4.6: Amplitude distribution of the fundamental mode of a Gaussian beam.

The lateral properties of the beam can also be investigated. Due to our sparse experi-

mental values, which reflect the stochastic character of our sampling methods, plotting

a single cross-section perpendicular to propagation axis L leads to a very noisy image,

some regions containing several particles, others none. To avoid this, we calculated the

average intensity of the 3D dataset along 60 µm in the propagation direction. Since the

focused Gaussian beam considered here has an almost constant profile along its Rayleigh

length around its region of best focusing (2 × qout,⊥ = 84 µm and 2 × qout,‖ = 216 µm,
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see calculation below and Fig. 4.7), this average does not have much influence in the

experimental determination of the beam waist. Laterally, the (x, y) data were binned

in 200× 200 nm boxes in order to obtain an image exempt of empty pixels, resulting in

Fig. 4.5(b). This 2D image clearly reveals the elongated mode structure characteristic

of laser diodes. Indeed, the laser diode manufacturer indicates a high degree of astigma-

tism of the fundamental mode, with values for the beam divergence angle of θ‖ = 7.5◦

along its main axis and θ⊥ = 15◦ in the perpendicular direction.

Figure 4.7: Schematic of the contour of our Gaussian beam before and after the
focusing lens.

To quantify these values of beam asymmetry from our data, we fitted this 2D z -averaged

cross-section to a 2D Gaussian asymmetric centroid by means of least-squares calcula-

tions, obtaining two profiles along its minor an major axis (green and red lines in Fig.

4.5(b)), which yield the experimental values of the waist of the focused beam along the

main axis and perpendicular to it, wexpout,⊥ = 5.3 µm and wexpout,‖ = 2.9 µm, respectively.

In order to estimate the size of the focused beam inside the microfluidic chamber, we

first measured the size of the beam waist after the telescope, i.e. at the input of the

focusing lens, using a beam analyser (Thorlabs BC106N-vis): win,⊥ = 2.2 mm and

win,‖ = 3.5 mm, for the two axis of the elliptic mode. After the focusing lens, the size

of the emerging Gaussian beam can be calculated in the plane of best focusing as [24]:

w2
out = w2

in

f ′2

f ′2 + q2in
(4.11)

where qin = πw2
in/λ is the Rayleigh length of the beam before, and qout after the lens:

qout = qin
f ′2

f ′2 + q2in
(4.12)

Using Eqs. 4.11 and 4.12, and neglecting beam distortions induced by the thin microflu-

idic chamber and its water content, we obtain the expected geometrical parameters of

the beam inside the chamber at the output of the f ′ = 50 mm lens: wout,⊥ = 4.8 µm,

81



Gold NPs for superresolution stochastic optical mapping

wout,‖ = 3 µm and qout,‖ = 108 µm, qout,⊥ = 42 µm. These values are indeed in good

agreement with the measured values, wexpout,⊥ = 5.3 µm and wexpout,‖ = 2.9 µm, the main

source of error being attributed to the determination of best focusing region in the 3D

plot.

4.3 Present challenges: optical mapping around nanos-

tructures

One major goal of the present work is the characterization of the electromagnetic field

distribution around plasmonic nanostructures with subwavelength resolution. Partic-

ularly, thanks to our 3D superresolved imaging technique with large depth of view,

we aim at bridging the gap between near- and far-field characterizations. So far, the

distinctive photonic and electronic hybrid character of plasmonic nanoantenna reso-

nances has suggested analysis techniques using either photons, electrons or a combi-

nation of both. Among the different existing optical techniques, the most extensively

used are NSOM techniques, previously presented. As already mentioned, these tech-

niques introduce a non-negligible amount of perturbation, complicating interpretation

of the data. Moreover, NSOM techniques are hard to implement in water-based sys-

tems due to tip oscillation damping, although there exist some successful attempts [69].

Other optical state-of-the-art techniques for probing electromagnetic fields around plas-

monic nanostructures are nonlinear photoluminesce techniques [34]. Although being

subdiffraction, their intrinsic resolution is poorer than NSOM. Alternatively, there exist

analysis techniques involving electrons as probes, as it is the case for cathode lumi-

nescence imaging [96], electron energy-loss spectroscopy (EELS) [63] and photoemission

electron microscopy (PEEM) [27], which offer high spatial resolution but require vacuum

environments. The local electromagnetic characterization of plamonic nanostructures in

water-based systems, present in many emerging microfluidics studies, is therefore inac-

cessible to electronic microscopy. Moreover, all of these techniques require some sort of

sample or excitation scanning, slowering down the acquisition rates.

Our approach using MNPs as stochastic probes thereby presents many advantages. The

main obstacle, however, is the light scattered to the far field by the plasmonic object

itself. Conversely to techniques using fluorescent probes, for scattering probes the exci-

tation and detection wavelength remains the same, hindering a simple filtering. In the

best case, this parasitic light simply degrades the detection of the metallic nanoprobes

after the hologram reconstruction, deteriorating the probe’s localization accuracy. In

this case, post-processing image treatments such as DC background subtraction are
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sometimes helpful. But in the worst-case situations, stray light prevents us from detect-

ing the nanoprobes at all, the dynamic range of the CCD being insufficient to detect

both the strong parasitic light and the weak scattering from the nanoprobes. This fact

tells us that we actually need to remove this unwanted light at the acquisition stage.

Au surface

Einc

x

y

diffracting

surface

defects

glass substrate

moving NP

Figure 4.8: Imaged region of a sample composed of a gold layer, 70 nm thick, evap-
orated on top of a glass surface. We have overlapped the holographic reconstruction
and the white light image for clarity. The sample is immersed in a colloidal solution of
80 nm diameter gold NPs. Note that the edge of the gold layer which is parallel to the
incident polarization shows very strong scattering, almost blinding the CCD camera,
and even small defects on the gold surface show stronger scattering than the moving

probe NPs.

4.3.1 Background suppression

In order to overcome this problem, we have adopted two different strategies. The prelim-

inary results are discussed in this section. Both alternatives rely on the differentiation of

each type of scattering: that from static, generally bigger features, from the scattering

of small moving NPs. With the first approach, we propose a spatial frequency-filtering

by means of a circular mask placed at the back focal plane of the collection objective. In

the second approach we use heterodyne holography, with a heterodyne offset frequency

shifted so as to detect the Doppler-shifted light scattered by moving particles.
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4.3.1.1 Fourier space spatial filtering

In the experiments shown in the preceding chapters, only NPs in liquid were imaged.

The use of a glass prism and an oblique incidence angle of illumination were shown to

provide a dark background, greatly enhancing the visibility of the faint NPs scattering.

However, when trying to image a diffracting object, the oblique incident light is diffracted

into the collection objective not only by the probe NPs, but also by the object under

study.

a)

b)

Figure 4.9: Theoretical diffraction pattern of a given object (a) of finite size (e.g.
of rectangular shape) as opposed to (b) a point-like object. The red shadowed area
on both diffraction patterns schematically represents the amount of intensity removed
from each of these diffracting features when performing the same spatial filtering in the

Fourier space.

The theoretical diffraction spectrum of a given object can include any possible spatial

frequency kx. As opposed to light in a transparent medium, for which the spatial

frequencies are bound between kx = [0, nω/c], the spatial frequency spectrum of a

diffracting object can include every frequency from kx = [0, 1/L], L being the dimension

of the object. In this way, the smaller the object is, the higher spatial frequencies it

diffracts. The structures under study being larger than our probe NPs, we suggest to

perform a low-frequency filtering. Figure 4.9 shows the theoretical diffraction pattern

of a rectangular object of finite size as opposed to the diffraction pattern of a point-like

object. The red shadowed area on both diffraction patterns schematically represents the

amount of intensity removed from each of these diffracting features when performing

the same spatial low-frequency filtering in the Fourier space. The filtering will definitely
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remove part of the light coming from the point-like probes, but we expect it to have a

stronger impact on the background light coming from bigger structures, for which the

diffraction frequency bandwidth is narrower.

For this purpose, we first decided to perform a numerical ring filtering in the Fourier

plane in order to study the deterioration of the reconstructed image and the localization

accuracy as a function of the inside mask radius, Rin (see Fig. 4.10). The outer radius,

Rout, is kept constant and its value corresponds to the size of the +1 diffraction order

after the first FFT calculation, which is linked to the N.A. of the microscope objective.

For our 100× magnification objective with N.A.=0.85, Rout measures 70 pixels.

Rin

Rout

Figure 4.10: Ring filtering on the +1 diffraction order.

On the one hand, Fig. 4.11 shows the intensity profiles of immobilized gold NPs of 30 nm

in diameter (same experimental data from Sec. 3.1.2.1) as a function of the inside mask

radius used in the reconstruction process. For the transverse profile (Fig. 4.11(a)), this

ring filtering has the particularity of shrinking the main lobe of the PSF. In fact, for every

value of Rin, the resulting PSF is the outcome of the subtraction between our regular

PSF (R′in = 0, R′out = 70 pixels) and a wider PSF corresponding to a smaller numerical

aperture obtained with R′′in = 0 and R′′out = Rin. In terms of localization accuracy,

this narrowing seems to compensate for the decrease in the number of detected photons,

which explains why the final transverse localization accuracy does not worsen much with

the ring filtering. On the contrary, the axial intensity profile broadens for higher Rin

values. This broadening, together with the decrease in the remaining photon number

for the reconstruction, leads to a gradual deterioration in the axial position accuracy.

On the other hand, we studied the influence of the numerical ring filtering on the inten-

sity of holographic images containing different diffracting features. Figure 4.13 shows

the reconstructed images of a 70 nm gold layer where five crosses were fabricated by

lithography to work as markers, measuring 1 × 1 µm. These kind of markers are usu-

ally present when fabricating nanostructures for wide-field microscopy studies, so that
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a) b)

Figure 4.11: Intensity profiles of immobilized 30 nm diameter gold NPs (same exper-
imental data from Sec. 3.1.2.1) as a function of the inside mask radius Rin used for the

numerical ring filtering in the Fourier plane during the reconstruction process.

Figure 4.12: Localization accuracy of immobilized 30 nm diameter gold NPs (same
experimental data from Sec. 3.1.2.1) as a function of the inside mask radius Rin used
for the numerical ring filtering in the Fourier plane during the reconstruction process.

nanoobject under study can be easily located. Between the two upper and the two lower

crosses, a 40 nm diameter hole was drilled. We analysed the decrease in the light scat-

tered by these two features, very different in size, for different values of the inside mask

radius. Measured as a percentage change, the results confirm that the intensity of the

larger feature decreases more rapidly than for the nanoobject, especially for small Rin

values. However, the difference in the decrease rate is not striking and a compromise

has to be found between improving the intensity contrast while keeping a reasonable

localization accuracy. An inner value of 20 pixels, for example, allows us to reduce the

scattering intensity of the micron-sized diffracting feature by 20% while the nanoobject

intensity is only reduced by 4% and the localization accuracy in the three dimensions

remains fairly unchanged.

Experimentally, in order to block out the central light in our transmission configuration,
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R in = 0 pixels R in = 20 pixels

R in = 40 pixels R in = 55 pixels

Cross Hole

Figure 4.13: Holographic reconstruction (at the plane of best focusing) of a gold layer
in which five micron-sized crosses (selected in red) have been lithographed to work as
markers of the position of two nanoholes (selected in green). The integrated intensity
of the two selected regions is plotted as function of of the inside mask radius Rin used
for the numerical ring filtering in the Fourier plane during the reconstruction process.

we could have used a reflecting Cassegrain-type microscope objective as in Ref. [91].

With such objectives, the central part of the collected light is masked by the secondary

mirror and low spatial frequencies are avoided. This mirror-based objectives have the

advantage of being broadband (which is unnecessary with our monochromatic setup) but

they suffer from image aberrations, provide poor numerical apertures and consequently

broader PSFs as compared to traditional microscope refractive objectives. Therefore we

chose to keep our refractive objective of 100× magnification and N.A.=0.85, equipped
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with a correction ring to compensate for the aberrations when imaging through a glass

coverslip, for which we have already studied the localization performances in Chap. 3.

We fabricated a mask out of a circular piece of aluminium (3 mm in diameter), painted

in black to avoid reflections. Our aim was to place it close to the back focal plane of the

objective, therefore allowing only oblique rays to reach the detector. Figure 4.14 shows

two experimental attempts at centering the mask. First, we glued the circular mask to

a fishing thread and fixed it to the microscope turret where the objectives are screwed.

This way we could change objectives without having to move the mask. But although

the screw is very close to the rear face of the objective, its image in the reconstructed

Fourier plane was blurred (see Fig. 4.14b), indicating it was not exactly at the back

focal plane of the objective. As a result, the corresponding hologram was not uniformly

illuminated. A second an better attempt is shown in Fig. 4.14c, in which we fixed

the thread directly to the rear face of the objective. In this case, the borders of the

mask appeared to be sharper and the hologram was uniformly illuminated while the low

spatial frequencies had been removed.

a) b) c)

Figure 4.14: Two experimental attempts to block out the central light in our trans-
mission configuration placing a home-made mask near the rear facet of the objective.
The upper images show the quadrant containing the +1 diffraction order while the lower
images show the corresponding recorded hologram for three cases (same grayscale for
all images): a) without any physical mask; b) with a circular mask placed at the mi-
croscope turret; c) with a circular mask directly fixed to the rear face of the objective,

showing better results.

However, the experimental positioning and centring of the mask came out to be a very

arduous task. Moreover, the mask turned out to be too large, covering almost 65 pixels
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out of the 71 pixel radius of the filtered diffraction order, so the reconstructed image

was strongly deteriorated. Future tests will have to include a mechanical translation of

the mask and will require a better accuracy in its fabrication.

4.3.1.2 Heterodyne filtering of static objects

Most near-field optical microscopy implementations use a sharp vibrating tip to locally

scatter the near-field at the sample surface. In order to discriminate the small scattered

signal from the tip apex against the background from a diffraction-limited illumination

area, these NSOM configurations usually apply homo- or heterodyne detection using

lock-in techniques. In our case, we want to discriminate as well the faint light scattered

by the probe particles in motion against the static light scattered by the structure under

study. Owing to their Brownian displacements, the light scattered by moving particles is

Doppler-shifted with respect to the incident illumination and the frequency spectrum of

the resulting signal experiences a Lorentz broadening [37]. Consequently, in this section

we propose to investigate the frequency response of the system: for low frequencies

we expect a large contribution from the photons scattered by static objects, while for

large frequency values the signal from the moving NPs might be predominant. If this

hypothesis is validated, this would allow us to suppress the static background in a similar

manner to NSOM heterodyne detection.

Previous studies have already validated the use of Digital Heterodyne Holography (DHH)

to perform Doppler imaging in various domains such as microfluidics [10], vibration mo-

tion characterization [90, 93, 94], in vivo blood flow assessment [7, 9, 78] and frequency-

resolved temperature response of integrated circuits [84], among others. DHH has also

been used for photothermal studies, where a heating laser modulated at a constant fre-

quency offset creates a modulation of the local refractive index of the sample [4]. For

the case of Brownian NPs in solution, techniques such as Dynamic Light Scattering and

self-mixing laser have studied the dependence of the recorded signal with the frequency

offset induced by the moving NPs, being able to calculate the particles’ size and concen-

tration [85]. Our aim here is to study whether the introduction of an heterodyning offset

frequency could be used to detect only the Doppler-shifted light scattered by moving

particles, while still allowing their accurate localization.

Our interferometry setup allows us to investigate dynamic phenomena modulated at any

frequency Fvar by correctly detuning the frequency shift, ∆f = fAOM1− fAOM2, due to

the acousto-optic modulators. Supposing a variable frequency Fvar, then in heterodyne

holography the frequency modulation of the object beam is given by:

fAOM1 = fAOM2 −
1

n
· fCCD − Fvar (4.13)
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with n the number of consecutive images used for demodulation (n-phase demodulation).

The static case, with Fvar = 0, corresponds to the phase-shifting configuration presented

in Sec. 1.1.1. For a four-phase detection, the total frequency modulation is one quarter

of the camera frame rate. In the dynamic case, with Fvar 6= 0, a given frequency is added

to the modulation. This case allows the investigation of phenomena modulated at any

frequency Fvar. By dynamically scanning Fvar one can investigate the entire frequency

domain of a system.

However, imaging fast moving objects by means of an n-phase demodulation (implying

the combination of n consecutive holograms) requires high acquisition rate detectors.

Otherwise, even a two-phase demodulation results in reconstructed images in which the

moving objects are completely blurred or appear twice, due to the subtraction of two

consecutive holograms at times t1 and t2 = t1 + TCCD, with TCCD = 1/fCCD, fCCD

being the acquisition rate of the camera. In the experiment we show hereafter, we used

gold NPs 80 nm in diameter and an acquisition rate of 23 Hz. Under these conditions

and using Eq. 3.4 we find that the NP has travelled an average distance of 684 nm

from one snapshot to the next, a distance equivalent to 8 pixels. Therefore, even a two-

phase demodulation is not well adapted for our imaging purposes and we must content

ourselves with simple one-phase detection.

Instead, we suggest to average the signal from multiple reconstructed images acquired

at the same frequency. Far from being optimum, this intensity averaging is intended

to compensate for the one-phase detection. Fig. 4.15 schematically depicts the irregu-

lar impact on the detection efficiency of both the exposure time and frequency rate of

the detector as a function of the targeted frequency. While the exposure time is small

compared to the signal period, a correct sampling is mostly dictated by the acquisition

rate. Except for the particular case in which fCCD = Fvar (which we have intentionally

avoided), a sufficiently long averaging would allow us to sample every time interval inside

the slow oscillations. On the other hand, when the exposure time is comparable to the

oscillation period, a correct sampling is not feasible, as we are integrating over almost

the entire oscillating cycle. The detection efficiency in this case is quite poor. Unfor-

tunately, for this preliminary experience at one-phase reconstruction, the initial phase

of the camera trigger was not determined, which prevents us from further quantitative

comparison between different acquisition frequencies.

Results

Figure 4.16 shows the frequency spectrum obtained for the moving NPs by sweeping

the frequency offset introduced by ∆fAOM . In spite of our inhomogeneous detection
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τexp

TCCD

Figure 4.15: Schematic of the impact in the holographic detection efficiency of both
the exposure time and frequency rate of the detector as a function of the targeted

frequency.

efficiency, we recognize the expected Lorentz broadening due to the Doppler-shift on the

incident frequency induced by Brownian motion [37].

Fvar

Figure 4.16: Frequency spectrum obtained for the moving NPs. In spite of our
inhomogeneous detection efficiency, we recognize the expected Lorentz broadening due

to the Doppler-shift on the incident frequency induced by Brownian motion.

We then investigated a sample composed of a gold layer, 70 nm thick, evaporated on

top of a glass surface (see Fig. 4.8). Figure 4.8 shows the imaged region, where we have

overlapped the holographic reconstruction and the white light image for clarity. Note
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that the gold edge which is parallel to the incident polarization shows strong scattering.

In addition, the gold surface presents small scattering defects. For Fvar = 0, the light

scattered by moving NPs is even weaker than the surface defects and the surface edges

almost blind the CCD camera.

FVAR=27 Hz FVAR=77 Hz

FVAR=477 Hz FVAR=9977 Hz

a) b)

c) d)

Figure 4.17: Decrease in the intensity of the static features (selected in red) for
increasing frequency offsets while the moving particles remains clearly visible (in green).

Figure 4.17 shows the reconstructed images for different frequency offsets with the same

color scale for the four images. The decrease in the intensity of the static features is

evidenced for large frequency offsets while the moving particles remain clearly visible.

For every frequency value, we run our localization procedure for both the fixed defect in

the gold surface and for a given moving nanoparticle along ten consecutive snapshots.

By doing so, we obtain the corresponding scattered intensities and we subsequently

calculate the mean value for each set of ten successive localizations. In Figure 4.18 we

compare the mean intensity values obtained for the fixed defect and the moving NPs.

We indeed confirm the faster decrease in the intensity of the fixed defect for increasing

frequency values as compared with the moving NP.
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Fvar

Figure 4.18: Mean scattered intensity as a function of the frequency offset.

Conclusions

We have started this chapter with a brief review about the concepts of near-field and

evanescent waves. From this basis, we have presented our novel approach on map-

ping optical fields by holographic imaging, exploiting the light scattering from MNPs

undergoing Brownian motion. Using an evanescent wave created by means of a TIR

configuration, we have shown that these particles behave as multiple near-field probes,

especially revealing the field characteristics along its decay direction. In addition, we

have illustrated the possibilities of the technique to deliver a full 3D image of a focused

laser beam propagating in water. This work recently led to a joint publication [56].

Finally, we have presented our preliminary results on spatial and temporal filtering

of the recorded image during hologram acquisition. This filtering is crucial in order

to be able to characterize plasmonic structures, as the light scattered to the far field

by the object itself can hinder the detection of the faint probes’ scattering. Far from

being optimum, the present study nevertheless establishes a preliminary basis for the

spatial and temporal filtering of the useful signal coming from the NP probes. In next

experimental steps we plan to include a common clock to trigger the CCD camera in

agreement with the corresponding frequency detuning. This will allow us derive an

analytical expression for the holographic detection efficiency by taking into account the

impact of the signal averaging over successive time frames.
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Conclusions and Prospects

The work reported in this thesis shows that digital holographic microscopy is a powerful

way to localize metallic nanoparticles in 3D with excellent accuracy down to 3 × 3 ×
10 nm3 for 30 nm radius gold particles. This accuracy strongly depends on the available

illumination and could be further improved using higher laser power while staying under

the particle or solvent damage thresholds. The final optical resolution of the technique

is therefore limited either by the size of the particle or the localization accuracy, both

well below the diffraction limit.

In addition to working with non-bleaching probes, our holographic setup offers access to

3D optical information over large volumes, whereas most fluorescence-based techniques

have limited ranges along the z -direction (typically a few micrometers range). The

imaged volume has been shown to be unprecedentedly large: of the order of 40 × 40 ×
30 µm3. The transverse plane extension is determined by the lateral magnification of

the objective, while the axial depth is only limited by the aberrations of the microscope,

which degrade the PSF far from the plane of best focus.

From this basis, we have successfully coupled our holographic microscope with electro-

chemistry investigations to study the chemistry reactions of colloidal silver NPs adsorbed

onto a thin-film gold electrode. Obtaining rather complementary information from both

techniques, we have proved that this coupling facilitates the chemical study of individ-

ual particle transformations. Especially, thanks to holography, we have evinced that the

electrochemical signal was mostly coming from silver nano-agglomerates. In order to

obtain quantitative rates for the investigated chemical processes, and consequently be

able to correlate optical intensities to actual particle sizes, a detailed model of the par-

ticle/electrode system is currently being developed (using the nature of the particle, its

size and its distance to the highly reflecting gold electrode as parameters). Besides, we

are working on the use of micro-electrodes as small as our optical field-of-view, in order

to stablish a bijective link between individual particle impacts and the corresponding

electrical spikes.
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The main achievement of this thesis work, however, has been the measurement of the

scattered light by MNPs as a way to measure local optical information. Using a holo-

graphic setup, we acquire holograms of multiple gold nanoparticles undergoing Brownian

motion in a liquid enclosed inside a microfluidic chamber, in the presence of spatially

structured optical fields to be characterized. Within acquisition times of the order of few

minutes (at a hologram acquisition rate of typically 20 Hz), particles have visited most

voxels due to random motion. A computer reconstruction of the scattered intensities at

each position yields a 3D map of the optical field in the sample.

By creating an evanescent wave by means of a TIR configuration, we have indeed shown

that these particles behave as multiple near-field probes, revealing the field character-

istics along its decay direction. In addition, we have illustrated the possibilities of the

technique to deliver a full 3D image of a focused laser beam propagating in water. In

summary, these results prove our ability to map non propagative fields or fields that

are simply not collected by the imaging system (e.g. light propagating along directions

beyond the collection cone of the objective) with subdiffraction resolution. In particu-

lar, we believe that this technique has the potential to serve as an alternative to other

near-field techniques such as NSOM, specially in water-based systems.

Future steps will involve 3D imaging of complex near-field hot spots in a liquid envi-

ronment, which will be crucial in order to characterize plasmonic structures. We have

shown that one major obstacle, however, is the light scattered to the far field by the

plasmonic object itself, hindering the detection of the metallic nanoprobes. We have pre-

sented the preliminary results of two different strategies, either for spatial or temporal

signal filtering, while trying to preserve optimal localization accuracy. The combination

of both strategies may also be considered.

Another future approach that we are currently considering relies on recovering the whole

sample under study with gold particles and functionalizing them chemically with thio-

lated DNA strands. Then, freely moving MNPs in the solution, previously functionalized

with complementary DNA strands, could lead to the reversible formation of dimers when

getting close to the sample. The optical excitation should be adapted to the resonance

wavelength of the coupled system. Under these conditions, each transient binding of

a free NP with a NP grafted at the sample surface would be perceived as a stochastic

alternation of “on” and “off” states. This would produce a signal blinking, allowing us

to isolate the light scattered by the dimers from the constant optical background. This

approach would therefore provide an equivalent of the photoactivation process used in

PALM microscopy, but with all the advantages of working with metallic probes instead

of fluorescent probes (possible interferometric detection, unlimited signal yield, single

wavelength excitation-detection).
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Appendix A

Centiles of the coupon-collector

problem

Given a certain risk tolerance θ, what is the minimal number tθ of snapshots that

guarantee that the cumulated number of observations is at least equal to r for each of

the N pixels in the field of observations? For the moment we only consider the 2D

problem. Note that setting θ = 0 necessarily leads to a diverging tθ: whatever the

number of snapshots, it is impossible to guarantee with 100 % chance that every single

pixel will been observed.

Hypothesis:

1. We neglect the time spent by the particle within the pixel which is required in mak-

ing the k–successive observations, as we consider that an effective unique snapshot

with k simultaneous observations (see Fig. 3.11). In the regime of a large number

of pixels 10 < N , the waiting times between two consecutive hits of a Brownian

particle is large compared to the time spent by the particle within the pixel.

2. We neglect events leading to multiple hitting particles per single pixel at the same

time, due to the large number of pixels N and to the low probability of events per

pixel p = µ/N .

3. We do not consider the spatial correlation between neighbouring pixels.

4. We consider that the interface is spatially homogeneous and that the probability

vector p is the same for each pixel in the field of observation.

97



Centiles of the coupon-collector problem

A.1 Time for r observations of each n pixels, one hit at a

time (k = 1)

In this first next section, we consider that the pixel can be detected only once by a

particle, i.e. pk = p0δk0 + (1 − p0)δk1. The number of observations of a pixel at each

snapshot is a Bernouilli random variable equal to 1 with probability p1 and to 0 with

probability p0.

Single pixel system Let us first consider the coverage dynamics for a single pixel.

The probability for a single pixel to be have collected j observations at the time t is

denoted q
(t)
j . Between two snapshots,

q
(t+1)
j = p0q

(t)
j + p1 q

(t)
j−1, 1 ≤ j ≤ r − 1, (A.1)

where p1 = p is the probability to have a single observation, and p0 = 1 − p is the

probability to have no observations. We consider that the state with r observations is

an absorbing state:

q
(t+1)
j = q

(t)
j + p1 q

(t)
j−1. (A.2)

Initially, q
(0)
j = δ0j : at the initial time t = 0, the event that ”there has been no observa-

tions” has a probability 1. As soon as j ≤ t, the probability to have reached j ≤ r − 1

observations of the pixel is:

q
(t)
j =

t!

(t− j)! j!
pj (1− p)t−j , j ≤ r − 1, (A.3)

from which we deduce the last component of the vector q
(t)
r = 1−

∑r−1
j=0 q

(t)
j .

Long time distribution We now consider the long-time limit 1 � t and we recall

the equivalence t!/(t − j)! ∼ tj from the Stirling formula. The absorption probability

q
(t)
r tends to 1, with a leading order term corresponding to the probability q

(t)
r−1:

q(t)r = 1− tr−1 pt0
(r − 1)!

(
p1
p0

)r−1
. (A.4)

System of N pixels We now consider the whole system consisting in an ensemble of

N pixels. We obtain the full evolution of the system from the evolution of a single pixel
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Eq. (A.2):

P

({
N

(t)
j

}
j

)
=

N !

N
(t)
1 . . . N

(t)
r

{
q
(t)
1

}N(t)
1
. . .
{
q(t)r

}N(t)
r

(A.5)

In particular, the probability that all particles are in the absorbing state at the time t is

P
(
{Nδjr}j

)
=
{
q(t)r

}N
. (A.6)

We seek to obtain an expression for the minimal time tθ corresponding to P
(
{Nδjr}j

)
=

1− θ. Typically θ = 0.05 and tθ will be the time after which there is a 95% probability

that the whole system of N pixels has been covered r–times. Provided that θ is suf-

ficiently small and N sufficiently large and 1 � tθ, we can use the long-time behavior

from A.4 to obtain an expression for tθ as the solution to the following equation:

1− (1− θ)1/N =
ptθ0

(r − 1)!

(
tθ
p1
p0

)r−1
. (A.7)

Provided that θ < 0.10, then 1− (1− θ)1/N ≈ θ/N . Taking the log of A.7, we obtain:

−(1− p0)tθ + (r − 1) ln

(
p1
p0
tθ

)
= ln

(
θ

N

)
+ ln [(r − 1)!] (A.8)

where we have used the relation ln(p0) = ln(1− (1− p0)) = −(1− p0).

tθ ≈
1

1− p0

{
ln

(
N

θ

)
+ (r − 1) ln

[
p1

p0(1− p0)
ln

(
N

θ

)]}
, r � N. (A.9)

Using the relation 1− p0 = p1 = µ/N , we obtain the following approximate solution of

Eq. (A.8) is

tθ ≈
1

µ
{N ln(N/θ) + (r − 1)N ln(ln(N/θ))} , r � N. (A.10)

The latter A.10 has the same scaling with N as E[N ], the mean first time for a to collect

a number of r full collections of pictures of the N cards of the game [64] (in which µ = 1).

A.2 Time for r observations of each n pixels, with random

number of observations at a time (k ≥ 1)

In this section, we consider that, at each snapshot, the number of observations of a given

pixel is random variable equal to k ∈ [0, r] with probability pk and to 0 with probability
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p0 (see Fig. 3.11).

We first consider a single pixel. Using standard Laplace transform techniques, we obtain

the probability that this single pixel has been observed j-times during a sequence of t

snapshots:

q
(t)
j =

∑
(j0,...jr)

t!

j0! . . . jr!
δ

(
r∑

m=0

jm − t

)
δ

(
r∑

m=1

mjm − j

)
pj00 p

j1
1 . . . pjrr , j ≤ r − 1

(A.11)

=
∑

(j1,...jr)

t!

(t− ju)! . . . jr!
δ

(
r∑

m=1

mjm − j

)
pt0

(
p1
p0

)j1
. . .

(
pr
p0

)jr
, (A.12)

where δ is the Dirac function and ju =
∑r

m=1 jm is the total number of adsorption

events, which we recall is distinct from the number of observations
∑r

m=1mjm = j.

From A.11 we seek to determine the asymptotic behavior of q
(t)
r = 1 −

∑r−1
j=0 q

(t)
j . We

want to have a risk less than 5%.

The terms j1! . . . jr! is bounded by r!r, hence it does not diverge with t. The leading

order in t � 1 stems from the t!/(t − ju)! ∼ tju term. We now consider two specific

situations:

• pk = psδ(s− k) and p1 = 0, with r is a multiple of s (i.e. there exists q such that

r = qs). The situations amounts to the case considered in the section A.1, with

the substitution r ← q by p1 ← ps.

• If p1 > 0, the question is to find the set in sum indices which maximizes the

exponent ju. The set of time interval length (j1, . . . jr) = (j, 0, . . . 0) maximizes

the leading exponent ju under the constraint that
∑r

m=1mjm = j. Moreover,

j = r − 1 trivially maximizes the exponent ju = j1 = j. At the leading order in t,

A.11 reads

q(t)r = 1− tr−1 pt0
(r − 1)!

(
p1
p0

)r−1
, (A.13)

which is identical to A.4, and leads to the scaling of A.9:

tθ ≈
1

1− p0

{
ln

(
N

θ

)
+ (r − 1) ln

[
p1

p0(1− p0)
ln

(
N

θ

)]}
, r � N. (A.14)
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Due to the inequality p1
(1−p0) < 1, A.14 predits a lower time than A.9, which is

expected since large jumps are allowed. This effect is quite low as we retrieve the

same scaling for the leading order term (N ln (N), with 1
1−p0 = N/µ).

Conlusion

We recover the same scaling at first orders when N � r as in Eq. 3.9 for the mean-time

calculation:

tθ =
1

1− p0
{ln(N) + (r − 1) ln(ln(N)) + cnt.} (A.15)
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Appendix B

Scientific Activities

Oral Presentations

• Meta12, April 2012, Paris, France

• Photonics West, February 2013, San Francisco, California

• Summer School in Plasmonics, July 2013, Cargèse, Corsica

• Nanolight 2014, February 2014, Benasque, Spain

• JIONC 2014 (Journée d’Imagerie Non Conventionelle), April 2014, Paris, France

Publications

Chemical Physics Letters

• C. Batchelor-McAuley, A. Martinez-Marrades, K. Tschulik, A. N. Patel, C.

Combellas, F. Kanoufi, G. Tessier, and R. G. Compton, ”Simultaneous elec-

trochemical and 3D optical imaging of silver nanoparticle oxidation,” Chemical

Physics Letters 597, 20–25, Mar. 2014.

Optics Express

• A. Martinez-Marrades, J.F. Rupprecht, M. Gross and G. Tessier, ”Stochastic

3D optical mapping by holographic localization of Brownian scatterers,” Optics

Express 22 (23), 29191–29203, Nov. 2014.
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Scientific Activities

Teaching

Assistant Professor for engineering students at École Centrale, Île de France (France).

Supervisor of Experimental Activities based on Optical Coherence Tomography.

Awards

April 2014: Judges 1st Price of the scientific research spreading contest “Ma

ths̀e en 180s” among PhD students from UMPC and Sorbonne Universities. The goal

of the contest was to orally explain one’s own PhD subject to a non-specialised audience

in 3min flat. May 2014: Judges 2nd Price at the regional final of Île de France.

La physique, ça peut parâıtre compliqué, mais je me dis que parfois elle ressemble à

la peinture. Je suis en thèse de physique, sur un sujet, vous allez voir, très pictural :

je développe un nouveau microscope pour faire des images du monde tout petit. Une

première nouveauté de mon microscope est la possibilité d’imager des volumes et non

pas d’enregistrer une simple projection plate de ce que j’observe, comme ferait par ex-

emple une peinture. C’est pourquoi j’utilise un microscope dit holographique, qui me

permet d’acquérir des images tridimensionnelles. Un peu comme nos deux yeux, qui

nous donnent deux images que notre cerveau recombine pour en faire une image en 3D,

l’holographie se sert d’un double éclairage pour obtenir des images avec de la profondeur.

J’espère donc que vous avez encore vos deux yeux grand ouverts, ainsi que vos oreilles,

car maintenant que je vous ai présenté mon microscope holographique, je dois vous

dire que ce que je cherche à imager (accrochez-vous bien!) a le mauvais goût d’être

invisible! Le but de ma thèse est d’imager des distributions du champ électromagétique

qui se créent à l’intérieur d’une minuscule piscine liquide. Vous pouvez imaginer ces

champs électromagnétiques comme des courants d’eau chaude et d’eau froide dans cette

minipiscine.

L’astuce consiste alors, et voici le deuxième point novateur de mon sujet, à visualiser

ces champs par son interaction avec des toutes petites billes métalliques, qui nagent

tranquillement dans la minipiscine. Ces nageurs, ce sont des naoparticules qu’on ne peut

pas voir à l’oeil nu, mais qui jouent le rôle d’espions, nous révélant des informations

autrement inaccessibles.

Mettons-nous dans la peau d’un de ces espions. La nanoparticule est en train de nager

tranquillement dans la minipisicne (un immense océan d’ailleur, d’après elle) quand,

tout d’un coup, elle ressent un champ électromagnétique dans lequel elle se sent bien,

imaginons un courant d’eau chaude, et elle pense: “wow, ce champ et moi, nous sommes
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sur la même longueur d’onde, nous sommes vraiment en phase!” et une musique har-

monieuse résonne chez elle et la fait rayonner de joie! Puis, au contraire, quand le

champ environnant ne lui plâıt pas, elle s’éteint un peu et continue sa baignade aléatoire

d’un air très sombre.

Moi, qui regarde dans mon microscope cette piscine scintillante faite de minipartic-

ules en mouvement qui clignotent en fonction du champ qu’elles traversent, je vois se

dessiner, petit à petit, une sorte de relief, une peinture par petites touches du champ

électromagnétique que je cherche à étudier. J’ose donc dire aujourd’hui que je suis en

train de développer un nouveau courant artistique: le pointillisme 3D du 21ème siècle.

Bientôt, à l’issue de mon travail de thèse, on devrait pouvoir regarder ces beaux tableaux

tridimensionnels se dessiner tout seuls, pendant qu’ils rendent visible l’invisible.
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metallösungen. Annalen der Physik 330 (3), 377–445.

[60] Mock, J. J., R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith

(2008, August). Distance-dependent plasmon resonant coupling between a gold

nanoparticle and gold film. Nano Letters 8 (8), 2245–2252.

[61] Moerner, W. E. and D. P. Fromm (2003). Methods of single-molecule fluorescence

spectroscopy and microscopy. Review of Scientific Instruments 74 (8), 3597.

[62] Moerner, W. E. and L. Kador (1989). Optical detection and spectroscopy of single

molecules in a solid. Physical Review Letters 62 (21), 2535.
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