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CHAPTER1

INTRODUCTION

Temporal regularities are present everywhere: in the position of objects across time, in
the vocalization of animals, in the ticking of a clock... The rules of causality impose that similar
causes have reproducible effects. As a result, events tend to occur in a reproducible order. Being
able to predict what is going to happen next is obviously an asset for survival. In this thesis, I
will try to better understand how the brain takes advantage of temporally regular structures using
a modeling approach, combined with neuroimaging experiments to test specific theory-driven
hypothesis. In particular, I will focus on understanding the role of conscious processing in

temporal regularity learning.

In this introductive chapter, 1 will first introduce in more details what conscious
processing is and why I chose to focus on its role in temporal regularity learning. Following
David Marr’s hierarchy (Marr, 1982) | I will then review the main relevant frameworks that were
used to understand the computational goals of regularity learning. Next, I will try to establish
what characterizes at the algorithmic level the type of processes involved in conscious and
unconscious temporal regularity processing. Finally, I will present some of the neuronal
mechanisms that are relevant to understand how temporal regularity learning might be

implemented in the brain.

1.1 Using event related potentials to unexpected events to

assess consciousness in non-communicative patients

1.1.1 Assessing consciousness in non-communicative patients

For most of us, arousal and awareness are two closely correlated concepts. When we go
to sleep or undergo global anesthesia, we lose both; when we awake, both are recovered at the
same time. This also holds for most patients unlucky enough to go into a coma; however, there
are a few patients that show a strange dissociation. One of the first case was described by
Rosenblath (Rosenblath, 1899). A young tightrope-walker had fallen from his wire into a coma.

Two weeks after the accident, the patient became “strangely awake™: he presented clear signs of
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arousal but was still unable to interact meaningfully with its environment. The patient died a few
weeks after from its injuries without recovering further. Nowadays, we use the term “vegetative
state” to describe these patients, because they are considered “to live a merely physical life devoid
of intellectual activity [...] social intercourse [...] sensation and thought” (Jennett & Plum, 1972, p
7306). Clinically, they are characterized as patients that present signs of arousal without awareness.
People in a vegetative state may open their eyes, wake up and fall asleep at regular intervals and
may have basic reflexes such as blinking when they are startled by a loud noise or withdrawing
their hand when it's squeezed hard. They are also able to regulate their heartbeat and breath
without assistance. However, patients in a vegetative state do not show any meaningful responses
to external stimulations such as following an object with their eyes or responding to surrounding

voices. They will also not show any sign of experiencing emotions.

The diagnosis of vegetative state — arousal without awareness — is a challenging problem.
Although arousal has a clear behavioral definition, it is less straightforward to provide convincing
proof of the absence of awareness. The current diagnosis criteria involve the inability to follow
simple commands or to communicate verbally. Yet, the inability to communicate does not
necessarily imply the absence of awareness. Patients presenting the so called “locked-in”
syndrome are the typical example of this dissociation (Plum & Posner, 1966). They are most
often completely paralyzed, except for vertical eye movements and blinking. In extreme cases,
called total locked-in syndrome, even eye movements are impossible and no communicative
behavior can therefore be observed (Bauer, Gerstenbrand, & Rumpl, 1979). These patients can

nonetheless be perfectly aware of their environment.

As a result, the possibility that some vegetative state patients could be misdiagnosed
must be considered. How can we objectively assess something as subjective as consciousness?
How can we know whether patients experience their surrounding environment when they are

utterly unresponsive?

It is necessary to overcome the limitations of behavioral measures to test the hypothesis
that consciousness might be intact while its behavioral expression is impossible. A
groundbreaking study (A. M. Owen et al., 2006) proposed to solve this issue by using a more
direct communication channel: functional Magnetic Resonance Imaging (fMRI) activations. They
first asked healthy volunteers to perform two tasks of mental imagery. The first task consisted in
imagining playing tennis. It recruited the Supplementary Motor Area (SMA) and subjects showed
an increase in the BOLD signal in this area. The second task consisted in imagining navigating in
a room of their house, which activated the para-hippocampal gyrus, the posterior parietal cortex

13
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and the lateral premotor cortex. Then the author applied the same protocol to patients diagnosed
as vegetative. The decisive result was that one of these patients showed activations that were
similar to the ones of healthy subjects, thus showing his ability to understand complex instruction
and voluntarily modulate his brain activity by accomplishing a mental task. The results of this
study were reproduced in an other group of patients, where five out of fifty-four vegetative state
patients showed voluntary modulation of their brain activations according to the instructions
(Monti et al., 2010). One of them was even able to answer yes-or-no questions using the same

mental imagery tasks.

This approach was very promising but it relies on fMRI, which is a powerful but
extremely expensive imaging technique that requires transporting patients that are quite fragile
and may present contraindications. Therefore, it is hardly realistic to imagine that this protocol
could be used as a routine diagnostic tool in clinics, let alone used multiple times in the same
patients at different stages of their potential recovery. It is therefore necessary to devise protocols
using cheaper imaging techniques that can be used at the patient bedside. Several attempts to
adapt the protocol to EEG (Cruse et al., 2011; A. M. Goldfine, Victor, Conte, Bardin, & Schiff,
2011) were made but subjected to controversies about the validity of the statistical analysis

involved (Cruse et al., 2013; A. Goldfine et al., 2013).

1.1.2 Consciousness: theories of consciousness and neuronal correlates of

conscious access

At this point, it is necessary to clarify the definition of consciousness. Indeed,
consciousness can be an ambiguous concept. In its intransitive form (“The patient is still
conscious”), it refers to the general state of consciousness also called wakefulness or vigilance and
can vary in a graded manner from coma to full vigilance. In its intransitive form (“I was not
conscious of the car coming to my right”) (Stanislas Dehaene & Changeux, 2011) it refers to the
conscious access or processing of specific piece of information. Conscious access is generally

determined by the ability to report verbally the information being accessed.

Although it is necessary to be conscious to be conscious of something, the reverse is not
necessarily true. Theories of consciousness have mainly focused on the second aspect: what
determines whether we are conscious or not of a stimulus? What are the neuronal correlates of

conscious access?
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1.1.2.1 Theories of consciousness

The word “consciousness” has long been banned in cognitive science, following the
behaviorist tradition that tried to banish subjectivity from the study of cognition. Therefore, the
first models of selective processes in perception were not referring explicitly to consciousness,
but rather to “working memory” or “selective attention”. A simple but influential model of
selective central processing was proposed by Broadbent (Broadbent, 1957) and dissociated two
steps of processing: a first step of processing in parallel sensory buffers, followed by a unique
“perceptual” system with limited capacity which would explain why we cannot perceive multiple
things at the same time. This distinction between early parallel processors and a selective central
system dependent on attention where a percept can be maintained in a more permanent manner
was used in other early models (Baddeley & Hitch, 1974; Norman & Shallice, 1986). It is now the

basis of the more contemporary models of conscious access.

An important issue of these models was the presence of a central, somewhat obscurely
defined controller which seemed to correspond to an external observer that would supervise the
rest of the system. Consciousness itself was described using a theater where that narrow stage
would only allow for one actor to diffuse its message to some spectator (Taine, 1882). To
overcome the recursive problem of explaining how this “homunculus” would be itself conscious
(Dennett, 1992), current theories of consciousness now prefer distributed architectures that seem
to escape the problem of the internal observer by presenting a large capacity to represent and
route information. One of these models is the “global workspace” theory (B. Baars, 1989). It
postulates a large number of parallel input processors that compete for a capacity-limited central
space, which itself can broadcast its content to the input processors. According to this theory, the
information of the processor can be processed either consciously, if it gained access to the central

space, or unconsciously if it did not.
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FIGURE 1.1-1: CONSCIOUSNESS AND THE GLOBAL NEURONAL WORKSPACE THEORY

(Top) Schematic representation of the neuronal architecture underlying the globa
neuronal workspace model. Stimuli that are too week or unattended are processed by a hierarchy
of automatic cortical processors. If a stimulus is sufficiently strong and attended, it reaches high
level processors that are highly interconnected via long distance connections. The information
that reaches this central space can be broadcasted to other processors in a top down manner.
(Bottom) Conscious and unconscious processing: unconscious stimuli do not reach the
frontopariaetal network., The stimulus related activity remains restricted to sensory areas.
Conscious stimuli reach the frontoparietal network with a phenomenon called ignition, where the
information is actively maintained for a more extended period of time. Adapted from (Stanislas
Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006)

These first “psychological” models of consciousness paved the way for more
neurobiological approaches. My goal here is not to provide an exhaustive review of

neurobiological theories of consciousness, but rather to point towards neuronal architectures and
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properties that have been proposed to play an important role in conscious access (see Seth, 2007

for a more complete review).

e First, although some theories argue that consciousness might not be a unitary
process and can be localized in particular regions (Zeki, 2003), most theories
make the hypothesis that conscious access is associated with a winner-take-all
competition for a central resource with limited capacity that relies on a distributed
architecture. This distributed architecture involves in many models the prefrontal
cortex (PFC) (Stanislas Dehaene, Kerszberg, & Changeux, 1998b; Lau, 2008;
Norman & Shallice, 1986; Posner & Rothbart, 1998) and the executive and
selective functions that are associated with it.

e Second, consciousness is mainly thought as an integrative process, involving
recurrent Ot re-enfrant connections or feedback processing. In Edelman’s theory
(Edelman, 1989; Sporns, Tononi, & Edelman, 2000) the conscious state relies a
re-entrant connectivity involving the cortico-thalamic loop, that produces
representations that are both highly differentiated (there can be a large number of
representations) and highly integrated (the information is shared across a large set
of regions). Lamme (Lamme, 2010) insists on the importance of recurrent
processing in the cortex for conscious experience. He distinguished two stages in
perception: the first is a fast and mainly feedforward sweep of neuronal activity,
followed by recurrent processing (Lamme & Roelfsema, 2000) that would
correspond to conscious perception. For example, visual information would first
be processed by the two pathways of visual cortex, leading to the identification of
the different features of the input (color, motion, shape...). This information can
then be maintained, shared and integrated via horizontal and feedback
connections. Finally, Dehaene and Changeux (Stanislas Dehaene, Kerszberg, &
Changeux, 1998a) proposed a “global neuronal workspace” theory (Figure 1.1-1),
in which the automatic sensory processor operate in parallel and compete for
access to the global workspace. This workspace is characterized by a network of
pyramidal neurons with long range connectivity that allows maintenance of
information (see also B. J. Baars & Franklin, 2003) through a recurrent
connectivity, and the diffusion of the centrally maintained information to lower

level areas.
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11.2.2 Neuronal correlates of conscious access in MEEG.

The theories presented above are based on experimental data that investigated the
neuronal correlates of conscious access. As argued before, we will focus here on a specific
imaging technique: the electroencephalography (EEG). The EEG was used for the first time in
humans by Hans Berger in 1924 (Berger, 1929) and simply relies on electrodes disposed on the
head to record a summation of the electrical activity at the surface of the scalp. The main sources
of EEG potentials are thought to be the synaptic currents generated when large populations of
neurons receive similar synaptic stimulations. Because EEG is a continuous measure that follows
directly the electrical activity of neurons, it has an excellent temporal resolution and as a
consequence, is a privileged technique over coarser temporally resolved methods such as fMRI,
to investigate temporal regularity processing. For forty years, EEG was used a continuous
measure providing criteria to identify states of sleep or arousal, or study epileptic activity. It was
only in 1964 that the first evoked potentials (ERP) were identified by averaging many epochs of
signal evoked by multiple presentations of a stimulus (Walter, Cooper, Aldridge, McCallum, &

Winter, 1964).

Consistently with the exceptional power of ERPs to resolve temporal steps of processing,
some of the first studies exploiting this new technique of analysis tried to develop paradigms
involving minimally different conditions that would highlight different stages of processing. The
P300 was one of the first potentials identified this way (Chapman & Bragdon, 1964), and was
related eatly on to the study of conscious access (Desmedt, Debrecker, & Manil, 1965) but also to
temporal regularity processing (S. Sutton, Braren, Zubin, & John, 1965). Desmedt used an
auditory cuc to prime a faint tactile stimulus. He observed that when the stimulus was cued, it
was more often detected. Looking at the potentials evoked by cued and uncued stimuli, he
observed that the early ERP (<300ms after the onset of the tactile stimulus) were identical in
both conditions, whereas the late ERP differed. Unfortunately, the authors asked the subjects to
count the stimuli they detected, so the hypothesis that the late potential was due to the counting
activity and not the conscious detection per se could not be ruled out. A few years later, Hillyard
(Hillyard et al., 1971) used auditory stimuli at perceptual threshold, and asked subjects to report
whether they perceived the stimulus using delayed motor response. He showed that the early
potentials were unaffected by the detection performance, while the P300 was only present when

the subjects detected the stimulus.

The P300 was later dissociated in two components called P3a and P3b (N. Squires,

Squires, & Hillyard, 1975). P3a and P3b can be decorrelated using a three stimulus oddball
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paradigm: one frequent sound (the standard) is repeated at regular intervals and is sometimes
replaced by one of two possible deviants. One of these deviants is very similar to the standard
tone. It is used as the target of a difficult detection task. The other deviant is very different from
the standard, and is used as a distractor. In this case, the distractor stimulus elicits only a P3a,
while the target, task relevant stimulus, elicits only a P3b. The P3a is the first subcomponent,
observed transiently over the frontal electrodes and elicited by unexpected events (K. C. Squires,
Wickens, Squires, & Donchin, 1976; S. Sutton et al,, 1965). The P3b is a more sustained
component over the centro-posterior electrodes and is only elicited by visible, task relevant
stimuli (Stanislas Dehaene et al., 2006; Stanislas Dehaene & Changeux, 2011; Polich & Criado,
2006; Polich, 2007; N. Squires et al., 1975). A variety of experimental manipulations have shown
that the P3b is likely to be the best a good index of conscious detection in EEG and
magnetoencephalography (MEG) (Del Cul, Baillet, & Dehaene, 2007; Gutschalk, Micheyl, &
Oxenham, 2008; Sekar, Findley, Poeppel, & Llinas, 2013; Sergent, Baillet, & Dehaene, 2005; van
Aalderen-Smeets, Oostenveld, & Schwarzbach, 2000).

In contrast, the early potentials are less sensitive to attentional or consciousness
manipulations. The mismatch negativity (MMN) is characteristic of this automatic processing of
information. Although it was already observed along with the P300 in previous studies (K. C.
Squires et al,, 1976), the MMN was first distinguished from the other attention-dependent
potentials by Niatinen (Niitinen, Gaillard, & Mintysalo, 1978). The MMN is a negative
component of the ERP elicited by any perceptible change in some repetitive aspect of auditory
stimulation. It is typically elicited in an oddball paradigm, where a frequent tone (the standard) is
repeated at regular intervals. Rarely, a different tone is presented instead (the deviant). The roles
of the two tones can be swapped in a different block. The difference between the waveforms
evoked by a given sound presented as the frequent and as the rare stimulus is an early negative
ERP component that is maximal over frontocentral areas of the scalp and peaks between 100-
200ms. The existence of an MMN is independent of attention (Alain, Woods, & Ogawa, 1994,
Alho, Sams, Paavilainen, Reinikainen, & Naiitinen, 1989; Alho, Woods, & Algazi, 1994; Muller-
Gass, Stelmack, & Campbell, 2005; Niitinen et al.,, 1978), and its amplitude is modulated very
little by attention although it can be slightly attenuated (Muller-Gass et al., 2005). A significant
MMN can also be found under anesthesia (Heinke et al., 2004; Koelsch, Heinke, Sammler, &
Olthoff, 2006; Simpson et al., 2002). Therefore it is thought to be the result of a low-level
automatic processing of auditory inputs. The dominant interpretation of MMN (Figure 1.1-2) is
that it is the result of a comparison process between a sensory memory (echoic memory) that

encodes the repetitive aspects of the stimulus, and the incoming input (Naatinen, 2003). MMN
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originates mainly form primary auditory cortex. For many years, MMN was considered to be
elicited by a separate source of another ERP occurring in the same time window after the onset
of the stimulus: the N1 component. The co-existence of two separable components at the same
time was interpreted as evidence for two separate processing pathways: the N1 would reflect
general processing of the information, and the MMN would reflect a separate mechanism
dedicated to the detection of inconsistency between the context established by previous stimuli
and the incoming input. However, more recent analysis suggest that MMN could be a
modulation of the N1 response instead, making unnecessary the hypothesis of multiple routes
(Ahveninen et al., 2004). An alternative “fresh afferent” or “adaptation” model interprets MMN
as reflecting short term synaptic depression of synapses that are repeatedly stimulated. When a
different sound is presented, it would elicit a bigger response by stimulating new synapses. This
model is largely supported by neuronal recordings but to account for all MMN properties,

complex tuning properties of neurons have to be hypothesized(May & Tiitinen, 2009).

However, the picture of a dissociation between early and late potentials as reflecting
respectively automatic and conscious processing is complicated by a few findings suggesting that
late potentials, including the P300 but also the N400 (Sergent et al., 2005; E K Vogel, Luck, &
Shapiro, 1998) — which peaks later than the P3 and is therefore thought to be even further up the
processing chain — can be elicited in unconscious conditions. First, studies reported a reduced but
significant P300 (including P3b) in REM sleep (Cote & Campbell, 1999; Perrin, Garcia-Larrea,
Mauguicre, & Bastuji, 1999; Salisbury, Squires, Ibel, & Maloney, 1992), in response to invisible
(Bernat, Shevrin, & Snodgrass, 2001; van Gaal & Lamme, 2012) and unseen stimuli (Del Cul et
al., 2007; Lamy, Salti, & Bar-Haim, 2009). The increase of the P300 amplitude may therefore not

systematically index conscious perception.
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FIGURE 1.1-2: SCHEMATIC REPRESENTATION OF 3 MODELS OF MMN

In the memory-based model the MMN is generated by a comparison process distinct
from the N1. The MMN Js elicited by a comparison process between the incoming stimulus and
a memoty trace in the auditory cortex representing the repetitive aspects of the preceding
auditory events, which usually lasts for a few seconds. In the adaptation model (also called “fresh
afferent” model), the repetition of a stimulus leads to a synaptic habituation in the neurons
encoding the standard sound. When a new sound is presented, it stimulates new, non-adapted
synapses that generate a bigger response. MMN is considered the modulation of the NI
response. In the predictive coding model, the MMN is also a modulation of the N1 response.
Past stimulus are used to learn an internal generative model of the stimuli that is used to predict
what should come next. A prediction error signal is emitted when the stimulus is different from
the predictions. The N1 response is the summation of prediction and prediction error responses.
Adapted from (May & Tiitinen, 2009)
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1.1.3 The “local-global” paradigm

Building on these results, Bekinschtein and colleagues (Bekinschtein et al., 2009) tried to
create a protocol that would both test preserved sensory processing and assess consciousness. As
the late potentials to the detection of a stimulus do not seem to be a selective enough, they tried
to build a task that would not only need detection, but also consciousness-dependent processing
of temporal regularities. The paradigm consisted in blocks of 125 sequences of 5 tones (Figure
1.1-3). A first level of regularity was introduced at the level of the sequence: most tones were
identical (local standards), but the last one could sometimes be different (local deviant). The
second level of regularity was at the (global) block level: one of the two types of sequences (xxxxx
or xxxxY) was presented most of the time (70% of the trials) while the other was presented more
rarely (global deviant, 30% of the trials). Crucially, in some blocs (xxxxY blocks), the local

deviance could be fully expected at the global level.

In healthy attentive subjects that were asked to count deviants, the data revealed a double
dissociation between the potentials elicited by the violation of the local and global regularities: in
both blocks the violation of the local regularity elicited a response known as the mismatch
negativity (MMN), which peaked between 100 and 200ms after the onset of the rare tone, even if
its occurrence was predictable at the global level. The P300 component was observed in both
blocks after the sequences violating the global regularity. The subjects could easily report the
global rules after the experiment. In addition to the P300 response that was present in all

subjects, the global deviance elicited in some subjects a response at the level of early potentials.

In this study, they author manipulated the attention of healthy subjects by instructing
them to engage in mind-wandering or by giving them a challenging visual target detection task.
These manipulations did not affect the MMN, whereas the P300 almost disappeared. This was
consistent with the fact that few subjects in the mind-wandering group and no subject in the
actively distracted group were able to report the global regularity used in the paradigm. These
data suggested that conscious processing of the stimuli was necessary to elicit response to the
violation of the global regularity. Most interestingly, the paradigm was also applied to patients
either diagnosed as vegetative (VS), or minimally conscious (MCS) (a state intermediate between
vegetative and fully conscious where the behavioral signs of consciousness are present only
intermittently). The patients were instructed to pay attention to the stimuli and detect violations
of the regularity. The amplitude of the response to global violation was affected in both groups
compared to healthy subjects, but remained detectable in some MCS patients; whereas it was

absent in all VS patients.
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FIGURE 1.1-3: THE “LOCAL GLOBAL” PARADIGM.

Top: In this protocol, sequences of five sounds are presented to the subjects. Two types
of sequences are presented in different proportion in each bloc: either the five tones are identical
(xxxxx), or the first four tones are identical and the last one is different (xxxxY). In xxxxx blocks,
the xxxxx sequences Is presented most of the time: after 25 habituation trials where only the
frequent sequence is presented, 100 sequences are presented with 70% of xxxxx and 30% of
xxxxxY, In xxxxY blocks, the proportion of xxxxx and xxxxY sequences are reversed. Overall, one
tone is presented most of the time (x tone) and one tone occurs rarely (Y tone); xxxxx sequences
are locally standard, and xxxxY are locally deviant. In each bloc one type of sequence is frequent,
and referred to as the global standard, and the other in rare and referred to as the global deviant.
In xxxxx blocs, both local and global deviance correspond to the same sequences, while in xxxxY
blocs, the locally deviant sequence is the global standard. Bottom: Evoked related potentials in
normal subjects. Local effect: average over both types of blocks of the locally standard (xxxxx, in
green) and locally deviant (xxxxY, in red) sequences. The main significant difference between
ERP evoked by the two types of sequences occurs between 100 and 200ms after the onset of the
fifth tone over the frontocentral electrodes and corresponds to the MMN. Global effect: average
over both types of blocks of the frequent (green) and rare (red) sequences. The main significant
difference between the two conditions occurs between 300 and 600ms after the onset of the last
tone and corresponds to a P300 complex. The topography of the MMN and the P300 are
displayed on the side. Adapted from (Bekinschtein et al., 2009)
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1.1.4 Modeling challenges

This experimental protocol proved to be quite sensitive to both the state of
consciousness and the attentional state of the subjects thus demonstrating the interest of using
temporal regularity processing as a tool to detect consciousness in non-communicative patients.
However, it opens a number of experimental and theoretical questions. First, it is unclear why the
detection of the global regularity was not possible at level of processing indexed by the MMN.
Indeed, MMN is thought to be elicited when “an acoustic event deviates from a memory record
describing the immediate history of the sound sequence” (Winkler, 2007). What made the
previous sequence too distant to be used as the context for deciding whether the last tone was
deviant or not? This question is all the more intriguing given that a very close variant of the
sequence of stimuli used in this experiment did not elicit a MMN to the rare tone (Elyse
Sussman, Ritter, & Vaughan, 1998). Specifically, the same xxxxY sequence was repeated, but
without any pause between two repetitions so that the interval between two deviants was
constant. In addition, increasing the interstimulus interval (ISI) led to a recovery of the MMN
response. These subtle effects are not accounted for by the current theories. Moreover the global
manipulation was not completely lost for early stages of processing as a modulation of the eatly
potentials by the global regularity seemed indeed to exist in some subjects, including one MCS
patient. Understanding the limit of unconscious processing seems all the more urgent to establish

meaningful tests of conscious processing.

Second, conscious processing of the stimuli seems to be crucial for the late response to
exist. However, it is unclear what regularity was learned at this level, or what was the crucial

computational element that allowed for the conscious detection of the rule.

In this thesis, I will therefore try to understand the neuronal mechanisms underlying
automatic response to temporal regularity violations, focusing on the MMN, and derive their
computational limits. We will then investigate how the properties of conscious processing might

allow overcoming some of these limitations.

In the following sections, I will review the theoretical frameworks and empirical data that
give us indications of /) the nature of the computations performed by the neuronal systems that
respond to the temporal regularity violations; 7#) the type of temporal rule that can be learned by
humans and what are the characteristics of rules that would depend on conscious processing; 77)

the neuronal properties of the systems involved.
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KEY POINTS

e Dectermining the conscious state of non-communicative patients is an important
challenge. Neuroimaging techniques are a powerful tool to overcome challenges that
come from motor dysfunctions.

e It is crucial for clinical applications to develop protocols relying on affordable imaging
techniques like EEG

e  Only people that are conscious can access and process consciously information
3 y

e Theories of consciousness propose that conscious access relies on a distributed
network involving frontal areas that allow the maintenance and the broadcasting of a
limited amount of information through recurrent and feedback connections.

e The presence of the mismatch negativity is independent on attention. [t can be
evoked by the violation of a repetitive temporal patterns involving a wide range of
features; and could thus reflect a general property of unconscious processing of
temporal regularities

e Late evoked potentials seem to correlate tightly with conscious perception of targets
in active tasks. They also correlate with the detection of violation of temporal
regularities.

1.2 Why do we process temporal regularities?

This question is a provocative way of wondering how previous research has considered
temporal regularity learning in an evolutionary point of view. In other words, this section tries to
capture in what ways the capacity to learn temporal regularities can confer an evolutionary
advantage to an organism. Looking for an answer to this interrogation is not merely a
philosophical quest: it corresponds to the first conceptual level of Mart’s hierarchy (Marr, 1982),
namely the computational level. Indeed, understanding what problem the brain is trying to solve
is the first step in explaining its function. It may also help to answer the question: what is the
function of the potentials evoked by violations of temporal regularities like the P300 and the

MMN?

1.2.1 Predictive coding

A first answer comes from the increasingly popular framework of predictive coding. This
approach builds on the observation that most of the information in sensory inputs is redundant:
natural sensory inputs are produced by objects in the physical world that tend to be coherent
spatially (they extend in space) and temporally (they last in time). As a result, adjacent pixels on
an image are likely to be similar; an edge is likely to follow a continuous and smooth trajectory; an
object that was present the moment before is likely to last. This translates into correlations

between pixels of an image (Dong & Atick, 1995) or sounds (Lewicki, 2002) over both time and
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“space” (between pixels or between frequencies). A direct representation of the raw image or
sound by the activity of an array of sensory receptors would thus be very inefficient. It has long
been suggested based on information theoretic considerations (Attneave, 1954). A more efficient
way of encoding information would be (1) compress the information, eliminating the
redundancies by trying to infer the hidden states of the environment that are responsible for
them, and then (2) only encode the sensory information that violates the regularities that can be

predicted based on the inferred model (R. P. Rao & Ballard, 1999), i.c. the prediction errors.

Predictive coding proposes that the perceptual systems try to learn an internal model of
the environment and use this model to actively predict the incoming signals. A basic assumption
is that the world produces inputs on the sensory receptors in a way that can be described by a
dynamical generative model. These model can typically be expressed by a system of equations of

the form (Friston & Kiebel, 2009a):

y=gxv6)+n D

x=f(x,v,0)+w
where f and g are potentially nonlinear functions parameterized by 6. g describes how
the causes v, which are invariants aspect of the world such as objects (Shipp, Adams, & Friston,
2013b), influence the input data y. The states X represent “hidden states” that describe how
causes interact with each other and endow the model with memory. f describes the temporal
dynamics of the these states. nand w are Gaussian noise processes representing observational

noise.

The optimal way the brain can encode information to minimize prediction error, is 7) to
learn the model of the world that will lead to minimal prediction errors on average. This is often
considered to be the actual generative model of the input, and ) to be able to #nfer the

appropriate causes and states at a given time to best explain the input.

This idea rejoins a more classical idea in philosophy of perception which states that
perception is not merely the reflect of sensory input but an hypothesis about their causes in the
external world (Helmholtz, 1860). Moreover, sensations contain insufficient information to infer
what caused them without additional prior: for example, the retina captures only a 2D projection
of a 3D world, which implies that the source space is of higher dimensionality than the sensor

space, making the inference of causes an ill-posed problem. Locke (Locke, 1690) was already
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1.2- Why do we process temporal regularities?

proposing that “our minds should often change the idea of its sensation into that of its judgment,
and make one serve only to excite the other”: in other terms, we should have prior expectations
about the causes of our inputs and only change these beliefs if the inputs contain inconsistent

information.

The World / The Estimator \

\

- . Parameters -

Hidden State =-yrmeimeseneen = Visible State --zeweesesissnnin Hidden State

("Internal" to (‘“"Plfl“g ("External'") {(mvem:e - ("Internal" to
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-

FIGURE 1.2-1: INTERNAL MODELS.

The problem faced by an organism relying on an internal model of its environment. The
underlying goal is to optimally estimate, at each time instant, the hidden state of the environment
given only the sensory measurements. This can be done by building an internal model of the
generation of the sensory input that approximate as best as possible the true model. From (R.
Rao & Sejnowski, 2002)

More realistically, generative models are considered herarchical: features at larger
temporal or spatial scale (the song, the object) determine how lower scale features (the pitch of a
particular tone, the edge of the object) are going to evolve. This type of model corrspond to a
generalization of equation (1).

y= g(x(l)J v(l)' 9(1)) + n(l)
x1) = f(x(l)] v 3(1)) +w®

piD = g(x®,p®, g®) 4 n® 2)
7@ = f(x®,p®,9O) 4 w®
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with the g@ = g(x®,v®,0D) functions linking the i and (i-1)™ hierarchical levels of
causes, and the f() = f(x(i),v(i},ﬁ(i}) functions describe the dynamics of the hidden states

within a hierarchical level.

From this generative model it is possible to derive a likelihood function p(y|x, m) which
specifies the likelihood of some data given the causes and the model m. Inverse this model to
determine which are the most likely causes of the input is a good way to minimize prediction

errors. This can be done using variational Bayes, which is based on Bayes rule: p(x|y,m) =

p(ylx,m)p(x,m)

) that relates the likelihood of the causes given the data p(x|y,m) to the internal

generative model that specifies the likelihood of the data given the causes. Because the generative

model is hierarchical, Bayesian inference is itself a hierarchical process.

Predictive coding proposes that the brain learns a model of the world, and then inverts it
to maximize coding efficiency and “explain away” predictable information. But is this coding

scheme consistent with neuronal data?

First, a key architecture principle of the brain is its hierarchical organization (Felleman &
Van Essen, 1991), particularly clear in the early visual areas. The notion of hierarchy in the cortex
relies on the distinction between forward and backward connections. Forward connections arise
from pyramidal cells in the supragranular layers (layers 2-3) and terminate in spiny stellate cell of
layer 4 of the higher cortical area. Feedback connections arise mainly from pyramidal cells in the
infragranular layers (layers 5-6) and target both infra and supragranualar layers of the
hierarchically lower area. The idea of a hierarchy that arises from these anatomical definitions is
also present in functional aspects of neuronal response which show an enlargement of spatial and
temporal (Gauthier, Eger, Hesselmann, Giraud, & Kleinschmidt, 2012) receptive fields from the
lower areas to the higher areas and representations that go from simple to more complex and
abstract (DiCarlo & Cox, 2007; Hubel & Wiesel, 1968). This general architecture allows for
mapping of a hierarchical generative model onto the cortical substrate, with feedforward
connections sending remaining prediction error to the higher areas, and backward connections

mediating the transmission of predictions to lower areas.

Second, predictive coding has been successful at explaining neuronal responses at
multiple levels of the brain’s hierarchy, from the retina (Hosoya, Baccus, & Meister, 2005) to V1
(R. P. Rao & Ballard, 1999) and could be implicated in extra receptive fields or temporal
prediction effects described in other areas including MT or I'T cortex (Huang & Rao, 2011; Jehee,
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1.2- Why do we process temporal regularities?

Rothkopf, Beck, & Ballard, 2006; Meyer & Olson, 2011). It was used to explain extra-receptive
field effects in vision. For example, the response of a V1 neuron sensitive to oriented bars in its
receptive field sees its response suppressed if the bar extends outside of the receptive field.
Hierarchical predictive coding explains this intriguing propriety by showing that information
from neighboring receptive fields inform the higher level area, allowing it to better predict the
content of the first receptive field (R. P. Rao & Ballard, 1999). At the molecular level, the
modulation of the neuronal response by feedback predictions appears to be mediated by NMDA
receptors (Self, Kooijmans, Super, Lamme, & Roelfsema, 2012). Experimental manipulation of
the statistics of the input to the retina were shown to result in modifications of the receptive
fields of retinal ganglion cells (Hosoya et al, 2005) that improved encoding efficiency as
predicted by the predictive coding framework. Interestingly, the presentation of a given context
(flickering uniform stimuli or checkerboards) for 13s was sufficient to drive adaptation of the
receptive fields to the spatial statistics of the input: cells presented with flickering checkerboards
became /Jess sensitive to checkerboard by a factor 0.57, and more sensitive to uniform stimuli by a
factor 1.4. Manipulation of the temporal correlation modulated the temporal filter of the cells,

without accounting fully for the statistics of the input.

Most of predictive coding research efforts based on neuronal data have concentrated on

perceptual inference on stationary inputs, i.e. on the inference about causes v rather than
inference about states. A notable exception is the work of Friston and Kiebel ( 2009b) that
showed how the variational Bayes framework could allow predictive coding of very complex
hierarchical temporal patterns reproducing a birdsong-like sequence of sounds, given that the
generative model of the song was already learned. They showed in particular that the omission of
the end of the temporal pattern in the input elicited an omission response corresponding to the
prediction error of the predicted but absent sounds. Friston (Friston, 2005) proposed that MMN
was the correlate of such temporal predictive coding, where repetition of a stimulus at regular
interval would lead to a modification of the internal model of the inputs, just like habituation to
the checkerboard lead to a modification of the receptive field of the retinal ganglion cells of the
retina in a few seconds. This would lead to an attenuation of the response which would be
revealed when a deviant tone 1s presented. Note that just based on the oddball paradigm data,
both a hierarchical implementation actively predicting a repetition and synaptic habituation are
consistent with the predictive coding principle: the response to repeated inputs is attenuated.
However, a response to expected sounds that are omitted are observed at the latency of the
MMN (Bendixen, Schroger, & Winkler, 2009b; Raij, McEvoy, Makela, & Ilari, 1997; Yabe,

Tervaniemi, Reinikainen, & Niitinen, 1997) as predicted by predictive coding and have been
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cited as a decisive argument to rule out the simple synaptic habituation hypothesis (but see May

& Tiitinen, 2010).

FIGURE 1.2-2: CANONICAL CORTICAL MICROCIRCUIT AND PREDICTIVE CODING

(Left) Cortico-cortical connections in the canonical microcircuit. Data from Haeusler and
Maass (2007). Layer 4 neurons receive the incoming feedforward input. Excitatory connections
go from layerd to supragrannular layers, to infragrannular layers. (Right) Proposition of
correspondance between the neuronal populations from the canonical microcircuit and the

variables of a predictive coding algorithm based on variational Bayes. U and § represent
respectively predictions and prediction errors about states X and causes v. From (Bastos et al.,
2012).
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Given the success of the predictive coding framework in explaining the neuronal data, a
pressing question is to understand how the different computational aspects of the algorithm can
be implemented in neuronal circuitry. Diverse mapping of the crucial units — namely units
encoding the predicted states and causes, and units encoding prediction errors about states and
causes — onto the cortical layers and the canonical cortical microcircuit have been proposed,
along with correspondences between anatomical connectivity and the flow of information
predicted by Bayesian inference (Bastos et al., 2012; Shipp et al., 2013b; Spratling, 2012). In these
models, layer 4 units are thought to represent prediction error. Supragranular layers would
contain both predictive and prediction error units. Infragranular layers would only contain

predictive unit and serve as a relay for descending predictions. Inference about causes tend to
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involve both intra and inter area connections, whereas the computations concerning states are
mainly the result of local connectivity, consistently with the generative model (2) showing that

temporal evolution of hidden states at the i" level depends only on the parameter of this level.

We know very little of the neuronal basis of model learning. (Hosoya et al.,, 2005)
proposed a spatial predictive scheme based on anti-hebbian plasticity, so that units representing
similar information tend to inhibit each other. Training of spatiotemporal filter based on natural
input involved the computation of optimal filter based on minimization of arithmetic function
and have little to say about the way these optimizations are computed in the brain (R. P. Rao &

Ballard, 1999).

Moreover, predictive coding is a generic framework that argues more in favor of a
“universal” computing unit that can be replicated across cortex at every level of the hierarchy. If
MMN is a potential characteristic of the computations of a predictive unit, is should not be
specific of auditory cortex. This is indeed the case: an equivalent of the auditory MMN can be
found in other sensory modalities including visual (Pazo-alvarez, Cadaveira, & Amenedo, 2003;
Tales, Newton, Troscianko, & Butler, 1999), olfactive (Krauel, Schott, Sojka, Pause, & Ferstl,
1999; Pause & Krauel, 2000) and somatosensory (Kekoni et al., 1997; Shinozaki, Yabe, Sutoh,
Hiruma, & Kaneko, 1998) modalities. In the auditory modality itself, MMN responses are
observed to a wide range of features like sound frequency (Bekinschtein et al., 2009; Naitinen et
al., 1978), intensity (Javitt, Steinschneider, Schroeder, & Arezzo, 1996), spatial location (Deouell,
Parnes, Pickard, & Knight, 2006), duration (Naitanen, Paavilainen, & Reinikainen, 1989)but also
conjunctions of features (Gomes, Bernstein, Ritter, Vaughan, & Miller, 1997) and more complex
features like change in vowel (Dehaene-Lambertz, 1997). In auditory cortex, the sources for
duration and frequency deviance were found to be separable (Sysoeva, Takegata, & Naitinen,
2006), which suggests that separate modules detect deviance regarding the different features of
the stimulus. Overall these data support the idea of a broad computational significance of MMN
as a shared mechanism across the respective sensory hierarchies responsive to unpredicted
stimuli. However, the generality of this approach brings very little insight about the potential
consciousness-dependent computations reviewed eatlier, that would depend on a central
workspace with specific connectivity patterns. We have to look for clues about the role of

conscious access in temporal regularity processing in other approaches.
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Predictive coding Global Neuronal Workspace

hierarchy of processors
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FIGURE 1.2-3: HIERARCHICAL PREDICTIVE CODING AND GLOBAL NEURONAL WORKSPACE
ARCHITECTURES

Comparison of the architecture of the two frameworks. Both models are based on a
hierarchy of modular processors. Only the global neuronal workspace theory emphsizes the
Importance of the long range connectivity between higher level areas maintaining a stable
broadcasted representation. Adapted from Friston (2005) and (Stanisias Dehaene et al., 2006).

KEY POINTS

e Predictive coding is a general coding scheme that aims for efficient coding of
information

e Efficient coding can be achieved by learning a model corresponding to the generative
model of the world

e This generative model involves causes that represent invariant objects that produce
regularities, and hidden states, that describe their temporal dynamics

e Predictive models are hierarchically organized and inference rely on hierarchical
interactions that follow the feedforward and feedback connections between cortical
areas

e Prediction error units are thought to be found in layer 4 and layers 2-3, predictive units
should be in supra and infragranular layers.

e Increased response to unexpected events is consistent with predictive coding.

e Little is known about neuronal substrates of model learning,.
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1.2- Why do we process temporal regularities?

1.2.2 Behavioral consequences of temporal regularity learning

The main argument of the predictive framework in favor of regularity learning is
efficiency of encoding. However, an organism that has efficient encoding of information but
inappropriate behavior is unlikely to survive for long. There are multiple behavioral responses
which reveal that animal and humans exploit temporal regularities in natural inputs to inform

their behavioral response.

12.2.1 Reward anticipation and decision making
One of the first evidence that temporal regularities are indeed processed by the brain, and
result in adaptive behavioral responses comes from conditioning experiments. Conditioning
paradigms can be schematically split into two traditions that highlight two behavioral functions of

temporal predictions.

The first one was initiated by Pavlov (Pavlov, 1927) who studied how the systematic
pairing of a neutral stimulus with a rewarding or punishing stimulus, could lead to the acquisition
of a new behavioral response to the occurrence of the neutral stimulus. Specifically, he first
showed that the repeated temporal pairing of the ringing of a bell with food ended up eliciting
salivation in response to the bell alone. Pavlov called this response a “conditional reflex” because
salivation is a reflex response. In the case of the bell, the reflex response is not hard “hard coded”
(i.e. it was not learned on evolutionary time scales), but learned on shorter time scales depending
on the environmental conditions. In conditioning, the stimulus producing the automatic response
(the food) is called an Unconditioned Stimulus (US) whereas the initially neutral stimulus is called
the conditioned stimulus (CS). The responses elicited by these two stimuli are called respectively
the unconditioned (UR) and conditioned (CR) responses. Crucially, the CR does not appear as an
immediate response to the CS. If the US was always presented at a fixed delay after the onset of
the CS, then the CR tends to happen at the time where the US was expected to happen : when an
animal is conditioned to expect an air puff eliciting an eye blink when a tone is presented, it does
not only blink to the tone, it blinks at the time the air puffs would normally occur (Kehoe,
Graham-Clarke, & Schreurs, 1989), making this association extremely adaptive at the behavioral
level. Interestingly, the association between CS and US is not systematic. In the blocking
paradigm, the animal goes through two phases of learning: first the US is pared in a delay
conditioning-like protocol with a CS — say a tone, that we will call CS7 — until the association is
learned. Then in a second phase, CS7 is presented at the same time as a second CS — say a light,

CS52 — while still paired with the US. Even though the temporal relation is similar between the
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two CS and the US, the association between €52 and the US is never learned. This result can be

interpreted as evidence that a new association cannot be learned if the US is already predicted.

A large range of effects in classical conditioning can actually be accounted for by the
Rescorla-Wagner model (Rescorla & Wagner, 1972). It specifies the dynamics of the evolution of

the strength Vy of an association between a stimulus X that has a saliency o and a US.
AVy = axB(A— Vior)

B represents a free parameter corresponding to the association value of the US, that
describes how “meaningful” a US is. A is the maximum conditioning value for the US, usually set
to 1 when it is present, 0 otherwise. Vi is the sum of all the association strength between the
US and other stimuli. If two CS (X1 and X2) are paired with the US. Vioy = Vxq + Vi, . This
model successfully accounts for a large number of properties of classical conditioning, including
the blocking paradigm, as it relies on a prediction error term (A — Viop) that predicts that no

learning can happen if the US is already completely predicted.

The second type of conditioning, called operand or instrumental conditioning consists in
associating actions with rewards or punishments. It which can be traced back to Thorndike’s “law
of effects” (Thorndike, 1911) which was expressed in this way: “Of several responses made to
the same situation, those which are accompanied or closely followed by satisfaction to the animal
will be more firmly connected with the situation, so that, when it recurs, they will be more likely
to recur”. Following this law, it is widely believed that animals and humans make decisions in
order to maximize rewards and minimize losses or punishments. To this end, the animal or the
human has to be able to infer which outcome can be expected from each possible action. The
field of reinforcement learning developed algorithmic solutions to that problem (Doya, 1999; R.S.
Sutton & Barto, 1998a). The simplest solution is called model-free estimation. It is considered to
be a retrospective method, because it consists essentially in storing for each possible state § and
action a a value Q(a, s) that reflects the past outcomes encountered when the action was chosen
in the past. This value can be interpreted as a prediction of the expected outcome. This value is

updated each time the action is chosen according to the temporal difference (TD learning) rule:

Q(a,s) « Q(a,s) + nd

where 7 is the learning rate, and
§=r()+ yQd,s)-Q(as)
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is the reward prediction error, with @’ and s’are respectively the next action and the next
state and 0 <y <1 a time discounding factor. This update algorithm is closely related to the
Rescorla-Wagner model, as leaning is similarly dependent on a learning rate (77 for reinforcement
learning, ayf for classical conditioning) and a prediction crror term (respectively 8 and (4 —
Viot))- A positive etror signal can be viewed as a “good” surprise, meaning that the outcome was
better than predicted. Crucially, the correlate of the reward prediction error signal postulated by
TD-learning was reported in the dopamine neurons in midbrain (Schultz, Dayan, & Montague,
1997) projecting to the dorsolateral striatum, the nucleus accumbens and possibly cortex, in a
classical conditioning paradigm. The response to a predictable reward shifts from the time of the
reward at the beginning of the protocol to the predictive cue (CS) at the end of reinforcement
(Figure 1.2-4). The existence of a predictive inhibitory signal can be observed through the
decrease in firing rate observed when the reward is omitted. This finding was largely reproduced
since in the context of operand conditioning (Kobayashi & Schultz, 2008). It is interesting to
observe that classical conditioning — in which the relation between the stimulus and the reward
does not depend on an action — and instrumental conditioning — in which it does — rely on similar

algorithms that use prediction errors to adapt a predictive model.

No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs

FIGURE 1.2-4: RESPONSE OF DOPAMINE NEURONS TO REWARD AND PREDICTED REWARD

Recording from a dopaminergic neuron, Each line of the raster plot represents a trial, the
histogram represents the average firing rate of the neuron. (top) when no stimulus predicts the
reward, the neuron respond right after reward delivery. (middle) After classical conditioning, the
neuron responds after the predictive stimulus and does not respond any more to the reward.
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(bottom) If the reward is omitted, the firing rate of the neuron falls below its baseline at the
timing of the expected reward. From (Schultz et al,, 1997)

But conditioning relies on rewarding or punishing stimuli in both of the cases previously
described. Is it reasonable to think that the same kind of algorithm could also be used in the
absence of a reward signal? Could we imagine learning the internal model used in perceptual

inference using a similar process?

Conditioning experiments give us reasons to think so. First, conditioning can be observed
even though the association between a stimulus and the reward has never been experienced is
some specific cases. In the protocol called second order conditioning, an animal is first trained to
associate two CS that have a reproducible temporal relation — say a sound paired with a light.
Then one of the CS (for example the light) is associated to a US. In the third phase, the sound is
presented alone. Interestingly, the sound elicits a conditioned response, as if it had been paired
with the US (Holland & Rescorla, 1975). This result suggests that the relation between the two
CS was learned in the absence of a reward or punishment. A similar phenomenon can be
observed in operand conditioning and is known as latent learning (Blodgett, 1929). Blodgett
trained two groups of rats to find food in a maze. The first group was trained with food from the
beginning, but the second group was first left in the maze without food a few hours a day for a
few days, where they could explore the maze without any reward. He observed that when food
was introduced in the maze, the learning curve from the second group was much steeper than the
learning curve of the first group, as if prior experience was facilitating learning. Tolman (Tolman,
1948) proposed that the animals could, in the absence of reward, build cognitive maps that
represent a model of the world. This model of the world can then be used to reach rewards faster

once they have been introduced.

Latent learning seems to share the properties of classical CS-US association, like the
capacity to learn temporally precise information. In second order conditioning, the timing of the
relation can be used in the second order transfer. In an experiment (Arcediano, Escobar, &
Miller, 2005), subjects integrated the association US—CS1 with a second CS2—CS1. By using the
CS1 element found in both association, and by integrating the respective timing of the
associations, subjects formed a new predictive association between CS2 and US, only if the
respective timing of the associations predicted that CS2 would precede the US (i.e. be predictive).
Both reward prediction error and state prediction error (occurrence of a surprising CS)have been

shown to coexist in humans (Glischer, Daw, Dayan, & O’Doherty, 2010).

36



1.2- Why do we process temporal regularities?

The Rescorla-Wagner model and the TD-learning algorithm both fail to explain these
transfer behaviors, as they rely on direct experience of the association for learning. A second class
of models has been developed to account for these behaviors called model based evaluation.
Model based methods are thought of as prospective, relying on predicting future rewards given
possible future scenatios that are imagined based on a model of the transitions between future
possible states and the rewards associated with them. Latent learning would consist in learning
this model of transitions between states. Model based methods allow much more flexibility than
model free methods in changing environments, but they are also much more computationally
intensive because they rely on a simulation of all the possible future scenarios whereas model free
requires only the retrieval of a stored value. How the brain arbitrates between these two systems
is still debated (Daw, Niv, & Dayan, 2005; Dayan & Niv, 2008; Otto, Gershman, Markman, &
Daw, 2013). However one of the factors influencing the evaluation method used appears to be
working memory load: a concurrent demanding secondary task biases choices towards model free
estimates (Otto et al., 2013), suggesting that the computation of values based on an internal

model depends on central resources with limited capacity.

KEY POINTS

e (lassical conditioning provides evidence that the temporal structure of events is
exploited to adapt the timing of automatic responses in reaction to aversive and
rewarding events.

e Instrumental conditioning suggests that the temporal structure of rewards is exploited
to inform decision making in order to choose actions that lead to the best outcomes

e Dopaminergic neurons in the midbrain respond to predictable rewards in a way
consistent with TD-learning

e The same kind of algorithm could be used to predict transitions between events even in
the absence of rewards, i.e. to learn a model of the world.

12.2.2 Motor control optimization

In addition to exploiting regularities in the sensory inputs, people seem to be able to
capture regularities in their motor behavior. In the SRT task, a target such as a dot appears in one
of several possible locations on a computer display and the participant presses as fast as possible
a response key assigned to that location. Instead of appearing at random across a series of trials,
however, the target follows a predictable or partially predictable sequence of locations. Learning
is measured chronometrically by interleaving random sequences between blocs of regular
sequences; an increase in reaction time (RT) on the random sequences is evidence that

participants did not simply improve their general motor skill but also learned something specific
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about the temporal structure of the training sequence and were using their knowledge to
anticipate the target location on each trial, thus achieving rapid RTs learning (Nissen & Bullemer,
1987). This decrease in RT is also accompanied by a reduction of the error rate (Haider, Eichler,

& Lange, 2011).

Decrease in RT is an evidence for prediction allowing anticipation, but does not prove
that the learning occurs at the motor level. How can we be sure that this effect is not purely the
result of perceptual learning? In an experiment (Willingham, 1999), subjects where trained on a
SRT task for a few blocks leading to improvement of reaction times. The stimulus-response
mapping was then changed so that one group of subjects pushed the same sequence of keys but
saw new stimuli, whereas another group pushed a different sequence of keys but saw the same
stimuli. Transfer to the new mapping was shown only if the motor sequence was kept constant,

not the perceptual sequence, showing that the learning is indeed motor.

Motor learning can occur without any consciousness that it happened, or that there was a
regularity (Destrebecqz & Cleeremans, 2001). On some cases, an explicit awareness of the
knowledge can emerge. The emergence of a knowledge reportable verbally seems to be facilitated
by violations of the learned regularity (Haider & Frensch, 2005, 2009; Ringer & Frensch, 2008).
The behavioral effects of awareness of the regularity on behavior include additional facilitation of
RT that appear in a step like fashion (sudden drop of RT) and the capacity to resist perceptual

interferences in Stroop-like task (Haider et al., 2011).

KEY POINTS

e Predictable motor sequence are produced faster and more accurately that unexpected
sequences

¢ In motor domain learning can be independent of consciousness

12.2.3 Orienting of attention towards new events
Consistently with the idea that prediction errors can facilitate conscious access, violations
of temporal regularities have been shown to attract attention since Pavlov’s work on

conditioning. The father of conditioning described the orienting response as follow:

“I call it the “What-is-it?” reflex. It is this reflex which brings about the immediate
response in man and animals to the slightest changes in the wortld around them, so that
they immediately orientate their appropriate receptor-organ in accordance with the

perceptible quality in the agent bringing about the change, making full investigation of it.
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The biological significance of this reflex is obvious. If the animal were not provided with such a
reflex its life would hang at every moment by a thread. In man this reflex has been greatly
developed in its highest form by inquisitiveness-the parent of that scientific method
through which we hope one day to come to a true orientation in knowledge of the

world around us” (Pavlov, 1927)

This description shows the behavioral importance of deviance detection: unexpected
events bring uncertainty about possible danger or rewards. Learning temporal regularities allows
the disengagement of attention from innocuous predictable events and the signaling of elements
that are worth investigating. Sokolov’s experiments (Sokolov, 1963) showed that orienting
response was not elicited by salient stimuli, but by any stimuli that deviated from the standard
one. For example, if habituated with a white noise, an animal would show orienting response to
increase in the noise loudness, but also to attenuation of the sound or even omission. Changes in
the duration or in the envelope of the noise would be detected and attended as well. The

orienting reflex has been shown to habituate after after a few repetitions

Electrophysiological investigations have proposed that the correlate of the orienting
response in ERP is the P3a, also called the “novelty P300”. As reviewed previously, the P3a
potential is typically elicited by rare stimuli, even when they are not task-relevant (N. Squires et
al., 1975). The novelty P3 responses habituate across successive presentations of novel items,

indicating that as these stimuli become more predictable, the magnitude of the response wanes

rapidly (R T Knight, 1984). It is not tied to any particular modality similar novelty P3
responses have been observed for novel visual, auditory and somatosensory events (R T Knight,
1984; R. Knight, 1996; R.T. Knight, 1997). It has been associated with the bottom up orienting of

attention, and is thought to reflect more attentional processes than the computations leading to

the detection of stimulus deviance per se.

The automatic attraction of attention by contextually novel stimuli can be interpreted as
an intrinsic motivation to reduce predictive uncertainty about the stimulus. Consistently with this
idea, it is possible to condition an animal to prefer a cage rather than another by systematically
introducing novel items in it (Bevins & Bardo, 1999; Bevins, 2001). Additionally, if given a task
where their choices have no impact on the outcome but can lead to early information about the
reward, monkeys prefer the situation where the cues about the amount of reward are the most
informative (Bromberg-Martin & Hikosaka, 2009). Finally, animal avoid actively situations that
are ambiguous, where uncertainty cannot be reduced, even if they lead objectively to better

outcome (Hayden, 2010). Together, these results suggest that an intrinsic motivation of the brain
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leads to the deployment of executive and attentional resources in order to reduce prediction error
over next events. Interestingly, place conditioning by novelty suggests that rewarding signals
could come not from the minimization of prediction error but from the maximization of its

diminution.

KEY POINTS

e Attention is attracted in a bottom up fashion by “novel events”

e The orienting response to novel event correlates with the P3a potential, which can be
interpreted as a prediction error response

e The reflexive allocation of attentional resources to uncertain situations suggests that the
reduction of uncertainty and the minimization of prediction error are intrinsic goals of
attention-dependent processes

1.2.3 Free-energy principle

An integrative framework reconciles the predictive coding framework and the behavioral
manifestations of regularity processing. Friston and collaborators (Feldman & Friston, 2010;
Friston & Kiebel, 2009b; Friston, Kilner, & Harrison, 2006; Friston & Stephan, 2007; Friston,
2005; Kiebel, Kriegstein, Daunizeau, & Friston, 2009; Shipp et al., 2013b) propose to consider
not only perception, but the action-perception cycle as a whole. They observes that living
organisms are highly structured beings and seem to escape the second law of thermodynamics.
This principle dictates that entropy should increase, i.e. that structure should disorganize with
time. The only way to escape the second principle to maintain an homeostasis far from
equilibrium is to associate correct inference about the environment through perception and
appropriate actions. As an analogy Friston (Friston et al., 2006) propose to examine the destiny
of a snowflake falling through the sky. A normal snowflake is a self-organized dissipative system
that is unable to act on its environment. It cannot avoid falling and will necessarily meet a phase
transition and loose its physical integrity. If we now imagine that the snowflake has wings and
sensory input allowing it to judge its altitude; it can act on its environment to regulate its altitude
and the temperature of its environment and could in theory avoid phase transition indefinitely.
For that, it has to restrie itself to a domain of parameter space that is far from the phase-
boundary. Friston argues further that evolution has wecessarily selected organism that had
developed this capacity to remain into a bounded area of the parameter space. In other words,
the entropy of the sensory states must be limited. He proposes that a successful strategy to
achieve this goal is the minimization of a quantity called free-energy which is derived from statistical

thermodynamics and represents a superior bound on entropy. The minimization of free-energy
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corresponds to the minimization of prediction errors through optimal inference of the causes of

the input in perception, and through actions that lead to expected inputs.

Using this framework, it was possible to propose accounts of phenomenon as diverse as
perceptual inference, decision making, attentional effects or the absence of a granular layer in

motor cortex (Shipp, Adams, & Friston, 2013a).

However, like predictive coding, this framework gives little information about potential

qualitative dissociations between conscious and unconscious processing.

KEY POINTS

e Temporal regularity learning can be found in multiple domains of behavior, cognition
and neuronal coding

e In all of these domains, theoretical models relying on predictive processes have been
proposed

e Predictions of expected future events have multiple advantageous roles:

o reduction of the redundancy of encoded information leading to more efficient
neuronal coding

o better efficacy of behavioral responses (RT and error rates),
O capacity of making decisions that lead to optimal outcomes
e Predictions errors are useful for:
o updating of the perceptual inference about the causes of an sensory input,
o correcting of the internal predictive model,
O attracting attention towards unpredicted events.

e The mismatch negativity can be interpreted as a prediction error response.

1.3 What kind of regularities can we learn?

The first section of this thesis showed that unconscious perception was thought to rely on
a multitude of parallel processors operating locally, while conscious perception was characterized
by an ignition of a unique central space that maintains and broadcasts its content. The previous
section highlighted the importance of the predictive coding framework in understanding the
computational significance of neuronal and behavioral responses to predictable and unexpected
stimuli. The elegance of the predictive coding framework resides in its unifying power. However,
these theories do not address the question of consciousness and provide little insight into
qualitative discontinuities in temporal regularity processing along the cortical hierarchy. Yet, one

goal of this thesis is to better understand the computational capacities and limits of unconscious
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temporal regularity processing. In other words I aim at understanding what type of property
makes a repeated temporal pattern impossible to learn if its constitutive elements are not granted

conscious access.

In this section we will look at frameworks and experimental data that have attempted to
propose qualitative distinctions between types of sequences on the basis of computational

demands and evaluate how relevant these frameworks are to our questions.

1.3.1 Chomsky hierarchy: a framework for the classification of sequential
regularities
The most systematic classification of sequential regularities is probably Chomsky
hierarchy. Established to clarify the level of complexity of a language, it relies on the
computational demands that are necessary to generate the sequences that belong to a given

language.

1.3.1.1 Formal language theory (FLT)

Formal language theory proposes a “purified” approach to the study of grammar in
natural languages; purified in the sense that a number of characteristic of natural language that are
not part of syntax have be removed. FLT focuses on strings of arbitrary symbols. These symbols
have no meaning and no relations between them. There is no notion of words and no clues about
the underlying structure of the string — as punctuation of prosody would do in natural languages

— only series of symbols.

In FLT, a language is defined as a set, potentially infinite, of possible series. A grammar is
defined as a procedure that allows deciding whether a series of characters belongs to the language
or not, which makes it a particular case of temporal regularity. Grammars can take multiple
forms, from the enumeration of all possible series of symbols, to the enunciation of a compact
procedure to generate all possible sequences (generative grammar) or to verify whether a
sequence is possible. Importantly, there is no notion of probability in FL'T: a string does or does

not belong to the language.

Generative grammars are formalized as a series of transformations that allow to go from
a initial state to a possible string by applying some rules that transform symbols or series of
symbols into other symbols. These rules can be seen as the generative model of the language.
Two type of symbols are used : terminal symbols, that constitute the final string (noted with
lower case letters), and non-terminal symbols, that cannot be present in the final strings and have

to be rewritten using one of the grammatical rule before a possible string can be obtained. A
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generative grammar is defined as a set of initial state S, terminal X and non-terminal N symbols,

and rewrite rules P.

Chomsky (N Chomsky, 1956) classified the grammars into 4 levels of hierarchy : regular,
context-free, context-sensitive and computably enumerable languages. These levels correspond to
the amount of computational power necessary to decide whether a string belongs to the language

or not. It also corresponds to constraints on the rewrite (or production) rules.

1.3.1.1.1  Regular grammars

At the bottom of this hierarchy, we find the regular grammars, which can be computed
by a finite state automaton (FSA), and expressed using regular expressions. A finite state
automaton is a system that can only occupy a certain number of states, and moves from one state
to the other only when a triggering event occurs. FSA can be used both to generate the language
by exploring the authorized transitions, and to verify whether a string of character belongs to the
language by moving from one state to the next in function of the symbol contained in the string

to be tested.

In the example above, there are 6 possible states. From state SO, transitions are only
possible towards state S1 if a T occurs and S3 if a V occurs. Any other character causes the
automaton to stop and produces a string that is not part of the language. For a grammar to be

computable using a FSA, all the production rules have to be of one of the following form:

e B — a- where B is a non-terminal in N and a is a terminal symbol in X
¢ B —aC-where Band Carein Nandaisin X

® B — e -where Bisin N and ¢ denotes the empty string, i.e. the string of length 0.

Regular grammars are considered to be a form of markov process (Fitch & Friederici,
2012), because the production/decision criterion only depends on the current state. However,
one has to be careful in drawing the conclusions from this comparison. Similarly to what have
been presented in the previous section on the predictive coding examples, Markovian transitions
are computed between hidden states, which are not observable in the final string. Because a given
symbol can trigger different transitions depending on the current state, and because parallel
branches keep the influence of older divergences, long term dependencies may exist in the final
string, For example, the inflection of the verb at the 3 person depending on number in English
can easily be recognized by a FSA, although it constitutes a long distance dependency with a

variable number of elements between the subject and the verb.
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1.3.1.1.2  Subregular grammars

As regular grammars can produce strings that are already complex, linguists have created
sub categorics of regular grammars called “subregular” grammars (Jager & Rogers, 2012; Rogers
& Pullum, 2011). A subregular language is a set of strings that can be described without
employing the full power of FSAs, that is to say they can be classified by mechanisms that are

simpler than FSAs, often much simpler.

1.3.1.1.2.1 Strictly local languages

The subregular hierarchy comprises at its bottom strictly local languages. Stringsets that
belong to strictly local languages can be distinguished simply on the basis of which symbols occur
adjacently. The length k of the sequences of symbols that have to be considered to test the
belonging of a stringset to the language defines a set of k-grams that are possible, and define a
strictly k-local description SI,. The automaton that processes Local Languages are called
scanners. They scan the stringset with a sliding window of length k and check in a look-up table
whether the current k-gram belongs to the k-local description of the grammar. Contrary to the
FSA, these automatons do not have hidden states. Grammars (AB)" that are often used in
comparative psychology are SL,: being sensitive to the 2-grams {AB, BA, XA and BiX}, where X
and X note the beginning and the end of the string, is enough to distinguish strings that belong

to that language from strings that do not.

The grammars defined by Chomsky do not contain a notion of probability. He used
grammar to define what is possible from what isn’t. In neuroimaging protocol, a standard
paradigm will probe the learning of a rule by introducing violations. It implies that subjects do
not consider as “grammatical” every sequence of event that is presented, but learn to expect the
most likely sequences. It is possible to extend the definition of grammars by adding a probability
of occurrence for each rewrite rule. In this context, the oddball paradigm could be considered a
SL, language. Can MMN be elicited by violation of more complex k-local languages? It appears
so. A MMN can be elicited by violation of the SL, grammar (AB)" when repetitions atre
introduced in the alternate sequence (ABABAA) (] Horvath, Czigler, Sussman, & Winkler,
2001). If the cognitive process generating the MMN was comparing bigrams in a sliding window
to a lookup table, the “correct” continuation of the sequence after the violation should be
ABAAB (AB is a frequent bigram) and the continuation ABAAA should be considered a
violation (AA is a rare bigram). The data differ from this prediction as both sequence
continuation elicit a MMN. This result suggests that either a different statistic is used, or that a

larger window size (at least three items here) is taken into account. Another interesting paradigm
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is the one proposed by Sussman and collaborators (Elyse Sussman et al., 1998). The SL, grammar
(AAAAB)" was presented to subjects, without violations. No MMN was elicited by the B tone
when a short stimulus onset asynchrony (SOA) was used, indicating that the SI.; language can be
learned under some circumstances. However, in the same paradigm but with a longer SOA, the
rare B tone elicited a MMN. This paradigm shows that the mechanism generating the MMN is
sensitive to the rate of presentation so that a potential “sliding window” is not only sensitive to

the number of event but also to the time window considered.

1.3.1.1.2.2 Locally testable languages

Because they do not have internal states or memory, strictly local languages typically
cannot contain any rule that requires a constraint to occur @/ least once. For example, the language
that contains all strings of A and Bs that contain at least one B is not SL,. Note that exclusion rules

(e.g. “strings that do no/ contain any B) can be tested using SI, descriptions.

Strictly local languages are a subcategory of a more powerful subregular type of language
known as locally k-testable languages. In this type of grammar, a n-gram can be considered as a
condition, that is satisfied if it occurs in a string. In addition to the set of possible k-grams, a k-
testable language contains also a set of logical expressions over these conditions called k-
expressions that define which combinations of the k-grams are legal in the language. A scanner
for a locally k-testable language contains in addition to the look-up table, a record of the k-grams
it encountered in the string. When the end of the sting is reached, the record is fed to a Boolean
network which tests the k-expressions and outputs whether the string belongs to the language.
Note that the testing of the k-expressions has to come after the end of the strings. Indeed, the
rule “has to contain at least a B” would return a negative answer even in legal strings if the B
does not occur in first position. There is no evidence that MMN is sensitive to this type of

gramimar.

The main limitation of locally testable languages compared to regular grammars is that
they cannot contain rules that depend on the number of occurrence of each k-gram or on the

relative position of each of them. Locally testable grammars are only sensitive to occurrence.
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FIGURE 1.3-1: THE HIERARCHY OF GRAMMARS IN FORMAL LANGUAGE THEORY

In formal language theory, grammars and languages are organized in a hierarchical
manner, so that languages at the bottom of the hierarchy are subcases of the languages that can
be generated by the grammatical rules that can be used in the more complex grammars. To each
grammar correspond an automaton that can be used to compute the possible strings of the
language. Strictly local grammars contain only local rules that can be checked with a scanner that
only considers the content of a sliding window. Regular grammars possess the full power of finite
state automaton that produce the possible strings of the language by moving between hidden
states in a Markovian manner. Context free languages can contain embedded structures that can
be computed using a push down automaton. Context sensitive languages can be computed by
linear bounded automaton and are necessary to compute cross-embeddings.

1.3.1.1.3  Context-free grammars

Context-free grammars contain regular grammars. In addition, context-free languages can
also contain rules which involve embedded structures. All the production rules of context-free
grammars must be of the form A — 7y, were A is a single non terminal symbol and ¥ is a string of
terminal and/or non-terminal symbols. A typical example of a context free grammar that is not
regular is the parenthesis system in mathematical expressions, which can be produced using the
rules. { S = S§; S — (5); S — ()}. It is impossible to imagine a FSA that can compute for an

arbitrary number of parentheses the correct opening and closing, because it is necessary to keep
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in memory the number of parenthesis that were open. Context free grammars are also very useful
in describing phrases structure of natural languages. This type of grammar can be computed by a
system with one push down stack, i.e. one memory slot that can store a potentially infinite
number of items, but can only look at the last one stored. In the case of parentheses, each
opened parenthesis is stacked. The parenthesis is unstacked when it is closed. A single stack is
enough because there is only one class of symbol that has to be stored — the opening parenthesis-

and they are closed in the inverse order they are opened.

1.3.1.1.4  Context sensitive grammars

Context sensitive grammars contain context free grammars, but accepts rules of the form

aAB — ayB, where A is a single non terminal of N and «, B and ¥ can be strings of terminal
and/or non-terminal symbols. Context-sensitive grammars correspond to linearly bounded
automata. These are essentially Turing machines, i.e. FSAs with a memory tape that can perform
arbitrary operations (writing and erasing symbols on the tape and moving the tape in either
direction) during state transitions. The length of the available tape is not infinite, though, but
bounded by a number that is a linear function of the length of the input string. The typical

example of this type of srammar is a language consisting in the set of string of the form A"B"C".
p p g guag g g

KEY POINTS

e FLT offers a systematic hierarchical description of serial sequences complexity, based
on the properties of the rules used to generate them

e The mismatch negativity has been elicited by paradigms that can be described using the
simplest form of sub-regular grammar: strictly local grammars.

e FLT only considers the sequential order of symbols

e The MMN is sensitive to physical timing of events

1.3.1.2 Human natural languages and the Chomsky hierarchy

Where should we situate the human cognitive capacities in the Chomsky hierarchy? The
position of human languages in this hierarchy has been established in the mid-1980’s (Jager &
Rogers, 2012). Chomsky (Noam Chomsky, 1957) had already established that English was not a
regular language based on the argument that it contains potentially infinite embedded structures.
For example, “%he rat died’, can contain an embedded relative in “Zbe rat that the cat ate died”,
which itself could accept a relative “The rat the cat the dog chased ate died’, and so on. But the
question of whether languages where context sensitive remained open until three linguists Riny

Huybregts (Huybregts, 1984), Stuart Shieber (Shieber, 1985) and Christopher Culy (Culy, 1985)
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concluded independently around the same time (Shieber and Culy even pubished their results in
the same issue of Linguisites and Phylosophy) that human grammars could be context sensitive. They
observed that in Swiss German the dependencies between verbs and their objects are unbounded

in length. However, they are not nested, but rather interleaved so that they cross each other.

Although Chomsky’s hierarchy is the most systematic hierarchical description of
sequential regularities, some researchers have questioned its relevance for the understanding of
the underlying cognitive processes that support language processing (Perfors, Tenenbaum, &

Regier, 2011; Petersson & Hagoort, 2012; Pullum & Scholz, 2010).

First, the claim that natural languages are model free relies on the idea that a potentially
infinite number of levels can be embedded, which requires a form of recursive processing.
However, the maximal degree of center-embedding in written language is three; and in spoken
language, multiple center-embedding is practically absent (Karlsson, 2007). Native speakers tend
to make errors in grammaticality judgment (Hakes, Evans, & Brannon, 1976) when the number
of center embedded levels exceeds three. Even though the grammar might pofentially accept
infinite embedding, this suggests that the cognitive process used by human subjects is not capable
to display the full power of a push down automaton, at least in terms of memory capacity. As a
result, experimental approaches to test the hypothesis that recursion is uniquely human (Hauser,
Chomsky, & Fitch, 2002) have failed to distinguish hierarchical processing from recursive
processing (Abe & Watanabe, 2011; Bahlmann, Schubotz, & Friederici, 2008; Bahlmann,
Schubotz, Mueller, Koester, & Friederici, 2009; Bloomfield, Gentner, & Margoliash, 2011;
Gentner, Fenn, Margoliash, & Nusbaum, 2006). Moreover, this memory limitation creates the
apparent paradox that humans are able to process the context sensitive structures present in
some languages while not being able to process some of the center embedded structures that are

considered less complex in the hierarchy.

Second, classes of the Chomsky hierarchy provide a measure of the complexity of
patterns based on the structure of the algorithms (grammars, automata) that can distinguish them.
However, in most case, there are multiple ways to represent the language so that stringsets can be
classified correctly. For example, center embedded structures can be represented by finite state
automatons as far as they don’t go to an infinite number embedded levels; which seems to be the
case in natural sentences. When dealing with an unknown mechanism, such as a cognitive
mechanism of an experimental subject, we have no reason to think that subjects use algorithms

that rely on the grammars and automata that were used to build the stimuli in the analyses they
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employ in making their judgments. We know only that they can or cannot make these judgments

about strings correctly.

KEY POINTS

¢ Context-sensitive structures exist in human languages
e A language can often be described by different grammars

e Correct classification of a sequence of symbols generated by a set of rule is not a proof
that the judgment was made using the same set of rules

13.1.3 Using and learning Chomsky hierarchy

To understand these limitations, we have to go back to the aim of Chomsky’s theory. It
was mainly built to answer the question “what constitute the knowledge of language?”. It argues
that knowledge of a language consists in the mastery of abstract rules that allow people to
distinguish between grammatical and ungrammatical sentences. It abstracted itself from other
characteristics of cognition that constrain the production and comprehension of language like
memory capacity limits but also lexical statistics that make some grammatical phrases more /Zkely
than others. That this information should be excluded was the point of Chomsky’s famous
sentence “Colorless green ideas sleep furiously” and the accompanying observation that, “I think
that we are forced to conclude that [...] probabilistic models give no particular insight into some
of the basic problems of syntactic structure” (Noam Chomsky, 1957, p17). He built a system that
contained grammars that are generative and abstract in their structure. Learning such an abstract
grammar based on exemplars that are not explicitly tagged as grammatical or not, but can contain
ill-formed sentences is a challenge without postulating strong constraints on the underlying
structure. Based on this argument of the poverty of the stimulus, Chomsky postulated that
mechanisms for language acquisition were largely innate and learning consisted only in setting a
few parameters of this constrained structure. However, connectionist approaches to language
learning and comprehension have shown that probabilistic aspects of language bring crucial
information. These networks do not try to solve the same problem as Chomsky’s grammars: they
try to infer meaning rather than categorize sentences as grammatical or not. In that context,
probabilistic and grammatical information concur to resolve ambiguities that can occur both in
the syntactic structure and lexical interpretation of a sentence (Seidenberg, 1997). For example, in
the sentence “the plane left for the East Coast.”, the word plane can refer to an airplane, a

geometric element or a tool; and the word left could be an adjective or the past tense of the verb
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leave. Deciding the meaning of the sentence requires integrating lexical and syntactic probabilistic

information.

1.3.1.4 Multiple levels of complexity: an evidence for a modular processing
of temporal regularity?

Advances in machine learning approaches to language acquisition and use, are associated
with progress in connectionist neural networks with multiple hidden layers which capture
different levels of feature regularities (DiCatlo & Cox, 2007; Hinton, 2007). Although Formal
Language Theory considers the whole set of characters in a sentence, without distinguishing any
intermediate parsing, it seems that language perception is itself organized at different levels
(Heinz & Idsardi, 2011): we distinguish the organization of sounds into a word (the phonology)
from the organization of roots and affixes into words (morphology), and the organization of
words into phrases and sentences (syntax). Are all of these levels as complex? Interestingly, while
the arrangement of words into sentences can be context free or even context sensitive, patterns
of sounds into a word obey regular, or even subregular rules. Rules of phonology contain local
dependencies such as exclusion rules regarding successive sounds. For example, the sequence of
phonemes ‘gling’ is legal in English while the sequence ‘gding’ is not. In some natural languages,
these exclusion rules can be at long distance (Rose & Walker, 2003). In Samala for example, a
language of an Indian population from California, words cannot contain both “s” and “sh”
sounds (Applegate, 2007). As a result, the word “shtoyonowonowash” is possible, but there is

not word like “shtoyonowonowas”. However, morphology does not rely on context-free rules.

Some authors have argued that if morphology and syntax were both relying on similar
neuronal substrates for learning, there would be no reason to observe different levels in
complexity for these two domains (Heinz & Idsardi, 2011). However, a long tradition in
philosophy renewed by machine learning (Tenenbaum, Kemp, Griffiths, & Goodman, 2011)
argue in favor of multiple learning modules specialized in difference types of regularities.
Specifically, they argue that the inference problem can only be solved if learners (humans or
machines) are restricted in the space of hypothesis they consider. In this view, different modules
in the brain would be considering different spaces of hypotheses to explain external stimuli. The
appropriate type of structure to describe a particular domain can then be discovered using a
hierarchical Bayesian model that determines which part of the hypothesis space best explains the
sensory data (Kemp & Tenenbaum, 2008). Bayesian approached in machine learning for the
processing of speech have shown that different types of underlying structure were appropriate to

learn language parsing or infer appropriate syntax (Chater & Manning, 2006). The idea that
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specific brain regions could support learning of a specific type of structure is supported in the
visual domain by data showing that congenitally fully blind adults that learned to interpret
“soundscapes” (2D auditory transcription of a visual stimulus), ended up representing letters
using the same brain area that sighted people: the visual word form area (VWFA), suggesting that
the computations made by this region were more associated to the structure of perceptual data
than to modality or position in the sensory hierarchy (Striem-Amit, Cohen, Dehaene, & Amedi,

2012).

KEY POINTS

e The processing of natural language does not aim at determining grammaticality. It tries
to infer the correct underlying structure to determine the meaning of its elements by
integrating syntactic and semantic information.

e Different aspects of natural language have different levels of complexity which is
consistent with a hierarchical

e Machine learning approaches suggest that a combination of modules exploring limited
hypothesis space that compete to explain the sensory inputs constitutes a powerful and
efficient inference mechanism.

1.3.2 Experimental approaches to conscious and unconscious regularity

processing

Can we find a dissociation between conscious and unconscious processing along the
Chomsky hierarchy? Before continuing, it is necessary to clarify the definition of conscious
processing, It is sometimes used to say that a representation of the regularity being processed is
accessible consciously. In this context, the conscious processing of the regularity can be tested by
asking for a verbal report about the nature of the regularity that was discovered or by asking
subjects to bet on the accuracy of their classification (Persaud, Mcl.eod, & Cowey, 2007). The
second meaning of conscious processing implies that stimuli have to access working memory and
central executive resources for the regularity to be learned. It does not imply that the regularity
will be reportable by the subject, but behavioral or electrophysiological signatures of violation
detection should exist when conscious access is possible. The experimental test distinguishing
such processes from unconscious processes is the sensitivity of the learning performance to the

manipulation of cognitive load by concurrent tasks, or attentional manipulations.

1.3.2.1 Temporal regularity learning and awareness of the rule
What kind of regularities can be discovered so that correct judgment about the

conformity of a sequence to the rule can be made or appropriate behavior can be adopted, in the
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absence of explicit knowledge about the nature of the rule, or even awareness that something was

learned?

Learning phonology, and in particular word segmentation is one of the challenges that
children have to meet, to successfully acquire language. Saffran et al. (Saffran, Aslin, & Newport,
1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997) showed that subjects as young as 8
month-old were indeed able to segment speech-like auditory stimuli based on transitions
probability. They incidentally exposed babies, children and adults to a continuous stream of
syllables for a few minutes (2 minutes for the babies, 21 minutes for the children and adults),
without any prosodic markings (e.g. bupadapatubitutibudutabapidabu...). Syllables were organized
into three-syllabic words, so that the only cues to word boundaries were the transitional
probabilities between syllables pairs, which were higher within word (from 0.31 to 1.0) than
between words (from 0.1 to 0.2). Even when distracted by a coloring task, the children and adults
were able to classify words from non-words with better than chance accuracy. Babies were also
able to distinguish the two categories even if test non-words and test words were matched for
frequency in the habituation but differed in transitional probabilities (Aslin, Saffran, & Newport,
1998), ruling out the possibility that subjects were only tracking the occurrence of chunks.
Interestingly, subjective reports about awareness of learning did not predict the performances of
the subjects (Saffran et al,, 1997). Word segmentation could therefore result from transition
probability tracking between syllables. Consistently with this idea, the MMN amplitude depends
on the probability of the deviant in oddball paradigms (Sato et al., 2000): the more frequent the
deviant is, the smaller the amplitude of the MMN. Therefore, if MMN reflect a predictive

process, this process emits probability-weighted predictions.

In Saffran’s experiments, the learning occurred without any explicit instructions or
intention from the subjects to learn, by mere exposure. Moreover, it occurred in people that
claimed to be unaware that they learned anything and there was no effect of awareness on
performance. This type of learning has been called “implicit learning”. The term was coined by
Reber (Reber, 1967). In a typical study, subjects first memorize grammatical strings of letters
generated by a finite-state grammar. Then, they are informed of the existence of the complex set
of rules that constrains letter order (but not what they are), and are asked to classify grammatical
and non-grammatical strings. Subjects can classify substantially above chance, indicating that they
have learned some of the underlying grammatical structure. However, they are unable to report

which rule allowed them to classify the strings. Reber described this results as a “peculiar
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combination of highly efficient behavior with complex stimuli and almost complete lack of

vetrbalizable knowledge about them” (p. 859).

Most artificial grammar learning (AGL) research focused on regular grammars and found
typically better than chance classification. A few studies used context free grammars (Rohrmeier,
Fu, & Dienes, 2012) and showed also better than chance performance without observing
conscious access to the set of rules that was used. These results suggest that the complexity of

sequences according to the Chomsky hierarchy does not determine conscious access to the rules.

1.3.2.1.1  Consciousness of the rule and symbolic representations

One of the main limitations of the AGI. protocol comes from the difficulty to establish
what type of criterion was used by subjects to perform the grammaticality judgment. In particular,
models that store the occurrence of chunks of sequences met in the training exemplar can
perform as well as Reber’s subjects. Experimental manipulation of the frequency of bigrams in
test and training exemplars showed that this parameter does affect the grammaticality judgment
of subjects (Kinder & Assmann, 2000). To prove that subject could learn the underlying structure
of the sequence and not just the frequency of bigrams, researchers have attempted to show that
subjects can transfer the structure of the grammar to new stimuli and use it to classify strings that
do not contain any of the bigrams presented in the training examples. Transfer of knowledge to a
new set of stimuli in AGL paradigms have yielded mixed results. Significant transfer is typically
observed but with a drop in performance compared to within same set generalization. The

interpretation of these results remained inconclusive (Dienes & Altmann, 1997).

One of the hypotheses to explain the incomplete transfer performance was that
consciousness of parts of the rule was acquired during learning — typically repetition patterns —
and that only that part was transferred when the stimuli changed. Indeed, a more contrasted
result is observed in attempts to test transfer of repetition patterns to new sequences: only
subjects that are to report awareness of the regularity achieve successful transfer in serial reaction
time tasks (P. F. Dominey, Lelekov, Ventre-Dominey, & Jeannerod, 1998). This argues in favor
of the idea that the type of structure that is learned implicitly in AGL learning in SRT is mainly
statistical or at least to concern surface properties of the stimulus while conscious access allows

more flexibility by processing more abstract objects.

The abstractness of a representation can be classified according to three levels (Buchler,
1955; Deacon, 1997; Nieder, 2009): iconic representations are truthful to at least some of

sensory features of the object they represent. Indexical representations allow arbitrary mapping
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from one domain to another, so that each correspondence has to be specified. Symbolic
representations do not only represent mappings between different domains. They also rely on the
relations between the objects of one domain so that the mapping from one domain to the other

can be znferred based on the similarity of the relations for new objects.

Symbolic processing based on repetition pattern can already be found in babies. Marcus
(Marcus, Vijayan, Bandi Rao, & Vishton, 1999) familiarized seven-month-old infants with a
continuous stream of syllables without prosody. The syllables were organized into three-syllables
“words” that were formed using a very simple grammar relying on “algebraic” rules: in the ABB
condition, the babies listened to a stream of words were the two last syllables were identical and
different from the first one (gatititalalagagigilinana. ..). In the test phase, they were presented with
stimuli constituted from new syllables that were never presented during the habituation. These
new stimuli could either continue to follow the previous grammar (CDD) or follow a different
grammar (CDC). The infants were able to discriminate the two types of test stimuli. Given that
no correspondence between the syllables was instructed, the transfer of the grammar from one
set of syllables to the other can only be possible if it was inferred on the bases of the relations of

repetition among the stimuli.
1.3.2.1.2 Implicit conditioning

The reportability of the rules that are learned was also investigated in classical

conditioning.

The acquisition of classical delay eyeblink was shown to be behaviorally similar whether
subjects were aware or not of the relation between the two stimuli (R. E. Clark, 1998; Robert E.
Clark, Manns, & Squire, 2002; Manns, Clark, & Squire, 2002). However, in a minimal variant of
the paradigm, the CS is made shorter, so that there is some interval between the end of the CS
and the air puff while the time between the onset of the CS and the US remains unchanged. This
paradigm is called trace conditioning, because it requires that a sensory trace of the CS be
maintained during the temporal gap between the two stimuli for learning to occur. In trace
eyeblink conditioning, significant conditioning behavior could not be observed in subjects that

were not able to report verbally the association between the CS and the US.
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(a) Delay
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FIGURE 1.3-2: TRACE AND DELAY CONDITIONING.

(a). In delay conditioning the US occurs during or at the end of the CS. (b). In trace
conditioning, a delay is introduced between the end of the CS and the US. The delay between the
onset of the CS and the US is not necessarily longer in trace conditioning than in delay
conditioning. From (Robert E. Clark et al., 2002)

KEY POINTS

e Complexity according to the Chomsky hierarchy does not predict whether rules that are
learned can be accessed or not.

e Access to symbolic representations can allow transfer across stimuli sets.
e Transfer of symbolic rule is not observed when subjects are not able to report the rule.

e In eyeblink conditioning, when a delay is added between the CS and the US, the
efficacy of the conditioning and the awareness of the relation are tightly correlated

13.2.2 Temporal regularity learning and central resources
The other important axis of research regarding the interplay between structure learning
and conscious access looks at which type of learning is affected by manipulation of attention or
task interference. In other words, learning that requires conscious access and conscious
processing of the stimuli. Here the criterion for learning is not meta-knowledge but behavioral

manifestations of learning and their resilience to attentional manipulations.

In the previous paradigm of eyeblink conditioning (R. E. Clark, 1998), both awareness
and behavioral acquisition of the association was affected by a distractor task in trace

conditioning. On the contrary delay conditioning was not affected by the distractor task. Thus, it
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seems that bridging the temporal gap requires attentional resources, while in the absence of a
delay the conditioning is more automatic. The automaticity of delay eyeblink conditioning is
supported by data in rabbits showing that decerebrate animals (i.e. after removal of cerebrak
cortex, basal ganglia, limbic system, thalamus and hypothalamus) but with intact brainstem and
cerebellum, exhibited retention of normal delay conditioning (M D Mauk & Thompson, 1987).
In humans, delay conditioning is impaired in patients with cerebellar lesions (Daum et al., 1993;
Topka, Valls-Sol¢, Massaquoi, & Hallett, 1993) or brainstem lesions (Solomon, Stowe, &
Pendlbeury, 1989) but intact in amnesic patients with damages that include the hippocampus. On
the contrary, trace eyeblink conditioning is affected not only by lesions to the cerebellum (D S
Woodruff-Pak, Lavond, & Thompson, 1985) and its afferences, but also by damages to the
hippocampus and neocortex. Acquisition and retention of trace conditioning was severely
disrupted by hippocampal damages in rabbits (IKim, Clark, & Thompson, 1995; Moyer, Deyo, &
Disterhoft, 1990) and rats (Weiss, Bouwmeester, Power, & Disterhoft, 1999). It was also affected
by damages to the prefrontal cortex, including anterior cingulate cortex (ACC), in rabbits
(Kronforst-Collins & Disterhoft, 1998; Powell, Skaggs, Churchwell, & McLaughlin, 2001; A. P.
Weible, McEchron, & Disterhoft, 2000). Consistently with these data, trace conditioning is
affected in human patients with damages to the hippocampus. Interestingly, this impairment is
proportional to the trace interval: while conditioning was mildly affected for short delay traces
(500ms) it was more strongly affected for longer traces (1000ms) (McGlinchey-Berroth, Carrillo,
Gabrieli, Brawn, & Disterhoft, 1997). In this type of patients delay conditioning with CS
durations of 750ms is unaffected, which implies that bridging the temporal gap is the crucial
challenge in trace conditioning. Moreover, the hippocampus seems to be implicated only
transiently in the acquisition of trace conditioning (Kim et al., 1995) while damages to prefrontal
cortex affect performances at any stage of the process(McLaughlin, Skaggs, Churchwell, &
Powell, 2002). Consistently with these data, trace fear conditioning was found to be affected by a
working memory distractor task (Carter, Hofstotter, Tsuchiya, & Koch, 2003 but see Carrillo,
Gabrieli, & Schaaf, 2000). At the neuronal level, prefrontal cortex activity increases during the
trace interval and trace conditioning is affected by disruption of delay activity by injection of
GABAA agonist, NMDA antagonists and delay specific optogenetic silencing in medial
prefrontal cortex of rats (Gilmartin & Helmstetter, 2010; Gilmartin, Miyawaki, Helmstetter, &
Diba, 2013), showing causally the implication of working memory delay activity in bridging the
temporal gap. Overall, data suggest that cerebellum and PFC cooperate to respectively determine
the precise timing and bridge the temporal gap between he CS and the US (Kalmbach, Ohyama,
& Mauk, 2010; J. J. Siegel, Kalmbach, Chitwood, & Mauk, 2012). The ACC has been implicated
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in attentional processes that signal the relevance of the CS when it is paired with the US and
associated to context specific maintenance of CS during the delay (a P. Weible, Weiss, &

Disterhoft, 2007).

Consistently with this results in conditioning, data from serial reaction time tasks point
also to a crucial role of attention and working memory for the learning of long distance
dependencies. In SRT, long distance dependencies between elements distant of up to 6 positions
have been argued to be acquired (Remillard & Clark, 2001; Remillard, 2008, 2010), given enough
trials (up to several tens of thousands for 6" order dependencies!). Long distance dependencies
learning was also observed in babies (Gomez, 2002): 18 month-old infants were able to
discriminate 2 languages constituted of three-syllables words presenting identical first-order
transition probabilities but different non-adjacent dependency between the first and last syllables
of the words( e.g. aXb, ¢Xd and eXf belong to languagel while aXe , bXf , and c¢Xd belong to
language2). However, Curran and Keele (1993) showed that acquiring second- or higher order
transitions is blocked—in terms of both acquisition and use—by performing a demanding
secondary task, whereas learning first-order transitions is unaffected, suggesting again that
maintenance of information would be key for long distance learning to occur, and for that

learning to be exploitable.

KEY POINT

¢ The most reliable dissociation between processes that are affected and processes that
are resilient to attentional manipulation and cognitive load in the need for maintenance
of information across a temporal gap

1.3.3 Simultaneous but opposite expectations for conscious and unconscious
processing
Are conscious and unconscious levels of processing tightly coupled? Is low-level
unconscious processing modulated by higher-level conscious expectations? Can we detect

consciously a deviance without low level response to a violation of regularity?

Although the MMN and the P300 are often correlated, in particular in the oddball
paradigm (K. C. Squires et al., 1976), they can be dissociated in paradigms where conscious
expectations are manipulated to differ from low level regularities. In a bimodal protocol, if a rare
visual stimulus signals the impending occurrence of a rare tone, whereas a frequent visual
stimulus signals that a frequent tone will be presented, the rare but predictable auditory stimuli do
not elicit a P300 response while the MMN response is maintained (Ritter, Sussman, Deacon,

Cowan, & Vaughan, 1999a). This dissociation translates at the behavioral level by the suppression
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of the behavioral effects of distraction by rare tones (E Sussman, Winkler, & Schroger, 2003).
Other manipulation of conscious expectations have yielded the same results (Janos Horvath,

Winkler, & Bendixen, 2008; Rinne, Antila, & Winkler, 2001).

On the other side, the local-global paradigm exposed in the first section of this
introduction (Bekinschtein et al., 2009) showed that a P300 response and conscious report of
violation detection could be elicited in the absence of a MMN response; and reproduced the

absence of P300 response in the presence of a predicable MMN.

These results argue in favor of a local computation of temporal expectations at both

levels.

1.4 Neuronal properties for the implementation of a temporal

predictive process

The previous sections have led us to consider that predictions and predictions errors
seem to be a general mechanism for the learning and processing of temporal regularities, either
consciously or unconsciously. We have identified temporal gaps as a recurring characteristic of

regularities that cannot be learned or exploited without access to working memory.

In this section I will examine some of the properties of the neuronal bases that could
support learning of temporal regularity. I will first focus on the dynamics of learning in MMN
paradigms and relate them to the main neuronal bases of learning. Then 1 will shortly give an
overview of the key properties of the representations that can be found in auditory cortex. Finally
I will review the type of neuronal codes that could support prediction and learning of timing

and/or identity of future stimuli.

1.4.1 Temporal dynamics of learning

How fast are new regularities learned?

Most data about the dynamics of regularity learning for the MMN come from oddball
paradigms. Using frozen oddball sequences with multiple reversal between standard and deviants,
the adaptation of the response of individual neurons, and of the ERP to the standard stimulus
follows an exponential dynamic, with time constant of a few tens of seconds for the whole
population and up to a few seconds or stimuli for single neurons (Costa-Faidella, Grimm, Slabu,
Diaz-Santaella, & Escera, 2011; Ulanovsky, Las, Farkas, & Nelken, 2004). In roving paradigms(N.

Cowan, Winkler, Teder, & Niitinen, 1993), a tone is repeated for a variable number of times,
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until the presentation of a different tone that becomes then the new standard tone, until the next
change. The first tone of each new sequence represents a deviant for the previous one, and a
MMN can be observed by computing the difference between the response to the deviant and the
response to the last standard tone. The MMN was already present after series of standard of
length 2 and was maximal after only 6 repetitions of the new standard (Haenschel, Vernon,
Dwivedi, Gruzelier, & Baldeweg, 2005), which represent time constant even shorter than in the
oddball paradigm. One of the key differences between the oddball with periodic inversion of the
standard and deviant and the roving paradigm is that in the first paradigm, the transition
probabilities are inverted from one inversion to the other, while in the second, the otherwise
certain transition probability given the previous tone is only violated once at the end of a period,
then when this tone is presented again after some time, the previous transition was never violated

again.

The importance of local history was illustrated by Squires (K. C. Squires et al., 1976)
showing that the amplitude of the MMN-P3 depends strongly on the past few items. The result
was reproduced at the single neuron level in Al(Ulanovsky et al., 2004). The influence of local
patterns in random sequences translates into behavior (Huettel, Mack, & McCarthy, 2002;
Schvaneveldt & Chase, 1969). Interestingly reaction times are not only sensitive to repetition
patterns, but also to alternate patterns. The sensitivity to alternate patterns emerges however
more slowly than sensitivity to repetiion. MMN presents also this property: repetition of a

stimulus in an alternate sequence (ABABABAAL.) elicits a MMN (J Horvath et al., 2001).
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FIGURE 1.4-1 EFFECT OF RECENT HISTORY ON TEMPORAL REGULARITY PROCESSING

(left) In an oddball paradigm, effect of the recent history on the amplitude of the MMN-
P300 response. Probability of the two tones A and B are .5/.5. The amplitude of the response to a
tone A is shown in function of the identity of the last 1, 2, 3 4 of 5 stimuli. It is larger when
previous stimuli where mostly Bs than when most previous stimuli where As. Adapted from
Squires (1976). (right) Behavioral effect continuation and violation of runs of consecutive
repetitions or alternations in a serial reaction time task. Subjects were instructed that targets
appeared at random in one of two locations. Runs of consecutive repetitions or alternation could
occur randomly. The difference between the reaction time to continuation or violation of the
regulatity increased with the number of repetition of the pattern. From Huettel (2002)

KEY POINTS

e MMN appears within a few presentations of a repetitive stimulus

¢ The oddball paradigm confounds potentially multiple types of long term and short
term learning mechanisms

e The alternation of two stimuli is also learned within a few trials

1.4.2 Neuronal mechanisms of sequence learning

1.4.2.1 Short term plasticity
Short term synaptic plasticity (H Markram, Wang, & Tsodyks, 1998) reflects

neurotransmitter vesicle dynamics at the synapse. When an action potential reaches the
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presynaptic terminal a proportion of the vesicles present in the terminal and containing
neurotransmitters are released, depleting the stockpile. As a result, if another spike reaches the
terminal before the full stock of vesicle is recovered, the proportion of vesicle released represent
a smaller quantity of neurotransmitters and generates a smaller post synaptic potential. The time
constant of stock recovery and the proportion of vesicle used for each potential determine the
dynamics of short term depression. The time constant vary from tens of milliseconds to seconds
(Varela et al., 1997), which is consistent with the dynamics of learning in the oddball paradigm.
Note that the oddball paradigm does not allow disambiguation between mechanisms that are
linked to short term plasticity of “stimulus specific adaptation” (SSA); i.e. mechanisms that will
only be able to adapt to the repetition of the feature coded by the neuron, and mechanisms that
would rely on prediction of the identity of the next stimulus, whether it is identical to the
previous one or follows a more complicated pattern. However, short term plasticity does not
explain the emergence of an MMN to repetition in an alternate sequence, unless very specific
neuronal encoding schemes are postulated. Crucially, any “learning” effect associated to short
term plasticity should attenuate rapidly, and eventually vanish in the absence of stimulation within

a few tens of seconds.

1.4.2.2 Long term plasticity
Long term plasticity refers to more durable changes in synapse efficacy. The most famous

rule of long term plasticity is Hebb’s rule (Hebb, 1949):

“Let us assume that the persistence or repetition of a reverberatory activity (or "trace")
tends to induce lasting cellular changes that add to its stability.... When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A's efficiency, as one of

the cells firing B, is increased."

This rule was proposed to explain associative memory, as a form of supervised learning,
where a “teacher” signal (equivalent to the US in conditioning) would lead a neuron B
(corresponding to CS) to fire whenever a nearby neuron A (corresponding to a conditioned
response) fires. After teaching, applying Hebb’s rule, neuron A would be able to trigger activity in
neuron B on its own. This idea is consistent with data from incidental learning showing a strong
similarity between the associations learned under reinforcement conditions and the associations

learned by mere exposure.
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Ahissar (Ahissar et al., 1992) designed a protocol to specifically assess associative training-
induced changes in the correlation strengths of functionally coupled neuronal pairs separated by
several hundred microns across the cortex. One neuron of a pair functioned as a conditioned
stimulus (CS) neuron, and the second functioned as a conditioned response (CR) neuron. The
unconditioned stimulus (US) was an auditory stimulus capable of driving the CR neuron and
guiding the monkey’s performance on an auditory task. The activity in the CS neuron triggered
the US and therefore activity in the CR neuron. Cross correlations before and after training
revealed an increase in the coupling between the CS and CR neuron. This change in efficacy
lasted for a minute after the end of the associative pairing. These results revealed apparently
powerful plasticity changes in excitatory intracortical interneuronal connections obeying a Hebb
rule (Buonomano & Merzenich, 1998), but were dependent on the concurrent performance of a
rewarded task. A similar cell conditioning protocol paired the preferred stimulus of a cell with
silencing of its activity and the less preferred stimulus with high activity by injecting respectively
inhibitory and excitatory currents when the stimuli were presented (Frégnac, Shulz, Thorpe, &
Bienenstock, 1992). After this “conditioning” the receptive field has shifted durably towards the

conditioned receptive fields, even in the absence of reward signal.

At the cellular level, synaptic plasticity in cortex and hippocampus has been described to
be tightly dependent on the timing of spikes in the presynaptic and postsynaptic neurons (Levy &
Steward, 1983). This spike timing dependent plasticity (STDP) was shown to be dependent on
the back propagation the post-synaptic spike (Henry Markram, Libke, Frotscher, & Sakmann,
1997) and the specific critical window for STDP was described in detail by Bi and Poo(G.-Q. Bi
& Poo, 1998). Consistently with the associative learning, STDP typically shows a depression if
the post synaptic spike occurs before the presynaptic spike; and a potentiation of the synapse if
the post synaptic spike follows the presynaptic spike. As a result, the synapse will only be
reinforced if the presynaptic activity “predicts” the post synaptic activity. At the behavioral level,
the same is true: backward conditioning where the CS follows the US does not result in an

association.
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FIGURE 1.4-2: SPIKE TIMING DEPENDENT PLASTICITY

Percentage of change in the amplitude of post synaptic currents 20 min after a repetitive
correlated spiking between a presynaptic neuron and a post synaptic neuron with a delay At (and
exponential fits). Maximum increase in synaptic efficacy is observed when the presynaptic spike
occurs with 40ms before the postsynaptic spike. From (G. Bi & Poo, 2001; G.-Q. Bi & Poo, 1998)

R. P. Rao & Sejnowski (2001) showed how a STDP learning rule can allow a network of
neocortical neurons to predict an input a few milliseconds before the input’s expected arrival.
This mechanism was also proposed for associative learning across temporal distance using delay

lines to transform time into a spatial coding (G. Bi & Poo, 2001).

Moreover, STDP relies on the back propagation of the post synaptic spike in the
dendritic tree and is NMDA-dependent (G.-Q. Bi & Poo, 1998). Interestingly, the MMN is
abolished by the injection NMDA-receptor antagonists (Javitt et al., 1996), suggesting that

NMDA-dependent plasticity could be crucial in MMN generation.



Chapterl: Introduction

KEY POINTS

e Short term synaptic habituation presents dynamics consistent with learning dynamics
observed in the oddball paradigm

e Long term Hebbian plasticity can be induced by associative pairing of a presynaptic and
post synaptic activity driven by a third input.

e The long term plasticity depends on the relative timing between pre and post synaptic
spikes

e Long term plasticity is NMDA-dependent.

1.4.3 Neuronal codes in auditory cortex

The primary auditory cortex is located in the temporal lobe, in the Heschl gyrus. It
receives thalamocortical projections from the thalamic medial geniculate body. The principal
functional organization of primary auditory cortex is its tonotopic arrangement. The receptive
field of each neuron can be determined using pure tones with varying frequency and loudness.
The characteristic frequency is defined as the frequency for which the neuron responds at the
lowest sound level. The characteristic frequencies are organized in an orderly manner with
neurons at the anterior part of Al being sensitive to high frequencies and at the posterior part to
low frequencies in cats (Reale & Imig, 1980), rats (Rothschild, Nelken, & Mizrahi, 2010) and
humans(Moerel, De Martino, & Formisano, 2012).

However, the tonotopy is not the only dimension mapped onto the auditory cortex.
Topographic organization of sharpness of the frequency response area (Schreiner & Mendelson,
1990), threshold and response latency have been observed. Tonotopy only exists in mice at a
relatively gross scale, while the local organization is much more complex (Rothschild et al., 2010).
However, this organization remains patchy as reflected by a high noise correlation at the local
scale. This complex organization with highly correlated noise is consistent with the existence of

partly overlapping networks encoding topographically different dimensions of the input.

Temporal coding of a sound is on average characterized by a strong response to the onset
and offset of the stimulus with a quieter activity in the intermediate period (Qin, Chimoto, Sakai,
Wang, & Sato, 2007). Cells can respond either to only the onset or the offset in a particular
frequency band, or to both, potentially with different preferred frequencies. Given this encoding

scheme, the onset and offset of a stimulus can be considered as separate events that need to be
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predicted. Consistently with this idea, MMN can be elicited by changes in duration or in

interstimulus intervals (Ford & Hillyard, 1981; Niatinen et al., 1989).

1.4.4 Predicting timing and identity in neuronal networks
What neuronal networks support the memory for timing or for the identity of past

stimuli?
1.4.411 Prediction of timing

A predominant hypothesis in the psychological literature on conditioning has been that
timing could rely on a centralized internal clock (Treisman, 1963) in which an oscillator beats at a
tixed frequency generating tics that can be detected by a counter. Cerebellar patients are known
to present deficits in timed interval comparison and production (Ivry & Keele, 1989) and both
trace and delay conditioning are strongly affected by cerebellar lesions(Diana S Woodruff-Pak &
Disterhoft, 2008). The cerebellum has therefore been proposed to fulfill the role of this general
purpose timing mechanism. However, evidence for a role of the cerebellum in timing comes
mainly from lesion studies and no precise data exist (Michael D Mauk & Buonomano, 2004). The
contingent negative variation (CNV) (Walter et al, 1964) has been considered as a
neurophysiological support of the internal clock model. This evoked potential is linked to
temporal expectancy and develops in the interval between two stimuli, when the first predicts the
second. The CNV takes the form of a ramping activity. The development of the CNV requires a
learning phase of about 30 repetitions of the paired stimuli and requires the execution of a task —
which can be purely mental — in response to the second stimulus. When the expected duration is
longer than the expected one, the ramping activity peaks at the expected interval and drops
(Macar & Vidal, 2003, 2004). CNV amplitude also correlates with variability in interval
production (Macar, Vidal, & Casini, 1999). However, the CNV is dependent on attention and it
is unlikely that the same mechanism is used for pre-attentive stimulus timing prediction where no

ramping activity can be found.

1.4.4.1.2 Dynamic attractors: tracking time and identity of past stimuli

Another encoding scheme comes from investigation of associative learning at the
neuronal level. It is widely believed that the precise timing of the CR in classical conditioning
could be achieved by relying on a memory trace that transforms temporal information into a
spatial code that can be exploited by associative plasticity mechanisms(G. Bi & Poo, 2001). Bi
and Poo found in hippocampal neuron cultures that repetitive paired-pulse stimulation of a single

neuron for brief periods induces persistent strengthening or weakening of specific polysynaptic
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pathways in a manner that depends on the interpulse interval. These changes can be accounted
for by correlated pre- and postsynaptic excitation at distant synaptic sites, resulting from different
transmission delays along separate pathways. This mechanism is apparent to a “delay line” where
information about time is coded in the pattern of activity in the network. Synfire chains are
typical examples of such networks: units are arranges in population connected in a feedforward
manner, so that activity propagates through the network, establishing a linear relationship
between the neuronal population active at one given time and the delay since the input was
feeded to the first population of the network. Such networks have been shown to have the
capacity to support learning of complex spatiotemporal patterns (Grossberg, 1970). Support for
such a encoding scheme was also described in auditory cortex slices where stimulation of one
neuron triggers a reproducible sequential activation of neurons arranged in a non-topographical
manner (Buonomano, 2003). Therefore, temporal information could be multiplexed into auditory

cortex without interfering in a systematic way with the other topographical maps.

A reproducible sequence of activation is not a proof of a feedforward organization, and
the cortical connectivity is thought to be mainly recurrent. Learning from networks that produce
reproducible activity trajectories across time while presenting a more realistic encoding scheme
has been the subject of intensive investigation (Buonomano & Iaje, 2010; Michael D Mauk &
Buonomano, 2004). Recurrent networks have attracted interest under different names in
cognitive neuroscience (femporal recurrent networks, Dominey, Arbib, & Joseph, 1995), in
computational neuroscience (liguid computing, Maass, Natschliger, & Markram, 2002) and in
machine learning (echo state networks Jaeger, 2001). The general approach consists in having a
recurrent network of interconnected units that respond to an input by a reverberating activity
that follows a rich but reproducible trajectory. Readout units are then trained to use this activity
to produce a desired output. These networks can learn very complex input/output mapping
including delayed responses because the network dynamic carries information about identity and
timing of past inputs, although in a less linear manner than delay lines. A general weakness of this
approach is however its tendency to be chaotic and sensitive to noise: two slightly different
inputs will tend to produce very different spatiotemporal dynamics. Moreover, the dynamics
elicited by one given input might vary dramatically if realistic synaptic noise is introduced.
However, recent advances to generate locally stable trajectories could be used to successfully

simulate robust timing and motor patterns (Laje & Buonomano, 2013).
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1.4.41.3 Working memory: selective maintenance of identity...and timing ?

1.4.4.1.3.1 Capacity of working memory: slots or variable precision?

A second weakness of recurrent networks is the sensitivity to interference from other
inputs that effectively reduces the temporal window that is reliable enough to be usable for
learning. Working memory is thought to overcome this limitation by selecting the information
that is maintained, thus reducing the interference problem. The dominant model of working
memory proposes that a fixed number of discrete items can be held in discrete “slots” that can
each contain arbitrary complex information about one object or chunk (Buschman, Siegel, Roy,
& Miller, 2011; Fukuda, Awh, & Vogel, 2010; Luck & Vogel, 1997). The exact number of slots
was originally estimated to about seven (G. Miller, 1956), but more recent observations led to a
current estimate of four (Nelson Cowan, 2001, 2010; Luck & Vogel, 2013; Edward K Vogel &
Machizawa, 2004), although it has been argued to be even more reduced (Olsson & Poom, 2005).
One important limit of behavioral measures of working memory capacity is the difficulty to
control possible encoding strategies of the subjects that reduce the number of chunks effectively
encoded compared to the experimenter belief (Bor, Duncan, Wiseman, & Owen, 2003).
However, the number of item encoded in working memory in spatial memory task correlates
with the amplitude of an ERP called the contralateral delay activity (CDA). Interestingly, the
amplitude of the CDA saturates for a number of items that correspond to the psychophysics
estimate of memory capacity (Edward K Vogel & Machizawa, 2004). Moreover, this potential is
specifically proportional to the number of items that are recalled, and not to the distractors that
have to be ignored (Edward K Vogel, Mccollough, & Machizawa, 2005). Crucially, in subjects
presenting a “low memory capacity”, the CDA was sensitive to distractors. The filtering
efficiency, which measures how sensitive the CDA is to distractors, is strongly correlated memory
capacity, suggesting that limitation in the memory capacity is not so much a limitation in
encoding capacity that a deficit in selective maintenance of the appropriate information. A
neurophysiological mechanism for working memory capacity limits has been proposed by
computational models that utilize neural oscillations as the primary representational scheme for
information being held in working memory. Indeed, the power of oscillatory activity in the theta
range (4-10Hz) has been showed to increase specifically during retention delay in working
memory tasks (Raghavachari et al., 2001) and to correlate with the number of items being
successfully retained (Jensen & Tesche, 2002; Sederberg, Kahana, Howard, Donner, & Madsen,
2003). A decoding approach suggests that reactivation of memory content following a theta
rhythm (Fuentemilla, Penny, Cashdollar, Bunzeck, & Diizel, 2010). Theta rhythm also modulates

the amplitude of gamma oscillation (20-35 Hz) during working memory tasks (M. Siegel, Warden,
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& Miller, 2009) and prefrontal cortex neurons tend to fire at specific phases of theta and gamma
oscillations that differ from one object to the next if multiple items are maintained (H. Lee,
Simpson, & Logothetis, 2005). Integrating these results, neurobiological models(Lisman & Idiart,
1995; Raffone & Wolters, 2001) have proposed that neuronal assemblies fire synchronously at
specific phases of the theta cycle accomplishing both binding and segregation of features into
objects in working memory. Limitations in spiking correlation resolution would explain the

limitation to three or four items.

Slots Variable precision

® | %

N

FIGURE 1.4-3: SCHEMATIC REPRESENTATION OF THE MAIN MODELS OF WORKING
MEMORY

(left) (a) In the slot (or item limit) model of working memory, each visual item is stored in
one of a fixed number of independent memory slots (here, 3) with high resolution (illustrated, by
narrow distribution of errors around the true feature value of a tested item). When there are more
items than slots, one or more items are not stored and the slot model predicts that errors in report
of a randomly chosen item will be composed of a mixture of high-precision responses (right, blue
component of distribution corresponds to trials when the chosen item received a slot) and
random guesses (green component corresponds to trials where it did not get a slot). (b) Variable
precision: working memory precision varies, from trial to trial and item to item, around a mean
that decreases with increasing number of items as a result of limited resources. This model
predicts that recall errors will be made up of an infinite mixture of distributions (assumed
normal) of different widths. Variability in precision could stem from variability in resource or
from bottom-up factors From (Ma, Husain, & Bays, 2014)

Recently, an alternative model gained increasing interest which proposes that memory
does not encode information into discrete slots, but distributes attentional resources between a
potentially infinite number of items, regulating the precision of their encoding, i.c. the resistance
of the representation to noise across time (Ma et al., 2014; van den Berg, Shin, Chou, George, &
Ma, 2012). This model accounts best for the behavior of memory precision in tasks that test the
precision of memory for analogical properties of the stimulus that may vary along a continuum
like color, length or orientation of stimulus. Memory capacity has been shown to be limited to
one object in a task that requires precise representation a non-categorical stimulus, while it was

consistent with previous estimates of four items if the shapes could be categorized (Olsson &

Poom, 2005).
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The most prominent correlate of working memory is increased sustained activity in lateral
prefrontal cortex during maintenance (Fuster, 1971; Goldman-rakic, 1995). However, in recent
years, multivariate pattern analysis showed that information about the maintained stimuli could
be decoded from sensory cortices, even though it did not involve increased activity during delay,
but rather persistence of a specific pattern of activation (Harrison & Tong, 2009; Linden,
Oosterhof, Klein, & Downing, 2012; Offen, Schluppeck, & Heeger, 2009; Pasternak & Greenlee,
2005; Postle, Druzgal, & D’Esposito, 2003; Riggall & Postle, 2012). Although fMRI decoding
study show typically poor decoding of content in prefrontal cortex, neuronal recordings in that
region show that neurons do encode identity specific information about the object which suggest
that this result points to lack of sensitivity of the method to the encoding patterns in prefrontal
cortex rather than to a lack of specificity of representations. However, in addition to displaying
coarse selectivity for the sensory features of the object being maintained (Rainer, Rao, & Miller,
1999), lateral prefrontal cortex also exhibits selectivity for task relevant categorization (D ]
Freedman, Riesenhuber, Poggio, & Miller, 2001; David | Freedman, Riesenhuber, Poggio, &
Miller, 2002; E. K. Miller, Freedman, Wallis, Trans, & Lond, 2002; E. K. Miller, Nieder,
Freedman, & Wallis, 2003; Roy, Riesenhuber, Poggio, & Miller, 2010). Recent data show that
depending on the task that followed the maintenance delay. Specifically, they observed stronger
decoding during the maintenance of visual than categorical properties in posterior fusiform
cortex, whereas the opposite was true in lateral prefrontal cortex (S.-H. Lee, Kravitz, & Baker,
2013). Taken together with the data that led respectively to the proposal of the slot model and
the variable-precision model of working memory, these results suggest that two dissociated
systems can be used to maintain information: a slot-based system that relies mainly on prefrontal
cortex for categorical information, and a more precision-dependent system that relies on sensory
cortex for analogical sensory information. The choice between these two systems is goal-

dependent.

1.4.4.1.3.2 Resistance to noise and distractors across time: the role of dopamine

How are stimuli selected to be encoded in working memory and how is memory content
protected from distractors? Several lines of evidence implicate dopamine in the selective
maintenance in working memory. First, the degradation of dopaminergic neurons in patients
suffering from Parkinson disease and in animal models impaired by lesions show deficits in
working memory (Lange et al., 1992; Miyoshi et al., 2002; a. M. Owen et al., 1992). Low doses
of dopamine agonists can enhance working (Servan-Schreiber, Carter, & Bruno, 1998).
Dopamine agonist or antagonist injected directly in prefrontal cortex affect specifically working

memory while leaving other functions intact (Sawaguchi & Goldman-Rakic, 1991, 1994).
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Neuroimaging studies linked the activity in basal ganglia to working memory and in particular to
efficiency of distractor filtering (D’Esposito, Postle, Ballard, & Lease, 1999; Lewis, Dove,
Robbins, Barker, & Owen, 2004; McNab & Klingberg, 2008; Menon, Anagnoson, Glover, &
Pfefferbaum, 2000). Computational models (M. J. Frank, Loughry, & O’Reilly, 2001; Gruber,
Dayan, Gutkin, & Solla, 2006a; O’Reilly & Frank, 2006) have proposed that modulation of
dopamine in the basal ganglia allows gating of working memory and improves the reliability of
representations across time. These models suggest that dopamine’s involvement in affective and
reward processing endows this gating with specificity to motivational salience, allowing for
example the learning of a relevant task-dependent strategy of gating to complete complex

memory tasks.

1.4.4.1.3.3 Time in working memory

How is time represented in working memory? One of the most commonly used class of
models of working memory tend to rely on a bistable activity of a whole population recurrently
connected that maintain a stable code across time, thus losing the temporal information about
the time of occurrence of the maintained stimulus(Camperi & Wang, 1998; Wang, 1999, 2001).
However, neuronal data tend to show more complex dynamics with possibly multiple
representations of time. First, in delayed match to sample (DMS) task, individual neurons in PFC
showed step-like increment in their firing rate for each non-match item presented (E. K. Miller,
Erickson, & Desimone, 1996). This coding scheme gives an event-based information about time
with a linear relation between the firing rate and the number of stimuli met since the encoding of
the stimulus in working memory. Second, a sophisticated analysis of somatosensory delay activity
in prefrontal cortex led author to conclude that the representations of timing and stimulus
identity are concurrently maintained by separate mechanisms, while sharing a common
anatomical substrate, creating orthogonal representations of the two features in a high
dimensional space (Machens, Romo, & Brody, 2010). Third, an analysis of the dynamics of the
temporal code in visual delayed match to sample showed a rapid transformation of the code in
the first few hundreds of millisecond towards an increasingly stable code (Stokes et al., 2013).
This result is compatible with a logarithmic precision in the representation of time as would be

expected in a functionally feedforward network with slow synaptic dynamics (Goldman, 2009).

1.4.41.4 A mechanism for prediction without precise timing

Miller found that in delayed paired associate task activity in prefrontal cortex was
progressively evolving from a retrospective activity encoding the feature of the sample object, to

a prospective activity sensitive to the feature of the expected target (Rainer et al., 1999). This
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evolution did not seem to be time specific, but could be the result of Hebbian association
between the two stimuli of a pair leading to the transition from one code to the other (Mongillo,
Amit, & Brunel, 2003). How is prediction compared to input to determine the match or non-
match response? Prefrontal neurons have been described to show match-enhancement of their
response when the incoming input corresponds to working memory content in match to sample
task or in delayed paired associate task (E. K. Miller et al., 1996; Rainer et al., 1999). This
mechanism can be used to test the conformity of stimulus identity to expectations coded in PFC
without having to predict the timing of the stimulus in addition to its identity (Engel & Wang,

2011).

KEY POINTS

e Time and identity of past stimuli can be encoded dynamically in neuronal activity.
e Working memory maintains the identity of a limited number of items

¢ Dopaminergic systems are involved in the selective maintenance of information in
working memory

e Neuronal mechanisms in prefrontal cortex could allow prediction of the identity of the
next stimulus without its timing
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CHAPTER2

INTRODUCTION TO THE PERSONAL
CONTRIBUTIONS

The review presented in the previous chapter showed that understanding the interplay
between conscious and unconscious processing of temporal sequences is an exciting fundamental
question that has a long history in cognitive science. It is also a clinical challenge as understanding
the specificity of conscious processes could result in more sensitive and more specific diagnostic
tools for non-communicative patients. Neuronal and behavioral responses associated with
violations of temporal regularities and their differential sensitivity to attentional and awareness
manipulations represent a promising direction for further investigations. Neuronal responses to
violation of regularities, in particular, represent a privileged way to probe regularity processing in
patients that cannot behave or communicate. Responses to violation of temporal regularities are
widely believed to be correlates of prediction errors that reveal predictive processes in the brain.
We will adopt this framework in the following chapters. By predictive coding we will refer to the
general framework that proposes that the brain build a generative model of the input and use it to
generate predictions about the incoming stimuli, without restricting ourselves to the efficient

coding principle.

I chose to focus on two main axes: 7) understanding the organization of unconscious
processing of temporal regularities and the neuronal constraints that limit its computational
capacities, and 7) examine under which conditions properties of conscious processing can

overcome these limits.

The review of the roles of predictions and prediction errors in behavior and neuronal
data highlighted two main purpose for prediction errors in addition of carrying the information
about unpredicted stimuli: a behavioral role driving attentional resources towards new
unexpected events and a role in learning as a “teacher” for acquisition of a predictive model. The
fact that MMN occurrence is neither necessary nor sufficient to orient attention towards novel
events rules out the behavioral contribution of MMN. Moreover, the fact that MMN is not

abolished by top-down expectations argues in favor of a local computation of states dynamics, as
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predicted by the free-energy framework. I will test the hypothesis that prediction error can be

used in local cortical circuit as a guide for the learning of accurate temporal predictions.

e Can we build biologically plausible predictive coding model that learns to predict
future stimuli based on past exposure to a temporal regularity and reproduce the
main properties of MMN?

e (Can this model give better predict new data than the fresh-afferent model?

In the Chapter 3, we will propose a biologically plausible model of MMN based on the
predictive coding framework. In particular, we will test the hypothesis that the main properties of
MMN can be reproduced by a predictive model that uses prediction error as a “teacher” signal.
We will then use the prediction of this model to propose an experimental protocol that can
disentangle the predictive coding from the other main account of MMN: the “fresh afferent

hypothesis”.

Moreover, the large range of feature that elicit MMN responses engage us to think that
MMN reveals a computational principle of the cortical hierarchy rather than a Al-specific
process. However no evidence exists to date showing simultaneous predictions and predictions
errors at multiple hierarchical levels. The hierarchy of regularities proposed by (Bekinschtein et

al., 2009) constitute an ideal paradigm to test this hypothesis.

e Is the computation that generates MMN reproduced at multiple hierarchical

levels?

In Chapter 4 we will adapt the hierarchical sequence used by (Bekinschtein et al., 2009)
to test the hypothesis that the computational module described in chapter3 is duplicated in

multiple hierarchically organized levels.

Finally conscious access and access to working memory are thought to be two very
similar phenomenons. Interestingly, the maintenance of information over temporal gaps proved
to be an important parameter that distinguishes the temporal regularity which require an access to

working memory to be learned.

e What are the computational benefits and constraints associated with processing of

stimuli in working memory?
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contributions

The Chapter 5 will focus on one property of conscious processing: the capacity to hold
past stimuli in working memory for an arbitrary long time. We will examine the computational

challenges and the processing abilities associated with this particular form of memory.
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CHAPTER3

ARTICLE 1: A NEURONAL MODEL OF PREDICTIVE
CODING ACCOUNTING FOR THE MISMATCH
NEGATIVITY

Published in Journal of Neuroscience (2012)

3.1 Introduction to the article

3.1.1 Goal of the article

In the introduction chapter we reviewed the three main models proposed to account for
the mismatch negativity (MMN): 7) a memory based model characterized by a separate
comparison module that generate a mismatch response if the stimulus differs from a memory
trace that stored the repetitive aspects of the previous stimuli (Ndatinen, Tervaniemi, Sussman,
Paavilainen, & Winkler, 2001), 7) an habituation model that relies on short term depression of
repeatedly stimulated synapse implemented by May & Tiitinen (2009) and z7) a predictive coding
interpretation which states that the MMN represents a prediction error signal ( Friston, 2005).

Only the habituation model has been implemented at the neuronal level.

In this chapter, I propose a biologically plausible implementation of a predictive model
that learns to predict future stimuli based on past temporal regularities. I compare the simulated
responses of the model to different types of sequences, to the known properties of the MMN.
Moreover, May & Tiitinen (2009) argued that all MMN properties could be accounted for by
synaptic habituation — given neuronal populations with the appropriate selectivity — making the
predictive coding interpretation of the MMN unnecessarily complex. I used the prediction of the
model to build an experimental protocol in which predictions from the predictive model and

from the habituation model are qualitatively different.

3.1.2 Choice of the methods

I chose to implement the model of the mismatch response at the spiking neuron level so

that realistic synaptic STDP rules could be used for learning. I chose to use Izhikevich equations
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(Izhikevich, 2003) to model spiking neurons, as they are one of the best model available to
reproduce the behavior of different types of neurons. However, the results presented in this
paper are not crucially dependent on the choice of spiking neuron model and could be reproduce
using exponential integrate and fire models implemented in standard spiking neural network

simulators such as pyNEST or Brian.

The model is used to develop an experimental protocol in which the habituation model
and our predictive coding model make qualitatively different predictions. This protocol is then
tested using magnetoencephalography (MEG). While EEG records the electric field MEG
records the magnetic field at the surface of the scalp. Because the magnetic field interacts little
with biological tissues, the MEG presents the advantage over EEG that it is spatially more
precise, while being as good temporally. Magnetic fields propagate in a direction orthogonal to
electric fields. The topography and polarity of the mismatch response is therefore different in
MEG compared to EEG. The magnetic equivalent of the MMN (MMNm) consists in a larger
response to deviant than to standard stimuli over the temporal electrodes between 100 and

200ms after the onset of the sound.

3.1.3 Reference

Wacongne, C., Changeux, ].-P., & Dehaene, S. (2012). A Neuronal Model of Predictive
Coding Accounting for the Mismatch Negativity. Journal of Neuroscience, 32(11), 3665-3678.
doi:10.1523/INEUROSCI.5003-11.2012
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3.2 Article

3.2.1 Abstract

The mismatch negativity (MMN) is thought to index the activation of specialized neural
networks for active prediction and deviance detection in auditory cortex. However, a detailed
neuronal model of the neurobiological mechanisms underlying the MMN is still lacking, and its
computational foundations remain debated. We propose here a detailed neuronal model of
auditory cortex, based on predictive coding, that accounts for the critical features of MMN. The
model is entirely composed of spiking excitatory and inhibitory neurons interconnected in a
layered cortical architecture with distinct input, predictive and prediction error units. A spike-
timing dependent learning rule, relying upon NMDA-receptor synaptic transmission, allows the
network to adjust its internal predictions and use a memory of the recent past inputs to anticipate
on future stimuli based on transition statistics. We demonstrate that this simple architecture can
account for the major empirical properties of the MMN. These include a frequency-dependent
response to rare deviants, a response to unexpected repeats in alternating sequences
(ABABAA...), a lack of consideration of the global sequence context, a response to sound
omission, and a sensitivity of the MMN to NMDA receptor antagonists. Novel predictions are
presented, and a new magneto-encephalography experiment in healthy human subjects is
presented that validates our key hypothesis: the MMN results from active cortical prediction

rather than passive synaptic habituation.

3.2.2 Introduction

Since it was first described at the end of 1970’s , the Mismatch Negativity (MMN) has
been largely used in theoretical and clinical research (for review see Niitinen, 2003). It was first
recorded by EEG in the context of the oddball paradigm. In the most frequently used version of
this paradigm participants are instructed to listen to repeated occurrences of one sound, called
the standard. This monotony is disrupted at rare moments by the presentation of a different
sound, called the deviant. The difference in the responses evoked by deviants and standards takes
the form of a broadly negative waveform at the top of the scalp, which peaks between 100 and
200ms after the onset of the sound. MMNs can be elicited by differences in sound frequency,
duration (Naitinen et al., 1989), amplitude (Naitinen et al., 1987), or inter stimulus interval
(Ford & Hillyard, 1981). MMN is resistant to manipulations of attention and states of
wakefulness (Sculthorpe, Ouellet, & Campbell, 2009) even though these parameters can modulate
its amplitude. An analog of MMN was described in visual (Pazo-alvarez et al., 2003; Tales et al.,

1999), olfactive (Krauel et al., 1999; Pause & Krauel, 2000) and somatosensory (Kekoni et al.,
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1997; Shinozaki et al., 1998) modalities, supporting a broad computational significance of MMN

as a shared and automatic brain mechanism responsive to stimulus novelty.

MMN is frequently interpreted in terms of predictive coding (T. S. Lee & Mumford,
2003; R. P. Rao & Ballard, 1999) assuming that the brain does not respond passively to incoming
inputs, but learns the inputs regularities and uses that knowledge to actively predict what should
happen next. The auditory system would acquire an internal model of regularities in auditory
inputs, including abstract ones, that are used to generate weighted predictions about the incoming
stimuli (Néidtinen, Jacobsen, & Winkler, 2005; Paavilainen, Jaramillo, Nadtinen, & Winkler, 1999;

Winkler, 2007). If these predictions differ from the actual stimulus, it results in a mismatch signal.

While mathematical models of predictive coding have been proposed (Garrido, Kilner,
Kiebel, & Friston, 2007; Kiebel, Daunizeau, & Friston, 2008, 2009), including some attributing
distinct functions to the various cortical layers (Friston, 2005), none of them has yet led to a
precise neuronal implementation of the generators of the MMN, in terms of realistic receptors,
synapses and spiking neurons. Nor has there been a systematic comparison of the models’
predictions with actual experimental results. Furthermore, not everyone accepts the predictive
interpretation of MMN. May and Tiitinen (2009) argue that synaptic habituation (reduction of the
EPSP following repetitive stimulation of the same synapse) is sufficient to explain all of the
properties of the MMN and thus, that there is no need to postulate an elaborate prediction and

comparison mechanism.

Here we propose a neuronal network model, devoid of synaptic habituation but
comprising a detailed implementation of predictive coding, accounting for a large amount of data
on the MMN. The model leads to the distinction of several processes that contribute to the
observed event-related responses, and makes new predictions, one of which is tested here with

magneto-encephalography (MEG).
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3.2.3 Material and methods

Memory Q

trace

Predictive
Layer
layer 2/3

Prediction
Error Layer
layer 4

Thalamic
Input

plastic synapses

glutamatergic
population

._. gabaergic
population

FIGURE 3.2-1: SCHEME OF THE PREDICTIVE CODING MODEL FOR TWO SOUNDS,

For each layer two subpopulations are modeled that respond respectively to the
frequencies of sounds A and B. Prediction error activity in layer 4 is the result of the difference
between thalamic inputs and predictive activity arising from the supragranular layer, whose sign
Is inverted through inhibitory interneurons (black circles). Prediction error is then fed back in
order to adjust the activity of predictive populations. Dynamic predictions are made possible in
the model because predictive units send and receive projections with a recurrent network serving
as a short-term memory. NMDA dependent plasticity adjusts the synaptic weights onto
predictive units until their dynamics matches that of the inputs and therefore miminizes the
prediction error.
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3.2.3.1 Network architecture
The proposed neuronal network aims at modeling the response of primary auditory
cortex to incoming sounds. Figure 3.2-1 shows an implementation of the model for an input
composed of two pure tones, hereafter called A and B. Each column of the network represents a
cortical column with its thalamic input responding maximally to one of the two frequencies of
the input. The two frequencies A and B are supposed to be different enough to activate only one

of the two columns.

In each column, three populations of neurons are simulated. The essential component of
the model is the population of neurons involved in prediction, which we propose to be part of
the supragranular layers of the cortex. This population constantly tries to anticipate the upcoming
auditory inputs. A prediction of sound A consists in an increase in the population firing rate

coding for this stimulus.

At every moment, the continuously variable predictions arising from the predictive
populations of neurons are compared to the incoming inputs. This comparison is achieved at the
level of a population of neurons called the “prediction error” population, which receives two sets
of inputs : excitatory inputs coming from the thalamus and conveying the current sensory
stimulus, and inhibitory inputs that reflect the activity of the predictive population. Through this
scheme, whenever the thalamic input is not cancelled by predictive signals, the prediction error
population fires. The activity of the prediction error population is transmitted to the predictive
population as a feedback and this error signal is used to adapt the internal model of this
population (see the description of the learning rule further below). We show in the result section

that this error signal may account for the MMN effect.

The predictive population needs to build an internal model of the regularities of the
incoming stimulus in order to form relevant predictions. We propose that this model is based on
learning the statistical temporal dependencies linking the stimuli within the past few hundred
milliseconds. A memory of the recent past is needed to achieve such a goal. This memory has to
keep the trace of two properties: the identity of the past inputs and the time elapsed since they
occurred. We choose to model this function in the simplest manner possible, using a delay line
for each frequency, where activation propagates linearly from one neuron to the next as a

function of time. The relevance of this model will be discussed later.

Memory neurons are connected to both predictive subpopulations so that predictions of

one frequency (A) can be based on the recent occurrence of a sound of the other frequency (B).
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The internal model of the predictive population is built by adapting the synaptic weights linking

the memory neurons and the predictive populations.

3.2.3.2 Detailed implementation
All subpopulations are composed of 40 neurons, except for delay lines that are composed
of 400 excitatory neurons and 100 inhibitory neurons. All populations receive an external input
Ioxt that is Gaussian noise of mean equal to zero and variance equal to 2.5 for input neurons, 2

for predictive neurons and prediction error neurons, 3.8 for interneurons.

By default, mean synaptic weight between two excitatory neurons is Wgp =
1.4, between an excitatory and an inhibitory neuron ~ wg; = 4.5, and between an inhibitory
and excitatory neuron Wy = 22. If a presynaptic neuron is excitatory, Wg; 07 Wgg is the weight
for AMPA mediated currents. An NMDA-receptor dependent current is added whose weight
Wy, is 20% of the AMPA synapse. The synaptic weights are drawn from a Gaussian distribution
with a variance of 20% of the mean. These parameters allow a reliable transmission of activity
from one population to the other in absence of other inputs, while avoiding unrealistic synchrony

of neurons due to excessive homogeneity in the parameters.

The probability of a connection between thalamic inputs and prediction error populations
is p = 0.9. The probability of a connection between predictive populations and interneurons and
between interneurons and prediction error neurons, is p = 0.55. Synapses between predictive
populations and memory neurons were initialized with weight w = 0.4 and variance of 20% with
a probability of connection of 0.5. Connectivity between layers is consistent with neocortical local

circuitry data (Thomson & Lamy, 2007).

3.2.3.3 Spiking neuron model
We used spiking neurons whose membrane potential is computed according to

Izhikevich (Izhikevich, 2003) equations:

dv 2

= = 0.04v% + 5v + 140 — u + Iy,
du

— = (o —

=i

Where v is the membrane potential and u a membrane recovery variable. The neurons

fire if their membrane potential reaches 30mV and is then reset as follow :
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vV «C

if v=30mV, then {u cutd

The parameters for excitatory (resp. inhibitory) neurons were :

a = 0.02 (resp. 0.06 + 0.04*rand®,b = 0.2 + 0.04*rand’ (resp. 0.2), ¢ = -65+10*rand’
(tesp. -65), d = 8 — 2*rand” (resp. 2), where rand is a random number drawn from a uniform
distribution between 0 and 1. These parameters correspond respectively to regular spiking

neurons for excitatory neurons and fast spiking ones for inhibition (Izhikevich, 2003).

AMPA, NMDA and GABA synaptic currents are modeled according to Brunel & Wang
(Brunel & Wang, 2001).

Ioyn (t) = Lyypa(t) + Inypa (€) + Igapa(t) + Loy (T)

With
Ce
Lampa (8) = Gampa V() — Vi) Z WJ."‘MP“‘S}#*MPA@)
j=1
v V o
t it
Inmpa(t) = Ty (P = Ve) X Z w,MPASNMPA (1)
(1+ [Mg?*] exp(—0.062 V(t)/3.57)) &
Ci
Igaga (£) = Geapa V() — V) z W}GABAS};;ABA(O
j=1

receptor type

Where s; is a variable describing the opening dynamic of the receptors :
AMPA and GABA receptors have instantaneous opening and close up with time constants

Tampa = 2ms and TGABA = 10 ms.

Ioxt 1s an additional current that accounts for the sensory inputs from cochlear neurons

which are not implemented in the model.

deAMPA (t) SJAMPA ® )
= + ) 8(t—tf)

dt TAMPA - 1

d SJ_GABA ®) SJ_GABA () )
= + ) 8(t—tF)

dt TGABA B J
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NMDA receptors have slower dynamics with opening time constant Typypa rise = 2 MS

and closing time constant Tyypadecay = 100ms,a = 0.5 ms~L.

deNMDA ) ~ S}NMDA(t)

+ ax;(t)(1 — sNPA(t)
dt TNMDA,decay / ( J )

dx;(t At
50 _ 50 + ) 8(t—tf)
dt TNMDA rise -

3.2.3.4 Synaptic plasticity
To internalize the statistical regularities that relate past activity to present stimuli, we
implemented synaptic plasticity only between memory neurons and predictive subpopulations.
We used a spike-timing dependent plasticity (STDP) rule (G. Bi & Poo, 1999) producing

conditioning association :

If a post synaptic spike at time t that follows a presynaptic spike :

t— tspike pré
AWprspost = Cp(Icq2+ — Th) exp (‘r—
14

If a pre-synaptic spike follows a post synaptic spike that occurred at time t :

t — tgp;

— pike post

AWprspost = —Cp(Icq2+ — Th) exp (T—)
P

In addition, we used a long-term depression (ILTD) rule, that induces a small depression

of synapses whenever the presynaptic neuron spikes. This rule is in agreement with experimental

observation that synapses tend to depress when they do not elicit postsynaptic spike (Debanne,

Shulz, & Frégnac, 1998):
Awpré,post =—cq 6(t— tspike pré)

The parameters used for the simulations presented in this paper are ¢, = 60, Tp =

30mscy, = 100et Th = 2.5.
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We verified that our qualitative results were largely independent of the fine tuning of the
parameters. I, is a calcium current mediated by NMDA receptors. This current is taken equal

to Iympa for each predictive neuron.

3.2.3.5 Simulations:

For each simulation, a new network was generated following the above probabilistic
connectivity rules. Hach condition was simulated on 5 to 10 different networks, plotted results
are averages over all simulations. Inputs were an additional Igy, current with amplitude 1.9,
injected in the thalamic subpopulation coding for the sound corresponding to the stimulus
presented. The input for each simulation was created by pseudo-randomization of a set of trial
containing the desired proportions of standard and deviant stimuli. The randomization was made
so that two deviants were never consecutive. Standard stimuli immediately following deviant

stimuli were removed from analysis.

Various paradigms were simulated by modifying the sequence of A and B inputs in
different stimulus blocks. The classical oddball paradigm was simulated as a sequence of 2000
tones, where 5%, 10%, 20% or 30% of the tones were B tones (deviants) and other tones were A,
with a stimulus onset asynchrony (SOA) of 200ms. The connectivity matrix was saved after each
tone, 100ms after the onset of the tone. The mean connectivity matrix that we report in Figure
3.2-4 represents the average connection strength between the memory neurons and the predictive
population. It was obtained by averaging these matrices over each subpopulation of predictive
neurons and over all tones except the first 200. Alternate sequences were composed of 1500 pairs
of alternating tones (ABAB..., ISI=200 ms). The reproduction of the local-global paradigm
(Bekinschtein et al.,, 2009; Wacongne et al, 2011) was made by starting with 20 standard
sequences (100% AAAAB; ISI=150 ms) followed by 100 sequences comprising 70% standards
(AAAAB), 20% deviants (AAAAA), and 10% omissions (AAAA). For the omission effect, a
simulation of 1500 pairs of sounds (AA, ISI=200 ms) was also performed, with 10% of pairs

replaced by single tones (A). We compared this to the response to 500 single tones (A).
3.2.3.6 MEG experiment

3.2.3.6.1 Participants

Five healthy volunteers (3 males, 2 females, mean age: 22) with no neurological or
psychiatric problems were studied. All participants gave their written informed consent to

participate to this study, which was approved by the local Ethical Committee.
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3.2.3.6.2 Auditory Stimulation

Pairs of 50-ms-duration sounds were presented via headphones with an intensity of 45 dB

and 200 ms stimulus-onsct asynchrony (SOA) between sounds. Each sound was a purce sinusoidal

tone (either 800 Hz -low, or 1600 Hz -high).

Sounds were organized in two blocks. In each block, the frequent pair, comprising two
distinct sounds (AB), was first presented 10 times, with 1s SOA between pairs. 120 pairs were
then presented, with SOA varying between 10 and 20 s, and with 70% of frequent AB pairs, 10%
of rare AA pairs, 10% of rare BB pairs, and 10% of rare BA pairs. The identity of the A and B
tones was swapped between blocks. The pairs were pseudo-randomized so that two rare pairs
were never consecutive. Frequent pairs following immediately a rare pair are excluded from the
analysis. All stimuli were presented using E-prime software v1.1 (Psychology Software Tools

Inc.).

3.2.3.6.3 MEG/EEG recordings

Measurements were carried out with the Elekta Neuromag® MEG system (Elekta
Neuromag Oy, Helsinki, Finland) installed at the NeuroSpin center (Saclay, France), which
comprises 204 planar gradiometers and 102 magnetometers in a helmet-shaped array. ECG as
well as EOG (horizontal and vertical) were simultancously recorded as auxiliary channels. MEG
and auxiliary channels were low-pass filtered at 330 Hz, high-pass filtered at 0.1 Hz and sampled
at 1 KHz. The head position with respect to the sensor array was determined by four head
position indicator coils attached to the participant’s scalp. The locations of the coils and EEG
electrode positions were digitized with respect to three anatomical landmarks (nasion and
preauricular points) with a 3D digitizer (Polhemus Isotrak system™). Then, head position with

respect to the device origin was acquired before each MEG/EEG recording session.

Each participant was recorded for 1h15: 2 sessions of about 33min duration separated by
a short resting period. Participants were asked to keep their eyes open and to avoid eyes
movements by staring at a fixation cross. Participants were instructed to pay attention to the
auditory stimuli. Importantly, although subjects were attending to the stimuli, which may generate
additional attention-dependent components such as N2b, these components typically do not
contribute to MEG signals (Alho et al., 1998). At the end of the recording, a question list was
submitted to the participant. This list aimed to determine which regularities the participant was

able to report after recording,
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3.2.3.6.4 TPost-processing

Artefacts arising from outside the sensor array, such as those stemming from limb
movement or other ambient magnetic disturbances, were greatly reduced by the signal space
separation method (SSS) (Taulu et al., 2004). Gradiometers and magnetometers with amplitudes
continuously exceeding 3000 fI'/cm? and 3000 fI' respectively were set as bad channels and
excluded from further analysis. SSS correction, head movement compensation and bad channels

correction were applied using the MaxFilter Software (Elekta Neuromag®).

A principal-component analysis (PCA) was used for PCA-based removal of EEG and
EOG artifacts. Signal was averaged around artefacts for each channel type (EEG, axial and
longitudinal gradiometers, and magnetometers) and a PCA was performed. Main components

were saved.

The rest of the preprocessing was performed using Fieldtrip software

(http://fieldtrip.fedonders.nl/). Trials were epoched for each trial type between 200ms before
and 800ms after the onset of the first sound. A low-pass filter at 40Hz was applied and PCA
correction of cardiac and EOG artifacts was performed using the PCA components previously

computed. The trials were base-line corrected using the first 200 ms of the epoch.

After visual rejection of jump and pronounced trend artefacts, the data were averaged per
condition and per participant. The latitudinal and longitudinal gradiometers were combined by

computing the mean square root of signal at each sensor position.

3.2.3.6.5 Statistics

Statistics were performed using Fieldtrip cluster-based statistics. To examine differences
between experimental conditions, paired t-tests were performed with a threshold set at p = 0.05.
Significant samples were clustered in connected sets on the basis of temporal and spatial
proximity. Cluster statistics were calculated by taking the sum of t-values in every cluster. To
obtain a p-value corrected for the size of the search space (time X sensors), a Monte Carlo
Method was used to evaluate how extreme the cluster statistics of the two conditions were
compared to random partitions of the samples. The proportion of random partitions that
resulted in larger cluster statistics than the observed one was the p-value. The threshold was fixed

to corrected p = 0.05.

Statistics on the difference between the frequent AB condition and the rare AA condition

were computed between 0 and 300 ms after the onset of the second sound.
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3.2.3.6.6 Response amplitude

The amplitude of the response to each of the two tones was defined as the average
response over all magnetometers in the time window of the peak response for cach sound (ic
between 95 and 125ms after the onset of the first tone and between 135 and 160ms after the
onset of the second tone). The amplitudes were normalized for each subject by the response to

the first sound averaged over all conditions.

3.2.4 Results

3.2.4.1 Oddball paradigm and MMN
We first simulated the response of the network to the classical oddball paradigm. For this
simulation, the network received as inputs two stimuli A and B, corresponding to sounds of
frequencies distant enough to activate non overlapping populations of neurons. The input
neurons were supposed to be selective only to the onset of the sound and were thus stimulated
by an extra input current on input populations during 10ms. The first stimulus (“sound A”) was
presented most of the time (standard tone), and the other one (“sound B”) more rarely, with a

parametrically variable frequency (deviant tone).

The left panels of Figure 3.2-2 show the response to the standard and deviant tones,
averaged over all analyzed presentations, in the specific case where the deviant has a 10%
probability of occurtence. One can immediately observe that both the firing rates and the
synaptic currents of the prediction and prediction-error neurons (but not the sensory neurons)
are higher on deviant than on standard trials. The detailed neuronal mechanisms of this mismatch
effect are the following. First, note that the predictive population coding for the sound A starts
firing shortly before the occurrence of both standard and deviant sounds (top panel, red curve).
This activity originates from the excitatory post synaptic currents coming from the memory
ncurons: the network predicts the forthcoming occurrence of a sound A. This activity inhibits the
prediction error layer via an interneuron population. If a sound A is actually presented it cancels
most of the excitation coming from thalamic inputs, resulting in a minimal prediction-error
response. As seen in Figure 3.2-2, only a small proportion of prediction-error neurons still fire on
standard trials, primarily due to stochastic fluctuations in the onset and strength of delay and
predictive neurons, which therefore fails to full cancel the incoming signal. On the contrary,
when a deviant sound B is presented, the prediction of an A sound does not cancel the input for
a B sound. This results in a large prediction-error response which is relayed to the predictive
subpopulation coding for B in order to adapt the predictive model. It forces the neurons of the

predictive layer to discharge and causes a large NMDAr-dependent current that results in
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NMDAt-dependent plasticity. This plasticity leads to an adaptation of the internal model of the
network, reinforcing the synapses coming from the delay lines that discharged just before the

prediction error signal.
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FIGURE 3.2-2 SIMULATING THE MMN IN AN ODDBALL PARADIGM : MEAN SYNAPTIC
CURRENTS AND FIRING RATES.

The figure shows the mean simulated response to a standard tone (first column), a
deviant tone (second column), and their difference (third column) after 200 learning trials in an
oddball paradigm. Each line shows the response of a different layer of units in the model
(organized as in Figure 3.2-1). For each layet, the top part of the plot represents the synaptic
currents recefved by the subpopulation, separately for the different types of post-synaptic
receptors that mediate these currents: AMPA (continuous line), NMDA (dashed line) or GABA
(dotted line). The lower part of each plot displays the mean firing rate of each subpopulation. In
the first and second columns, subpopulations responding to the frequent A sound (90% of trials)
are represented in red, and those responding to the rare B sound (10%) in blue. The third column
shows the results of simulations where the percent of deviants was varied (10, 20 or 30%).

The MMN is the result of a subtraction of the event-related potentials (ERPs) to standard
and deviant stimuli. The ERPs are believed to be the result of a weighted integration of post-
synaptic currents. As a simplified proxy for local field potentials or EEG responses, we calculated
the difference in the sum of currents received by each layer for standard or deviant sound. Fig 2C
shows the result of that operation. We can observe that there is indeed a difference in the
currents between the two stimuli. For convenience, we will call this analog of the experimental

phenomenon the simulated MMN or sMMN.
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3.2.4.2 Behavior of the memory neurons

The memory neurons play an important role in the model. The stimulation of the
network results in the activation of the predictive population either because the incoming
stimulus is predicted or because of the transmission of prediction error. When the predictive
population is active, it triggers the set of delay-line neurons (see Figure 3.2-3). The activity
propagates lineatly in the population, such that there is a direct relation between the indices of
the neurons in the delay line and the temporal information coded by their activity. The precision
of timing changes as a function of the interval coded: the jitter in the exact time of activation of
the neurons increases with the delay coded (approximating Weber’s law). Essentially, the activity
of a neuron in a delay line codes for two properties of past inputs: the identity of a past stimulus
and the time elapsed since the occurrence of that stimulus. The particular choice we made for the
implementation of this double function (delay lines) is not fully physiologically realistic but was

made for the sake of clarity and computational economy (see Discussion).
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FIGURE 3.2-3: SIMULATED PATTERN OF NEURAL FIRING AND MEMBRANE VOLTAGE
DURING A SINGLE TRIAL OF THE ODDBALL PARADIGM.

The figure shows a typical response to a standard tone (t=0ms) followed by a deviant tone
(t=150ms). Left column, subpopulations selective to tone A; right column, subpopulations
selective to tone B. For each layer, the upper part of the panel represents single-unit membrane
voltage (one line per simulated neuron); the lower part is the average voltage over the population.
The neurons of the memory trace are reordered so that the propagation of the activity in a synfire
chain way is made obvious. “n-17,” n-2 “and “n-3” arrowed boxes refer to past stimuli whose
activity is propagating in the delay lines initiated. In the left column, “n” and “n+1” arrowed
boxes point to the initiation of a new memory trace following synchronous activity of the
predictive population corresponding to the prediction of the stimuli n and n+1 (“p1” and “p2”
arrows). In the right column, the “n+1” arrowed box shows the initiation of a new memory trace
following synchronous activity of the predictive population corresponding to the prediction error
signal of the n+1 (deviant) stimulus. After learning (see Figure 3.2-4), a reproducible pattern of
activation in memory trace produces a depolarization in the predictive layer (black arrows) via a
population of interneurons (not displayed here). The activity in predictive layer induces an
hyperpolarization in the prediction-error layer (“e2” arrow) at the approximate time when an A
sound is expected. At t=0 both prediction and input belong to the same column, resulting in a
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cancellation of excitation and inhibition inside the prediction-error layer (“el” arrow). At t = 150
ms, when a deviant stimulus B is presented, a depolarization of the prediction error population
selective to the deviant (“e3” arrow) can be observed in parallel to the hyperpolarization of the
predictive population selective to the standard (“e2” arrow). This depolarization is transmitted to
the predictive (“p3” arrow) and memory (left column “n+1” arrow) populations.

3.2.4.3 Layer distribution of current sources.

We proposed a tentative localization for each functional population within the cortical
layers, according to which prediction error populations correspond to granular layer and
predictive populations belong to supragranular layer. Javitt et al.(1996) provided relevant
intracortical local field potential data on the cortical origins of the MMN in primates. They
showed in particular that the MMN mainly originates from supragranular layers of the cortex.
The results of our simulations are consistent with these data, as they show that the sMMN
primarly originates from synaptic currents impinging upon prediction neurons (and arising from
prediction-error neurons). Importantly, note that even though there is a major difference in the
firing rate of the prediction error population between the two stimuli, it does not involve a
difference in the sum of synaptic inputs received by this layer as a whole, but rather a different

distribution of these inputs on neurons coding for sounds A and B.

Studies in mice (Ehrlichman, Maxwell, Majumdar, & Siegel, 2008), rats (D Tikhonravov
et al., 2010; Dmitry Tikhonravov et al., 2008) and monkeys (Javitt et al., 1996) also showed that
MMN is strongly affected by NMDAr inhibitors. In our simulations, the sMMN results

essentially from NMDAr dependent currents, which is consistent with this observation.

3.2.4.4 Effect of Deviant probability.

The vast literature on the MMN describes a broad set of properties (for review see e.g.
Niidtanen et al., (2007)). To evaluate the range of validity of this model, we next simulated the
response of the model in various conditions mimicking classical experimental paradigms. Our
first test concerned the effect of the proportion of deviants in the standard oddball paradigm.
Sato et al. (Sato et al, 2000) described a systematic and parametric dependency of MMN
amplitude on the probability of occurrence of a deviant sound. They showed that amplitude of
the MMN increases as the frequency of the deviants decreases. We simulated the network for
various proportions of deviant in the oddball paradigm (10%, 20%, and 30%). Results are plotted
in Figure 3.2-2.C. We can see that the amplitude of sSMMN indeed increases with the rarity of the
deviants. This reduction in sMMN comes from the increased activity of the predictive population

coding for B, as a result of its more frequent occurrence after an A, combined with a slightly
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lower prediction of the A sound that increases the average prediction error to A. This finding

closely matches the experimentally recorded ERP data .

The frequency effect shows that MMN is not an all-or-none phenomenon, but a graded
response whose amplitude reflects a parametric quantification of the amount of surprise
conveyed by the stimulus, given the past stimuli. It is consistent with an internal model that takes

into account statistical regularities.
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FIGURE 3.2-4: CORRESPONDENCE BETWEEN THE TRANSITION STATISTICS OF THE
INPUTS (LEFT) AND THE SYNAPTIC WEIGHTS LEARNED BY THE MODEL (RIGHT).

In each pannel, the statistics are given for simulations with 5%, 10%, 20% and 30% of
deviant sounds B in an oddball paradigm. Left column, conditional probabilities of receiving a
given sound (A or B) at time t, given the recent histoty of past inputs at times t-dt (dt ranging
from 0 to 400 ms). Right column, corresponding synaptic weights in the simulation at the end of
learning. Gray levels indicate the mean synaptic weights between neurons of the recurrent
memory network spiking on average at the time dt after the occurrence of an A or B sound, and
the predictive neurons coding for the arrival of an A or B sound.

3.2.4.5 Internal model of the temporal statistics in the input
The simplicity of the population of memory neurons used in our model allows us to
visualize the statistical information learned by the network (Figure 3.2-4). The only plasticity in

the model occurs at synapses between the memory neurons and the predictive subpopulations.
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The information coded in these synaptic weights can be directly compared to the actual
conditional probabilities in the actual input sequences. Figure 3.2-4 shows the mean synaptic
weights between the delay lines and the predictive sub populations as a function of the
probability of occurrence of a deviant. They are compared to the actual statistics of transition
probabilities in the inputs. Even though the plasticity rule was not specifically designed to
converge onto a conditional transition probability, we can observe a close correspondence
between the learned synaptic weights and the conditional information contained in the input. The
peaks of synaptic strength coincide with the temporal intervals between the stimuli, and their
amplitude is proportional to the probability of a transition between two stimuli almost regardless
of the probability of occurrence of the first stimulus. Thus, this observation provides a very
simple picture of what our model does: it stores, within its synaptic strengths, the conditional
probability of observing a second stimulus at a certain latency after the first. Our claim is that the

MMN reflects, in a quantitative manner, the degree of violation of such transition probabilities.

Importantly, the present model relies on STDP plasticity to internalize the statistics of the
input. Data show that the MMN develops rapidly within few presentations of the standards
(Winkler, Cowan, Csépe, Czigler, & Naitinen, 1996). To account for the MMN with such a
mechanism, it is critical that plasticity occurs on a short time scale of a few seconds. To our
knowledge, there is no data testing this prediction by trying to induce STDP on short time scales
using ecological stimulation, and this hypothesis is therefore a prediction of the model that

remains to be tested experimentally.

The time span over which the stimulus transitions can be learned is strictly limited by the
capacity of the memory. Here, we adopted as a simplifying assumption the hypothesis that the
memory trace abruptly vanishes after 400ms. In spite of this artificially abrupt transition, we
observe that synaptic weights get progressively weaker for more distant delays, due to the
increased jitter in the coding of increasingly longer temporal intervals. In a more realistic memory
network, the artificial delay lines that we used could be replaced by more realistic chaotic
temporal dynamics, as in “reservoir” or echo state networks models (Buonomano & Laje, 2010;
Buonomano, 2005; Maass, Natschlager, Markram, & Natschlager, 2002; Pascanu & Jaeger, 2010).
The memory trace would then become increasingly diluted with elapsed time, thus explaining
that, in the standard oddball paradigm, a partially preserved but increasingly reduced MMN is

observed as the time interval between tones is increased (Pegado et al., 2010).
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3.2.4.6 MDMN to repetition in an alternate signal

To further assess the properties of the model, we simulated the response to sequences
where two stimuli are presented in an alternate fashion (ABABA...). On rare occasions, sound B
is replaced by sound A. Horvath and Winkler (2004) showed experimentally that, in this
condition, a MMN is now observed to the unexpected repetition of a stimulus B, in a context in
which an alternation (ABABA...) was expected. This result is counter-intuitive for habituation
models, but entirely compatible with predictive-coding models. Indeed, we simulated the
response of the network for an input constituted by a regular alternation of A and B every
150ms. Rarely, sound B was replaced by sound A, resulting in the succession of 3 A’s in a row.
Results are plotted in Figure 3.2-5. An sMMN is observed, showing that the unexpected repeated
sound behaves as a deviant in the standard oddball paradigm. Indeed, the predictive population
coding for B increases its activity 150ms after an A occurred. In other words, the network learns
to predict that after an A comes a B at 150ms. This internalization of input statistics can also be

seen in the synaptic weights.
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FIGURE 3.2-5: SIMULATING THE MMN IN RESPONSE TO AN UNEXPECTED REPETITION
AMONGST ALTERNATING STIMULL.

Left column ; mean response of the model to a frequent AB alternation in a ABABABA. ..
stimulus. Middle column : mean response to the rare AA repetition. Right column. The difference
between the rare repetition and the frequent alternation shows a MMN elicited by the repeated
sound AA. This prediction distinguishes predictive coding models
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3.2.4.7 Blindness to global regularities

Experimentally, the MMN is known to be blind to some global regularities in the stimulus
sequence. For example, Bekinschtein et al. (2009) showed that, when participants are presented
with the repetition of a 5-tone sequence AAAAB, the final B sound continues to elicit a MMN
even though the occurrence of this sound is perfectly predictable based on the prior occurrence
of four A sounds. In other words, the MMN seems to be “blind” to the overall sequence, and
sensitive primarily to local transition probabilities, which favor the A>A transition over the A>B
transition. Figure 3.2-6 shows the result of the simulation of our network on this paradigm. 150
sequences of five inputs with ISI of 150ms were presented. 70% were AAAAB sequences 20%
AAAAA and 10% AAAA (omission of the last sound, not analyzed here). The SOA between two
sequences was 1.2s. The average response to a frequent sequence is plotted in Figure 3.2-6. Note
first that the first element of the sequence is not predicted. The time elapsed since the last sound
is superior to the span of the delay line. It is consistent with data showing that no MMN exists on
the first element of a sequence or for very long ISI (N. Cowan et al.,, 1993; Mintysalo &
Nidtinen, 1987). Second, the final B sound elicits a stronger prediction error (sMMN) than the
previous sounds. This effect arise because (1) the transition probabilities favor the prediction of
an A sounds following an A sound; and (2) the network cannot use the past occurrence of a B
sound to predict a new B sound, because the temporal interval between them (1200ms) exceeds
the time span of the memory neurons. Both the increased response to the first sound and the
final MMN tightly reproduced experimental scalp and intracranial recordings (Bekinschtein et al.,

2009; Wacongne et al., 2011)
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FIGURE 3.2-6: SIMULATING THE LACK OF SENSITIVITY OF THE MMN TO GLOBAL
REGULARITIES THAT CANNOT BE CAPTURED BY LOCAL TRANSITION STATISTICS.

Left column : mean response to a frequent AAAAB stimulus. Middle column : mean
response to the rare AAAAA stimulus. Right column : difference between the rare repetition and
the frequent alternation. A MMN continues to be elicited by the final B sound of the standard
AAAAB stimulus. Although the global sequence AAAAB is frequent and predictable, the MMN
effect is driven primarily by the rarity of the local transition A>B.

Using a closely related, yet importantly different paradigm, Sussman et al. (1998) showed
that the MMN to the deviant sound B in circular sequences AAAABAAAAB... actually
disappears if the SOA is small (100 ms) and B is presented at regular intervals. This observation is
actually consistent with the model we propose. If the time between two B sounds is short
enough, the network is able to learn the transition between two consecutive Bs, and the sMMN
disappears. Our simulated network predicts that the MMN should reappear as soon as the
temporal prediction of B is made impossible, either by spacing the B presentations beyond the

capacity of the memory neurons, or by making B appear at irregular time intervals.

3.2.4.8 MMN to omission
One of the most remarkable properties of the auditory system is that it can generate
evoked responses to an absent but expected stimulus (Hughes et al., 2001; Joutsiniemi & Hari,
1989; Raij et al., 1997; Wacongne et al., 2011; Yabe et al., 1997). We similatly tested the response

of our network to the omission of an expected sound. We simulated the response of the network
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to pairs of AB sounds (ISI = 150ms) separated by 500ms, and rarely (10% of trials) omitted the
second tone of the pair. We compared the response to such omissions to the response to
identical single A tones presented every 500ms in a block where they were the only stimulus, and
therefore no second stimulus was expected. As shown in Figure 3.2-7, the predictive currents
anticipated the artival of a second B sound and therefore produced a response to a non-existing
sound, as experimentally observed. Indeed, our results are tightly consistent with intracranial data

obtained on a similar protocol (Hughes et al., 2001).
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FIGURE 3.2-7: SIMULATING THE MMN TO THE OMISSION OF AN EXPECTED SOUND.

First column : mean response to a frequent AB pair. The network learns the predictable
local transition A>B, which results in a reduced response to the predictable B sound (see arrow).
Second column : mean response to a rare A sound presented in fsolation in the same context. The
network generates a response to the omission of the expected sound B (arrow). Third column :
response to the same isolated sound A, in a different context where it is the frequent stimulus.
Although the stimulus is physically identical to the second column, the predictive response to the
omitted B sound is no longer seen. Fourth column: difference between the second and third
columns, isolating the simulated MMN to omission.

Interestingly, although this omission response is frequently called a MMN in the
literature, our model proposes that it does not have exactly the same computational significance
as the classic oddball MMN. In a predictive coding model, the omission response reflects solely a

predictive component and not a prediction error per se, i.e. it does not reflect late, NMDA
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dependent, prediction error currents, but early predictive currents. In the oddball paradigm, the
main origin of the difference is a NMDA dependent supragranular current, whereas the model
predicts that the omission response should be resistant to competitive antagonist of NMDA

channels, once the transition probabilities are learned.

3.2.4.9 MMN to changes in duration
Until now, we only simulated the onset of the input sounds. However, in primary
auditory cortex, there are also populations of neurons that respond to sound offset (Chimoto,
Kitama, Qin, Sakayori, & Sato, 2002; Volkov & Galazjuk, 1991). In a predictive coding
perspective, the mechanism that we describe should capture not only how the onset of one
sound can be predicted from the onset of another, but also how the offset of one sound can be
predicted based on the onset of the same sound. In the present section, we show that this effect

can explain the observation of a MMN to a change in sound duration.
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FIGURE 3.2-8: SIMULATING THE MMN TO A DURATION DEVIANT.

Blue and red now represent subpopulations selectively responsive, respectively, to sound
onset and offset. Left column : response to a frequent 150 ms long sound. Middle column :
response to the same physical 150 ms sound when it serves as the rare deviant in an oddball
paradigm where the frequent sound is 200 ms long. Right column : difference between these two
responses, isolating the MMN evoked by an unexpected change in duration.
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We stimulated our network with sounds of 150ms duration, separated by a 300ms ISIL.
We now assumed that the neural population “A” responded to the onset of the stimulus, and the
“B” population to the offset. On a rare 10% of trials, the duration of the sound, that is the
interval between the onset and the offset of the sound, was changed to 200ms. We also simulated
the converse situations where standard sounds were 200ms long and deviants, 150 ms long.
Results are plotted in Figure 3.2-8, where we compare the response to two physically identical
sounds (150ms duration) that act as standards or as deviants. When the input duration deviates
from expectations, the internal model generates a prediction later than the actual arrival of the
stimulus. The response to the offset is not cancelled and the prediction error is bigger. This
prediction-error signal is followed by another component, corresponding to the response to the
omission of the later onset. Altogether, these responses capture the experimentally observed

MMN to duration deviants (Jacobsen & Schréger, 2003).

Note that, in our model, the change in duration is formally equivalent to a change in
interstimulus interval (ISI): predictions that are focused in time fail to cancel incoming inputs that
are shifted in time. Therefore the model also reproduces the experimentally observed MMN to

IST deviants (Ford and Hillyard, 1981; Nordby et al., 1988).

3.2.4.10 Prediction vs. habituation : an experimental test of the model

We have shown that a model exclusively based on predictive coding principles can
explain, on a parsimonious basis, the major properties of the experimentally observed MMN.
However, this is not the only theory proposed in the literature. May and Tiitinen (2009) defend
the theory that MMN would only be the result of synaptic habituation, that is to say, the
reduction of the amplitude of EPSPs as a result of repeated stimulation of the same synapse.
Indeed, synaptic adaptation and short term plasticity are commonly observed in vivo and in vitro
in cortex (see Calford, 2002, for review), and more specifically in auditory cortex (see e.g.
Condon and Weinberger, 1991; Brosch and Schreiner, 2000) and it is likely that a complete
theory of MMN should ultimately take such effects into account. However, is synaptic
habituation sufficient to explain all MMN findings? In their review of MMN findings, May and
Tiitinen (2009) suggest that all current MMN paradigms remain compatible with a habituation
mechanism, and argue that there is therefore no decisive evidence in favor of predictive coding
models of the MMN.. Contrariwise, our model leads us to propose one such critical test

separating the predictive coding and habituation interpretations.
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To provide a direct test of the two models, we decided to present pairs of closely
consecutive sounds AB (200 ms SOA), separated by a broad temporal interval (>10 seconds).
Occasionally, instead of the frequent AB pair (70% of trial), a deviant AA pair is presented in
10% of the trials, in which the same sound is repeated twice. The predictions of our model are
straightforward: the first A sound predicts the second B sound in the frequent AB pair, and a
mismatch negativity should therefore be generated whenever the unexpected A sound is heard
instead (i.e. when the rare AA pair is presented instead of the frequent AB pair). We confirmed
this prediction through simulations (the results are essentially identical to the alternation case

ABABA... described earlier).

The habituation model, however, makes the opposite prediction: due to synaptic
habituation, the second A sound in the AA pair should always elicit a reduced activity compared
to the B sound in the AB pair, which solicits non-habituated synapses. It could be argued that
some higher-order neurons might habituate to the presentation of the frequent AB pair as a
whole. Indeed, this is how May and Tiitinen, (2009) account for the above-describe alternation
paradigm (ABABA...). However, experimentally, the recovery time of synaptic depression is
generally of the order of a few seconds (Ulanovsky et al., 2004; Varela et al., 1997). Thus, by
making the temporal interval between pairs as long as 10 seconds, we should render this putative
effect of synaptic habituation at the level of the whole pair quite negligible, especially as
compared to the short-term adaptation to the individual sounds A in the pair AA, which are only
separated by 200ms. In this case, the habituation model can only predict a reduced brain response

to the infrequent AA pair, i.e. the converse of a mismatch negativity.

Legend of the figure 3.2-9. (A) Experimental design. Each block of trials begins with 10
Identical pairs of tones (A followed by B). A and B are pure tones of 50 ms and frequency 800Hz
and 1600Hz, counterballanced between blocks and subjects. The subject then listened to 120
pairs of tones: 70% of frequent AB pairs, and 10% of each of the rare pairs AA, BA, and BB. (B)
Comparison beween the relative response amplitude predicted by the habituation model, the
predictive coding model, and the data. In the habituation model (left column), response
amplitude is minimal to a repeated tone. In our predictive coding model (middle column)
response amplitude depends on transition probabilities between the first and second tone of the
pair. The two models generate qualitatively different prediction for the AB and AA pairs.
Observed group level responses (right column) to the two tones of each pair fit with predictive-
coding predictions (see methods for details). Error bars represent the standard error of the mean.
(C-F) MEG results for magnetometers for one representative subject (left) and for the average
over all subjects (right). Panels C and E show the sensor-level topography of the average
difference in magnetic field between the rare AA and the frequent AB pairs, 170ms after the onset
of the second sound. The most significant cluster of sensors at this time Is indicated by dots.
Panels D and F show the time course of the average response to all conditions within these
sensors. Line colors correspond to the brackets surrounding the stimuli in panel A. The black line
above the curves indicates the interval where a significant difference was found between AA and
AB.
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As a further control, we introduced two additional rare deviants, the BB and BA pairs,
which were also presented in 10% of the trials each. These pairs have the same structure as the
AA pairs and AB pairs, but are presented with equal probability. In our model, as the transition
probabilities BB and B> A are the same, the predicted evoked responses should be the same.
Thus, our model predicts a lack of any difference here, where as the synaptic habituation model

again predicts a reduced response to the repeated pair BB compared to the non-repeated pair BA

We recorded MEG signals while 5 healthy participants were instructed to listen to these
stimuli. Each subject listened to two blocs of 120 pairs of sounds. The frequencies of the two
sounds were 800Hz and 1600Hz, and were counterbalanced between blocs. Figure 3.2-9 shows
the results. In every subject, the second tone of the rare AA pairs elicited a MMN compared to
the frequent AB pairs. The difference between the two conditions was significant for each
individual subject and for both types of sensors (sujetl: Grad: 121-206ms, p < le-16; Mag : 131-
231ms; sujet2 : Grad, 131-186ms, p =0.028 ; Mag, 157-204ms, p =0.044 ; sujet3 : Grad, 127-
226ms, p =0.003 ; Mag, 126-264ms, p =0.004 ; sujet4 : Grad, 109-177ms, p =0.006 ; Mag, 110-
230ms, p =0.001 ; sujet5 : Grad, 120-164ms, p = 0.04 ; Mag, 116-260ms, p = 0.01), as well as at
the group level (Grad, 108-232ms, p<le-16; Mag, 145-193ms, p<le-16 ). The topography of the

effect was similar to the classical MEG-MMN topography, with bilateral temporal activations.

Our model predicted that no difference should exist between the two control stimuli BA
and BB. Indeed, no significant difference was observed between the two control stimuli (rare BB
and rare BA pairs, presented with equal probability). In fact, a non-significant trend existed in the
direction opposite to the one predicted by the synaptic habituation model (greater brain response
to BA). This finding can be explained by the fact that the identity of the sounds serving as A and
B was counterbalanced between the two halves of the experiment. As a result, the rare BA pair of
the second run was the frequent AB pair of the first run. We reasoned that the transition that was
well learned during the first block of trials could have continued to prevail in the second block,
especially as the pairs BB and BA were presented for a very small number of times (12 each), thus
largely preventing relearning of the actual equiprobability of the B->A and B=>B transitions. We
confirmed this hunch by separately analyzing the first and second halves of our experiment.
When restricted to the first half, the two control stimuli BA and BB did not present any
identifiable difference, whereas the same two conditions presented a stronger (yet non-
significant) difference in the second half. Note again that the latter difference (stronger response

to BB) was in the direction opposite to that expected from a habituation mechanism.
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The experimental data are therefore consistent with the predictions of our model in great
detail and in every single subject. To explain the data with synaptic habituation, one would have
to postulate the existence of neurons that (1) respond specifically to the transition between the
AB sounds; (2) present significant habituation after 10s; and (3) whose habituation to AB pairs is
strong enough to override the counter-effect of habituation to the AA pair for neurons that
respond only to frequency A. The latter assumption is particularly implausible because neurons
responsive to A alone are likely to be much more numerous than neurons responsive to the AB
pair as a whole, and that their habituation would be likely to be much stronger, given that the A-
A delay of 200 ms is much shorter than the AB-AB delay of 10s or more. Furthermore, the
responses to BA and BB pairs provide no support for a habituation to individual B sounds. We

therefore conclude that any habituation account of our data seems highly implausible.

3.2.5 Discussion

In this study, we developed a spiking neuron model of mismatch negativity, based on a
predictive coding approach. We identified key properties of the mismatch effect and simulated
the network response to a variety of test sequences. In particular, our model reproduced the
known reduction in MMN amplitude when the frequency of the deviants increases, the MMN to
repetition in an alternate sequence, and the response to the omission of an expected sound.
Without any additional assumption, the model was able to account for the MMN to a change in
stimulus duration or in ISI.  We proposed a precise cortical localization of the neuronal
populations postulated in the model and showed that our simulated currents sources were
consistent with actual electrophysiological data. We also showed that the model acquired a
quantitative synaptic representation of transition probabilities. An alternative model hypothesizes
that MMN arises purely from synaptic habituation. We identified a precise experimental context
where the two models lead to opposite predictions, and showed that MEG data from human

participants fully support our predictions, with no evidence of a synaptic habituation effect.

3.2.5.1 Predictions versus synaptic habituation
In the present study, we showed that a model based on pure predictive coding, without
any synaptic habituation component, could account for a large range of effects. It is important to
note that even though the habituation and predictive/memory accounts of MMN have been
often opposed (May & Tiitinen, 2009; Niitanen et al., 2005; Winkler, 2007), the two hypotheses
are not logically exclusive. It remains possible that the two processes concur to the final MMN

effect, possibly in different proportions according to the paradigm. However, the conclusions of
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the MEG experimental test of our model are fully consistent with a purely predictive account of

MMN, and argue against a strong contribution of habituation effects.

Other recent studies argue in favor of a negligible role of habituation in the MMN effect.
Recent human MEEG recordings indicate that the omission response observed when an
expected sound fails to occur conforms to the predictions of hierarchical predictive coding
models (Wacongne et al., 2011). In rodents, Farley et al., (2010) showed that stimulus specific
adaptation is indeed observed in auditory cortex but that its properties differ sharply from those
of the MMN, in terms of sensitivity to NMDA antagonists or elicitation of a novelty response.
Taken together, these results provide strong evidence against a predominant role of synaptic
habituation in the MMN effect, and argue for the predictive coding hypothesis. Similar
conclusions have been recently reached by other groups (Todorovic, van Ede, Maris, & de Lange,

2011).

3.2.5.2 Extensions and limits of the model
In this study, we limited our simulations to two cortical columns coding for features
distinct enough that thalamic inputs did not stimulate both columns at the same time. The model
could be easily extended to a more continuous coding of tone frequency, where each neuronal
population codes for one preferred frequency but also responds more weakly to neighboring
frequencies. This would give an account of the increase of MMN amplitude with the difference

in frequency between standards and deviants (Sams, Paavilainen, Alho, & Niitinen, 1985) .

Predictive coding requires that a memory of the recent past be used to predict the future.
For the sake of simplicity, we adopted here the simplest hypothesis for a neural memory: a delay
line. Although this assumption may not seem very realistic, we only argue here that there must be
neural populations whose activity contains information about both the identity of recent stimuli
and the time elapsed since they occurred. As noted by Buonomano (2005), these neurons need
not be ordered in cortical space, but could be intermixed and arise from the partially chaotic
temporal dynamics of cortical activation spread. Electrophysiological recordings from auditory
cortex slices suggest that such a code might exist within the auditory cortex (Buonomano, 2003):
when cortical neurons were stimulated, they triggered other neurons with reliable delays, without
any correlation between response delays and the cortical distance from the neuron initially
stimulated. Such a code would be ideal to support a memory of the recent past, as required in our
model. It would allow the same neuronal populations to code tonotopically for the present and

non-tonopically for the past.
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According to this hypothesis, our entire model would fit within a single cortical column,
and could constitute a basic building block for sensory predictive learning in various sensory
systems. As noted by Friston et al. (1995), the closely similar neuronal architecture of cortical
layers throughout the cerebral cortex, supports the view that a similar computational principle of
predictive coding may apply to the multiple hierarchical levels of brain’s cortical areas. Thus, our
model may be used to account for higher-order instances of mismatch responses, such as the
distinct MMNs evoked by a change in phoneme versus speaker (Dehaene-Lambertz, 1997; Giard
et al., 1995) , or the mismatch responses observed outside the auditory modality, either in visual
(Pazo-alvarez et al., 2003; Tales et al., 1999), olfactive (Krauel et al., 1999; Pause & Krauel, 2000)
and somatosensory (Kekoni et al.,, 1997; Shinozaki et al., 1998) modalities or even in a sensory-

motor context.

Our model makes clear predictions as to the kind of regularities that should be reflected
by the MMN. It is only able to predict incoming stimuli by acquiring an internal representation of
the transition probabilities between their onsets and offsets, over a window of a few hundreds of
milliseconds. Thus, it fails to detect deviance from a rule that cannot be described at the level of
transition probabilities. This statement should help clarify the issue of whether the MMN reflects

“rule-based learning”, which is often confused in the present literature.

For example, Sussman et al., (1998) showed that when the oddball paradigm was slightly
modified so that deviant sounds B occurred regularly at short-enough intervals between the
standards (AAAABAAAABAAAAB...), the MMN disappeared. Yet in a seemingly contradictory
finding, using a minimally different paradigm, Bekinschtein et al ( 2009) showed that an AAAAB
rule could not be acquired by low-level sensory processing, since the final B sound continued to
elicit a MMN even when the entire AAAAB sequence was fully predictable. According to our
model, the main difference between the two protocols is the long additional temporal gap
between two 5-tone sequences that exist in the Bekinschtein paradigm, and which disrupts any
recent memory capable of predicting the final B sound. Thus, the apparent inconsistency in the
results is easily understandable if we consider the size of the memory delay needed for temporal
prediction. This example stresses the importance of carefully assessing the matrix of transition

probabilities when trying to design experiments probing rule learning.

An MMN-like response was also recorded for deviance from more abstract kinds of
regularities such as tone repetition or ascending/descending tones (Endress, Dehaene-Tambertz,

& Mehler, 2007; Korzyukov, Winkler, Gumenyuk, & Alho, 2003; Paavilainen et al., 1999).

Whether or not such rules are learnable by our network depends on the specifics of the
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experimental design. To make the rule unlearnable by transition probabilities, the design should
reserve a broad frequency band never presented during training, or over which the probabilities
of ascending and descending tones are equal. Otherwise, given enough training exemplars, our
network will learn the “rule” and even generalize to frequencies that are novel but close enough
to the training frequencies. These conditions were not fulfilled in many previous papers. If they
were, however, and if the MMN resisted to such a control, this would provide definitive evidence
that the mechanisms underlying the MMN go beyond our basic transition-probability model. The
model might be extended, however, by postulating higher-order neurons sensitive to melodic
contours (e.g. any ascending contour). In general, the coding properties of the input neural
populations will have a crucial impact on the kind of regularities that can be detected by our

model.

3.2.6 Conclusion

The idea that the brain is not a passive input-output device, but acts as a predictive
system capable of anticipating on the future, has a long history in ethology, psychology and
neuroscience and has been proven useful in many distinct domains of perception, cognition and
action (Stanislas Dehaene & Changeux, 1991; Hosoya et al., 2005; Schultz et al., 1997; R.S. Sutton
& Barto, 1998b) . Understanding the neural mechanisms by which the brain generates predictions
is therefore an important goal for neuroscience. Predictive coding models of the MMN have
been previously proposed (Friston et al., 2006; Friston, 2005; Garrido, Kilner, Kiebel, & Friston,
2009; Spratling, 2010), but only as abstract mathematical descriptions without a precise
neurobiological implementation (Marreiros, Kiebel, Daunizeau, Harrison, & Friston, 2009)
(although see (Fiorillo, 2008)). The present model resolves the difficulties associated with a
neurobiological implementation of predictive coding. We show how the subtraction of observed
versus predicted signals can be implemented through a specific architecture of inhibitory
interneurons. We also show that a NMDA-dependent STDP plasticity rule is well adapted for
learning of stimulus associations, leading to the prediction of a precise and essential contribution
of NDMA receptors to predictive coding. It could generalize much beyond the specific domain

of the MMN for which it was presently tested.
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CHAPTER 4

ARTICLE 2: EVIDENCE FOR A HIERARCHY OF
PREDICTIONS AND PREDICTION ERRORS IN
HUMAN CORTEX

Published in PNAS(2011)

4.1 Introduction to the article

4.1.1 Goal of the study
In the previous chapter, 1 proposed a model based on predictive coding principles that
was able to reproduce the main properties of the MMN. A key prediction of this model is that

the response observed when an expected tone is omitted reflects purely predictive activity.

The hierarchical predictive coding framework proposes that the cortical canonical
microcircuit implements a predictive coding module that is replicated at different levels of the
cortical hierarchy. Predictions errors would passed on to higher levels of the cortical hierarchy
where the new predictive module would attempt to cancel out residual errors. The existence of
multiple predictive modules that share similar computational principles is consistent with the fact
that the MMN response can be observed in response to violations of temporal regularities
regarding a large number of stimuli features and in different sensory modalities. However, there

is no data showing hierarchical predictive responses.

The paradigm developed by Bekinschtein et al. (2009) used sequences that presented
nested level of regularities. The data showed that violation of each level of regularity elicited
different responses. This study adapts this paradigm, adding trials with omission of a stimulus to

test the hypothesis that multiple level of regularity do generate multiple omission responses.

4.1.2 Reference

Wacongne, C., Labyt, E., Van Wassenhove, V., Bekinschtein, T., Naccache, L., &
Dchaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human
cortex. Proceedings of the National Academy of Sciences, 108(51), 20754-59.
doi:10.1073/pnas. 1117807108
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4.2 Article

4.2.1 Abstract

According to hierarchical predictive coding models, the cortex constantly generates
predictions of incoming stimuli at multiple levels of processing. Responses to auditory
mismatches and omissions ate interpreted as reflecting the prediction error when these
predictions are violated. An alternative interpretation, however, is that neurons passively adapt to
repeated stimuli. We separated these alternative interpretations by designing a hierarchical
auditory novelty paradigm and recording human electro- (EEG) and magneto-encephalographic
(MEG) responses to mismatching or omitted stimuli. In the crucial condition, patticipants
listened to frequent series of four identical tones followed by a fifth different tone, which
generates a mismatch response. Because this response itself is frequent and expected, the
hierarchical predictive coding hypothesis suggests that it should be cancelled out by a higher-
order prediction. Three consequences ensue. First, the mismatch response should be larger when
it is unexpected than when it is expected. Second, a perfectly monotonic sequence of five
identical tones should now elicit a higher-order novelty response. Third, omitting the fifth tone
should reveal the brain’s hierarchical predictions. The rationale here is that, when a deviant tone
is expected, its omission represents a violation of two expectations: a local prediction of a tone
plus a hierarchically higher expectation of its deviancy. Thus, such an omission should induce a
greater prediction error than when a standard tone is expected. Simultaneous EEE-MEG
recordings verify those predictions, and thus strongly support the predictive coding hypothesis.
Higher-order predictions appear to be generated in multiple areas of frontal and associative

cortices.
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4.2.2 Introduction

According to the “predictive coding” hypothesis , the architecture of cortex implements a
top-down prediction algorithm that constantly anticipates on incoming sensory stimuli. Each
cortical area houses an internal model of the environment, which is generated by compiling the
statistical regularities that govern past inputs. This model is used to generate top-down
predictions that are compared to novel incoming inputs. Only the difference, called the
“prediction error”, is transmitted to higher cortical stages, where it can be used to adjust the
internal model. Importantly, this process can be hierarchically organized (Friston, 2005; Kiebel et
al., 2008; Kiebel, Kriegstein, et al., 2009; R. P. Rao & Ballard, 1999), such that the prediction
error arising from a given area in turn serves as the input to the next area. The outcome is an
active system that constantly updates models of its environment at multiple hierarchically

organized levels.

While considerable evidence supporting predictive coding has been provided at the
perceptual level (e.g. 5-10), here we specifically set out to test the notion of a hierarchy of
predictions, using a novel variant of the classical auditory violation paradigm (Bekinschtein et al.,

2009).

When a rare sound is introduced within a sequence of repeated frequent sounds, it elicits
a novelty response in the event-related potential, which has been termed the mismatch negativity
(MMN) (Naatinen et al, 1978). This response is interpreted, within the predictive coding
framework, as reflecting the violation of a prediction: the MMN would directly reflect the cortical
prediction error signal (Friston, 2005; Garrido et al., 2007; Garrido, Kilner, Kiebel, et al., 2009;
Winkler, 2007). This interpretation is supported by sophisticated modeling studies which suggest
that the MMN can only be accounted for by postulating a top-down predictive contribution
(Garrido et al., 2007; Garrido, Kilner, Kiebel, et al., 2009; Parmentier et al., 2011; Todorovic et
al., 2011). However, an alternative interpretation exists, whereby the MMN would solely reflect a
passive, bottom-up process of adaptation to the repeated stimuli (Garrido, Kilner, Stephan, &
Friston, 2009; May & Tiitinen, 2009). According to this interpretation, the repeated stimulus, by
constantly stimulating the same afferent pathways, leads to synaptic adaptation and therefore to a
reduced activation. The rare stimulus, by contrast, activates fresh afferents which have not been
adapted, resulting in a distinctly larger response. Thus, mismatch responses could reflect

adaptation rather than predictive coding.

How could adaptation and predictive models be distinguished? An interesting variant of

the mismatch paradigms consists in omitting the expected stimulus, rather than substituting it
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with another stimulus. It is a rather remarkable fact that the auditory cortex generates extensive
responses locked to the absence of a predictable sound. This omission response can be detected
by a variety of methods, including event-related potentials (ERPs) (Yabe et al., 1997), magneto-
encephalography (MEG) (Raij et al.,, 1997), and intracranial recordings (Hughes et al., 2001).
Omission responses fit quite naturally within the predictive coding framework: if stimulus-evoked
brain activity indexes the difference between a sensory signal and its top-down prediction, then
when the sensory signal is omitted, the evoked activity should reflect the pure prediction signal
within the same cortical area (Bendixen, Schroger, & Winkler, 2009a; den Ouden, Friston, Daw,
Mclntosh, & Stephan, 2009; Todorovic et al., 2011). Omission responses seem more difficult to
explain within the adaptation framework. They might reflect the automatic rebound of a cortical
oscillator entrained by the rhythm of the past stimuli (May & Tiitinen, 2009), but this hypothesis
meets difficulties explaining that omission responses are still present in non-rhythmic paradigms,
for instance when omitting the second tone of a pair (Bendixen et al., 20092a; den Ouden et al.,

2009; Hughes et al., 2001; Todorovic et al., 2011).

— = x100
xxxxx block 7599
Jdedda
1 r_'£| ms 700to — x25 Local standard
] [ ] D',a’a
J.IJx I 1000 ms + E E'|5
Local st{;da rd : IJ‘JJ‘i -
#= Local deviant au
IJJ"J‘ i 10%)
Omissioa.‘:::’ ] a
— =1 x100
xxxxY block '-J"J“J‘J“: =+ 75% 5
5 E- Local deviant -E
700 to - - 15%
Jdddd® 00oms | +
Local devianf® m; -{cﬂ;le;ﬁ:dJ;rd |
-IIIJ. - 10%
| e Crrnis.ztsio:j - _
Omission block
850 to s —100%2 s
dddd 15m |+ ||JJdde
Omission | Omission - =

FIGURE 4.2-1 : EXPERIMENTAL DESIGN.

Three auditory stimuli could be presented: local standards (a series of five identical tones,
denoted xxxxx), local deviants (four identical tones followed by a different tone; denoted xxxxY),
and omissions (four identical tones; denoted xxxx). These stimuli were presented in three types of
blocks where one of them was presented with a high frequency (initially 100%, then 75%), while
the others were rare. This design thus separated the local deviancy of the fifth sound from the
global deviance of the entire sequence, and also allowed to probe whether the omission effect
differed when a standard or a deviant tone was expected.
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Omission responses might therefore constitute a critical test of the predictive coding
framework. Here, we capitalize on omission responses, combined with a hierarchical violation-of-
expectation paradigm, to demonstrate that auditory signals are indeed submitted to multiple,
hierarchically organized stages of top-down prediction. We use a recently introduced auditory
paradigm that can dissociate two types of predictions, based on local probabilities versus global
rules (Bekinschtein et al., 2009). In a given block, a frequent sequence of five tones is presented
(75% of trials), interspersed with rare violations (15%) in which the frequency of the fifth tone
deviates from the expected, and with rare omissions (10%) in which the fifth tone is simply
omitted (Figure 4.2-1). Crucially, on some blocks the frequent sequence is of the “xxxxY” type,
L.e. four identical tones followed by a distinct one. ERP recordings reveal that the fifth, locally
deviant tone, although fully expected, still elicits a MMN. However, only the rare violation
sequence, which contains five identical tones “xxxxx”, elicits a distinct and later novelty response,
the “late positive complex” or P3B wave (Bekinschtein et al., 2009). In the context of hierarchical
predictive coding models, this observation can be interpreted as reflecting a “violation of a
violation”: the monotonous “xxxxx” sequence is surprising because it fails to contain the fifth
deviant tone, which normally generates a MMN. Hierarchical predictive coding models thus
hypothesize two levels of predictions in this situation: a first low-level expectation, based on local
transition probabilities, incorrectly predicts a fifth “x” tone after the first four “xxxx”, thus
generating a MMN, while a second, higher-level expectation, based on the knowledge of the

overall “xxxxY”” rule, cancels the surprise elicited by the first level.

A simple prediction ensues. When we omit the fifth sound, thus presenting an identical
serics of 4 tones “xxxx”, the observed omission response should wvary according to the
expectation induced by the overall context. On “xxxxY” blocks, where two successive
predictions are generated, we should observe a large event-related response to omission,
composed of superimposed waves corresponding to the predictions of the “x” tone and of the
MMN. On “xxxxx” blocks, however, only the first of these predictions should exist, and
therefore the event-related response to omission should be significantly smaller. We tested this
hypothesis by recording simultaneous EEG and MEG signals to these stimuli, relative to a low-

level control where the omission of the fifth tone was entirely expected.
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4.2.3 Methods

4.2.3.1 Subjects
Ten healthy subjects (mean age 26 * 4.5 years; sex ratio 1) with no known neurological or
psychiatric pathology were studied. All subjects gave their written informed consent to participate

to this study, which was approved by the local Ethical Committee.

4.2.3.2 Auditory Stimuli

Two tones composed of 3 superimposed sine waves (either 350, 700, and 1400 Hz, tone
A; or 500 Hz, 1000 Hz, and 2000 Hz, tone B) were synthesized. They were 50-ms long, with 7-
ms rise and fall times. Series of four or five such tones were presented via headphones with an
intensity of 70 dB and a 150 ms stimulus onset asynchrony. The series could comprise 5 identical
tones (local standard, denoted xxxxx), 4 identical tones and a fifth different one (local deviant,
denoted xxxxY), or only 4 identical tones (omission, denoted xxxx). Series were presented in
semi-randomized blocks of ~3-minutes duration, separated by silences of variable durations (700-
1000 ms), during which one series was designated as frequent and the other as rare (see Figure
4.2-1). Each block started with 25 frequent series of sounds to establish the global regularity
(global rule). Of the next 100 occurrences, 75% were the frequent series, 15 % the rare series and
10% the omission series. A separate block contained 125 presentations of the omission sequence
(expected omissions). Each participant received a total of 14 blocks of 125 trials each (3
replications of the four rules xxxxY and xxxxx with either x=A and Y=B, or x=B and Y=A, plus
two xxxx omission blocks with x=A for one and x=B for the other). All stimuli were presented

using E prime v1.1 (Psychology Software Tools Inc.).

4.2.3.3 Simultaneous EEE-MEG recordings

Measurements were carried out with the Elekta Neuromag system (Elekta Neuromag Oy,
Helsinki, Finland) NeuroSpin, which comprises 204 planar gradiometers and 102 magnetometers
in a helmet-shaped array. The built-in EEG system (64 eclectrodes) was used to record
simultaneously EEG and MEG. An electrode on the tip of the nose was used as EEG reference.
ECG and EOG (horizontal and vertical) were simultancously recorded as auxiliary channels.
MEG, EEG and auxiliary channels were low-pass filtered at 330 Hz, high-pass filtered at 0.1 Hz
and sampled at 1 KHz. The head position with respect to the sensor array was determined by
four head position indicator coils attached to the scalp. The locations of the coils and EEG
electrode positions were digitized with respect to three anatomical landmarks (nasion and
preauricular points) with a 3D digitizer (Polhemus Isotrak® system). Then, head position with

respect to the device origin was acquired before each block. Subjects were asked to keep their
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eyes open, to avoid eyes movements by fixating a cross, and were constantly reminded to pay
attention to the auditory stimuli. At the end of the recording, a questionnaire assessed which
regularities and violation types had been detected. All subjects reported detecting both rare sound

series and omissions.

4.2.3.4 Data analysis
Signal Space Separation correction, head movement compensation and bad channels
correction were applied using the MaxFilter Software (Elekta Neuromag). Principal Components
Analysis (PCA) was used to remove EKG and EOG artifacts. Using Fieldtrip software

(http://fieldtrip.fcdonders.nl/), trials were epoched from 200ms before to 1300ms after the

onset of the first sound, low-pass filtered at 40Hz, and baseline corrected using the first 200 ms
of the epoch. After visual rejection of artefacts, the trials were averaged per condition and per
subject. The latitudinal and longitudinal gradiometers were combined by computing the mean

square root of the signals at each sensor position.

Cluster-based statistics were performed using Fieldtrip software. Statistics were computed
between 50 and 250ms for mismatch and omission effects, between 50 and 700ms for the global
effect and between 50 and 500ms after the onset of the omitted sound for late omission effect.
The threshold was fixed to p = 0.05, corrected for the size of the search space (time and sensors).

We only report the most significant clusters for each sensor type.

4.2.3.5 Source reconstruction
Anatomical T1-weighted magnetic resonance images (MRI) were obtained for each
participant after the MEG experiment with a 3-T Siemens MRI scanner, with a resolution of 1 x
1 x 1.1 mm. Head position indicators and the digitized head shape were used for the co-
registration of the anatomical images with the MEG signals. Grey and white matter were then

segmented using BrainVisa / Anatomist software package (http://brainvisa.info/). The scalp and

cortical surfaces were reconstructed for each subject wusing BrainStorm software
(http://neuroimage.usc.edu/brainstorm/ ). Models of the cortex and of the head were used to
estimate the current-source density distribution over the cortical surface. The forward model was
computed using an overlapping-spheres analytical model. The inverse model was constrained to a
minimum-norm solution (weighted minimum-norm current estimate, wWMNE). Sources were
reconstructed at each time point. For each subject, the sources were then projected to a standard
anatomical template (MNI). Contrasts between conditions were normalized using z-score

normalisation.
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4.2.4 Results

We first examined our data for the presence of a local mismatch response evoked by the
deviance of the fifth tone. Cluster analysis, implemented in FieldTrip software, was used to
identify clusters of neighboring sensors where a significant difference between local standards
and local deviants was seen over several consecutive time points (see Methods). This analysis was
performed separately for EEG sensors, MEG magnetometers (MEGm), and MEG gradiometers
(MEGg), using the root mean square of the two orthogonal gradiometers available at each
position (Figure 4.2-2). The results revealed an early effect of local deviance, peaking at around
120 ms after the onset of the fifth deviant tone, and which reached corrected significance for
each sensor type (EEG: range of first significant window 85-150 ms, p=0.002; MEGg, 80-170
ms, p<0.0001; MEGm, 82-150 ms, p=0.02).

Figure 4.2-2 shows the corresponding topography and time course of a relevant sensor
for each block type. In both xxxxx and xxxxY blocks, the response to local deviance has the
topography of a classical mismatch field, with bilateral responses over the left and right temporal
regions. The mismatch response was significant and with the same sign in each block (block
xxxxx : EEG, 85-180 ms, p=0.002; MEGg, 84-150 ms, p<0.0001; MEGm, 76-130 ms, p<0.0001;
block xxxxY : MEGg, 80-140 ms, p<0.0001). This response thus indexes a first local level of
auditory novelty detection which is blind to global context. Indeed, in xxxxY blocks, although the
deviant “Y”” sound could be fully expected, the mismatch response to the final Y tone remained.
Nevertheless the MMN amplitude was reduced on xxxxY compared to xxxxx blocks (Figure
4.2-2.C; EEG: 134-190 ms, p = 0.014; MEGg, 103-700 ms, p<0.00001; MEGm, 95-210 ms,
p=0.000).
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FIGURE 4.2-2: SENSOR-LEVEL TOPOGRAPHY AND TIME COURSE OF THE BRAIN RESPONSES
TO DISTINCT FORMS OF NOVELTY.

In each panel, the 3 topographies show the spatial distribution, on a top view of the scalp,
of EEG signals (left), MEG gradiometers (norm; middle), and MEG magnetometers (right) at the
time indicated (vertical dotted line in the graphs). Graphs show the time course of these signals
as recorded from an individual sensor (marked by a dot on the corresponding topographical
map). A, B: effects of local mismatch: bilateral auditory areas show a rapid response to the fifth
deviant tone, whether it is rare (xxxxx blocks, panel A) or frequent (xxxxY blocks, panel B). C:
effect of global deviance: a temporally and spatially extended response, corresponding to the P3b
In event-related potentials, is seen in response to rare sequences. D, E, F: responses to omission
of the fifth tone (omiXX : rare omissions in the XXXXX block, omi XY : rare omissions in the
XXXXY block, omi exp : expected omissions in the control omission block). The brain responds
to omission by emitting a sharp response whose amplitude is smaller when a standard was
expected (D) than when a deviant was expected (E), resulting in a significant difference (F).
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We then examined the presence of a second-level novelty response, dependent on the
frequency of the overall sequence rather than of individual tones. On all sensor types, rare
sequences differed from frequent sequences on a later time window than the MMN (EEG, 327-
540ms, p<0.00001; MEGg, 103-600ms, p<0.00001; MEGm, 275-600ms, p<0.00001). Note that,
on xxxxY blocks, this higher-order novelty response was elicited by the monotonic but
unexpected xxxxx stimulus relative to the frequent xxxxY stimulus, leading to a complete
inversion of the classical mismatch response (Figure 4.2-2B). On such trials, a sequence of two
successive novelty events, hereafter termed local and global effects, was thus revealed. In EEG,
as previously described, the second, global effect has the classical topography and latency of the
P3b component, which differs strongly from the MMN (compare 2A and 2C). Surprisingly, in
MEG, these two events have very similar topographies, both dominated by bilateral responses

over temporal cortices.

The next step was to examine omission responses. The omission effect was computed by
recording the brain responses to rare omissions (presentation of only four identical tones instead
of five), separately within xxxxx and xxxxY blocks, and comparing them to a block where only
sequences of four identical tones were presented (expected omissions). The results showed an
early effect of unexpected omission peaking around 100 ms after the onset of the omitted tone
(i.e. 250 ms after the onset of the fourth tone), with a topography similar to the MMN
topography for all sensors types (Figure 4.2-2D, 2E). The early latency of this peak response to
an absent stimulus is consistent with the hypothesis that this response corresponds to an
unfulfilled prediction. The omission effect was significant in both block types (xxxxx blocks:
significant only for MEGg, 76-200ms, p<0.0001; xxxxY blocks: EEG, 104-160ms, p = 0.022;
MEGg, 150-200ms, p<0.0001; MEGm, 150-200ms, p = 0.002). In both blocks, the difference
between rare versus expected omissions was also significant in a later time window with a
topography similar to the above global effect (xxxxx blocks: EEG, 425-440ms, p= 0.032; MEGg,
327-500ms, p<0.0001; MEGm, 234-500ms, p<0.0001; xxxxY blocks : MEGg, 134-500ms,
p<0.0001 ; MEGm, 272-500ms, p<0.0001 ). Thus, the omission effect consists of a sequence of
early and late responses, the latter coinciding with the P3B-like global effect observed in all rare
conditions (rare sequences and rare omissions). This finding is consistent with the hypothesis that
this global effect is a correlate of detection of any deviance from the rule currently entertained in

working memory.

Finally, we compared the amplitude of the omission effect between the xxxxx and xxxxY

blocks, testing the prediction, unique to hierarchical predictive coding models, that the early
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omission effect should be bigger on xxxxY blocks when a deviant stimulus is expected. The
difference between omissions is plotted in Figure 4.2-2F. The ecarly omission response was
significantly higher in amplitude for xxxxY blocks than for xxxxx blocks (EEG: 109-130 ms,
p=0.03, and MEGg, 68-80 ms, p=0.042). Figure 4.2-2D and 2E show the topography of the
difference between omissions, indicating a slightly more anterior source for the MEG omission

effect on xxxxY than on xxxxx blocks.
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FIGURE 4.2-3: SOURCE MODELING OF THE EFFECTS.

The reconstructed signals from right auditory cortex (A) and right precentral cortex (B)
are shown. The top panel shows the signals in each of the seven experimental conditions, and the
bottom panel subtractions of each rare sequence (identified by the same color as in the upper
Plot) minus the frequent sequence of the same block, and of omissions in each block type (same
color as in the upper plot) minus the expected omission from the control block. (C and D) z-score
corrected source reconstruction of the local effect (C) and effect of deviance from global rule on
Inflated cortex (D). Local effect (C) is the average effect of deviance from local regularity over
both types of blocks at time = 110ms. Global effect (D) is the average of contrasts between rare
and frequent trials, at constant stimulus (rare violation - frequent sequences and rare omissions —
expected omissions), averaged over the late period of the trials (300-600ms). The source in
auditory cortex shows a shatp and rapid response to local deviance, followed by a late and
sustained response to global deviance. The source in precental cortex shows only the late
sustained response. Both effects are present on omission trials (red/pink curves), with greater
Initial response to omissions in xxxxY blocks (thin red curve) compared to xxxxx blocks (thick
pink curve).
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4.2.5 Discussion

By recording event-related potentials (ERP) and magnetic fields (ERF) while
manipulating and violating the participants’ auditory expectations at two distinct levels, we
obtained direct evidence that an active, predictive and hierarchical system underlies the brain’s

response to auditory stimuli.

We used a minimal norm estimation method to reconstruct distributed cortical sources
based on MEG data (similar results were obtained when combining EEG and MEG data). The
results dissociated regions sensitive to local and global regularities (Figure 4.2-3). Maximal
responses to incoming tones arose from bilateral superior temporal cortices, in the vicinity of
Heschl's gyrus, and the underlying segment of the right superior temporal gyrus. These regions
also showed the maximal response to local deviants (maximum z-score, in Talairach coordinates:
right hemisphere, x = 45 mm, y = -19 mm, z = 13 mm; left, x = -48 mm, y = -16 mm, z = 13
mm) and to omissions (same sources) (see Figure 4.2-3C). Another set of regions did not respond
strongly to incoming tones, but responded in a categorical manner to global deviance. The
activated sites were highly distributed in bilateral anterior and posterior superior temporal gyri,
supramarginal gyri, dorsolateral, inferior, polar and ventromesial prefrontal cortices, anterior
cingulate, and the supetior parts of the precentral and postcentral gyri (see Figure 4.2-3D). As
shown in Figure 4.2-3B, their activity was minimal for frequent sequences, but converged
towards a higher and temporally sustained level of activity whenever a rare sequence or omission
was presented. Finally, we examined the cortical origins of the difference between the omission
effects on xxxxY versus xxxxx blocks. Consistently with the trend seen on sensor-level
topographies, the maximal difference between omissions originated from a more anterior
temporal region than either the MMN or the basic omission effect, lateralized to the right

hemisphere (x = 53 mm, y = -2 mm, z = 4 mm).

First, we replicated the earlier finding of a double dissociation between the early
mismatch response (MMN) and a later, temporally extended and distributed response (P3B)
(Bekinschtein et al., 2009). The MMN was sensitive to local violations of transition probabilities,
and was essentially blind to higher-order regularities, since it continued to be evoked, at a reduced
level, by a fifth deviant tone that could be expected (in the xxxxY blocks). Contrariwise, we
observed a late (~300 ms) divergence which reflected solely the deviance of the overall sequence

rather than of its individual component tones.

While MEG and EEG revealed functionally and temporally similar responses, their
spatial pattern diverged. The EEG topographies differed strongly for the MMN and P3 stages,
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but in MEG these two stages showed similar topographies involving mainly temporal sources.
This difference in sensitivity to sources between MEG and EEG stresses the interest of
combining the two methods (Cohen & Cuffin, 1983). Overall, the results suggest an initial stage
confined to temporal cortex, and a later stage where this activity is amplified and expands into
distributed additional regions, particularly in prefrontal and parietal cortices (Bekinschtein et al.,
2009). The weak influence of the latter sources on MEG topography might be due to their

multiplicity and dispersion.

It is important to note that the previous results by Bekinschtein et al. (Bekinschtein et al.,
2009) in a similar paradigm were observed in the context of a counting task where participants
counted the rare stimuli. Thus, the P3b response that they observed on rare compared to
frequent trials could have arisen from the counting process, which occurred on global deviant but
not on frequent trials. By contrast, the present findings were obtained while the participants’ only
instruction was to attend to the stimuli. Thus, our results show that the counting task is not
necessary, and that the late P3B response reflects, at least in part, the response of a higher-order

novelty-sensitive system.

Our findings refine earlier results by showing that the local and global effects are not fully
independent (Bekinschtein et al., 2009), but interact in an early time window. Specifically, the
local mismatch response was significantly smaller in xxxxY blocks than in xxxxx blocks. There
are at least two interpretations of this effect. First, it could be solely due to a difference in
transition probabilities. Indeed, MMN amplitude decreases when the probability of the deviant
increases, and in the blocs where the xxxxY sequence is frequent, the transition probability x>Y
is necessarily higher relative to xxxxx blocs. However, this effect is also fully consistent with the
hierarchical predictive coding hypothesis, which predicts that on xxxxY blocks, a second-level
prediction can be used to partially cancel out the first-order error novelty response to the

expected deviant sound Y.

While the theoretical implications of this early modulation of the initial mismatch
response are therefore ambiguous, the complete inversion of the mismatch signals observed in a
later time window argues strongly for a hierarchical process. Indeed, on xxxxY blocks, the xxxxx
stimulus becomes the rare stimulus and elicits a P3B-like brain response. The fact that a stimulus
that consists solely of a repetition of 5 identical tones (xxxxx) can elicit a novelty signal, if the
participants expected a different sequence, is in itself highly suggestive that the brain operates as a

multi-level predictive system sensitive to prediction errors.
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Having established the existence of a hierarchy of at least two novelty systems, we used
sound omissions to provide a stronger test of the hypothesis that these novelty responses arise
from active prediction systems as opposed to passive neural adaptation (Bendixen et al., 2009a;
Friston, 2005; Garrido et al., 2007; Garrido, Kilner, Kiebel, et al., 2009; Winkler, 2007). Our
results confirm earlier findings that the omission of an expected tone leads to a time-locked brain
response which is easily detectable by MEG and EEG, and has a similar topography as the
original evoked response (Hughes et al., 2001; Raijj et al., 1997; Yabe et al., 1997). Furthermore,
our design tested the novel prediction, unique to the hierarchical predictive coding framework
that the omission response should vary with the context. Specifically, this framework supposes
that evoked responses reflect a series of prediction errors indexing the difference between the
incoming signal and its prediction at successive hierarchical levels. Accordingly, when the
incoming signal is omitted, brain responses should reflect solely the predictive signals and how
they vary depending on the current context (Bendixen et al., 2009a). In agreement with this
notion, we observed that the brain response to an omitted signal, following a strictly identical
series of four tones, varied depending on whether the participants expected the fifth tone to be
identical or different from the preceding ones (xxxxx versus xxxxY blocks). A significant larger
omission response was observed on xxxxY blocks. This difference between the two omissions
effects is exactly as predicted by the hierarchical view: on xxxxY blocks, an additional higher-
order predictive signal is needed to cancel out the predictable MMN inevitably arising from the

novelty of the fifth tone.

Passive adaptation models of mismatch responses attempt to account for omission
responses in terms of an oscillatory or rebound response, due to an entrainment of brain
oscillators by the rhythm of the preceding stimuli (May & Tiitinen, 2009). This hypothesis,
however, cannot explain our observation of a larger omission response on xxxxY than on xxxxx
blocks. Under the adaptation interpretation, we would have expected ecither a constant
entrainment by the four preceding tones, and hence a constant omission response; or, if anything,
a larger entrainment on the regular xxxxx blocks than on the xxxxY blocks, where the fifth item
interrupts the rhythm of the first four ones — exactly the contrary of what was observed. Our
results are therefore very difficult to explain with the adaptation hypothesis alone. They do not
rule out that sensory adaptation may exist, but only prove that it cannot be the only mechanism
at work, as also argued by others (Garrido et al., 2008). Note also that the size of the omission
effect goes in the opposite direction as that of the MMN: as described above, the MMN is larger
on xxxxx than on xxxxY blocks, but the omission effect is larger on xxxxY than on xxxxx blocks.

This inverse relation between the magnitudes of the MMN and of the omission response is
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exactly as expected from a hierarchy of predictive systems, but cannot be easily accommodated
by a single process of novelty detection. In particular, it rules out the possibility that the observed
modulations are due to one of the blocks being intrinsically more interesting, motivating, or

attention-grabbing.

The latencies of the observed novelty responses are also indicative of a predictive system.
First, note that the timing of the omission response arises too eatly to correspond to a rebound
of a putative oscillation induced by preceding stimuli. As shown in Figure 4.2-3 (left panel, pink
curves), the cortical response on omitted xxxx trials does not consist in a series of 5 equally
spaced peaks, as would be predicted by the oscillatory adaptation/rebound model. Rather,
omission responses arise earlier than the MMN, which itself arises eatlier than the response to an
expected tone. This temporal order is the opposite of what would be expected from an ascending
feedforward system, where the stimulus first has to be processed bottom-up before its departure
from the familiar can be detected. It is, however, in full agreement with a hierarchical predictive
system where first the presence, then the precise identity of the incoming tones, are successively

predicted in advance of the actual stimulus.

The fact that the omission effect is equally early on xxxxx and xxxxY blocks may seem
counterintuitive: according to a hierarchical model, one might have expected a sequence of two
successive omissions effects. In reality however, although two predictions are indeed assumed,
both have to come quite early if they are to act as predictors that cancel out the effects of the
incoming signals. Predictive coding models thus predict that, during the xxxxx block, the
omission effect must arise simultaneous with the earliest activation evoked by the fifth stimulus.
Furthermore, during the xxxxY blocks, an additional second-order omission effect must arise
prior to or simultaneously with the MMN in order to act as a predictor of it. The timing of the
observed effects is compatible with these hypotheses. Furthermore, their topography suggests
that the second-order omission is generated at a distinct cortical site about 2 cm more anterior in

temporal cortex.

In summary, in agreement with recent theoretical models of cortical architecture (Friston,
2005; Kiebel et al., 2008; Kiebel, Kriegstein, et al., 2009; R. P. Rao & Ballard, 1999), our findings
suggest a hierarchical organization consisting of several successive prediction and novelty-
detection systems. The present paradigm, combined with MEG, EEG or intracranial recordings,
dissociates at least two levels of prediction: the MMN responds to local auditory predictions
while the later P3b responds to more global and integrative violations of expectations. In that

respect, our observations add to a growing number of dissociations of these two systems.
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Bekinschtein et al (Bekinschtein et al., 2009) demonstrated that the early MMN resists to visual
distraction, to non-consciousness of the rule linking the five successive tones, and remains
present in coma and vegetative state (Faugeras et al., 2011) while none of these properties hold
for the global P3B, which therefore seems to index a conscious process. Prior ERP and fMRI
evidence confirms that the superior temporal region can respond to novel stimuli that are
subliminal and fail to be detected (Allen, Kraus, & Bradlow, 2000; Diekhof, Biedermann,
Ruebsamen, & Gruber, 2009), while a much broader fronto-parietal network, indexed by the P3b,
underlies conscious detection (Del Cul et al., 2007; Dickhof et al., 2009; Sergent et al., 2005).
Pegado et al. (Pegado et al., 2010) observed that, when the delay between tones is prolonged up
to several seconds, the MMN is drastically reduced while the P3b remains constant in size,
though slightly delayed, in correspondence with the participants’ preserved capacity to detect the
violations. Ritter et al. (Ritter, Sussman, Deacon, Cowan, & Vaughan, 1999b), like us, found that
the MMN remains while the P3b vanishes in a context where the local auditory deviance is fully
predictable (in their case, because it is systematically preceded by a visual cue presented 600 ms

earlier).

We conclude that auditory novelty detection appears to be organized in several stages
(Winkler, Takegata, & Sussman, 2005). The mismatch negativity reflects the operation of a
temporally and conceptually-limited prediction system which uses the recent past in order to
predict the present, solely based on a compilation of the probabilities of the stimuli and their
transitions. The auditory prediction underlying the MMN may rely on several recent stimuli (]
Horvath et al.,, 2001), but it uses only a limited time window (Pegado et al., 2010; Sabri &
Campbell, 2001) and is blind to the global overall “rule” or pattern followed by the stimuli
(Bekinschtein et al., 2009). The extraction of such rules and the detection of their violations
involve a later, more distributed predictive system (Bekinschtein et al., 2009; Diekhof et al., 2009;
Ritter et al., 1999b; Winkler et al., 2005), that sends predictions to the first one in an early time
window. The operation of both of these systems is frequently undetectable, as their sole effect is
to reduce or cancel the responses evoked by predictable sensory stimuli. The omission paradigm,
by unveiling them, provides a flexible method to dissect the brain’s multiple top-down

expectation systems.
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CHAPTER 5

MODELING ACCESS TO WORKING MEMORY AS A
SELF-EVALUATION AND DECISION PROCESS

Submitted paper

5.1 Introduction to the article

The two previous chapters I studied the properties of automatic processing of temporal
regularities. I showed that the properties of the mismatch response were consistent with a

predictive coding model using a short-lasting memory trace.

In this last chapter of my contributions I focus on a different level of temporal regularity
processing. In the first chapter of this thesis I showed that conscious access in thought to be
characterized by the ignition of a central workspace with strong recurrent long range
connectivity. This recurrent connectivity induces a stabilization of the information represented in
this global workspace over time and has been described as a close correlate of working memory.
Moreover, we showed that learning of long distance dependencies was strongly affected by
concurrent working memory tasks suggesting that this correlate of consciousness is crucial form

some types of temporal regularity learning.

I also showed in the introductive chapter that working memory is characterized by a
limited capacity and a selective access. Understanding how this selective access can be managed
to learn temporal regularities in the absence of an explicit task is a necessary first step to study

other aspects of conscious processing of temporal regularities.



5.2 Article

5.2.1 Abstract

Working memory offers the unique possibility to maintain information for an arbitrary
period of time. However, this ability comes at the cost of a limited information capacity. Hence,
the decision to commit a piece of information to working memory or to relinquish it is a crucial
one. Here, we propose to model access to working memory as an internal decision process, based
on a self-evaluation of the relative values of maintaining or relinquishing information. We further
propose that, even in the absence of an external task, the brain manages its memory updating
according to some internal goals. We argue that one of these goals is optimization of the
prediction of upcoming inputs. We show that using a value system that is sensitive to prediction

accuracy, the brain can learn a successful policy to gate access to its working memory system.

5.2.2 Introduction

Although the exact capacity of WM is debated, it is generally agreed that it is very limited.
It was first thought to be limited to seven items (G. Miller, 1956) but more recent estimates argue
in favor of an even stronger constraint of 3 or 4 items (Edward K Vogel & Machizawa, 2004),
organized in discrete slots, that can contain information about multiple features of the same
object (Fukuda et al., 2010; Luck & Vogel, 1997). The possibility that it offers to maintain a
stimulus for an arbitrary long time is crucial to perform successfully a large number of task, and

WM capacity covaries largely with fluid intelligence (Conway, Kane, & Engle, 2003).

The successful use of working memory does not rely solely on the number of items it can
hold. Given its reduced capacity, working memory management is needed to filter appropriately
the stimuli that are relevant from those that are distractors. (Edward K Vogel et al., 2005) showed
that filtering efficiency and working memory capacity were tightly correlated, suggesting that
limitations in working memory capacity may in fact reflect the failure to selectively stabilize the

relevant information.

A previous model showed that working memory management could be successfully
solved using a reinforcement learning approach in the context of complex tasks such as the 1-2-
AX task (O’Reilly & Frank, 2006). But even in the absence of explicit rewards, humans still learn
about the structure of the world. Responses to unexpected events in a sequence, such as the
mismatch negativity (MMN) and the P3 event-related components, indicate that the brain

automatically extracts sequence regularities (Huettel et al., 2002). Bekinschtein et al (Bekinschtein
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et al., 2009) showed that although the MMN is robust to manipulations of attention, the P3 is
strongly affected by the state of consciousness or attention. Moreover, the P3 component is
sensitive to higher-level regularities than the mismatch negativity, namely it appeared for
violations of expected sequences of sounds contrary to MMN that was elicited by violations of
transition statistics between successive tones. These observations suggest that some of the
neuronal circuits implicated in the detection of higher order regularities are attention-dependent.
A minor variant of the same stimuli sequence (Elyse Sussman et al, 1998) showed that
shortening the intervals between sequences makes these regularities accessible to low-level
processing units. These results suggest that the key function of attention in this case is bridging
the temporal gap between stimuli (Robert E. Clark et al., 2002). Working memory is an obvious

candidate to fulfill this function.

In sequence learning paradigms, subjects typically have no explicit task to perform, yet
they quickly developed expectations based on the structure of the sequence. We propose that in
the absence of an externally guided task, working memory is used to learn how to better
anticipate on future events, across arbitrary long temporal gaps. In this paper, we show that an
internal self-evaluation system can be defined so that WM can be managed to keep only relevant
(i.e. predictive) events in memory and filter out the unpredictive ones, thus optimizing the
prediction of future stimuli. The resulting model paints access to working memory as an internal
decision process, based on the relative values of maintaining or relinquishing information. We
explore the consequences of this management system on the dynamics of memory content and

rule discovery.
5.2.3 Methods

5.2.3.1 General notations
The system is submitted to a stream of stimuli. X is the random variable corresponding to

the identity of the stimulus.
X can take n values Xq, X5 .... Xy,
X(t) is the stimulus at time t.

The system can remember only one past stimulus at a time; One working memory slots

contains information about its identity and the time since it was stored, denoted as .

S = {X(t — 1), 7} is the random variable describing working memory state.
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A stimulus that is not stored is forgotten forever. After each stimulus, the system must
thus choose between two actions: either the current stimulus is stored and the WM is updated
(“update” action), or the stimulus previously in working memory is kept and the current stimulus

is forgotten (“keep” action).

5.2.3.2 Model description
The system can use the working memory content to evaluate the matrix of conditional

probability

Pe(X|S).
This estimate is updated according to the rule:
IfX(t) = xi

Pe(xi|S) € Pe(xi |S) + n
Pe(X|S) €Pe(X|S)/(1+ n)
On average this updating rule produces a convergence of the estimate towards the real

probability Pr(X|S) according to the formula:

mn
Pe(X|S,n) = Po(X|S) + O™ + Pr(X|S) * 1 + Zﬁi

=1

Where ) =fﬁ and n is the number of time the probability was

estimated (i.e. the number of time the WM was in state S). Po is the initial estimate of the
probability taken by default to be a flat prior and n the number of time the probability was

updated.

The system also estimates the average probability Pe(X) using the same updating rule as

the Pe(X|S) estimate. This probability is updated at every time step.

The computational goal of the system is to maximize the predictive power of the

working memory slot, measured by

Pe(X(f)IS(t)))

RIZ) = log ( Pe(X(0))

The main idea is estimate the Value of each state S defined by the average Reward that

can be expected under the policy P.
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V(S.P) = () y'TRE))
t'>t

Where ¥ is a constant <1 representing a time discounting (it was taken equal to 0.9 in all

simulations)
This quantity Ve is evaluated using a TD rule:

§=R()+ yVe(S(t+1)—Ve(S®))
Ve(S(D))

Where Ve(S(t + 1)) is the weighted sum of the value of the two possible future states:

Ve(S(t + 1)) = P(update| X(t),S) = Ve(S = { X(¢t),1})
+P(keep X(t —1)| X(t),S) *Ve(S ={X(t —1), T+ 1})

The policy is determined using a softmax function on the estimated values of the two

possible future states

o BHVe(s={X(t)1})
eBVe(S=(X(D.1}) + B*Ve(S=(X(t-1),1+1})

P(update) =

where 1/ is a positive parameter called the temperature and regulates the

exploration/exploitation trade off.

5.2.3.3 Initial conditions
All initial values are equal, set to a small positive value (0.05 in all simulations). The

probability estimate is initialized with a flat prior.

5.2.3.4 Performance estimate
In the first test of the vbWMA model, the optimal policy consists in keeping the
predictive events in the memory slot, until it is not predictive anymore. If a predictive event is in
working memory and the current stimulus is also predictive, the correct strategy consists in

discarding the current stimulus.

We attributed a score to the decision made for each predictive stimulus: If a predictive
stimulus was correctly stored until it was predictive or correctly rejected (if another predictive
stimulus was in working memory), we scored the decision with 1. If the stimulus was stored

whereas it should have been discarded but then kept until it was predictive, we scored this
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decision with 0.5. If the stimulus was incorrectly discarded, we scored the decision with 0. Each

point on the graph represents the average score over 20 decisions.

5.2.4 Results

Working memory provides a unique ability to maintain selected information for an
arbitrary long time. Its capacity limitation poses the computational problem of finding the
optimal policy to filter its access. We argue that, in the absence of external feedback, access to
working memory is governed by an estimation of the value of stimuli in predicting future events.

In other words, working memory is used to optimally anticipate on sensory inputs.

In this paper, for clarity’s sake, we study a simplified version of this computational

problem (Figure 5.2-1).

prediction gating

update of WM ?

FIGURE 5.2-1: THE SIMPLIFIED COMPUTATIONAL PROBLEM STUDIED.

(left) At each time point, the brain tries and predicts the new stimulus based on what it
knows from the past, ie its memory content. Memory content in our case is limited to one of the
past stimuli (here the red one) and time since it was presented (here 3 time steps ago). (right)
The computational problem is to optimize prediction by deciding for each stimulus whether to
store it in working memory or keep the current memory content instead.

5.2.4.1 Simplification hypothesis
We assume that the organism is presented with a time series of stimuli, and tries for each
new stimulus to anticipate its identity. This prediction is made according to an estimate of
conditional probabilities of the stimuli, given what is known about the past. We assume that the

information encoded in working memory is the identity X (t — 7) of the past stimulus that is
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maintained and the time 7 it spent in WM since it was encoded. We assume that time is encoded

as the number of past stimuli (independently of their presentation rate).

We reduced the problem to the simple case where working memory capacity is reduced
to one slot S, with S(t) = {X(t — 1), 7}. This reduces the management problem to a single
decision between two choices at each time point: either keep the current memory content or

replace it by the current stimulus.

Any item that is not granted access to the memory slot is forgotten. It cannot be used for

evaluation of the conditional probability matrix Pe(X|S), nor for prediction of future stimuli.

Note that the working memory capacity limitation is thought to concern only neural
representations that are maintained in an active form. Probability distributions and value function
can be maintained at no working memory cost as they are hypothesized to be encoded in

connectivity, not firing rate.

5.2.4.1.1 General architecture of the model

Framed in this simplified manner, the problem of optimizing working memory usage is
similar to an action selection problem: each time a new input is presented; the system must
decide whether it should keep the current memory content or discard it to store the current input

instead.

This is a complicated problem, because it is necessary to optimize at the same time the
exploration of the structure of the world (here the matrix of conditional probabilities) and the
exploitation of identified structures to predict next events as best as possible. Even when
knowing perfectly the sequence of stimuli, finding the best policy (i.e. the best decision for each
couple of current input and current working memory content) is almost always intractable by
brute force because of the combinatorial explosion of the number of policies to consider when

the number of stimulus identities or the past history considered increases.
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Classical reinforcement learning Working memory updating model
Agent Agent
Critic Critic
» Value function reward r(t) B Value function internal reward r(t)
V(s)
= N rediction
TD error 6(t) TD error 6(t) P
Actor y S— Actor y WM "y Input
Policy — " .| Environment . updating | ="
P(als) P(s(t+1)]s(t),alt)) =5 Policy . ‘r- : .
state s(t) : internal state = WM content

external state = current stimulus

state s(t)

FIGURE 5.2-2: COMPARISON BETWEEN CLASSICAL REINFORCEMENT LEARNING

(left) and our model (right). Instead of coming from the environment, the reward is
generated internally, and based upon the accuracy with which the input can be predicted. It is
used in the same way as in classical reinforcement learning to compute a value function
associated with each state, that tracks the reward that can be expected. This value function is
used to set an action policy (i.e. a procedure to select an action in response to any possible state).
In our case, the policy concerns the internal decision to update working memory content or to
leave it unchanged.

Given the similarity of the situations, we propose to solve this problem using a

reinforcement learning approach (

Figure 5.2-2). Reinforcement learning is an algorithm that is able to learn from
experience which actions lead to desired outcomes. Instead of classically placing the reward in the
environment, we only propose that the reward is generated internally according to an internal
goal: the prediction of upcoming events. The system is rewarded when the working memory

content allow a better anticipation of the next stimulus that a system without such a memory.

Hence, we define the reward at each time as :

_ Pe(X(t)|S(t)) 1)
R(E) = log ( Pe(X(0)) )

Which quantifies to what extent the probability estimate of the current input given what
the system has in its memory slot S(t) is superior to the probability estimate without taking into

account any history.

A key assumption of reinforcement learning is that past outcome history is a good
predictor of future rewards. A value function estimates the average reward that followed cach

possible state of working memory. In practice it means that a value is associated with each

135



Chapter 5: Modeling access to working memory
as a self-evaluation and decision process

working memory state (which is defined by the pair {stimulus identity, time it spent in working
memorty}), and that this value reflects the average reward obtained while having this particular
memory content, but also the time discarded average of the rewards that were obtained in the

states that followed it.

“Critic” phase : value updating

Value Agent
Stimulus e d
Value updatin internal reward r(t)
identity H B v .P.(:; I < = prediction
. (4,(0) « prediction s Foriar
accuracy +updating o
@ 1D error 5(t) ¢red|ctlve model
"y
—> L
time spentin m ) .
working memory | |

“Actor” phase : working memory updating

Value
Stimulus - > A 3| Value comparison
identity V(keepl) & V(update)
O
@ ® Actorl updating of
—_— ; -
: : . memor (ma
time spent in — g mR) ABO g
€sp Policy : softmax e R |
working memory
state: WM current content
+ last stimulus

FIGURE 5.2-3: FUNCTIONING OF THE MODEL AT EACH TIME STEP.

(Top) The current memory content and transition probability estimate are used to
predict the stimulus. The reward associated with prediction accuracy is computed and used to
update the value associated with the current memory state. The conditional probability estimate
(probability of each stimulus given the current memory content) is updated. (bottom) the choice
between the two possible actions (keeping memory content or updating it with the current
stimulus) is made by comparing the values associated with the two states, and choosing the
action leading to the state with highest value, with a probability computed by a softmax function.

5.2.4.2

5.2.4.2.1 “Critic” phase (Figure 5.2-3A)

At each time point, the model, hereafter called the “value-based working memory access”
(vbWMA) model, predicts the next stimulus based on its memory content and the statistics of

conditional probability it accumulated. The reward is computed based on this estimate according
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to eq (1). The probability estimate given the current memory state Pe(X(t)|S(t)) and base
probability Pe (X (t)) are then updated.

The reward is then compared to the value associated to the current memory state and the
value is updated according to a classical temporal-difference learning rule (R.S. Sutton & Barto,

1998a; Richard S. Sutton, 1988)
Ve(S(t)) = Ve(S(t)) + %4
§=R(t) + yVe(Sit+1))—Ve(S(t))

Given this formula, the value associated with one state S does not only reflect the average
reward obtained when the memory content corresponds to state S, but also an estimate of the

time discarded sum of the rewards obtained in the next states.

5.2.4.2.2 “Actor” phase(Figure 5.2-3B)

Using its value function, the model then decides whether to keep the item currently in
memory for the next time step or whether to replace it by the current stimulus. Because the
value associated with one state reflects the sum of the future rewards that can be expected, the
decision about the updating of the memory content is based on the simple comparison of the
values associated with the two possible future states. In practice, the probability of updating the
working memory slot with the current stimulus is a softmax function of the difference between
the values associated with the state {current stimulus, at time dt =1} and with the state {current

memory content, at time dt+1}.

5.2.4.3 Ability to discover relevant dependencies
We first tested whether the vbWMA model could isolate predictive stimuli from a stream
of irrelevant ones, i.e. assign a high value to the working memory storage of predictive stimuli.
We created a sequence of stimuli where only one stimulus (stimulus 2) acted as a predictor of
another stimulus (stimulus 1) with higher probability than otherwise, n time steps later. The
probability of all other stimuli was independent of history. We varied the temporal distance

between the predictive and the predicted stimuli.
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FIGURE 5.2-4THE MODEL DISCOVERS HIDDEN REGULARITIES EVEN AT A LONG
TEMPORAL DISTANCE.

(top line) We created sequences of stimuli where the probability of occurrence of each
stimulus is independent of the past, except for one predictive relation. In our simulations, we
varied the temporal distance of the predictive relation, from two to seven time steps. The top line
represents the actual conditional probability of stimuli given past stimulus. (middle line) After
presentation of 80000 stimuli to the model, the conditional probability estimate tracks correctly
the real conditional probabilities. Notice that probability estimates are better for probabilities
conditional upon the predictive stimulus, and for time inferior to the temporal distance of the
predictive relation. (lower line) The value function reflects the identity of the predictive stimulus,
and the temporal distance of the predictive relation. The transition probability matrix is three
dimensional (3x3x10 for this figure). Each subpanel shows the (3x3) transition probability given
what happened t time steps before.

The probability distribution estimate at the end of the simulation shows that the model
explored the conditional probability matrix so that the predictive relation was correctly estimated.
As a result, a high value is assigned to the states where the predictive stimulus is in working
memory are high. We can see (Figure 5.2-4) that the states that have high value are those that
precede the predictive time, and that this value function accurately follows the true conditional
probability matrix, for temporal distances between the predictive stimulus and predicted time up
to seven time steps. We can also observe that the conditional probability estimates are closer to
the real conditional probabilities when they depend on the predictive stimulus. This is due to the
fact that the predictive stimulus was more often in working memory, and as a result was

estimated more often.

5.2.4.4 Ability to develop the right strategy
We then studied the dynamics of policy discovery. In this simple case, the optimal
strategy to exploit the structure of the stimuli sequence for better prediction is straightforward:

the predictive stimulus should be kept in working memory until the time where it is no longer
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predictive. In the case where both the stimulus and the memory content are predictive, the

memory content should not be replaced.
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FIGURE 5.2-5: DYNAMICS OF DISCOVERY OF A SUCCESSFUL POLICY.

(A) A successfiul policy is discovered in a non linear way. Example of two simulations on
sequences of stimuli generated according to the same rules. The behavior can be modeled as a
sigmoid function, and the inflection point is defined as the time of policy discovery. (B) The
time necessaty to discover a successful policy increases with the temporal distance of the
predictive relation. It also increases when the exploration parameter beta of the softmax function
increases. Each point represents the mean and standard deviation of the time of discovery for 20
simulations.

Figure 5.2-5A shows the fraction of optimal decisions made regarding the predictive
stimulus for two simulations. The dynamic of the discovery is nonlinear and can be modeled by a
sigmoid function: there is a long period without much learning, followed by a relatively sudden

discovery of the predictive item and therefore of the appropriate policy. This non-linearity is due
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to the positive interaction between probability estimation and value: once the probability estimate
for the predictive stimulus becomes slightly informative, its value increases, which increases the
probability of keeping the interesting stimulus in memory, making the probability estimate more
accurate and increasing the reward. Once the strategy is discovered, it remains optimal for the

rest of the simulation.

5.2.4.4.1 Variability of the speed of discovery

We then studied how the time of discovery varies with the delay of the predictive relation,
for different values of beta, the parameter of exploration from the softmax function. The higher
beta, the higher the probability of choosing the option with the lowest value. In this simple case,
the discovery of the appropriate strategy is higher for smaller beta (Figure 5.2-5B). Because there
is only one interesting event, the more exploitative the model is, the faster it will converge
towards the solution. Empirically, we observed that the discovery time T  increases with the delay

of the predictive relation (dt), and follows tightly (R>0.98) a relation

dt

T(dt) = C (%)

where p is a constant inferior to 1. The constant C does not vary monotonically with the
exploration parameter. p decreased when the exploration parameter increased. To get a intuition
about this relation, we can consider that the time of discovery is tightly related to the time
necessaty to get a good estimate of the conditional probability given the predictive stimulus at the
delay dt. It takes an approximately fixed number of evaluations of the probability estimate to
make it informative enough to trigger the strategy discovery. Before the strategy is discovered the
probability of keeping the relevant stimulus is about 0.5 at each time point (updating or keeping
the current content are equally likely). Therefore, the probability of keeping the stimulus for dt

time steps is proportional to (0.5)", The average recurrence time of this state of working memory

dt
is (E) which is why the time to rule discovery follows a rule of that form. In practice, p is

higher than 0.5 because the probability of keeping the relevant stimulus starts to increase slightly

before the point we called rule discovery.
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5.2.4.5 Dependency between speed of rule discovery and divergence

between the probability distributions
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FIGURE 5.2-6: A LAWFUL RELATIONSHIP RELATES THE TIME OF SUCCESSFUL POLICY
DISCOVERY TO THE INFORMATIVENESS OF THE PREDICTIVE STIMULUS.

Informativeness is measured as the Kullback-Leibler divergence (Dgxi) between the
unconditional probability distribution of the stimuli, and their conditional probability distribution
given the predictive stimulus. We performed 600 simulations with randomly generated
probability distributions and sorted them by their degree of informativeness. Each point shows
the average (and standard deviation) of the time of policy discovery for 100 simulations whose
median informativeness is plotted on the x axis.

An equivalent way of saying that stimulus 2 predicts that stimulus 1 will occur with a
higher probability is to say that stimulus 2 predicts a change in the probability at the delay of the
predictive relation. We varied randomly the distance between the probability distribution given
the predictive stimulus and the base probability distribution, for a fixed delay of 4 time steps
between the predictive stimulus and its predictive time. We observed (Figure 5.2-6) that the time
of discovery of the strategy was negatively correlated with the log of the divergence between the
predicted probability and the base probability (Kullback-Leibler divergence Dy,). The more

similar the two probability distributions are, the longer it takes to discover the strategy. We also
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observed that when the probability distributions are more similar, the vbWMA model fails more

often at discovering the strategy.

5.2.4.6 Comparison with other models
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FIGURE 5.2-7: THE PRESENT MODEL ACHIEVES A GOOD COMPROMISE BETWEEN FINAL
PERFORMANCE AND SPEED OF LEARNING, ESPECIALLY FOR LONG DISTANCE PREDICTIVE
RELATIONS.

Four models are compared: the reinforcement learning presented here, with two learning
rates (eta), a model that keeps the full relevant history (“full matrix”), ie the last h items if the
distance of the predictive relation is h, and a model that has the same capacity as the
reinforcement learning model but updates it randomly. In order to estimate the average reward
after learning and the learning speed we fitted the reward collected as a function of time with a
saturating exponential. (Left) Performance is considerably improved compared to random
update, especially when the temporal distance of the predictive relation becomes large, and is
only slightly worse than the full matrix that represents an upper bound on the performances.
(tight) Final performance is reached up to an order of magnitude faster using reinforcement
learning than using the full history.

In order to demonstrate the usefulness of our model’s components, we compared the
performance of the vbWMA model to two other models with a simpler architecture. First, a “full
matrix”” model keeps the entire relevant history, i.e. if the predictive relation is at 4 time steps, it
keeps the last 4 stimuli in memory, and estimates the full conditional probability matrix
P(X(t) | X(t-1), X(t-2), X(t-3), X(t-4)). This model gives an upper bound on the reward that can be

collected, as it eventually tracks the actual generative model of the stimuli. However, its needs in
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memory capacity become very large for long time dependencies; because the conditional

probability matrix that it estimates is (n+1) dimensional if n is the delay of the predictive relation.

We evaluated the effect of strategy discovery by comparing the vbWMA model to a
“random update” model with similar memory capacity (a single slot) but updating the memory at
random (while equalizing the average time spent in WM). Figure 5.2-7 shows the amount of
reward collected per time unit once the models reach an asymptotic regime. Our model performs
much better than the “random update” model, showing the importance of having a strategy for
working memory management. Our model does not quite reach the performance of the “full
matrix” model, as it is more constrained. However, when looking at the time required in order to
learn the predictive structure and reach the maximum reward, we can see that our model learns
much faster than the “full matrix” model to get to its optimum. Indeed, when the predictive delay

becomes large, the full matrix becomes exceedingly large (of size n**")

, making the estimate of all
the possible states very slow. In summary, the vboWMA model realizes an excellent compromise

between final performance and learning time.

5.2.4.7 Learning of more complex sequential regularities
We then looked at the vbWMA model behavior for more complex types of regularities.
We generated sequences where 10 stimuli were overall equally likely, but comprised several
distinct regularities: (A) stimulus 2 predicted stimulus 1 after 3 time steps; (B) stimulus 2
predicted stimulus 3 after 5 time steps; and (C) Stimulus 4 predicted stimulus 5 after 3 time steps.
Although Stimulus 2 predicted both stimulus 1 and stimulus 3, stimulus 1 was not predictive of

stimulus 3.
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FIGURE 5.2-8: VARIABILITY IN THE POLICY DISCOVERED ON 20 DIFFERENT RUNS OF THE
SAME MODEL.

We run 20 simulation of the model on sequences generated according to the same rules:
stimulus 2 was predictive in two predictive relations of temporal distance 3 and 5, and stimulus 4
was predictive in a relation of temporal distance 3. The results were reordered to regroup similar
results. In 13 simulations, all the predictive relations where discovered. In 2 simulations, only the
short distance relations were discovered, and in 5 simulations, only the predictive relations
involving stimulus 2 were identified.

Figure 5.2-8 shows the values at the end of 20 simulations (beta =0.01). We can see that
the model did not behave the same way for all simulations: the discovery of predictive
relationships was all-or-none and stochastic. In 65% of the simulations, the values reflect the
discovery of all the predictive relations. Notice that the values associated with stimulus 2 before 5
time steps are all larger than the values associated with stimulus 4. It means that a stimulus 4 in
working memory will be maintained unless a stimulus 2 occurs, which is the appropriate strategy.
In 10% of simulations, only regularities A and C, which involve a 3-time-step predictive
relationship, was discovered. The exploitatory policy limited the exploration of the later time
steps strongly enough so the 5 time steps predictive relation was never discovered. In the
remaining simulations, only the predictive relations relying on stimulus 2 were discovered, and
the policy that developed favored stimuli 2 to occupy almost always the memory slot, preventing
sufficient exploration of the conditional matrix for the other stimuli. These two failures to
discover some of the predictive relations reflect the exploration/exploitation tradeoff problem of

reinforcement learning. The number of failure can be reduced by increasing the exploration
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parameter (we observed only one failure with beta =0.05), but at the cost of a longer average time

of strategy discovery.

5.2.4.8 Learning of the Local-global paradigm

One of the motivations for our model was to capture the Bekinschtein et al (Bekinschtein
et al., 2009)paradigm. In this study, sequences of five tones where presented to subjects. In a
crucial condition, most sequences where composed of four identical tones followed by a different
one (AAAAB sequences). Rarely, this rule was broken by the presentation of sequences of five
identical tones (AAAAA sequences). Data showed that early auditory areas where unable to learn
the regularity, and a mismatch negativity (MMN), marker of deviance detection in these regions,
continued to be elicited by the rare B tone. A response to rare sequences of 5 identical tone was
observed later in time (around 300ms), corresponding to the P300 potential. Crucially, this
response was only observed in conscious and attentive subjects. Similar sequence, with shorter
and regular delays between B tones did not elicit a mismatch negativity (Elyse Sussman et al.,
1998), suggesting a crucial role of conscious storage of information in the Bekinschtein paradigm

to enable the discover the higher order rule.

To test this hypothesis, we trained the vbWMA model on series of sequences containing
80% of AAAAB sequences and 20% of AAAAA sequences, the model developed a strategy
where the B stimulus has a high value for 5 time steps, and a positive but lower value for the next
5 time steps. It results in a policy where only B stimuli are stored and they are replaced by the
next stimulus B. The fifth stimulus of the sequences is predicted to be a B as the conditional
probability matrix given B predicts a B with 0.8 probability at 5 time steps. It would then
reproduce the prediction error response observed to the sequence AAAAA in this context.
However, the time to converge towards the final strategy is about 200 sequences, which is much

longer than observed in the data.
5.2.5 Discussion

5.2.51.1 Summary

Working memory has a limited capacity, which imposes to develop a strategy to optimize
its usage. In this paper, we explored, on a simplified case, the hypothesis that efficient
management of memory content can be achieved autonomously in order to meet the internal
goal of anticipating on predictable events. We showed that an algorithm based on reinforcement
learning principles, but using internally generated rewards can discover predictive relations at a

long temporal distance, and can learn to selectively store predictive stimuli in working memory
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for the appropriate duration. We studied the dynamics of strategy discovery and showed that it is
a nonlinear process that depends on the delay between predictive and predicted events, and on

the Kullback Leibler divergence between the probability distribution.

5.2.5.1.2 Neuronal mechanisms of working memory management

The vbWMA model makes three important predictions regarding the neuronal
mechanisms that may underlie optimal working memory management. First, it predicts that the
valuation system, involving the striatum and dopamine can be influenced by internal rewards and
intrinsic goals. Second, it proposes that correct anticipation of future events is one of these
internal goals. Third, we argue that this system plays a determinant role in working memory

updating,.

These predictions could be put to a test using the capacity of functional magnetic
resonance neuroimaging to estimate the degree of activation of valuation networks in the brain,
particularly in the ventral striatum where a quantitative relationship is found between activation
and subjective reward (Schultz, 2010).We predict that this system will be active, not only in
externally rewarded task, but also during self-motivated spontaneous behavior such as sequence
learning. We predict that predictive events will activate these systems more strongly after learning
than before. We also predict, at the behavioral level, that predictive values and external rewards

should combine for determining the preference for access to working memory.

Although the appropriate tests of those predictions remain to be performed, the idea that
rewards frequently arise from a self-evaluation process rather than from the environment and can
be used to achieve internally determined goals is becoming increasingly influential in robotics
(Herd, Mingus, & O’Reilly, 2010; Oudeyer, Kaplan, & Hafner, 2007; S. Singh, Barto, &
Chentanez, 2004; Satinder Singh, Lewis, & Barto, 2009) but also in neuroscience (Dayan, 2012;
Stanislas Dehaene & Changeux, 1991). In this model we pushed the idea further by applying it to
a completely internal process with no action on the external environment. Considerable evidence
supports the idea that the basal ganglia/dopamine circuit implements reinforcement learning in
the brain (Schultz et al., 1997). Dopamine and basal ganglia have also an important role in
working memory maintenance and selectivity, by helping to stabilize persistent activity associated
to maintenance of information, and by contributing to the suppression of interference by
distractor stimuli (Durstewitz, Kelc, & Gintiirkiin, 1999; Durstewitz, Seamans, & Sejnowski,
2000; Gao, Krimer, & Goldman-Rakic, 2001; Gruber, Dayan, Gutkin, & Solla, 2006b; McNab &
Klingberg, 2008; Miiller, von Cramon, & Pollmann, 1998; van Schouwenburg, den Ouden, &
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Cools, 2010). These data make plausible the idea of management of working memory content

through this neuronal circuit.

We also argue that predicting future events is one of these internal goals, and that the
ability to predict induces a self-generated reward. Although we are not aware of data acquired in
the absence of external reward, some experimental data argue for an intrinsically rewarding value
of information(Behrens, Woolrich, Walton, & Rushworth, 2007). In a task where the expected
reward is the same, monkeys preferred the situation where the cues about the amount of reward
are the most informative (Bromberg-Martin & Hikosaka, 2009) , which is not predicted by simple
reinforcement learning algorithms. Another line of evidence comes from the phenomenon of
ambiguity aversion (Hayden, 2010) where less predictable situations seem to be less desirable,
even when they have a greater expected objective value. This paradox can be resolved if the

predictability of the outcome is seen as a reward in itself, that combines with the external reward.

5.2.5.1.3 Partial implementation of curiosity

The hypothesis that organisms may be intrinsically motivated to search for regularities in

3

the environment bears an evident relation with the notion of “curiosity”, and indeed our model
provides a partial implementation of this concept. However, in the present model, curiosity is not
permanent, but is limited to the initial stages of learning. In our network, we initiated the value
matrix not with a zero prior, but with small positive values. This can be interpreted as a positive
bias towards unexplored states: states that have not been explored are considered interesting until
proven otherwise. After learning, a limitation of the vbWMA model is that it will prefer
completely predictable situations to situations where something new can be learned.
Overcoming this limitation would require to add an automation mechanism similar to the one

described for habit formation (A. Graybiel, 2008) where the dopamine system would disengages

from the action selection process after stabilization of the policy.

5.2.5.1.4 The importance of being small

The constraint on memotry capacity that is observed in biological systems lies at the
foundation of the optimization problem that we studied. The limited capacity of working
memory has been seen both as a weakness and as a strength (Nelson Cowan, 2010). Indeed,
comparing the vbWMA model with the “full matrix” model revealed an interesting effect: having
a limited memory size limits the size of the explored state space, thus reducing the combinatorial
explosion. Our simulations prove that, when supplemented with an appropriate access

management system, a limited working memory size can provide a good compromise between
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final performance and speed of learning. This property, that could be called the “importance of
staying small” (Elman, 1993) might be an important feature of working memory and could

explain why it is advantageous not to have a capacity larger than a few slots.

5.2.5.1.5 Sudden rule discovery

We observed a discovery dynamic that is a2 mixture of a slow linear step, the estimation of
the conditional probability matrix, and a nonlinear step (Dayan, 2007), the decision to update or
not working memory. As a result, we observed that the behavior of our system was non-linear,
with a sudden jump in performance. This nonlinearity in discovery is consistent with the
dynamics of learning curves in biological processes that often show abrupt transitions between
behaviors rather than a graded convergence towards a final state (Gallistel, Fairhurst, & Balsam,
2004). This nonlinearity is partly responsible for the speed up in reward collection, as it favors the
exploration of the interesting states as soon as the smallest evidence of predictive power is
uncovered. The probabilistic decision process that generates the nonlinearity also introduces
stochasticity in the discovery process. As a result, repeated simulations on identical sequences
may result in different strategies. In particular, when multiple relations are present in the input
stream, the vbWMA model may become blind to some of them, because the exploitation of the
first regularity prevents sufficient exploration of other options. Although suboptimal, this

behavior might actually reflect a real constraint on learning behavior.

5.2.5.1.6 Engagement as a default behavior

We chose to consider only two possible actions at each time step: storing the current
stimulus in working memory, or relinquishing it, leaving the current content unchanged. One
could argue that maintenance in working memory has a cost in itself and that a third decision
should be added: disengage working memory altogether. We chose not to consider this option,
first because it would only worsen the performance of the model, second, because neuronal data
(Meyer, Qi, & Constantinidis, 2007) reveal an increased firing rate during the inter-stimulus delay
in lateral prefrontal neurons coding for the previous stimulus, even in the absence of an explicit
delayed-response task in monkeys, and even in the absence of predictive relations. These data
support the model’s hypothesis that working memory is constantly engaged, be it only to store

the last item seen.

5.2.5.1.7 Relations with conscious access

Working memory is thought to be one of the essential properties of the “global

workspace” that underlies conscious processing (B. J. Baars & Franklin, 2003; S. Dehaene &
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Naccache, 2001; Stanislas Dehaene & Changeux, 2011; Stanislas Dehaene et al.,, 1998b). In this
respect, the present model may be considered as a partial implementation of the gating function
that controls access to consciousness. Conscious access has been viewed as an internal decision
process (S. Dehaene, 2008; Shadlen, 2011), namely the “decision to engage” the full resources of
the organism, and particularly the working memory resources that rely primarily on dorsolateral
prefrontal cortex and associated areas. Here we propose specifically that this function is
implemented by a non-conscious valuation system which chooses to bring an item to the
conscious foreground as a function of an internal evaluation of its relevance. The relation
between dopamine and consciousness is supported by data (Van Opstal et al., 2014) showing a
direct correlation between individual variations in striatal dopamine and conscious access to
visual information. Crucially, note that according to our model, the decision to access one item
rather than another is ot itself conscious, but only the result of that decision, i.e. access of the
memorized items to working memory, is. The hypothesis of a modulation of access to working
memotry by a value system is also consistent with the phenomenon of attentional blink
(Raymond, Shapiro, & Arnell, 1992), whereby having a relevant item in working memory
temporarily blocks access to consciousness for other subsequent items. Experimental evidence
that, even during this period, the incoming stimuli remain unconsciously evaluated (Anderson,

2005) and their target status is noted (Marti, Sigman, & Dehaene, 2012).

5.2.5.1.8 Limits and future directions

This work is only a first step in the understanding of autonomous management of
memory content. We used several simplification hypotheses that make quantitative prediction of
the model hard to test in human subjects. First, we considered only one slot of information,
where the current estimate of working memory capacity is about 3-4 objects (Nelson Cowan,
2010; Edward K Vogel & Machizawa, 2004). Having more slots opens new possibilities, like the
discovery of predictive relations depending on the conjunction of two events, but it brings also a
number of new computational challenges that are beyond the scope of this paper. Second, we do
not take into account other properties of working memory like chunking or compression of
information into more effective representations. Indeed, other groups have tackled the
information processing limit not by solving the selection problem, but by trying to understand
how to re-encode the stimuli, thus producing a lossy compression of the initial information
(Tishby, Pereira, & Bialek, 2000). These two kinds of processes are most likely complementary

rather than opposite approaches.

149



Chapter 5: Modeling access to working memory
as a self-evaluation and decision process

One of the limits of the present model is that, although it is able to learn the global
sequence “AAAAB”, it would be completely unable to discover that this trial has the same
structure as CCCCD, where AB,C,D are distinct sounds. Rule-governed generalization is
impossible in the current framework because we do not consider the possibility of representing
more abstract information about the stimuli than their identity. In particular, there is strong
evidence that relational properties between stimuli are represented, for example, their same-
different status or similarity with respect to the current content of working memory (Engel &
Wang, 2011; E. K. Miller et al., 1996). The possibilities offered by this new kind of representation

to learn elementary abstract rules (Marcus et al., 1999) will be the subject of future work.

Note that in the present work, knowledge of predictive rules was assumed to be encoded
implicitly in synaptic weights. This choice has two consequences: all possible rules are evaluated
in parallel and at no working memory cost, but at the same time, only one set of rules can be
learned. Some evidence exist that abstract rules are actually represented in the firing rate of a
population of prefrontal cortex neurons (Shima, Isoda, Mushiake, & Tanji, 20006). In the future,

considering this possibility might make rule acquisition and application more flexible.
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CHAPTER 6

GENERAL DISCUSSION

In this thesis, my goal was to better understand the processing of temporal regularities,
and in particular the differences between the type of computations and neuronal architectures
involved in conscious and unconscious processing of these regularities. I used combined
modeling and neuroimaging techniques to investigate the type of computations underlying
automatic and attentive temporal regularity processing. In this discussion, I will first summarize
the main results of this thesis. Then I will discuss the interplay between computational principals
that may be shared across all temporal regularity learning processes, and principals that could be
specific to conscious processing. Finally, I will consider the limitations of my work within these

questions and open some computational perspectives to resolve them.

6.1 Summary of the main results

I identified the mismatch response (MMN) as a representative response characteristic of
the unconscious processing of temporal regularities. Indeed, the presence of a mismatch response
is not affected by attention, or top down predictions which makes it a pre-attentive component
characteristic of an automatic process. Moreover, while it is mainly studied in the auditory
modality, counterparts of the MMN have been described in other modalities, suggesting that the
computations that give rise to the MMN response might be of larger interest than purely auditory
processing. I developed a spiking neuron model based on predictive coding principles and
showed that it could reproduce the main properties of the mismatch response. Specifically, I
proposed that some neurons in supragranular layers of the auditory cortex present a predicitive
activity that can be used to cancel out predictable inputs that arrive to layer 4, so that only
prediction error is encoded at this level. I proposed that the “internal model” used to drive the
activity of the predictive populations is implemented by synaptic weights between the predictive
populations and dynamic attractors that form a memory trace of the past stimuli for a few
hundreds of milliseconds. I showed that the prediction error signal could be used as a “teacher”
signal to drive NMDA-dependent plasticity between the predictive populations and the memory

trace to learn the appropriate internal model of the temporal succession of stimuli. I showed that



6.1- Summary of the main results

an asymmetric STDP rule similar to the one described by (G.-Q. Bi & Poo, 1998) reinforced
maximally synapses between the predictive populations and the neurons from the memory trace
that were firing on average right before the predictable stimuli. After learning the activity from the
predictive population has therefore the appropriate timing to cancel out the predictable inputs
right before they atrive. I showed that the synaptic weights that constitute the internal model
follow closely the conditional transition statistics between the inputs. The following table
summarizes the MMN properties that were accounted for by my model and the main properties

of the computational network that is responsible for it.

MMN property Model property
MMN elicited by rare stimuli in the oddball
paradigm
MMN increases when proportion of deviant The internal model captures conditional
decreases transition statistics

MMN can be elicited by repetition in alternate

sequence

Occurrence of a rare tone at regular positions in | Conditional transition statistics capture “long
a sequence ceases to elicit MMN if the SOA is distance” dependencies that have a fixed
short timing

... but NOT if SOA i1s longer The memory trace has a limited duration

MMN source comes mainly from supragranular
Canonical microcircuit architecture

layers

MMN is NMDA-R dependent The STDP is NMDA dependent

MMN is sensitive to recent history in random Online learning by STDP captures local
sequences vatiations in transitions probability

Omission of an expected tone elicits a novelty

Predictive population
response

The asymetry of the STDP rule, driven by
prediction errors during learning produce a
MMN predictive activity that peaks right before the
expected stimulus

This omission response peaks eatlier than the

Neurons in auditory cortex have onset/offset

A change in ISI or duration elicits a MMN LeSponscs
+ the STDP rule induces timing specific

predictions

A key prediction of my model is that the MMN is elicited by violations of transition

probabilities. The main alternative model of the MMN, the habituation model, states that the
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MMN is the result of synaptic habituation, which is sensitive to frequency of occurrence of a
sound. I used these two predictions to propose a protocol that would decorrelate maximally
probability of occurrence and probability of transition. Specifically, I presented most of the time
pairs of two different sounds AB (frequent transition from A to B), very rarely (a pair every 10 to
20 s). The two models made qualitatively opposite predictions. The results were consistent with
the predictions of the predictive coding model, ruling out the pure synaptic habituation account

of the MMN.

The MMN model predicted that omission response reflect pure predictive responses. We
reasoned that if the computations that generate the MMN are not specific to primary auditory
cortex, but constitute a more general principle of temporal processing, we should be able to
observe additive omission response when multiple levels of temporal regularity processing are
necessary to cancel out incoming inputs. We adapted a paradigm using sequences that could be
regular at multiple hierarchical levels. We predicted that in blocs where two levels of regularity
where necessary to describe the sequence, we would observe a larger omission response. This

prediction was validated by the empirical data.

In the last part of my thesis I focused on one property of conscious processing: the
access to the possibility to hold a limited quantity of information for an arbitrary long time in
working memory. I explored the computational properties of temporal regularity processing
using such a memory form. In particular, the combination of potentially indefinite maintenance
with highly limited capacity creates a challenging decision making problem to optimize the way
this specific form of memory trace can be exploited. I proposed that efficient management of the
working memory content can be achieved by using a value system that tracks the predictive
power of stimuli in order to select into memory the items that lead to better predictions of the
next elements of a sequence. This model relies in particular on the hypothesis that the accuracy
of predictions in sequence processing is considered by the brain as an intrinsic goal that generates
an internal reward. This model was able to maintain the appropriate items in working memory to
exploit long distance dependencies between elements of a sequence distant of as much as seven

time steps.

6.2 Discussion

Given the results of this thesis, what are the common computational principles that

underlie temporal regularity processing? What can be the specificities of conscious processing?
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6.2.1 General principles for temporal regularity learning

The main shared principle across all chapters of this thesis is certainly the implication of
an active predictive mechanism in temporal regularity processing. In both models, the
computational goal of the network was the prediction of future inputs. The existence of a
predictive activity involved at multiple levels of temporal regularity processing was confirmed by

neuroimaging data in chapterd.

6.2.1.1 Roles of predictions and prediction errors

In the introduction of this thesis, I identified mainly three roles for predictive activity in
temporal regularity learning: avoiding the encoding of redundant predictable information, the
anticipation and better identification of future events and appropriate decision making in order to
optimize future outcomes. All three of these functions had a role in the models presented here.
Both models use predictions for the anticipation of the next stimulus. Both models also use
prediction errors, which implies that predictions were subtracted from incoming inputs
consistently with the efficient coding principle. It is interesting to note that in the model
developed in chapter5, prediction are actually used at two levels: by the predictive mechanism in
working memory that tries to anticipate the next stimulus based on working memory content and
by the valuation system, that tries to evaluate which of the current memory content or the current

stimulus will allow the best predictions in the future to make the appropriate decision.

The second model showed clearly how reinforcement learning mechanisms could be
implicated in a predictive process. However, even in the first model, the learning rules used to
modify predictive synaptic weights were very close from associative learning principles
prediction error were used as a supervisor for learning from a memory trace, just like reward
prediction errors are thought to drive plasticity with neurons from an “eligibility” trace.
Associative learning and predictive coding may be two ways of describing very similar
computations, the first one emphasizing on the supervisory role of prediction error in driving
learning and the second one insisting on the fact that prediction error encodes surprise (den

Ouden et al., 2009).

6.2.1.2 Learning implicit models of the world
In both models presented in this manuscript, the internal representations of regularities
were extremely similar: they relied on conditional transition probability encoded in synaptic
weights. The global neuronal workspace hypothesis states that only information that is
represented explicitly in neuronal firing can be conscious (S. Dehaene & Naccache, 2001). As a

result, this type of internal representation of sequential dependencies would be implicit, both in
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the MMN and in the working memory dependent models, which makes the prediction that while
the rules may be learned behaviorally, the subjects should not be able to report verbally what they
have learned. In other words, they should not have a metacognitive access to the rule they
learned: if the stimulus2 predicts that stimulusl is very likey to occur 4 time steps later, the
predictive mechanism I proposed will be able to /learn the rule in the sense that it will be able to
correctly anticipate the occurrence of stimulus 1, but there will be no unit coding explicitly for
the rule: “stimulus2 predicts stimulus] in four time steps”. This prediction is consistent with the
fact that long distance dependencies can be learned implicitly but that this learning is affected by

concurrent demanding tasks (Curran & Keele, 1993; Remillard & Clark, 2001; Remillard, 2010).

Learning predictive models using implicit representations such as synaptic weights is
advantageous because it allows a massively parallel evaluation of hypotheses. Bayesian ideal
observer models typically define a hypothesis space, compute the likelthood of each hypothesis
given all previous data and then used the Bayes rule to evaluate the likelihood of the data given
the posterior distribution over hypotheses. In the MMN model, each synaptic connection
between a neuronal assembly encoding a past stimulus and the predictive populations can be seen
as the estimated likelihood of the hypothesis “stimulus X, n time units ago predicts stimulus Y. I
showed how these weights can be adjusted online and in parallel. This mechanism is therefore an
interesting candidate for a biologically plausible implementation of Bayesian inference. Notice
that a remarkable property of this implementation, that could be tested experimentally, is that it
predicts that the more recent history has more weight in the computation of the posterior
distribution over hypotheses. Given the success of optimal observer models to explain behavior
(Bejjanki, Beck, Lu, & Pouget, 2011; M. C. Frank & Tenenbaum, 2011; Mars ct al., 2008; Orban,
Fiser, Aslin, & Lengyel, 2008; Pouget, Deneve, & Duhamel, 2002; Teglas et al., 2011), it is
possible that this type of computation is a general principle for the learning of temporal
predictions, with different types of hypotheses spaces tested in different regions of the brain, in

function of the types of representations that are encoded at in each area.

6.2.2 Specificity of conscious processing

The initial motivation of this work was to better understand which type of temporal
regularity processing would produce neuronal responses that could be considered reliable
signatures of consciousness. In this section I will review the main distinctions between conscious
and unconscious processing observed in my models. I will also explore how the format of

representation of stimuli that have been described in working memory could allow new kinds of
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temporal regularity processing. I will also discuss for each of these properties the type of

computational challenges they imply and possible options to resolve them.

6.2.2.1 Exact timing and event based timing

In this thesis, I proposed that the possibility to maintain information across time was an
important aspect of conscious processing. One of the predictions of the model is that working
memory enables the learning of conditional transition statistics in a manner that is much less
dependent of the particular timing than in early sensory cortices. The sensitivity of predictions to
exact timing is consistent with the existence of a MMN to changes in ISI and was also recently
demonstrated in visual cortex (Gavornik & Bear, 2014). The event-based encoding of time that
can be observed in working memory (E. K. Miller et al., 1996) does allow more time invariant
representation of sequential transitions of probability. The prediction that conscious processing
allow generalization of a rule to new temporal intervals, while unconscious processing allows the

learning of time-interval specific rules is currently under experimental investigation.

Prefrontal cortex neurons were also shown to encode sequential order in working
memory (Mushiake, Saito, Sakamoto, Itoyama, & Tanji, 2006; Ninokura, Mushiake, & Tanji,
2003, 2004; Sawamura, Shima, & Tanji, 2002). This type of encoding would allow prediction

based on the sequential ordinal position rather than prediction based on transitions (Endress &

Wood, 2011; Orlov, Yakovlev, Hochstein, & Zohary, 2000).

6.2.2.2 Abstract rules

In the previous sections, we showed that the implicit representation of rules or
hypothesis was an efficient implementation strategy for parallel estimation of the likelihood of a
large number of hypotheses. This encoding strategy presents however the important drawback
that only one set of rules can be encoded in such a way. Neuronal data also show that sequential
rules can be encoded explicitly in prefrontal cortex in an abstract way regarding both identity and
time (Shima et al., 2006). Specifically, Shima and collaborators trained monkey to perform a task
where multiple sequences of four movements were possible (Figure 6.2-1). The sequences could
be constituted of two repetitions of an action, followed by two repetition of another action
(AABB), or present an alternation of two actions (ABAB) or four repetitions of the same action
(AAAA). A large proportion of neurons in the lateral prefrontal cortex were found to encode the
abstract repetition structure of the whole sequence during the preparatory delay preceding the
behavioral realization of the sequence of actions. This code is also a temporal abstraction as a
sequence extended in time and representing multiple items is summarized as one object in the

firing of these neurons. I will first consider the implications of the encoding of abstract relations
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between the elements of the sequence have on regularity processing computations, then I will

consider how temporal abstractions can be used and created.
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FIGURE 6.2-1: EXPLICIT REPRESENTATION OF AN ABSTRACT RULE IN LATERAL
PREFRONTAL CORTEX (LPFC).

(a) In a motor task, monkeys had to perform a sequence of 4 actions (Turn, Push or Pull
a lever) in three possible orders: alternate two actions (ABAB), perform twice the first action and
then twice the second (AABB), repeat four times one action (AAAA). (b) spike density of the 22%
of the recorded cells in IPFC that showed selectivity to one of the abstract pattern ABAB, AABB
or AAAA during the delay period preceding the performance of the task. Note that the activity of
the populations does not depend on the particular actions that constituted the pattern. From
(Tanji, Shima, & Mushiake, 2007)

6.2.2.2.1 Using abstract relations to predict the next elements

The data from (Shima et al., 2006), show that abstract relations of identity are explicitly
encoded in prefrontal cortex. The working memory dependent repetition enhancement observed
in prefrontal cortex (E. K. Miller et al, 1996) can be used to learn to represent explicitly
same/different relations (Engel & Wang, 2011). In theory, the model we developed in chapter 5
could be extended to predict whether the next object is going to be same or different relative the

object stored in working memory, instead of predicting a specific identity. For example, we could
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estimate P(same|{id, dt,n}), the probability that the next object will have the same identity
than the one currently stored in working memory, in function of the memory content that tracks
the identity id of a past object, the time dt since it was encoded, and the number of time n it was
repeated since its encoding. Hstimating this conditional probability is not different from what
could be done in chapter5, it just uses different representations. However, adding the possibility
to encode the same/different relation between successive objects poses two new computational
challenges. First, a new dimension is added to the stimulus encoded, and it is clear that some of
the dimensions may be irrelevant. For example, using the marginal P(same| {dt, n}) may allow
for generalization of a repetition-based pattern to new stimuli. However, it is unclear how the
choice of marginal should be done. Second, two types of probability, conditioned on the same
dimension of the stored stimulus, can now be used to predict the next stimulus: the probability of
a given identity or the probability of a repetition. How can we arbitrate between the two

probability estimates?

A possible solution to the second problem might reside in estimating the precision, i.e.
the degree of uncertainty about the two estimates and use the most reliable at any given time.
This type of solution was suggested in reinforcement learning to arbitrate between the two
competing value systems in decision making: model based and model free estimation (Daw et al.,
2005). Note that the hypothesis space of the same/different estimate can be much smaller than
the precise identity estimate in realistic situations where more than two objects can occur. The
P(same) distribution should therefore be reliably estimated much faster than the P(id)
distribution. Moreover, when new stimuli are presented, only the P(same) distribution contains
some information, and should therefore be relied on in priority in new contexts, allowing the

automatic generalization of previously learned repetition patterns to new sets of stimuli.

The coexistence of multiple rules or features creates a new computational problem: what
should be the rules to update the value of an object? If the predictive rules do not depend on the
identity of the stimulus, it seems unreasonable to update values in an identity specific way. The
value learning algorithm should therefore be informed of the predictive rule that were used so
that value is updated along the same dimensions. As in the model from chapter5 we predict that
if multiple rules involve different stimuli over the same delays, the rules will be in competition
with each other and some of them may be missed. Evidence for such phenomenon in abstract
rule learning can be found in (Gerken, 2006): infants were familiarized with a continuous stream
of syllables following the AAB structure, where A and B are syllables drawn from two pools of

syllables (e.g. lelediwiwijededeje. . .). 1n the test phase, the infants preferred CCD compared to CDC
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structures where C and D are syllables drawn from a new pool of syllables. This reproduced the
result from (Marcus et al.,, 1999), showing that infants are sensitive to the abstract repetition
structure. Another group of infants was familiarized with AAb sequences where A was drawn
randomly from a pool of syllable and b was a fixed syllable (e.g. llediwiwididededi...). In the test
phase they were presented with CCD and CDC structures similarly to the previous group. They
did not prefer one type of structure over the other, suggesting the adding the rule “b is repeated
every 3 syllable” blocked the acquisition of the repetition rule. This blocking can be explained if
the children adopted the memory managing policy “keep b in working memory for 2 syllables
then replace it with the next b” which led them to ignore any regularity occurring on the

intermediate syllables.
6.2.2.2.2 Temporal abstraction: chunking and explicit testing of hypothesis

The fleeting nature of the memory trace used in the MMN model imposes an online
treatment of the incoming input, with no time to consider multiple options. On the contrary, the
working memory enables maintenance of information so that multiple hypotheses could be
considered to infer the correct rule underlying the generation of the sequence of inputs. Note
that to achieve efficient coding in the predictive coding framework, one only need to learn over
time a good predictive model. If an input was not predicted before the stimulus occurred, it the
prediction error should be used /) to update the inference about higher order causes so that next
stimuli can be predicted correctly and 7z) update the generative model of input so that occurrence
of the same history will not elicit a prediction error next time it is encountered. Crucially, all the
computations regard the prediction of future stimuli, not past ones. In some domains like
linguistic however, inferring the right underlying structure for every stimulus is essential. A
grammatical mismatch response has to lead to a revision of the current hypothesis regarding the
underlying syntactic structure to reinterpret the whole sequence of past stimuli. For example, in a
garden path sentence such as “The horse raced past the barn fell”, the reader usually first parse
the beginning of the sentence as a noun phrase plus an active verb. As a consequence, the last
word “fell” is unexpected in this structure and should raise a syntactical prediction error signal.
However, in linguistics, getting a prediction error, use it to update an internal model and move on
to the next stimulus hoping that the model is going to predict better next sentences is not
satisfactory. It is necessary to reconsider all past stimuli to Zest other syntactical hypotheses and find

one that is consistent with the whole sentence.

We showed that the implicit representation of rules or hypothesis was an efficient

implementation strategy for parallel estimation of the likelihood of a large number of hypotheses.
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This encoding strategy presents however the important drawback that only one set of rules can
be encoded in such a way. A potential solution to this problem would be to add “context” units
that would create multiple orthogonal codes for a given information in function of the context,
so that different rules could be learned regarding the succession of the same stimuli in different
contexts. The fact that neuronal selectivity in prefrontal cortex is highly variable in function of
the task (Asaad, Rainer, & Miller, 2000; Sigala, Kusunoki, Nimmo-Smith, Gaffan, & Duncan,
2008; Warden & Miller, 2007) is consistent with this hypothesis.

The previous section explored some of the challenges linked to the complexity of the
objects represented in working memory that would be necessary to consider while moving
towards more realistic accounts of conscious temporal regularity processing. However, this
challenges are still compatible with a non-hierarchical and implicit representation of the temporal
regularities. Yet, the data from Shima et al. are only one of the evidence showing a hierarchical
organization of representations. This hierarchy is typically referred to as “chunking”, meaning
that an entire sequence of stimuli is represented as one object. Very little is known about the
mechanisms that lead to the creation of chunks although they are thought to rely on basal ganglia
(A. M. Graybiel, 1998). Interestingly, defining a relevant chunk is formally similar to the problem
of creating an option in hierarchical decision making (Dezfouli & Balleine, 2013; Richard S.
Sutton, Precup, & Singh, 1999), i.e. creating meaningful temporal abstraction that can then be
treated as one object by value systems. This idea of hierarchical decision making using options is
the object of active research in hierarchical decision making (Botvinick, Niv, & Barto, 2009). One
of the main challenges in this domain is to understand the rules that govern the creation of such
chunks or the identification of relevant subgoals in a task. At the neuronal level, the dorsolateral
prefrontal cortex (DLPFC) has been shown to be involved in the representation of task sets
(Hoshi, Shima, & Tanji, 1998), which are formally similar to options. According to the guided
activation theory (E. K. Miller & Cohen, 2001), prefrontal representations do not implement
policies directly, but instead represent “context” units that allow the representation of multiple
stimulus response mapping. Similarly, chunks could represent context units that allow multiple

memory content - prediction associations.

However, the explicit representation of the rules, forbids the use of the parallel
mechanism previously suggested to update the posterior distribution over hypothesis. Context
units and rules associated with them would have to be tested serially to see how well they explain
the sequential data. A similar problem has been described with place cell in the hippocampus.

The places cells have a spatial receptive field that depends on the context (the cage) where the

161



Chapter 6: General Discussion

animal evolves, in the same way that prefrontal neurons have stimulus selectivity that depends on
the context. When a rat is moved to a new environment, it is necessary to infer the right context
so that the position encoding can be expressed by place cells. During the brief period where the
animal is uncertain about the correct contextual hypothesis, place cells have been showed to
oscillate between the codes for the two possible contexts following a theta rhythm (Jezek,
Henriksen, Treves, Moser, & Moser, 2011). Given the fact that theta oscillations are greatly
enhanced during working memory tasks, we could imagine that such a mechanism could be also
used in prefrontal cortex to test the various possible “context”, “rules” or chunks that can be

used to describe the current sequence and predict the next events.

6.3 Conclusion

In this thesis, I explored the properties of conscious and unconscious temporal regularity
processing. I identified the mismatch negativity as a response representative of unconscious
temporal regularity processing. I proposed a neuronal model of the mismatch response based on
predictive coding principles that could reproduce the properties of the physiological mismatch
response. I showed that the predictive responses where organized in a hierarchical manner in
auditory cortex. Finally, I showed that conscious processing using working memory was
generating new computational problems and could perform different types of computations that
opened new possibilities in terms of temporal regularity learning. Finally, I discussed possible
further properties of conscious processing that may arise from the type of encoding that are

possible in working memory.
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