
HAL Id: tel-01174514
https://theses.hal.science/tel-01174514v2

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph algorithms : network inference and planar graph
optimization

Hang Zhou

To cite this version:
Hang Zhou. Graph algorithms : network inference and planar graph optimization. Computational
Geometry [cs.CG]. Ecole normale supérieure - ENS PARIS, 2015. English. �NNT : 2015ENSU0016�.
�tel-01174514v2�

https://theses.hal.science/tel-01174514v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
présentée et soutenue publiquement

le 6 juillet 2015
en vue de l’obtention du grade de

Docteur de l’École normale supérieure
Spécialité : Informatique

par

Hang ZHOU

Graph Algorithms:
Network Inference and

Planar Graph Optimization

Membres du jury :
M. Cyril Gavoille (Université de Bordeaux, France) rapporteur
M. Frédéric Havet (CNRS, INRIA Sophia-Antipolis, France) examinateur
M. Philip N. Klein (Brown University, USA) examinateur
M. Marc Lelarge (INRIA, ENS Paris, France) examinateur
Mme Claire Mathieu (CNRS, ENS Paris, France) directrice
M. Christophe Paul (CNRS, LIRMM, France) examinateur
M. Stéphan Thomassé (ENS Lyon, France) examinateur

Autre rapporteur :
M. Artur Czumaj (University of Warwick, UK)

Unité mixte de recherche 8548 : Département d’Informatique de l’École normale supérieure
École doctorale 386 : Sciences mathématiques de Paris Centre

Résumé

Cette thèse porte sur deux sujets d’algorithmique des graphes.
Le premier sujet est l’inférence de réseaux. Quelle est la complexité pour

déterminer un graphe inconnu à partir de requêtes de plus court chemin entre
ses sommets ? Nous supposons que le graphe est de degré borné. Dans le prob-
lème de reconstruction, le but est de reconstruire le graphe ; tandis que dans le
problème de vérification, le but est de vérifier qu’un graphe donné est correct.
Nous développons des algorithmes probabilistes utilisant une décomposition en
cellules de Voronoi. Ensuite, nous analysons des algorithmes de type glouton, et
montrons qu’ils sont quasi-optimaux. Nous étudions aussi ces problèmes sur des
familles particulières de graphes, démontrons des bornes inférieures, et étudions la
reconstruction approximative.

Le deuxième sujet est l’étude de deux problèmes d’optimisation sur les graphes
planaires. Dans le problème de classification par corrélations, l’entrée est un graphe
pondéré, où chaque arête a une étiquette 〈+〉 ou 〈−〉, indiquant si ses extrémités sont
ou non dans la même catégorie. Le but est de trouver une partition des sommets en
catégories qui respecte au mieux les étiquettes. Dans le problème d’augmentation
2-arête-connexe, l’entrée est un graphe pondéré et un sous-ensemble R des arêtes.
Le but est de trouver un sous-ensemble S des arêtes de poids minimum, tel que pour
chaque arête de R, ses extrémités sont dans une composante 2-arête-connexe de
l’union de R et S. Pour les graphes planaires, nous réduisons le premier problème
au deuxième et montrons que les deux problèmes, bien que NP-durs, ont un schéma
d’approximation en temps polynomial. Nous utilisons la technique récente de
décomposition en briques.

Abstract

This thesis focuses on two topics of graph algorithms.
The first topic is network inference. How efficiently can we find an unknown

graph using shortest path queries between its vertices? We assume that the graph
has bounded degree. In the reconstruction problem, the goal is to find the graph;
and in the verification problem, the goal is to check whether a given graph is
correct. We provide randomized algorithms based on a Voronoi cell decomposition.
Next, we analyze greedy algorithms, and show that they are near-optimal. We also
study the problems on special graph classes, prove lower bounds, and study the
approximate reconstruction.

The second topic is optimization in planar graphs. We study two problems.
In the correlation clustering problem, the input is a weighted graph, where every
edge has a label of 〈+〉 or 〈−〉, indicating whether its endpoints are in the same
category or in different categories. The goal is to find a partition of the vertices into
categories that tries to respect the labels. In the two-edge-connected augmentation
problem, the input is a weighted graph and a subset R of edges. The goal is to
produce a minimum-weight subset S of edges, such that for every edge in R, its
endpoints are two-edge-connected in the union of R and S. For planar graphs, we
reduce correlation clustering to two-edge-connected augmentation, and show that
both problems, although they are NP-hard, have a polynomial-time approximation
scheme. We build on the brick decomposition technique developed recently.

Contents

Acknowledgements 1

Prologue 3

I Network Inference 5

1 Introduction 7
1.1 Background . 7
1.2 The Problem . 8
1.3 Related Work . 9
1.4 Our Results . 11
1.5 Notations and Definitions . 15
1.6 Organization . 15

2 Voronoi Cell Decomposition 17
2.1 Technique from Compact Routing 17
2.2 Reconstruction via a Distance Oracle 18

2.2.1 Subroutine: Selecting Centers 19
2.2.2 Algorithm and Analysis . 21

2.3 Verification via a Distance Oracle 22
2.3.1 Subroutine: Selecting Centers 23
2.3.2 Algorithm and Analysis . 23

3 Greedy Algorithms 29
3.1 Verification via a Distance Oracle 29
3.2 Reconstruction via a Shortest Path Oracle 30

viii CONTENTS

4 Decomposition by Separators 33
4.1 Preliminaries . 33
4.2 Reconstruction of Chordal Graphs 34

4.2.1 Subroutine: Computing a Shortest Path 34
4.2.2 Subroutine: Partitioning by a Set 35
4.2.3 Algorithm and Analysis . 38

4.3 Reconstruction of Outerplanar Graphs 41
4.3.1 Subroutine: Partitioning by a Polygon 41
4.3.2 Algorithm and Analysis . 44

4.4 Verification of Treewidth Bounded Graphs 46
4.4.1 Warm up: Chordal Graphs 47
4.4.2 Extension: Graphs of Bounded Treewidth 48

5 Side Results 49
5.1 Lower Bounds . 49

5.1.1 General Graphs . 49
5.1.2 Graphs of Bounded Degree 49

5.2 Approximate Reconstruction . 50

6 Conclusion 55

II Planar Graph Optimization 59

7 Introduction 61
7.1 Correlation Clustering . 61

7.1.1 The Problem . 61
7.1.2 Related Work . 63

7.2 Two-Edge-Connected Augmentation 64
7.2.1 The Problem . 64
7.2.2 Related Work . 65

7.3 Our Results . 65
7.4 Notations and Definitions . 66
7.5 Organization . 67

8 Reduction from Clustering to Augmentation 69
8.1 First Stage . 69
8.2 Second Stage . 70

CONTENTS ix

9 Techniques 73
9.1 Prize-Collecting Partition . 73

9.1.1 Steiner Forest . 73
9.1.2 Two-Edge-Connected Augmentation 74

9.2 Brick Decomposition . 75
9.2.1 Steiner Tree . 76
9.2.2 Two-Edge-Connected Augmentation 76

9.3 Framework of Approximation Schemes 78
9.4 Doubling Brick Boundaries . 78
9.5 Sphere-Cut Decomposition . 80

10 Approximation Scheme 81
10.1 Preprocessing . 81
10.2 New Use of Brick Decomposition 82
10.3 Structure Theorem . 84

10.3.1 Construction . 86
10.3.2 Analysis . 88

10.4 Dynamic Programming . 94
10.4.1 Specification of DP Table 95
10.4.2 From Children to Parent . 97
10.4.3 Implementation . 100

10.5 Putting Them Together . 101

11 Conclusion 103

List of Publications 105

Bibliography 107

Acknowledgements

Research is like the journey to the West, a Chinese legend from the Tang dynasty.
I would have probably gotten lost if not for all the help I have been offered. To all
the people I list here, and to all those I have forgotten, thank you.

Mes premiers remerciements vont à ma directrice de thèse Claire Mathieu. Elle
est une directrice parfaite pour moi. Ses compétences et sa personnalité m’ont
beaucoup influencé pendant les trois ans. Quant à la recherche, elle m’a fait explorer
des sujets merveilleux, et en plus, elle m’a appris des éléments importants, comme
l’optimisme et l’insistance, pour conquérir les problèmes difficiles. Elle m’a donné
une ambiance idéale: chaque fois après avoir discuté de recherche avec elle, j’en
suis sortie très heureuse. Elle m’a mis en contact avec de nombreux chercheurs, et
m’a donné beaucoup d’opportunités pour participer aux conférences. Lorsque j’ai
eu des difficultés en dehors de la recherche, elle s’est comportée comme une amie
pour m’aider. Grâce à elle, les trois ans de thèse sont devenus les moments les plus
beaux de ma vie.

I would like to express my gratitude to Cyril Gavoille and Artur Czumaj who
took the time to review this thesis carefully. I feel extremely fortunate they accepted
to read, comment, and endorse my thesis. I am very grateful to the other members
of my thesis committee: Frédéric Havet, Philip N. Klein, Marc Lelarge, Christophe
Paul, and Stéphan Thomassé. I would also like to thank Fabrice Benhamouda who
proofread part of this thesis.

It was my great pleasure to collaborate with seasoned researchers. I am very
grateful to Marc Lelarge, who ignited my passion for algorithms, and taught me to
write my first research article; to Philip N. Klein, who led me to the amazing world
of planar graphs, and guided me as a mentor during my visit at Brown University;
to Sampath Kannan, who shared many thoughtful insights with me; and to Mikkel
Thorup, who invited me for a visit at University of Copenhagen. I would also like
to thank Sergio Cabello, Yixin Cao, Jacob Holm, Chien-Chung Huang, Howard
J. Karloff, Valerie King, Mathias Bæk Tejs Knudsen, Tancrède Lepoint, Tian Liu,
Nabil Mustafa, Thomas Sauerwald, He Sun, and Neal E. Young.

2 CONTENTS

L’École normale supérieure est un endroit charmant pour passer ces années. Je
remercie mes collègues Vincent Cohen-Addad, Éric Colin de Verdière, Arnaud de
Mesmay, Varun Kanade, Reut Levi, Zhentao Li, Frederik Mallmann-Trenn, et Victor
Verdugo. Je remercie aussi Patrick Cousot, Jean Ponce, David Pointcheval, Lise-
Marie Bivard, Isabelle Delais, Joëlle Isnard, Valérie Mongiat, Jacques Beigbeder,
et la bibliothèque pour la qualité de leur travail.

Je voudrais remercier mes amis, qui ont rendu ma vie colorée. Mes remerciements
spéciaux à Florent Urrutia, Marion Delehaye et Marie-Odile Faulconnier. Ils ont
partagé mes joies et mes tristesses, ils m’ont fait découvrir les paysages merveilleux
de France, et ils m’ont appris la phrase “C’est la vie”. Dans les jardins, Florent et
moi avons discuté la philosophie dans la langue de l’informatique ; sur la plage,
Marion et moi avons couru après le cerf-volant au coucher du soleil ; et dans les
Alpes, Marie-Odile et moi avons écouté la nature qui invite à la méditation. Je
remercie aussi Antoine Amarilli, Samuel Bizien, Yoann Bourse, Floriane Dardard,
Marc Jeanmougin, Jie Lin, Robin Morisset, Ludovic Patey, Pablo Rauzy, Bin Xu,
Xuhong Zhang et Cheng Zhong.

Je remercie Paris, une ville unique du monde. C’est un paradis avec ses arts, sa
culture, son histoire, son esprit, sa gastronomie, etc. Je suis très heureuse d’avoir
passé ces années à Paris.

Je remercie de tout mon cœur mes parents Qiuhua Xu et Ye Zhou qui m’ont
toujours aimée et soutenue. Je remercie aussi ma tante Yifei Yu qui a éclairé mon
chemin depuis mon enfance.

En dernier lieu, j’aimerais adresser un grand merci particulier à mon copain
Fabrice. Je n’irais pas bien loin s’il ne marchait pas à mes côtés. Je voudrais aussi
remercier sa famille pour son soutien.

Paris, June 2015

Prologue

The algorithm is a unique form of art. Unlike fine arts such as painting and dancing,
it has practical applications, yet can be just as expressive as Monet’s Water Lilies
or Tchaikovsky’s Swan Lake. It can be as ambitiously utilized by Turing to shorten
World War II in Europe, or as casually applied by a tourist to see as many fountains
as possible during the Grandes Eaux Musicales spectacle at the Versailles Garden.

On the other hand, the graph attracts people’s interests since Euler’s time, such
as in the Seven Bridges of Königsberg problem. It conveys the beauty of pure
mathematics, and at the same time improves our lives, for example, through its
applications to Internet networks.

This thesis is on two topics of algorithms for graphs: network inference and
planar graph optimization.

Part I

Network Inference

Chapter 1

Introduction

1.1 Background
How efficiently can we find an unknown graph using distance or shortest path queries
between its vertices? This is a natural theoretical question from the standpoint of
recovery of hidden information. This question is related to the reconstruction of
Internet networks. Discovering the topology of the Internet is a crucial step for
building accurate network models and designing efficient algorithms for Internet
applications. Yet, this topology can be extremely difficult to find, due to the
dynamic structure of the network and to the lack of centralized control. Network
reconstruction has been studied extensively [1, 14, 34, 75]. Sometimes we have
some idea of what the network should be like, based perhaps on its state at some
time in the past, and we want to check whether our image of the network is correct.
This is network verification and has received attention recently [14, 25]. This is
an important task for routing, error detection, or ensuring service-level agreement
(SLA) compliance, etc. For example, Internet service providers (ISPs) offer services
that require quality of service (QoS) guarantees, such as voice over IP services, and
thus need to check regularly whether the networks are correct.

The topology of Internet networks can be investigated at the router level, where
the set of routers and their physical connections are the vertices and edges of a
graph, respectively. Traditionally, we use tools such as traceroute and mtrace to
infer the network topology. These tools generate path information between a pair
of vertices. It is a common and reasonably accurate assumption that the generated
path is shortest, i.e., minimizes the hop distance between that pair. In our first
theoretical model, we assume that we have access to any pair of vertices and get
in return a shortest path between them in the graph. Sometimes routers block
traceroute and mtrace requests (e.g., due to privacy and security concerns). In

8 Chapter 1. Introduction

this case, inference of topology can only rely on delay information. In our second
theoretical model, we assume that we have access to any pair of vertices and get in
return the hop distance between them in the graph.

1.2 The Problem

Let G = (V,E) be a hidden graph that is connected, undirected, and unweighted,
where |V | = n. We consider two query oracles. A shortest path oracle receives a
pair (u, v) ∈ V 2 and returns a shortest path between u and v.1 A distance oracle
receives a pair (u, v) ∈ V 2 and returns the number of edges on a shortest path
between u and v.

In the graph reconstruction problem, we are given the vertex set V and have
access to either a distance oracle or a shortest path oracle. The goal is to find every
edge in E.

In the graph verification problem, again we are given V and have access to
either oracle. In addition, we are given a connected, undirected, and unweighted
graph Ĝ = (V, Ê). The goal is to check whether Ĝ is correct, that is, whether
Ĝ = G.

The efficiency of an algorithm is measured by its query complexity2, i.e., the
number of queries to an oracle. All our algorithms are of polynomial time and space.
We note that O(n2) queries are enough for reconstruction (also for verification)
using a distance oracle or a shortest path oracle: we only need to query every pair
of vertices, and return the pairs (u, v) whose u-to-v distance is 1. We call this
reconstruction algorithm Exhaustive-Query.

Let ∆ denote the maximum degree of any vertex in the graph G. Unless
otherwise stated, we assume that ∆ is bounded, which is reasonable for real
networks that we want to reconstruct or verify. Indeed, when ∆ is Ω(n), both
reconstruction and verification require Ω(n2) distance or shortest path queries.

Let us focus on bounded degree graphs. It is not hard to see that Ω(n) distance
or shortest path queries are required. The central question in this line of work
is therefore: Is the query complexity linear, quadratic, or somewhere in
between? We show that the query complexity for reconstruction using a distance
oracle is subquadratic: Õ(n3/2), and that the query complexity for reconstruction
using a shortest path oracle or for verification using either oracle is near-linear:
n1+o(1).

1If there are several shortest paths between u and v, the oracle returns an arbitrary one.
2Expected query complexity in the case of randomized algorithms.

1.3. Related Work 9

1.3 Related Work
Graph inference using queries that reveal partial information has been studied
extensively in different contexts, independently stemming from a number of appli-
cations.

All Shortest Path Model and All Distance Model. Beerliova et al. [14]
studied the network discovery problem.

[14] One can view this technique as an approach for discovering the topology
of an unknown network by using a certain type of queries. [. . .] We formalize
network discovery as a combinatorial optimization problem whose goal is to
minimize the number of queries required to discover all edges and non-edges
(absent edges) of the network.

In their shortest path oracle model, an oracle receives a node v and returns
the shortest-path subgraph rooted at v, i.e., all shortest paths from v to all other
nodes. Their motivation is the following:

[14] With traceroute tools, one can determine the path that packets take
in the Internet if they are sent from a node to some destination. If each
traceroute experiment returns a random shortest path to the destination, this
path would be part of the shortest-path subgraph. One could use repeated
traceroute experiments to all destinations to discover all edges of the shortest-
path subgraph.

For the verification problem, they showed that there is no approximation
algorithm of factor o(log n) unless P = NP; and for the reconstruction problem,
they gave a randomized on-line algorithm with competitive ratio O(

√
n log n). They

also provided experimental results on real data. They left as future directions:

[14] It would also be interesting to study further query models. For example, a
query could be given by nodes u and v and return all shortest paths between u
and v (or just one shortest path).

As noted in [14], traceroute experiments in real networks often reveal only a
single shortest path (or at most a few different paths), but not all shortest paths.
Hence our motivation of the shortest path oracle model: the oracle returns an
arbitrary shortest path between a given pair of nodes.

10 Chapter 1. Introduction

The authors of [14] also considered the distance oracle model: a distance oracle
receives a node v and returns the distances from v to all other nodes in the graph.
(This is in contrast to our distance oracle which returns the distance between a
given pair of nodes.) They noted that, in many networks, it is realistically possible
to obtain the distance information, while it is difficult or impossible to obtain the
path information.

In the distance oracle model, they gave a randomized on-line algorithm for
reconstruction with competitive ratio O(

√
n log n). They proved that minimizing

the number of queries for verification is NP-hard and they gave an approximation
algorithm of factor O(log n), i.e., the number of queries is O(log n) times the
optimum number of queries. This algorithm is based on a reduction to Set-Cover.
To achieve this reduction, they showed an easy property for non-edge verification
and more delicate properties for edge verification.

Our verification algorithm in Section 3.1 bears similarity: we also give a
reduction to Set-Cover. In our model, edge verification is straightforward since
the graph has bounded maximum degree. The focus is thus on non-edge verification.
We will develop interesting properties for non-edge verification.

Evolutionary Biology. There has been extensive work on the reconstruction of
evolutionary (phylogenetic) trees using a relation oracle or a distance oracle [24,
49, 54, 55, 59, 73, 77]. This problem was first introduced by Waterman et al. [77].

[49] In taxonomy and molecular evolution, the problem of reconstructing a tree
from distance data is very central.

In the distance oracle model, we query two species and get in return their
distance in the tree. When the tree has maximum degree ∆, Hein [49] gave a
reconstruction algorithm using O(∆n log∆ n) queries. King, Zhang, and Zhou [59]
showed that this bound is tight by providing a matching lower bound. On the
other hand, when the maximum degree is unbounded, there is a lower bound of
Ω(n2) [49]. Notice that in this problem, the hidden graph is a tree, whereas in our
graph reconstruction problem, we allow the hidden graph to have an arbitrarily
connected topology.

Statistical Models. Dall’Asta et al. [34] considered a shortest path oracle which,
upon receiving a random pair of vertices, returns a shortest path between them.
This is motivated by the fact that there may be some existing samplings of traceroute
requests. Our model is different because we have the control on the pair of vertices
sent to the oracle.

1.4. Our Results 11

Network Realization. In this problem, we are given the distances between
certain pairs of vertices and asked to determine the sparsest graph (in the unweighted
case) or the graph of least total weight that realizes these distances. Chung et al. [30]
introduced this problem, motivated by the applications to Internet tomography.
They showed that this problem is NP-hard and admits a 2-approximation algorithm.

Network Inference Using Link Queries. A link query receives two nodes u
and v, and reports whether there is an edge uv in the network. The goal is to
discover as many links of the network as possible. Tarissan, Latapy, and Prieur [75]
introduced this problem, motivated by social networks, like Facebook or Flickr,
where the link query is a primary tool to discover the network topology. They
provided strategies based on statistical properties of real-world networks, together
with experimental results.

Bioinformatics Applications. Bouvel, Grebinski, and Kucherov [23] considered
a graph reconstruction problem motivated by applications to genome sequencing.
In their model, an oracle receives a subset of vertices S and returns the number of
edges in the subgraph induced by S. The goal is to reconstruct the hidden graph.
This model has been much studied, e.g., [7, 29, 48, 67, 72]. Our model is different
since there is no counting.

Road Network Reconstruction. With path data such as GPS becoming avail-
able on a large scale, it is important to find shared structure in path data. Chen
et al. [28] gave an algorithm to reconstruct the road network from a collection of
path traces in Euclidean space. Our model is different since there is no geometry.

1.4 Our Results

The results here have been published in [A, D]. See Table 1.1 for a summary. The
results based on the Voronoi cell decomposition and the greedy approaches are the
main contributions.

Algorithms Based on Voronoi Cell Decomposition. To design reconstruc-
tion and verification algorithms, we apply some algorithmic ideas previously devel-
oped for compact routing [76] and for Voronoi cells [50].

Theorem 1.4.1. For graph reconstruction using a distance oracle, there is a
randomized algorithm with query complexity O(∆3 · n3/2 · log2 n · log log n), which is
Õ(n3/2) when the maximum degree ∆ is O(polylog n).

12 Chapter 1. Introduction

Table 1.1: Results (for bounded degree graphs). Main results are in bold.

Objective Query complexity

verification (either oracle)
n1+o(1) Theorems 1.4.2 to 1.4.4

bounded treewidth: Õ(n)
Theorems 1.4.3, 1.4.4 and 1.4.8reconstruction (shortest path oracle)

reconstruction (distance oracle)

Õ(n3/2) Theorem 1.4.1

Ω(n log n/ log log n) Theorem 1.4.9

chordal: Õ(n) Theorem 1.4.6

outerplanar: Õ(n) Theorem 1.4.7

The algorithm of Theorem 1.4.1 selects a set of Õ(
√
n) nodes (called centers)

partitioning V into Voronoi cells of roughly the same size, and expands them
slightly so as to cover every edge of G (Fig. 2.1). It is then sufficient to reconstruct
each cell, which is done using exhaustive search inside that cell.

Theorem 1.4.2. For graph verification using a distance oracle, there is a random-

ized algorithm with query complexity n1+O
(√

(log logn+log ∆)/ logn
)
, which is n1+o(1)

when the maximum degree ∆ is no(1).

The algorithm of Theorem 1.4.2 is a more sophisticated recursive version of the
algorithm in Theorem 1.4.1. Again, it selects a set of centers partitioning V into
Voronoi cells. To verify each cell, instead of using exhaustive search, the algorithm
applies recursion. This is a challenge because, when we query a pair (u, v) in a cell,
the oracle returns the distance between u and v in the entire graph, not in the cell.
Our approach is to allow selection of centers outside the cell, while still limiting
the subcells to being contained inside the cell (Fig. 2.2).

Greedy Algorithms. We provide simple greedy algorithms for verification and
for reconstruction.

The main task for verification is to confirm the non-edges of the graph. We
develop a necessary and sufficient condition for a set of queries to confirm all the
non-edges. This condition enables us to reduce the non-edge verification problem
to Set-Cover. As a counterpart of the greedy algorithm for Set-Cover, greedy
non-edge verification repeatedly makes queries that confirm the largest number of
non-edges that are not yet confirmed. We have:

1.4. Our Results 13

Theorem 1.4.3. If there is an algorithm for graph verification using f(n,∆)
distance queries, then there is a greedy algorithm for verification that uses O(∆n+
log n · f(n,∆)) distance or shortest path queries.

Next, we extend the idea of greedy verification and obtain a greedy algorithm
for reconstruction as in the following theorem.

Theorem 1.4.4. If there is an algorithm for graph verification using f(n,∆)
distance queries, then there is a greedy algorithm for reconstruction that uses
O(∆n+ log n · f(n,∆)) shortest path queries.

To prove Theorem 1.4.4, we show that each query to a shortest path oracle
makes as much progress for reconstruction as the corresponding query to a distance
oracle would have made for verifying a given graph. The main observation here is
that reconstruction using a shortest path oracle can be viewed as the verification
of a dynamically changing graph using a distance oracle.

Combining Theorems 1.4.2 to 1.4.4, we have:

Corollary 1.4.5. For graph verification using either oracle and for graph recon-
struction using a shortest path oracle, greedy algorithms have query complexity
n1+o(1).

Remark. We note that the greedy algorithm for verification is much simpler than
the algorithm using Voronoi cell decomposition (Theorem 1.4.2), although both
algorithms achieve the query complexity n1+o(1).

Algorithms Based on Decomposition by Separators. For special classes
of graphs, there exist balanced separators of small size. This enables us to design
reconstruction and verification algorithms with Õ(n) query complexity.

Theorem 1.4.6. For reconstruction of chordal graphs using a distance oracle, there
is a randomized algorithm with query complexity O

(
∆32∆ · n(2∆ + log2 n) log n

)
,

which is Õ(n) when the maximum degree ∆ is O(log log n).

A graph is chordal if every cycle of length greater than three has a chord, an
edge connecting two non-consecutive vertices on the cycle. An introduction to
chordal graphs can be found in, e.g., [18].

Consider the following algorithm: Let x be a node that is on the most shortest
paths between all pairs of vertices. The algorithm grows a clique separator including
this node. Next, it partitions the graph into subgraphs with respect to this separator
and recurses on each subgraph. Such partition is balanced, which ensures that there
are O(log n) levels of the recursion.

14 Chapter 1. Introduction

How to obtain the node x efficiently? First, we provide a subroutine to compute
a shortest path between a given pair of vertices using O(n log n) distance queries.
However, computing all shortest paths to find x requires too many queries. Instead,
our algorithm finds an approximate version of x: it computes a sampling of shortest
paths and selects the node that has the most occurrences in the sampling. Such
node leads to a balanced partition with high probability.

Theorem 1.4.7. For reconstruction of outerplanar graphs using a distance oracle,
there is a randomized algorithm with query complexity O(∆2 · n log3 n), which is
Õ(n) when the maximum degree ∆ is O(polylog n).

A graph is outerplanar if it can be embedded in the plane with all vertices on
the exterior face. Chartrand and Harary [27] first introduced outerplanar graphs
and showed that an outerplanar graph contains no subgraph homeomorphic to K4
or K2,3.

Similar to chordal graphs, the algorithm first finds a separator using random
sampling and statistical estimation, and then partitions the graph into subgraphs
with respect to this separator and recurses on each subgraph. However, the
separator here may be a polygon of unbounded size. Thus we need more care in
the algorithmic design.

Remark. An outerplanar graph is a generalization of a tree. The query complexity
for reconstructing outerplanar graphs is only slightly worse than the optimal query
complexity O(∆n log∆ n) for reconstructing trees in [49]. On the other hand, the
tree reconstruction model typically restricts queries to pairs of tree leaves, but our
model allows queries of any pair of vertices, not just leaves.

Theorem 1.4.8. For verification of graphs of treewidth w using a distance oracle,
there is a deterministic algorithm with query complexity O(∆(∆ + w log n)n log n),
which is Õ(n) when ∆ and w are O(polylog n).

The algorithm uses some bag of a tree decomposition (see Section 4.1) to separate
the graph into balanced subgraphs, and then recursively verifies each subgraph.
In the recursive calls, it adds a few artificial edges to each subgraph in order to
preserve the distance metric.

Lower Bounds. For graphs of unbounded degree, we give a simple Ω(n2) query
lower bound for both reconstruction and verification and under both oracle models.
This lower bound is achieved using a star graph plus possibly one more edge. We
note that this lower bound holds even when the graph is restricted to be outerplanar,
chordal, or bounded treewidth.

1.5. Notations and Definitions 15

On the other hand, for graphs of bounded degree, it is easy to see that both
reconstruction and verification require Ω(n) distance or shortest path queries. In
addition, there is a slightly better lower bound for graph reconstruction using a
distance oracle (Theorem 1.4.9). We thank Cyril Gavoille and Uri Zwick for this
lower bound.

Theorem 1.4.9. For graph reconstruction using a distance oracle, assuming that
the maximum degree ∆ is at least 3 and is o

(
n1/2

)
, any algorithm has query

complexity Ω(∆n log n/ log(log n/ log ∆)).

Approximate Reconstruction. We also study an approximate version of the
reconstruction problem for graphs of unbounded degree. We give a simple algorithm
that achieves the optimal query complexity.

1.5 Notations and Definitions
Let G = (V,E) be a connected, undirected, and unweighted graph, where V is
the vertex set and E is the edge set. Let δ be the distance metric of G. For a
subset of vertices S ⊆ V and a vertex v ∈ V , define δ(S, v) to be mins∈S δ(s, v).
For v ∈ V , define the neighborhood of v as N(v) = {u ∈ V : δ(u, v) ≤ 1}, and
define the neighborhood of v within distance 2 as N2(v) = {u ∈ V : δ(u, v) ≤ 2}.
For S ⊆ V , define the neighborhood of S as N(S) = ⋃

s∈S N(s). We define δ̂, N̂ ,
and N̂2 similarly, but with respect to the graph Ĝ.

For a pair of distinct vertices (u, v) ∈ V 2, we say that uv is an edge of G if
uv ∈ E, and is a non-edge of G if uv /∈ E.

For a subset of vertices S ⊆ V , let G[S] be the subgraph induced by S. For a
subset of edges H ⊆ E, we identify H with the subgraph induced by the edges of
H. Let δH denote the distance metric of the subgraph H.

For a vertex s ∈ V and a subset T ⊆ V , define Query(s, T) (or equivalently
Query(T, s)) as Query(s, t) for every t ∈ T . For subsets S, T ⊆ V , define
Query(S, T) as Query(s, t) for every (s, t) ∈ S × T .

In the verification problem, an algorithm, after performing a set of queries,
outputs no if some query gives the wrong distance (or shortest path), and outputs
yes if all queries give the right distances (or shortest paths).

1.6 Organization
The main contributions of Part I of this thesis are in Chapters 2 and 3. In Chap-
ter 2, we give reconstruction and verification algorithms based on Voronoi cell

16 Chapter 1. Introduction

decomposition. Section 2.1 reviews the center-selecting technique from compact
routing [76], which is the main subroutine in our algorithms. Sections 2.2 and 2.3
prove Theorems 1.4.1 and 1.4.2, respectively. In Chapter 3, we give greedy algo-
rithms for verification using a distance oracle and for reconstruction using a shortest
path oracle. Sections 3.1 and 3.2 prove Theorems 1.4.3 and 1.4.4, respectively.

Section 4.1 gives some preliminaries on separators, and Sections 4.2 to 4.4 prove
Theorems 1.4.6 to 1.4.8, respectively. In Section 5.1, we consider lower bounds. In
Section 5.2, we provide results on the approximate reconstruction.

Finally, in Chapter 6, we recapitulate our results and expose some future
directions of research to solve the open problems raised there.

Chapter 2

Voronoi Cell Decomposition

In this chapter, we design a reconstruction algorithm (Section 2.2) and a verification
algorithm (Section 2.3) using a distance oracle. Both algorithms are based on the
center-selecting technique, which comes from compact routing [76]. We first review
this technique in Section 2.1.

2.1 Technique from Compact Routing
A routing scheme is a mechanism that delivers packets of information from any
node to any other node in the network. The compact routing problem aims
at finding a tradeoff between the space and the efficiency of routing, see, e.g.,
[8, 9, 32, 38, 40, 43, 69, 76].

In [76], Thorup and Zwick gave a compact routing scheme that uses Õ(n1/2)
bits of memory at each node such that, the ratio between the length of a path on
which a packet is routed and the length of a shortest path is at most 3. To achieve
that, they selected a set of centers. For a packet to reach a destination v that is far
away, it first goes to the center that is closest to v, and then follows the shortest
path from this center to v.

More precisely, let A ⊆ V be a subset of nodes called centers. For every w ∈ V ,
define the cluster of w with respect to the set A as

CA(w) := {v ∈ V : δ(w, v) < δ(A, v)}.

Note that if w ∈ A, then CA(w) = ∅, since δ(w, v) ≥ δ(A, v), for every v ∈ V . The
subscript A is omitted when clear from the context. The memory used at each
node w is O(|A| + |C(w)|). Therefore the goal is to find a set of centers A such
that every |C(w)| is small, i.e., roughly n/|A|.

18 Chapter 2. Voronoi Cell Decomposition

Algorithm 2.1 Finding Centers [76]
1: function Centers(G, s)
2: A← ∅, W ← V
3: while W 6= ∅ do
4: A′ ← Sample(W, s)
5: A← A ∪ A′
6: for w ∈ W do
7: C(w)← {v ∈ V : δ(w, v) < δ(A, v)}
8: W ← {w ∈ W : |C(w)| > 4n/s}
9: return A

In Algorithm 2.1, we review the center-selecting algorithm from [76]. The
algorithm takes as input a graph G = (V,E) and an integer parameter s ∈ [1, n]
and outputs a set of centers A. It uses a subroutine Sample(W, s), which receives
a set W ⊆ V and an integer s and returns a random subset of W obtained by
selecting each element, independently, with probability s/|W |. If |W | ≤ s, then
Sample(W, s) returns the set W itself.

Thorup and Zwick [76] proved the following lemma, which is the key to show
the Õ(n1/2) memory bound at each node in their routing scheme.

Lemma 2.1.1 (Rephrasing of Theorem 3.1 in [76]). With probability at least
1/2, the algorithm Centers (Algorithm 2.1) outputs a set A ⊆ V such that
|A| ≤ 4s log n and |C(w)| ≤ 4n/s for every w ∈ V .

We will use modified versions of the algorithm Centers (Algorithm 2.1) and
its analysis (Lemma 2.1.1) in the design of the reconstruction and verification
algorithms in Sections 2.2 and 2.3.

2.2 Reconstruction via a Distance Oracle
In this section, we prove the following theorem.

Theorem 2.2.1. For graph reconstruction using a distance oracle, there is a
randomized algorithm (Algorithm 2.3) such that with probability at least 1/4, it
terminates after O(∆3 · n3/2 · log2 n · log log n) queries and returns the edge set E.

Theorem 2.2.1 implies Theorem 1.4.1, because if the reconstruction algorithm
in Theorem 2.2.1 fails to terminate after O(∆3 · n3/2 · log2 n · log log n) queries, we
stop it and execute it again. The expected number of executions of the algorithm
is a constant. Therefore we obtain a reconstruction algorithm with expected query
complexity O(∆3 · n3/2 · log2 n · log log n), as stated in Theorem 1.4.1.

2.2. Reconstruction via a Distance Oracle 19

Algorithm 2.2 Finding Centers Using Estimation
1: function Estimated-Centers(V, s)
2: A← ∅, W ← V
3: T ← K · s · log n · log log n . K = O(1) defined in Lemma 2.2.2
4: while W 6= ∅ do
5: A′ ← Sample(W, s)
6: Query(A′, V)
7: A← A ∪ A′
8: for w ∈ W do
9: X ← random multi-subset of V with T elements

10: Query(X,w)
11: C̃(w)← |{v ∈ X : δ(w, v) < δ(A, v)}| · n/T
12: W ← {w ∈ W : C̃(w) ≥ 5n/s}
13: return A

2.2.1 Subroutine: Selecting Centers
The reconstruction algorithm uses a subroutine Estimated-Centers (Algo-
rithm 2.2) to find centers A ⊆ V such that the vertices of V are roughly equiparti-
tioned into the Voronoi cells centered at vertices in A. This algorithm is a modified
version of the algorithm Centers (Algorithm 2.1). It takes as input the vertex set
V of a graph and a parameter s ∈ [1, n] and outputs a set of centers A. Unlike the
algorithm Centers, it uses sampling to estimate each |C(w)| so as to reduce the
query complexity. Recall that the algorithm Centers eliminates w ∈ W when
|C(w)| ≤ 4n/s. However, in our query model, computing |C(w)| would require
Ω(n) queries for each w. Instead, the algorithm Estimated-Centers computes
an estimate C̃(w) of |C(w)| using fewer queries, and then eliminates w ∈ W when
C̃(w) is small. The following lemma guarantees the performance of the algorithm
Estimated-Centers. It is a counterpart of Lemma 2.1.1. Its proof combines
arguments from [76] and Chernoff bounds.
Lemma 2.2.2. Let K (Line 3 of Algorithm 2.2) be some well-chosen constant.
With probability at least 1/4, the algorithm Estimated-Centers (Algorithm 2.2)
terminates after O(s · n · log2 n · log log n) queries, and outputs a set A ⊆ V such
that |A| ≤ 12s log n and |C(w)| ≤ 6n/s for every w ∈ V .
Proof. Let Wi be the set W at the beginning of the i-th iteration of the while
loop. Let A′ = Sample(W, s) be the centers selected in this iteration, and let A be
the union of A′ with all previously selected centers. We say that the i-th iteration
is successful if ∑

w∈Wi

|CA(w)| ≤ 2n|Wi|/s. (2.1)

20 Chapter 2. Voronoi Cell Decomposition

Thorup and Zwick [76] showed that, for every iteration, it is successful with
probability at least 1/2.

Consider a node w ∈ Wi. Let X be a random multi-subset of V with T =
K · s · log n · log log n elements for some parameter K. Define Y = |{v ∈ X :
δ(w, v) < δ(A, v)}|, which is |X ∩ CA(w)|. Let E[Y] be the expected value of Y .
By standard Chernoff bounds, there is an absolute constant K such that:P [Y ≥ 5T/s] ≥ 1− 1/(96n log n), if E[Y] > 6T/s

P [Y < 5T/s] > 1− 1/(96n log n), if E[Y] < 4T/s.

Note that |CA(w)| = E[Y] · n/T . Define C̃(w) = Y · n/T . Thus with probability
at least 1− 1/(48n log n), we have:C̃(w) ≥ 5n/s, if |CA(w)| > 6n/s

C̃(w) < 5n/s, if |CA(w)| < 4n/s.
(2.2)

Since |Wi| ≤ n, with probability at least 1 − 1/(48 log n), Property (2.2) holds
for all w ∈ Wi in the i-th iteration. We call iterations in which this happens
correct iterations. As a consequence, if the i-th iteration is correct, then for every
w ∈ Wi+1, we have |CA(w)| ≥ 4n/s.

If the i-th iteration is both successful and correct, which happens with probability
at least 1/2− 1/(48 log n) > 1/3, then we have

4n|Wi+1|/s ≤
∑
w∈Wi

|CA(w)| ≤ 2n|Wi|/s,

and thus |Wi+1| ≤ |Wi|/2. Since |W | is non-increasing during the algorithm, the
expected number of iterations is at most 3 log n.

By Markov’s inequality, with probability at least 3/4, the number of iterations
is at most 12 log n. The probability that the first (at most) 12 log n iterations are
correct is at least 1− 12 log n/(48 log n) = 3/4. Therefore, with probability at least
1/2, there are at most 12 log n iterations and all iterations are correct. In that
case, every w ∈ V that is eliminated from W has |CA(w)| ≤ 6n/s. Observe that
|CA(w)| cannot increase when elements are added to A. Therefore |CA(w)| ≤ 6n/s
for every w ∈ V when the while loop terminates.

The expected size of A is at most 3s log n, since the expected number of
iterations is at most 3 log n, and in every iteration, a set A′ of expected size s is
added to A. By Markov’s inequality, |A| ≤ 12s log n with probability at least 3/4.

All together, with probability at least 1/4, there are at most 12 log n iterations,
|A| ≤ 12s log n, and |CA(w)| ≤ 6n/s for every w ∈ V . In that case, the number of
queries is at most

|A| · n+ (12 log n) · nT = O(s · n · log2 n · log log n).
This completes the proof.

2.2. Reconstruction via a Distance Oracle 21

Algorithm 2.3 Reconstruction
1: procedure Reconstruct(V, s)
2: A← Estimated-Centers(V, s) . every pair in A× V is queried
3: for a ∈ A do
4: Query(N2(a), V)
5: for b ∈ N2(a) do
6: C(b)← {v ∈ V : δ(b, v) < δ(A, v)}
7: Da ←

⋃ {C(b) : b ∈ N2(a)} ∪N2(a)
8: Ea ← Exhaustive-Query(Da)
9: return ⋃aEa
2.2.2 Algorithm and Analysis
The reconstruction algorithm (Algorithm 2.3) takes as input the vertex set V and
an integer parameter s ∈ [1, n], and computes the edge set of G. It first finds a
set of centers A using Estimated-Centers, and then partitions the graph into
slightly overlapping subgraphs with respect to the centers in A, see Figure 2.1.
More precisely, we define, for each a ∈ A, its extended Voronoi cell Da ⊆ V as

Da :=
⋃
{C(b) : b ∈ N2(a)} ∪N2(a). (2.3)

The algorithm then proceeds by exhaustive search within each subgraph G[Da], and
returns all the edges found in these subgraphs. Inspired by the Voronoi diagram
partitioning in [50], we show in Lemma 2.2.3 that these subgraphs together cover
every edge of the graph. Thus the output of the algorithm is indeed the edge set of
G.

Lemma 2.2.3. ⋃a∈AG[Da] covers every edge of G.

Proof. Let uv be any edge of G. We prove that there is some a ∈ A such that both
u and v are in Da. Without loss of generality, we assume δ(A, u) ≤ δ(A, v). We
choose a ∈ A such that δ(a, u) = δ(A, u). If δ(a, u) ≤ 1, then both u and v are in
N2(a) ⊆ Da. If δ(a, u) ≥ 2, let b be the vertex at distance 2 from a on a shortest
a-to-u path in G. By the triangle inequality, we have δ(b, v) ≤ δ(b, u) + δ(u, v) =
δ(b, u) + 1. Since δ(b, u) = δ(a, u) − 2 and δ(a, u) = δ(A, u) ≤ δ(A, v), we have
δ(b, u) < δ(A, u) and δ(b, v) < δ(A, v). Therefore both u and v are in C(b), and
thus in Da, since b ∈ N2(a).

Query Complexity Analysis. In the first step of the algorithm Reconstruct,
by Lemma 2.2.2, with probability at least 1/4, Estimated-Centers uses O(s ·
n · log2 n · log log n) queries, and outputs a set A ⊆ V such that |A| ≤ 12s log n,

22 Chapter 2. Voronoi Cell Decomposition

a1

Da1

Da2

Da3

Da4

Da5

a2

a3

a4

a5

Figure 2.1: Partition by centers. Here vertices a1, . . . , a5 are centers in A. The
dotted lines indicate the partition of V into Voronoi cells by those centers. Extending
the Voronoi cells slightly, we obtain the cells Da1 , . . . , Da5 .

and |C(w)| ≤ 6n/s, for every w ∈ V . In this case, the subsequent steps of the
algorithm have query complexity:∑

a∈A

(
|N2(a)| · n+ |Da|2

)
= O(s log n ·∆2(n+ ∆2n2/s2)),

using the bounds on |A| and |C(w)|, and the fact that |N2(a)| ≤ ∆2 + 1.
Let s = ∆·

√
n. Then with probability at least 1/4, the algorithm Reconstruct

terminates after O(∆3 · n3/2 · log2 n · log log n) queries, as stated in Theorem 2.2.1.

2.3 Verification via a Distance Oracle
In this section, we prove Theorem 1.4.2.

Theorem 1.4.2. For graph verification using a distance oracle, there is a random-

ized algorithm with query complexity n1+O
(√

(log logn+log ∆)/ logn
)
, which is n1+o(1)

when the maximum degree ∆ is no(1).

2.3. Verification via a Distance Oracle 23

Algorithm 2.4 Finding Centers for a Subset
1: function Subset-Centers(Ĝ, U, s)
2: A← ∅, W ← V
3: while W 6= ∅ do
4: A′ ← Sample(W, s)
5: A← A ∪ A′
6: for w ∈ W do
7: Ĉ(w)← {v ∈ V : δ̂(w, v) < δ̂(A, v)}
8: W ← {w ∈ W : |Ĉ(w) ∩ U | > 4|U |/s}
9: return A

2.3.1 Subroutine: Selecting Centers
The verification algorithm uses the subroutine Subset-Centers (Algorithm 2.4),
which takes as input a graph Ĝ = (V, Ê), a subset of vertices U ⊆ V , and an
integer s ∈ [1, n], and outputs a set of centers A ⊆ V such that in the graph Ĝ, the
vertices of the subset U are roughly equipartitioned into the Voronoi cells centered
at vertices in A. This algorithm is a generalization of the algorithm Centers
(Algorithm 2.1). When the subset U equals V , this algorithm becomes the same
as the algorithm Centers. For w ∈ V , we recall the definition of w’s cluster
CA(w) := {v ∈ V : δ(w, v) < δ(A, v)}. Similarly, we define w’s cluster with respect
to the graph Ĝ as ĈA(w) := {v ∈ V : δ̂(w, v) < δ̂(A, v)}. The subscript A is
omitted when clear from the context. The following lemma is a straightforward
extension of Lemma 2.1.1.

Lemma 2.3.1. With probability at least 1/2, the algorithm Subset-Centers
(Algorithm 2.4) outputs a set A ⊆ V , such that |A| ≤ 4s log n, and that |Ĉ(w)∩U | ≤
4|U |/s, for every w ∈ V . It uses no queries since Ĝ is given.

2.3.2 Algorithm and Analysis

The task of verification comprises verifying that every edge of Ĝ is an edge of G,
and verifying that every non-edge of Ĝ is a non-edge of G. The second part is
called non-edge verification. In the second part, we assume that the first part is
already done, which guarantees that Ê ⊆ E. For graphs of bounded degree, the
first part requires only O(∆n) queries. Thus the focus is on non-edge verification.

We design a recursive algorithm for non-edge verification. Let U ⊆ V represent
the set of vertices in a recursive call. The goal is to verify that every non-edge of
Ĝ[U] is a non-edge of G[U]. This is equivalent to verifying that every edge of G[U]
is an edge of Ĝ[U].

24 Chapter 2. Voronoi Cell Decomposition

Let A be a set of centers computed by Subset-Centers. We define, for each
a ∈ A, its extended Voronoi cell restricted on U :

Da :=
(⋃
{C(b) : b ∈ N2(a)} ∪N2(a)

)
∩ U. (2.4)

Similarly, with respect to the graph Ĝ, we define:

D̂a :=
(⋃{

Ĉ(b) : b ∈ N̂2(a)
}
∪ N̂2(a)

)
∩ U. (2.5)

The following lemma is a simple extension of Lemma 2.2.3.

Lemma 2.3.2. ⋃a∈AG[Da] covers every edge of G[U].

Proof. Let uv be any edge of G[U]. We prove that there is some a ∈ A such that
both u and v are in Da. Without loss of generality, we assume δ(A, u) ≤ δ(A, v).
We choose a ∈ A such that δ(a, u) = δ(A, u). If δ(a, u) ≤ 1, then both u and v are in
N2(a)∩U ⊆ Da. If δ(a, u) ≥ 2, let b be the vertex at distance 2 from a on a shortest
a-to-u path in G. By the triangle inequality, we have δ(b, v) ≤ δ(b, u) + δ(u, v) =
δ(b, u) + 1. Since δ(b, u) = δ(a, u) − 2 and δ(a, u) = δ(A, u) ≤ δ(A, v), we have
δ(b, u) < δ(A, u) and δ(b, v) < δ(A, v). Therefore both u and v are in C(b), and
thus in Da, since b ∈ N2(a).

From Lemma 2.3.2, in order to verify that every edge of G[U] is an edge of
Ĝ[U], we only need to verify that every edge of G[Da] is an edge of Ĝ[Da], for every
a ∈ A. This enables us to apply recursion on each Da.

The main difficulty is: How to obtain Da efficiently? If we compute Da

from its definition, we would need to compute N2(a), which requires Ω(n) queries
since N2(a) may contain nodes outside U . Instead, a careful analysis shows that
we can check whether Da = D̂a without even knowing N2(a), whereas D̂a can be
inferred from the graph Ĝ with no queries. This is shown in Lemma 2.3.3, which is
the key to the design of the verification algorithm.

Lemma 2.3.3. Assume that Ê ⊆ E. If δ(u, v) = δ̂(u, v) for every pair (u, v) from⋃
a∈A N̂2(a)× U , then Da = D̂a for all a ∈ A.

Proof. The proof is delicate but elementary. For every b ∈ ⋃a∈A N̂2(a), we have
Ĉ(b) ∩ U = C(b) ∩ U , because δ̂(b, u) = δ(b, u) and δ̂(A, u) = δ(A, u) for every
u ∈ U . Therefore, D̂a can be rewritten as

D̂a =
(⋃{

C(b) : b ∈ N̂2(a)
}
∪ N̂2(a)

)
∩ U.

Since Ê ⊆ E, we have N̂2(a) ⊆ N2(a). Therefore D̂a ⊆ Da.
On the other hand, we have N2(a) ∩ U ⊆ N̂2(a) ∩ U , because δ̂(a, u) = δ(a, u)

for every u ∈ N2(a) ∩ U . To prove Da ⊆ D̂a, it only remains to show that, for any

2.3. Verification via a Distance Oracle 25

Algorithm 2.5 Verification
1: procedure Verify-Subgraph(Ĝ, U, s)
2: if |U | > n0 then
3: repeat
4: A← Subset-Centers(Ĝ, U, s)
5: until |A| ≤ 4s log n and |Ĉ(w) ∩ U | ≤ 4|U |/s for every w ∈ V
6: for a ∈ A do
7: Query(N̂2(a), U)
8: for b ∈ N̂2(a) do
9: Ĉ(b)← {v ∈ V : δ̂(b, v) < δ̂(A, v)}

10: D̂a ←
(⋃{

Ĉ(b) : b ∈ N̂2(a)
}
∪ N̂2(a)

)
∩ U

11: Verify-Subgraph(Ĝ, D̂a, s)
12: else
13: Query(U,U)

vertex u /∈ N2(a) such that u ∈ C(b)∩U for some b ∈ N2(a), we have u ∈ C(x)∩U
for some x ∈ N̂2(a). We choose x to be the vertex at distance 2 from a on a shortest
a-to-u path in Ĝ. By the assumption and the definition of x, we have:

δ(x, u) = δ̂(x, u) = δ̂(a, u)− 2 = δ(a, u)− 2.

By the triangle inequality, and using b ∈ N2(a) and u ∈ C(b), we have:

δ(a, u) ≤ δ(a, b) + δ(b, u) ≤ 2 + δ(b, u) < 2 + δ(A, u).

Therefore δ(x, u) < δ(A, u). Thus u ∈ C(x) ∩ U .

The recursive algorithm Verify-Subgraph for non-edge verification is given
in Algorithm 2.5. It receives a graph Ĝ = (V, Ê), a subset U ⊆ V , and an
integer parameter s, and verifies all the non-edges of Ĝ[U]. It first queries every
(u, v) ∈ ⋃a∈A N̂2(a)× U , and then recurses on each extended Voronoi cell D̂a, see
Figure 2.2. The parameters s and n0 are defined later. Correctness of the algorithm
follows from Lemmas 2.3.2 and 2.3.3.

Query Complexity Analysis. To provide intuition, we first analyze an algo-
rithm of 4 recursive levels, and show that its query complexity is Õ(n4/3). To
simplify the presentation, we assume ∆ = O(1). Let s = n1/3 and let n0 be
some well-chosen constant. Consider any recursive call Verify-Subgraph(Ĝ, U, s)
where |U | > n0. From Lemma 2.3.1, the expected number iterations of the repeat
loop is constant. Let A ⊆ V be the centers at the end of the repeat loop. For

26 Chapter 2. Voronoi Cell Decomposition

a

D̂a

a′
D̂′

a′

Figure 2.2: Two levels of recursive calls of Verify-Subgraph(Ĝ, V, s). The solid
points are top-level centers returned by Subset-Centers(Ĝ, V, s). The dotted
lines indicate the partition of V into Voronoi cells by those centers. For a center
a, D̂a is the region that is a bit larger than the Voronoi cell of a. On the second
level of the recursive call for D̂a, the hollow points are the centers returned by
Subset-Centers(Ĝ, D̂a, s). Observe that some of those centers lie outside D̂a.
The dashed lines indicate the partition of D̂a into Voronoi cells by those centers.
For a center a′ on the second level, D̂′a′ is the region that is a bit larger than the
Voronoi cell of a′.

every a ∈ A, N̂2(a) has constant size, since ∆ = O(1). Every Ĉ(w) ∩ U has size
O(|U |/n1/3), so every D̂a has size O(|U |/n1/3). Since |A| = Õ(n1/3), the number
of recursive calls on the next level is Õ(n1/3). Therefore during the recursion, on
the second level, there are Õ(n1/3) recursive calls, where every subset has size
O(n2/3); on the third level, there are Õ(n2/3) recursive calls, where every subset has
size O(n1/3); and on the fourth level, there are Õ(n) recursive calls, where every
subset has size O(1). Every recursive call with subset U uses Õ(n1/3 · |U |) queries.
Therefore, the overall query complexity is Õ(n4/3).

2.3. Verification via a Distance Oracle 27

Next, we give the full proof of the complexity as stated in Theorem 1.4.2. Define

k0 =
⌊√

log n
log (log n · 64(∆2 + 1)2)

⌋
.

Let s = n1/k0 and n0 = (4(∆2 + 1))k0 . Consider any recursive call when |U | > n0.
From Lemma 2.3.1, the expected number of iterations of the repeat loop is constant.
Let A ⊆ V be the centers at the end of the repeat loop. Then |A| ≤ 4s log n and
every |Ĉ(w) ∩ U | is at most 4|U |/s. Since the graph has maximum degree ∆, the
size of every D̂a is at most (∆2 + 1) ·max(4|U |/s, 1). Therefore by induction, for
any 1 ≤ k ≤ k0 + 1, any subset U on the kth level of the recursion has size at
most tk := n (4(∆2 + 1)/s)k−1, where tk0+1 = n0. Hence the maximum level of the
recursion is at most k0 + 1.

Consider the recursive calls with |U | ≤ n0. There are at most (4s log n)k0

such calls and each takes |U |2 ≤ (4(∆2 + 1))2k0 queries. Thus their overall query
complexity is at most n · (log n · 64(∆2 + 1)2)k0 ≤ n1+1/k0 .

Consider the recursive calls with |U | > n0 on the kth level of the recursion
for some fixed k ∈ [1, k0].1 There are at most (4s log n)k−1 such calls and each
takes at most (∆2 + 1)|A| · |U | queries, where |U | ≤ tk. Thus their overall
query complexity is at most n1+1/k0 (log n · 16(∆2 + 1))k. Summing over k from
1 to k0, the query complexity of all recursive calls with |U | > n0 is at most
2 · n1+1/k0 (log n · 16(∆2 + 1))k0 ≤ 2 · n1+2/k0 .

Therefore, the number of queries for non-edge verification is at most 3 · n1+2/k0 ,

which is n1+O
(√

(log logn+log ∆)/ logn
)
. Since it takes at most ∆n = n1+log ∆/ logn

queries to verify that Ê ⊆ E, we obtain the overall query complexity as stated in
Theorem 1.4.2.

1We note that there are no recursive calls on the (k0 + 1)th level (i.e., the last level) of the
recursion with |U | > n0.

Chapter 3

Greedy Algorithms

In this chapter, we first give a greedy verification algorithm using a distance oracle,
and then extend it to a reconstruction algorithm using a shortest path oracle.

3.1 Verification via a Distance Oracle
In this section, we prove the following theorem.

Theorem 3.1.1. If there is an algorithm for graph verification using f(n,∆)
distance queries, then a greedy algorithm for verification uses O(∆n+log n ·f(n,∆))
distance queries.

Theorem 3.1.1 implies Theorem 1.4.3, since each query to a distance oracle can
be simulated by the same query to a shortest path oracle.

Let N̂E be the set of the non-edges of Ĝ. For each pair of vertices (u, v) ∈ V 2,
we define Su,v ⊆ N̂E as follows:

Su,v =
{
ab ∈ N̂E : δ̂(u, a) + δ̂(b, v) + 1 < δ̂(u, v)

}
. (3.1)

The following lemmas relate the sets {Su,v : (u, v) ∈ V 2} with non-edge verification.

Lemma 3.1.2. Assume that Ê ⊆ E. For every (u, v) ∈ V 2, if δ(u, v) = δ̂(u, v),
then every pair ab ∈ Su,v is a non-edge of G.

Proof. Consider any pair ab ∈ Su,v. By the triangle inequality, δ(u, a) + δ(a, b) +
δ(b, v) ≥ δ(u, v) = δ̂(u, v). By the definition of Su,v and using Ê ⊆ E, we have
δ̂(u, v) > δ̂(u, a) + δ̂(b, v) + 1 ≥ δ(u, a) + δ(b, v) + 1. Thus δ(a, b) > 1, i.e., ab is a
non-edge of G.

30 Chapter 3. Greedy Algorithms

Lemma 3.1.3. If a set of queries T verifies that every non-edge of Ĝ is a non-edge
of G, then ⋃(u,v)∈T Su,v = N̂E.

Proof. Assume, for a contradiction, that some ab ∈ N̂E does not belong to any
Su,v for (u, v) ∈ T . Consider adding ab to the set of edges Ê: this will not create
a shorter path between u and v, for any (u, v) ∈ T . Thus including ab in Ê is
consistent with the answers of all queries in T . This contradicts the assumption
that T verifies that ab is a non-edge of G.

Proof of Theorem 3.1.1. From Lemmas 3.1.2 and 3.1.3, the non-edge verification
is equivalent to the Set-Cover problem with the universe N̂E and the sets
{Su,v : (u, v) ∈ V 2}. The Set-Cover problem can be solved using the well-known
greedy algorithm [52], which gives a (lnn+ 1)-approximation. Hence our greedy
algorithm for verification (Algorithm 3.1). For the query complexity, first, verifying
that Ê ⊆ E takes at most ∆n queries, since the graph has maximum degree
∆. The part of non-edge verification uses a number of queries that is at most
(lnn+ 1) times the optimum number of queries. Thus the overall query complexity
is O(∆n+ log n · f(n,∆)).

Algorithm 3.1 Greedy Verification
1: procedure Verify(Ĝ)
2: for uv ∈ Ê do
3: Query(u, v)
4: Y ← ∅
5: while Ê ∪ Y does not cover all vertex pairs do
6: choose (u, v) that maximizes |Su,v \ Y |

. Su,v defined in Equation (3.1)
7: Query(u, v)
8: Y ← Y ∪ Su,v

3.2 Reconstruction via a Shortest Path Oracle
In this section, we prove Theorem 1.4.4.

Theorem 1.4.4. If there is an algorithm for graph verification using f(n,∆)
distance queries, then there is a greedy algorithm for reconstruction that uses
O(∆n+ log n · f(n,∆)) shortest path queries.

3.2. Reconstruction via a Shortest Path Oracle 31

Algorithm 3.2 Greedy Reconstruction
1: procedure Reconstruct(V)
2: u0 ← an arbitrary vertex
3: for u ∈ V \ {u0} do
4: Query(u, u0) to get a shortest u-to-u0 path
5: X ← the union of the above paths
6: Y ← ∅
7: while X ∪ Y does not cover all vertex pairs do
8: choose (u, v) that maximizes |SXu,v \ Y |

. SXu,v defined in Equation (3.2)
9: Query(u, v) to get a shortest u-to-v path

10: if δG(u, v) = δX(u, v) then
11: Y ← Y ∪ SXu,v
12: else
13: e← some edge of the above u-to-v path that is not in X
14: X ← X ∪ {e}
15: return X

The algorithm (Algorithm 3.2) constructs an increasing set X of edges so that
in the end X = E. At any time, the candidate graph is X.1 Initially, X is the union
of the shortest paths given as answers by n− 1 queries, so that X is a connected
subgraph spanning V . At each subsequent step, the algorithm makes a query that
leads either to the confirmation of many non-edges of G, or to the discovery of an
edge of G.

Formally, we define, for every pair (u, v) ∈ V 2,

SXu,v =
{
ab ∈ non-edges of X : δX(u, a) + δX(b, v) + 1 < δX(u, v)

}
. (3.2)

This is similar to Su,v defined in Equation (3.1). From Lemma 3.1.2, the pairs
in SXu,v can be confirmed as non-edges of G if δG(u, v) = δX(u, v). At each step,
the algorithm queries a pair (u, v) that maximizes the size of the set SXu,v \ Y . As
a consequence, either all pairs in SXu,v \ Y are confirmed as non-edges of G, or
δG(u, v) 6= δX(u, v), and in that case, the query reveals an edge along a shortest
u-to-v path in G that is not in X; we then add this edge to X.

To see the correctness, we note that the algorithm maintains the invariant that
the pairs in X are confirmed edges of G, and that the pairs in Y are confirmed
non-edges of G. Thus when X ∪ Y covers all vertex pairs, we have X = E.

For the query complexity, first, consider the queries that lead to δG(u, v) 6=
1We identify X with the subgraph induced by the edges of X.

32 Chapter 3. Greedy Algorithms

δX(u, v). For each such query, an edge is added to X. This can happen at most
|E| ≤ ∆n times, because the graph has maximum degree ∆.

Next, consider the queries that lead to δG(u, v) = δX(u, v). Define R to be the
set of vertex pairs that are not in X ∪ Y . We analyze the size of R during the
algorithm. For each such query, the size of R decreases by |SXu,v \ Y |. To lower
bound |SXu,v \ Y |, we consider the problem of non-edge verification using a distance
oracle on the input graph X, and let T be an (unknown) optimal set of queries.
Then |T | ≤ f(n,∆), since there is a verification algorithm using f(n,∆) distance
queries. By Lemma 3.1.3, the sets SXu,v for all pairs (u, v) ∈ T together cover R∪Y ,
hence R. Therefore, at least one of these pairs satisfies

|SXu,v \ Y | ≥ |R|/|T | ≥ |R|/f(n,∆).

Initially, |R| ≤ n(n − 1)/2, and right before the last query, |R| ≥ 1. Thus the
number of queries with δG(u, v) = δX(u, v) is O(log n) · f(n,∆).

Therefore, the overall query complexity is O(∆n+ log n · f(n,∆)).

Remark. Note that the above proof depends crucially on the fact that f(n,∆) is a
uniform bound on the number of distance queries for verifying any n-vertex graph
of maximum degree ∆. Thus, even though the graph X changes during the course
of the algorithm because of queries (u, v) such that δG(u, v) 6= δX(u, v), each query
(u, v) with δG(u, v) = δX(u, v) confirms 1/f(n,∆) fraction of non-edges.

Chapter 4

Decomposition by Separators

In this chapter, we consider special classes of graphs, and we give reconstruction and
verification algorithms via a distance oracle. These algorithms all use separators to
decompose the graph into subgraphs, and then apply recursion on each subgraph.

4.1 Preliminaries
We review the definition and properties of separators, tree decomposition, and
chordal graphs.

Definition 4.1.1. A subset S ⊆ V is a β-balanced separator of the graph G =
(V,E) (for β < 1) if the size of every connected component of G \ S is at most
β|V |. In this case, the partition of G \ S into connected components is called a
β-balanced partition of the graph G.

Definition 4.1.2. A tree decomposition of a graph G = (V,E) is a tree T with
nodes n1, n2, . . . , n` where every node ni is identified with a bag Si ⊆ V such that
the following conditions hold:

1. For every vertex v in G, the nodes whose bags contain v form a connected
subtree of T .

2. For every edge uv in G, some bag contains both u and v.

The width of a tree decomposition is the size of the largest bag minus 1, and the
treewidth of G is the minimum width over all possible tree decompositions of G.

Lemma 4.1.3 ([70]). Let G be a graph of treewidth k. Any tree decomposition of
width k contains a bag S ⊆ V that is a (1/2)-balanced separator of G.

34 Chapter 4. Decomposition by Separators

Lemma 4.1.4 ([18]). Let G be a chordal graph. Then G has a tree decomposition
such that every bag is a maximal clique1 and that every maximal clique appears
exactly once in this decomposition.

From Lemmas 4.1.3 and 4.1.4, we have:

Corollary 4.1.5. Let G be a chordal graph of maximum degree ∆. Then G has
treewidth at most ∆, and there exists a clique S ⊆ V of size at most ∆ + 1 that is
a (1/2)-balanced separator of G.

Definition 4.1.6. A subset of vertices U ⊆ V is said to be self-contained if, for
every pair of vertices (x, y) ∈ U2, any shortest path in G between x and y goes
through nodes only in U .

4.2 Reconstruction of Chordal Graphs
In this section, we prove Theorem 1.4.6.

Theorem 1.4.6. For reconstruction of chordal graphs using a distance oracle, there
is a randomized algorithm with query complexity O

(
∆32∆ · n(2∆ + log2 n) log n

)
,

which is Õ(n) when the maximum degree ∆ is O(log log n).

The algorithm (Algorithm 4.3) first computes a vertex that is on many shortest
paths, and then grows a clique separator including this vertex. Next, it partitions
the graph into subgraphs with respect to this separator, and recursively reconstructs
each subgraph. The main tools we need is computing a shortest path between a
pair of vertices (Section 4.2.1) and partitioning the graph with respect to a set of
vertices (Section 4.2.2).

In what follows, the set U represents the set of vertices for which we are currently
reconstructing the induced subgraph G[U].

4.2.1 Subroutine: Computing a Shortest Path
In this section, we prove the following lemma.

Lemma 4.2.1. Let U be a self-contained subset of V such that every shortest
u-to-v path uses nodes only from U . Let a and b be vertices in U . The function
Shortest-Path(U, a, b) (Algorithm 4.1) outputs a shortest path between a and b
in G[U]. Its query complexity is O(|U | log |U |).

1A maximal clique is a clique which is not contained in any other clique.

4.2. Reconstruction of Chordal Graphs 35

Algorithm 4.1 Finding a Shortest Path (see Lemma 4.2.1)
1: function Shortest-Path(U, a, b)
2: if δ(a, b) > 1 then
3: Query(U, a); Query(U, b)
4: T ← {v ∈ U | δ(v, a) + δ(v, b) = δ(a, b)}
5: l← bδ(a, b)/2c
6: c← an arbitrary node in T such that δ(c, a) = `
7: U1 ← {v ∈ T | δ(v, a) < `}
8: U2 ← {v ∈ T | δ(v, a) > `}
9: P1 ← Shortest-Path(U1, a, c)

10: P2 ← Shortest-Path(U2, c, b)
11: return the concatenation of P1 and P2
12: else
13: return the path of a single edge ab

The algorithm is based on dichotomy. First, it makes 2|U | queries to get δ(u, a)
and δ(u, b) for every u ∈ U . Let c be the middle node of some shortest a-to-b path.
Then the algorithm recursively computes a shortest a-to-c path and a shortest
c-to-b path. The concatenation of these two paths is a shortest a-to-b path.

During the recursion, the distance between the two given endpoints is reduced
by half at every level. Thus there are O(log |U |) levels of the recursion. The total
number of queries at every level is O(|U |), since the sets on the same level of the
recursion are disjoint. Therefore, the overall query complexity is O(|U | log |U |).

4.2.2 Subroutine: Partitioning by a Set
In this section, we prove the following lemma.

Lemma 4.2.2. Let U be a self-contained subset of V . Let S be a subset of U . The
function Partition(U, S) (Algorithm 4.2) outputs the partition of G[U] \ S into
connected components. Its query complexity is O(∆|S| · |U |).

Let W = (N(S) ∩ U) \ S. For every a ∈ W , define the cluster of a as:

B(a) = {x ∈ U \ S | δ(a, x) ≤ δ(S, x)}. (4.1)

Since U is self-contained, every x ∈ U \ S belongs to some cluster B(a). The
Partition algorithm successively merges two clusters that have overlaps. See
Figure 4.1.

The query complexity of the algorithm is O(|N(S)| · |U |) = O(∆|S| · |U |).
Lemma 4.2.2 then follows directly from Lemmas 4.2.3 and 4.2.4.

36 Chapter 4. Decomposition by Separators

Algorithm 4.2 Computing the Partition (See Lemma 4.2.2)
1: function Partition(U, S)
2: Query(S, U) and obtain N(S) ∩ U
3: Query(N(S) ∩ U,U)
4: W ← (N(S) ∩ U) \ S
5: B ← {B(a) | a ∈ W} . B(a) defined in Equation (4.1)
6: while ∃ B1, B2 ∈ B s.t. B1 ∩B2 6= ∅ do
7: merge B1 and B2 in B
8: return B

b

a

e

d

c

s2

s1

B(b)

B(a)

B(e)

B(d)

B(c)
S

Figure 4.1: Here S = {s1, s2} and W = {a, b, c, d, e}. The clusters B(a), B(b),
B(c), B(d), B(e) are indicated by the circles. Using their overlaps, the algorithm
produces the partition B = {B(a) ∪B(b) , B(c) ∪B(d) ∪B(e)}.

Lemma 4.2.3. Let C be a connected component in G[U] \ S. Then C ⊆ B for
some set B ∈ B in the output of the algorithm.

Proof. Let A be the set of vertices in C ∩W . Since U is self-contained, for every
vertex x ∈ C, there exists some a ∈ A such that x ∈ B(a). Thus we only need to
prove that all sets {B(a) : a ∈ A} are eventually merged in our algorithm.

Define a weighed graph H whose vertex set is A, and such that for every
(a, b) ∈ A2, there is an edge ab in H, whose weight is the distance between a and b
in G[C].2 To show that all sets {B(a) : a ∈ A} are eventually merged, we use an

2This distance may be larger than δ(a, b).

4.2. Reconstruction of Chordal Graphs 37

inductive proof that is in the same order that Prim’s algorithm would construct a
minimum spanning tree on H. Recall that Prim’s algorithm initializes a tree T
with a single vertex, chosen arbitrarily from A. Then it repeatedly chooses an edge
ab ∈ T × (A \ T) with minimum weight and add ab to T . We will show that if
an edge ab is added to T , then B(a) and B(b) must be merged in our algorithm.
Since Prim’s algorithm finishes by providing a spanning tree including every a ∈ A,
we thus have all sets B(a) for a ∈ A are merged in our algorithm.

Suppose that the merge operations corresponding to the first i edges chosen
by Prim’s algorithm have been performed already, for i ≥ 0. Let T be the tree in
H after adding the first i edges.3 Let ab be the (i + 1)th edge chosen by Prim’s
algorithm. Thus a ∈ T , b ∈ A \ T , and weight(ab) is minimized. Consider a
shortest path p1, . . . , pk in G[C] between a and b. Let z be the mid-point vertex of
the path, i.e., z = pdk/2e. We claims that both B(a) and B(b) contain z, so B(a)
and B(b) are merged in our algorithm.

We note that p1, . . . , pdk/2e and pdk/2e, . . . , pk are shortest paths in G. Thus
δ(a, z) = dk/2e− 1 and δ(b, z) = bk/2c. We have δ(a, z) ≤ δ(b, z) ≤ δ(a, z) + 1. To
show z ∈ B(a) and z ∈ B(b), we only need to show that δ(b, z) ≤ δ(S, z). Choose
the vertex s ∈ S that minimizes δ(s, z) and consider a shortest z-to-s path P in G.
Let c be the neighbor of s on P , and let P ′ be the shortest z-to-c path. We note
that c ∈ A and P ′ is in G[C]. Since δ(S, z) = δ(s, z) = δ(c, z) + 1, we only need to
show that δ(b, z) ≤ δ(c, z) + 1. There are 2 cases:

Case 1: c ∈ A \ T . Then the concatenation of p1, . . . , pdk/2e and P ′ gives a
path in G[C] between a and c that has length δ(a, z) + δ(c, z), which is at least
weight(ac) by the definition of the weight. From the choice of ab, weight(ac) ≥
weight(ab) = δ(a, z) + δ(b, z). Thus we have δ(b, z) ≤ δ(c, z).

Case 2: c ∈ T . Similarly, the concatenation of pk, pk−1, . . . , pdk/2e and P ′

gives a path in G[C] between b and c that has length δ(b, z) + δ(c, z), which
is at least weight(bc) by the definition of the weight. From the choice of ab,
weight(bc) ≥ weight(ab) = δ(a, z) + δ(b, z). Thus we have δ(a, z) ≤ δ(c, z). Thus
δ(b, z) ≤ δ(a, z) + 1 ≤ δ(c, z) + 1.

This completes the proof.

Lemma 4.2.4. Let B ⊆ B be a set in the output of the algorithm. Then B ⊆ C
for some connected component C in G[U] \ S.

Proof. First we show that for every a ∈ W and every x ∈ B(a), a and x belong to the
same component in G[U]\S. Suppose there exists some x ∈ B(a), such that x and a
belong to different components in G[U]\S. Then any shortest path from a to x must
pass through the separator S, so we have δ(a, x) ≥ δ(a, S) + δ(S, x) = 1 + δ(S, x).
Contradiction with x ∈ B(a).

3For the base case (i = 0), T contains a single vertex and no merge operation is performed.

38 Chapter 4. Decomposition by Separators

Next we prove an invariant on B during the while loop (Line 6): Every set
B ∈ B is a subset of some connected component of G[U] \ S. This invariant holds
before the while loop starts. Suppose the invariant holds before the ith iteration
of the while loop, and in this iteration two sets B1, B2 ∈ B get merged. Since
B1 ∩ B2 6= ∅, there exists z ∈ B1 ∩ B2. All nodes in B1 (resp. in B2) are in the
same component as z. Thus all nodes in B1 ∪B2 are in the same component as z.
By induction, the invariant holds when the while loop terminates. This completes
the proof.

4.2.3 Algorithm and Analysis
The Reconstruct-Chordal algorithm (Algorithm 4.3) takes as input a self-
contained subset U ⊆ V of a chordal graph and returns the edge set of G[U]. The
key function Balanced-Partition-Chordal finds a β-balanced partition of U ,
for some β. This function first computes a vertex that is on many shortest paths
in the sampling, and then looks for a β-balanced clique separator including this
vertex. It repeatedly takes samples until a β-balanced partition is found. We set
n0 = 2∆+2(∆ + 1)2; C1 = 36(∆ + 1)2 log |U |; and

β = max
(

1− 1/(∆ · 2∆+1),
√

1− 1/(4(∆ + 1))
)
.

Lemma 4.2.5. Reconstruct-Chordal(U) returns the edge set of G[U].

Proof. By Lemma 4.2.2, {Ui}i is the partition of G[U] \ K into connected com-
ponents. Every edge of G[U] belongs to some G[Ui ∪K], since there is no edge
between any Ui and Uj for i 6= j. Thus the edge set of G[U] is the union of the
edge sets of G[Ui ∪K] over i. The statement follows by induction.

To bound the query complexity, the key is the following lemma.

Lemma 4.2.6. In every repeat loop of the function Balanced-Partition-
Chordal, a β-balanced partition is found with probability at least 2/3.

To prove Lemma 4.2.6, we need Lemmas 4.2.7 and 4.2.8.

Lemma 4.2.7. For every v ∈ U , let pv denote the fraction of pairs (a, b) ∈ U2 such
that v is on some shortest path between a and b. Then maxv pv ≥ 1/(2(∆ + 1)).

Proof. By Corollary 4.1.5, there is some clique S ⊆ U of size at most ∆ + 1 such
that every connected component in G[U]\S has size at most |U |/2. Notice that for
any pair of vertices a, b not from the same component, any shortest a-to-b path must
go by some node in S. The number of such pairs is at least |U |2/2. By Pigeonhole
Principle, there exists some z ∈ S such that for at least 1/|S| ≥ 1/(∆ + 1) fraction
of these pairs, their shortest paths go by z. Thus pz ≥ 1/(2(∆ + 1)).

4.2. Reconstruction of Chordal Graphs 39

Algorithm 4.3 Reconstruction of Chordal Graphs (see Theorem 1.4.6)
1: procedure Reconstruct-Chordal(U)
2: if |U | > n0 then
3: ({Ui}i, K)←Balanced-Partition-Chordal(U)
4: return ⋃i Reconstruct-Chordal(Ui ∪K)
5: else
6: return Exhaustive-Query(U)

7: function Balanced-Partition-Chordal(U)
. outputs a β-balanced partition of U

8: repeat
9: {(ai, bi)}1≤i≤C1 ← uniform and independent random pairs from U
10: for i← 1 to C1 do
11: Pi ← Shortest-Path(U, ai, bi) . see Section 4.2.1
12: x← the node in U with the most occurrences among {Pi}i
13: Query(x, U) and obtain N(x) ∩ U
14: Query(N(x) ∩ U,N(x) ∩ U) and obtain all cliques in U containing x
15: for every clique K in U containing x do
16: P ← Partition(U,K) . See Algorithm 4.2
17: if P is a β-balanced partition then return (P , K)
18: until a β-balanced partition is found

Lemma 4.2.8. For every vertex v ∈ U , let p̃v denote the fraction of pairs (ai, bi)
among C1 uniform and independent random pairs from U such that v is on some
shortest path between ai and bi. Let x = arg maxv p̃v. If C1 ≥ 9 log |U |/(maxv pv)2,
then with probability at least 2/3, we have px > (maxv pv)/2.

Proof. Let z be the node in U which maximizes pz. We will show that P [p̃y ≥ p̃z] <
1/(3|U |) for any node y ∈ U with py ≤ pz/2. This implies the lemma statement
because we then have P [∃y ∈ U, s.t. py ≤ pz/2 and p̃y ≥ p̃z] < 1/3. Thus with
probability at least 2/3, the node x with the largest p̃x satisfies px > pz/2.

Let y be any node with py ≤ pz/2. For every integer i ∈ [1, C1], define a variable
Yi ∈ {0, 1} such that Yi = 1 if the node y is on a shortest ai-to-bi path and Yi = 0
otherwise. Since {(ai, bi)}i are uniform and independent random pairs from U ,
{Yi}i are independent random variables, and each Yi equals 1 with probability py.
We then have E[Yi] = py ≤ pz/2. Similarly, for every i ∈ [1, C1], define a variable
Zi ∈ {0, 1} such that Zi = 1 if the node z is on a shortest ai-to-bi path and Zi = 0
otherwise. Then E[Zi] = pz.

For every i, define Ti = Yi − Zi. Let T be the average of all Ti’s. Then
E[T] = E[Ti] = E[Yi]− E[Zi] ≤ −pz/2. We have

40 Chapter 4. Decomposition by Separators

P [p̃y ≥ p̃z] = P
[∑

i

Ti ≥ 0
]
≤ P

[∣∣∣T − E[T]
∣∣∣ ≥ pz/2

]
.

By Hoeffding’s inequality, the last term is at most 2 · exp(−p2
z · C1/8), which is

at most 1/(3|U |) by the definition of pz and C1. Therefore, we have P [p̃y ≥ p̃z] <
1/(3|U |).

Proof of Lemma 4.2.6. By Lemma 4.1.4, there is a tree decomposition T of G[U]
such that every bag of T is a unique maximal clique of G[U].

Consider any iteration of the repeat loop. Let x be the node computed in
Line 12 of Algorithm 4.3. Let Tx be the subtree of T induced by the bags containing
x. Define F to be the forest after removing Tx from T . For any subgraph H of T ,
define V (H) ⊆ U to be the set of vertices in U that appear in at least one bag of
H.

Case 1: There exists some connected component T ′ in F with (1 − β)|U | ≤
|V (T ′)| ≤ β|U |. Consider the (unique) edge K1K2 in T such that K1 ∈ Tx and
K2 ∈ T ′. K1 ∩K2 is a β-balanced separator of G[U], since V (T ′) is a component
in G[U] \ (K1 ∩K2). Thus K1 ⊇ K1 ∩K2 is also a β-balanced separator. Since K1
contains x, K1 is one of the cliques checked on Line 15. The algorithm succeeds in
finding a β-balanced separator.

Case 2: There exists some connected component T ′ in F with |V (T ′)| > β|U |.
The algorithm then fails to find a β-balanced separator. We bound the probability
of this case by at most 1/3. Again let K1K2 be the edge in T such that K1 ∈ Tx
and K2 ∈ T ′. For any vertices u, v of U that are in V (T ′), any shortest u-to-v path
cannot go by x. Since there are at least β2 fraction of such pairs in U2, we have
px ≤ 1− β2, which is at most 1/(4(∆ + 1)) by the definition of β. This happens
with probability at most 1/3 by Lemmas 4.2.7 and 4.2.8.

We argue that the two cases above are exhaustive. Suppose, for the sake of
contradiction, that every component T ′ in F is such that |V (T ′)| < (1 − β)|U |.
The number of components in F is at most ∆ · 2∆, because every component has
a bag that contains a neighbor of x, and all bags are unique. Thus |V (F)| <
∆ · 2∆ · (1−β)|U |, which is at most |U |/2 by the definition of β. On the other hand,
every node v ∈ U \N(x) is contained in some bag from F , so |V (F)| ≥ |U |−(∆+1),
which is greater than |U |/2 since |U | > n0. Contradiction.

Query Complexity Analysis. First, we analyze the complexity of Balanced-
Partition-Chordal. Computing C1 shortest paths takes O(∆2|U | log2 |U |)
queries, since a shortest path between two given nodes can be computed us-
ing O(|U | log |U |) queries (see Section 4.2.1). We note that the neighborhood
N(x) of x has size at most ∆ + 1, and there are at most 2∆ cliques contain-
ing x. For every clique K containing x, Partition(U,K) takes O(∆|K| · |U |)

4.3. Reconstruction of Outerplanar Graphs 41

queries by Lemma 4.2.2, where |K| ≤ ∆ + 1. Therefore every repeat loop takes
O
(
∆2|U |(2∆ + log2 |U |)

)
queries. By Lemma 4.2.6, the expected number of repeat

loops is constant. Thus the query complexity of Balanced-Partition-Chordal
is O

(
∆2|U |(2∆ + log2 |U |)

)
.

Next, we analyze the complexity of Reconstruct-Chordal(U). Let q(m)
be the number of queries when |U | = m. We have

q(m) = O
(
∆2m(2∆ + log2m)

)
+
∑
i

q(|Ui|+ |K|),

where {Ui}i is a β-balanced partition of U using the separator K. Hence

q(n) = O
(

∆2n(2∆ + log2 n) log 1
β
n
)

= O
(
∆32∆ · n(2∆ + log2 n) log n

)
.

This completes the proof of Theorem 1.4.6.

4.3 Reconstruction of Outerplanar Graphs
In this section, we prove Theorem 1.4.7.

Theorem 1.4.7. For reconstruction of outerplanar graphs using a distance oracle,
there is a randomized algorithm with query complexity O(∆2 · n log3 n), which is
Õ(n) when the maximum degree ∆ is O(polylog n).

The algorithm again uses random sampling and statistic estimation, as used
for reconstructing chordal graphs in Section 4.2. To obtain a balanced partition of
an outerplanar graph, we need to partition the graph with respect to a polygon
(Section 4.3.1).

4.3.1 Subroutine: Partitioning by a Polygon
Definition 4.3.1. We say that the k-tuple (x1, . . . , xk) ∈ V k (where k ≥ 3) forms
a polygon if G[{x1, . . . , xk}] has exactly k edges: x1x2, x2x3, . . . , xkx1.

In this section, we prove the following lemma.

Lemma 4.3.2. Suppose the graph G is outerplanar. Let U be a self-contained
subset of V . Let a, b, c ∈ U be consecutive nodes along some unknown polygon
(q1, . . . , ql) in U . The function Partition-by-Polygon(U, a, b, c) outputs the
partition of U \ {q1, . . . , ql} into connected components. Its query complexity is
O(∆|U | log |U |).

The function Partition-by-Polygon consists of the following two phases.

42 Chapter 4. Decomposition by Separators

Phase 1: Computing the Polygon. The algorithm is given in Algorithm 4.4.
The key is to compute the a-to-c path along the polygon that does not go through
b. First, the algorithm computes the middle point z of this path. Next, it computes
a shortest path P1 between a and z and a shortest path P2 between z and c
using O(|U | log |U |) queries (see Section 4.2.1). The polygon is the concatenation
of the path P1, the path P2, the edge cb, and the edge ba. In the algorithm,
Partition(U, {a, b}) and Partition(U, {b, c}) use O(∆ · |U |) queries. Thus the
overall query complexity of this phase is O(∆ · |U | log |U |).

Algorithm 4.4 Finding a Polygon
1: procedure Find-Polygon(U, a, b, c)
2: (A1, . . . , Ak1)←Partition(U, {a, b})
3: Let Ai be the component containing c
4: (C1, . . . , Ck2)←Partition(U, {b, c})
5: Let Cj be the component containing a
6: T ← (Ai ∩ Cj) ∪ {a, c}
7: Query(a, T), Query(c, T)
8: d← minu∈T{δ(a, u) + δ(u, c)}
9: Let z ∈ T be such that δ(a, z) + δ(z, c) = d and δ(a, z) = bd/2c

10: P1 ← Shortest-Path(T, a, z)
11: P2 ← Shortest-Path(T, z, c)
12: return the concatenation of P1, P2, cb, ba

Phase 2: Partitioning by the Polygon. Given a polygon (q1, . . . , ql), we want
to compute the partition of U with respect to this polygon. We note that applying
the Partition algorithm in Section 4.2.2 requires O(∆ · l · |U |) queries, which is
O(∆ · |U |2) when l = Θ(|U |). In the following, we give an improved implementation
that uses O(∆ · |U | log |U |) queries based on dichotomy.

Let m = bl/2c. First we compute the partition of U into components with
respect to the set {q1, qm, qm+1, ql} using the Partition procedure. This takes
O(∆ · |U |) queries. In the resulting partition, let Q1 be the component containing
q2 (the endpoints q1, qm are included), and let Q2 be the component containing
qm+2 (the endpoints qm+1, ql are included). It is easy to see that both Q1 and Q2
are self-contained. We further decompose Q1 with respect to the path q1 . . . qm
and decompose Q2 with respect to the path qm+1 . . . ql, using a recursive procedure
Partition-by-Path (Algorithm 4.5). This procedure receives a self-contained
subset Z ⊆ U and two integers s, t such that 1 ≤ s < t ≤ l, and returns the
partition of Z by the path qsqs+1 . . . qt.

Now we analyze the query complexity of Partition-by-Path. The number of
queries of Partition(Z, {qm}) and Partition(Z, {qs, qt}) is O(∆ · |Z|). During

4.3. Reconstruction of Outerplanar Graphs 43

q1

q2

qmqm+1

ql

Figure 4.2: Partition by the polygon q1, . . . , ql

Algorithm 4.5 Partition with respect to a path
1: procedure Partition-by-Path(Z, s, t)
2: if t > s+ 1 then
3: m← b(s+ t)/2c
4: P ← Partition(Z, {qm})
5: Let Z1 be the component in P containing qs
6: Let Z2 be the component in P containing qt
7: P1 ← Partition-by-Path(Z1, s,m)
8: P2 ← Partition-by-Path(Z2,m, t)
9: return (P \ {Z1, Z2}) ∪ P1 ∪ P2

10: else
11: return Partition(Z, {qs, qt})

the recursion, the value (t − s) is reduced by half at every level, so there are
at most log |U | levels of the recursion. The query complexity of each level is
O(∆ · |U |), since the sets Z’s in that level are disjoint (except at endpoints). Thus
both Partition-by-Path(Q1, 1,m) and Partition-by-Path(Q2,m+ 1, l) take
O(∆ · |U | log |U |) queries.

Therefore, the overall query complexity of this phase is O(∆ · |U | log |U |).

44 Chapter 4. Decomposition by Separators

4.3.2 Algorithm and Analysis
The Reconstruct-Outerplanar algorithm (Algorithm 4.6) takes as input a
self-contained subset U ⊆ V of an outerplanar graph and returns the edge set of
G[U]. Similar to Section 4.2, the function Balanced-Partition-Outerplanar
computes a β-balanced partition of U . We set n0 = 20; C1 = 324 log |U |, and
β =

√
11/12.

Algorithm 4.6 Reconstruction of Outerplanar Graphs
1: procedure Reconstruct-Outerplanar(U)
2: if |U | > n0 then
3: (U1, . . . , U`)←Balanced-Partition-Outerplanar(U)
4: return ⋃iReconstruct-Outerplanar(Ui)
5: else
6: return Exhaustive-Query(U)

7: function Balanced-Partition-Outerplanar(U)
8: repeat
9: {(ai, bi)}1≤i≤C1 ← uniform and independent random pairs from U

10: for i← 1 to C1 do
11: Pi ← Shortest-Path(U, ai, bi) . see Section 4.2.1
12: x← the node in U with the most occurrences among {Pi}i
13: Query(x, U) and obtain N(x) ∩ U
14: P ← Partition(U,N(x) ∩ U) . See Algorithm 4.2
15: if P is β-balanced then return P . Figure 4.3
16: Let W ∈ P be the component with more than β|U | nodes
17: if N(W) contains two neighbors of x (let them be y, y′) then
18: P ← Partition-by-Polygon(U, y, x, y′)
19: if P is β-balanced then return P
20: until a β-balanced partition is found

Correctness of the Reconstruct-Outerplanar algorithm is a trivial adap-
tation from Lemma 4.2.5. To bound the query complexity, the key is the following
lemma.

Lemma 4.3.3. In every repeat loop of the function Balanced-Partition-
Outerplanar, a β-balanced partition is found with probability at least 2/3.

To prove Lemma 4.3.3, we need Lemma 4.3.4.

Lemma 4.3.4. For every v ∈ U , let pv denote the fraction of pairs (a, b) ∈ U2

such that v is on some shortest path between a and b. Then maxv pv ≥ 1/6.

4.3. Reconstruction of Outerplanar Graphs 45

x

y1

y2

y3y4

y5

y6

Figure 4.3: Partition by the neighbors y1, . . . , y6 of x.

Proof. Since G[U] is outerplanar, it has treewidth at most 2. From Lemma 4.1.3,
there exists some set S ⊆ U of size at most 3 such that every connected component
in G[U] \S has size at most |U |/2. The following argument is similar to that in the
proof of Lemma 4.2.7. Notice that for any pair of vertices a, b not from the same
component, any shortest a-to-b path must go by some node in S. The number of
such pairs is at least |U |2/2. By Pigeonhole Principle, there exists some z ∈ S such
that for at least 1/|S| ≥ 1/3 fraction of these pairs, their shortest paths go by z.
Thus pz ≥ 1/6.

Proof of Lemma 4.3.3. Let x be the node computed in Line 12 of Algorithm 4.6.
If the partition by the neighbors (Line 14) is β-balanced or the partition by the
polygon (Line 18) is β-balanced, then the algorithm succeeds. We only need to
bound the probability of the remaining case by at most 1/3. If no β-balanced
partition is found, there must be a self-contained subset S of U such that x /∈ S
and |S| ≥ β|U |. For every (a, b) ∈ S2, any shortest path between a and b does
not go by x. Thus px ≤ 1 − (|S|/|U |)2 ≤ 1 − β2 = 1/12 by the definition of β.
This happens with probability at most 1/3 by Lemmas 4.3.4 and 4.2.8 and since
C1 ≥ 9 log |U |/(maxv pv)2. Thus a β-balanced partition is found with probability
at least 2/3.

Query Complexity Analysis. First, we analyze the complexity of Balanced-
Partition-Outerplanar. Computing C1 shortest paths takes O(|U | log2 |U |)
queries, since a shortest path between two given nodes can be computed using

46 Chapter 4. Decomposition by Separators

O(|U | log |U |) queries (see Section 4.2.1). We note that the neighborhood N(x) of
x has size at most ∆ + 1. By Lemma 4.2.2, Partition(U,N(x)) takes O(∆2|U |)
queries. The procedure Partition-by-Polygon takes O(∆|U | log |U |) queries.
Therefore every repeat loop takes O

(
∆2|U | log2 |U |

)
queries. From Lemma 4.3.3,

the expected number of repeat loops is constant. Thus the overall query complexity
is O

(
∆2|U | log2 |U |

)
.

Next, we analyze the complexity of Reconstruct-Outerplanar. Let q(m)
be the number of queries when |U | = m. We have

q(m) = O
(
∆2m log2m

)
+
∑
i

q(|Ui|),

where {Ui}i is a β-balanced partition of U . Hence q(n) = O
(
∆2n log3 n

)
.

Thus we complete the proof of Theorem 1.4.7.

4.4 Verification of Treewidth Bounded Graphs

In this section, we prove Theorem 1.4.8.

Theorem 1.4.8. For verification of graphs of treewidth w using a distance oracle,
there is a deterministic algorithm with query complexity O(∆(∆ + w log n)n log n),
which is Õ(n) when ∆ and w are O(polylog n).

We only need to provide an algorithm for non-edge verification, because verifying
that Ê ⊆ E can be done naively. The algorithm for non-edge verification is by
recursion. It first computes a (1/2)-balanced separator in Ĝ and use it to obtain a
partition of the vertices. Then it verifies the non-edges between different components
in the partition. Finally, it recurses to verify the non-edges inside each component.

There is a catch because of the query oracle: by querying a pair (u, v) in a
recursive subgraph H, we would like to get back their distance in H, but instead
the oracle returns their distance in the entire graph G. It could well be that a
shortest u-to-v path in G goes through two nodes s1 and s2 in the separator and
the segment between s1 and s2 on this path is outside H.

As a warmup, we first provide an algorithm for the special case of chordal
graphs, because the above issue does not arise when the graph is chordal.4 We then
extend the algorithm to graphs of bounded treewidth: To get around that issue, we
formulate the recursive subproblem by augmenting H and adding weighted edges
between vertices of the separator.

4Since a separator is a clique, the shortest s1-to-s2 path is an edge, and thus belongs to H.

4.4. Verification of Treewidth Bounded Graphs 47

4.4.1 Warm up: Chordal Graphs
The Verify-Chordal algorithm (Algorithm 4.7) receives as input a chordal graph
Ĝ = (V, Ê) such that Ê ⊆ E and a self-contained subset U ⊆ V , and verifies
whether every non-edge of Ĝ[U] is a non-edge of G[U].

Algorithm 4.7 Recursive Verification for Chordal Graphs
1: procedure Verify-Chordal(Ĝ, U)
2: if |U | > 4(∆ + 1) then
3: S ← (1/2)-balanced clique separator of Ĝ[U] of size at most ∆ + 1
4: Query(S, U) and obtain N(S) ∩ U
5: Query(N(S) ∩ U,U)
6: for every component C of Ĝ[U] \ S do
7: Verify-Chordal(Ĝ, C ∪ S)
8: else
9: Query(U,U)

By Corollary 4.1.5, there is a (1/2)-balanced clique separator S of Ĝ[U].5 To
confirm the non-edges between different components of Ĝ[U]\S, from Lemma 4.4.1,
it is sufficient to query every pair in (N(S) ∩ U)× U . This is a main idea of the
algorithmic design. For each component C of Ĝ[U] \ S, we then recursively verify
the non-edges inside Ĝ[C ∪ S]. The recursive call on the subset C ∪ S still uses
the global query oracle. But because S is a clique in G, for any u, v ∈ C ∪ S, any
shortest u-to-v path in G stays inside C ∪S. Thus the value Query(u, v) returned
by the global query oracle is the distance between u and v in G[C ∪ S].

Lemma 4.4.1. Assume that Ê ⊆ E. If δ(u, v) = δ̂(u, v) for every (u, v) ∈
(N(S) ∩ U) × U , then there is no edge in G[U] between different components of
Ĝ[U] \ S.

Proof. Let X and Y be any two different components in the partition of Ĝ[U] \ S.
Let x be any vertex in X and let y be any vertex in Y . We show that xy is not
an edge in G[U]. Let a (resp. b) be the vertex in N(S) that is closest to x (resp.
y) in Ĝ[U]. Then a ∈ X and b ∈ Y . Since Ê ⊆ E, we have N̂(S) ⊆ N(S). It is
then easy to see that a, b ∈ (N(S) ∩ U) \ S. Without loss of generality, assume
δ(a, x) ≤ δ(b, y).

Since (a, y) ∈ (N(S) ∩ U)× U , we have δ(a, y) = δ̂(a, y). Any shortest a-to-y
path in Ĝ[U] goes through S, so

δ̂(a, y) ≥ δ̂(a, S) + δ̂(S, y) = δ̂(a, S) + 1 + δ̂(b, y) = 2 + δ̂(b, y).
5In addition, S can be computed in polynomial time and with no queries.

48 Chapter 4. Decomposition by Separators

Since (b, y) ∈ (N(S) ∩ U) × U , we have δ̂(b, y) = δ(b, y). Therefore δ(a, y) ≥
2 + δ(b, y) ≥ 2 + δ(a, x). By the triangle inequality, δ(x, y) ≥ δ(a, y)− δ(a, x) ≥ 2.
Thus xy is not an edge in G[U].

From Lemma 4.4.1, the correctness of Verify-Chordal follows by induction.
We now analyze the query complexity. Since Ĝ[U] has maximum degree ∆ and
S has size at most ∆ + 1, Query(S, U) and Query(N(S) ∩ U,U) use O(∆2|U |)
queries. Let q(m) be the number of queries of Verify-Chordal(Ĝ, U) when
|U | = m. We have

q(m) = O(∆2m) +
∑
C

q(|C|+ |S|),

where m = |S| + ∑
C |C| and S is a (1/2)-balanced separator. Hence q(n) =

O(∆2n log n).

Remark. We note that there are simpler algorithms for verifying chordal graphs, but
the algorithm presented here can be extended to verify graphs of bounded treewidth.

4.4.2 Extension: Graphs of Bounded Treewidth
We extend Algorithm 4.7 to verify graphs of treewidth w. The input specification
is now the graph Ĝ, a subset U ⊆ V , plus a set F of additional edges uv with
weight δ(u, v). The set F is initially empty, and increases during the recursion.
The recursive procedure verifies whether the metric of (U, Ê[U]∪ F [U]) is identical
to that of (U,E[U]∪F [U]). The balanced separator S is no longer a clique, but an
existing bag of some tree decomposition of width w (see Lemma 4.1.3). Verifying the
non-edges between different components is the same as before, because Lemma 4.4.1
still holds. To verify the non-edges inside a component C, we create new edges
uv with weight δ(u, v) for all pairs (u, v) ∈ S2, and add them to the set F . Then
we make a recursive call for the vertex set C ∪ S and the updated set F . Every
subgraph in the recursive call has treewidth at most w, since the new edges are
added inside S. This concludes the description and correctness of the algorithm.

For the query complexity, we need to bound the size of the neighborhood N(S)
of S. We note that in the subgraph E[U] ∪ F [U], the degree of a vertex is no
longer bounded by ∆. However, for any vertex v, the number of the edges in F [U]
that are adjacent to v is at most the maximum bag size times the number of bags
containing v that have been used as separators in the recursive calls. Since the
graph has treewidth w, every bag has size at most w + 1. Since all separators are
(1/2)-balanced, the recursion has depth O(log n), so v belongs to O(log n) such
bags. Therefore, the degree of v is O(∆ +w log n). The overall query complexity is
thus O(∆(∆ + w log n)n log n) using the same argument in Section 4.4.1.

Thus we proved Theorem 1.4.8.

Chapter 5

Side Results

5.1 Lower Bounds
In Section 5.1.1, we give lower bounds for general graphs where the maximum
degree is unbounded; and in Section 5.1.2, we give a lower bound for graphs of
maximum degree ∆.

5.1.1 General Graphs
Reyzin and Srivastava showed a lower bound as follows.

Lemma 5.1.1. [72] For graph reconstruction using a distance oracle, any algorithm
has query complexity Ω(n2).

This Ω(n2) lower bound can be easily extended to the graph verification problem
and to the shortest path oracle model as follows. Consider a graph G whose vertices
are v1, . . . , vn and whose edges form a star: there is an edge v1vi for every 2 ≤ i ≤ n.
In addition, G may or may not contain a new edge vivj, for 2 ≤ i, j ≤ n. In the
graph verification problem, the star graph is given as Ĝ. To check whether G
contains a new edge, we need to perform Ω(n2) distance or shortest path queries.

5.1.2 Graphs of Bounded Degree
In this section, we prove Theorem 1.4.9.

Theorem 1.4.9. For graph reconstruction using a distance oracle, assuming that
the maximum degree ∆ is at least 3 and is o

(
n1/2

)
, any algorithm has query

complexity Ω(∆n log n/ log(log n/ log ∆)).

50 Chapter 5. Side Results

To provide intuition, we first show a lower bound of Ω(∆n log n/ log log n),
assuming that n = 3t − 1, where t = 2k for some integer k. Consider a family
G of graphs G as follows: the vertex set is {v1, . . . , vn}; the first 2t − 1 vertices
form a complete binary tree of height k (with leaves vt, . . . , v2t−1); the vertices
v2t, . . . , v3t−1 induce an arbitrary subgraph of maximum degree ∆ − 1; there is
an edge between vi and vi+t for every i ∈ [t, 2t− 1] and there are no other edges.
Then every vertex in G has degree at most ∆, and the diameter of the graph is at
most 2k + 2 = O(log n). Every distance query returns a number between 1 and
2k + 2, so it gives O(log log n) bits of information. From information theory, the
number of queries to reconstruct the graph is at least the logarithm of the number
of graphs in G divided by the maximum number of bits of information per query.
The number of graphs in G is the number of different graphs of t vertices and of
maximum degree ∆−1, which is Ω

(
nΩ(∆n)

)
when ∆ = o(

√
n) (see [68]). Therefore,

we have a query lower bound:

log
(
Ω
(
nΩ(∆n)

))
O(log log n) = Ω

(
∆n log n
log log n

)
.

To prove the bound as stated in Theorem 1.4.9, we only need to replace the
above complete binary tree by a complete (∆− 1)-ary tree. The diameter of the
graph is now O(log n/ log ∆). The theorem statement follows.

5.2 Approximate Reconstruction
In this section, we study the approximate version of the reconstruction problem
using a distance oracle on general graphs (not necessarily of bounded degree). We
first give a simple algorithm (Algorithm 5.1), and then show that this algorithm is
optimal by providing a query lower bound of the same complexity.

Let G = (V,E) be a connected, undirected, and unweighted graph. Let δ be the
distance metric of G. Let f be any sublinear function of n. An f -approximation δ̃
of the metric δ is such that, for every (u, v) ∈ V 2, δ̃(u, v) ≤ δ(u, v) ≤ f · δ̃(u, v).

Algorithm 5.1 receives the vertex set V and outputs the approximate metric δ̃.
The algorithm repeatedly picks a node u such that the distances between u and
some other nodes are not yet estimated. It then makes queries between u and the
other nodes and obtains an estimate δ̃(x, y) for every node x within distance f/2
from u and for every node y in the graph. The algorithm repeats the above until
all distances are estimated.

Theorem 5.2.1. The algorithm Approx-Reconstruct(V) computes an f-
approximation of the graph metric δ using O(n2/f) distance queries.

5.2. Approximate Reconstruction 51

Algorithm 5.1
1: procedure Approx-Reconstruct(V)
2: S ← V
3: while S 6= ∅ do
4: u← arbitrary node from S
5: Query(u, S)
6: Let B be the set of nodes whose distance to u is strictly less than f/2
7: Set δ̃(x, y) = 1 for all pairs (x, y) ∈ B ×B with x 6= y
8: Set δ̃(x, y) = δ(u, y)− δ(u, x) for all pairs (x, y) ∈ B × (S \B)
9: Remove B from S

10: return δ̃

Proof. We prove that in the end of the algorithm, for every (x, y) ∈ V 2, we have
δ̃(x, y) ≤ δ(x, y) ≤ f · δ̃(x, y). Look at any iteration of the while loop. First,
consider any pair (x, y) ∈ B ×B with x 6= y. We have

δ̃(x, y) = 1 ≤ δ(x, y) ≤ δ(x, u) + δ(u, y) < (f/2) + (f/2) = f = f · δ̃(x, y).

Next, consider any pair (x, y) ∈ B × (S \B). On the one hand, by the triangular
inequality,

δ(x, y) ≥ δ(u, y)− δ(u, x) = δ̃(x, y).

On the other hand, by the triangular inequality,

δ(x, y) ≤ (δ(u, y)− δ(u, x)) + 2δ(u, x).

The first term is δ̃(x, y). The second term, by the definition of B, is at most (f −1).
Since x ∈ B and y /∈ B, we have δ̃(x, y) ≥ 1, so the second term can be bounded
by f − 1 ≤ (f − 1) · δ̃(x, y). Adding completes the proof of the upper bound.

Now we analyze the query complexity of the algorithm. Let U ⊆ V be the
set of nodes u chosen in Line 4 during the algorithm. For every pair of distinct
nodes u, u′ ∈ U , we have δ(u, u′) ≥ f/2. For every u ∈ U , define N(u, f/4) as the
neighborhood of u within distance f/4. Then we have |N(u, f/4)| ≥ f/4, since
G is connected. Observe that the sets {N(u, f/4)}u∈U are disjoint, so there are
at most 4n/f sets, i.e., |U | ≤ 4n/f . For every u ∈ U , the algorithm makes O(n)
queries. Thus the total number of queries is O(n2/f).

For the lower bound, extending Lemma 5.1.1 gives the following theorem.

Theorem 5.2.2. To compute an f-approximation of the graph metric δ using a
distance oracle, any algorithm requires Ω(n2/f) queries.

52 Chapter 5. Side Results

a0

a1

ak+1

a2k+σ1(1)

a3k+σ2(σ1(1))

a2

ak+2

a2k+σ1(2)

a3k+σ2(σ1(2))

a3

ak+3

a2k+σ1(3)

a3k+σ2(σ1(3))

· · ·

· · ·

· · ·

· · ·

ak

a2k

a2k+σ1(k)

a3k+σ2(σ1(k))

Figure 5.1: In this example, f = 2; The construction of the tree is based on two
permutations σ1 and σ2.

Proof. To simplify the proof, we assume n = 2fk+1, for k ∈ N. We define a family
of instances as follows. For each f -tuple (σ1, . . . , σf) such that every σi (where
i ∈ [1, f]) is a permutation of {1, . . . , k}, we define a tree instance: it has one
vertex a0 as the root (on the first level), k vertices a1, . . . , ak on the second level, k
vertices ak+1, . . . , a2k on the third level, · · · , and k vertices an−k, . . . , an−1 on the
(2f + 1)th level. For every l ∈ [2, f] and every i ∈ [1, k], there is an edge between
the ith node on level l and the ith node on level l + 1. For every l ∈ [f + 1, 2f] and
every i ∈ [1, k], there is an edge between the ith node on level l and the σl−f(i)th

node on level l + 1. See Fig. 5.1. We observe that every tree constructed above
has k branches from the root, and every branch is a path of 2f + 1 nodes. We will
show that any algorithm requires Ω(n2/f) queries to compute an f -approximation
of the metric on these instances.

First, notice that for these instances, any f -approximation δ̃ of the metric
can be transformed into the metric δ without queries: For every nodes u and v
on consecutive levels between level f + 1 and level 2f + 1, uv is an edge of G if
and only if δ̃(u, v) < 2f . This is because, if u and v are in the same branch, we
have δ(u, v) = 1, so δ̃(u, v) ≤ f ; and if u and v are in different branches, we have
δ(u, v) = δ(a0, u) + δ(a0, v) ≥ 2f , so δ̃(u, v) ≥ 2f . Therefore, we only need to prove
that any algorithm for the exact reconstruction problem requires Ω(n2/f) queries
on these instances.

Let A be any algorithm that reconstructs these instances exactly. We assume
that A does not make redundant queries, i.e., queries whose answers can be deduced
in advance. Obviously, any query with the root is redundant. For any two node u
and v, let lu and lv be their levels. The query (u, v) is redundant when lu ≤ f + 1
and lv ≤ f + 1, since the first f + 1 levels are fixed. Thus every query (u, v) is such
that lu > f + 1 and lv ≥ 2 (we assume lu ≥ lv without loss of generality). The

5.2. Approximate Reconstruction 53

Query(u1, v1)

Query(u2, v2)

Query(u4, v4)

Yes

Query(u5, v5)

No

Yes

Query(u3, v3)

Query(u6, v6)

Yes

Query(u7, v7)

No

No

Figure 5.2: Decision tree of A

answer is either lu − lv, if u and v are in the same branch; or lu + lv − 2, if u and v
are in different branches. We can equivalently identify the answer as Yes or No
to the question: Are u and v in the same branch? The key is to upper bound the
number of Yes answers during the algorithm. We introduce the component graph
H, which represents the information collected from the Yes answers during the
algorithm. The vertex set of H is defined to be the set of all nodes of level between
f + 1 and 2f + 1. At the beginning, the edge set of H is empty. Each time when
A receives a Yes answer to a query (u, v), we add an edge to H as follows:

1. If lu > f + 1 and lv ≥ f + 1, then we add the edge uv to H;

2. If lu > f + 1 and 2 ≤ lv < f + 1, then we add the edge uw to H, where w is
the node on level f + 1 that is in the same branch as v.

There could not be cycles in H, otherwise there are redundant queries. The number
of connected components in H is at least k, since every connected component in H
contains nodes from the same branch of the tree and there are k branches. The
number of edges in H is the number of vertices minus the number of connected
components, which is at most k(f + 1)− k = kf . Since every Yes answer adds an
edge into H, the algorithm A stops after at most kf Yes answers.

Next, we show the lower bound by a decision tree argument. See Figure 5.2.
First, A queries some pair (u1, v1). If the answer is Yes, it queries some pair (u2, v2),
otherwise it queries some pair (u3, v3), etc. A stops if and only if it arrives at a
leaf of the decision tree. Let h be the height of the decision tree. We only need
to prove that h = Ω(n2/f). A leaf of the decision tree is identified by its root-leaf

54 Chapter 5. Side Results

path, a word over {Yes,No} of length at most h and with at most kf Yes’s.1 The
total number of leaves in the decision tree is at most

∑
0≤j≤kf

(
h

j

)
≤ 2 ·

(
h

kf

)
≤ 2hkf

(kf)! .

On the other hand, the number of leaves in the decision tree is the number of
instances, which is (k!)f . Therefore,

(k!)f ≤ 2hkf
(kf)! .

Using Stirling’s formula, we have h = Ω(k2f) = Ω(n2/f).

1We assume that the length of this path is exactly h by appending unnecessary No’s.

Chapter 6

Conclusion

Main General Results. We have designed an algorithm for graph reconstruc-
tion using Õ(n3/2) distance queries and an algorithm for graph verification using
O
(
n1+o(1)

)
distance or shortest path queries. Both algorithms decompose the graph

into subgraphs using the Voronoi cell decomposition, and then solve the problem
in the subgraphs independently. We have also given a greedy algorithm for graph
verification using either oracle and we have proved that its query complexity is
again O

(
n1+o(1)

)
. The greedy algorithm can be extended to graph reconstruction

using a shortest path oracle with query complexity O
(
n1+o(1)

)
.

Main Open Problem. For graph verification using either oracle and graph
reconstruction using a shortest path oracle, we have provided algorithms with near-
linear query complexity. However, we do not know whether graph reconstruction
using a distance oracle is more difficult than these problems. Hence the central open
problem: Is there a reconstruction algorithm using a near-linear number
of queries to a distance oracle?

One Failed Attempt. To design a better-than-Õ(n3/2) algorithm for graph
reconstruction via a distance oracle, one might try to extend the Voronoi cell
decomposition recursively, as in the algorithm for verification (Algorithm 2.5) with
query complexity O

(
n1+o(1)

)
. Recall that in Algorithm 2.5, the key subroutine is

Subset-Centers (Algorithm 2.4), which roughly equipartitions a subset U into
Voronoi cells. This subroutine requires no query in the verification problem, since
Ĝ is given. However, in the reconstruction problem, it would require Ω(n) queries
even if the subset U is small. Therefore, we cannot obtain an efficient recursive
algorithm using this framework.

56 Chapter 6. Conclusion

Another Failed Attempt. One might try a greedy approach, which has already
been used for graph reconstruction via a shortest path oracle (Algorithm 3.2).
Recall that Algorithm 3.2 first finds a connected subgraph spanning all vertices,
and then greedily queries a pair (u, v). If the distances between u and v in the
subgraph and in the graph G are the same, then it eliminates a large number of
non-edges; otherwise it discovers an edge of G and adds it to the current subgraph.
In the distance oracle model, finding a connected subgraph spanning all vertices
can be done using Õ(n) queries [63]. However, given a pair of (u, v) such that their
distances in the current subgraph and in the graph G are different, Ω(n/ log n)
distance queries are required in general to discover an edge [16]. Therefore, the
greedy framework does not lead to an efficient algorithm for reconstruction via a
distance oracle.

Future Directions. Let us consider two potential approaches for graph recon-
struction. The first approach decomposes the graph into Voronoi cells and then
applies recursion. This approach fails when there are many connections between
different cells (since in this case, the distance between a pair of nodes in the cell is
different from their distance in the entire graph). The second approach is random
elimination: we select a set S of polylog n nodes at random, and query the distance
between every selected node and every node in the graph. If a pair uv ∈ V 2 is such
that |δ(u, s)− δ(v, s)| > 1 for some selected node s ∈ S, then uv is confirmed to
be a non-edge of G. Next, we query all the pairs that are not yet confirmed. We
have tested this algorithm on random ∆-regular graphs, where it only requires a
near-linear number of queries. However, this approach fails when there are few
connections between different parts of the graph. For example, if the graph is a
complete binary tree, then the number of queries in the last step is quadratic.

Since the two approaches fail on opposite instances of the graphs, it might
be possible to design an algorithm that combines the two approaches and has a
near-linear query complexity.

Special Cases of Graphs. Although for general graphs, there is no reconstruc-
tion algorithm using a near-linear number of distance queries, when the graph is
chordal or outerplanar, we have provided algorithms using Õ(n) distance queries.
These algorithms exploit the property that such graphs admit a small separator
such that there is no connection between different sides of the separator. Note that
when graphs have bounded degree, both chordal graphs and outerplanar graphs
have bounded treewidth. For reconstruction using a shortest path oracle and
verification using either oracle, we have further improved the query complexity
from O

(
n1+o(1)

)
to Õ(n) for graphs of bounded treewidth.

57

Intermediate Open Problem. We would like to know whether there is a
reconstruction algorithm using a near-linear number of queries to a distance oracle,
when the graph has bounded treewidth.

Other Open Problems. As noted in [14], we could consider other objectives of
network inference, such as asking for the minimum number of queries to discover
a fixed percentage of edges and non-edges, or determining the diameter of the
network.

Part II

Planar Graph Optimization

Chapter 7

Introduction

We consider two problems in planar graphs: correlation clustering and two-edge-
connected augmentation. We address them in the same work because they can be
related via planar duality, which will be discussed later.

7.1 Correlation Clustering

7.1.1 The Problem
The correlation clustering problem takes as input a graph whose edges are labelled
either 〈+〉 or 〈−〉. A 〈+〉 edge represents evidence that its endpoints belong to
the same cluster, and a 〈−〉 edge represents evidence that its endpoints belong to
different clusters. Each edge has a non-negative weight reflecting the strength of the
evidence. The goal is to find a partition of the vertices into clusters that minimizes
the total weight of the edges inconsistent with that evidence. See Fig. 7.1.

This problem was first considered by Ben-Dor, Shamir, and Yakhini [15],
motivated by some computational biology questions. Bansal, Blum, and Chawla [11]
also independently formulated and considered this problem, motivated by machine
learning problems concerning document classification.

[35] For example, the multiset of objects might consist of all authors of English
literature, and two authors belong to the same category if they correspond to
the same real person. This task would be easy if authors published papers
consistently under the same name. However, some authors might publish under
several different names such as William Shakespeare, W. Shakespeare, Bill
Shakespeare, Sir Francis Bacon, Edward de Vere, and Queen Elizabeth I. Given

62 Chapter 7. Introduction

e1

e3

e2

Figure 7.1: In this example, the instance is an unweighted grid graph. The 〈+〉
edges are solid, and the 〈−〉 edges dashed. Dotted lines indicate an optimal partition
of vertices with inconsistent edges e1, e2, and e3.

Figure 7.2: Image Segmentation

some confidence about the similarity and dissimilarity of the names, our goal
is to cluster the objects to maximize the probability of correctness.

This problem on general graphs is APX-hard [11, 26, 35]. In this work, we study
the case when the graph is planar. The motivation for planar graphs comes from
image segmentation. The goal is to partition the image into regions representing
different image components. See Fig. 7.2. An image is represented by a grid of pixels.
For each pair of neighboring pixels, comparing the pixels’ values yields an assessment
of how likely the pixels are to belong to the same region. There can be spurious
assessments. Thus global optimization is needed to find a good segmentation.
When an image is large, it is common for a visual task to first coalesce coherent
uniform neighborhoods of pixels into superpixels, using preprocessing based on
local properties such as brightness, color, and texture, see [3, 65]. A local similarity
measure on pairs of adjacent superpixels is extracted, and the goal is to find a

7.1. Correlation Clustering 63

good segmentation of the superpixel graph under that measure. Researchers have
formulated this problem as correlation clustering, see [4, 5, 6, 58, 79]. They gave
experimental results based on techniques such as integer linear programming or
linear programming relaxation.

Note that the superpixel graph is planar. For correlation clustering on planar
graphs, Bachrach et al. [10] showed NP-hardness, and prior to this work, the
best algorithm with theoretical guarantee was a constant-factor approximation
algorithm for minor-excluded graphs by Demaine et al. [35].

7.1.2 Related Work

Correlation clustering and its variants have been extensively studied because of
their numerous applications, for example in computational biology [15, 19], data
mining [31], machine learning [11], and computer vision [4, 5, 6, 58, 79].

General Graphs. Correlation clustering on general (weighted) graphs is APX-
hard [11, 26, 35]. Charikar, Guruswami, and Wirth [26], and independently,
Demaine et al. [35] gave an O(log n)-approximation algorithm based on linear
programming rounding and the region-growing technique. In [26, 35], the authors
also noted that any o(log n)-approximation algorithm for correlation clustering
would require improving the state-of-art for approximating minimum multicut.

For the variant of the problem where the goal is to maximize the total weight
of agreements, Charikar, Guruswami, and Wirth [26] showed APX-hardness and
provided a 0.7664-approximation algorithm. Independently, Swamy [74] gave a
0.7666-approximation algorithm.

Complete Graphs. Bansal, Blum, and Chawla [11] studied the problem in an
unweighted complete graph, i.e., every pair of vertices has a label of either 〈+〉 or
〈−〉. They gave a constant-factor approximation algorithm where the constant is
large. Charikar, Guruswami, and Wirth [26] gave a 4-approximation algorithm and
showed APX-hardness. For maximizing agreements, a PTAS was given in [11].

In the weighted setting, for each pair of vertices, we require that the weight of
the 〈+〉 edge and the weight of the 〈−〉 edge sum to one. Again, Bansal, Blum, and
Chawla [11] gave a constant-factor approximation algorithm where the constant is
large. Ailon, Charikar, and Newman [2] gave an algorithm that achieves expected
approximation ratio 5. If in addition the weights obey the triangular inequality,
they showed that the same algorhtm achieves expected approximation ratio 2. In
this special setting, an algorithm of worst case approximation ratio 3 was obtained
by Gionis, Mannila, and Tsaparas [44].

64 Chapter 7. Introduction

Fixed Number of Clusters. Giotis and Guruswami [45] studied the variant
when the number of clusters is limited to a constant, which might be an external
constraint. They showed that both minimizing disagreement and maximizing
agreement admit a PTAS and are NP-hard.

Noisy Input. Mathieu and Schudy [66] considered the variant where the input
graph is generated from an arbitrary partition of the vertices into clusters, such
that for each vertex pair, the similarity information is corrupted independently with
some probability p. They showed that the clusters can be reconstructed exactly
when all clusters are large or when p is small.

7.2 Two-Edge-Connected Augmentation

7.2.1 The Problem

In the field of telecommunications, an important task is to ensure that the network
is resilient against link failures. Since failures are rare in real-life networks, it is
sufficient for the network to be resilient against single-link failures. This motivated
the study on two-edge-connectivity problems, whose goal is to have two edge-disjoint
paths between nodes in the network. See [71] for a survey.

The two-edge-connected augmentation problem takes as input a graph G with
non-negative edge-weights and a subset R of edges of the graph. The goal is to find
a minimum-weight subset S of edges of the graph such that for every edge uv ∈ R,
u and v are two-edge-connected in the subgraph R ∪ S. Without loss of generality,
we assume that edges from R have weight 0, since any minimal two-edge-connected
augmentation for (G,R) does not contain edges from R.

This problem is a generalization of the well-studied tree augmentation problem:
given a graph G with non-negative edge-weights and given a spanning tree T of
G, find a minimum-weight subset S of edges such that the subgraph T ∪ S is
two-edge-connected. The condition is equivalent to requiring that for each edge
uv of T , u and v are two-edge-connected in T ∪ S. Kortsarz, Krauthgamer, and
Lee [64] showed that tree augmentation is APX-hard. Thus two-edge-connected
augmentation is also APX-hard. Frederickson and Ja’Ja’ [41] gave a polynomial-
time 2-approximation algorithm for tree augmentation. The running time of that
algorithm was improved by Khuller and Thurimella [56], and further by Galluccio
and Proietti [42].

In this work, we study two-edge-connected augmentation in planar graphs.

7.3. Our Results 65

7.2.2 Related Work
Two-Edge-Connected Spanning Subgraph. In this problem, we want to find
a minimum-weight subgraph of G in which every pair of vertices of G is two-edge-
connected. This problem in general graphs was shown to be Max-SNP-hard by
Czumaj and Lingas [33]. Frederickson and Ja’Ja’ [41] gave a 3-approximation
algorithm. The approximation ratio was improved to 2 (and 3/2 for unweighted
graphs) by Khuller and Vishkin [57], and to 5/4 by Jothi, Raghavachari, and
Varadarajan [53].

When the graph is planar, Eswaran and Tarjan [39] showed NP-hardness, and
Berger and Grigni [17] gave a PTAS. One might think that this would lead to a
PTAS for two-edge-connected augmentation, but it is not the case, because the
weight of a two-edge-connected augmentation can be much smaller than the weight
of a two-edge-connected spanning subgraph.

Two-Edge-Connected Steiner Subgraph. In this problem, we are given a
subset Q ⊆ V of terminals, and we want to find a minimum-weight subgraph of G in
which every pair of vertices of Q is two-edge-connected. This is a generalization of
two-edge-connected spanning subgraph. Klein and Ravi [62] gave a 3-approximation
algorithm. (In fact, they solved a more general problem where the connectivity
requirements are specified for pairs of vertices.) This result was generalized to
higher connectivity requirements by Williamson et al. [78] and Goemans et al. [46].
Edge-connectivity problems were subsumed by the work of Jain [51] on survivable
network design.

When the graph is planar, Borradaile and Klein [21] gave a PTAS for a variant
of the two-edge-connected Steiner subgraph problem, where a solution is allowed
to include multiple copies of edges of the input graph. However, their algorithm
does not lead to a PTAS for two-edge-connected augmentation, mainly because
the structure property in [21] does not hold for two-edge-connected augmentation.
This issue will be discussed later.

7.3 Our Results

The results here have been published in [B].
First, we show that in planar graphs, correlation clustering can be reduced to

two-edge-connected augmentation:

Theorem 7.3.1. There is a polynomial-time approximation-preserving reduction
from correlation clustering in weighted planar graphs to two-edge-connected aug-
mentation in weighted planar graphs.

66 Chapter 7. Introduction

Next, we give a polynomial-time approximation scheme (PTAS) for two-edge-
connected augmentation when the graph is planar:

Theorem 7.3.2. For any ε > 0, there is a polynomial-time (1 + ε)-approximation
algorithm for two-edge-connected augmentation in weighted planar graphs.

From Theorems 7.3.1 and 7.3.2, we obtain a PTAS for correlation clustering:

Theorem 7.3.3. For any ε > 0, there is a polynomial-time (1 + ε)-approximation
algorithm for correlation clustering in weighted planar graphs.

Remark. From the NP-hardness of correlation clustering in planar graphs [10]
and the reduction (Theorem 7.3.1), we know that two-edge-connected augmentation
in planar graphs is also NP-hard.

In practice, we may use an approximation algorithm for two-edge-connected
augmentation that is different from the algorithm in Theorem 7.3.2, and then from
the reduction (Theorem 7.3.1), we obtain an approximation algorithm for planar
correlation clustering.

7.4 Notations and Definitions

Let G be a graph with non-negative edge-weights. Let V [G] (or simply V) be its
vertex set, and let E[G] (or simply E) be its edge set. We allow G to have parallel
edges. For a subset of edges H ⊆ E[G], we identify H with the subgraph induced
by the edges from H. The weight of H is defined by ∑e∈H weight(e). For a subset
of vertices U ⊆ V [G], we define its boundary δ(U) as the set of edges uv ∈ E[G]
such that u ∈ U and v ∈ V [G] \ U .

A plane graph is a planar graph together with a planar embedding. We use the
phrases plane graph and planar graph interchangeably.

Next, we recall the definitions of two related optimization problems.
In the Steiner tree problem, we are given a weighted planar graph G = (V,E)

and a set Q ⊆ V of terminals, and the goal is to find a minimum-weight connected
subgraph connecting every terminal in Q.

In the Steiner forest problem, we are given a weighted planar graph G = (V,E)
and a set D of demands (s, t) ∈ V 2, and the goal is to find a minimum-weight
forest F of G such that, for every demand (s, t) ∈ D, s and t are connected in F .

For a given optimization problem, we use OPT (I) to denote the weight of an
optimal solution for this problem on the instance I. The parameter I is omitted
when it is clear from the context.

7.5. Organization 67

7.5 Organization
In Chapter 8, we show the reduction from correlation clustering to two-edge-
connected augmentation in planar graphs (Theorem 7.3.1). The proof is elementary
and is based mainly on planar duality.

In Chapter 9, we review various techniques for approximation schemes in planar
graphs. The techniques of prize-collecting partition [13] and brick decomposition [22]
have been used to design approximation schemes for Steiner forest and Steiner tree
in their original settings. In Sections 9.1 and 9.2, we review these two techniques
respectively. In Section 9.3, we briefly survey previous approximation schemes
based on brick decomposition. In Section 9.4, we present the boundary doubling
operation, which is a technical detail for two-edge-connected augmentation. In
Section 9.5, we review the sphere-cut decomposition technique [37] used for designing
a dynamic program.

Chapter 10 contains the main contribution of Part II of this thesis. In this
chapter, we design an approximation scheme for two-edge-connected augmentation
in planar graphs (Theorem 7.3.2). After a preprocessing step in Section 10.1, we
give high-level ideas of the approximation scheme in Section 10.2. The difficulty in
using the brick decomposition is that, the structure property on bricks that was used
to design previous approximation schemes does not hold for two-edge-connected
augmentation. Hence the novelty of our work: we show a new structure property
on bricks in Section 10.3. Using this property, we give a dynamic program to
compute a near-optimal solution in Section 10.4. We complete the analysis of the
approximation scheme in Section 10.5.

Finally, we discuss some open problems in Chapter 11.

Chapter 8

Reduction from Clustering to
Augmentation

In this chapter, we prove Theorem 7.3.1.

Theorem 7.3.1. There is a polynomial-time approximation-preserving reduction
from correlation clustering in weighted planar graphs to two-edge-connected aug-
mentation in weighted planar graphs.

Let G0 be a plane graph with edge-labels in the correlation clustering problem.
Let OPT 0 be the minimum weight of disagreements in correlation clustering. We
construct the graph G1 as the abstract dual1 of G0, and let R ⊆ E[G1] be the dual
of the 〈−〉 edges in G0. Consider the intermediate problem of finding a minimum-
weight subset S1 ⊆ E[G1] such that R⊕ S1 is a collection of two-edge-connected
components in G1. Let OPT 1 be the minimum weight of a solution S1 ⊆ E[G1]
for the intermediate problem. Next, we construct the graph G2 from G1 by adding
a copy e′ of e with the same weight for every edge e ∈ R; the set R remains the
same. Let OPT 2 be the minimum weight of a two-edge-connected augmentation
S2 ⊆ E[G2] for (G2, R).

Theorem 7.3.1 follows directly from Lemmas 8.1.1 and 8.2.1, which correspond
to the two stages of the reduction.

8.1 First Stage
Lemma 8.1.1. OPT 0 = OPT 1. Any solution for the intermediate problem can be
transformed in polynomial time into a solution for correlation clustering in G0 with
the same weight.

1See for example [36] for the definition of abstract dual and its properties.

70 Chapter 8. Reduction from Clustering to Augmentation

Figure 8.1: In this example, G0 is represented by the grid graph. In its dual, the
subgraph R ⊕ S1 is represented by the dotted edges. These edges separate the
plane into four faces, which define four clusters of the vertices of G0 (indicated by
the gray areas).

Proof. It is sufficient to show that a set of edges S0 ⊆ E[G0] is the disagreements
of some clustering in G0 if and only if R⊕ S1 is a collection of two-edge-connected
components in G1, where S1 ⊆ E[G1] is the dual of S0.

(=⇒) Let {Vi}i be a clustering of G0 with disagreements S0. We observe that
an edge belongs to some δ(Vi) if and only if it is a 〈−〉 edge and an agreement or is
a 〈+〉 edge and a disagreement. Since R is the dual of the 〈−〉 edges in G0 and S1
is the dual of S0, we have R⊕ S1 is the dual of ⋃i δ(Vi). From planar duality, the
dual of every δ(Vi) is a union of cycles in G1. Therefore, the dual of ⋃i δ(Vi) , i.e.
R⊕ S1, is a collection of two-edge-connected components in G1.

(⇐=) Suppose R⊕ S1 is a collection of two-edge-connected components in G1.
For every face F of R⊕ S1, define VF ⊆ V [G0] as the dual of the faces of G1 that
are inside F . From planar duality, R ⊕ S1 is the dual of ⋃F δ(VF). See Fig. 8.1.
Since S1 is the dual of S0, using the same argument as before, we deduce that
{VF}F is a clustering of G0 with disagreements S0.

8.2 Second Stage
Lemma 8.2.1. OPT 1 ≥ OPT 2. Any two-edge-connected augmentation for (G2, R)
can be transformed in polynomial time into a solution for the intermediate problem
with at most the same weight.

8.2. Second Stage 71

The following lemma is the key to prove Lemma 8.2.1.

Lemma 8.2.2. Let G be a plane graph. Let R be a subset of E[G]. Let S be
a minimal two-edge-connected augmentation for (G,R). Then every connected
component in the subgraph R ∪ S is two-edge-connected.

Proof. We prove by contradiction. Suppose there is a bridge edge e in the subgraph
R∪S. Since S is a two-edge-connected augmentation for (G,R), e cannot belong to
R, so e ∈ S. We observe that S \ {e} is again a two-edge-connected augmentation.
This contradicts with the minimality of S.

Proof of Lemma 8.2.1. Let S1 ⊆ E[G1] be an optimal solution for the intermediate
problem. We construct a subset S2 ⊆ E[G2] as follows: for every e ∈ R, include its
copy e′ in S2 if and only if e ∈ S1; and for every e ∈ E[G1]\R, include e in S2 if and
only if e ∈ S1. It is straightforward that S2 is a two-edge-connected augmentation
for (G2, R) and has the same weight as S1. Therefore OPT 1 ≥ OPT 2.

Next, we show the second part of the statement. Let S2 be any two-edge-
connected augmentation for (G2, R). By removing unnecessary edges, we may
assume that S2 is minimal. Thus S2 does not contain edges from R. We construct
a subset S1 ⊆ E[G1] as follows: for every e ∈ R, include e in S1 if and only if its
copy e′ is in S2; and for every e ∈ E[G1] \R, include e in S1 if and only if e ∈ S2.
By the construction, the weight of S1 is the same as the weight of S2. We only
need to show that R⊕ S1 is a collection of two-edge-connected components in G1.

By Lemma 8.2.2, R ∪ S2 is a collection of two-edge-connected components in
G2. The only differences between R ∪ S2 and R⊕ S1 are the pairs of edges {e, e′}
such that e ∈ R and e ∈ S1 (i.e., its copy e′ belongs to S2). Consider any such
edge e. Since S2 is minimal and contains e′, the endpoints of e belong to different
components in the subgraph R∪S2 \ {e, e′}. Therefore, after removing {e, e′} from
R ∪ S2, the subgraph remains a collection of two-edge-connected components. By
repeatedly removing such pairs {e, e′} from R ∪ S2, we obtain R⊕ S1 in the end.
Thus R⊕ S1 is a collection of two-edge-connected components.

Chapter 9

Techniques

In this chapter, we review various techniques that will be used for designing the
approximation scheme in Chapter 10.

9.1 Prize-Collecting Partition
The prize-collecting partition (PC partition) technique helps to obtain approxi-
mation schemes in planar graphs, such as for Steiner forest [13] and multiway
cut [12]. It is used as a preprocessing step to break the input instance into separate
subinstances which are easier to handle. In Section 9.1.1, we review this technique
in its original settings, and in Section 9.1.2, we provide a slightly adapted version
for two-edge-connected augmentation.

9.1.1 Steiner Forest
Bateni, Hajiaghayi, and Marx [13] used an algorithm, called prize-collecting partition
(PC partition), to partition the instance into subinstances such that the solution
of each subinstance is connected. The algorithm (Algorithm 9.1) starts with a
2-approximate solution Y for Steiner forest and contracts the edges of Y . Next,
it computes a forest F in the contracted graph based on a subroutine called PC
clustering, see Algorithm 2 in [13]. In the initial graph, the edges of the solution
Y and the edges of the forest F together define a subgraph. The algorithm then
outputs the connected components in this subgraph. Bateni, Hajiaghayi, and
Marx [13] showed the following theorem for Steiner forest.

Theorem 9.1.1 (Theorem 3.1 from [13]). Let G be a graph with edge-weights.
Let D be a set of demand pairs. Let ε > 0 be a parameter. The algorithm PC-

74 Chapter 9. Techniques

Algorithm 9.1 PC-Partition(G,D, ε), see Theorem 9.1.1
1: Use the algorithm of [47] to find a Steiner forest Y of (G,D) with weight at

most 2 ·OPT
2: Contract each connected component of Y to build a graph G̃
3: for v ∈ G̃ do
4: φv ← 1/ε times the weight of the component corresponding to v
5: Apply PC clustering on G̃ and {φv}v, and obtaining a forest F
6: return connected components of the subgraph Y ∪ F of G

Partition(G,D, ε) (Algorithm 9.1) computes in polynomial time a set of connected
subgraphs T1, . . . , Tk with the following properties:

• For every demand (s, t) ∈ D, there is some Ti containing both s and t;

• ∑i weight(Ti) ≤ (4/ε+ 2)OPT (G,D);

• ∑iOPT (G,Di) ≤ (1 + ε)OPT (G,D), where Di is the set of demands (s, t) ∈
D such that both s and t belong to Ti.

9.1.2 Two-Edge-Connected Augmentation
In order to use the PC Partition framework for two-edge-connected augmentation,
we first need to find a 2-approximate solution for this problem. This can be
done in polynomial time using Jain’s algorithm [51] (which solves a much more
general problem). Jain [51] showed that there is a polynomial-time algorithm that
computes a 2-approximate solution for the following problem: Given a graph G
with non-negative edge-weights, and a requirement ru,v ∈ Z for each pair (u, v) of
vertices, find a minimum-weight subgraph of G such that, for each pair (u, v), the
subgraph has at least ru,v edge-disjoint paths between u and v.

Let (G,R) be an instance of two-edge-connected augmentation. We construct
an instance in Jain’s problem: the graph G remains the same; for every pair
of vertices (u, v) ∈ V 2, ru,v is set to 2 if uv ∈ R and to 0 otherwise. The two
problems are equivalent since every edge of R has weight 0 in the two-edge-connected
augmentation problem. Therefore, we have:

Lemma 9.1.2 (Corollary from [51]). There is an algorithm that computes in poly-
nomial time a two-edge-connected augmentation Y for (G,R) such that weight(Y) ≤
2 ·OPT .

The PC partition algorithm for two-edge-connected augmentation is given in
Algorithm 9.2. It is almost identical to that for Steiner forest (Algorithm 9.1),

9.2. Brick Decomposition 75

Algorithm 9.2 PC-Partition(G,R, ε), see Theorem 9.1.3
1: Use the algorithm of Lemma 9.1.2 to find a two-edge-connected augmentation
Y of (G,R) with weight at most 2 ·OPT

2: Contract each connected component of R ∪ Y to build a graph G̃
3: for v ∈ G̃ do
4: φv ← 1/ε times the weight of the component corresponding to v
5: Apply PC clustering on G̃ and {φv}v, and obtaining a forest F
6: return connected components of the subgraph R ∪ Y ∪ F of G

except that the connected components are defined in the subgraph R ∪ Y , not in
the subgraph Y . Using the same argument as for Theorem 9.1.1, we obtain the
following theorem for two-edge-connected augmentation.

Theorem 9.1.3 (Partition Theorem). Let G be a graph with edge-weights. Let R be
a subset of E[G]. Let ε > 0 be a parameter. The algorithm PC-Partition(G,R, ε)
(Algorithm 9.2) computes in polynomial time a set of connected subgraphs T1, . . . , Tk
with the following properties:

• For every edge uv ∈ R, there is some Ti containing the edge uv;

• ∑i weight(Ti) ≤ (4/ε+ 2)OPT (G,R);

• ∑iOPT (G,Ri) ≤ (1 + ε)OPT (G,R), where Ri is the set of edges uv ∈ R
that are in Ti.

9.2 Brick Decomposition
For non-local problems in weighted planar graphs in which the weight of the
optimal solution can be much smaller than the weight of the graph, the brick
decomposition technique by Borradaile, Klein, and Mathieu [22] has proved to
be quite versatile: a planar embedded subgraph M (called the mortar graph) is
selected, and the bricks are the subgraphs of G embedded in the faces of M . This
technique has been used for designing approximation schemes for problems such as
Steiner tree [20, 22], Steiner forest [13], two-edge-connected survivability [20, 21]1,
TSP [20], and multiway cut [12]. In Section 9.2.1, we review the brick decomposition
technique in its original settings, and in Section 9.2.2, we provide a slightly adapted
version for two-edge-connected augmentation.

1For the variant in which the solution is allowed to include multiple copies of edges of the
input graph.

76 Chapter 9. Techniques

9.2.1 Steiner Tree
Borradaile, Klein, and Mathieu [22] first introduced the brick decomposition tech-
nique to design approximation schemes for Steiner tree in planar graphs. They
gave the definition and the properties of the brick decomposition as follows.

Definition 9.2.1 ([22]). Let G be a plane graph with edge-weights. Let Q ⊆ V be
a set of terminals. Let ε > 0 be a parameter. Let M be a subgraph of G. For each
face F of M , we define a brick B as the planar subgraph of G embedded inside the
face, including the boundary edges of F . We denote the interior of B as the brick
without the boundary edges of F . We call M a mortar graph of G if, for every
brick B, its boundary in counter-clockwise order is the concatenation of four paths
WestB, SouthB, EastB, NorthB (the subscript B is omitted when it is clear from
the context), such that:

1. The interior of B is non-empty;

2. Every terminal of Q that is in B is either on North or on South;

3. North is a path of minimum weight in B, and every proper subpath of South
is a path of almost minimum weight in B, i.e., its weight is at most (1 + ε)
times the minimum weight of a path in B between its endpoints;

4. There exist an integer k = O(1/ε3) and vertices s0, . . . , sk ordered from left to
right along South such that, for any vertex x on the segment South[si, si+1),
the weight of the segment South[si, x] is less than ε times the minimum weight
of a path in B between x and North.

Lemma 9.2.2 ([22]). Let G be a planar graph with edge-weights. Let Q ⊆ V be a
set of terminals. Let T be a connected subgraph of G that spans every terminal of
Q. Let ε > 0 be a parameter. There is a polynomial-time algorithm that computes
a mortar graph M of G (see Definition 9.2.1) such that:

1. weight(M) = O(weight(T) /ε);

2. ∑brick B weight(EastB ∪WestB) = O(ε · weight(T)).

9.2.2 Two-Edge-Connected Augmentation
In the construction of the mortar graph for two-edge-connected augmentation, we
take additional care because of the edges of R. Definition 9.2.3 and Lemma 9.2.4
are the counterparts of Definition 9.2.1 and Lemma 9.2.2.

9.2. Brick Decomposition 77

Definition 9.2.3 (Mortar Graph and Bricks). Let G be a plane graph with edge-
weights. Let R be a subset of E[G]. Let ε > 0 be a parameter. Let M be a subgraph
of G. For each face F of M , we define a brick B as the planar subgraph of G
embedded inside the face, including the boundary edges of F . We denote the interior
of B as the brick without the boundary edges of F . We call M a mortar graph of G
if, for every brick B, its boundary in counter-clockwise order is the concatenation
of four paths WestB, SouthB, EastB, NorthB (the subscript B is omitted when it
is clear from the context), such that:

1. The interior of B is non-empty;

2. Every edge of R that is in B is on North;

3. South is a path of minimum weight in B, and every proper subpath of North
is a path of almost minimum weight in B, i.e., its weight is at most (1 + ε)
times the minimum weight of a path in B between its endpoints;

4. There exist an integer k = O(1/ε4) and vertices s0, . . . , sk ordered from left to
right along South such that, for any vertex x on the segment South[si, si+1),
the weight of the segment South[si, x] is less than ε times the minimum weight
of a path in B between x and North.

Lemma 9.2.4 (Mortar-Graph Lemma). Let G be a planar graph with edge-weights.
Let R be a subset of E[G]. Let T be a connected subgraph of G that contains every
edge of R. Let ε > 0 be a parameter. There is a polynomial-time algorithm that
computes a mortar graph M of G (see Definition 9.2.3) such that:

1. weight(M) = O(weight(T) /ε);

2. ∑brick B weight(EastB ∪WestB) = O(ε2 · weight(T)).

Remark. There are several differences between the mortar graph for Steiner tree
and that for two-edge-connected augmentation:

• Property 2 of Definition 9.2.3 requires that edges of R appear only on the
North boundaries of bricks. This can be achieved by requiring that edges of
R appear only on the North boundaries of strips during the construction.
See [22, 60] for the details of the decomposition into strips.

• Compared with Definition 9.2.1, South and North in Property 3 of Defini-
tion 9.2.3 are swapped. Indeed, the distinction between South and North is
not important in the construction of bricks [22].

• The parameter k in Property 4 of Definition 9.2.3 is O(1/ε4) instead of O(1/ε3)
in Definition 9.2.1. Therefore, the bound in Property 2 of Lemma 9.2.4 is
O(ε2 · weight(T)) instead of O(ε · weight(T)) in Lemma 9.2.2.

78 Chapter 9. Techniques

• The brick decomposition in [22] requires that T is a tree. However, this
condition can be generalised so that T can be any connected subgraph [12].

9.3 Framework of Approximation Schemes
The approximation schemes in planar graphs for Steiner tree [20, 22], Steiner
forest [13], two-edge-connected survivability [20, 21], TSP [20], and multiway cut [12]
all use the brick decomposition technique, and have a similar framework which
we now summarize. First, the algorithm finds an O(1)-approximate solution and
builds a mortar graph. Next, it does Breadth-First Search (BFS) on the dual of
the mortar graph, and selects a mod-η residue j∗ such that edges whose levels are
congruent to j∗ have total weight at most 1/η times the weight of the mortar graph.
It commits to including these edges in the ultimate solution; this decomposes the
graph into subinstances each consisting of at most η levels of bricks. Note that
a planar graph consisting of at most η BFS levels has branchwidth at most 2η,
i.e., can be recursively decomposed into clusters of edges such that each cluster
has at most 2η boundary vertices. For each subinstance, it finds a near-optimal
solution by dynamic programming. Finally, it returns the union of the solutions
for all subinstances.

Remark. In the approximation scheme for Steiner forest [13] or for multiway
cut [12], there is an additional preprocessing step of PC partition (see Section 9.1),
which reduces an instance to subinstances. This step ensures that each subinstance
admits a connected subgraph with relatively small weight, on which a mortar graph
is built. The above framework is then applied to each subinstance.

As a concrete example, we briefly review the approximation scheme for Steiner
tree in [22]. It first computes a 2-approximate Steiner tree T using a Minimum
Spanning Tree (MST). Next, it uses the algorithm Augment-Connected (Al-
gorithm 9.3), which receives a planar graph G, a set of terminals Q, a connected
subgraph T , and ε > 0, and outputs a near-optimal Steiner tree spanning Q in G.

9.4 Doubling Brick Boundaries
In this section, we describe the operation of doubling brick boundaries, which
consists of adding to the graph artificial copies of the South, East, and West
boundaries of bricks, and zero-weight edges between corresponding vertices. This
is a technical detail to prevent annoying special cases in the Structure Theorem
(Theorem 10.3.1).

2There are additional cares to ensure that the output is connected.

9.4. Doubling Brick Boundaries 79

Algorithm 9.3 Augment-Connected(G,Q, T, ε), see [22]
1: Compute a mortar graph M of G based on Q, T , and ε (Lemma 9.2.2).
2: Do BFS in the planar dual M∗ starting from an arbitrary vertex r. Define the

level of a vertex of M∗ as its BFS distance from r. Let Ei denote the set of
edges of M∗ whose two endpoints are at level i and level i+ 1, respectively. Let
η = Θ(1/ε3). For every j ∈ [0, η − 1], let Ej be the union of Ei over all levels
i such that i ≡ j (mod η). Let j∗ ∈ [0, η − 1] be the index which minimizes
weight(Ej).

3: For every connected component C of M∗ \ Ej∗ , let GC be the subgraph of G
consisting of the bricks corresponding to V [C]. Find a near-optimal Steiner
tree in GC by dynamic programming.

4: Return the union of all Steiner trees in the previous step.2

B
East

South

West

North

=⇒

B
East

South

West

North

Figure 9.1: Doubling the West, South, and East boundaries of B. The new edges
between vertices and their copies have weight 0.

Let G be a plane graph with edge-weights. Let M be its mortar graph. Let
P = p0, · · · , p` (` ≥ 1) be any boundary of a brick B. The operation of doubling
the boundary P is defined as follows. For every vertex u ∈ P \ {p0, p`}, create a
copy u′, and add an edge uu′ of weight 0;3 for every edge uv on P , add an edge
u′v′ of the same weight as that of uv; and for every edge uv ∈ P × (B \P), replace
the edge uv by an edge u′v of the same weight. The result of doubling the West,
South, and East boundaries of a brick B is given in Figure 9.1. We denote West′,
South′, and East′ as the copies of West, South, and East.

Let H be the graph obtained from G by doubling the West, South, and East
boundaries of every brick. By the definition of mortar graph (Definition 9.2.3),
West, South, and East do not contain edges of R, so no edge of R is duplicated.
We observer that the mortar graph of H is inherited from that of G.

3To simplify the notation, we define p′
0 := p0 and p′

` := p`.

80 Chapter 9. Techniques

Lemma 9.4.1 (Boundary-Doubling Lemma). A two-edge-connected augmentation
for (G,R) can be transformed into a two-edge-connected augmentation for (H,R)
in linear time without increasing the weight, and vice versa.

Proof. A solution for (G,R) can be transformed into a solution for (H,R) by
including all edges vv′, which have weight 0. Conversely, a solution S ′ for (H,R)
can be transformed into a solution S for (G,R) as follows: for every boundary edge
uv of a brick, uv is included in S if at least one of uv and u′v′ is S ′.

9.5 Sphere-Cut Decomposition
We consider a special kind of branch decomposition of plane graphs, called a
sphere-cut decomposition (see [37]): A noose of a plane graph is a Jordan curve that
intersects only vertices of the graph and not edges. A sphere-cut decomposition
of width w is a family of non-crossing nooses each intersecting at most w vertices;
the nooses form a binary tree by the enclosure relation, each leaf noose encloses
exactly one edge, and each edge is enclosed by a leaf noose. For each noose in the
sphere-cut decomposition, we refer to the set of edges enclosed as a cluster.

Lemma 9.5.1 (Sphere-Cut Lemma). Let G be a plane graph whose dual graph has
diameter k. Then G has a sphere-cut decomposition of width at most 2k and this
decomposition can be computed in linear time.

The proof of this lemma is a straightforward adaptation from the proof of
Lemma 14.6.1 in [61]: We only need to replace the branch decomposition by the
sphere-cut decomposition in that proof.

Chapter 10

Approximation Scheme

In this chapter, we prove Theorem 7.3.2, which we rewrite as follows:

Theorem 10.0.1 (Main Theorem). Let G be a plane graph with edge-weights. Let
R be a subset of E[G]. Let ε > 0 be a parameter. The algorithm Augment(G,R, ε)
(Algorithm 10.1) computes in polynomial time a two-edge-connected augmentation
S for (G,R) such that weight(S) ≤ (1 + ε)OPT (G,R).

10.1 Preprocessing
In this section, we reduce the instance of two-edge-connected augmentation to
subinstances such that every subinstance admits a connected skeleton of relatively
small weight, and that the subinstances can be solved (almost) independently. To
prove the Main Theorem, it is then sufficient to prove a related version (Theo-
rem 10.1.1), where we are given in addition a connected subgraph T that contains
every edge of R.

Theorem 10.1.1 (Augmentation Theorem). Let G be a plane graph with edge-
weights. Let R be a subset of E[G]. Let T be a connected subgraph of G that
contains every edge of R. Let ε > 0 be a parameter. The algorithm Augment-
Connected(G,R, T, ε) (Algorithm 10.2) computes in polynomial time a two-edge-
connected augmentation S for (G,R) such that

weight(S) ≤ (1 + ε)OPT (G,R) + ε2 · weight(T) .

We defer the proof of the Augmentation Theorem to later sections, and first show
how it implies the Main Theorem. We note that a connected subgraph containing
every edge of R might be much more expensive than OPT (see Figure 10.1).

82 Chapter 10. Approximation Scheme

e1

e2

e3

e4

e5 e6

e7

e8

Figure 10.1: In the example, G consists of the edges e1, . . . , e8 and R =
{e1, e2, e3, e4}. Suppose that e7 and e8 have much higher weights compared with
e5 and e6. Then the optimal two-edge-connected augmentation would be {e5, e6}.
However, any Steiner tree connecting the edges of R must include one of the edges
e7 and e8.

Algorithm 10.1 Augment(G,R, ε), see Theorem 10.0.1
1: (T1, . . . , Tk)← PC-Partition(G,R, ε/7) . Theorem 9.1.3
2: for i← 1 to k do
3: Ri ← R ∩ Ti
4: Si ← Augment-Connected(G,Ri, Ti, ε/7) . Theorem 10.1.1
5: return (⋃i Si) \R

Applying the Augmentation Theorem to the initial instance would not lead to an
approximation scheme. That is why we need to reduce the instance to almost
independent subinstances. To achieve this, we use the PC-Partition subroutine
(Section 9.1).

Proof of the Main Theorem using the Augmentation Theorem. From the Augmen-
tation Theorem and the Partition Theorem (Theorem 9.1.3), the output of Algo-
rithm 10.1 is a two-edge-connected augmentation for (G,R).

For each instance (G,Ri), by the Augmentation Theorem, we have

weight(Si) ≤ (1 + ε/7)OPT (G,Ri) + (ε/7)2 · weight(Ti) .

Summing the above inequality over i, and again using the Partition Theorem, we
deduce that the weight of the output solution is at most (1 + ε)OPT (G,R).

In the rest of this chapter, we will prove the Augmentation Theorem.

10.2 New Use of Brick Decomposition
For all previous approximation schemes using the brick decomposition, the key was
the structure property, which says that there exists a near-optimal solution that

10.2. New Use of Brick Decomposition 83

Figure 10.2: The rectangle is a brick. The solid curves represent parts of a near-
optimal solution. The dashed curves represent a u1-to-v1 Jordan curve and a
u2-to-v2 Jordan curve inside the brick.

crosses the boundary of any brick only a bounded number of times.1 However, that
property is not achievable for two-edge-connected augmentation, and this is the
main difficulty in using the brick decomposition.

Instead, we show that, after a transformation of the instance (namely, the
boundary doubling operation in Section 9.4), we have:

New Structure Property. There exists a near-optimal solution such that, for
any brick and any two vertices u, v on the boundary of the brick, there is a u-to-v
Jordan curve inside the brick that crosses the near-optimal solution only a bounded
number of times.2

This is illustrated in Figure 10.2. To prove the new structure property, we add
boundary cycles and reduce nesting inside each brick. See Section 10.3.

To make use of the new structure property, we combine it with the sphere-cut
decomposition (Section 9.5). Recall that in the general framework of approximation
schemes (Section 9.3), each subinstance contains a bounded number of brick levels,
so its mortar graph has a branch decomposition of bounded width. We observe that
the branch decomposition here has the special form of a sphere-cut decomposition:
each cluster of edges is precisely the set of edges enclosed by a Jordan curve J that
intersects the mortar graph a bounded number of times. This is where the new
structure property comes in: each segment of J traversing a brick can be replaced
by a curve that intersects the near-optimal solution a bounded number of times.

1The bound depends on ε.
2The bound depends on ε.

84 Chapter 10. Approximation Scheme

Algorithm 10.2 Augment-Connected(G,R, T, ε), see Theorem 10.1.1
1: Compute a mortar graph M of G based on R, T , and ε (Lemma 9.2.4).
2: Do BFS in the planar dual M∗ starting from an arbitrary vertex r. Define the

level of a vertex of M∗ as its BFS distance from r. Let Ei denote the set of
edges of M∗ whose two endpoints are at level i and level i+ 1, respectively. Let
η = Θ(1/ε3). For every j ∈ [0, η − 1], let Ej be the union of Ei over all levels
i such that i ≡ j (mod η). Let j∗ ∈ [0, η − 1] be the index which minimizes
weight(Ej).

3: Let H be the graph obtained from G by doubling East, South, and West
boundaries of every brick (See Section 9.4).

4: For every connected component C of M∗ \ Ej∗ , let HC be the subgraph of H
consisting of the bricks corresponding to V [C]. Find a near-optimal two-edge-
connected augmentation in HC by dynamic programming.

5: Return the union of all two-edge-connected augmentations in the previous step.

This yields a new Jordan curve J ′ that has a bounded number of intersections with
the near-optimal solution.

The above properties enable us to design a dynamic program (DP), see Sec-
tion 10.4. For each cluster of the sphere-cut decomposition, the DP enumerates
all possible intersections of the unknown near-optimal solution with the partially
unknown Jordan curve J ′. The DP also enumerates all possible connectivity struc-
tures of the part of the near-optimal solution inside J ′. Note that there may be
some edges of the graph that are in the parent cluster but not in the child clusters,
so the DP must do a bit of extra work to go from tables for the children to the
table for the parent (see Section 10.4.2).

The algorithm for the Augmentation Theorem is given in Algorithm 10.2.
Compared with Algorithm 9.3 (for Steiner tree), the brick decomposition is slightly
different (see Section 9.2); the boundary doubling operation is new (see Section 9.4);
and the dynamic program is novel (see Section 10.4), because it is based on the
new structure property.

10.3 Structure Theorem
The Structure Theorem is the key to the approximation scheme for two-edge-
connected augmentation. It is a slight generalization of the new structure property
in Section 10.2.

Theorem 10.3.1 (Structure Theorem). Let G be a plane graph with edge-weights.
Let R be a subset of E[G]. Let ε > 0 be a parameter. Let M be the mortar graph

10.3. Structure Theorem 85

u

v

Figure 10.3: The rectangle is a brick. The solid lines represent the modified solution
inside the brick. The u-to-v curve (dashed) has few crossings with the solution.

of G. Let H be the graph obtained from G by doubling the South, East, and West
boundaries of every brick.

For any two-edge-connected augmentation S0 for (H,R), there is a two-edge-
connected augmentation S for (H,R) such that:

• weight(S) ≤ (1 + ε)weight(S0) + 4∑brick B weight(EastB ∪WestB);

• For any brick and any two vertices u, v on the boundary of the brick, there is
a u-to-v Jordan curve inside the brick that has O(1/ε4) crossings with S, all
occurring at vertices.

The proof of the Structure Theorem consists in modifying the initial solution so
that any pair of vertices on the boundary of a brick can be connected by a curve
that has few crossings with the modified solution. Figure 10.3 shows the kind of
curve we use. It starts at a given vertex u on the brick boundary, traverses the
nesting containing u, then bypasses the South-to-North connections using South
cycles (cycles formed by parts of the South boundary and their duplicates), and
finally traverses the nesting containing v to reach the given vertex v on the brick
boundary. In order to achieve a small number of crossings, we must ensure that
the size of a nesting is small and that only a small number of South cycles are used
to bypass the South-to-North connections.

The construction of the solution S works on each brick in turn, modifying the
initial solution S0 inside that brick. The key to prove the Structure Theorem is
the following Structure Proposition, which can be viewed as a local version of the
Structure Theorem.

Proposition 10.3.2 (Structure Proposition). Let S be any two-edge-connected
augmentation for (H,R). Let B be a brick in H. Let F be the set of edges of S that

86 Chapter 10. Approximation Scheme

P0
P2

P1

x0x2 x1 sk0+1
sk2+1 sk1

sk1+1
sk0

q1

q2

Figure 10.4: Extracted from [22]. The North and South boundaries are indicated
by horizontal lines. The paths P0, P1, and P2 are indicated by thick gray lines.

are in the interior of B. Then there is a set of edges F3 in B with the following
properties:

Feasibility: (S \ F) ∪ F3 is a two-edge-connected augmentation for (H,R);

Near-Optimality: weight(F3) ≤ (1 + ε)weight(F) + 4weight(EastB ∪WestB);

Bounded-Crossings Property: For any two vertices u, v on the boundary of
the brick B, there is a u-to-v Jordan curve inside the brick that has O(1/ε4)
crossings with F3, all occurring at vertices.

Proof of the Structure Theorem using the Structure Proposition. Let S be initial-
ized as S0. For each brick B of H in turn, we update S using (S\F)∪F3, where F is
the set of edges of S that are in the interior of B, and F3 is the set of edges obtained
from the Structure Proposition. The final S is again a two-edge-connected augmen-
tation for (H,R), and the Bounded-Crossings Property is satisfied in every brick.
The weight of S is at most (1 + ε)weight(S0) + 4∑brick B weight(EastB ∪WestB),
by noting that the sets F ’s during the transformation are disjoint subsets of S0.

In the rest of this section, we prove the Structure Proposition.

10.3.1 Construction
We focus on a brick B in H. To construct F3 from F in the Structure Proposition,
there are three steps as follows.

Step 1: Modify F into F1 by Adding East and West Cycles. We add to F
all the edges on the two cycles East◦East′ and West◦West′, where East′ and
West′ are the copies of the East and West boundaries during the boundary
doubling operation (see Section 9.4), and we remove from F all the edges
inside the two cycles.

10.3. Structure Theorem 87

Prune the result by removing unnecessary edges that are in the interior of
the brick. Thus we obtain a forest. Let F1 be the result.

Step 2: Modify F1 into F2 by Adding South Cycles. First, we greedily de-
fine a collection of disjoint South-to-North paths P0, . . . , Pt using the approach
in [22]: Let s0, . . . , sk be the vertices along South defined in Definition 9.2.3.
Let P0 be the easternmost path in F1 from South to North. Assume Pi is a
path from some segment South[sj, sj+1) to North. Then Pi+1 is defined to
be the easternmost path in F1 from South[s0, sj) to North that does not go
through any vertices of Pi. See Fig. 10.4. Let t be the last index for which Pt
is defined. Note that t ≤ k = O(1/ε4).

Some associated notations: xi is the start vertex of Pi; ki is the integer j such
that xi ∈ South[sj, sj+1); x′i and s′ki are the copies of xi and ski on South′; Hi

is the subgraph of F1 that is strictly enclosed by Pi, Pi+1, and the segments
of South and North.

For each i ∈ [0, t], we add to F1 the cycle Ci = South[ski , xi] ◦ xix′i ◦
South′[x′i, s′ki] ◦ s

′
ki
ski . The cycles {Ci}i are called South cycles. See Fig-

ure 10.5. We remove from F1 all the edges inside every Ci.

Prune the result by removing unnecessary edges that are in the interior of
the brick and do not belong to any Pi. Thus we obtain a forest. Let F2 be
the result.

Step 3: Modify F2 into F3 by Reducing Nesting. A South arch A is a path
in F2 whose endpoints u and v are on South and whose other vertices are all
strictly in the interior of the brick. The u-to-v path along South is called the
base of A. We define the subgraph (strictly) enclosed by A as the subgraph
induced by the edges of F2 that are (strictly) inside the cycle A ◦ base(A).
For a South arch A, the South arch-emptying operation is to add to F2 the
edges on the base of A, and to remove from F2 the edges in subgraph strictly
enclosed by A. We define the depth of South arches by induction: For every
maximally enclosing South arch, its depth is 0; For every South arch A of
depth d (d ≥ 0), consider the subgraph strictly enclosed by A, and define
the depth of every maximally enclosing South arch in this subgraph to be
d+ 1. In the construction of the solution, we apply the South arch-emptying
operation to every South arch at depth κ := d1/εe. See Figure 10.6.

Similarly, we define North arch and North arch-emptying operation, except
that since the North boundary may contain edges from R, in the North
arch-emptying operation, instead of adding all the edges of the u-to-v path
along North, we add the edges of the u-to-v path along North that are not

88 Chapter 10. Approximation Scheme

sk1 x1 sk0 x0

=⇒

sk1 x1 sk0 x0

Figure 10.5: Adding South cycles (in bold) into the solution.

Southd1/εe

=⇒

Southd1/εe

Figure 10.6: Reducing nesting: when the solution contains more than d1/εe nested
paths, we add a piece of the South boundary (in bold) and empty the cycle thus
created.

in R (since the solution is supposed to be an augmentation of R). Again, we
apply the North arch-emptying operation to every North arch at depth κ.

Prune the result by removing unnecessary edges that are in the interior of
the brick. Thus we obtain a forest. Let F3 be the result. We similarly define
arch and depth in the subgraph F3.

10.3.2 Analysis
In this section, we prove the Structure Proposition.

Proof of Feasibility. The edges that are removed during the construction of
F3 are either unnecessary edges or edges inside cycles. From the following lemma,
(S \ F) ∪ F3 is a two-edge-connected augmentation for (H,R).

Lemma 10.3.3 ([21]). Let S be a two-edge-connected augmentation for (H,R).
Let C be a non-self-crossing cycle of S strictly enclosing no edge of R. Let S ′ be
the subset of S obtained by removing the edges of S that are strictly enclosed by C.
Then S ′ is again a two-edge-connected augmentation for (H,R).

10.3. Structure Theorem 89

Proof of Near-Optimality. The following lemma bounds the costs of arch-
emptying operations with respect to some maximally enclosing arch A0.
Lemma 10.3.4. Let A0 be a maximally enclosing arch in F2. Let F2(A0) (resp.
F3(A0)) be the subgraph of F2 (resp. F3) enclosed by A0. We have:

weight(F3(A0))− weight(F2(A0)) ≤ 2ε · weight(F2(A0)) .

Proof. For every 1 ≤ i ≤ κ, define Ai as the set of depth-i arches in F2(A0). Let
A = ⋃

1≤i≤κAi. Since the arch emptying operations are applied to arches of depth
κ, weight(F3(A0)) − weight(F2(A0)) is at most ∑A∈Aκ weight(base(A)). We only
need to bound the latter term by at most 2ε · weight(F2(A0)).

Every A ∈ Aκ is enclosed by exactly κ arches from A: one from each Ai. We
charge the weight of base(A) to each of the κ arches. Thus the total charge for all
A ∈ Aκ is κ∑A∈Aκ weight(base(A)).

On the other hand, an arch A′ ∈ A is charged of weight(base(A)) at each arch
A ∈ Aκ in the subgraph enclosed by A′. Notice that the bases of these arches
are disjoint sub-segments of base(A′). Thus the total weight of these bases is at
most the weight of base(A′), which is at most (1 + ε)weight(A′) by the definition
of mortar graph (Definition 9.2.3). Thus we have:

κ
∑
A∈Aκ

weight(base(A)) ≤
∑
A′∈A

(1 + ε) · weight(A′) ≤ (1 + ε) · weight(F2(A0)) .

Therefore, ∑A∈Aκ weight(base(A)) ≤ 2ε · weight(F2(A0)), as required.

Now we bound the weight of F3. First, since F1 is obtained from F by adding
the East and West boundaries and their copies East′ and West′, we have:

weight(F1) ≤ weight(F) + 2weight(EastB ∪WestB) . (10.1)

Next, from the definition of mortar graph, for every i, weight(South[ski , xi]) ≤
ε · weight(Pi). Thus the weight of the South cycle Ci is at most 2ε · weight(Pi).
Since {Pi}i are disjoint paths in F1,

∑
i weight(Pi) ≤ weight(F1). Therefore, we

have:
weight(F2) ≤ (1 + 2ε)weight(F1) . (10.2)

Finally, we apply Lemma 10.3.4 to all maximally enclosing arches. Observe that
every edge of F2 is enclosed by at most one maximally enclosing North arch and
by at most one maximally enclosing South arch. Therefore, we have:

weight(F3) ≤ (1 + 4ε) · weight(F2) . (10.3)

Combining Equations (10.1), (10.2), (10.3), we have:

weight(F3) ≤ (1 + 7ε)(weight(F) + 2weight(EastB ∪WestB)).

The statement follows by replacing ε by ε′ = ε/7.

90 Chapter 10. Approximation Scheme

Proof of Bounded-Crossing Property.

Definition 10.3.5. For any two vertices u, v of the brick, consider a u-to-v Jordan
curve inside the brick that has the minimum number of crossings with F3, all
occurring at vertices. Define the distance measure δ(u, v) as the number of crossings
between F3 and this curve (excluding u and v). For a vertex u of the brick and a
subset X of vertices of the brick, define δ(u,X) = minv∈X δ(u, v). For two subsets
X and Y of vertices of the brick, define δ(X, Y) = minu∈X,v∈Y δ(u, v).

We rewrite the Bounded-Crossings Property as follows: for every vertices u, v
on the boundary of the brick, δ(u, v) = O(1/ε4).

Fact 10.3.6. For every vertices u, v, w of the brick, δ(u,w) ≤ δ(u, v) + δ(v, w) + 1.

Fact 10.3.7. The nodes of the East cycle (resp. the West cycle) are on the same
face in F3, and the nodes of any South cycle are on the same face in F3.

Step 1 of the construction enables us to reduce the general case that u, v ∈
South ∪West ∪ North ∪ East to the case that u, v ∈ South ∪ North. To see this,
let u, v be any boundary vertices. We note that u is on the same face as some
vertex from South ∪ North: when u is on East (resp. West), from Fact 10.3.7, u
is on the same face as the intersection vertex of East (resp. West) and South, so
δ(u, South ∪ North) = 0. Similarly, δ(v, South ∪ North) = 0. Thus δ(u, v) is at
most 2 plus the distance between a pair of vertices from South ∪ North. To prove
the Bounded-Crossing Property, it only remains to prove Lemma 10.3.8 as follows.

Lemma 10.3.8. For any vertices u, v on South ∪ North, δ(u, v) = O(1/ε4).

To prove Lemma 10.3.8, we need Lemmas 10.3.10, 10.3.13 and 10.3.14. Lem-
mas 10.3.10 and 10.3.14 are based on Lemma 10.3.9.

Lemma 10.3.9. Let A be any arch in F3. Let u be any vertex on the base of A.
We have δ(u,A) = O(1/ε).

Proof. Consider a set of arches {Ai}0≤i≤` in F3 as follows: A0 is A, and for every
i ≥ 1, Ai is the maximal enclosing arch in the subgraph strictly enclosed by Ai−1
such that u ∈ base(Ai). Let ` be the last index for which A` is defined. From
Step 3 of the construction, ` = O(1/ε). Let u` ∈ A` be a vertex that is on the same
face in F3 as u. For every i = `− 1, . . . , 0, there exists some vertex in Ai that is
on the same face in F3 as ui+1; let this vertex be ui. Then u0 ∈ A is such that
δ(u, u0) ≤ ` = O(1/ε).

Lemma 10.3.10. For every vertex u ∈ North, δ(u, South) = O(1/ε).

10.3. Structure Theorem 91

Proof. If u is not on the base of any North arch, then u is on the same face in F3 as
some vertex from South, because there is no path in F3 that starts at an internal
vertex of East or West (from Step 1 of the construction). Thus δ(u, South) = 0.

If u is on the base of some North arch, let A be the maximally enclosing North
arch in F3 such that u ∈ base(A). By Lemma 10.3.9, there exists some vertex v
on the arch A such that δ(u, v) = O(1/ε). Using a similar argument as for the
previous case, we deduce that v is on the same face in F3 as some vertex from
South. Therefore, δ(u, South) = O(1/ε).

xi+1 xiski

Pi+1 Pi

v

(a)

xi+1 xiski

Pi+1 Pi

v

(b)

xi+1 xiski

Pi+1 Pi

(c)

Figure 10.7: The dashed paths are forbidden from the construction of Pi+1.

92 Chapter 10. Approximation Scheme

Fact 10.3.11. For any i < t, the subgraph Hi contains at most one path that starts
from an internal vertex of Pi+1 and goes eastwards; and if such path exists, it must
end in some node of South[ski , xi]∪Pi. (Figs. 10.7a and 10.7b are forbidden cases.)

Corollary 10.3.12. Every vertex w on Pi has δ(w, xi) ≤ 1.

Lemma 10.3.13. For every i < t, δ(xi+1, xi) ≤ 2.

Proof. From definition of Pi+1, we observe that xi+1 is on the same face in Hi

as some node from South[ski , xi] ∪ Pi (Figs. 10.7b and 10.7c are forbidden cases),
let this node be w. If w ∈ South[ski , xi], then w is on the same face in F3 as xi
(Fact 10.3.7), so δ(xi+1, xi) ≤ 1; and if w ∈ Pi, then δ(w, xi) ≤ 1 (Corollary 10.3.12),
so δ(xi+1, xi) ≤ 2.

Lemma 10.3.14. For every vertex u ∈ South, mini δ(u, xi) = O(1/ε).

Proof. We observe that xt, . . . , x0 induce a partition of South. It is sufficient to show
that, for every i < t and for every vertex u ∈ South(xi+1, xi], δ(u, xi) = O(1/ε).

When u ∈ South[ski , xi], δ(u, xi) = 0 by Fact 10.3.7. Thus we only need to
consider vertices u ∈ South(xi+1, ski). Since δ(xi+1, xi) ≤ 2 (Lemma 10.3.13) and
every vertex w on Pi is such that δ(w, xi) ≤ 1 (Corollary 10.3.12), it is sufficient to
show that one of δ(u, xi+1) = O(1/ε) and δ(u, Pi) = O(1/ε) holds.

Based on Fact 10.3.11, we use a case-by-case analysis and define an arch A in
each case (see Fig. 10.8):

1. There is a path in Hi between an internal vertex of Pi+1 (let v be this vertex)
and South[ski , xi] ∪ Pi. There are two subcases:

1.1. There is a path in Hi between v and South[ski , xi]. Define A to be the
concatenation of this path and a segment of Pi+1.

1.2. There is a path in Hi between v and Pi. Define A to be the concatenation
of this path and segments of Pi and of Pi+1.

2. There is no path inHi between an internal vertex of Pi+1 and South[ski , xi]∪Pi.
Consider the maximally enclosing South arch containing u in F3. There are
two subcases depending on whether this arch intersects Pi:

2.1. This arch does not intersect Pi. Define A to be this arch.
2.2. This arch intersects Pi. Define A to be the concatenation of the part of

this arch in Hi and a segment of Pi.

10.3. Structure Theorem 93

xi+1 xiski

Pi+1 Pi

u

v

(a) Case 1.1

xi+1 xiski

Pi+1 Pi

u

v

(b) Case 1.2

xi+1 xiski

Pi+1 Pi

u

(c) Case 2.1

xi+1 xiski

Pi+1 Pi

u

(d) Case 2.2

Figure 10.8: For each case, the arch A is in bold.

94 Chapter 10. Approximation Scheme

In Cases 1.1 and 1.2, no internal vertex of A has connection to South in Hi, so
every vertex of A is on the same face as xi+1. In Case 2.1, again, every vertex of A
is on the same face as xi+1. In Case 2.2, every vertex of A is either on the same
face as xi+1 or belongs to Pi.

We conclude that in all cases, every vertex of A is either on the same face as xi+1
or belongs to Pi. Since u is on the base of A, δ(u,A) = O(1/ε) by Lemma 10.3.9.
Therefore, one of δ(u, xi+1) = O(1/ε) and δ(u, Pi) = O(1/ε) holds. This completes
the proof of the lemma.

Proof of Lemma 10.3.8. Let u, v be any vertices on South ∪ North. Let u1 (resp.
v1) be the vertex on South which minimizes δ(u, u1) (resp. δ(v, v1)). Then

δ(u, v) ≤ δ(u, u1) + δ(u1, v1) + δ(v1, v) + 2.

By Lemma 10.3.10, both δ(u, u1) and δ(v, v1) are O(1/ε). Thus we only need to
show that δ(u1, v1) = O(1/ε4).

Let i ≤ t be the index that minimizes δ(u1, xi), and let j ≤ t be the index that
minimizes δ(v1, xj). Then

δ(u1, v1) ≤ δ(u1, xi) + δ(xi, xj) + δ(xj, v1) + 2,

and

δ(xi, xj) ≤ |j − i|+
max(i,j)−1∑
`=min(i,j)

δ(x`, x`+1).

By Lemma 10.3.14, δ(u1, xi) = O(1/ε) and δ(v1, xj) = O(1/ε). By Lemma 10.3.13,
δ(x`, x`+1) ≤ 2 for every `. Recall that ` < t = O(1/ε4). Therefore, δ(u1, v1) =
O(1/ε4).

10.4 Dynamic Programming
In this section, we design a dynamic program (DP) to solve the two-edge-connected
augmentation problem on the instance (H,R), given that the dual of the mortar
graph has bounded diameter. From the Structure Theorem, in order to get a near-
optimal solution, we may restrict attention to solutions that satisfy the property
defined there. A dynamic program computes the best among all such solutions.

Theorem 10.4.1 (Dynamic-Programming Theorem). Let G be a plane graph with
edge-weights. Let R be a subset of E[G]. Let ε > 0 be a parameter. Let M be the
mortar graph of G. Let H be the graph obtained from G by doubling the South,
East, and West boundaries of every brick.

10.4. Dynamic Programming 95

Assume that the dual graph of M has diameter O(1/ε3). Then there is an
algorithm that computes in polynomial time a two-edge-connected augmentation S
for (H,R) such that:

weight(S) ≤ (1 + ε)OPT (H,R) + 4
∑

brick B
weight(EastB ∪WestB) .

10.4.1 Specification of DP Table
In this section, we define the index of the DP table and the value at an index.

By the Sphere-Cut Lemma (Lemma 9.5.1), M has a sphere-cut decomposition
SC of width O(1/ε3) which can be computed in linear time. The first index of the
DP table is a cluster E of SC, which is a subset of edges of M .

Let S0 ⊆ E[H] be the optimal two-edge-connected augmentation for (H,R).
Let S ⊆ E[H] be defined in the Structure Theorem (Theorem 10.3.1). Then S is a
two-edge-connected augmentation for (H,R) and its weight satisfies the property
in Theorem 10.4.1. We remove unnecessary edges from S to make it minimal. By
Lemma 8.2.2, every connected component in R ∪ S is two-edge-connected. For
every cluster E of SC, let JE be the noose enclosing E that has the minimum
number of crossings with R∪S (all occurring at vertices), breaking ties by choosing
the minimally enclosing one.3 It is easy to see that the family of nooses {JE}E∈SC
is non-crossing.

Lemma 10.4.2. For every cluster E of SC, JE has O(1/ε7) crossings with R ∪ S,
all occurring at vertices.

Proof. Since SC has width O(1/ε3), there is a noose enclosing E that has O(1/ε3)
intersections with M , all occurring at vertices. From one intersection to the next,
it goes across a single brick, and by the Structure Theorem (Theorem 10.3.1), the
part inside this brick can be replaced by a curve that has O(1/ε4) crossings with S
(all occurring at vertices), hence O(1/ε4) crossings with R ∪ S, since no edge of R
is in the interior of a brick. This results in a noose enclosing E that has O(1/ε7)
crossings with R ∪ S, all occurring at vertices.

Let Q∗ ⊆ V [H] denote the (unknown) set of the O(1/ε7) crossings between JE
and R∪S. The second index of the DP table is a subset Q ⊆ V [H] of size O(1/ε7).

Next, we need a concise representation of the connectivity structure of the
part of R ∪ S inside JE. Let RE (resp. Γ∗) denote the set of edges of R (resp. S)
that are inside JE. Define a forest F ∗0 as the result of contracting every two-edge-
connected component of RE ∪ Γ∗ into a node. A node of F ∗0 is called internal if

3Since the noose is a geometric object, it is not uniquely defined, but a discrete formulation
can be given using the face-vertex incidence graph (see [61]).

96 Chapter 10. Approximation Scheme

its corresponding two-edge-connected component in RE ∪ Γ∗ does not contain any
node from Q∗, i.e., the component is strictly inside JE. We then define a forest F ∗
from F ∗0 by removing internal nodes that are singletons and splicing out internal
nodes of degree 2. By the construction, F ∗ has at most |Q∗| non-internal nodes,
and every internal node has degree at least 3.4 Thus F ∗ has at most 2|Q∗| − 2
nodes. The third index of the DP table is a forest F of at most 2|Q| − 2 nodes.
Moreover, there is a map ψ∗ giving the natural many-to-one map from Q∗ to V [F ∗].
The fourth index of the DP table is a map ψ from Q to V [F]. To summarize, we
have the following definition.

Definition 10.4.3 (DP index). An index of the DP table, also called a DP index,
contains the following:

• E: a cluster of the sphere-cut decomposition SC;

• Q: a subset of V [H] of size O(1/ε7);

• F : a forest of size at most 2|Q| − 2;

• ψ: a map from Q to V [F].

We also define a partial DP index to be a triple (Q,F, ψ).5

Before defining the value at a DP index, we need the concept of consistency to
relate a solution Γ ⊆ E[H] with a DP index.

Definition 10.4.4 (consistency). Let (E,Q, F, ψ) be an index of the DP table.
We say that a subset Γ of E[H] is consistent with (E,Q, F, ψ) if, for every node
a ∈ V [F], there exists a connected subgraph Ha of RE ∪ Γ and, for every edge
ab ∈ E[F], there exists a simple path Iab in RE ∪ Γ connecting Ha and Hb such
that the following holds: (We note H = {Ha}a∈V [F] and I = {Iab}ab∈E[F].)

1. Every vertex u ∈ Q belongs to Hψ(u).

2. For every edge uv ∈ RE such that u and v are not two-edge-connected in
RE ∪ Γ, the edge uv belongs to exactly one Iab ∈ I and does not belong to
any Ha ∈ H.

Remark. In the definition, we only require that Ha is connected instead of being
two-edge-connected, because Ha may contain bridges that are not in RE due to the
merge operations, see Section 10.4.2.

4There cannot be internal nodes of degree 1, because R∪S is a collection of two-edge-connected
components.

5Note that the definition of (Q,F, ψ) is independent of E.

10.4. Dynamic Programming 97

E1 E2

Figure 10.9: The solid curves represent JE, JE1 , and JE2 : JE is the outermost
boundary; JE1 is the boundary of the white face on the left, and JE2 is the boundary
of the white face on the right. The dark areas belong to the hole region. The
dashed curves represent R ∪ S inside JE. The solid points represent the vertices
from Q∗ ∪Q∗1 ∪Q∗2.

We observe that Γ∗ is consistent with (E,Q∗, F ∗, ψ∗), and that any Γ that is
consistent with (M, ∅, ∅, ∅∅) is a two-edge-connected augmentation for (H,R).

For every DP index (E,Q, F, ψ), define its value DP (E,Q, F, ψ) as the minimum
weight among a family F of Γ’s that has the following properties:

1. Every Γ ∈ F is consistent with (E,Q, F, ψ); and

2. If (E,Q, F, ψ) = (E,Q∗, F ∗, ψ∗), then Γ∗ ∈ F .

In order to prove the Dynamic-Programming Theorem (Theorem 10.4.1), we only
need to find a polynomial-time algorithm to fill in the DP table and to output the
value DP(M, ∅, ∅, ∅∅). 6

10.4.2 From Children to Parent
Let E be a cluster of SC. Let E1 and E2 be its child clusters. Let Q∗, Q∗1, Q∗2 ⊆ V [H]
be the sets of intersections of R ∪ S with JE, JE1 , JE2 . The hole region in JE is the
area inside JE but outside JE1 and JE2 in the plane.7 See Figure 10.9. We observe
that the hole region cannot contain edges from R.

Let Γ̂∗ denote the set of edges of S in the hole region. Let Q̂∗ denote the set of
intersections of S with the boundary of the hole region. We have Q̂∗ ⊆ Q∗∪Q∗1∪Q∗2.

6The DP outputs the value of a solution, not the solution itself; but it is easy to enrich the
DP in the standard manner so that it also outputs the solution achieving the value.

7Note that JE , JE1 , and JE2 are non-crossing.

98 Chapter 10. Approximation Scheme

Thus |Q̂∗| = O(1/ε7). Similar to Section 10.4.1, the connectivity structure of Γ̂∗
can be represented by a forest F̂ ∗ of size at most 2|Q̂∗| − 2 together with a map ψ̂∗
from Q̂∗ to V [F̂ ∗].

We use a side table T to compute solutions in hole regions. This table is indexed
by a partial DP index (Q̂, F̂ , ψ̂). The concept of consistency (Definition 10.4.4) can
be extended to the hole region by letting (E,Q, F, ψ) be (∅, Q̂, F̂ , ψ̂). The value
T (Q̂, F̂ , ψ̂) is defined as the minimum weight among all consistent Γ̂’s.

Definition 10.4.5 (compatibility). Let (Q1, F1, ψ1), (Q2, F2, ψ2), and (Q̂, F̂ , ψ̂) be
partial DP indexes. We say that a partial DP index (Q,F, ψ) is compatible with
(Q1, F1, ψ1), (Q2, F2, ψ2), and (Q̂, F̂ , ψ̂) if Q ⊆ Q1 ∪ Q2 ∪ Q̂ and if F and ψ are
the results of the following construction:

1. F is initialized as F1 ∪ F2 ∪ F̂ .

2. For every vertex u ∈ Q1 ∩Q2, merge the nodes ψ1(u) and ψ2(u) in F . Idem
for every vertex u ∈ Q1 ∩ Q̂ and every vertex u ∈ Q2 ∩ Q̂. Let ψ : Q→ F be
the natural extension from ψ1, ψ2, and ψ̂.

3. Contract two-edge-connected components in F . Update ψ accordingly.

4. Modify F by removing internal nodes that are singletons and splicing out
internal nodes of degree 2.8 In this step, ψ is unchanged.

Fact 10.4.6. (Q∗, F ∗, ψ∗) is compatible with (Q∗1, F ∗1 , ψ∗1), (Q∗2, F ∗2 , ψ∗2), and (Q̂∗, F̂ ∗, ψ̂∗).

Lemma 10.4.7. Let (Q1, F1, ψ1), (Q2, F2, ψ2), and (Q̂, F̂ , ψ̂) be partial DP indexes,
and let (Q,F, ψ) be a compatible partial DP index. If Γi ⊆ E[H] is consistent with
(Ei, Qi, Fi, ψi), for each i ∈ {1, 2}, and Γ̂ ⊆ E[H] is consistent with (∅, Q̂, F̂ , ψ̂),
then Γ = Γ1 ∪ Γ2 ∪ Γ̂ is consistent with (E,Q, F, ψ).

Proof. For each i ∈ {1, 2}, since Γi is consistent with (Ei, Qi, Fi, ψi), we obtain two
families of subgraphs Hi and Ii according to Definition 10.4.4. Similarly, since Γ̂ is
consistent with (∅, Q̂, F̂ , ψ̂), we obtain two families of subgraphs Ĥ and Î. From
the definition of compatibility, we have Q ⊆ Q1 ∪ Q2 ∪ Q̂ and that F and ψ are
the results of the construction in Definition 10.4.5. To show that Γ is consistent
with (E,Q, F, ψ), first, we build two families of subgraphs H and I along the line
of that construction.

1. H is initialized as H1 ∪H2 ∪ Ĥ, and I is initialized as I1 ∪ I2 ∪ Î.
8A node a in F is internal if a /∈ ψ(Q).

10.4. Dynamic Programming 99

2. For every vertex u ∈ Q1 ∩ Q2, let H ′ be the concatenation of Hψ1(u) and
Hψ2(u) at the vertex u. Update H by H ∪ {H ′} \ {Hψ1(u), Hψ2(u)}. Idem for
every vertex u ∈ Q1 ∩ Q̂ and every vertex u ∈ Q2 ∩ Q̂.

3. Consider the forest F at the beginning of Step 3 of the construction. For
every two-edge-connected component A in F , let H ′ be the union of the
subgraphs Ha, for all a ∈ V [A], and of the subgraphs Iab, for all ab ∈ E[A].
Update H by H ∪ {H ′} \ {Ha}a∈V [A] and update I by I \ {Iab}ab∈E[A].

4. Consider the forest F at the beginning of Step 4 of the construction. For
every internal node a ∈ V [F] that is a singleton, we remove Ha from H. For
every internal node a ∈ V [F] of degree 2, let b and c be its neighbors in F .
Let u ∈ Ha be the vertex on the path Iba, and let v ∈ Ha be the vertex on
the path Iac. Since Ha is connected, there is a path P in Ha connecting u
and v. Let Ibc = Iba ◦P ◦ Iac. We remove unnecessary edges from Ibc to make
it a simple path. Remove Ha from H, and update I by I ∪ {Ibc} \ {Iba, Iac}.

Next, we prove that Γ is consistent with (E,Q, F, ψ) using H and I constructed
above. The non-trivial part is to show that, for every edge uv ∈ RE such that u
and v are not two-edge-connected in RE ∪ Γ, it belongs to exactly one subgraph in
I and does not belong to any subgraph in H. Assume without loss of generality
that uv ∈ RE1 . Obviously, u and v are not two-edge-connected in RE1 ∪ Γ1, so uv
belongs to exactly one subgraph in I1 (let this subgraph be Ie where e ∈ E[F1])
and does not belong to any subgraph in H1. In Step 1 of the construction, we have
Ie ∈ I. We claim the following: Ie is not merged into some subgraph in Step 3
of the construction. This claim then implies the lemma statement, because from
the claim, in the end of the construction, either Ie ∈ I or there is some (unique)
Ibc ∈ I that is the concatenation of Ie and other segments. Therefore, uv belongs to
exactly one subgraph in I and does not belong to any subgraph in H, as required.

It only remains to show the above claim. We prove by contradiction. Suppose
there is some subgraph H ′ in Step 3 of the construction that contains Ie. Let A
be the corresponding two-edge-connected component in F . Both endpoints of e
are in A, so there exists a cycle in A that contains the edge e; let it be a1, . . . , ak.
(Define ak+1 = a1 and ak+2 = a2 for convenience.) We construct a simple cycle
C in H ′ that contains the edge uv as follows. For every i ∈ [1, k], let Iaiai+1 be
the path connecting Hai and Hai+1 . For every i ∈ [2, k + 1], let xi ∈ Hai be the
vertex on the path Iai−1ai and let yi ∈ Hai be the vertex on the path Iaiai+1 . Since
Hai is connected, there is a path connecting xi and yi in Hai ; let it be Pi. Let C
be the concatenation of Ia1a2 , P2, Ia2a3 , P3, · · · , Iak,ak+1 , Pk+1. Then C is a cycle in
H ′ that contains uv.9 Therefore u and v are two-edge-connected in H ′ ⊆ RE ∪ Γ,

9The cycle C is not necessary simple, however, we can transform it into a simple cycle by

100 Chapter 10. Approximation Scheme

contradiction. Thus we proved the claim, and hence we concluded the proof of the
lemma.

10.4.3 Implementation
Preprocessing. First, the algorithm fills in the side table T during the pre-
processing. Note that any minimal Γ̂ ⊆ E[H] that is consistent with (Q̂, F̂ , ψ̂)
contains no cycle. Therefore, for every node a ∈ V [F̂], the subgraph Ha (see
Definition 10.4.4) contains a single vertex in H; let this vertex be ua. To compute
the value T (Q̂, F̂ , ψ̂), the algorithm enumerates, for every a ∈ V [F̂], the vertex ua
among V [H]. For every ab ∈ E[F̂], it computes a minimum-weight path between
ua and ub in H \R. Let Γ̂ be the union of the above paths. The value T (Q̂, F̂ , ψ̂)
is the minimum weight of all Γ̂’s during the enumeration. The overall running time
of the preprocessing is polynomial.

Base Case in DP. Consider a cluster E = {uv}. The partial DP index
(Q∗, F ∗, ψ∗) must be one of the two configurations:(QA, FA, ψA), when uv ∈ R ∪ S

(QB, FB, ψB), when uv /∈ R ∪ S

Here QA = {u, v}; FA is a forest containing two nodes a and b and an edge ab; ψA
maps u to a and v to b; QB = ∅; FB = ∅; and ψB = ∅∅.

If uv ∈ R, we set DP (E,QA, FA, ψA) = 0 and set DP (E,QB, FB, ψB) to be
∞; and if uv /∈ R, we set DP (E,QB, FB, ψB) = 0 and set DP (E,QA, FA, ψA) to
be the minimum weight of a u-to-v path in H \R.

Recursive Case in DP. The algorithm fills in the DP table in the order of the
index E from bottom up in SC. Consider a cluster E = E1∪E2, where E1, E2 ∈ SC.
To compute the value at a DP index (E,Q, F, ψ), the algorithm enumerates every
combination of (Q1, F1, ψ1), (Q2, F2, ψ2), and (Q̂, F̂ , ψ̂) that are compatible with
(Q,F, ψ), and let DP (E,Q, F, ψ) be

min
{
DP (E1, Q1, F1, ψ1) +DP (E2, Q2, F2, ψ2) + T (Q̂, F̂ , ψ̂)

}
.

From Fact 10.4.6 and Lemma 10.4.7, both properties of the DP value (see
Section 10.4.1) follow by induction.

removing unnecessary edges. We note that uv appears exactly once on C, because it appears in
exactly one Iaiai+1 and in none of Pi (since it does not belong to any Ha). So uv remains in the
cycle after removing unnecessary edges from C.

10.5. Putting Them Together 101

10.5 Putting Them Together
In this section, we prove the Augmentation Theorem.

Theorem 10.1.1 (Augmentation Theorem). Let G be a plane graph with edge-
weights. Let R be a subset of E[G]. Let T be a connected subgraph of G that
contains every edge of R. Let ε > 0 be a parameter. The algorithm Augment-
Connected(G,R, T, ε) (Algorithm 10.2) computes in polynomial time a two-edge-
connected augmentation S for (G,R) such that

weight(S) ≤ (1 + ε)OPT (G,R) + ε2 · weight(T) .

By the Boundary Doubling Lemma (Lemma 9.4.1), two-edge-connected aug-
mentations for (G,R) and for (H,R) are equivalent. Thus we only need to show
that the output S is a two-edge-connected augmentation for (H,R) such that

weight(S) ≤ (1 + ε)OPT (H,R) + ε2 · weight(T) .

Let C be a connected component of M∗ \ Ej∗ in Algorithm 10.2. Let HC be
the subgraph of H consisting of the bricks corresponding to V [C]. Let MC be the
mortar graph of HC , which consists of the boundaries of the bricks corresponding
to V [C].10 Let RC = R ∩ HC . From Lemma 8.9 in [22], the dual graph of MC

has diameter O(1/ε3). Thus we can apply the Dynamic-Programming Theorem
(Theorem 10.4.1) and obtain in polynomial time a two-edge-connected augmentation
SC for (HC , RC) such that

weight(SC) ≤ (1 + ε)OPT (HC , RC) + 4
∑

brick B in HC

weight(EastB ∪WestB) ,

and the output S of the algorithm is the union of SC over all components C.
Summing the above inequality over C, we have:

weight(S) ≤ (1 + ε)
∑
C

OPT (HC , RC) + 4
∑

brick B in H

weight(EastB ∪WestB) .

We note that ∑C OPT (HC , RC) ≤ OPT (H,R) + weight(Ej∗), where weight(Ej∗) ≤
(1/η)weight(M) = O(ε2 ·weight(T)) using the Mortar-Graph Lemma (Lemma 9.2.4).
Again from the Mortar-Graph Lemma,∑brick B in H weight(EastB ∪WestB) = O(ε2 ·
weight(T)). Therefore, we have:

weight(S) ≤ (1 + ε)OPT (H,R) +O(ε2 · weight(T)).

The statement follows by replacing ε by ε′ = ε/K for some absolute constant K
that is large enough.

10MC is called a parcel in the terminology of [22].

Chapter 11

Conclusion

Main Results. For planar graphs, we have provided a reduction from correlation
clustering to two-edge-connected augmentation, mainly based on planar duality.
Next, we have designed a polynomial-time approximation scheme for the latter
problem. The scheme is based on the brick decomposition from [22]. In order to
design a dynamic program to compute a near-optimal solution, we have proved a
new structure property on bricks:

New Structure Property. There exists a near-optimal solution such that, for
any brick and any two vertices u, v on the boundary of the brick, there is a u-to-v
Jordan curve inside the brick that crosses the near-optimal solution only a bounded
number of times.1

We hope that the new structure property can be used to give approximation
schemes for other problems.

An Open Problem. Recall the two-edge-connected Steiner subgraph problem
mentioned in Section 7.2.2. In this problem, we are given a subset Q ⊆ V of
terminals, and we want to find a minimum-weight subgraph such that all terminals
from Q are two-edge-connected in this subgraph. For the special case when Q is the
set of all vertices, this becomes the two-edge-connected spanning subgraph problem,
which, in planar graphs, is NP-hard [39] and admits a PTAS [17]. Berger and
Grigni [17] raised the question of whether there is a PTAS for the Steiner version of
the problem in planar graphs. Borradaile and Klein [21] solved the relaxed version
when the solution is allowed to contain multiple copies of each edge:

1The bound depends on ε.

104 Chapter 11. Conclusion

[21] We answer that question in the affirmative for the relaxed version. The
question in the case of the strict version is still open.

Let us focus on the strict version of the problem, i.e., when every edge can
be included at most once in the solution. We try to solve this problem using the
new structure property. The obstacle is that, if we only specify the set of crossing
vertices of the Jordan curve with the near-optimal solution as an DP index (as
was the case in Section 10.4.1), there is no way to ensure that the solutions on
different sides of the Jordan curve do not share edges. This does no harm in
the two-edge-connected augmentation problem, because the solution is allowed to
contain several two-edge-connected components. However, in this problem, the
solution should be a single two-edge-connected component. Sharing edges is not
allowed on different sides of a Jordan curve. Therefore, for every u and v on the
boundary of the same brick, we need to encode the u-to-v Jordan curve more
precisely. Of course, taking the complete Jordan curve requires too much memory.
Hence the open question: Is there a concise encoding of the u-to-v Jordan curve
inside the brick so that the solutions on different sides of the curve are disjoint?

Other Open Problems. There are many problems that we do not know whether
they have approximation schemes in planar graphs, such as facility location, vehicle
routing, vertex-weighted Steiner tree, and directed Steiner tree. It would be interest-
ing to try to design approximation schemes for these problems by developing new
structure properties on bricks, as has been done in our work.

List of Publications

[A] Sampath Kannan, Claire Mathieu, and Hang Zhou. Near-linear query com-
plexity for graph inference. In Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), 2015.

[B] Philip Klein, Claire Mathieu, and Hang Zhou. Correlation clustering and
two-edge-connected augmentation for planar graphs. In Proceedings of the
Symposium on Theoretical Aspects of Computer Science (STACS), 2015.

[C] Marc Lelarge and Hang Zhou. Sublinear-time algorithms for monomer-dimer
systems on bounded degree graphs. In Theoretical Computer Science (TCS),
548:68-78, 2014. A preliminary version appears in Proceedings of the Interna-
tional Symposium on Algorithms and Computation (ISAAC), 2013.

[D] Claire Mathieu and Hang Zhou. Graph reconstruction via distance oracles.
In Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), 2013.

Bibliography

[1] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On
the bias of traceroute sampling: or, power-law degree distributions in regular
graphs. Journal of the ACM (JACM), 56(4):21, 2009.

[2] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: Ranking and clustering. Journal of the ACM, 55(5), 2008.

[3] Sharon Alpert, Meirav Galun, Ronen Basri, and Achi Brandt. Image segmenta-
tion by probabilistic bottom-up aggregation and cue integration. In Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[4] Amir Alush and Jacob Goldberger. Ensemble segmentation using efficient
integer linear programming. Pattern Analysis and Machine Intelligence,
34(10):1966–1977, 2012.

[5] Amir Alush and Jacob Goldberger. Break and conquer: Efficient correlation
clustering for image segmentation. In Similarity-Based Pattern Recognition,
volume 7953, pages 134–147. Springer, 2013.

[6] Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Kothe, and Fred A.
Hamprecht. Probabilistic image segmentation with closedness constraints. In
International Conference on Computer Vision, pages 2611–2618. IEEE, 2011.

[7] Dana Angluin and Jiang Chen. Learning a hidden graph using O(log n) queries
per edge. In Learning Theory, pages 210–223. Springer, 2004.

[8] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved
routing strategies with succinct tables. Journal of Algorithms, 11(3):307–341,
1990.

[9] Baruch Awerbuch and David Peleg. Routing with polynomial communication-
space trade-off. SIAM Journal on Discrete Mathematics, 5(2):151–162, 1992.

108 BIBLIOGRAPHY

[10] Yoram Bachrach, Pushmeet Kohli, Vladimir Kolmogorov, and Morteza Zadi-
moghaddam. Optimal coalition structure generation in cooperative graph
games. In Conference on Artificial Intelligence, 2013.

[11] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56(1-3):89–113, 2004.

[12] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Philip N. Klein, and
Claire Mathieu. A polynomial-time approximation scheme for planar multiway
cut. In Symposium on Discrete Algorithms, pages 639–655. SIAM, 2012.

[13] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx.
Approximation schemes for Steiner forest on planar graphs and graphs of
bounded treewidth. Journal of the ACM, 58(5):21, 2011.

[14] Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael
Hoffmann, Matús Mihal’ak, and L. Shankar Ram. Network discovery and
verification. IEEE Journal on Selected Areas in Communications, 24(12):2168–
2181, 2006.

[15] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6(3/4):281–297, 1999.

[16] Fabrice Benhamouda. Personal communication, 2014.

[17] A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning sub-
graphs in planar graphs. In International Colloquium on Automata, Languages
and Programming, volume 4596, pages 90–101, 2007.

[18] Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and
clique trees. In Graph theory and sparse matrix computation, pages 1–29.
Springer, 1993.

[19] Sebastian Böcker and Jan Baumbach. Cluster editing. In The Nature of
Computation. Logic, Algorithms, Applications, volume 7921, pages 33–44.
Springer, 2013.

[20] Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. Polynomial-time
approximation schemes for subset-connectivity problems in bounded-genus
graphs. Algorithmica, 68(2):287–311, 2014.

[21] Glencora Borradaile and Philip N. Klein. The two-edge connectivity survivable
network problem in planar graphs. International Colloquium on Automata,
Languages and Programming, pages 485–501, 2008.

BIBLIOGRAPHY 109

[22] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log n)
approximation scheme for Steiner tree in planar graphs. ACM Transactions
on Algorithms, 5(3):31, 2009.

[23] Mathilde Bouvel, Vladimir Grebinski, and Gregory Kucherov. Combinatorial
search on graphs motivated by bioinformatics applications: A brief survey. In
Graph-Theoretic Concepts in Computer Science, pages 16–27. Springer, 2005.

[24] Gerth Stølting Brodal, Rolf Fagerberg, Christian N.S. Pedersen, and Anna
Östlin. The complexity of constructing evolutionary trees using experiments.
In International Colloquium on Automata, Languages and Programming, vol-
ume 28, page 140. Springer, 2001.

[25] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Network
tomography: recent developments. Statistical Science, 19:499–517, 2004.

[26] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering
with qualitative information. Journal of Computer and System Sciences,
71(3):360–383, 2005.

[27] Gary Chartrand and Frank Harary. Planar permutation graphs. Annales de
l’institut Henri Poincaré (B) Probabilités et Statistiques, 3(4):433–438, 1967.

[28] Daniel Chen, Leonidas J. Guibas, John Hershberger, and Jian Sun. Road
network reconstruction for organizing paths. In SODA, pages 1309–1320, 2010.

[29] Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for
finding graphs. In STOC, pages 749–758. ACM, 2008.

[30] F. Chung, M. Garrett, R. Graham, and D. Shallcross. Distance realization
problems with applications to internet tomography. Journal of Computer and
System Sciences, 63:432–448, 2001.

[31] William W. Cohen and Jacob Richman. Learning to match and cluster large
high-dimensional data sets for data integration. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 475–480. ACM, 2002.

[32] Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algo-
rithms, 38(1):170–183, 2001.

[33] Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost k-
connected spanning subgraph problem. In Symposium on Discrete Algorithms,
pages 281–290. SIAM, 1999.

110 BIBLIOGRAPHY

[34] Luca Dall’Asta, Ignacio Alvarez-Hamelin, Alain Barrat, Alexei Vázquez, and
Alessandro Vespignani. Exploring networks with traceroute-like probes: Theory
and simulations. Theoretical Computer Science, 355(1):6–24, 2006.

[35] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Corre-
lation clustering in general weighted graphs. Theoretical Computer Science,
361(2):172–187, 2006.

[36] Reinhard Diestel. Graph Theory. Electronic library of mathematics. Springer,
2006.

[37] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Effi-
cient exact algorithms on planar graphs: Exploiting sphere cut decompositions.
Algorithmica, 58(3):790–810, 2010.

[38] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with
low stretch factor. Journal of Algorithms, 46(2):97–114, 2003.

[39] Kapali P. Eswaran and R. Endre Tarjan. Augmentation problems. SIAM
Journal on Computing, 5(4):653–665, 1976.

[40] Pierre Fraigniaud and Cyril Gavoille. Memory requirement for universal
routing schemes. In Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing, pages 223–230. ACM, 1995.

[41] Greg N. Frederickson and Joseph Ja’Ja’. Approximation algorithms for several
graph augmentation problems. SIAM Journal on Computing, 10(2):270–283,
1981.

[42] Anna Galluccio and Guido Proietti. A faster approximation algorithm for
2-edge-connectivity augmentation. In International Symposium on Algorithms
and Computation, pages 150–162, 2002.

[43] Cyril Gavoille and Marc Gengler. Space-efficiency for routing schemes of
stretch factor three. Journal of Parallel and Distributed Computing, 61(5):679
– 687, 2001.

[44] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggre-
gation. ACM Transactions on Knowledge Discovery from Data, 1(1), 2007.

[45] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed
number of clusters. In Theory of Computing, pages 1167–1176. ACM, 2006.

BIBLIOGRAPHY 111

[46] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, É. Tardos, and
D. P. Williamson. Improved approximation algorithms for network design
problems. In Symposium on Discrete Algorithms, SODA ’94, pages 223–232.
SIAM, 1994.

[47] Michel X. Goemans and David P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1995.

[48] Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs
under the additive model. Algorithmica, 28(1):104–124, 2000.

[49] Jotun J Hein. An optimal algorithm to reconstruct trees from additive distance
data. Bulletin of Mathematical Biology, 51(5):597–603, 1989.

[50] Shinichi Honiden, Michael E. Houle, and Christian Sommer. Balancing graph
voronoi diagrams. In ISVD, pages 183–191. IEEE, 2009.

[51] Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica, 21(1):39–60, 2001.

[52] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of computer and system sciences, 9(3):256–278, 1974.

[53] Raja Jothi, Balaji Raghavachari, and Subramanian Varadarajan. A 5/4-
approximation algorithm for minimum 2-edge-connectivity. In Symposium on
Discrete algorithms, pages 725–734. SIAM, 2003.

[54] Sampath K. Kannan, Eugene L. Lawler, and Tandy J. Warnow. Determining
the evolutionary tree using experiments. Journal of Algorithms, 21(1):26 – 50,
1996.

[55] Ming-Yang Kao, Andrzej Lingas, and Anna Östlin. Balanced randomized tree
splitting with applications to evolutionary tree constructions. In STACS 99,
pages 184–196. Springer, 1999.

[56] Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for
graph augmentation. Journal of Algorithms, 14(2):214–225, 1993.

[57] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph
carvings. Journal of the ACM, 41(2):214–235, 1994.

[58] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo.
Higher-order correlation clustering for image segmentation. In Advances in
Neural Information Processing Systems, pages 1530–1538, 2011.

112 BIBLIOGRAPHY

[59] Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-
based evolutionary tree reconstruction. In SODA, pages 444–453. SIAM,
2003.

[60] Philip N. Klein. A subset spanner for planar graphs: with application to
subset TSP. In Symposium on Theory of Computing, pages 749–756. ACM,
2006.

[61] Philip N. Klein and Shay Mozes. Optimization algorithms for planar graphs.
In preparation, manuscript at http://planarity.org.

[62] Philip N. Klein and R. Ravi. When cycles collapse: A general approximation
technique for constrained two-connectivity problems. In Integer Programming
and Combinatorial Optimization, pages 39–55, 1993.

[63] Mathias Bæk Tejs Knudsen. Personal communication, 2014.

[64] Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approxi-
mation for vertex-connectivity network design problems. SIAM Journal on
Computing, 33(3):704–720, 2004.

[65] David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to
detect natural image boundaries using local brightness, color, and texture cues.
Pattern Analysis and Machine Intelligence, 26(5):530–549, 2004.

[66] Claire Mathieu and Warren Schudy. Correlation clustering with noisy input.
In Symposium on Discrete Algorithms, pages 712–728, 2010.

[67] Hanna Mazzawi. Optimally reconstructing weighted graphs using queries. In
SODA, pages 608–615. SIAM, 2010.

[68] Brendan D McKay and Nicholas C Wormald. Asymptotic enumeration by
degree sequence of graphs with degrees o(n1/2). Combinatorica, 11(4):369–382,
1991.

[69] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM (JACM), 36(3):510–530, 1989.

[70] Bruce A. Reed. Algorithmic aspects of tree width. In Recent advances in
algorithms and combinatorics, pages 85–107. Springer, 2003.

[71] Mauricio Resende and Panos Pardalos. Handbook of optimization in telecom-
munications. Springer, 2008.

BIBLIOGRAPHY 113

[72] Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries
with a focus on edge counting. In Algorithmic Learning Theory, pages 285–297.
Springer, 2007.

[73] Lev Reyzin and Nikhil Srivastava. On the longest path algorithm for re-
constructing trees from distance matrices. Information processing letters,
101(3):98–100, 2007.

[74] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidef-
inite programming. In Symposium on Discrete Algorithms, pages 526–527.
SIAM, 2004.

[75] Fabien Tarissan, Matthieu Latapy, and Christophe Prieur. Efficient measure-
ment of complex networks using link queries. In INFOCOM Workshops, pages
254–259. IEEE, 2009.

[76] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Symposium on
Parallel Algorithms and Architectures, pages 1–10. ACM, 2001.

[77] M.S. Waterman, T.F. Smith, M. Singh, and W.A. Beyer. Additive evolutionary
trees. Journal of Theoretical Biology, 64(2):199 – 213, 1977.

[78] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazi-
rani. A primal-dual approximation algorithm for generalized Steiner network
problems. Combinatorica, 15(3):435–454, 1995.

[79] Julian Yarkony, Alexander Ihler, and Charless C Fowlkes. Fast planar correla-
tion clustering for image segmentation. In European Conference on Computer
Vision, volume 7577, pages 568–581. Springer, 2012.

	Acknowledgements
	Prologue
	I Network Inference
	Introduction
	Background
	The Problem
	Related Work
	Our Results
	Notations and Definitions
	Organization

	Voronoi Cell Decomposition
	Technique from Compact Routing
	Reconstruction via a Distance Oracle
	Subroutine: Selecting Centers
	Algorithm and Analysis

	Verification via a Distance Oracle
	Subroutine: Selecting Centers
	Algorithm and Analysis

	Greedy Algorithms
	Verification via a Distance Oracle
	Reconstruction via a Shortest Path Oracle

	Decomposition by Separators
	Preliminaries
	Reconstruction of Chordal Graphs
	Subroutine: Computing a Shortest Path
	Subroutine: Partitioning by a Set
	Algorithm and Analysis

	Reconstruction of Outerplanar Graphs
	Subroutine: Partitioning by a Polygon
	Algorithm and Analysis

	Verification of Treewidth Bounded Graphs
	Warm up: Chordal Graphs
	Extension: Graphs of Bounded Treewidth

	Side Results
	Lower Bounds
	General Graphs
	Graphs of Bounded Degree

	Approximate Reconstruction

	Conclusion

	II Planar Graph Optimization
	Introduction
	Correlation Clustering
	The Problem
	Related Work

	Two-Edge-Connected Augmentation
	The Problem
	Related Work

	Our Results
	Notations and Definitions
	Organization

	Reduction from Clustering to Augmentation
	First Stage
	Second Stage

	Techniques
	Prize-Collecting Partition
	Steiner Forest
	Two-Edge-Connected Augmentation

	Brick Decomposition
	Steiner Tree
	Two-Edge-Connected Augmentation

	Framework of Approximation Schemes
	Doubling Brick Boundaries
	Sphere-Cut Decomposition

	Approximation Scheme
	Preprocessing
	New Use of Brick Decomposition
	Structure Theorem
	Construction
	Analysis

	Dynamic Programming
	Specification of DP Table
	From Children to Parent
	Implementation

	Putting Them Together

	Conclusion

	List of Publications
	Bibliography

