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& RÉ-ÉCLAIRAGE

présentée par

Sylvain DUCHÊNE
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Abstract

We present a multi-view intrinsic decomposition algorithm that allows relighting of an outdoor scene

using just a few photographs as input. Several applications such as architecture, games and movies

require a 3D model of a scene. However, editing such scenes is limited by the lighting condition at the

time of capture.

Our method computes intrinsic images for photos taken under the same lighting conditions with

existing cast shadows by the sun. We use an automatic 3D reconstruction from these photos and the

sun direction as input and decompose each image into reflectance and shading layers, despite the

inaccuracies and missing data of the 3D model. Our approach is based on two key ideas.

First, we progressively improve the accuracy of the parameters of our image formation model by

performing iterative estimation and combining 3D lighting simulation with 2D image optimization

methods. Second, we use the image formation model to express reflectance as a function of discrete

visibility values for shadow and light, which allows us to introduce a robust shadow classifier for pairs

of points in a scene.

Our multi-view intrinsic decomposition is of sufficient quality for relighting of the input images.

We create shadow-caster geometry which preserves shadow silhouettes and using the intrinsic layers,

we can perform multi-view relighting with moving cast shadows. Our method allows image-based

rendering with changing illumination conditions and reduces the cost of creating 3D content for appli-

cations.

Finally, we present an initial study on the limitation of diffuse reflectance models for these com-

putations. We show that more complex models are required, but that simple fitting approaches are

insufficient.
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Résumé

Nous introduisons un algorithme de décomposition intrinsèque multi-vue qui permet de ré-éclairer une

scène extérieure en utilisant quelques images en entrée. Plusieurs applications comme l’architecture,

jeux et films exigent de manipuler un modèle 3D d’une scène. Cependant, la modification de telles

scènes est limitée par les conditions d’éclairage de capture. Notre méthode estime les images in-

trinsèques pour des photos prises dans des conditions d’éclairage identiques avec des ombres. Nous

utilisons conjointement une reconstruction 3D automatique et la direction du soleil pour obtenir la

décomposition de chaque image en calques de réflectance et d’éclairage malgré l’inexactitude des

données du modèle 3D. Notre approche est basée sur deux idées principales.

Tout d’abord, nous raffinons l’estimation des paramètres de notre modèle de formation d’image

en combinant la simulation d’éclairage 3D avec des méthodes d’optimisation basée image.

Deuxièmement, nous utilisons ce modèle pour exprimer la réflectance en fonction de valeur de vis-

ibilité discrète pour l’ombre et la lumière, ce qui nous permet d’introduire un classificateur d’ombre

robuste pour des paires de points dans une scène. Nos calques intrinsèques sont de qualité suffisante

pour manipuler les images d’entrée. Nous déplaçons les ombres portées en créant une géométrie qui

préserve les silhouettes d’ombre. Notre méthode est compatible avec les approches de rendu basé im-

age et réduit les coûts de création de contenu 3D.

Enfin, nous présentons une étude sur les limites du modèle de réflectance diffus et la difficulté

d’appliquer les approches existantes dans le cadre de reconstruction 3D multi vue où les données sont

imprécises.
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Chapter 1

Introduction

1.1 Context and Problem Statement

Figure 1.1: Left: last sequence of Raiders of the Lost Ark (1981). Right: Jurassic Park (1993).

In 1981, Michael Pangrazio spent three months at ILM to paint this warehouse on glass to mix real

footage in Raiders of the Lost Ark for the last sequence of the movie. Twelve years later, ILM created

computer graphics dinosaurs and animated them with a computer less powerful than our current mobile

phone as shown in Fig 1.1. Nowadays, the creation of digital content for architecture, games and movies

requires photos, 3D animated models and involves experimented CG artists to mix such content. This

requires a lot of time and involves the use of software dedicated to image based manipulation. Two

techniques are widely used and are very popular in compositing: Rotoscoping and Matte Painting.

Compositing is the high level idea of combining different sources of images into one single image.

Rotoscoping refers to an image-by-image process, where the user operates a manual segmentation

and matte for one part of an image or video to be used over other images. Matte Painting designates

the environment creation process, from the artwork painted in the background to fine detailed digital

images to create a scene.

14
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a

b

c

d

e

Figure 1.2: Footage courtesy of Weta Digital

available on their Youtube Channel, VFX of

Dawn of the Planet of the Apes.

The development of these techniques has a direct impact

on the way recent movies are produced by using green or

blue screens where live footage is recorded with actors and

then composited with digital content. A traditional pipeline

to create 3D content is to use reference images to model

objects in CG software, to paint and use a lighting trans-

port simulation to render them. However, recent progress

in automatic multi-view 3D reconstruction [Snavely et al.,

2006], [Goesele et al., 2007], [Furukawa and Ponce, 2007]

and image-based-rendering [Goesele et al., 2010],[Chaura-

sia et al., 2013] greatly facilitate the production of realis-

tic content from a small number of photographs. Virtual

walkthroughs from a small number of photographs can be

achieved but still require a lot of manual interaction to

get high quality sequences. Inaccurate 3D reconstruction is

now part of all CG pipelines, however, multiview datasets

are typically captured under fixed lighting, severely restrict-

ing their utility in games or movies – where lighting must

often be manipulated to get a proper composite. Such het-

erogeneous content can also be developed using Nuke by

The Foundry and After Effects by Adobe.

In this sequence from 2014 shown in Fig 1.2, every-

thing is fake. Actually, only a few pictures were taken in San

Francisco (a). Then, the 3D reconstructed scene was used to

project texture to edit the environment, building by build-

ing, piece by piece, with the correct illumination for each

of them (b). Then the artist can transform the ambience of

the scene by adding 3D elements to enforce the degradation

of the original scene (c), (d). Finally, the sequence is mixed

with a horde of full CG apes. But this sequence highlights

two main limitations: the camera motion is still very simple

and the lighting conditions do not really change compared

to the original scene.

We can note that the lighting conditions of the captured scene in San Francisco are similar to the

final sequence which is cloudy and foggy. It is a direct consequence of one difficulty of this approach to

https://www.youtube.com/watch?v=3IqW3whHtbk
https://www.youtube.com/watch?v=3IqW3whHtbk
https://www.youtube.com/watch?v=3IqW3whHtbk


16 Chapter 1. Introduction

create content. Manipulating lighting conditions of such scene is something which cannot be achieved

with existing tools. Actually removing lighting is more painful and costly than waiting for a cloudy day

close enough to that required to guarantee a good composite. It avoids spending time to paint additional

textures of the scene with the most plausible lighting condition thanks to the appreciation of an expert

artist.

1.2 Our approach

In this thesis, we introduce an algorithm to remove lighting in such multi view datasets of outdoors

scenes with cast shadows, with all photos taken in the same lighting condition, overcoming the lim-

itation of fixed lighting in previous image-based techniques, e.g., Image-Based Rendering (IBR). We

focus on wide-baseline datasets for easy capture, with a typical density of e.g., a photo per meter for

a facade. Our solution decomposes each image into reflectance and shading layers, and creates a rep-

resentation of movable cast shadows, allowing us to change lighting in the input images. With our

approach we can plausibly modify lighting in these methods, without requiring input photos with the

new illumination.

Each photograph in a multi-view dataset results from complex interactions between geometry, light-

ing and materials in the scene. Decomposing such images into intrinsic layers (i.e., reflectance and

shading), is a hard, ill-posed problem since we have incomplete and inaccurate geometry, and lighting

and materials are unknown. Previous solutions achieve impressive results for many specific subprob-

lems, but are not necessarily adapted to automated treatment of multi-view datasets reconstructed with

multi-view stereo, especially in the presence of cast shadows. For example, previous intrinsic image

approaches can require manual intervention [Bousseau et al., 2009], special hardware for capture [Bar-

ron and Malik, 2013a],[Chen and Koltun, 2013] or restricting assumptions on colored lighting [Garces

et al., 2012]. Recent learning-based shadow detectors may not always provide consistently accurate

results [Guo et al., 2011], and previous inverse rendering methods require pixel-accurate geometry

which cannot be automatically created using multi-view stereo [Debevec et al., 2004]. Our datasets

can have 30-100 photographs allowing image-based navigation over a sufficient distance for image-

based-rendering applications [Chaurasia et al., 2013]. We thus aim for an automatic method that scales

to multi-view datasets while producing consistent quality results over all views under outdoor lighting.

Our method takes the multi-view stereo 3D reconstruction as input; our algorithm is designed to

handle the frequent inaccuracies and missing data of such models. The user then specifies the sun

direction with two clicks, and we automatically estimate parameters of our image formation model to

extract the required reflectance, shading and visibility information.

The first key idea of our approach is to progressively improve the accuracy of the image model
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parameters with iterative estimation steps, by combining 3D lighting simulation with 2D image opti-

mization.

Our second key idea is to use the image formation model to express reflectance as a function of

discrete visibility values – 0 for shadow and 1 for light – allowing us to introduce a robust visibility

classifier for pairs of points in a scene. Our method starts by finding a first estimate of sun and envi-

ronment lighting parameters, as well as visibility to the sun. We then find image regions in shadow and

in light, implicitly grouping regions of same reflectance. One significant difficulty of outdoor scenes is

that they contain complex cast shadow boundaries. It is thus imperative to extract such boundaries as

accurately as possible, which we achieve by labelling shadows using our visibility classifier. Thanks

to the robustness of the shadow classifier, we can refine the estimation of the reflectance by setting

constraints around shadow boundaries.

This automatic multi-view intrinsic decompositions provide high-quality layers of reflectance and

shading. The quality of these decompositions is sufficient to allow us to introduce a novel approach,

namely multi-view relighting with moving cast shadows. Lighting manipulation of the scene is done

by manipulating the lighting layers and shadow displacements are achieved by combining the cast

shadows from the inaccurate reconstructed 3D geometry and the shadow classifier. We demonstrate our

approach on several multi-view datasets, and show how it can be used to achieve IBR with illumination

conditions different from those of the input photos.

Our intrinsic image formation model has some limitations, but the need to more accurately model

material property is one of the main limitations. To address this issue, for each 3D points we will

attempt to estimate its Bidirectional Reflectance Function BRDF by taking as input our multi view

reconstruction. Image Based BRDF measurement is not new. A pioneer of image based measurement

methods is Steve Marschner. His thesis [Marschner, 1998] largely inspired the technique described

in the Section 2.9. We present our results in the context of inaccurate 3D reconstruction captured in

uncontrolled environment using multi view stereo techniques.
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1.3 Contributions

This thesis presents the following contributions:

Lighting conditions estimation for an outdoor scene We present a method to automatically esti-

mate approximate environment (indirect and sky) illumination, as well as the color of sunlight, based

on lighting simulation using ray-tracing. We create an environment map representing radiance from the

sky and unreconstructed objects, and combine image and 3D information to find sunlight color. Our

method only takes as input a rough estimation of the sun direction set by two clicks in a minimal user

interface, a multi view reconstructed 3D geometry and its input photos.

Shadow classification We introduce a shadow classifier for multi view outdoor scenes based on an

intrinsic image formation model to express reflectance as a function of discrete visibility values. This

approach allows us to introduce a robust visibility classifier for pairs of clusters in the scene working

on the reflectance of the surface itself instead of the radiance color captured in input views. We did not

address the problem of very soft shadow boundaries or fine element structures.

Intrinsic decomposition A method to compute multi-view intrinsic layers using shadow labelling

and propagation. We use our robust visibility classifier in a graph labelling algorithm to assign

light/shadow labels to all pixels except those in penumbra. We complete the computed intrinsic lay-

ers by propagating visibility to the remaining pixels in each image. The shadow classification is then

used to improve the estimate of environment lighting, resulting in more accurate shading, visibility and

reflectance layers.

Relighting Algorithm By clearly identifying regions in shadow, the quality of our intrinsic decom-

position allows us to manipulate shadow regions and to re-render the scene for a new sun position by

displacing the shadow and updating the lighting layer. This step is composed of four main parts: a la-

bel cleaning of the segmented regions in casted shadow, a reconstruction of a shadow caster to retrieve

the original image, a shadow warping method and a shading re-evaluation. Our approach can then be

combined with any image based rendering technique such as [Chaurasia et al., 2013], as shown in the

supplemental video.

Image Based BRDF Study The context of multi view stereo reconstruction and inverse rendering

brings new challenges resulting from the inaccuracy of the 3D model and the sparsity of the captured

BRDF samples. We expose these challenges and show some initial results.
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1.4 Overview

The thesis is organized as follows:

• Chapter 2 presents a discussion on previous work relevant to the methods describes in this thesis.

• Chapter 3 presents a novel intrinsic decomposition algorithm based on a shadow classifier for

outdoor scenes reconstructed using multi view stereo method.

• Chapter 4 introduces a novel relighting algorithm which allow the manipulation of the lighting

conditions of a scene treated with the method described previously. This is the first method to

provide an interactive relighting method in a multi-view setting.

• Chapter 5 describes the extensive evaluation of several steps of the algorithms introduced in

Chapters 3 and 4. It also contains a ground truth estimation to study limitations of the methods.

• Chapter 6 exposes the challenge of fitting a BRDF in the context of inaccurate 3D model and

presents initial results.

• Chapter 7 summarizes the results of this thesis and proposes some ideas for future work.



Chapter 2

Previous Work

The explosion of digital images over the last decade through the development and availability of DSLR

cameras, mobile phones and smart phones make acquisition more and more easy. In a few seconds,

anyone can capture a digital image of a sunset beach, a historic place, their garden, house and share

it with friends. In this chapter we first review basics of imaging and various new approaches to image

manipulation related to our work. In this thesis, we dealt with many different tools from image process-

ing, computer vision and computer graphics. In the first three sections of this chapter, we present the

basics of image capture, 3D reconstruction and global illumination, which we used as basic building

blocks for our research, without actually contributing new methods. The following two sections cover

methods from image processing and Markov Random Fields; our algorithms required us to adapt these

solutions to our problems. The final four sections of this chapter cover previous work in intrinsic im-

ages, relighting, shadow removal and BRDF estimation which comprise the main contributions of this

thesis.

2.1 Capturing an image

Digital photographs are composed of discrete color or intensity values obtained by projecting 3D geom-

etry of a scene with specific lighting conditions, surface properties, camera optics and sensor response

on a 2D plane. It is important to keep in mind that all these terms play a role in the values of an image

pixel.

A camera captures the outgoing radiance Lr for a point p in one particular direction #»ωr which

depends on the amount of radiance reflected from all incoming directions #»ωi through the bidirectional

reflection distribution function (BRDF) fr as shown in Eq. (2.1).

20
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Figure 2.1: A simplified model of photometric image formation. Light is emitted by one or more light sources

and is then reflected from an object’s surface. A portion of this light is directed towards the camera. This model

ignores multiple reflections, which occur in real-world scenes. [Szeliski, 2010a]

Lr(p,
#»ωr) =

∫

Ωi

fr(p,
#»ωi,

#»ωr)Li(p,
#»ωi) cos(θi)dωi, (2.1)

This observed point projects on an ”imaginary” image plane of the camera (Fig.2.1) as radiance

going through the lens of the camera for a particular aperture and shutter speed before finally reaching

the camera CCD/CMOS sensor. The signal is then amplified through a gain stage before a standard

analog to digital signal conversion (Fig. 2.2).

An image may look over or under exposed because of an incorrect choice of all camera parameters

by the photographer. The shutter speed represents the exposure time and literally controls the amount

of light projected to the sensor. Shutter speed is commonly also used to control motion blur effects for a

waterfall, a car light in a city, objects in motion etc. The aperture corresponds to the opening camera of

the diaphragm’s diameter. A wide aperture will give larger depth of field by reducing the zone in focus.

A smaller aperture will put the full scene in focus with no depth of field effect. Since both of those

terms influence the amount of light reaching the camera sensor, one last adjustment can be performed

on a capture using gain control (ISO). ISO directly refers to this legacy film sensitivity measurement

still widely used for practical reasons in new digital cameras. High values give gain and too much gain

also means noise. Neither the sensor nor the conversion can be controlled by the photographer, since

the model of a DSLR camera defines its limits. Complex components composed of several lenses can

strongly limit the range of aperture, distort images or work against chromatic aberration.

Throughout this thesis, the term image will refer to a linear image in RAW format without any post

processing operation applied except the Bayer filter used to compose color images [Bayer, 1976].



22 Chapter 2. Previous Work

Figure 2.2: DSLR pipeline as described in [Szeliski, 2010b].

2.2 From 2D images to 3D models

Recent years have seen the new trend of producing 3D models using multiple photos of a scene for

virtual visits, cinema or even 3D printing [Goesele et al., 2007]. Since 3D Reconstruction is a field

on its own, we will describe a traditional reconstruction pipeline. In our case we use the Photofly

system from Autodesk through our partnership (Fig. 2.4). The reconstruction pipeline takes only a set

of images from the same scene as input. The pipeline (Fig.2.3) contains three main steps: cameras,

points and mesh reconstruction.

The first step estimates extrinsic (position in the scene) and intrinsic (focal length, radial distorsion)

camera parameters. To achieve this, on each image local invariant feature detectors such as Scale-

invariant feature transform (or SIFT [Lowe, 2004]) are applied to identify similar points position in

multiple images. With enough samples, structure from motion algorithms can estimate 3D positions.

The most popular implementation of such methods is Bundler [Snavely et al., 2006]. PMVS [Furukawa

and Ponce, 2007] can output a set of oriented points from the bundle adjustment, and finally a mesh

can get estimated using polygonal surface or Poisson reconstruction [Kazhdan and Hoppe, 2013]. Note

that this is only an example of multi view reconstruction pipeline.

To acquire a dataset for 3D reconstruction, traditional photography rules do not apply. The con-

ditions are not the same as for a portrait in a studio with umbrellas and flashes; the camera needs to

be perceived as a scanner. The goal is to maximize the quality of the 3D model, not photographic

aesthetics. This notion is critical and still requires a good mastery of photography. To obtain a good re-

construction, we need pictures in focus to avoid depth of field and a good texture and lighting contrast

to maximize the chance to get good feature matching.

Note all 2D to 3D methods exploit sharing information strategies between points from different

input views. Many methods [Haber et al., 2009], [Laffont et al., 2012], [Shih et al., 2013] choose to

work with different lighting conditions, so they perform their acquisition by moving a light around
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Figure 2.3: Overall approach from [Furukawa and Ponce, 2007]. From left to right: a sample input image;

detected features; reconstructed patches after the initial matching; final patches after expansion and filtering;

polygonal surface extracted from reconstructed patches.

the scene and require a tripod, or webcam video timelapse (the images overlay themselves) to avoid

realignment of images or even Flickr photo collection with a risk of having images which have been

manipulated and a very wide gamma-range or particular unrealistic color effects.

In our case, we want to avoid these issues and capture a scene with a single lighting condition, so

it is very important to shoot using the same DSLR camera with the same lens with a fixed aperture,

shutter speed and ISO. Small aperture values should be favoured to ensure the entire scene is in focus,

combined with an ISO and shutter speed to maximize contrast without noise. Note that the sun can

play a role when taking shots in outdoor scenes because of refraction of light rays in the lens.
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Figure 2.4: Screenshot of the photofly reconstruction of an outdoor scene showing camera locations, Refer to

the dataset section to get more details.
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2.3 Lighting Simulation

2.3.1 Solid Angle

The solid angle ω and its differential dω are used in lighting simulation and computer graphics to

integrate the quantity of light received or emitted by a surface Fig. 2.6. dΩ is a differential projected

solid angle, representing the differential solid angle dω with the cosine of the angle θ between the

normal #»n of the surface and the direction #»w of a differential solid angle dω Fig. 2.5).

dΩ = cosθdω, with dω = sinθdθdφ (2.2)

Figure 2.5: Element of solid and projected solid angle.

2.3.2 Radiometry

Radiometry is concerned with the measurement of light based on its physical properties; it should not

be confused with the perceived light observed by the visual human system which refers to Photometry.

Flux, irradiance/radiant exitance, intensity and radiance are the four main radiometric quantities.

Radiant flux φ (Eq. 2.3 ) measures the total energy passing through a surface during a period t in

Watt (Joule.sec−1 ).

φ =
dQ

dt
(2.3)

Irradiance E (2.4) measures the incident flux from all incoming direction per unit surface area

(Watt.m−2). The radiant exitance B (Eq. 2.5 ) represents the outgoing flux per unit surface area. Both

irradiance and radiant exitance have units of Watts per square meter.
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Figure 2.6: Geometry of incident and reflected elementary beams. [Nicodemus et al., 1992]

E =
dφi

dA
(2.4)

B =
dφr

dA
(2.5)

The Radiant intensity I (Eq. 2.6) measures the flux per solid angle Watt.m−2 in a direction d #»w .

I =
dφ

d #»w
(2.6)

Radiance L (Eq. 2.7)is the most important quantity. It measures the flux of light dφ in Watt cross-

ing a surface A locally perpendicular with the direction #»w , (cos θ ), as a function of its differential

area dA and the solid angle dw around #»w . It is expressed in Watts per square meter per steradian

Watt.m−2.sr−1.

L =
d2φ

dAdω cos θ
with,

dA cos θ, the projected area,

θi, the angle between the incoming light direction and the normal at the point.

(2.7)
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2.3.3 The Bidirectional Reflectance Distribution

The Bidirectional Reflectance Distribution Function (BRDF), fr describes the reflection of light on a

surface for a given point. The incoming radiance is reflected at that same surface location x:

fr(x,
#»wi,

# »wr) =
dLr(x,

# »wr)

dEi(x,
#»wi)

=
dLr((x,

# »wr)

Li(x,
#»wi)(

#»n. #»wi)d
#»wi

, (2.8)

where #»n is the normal at point x, the vectors #»wi and # »wr represent the incoming and outgo-

ing/reflected illumination direction respectively Fig. 2.6. Here, the BRDF is first defined as a ratio of

reflected radiance Lr and Ei, then as the ratio between the incident and reflected differential radiance

Lr which is proportional to the solid angle and #»n. # »wr for Li as described in the previous section.

For a given point x, if the incident radiance field is known, the reflected radiance field can be

computed; Ω is the hemisphere of incoming directions at the point x:

Lr(x,
# »wr) =

∫

Ω

fr(x,
#»wi,

# »wr)dE(x, #»wi) =

∫

Ω

fr(x,
#»wi,

# »wr)Li(x,
#»wi)(

#»n. #»wi)d
#»wi. (2.9)

All BRDF models have two fundamental properties which guarantee energy conservation and reci-

procity. A surface modeled using a BRDF cannot produce energy and satisfies an energy conversation

property which implies that the total amount of reflected light can never be bigger than the total incom-

ing light received:

∫

Ω

fr(x,
#»wi,

# »wr)(
#»n. #»wi)d

#»wi ≤ 1, ∀ # »wr (2.10)

Helmholtz’s law of reciprocity states that the BRDF should be symmetric and independent of the

direction in which light flows, so the same result must be obtained by swapping the incoming #»wi and

outgoing directions # »wr:

fr(x,
#»wi,

# »wr) = fr(x,
# »wr,

#»wi) (2.11)

2.3.4 Reflectance

The radiant flux incident through a solid angle d #»wi onto a surface element is given by dA:

dφi = dA

∫

ωi

Li(x,
#»wi)dΩi (2.12)



28 Chapter 2. Previous Work

The flux reflected by the surface element dA into a solid angle # »wr is given by:

dφr = dA

∫

ωr

Lr(x,
# »wr)dΩr = dA

∫

ωr

∫

ωi

fr(x,
#»wi,

# »wr)Li(x,
#»wi)dΩidΩr (2.13)

The reflectance R represents the ratio of reflected to incident flux and gives the amount of light

reflected by a surface at a point x:

R(x) =
dφr(x)

dφi(x)
=

∫

ωr

∫

ωi

fr(x,
#»wi,

# »wr)Li(x,
#»wi)dΩidΩr

∫

ωi

Li(x,
#   »

wi)dΩi

(2.14)

If we assume an ideal diffuse reflection function known as Lambertian (i.e the reflected radiance

is constant in all directions), we can ignore the incoming illumination direction to reflect outgoing

radiance and the obtained BRDF becomes a constant fr,d:

Lr(x,
# »wr) =

∫

ωi

fr,d(x, wi, wr)LidΩi = fr,d(x)

∫

ωi

LidΩi = fr,d(x)Ei(x) (2.15)

which can be substituted directly to the reflectance R(x) giving:

R(x) =
dφr(x)

dφi(x)
=

dA
∫

ωr

∫

ωi

fr(x,
#»wi,

# »wr)Li(x,
#»wi)dΩidΩr

Ei(x)dA
=

Lr(x)
∫

ωr
d # »wr

Ei(x)
= πfr,d(x) (2.16)

∀ # »wr, Lr(x,
# »wr) = Lr(x) =

R(x)Ei(x)

π
(2.17)

This last relation Eq. 2.17 will be used for the intrinsic images decomposition problem described

later in chapter 3, where Lr(x,
# »wo) represents the intensity of one pixel in image, R(x) the reflectance

and Ei(x) the shading.

2.3.5 Rendering Algorithm

The purpose of computer graphics is to produce images by simulating the reflection of light to estimate

the outgoing radiance Lo as the sum of the emitted radiance Le and the reflected radiance Lr, Eq. 2.18:

Lo(x, wr) = Le(x, wr) +Lr(x, wr), knowing thatLr(x, wr) =

∫

ωi

fr,d(x,
#»wi,

# »wr)Li(
#»n. #»wi)dωi (2.18)

Several algorithms exist to solve this integral, but describing them is beyond the scope of this review.

For all our experiments, we have used a simple Monte Carlo ray tracer [Veach, 1997].
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2.4 Image processing tools

Numerical optimization techniques are used in many fields but some particular methods have became

standard in image processing. This section describes image completion and image driven propagation.

These methods are related to techniques we develop later in the thesis.

2.4.1 Hole Filling

To fill holes in images, the most popular tools are based on partial differential equation PDE and

diffusion techniques such as heat flow Fig. 2.7 or based on exemplar through graph and patch cor-

respondences Fig. 2.8. In our context we used only Perona-Malik anisotropic diffusion [Perona and

Malik, 1990].

Figure 2.7: Inpainting demo of the parrot cage using anistropic diffusion. http://cimg.sourceforge.

net/greycstoration/demonstration.shtml

Figure 2.8: Structural image editing from [Barnes et al., 2009]. Left to right: (a) the original image; (b) a hole

is marked (magenta) and line constraints (red/green/blue) to improve the continuity of the roofline; (c) the hole

is filled in; (d) user-supplied line constraints for retargeting; (e) retargeting using constraints eliminates two

columns automatically; and (f) user translates the roof upward using reshuffling.

http://cimg.sourceforge.net/greycstoration/demonstration.shtml
http://cimg.sourceforge.net/greycstoration/demonstration.shtml
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2.4.2 Image driven Propagation

Image Driven propagation applies particularly well to the recolorization problem [Levin et al., 2004] or

image matting [Levin et al., 2008a] to segment an image with soft boundaries instead of simple binary

values. Originally developed as a matting algorithm to identify a foreground object from the back-

ground using limited user input, the method of [Levin et al., 2008b] also largely inspired [Bousseau

et al., 2009], [Laffont et al., 2012], [Laffont et al., 2013] to propagate illumination (single channel or

RGB channel).

Figure 2.9: Results from [Levin et al., 2004], a level grey image required only some colored user strokes to

propagate the color over the full image.

Figure 2.10: Image matting example using the method of [Levin et al., 2008a].
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2.5 Markov Random Fields

Finding a label L ∈ L0, L1, ...LN for a region R or a pixel in an image I is a popular and active research

field in computer vision and image processing. Over the last years, Markov Random Fields (or MRF)

have been intensively used to express inference problems given a number of measurements by using

Bayes’ theorem.

Bayes’ Rule states that a posterior distribution p(x|y) over the unknowns x given the measurements

y can be obtained by multiplying the measurement likelihood p(y|x) by the prior distribution p(x),

p(x|y) =
p(y|x)p(x)

p(y)
(2.19)

By taking the negative logarithm we get the negative posterior log likelihood. It is common to

drop the constant log p(y) because its value does not matter during energy minimization since it is a

normalization constant:

log(p(x|y)) = − log(p(y|x))− log(p(x)) + log(p(y)) (2.20)

The most likely or Maximum A Posteriori MAP solution x given y is estimated by minimizing this

negative log likelihood, which can also be thought of as an energy:

E(x, y) = Ed(x, y) + Ep(x) (2.21)

The term Ed is also known as the data energy or data penalty term and measures the negative log

likelihood that the measurements y were observed given the unknown state x. The second term Ep(x)

is the prior energy also called pairwise term and it plays a role analogous to the smoothness energy

in regularization. A wide range of different solutions exist to solve MRF and variants (Conditional

Random Field, high-order MRF,..) under particular conditions. Gradient descent is the simplest way

to optimize a MRF by updating subsets of nodes to reduce the energy configuration. However, such

methods can easily get trapped in local minima requiring the use of random processes to try to get

out of such minima e.g. through Markov Chain Monte Carlo updated by Gibbs sampling, stochastic

gradient descent combined with simulated annealing or even linear programming relaxations (maxcut)

and dynamic programming. These problems are particularly well described and illustrated in [Szeliski,

2010a]. Unfortunately, they tend to be very slow.

Such energy models are particularly useful in the context of an image modelled as a connected

graph. Let us assume we have adjacent regions: R1, R2, R3,...RN to represent pixels of our image I .

We want to assign a label L ∈ {s, t} for each region. It is more likely that two neighbouring regions

with similar colors should share the same labels. So the smoothness energy term could measure color
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difference to propagate labels.

Graph Cuts [Boykov et al., 2001] is a standard method to solve such energies described as a graph

in Fig. 2.11 and equation (2.22) and can be applied to any pairwise MRF satisfying the sub-modular

prior defined in equation (2.23).

Figure 2.11: Segmentation of a clustered image. Each node in the graph corresponds to an image cluster. Edges

between the nodes represents the cost of a color based affinity function which implies that similar colored cluster

should have the same label, it is called the pairwise term. Each node is connected to the source and the sink to

model the cost of assigning a particular label to this node, this is the data term, it can be initialized by an user

interface

E(L) =
∑

p

Ed(Lp) +
∑

pq∈N

Ep(Lp, Lq), withLp ∈ {s, t}. (2.22)

E(s, s) + E(t, t) ≤ E(s, t) + E(t, s) (2.23)

However, some problems cannot be written to respect a sub-modular energy and are NP hard [Kol-

mogorov and Zabin, 2004]. The work on cooperative cuts by [Jegelka and Bilmes, 2011] demonstrates

how to use graph cut as a subroutine. High-order MRF also introduces cost functions to express the

prior between non-local and neighbouring pixels/regions which can easily break the sub-modular con-

straint. One way to tackle this issue is to perform inference on the graph and to refer to a message pass-

ing algorithm like Belief Propagation BP, also known as sum-product message [Pearl, 1982] which

is mainly designed for acyclic graphs. In the case of a graph which contains cycles or loops, Loopy

Belief Propagation LBP has been proposed. However, its convergence to obtain the maximum a pos-

terior solution was studied later by [Weiss, 2000]. Despite the lack of a demonstration, these local
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message techniques were extended by [Wainwright et al., 2003] with tree-reweighted message prod-

uct TRW and then popularized by [Kolmogorov, 2006] with the sequential tree-reweighted message

product TRW-S. TRW was inspired by the problem of maximizing a lower bound on the energy and

actually TRW-S guarantees the bound will not decrease. Binary pairwise MRF can also be optimized

by the linear programming LP relaxation method and especially quadratic pseudo-Boolean optimiza-

tion QPBO [Boros and Hammer, 2002] which labeled the graph partially. Recently, [Gorelick et al.,

2014] propose a new method to optimize non sub-modular energies outperforming QPBO, LBP and

TRW-S methods. The key idea is to use non-linear local sub modular approximations LSA instead of

linear approximation.

Figure 2.12: Figure from the [Gorelick et al., 2014] method.

In Fig. 2.12, we can observe a local linearization of supermodular pairwise potential f(x, y) = α.xy

for α > 0. This potential defines four costs f(0, 0) = f(0, 1) = f(1, 0) = 0 and f(1, 1) = α at four

distinct configurations of binary variables x, y ∈ {0, 1}. These costs can be plotted as four 3D points A,

B, C, D in (a-c). The super-modular potential f is approximate with a linear function v.x+w.y+const

(plane or unary potentials). Two approximation methods are proposed, LSA-TR ( trust region) which

is based on Taylor expansion and LSA-AUX ( auxiliary functions ) on upper bounds. Both of this

methods aims to control the step size during the optimization. We use TRW-S in Chapter 3 for the

shadow classification.
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2.6 Intrinsic Images

The problem of ”intrinsic images” was defined for the first time in 1978 by Barrow and Tenebaum

[Barrow and Tenenbaum, 1978] to recover properties such as shape, reflectance and illumination from

a single image. [Horn, 1989] obtained the first decomposition of an image in 1974 through Land’s

Retinex theory proposed in 1971 [Land and McCann, 1971] assuming that high edge discontinuities

tend to be reflectance, and smooth variations are mostly due to shading. Over the last decades, a collec-

tion of methods have appeared taking advantage of new devices to capture images such as digital SLR

and RGB-D cameras but also by inferring extra knowledge (scribbles, 3D information, etc) from a sin-

gle image. This problem is still unsolved, and is still of interest in both computer vision and computer

graphics communities.

2.6.1 Single image methods

Figure 2.13: [Garces et al., 2012] (a) Input image and scatter plot of pixel data in the (a,b) plane (Lab color

space). (b) k-means segmentation according to (a,b) pixel coordinates. (c) Final clustering yielded by the method,

taking into account spatial information (both (b) and (c) are depicted in false color). (d) The resulting shading

and reflectance intrinsic images.

Many methods propose extra priors to Retinex without inferring any extra information. [Shen et al.,

2008] enhance Retinex priors by adding a non-local cue. They assume that for each point, there gener-

ally exists a set of other points in the image sharing the same neighbourhood texture configuration so

they can enforce that such pixels share the same reflectance value. However, despite soft matching on

window size and match similarity to reduce the impact of incorrect matches, some incorrect matches

can remain. [Zhao et al., 2012] propose a closed formula to tackle this problem solved by a simple
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conjugate gradient method. [Shen et al., 2011] take into account the parsimonious distribution of re-

flectance and assume that neighbouring pixels in a local window having similar intensity values should

also have similar reflectance.

In [Garces et al., 2012] Fig. 2.13, an image is considered and no additional information or user

strokes are required. They propose to work with clusters instead of pixels. Clusters of similar re-

flectance are built based on the prior that changes in chromaticity usually correspond to changes in

reflectance. They assume shading is continuous at cluster boundaries which relaxes the second Retinex

assumption that shading is partially smooth. They can express this problem as a linear system repre-

senting connections and relations between clusters which can be solved quickly.

Figure 2.14: [Bousseau et al., 2009] (a) Input image (b) user scribbles, white scribbles indicate fully-lit pixels,

blue scribbles correspond to pixels sharing similar reflectance, red scribbles correspond to pixels sharing a similar

illumination (c) (d) are respectively the obtained reflectance and illumination layer. (e) is an example of texture

edition.

Since it is a largely under-constrained problem, the best results are achieved by methods using

additional information. One way to provide information is to design an user interface allowing the user

to partially solve the problem. [Bousseau et al., 2009] propose a method to guide the decomposition

using a sparse set of constraints propagated using the matting laplacian [Levin et al., 2008a]. The user

needs to indicate regions of constant reflectance, constant illumination or known absolute illumination

(see Fig. 2.14). The main advantage of such a task is to decompose complex scenes with colored

lighting or complex materials. Following the high-quality result from this work, [Carroll et al., 2011]

demonstrate it is also possible to recover diffuse inter-reflections. By decomposing illumination into

direct lighting and indirect diffuse illumination from each material, any change in the reflectance color

can be used to update indirect illumination.

With the development of machine learning to classify, model or weight, many approaches refer to

such methods to take advantages of combining the best priors on local and global cues in a image and

extra knowledge coming from the processing of thousands of images with ground truth. [Tappen et al.,

2005] combine both color information and classifier to determine if each image derivative is caused
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by shading or reflectance changes. They use Belief Propagation to propagate information from areas

where the correct classification is clear to areas where it is ambiguous. Following their previous work,

[Tappen et al., 2006] estimate intrinsic components by first estimating a set of local linear constraints,

such as derivatives, from patches of the observed grayscale image. The component image is then found

by solving for the image that best satisfies these constraints. They introduce a method that accounts for

the uncertainty in the estimates of the constraints when solving for the estimated intrinsic component

by weighting ambiguous patches. The learning process for the weight is achieved by minimizing the

error between ground truth images and the their model prediction.

In their technical report, [Barron and Malik, 2013a] synthesize their work on shape illumination

and reflectance from shading SIRFS. They pose the intrinsic decomposition problem as one statistical

inference to define an optimization problem searching for the most likely explanation of a single im-

age satisfying some reflectance, shape and illumination priors. The extra inferred knowledge is depth

coming from sensor similar to a Kinect and a collection of models and weights learnt from a training

set such as the one from MIT [Grosse et al., 2009] and Opensurface [Bell et al., 2013]. Their prior

over illumination is built on a spherical-harmonic model fitted by a multivariate Gaussian to represent

distant incident lighting. The prior on reflectance is composed of three assumptions:

• An assumption of piecewise consistency which is modelled by minimizing local variation.

• A parsimony of reflectance which assumes that the palette of reflectance in the scene tends to be

small.

• An absolute ”reflectance” which prefers to attribute a more plausible color such as white,gray,

green, brown rather than absolute black, neon pink to the scene.

The prior on shape is also composed of three assumptions:

• Smoothness, shapes tend to bend rarely.

• Isotropy of the orientation of the surface normals which reduces the fronto-parallel prior on

shapes.

• Orientation of the surface normal near boundaries of masked objects.

These shape priors are imposed on intermediate representations of shape such as mean curvature or

surface normals. These are computed from a depth map to satisfy all these priors and then back-

propagated to the shape.

[Chen and Koltun, 2013] analyze a single RGB-D image and estimate albedo and shading fields

that best explain the input. Their approach is based on the idea that the accuracy of the intrinsic decom-

position can be improved if the shading image can be decomposed in different layers using lighting

simulation. More particularly, they refer to direct lighting and indirect irradiance. The main advantage

of referring to a physical model is the possibility to regularize each term more precisely during the min-

imization. They factorize an input image into four component images: an albedo, a direct irradiance
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Figure 2.15: Intrinsic decomposition of an RGB-D image from the NYU Depth dataset [29]. First column Input

color and depth image. Albedo and shading images estimated by two recent approaches for intrinsic decomposi-

tion of RGB-D images [Lee et al., 2012], [Barron and Malik, 2013a] and by [Chen and Koltun, 2013].

image, an indirect irradiance and an illumination color image. The albedo component enforces pixels

that have similar chromaticity to have similar albedo. They model illumination color as a trichromatic

layer instead of a grayscale model, direct and indirect irradiance layers are modeled as scalar fields.

By modeling irradiance as a 3 channel layers, the authors claim it diminished the quality of the intrin-

sic decomposition and only use a grayscale model. The reason is that the irradiance can change quite

significantly at relatively short distances when surface curvature is high. Direct lighting regularization

constrains points sharing similar normals to have similar irradiance if contributions from other objects

are ignored such as shadow or inter-reflection. Indirect irradiance has to be smooth in 3D space except

in regions near occlusion boundaries.

2.6.2 Multi-view and multiple lighting images methods

Recent work [Laffont et al., 2013] aims to obtain intrinsic decomposition without any scan data and

by limiting the acquisition tools to a DSLR camera, light probe to capture the environment map and

a gray card to calibrate the sun intensity Fig. 2.16(a).The capture process does not require a laser-

scan geometry or material capture as discussed in the next section [Debevec et al., 2004]. Patch-based

Multi-view Stereo (PMVS), [Furukawa and Ponce, 2010] provides a sparse reconstruction of the scene

by using low dynamic range (LDR) input images Fig. 2.16(b). The capture of the scene also includes

some high dynamic range photos (HDR). They infer sparse 3D lighting information using lighting

simulation to compute direct lighting, sky and indirect irradiance in image space Fig. 2.16(c). Each

of these terms is then propagated as a constraint using image-guided propagation [Levin et al., 2004]

as already demonstrated in the context of user assisted constraints [Bousseau et al., 2009]. Estimating
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Figure 2.16: Pipeline decomposed in 5 steps [Laffont et al., 2013]: (a) Capture using a DLSR camera, light probe

and grey card, (b) create point cloud using [Furukawa and Ponce, 2010] then transfer radiance from images to

the point cloud and aligns the scene with the environment map and sun direction, (c) lighting simulation, (d)

solving sun visibility, (e) propagate lighting to obtain the reflectance.

lighting for outdoor scenes requires the classification of points in shadow, in light or in-between since

the inaccurate geometry to perform a visibility test using a ray tracer is unreliable Fig. 2.16(d). The

key idea is to associate pairs of clusters sharing similar reflectance with a floating visibility term. To

find the best candidate, the space of solutions is explored using a mean-shift optimization to check if

two clusters potentially intersect in reflectance space. However the method does not estimate mean-

shift bandwidth automatically which requires user intervention to find the parameters giving the best

solution.

Many approaches use the prior that reflectance remains coherent over lighting condition changes

and do not necessarily require a 3D model. Through video time lapse sequences of a fixed camera, they

can identify the most likely reflectance given that the scene is mostly stationary.

[Weiss, 2001] makes assumptions that derivative-like filters applied to images tend to give sparse

output and claims that since filter outputs are Laplacian distributed and independent over time and

space, the maximum-likelihood estimation MLE of the reflectance can be computed by integrating the

median of the derivative filters output on a image sequence over time.

[Matsushita et al., 2004a] weight the smoothness constraint on illumination by using the median

estimator from derivative distributions to detect flat surfaces. Their energy model explicitly describes

temporal and spatial constraints to enforce smoothness. This aims to prevent shading on non-planar
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surfaces to degrade MLE in the case of adjacent pixels with different normal under a biased illumina-

tion distribution not centered around their normal (non uniform illumination conditions).[Matsushita

et al., 2004b] derive time-varying reflectance images and corresponding illumination images from a

sequence instead of assuming a single reflectance image. Using obtained illumination images, they

normalize the input image sequence in terms of incident lighting distribution to eliminate shadowing

effects. This approach allows them to deal with non Lambertian scenes.

In [Sunkavalli et al., 2007] a clear-sky outdoor video time lapse sequence is factorized into shadow,

reflectance, illumination in sky and sun components for each pixel. This representation allows them

to edit normals, shadow and reflectance. The camera viewpoint is fixed and the scene is stationary,

since usually most changes in the sequence are changes in illumination. Under clear-sky assumptions

lighting can be approximated as a sum of an ambient term corresponding to sky illumination and a

single directional light source corresponding to the radiance of the sun. In [Sunkavalli et al., 2008], they

extend their method to a collection of time lapses for the same outdoor scene under several different

viewpoints.

2.6.3 Evaluation

Figure 2.17: From [Bell et al., 2014]. A public dataset of indoor scenes for intrinsic images in the wild is introud-

ced (a). (b) The crowdsourcing pipeline lets users annotate pairs of points in each image with relative reflectance

judgements. (c) The intrinsic image decomposition algorithm performs well in respecting the human judgements

and is based on a fully-connected conditional random field (CRF) that incorporates long-range interactions in the

reflectance layer while simultaneously maintaining local detail. All source images are licensed under Creative

Commons

The MIT Intrinsic Images dataset [Grosse et al., 2009] remains one of the best ways to evaluate

the quality of an intrinsic decomposition over other approaches. To quantitatively compare several

approaches, they design a dataset composed of a variety of real world objects. For each object, they

provide the intrinsic decomposition of an image into 3 components: lambertian shading, reflectance

and specularities. However, it focuses only a small range of materials on a small selection of single

objects lit by a single direct light source. The difficulty to decompose and evaluate intrinsic decompo-

sitions for real world scenes is tackled by [Bell et al., 2014] for indoors scene. They propose a new
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intrinsic decomposition algorithm and an evaluation method; referring to the ability of humans to judge

material comparisons despite variations in illumination. To turn it into a high scalable pipeline, they

design their training in the mechanical Turk framework with a simple learning task. Instead of asking

for a per pixel annotation they ask the user to disambiguate relative reflectance of pairs of pixels in each

image through a simple user interface. They display an image to the user and ask them for a particular

pair at the same time if cluster 1 or 2 is darker or look the same and their confidence in their evaluation.

This strategy also offers a way to eliminate bad workers. Given all these judgments they introduce a

metric called WHDR (Weighted Human Disagreement Rate) which measures the percentage of human

judgments than an algorithm disagrees with to evaluate intrinsic decomposition. Given this, they min-

imize the WHDR error to optimize their energy model for each weight and parameter on a collection

of variants (295 in the paper). Their energy model is designed by a dense Conditional Random Field

(CRF) referring to the best priors suggested in previous work:

• Nearby pixels having similar chromaticity or intensity should have similar reflectance.

• Neighboring pixels have similar shading [Garces et al., 2012]

• Reflectance is piecewise-constant [Land and McCann, 1971], [Liao et al., 2013], [Barron and

Malik, 2013b].

• Reflectances are sampled from a sparse set

• Certain shading values are a priori more likely than others [Barron and Malik, 2013b]

• Shading is grayscale or the same color as the light source

They demonstrate the performance of their method compared to previous methods by optimizing also

each weight and parameter for all algorithms.
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2.7 Inverse Rendering, Scene Manipulation, Relighting

In the literature we can find work dealing with texture editing and lighting manipulation of a scene.

Intrinsic decomposition of images is mostly motivated for these reasons, however other approaches

exist and each of them uses specific capture devices or requires different amount of human intervention.

According to the targeted scene, indoors, outdoors, simple objects or landscape, different acquisition

tools can be used ranging from a simple mobile phone camera to a 3D laser scanner.

Figure 2.18: (a)Original scene.(b)Relight scene.

The work from [Loscos et al., 1999] presents

an interactive method to relight indoors scene

(Fig. 2.18). They focus on editing real light

source intensities and inserting new virtual lights

and objects. Interactive updates are based on a

simple model of the scene. At the time, recon-

struction algorithms were not good enough to

perform camera calibration without human inter-

vention. Reconstruction was also user assisted,

but the targeted scenes are easy to model with polyhedra. Hierarchical radiosity simulates lighting

interaction between objects. The pipeline estimates unoccluded illumination textures which represent

reflectance without taking shadows into account. Real shadows can then get reprojected via the modi-

fied radiosity estimation by modulating the texture with a ratio corresponding to the increase/decrease

in illumination due to the lighting changes. Shadow boundaries are critical and require proper removal.

To do so, the texture based refinement pass compares neighbouring leaves from the model decomposed

in patches. If two patches have similar colors, they should share the same visibility with respect to all

real light sources; also if two patches have different colors, they should have different visibility types,

if not the required patch is subdivided until a decision can be taken. This way, patches around shadow

boundaries will be subdivided in very fine patches and remove residuals even if ray casting failed to

identify the right visibility type. All interactive updates are performed with consistent shadows of real

and virtual objects.

[Debevec et al., 2004] introduce a pipeline to capture a complex outdoor scene using a time of flight

panoramic range 3D scanner to reconstruct the geometry mesh of the scene, chrome balls to acquire

object reflectance and estimate the different environment lighting conditions such as sun direction and

sun intensity. To achieve this, all acquisition devices have to be calibrated correctly which makes the

preprocessing and the capture process long.

The camera is calibrated using a MacBeth color checker chart (Fig. 2.20) for each lens under natural

illumination, aperture combination and multiple exposure used for data capture. Each acquired image is



42 Chapter 2. Previous Work

Figure 2.19: Acquisition devices use to capture BRDF.

processed to take into account this color correction before any computation. BRDF capture depends on

several material representatives of an area at night-time. The region of interest is limited by a wooden

square fixed by taping it on the targeted surface to capture. The setup also includes a camera, a hand-

held 1000W halogen light source manipulated by a human, see Fig. 2.19 and two glossy light spheres

are added over a wooden square to estimate the light source position. Some markers for the camera

allows the operator to retrieve the position of the material captured in the 3D scene. One material

capture process requires 40 minutes for 83 photographs.

Figure 2.20: MacBeth color checker.

From this capture and a long night taking

photos, some BRDF samples are obtained by

picking regions of interest to manually fit a co-

sine lobe Lafortune BRDF model with three

lobes: diffuse, specular and retro-reflective com-

ponents. Based on the assumption that lambertian

color is the most reliable information to match

one of the BRDF samples for a surface point,

the two closest BRDFs are identified by Princi-

pal Component Analysis for this component pro-

jected in a 1D space. A new BRDF is formed

by interpolating specular and retroflective lobes

from the Lafortune model. The idea to project in 1D space also allows materials with similar BRDFs

but different color to use captured data from the material acquisition step. The environment lighting

is acquired using three light probes with measured reflectance properties. Each of the spheres pro-

vides the solution for one unknown of the scene: the mirror sphere for capturing the sky and clouds,

a dark shiny sphere to spot the sun and one diffuse sphere to measure its intensity see Fig. 2.19.

Standard multi-bracket HDR photos are required. A semi-automatic process performs the alignment

of the 3D model with pictures involving user interaction to mark correspondence of 15 points be-

tween pictures. This first estimation camera pose comes from the correspondences set of 2D pix-

els to 3D points. To obtain reflectance, a per image view estimation is performed and refined us-
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Figure 2.21: The model rendered under novel illuminations conditions

ing multiple images until convergence for each point. Since each view will suggest different re-

flectance updates, the estimation is weighted by a confidence measure. The influence of each view

is weighted by its angle between the view and the surface. This way photographs viewing the sur-

face directly will have a bigger influence on the estimated reflectance properties. Also, if the esti-

mated surface is close to an occlusion boundaries or near a strong irradiance gradient, the weight

is decreased. Their algorithm starts by initializing reflectance properties obtained from BRDF es-

timation for all surfaces. Then for each photograph, the surfaces are rendered from this viewpoint

using global illumination and the inferred Lafortune BRDF to estimate the reflectance. Multi-view

reflectance information allows corrections to be applied by comparing the radiance in images at

points since the Lambertian component is consistent in all views. However this pipeline introduces

some limitations since it requires accurate geometry of the scene to allow rendering, materials with

limited specularity since performing such updates would not necessarily converge to a good re-

flectance estimation and also time because most of these steps require a lot of human intervention.

Figure 2.22: [Laffont et al., 2012] method’s

can transfer a lighting condition from one

view to another.

In [Laffont et al., 2012], intrinsic decomposition is es-

timated using images of a scene from different viewpoints

and several different lighting conditions. The capture pro-

cess requires only a simple DSLR camera and a multi view

stereo algorithm (PMVS, VisualSFM) which produces a

sparse reconstruction to obtain 3D points and normal. The

core idea is to exploit multiple illumination conditions for

the same point to build strong reflectance relationship be-

tween points across different location and multiple views.

By assuming the scene is lambertian, the reflectance of a

point does not vary between images, but the observation of

this point with different lighting conditions is not enough to

allow the estimation of its reflectance. However, by work-

ing with a given pair of points sharing the same normal and

incoming radiance, the variation of their captured radiances

from input images can only be due to reflectance. In the case where both points share the same illu-
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Figure 2.23: [Laffont et al., 2012] method’s infers reflectance ratios between points of a scene and then expresses

the computation of illumination in all images in a unified least-square optimization system

mination, their ratio of radiance is equal to their ratio of reflectance. Those cases can be identified by

analyzing histograms of ratios of radiance for a given pair over all images with different viewpoint and

lighting. Indeed, a dominant lobe from this probability density function indicates when points of this

pair receive the same incoming radiance which allows the computation of their reflectance ratio and

RGB illumination. These illumination constraints are propagated through a smoothness prior already

designed for intrinsic decomposition [Bousseau et al., 2009], inspired by [Levin et al., 2004]. When

the reflectance is properly estimated, the lighting condition of one particular view can be transferred to

another one see Fig 2.22. The idea to use multiple illuminations to recover an intrinsic decomposition

is not new but previous methods apply it only to video time-lapse sequence as described in [Weiss,

2001], [Matsushita et al., 2004a].

This aspect of lighting transfer emerges again with data driven hallucination for a single outdoor

photo [Shih et al., 2013]. The input data is a single outdoor photo and a collection of reference scenes

captured at different times of day. The strategy to achieve lighting transfer is to match an input image

with frames from a time lapse database combined with a RGB patch based mapping learnt from the

time lapse. Since the most interesting lighting condition for photographers are daytime, the golden

hour, blue hour and night time, each time lapse video is labelled properly to refer to those particular

lighting conditions. This approach contains three steps described in (Fig 2.24). To succeed it first

relies on the availability of time lapse videos similar to the input image, to reduce the set of matching

videos, and this get a frame matching the time of day of the input image can be found using similar

scene matching [Xiao et al., 2010]. Then a dense matching is required, SIFT or SURF methods are

insufficient. Methods similar to PatchMatch [Barnes et al., 2009], SiftFlow [Liu et al., 2008] are limited

to a single image to exploit temporal coherence of the video in time lapse in their energy function. They

maximize the diversity of candidate patches for a match by not selecting the best patches as the data

term but by sampling randomly according to a normal law instead in the set of matched patches. This

strategy improves the quality of the transfer mapping. To hallucinate the final image with the best
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Figure 2.24: [Shih et al., 2013] method’s three steps. (1) They first retrieve videos of a similar scene with the

input, then (2) find the local correspondence between the input and the time-lapse (image courtesy of Mark

D’Andrea). (c) Finally they transfer the color appearance from the time-lapse to the input.

quality, the transfer needs to maintain the structure of the input image as well as to preserve similar

color changes as seen in time lapse video. This constraint is expressed as a least squares optimization

and constraints similar to Matting Laplacian [Levin et al., 2008a] are introduced to guarantee data-

driven propagation across the image similar to [Bousseau et al., 2009]. One side effect of this mapping

is noise magnification coming from the input image via capture device sensor noise or quantization.

This is resolved by splitting the input image in one low frequency layer obtained by applying a bilateral

filter to process the transfer and by recombining the hallucinated image with the high frequency detail

image.

In both cases they achieve high-quality results because of the availability of data referring to the

scene; such data are not necessarily available in the general case.

2.8 Shadow Removal and Shadow Classification

Most recent shadow detectors [Guo et al., 2012], [Lalonde et al., 2010], [Zhu et al., 2010] are also

related to intrinsic decomposition methods since their main motivation is to remove cast shadows to

obtain a shadow-free image as in [Finlayson et al., 2004]. Despite its importance, shadow detection

remains a challenging problem. More traditional methods explore pixel or edge information. Guo et al.

[2012] employ a region based approach to determine whether a region is shadowed compared to other
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regions in the image that are likely to be of the same material. They formulate the problem as a Con-

ditional Random Field (CRF), combining two terms based on a single region and a pair-wise region

classification.

Figure 2.25: Illumination relation graph from [Guo

et al., 2012]. Green lines indicate same illumination

pairs, red lines different illuminations pairs. White ends

are the non shadow regions and gray ends are shadows.

The single region term refers to a SVM

trained on manually labeled images. Their pair-

wise term represents same illumination and dif-

ferent illumination pairs which are confidently

predicted to correspond to the same material.

Pairs can be built even with no adjacent regions

allowing better handling of occlusion and link-

ing similar regions divided by shadows. They

identify these pairs by estimating χ2 distances

between color, texture histograms since regions

sharing similar color and texture are likely to

have same illumination. To guarantee oriented il-

lumination pairs, two tests are performed:

• ratios of RGB average intensity; the non-shadow region has the highest value in both channels.

• chromatic alignment; the shadow region should not look more red or more yellow than the non-

shadow region.

Their relational graph is binary with a smoothness term encouraging affinity, so their problem can be

solved by Graphcut. Since shadows are not truly binary, shadow matting is estimated by using [Levin

et al., 2008a] and placing constraints around the shadow boundaries. Using these coefficients as a ratio

between direct and environment light, they can estimated a shadow free image.

Figure 2.26: Shadow detection [Panagopoulos et al., 2013] : (a) input image, (b) bright channel, (c) segmenta-

tion, (d)each segment pixel along the border is used to build a histogram of brightness ratio and identify region

in shadow (e) final shadow estimate.

[Panagopoulos et al., 2013] model the interaction of illumination and geometry in the scene and

associate it with image evidence for cast shadows using a MRF. They take as input an image, approx-

imate camera parameters and an approximate geometry model or a bounding box drawn by the user

and the shape of the object is obtained using GrabCut [Rother et al., 2004]. They have the following

assumptions for the scene: lambertian reflectances, environment lighting approximated by point light

sources at infinity combined with an ambient illumination term; however sky or indirect illumination
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terms are not modeled. They simultaneously estimate the cast shadows, illumination and geometry pa-

rameters during the minimization and refine them at each iteration. However, estimating all these terms

at the same time is very challenging, so each iteration is split in two steps. The first step estimates light

and geometry parameters by selecting a candidate set parameters. Then in the second stage the focus

is on the pixel labeling. The proposed MRF has one node for each image pixel i, one node for each

light source, one node for the ambient intensity and one node for the geometry of each object in the set

of objects. They penalize inconsistency between extracted shape objects and geometries, as well as for

light sources which do not generate visible cast shadows in the images. They estimate shadow intensity

along the boundaries of detected shadow. To initialize the optimization, they set the shadow labeled

image by estimating a bright channel that guarantees and constrained to get a least 20% of image pixels

fully illuminated.

Figure 2.27: Results of joint estimation of shadows, illumination and geometry parameters [Panagopoulos et al.,

2013]. (a) Input image and the initial configuration of the geometry. (b) Estimated geometry by only fitting the

object to the shape obtained with GrabCut. (c) The result with the discussed method. (d) Result using the most

probable candidate geometry out of 4 classes.
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2.9 Bidirectional Reflectance Distribution Function

BRDFs are 4D functions depending on the local viewing and light direction. Many BRDF models exist,

the most popular are Lambertian [Lambert, 1760], Phong [Phong, 1975], Blinn-Phong [Blinn, 1977],

Oren-Nayar [Oren and Nayar, 1994], Cook Torrance [Cook and Torrance, 1982]. Recovering a BRDF

from an image is difficult since reflectance is confounded with shape, lighting and viewpoint. This

problem is mostly tackled by inverse methods which take as input several lighting/reflectance pairs to

explain any given image under a specific lighting condition. Surfaces are often curved and homogenous

to generate as many samples as possible to explore the BRDF hemisphere response function. The

problem is simplified in most cases by assuming isotropic BRDF. In this section we describe several

methods to estimate BRDFs complementing the section on inverse rendering.

Figure 2.28: A gonioreflectometer measuring the BRDF of a planar sample by sampling the double hemisphere

of incoming/outgoing radiance using a directional light source. [Li et al., 2005]

A typical device to measure BRDFs is a four-axis gonioreflectometer. This device uses a combi-

nation of servo motors to position a source and a photo-detector at various locations on a hemisphere

above a planar material sample. The sensor is linked to a spectroradiometer that records a measure-

ment for each angular configuration of the source/sensor pair Fig. 2.28. The main advantage of this

approach is to capture dense spectral information since a BRDF is a 5D function if we consider the

wavelength dependence of the BRDF. By opposition to active reflectometry methods, passive image

based approaches do not involve a gonioreflectometer but still fall in two categories: known lighting and

unknown lighting conditions. Note that [Romeiro and Zickler, 2010b] synthesize their previous work

[Romeiro et al., 2008] and [Romeiro and Zickler, 2010a] in a technical report on inferring homoge-

nous reflectance (BRDF) from a single HDR image of a known shape under a known and unknown

real-world lighting environment. Capturing BRDFs is a very long process and can require days with
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a gonioreflectometer, however acquiring them with such a device also allows the developement of a

data driven approach as demonstrated by [Matusik et al., 2003]. Image based BRDF measurement is

mainly motivated by reducing the time of capture and also simplifying the setup required.

2.9.1 Image based methods: known lighting

Figure 2.29: [Marschner et al., 2000] setup using 2 cameras, a light source and the test sample.

[Marschner et al., 2000] describe an image-based process for measuring an isotropic surface’s bidi-

rectional reflectance Fig. 2.29. Their setup includes two cameras, a uniform light source and a test sam-

ple of a known shape. They attach the second camera to the light source to measure its position using

automatic photogrammetry. [Debevec et al., 2004] use a similar strategy by acquiring marble sample

only at night-time with a moving light probe located using 2 highly specular dark balls (Fig. 2.19).

[Matusik et al., 2003] design a BRDF measurement device inspired by the image-based BRDF

developed by [Marschner et al., 2000] to acquire and model isotropic BRDFs.

The system takes place in a completely isolated room painted with black matte Paint and requires

a spherically homogeneous sample of material. The setup includes:

• a Xenon lamp with stable emittance over the visible light range,

• a QImaging Retiga 1300 (a 10 bit, 1300x1030 resolution Firewire camera),

• a Kaidan MDT-19 (a precise computer controlled turntable)

Only the light is mounted on an arm on the turntable; the camera is stationary. The process takes about

3 hours to capture 330 HDR images with a varying exposure time ranges from 40 microseconds to

20 seconds. Their measurements process gives them typically 20-80 million BRDF samples for each

material. Each pixel of the sphere is treated as a separate BRDF measurement; to do so they intersect

the ray defined by the pixel with the sphere to determine the point P . Then, they compute the normal

at point P on the sphere, the vector and the distance to the light source, and the vector to the camera

pixel. Next, they compute the irradiance at point P due to the light source (taking into account distance

to the light source and foreshortening). Finally, they can estimate the BRDF value as the ratio of the

high dynamic range radiance to the irradiance. A dense set of measurements represents each BRDF, as
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Figure 2.30: Pictures of 100 acquired materials by [Matusik et al., 2003].

a table-based model which allows them to interpolate and extrapolate in the space of acquired BRDFs

to create new BRDFs. However it requires the acquisition of a sufficient number of BRDFs to define a

basis as shown in Fig. 2.30.

[Lensch et al., 2001] and then [Lensch et al., 2003] describe an acquisition process for a spatially

varying BRDF which requires some manual intervention in a controlled environment Fig. 2.31. Each

scene only includes a single object in a photo studio covered with dark and diffuse felt to reduce

the influence of the environment composed of a single point light source, an HMI halide bulb. This

bulb emits uniform light similar to a point light source. The light source position is triangulated based

on captured reflections in mirroring steel balls. For each view, they acquire three sets of images: 2

images to recover the light source position, 1 image to capture the object’s silhouette to register the

3D model with the images, and 1 series of photographs with bracketing to vary the exposure time
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Figure 2.31: Capture setup described by [Lensch et al., 2003].

Figure 2.32: In each image, a new cluster was created using the method of [Lensch et al., 2003]. The object is

shaded using only the single BRDFs fit to each cluster.

and produce a HDR image. They require 20-25 HDR images for one object and obtain a 3D model

using a structured light 3D scanner or a computer tomography scanner. The reconstructed mesh is then

manually cleaned and decimated. They introduce the Lumitexel which is a very sparse representation

of the BRDF for every visible surface point. This notation represents the geometric (position, normal)

and photometric data of one point, the list of radiance samples Ri representing a triplet of the outgoing

radiance R acquired from the surface point of the input HDR image, the direction of light and the

viewing direction. Their BRDF recovery process detects the different materials of the captured object

and a BRDF for all of them. The key idea is that a Lumitexel cannot be fitted with a BRDF but a group

of Lumitexels in a cluster belonging to the same material can lead to a good estimation. To do this

they define an error between a given BRDF and a Lumitexel which is also used for fitting and splitting

BRDF cluster, see Fig. 2.32. Note that the splitting process stops based on the user estimation of the

number of input materials.

The BRDF fitting involves a nonlinear optimizing method known as Levenberg-Marquadt [Mar-

quardt, 1963] using a Lafortune BRDF model which can support up to 3 kind of lobes: diffuse, retrore-
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Figure 2.33: Left: The result of the clustering process does not look realistic since there is no variation of the

material within one cluster. Right: Spatial variation derived by projection of the reflectance samples of each

lumitexel in a basis formed by the clustered material [Lensch et al., 2003].

flective and specular. To obtain a truly spatially varying BRDFs, local changes are then modeled by

projecting the measured data for each surface point into a set of basis of the BRDF. The optimal

set is obtained by performing a principal function analysis PFA using again the non linear Levenberg-

Marquadt solver over a basis BRDF composed of: the BRDF which fits to the cluster fC , the BRDFs of

spatially neighboring clusters to match lumitexels at cluster boundaries fN , the BRDF of similar clus-

ters to the material fM , and 2 BRDFs based on fC , one with slightly increased and one with slightly

decreased diffuse component pd and exponent N . Finally, for each lumitexel the weights are optimized

between all of them using a least square system. Note in Fig. 2.33 the difference before and after the re-

projection in the basis set of BRDFs. This pipeline demonstrates its efficiency but it still requires many

samples. It is important to keep in mind these figures for the bird object show in Fig. (2.31, 2.32, 2.33),

25 input views are used, 1 917 043 lumitexels are acquired with an average number of reflectance

samples of 6.3 per lumitexel considering 5 materials clusters and 4 BRDFs bases per cluster.

[Romeiro et al., 2008] present an image based system for inferring bi-directional surface reflectance

without active lighting. Their method assumes isotropic reflectance and ignores global illumination ef-

fects. It still requires a light probe, a camera, and one HDR image of a known curved homogeneous sur-

face. Their goal is to recover general reflectance without state of the art restrictions of radial-symmetry

and low-parameter models but they still assume isotropic reflectance and ignore global illumination

effects. In [Alldrin and Kriegman, 2007], it is noted that some authors consider isotropy and bilateral

symmetry to be distinct phenomena. A radially-symmetric BRDF is one that, like the Phong model, is

radially symmetric about the reflection vector [Romeiro et al., 2008]. Isotropic BRDFs are symmetric

about the plane spanned by the viewing direction and surface normal. Bilaterally symmetric BRDFs

can be described by the fact that the exitant radiance emitted from a bilaterally symmetric surface patch

is constant when the surface is reflected about any plane collinear with its normal. [Alldrin and Krieg-

man, 2007] do not make such a distinction since all or nearly all physically valid isotropic BRDFs have

this property. Isotropy usually refers to both symmetry and bilateral symmetry; this assumption is also
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Figure 2.34: Domain reduction for reciprocal, isotropic, bilaterally-symmetric, and bivariate BRDFs. [Romeiro

et al., 2008] consider bivariate BRDFs, which are constant functions of φd. Isotropic BRDFs are unchanged

by rotations about the surface normal (i.e., changes in φh), while reciprocity and bilateral symmetry impose

periodicity for rotations about the halfway vector (i.e., changes in φd).

considered by [Romeiro et al., 2008].

[Romeiro et al., 2008] consider bi-variate BRDFs, which are constant functions of φd, the halfway

vector and unchanged by rotations about the surface normal φf see Fig. 2.34. Their motivation to

represent BRDFs with a bi-variate representation is based on the work of [Stark et al., 2005] who

demonstrate that a carefully selected 2D domain is often sufficient for capturing (off)-specular reflec-

tions, retro-reflections and important Fresnel effects. In the work of [Romeiro et al., 2008], they design

a sampling scheme which increases the number of samples near specular reflections, to use the same

sampling strategy independently of the sampled material and to be as general as possible.

Each pixel of an image provides a linear constraint on the bi-variate BRDF by estimating the

rendering equation. However the bi-variate BRDF representation induces a folding of the hemisphere

since the light directions are symmetric about the view/normal plane in their BRDF domain which

avoids the need to sample the full hemisphere or which generates 2 constraints in their 2D BRDF

domain. They infer the BRDF from these constraints by creating an uniform grid and obtain a piecewise

linear approximation of the BRDF. They note the noise caused by the sensor must be handled as well

as the bivariate approximation, discretization of the rendering equation and error in the assumed shapes

by adding a regularization term.
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Figure 2.35: From [Romeiro et al., 2008]. Red curve: Accuracy of bivariate representations of materials in

the MERL/MIT BRDF database. Materials are in order of increasing accuracy, and while RMS BRDF error is

seemingly large, rendered images reveal few perceivable differences. Blue curve: portion of RMS error explained

by the original data’s deviation from bilateral symmetry

.

2.9.2 Image based methods: unknown lighting

[Ramamoorthi and Hanrahan, 2001] introduce a signal-processing framework which describes the re-

flected light field as a convolution of lighting and BRDF under general illumination conditions. The

inverse rendering problem can then be viewed as deconvolution by expressing the reflected light field

as a product of spherical harmonic coefficients of the BRDF and the lighting. They demonstrate that in

frequency space two important priors can be used in active reflectometry:

• the most appropriate object to recover lighting conditions is a highly reflective sphere since the

frequency spectrum of a mirror BRDF is constant in this case.

• in frequency space recovering a filter using a delta function from its impulse response is a well-

conditioned problem. In a consistent manner a directional light source is a delta function and a

BRDF is a filter.

[Haber et al., 2009] present an approach for recovering the reflectance of a static scene with known

geometry from a collection of images taken under distant, unknown illumination. The main difference

with previous approaches is the set of input views which include images taken under different illu-

mination condition which allows them to recover reflectance even by using images from Flickr. Their

method estimates incident illumination per-image at the same time as the surface point reflectance
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Figure 2.36: Overview of [Haber et al., 2009] reconstruction pipeline. From left to right: an example image taken

from Flickr, re-rendered model using the recovered reflectance properties, the geometry and the illumination

from the estimated environment.

Figure 2.37: Overview of the system in [Haber et al., 2009].

across views. Their method is based on a wavelet framework [Ramamoorthi and Hanrahan, 2001] to

incorporate various reflection models. The interesting point is that they manage to estimate a BRDF

per surface point and an illumination layer per input image through an iterative method. To do so, they

constrain the BRDF estimation as a linear combination of basis BRDFs as presented by [Weistroffer

et al., 2007] thanks to the data acquisition of [Matusik et al., 2003].

[Romeiro and Zickler, 2010a] propose to estimate BRDF by defining a prior probability distribu-

tion based on the image I for the unknown lighting L, p(L) and the BRDF F , p(F ) and finding the

functions that maximize p(L, F |I)αp(I|L, F )p(L)p(F ). The notable feature of this approach is to se-
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lect the BRDF that is the most likely under a distribution of light environments instead of selecting the

single BRDF/lighting pairs that best explain an input image based on a probabilistic generative model.

This Bayesian approach can then be combined with other techniques such as shape-from shading, con-

tours, shadows as demonstrated in [Barron and Malik, 2013a] or [Chen and Koltun, 2013]. In [Romeiro

and Zickler, 2010a] illumination is represented as spherical lighting using a Haar wavelet basis. Re-

flectance is restricted to be expressed as a linear combination of a positive basis function learnt through

non-negative matrix factorization. During their optimization they consider also an exposure parameter

to compensate for the difference between the absolute scale of intensity measurement and the scale

between the illumination and reflectance functions learnt from normalized data. A scale ambiguity still

exists for each image because increasing the overall brightness of the illumination will decrease the

BRDF during the optimization. To avoid solving a color consistency problem by running their method

for each channel, they perform inference on the luminance channel to recover a monochrome BRDF.

The recovered red-material in Fig. 2.39 does not match the highlight colors of the reference image

and cannot match it since the displayed input is the color image prior extracting luminance and the

displayed output is the outer product of the recovered monochrome BRDF and the RGB vector. They

evaluate their method using synthesized images with the MERL/MIT dataset of acquired BRDF of

[Matusik et al., 2003] and their own collection of measured HDR environment maps to setup ground

truth comparisons. They still consider only a sphere with samples collected from 12 000 normals. They

set up an experiment using synthetic input Fig. 2.38 and captured input Fig. 2.39; from these they pre-

dict the appearance of the material using the recovered BRDF and compare it to the ground truth. One

important conclusion of the technical report [Romeiro and Zickler, 2010b] is that inferring explicit

reflectometry in the wild may be possible to achieve.
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Figure 2.38: Evaluation with synthetic input [Romeiro and Zickler, 2010a]. Top: Single image used as input.

Middle: Appearance predicted in a novel environment using the recovered BRDF. Bottom: Ground truth image

in the same novel environment

Figure 2.39: Evaluation with captured input [Romeiro and Zickler, 2010a]. Top: Image used as input. Middle:

Appearance predicted in a novel environment using the recovered BRDF. Bottom: Ground truth images captured

in the same novel environments



Chapter 3

Multi-View Intrinsic Images of Outdoors

Scenes

In this chapter, we present our multi-view intrinsic image method. As outlined in Chapter 1, we target

outdoors scenes with cast shadows, and wide-baseline datasets for easy capture. Our two key ideas are:

1 ) to progressively improve parameter accuracy with iterative estimation.

2 ) to express reflectance as a function of discrete visibility values, allowing the definition of a

robust shadow classifier.

Our goal is to achieve high quality intrinsic image decompositions with as little user interaction as

possible.

3.1 Image Model and Algorithm Overview

The image model we use is central to our method, since it clearly defines the quantities that need to be

estimated. The model will also be used to guide the definition of our iterative process to estimate our

multi-view intrinsic decomposition.

3.1.1 Image Model

We use the following image formation model [Laffont et al., 2013]:

I = R ( vsun Lsun cos(ωsun) + Ssky + Sind), (3.1)

I is the observed radiance (i.e., pixel value), R is the diffuse reflectance of the corresponding 3D point,

Lsun is the radiance of the sun, vsun is the sun visibility from the point, ωsun is the angle between

the normal n and the direction θsun to the sun, Ssky is the radiance of the visible portion of the sky

58
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tot
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Figure 3.1: Our input are images (top left), an approximate 3D model (proxy) (lower left) and user-supplied

sun direction. We use the image formation model (top) and estimate progressively better approximations to each

of its parameters. In white, quantities estimated in a given step; quantities in black are fixed at that stage. Step 1:

given the proxy we build a sky environment map and compute a first estimate of vsun and Senv by ray-tracing the

inaccurate 3D model and sky map. Step 2: we refine vsun and estimate Ssun using luminance and chromaticity.

Step 3: given first estimates of all quantities we perform a graph labelling to further refine vsun. In Step 4 we

refine Senv, and vsun in penumbra, using the more accurate shadow boundaries now available. Reflectance is

estimated at steps 2-4, and we clearly see how the result is progressively improved. Far right: during multi-view

relighting, reflectance is fixed, and we can manipulate quantities in blue, resulting in a relit image (lower right;

compare to top left).

integrated over the hemisphere Ω centered at n, and Sind is the indirect irradiance integrated over Ω,

but excluding the sky. For all cosines we take max(0, cos) in practice; all values are RGB except for

the cosine. We implicitly assume that R is diffuse.

Using Eq. 3.1, we can also write reflectance R as a function of visibility:

R(vsun) =
I

(Sind + Ssky + vsun Lsun cos(ωsun))
(3.2)

In some cases it is convenient to group sky and indirect lighting into a single environment shading term

Senv and write Ssun = Lsun cos(ωsun), giving a simpler expression:

I = R ( vsunSsun + Senv ) (3.3)

3.1.2 Input

Our input is a set of linearized raw 12-bit/channel photographs of the scene, captured from dif-

ferent viewpoints at the same time of day and with same exposure. We use Autodesk Recap360

(http://recap360.autodesk.com) for all 3D reconstructions, taking the vertices of the reconstructed mesh

as a point cloud. The quality of the meshes is quite high overall with some residual noise for buildings,

but often very approximate for structures such as vegetation. Such methods also have difficulty re-
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constructing silhouettes and fine structures. Alternative methods (e.g., structure from motion [Snavely

et al., 2006] followed by reconstruction [Goesele et al., 2007; Furukawa and Ponce, 2007; Pons et al.,

2007]) provide similar quality. In what follows we use the term proxy to refer to this – typically incom-

plete and inaccurate – 3D model.

Our method requires the sun direction θsun. Automatic methods [Panagopoulos et al., 2013] can be

used, however, we prefer to use a simple manual step, which is performed just after reconstruction and

guarantees high-quality results. To determine the direction of the sun, a colored version of the point

cloud is presented to the user. Each point is assigned the median value of pixels in all images in which

this 3D point is visible. The user clicks on a point in shadow and the corresponding 3D point which

casts it, allowing the sun direction to be estimated. This simple process is shown in the accompanying

video.

3.1.3 Estimating image-model quantities

Our algorithm has four main steps, shown in Fig. 3.1. In each step we compute estimates of the quan-

tities of Eq. 3.1, which are progressively more accurate. To compute a reflectance layer R, we estimate

shading Stot, and divide the input image to obtain R; this is performed in Steps 2-4 and the result

shown in Fig. 3.1. In contrast with most previous work, our input contains strong cast shadows. Our

goal is to obtain results of sufficient quality to perform relighting: this requires a reflectance layer free

of shadow and other residues, as well a good estimate of shadow boundaries, environment shading.

A guiding principle of our approach is that we prefer the explanation

of a given scene that favors a smaller number of reflectances, following

previous work [Omer and Werman, 2004; Barron and Malik, 2013b; Laf-

font et al., 2013]. Consider the scene shown in the inset. There are two

explanations for the dark areas on tablecloth: a shadow cast by the statue

and plant or blobs painted in gray. Our approach favors the hypothesis with

fewer reflectances, which explains the image as a shadow over a uniformly

white tablecloth. Throughout the four steps of our approach, we enforce this

hypothesis by finding same-reflectance pairs between regions or points in

light and shadow, inspired by previous work [Panagopoulos et al., 2013;

Guo et al., 2011].

The key novelties of our approach are the automatic estimation of the parameters of Eq. 3.2, and

the introduction of a robust shadow classifier using this information, see Sec. 3.4. Put together, these

encourage the choice of the correct visibility configuration which finds same reflectance regions and

implicitly connects (or merges) them via the pairs, thus enforcing the hypothesis.

The four steps are illustrated in Fig. 3.1: In Step 1, we find initial values for Senv and vsun; in Step 2
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we estimate Ssun, in Step 3 we obtain accurate shadow boundaries by refining the estimate of vsun and

in Step 4 we refine the estimation of Senv. As we can see in the figure 3.1, the resulting reflectance at

each step is significantly improved.

(a) (b)

Figure 3.2: Left: the partial environment map (a). Right: completed synthesized environment map (b).

(a) (b) (c) (d) (e)

Figure 3.3: The consecutive steps of the algorithm to determine Lsun for the “Street” scene. (a) Input image

(b) shadow from inaccurate 3D model: the proxy overestimates the geometry of the cactus and creates a “blob”

shadow (c) K-means intensity estimation: some black areas are not shadows (d) intersection of (b) and (c): a

more reliable subset of shadows are found, which are used in (e) to find pairs used to calibrate the sun.

3.2 Initialization: Estimation of Ssky and Sind

To compute Ssky and Sind, we first automatically compute an environment map to represent light com-

ing from the sky and unreconstructed surfaces1. We project all pixels of the input pictures that are

not covered by the reconstructed geometry into this map. Fig. 3.2 shows such a partial environment

map where holes correspond to directions either not captured in the input photographs or directions

corresponding to rays that do not intersect the proxy.

We apply a simple color-based sky detector to determine which pixels above the horizon in the

map are sky and which are distant objects. More involved approaches [Tao et al., 2009] could be used,

but our approach sufficed in all our examples. The horizon is the main horizontal plane of the proxy.

The visible portions of the sky give us strong indications on the atmospheric conditions at the time

1We described a preliminary version of the environment map computation in Chapter 4 of [Laffont, 2012].



62 Chapter 3. Multi-View Intrinsic Images of Outdoors Scenes

of capture. Inspired by Lalonde et al. [2009, 2012], we estimate the missing sky pixels by fitting the

parametric sky model of Perez et al. Perez et al. [1993] from the partial environment map. This model

expresses for any direction p the sky color relative to the color at zenith as a function of the angle

θp between p and the zenith, the angle γp between p and the sun direction, and the turbidity t that

varies with weather conditions [Preetham et al., 1999; Lalonde et al., 2009]. Since the color at zenith

is itself an unknown, we need to recover a global per-channel scaling factor to obtain absolute values.

We estimate the turbidity t of the sky model f and the scaling factor k by minimizing

argmin
t,k

∑

p∈P

(kf(θp, γp, t)−Ap) (3.4)

where P denotes the set of known pixels in the environment map A. We solve this non-linear opti-

mization with the simplex search algorithm (fminsearch in Matlab). At each iteration, the search

algorithm generates a new value of the turbidity t that we use to update f , and then k from the new sky

values by solving a linear system. We initialize the optimization by setting t = 3.5, which corresponds

to the turbidity of a clear sky [Preetham et al., 1999]. We fill holes below the horizon line by diffusing

color from nearby pixels.

Similarly to Laffont et al. [2013], we compute Sind and Ssky by integrating the indirect and sky

incoming radiance using ray-tracing. For each 3D point, we cast a set of rays over the hemisphere cen-

tered on the point normal. Rays that intersect the sky part of the environment map contribute to Ssky,

while rays that intersect the proxy geometry or the non-sky pixels of the environment map contribute

to Sind. We estimate the radiance coming from the proxy geometry by gathering for each vertex the

radiance in the images where this vertex appears. We assign the median of the gathered values as the

approximate diffuse radiance of the vertex. Given the low frequency nature of these quantities, our

approximations are generally sufficient. However, the non-diffuse nature of real surfaces and errors

in reconstruction can result in overestimation of indirect light. We thus introduce an approximate at-

tenuation factor which compensates for such errors by scaling with the cosine of the normal of the

contributing surface when gathering at each point.

Compensating for Superfluous Indirect Light The outdoors scenes we target contain perpendic-

ular and horizontal surfaces (walls, floors, etc.). The reconstruction of such corners is often incorrect,

with geometry being added to the proxy. We often observe such geometry at grazing angles in the

photographs, resulting in a high median value. When gathering indirect light at a given point x this can

result in a higher contribution from such points. Finding the correct attenuation factor would require

complete geometry and BRDF data, so we can only provide an approximate scale factor. Consider such

a point x at which we gather light, and a point y on another surface contributing to x. The incoming

angle θi is the angle between the direction y−x and the normal ny at y. We attenuate incoming lighting
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by cos θi, thus reducing the contribution at grazing angles, which is amplified by the incorrect recon-

struction. This is a coarse approximation, but is well adapted to the case of perpendicular surfaces such

as walls and ground which are predominant in outdoor scenes. This approach improves the result in all

scenes we tested, in particular in regions containing evidently non-diffuse surfaces.

The ray-tracing step also provides approximate visibility ṽ towards the sun at each point, with

respect to the proxy. The boundaries defined by ṽ can be quite approximate however, as shown in

Fig. 3.3(b). We improve the estimate of vsun in Step 3 (Sec. 3.4).

3.3 Estimation of Sun Color Lsun

Now that we have computed illumination from the sky and indirect transfer at all 3D points, we can

estimate Lsun using Eq 3.1 and a pair of points with same reflectance and different visibility. Given two

points p1 and p2 with the same reflectance, with one in shadow and the other in light, we can compute

Lsun:

Lsun =
I1 ∗ (Ssky2 + Sind2)− I2 ∗ (Ssky1 + Sind1)

I2 ∗ vsun1 ∗ cos(ω1)− I1 ∗ vsun2 ∗ cos(ω2)
(3.5)

All quantities for sun, sky and indirect are denoted with appropriate subscripts.

The main difficulty in using this formulation is that we do not yet have accurate reflectance and

visibility necessary to find a suitable pair of points. While single-image intrinsic decomposition meth-

ods could be used to initialize the reflectance, most existing algorithms are challenged by outdoor

scenes with hard shadows that break the Retinex assumptions of a smooth monochrome shading. We

conducted preliminary experiments with the Retinex implementation of [Grosse et al., 2009], which

confirmed that this algorithm does not remove hard shadows on our scenes. As a result, our calibration

algorithm was unable to find pairs of points sharing the same reflectance across shadow boundaries.

Instead of using Retinex, we found it sufficient at this stage to approximate reflectance with the

image chrominance and shading with luminance, which we combine with the proxy-based visibility ṽ

for a conservative estimate of shadow regions. More precisely, we first perform a K-means clustering

on luminance (with K = 4), and classify a cluster in shadow if its ratio of points inside and outside

the proxy shadow ṽ is lower than the average ratio of the K clusters. We then intersect the value of

ṽ (Fig. 3.3(b)) with the classification of each pixel (Fig. 3.3(c)), resulting in very confident regions of

shadow albeit covering only a limited number of pixels in the image Fig. 3.3(d). Given this visibility

estimate, we sample the shadow boundary regularly and for each sample we detect a lit (resp. shad-

owed) point away from the penumbra by walking in the two directions perpendicular to the boundary

and selecting the pixel with the highest (resp. lowest) luminance and a similar chrominance. In our

implementation we stop the walk after 30 pixels in each direction and reject the samples for which no
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pixels with similar chrominance are found. We also reject the sample if we cross a depth or normal

discontinuity along the walk, identified with a Canny filter over the depth and normal map of the proxy.

Taken over the entire multi-view dataset, these pairs provide multiple estimators for Lsun, using Eq. 3.5

(Fig. 3.3(e)).

We finally compute a robust estimate of Lsun as the median of the solutions given by all pairs.

We found that performing the median filter in each RGB channel separately gives the best results.

This sparse set of pairs is approximate but sufficient for the calibration task. The later estimation of

more accurate visibility boundaries will allow us to find a more reliable and denser set of light/shadow

pairs and thus refine the estimate of environment lighting.

At this stage, we have an estimate of all quantities of Eq. 3.1, namely ωsun, Ssky, Sind and Lsun; the

estimate of vsun ≈ ṽ however is approximate. If we compute reflectance at each 3D point, we obtain

approximate results that can have large regions of error (see leftmost image in Fig. 3.1).

3.4 Estimating Accurate Cast Shadows and Intrinsic Layers

To compute residue-free reflectance layers for each image, we need to refine the accuracy of shadow

boundaries and thus vsun. We do this using a graph labeling approach, giving a binary label of shadow

or light to all pixels, except those in penumbra. We assign a continuous visibility label to penumbra

separately using matting (Sec. 3.4.2).

3.4.1 Shadow Labeling

The intuition behind our approach is to find the set of visibility labels that make most points share a

similar reflectance, as explained earlier (Sec. 3.1.3). Consider two points s and t with visibility i and j

respectively. Using Eq. 3.2 we compute the difference between their reflectances as:

Dij = |Rs(i)−Rt(j)|. (3.6)

Since i, j ∈ {0, 1} we obtain four possible values of Dij . A small value provides us with a strong

evidence that s and t share the same reflectance under the corresponding visibility hypothesis. We

illustrate this strategy with the following toy examples:

The diagram below shows the case where s is in shadow and t is in light, both on a patch of roughly

constant reflectance. Consider the case in the second column, which is the correct configuration: the

two points receive a similar reflectance, which makes D01 small. In contrast, D10 is large, since the

incorrect visibility assumptions “pull apart” Rs(1) from Rt(0); see Eq. 3.2. The two points also receive

different reflectances when assigned the same visibility, i.e. D00 and D11 are larger than D01, although
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The second diagram above shows a configuration where s and t have the same label (both in light

in this case; both in shadow can be treated symmetrically), also with the same reflectance. Here we

can distinguish clearly between same label cases (D00 and D11) which give a similar reflectance to s

and t compared to the different-label cases. However, we cannot distinguish between the light/light or

shadow/shadow case since they both make the two points have a similar reflectance. Pairs of points

sharing the same visibility are thus somewhat less informative than pairs of points with different visi-

bility. Both cases however provide reliable information which we use for shadow classification. Finally,

points having different reflectances result in high Dij under all four labeling configurations.

We next define an energy that is minimized by the label configuration best explaining the same

reflectance hypotheses. Specifically, we detect the pairs of points likely to have the same reflectance and

different visibility and use this directional information to initialize the labels at a few confident points

(Fig. 3.4(a)). We then connect these points to their immediate neighbors and to other points with same

reflectance and visibility, which allows us to propagate the labeling over the entire image (Fig. 3.4(b)).

We express this approach as a Markov Random Field (MRF) problem over a graph [Szeliski, 2010a;

Kolmogorov, 2006], where each node corresponds to a point s with label xs ∈ {0, 1} and each edge
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(s, t) connects a point s to another point t. Noting X the set of all labels xi of all nodes, we have

argmin
X

∑

s∈V

φs(xs) +
∑

(s,t)∈E

φs,t(xs, xt), xi ∈ {0, 1}. (3.7)

V denotes the set of nodes, E is the set of edges, φs(xs) is the unary potential deduced from points with

same reflectance and different visibility, and φs,t is the pairwise potential that favors the propagation

of the labels. We detail the computation of the unary and pairwise potentials later in this section.

(a) Initialization (b) Final labeling

Figure 3.4: (a) Initial labels from unary term, white is in light, black in shadow and grey undefined. (b) Final

labels after convergence.

To solve this optimization, we could naively connect all pixels to all others, and perform the min-

imization on the resulting graph. This is both inefficient and numerically unstable. We thus apply

mean-shift clustering [Comaniciu and Meer, 2002] in (L, a, b, x, y) space to segment the image into

small regions where we can safely assume uniform reflectance and visibility, simplifying the problem

and reducing noise (see Fig. 3.5). The values for R(0) and R(1) for a cluster are computed as the me-

dian values for all 3D points projected onto the cluster, except for points in a 3-pixel wide boundary

around each cluster.

We solve our problem using a publicly available implementation of [Kolmogorov, 2006]2. The

potentials take values l1 = 1, l0 = 0 when strongly encouraging one hypothesis over the other,

lp = 0.8, lnp = 0.2 for the case when one hypothesis is moderately preferred over another

(“non-preferred”) and leq = 0.5 when both hypothesis are equally encouraged.

Unary Potential. As many binary labeling problems, a good initialization is central to obtain a

good solution. Given the discussion above, we use pairs of points likely to have the same reflectance

2http://research.microsoft.com/en-us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3/
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(a) Input (b) Meanshift clustering (c) Cluster boundaries

Figure 3.5: We apply meanshift clustering to decompose the image in small regions of uniform color. We then

solve the shadow labeling on a graph of clusters rather than pixels, which reduces the number of unknowns and

the impact of noise.

and different visibility to initialize our unary term. In particular, for a cluster s we find the set S of k

other clusters with the smallest D01 and the set L of k other clusters with the smallest D10. The clusters

in S favor the hypothesis that s is in shadow, while the clusters in L consider that s is in light. We

compute the score of each hypothesis as the sum of the reflectance differences between s and the k

other clusters

H0 =
∑

t∈S

|Rs(0) − Rt(1)| (3.8)

H1 =
∑

t∈L

|Rs(1) − Rt(0)| (3.9)

If H0

H1 + H0

< τ1, i.e., the hypothesis that s is in shadow is stronger, we set the unary potential to

prefer the “in shadow” label:

φs(xs) =







l0 for xs = 1

l1 for xs = 0
(3.10)

Conversely, if H1

H1 + H0

< τ1, we set the unary potential to prefer the label “in light”:

φs(xs) =







l1 for xs = 1

l0 for xs = 0
(3.11)

If neither condition is true we perform a more localized search. We compute two new hypothesis
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H ′
1 and H ′

0 in the same manner as Eq. 3.8, but restrict the k clusters to lie within a neighborhood around

s. We then check if:
H1 + H ′

1

H0 + H1 + H ′
0 +H ′

1

< τ1 (3.12)

and similarly for the H0 hypothesis, which can be seen as a more “permissive” hypothesis, since we

complement the best global candidates with the best local ones. If one of these conditions is met, we

set the potentials the same way as above. If none of the conditions are met, the unary potentials are set

to equally prefer either hypothesis:

φs(xs) = leq, xs ∈ {0, 1} (3.13)

We used τ1 = 0.1, corresponding to a 90% confidence level required to make a decision.

Pairwise Interaction Potentials. The goal of our pairwise potentials is to propagate labels between

clusters with the same visibility. We first create edges between each cluster s and other clusters with

similar reflectance, which we select as the k clusters with smallest D00 or D11. For these edges, the

values of the potentials are set to strongly encourage the same label to be propagated:

φs,t(xs, xt) =







l1 when xs = xt

l0 when xs 6= xt

(3.14)

However, these edges alone are not always sufficient to ensure that the graph forms a single connected

component. We prevent isolated components by also connecting each cluster with its immediate neigh-

bors. In the absence of other cues, we define the potential of these weaker connections to encourage

clusters with the same color distribution to share the same visibility. We compute the χ2 histogram

distance dc in Lab space for clusters s and t using the approach described in [Chaurasia et al., 2013].

Clusters s and t are similar for dc < τc; in this case we assume they most probably have the same

label:

φs,t(xs, xt) =







lnp when xs = xt

lp when xs 6= xt

(3.15)

If the χ2 distance is too large however, all potentials are set to equally prefer all possible hypotheses.

φs,t(xs, xt) = leq, xs, xt ∈ {0, 1} (3.16)

We used τc = 0.05 for all our tests, which corresponds to the acceptance probability in the χ2 test.

At convergence, we obtain accurate shadow boundaries, even though there can be some occasional
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miss-classifications, e.g., the letters on the store front in Fig. 3.4(b). Such errors typically occur in small

regions that contain few or no 3D points. In the former case, the median reflectance candidates R(0)

and R(1) are more likely to be polluted by occasional reprojection errors and specularities, while in the

latter case the propagation is solely governed by the χ2 distance to neighboring regions. Nevertheless,

erroneous regions tend to be small in size , and thus do not affect the application to relighting.

3.4.2 Per-pixel Estimation of vsun and Intrinsic Layers

The binary labeling cannot capture soft shadows. We apply Laplacian matting [Levin et al., 2008a]

to recover continuous variations of visibility in the boundaries between clusters. These correspond to

penumbra regions at the frontier of shadow and light clusters, effectively providing a tri-map from the

binary shadow mask. We also apply Laplacian matting guided by the input image to propagate the

shading values Ssky, Sind and Ssun, as previously done by Laffont et al. Laffont et al. [2012]. We use

all 3D points except those in the boundaries between clusters as constraints in this propagation. While

these smooth shading layers do not contain shadows, propagating them using the input image as guid-

ance sometimes produces artifacts along shadow boundaries. We reduce these artifacts by excluding

a small band along shadow boundaries from the propagation, which we subsequently fill with a color

diffusion. The reflectance layer is obtained by dividing the input image by the sum, or total shading

Stot

Stot = Ssky + Sind + vsunSsun. (3.17)

The classifier can occasionally miss very fine shadow structures which are however captured by the

clusters; we also propagate visibility in the boundary regions between clusters, which generally im-

proves the visual quality for relighting (see Chapter. 4).

3.5 Refining Environment Shading and Reflectance Estimation

3.5.1 Our approach

The quality of the intrinsic layers obtained so far is limited by the accuracy of the different radiometric

quantities computed. In particular, the success of using Eq. 3.2 to compute R is dependent on the

approximations in our estimation of Senv, Lsun and vsun. As we see in Fig. 3.6(a), the currently estimated

values leave a visible residue in the reflectance layer, which should be continuous (Fig. 3.6(c)). This

discontinuity occurs because the values of Senv and Lsun were computed using the incomplete and

inaccurate 3D reconstruction, and are thus approximate.

We illustrate this in Fig. 3.7 where we show a plot of image intensity across a shadow boundary,
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(a) Reflectance

before correction

(b) Same-reflectance pairs

across shadow boundary

(c) Reflectance

after correction

Figure 3.6: (a) The reflectance is discontinuous across the shadow boundary due to incorrect estimation of

shading. (b) Pairs chosen as constraints to impose the same reflectance on both sides of the boundaries. (c)

Corrected reflectance after optimization.
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Figure 3.7: 1D visualization of Senv refinement. Small errors in our estimates of Lsun and Senv can prevent

the reflectance to be continuous across shadow boundaries (middle). We detect pairs of points with similar

reflectance on each side of the boundary (orange dots) and compute a local offset of Senv (blue) that makes the

two reflectances equal (right).

with the shadow region on the left. In the middle column, we see the decomposition of the image into

reflectance (Rs in shadow and Rl in light), and shading, composed of Ssun and Senv. We will refine the

value of shading so that Rs becomes equal to Rl, by adding an offset to Senv. We correct Senv since it



3.5. Refining Environment Shading and Reflectance Estimation 71

is a continuous quantity over the shadow boundary. Specifically we apply an offset xsl to Senv on both

sides of the shadow boundary so that Rs becomes equal to Rl (Fig. 3.7, right).

We first find a dense set of same reflectance light/shadow pixel pairs along the shadow boundaries,

Fig. 3.6(b). For each pair, we compute an offset xsl which makes the two reflectances equal. We then

smoothly propagate the offsets to all pixels while preserving the variations of Senv, yielding the refined

layer Sn
env, Fig. 3.6(c). The values of vsun in penumbra were determined by image-driven propagation,

which can sometimes result in high-frequency inaccuracies of vsun. These cannot be captured by the

smooth propagation, and we thus treat these pixels separately by correcting the vsun layer.

Implementation details of the above steps for Senv refinement are described in the following sub-

section.

3.5.2 Implementation Details of Senv Refinement

To refine the estimation of Senv we first find a set of light/shadow pairs, we then compute the offset

values xsl and propagate the refined Sn
env values over the image. The implementation has two main

steps: finding pairs and offset values and smooth propagation.

Figure 3.8: The reflectance contains halo artifacts in penumbra regions due to errors in the visibility (top

middle). We re-estimate the visibility (bottom, mid and right) to remove these artifacts (top right). The differences

in visibility are very subtle, please zoom into the pdf to see them.

Pairs and Offset Values. We find pairs by traversing shadow boundaries, in a manner similar to the

Lsun estimation process (Sec. 3.3). We keep pairs with same reflectance, which we identify by a small

Dij value, since the visibility labels i and j are mostly correct. We also only keep pairs that satisfy the

chromatic alignment of shadow/light pairs used in [Guo et al., 2011]; we thus avoid creating pairs on

incorrectly classified boundaries.
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For each pair, we add an offset xsl to Senv to make the two reflectances equal:

Rs = Rl ⇒
Is

vssunS
s
sun + Ss

env + xsl

=
Il

vlsunS
l
sun + Sl

env + xsl

(3.18)

Re-arranging the terms gives the offset value:

xsl =
Is(v

l
sunS

l
sun + Sl

env)− Il(v
s
sunS

s
sun − Ss

env)

Il − Is
(3.19)

Smooth propagation. The pairs of light/shadow pixels provide us with the values of Sn
env = Senv+

xsl along the shadow boundaries. We propagate this information to all pixels by solving for the Sn
env

image that minimizes

argmin
Sn
env

∑

∂S

||Senv + xsl − Sn
env||

2 +
∑

P

||∇Senv −∇S
n
env||

2 +w
∑

P

||Senv − Sn
env||

2

where ∂S is the set of constrained pixels along the shadow boundaries and P is the set of all image

pixels. The first term encourages the constraint satisfaction, the second term preserves the variations

of the original Senv, and the last term is a weak regularization that encourages the solution to remain

close to Senv away from the shadow boundaries, using a small weight w = 0.01. This optimization

can be solved using any standard least squares solver (we use the backslash operator in matlab).

Since xsl can be negative, we can obtain negative values of Sn
env for a very small number of pixels.

This can occur for example in regions which are poorly reconstructed as cavities, resulting in Senv

values close to zero. We iterate by adding constraints for such points, setting xsl = 0 such that Sn
env

is equal to Senv. In all our experiments a single iteration was required to remove all negative values,

which were always less than 1% of the pixels in the image.

Correcting Penumbra. The re-estimation of Senv described above ensures that both sides of a hard

shadow boundary receive the same reflectance. However, errors also occur in the penumbra regions due

to approximate continuous visibility, yielding halo artifacts in these regions (Fig. 3.8(mid top)). We

correct these visibility values by associating each penumbra pixel to its closest pair of same reflectance

light/shadow pixels as detected above. We then deduce the value of vsun that makes the pixel receive

the same reflectance. Fig. 3.8(right top) shows the final corrected reflectance. The effects are overall

quite subtle, but this step does improve the result overall.
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3.6 Intrinsic Decomposition Results

We present results on a variety of scenes. We show two test scenes with a small number of objects

(Plant, Fig. 5.12) and Toys (Fig. 3.9, top row). We also show three natural scenes with buildings,

vegetation and thin structures (Fig. 3.9). In most cases we obtain reflectance layers with little shadow

and lighting residue, which are thus suitable for relighting. The shadow classifier and visibility layers

are also of high quality overall; occasional miss-classifications are usually in small regions, which can

be detected and be removed when moving the shadows for relighting. The strongest errors occur in

scenes with poor geometric reconstruction, as is the case in the second and third row of Fig. 3.9 where

large portions of the tree as well as the small wall in front of the scene are missing. Such holes in

the geometry affect all the steps of our algorithm, from the computation of indirect lighting to the

initialization of shadow regions and sun calibration. As a result, our shadow classifier has moderate

success in identifying the shadow over the ground. Finally, the ground is dominated by variations of

grey reflectance, which adds to the difficulty of shadow detection as some of these variations are well

explained as shadows. The extended results for datasets are provided in section 5.4.1.
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Input image Reflectance R Total shading Stot Shadow classifier Propagated vsun

Figure 3.9: Our extracted layers on a variety of scenes: toys, urban (top), vegetation (middle), thin structures

(bottom).
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3.7 Conclusion

In conclusion, we see that our progressive estimation approach, together with our robust shadow clas-

sifier allow us to generate high-quality intrinsic image decompositions for multi-view datasets. As we

shall see in the following chapter, these decompositions are of sufficient quality to achieve relighting

of multi-view datasets, which can be used e.g., for image-based rendering (IBR) with changing light-

ing conditions. In Chapter 5, we present more results and extensive evaluation of our intrinsic image

algorithm, while in Chapter 6 we will discuss initial ideas and experiments on going beyond the diffuse

reflectance assumption.



Chapter 4

Relighting algorithms for multi-view image

datasets

Image based methods are limited by the lighting conditions of the capture. This is an inherent problem

which concerns image-based rendering applications such as Google street view, VFX compositing,

matte painting. With tools such like Photosynth1, 123DCatch 2 anyone can reconstruct their house,

garden or a monument at one particular time of the day; but changing the time of day in the image is

currently very hard.

This chapter describes a new relighting algorithm which can be used with our intrinsic decomposi-

tion pipeline for outdoor scenes described in chapter 3. We have an image collection of a scene, its 3D

reconstruction and for each input image its decomposition into a collection of layers: reflectance, sky

irradiance, indirect illumination, sun visibility, sun shading, normal and a residual layer to re-balance

misestimation. By analogy with VFX practices, in most cases the best way to manipulate a scene is

to work with easily editable layers. The most common task for artists is to compose an action shot

captured in a studio or in a green stage of an environment shot (CG or real). Environments are getting

more and more complex, and artists mix several part of shots, 3D reconstructions and full models to

create them. Unfortunately, it is almost impossible to capture all these pieces to get coherent lighting

and it requires a lot of work involving highly-skilled artists to fix these environments by editing each

part separately. HDR probes are used to capture the environment lighting to ensure that artists can

easily reproduce lighting conditions including plausible reflections.

The seven minutes ”barrel” sequence from the movie ”The Desolation of Smaug” required 98

hours of footage from aerial shots, green-screen sets, live-action shots, complex CG environments

as well as having to build a swimming pool in a studio shown in Fig. 4.1. This scene has complex

1Windows solution for reconstruction.
2Autodesk product dedicated to multi view reconstruction.
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Figure 4.1: Real footage courtesy Weta from wired.com.

camera paths to track with the decor during the shot, then such paths must be reproduced during

capture. Challenges occur when realigning studio shots with the environment especially when lighting

conditions and texture are very different. It is probably one of the most expensive scenes over the last

decade.

In the case of Google street view one recurring problem is due to the method of acquisition itself.

Google cars cannot capture all streets at the same time and do not have a consistent lighting. Our

relighting method can offer solutions to both of these problems.

The most common application for intrinsic decomposition focuses on editing the reflectance tex-

ture to change the appearance of an object. Since our images are decomposed into reflectance and

illumination layers, we can easily perform this modification.

Some work has been done on environment lighting estimation to allow quick insertion of CG ele-

ments or for augmented reality application [Lalonde et al., 2012], [Karsch et al., 2014b]. For lighting,

we have our illumination layer split in indirect, sky and sun shading and also an environment map,

while our method we can also insert an object easily as shown in Fig. 4.19.

All of these previous approaches do not support strong lighting condition changes such as moving

the sun. With the development of automatic 3D reconstruction solutions (PMVS, 123D Catch,...) and

image based rendering methods [Buehler et al., 2001], [Eisemann et al., 2008] [Chaurasia et al., 2011],

[Chaurasia et al., 2013], [Lipski et al., 2014] being limited to the captured lighting condition of a scene

is not only a problem for FX industries, but for all applications which require the rendering of captured
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Figure 4.2: Nuke Showcase, from input images, a point cloud is generated and few lights are added to relight

and produce a final image

objects and scenes.

4.1 Relighting a scene

We address the problem of relighting multiple images of a scene taken at the same time of day. No

previous solution exists to this problem: Previous methods require multiple lighting conditions [Laffont

et al., 2012] or information from a similar scene [Shih et al., 2013].

In the industry Nuke developed by the Foundry integrates a relighting node which allows artists to

edit the lighting in a scene. From several input views with a small baseline, a point cloud is generated,

and a light added to allow the user to ”relight” the image. No shadow re-computation is involved nor

reflectance estimation/manipulation, but the lighting edition is plausible and depends on the quality of

the mesh used to approximate the surface (see Fig. 4.2). Despite having a good surface approximation,

this single object is relatively easy to reconstruct and Nuke does not allow shadows to be recast with

standard CG methods (shadow maps or ray tracing).

In our case, we focus on outdoor scenes composed of multiple objects with complex geometries

which cannot be reconstructed properly even by the most recent algorithms. The proxy does not offer

good enough quality to use standard cast shadow methods (see Fig. 4.3). Note how the entire roof is

approximated by a complete and closed surface in the Monastery scene. In the Villa scene, palm trees

are incomplete or approximated by smooth approximate volumes, both of those misestimations can

lead to inconvenient artefacts when re-casting shadows. We use the following image formation model:

I = Reflectance× Shading (4.1)

I = R× ( vsun Lsun cos(ωsun) + Ssky + Sind)with, R the reflectance,

vsunthe visibility,Lsunthe sun color, Ssky the sky irradiance andSindthe indirect irradiance.
(4.2)
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Figure 4.3: Reconstruction artefacts. First row, the monastery scene. Second row the garden of Villa scene.

Figure 4.4: Left, our recast shadow algorithm at initial sun position. Right, result with the reconstructed proxy

Our image formation model derives from the intrinsic decomposition equation 4.1, extended to

outdoor scenes as described in chapter 3. This model explicitly separates environment lighting from

the sky and indirect irradiance and direct lighting due to the sun (See Eq 4.2). For relighting, while we

do not re-evaluate indirect bounce of light we can still manipulate the global ambience of the scene by

editing the sky layer (Fig. 4.13). But the main work of this chapter focuses on re-casting shadows for

motion of the sun. If the sun direction Lsun is updated, the visibility term vsun must be updated for all

pixels.
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4.1.1 Initial test

Prior to reconstructing a plausible geometry of the shadow caster, a first algorithm was designed to

work in image-based space and to try to compensate for the inaccuracy of the geometry. Describing

this experience can help preventing similar mistakes in the future but it also inspires the presented

algorithm in sub section 4.1.2.

Figure 4.5: Intrinsic decomposition using the method of [Laffont et al., 2013].

This study used the method of [Laffont et al., 2013] to provide the intrinsic decomposition. In this

context region in shadow are not identified explicitly so the first step is to introduce a binary classifier.

We start by building the histogram of the visibility layer, and identify two peaks corresponding to the

shadow cluster and the light cluster. By fitting a normal distribution for each peak, and performing

a gradient descent over the histogram to attain a 2 σ limit, approximating the standard deviation, it

is possible to obtain a rough estimation of region with a reasonable confidence to be in light or in

shadow. The gradient descent operates from the min to the max for the shadow (low intensity) peak

and the opposite direction for the light cluster. We thus obtain two clusters defined by the mean and

standard deviation of each. This clustering step identifies three regions: black which is in shadow with

high probability, white which is in light with high probability and red which is undefined but may be

penumbra, self shadowing etc., shown in Fig. 4.6, (left). The clustering is refined and disambiguated

by using a Markov Random Field classification solved with an iterated conditional modes ICM which

takes the two descriptors previously estimated with our clusters as input.

Figure 4.6: Histogram clustering to initialize the MRF.

We focus on manipulating only cast shadow and discard selfshadowing regions by checking the

normals which have been propagated using [Levin et al., 2008a] to every pixel and the sun direction
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using a mask see Fig. 4.7. For each pixel belonging to a shadow region, casting a ray using the estimated

sun direction to intersect the proxy will lead to two cases: an intersection and no intersection. Many

pixels do not intersect the proxy due to the poorly reconstructed geometry, particularly near shadow

boundaries (Fig. 4.10.

Figure 4.7: Shadow segmentation using the visibility layer of the method of [Laffont et al., 2013].

However intersecting the proxy does not mean the intersection was successful. Indeed, multi view

reconstruction algorithms tend to overestimate the geometry, so the distance between the point in

shadow and the caster may be inaccurate as well. By storing per pixel the distance between the in-

tersected proxy and the 3D projected points in shadow it is possible to fill pixels in shadow which did

not intersect the reconstructed proxy. The filling of these pixels is achieved by minimizing the distance

to the caster at pixel p and the weighted average of the distance to the caster at neighbouring pixels

(where available). The energy we minimize is:

E =
∑

p

(xp −

n
∑

k=0
wkuk)

2 (4.3)

with weight w = me−∇d, where m is the binary shadow mask so that we only consider regions

in shadow, and ∇d is the gradient of the distance to the shadow caster, to preserve continuity of the

estimated projected shape of the caster. It is solved by using the standard Matlab backslash operator.

Warping a grid mesh built from the shadow labelling in 2D in a GLSL shader is actually easy to

achieve by using the distance to caster as a velocity to control the amount of displacement. However

very complex geometries (See Fig. 4.9) such as tree can lead to strong artifacts using this approach

since the approximated surface is not curved; the branches introduce strong distance to caster discon-

tinuities that will lead to strange effects during the warp, and the shadow will seems to be compressed.

Many issues at this stage were identified. First the accuracy of the shadow classification and the

quality of the intrinsic decomposition are critical. Both of them motivated the need of a new intrinsic

decomposition algorithm for outdoor scenes. Second, since the distance to the caster is reconstructed

in image-space on a surface which is not reconstructed accurately, a depth to the plane value needs to

be assigned. Doing this results in issues along depth discontinuities when composing the shadow along

inaccurate object boundaries but also on the ground itself since multi view reconstruction algorithms
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Figure 4.8: Distance to caster propagation for a simple geometry such as a plane or curved surface.

Figure 4.9: Distance to caster propagation for a complex geometry such as a tree.

introduce bumps in the reconstructed mesh. The main reason to create a shadow caster comes from the

point that an image based approach is not suitable if all these issues cannot be solved.

4.1.2 Creating a shadow receiver and caster geometry

Recall that shadows cast from the proxy are not accurate enough for relighting, since they do not cor-

respond well to shadow boundaries in the image (see Fig. 4.10). We will move cast shadows approx-

imately by creating a geometric representation of a caster from the shadow boundaries in the original

image. The challenge is to disambiguate errors in the proxy so that the shadow produced is as accurate

as possible.

While creating caster geometry is related to shape-from-shadow techniques [Savarese et al., 2007],

such methods require shadows from multiple light sources. In our case, we only have shadows from a

single position of the sun. We thus design an algorithm that preserves the original shadow boundaries

in the input image as much as possible and allows some motion of the sun. This process is possible

only because we are aware of the shadow region through the shadow classifier presented in the previous

chapter 3.

We first enhance the reconstruction of the receiver geometry by assigning to each pixel in the

image the depth value of the closest projected 3D point. We found that the resulting depth map, while

approximate, results in plausible shadows that we can composite over the reflectance image. We then

estimate the geometry of the caster such that it produces shadows that match the shadow boundaries

in the original images. We identify the shadow boundaries from the shadow classification layer as
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Figure 4.10: Left: Input image. Middle: detected shadow pixels in blue, shadow from the proxy in dark blue.

Right: The caster mesh generated from these shadow pixels.

Figure 4.11: Left: Input image. Middle: detected shadow pixels in blue, shadow from the proxy in dark blue.

Right : hole filling and small cluster removal performed on the layer. Notice also the shadow of the photographer

on the right side which doesn’t exist in the proxy.

well as from the propagated vsun layer that sometimes captures fine details lost by the binary classifier

(Fig. 4.11). We consider pixels to be in shadow if pixel p is classified as shadow, or if vsun(p) < τs. We

used τs = 0.8 for all our results. To estimate a 3D caster position at each shadow pixel, we shoot rays

in the direction of the sun θsun and record the distance of the closest intersection with the 3D proxy.

Pixels for which the ray does not intersect the proxy receive the distance of the nearest valid pixel.

We triangulate the shadow pixels in image space to create a mesh that we lift in the direction of

the sun using the recorded distance from the cast point. Fig. 4.10 illustrates the resulting 2.5D caster

which re-creates the shadow boundary in the image.

Incorrect reconstruction and numerical imprecision can result in erroneous triangles in the caster

that partly re-project on lit pixels. We remove such triangles by visiting all pixels in light and casting
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Figure 4.12: Our result at the original sun position (a) and our relighting result for sun motion (d). Our result

without performing morphological operation and gaussian blur to clean our layer in (c) for original sun position

and (f) for some motion of the sun. (b) and (e) represent our shadow layer with detected shadow pixels in blue,

shadow from the proxy in dark blue.

rays in the sun direction. If a triangle of the caster mesh is intersected by more than ǫ such rays, it is

removed. We used ǫ = 3 for all our results. Our shadow labeling also sometimes mis-classifies pixels

as shadow in small regions as shown in Fig. 4.12. To filter these errors we cluster the pixels in shadow

and remove small clusters with less than 100 pixels and clusters for which less than 30% of the pixels

yield an intersection with the proxy. We adjust the reflectance of such pixels to bring them in light

using the vsun layer. The difference of quality with and without this step can be observed in Fig. 4.12.

4.1.3 Moving shadows and adjusting Shading

To get coherence with the real movement of the sun for a particular location, we use the GPS coordi-

nates and EXIF tags from the captured shots to estimate the sun motion. To move shadows, we simply

update the sun direction θsun and trace rays from each pixel in that direction. We compute intersections

against the caster using the ray tracing Intel embree library, which provides interactive feedback for the

images (see Fig.4.13).

However, our caster geometry only reproduces the shadows captured in the image. As a result,

discontinuities can appear when the shadow is moved away from the border. To reproduce a plausible

visibility layer, we complete the missing shadow in these areas using the shadow of the proxy geometry,

then use morphological filters with a sequence of closing and opening operations [Soille, 2003], to

remove small holes. Finally we apply a small Gaussian blur on this new shadow layer to mimic soft
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shadows and to fill small holes caused by disconnected triangles in the caster mesh. Of course, this

approach is limited in terms of sun motion and quality; we describe such issues in the following result

section. Note that a shadow caster could be drawn by an artist to get an high quality layer for a larger

motion of the sun which still requires a high quality intrinsic decomposition, but our focus here is to

demonstrate what can be done with an automatic method.

Having plausible shadows is good fist step but we still require good quality shading without accu-

rate normals. To do so, we use the most reliable information available, i.e., the intrinsic layers, rather

than the inaccurate proxy. By scaling them in the most plausible way, we can render plausible images

and still be consistent with sun motion. To do so, we update all layers in a different way. We approx-

imate the effect of sun illumination changes by adjusting the sun shading intensity wSun according

to a cosine factor with respect to elevation and the horizontal plane, and shifting Ssky towards red in

the morning and afternoon using a weight wsky. To maintain the illusion of shading change without

recomputing indirect bounces, wind is diminished by a similar amount. Finally, we detect sky pixels

in the input image and change their color near the horizon and recompute them using the input image

itself.

The sky detector works in real time in a GLSL shader. We select all pixels above the horizon from

the input image using color information which have a higher color ratio for the blue channel ( blue ≥

red + ǫ, blue ≥ green + ǫ with ǫ = 0.05 ). The algorithm is described in Alg.1.

We define the following quantities: tNoon to be noon 12:00, ∇Noon the difference of time between

the captured images and noon, tsunset sunset time, ∇sunset the difference of time between the captured

image and sunset.

Algorithm 1 Shading code

if tNoon ≥ ∇Noon then ⊲ Make the sun brighter as we are getting closer to noon

αSunIntensity ← 1− ( tNoon

∇Noon

)
wSun ← 1.0 + αSunIntensity

else ⊲ Make the sun darker

αSunIntensity ← 1−min(1, (tNoon−∇Noon)
(tsunset+∇sunset)

)
wSun ← 1.0− αSunIntensity

if tNoon > ∇Noon + tsunset then ⊲ Make the sky red

αsky ← tNoon−∇Noon−tsunset

∇sunset
;

wsky ← vec3(1, αsky, 0.8 ∗ αsky);
wind ← ∗wsky ∗ scaleindirect;

end if

end if

⊲ Apply weights to our shading model

outcolor ← reflectance ∗ (wind ∗ indirect+ wsky ∗ sky + (corrV is ∗ wSun ∗ shadow) ∗ sun);
outcolorskypixel ← Inputimg ∗ (wsky ∗ horizony);
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Figure 4.13: Input image relight in our interactive system in Villa Eilen Roc.

4.2 Results

4.2.1 Single Image

We show results for relighting for the Villa scene in Fig 4.13, for Street in Fig 4.14, for Monastery

in Fig 4.15. See Section 5.1 for information on these scenes. Fig 4.13 shows the same view relit at

different time of the day.

4.2.2 Ground truth

We captured several lighting conditions for the Statue and Plant scene, to allow a ground truth com-

parison. We only used multi-view capture of the central image (i.e., a single lighting condition) for all

intrinsic decomposition and relighting computations. We show and discuss the results in Sec 5.7.

4.2.3 Image Based Rendering

Our relighting approach can also be used for image-based rendering and changing lighting conditions.

In Fig. 4.18, we show some samples of view interpolation and free-viewpoint navigation path in the

Villa dataset in which we use the algorithm of [Chaurasia et al., 2013]. We record the path, change
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Figure 4.14: Input image relit in our interactive system for the dataset taken in Saint Paul de Vence. Top with

reconstructed proxy, bottom our result.

lighting conditions and play it back with the new illumination, since all the input images used for IBR

have been updated, no modification of the original IBR algorithm is required. This is best appreciated

in the accompanying video.

4.2.4 Compositing

We show a virtual object composited using our layers in Fig 4.19.

4.3 Conclusion and future work

We presented our automatic method introducing multi-view relighting, and demonstrate its utility for

image based techniques with illumination changes from the single image case to image based rendering

approaches. Our method is the first to allow relighting by manipulation of shading and cast shadows

with good quality. Our approach opens up large possibilities for future work. Currently, our relighting

system is limited to outdoor scenes with sunlight and well-defined cast shadows which can be seg-

mented. For outdoor scenes with overcast sky, the problem can appear simpler but it is different. Since

the variation between shadow and light is much smoother, any errors in the initial lighting condition
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Figure 4.15: Input image relit in our interactive system for the dataset taken in a garden of Nice, near the Cimiez

monastery. Top with reconstructed proxy, bottom our result.

estimation will not get corrected by our re-estimation using the shadow classifier; a new algorithm

needs to be proposed as mentioned in the previous chapter 3. Manipulating hard shadows requires seg-

menting them to reconstruct a shadow caster to replace the proxy. Currently we can achieve this only

for small motion of the sun. Another direction for future work is also related to the intrinsic decom-

position model, the development of a more complete image formation model which can incorporate

non-diffuse behaviour and allow manipulation of reflections for objects in the initial scene and also for

inserted virtual objects.
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Figure 4.16: Input images used for the image based rendering path.
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Figure 4.17: Input images relit used for image based rendering path.
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Figure 4.18: Interpolated images using the depth superpixel warp approach [Chaurasia et al., 2013].

Figure 4.19: An example of CG insertion using the villa scene dataset and its environment lighting estimation

to insert a creature.



Chapter 5

Evaluation

The purpose of this chapter is to evaluate several steps of the algorithms introduced in chapter 3 and

chapter 4. It contains :

• A description of the real world scene used to evaluate the method. It also contains the environ-

ment map fitted, and a selection of the captured images is provided in the intrinsic decomposition

result subsection.

• A comparison of our automatic sunlight calibration and environment map estimation with the

method of [Laffont et al., 2013], which uses a grey card and chrome ball Sec. 5.2.

• A visual comparison of our algorithm with state-of-the art intrinsic image methods and shadow

classifiers Sec. 5.3. This part contains the result of a selection of input images for each dataset.

• An evaluation of the robustness of our approach by decreasing the number of input images used,

Sec. 5.5.

• A ground-truth quantitative evaluation of our algorithm and comparison to [Laffont et al., 2013],

Sec. 5.6.

• A ground-truth comparison of our synthetic relighting with real photographs taken at different

times.

Table 5.1 details the number of images used for each scene, along with the number of vertices of

the proxy geometry.

Street Monastery Villa Statue Toys

#images 61 61 138 60 73

#proxy 2Mi 2.2Mi 6Mi 4.6Mi 4.6Mi

Table 5.1: Number of input images and number of vertices of the estimated 3D proxy, for each dataset.

92
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5.1 Scenes description

5.1.1 Street

Figure 5.1: Google Earth view of the street scene captured in Saint Paul de Vence. Latitude 43
◦
41

′
50.68”N

and longitude 7
◦
7
′
17.09”E. Our synthesized environment map in top right. Bottom left : our mesh with color

transfer using the median. Bottom right : normal of the reconstructed mesh.

Figure 5.2: Input image (a), shadow from inaccurate 3D model (b), input point cloud (c), cast shadow in our

user interface to setup the sun direction, blue and green represent region in shadow (d).

This scene highlights the difficulty to classify as shadow or in light, region of cast shadows by

poorly reconstructed geometry like the cactus. The inaccuracy of the reconstructed model directly

affects the estimation of the irradiance collected per point in this region which has a strong impact for

the two steps of our method, the sun calibration and then the shadow classification.
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5.1.2 Monastery

Figure 5.3: Left: Google Earth view of the Monastery scene captured in the Cimiez area of Nice. Latitude

43
◦
43

′
7.40”N and longitude 7

◦
16

′
43.57”E. Right: our synthesized environment map.

Figure 5.4

The shadow classification of this scene is very challenging since the ground is made of stones

and jointing mortar which can perturb the image based pairwise cost function described in chapter 3.

The dataset is also included in the shadow labelling comparison in section 5.11. The inaccuracy of

the reconstructed 3D model also motivates the need of an explicit shadow classification to relight the

scene especially because of the grid-like ceiling which cast a complex shadow in the captured image

but cast a massive shadow in the case of a relighting method which uses the reconstructed proxy since

the ceiling is reconstructed as if it was filled. However, we also discuss the limit of our method to very

fine structure elements which are really hard to segment before being classified.
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5.1.3 Villa

Figure 5.5: Left: Google Earth view of the garden of the Eilen Roc Villa scene in near Antibes. Latitude

43
◦
32

′
42.25”N and longitude 7

◦
7
′
49.98”E. Right: our synthesized environment map.

Figure 5.6: Color proxy and normal rendering of the reconstructed geometry.

This dataset was originally captured with 138 images with a specific camera path suitable for use

with on image based rendering method described in [Chaurasia et al., 2013]. The trunk of trees and the

ground are reasonably well reconstructed, however we can observe that the palms trees are not. This

scene was also used to observe the side effects of geometry accuracy on our pipeline by reducing the

number of input images used for reconstruction in the section 5.5.
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5.1.4 Plant and statue

Figure 5.7: Google Earth insight of the statue and plant scene captured near Inria Sophia Antipolis. Latitude

43
◦
36

′
51.54”N and longitude 7

◦
4
′
6.28”E.

Figure 5.8: Color proxy and normal rendering of the reconstructed geometry.

This dataset is used in two comparisons with previous work for intrinsic decomposition Sec. 5.4,

Fig. 5.12 and the shadow classification Sec. 5.3, Fig. 5.11. All previous methods failed for both com-

parisons in this case, which is particularly surprising at least for the tablecloth. Compare to others

scene, the diversity of reflectance in this scene is very low.



5.1. Scenes description 97

5.1.5 Toys

Figure 5.9: Color proxy and normal rendering of the reconstructed geometry.

For this final dataset ground truth and our synthesized environment map are provided as well in the

sun calibration section Sec. 5.2. The clipping range of interest in this scene is small, like the statue and

plant case Sec. 5.1.4 but in this case a wide diversity of reflectances is observed. For these reasons, the

dataset is involved in three comparisons with previous work for intrinsic decomposition Sec. 5.4, the

shadow classification Sec. 5.3, Fig. 5.11 and the sun calibration Sec. 5.2.
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Figure 5.10: Comparison using a chrome ball and grey card (left) and our synthesized environment map with

automatic calibration (right). Although our environment map misses details on the ground and horizon, it cap-

tures the overall color distribution of the ground and sky, yielding reflectance results (lower row) visually similar

to the ones obtained with additional information.

5.2 Sun calibration

Recall that, compared to [Laffont et al., 2013], all steps in our approach are automatic, removing the

need for the chrome ball, grey card, parameter setting and inpainting steps. Figure 5.10 provides a

comparison between our automatic decomposition and a downgraded version of our algorithm where

we used the captured chrome ball and grey card calibration of [Laffont et al., 2013]. Our calibration

estimates a sun color of (2.7, 2.3, 2.4) while the grey card yields (2.7, 2.7, 2.7). Our estimated environ-

ment map captures the overall color distribution of the sky and ground and results in a reflectance on

par with the one obtained with a chrome ball and manual calibration.
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5.3 Shadow classifier

Figure 5.11 shows a comparison with two single-image shadow classifier methods [Zhu et al., 2010]

and [Guo et al., 2011]. Our classifier works well in most cases, and compares favorably to the pre-

vious approaches. The method of [Guo et al., 2011] often gives very good results (last row), but can

sometimes reports false positives or fails (top row).

Input image [Zhu et al., 2010] [Guo et al., 2011] Our method

Figure 5.11: Comparison with existing shadow classifiers. [Zhu et al., 2010] misses shadow details while [Guo

et al., 2011] tends to produce false positives. Our approach leverages 3D information to avoid such errors.

Note that in section 5.5, we provide the result of the shadow classification of the same scene recon-

structed with varying numbers of input views to observe the effect of the geometry accuracy.
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5.4 Intrinsic decomposition results

5.4.1 Real world scenes

We provide our results on a selection of real-world scenes presented in Section 5.1 :

• toys scene in Fig. 5.14.

• street scene in Fig. 5.15.

• plant and statue scene in Fig. 5.16. and Fig.5.17.

• villa1 scene in Fig. 5.18

• monastery scene in Fig. 5.19.

5.4.2 Comparison

We compare with recent state of the art intrinsic image algorithms, namely two single-image

approaches [Barron and Malik, 2013b; Chen and Koltun, 2013] which also use depth information.

From the results presented in these papers, these methods outperform previous single-image solutions

which are typically derived from the Retinex algorithm. We also compare to the multi-view method of

[Laffont et al., 2013]. We used the original code of these papers, and reported results to the authors

who ensured that we set parameters correctly.

We present two test scenes for comparisons in Fig. 5.12 and Fig. 5.13. The Plant and statue is

a simple scene described in Sec.5.1.4, with a cast shadow on a tablecloth. The proxy reconstruction

is of quite high quality except for the plant. From the results we can clearly see that the single image

methods are not suited to outdoor scenes with cast shadows, and there is always a residue in the

reflectance layer. Our algorithm benefits from the better 3D reconstruction provided by multi-view

stereo. The method of [Laffont et al., 2013] also has some residue due to their use of approximate

non-binary visibility values that tends to compensate for errors in the estimated shading. By enforcing

binary visibility we obtain robust shadow classification, and consequently correcting reflectance across

shadow boundaries in a reliable manner, our method produces better results overall.

In Fig. 5.13, the single image methods [Chen and Koltun, 2013; Barron and Malik, 2013b]

both have residues in the reflectance. The method of [Laffont et al., 2013] has similar results with

ours for this scene: ours has slightly less residue in reflectance, but does miss-classify some of the

checkerboard colors as shadow. In addition, that method overestimates indirect light in corners with

inaccurate reconstruction, which we attenuate with the cosine factor. It is important to recall again that

the method of [Laffont et al., 2013] is not fully automatic, requiring several manual steps described in

1The movie Magic in the Moonlight of Woody Allen was filmed partially in the Villa Eilenroc, Antibes.
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Input image Method A Method B Method C Our method

Figure 5.12: Comparisons with existing intrinsic image methods, reflectance and shading respectively top and

bottom row. Results are shown with scale factor and gamma-correction. Our approach removes the hard shadow,

which allows us to subsequently relight the scene. Method A, [Chen and Koltun, 2013]. Method B, [Barron and

Malik, 2013b] . Method C, [Laffont et al., 2013].

the main text. We manually picked the best result of their method to compare with.

Input image Method A Method B Method C Our method

Figure 5.13: Comparisons with existing intrinsic image methods, reflectance and shading respectively top and

bottom row. Results are shown with scale factor and gamma-correction. Method A, [Chen and Koltun, 2013].

Method B, [Barron and Malik, 2013b] . Method C, [Laffont et al., 2013].
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Input Our Reflectance Sun Shading Refined Env Shadow Classifier

Figure 5.14: Intrinsic decomposition results for the toys scene.
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Input Our Reflectance Sun Shading Refined Env Shadow Classifier

Figure 5.15: Intrinsic decomposition results for the street scene.
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Input Our Reflectance Sun Shading Refined Env Shadow Classifier

Figure 5.16: Intrinsic decomposition results for the plant scene.
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Input Our Reflectance Sun Shading Refined Env Shadow Classifier

Figure 5.17: Intrinsic decomposition results for the plant scene.
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Input Our Reflectance Sun Shading Refined Env Shadow Classifier

Figure 5.18: Intrinsic decomposition results for the villa scene.



5.4. Intrinsic decomposition results 107

Input Our Reflectance Sun Shading Refined Env Shadow Classifier

Figure 5.19: Intrinsic decomposition results for the monastery scene.
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Figure 5.20: 3D reconstruction with 138, 68 and 34 views. The reconstruction is increasingly incomplete as we

lower the number of images. See Fig. 5.21 for the corresponding intrinsic decompositions.

5.5 Effects of geometry accuracy

As is often the case with multiview stereo reconstruction, we found it easier to capture a large number

of images rather than attempting to find the smallest set of images that would be sufficient to run our

method.

In theory, lowering the number of input images can impact several aspects of our pipeline. First,

using fewer images results in fewer samples to estimate the diffuse radiance of the proxy geometry

Sec 3.2 and fewer candidate pairs for sun calibration Sec 3.3.

We conducted a small experiment to evaluate the practical impact of the number of input images

on the quality of the end decomposition. Figure 5.21 shows that despite reducing the number of images

from 138 to 34 our algorithm produces consistent results. This success is due to the fact that our shadow

labeling algorithm leverages image information to identify accurate shadow regions even when the

shadow caster is not well reconstructed, as shown in Figure 5.20.
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Input image Reflectance 138 Reflectance 68 Reflectance 34 Shading 138

Figure 5.21: Decreasing the number of input images does not have a significant impact on the quality of the

decomposition. See Fig. 5.20 for the corresponding 3D reconstruction. The scene was reconstructed using 138,

68 and 34 views. We show the input image, reflectance, lighting and shadow classifier results for these 3 cases.
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Shading 68 Shading 34 Classifier 138 Classifier 68 Classifier 34

Figure 5.22: Decreasing the number of input images does not have a significant impact on the quality of the

decomposition. See Fig. 5.20 for the corresponding 3D reconstruction. The scene was reconstructed using 138,

68 and 34 views. We show the input image, reflectance, lighting and shadow classifier results for these 3 cases.
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5.6 Ground truth

Figure 5.23: Overview of synthesized images for our ground truth evaluation.

Figure 5.24: Overview of the reconstructed geometry from the synthesized images.

Input envmap. Our environment map.

Figure 5.25: Reference color jet map used to represent

the mean squared error per pixel for reflectance Fig. 5.30

and environment Fig. 5.31.

We purchased a model of a scene which has

a similar appearance to the real environments

we target, with realistic textures for the building,

densely foliaged trees and we used a physically-

based sky model [Preetham et al., 1999]. We

used an in-house path-tracer to render 44 images

(Fig. 5.23), which we took as input for our com-

plete pipeline including the multi view stereo al-

gorithm (Fig. 5.24). Multi-view stereo has diffi-

culty with synthetic models and textures, and the

quality of the reconstruction is poor, as can be

seen in the inset; large portions of the tree are

not well reconstructed and the overall geometry is

coarse and approximate. We also rendered the cor-

responding layers of reflectance and shading for
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Our environment map. [Laffont, 2012]

Figure 5.26: Overview of our synthesized environment on the left and the method described in [Laffont, 2012]

on the right.

quantitative comparison, respectively shown in Fig. 5.30 and Fig. 5.31.

LMSE=0.067 LMSE=0.070

GMSE=0.104 GMSE=0.109

LMSE=0,044 LMSE=0,044

GMSE=0,066 GMSE=0,065

(a) Input (b) Reconstructed (c) Our reflectance (d) Ground truth (e) [Laffont et al., 2013]

image proxy reflectance

Figure 5.27: Comparison between our method, [Laffont et al., 2013] and ground truth reflectance rendered from

a synthetic scene. Our method produces a few strong yet localized errors due to mis-classification of small regions

in the shadow of the tree. In contrast, [Laffont et al., 2013] exhibits a low yet extended deviation from ground

truth in the shadow region. The two methods are quantitatively similar according to the LMSE and GMSE error

metrics.

Figure 5.27 provides a visual and quantitative comparison of our reflectance against ground-truth

and the result of Laffont et al. [2013]. We selected the parameters of [Laffont et al., 2013] that produce

the best decomposition. The two methods yield results of similar quality as measured by the local mean

squared error LMSE and the global mean squared error LMSE error metric [Grosse et al., 2009]. Since

the intrinsic decomposition problem is still largely unsolved, LMSE measurement allows us to weight

the per pixel local mean squared error by the mean over a window size. Both LMSE and LMSE

evaluate the quality of an intrinsic decomposition method. However, close inspection reveals that most
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Figure 5.28: Intersection in LAB space of reflectance candidate curves per normal orientation for [Laffont et al.,

2013].

Input image Our reflectance Our propagated visibility

Figure 5.29: Highlight classification error in our model.

of our error is due to mis-classification of small shadow regions, which yields strong yet localized

deviation from ground-truth, while [Laffont et al., 2013] fails to completely remove the shadow of

the tree on the wall, which yields a low yet extended erroneous region (Fig. 5.27, top, far right). This

different type of error is due to the fact that the method of Laffont et al. does not explicitly estimate

binary visibility and does not refine the estimation of environment shading as shown in Fig. 5.28; our

approach yields results more suitable for relighting to be consistent.

Figure 5.30 visualizes our error on reflectance and Figure 5.31 environment shading. This visu-

alization reveals that a significant part of our error is due to the approximate environment shading,

especially in areas where this component dominates sun shading. On the one hand, we refine the en-

vironment shading near shadow boundaries which allows relighting and on the other hand it is also

the main limitation of our refinement step since we cannot refine it for regions far from the shadow

boundaries.
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Input image Proxy GT reflectance Our reflectance MSE Reflectance

Figure 5.30: Ground truth GT results and mean squared error MSE for reflectance.
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GT Env 1st Env Refined Env MSE 1st Env MSE Refined Env

Figure 5.31: Ground truth GT results and mean squared error MSE for the environment Env and refined Env.
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5.7 Ground Truth relighting comparison

-30m -15m Input +15m +30

Figure 5.32: Above: real photographs taken at different times than those used for the algorithm. Below: relit

images using our algorithm.

We captured several lighting conditions for the Plant scene to allow a ground truth comparison.

We only used multi-view capture of the central image (i.e., a single lighting condition) for all intrinsic

decomposition and relighting computations. We show the results in Fig. 5.32. We can see that the cast

shadow becomes more approximate as we move away from the time of capture used by our algorithm,

but the overall appearance is plausible. A slight residue of the original penumbra remains visible in the

reflectance, which is due to the non-diffuse nature of the white tablecloth we placed on the table. Since

the camera is close to the glossy lobe of this surface, our assumption of diffuse reflectance reaches its

limits and our refinement step is not sufficient to fully correct for the remaining errors. Note also that

our synthetic shadows have the same color as the shadow in the input image because they are computed

from an estimate of the same sun color and sky model. In reality the appearance of the sky changed

over time, which explains why the real shadow is darker in some pictures.

5.8 Conclusion

The extensive evaluations of our intrinsic image and relighting algorithms presented in this chapter

allowed us to better understand their strengths and weaknesses. The ground truth comparison as well

as our comparisons to previous algorithms and our evaluation of robustness to reconstruction quality

have demonstrated that our algorithms performs well in many challenging conditions. Evidently, our
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algorithms do not always succeed, and are only a first step in the quest to solve these very hard and

challenging problems. The limitations of our algorithms analysed with the evaluation presented here

served as a basis for our proposals for future work, discussed in Chapter 7.



Chapter 6

Estimating Image Based Bidirectional

Reflectance Functions

6.1 Motivation

Figure 6.1: The captured image (a) is taken with the sun behind which implies no specular effect, (b) shows the

obtained reflectance using the sun calibration, the shadow classifier and propagation without the local correction

on boundaries, (c). Note there is no major difference between (b) and (c). However, for a view facing the sun

which maximizes the specular effect(d), the local correction near boundaries compensates this error (e), (f).

In Chapter 3, we demonstrate that we can recover the reflectance of a surface from inaccurate

geometry allowing us to manipulate the lighting condition and also the shadow in Chapter 4. The re-

struction to Lambertian reflectance leads to artifacts that are hidden by the correction per image of

the environment lighting. The captured image(a) shown in Fig. 6.1 is taken with the sun behind which

implies minimal specular effect. Image (b) shows the obtained reflectance using the sun calibration,

the shadow classifier, and the image driven lighting propagation without the local correction on bound-

118



6.1. Motivation 119

aries, (c). Note that there is no difference between (b) and (c). However in the case of a view acquired

facing the sun (d), the specular component is near its maximum and in this case our local environment

refinement step compensates for the error due to specular effect more than the mis-estimation of light-

ing condition as shown in (a). Tackling this shortcoming requires to model more complex BRDFs per

point than the Lambertian model used in Chapter 3.

Figure 6.2: Matching confidence score splatted in one input view(a). (b) and (c) show local inaccuracies and

projection errors inherent to a multi view reconstruction algorithm in adjacent views of (a).

Figure 6.3: (a) Colored vizualization of the proxy using the median of radiance for a point of normal n. (b)

Radiance hemisphere in 3D. (c) Normal hemisphere view from top in 2D. (d)Top view of the distribution of radi-

ance samples in the frame (c). Each sample is splatted on this hemisphere using the color from the corresponding

input cameras.

Retrieving BRDFs or spatially varying BRDFs from images is an active field. The thesis of Steve

Marchner [Marschner, 1998] largely inspired subsequent methods which use known surfaces such as

a sphere [Matusik et al., 2003], [Romeiro et al., 2008], [Romeiro and Zickler, 2010a] or very precise

and dense captured geometry [Yu et al., 1999], [Lensch et al., 2001], [Debevec et al., 2004]. However,

the context of geometry acquired using multi view stereo method shown in Fig. 6.2 introduces two new

challenges, noise and sparsity, Fig. 6.3. The main goal of this study is to address these issues.

• Noise is the result of projection error, since a reconstructed 3D point may not be properly project

in all registered views as shown in Fig. 6.3, (d).
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• Sparsity comes from the small number of images used to reconstruct a scene, indeed in our

context we typically use 40-80 images as input for a complex scene involving many objects

whereas previous methods can use the same number [Lensch et al., 2001] or hundreds [Debevec

et al., 2004] only to acquire one object. In our case, a point cannot contain more radiance samples

that the input views used for reconstruction which directly implies a very sparse sampling of the

outgoing radiance hemisphere Fig. 6.3, (d).

6.2 Our approach

Our context is strictly different than previous methods since we performed the capture in an uncon-

trolled lighting environment without a moving light source to generate more samples on the outgoing

radiance hemisphere shown in Fig. 6.3. Moreover, we do not assume knowledge about the shape of

the object and we do not consider only one object in our scene. Our geometry is inaccurate and many

projection errors can be identified. We also do not use HDR images, just the RAW file coming from

the DSLR camera.

Recall the reflectance expression Section 2.3.4, Eq 2.15, in the cases, we assume an ideal diffuse

reflection function known as Lambertian we can ignore the incoming illumination direction to reflect

outgoing radiance and the obtained BRDF becomes a constant fr,d:

Lr(x,
# »wr) =

∫

ωi

fr,d(x, wi, wr)LidΩi = fr,d(x)

∫

ωi

LidΩi = fr,d(x)Ei(x) (6.1)

As explained previously, a Lambertian BRDF model is not representative of the surface appear-

ance of an object. In previous work requiring image based BRDF estimation, the Lafortune BRDF

[Lafortune et al., 1997] is widely used since this model can cover a wide range of materials which

can be captured. In the case of physically based shading, considering a non-diffuse energy conserving

BRDF, direct and indirect lighting, the rendering equation can be divided into sub-components accord-

ing to a BRDF including two components; a diffuse term and a specular term as described in [Pixar

Animation Studios and Villemin]:

Lr(x,
# »wr) =

∫

ωi

fr,d(x,
#»wi,

# »wr)L(x,
#»wi)dΩi (6.2)

Lr(x,
# »wr) =

∫

ωi

fr,d(x,
#»wi,

# »wr)(Ldir(x, wi) + Lind(x,
#»wi))dΩi (6.3)
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Lr(x,
# »wr) =

∫

ωi

(fdiff (x,
#»wi,

# »wr) + fspec(x,
#»wi,

# »wr))(Ldir(x,
#»wi) + Lind(x,

#»wi))dΩi (6.4)

Lr(x,
# »wr) =

∫

ωi

fdiff (x,
#»wi,

# »wr))Ldir(x,
#»wi)dΩi

+

∫

ωi

fspec(x,
#»wi,

# »wr)Ldir(x,
#»wi))dΩi

+

∫

ωi

fdiff (x,
#»wi,

# »wr))Lind(x,
#»wi)dΩi

+

∫

ωi

fspec(x,
#»wi,

# »wr)Lind(x,
#»wi)dΩi

(6.5)

Lrspecularindirect(x,
# »wr) =

∫

ωi

fspec(x,
#»wi,

# »wr)Lind(x,
#»wi)dΩi (6.6)

To retrieve both specular and diffuse components from the BRDF, we are going to ignore the

specular component due to indirect paths described in Eq 6.6. The main reason to ignore this term is

because of its complexity of evaluation. Indeed to be modelled properly, we first need to know the

BRDF for all points of the scene which would require to bootstrap over the optimization to refine the

solution on a iterative way. This is not the goal of this study. The second reason is that our capture

sampling strategy is really sparse. Capturing radiance samples combining diffuse and specular terms

due to the main light source, the sun, is already very hard. Recall that we capture only 40-80 images

for a full scene.

Indirect illumination is then evaluated as described in Chapter 3, by estimating the irradiance at

each 3D point. For each casted ray, we use a linear interpolation over the 3 vertices of the intersected

triangle and their outgoing radiance obtained by taking the median of the collected radiance from

the input views. Of course, interpolation between 3D points is more or less accurate according to

the density of the 3D reconstructed point but no existing metrics exist to estimate the reconstruction

confidence of a point. In such context, the matching score used for the reconstruction is not suitable as

shown in Fig. 6.2. The direct consequence of these issues is that we give an equal confidence to all the

integrated samples.
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For this image based BRDF retrieval, we use the following image formation model:

Lr(x,
# »wr) =

∫

ωi

fdiff (x,
#»wi,

# »wr))Ldir(x,
#»wi)dΩi

+

∫

ωi

fspec(x,
#»wi,

# »wr)Ldir(x,
#»wi))dΩi

+

∫

ωi

fdiff (x,
#»wi,

# »wr))Lind(x,
#»wi)dΩi

(6.7)

In such an undetermined problem, a piecewise Linear interpolation might have been an option.

However detecting outliers due to the inaccuracy of the geometry and projection error on the radiance

hemisphere would involve running an optimization to discard them. Moreover, such interpolation can

be used to re-render interpolated views but does not bring extra information either to evaluate complex

light transport paths such as indirect specular or to manipulate BRDF models. In the following, we

introduce an optimization that is only valid for an outdoor scenes with one main light source which is

the sun. The main motivation of this study is to dress the list of issues by starting with a smaller problem

than the indoor scene scenario. In the context of an outdoor scene, direct lighting only comes from the

sun and indirect lighting can be roughly estimated by using the method described in Chapter 3. In terms

of light transport simulation of outdoor scene, the sun is considered like a light source at infinity which

cannot be applied to indoor lights. In the case of an indoor scene, light sources would have to be more

carefully characterized in term of fall off and intensity. Given signal processing theory, the Nyquist-

Shannon theorem implies that the outdoor scene problem is already undetermined since the sparsity

per points of the outgoing radiance cannot lead to an optimal solution. Indoor scenes are not tackled

because multiple light source characterization to retrieve BRDF is even more largely undetermined.

The method of [Lensch et al., 2001] develops an approach of sharing samples of the same material

to complete the outgoing radiance hemisphere on clusters of points in a controlled environment and

a single object. In a second step, spatially BRDFs are estimated by expressing the shading model

for each point as a linear combination of a collection of mutated BRDFs base obtained from this

sharing strategy. However, [Matusik et al., 2003], [Bonneel et al., 2011] demonstrate that direct linear

interpolation of BRDF leads to strange behaviour in the specular component and non-plausible BRDFs.

Note that this shortcoming is adressed with manifold-based interpolation in [Matusik et al., 2003],

[Dong et al., 2010]. However as described in Chapter 2, building such a basis requires BRDF samples.

For this reason, these methods are not shown.
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6.3 Lafortune BRDF

This BRDF model is a combination of cosine-lobes centered around different axes and a traditional

diffuse component.

fLaf (x,
#»wi,

# »wr) = ρd +
∑

k

ρs,k ∗ sk(
#»wi,

# »wr) (6.8)

ρd is the diffuse reflectance, ρs ∗ s is a lobe component. The lobe s is expressed with a standard

matrix notation. In our context, we only address isotropic reflection so we use only a diagonal matrix

C as shown in Eq.6.9 and the lobe can be expressed as a dot product Eq. 6.10; modelling anisotropic

reflection involves the used of a 3×3 matrix. As C defines the orientation of the lobe, the C coefficients

can shear the lobe in different ways to represent different surface-scattering behavior.

s( #»wi,
# »wr) =

















wr,x

wr,y

wr,z









T 







Cx

Cy

Cz

















wi,x

wi,y

wi,z

















nk

(6.9)

s( #»wi,
# »wr) = (Cxwi,xwr,x + Cywi,ywr,y + Czwi,zwr,z)

nk (6.10)

This representation already offers plenty of variety for each lobe, and the complete BRDF can

model diffuse reflection, retro-reflection and specular reflection. Another key aspect of the isotropic

case is the reduction of one unknown to solve since to guarantee isotropy Cx = Cy.

In the case the matrix C is defined as Cx = −1, Cy = −1, Cz = 1; the incoming light #»wi is reflected

about the normal of the point x, and the expressed lobe is specular as in Phong BRDF. Retro-reflection

is modeled by the lobe when Cx = 1, Cy = 1, Cz = 1 since the identity matrix means in this case

that the incoming light wi,x is reflected in the same direction, #»wi =
# »wr.

6.4 Constrained Non Linear Fitting

To retrieve the BRDF, we will solve:

Lr(x,
# »wr) =

∫

ωi

fdiff (x,
#»wi,

# »wr))Ldir(x,
#»wi)dΩi

+

∫

ωi

fspec(x,
#»wi,

# »wr)Ldir(x,
#»wi))dΩi

+

∫

ωi

fdiff (x,
#»wi,

# »wr))Lind(x,
#»wi)dΩi

(6.11)



124 Chapter 6. Estimating Image Based Bidirectional Reflectance Functions

argmin
x

m
∑

i

|Lr(x,
# »wr)obsm − Lr(x,

# »wr, fLaf )estm |
2)

with constraints on: diffuse parameter, 0 ≤ ρd ≤ 1

specular parameters and isotropy, 0 ≤ ρs ≤ 1, Cx = Cy, 1 ≤ n ≤ 100

energy conservation, 0 ≤ ρd + ρs ≤ 1

(6.12)

Levenberg Marquadt is a very popular optimization scheme to solve non-linear least squares

problems. However, its implementation can make strong difference in the quality of the result. So

far, we found that the implementation provided by [Agarwal et al.] in Ceres-solver gives the best

results. In the context of BRDF retrieval, we estimate the square difference for each point between

their input radiance samples collected from multiple views and the rendering of their estimated BRDF

for the parameters ρd, ρs and n under our estimated lighting condition. We follow the strategy to fit

one BRDF per color channel RGB, and to bound each of theirs parameters to prevent the optimization

from converging to undesired values and to make sure the BRDF obtained conserves energy. The

problem is initialized by using the median of the radiance for the diffuse component and the specular

part is initialized as a mean BRDF.

Since we know the sun direction, we can constrain the optimization on the BRDF to take into

account the sun direction, as well as the sun color and the irradiance. Indeed, we expect a specular

component to be observed in the mirror direction of the sun which is model by creating a lobe in this

direction.

6.5 Results

To evaluate the quality of the fitting model we render each point from the 3D model using our estimated

BRDFs under our lighting conditions and the normal provided by the 3D reconstruction. For display

reason, we propagate these estimation using an image driven method [Levin et al., 2008a]. Then we

compute the L1norm between the corresponding input view image and the fitting model. Each color

channel is directly added to the error measurement which uses the color jetmap of matlab between 0

and 255. Results are shown in Fig. 6.4, 6.5.

Note that local correction of the misestimation of indirect illumination was not performed and the

re-rendering can suffer from this approximation. However the non linear optimization should have

compensated for this lack during the optimization.
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Input Median Fitting L1norm Median L1norm Fitting

Figure 6.4: Statue and plant scene for the views 1 and 21. Input column shows the input image, Median and Fit-

ting respectively shows the rendering of our estimation by taking the median or by using BRDF fitting. L1norm

columns show the difference between the input image and the rendering.

Input Median Fitting L1norm Median L1norm Fitting

Figure 6.5: Toys scene for the views 23 and 32. Input column shows the input image, Median and Fitting

respectively shows the rendering of our estimation by taking the median or by using BRDF fitting. L1norm

columns show the difference between the input image and the rendering.

In both cases, this study highlights that the outgoing radiance of the hemisphere can reasonably be

well approximated by computing its median. We can note that the fitting of the statue in marble Fig. 6.4

fails independently of the view selected to render. First, despite ignoring the specular light due to the

indirect component in Eq.6.6, in this case the indirect light coming from the table to the statue is not
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evaluated but in the case of the pot on the table and the wood the L1norm is reasonable even in the

case they are lighted only by the indirect light from the table. We know that complex materials such as

marble cannot be modelled efficiently by a Lafortune BRDF but we were expecting a better fitting. In

Fig. 6.5, the fitting on the head of the main teddy bear in blue is also unstable.

Figure 6.6: The green spot indicates the clicking vertex. In both cases, the distribution of samples only cover a

really small portion of the hemisphere.

By looking closely at the unfitted regions in Fig. 6.3, the capture of the outgoing radiance hemi-

sphere does not really covered the azimuth angle of 360 degrees. However, for a small differential

angle on the azimuth axis, the zenith angle is reasonably sampled. A future study should then focus

on similar objects as the statue and teddy bear to evaluate if these unfitted regions are really due to the

material complexity. We can imagine that the method of [Lensch et al., 2001] would give successful

result on these scenes, however with a long term goal of manipulating the BRDFs of the scene, this

would involve the manipulation of a set of basis per points instead of manipulating a full region which

is non-intuitive for end users.

6.6 Conclusion

In this chapter, we studied the problems related to the limitation of our reflectance model to simple

Lambertian in the previous chapters. After providing more detail on the issues involved, related to

very sparse and inaccurate data, we conducted a first experiment to estimate a Lafortune model based

on this sparse sampling. Even though the first results are quite limited, we believe that this is a very

interesting direction for future work, both for the simple extraction of materials and for more accurate

and effective intrinsic image algorithms.
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Conclusions and Future Work

7.1 Conclusions

In this thesis we presented the first method to allow automated intrinsic image decomposition for multi-

view outdoor scenes with cast shadows, providing reflectance, shading and cast shadow layers at a

quality level which is suitable for relighting. We were thus able to introduce multi-view relighting, and

demonstrate its utility for Image Based Rendering with changing illumination. Apart from IBR, other

applications of multi-view relighting are possible, for example in compositing for post-production,

where lighting changes often involve a significant amount of manual work. By allowing multi-view

relighting, our solution takes an important step in making image-based methods a viable alternative

for digital content creation. The most important insight obtained in this thesis is that progressive re-

finement built upon constrained pairs from rough estimation can lead to high quality estimation of

the reflectance. However, building these constraints is a real challenge especially in regions where no

boundaries can be estimated to reduce the search space to place them. Our ground truth evaluation

showed that our local correction is limited to shadow boundaries and can actually increase the error in

some regions. In term of contributions, this thesis introduced an automatic environment lighting esti-

mation, a shadow classification based on inverse rendering, a novel intrinsic decomposition method, a

relighting algorithm, a ground truth evaluation and a study of the image based BRDF measurement in

the context of multi view stereo 3D reconstruction.

7.2 Research impact and deployment

The results of this thesis are being used in the CR Play project www.cr-play.eu which targets

the development of image-based rendering methods as a tool for content generation in games. Such

systems require manipulating texture and lighting conditions of a multi view captured scene. Our multi
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view intrinsic decomposition algorithm was also transferred to Autodesk. Autodesk was also a partner

in this project and gave us access to their multi-view stereo reconstruction pipeline through 123D

Catch.

7.3 Future work

Our approach opens up many possibilities for future work which focus on several axes: targeted scenes,

user interaction, perception, segmentation and reconstruction.

Scenes. Currently, our approach assumes outdoors scenes with sunlight and well-defined cast shad-

ows. In this thesis we assume our environment map can be completed by inpainting for the ground

under the horizon and by fitting a sky model above the horizon. For scenes with overcast sky, the

problem can appear simpler, since the variation between shadow and light is much smoother. Precise

determination of shadow boundaries is thus unnecessary. However, our approach must be extended to

handle such soft boundaries, possibly with a new soft shadow classifier approach. The importance of

local correction was demonstrated in the evaluation section and performing a similar process will be a

challenge in the case of soft boundaries.

Material characterization. Current intrinsic decomposition methods assume only Lambertian ma-

terials. One conclusion of this thesis is the need to propose a more complete image formation model

that incorporates non-diffuse behavior. This is an exciting fundamental research direction which re-

quires a completely new approach to intrinsic image decomposition. Material characterization is also a

critical aspect to target indoor scenes which highlights two mains challenges to be solved at the same

time: characterizing light sources and materials. By opposition to outdoor scenes where only the sun

is considered at infinity, a lamp has a non-uniform emittance model and a fall-off which need to be

taken into account. However to characterize such complex lights, we can easily imagine a regression

over a pair of points sharing the same material and different lighting conditions but the complexity of

materials (e.g glossy) will make such characterization hard. As shown in the Chapter 6, the inaccuracy

and sparsity of the acquired radiance samples in the context of a nonlinear optimization introduces

new challenges. Bell et al. [2014] and Karsch et al. [2014b] tackle indoor scenes with two different

approaches respectively based on human judgements and on learning techniques which could be uni-

fied in the same framework. Moreover both of these approaches focus on single images and could take

advantage of a multi view stereo acquisition system.
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Dynamic scenes and video. Dynamic scenes and video based intrinsic decomposition is a new axis

of research limited to texture edition, grayscale shading and basic mixing of two scenes until now. Two

different approaches favoring either an automatic method [Ye et al., 2014] or user feedback [Bonneel

et al., 2014] perform an intrinsic decomposition to allow texture edition and provide temporal coher-

ence of edition. However, both methods are limited to processing a sequence without strong motion of

the camera or view angle changes during the sequence, and basic lighting conditions. Lighting condi-

tion manipulation is not shown, and the case of complex lighting conditions with multiple light sources

in a street cannot be treated. It might be interesting to consider the case of a sequence recorded from

multiple views during a single event where no reshooting is allowed. In such cases material appearance

will play a key role to exploit temporal coherence over time and angle views.

User interaction and Feedback. Our method takes about 2 hours to process a scene with 80 in-

put images. An user interface could be imagined to correct some classification issues but the local

refinement step will still take about 1 minute per image with optimized code, which makes the method

impractical for an artist. We think this aspect is also neglected in several other method using a single

lighting condition. In our comparisons Section 5.4, the method required:

• Barron and Malik [2013a] about 2 days.

• Chen and Koltun [2013] 20 minutes.

• Laffont et al. [2013] about 1 day of processing and several hours to select the parameters for one

input view.

However, one recent method [Bonneel et al., 2014] performs the intrinsic decomposition in half

a second to allow the user to fix some local errors as shown in Fig.7.1, in this context some manual

editing is possible but the approach described is limited to a grayscale lighting layer and texture edition.

The method still requires up to 20 minutes of manual strokes to achieve the desired result on a video.

Figure 7.1: Input image from the video sequence. Purple regions impose a constant shading with the method

of [Bonneel et al., 2014] (a), temporal coherence propagation with the method of [Bonneel et al., 2014] (b), the

method of [Ye et al., 2014] (c).
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Perception. In this thesis, we did not evaluate the perceived quality of our scene manipulation with

a perception study. However it is important to keep in mind that it is not clear that a perfect inverse

rendering algorithm is required to manipulate a scene especially for texture edition, which suggests

that a perception study should be run to validate a manipulated scene and understand what disturbs

a viewer the most. Ideally we would like to obtain a perfect intrinsic decomposition to manipulate

lighting conditions, reflectance properties such as BRDF, texture or mix several captured objects in

the same scene. This highlights that a complex algorithm is not necessarily required for all scene

manipulations.

Bonneel et al. [2014] described an interactive intrinsic decomposition method for video which

produces an inaccurate intrinsic decomposition, but allows coherent texture edition over a video and

to blur shadow. However, some strong shadow residuals remain in the reflectance layer which forbade

any motion of the shadow without producing disturbing artefacts as shown in Fig 7.2.

The user study of Karsch et al. [2014b] shows as well that many rough CG insertions not perturb the

final user despite having inconsistent lighting between the scene and the mixed object. Note that this

method roughly estimates reflectance in order to obtain the most likely lighting condition to provide

convincing results.

Figure 7.2: I̧nput image from the video sequence(a), reflectance(b), grayscale shading (c), Shadow softened (d).

From the method of [Bonneel et al., 2014].

Segmentation and reconstruction. The shadow classifier we presented is incomplete for two rea-

sons: ideally we would like to connect each node to each other to propagate the most likely belief

instead of selecting a subset which behaves like a filter. As described in Chapter 3, irradiance from sky

and indirect lighting are computed for each 3D point, but the estimation of the visibility label is not

shared across views but rather performed per view. This lack of shared information between multiple

views is also responsible for the misclassification of some isolated clusters. Another aspect inherent to

segmentation techniques is the difficulty to handle thin objects which cannot be clustered properly. A

graph representation which connects all clusters to each other can easily lead to unstable solutions since

some energy terms are non-sub modular requiring to solve the graph using solvers such as loopy belief

propagation or TRW-S which are not known for their stability but provide a solution to this NP-hard

problem. Concerning the representation of a graph built on multiple 2D images, currently there is no

ideal way to transfer information from an inaccurate 3D reconstructed point to all visible 2D pixels and
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vice versa. Ideally, we would like to be able to unproject each pixel into all images accurately which

require a perfect depth estimation. Until now, such a multiple image based reconstruction method does

not exist; current methods produce inaccurate 3D reconstructed geometry. A Bayesian approach could

be used requiring the evaluation of the accuracy of a 3D reconstructed mesh from multiple views, e.g

extending the model proposed by [Barron and Malik, 2013a]. Unfortunately, such metrics do not exist;

feature matching scores cannot be used since for example a region near shadow boundaries will tend

to provide a strong matching score but also noisy normals and inaccurate geometry reconstruction. By

opposition, a region without texture has a low matching score because of the lack of texture detail de-

spite being properly reconstructed such as a wall. Apart from multiple views, reconstructed depth from

images, sensor or multiple views is a very active field, plausible depth synthesis is emerging as well

[Chaurasia et al., 2013], [Karsch et al., 2014a] but none of these approaches are able to characterize

the confidence of the reconstructed depth.

Ground truth. Setting up a ground truth evaluation is always time consuming since each intrinsic

decomposition method focuses on specific cases from single image, single captured object, multi view

stereo reconstructed scene, scanned geometry or even videos. All of these approaches target specific

scenes and material appearance models which make it impractical to compare each method to each

other efficiently. Until now, the most complete ground truth dataset comes from [Grosse et al., 2009]

but focuses on a single object.

7.4 Concluding remarks

This thesis demonstrates extended applications of a ”good enough” intrinsic decomposition algorithm

for multi view reconstructed scenes. These applications include relighting and image based content ma-

nipulation. The joint development of image based rendering method available on the web (Microsoft

Photosynth, Bing Maps, Google Street view etc.), and photogrammetry systems (PMVS, Visual FM,

Multi-View Environment, PhotoScan, Autodesk 123D Catch, Smart3DCapture, etc.) promises an in-

creasing interest of 3D scene manipulation methods for architecture, games and the movie industry.
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