N

N

Graph Algorithms: Network Inference and Planar
Graph Optimization
Hang Zhou

» To cite this version:

Hang Zhou. Graph Algorithms: Network Inference and Planar Graph Optimization. Computational
Geometry [cs.CG]. Ecole Normale Superieure, 2015. English. NNT: . tel-01174514v1

HAL Id: tel-01174514
https://theses.hal.science/tel-01174514v1
Submitted on 9 Jul 2015 (v1), last revised 20 Apr 2018 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01174514v1
https://hal.archives-ouvertes.fr

ili
ENS

THESE DE DOCTORAT

présentée et soutenue publiquement
le 6 juillet 2015
en vue de 'obtention du grade de

Docteur de I'Ecole normale supérieure
Spécialité : Informatique

par

Hang ZHOU

Graph Algorithms:

Network Inference and
Planar Graph Optimization

Membres du jury :

M. Cyril GAVOILLE (Université de Bordeaux, France) rapporteur
M. Frédéric HAVET (CNRS, INRIA Sophia-Antipolis, France) examinateur
M. Philip N. KLEIN (Brown University, USA) examinateur
M. Marc LELARGE (INRIA, ENS Paris, France) examinateur
Mme Claire MATHIEU (CNRS, ENS Paris, France) directrice
M. Christophe PAuL (CNRS, LIRMM, France) examinateur
M. Stéphan THOMASSE (ENS Lyon, France) examinateur

Autre rapporteur :
M. Artur CzuMAJ (University of Warwick, UK)

Unité mixte de recherche 8548 : Département d’Informatique de 'Ecole normale supérieure
Ecole doctorale 386 : Sciences mathématiques de Paris Centre






Résumé

Cette these porte sur deux sujets d’algorithmique des graphes.

Le premier sujet est I'inférence de réseaux. Quelle est la complexité pour
déterminer un graphe inconnu a partir de requétes de plus court chemin entre
ses sommets 7 Nous supposons que le graphe est de degré borné. Dans le prob-
leme de reconstruction, le but est de reconstruire le graphe ; tandis que dans le
probleme de wvérification, le but est de vérifier qu'un graphe donné est correct.
Nous développons des algorithmes probabilistes utilisant une décomposition en
cellules de Voronoi. Ensuite, nous analysons des algorithmes de type glouton, et
montrons qu’ils sont quasi-optimaux. Nous étudions aussi ces problemes sur des
familles particulieres de graphes, démontrons des bornes inférieures, et étudions la
reconstruction approximative.

Le deuxieme sujet est 1’étude de deux problemes d’optimisation sur les graphes
planaires. Dans le probleme de classification par corrélations, 'entrée est un graphe
pondéré, ot chaque aréte a une étiquette (+) ou (—), indiquant si ses extrémités sont
ou non dans la méme catégorie. Le but est de trouver une partition des sommets en
catégories qui respecte au mieux les étiquettes. Dans le probleme d’augmentation
2-aréte-conneze, 'entrée est un graphe pondéré et un sous-ensemble R des arétes.
Le but est de trouver un sous-ensemble S des arétes de poids minimum, tel que pour
chaque aréte de R, ses extrémités sont dans une composante 2-aréte-connexe de
I'union de R et S. Pour les graphes planaires, nous réduisons le premier probleme
au deuxieme et montrons que les deux problémes, bien que NP-durs, ont un schéma
d’approximation en temps polynomial. Nous utilisons la technique récente de
décomposition en briques.






Abstract

This thesis focuses on two topics of graph algorithms.

The first topic is network inference. How efficiently can we find an unknown
graph using shortest path queries between its vertices? We assume that the graph
has bounded degree. In the reconstruction problem, the goal is to find the graph;
and in the verification problem, the goal is to check whether a given graph is
correct. We provide randomized algorithms based on a Voronoi cell decomposition.
Next, we analyze greedy algorithms, and show that they are near-optimal. We also
study the problems on special graph classes, prove lower bounds, and study the
approximate reconstruction.

The second topic is optimization in planar graphs. We study two problems.
In the correlation clustering problem, the input is a weighted graph, where every
edge has a label of (+) or (—), indicating whether its endpoints are in the same
category or in different categories. The goal is to find a partition of the vertices into
categories that tries to respect the labels. In the two-edge-connected augmentation
problem, the input is a weighted graph and a subset R of edges. The goal is to
produce a minimum-weight subset S of edges, such that for every edge in R, its
endpoints are two-edge-connected in the union of R and S. For planar graphs, we
reduce correlation clustering to two-edge-connected augmentation, and show that
both problems, although they are NP-hard, have a polynomial-time approximation
scheme. We build on the brick decomposition technique developed recently.






Contents

Acknowledgements

Prologue

I Network Inference

1 Introduction
1.1 Background . . . . .. . ...
1.2 The Problem . . . . . . . . . . ...
1.3 Related Work . . . . . . . . . ...
1.4 OurResults . . . .. .. . .. ...
1.5 Notations and Definitions . . . . . . . . . .. ... ... ... ...
1.6 Organization . . . . . . . .. . ...

2 Voronoi Cell Decomposition
2.1 Technique from Compact Routing . . . . . .. ... ... ... ...
2.2 Reconstruction via a Distance Oracle . . . . . ... ... ... ...
2.2.1 Subroutine: Selecting Centers . . . . . . . . ... ... ...
2.2.2  Algorithm and Analysis . . . . . .. ... ... .. .....
2.3 Verification via a Distance Oracle . . . . . . . ... ... ... ...
2.3.1 Subroutine: Selecting Centers . . . . . . .. ... ... ...
2.3.2  Algorithm and Analysis . . . . . .. ... ... ... ....

3 Greedy Algorithms
3.1 Verification via a Distance Oracle . . . . . . . . . . . . .. .. ...
3.2 Reconstruction via a Shortest Path Oracle . . . . . . . .. ... ..



viii CONTENTS

4 Decomposition by Separators
4.1 Preliminaries . . . . . . . ... Lo
4.2  Reconstruction of Chordal Graphs . . . . . . . ... ... ... ...
4.2.1 Subroutine: Computing a Shortest Path . . . . .. ... ..
4.2.2  Subroutine: Partitioning by a Set . . . . ... ... ...
4.2.3 Algorithm and Analysis . . . . ... ... .. ... ... ..
4.3 Reconstruction of Outerplanar Graphs . . . . . .. . .. ... ...
4.3.1 Subroutine: Partitioning by a Polygon . . . . . .. ... ..
4.3.2  Algorithm and Analysis . . . . ... ... ... ... ...
4.4  Verification of Treewidth Bounded Graphs . . . . . . . . .. .. ..
4.4.1 Warm up: Chordal Graphs . . . . . . ... ... ... ....
4.4.2 Extension: Graphs of Bounded Treewidth . . . . .. .. ..

5 Side Results
5.1 Lower Bounds . . . . . .. . .. ... .. .. ... ...
5.1.1 General Graphs . . . . . . . ...
5.1.2  Graphs of Bounded Degree . . . . . . . ... ... ... ...
5.2 Approximate Reconstruction . . . . . . .. .. ... ... ... ...

6 Conclusion

II Planar Graph Optimization

7 Introduction
7.1 Correlation Clustering . . . . . .. .. .. ... ... ... .....
7.1.1 The Problem . . . . . . ... .. ... ... ... ...
7.1.2 Related Work . . . . . . . ...
7.2 Two-Edge-Connected Augmentation . . . . . . . ... .. ... ...
7.2.1 The Problem . . . . . . . ... .. ... ... ... ...
7.2.2 Related Work . . . . . . . ..o
7.3 OurResults . . . ... ... . ...
7.4 Notations and Definitions . . . . . . . . . . ... ... ... ...
7.5 Organization . . . . .. .. ..

8 Reduction from Clustering to Augmentation
81 First Stage . . . . . . . .
8.2 Second Stage . . . . ...

33
33
34
34
35
38
41
41
44
46
47
48

49
49
49
49
50

55

59

61
61
61
63
64
64
65
65
66
67



CONTENTS ix
9 Techniques 73
9.1 Prize-Collecting Partition . . . . . . ... ... ... . ... .... 73
9.1.1 Steiner Forest . . . . . . . . .. ... 73

9.1.2 Two-Edge-Connected Augmentation . . . . . . . .. .. ... 74

9.2 Brick Decomposition . . . . .. ... .o 76
9.2.1 Steiner Tree . . . . . . . ... 76

9.2.2 Two-Edge-Connected Augmentation . . . . . . . .. .. ... 77

9.3 Framework of Approximation Schemes . . . . ... ... ... ... 78
9.4 Doubling Brick Boundaries . . . . . . ... ... . L. 79
9.5 Sphere-Cut Decomposition . . . . . . .. ... ... ... ... .. 80

10 Approximation Scheme 83
10.1 Preprocessing . . . . . . . . . ..o 83
10.2 New Use of Brick Decomposition . . . . . .. ... ... ... ... 84
10.3 Structure Theorem . . . . . . . . .. . ... ... ... ... .. 86
10.3.1 Construction . . . . . .. .. ... oo 88

10.3.2 Analysis . . . . . .. 90

10.4 Dynamic Programming . . . . . . . . .. . ... ... ... 96
10.4.1 Specification of DP Table . . . . . ... ... ... ..... 97

10.4.2 From Children to Parent . . . . . . ... ... .. ... ... 99

10.4.3 Implementation . . . . . .. ... ... ... L. 101

10.5 Putting Them Together . . . . . . . .. ... . ... ... .. ... 102

11 Conclusion 105
List of Publications 107
Bibliography 109






Acknowledgements

Research is like the journey to the West, a Chinese legend from the Tang dynasty.
I would have probably gotten lost if not for all the help I have been offered. To all
the people I list here, and to all those I have forgotten, thank you.

Mes premiers remerciements vont a ma directrice de these Claire Mathieu. Elle
est une directrice parfaite pour moi. Ses compétences et sa personnalité m’ont
beaucoup influencé pendant les trois ans. Quant a la recherche, elle m’a fait explorer
des sujets merveilleux, et en plus, elle m’a appris des éléments importants, comme
I'optimisme et l'insistance, pour conquérir les problemes difficiles. Elle m’a donné
une ambiance idéale: chaque fois apres avoir discuté de recherche avec elle, j’en
suis sortie tres heureuse. Elle m’a mis en contact avec de nombreux chercheurs, et
m’a donné beaucoup d’opportunités pour participer aux conférences. Lorsque j’ai
eu des difficultés en dehors de la recherche, elle s’est comportée comme une amie
pour m’aider. Grace a elle, les trois ans de these sont devenus les moments les plus
beaux de ma vie.

I would like to express my gratitude to Cyril Gavoille and Artur Czumaj who
took the time to review this thesis carefully. I feel extremely fortunate they accepted
to read, comment, and endorse my thesis. I am very grateful to the other members
of my thesis committee: Frédéric Havet, Philip N. Klein, Marc Lelarge, Christophe
Paul, and Stéphan Thomassé. I would also like to thank Fabrice Benhamouda who
proofread part of this thesis.

It was my great pleasure to collaborate with seasoned researchers. I am very
grateful to Marc Lelarge, who ignited my passion for algorithms, and taught me to
write my first research article; to Philip N. Klein, who led me to the amazing world
of planar graphs, and guided me as a mentor during my visit at Brown University;
to Sampath Kannan, who shared many thoughtful insights with me; and to Mikkel
Thorup, who invited me for a visit at University of Copenhagen. I would also like
to thank Fabrice Benhamouda, Sergio Cabello, Yixin Cao, Vincent Cohen-Addad,
Eric Colin de Verdiére, Jacob Holm, Howard J. Karloff, Valerie King, Mathias Baek
Tejs Knudsen, Tancrede Lepoint, Tian Liu, Arnaud de Mesmay, Nabil Mustafa,



2 CONTENTS

Thomas Sauerwald, He Sun, and Neal E. Young.

L’Ecole normale supérieure est un endroit charmant pour passer ces années. Je
suis trés heureuse d’étre dans le groupe Talgo avec Vincent Cohen-Addad, Eric
Colin de Verdiere, Varun Kanade, Reut Levi, Zhentao Li, Frederik Mallmann-Trenn,
Arnaud de Mesmay et Victor Verdugo. Je voudrais aussi remercier Patrick Cousot,
Jean Ponce, David Pointcheval, Lise-Marie Bivard, Isabelle Delais, Joélle Isnard,
Valérie Mongiat, Jacques Beigbeder, et la bibliotheque pour la qualité de leur
travail.

Je voudrais remercier mes amis, qui ont rendu ma vie colorée. Mes remerciements
spéciaux a Florent Urrutia, Marion Delehaye et Marie-Odile Faulconnier. Ils ont
partagé mes joies et mes tristesses, ils m’ont fait découvrir les paysages merveilleux
de France, et ils m’ont appris la phrase “C’est la vie”. Dans les jardins, Florent et
moi avons formalisé la vie avec la philosophie informatique ; sur la plage, Marion
et moi avons couru apres le cerf-volant au coucher du soleil ; et dans les Alpes,
Marie-Odile et moi avons écouté la nature qui invite a la méditation. Je remercie
aussi Antoine Amarilli, Samuel Bizien, Yoann Bourse, Floriane Dardard, Marc
Jeanmougin, Jie Lin, Robin Morisset, Ludovic Patey, Pablo Rauzy, Bin Xu, Xuhong
Zhang et Cheng Zhong.

Je remercie Paris, une ville unique du monde. C’est un paradis avec ses arts, sa
culture, sa gastronomie, son ambiance, etc. Je suis trés heureuse d’avoir passé ces
années a Paris.

Je remercie de tout mon cceur mes parents Qiuhua Xu et Ye Zhou qui m’ont
toujours aimée et soutenue. Je remercie aussi ma tante Yifei Yu qui a éclairé mon
chemin depuis mon enfance.

En dernier lieu, j'aimerais adresser un grand merci particulier & mon copain
Fabrice. Je n’irais pas bien loin s’il ne marchait pas a mes cotés. Je voudrais aussi
remercier sa famille pour son soutien.

Paris, June 2015



Prologue

The algorithm is a unique form of art. Unlike fine arts such as painting and dancing,
it has practical applications, yet can be just as expressive as Monet’s Water Lilies
or Tchaikovsky’s Swan Lake. It can be as ambitiously utilized by Turing to shorten
World War II in Europe, or as casually applied by a tourist to see as many fountains
as possible during the Grandes Faux Musicales spectacle at the Versailles Garden.

On the other hand, the graph attracts people’s interests since Euler’s time, such
as in the Seven Bridges of Konigsberg problem. It conveys the beauty of pure
mathematics, and at the same time improves our lives, for example, through its
applications to Internet networks.

This thesis is on two topics of algorithms for graphs: network inference and
planar graph optimization.







Part 1

Network Inference






CHAPTER 1

Introduction

1.1 Background

How efficiently can we find an unknown graph using distance or shortest path queries
between its vertices? This is a natural theoretical question from the standpoint of
recovery of hidden information. This question is related to the reconstruction of
Internet networks. Discovering the topology of the Internet is a crucial step for
building accurate network models and designing efficient algorithms for Internet
applications. Yet, this topology can be extremely difficult to find, due to the
dynamic structure of the network and to the lack of centralized control. Network
reconstruction has been studied extensively [1, 14, 34, 76]. Sometimes we have
some idea of what the network should be like, based perhaps on its state at some
time in the past, and we want to check whether our image of the network is correct.
This is network wverification and has received attention recently [14, 25]. This is
an important task for routing, error detection, or ensuring service-level agreement
(SLA) compliance, etc. For example, Internet service providers (ISPs) offer services
that require quality of service (QoS) guarantees, such as voice over IP services, and
thus need to check regularly whether the networks are correct.

The topology of Internet networks can be investigated at the router and au-
tonomous system (AS) level, where the set of routers (ASs) and their physical
connections (peering relations) are the vertices and edges of a graph, respectively.
Traditionally, we use tools such as traceroute and mtrace to infer the network
topology. These tools generate path information between a pair of vertices. It is a
common and reasonably accurate assumption that the generated path is the shortest
one, i.e., minimizes the hop distance between that pair. In our first theoretical
model, we assume that we have access to any pair of vertices and get in return a
shortest path between them in the graph. Sometimes routers block traceroute and



8 Chapter 1. Introduction

mtrace requests (e.g., due to privacy and security concerns). In this case, inference
of topology can only rely on delay information. In our second theoretical model,
we assume that we have access to any pair of vertices and get in return the hop
distance between them in the graph.

1.2 The Problem

Let G = (V, E) be a hidden graph that is connected, undirected, and unweighted,
where |V| = n. We consider two query oracles. A shortest path oracle receives a
pair (u,v) € V? and returns a shortest path between u and v.! A distance oracle
receives a pair (u,v) € V2 and returns the number of edges on a shortest path
between u and v.

In the graph reconstruction problem, we are given the vertex set IV and have
access to either a distance oracle or a shortest path oracle. The goal is to find every
edge in F.

In the graph verification problem, again we are given V and have access to
either oracle. In addition, we are given a connected, undirected, and unweighted
graph G = (v, E) The goal is to check whether G is correct, that is, whether
G =aG.

The efficiency of an algorithm is measured by its query complexity?, i.e., the
number of queries to an oracle. We focus on query complexity. All our algorithms
are of polynomial time and space. We note that O(n?) queries are enough for
reconstruction (also for verification) using a distance oracle or a shortest path
oracle: we only need to query every pair of vertices, and return the pairs (u,v)
such that 0(u,v) = 1. We call this reconstruction algorithm EXHAUSTIVE-QUERY.

Let A denote the maximum degree of any vertex in the graph G. Unless
otherwise stated, we assume that A is bounded, which is reasonable for real
networks that we want to reconstruct or verify. Indeed, when A is ©(n), both
reconstruction and verification require Q(n?) distance or shortest path queries.

Let us focus on bounded degree graphs. It is not hard to see that {2(n) distance
or shortest path queries are required. The central question in this line of work
is therefore: Is the query complexity linear, quadratic, or somewhere in
between? We show that the query complexity for reconstruction using a distance
oracle is subquadratic: O(n3/ %), and that the query complexity for reconstruction

using a shortest path oracle or for verification using either oracle is near-linear:
1+0(1)
n )

'If there are several shortest paths between u and v, the oracle returns an arbitrary one.
2Expected query complexity in the case of randomized algorithms.



1.3. Related Work 9

1.3 Related Work

Graph inference using queries that reveal partial information has been studied
extensively in different contexts, independently stemming from a number of appli-
cations.

All Shortest Path Model and All Distance Model. Beerliova et al. [14]
studied the network discovery problem.

[14] One can view this technique as an approach for discovering the topology
of an unknown network by using a certain type of queries. [...] We formalize
network discovery as a combinatorial optimization problem whose goal is to
minimize the number of queries required to discover all edges and non-edges
(absent edges) of the network.

In their shortest path oracle model, an oracle receives a node v and returns
the shortest-path subgraph rooted at v, i.e., all shortest paths from v to all other
nodes. Their motivation is the following:

[14] With traceroute tools, one can determine the path that packets take
in the Internet if they are sent from a node to some destination. If each
traceroute experiment returns a random shortest path to the destination, this
path would be part of the shortest-path subgraph. One could use repeated
traceroute experiments to all destinations to discover all edges of the shortest-
path subgraph.

For the verification problem, they showed that there is no approximation
algorithm of factor o(logn) unless P = NP; and for the reconstruction problem,
they gave a randomized on-line algorithm with competitive ratio O(y/nlogn). They
also provided experimental results on real data. They left as future directions:

[14] It would also be interesting to study further query models. For example, a
query could be given by nodes v and v and return all shortest paths between
and v (or just one shortest path).

As noted in [14], traceroute experiments in real networks often reveal only a
single shortest path (or at most a few different paths), but not all shortest paths.
Hence our motivation of the shortest path oracle model: the oracle returns an
arbitrary shortest path between a given pair of nodes.



10 Chapter 1. Introduction

The authors of [14] also considered the distance oracle model: a distance oracle
receives a node v and returns the distances from v to all other nodes in the graph.
(This is in contrast to our distance oracle which returns the distance between a
given pair of nodes.) They noted that, in many networks, it is realistically possible
to obtain the distance information, while it is difficult or impossible to obtain the
path information.

In the distance oracle model, they gave a randomized on-line algorithm for
reconstruction with competitive ratio O(v/nlogn). They proved that minimizing
the number of queries for verification is NP-hard and they gave an approximation
algorithm of factor O(logn), i.e., the number of queries is O(logn) times the
optimum number of queries. This algorithm is based on a reduction to SET-COVER.
To achieve this reduction, they showed an easy property for non-edge verification:
a query at v discovers a non-edge ab when [6(v,a) — §(v,b)| > 2; and they showed
more delicate properties for edge verification.

Our verification algorithm in Section 3.1 bears similarity: we also give a
reduction to SET-COVER. In our model, edge verification is straightforward since
the graph has bounded maximum degree. The focus is thus on non-edge verification.
We will develop interesting properties for non-edge verification.

Evolutionary Biology. There has been extensive work on the reconstruction of
evolutionary (phylogenetic) trees using a relation oracle or a distance oracle [24,
49, 54, 55, 59, 74, 78|. This problem was first introduced by Waterman et al. [78].

[49] In taxonomy and molecular evolution, the problem of reconstructing a tree
from distance data is very central.

In the distance oracle model, we query two species and get in return their
distance in the tree. When the tree has maximum degree A, Hein [49] gave a
reconstruction algorithm using O(Anlogs n) queries. King, Zhang, and Zhou [59]
showed that this bound is tight by providing a matching lower bound. On the
other hand, when the maximum degree is unbounded, there is a lower bound of
Q(n?) [49]. Notice that in this problem, the hidden graph is a tree, whereas in our
graph reconstruction problem, we allow the hidden graph to have an arbitrarily
connected topology.

Statistical Models. Dall’Asta et al. [34] considered a shortest path oracle which,
upon receiving a random pair of vertices, returns a shortest path between them.
This is motivated by the fact that there may be some existing samplings of traceroute
requests. Our model is different because we have the control on the pair of vertices
sent to the oracle.



1.4. Our Results 11

Network Realization. In this problem, we are given the distances between
certain pairs of vertices and asked to determine the sparsest graph (in the unweighted
case) or the graph of least total weight that realizes these distances. Chung et al. [30]
introduced this problem, motivated by the applications to Internet tomography.
They showed that this problem is NP-hard and admits a 2-approximation algorithm.

Network Inference Using Link Queries. A link query receives two nodes u
and v, and reports whether there is an edge uv in the network. The goal is to
discover as many links of the network as possible. Tarissan, Latapy, and Prieur [76]
introduced this problem, motivated by social networks, like Facebook or Flickr,
where the link query is a primary tool to discover the network topology. They
provided strategies based on statistical properties of real-world networks, together
with experimental results.

Bioinformatics Applications. Bouvel, Grebinski, and Kucherov [23] considered
a graph reconstruction problem motivated by applications to genome sequencing.
In their model, an oracle receives a subset of vertices S and returns the number of
edges in the subgraph induced by S. The goal is to reconstruct the hidden graph.
This model has been much studied, e.g., [7, 29, 48, 68, 73]. Our model is different

since there is no counting.

Road Network Reconstruction. With path data such as GPS becoming avail-
able on a large scale, it is important to find shared structure in path data. Chen
et al. [28] gave an algorithm to reconstruct the road network from a collection of
path traces in Fuclidean space. Our model is different since there is no geometry.

1.4 Owur Results

The results here have been published in [A, D]. See Table 1.1 for a summary. The
results based on the Voronoi cell decomposition and the greedy approaches are the
main contributions.

Algorithms Based on Voronoi Cell Decomposition. To design reconstruc-
tion and verification algorithms, we apply some algorithmic ideas previously devel-
oped for compact routing [77] and for Voronoi cells [50].

Theorem 1.4.1. For graph reconstruction using a distance oracle, there is a
randomized algorithm with query complexity O(A®-n?? - log® n -loglogn), which is
O(n®?) when the mazimum degree A = O(polylogn).



12 Chapter 1. Introduction

Table 1.1: Results (for bounded degree graphs). Main results are in bold.

Objective Query complexity
verification (either oracle) nlt+o() Theoroms 1.4.2 to 1.4.4
_ bounded treewidth: O(n)

reconstruction (shortest path oracle) Theorems 1.4.3, 1.4.4 and 1.4.8
O~(’I’L3/2) Theorem 1.4.1

reconstruction (distance oracle) £2(nlog n/~log logn) heorem 1.4.9
chordal: O(n) Theorem 1.4.6
outerplanar: O(n) Theorem 1.4.7

The algorithm of Theorem 1.4.1 selects a set of O(y/n) nodes (called centers)
partitioning V' into Voronoi cells of roughly the same size, and expands them
slightly so as to cover every edge of G (Fig. 2.1). It is then sufficient to reconstruct
each cell, which is done using exhaustive search inside that cell.

Theorem 1.4.2. For graph verification using a distance oracle, there is a random-
1+0 (\/(log log n+log A)/ log n)

ized algorithm with query complexity n . which is n*toM)

when the mazimum degree A = n°W.

The algorithm of Theorem 1.4.2 is a more sophisticated recursive version of the
algorithm in Theorem 1.4.1. Again, it selects a set of centers partitioning V' into
Voronoi cells. To verify each cell, instead of using exhaustive search, the algorithm
applies recursion. This is a challenge because, when we query a pair (u,v) in a cell,
the oracle returns the distance between u and v in the entire graph, not in the cell.
Our approach is to allow selection of centers outside the cell, while still limiting
the subcells to being contained inside the cell (Fig. 2.2).

Greedy Algorithms. We provide simple greedy algorithms for verification and
for reconstruction.

The main task for verification is to confirm the non-edges of the graph. We
develop a necessary and sufficient condition for a set of queries to confirm all the
non-edges. This condition enables us to reduce the non-edge verification problem
to SET-COVER. As a counterpart of the greedy algorithm for SET-COVER, greedy
non-edge verification repeatedly makes queries that confirm the largest number of
non-edges that are not yet confirmed. We have:



1.4. Our Results 13

Theorem 1.4.3. If there is an algorithm for graph verification using f(n,A)
distance queries, then a greedy algorithm for verification uses O(An+logn- f(n,A))
distance or shortest path queries.

Next, we extend the idea of greedy verification, and obtain a greedy algorithm
for reconstruction as in the following theorem.

Theorem 1.4.4. If there is an algorithm for graph verification using f(n,A)
distance queries, then a greedy algorithm for reconstruction uses O(An + logmn -
f(n,A)) shortest path queries.

To prove Theorem 1.4.4, we show that each query to a shortest path oracle
makes as much progress for reconstruction as the corresponding query to a distance
oracle would have made for verifying a given graph. The main realization here is
that reconstruction using a shortest path oracle can be viewed as the verification
of a dynamically changing graph using a distance oracle.

Combining Theorems 1.4.2 to 1.4.4, we have:

Corollary 1.4.5. For graph verification using either oracle and for graph recon-

struction using a shortest path oracle, greedy algorithms have query complexity
plto()

Remark. We note that the greedy algorithm for verification is much simpler than
the algorithm using Voronoi cell decomposition (Theorem 1.4.2), although both
algorithms have the same query complexity n*+to™).

Algorithms Based on Decomposition by Separators. For special classes
of graphs, there exist balanced separators of small size. This enables us to design
reconstruction and verification algorithms with O(n) query complexity.

Theorem 1.4.6. For reconstruction of chordal graphs using a distance oracle, there
is a randomized algorithm with query complexity O(A?’ZA -n(2% + log® n) log n),
which is O(n) when the mazimum degree A is O(loglogn).

A graph is chordal if every cycle of length greater than three has a chord: namely,
an edge connecting two non-consecutive vertices on the cycle. An introduction to
chordal graphs can be found in e.g., [18].

Consider the following algorithm: Let x be a node that is on the most shortest
paths between all pairs of vertices. The algorithm grows a clique separator including
this node. Next, it partitions the graph into subgraphs with respect to this separator
and recurses on each subgraph. Such partition is balanced, which ensures that there
are O(logn) levels of the recursion.



14 Chapter 1. Introduction

However, computing all shortest paths to find z requires too many queries.
Instead, our algorithm finds an approximate version of the node z. First, we give a
subroutine to compute a shortest path between a pair of vertices using O(nlogn)
distance queries. To obtain an approximate version of x, the algorithm computes a
sampling of shortest paths and selects the node which has the most occurrences
among all sampled shortest paths. We show that the node obtained in this way
leads to a balanced partition with high probability.

Theorem 1.4.7. For reconstruction of outerplanar graphs using a distance oracle,
there is a randomized algorithm with query complexity O(A? - nlog®n), which is
O(n) when the mazximum degree A = O(polylogn).

A graph is outerplanar if it can be embedded in the plane with all vertices on
the exterior face. Chartrand and Harary [27] first introduced outerplanar graphs
and showed that an outerplanar graph contains no subgraph homeomorphic from
K, or Ky3. Outerplanar graphs have received much attention in the literature
because of their simplicity and numerous applications.

Similar as for chordal graphs, the algorithm first finds a separator using random
sampling and statistical estimation, and then partitions the graph into subgraphs
with respect to this separator and recurses on each subgraph. However, the
separator here may be a polygon of unbounded size. So we need more care in the
algorithmic design.

Remark. The query complexity for reconstructing outerplanar graphs is only
slightly worse than the optimal query complexity O(Anlogs n) for reconstructing
trees (a special case of outerplanar graphs) in [49]. On the other hand, the tree
model typically restricts queries to pairs of tree leaves, but our model allows queries
of any pair of vertices, not just leaves.

Theorem 1.4.8. For verification of graphs of treewidth w using a distance oracle,
there is a deterministic algorithm with query complezity O(A(A 4+ wlogn)nlogn),
which is O(n) when A and w are O(polylogn).

The algorithm uses some bag of a tree decomposition to separate the graph into
balanced subgraphs, and then recursively verifies each subgraph. In the recursive
calls, it adds a few weighted edges to each subgraph in order to preserve the distance
metric.

Lower Bounds. For graphs of unbounded degree, we give a simple Q(n?) query
lower bound for both reconstruction and verification and under both oracle models.
This lower bound is achieved using a star graph plus possibly one more edge. We



1.5. Notations and Definitions 15

note that this lower bound holds even when the graph is restricted to outerplanar,
to chordal, or to bounded treewidth.

On the other hand, for graphs of bounded degree, it is easy to see that both
reconstruction and verification require 2(n) distance or shortest path queries. In
addition, there is a slightly better lower bound for graph reconstruction using a
distance oracle (Theorem 1.4.9). We thank Uri Zwick and Cyril Gavoille for this
lower bound.

Theorem 1.4.9. For graph reconstruction using a distance oracle, assuming the
maximum degree A > 3 is such that A = o (nl/Q), any algorithm has query

complezity Q(Anlogn/log(logn/log A)).

Approximate Reconstruction. Recall that for graphs of unbounded degree,
we need (n?) distance queries for graph reconstruction. However, fewer queries are
needed if we consider an approximate version of the reconstruction problem. We
say that the metric 0 is an f-approzimation of the metric ¢ if for every pair of nodes
(u,v), 6(u,v) < 6(u,v) < f-0(u,v). The goal is to compute an f-approximation
of the metric using a distance oracle. We give a simple algorithm with query
complexity O(n?/f) and we show a matching lower bound.

1.5 Notations and Definitions

Let G = (V, E) be a connected, undirected, and unweighted graph, where V' is
the vertex set and F is the edge set. Let § be the distance metric of G. For a
subset of vertices S C V and a vertex v € V, define §(S,v) to be mingeg d(s,v).
For v € V, define the neighborhood of v as N(v) = {u € V : §(u,v) < 1}, and
define the neighborhood of v within distance 2 as No(v) = {u € V : §(u,v) < 2}.
For S C V, define the neighborhood of S as N(S) = U,cg N(s). We define 4§, N,
and N, similarly with respect to the graph G.

For a pair of distinct vertices (u,v) € V?, we say that uv is an edge of G if
uwv € E, and is a non-edge of G if uv ¢ E.

For a subset of vertices S C V, let G[S] be the subgraph induced by S. For a
subset of edges H C F, we identify H with the subgraph induced by the edges of
H. Let g denote the distance metric of the subgraph H.

For a vertex s € V and a subset 7" C V, define QUERY (s, T) (or equivalently
QUERY (T, s)) as QUERY(s,t) for every ¢ € T. For subsets S,T C V, define
QUERY (S, T) as QUERY(s,t) for every (s,t) € S x T.

In the verification problem, an algorithm, after performing a set of queries,
outputs no if some query gives the wrong distance (or shortest path), and outputs
yes if all queries give the right distances (or shortest paths).



16 Chapter 1. Introduction

1.6 Organization

The main contributions of Part I of this thesis are in Chapters 2 and 3. In Chap-
ter 2, we give reconstruction and verification algorithms based on Voronoi cell
decomposition. Section 2.1 reviews the center-selecting technique from compact
routing [77], which is the main subroutine in our algorithms. Sections 2.2 and 2.3
prove Theorems 1.4.1 and 1.4.2, respectively. In Chapter 3, we give greedy algo-
rithms for verification using a distance oracle and for reconstruction using a shortest
path oracle. Sections 3.1 and 3.2 prove Theorems 1.4.3 and 1.4.4, respectively.

Section 4.1 gives some preliminaries on separators, and then Sections 4.2 to 4.4
prove Theorems 1.4.6 to 1.4.8, respectively. In Section 5.1, we consider lower
bounds. In Section 5.2, we provide results on the approximate reconstruction.

Finally, in Chapter 6, we recapitulate our results and expose some future
directions of research to solve the open problems raised there.



CHAPTER 2

Voronoi Cell Decomposition

In this chapter, we design a reconstruction algorithm (Section 2.2) and a verification
algorithm (Section 2.3) using a distance oracle. Both algorithms are based on the
center-selecting technique, which comes from compact routing [77]. We first review
this technique in Section 2.1.

2.1 Technique from Compact Routing

A routing scheme is a mechanism that delivers packets of information from any
node to any other node in the network. The compact routing problem aims
at finding a tradeoff between the space and the efficiency of routing, see, e.g.,
8,9, 32, 38, 40, 43, 70, 77].

In [77], Thorup and Zwick gave a compact routing scheme that uses O(n'/?)
bits of memory at each node such that, the ratio between the length of a path on
which a packet is routed and the length of a shortest path is at most 3. To achieve
that, they selected a set of centers. For a packet to reach a destination v that is far
away, it first goes to the center that is closest to v, and then follows the shortest
path from this center to v.

More precisely, let A C V' be a subset of nodes called centers. For every w € V,
define the cluster of w with respect to the set A as

Ca(w) :={v eV :j(w,v) < IA,v)}.

Note that if w € A, then Cy(w) = 0, since d(w,v) > 0(A4,v), for every v € V.
The subscript A is omitted when clear from the context. They observed that the
required memory at each node w is O(|A| 4+ C(w)). So the goal is to find a set of
centers A such that every C'(w) is small, i.e., roughly n/|A|.



18 Chapter 2. Voronoi Cell Decomposition

Algorithm 2.1 Finding Centers [77]

1: function CENTERS(G, s)

2 A+ D, W<V

3 while W # () do

4: A" <+ SAMPLE(W, s)

5: A+ AU A

6 for w € W do

7 Cw) +—{veV:d(wv) <i(Av)}
8 W+ A{weW:|C(w)| >4n/s}

9 return A

Algorithm 2.1 reviews the center-selecting algorithm from [77]. The algorithm
takes as input the graph G and an integer parameter s € [1,n] and outputs a set
of centers A. It uses a subroutine SAMPLE(W, s), which receives a set W C V' and
an integer s and returns a random subset of W obtained by selecting each element,
independently, with probability s/|W|. If |W| < s, then SAMPLE(W, s) returns the
set W itself.

Thorup and Zwick [77] proved the following lemma, which is the key to show
the O(n'/?) memory bound at each node in their routing scheme.

Lemma 2.1.1 (Rephrasing of Theorem 3.1 in [77]). With probability at least
1/2, the algorithm CENTERS (Algorithm 2.1) outputs a set A C V such that
|A| < 4slogn, and that |C(w)| < 4n/s, for every w € V.

We will use modified versions of the algorithm CENTERS (Algorithm 2.1) and
its analysis (Lemma 2.1.1) in the design of the reconstruction and verification
algorithms in Sections 2.2 and 2.3.

2.2 Reconstruction via a Distance Oracle

In this section, we prove the following theorem.

Theorem 2.2.1. For graph reconstruction using a distance oracle, there is a
randomized algorithm (Algorithm 2.3), such that with probability at least 1/4, it
terminates after O(A® - n®? - log®n -loglogn) queries and returns the edge set E.

Theorem 2.2.1 implies Theorem 1.4.1, because if the reconstruction algorithm in
Theorem 2.2.1 fails to terminate after O(A*-n%2 -log® n - loglogn) queries, we can
stop it and execute it again. The expected number of executions of the algorithm
is a constant. Therefore we obtain a reconstruction algorithm with expected query
complexity O(A® - n3/2 . log?n - loglogn), as stated in Theorem 1.4.1.



2.2. Reconstruction via a Distance Oracle 19

Algorithm 2.2 Finding Centers Using Estimation

1: function ESTIMATED-CENTERS(V s)

2 A D, W<V

3 T+ K -s-logn-loglogn > K = O(1) defined in Lemma 2.2.2
4: while W # () do

5: A" < SAMPLE(W, s)

6 QUERY (A", V)

7 A+ AUA

8 for w e W do

9: X < random multi-subset of V' with T" elements
10: QUERY (X, w)

11: Clw) + [{v e X : 6(w,v) < §(A,0)}-n/T

12: W {weW:Cw)>5n/s}

13: return A

2.2.1 Subroutine: Selecting Centers

The reconstruction algorithm uses a subroutine ESTIMATED-CENTERS (see Al-
gorithm 2.2) to find centers A C V such that the vertices of V' are roughly
equipartitioned into the Voronoi cells centered at vertices in A. This algorithm is a
modified version of the algorithm CENTERS (Algorithm 2.1). It takes as input the
vertex set V and a parameter s € [1,n] and outputs a set of centers A. Unlike the
algorithm CENTERS, it uses sampling to estimate each |C'(w)| so as to reduce the
query complexity. Recall that the algorithm CENTERS eliminates w € W when
|C'(w)| < 4n/s. However, in our query model, computing |C(w)| would require
Q(n) queries for each w. Instead, the algorithm ESTIMATED-CENTERS computes
an estimate C'(w) of |C'(w)| using fewer queries, and then eliminates w € W when
C (w) is small. The following lemma guarantees the performance of the algorithm
ESTIMATED-CENTERS. It is a counterpart of Lemma 2.1.1. Its proof combines
arguments from [77] and Chernoff bounds.

Lemma 2.2.2. Let K (Algorithm 2.2 of Algorithm 2.2) be some well-chosen
constant. With probability at least 1/4, the algorithm ESTIMATED-CENTERS (Al-
gorithm 2.2) terminates after O(s - n -log®n -loglogn) queries, and outputs a set
A CV such that |A| < 12slogn, and that |C(w)| < 6n/s, for every w € V.

Proof. Let W; be the set W at the beginning of the i-th iteration. Let A" =
SAMPLE(W, s) be the centers selected in this iteration, and let A be the union of
A’ with previously selected centers. We say that the i-th iteration is successful if

> |Ca(w)] < 2n[Wi|/s. (2.1)

weW;



20 Chapter 2. Voronoi Cell Decomposition

Thorup and Zwick [77] showed that every iteration is successful with probability at
least 1/2.

Consider a node w € W;. Let X be a random multi-subset of V' with 7" elements.
Define Y = [{v € X : 6(w,v) < 6(A,v)}|, which is | X N Cy(w)|. Let E[Y] be the
expected value of Y. By standard Chernoff bounds, there is an absolute constant
K such that:

PlY >5T/s] >1—1/(96nlogn), if E[Y]>6T/s
PY <5T/s] >1—1/(96nlogn), if E[Y] < 4T/s.

Note that |Ca(w)| = E[Y] - n/T. Define C(w) =Y - n/T. Thus with probability
at least 1 — 1/(48nlogn), we have:
C(w) >5n/s, if |Ca(w)| > 6n/s (2.9)
C(w) < 5n/s, if |Ca(w)| < 4n/s. '
Since |W;| < n, with probability at least 1 — 1/(48logn), Property (2.2) holds
for all w € W; in the ¢-th iteration. We call iterations in which this happens
correct iterations. As a consequence, if the i-th iteration is correct, then for every
w € W;i1, we have |Ca(w)| > 4n/s.
If the i-th iteration is both successful and correct, which happens with probability
at least 1/2 — 1/(48logn) > 1/3, then we have

WWiilfs < 3 |Calw)] < 20|Wil/s.
weW;
and thus |W;,,| < |W;|/2. Since |W| is non-increasing during the algorithm, the
expected number of iterations is at most 3 logn.

By Markov’s inequality, with probability at least 3/4, the number of iterations
is at most 121logn. The probability that the first (at most) 12logn iterations are
correct is at least 1 — 121logn/(48logn) = 3/4. Therefore, with probability at least
1/2, there are at most 12 logn iterations and all iterations are correct. In that case,
every w € V has been eliminated when |Cy(w)| < 6n/s. Observe that |Cy(w)]
cannot increase when elements are added to A. Therefore |C4(w)| < 6n/s for every
w € V when the while loop terminates.

The expected size of A is at most 3slogn, since the expected number of
iterations is at most 3logn, and in every iteration, a set A’ of expected size s is
added to A. By Markov’s inequality, |A| < 12slogn with probability at least 3/4.

All together, with probability at least 1/4, there are at most 12logn iterations,
and |A| < 12slogn, and |Cs(w)| < 6n/s for every w € V. In that case, the number
of queries is at most

|A| - n + (121logn) - nT = O(s - n - log” n - loglog n).
This completes the proof. n



2.2. Reconstruction via a Distance Oracle 21

Algorithm 2.3 Reconstruction

1: procedure RECONSTRUCT(V s)

2 A < ESTIMATED-CENTERS(V s) > every pair in A x V' is queried
3 for a € A do

4: QUERY (Nz(a), V)

5: for b € Ny(a) do

6 Cb) «+ {veV:ibwv)<i(A )}

7 D, < U{C(D) : b€ Ny(a)} U Ny(a)

8 E, < EXHAUSTIVE-QUERY(D,)

9

return J, F,

2.2.2 Algorithm and Analysis

The reconstruction algorithm (Algorithm 2.3) takes as input the vertex set V' and
an integer parameter s € [1,n], and computes the edge set of G. It first finds a
set of centers A using ESTIMATED-CENTERS, and then partitions the graph into
slightly overlapped subgraphs with respect to the centers in A, see Figure 2.1. More
precisely, we define, for each a € A, its extended Voronoi cell D, C 'V as

D, == J{C(b) : b € Na(a)} U Ny(a). (2.3)

The algorithm then proceeds by exhaustive search within each subgraph G[D,], and
returns all the edges found in these subgraphs. Inspired by the Voronoi diagram
partitioning in [50], we show in Lemma 2.2.3 that these subgraphs together cover
every edge of the graph. Thus the output of the algorithm is indeed the edge set E.

Lemma 2.2.3. U,c4 G[D,] covers every edge of G.

Proof. Let uv be any edge of G. We prove that there is some a € A, such that
both u and v are in D,. Without loss of generality, we assume 0(A,u) < §(A,v).
We choose a € A such that §(a,u) = §(A,u). If §(a,u) < 1, then both v and v are
in Ny(a) C D,. If §(a,u) > 2, let b be the vertex at distance 2 from a on a shortest
a-to-u path in G. By the triangle inequality, we have §(b,v) < d(b,u) + 6(u,v) =
d(b,u) + 1. Since 6(b,u) = d6(a,u) — 2 and (a,u) = §(A,u) < 0(A,v), we have
d(b,u) < 6(A,u) and 6(b,v) < 6(A,v). So both u and v are in C'(b), and thus in
D,, since b € Ny(a). O

Query Complexity Analysis. In the first step of the algorithm RECONSTRUCT,
by Lemma 2.2.2, with probability at least 1/4, ESTIMATED-CENTERS uses O(s-n -
log®n - loglogn) queries, and outputs a set A C V such that |A| < 12slogn, and



22 Chapter 2. Voronoi Cell Decomposition

a4

Figure 2.1: Partition by centers. Here vertices ay, ..., a5 are centers in A. The
dotted lines indicate the partition of V' into Voronoi cells by those centers. Extending
the Voronoi cells slightly, we obtain the cells D, , ..., D,,.

|C'(w)| < 6n/s, for every w € V. In this case, the following steps of the algorithm
have query complexity:

>° (IN2(a)] - n +|Duf?) = O(slogn - AX(n + A%n?/s%)),

a€A

using the bounds on |A| and |C'(w)], and the fact that |Ny(a)| < A? + 1.
Let s = A-y/n. Then with probability at least 1/4, the algorithm RECONSTRUCT
terminates after O(A? - n%? - log? n - loglogn) queries, as stated in Theorem 2.2.1.

2.3 Verification via a Distance Oracle

In this section, we prove Theorem 1.4.2 that we recall:

Theorem 1.4.2. For graph verification using a distance oracle, there is a random-
1+0 (\/(log log n+log A)/ log n)

14o(1)

ized algorithm with query complexity n , which is n

when the mazimum degree A = n°W).



2.3. Verification via a Distance Oracle 23

Algorithm 2.4 Finding Centers for a Subset

1: function SUBSET-CENTERS(G, U, s)

2 A D, W<V

3 while W # () do

4: A’ + SAMPLE(W, s)

5: A+~ AU A

6 for w e W do

7 Cw) + {v eV :dwv) <A )}
8 W {wew:|Cw)nU| > 4U|/s}
9 return A

2.3.1 Subroutine: Selecting Centers

The verification algorithm uses the subroutine SUBSET-CENTERS (Algorithm 2.4),
which takes as input a graph G = (V, E), a subset of vertices U C V, and an
integer s € [1,n], and outputs a set of centers A C V such that in the graph @, the
vertices of the subset U are roughly equipartitioned into the Voronoi cells centered
at vertices in A. This algorithm is a generalization of the algorithm CENTERS
(Algorithm 2.1). When the subset U equals V, this algorithm becomes the same
as the algorithm CENTERS. For w € V', we recall the definition of w’s cluster
Ca(w) :={v eV :§w,v) <d(Av)}. Similarly, we define w’s cluster with respect
to the graph G as Cu(w) := {v € V : d(w,v) < §(A,v)}. The subscript A is
omitted when clear from the context. The following lemma is a straightforward
extension of Lemma 2.1.1.

Lemma 2.3.1. With probability at least 1/2, the algorithm SUBSET-CENTERS
(Algorithm 2.4) outputs a set A C'V, such that |A| < 4slogn, and that |C(w)NU| <
4|1U|/s, for every w € V. It uses no queries since G is given.

2.3.2 Algorithm and Analysis

The task of verification comprises verifying that every edge of G is an edge of G,
and verifying that every non-edge of G is a non-edge of G. The second part is
called non-edge verification. In the second part, we assume that the first part is
already done, which guarantees that E C E. For graphs of bounded degree, the
first part requires only O(An) queries, thus the focus is on non-edge verification.

We design a recursive algorithm for non-edge verification. Let U C V' represent
the set of vertices in a recursive call. The goal is to verify that every non-edge of
G[U] is a non-edge of G[U]. This is equivalent to verifying that every edge of G[U]
is an edge of G[U].



24 Chapter 2. Voronoi Cell Decomposition

Let A be a set of centers computed by SUBSET-CENTERS. We define, for each
a € A, its extended Voronoi cell restricted on U:

Dy = (U{C(b) : b € Na(a)} U No(a)) N U. (2.4)
Similarly, with respect to the graph @, we define:
Dy = (U{C(b) : b€ No(a)} U Ny(a)) NU. (2.5)
The following lemma is a simple extension of Lemma 2.2.3.

Lemma 2.3.2. ,c4 G[D,] covers every edge of G[U].

Proof. Let uv be any edge of G[U]|. We prove that there is some a € A, such that
both w and v are in D,. Without loss of generality, we assume 0(A,u) < §(A,v).
We choose a € A such that d(a,u) = §(A,u). If 6(a,u) < 1, then both u and v are in
Ny(a)NU C D,. If §(a,u) > 2, let b be the vertex at distance 2 from a on a shortest
a-to-u path in G. By the triangle inequality, we have (b, v) < d(b,u) + 6(u,v) =
d(b,u) + 1. Since §(b,u) = d(a,u) — 2 and 6(a,u) = 6(A,u) < 6(A,v), we have
d(b,u) < 6(A,u) and 6(b,v) < 6(A,v). So both u and v are in C'(b), and thus in
D,, since b € Ny(a). O

From Lemma 2.3.2, in order to verify that every edge of G[U] is an edge of
G[U], we only need to verify that every edge of G[D,] is an edge of G[D,], for every
a € A. This enables us to apply recursion on each D,.

The main difficulty is: How to obtain D, efficiently? If we compute D,
from its definition, we need to compute Ny(a), which requires €2(n) queries since
Ny (a) may contain nodes outside U. Instead, a careful analysis shows that we can
check whether D, = D, without even knowing Ns(a), whereas D, can be inferred
from the graph G with no queries. This is shown in Lemma 2.3.3, which is the key
to the design of the verification algorithm.

Lemma 2.3.3. Assume thatAE C E. If 6(u,v) = d(u,v) for every pair (u,v) from
Uaea Na(a) x U, then D, = D, for all a € A.

Proof. The proof is delicate but elementary. For every b € U,ca Ng(a), we have
Cb)NU = C(b) N U, because §(b,u) = d(b,u) and 0(A,u) = J(A,u) for every
u € U. Therefore, D, can be rewritten as

Dy = (U{C®) : b € Na(a)} U No(a)) NU.

Since £ C E, we have Ng(a) C Ny(a). Therefore D, C D,.
On the other hand, we have Ny(a) NU C Ny(a) N U, because 6(a,u) = (a, u)
for every u € No(a) NU. To prove D, C D,, it only remains to show that, for any



2.3. Verification via a Distance Oracle 25

Algorithm 2.5 Verification

1: procedure VERIFY-SUBGRAPH(G, U, s)

2 if |U| > ng then

3 repeat

4: A < SUBSET-CENTERS(G, U, s)

5: until [A] < 4slogn and |C(w) N U| < 4|U|/s for every w € V
6 for a € A do

7 QUERY (N (a), U)

8 for b € Ny(a) do

9: C(b) + {v eV :0(bv) <d(Av)}

10: f)<—(U{C b e Ny(a }U )mU
11: VERIFY-SUBGRAPH(G, D,, 5)

12: else

13: QUERY (U, U)

vertex u ¢ N(a) such that u € C'(b)NU for some b € Ny(a), we have u € C(x)NU
for some x € Ng( ). We choose x to be the vertex at distance 2 from a on a shortest
a-to-u path in G. By the assumption and the definition of x, we have:

§(z,u) = 0(x,u) = 6(a,u) — 2 = 6(a,u) — 2.
By the triangle inequality, and using b € Na(a) and v € C(b), we have:
d(a,u) < (a,b) +6(b,u) <2+6(b,u) <24 (A, u).
Therefore §(z,u) < 6(A,u). Thusu € C(x)NU. O

The recursive algorithm VERIFY-SUBGRAPH for non-edge verification is given
in Algorithm 2.5. It receives a graph G = (V, E), a subset U C V, and an
integer parameter s, and verifies all the non-edges of G [U]. Tt first queries every
(u,0) € Ugea Na(a) x U, and then recurses on each extended Voronoi cell D, see
Figure 2.2. The parameters s and ng are defined later. Correctness of the algorithm
follows from Lemmas 2.3.2 and 2.3.3.

Query Complexity Analysis. To provide intuition, we first analyze an algo-
rithm of 4 recursive levels, and show that its query complexity is O(n4/ 3). To
simplify the presentation, we assume A = O(1). Let s = n'/? and let ny be
some well-chosen constant. Consider any recursive call VERIFY—SUBGRAPH(@ U, s)
where |U| > ng. Let A C V be the centers at the end of the repeat loop. By
Lemma 2.3.1, the expected number of repeat loops is constant. For every a € A,



26 Chapter 2. Voronoi Cell Decomposition

Figure 2.2: Two levels of recursive calls of VERIFY-SUBGRAPH(@, V,s). The solid
points are top-level centers returned by SUBSET-CENTERS(G, V, s). The dotted
lines indicate the partition of V' into Voronoi cells by those centers. For a center
a, D, is the region that is a bit larger than the Voronoi cell of a. On the second
level of the recursive call for D,, the hollow points are the centers returned by
SUBSET—CENTERS(G7 D,, s). Observe that some of those centers lie outside D,.
The dashed lines indicate the partition of D, into Voronoi cells by those centers.
For a center a’ on the second level, Dg, is the region that is a bit larger than the
Voronoi cell of o’

No(a) has constant size, since A = O(1). Every C(w) N U has size O(|U|/n'/3), so
every D, has size O(|U|/n'/3). Since |A| = O(n'/3), the number of recursive calls
on the next level is O(n'/?). Therefore during the recursion, on the second level,
there are O(n'/?) recursive calls, where every subset has size O(n?/?); on the third
level, there are O(n?/3) recursive calls, where every subset has size O(n'/3); and on
the fourth level, there are O(n) recursive calls, where every subset has size O(1).
Every recursive call with subset U uses O(n'/? - |U|) queries. Therefore, the overall
query complexity is O(n*/3).



2.3. Verification via a Distance Oracle 27

Next, we give the full proof of the complexity as stated in Theorem 1.4.2. Define

b — logn
*7 [V log (logn - 32(A2 +1)2) | ©

Let s = n'/* and ny = (4(A% + 1))*. Consider any recursive call when |U| > ny.
Let A C V be the centers at the end of the repeat loop. Then |A| < 4slogn
and every |C(w) N U| is at most 4|U|/s. By Lemma 2.3.1, the expected number
of repeat loops is constant. Since the graph has maximum degree A, the size of
every D, is at most (A2 + 1) - max(4|U|/s,1). Therefore by induction, for any
1 <k < ko+ 1, any subset U on the k' level of the recursion has size at most
ty = n(4(A241)/s)*", where ty,11 = no. Hence the maximum level of the
recursion is at most kg + 1.

Consider the recursive calls with |U| < ny. There are at most (2slogn)*
such calls and each takes |U|? < (4(A2+1))** queries. So their overall query
complexity is at most n - (logn - 32(A2 4 1)2)" < plti/ko,

Consider the recursive calls with |U| > ng on the k'™ level of the recur-
sion for some fixed k € [1,kg].! There are at most (2slogn)*~! such calls and
each takes at most (A2 + 1)|4]| - |U| queries, where |U| < #;,. So their overall
query complexity is at most n'+t/% (logn - 8(A2 +1))*. Summing over k from
1 to ko, the query complexity of all recursive calls with |U| > ng is at most
2. pl /R (logn - 8(A2 4+ 1)) < 2. plt2/ko,

Therefore, the number of queries for non-edge verification is at most 3 - n'+2/ko
14+0 (\/(log log n+log A)/ log n)

which is n . Since it takes at most An = nltlosa/lgn

queries to verify that ECE , we obtain the overall query complexity as stated in
Theorem 1.4.2.

1'We note that there are no recursive calls on the (ko +1)" level (i.e., last level) of the recursion
with |U| > ng.






CHAPTER 3

Greedy Algorithms

In this chapter, we first give a greedy verification algorithm using a distance oracle,
and then extend it to a reconstruction algorithm using a shortest path oracle.

3.1 Verification via a Distance Oracle

In this section, we prove the following theorem.

Theorem 3.1.1. If there is an algorithm for graph verification using f(n,A)
distance queries, then a greedy algorithm for verification uses O(An+logn- f(n,A))
distance queries.

Theorem 3.1.1 implies Theorem 1.4.3, since each query to a distance oracle can
be simulated by the same query to a shortest path oracle.

Let NE be the set of the non-edges of G. For each pair of vertices (u,v) € V2
we define S, , C NE as follows:

Suw = {ab eNE : §(u,a) + 6(b,v) + 1 <3(u,v)}. (3.1)
The following lemmas relate the sets {S,, : (u,v) € V?} with non-edge verification.

Lemma 3.1.2. Assume that E C E. For every (u,v) € V2, if §(u,v) = S(U,U),
then every pair ab € Sy, is a non-edge of G.

Proof. Consider any pair ab € S, ,. By the triangle inequality, d(u, a) + d(a, b) +
5(b,v) > 6(u,v) = d(u,v). By the definition of S,, and using £ C E, we have
o(u,v) > 6(u,a) + 0(b,v) + 1 > 6(u,a) + 6(b,v) + 1. Thus 6(a,b) > 1, i.c., abis a
non-edge of G. n



30 Chapter 3. Greedy Algorithms

Lemma 3.1.3. If a set of queries T verifies that every non-edge ofé s a non-edge
of G, then Uy,mer Sup = NE.

Proof. Assume, for a contradiction, that some ab € NE does not belong to any S, ,
for (u,v) € T. Consider adding ab to the set of edges of E: this will not create
a shorter path between u and v, for any (u,v) € T. Thus including ab in E is
consistent with the answers of all queries in T'. This contradicts the assumption
that T" verifies that ab is a non-edge of G. O]

Proof of Theorem 3.1.1. From Lemmas 3.1.2 and 3.1.3, the non-edge verification
is equivalent to the SET-COVER problem with the universe NE and the sets
{Suw i (u,v) € V2}. The SET-COVER instance can be solved using the well-known
greedy algorithm [52], which gives a (Inn + 1)-approximation. Hence our greedy
algorithm for verification (Algorithm 3.1). For the query complexity, first, verifying
that £ C E takes at most An queries, since the graph has maximum degree A.
The part of non-edge verification uses a number of queries that is at most (Inn+ 1)
times the optimum number of queries. O

Algorithm 3.1 Greedy Verification

A

1: procedure VERIFY(G)
2 for uv € F do
3 QUERY (u, v)
4: Y <0
5: while £ UY does not cover all vertex pairs do
6 choose (u,v) that maximizes |S,, \ Y|
> Sy defined in Equation (3.1)
QUERY (u, v)
Y Y US,,

®

3.2 Reconstruction via a Shortest Path Oracle
In this section, we prove Theorem 1.4.4 that we recall:
Theorem 1.4.4. If there is an algorithm for graph verification using f(n,A)

distance queries, then a greedy algorithm for reconstruction uses O(An + logmn -
f(n, A)) shortest path queries.



3.2. Reconstruction via a Shortest Path Oracle 31

Algorithm 3.2 Greedy Reconstruction

procedure RECONSTRUCT(V)
up < an arbitrary vertex
for u e V\ {ug} do
QUERY (u, ug) to get a shortest u-to-ug path

1:
2
3
4
5: X < the union of the above paths
6 Y 0
7 while X UY does not cover all vertex pairs do
8 choose (u,v) that maximizes |S;, \ Y|

> S¥, defined in Equation (3.2)

,U

9: QUERY(u, v) to get a shortest u-to-v path

10: if dg(u,v) = dx(u,v) then

11: Y Y USS,

12: else

13: e < some edge of the above u-to-v path that is not in X
14: X +— X UA{e}

15: return X

The algorithm (Algorithm 3.2) constructs an increasing set X of edges so that
in the end X = E. At any time, the candidate graph is X.! Initially, X is the union
of the shortest paths given as answers by n — 1 queries, so that X is a connected
subgraph spanning V. At each subsequent step, the algorithm makes a query that
leads either to the confirmation of many non-edges of G, or to the discovery of an
edge of G.

Formally, we define, for every pair (u,v) € V2,

Siy = {ab € non-edges of X : dx(u,a) + dx(b,v) +1 < 5X(u,v)}. (3.2)

This is similar to S,, defined in Equation (3.1). From Lemma 3.1.2, the pairs
in S, can be confirmed as non-edges of G if dg(u,v) = dx(u,v). At each step,
the algorithm queries a pair (u,v) that maximizes the size of the set i, \ Y. As
a consequence, either all pairs in Sifv \ Y are confirmed as non-edges of G, or
dg(u,v) # dx(u,v), and in that case, the query reveals an edge along a shortest
u-to-v path in G that is not in X; we then add this edge to X.

To see the correctness, we note that the algorithm maintains the invariant that
the pairs in X are confirmed edges of GG, and that the pairs in Y are confirmed
non-edges of G. Thus when X UY covers all vertex pairs, we have X = FE.

For the query complexity, first, consider the queries that lead to dg(u,v) #

'We identify X with the subgraph induced by the edges of X.



32 Chapter 3. Greedy Algorithms

dx(u,v). For each such query, an edge is added to X. This can happen at most
|E| < An times, because the graph has maximum degree A.

Next, consider the queries that lead to dg(u,v) = dx(u,v). Define R to be the
set of vertex pairs that are not in X UY. We analyze the size of R during the
algorithm. For each such query, the size of R decreases by |Sqfv \ Y|. To lower
bound ]Sifv \ Y|, we consider the problem of non-edge verification using a distance
oracle on the input graph X, and let 7" be an (unknown) optimal set of queries.
Then |T| < f(n,A), since there is a verification algorithm using f(n, A) distance
queries. By Lemma 3.1.3, the sets Sifv for all pairs (u,v) € T together cover RUY,
hence R. Therefore, at least one of these pairs satisfies

[Suw \Y1 = |RI/|T| > |R|/f(n, A).

Initially, |R| < n(n—1)/2, and right before the last query, |R| > 1, thus the number
of queries with d¢(u,v) = dx(u,v) is O(logn) - f(n,A).
Therefore, the overall query complexity is O(An + logn - f(n, A)).

Remark. Note that the above proof depends crucially on the fact that f(n,A) is a
uniform bound on the number of distance queries for verifying any n-vertex graph
of mazximum degree A. Thus, even though the graph X changes during the course
of the algorithm because of queries (u,v) such that dg(u,v) # dx(u,v), each query
(u,v) with 0g(u,v) = dx(u,v) confirms 1/ f(n, A) fraction of non-edges.



CHAPTER 4

Decomposition by Separators

In this chapter, we consider special classes of graphs, and we give reconstruction and
verification algorithms via a distance oracle. These algorithms all use separators to
decompose the graph into subgraphs, and then apply recursion on each subgraph.

4.1 Preliminaries

We review the definition and properties of separators, tree decomposition, and
chordal graphs.

Definition 4.1.1. A subset S C V is a (-balanced separator of the graph G =
(V,E) (for B < 1) if the size of every connected component of G \ S is at most
BIV|. In this case, the partition of G \ S into connected components is called a
B-balanced partition of the graph.

Definition 4.1.2. A tree decomposition of a graph G = (V, E) is a tree T with
nodes ny,Na, ...,ng. Noden; is identified with a bag S; C V, satisfying the following
conditions:

1. For every vertex v in GG, the nodes whose bags contain v form a connected
subtree of T'.

2. For every edge uv in G, some bag contains both u and v.

The width of a tree decomposition is the size of the largest bag minus 1, and the
treewidth of G s the minimum width over all possible tree decompositions of G.

Lemma 4.1.3 ([71]). Let G be a graph of treewidth k. Any tree decomposition of
width k contains a bag S CV that is a (1/2)-balanced separator of G.



34 Chapter 4. Decomposition by Separators

Lemma 4.1.4 ([18]). Let G be a chordal graph. Then G has a tree decomposition
such that every bag is a mazimal clique' and every maximal clique appears exactly
once in this decomposition.

From Lemmas 4.1.3 and 4.1.4, we have:

Corollary 4.1.5. Let G be a chordal graph of mazimum degree A. Then G has
treewidth at most A, and there exists a clique S C 'V of size at most A + 1 that is
a (1/2)-balanced separator of G.

Definition 4.1.6. A subset of vertices U C V' is said to be self-contained if, for
every pair of vertices (z,y) € U?, any shortest path in G between x and y goes
through nodes only in U.

4.2 Reconstruction of Chordal Graphs

In this section, we prove Theorem 1.4.6 that we recall:

Theorem 1.4.6. For reconstruction of chordal graphs using a distance oracle, there
is a randomized algorithm with query complexity O(ASQA -n(2% + log® n) log n),
which is O(n) when the mazimum degree A is O(loglogn).

The algorithm (Algorithm 4.3) computes a vertex that is on many shortest
paths in the sampling, and then grows a clique separator including this vertex.
Next, it partitions the graph into subgraphs with respect to this separator, and
then recursively reconstructs each subgraph. The main tools we need is computing
a shortest path between a pair of vertices (Section 4.2.1) and partitioning the
graph with respect to a set of vertices (Section 4.2.2). In what follows, the set U
represents the set of vertices for which we are currently reconstructing the induced
subgraph G|[U].

4.2.1 Subroutine: Computing a Shortest Path

In this section, we prove the following lemma.

Lemma 4.2.1. Let U be a self-contained subset of V. Let a and b be vertices in
U. The function SHORTEST-PATH(U, a, b) (Algorithm 4.1) outputs a shortest path
between a and b in G[U|. Its query complexity is O(|U|log|U]).

The algorithm is based on dichotomy. First, it makes 2|U| queries to get d(u, a)
and 0(u, b) for every u € U. Let ¢ be the middle node of some shortest a-to-b path.

LA maximal clique is a clique which is not contained in any other clique.



4.2. Reconstruction of Chordal Graphs 35

Algorithm 4.1 Finding a Shortest Path (see Lemma 4.2.1)

1: function SHORTEST-PATH(U, a,b)

2 if 9(a,b) > 1 then

3 QUERY(a, U); QUERY (b, U)

4: T+ {velU|dwv,a)+dv,b) =d(ab)}

5: [ < |0(a,b)/2]

6 ¢ <— an arbitrary node in 7" such that d(c,a) = ¢
7 Uy« {veT]|dwva) <t}

8 Uy {veT]|dv,a) >}

9 P, <~ SHORTEST-PATH(U, a, ¢)

10: P, <~ SHORTEST-PATH(Us, ¢, b)

11: return the concatenation of P, and P,
12: else

13: return the path of a single edge ab

Then the algorithm recursively computes a shortest a-to-c path and a shortest
c-to-b path. The concatenation of these two paths is a shortest a-to-b path.

During the recursion, the distance between the two given endpoints is reduced
by half each time. So there are O(log |U]|) levels of the recursion. The total number
of queries at every level is O(|U]), since the sets on the same level of the recursion
are disjoint. Therefore, the overall query complexity is O(|U|log |U]).

4.2.2 Subroutine: Partitioning by a Set
In this section, we prove the following lemma.

Lemma 4.2.2. Let U be a self-contained subset of V.. Let S be a subset of U. The
function PARTITION(U, S) (Algorithm 4.2) outputs the partition of G[U]\ S into
connected components. Its query complexity is O(A|S| - |U]).

Let W = (N(S)NU)\ S. For every a € W, define the cluster of a as:
B(a)={x €U\ S|d(a,z) <SS, x)}. (4.1)

Since U is self-contained, every x € U \ S belongs to some cluster B(a). The
clusters may have overlaps. The PARTITION algorithm successively merges two
clusters with overlaps. See Figure 4.1.

The query complexity of the algorithm is O(|N(S)| - |U|) = O(A|S] - |U)).
Lemma 4.2.2 then follows directly from Lemmas 4.2.3 and 4.2.4.

Lemma 4.2.3. Let C be a connected component in G[U]\ S. Then C C B for
some set B in the output of the algorithm.



36 Chapter 4. Decomposition by Separators

Algorithm 4.2 Computing the Partition (See Lemma 4.2.2)

1: function PARTITION(U, 5)

2 QUERY(S,U) and obtain N(S)NU

3 QUERY(N(S)NU,U)

4: W<« (NS)NU)\ S

5: B+ {B(a)|aecW} > B(a) defined in Equation (4.1)
6 while 3 By, By € Bs.t. BN By #( do

7 merge By and B, in B

8 return B

5 \@
@ 7
==

—

©OX ©

e

Ble)

Figure 4.1: Here S = {s1,82} and W = {a,b,c,d,e}. The clusters B(a), B(b),
B(c), B(d), B(e) are indicated by the circles. Using their overlaps, the algorithm
produces the partition B = {B(a) U B(b), B(c) U B(d) U B(e)}.

Proof. Let A be the set of vertices in C' N W. Since U is self-contained, for every
vertex x € C, there exists some a € A such that z € B(a). Thus we only need to
prove that all sets {B(a) : a € A} are eventually merged in our algorithm.

Define a weighed graph H whose vertex set is A, and such that for every
(a,b) € A?, there is an edge ab in H, whose weight is defined as the distance
between a and b in G[C]?. To show that all sets {B(a) : a € A} are eventually
merged, we use an inductive proof that is in the same order that Prim’s algorithm
would construct a minimum spanning tree on H. Recall that Prim’s algorithm

2This distance may be larger than (a, b).



4.2. Reconstruction of Chordal Graphs 37

initializes a tree 7 with a single vertex, chosen arbitrarily from A. Then it
repeatedly chooses an edge ab € T x (A\ 7) with minimum weight and add ab to
T. We will show that if an edge ab is added to T, then B(a) and B(b) must be
merged in our algorithm. Since Prim’s algorithm finishes by providing a spanning
tree including every a € A, we thus have all sets B(a) for a € A are merged in our
algorithm.

Suppose that the ¢ unions corresponding to the first ¢ edges chosen by Prim’s
algorithm have been performed already, for ¢ > 0. Let T be the tree in H after
adding the first 7 edges.® Let ab be the (i + 1) edge chosen by Prim’s algorithm.
Thus a € T, b € A\ T, and weight(ab) is minimized. Consider a shortest path
P1,---,pk in G[C] between a and b. Let z = pri/2) be the mid-point vertex of
the path. We claims that both B(a) and B(b) contain z, thus B(a) and B(b) are
merged in our algorithm. It is easy to see that pi,...,pr/2) and prrj2, ..., pr are
shortest paths in G. Thus d(a,z) = [k/2] — 1 and 0(b,z) = |k/2]. So we have
d(a,z) < (b,z) < d(a,z) + 1. To show z € B(a) and z € B(b), we only need
to show that d(b,z) < §(S,z). Choose the vertex s € S that minimizes 0(s, 2)
and consider a shortest z-to-s path P. Let ¢ be the neighbor of s on P, and let
P’ be the shortest z-to-c path. We note that ¢ € A and P’ is in G[C]. Since
0(S,z) = d(s,2) = 0(c, z) + 1, we only need to show that §(b, z) < d(c, z) +1. There
are 2 cases:

Case 1: ¢ € A\ T. Then the concatenation of py,...,pr 21 and P’ gives a path
in G[C] between a and ¢ of length d(a, z) + 0(c, ), which is at least weight(ac)
by the definition of the weight. From the choice of ab, weight(ac) > weight(ab) =
d(a,z) +d(b, z). So we have d(b, z) < d(c, z).

Case 2: ¢ € T. Similarly, the concatenation of py, pgp_1,...,pr/2) and P’ gives a
path in G[C] between b and ¢ of length 0(b, z) + d(c, z), which is at least weight(bc)
by the definition of the weight. From the choice of ab, weight(bc) > weight(ab) =
d(a,z)+6(b, z). So we have §(a, z) < d(c, z). Thus 6(b, z) < d(a,z)+1 < (¢, z)+1.

This completes the proof. n

Lemma 4.2.4. Let B be a set in the output of the algorithm. Then B C C' for
some connected component C' in G[U]\ S.

Proof. First we show that for every a € W and every x € B(a), a and x belong to
the same component in G[U]\ S. Suppose there exists some = € B(a), such that
and a belong to different components in G[U|\S. Any shortest path from a to x must
pass through the separator S, so we have d(a,z) > d(a,S) + 0(S,z) =1+ 0(S, z).
Contradiction with z € B(a).

Next we prove an invariant on B during the while loop (Line 6): Every set
B € B is a subset of some component of G[U] \ S. This invariant holds before the

3For the base case (i = 0), T contains a single vertex and no union operation is performed.



38 Chapter 4. Decomposition by Separators

while loop starts. Suppose the invariant holds before the i'" iteration of the while
loop, and in this iteration By, By € B get merged. Since By N By # (), there exists
z € By N By. All nodes in By (resp. in Bs) are in the same component as z. Thus
all nodes in By U By are in the same component as z. By induction, the invariant
holds when the while loop terminates. This completes the proof. O

4.2.3 Algorithm and Analysis

The RECONSTRUCT-CHORDAL algorithm (Algorithm 4.3) takes as input a self-
contained subset U C V of a chordal graph and returns the edge set of G[U]. The
key function BALANCED-PARTITION-CHORDAL finds a 3-balanced partition of U.
This function first computes a vertex that is on many shortest paths in the sampling,
and then looks for a S-balanced clique separator including this vertex. It repeatedly
takes samples until a B-balanced partition is found. We set ng = 2472(A + 1)
Cy = 36(A + 1)%*log |U]; and

8 = max (1 S /(A28 T 1A + 1))) |

Lemma 4.2.5. RECONSTRUCT-CHORDAL(U) returns the edge set of G[U].

Proof. By Lemma 4.2.2, {U,}; is the partition of G[U] \ K into connected com-
ponents. Every edge of G[U] belongs to some G[U; U K], since there is no edge
between different U; and U;. So the edge set of G[U] is the union of the edge sets
of G|U; U K] over i. The statement follows by induction. O

To bound the query complexity, the key is the following lemma.

Lemma 4.2.6. In every repeat loop of the function BALANCED-PARTITION-
CHORDAL, a f3-balanced partition is found with probability at least 2/3.

To prove Lemma 4.2.6, we need Lemmas 4.2.7 and 4.2.8.

Lemma 4.2.7. For everyv € U, let p, denote the fraction of pairs (a,b) € U? such
that v is on some shortest path between a and b. Then max, p, > 1/(2(A +1)).

Proof. By Corollary 4.1.5, there is some clique S C U of size at most A + 1 such
that every connected component in G[U]\ S has size at most |U|/2. Notice that for
any pair of vertices a, b not from the same component, any shortest a-to-b path must
go by some node in S. The number of such pairs is at least |U|*/2. By Pigeonhole
Principle, there exists some z € S, such that for at least 1/[S| > 1/(A + 1) fraction
of these pairs, their shortest paths go by z. Thus p, > 1/(2(A + 1)). O



4.2. Reconstruction of Chordal Graphs 39

Algorithm 4.3 Reconstruction of Chordal Graphs (see Theorem 1.4.6)

1: procedure RECONSTRUCT-CHORDAL(U)

2 if |U| > ny then

3 ({U:}:, K) < BALANCED-PARTITION-CHORDAL(U)
4: return |J; RECONSTRUCT-CHORDAL(U; U K)

5 else

6 return EXHAUSTIVE-QUERY (U)

7: function BALANCED-PARTITION-CHORDAL(U)
> outputs a [-balanced partition of U

8: repeat

9: {(ai, b;) }1<i<c, < uniform and independent random pairs from U

10: for : < 1 to (' do

11: P, < SHORTEST-PATH(U, a;, b;) > see Section 4.2.1
12: x 4 the node in U with the most occurrences among { P, };

13: QUERY (z,U) and obtain N(z) N U

14: QUERY(N(xz) NU, N(z) N U) and obtain all cliques in U containing x
15: for every clique K in U containing z do

16: P < PARTITION(U, K) > See Algorithm 4.2
17: if P is f-balanced then return (P, K)

18: until a g-balanced partition is found

Lemma 4.2.8. For every vertex v € U, let p, denote the fraction of pairs
(ai, b;) among Cy log |U| uniform and independent random pairs from U such that
v is on some shortest path between a; and b;. Let x = argmax,p,. If C; >
9/(max, p,)?log|U|, then with probability at least 2/3, we have p, > (max, p,)/2.

Proof. Let z be the node in U which maximizes p,. We will show that IP [p, > p.] <
ﬁ for any node y with p, < p./2. This implies the lemma statement because
we then have P[Jy € U, s.t. py, < p./2 and p, > p.] < 5. Thus with probability at
least 2/3, the node = with the largest p, satisfies p, > p,/2.

Let y be any node with p, < p,/2. For every i < (4, define a variable Y; € {0,1}
such that Y; = 1 if the node y is on a shortest a;-to-b; path and Y; = 0 otherwise.
Since {(a;, b;)}; are uniform and independent random pairs from U, {Y;}; are
independent random variables, and each Y; equals 1 with probability p,. We then
have E[Y;] = p, < p,/2. Similarly, define a variable Z; € {0, 1} such that Z; =1 if
the node z is on a shortest a;-to-b; path and Z; = 0 otherwise. Then E[Z;] = p..

For every i, define T; = Y; — Z;. Let T be the average of all T;’s. Then
E[T) = E[T}] = E[Y;] — E[Z] < —p./2. We have



40 Chapter 4. Decomposition by Separators

P[5, > p:] =P[2Ti >0| <P[|T-E[T]| > p./2].

By Hoeffding’s inequality, the last term is at most 2 - exp(—p? - C}/8), which is
at most 1/(3|U|) by the definition of p, and C. Therefore, we have P [p, > p,| <
1/3|U)). O

Proof of Lemma 4.2.6. By Lemma 4.1.4, there is a tree decomposition T of G[U]
such that every bag of T is a unique maximal clique of G[U]. Let x be the node
computed in Line 12 of Algorithm 4.3. Let T}, be the subtree of T induced by the
bags containing x. Define F' to be the forest after removing T, from 7. For any
subgraph H of T', define V(H) C U to be the set of vertices that appear in at least
one bag of H.

Case 1: There exists some connected component 7" in F' with (1 — 5)|U]| <
|[V(T")| < B|U|. Consider the (unique) edge K;Ks in T such that K; € T, and
Ky, € T'. K; N K, is a $-balanced separator, since V(T") is a component in
G[U]\ (K1 N K3). Thus K7 O K; N K is also a S-balanced separator. Since K;
contains z, K7 is one of the cliques checked on Line 15. The algorithm succeeds by
finding a -balanced separator.

Case 2: There exists some connected component 7" in F with |V (T7")| > 5|U|.
The algorithm then fails to find a $-balanced separator. We bound the probability
of this case by at most 1/3. Again let K; K5 be the edge in T such that K; € T,
and Ky € T". For any vertices u,v € V(T"), any shortest u-to-v path cannot go by
2. Since there are at least 32 fraction of such pairs in U2, we have p, < 1 — /32,
which is at most 1/(4(A+ 1)) by the definition of 5. This happens with probability
at most 1/3 by Lemmas 4.2.7 and 4.2.8.

We argue that the two cases above are exhaustive. Suppose, for the sake of
contradiction, that every component 7" in F is such that |V (7”)| < (1 —3)|U|. The
number of components in F is at most A - 22, because every component has a bag
that contains a neighbor of z, and all bags are unique. So |V (F)| < A-22-(1-73)|U|,
which is at most |U|/2 by the definition of 5. On the other hand, every node
v e U\ N(z) is covered by some clique in F, so |[V(F)| > |U| — (A + 1), which is
greater than |U|/2 since |U| > ny. Contradiction. O

Query Complexity Analysis. First, we analyze the complexity of BALANCED-
PARTITION-CHORDAL. Computing C) shortest paths takes O(A?|U|log? |U|)
queries, since a shortest path between two given nodes can be computed using
O(|U]log|U|) queries (see Section 4.2.1). We note that the neighborhood N(x) of
has size at most A+1, and there are at most 2° cliques containing . For every clique
K containing x, PARTITION(U, K) takes O(A|K| - |U|) queries by Lemma 4.2.2,



4.3. Reconstruction of Outerplanar Graphs 41

where |K| < A + 1. Therefore every repeat loop takes O <A2|U](2A + log? \U]))
queries. By Lemma 4.2.6, the expected number of repeat loops is constant. So
the query complexity is O (A2|U|(2A + log® |U]))

Next, we analyze the complexity of RECONSTRUCT-CHORDAL(U). Let ¢(m)
be the number of queries when |U| = m. We have

q(m) =0 (A2m(2A + log? m)) +> q(|U| + |K]),
where {U;}; is a B-balanced partition of U. Hence
q(n) =0 (AQn(2A + log® n) log% n) =0 (A?’QA -n(2% + log®n) log n) .

This completes the proof of Theorem 1.4.6.

4.3 Reconstruction of Outerplanar Graphs

In this section, we prove Theorem 1.4.7 that we recall:

Theorem 1.4.7. For reconstruction of outerplanar graphs using a distance oracle,
there is a randomized algorithm with query complexity O(A? - nlog® n), which is
O(n) when the maximum degree A = O(polylogn).

The algorithm again uses random sampling and statistic estimation, as used
for reconstructing chordal graphs in Section 4.2. To obtain a balanced partition of

an outerplanar graph, we need to partition the graph with respect to a polygon
(Section 4.3.1).

4.3.1 Subroutine: Partitioning by a Polygon

Definition 4.3.1. We say that the k-tuple (x1,...,x) € VF (where k > 3) forms
a polygon if G{z1,...,xr}| has exactly k edges: x1x9, xox3,. .., TpTy.

In this section, we prove the following lemma.

Lemma 4.3.2. Let U be a self-contained subset of V. Let a,b,c € U be consecutive
nodes along some unknown polygon (qi,...,q) in U. The function PARTITION-
BY-PoLYGON(U, a, b, ¢) outputs the partition of U \ {q,...,q} into connected
components. Its query complexity is O(A|U|log|U]).

The function PARTITION-BY-POLYGON consists of the following two steps.



42 Chapter 4. Decomposition by Separators

Step 1: Computing the Polygon. The algorithm is given in Algorithm 4.4.
The key is to compute the a-to-c path along the polygon that does not go through
b. First, the algorithm computes the middle point z of this path. Next, it computes
a shortest path P; between a and z and a shortest path P, between z and c¢
using O(|U|log |U|) queries (see Section 4.2.1). The polygon is the concatenation
of the path P;, the path P, the edge cb, and the edge ba. In the algorithm,
PARTITION(U, {a,b}) and PARTITION(U, {b,c}) use O(A - |U|) queries. So the
overall query complexity of FIND-POLYGON is O(A - |U|log |U]).

Algorithm 4.4 Finding a Polygon

1. procedure FIND-POLYGON(U, a, b, ¢)

2 (A1,..., Ag,) < ParTITION(U, {a, b})

3 Let A; be the component containing ¢

4: (Cy,...,Ck,) <PARTITION(U, {b, c})

5: Let C; be the component containing a

6 T%(AZQCJ)U{G,C}

7 QUERY(a,T), QUERY(c,T)

8 d + minger{d(a,u) + 0(u,c)}

9 Let z € T be such that d(a, z) + 6(z,¢) = d and (a, z) = |d/2]

10: P, < SHORTEST-PATH(T, a, 2)
11: Py < SHORTEST-PATH(T, z, ¢)
12: return the concatenation of P;, P, cb, ba

Step 2: Partitioning by the Polygon. Given a polygon (qi,...,q), we want
to compute the partition of U with respect to this polygon. We note that the
PARTITION algorithm in Section 4.2.2 requires O(A - [ - |U|) queries, which is
O(A-|UJ?) when [ = O(|U]). In the following, we give an improved implementation
that uses O(A - |U|log |U|) queries based on dichotomy.

Let m = [l/2]. First we compute the partition of U into components with
respect to the set {1, ¢m, ¢} using the PARTITION procedure. This takes O(A -|U])
queries. Let () be the component containing ¢, (the endpoints ¢, g, are included),
and let Q2 be the component containing ¢,,,+1 (the endpoints ¢y, ¢ are included).
It is easy to see that both 1 and ()5 are self-contained. We further decompose )¢
with respect to the path ¢i1¢...¢q, and decompose () with respect to the path
GmGm+1 - - - qi, using a recursive procedure PARTITION-BY-PATH (Algorithm 4.5).
This procedure receives a self-contained subset Z C U and two integers s,t such
that 1 < s <t <[, and returns the partition of Z by the path qsqsi1 ... ¢.

The number of queries of PARTITION(Z, {g,,}) or PARTITION(Z, {qs,q;}) is
O(A - |Z|). During the recursion, (t — s) is reduced by half at every level, so there



4.3. Reconstruction of Outerplanar Graphs 43

//\\ \\ / /A\\
’ - -~ -
/ . - R - ~ . // .
’ v Al AN N
/ ‘s v/ \
! v ‘. ,
S oo R
s q 92 3
7 N
/ \
/ \
I \
| |
- \ /
[N ;-7
| RSN s -
. :
\ N /
71 N !
\ - N
\ 4 1 N 1
, \ , N ;
N_ s \ , ~ -
\ 7
.
qm - -

Figure 4.2: Partition by the polygon qi,...,q

Algorithm 4.5 Partition with respect to a path

1: procedure PARTITION-BY-PATH(Z, s, 1)

2 if t > s+ 1 then

3 m < |(s+1)/2]

4: P < PARTITION(Z, {qm})

5: Let Z; be the component in P containing g
6 Let Z5 be the component in P containing ¢;
7 Py < PARTITION-BY-PATH(Z1, s, m)

8 Py <— PARTITION-BY-PATH(Z,, m, 1)

9: return (P \ {Z1, Z>}) UP1 U Py

10: else
11: return PARTITION(Z, {¢s, ¢:})

are at most log|U| levels of the recursion. The query complexity of each level is
O(A -|UJ), since the sets Z’s in the that level are disjoint (except at endpoints).
So both PARTITION-BY-PATH(Q1, 1, m) and PARTITION-BY-PATH(Q2, m, 1) take
O(A - |Ullog|U|) queries. Therefore, the overall query complexity to partition U
with respect to the polygon is O(A - |U|log |U]).



44 Chapter 4. Decomposition by Separators

4.3.2 Algorithm and Analysis

The RECONSTRUCT-OUTERPLANAR algorithm (Algorithm 4.6) takes as input a
self-contained subset U C V of an outerplanar graph and returns the edge set of
G|U]. Similar to Section 4.2, the function BALANCED-PARTITION-OUTERPLANAR
computes a [-balanced partition of U. We set ng = 20; C; = 324log|U]|, and

B =/11/12.

Algorithm 4.6 Reconstruction of Outerplanar Graphs

1: procedure RECONSTRUCT-OUTERPLANAR (U)

2 if |U| > ng then

3 (Ui, ...,Us) <+ BALANCED-PARTITION-OUTERPLANAR(U)
4: return |J;RECONSTRUCT-OUTERPLANAR(U;)

5 else

6 return EXHAUSTIVE-QUERY (U)

7. function BALANCED-PARTITION-OUTERPLANAR(U)

8: repeat
9: {(ai, b;) }1<i<c, < uniform and independent random pairs from U
10: for : < 1 to (' do
11: P, < SHORTEST-PATH(U, a;, b;) > see Section 4.2.1
12: x 4 the node in U with the most occurrences among { P, };
13: QUERY (z,U) and obtain N(z) N U
14: P < PARTITION(U, N(2) N U) > See Algorithm 4.2
15: if P is [-balanced then return P > Figure 4.3
16: Let W € P be the component with more than 3|U| nodes
17: if N(W) contains two neighbors of x (let them be y,y’) then
18: P <+ PARTITION-BY-POLYGON(U, y, z, /)
19: if P is f-balanced then return P
20: until a pg-balanced partition is found

Correctness of the RECONSTRUCT-OUTERPLANAR algorithm is a trivial adap-
tation from Lemma 4.2.5. To bound the query complexity, the key is the following
lemma.

Lemma 4.3.3. In every repeat loop of the function BALANCED-PARTITION-
OUTERPLANAR, a [3-balanced partition is found with probability at least 2/3.

To prove Lemma 4.3.3, we need Lemma 4.3.4.

Lemma 4.3.4. For every v € U, let p, denote the fraction of pairs (a,b) € U?
such that v is on some shortest path between a and b. Then max, p, > 1/6.



4.3. Reconstruction of Outerplanar Graphs 45

Figure 4.3: Partition by the neighbors ¥, ..., ys of x.

Proof. Since G[U] is outerplanar, it has treewidth at most 2. From Lemma 4.1.3,
there exists some set S C U of size at most 3 such that every connected component
in G[U]\ S has size at most |U|/2. The following argument is similar to that in the
proof of Lemma 4.2.7. Notice that for any pair of vertices a,b not from the same
component, any shortest a-to-b path must go by some node in S. The number of
such pairs is at least |U|?/2. By Pigeonhole Principle, there exists some z € S,
such that for at least 1/]S| > 1/3 fraction of these pairs, their shortest paths go by
z. Thus p, > 1/6. O

Proof of Lemma 4.53.3. Let x be the node computed in Line 12 of Algorithm 4.6.
If the partition by the neighbors (Line 14) is S-balanced or the partition by the
polygon (Line 18) is -balanced, then the algorithm succeeds. We only need to
bound the probability of the remaining case by 1/3. If no [-balanced partition is
found, there must be a self-contained subset S of U such that x ¢ S and |S| > B|U]|.
For every (a,b) € S?, any shortest path between a and b does not go by z. So
p. < 1—(|S|/|U])* < 1— p* =1/12 by the definition of 3. This happens with
probability at most 1/3, by Lemmas 4.3.4 and 4.2.8. So a [3-balanced partition is
found with probability at least 2/3. O

Query Complexity Analysis. First, we analyze the complexity of BALANCED-
PARTITION-OUTERPLANAR. Computing C; shortest paths takes O(|U]|log? |U])
queries, since a shortest path between two given nodes can be computed using
O(|U]log|U|) queries (see Section 4.2.1). We note that the neighborhood N(x) of



46 Chapter 4. Decomposition by Separators

has size at most A+1. By Lemma 4.2.2, PARTITION(U, N(z)) takes O(A|N(z)|-|U])
queries. The procedure PARTITION-BY-POLYGON takes O(A|U|log |U|) queries.
Therefore every repeat loop takes O (A2|U |log? |U |) queries. From Lemma 4.3.3,
the expected number of repeat loops is constant. So the overall query complexity
is O (A2|U|log” [U]).

Next, we analyze the complexity of RECONSTRUCT-OUTERPLANAR. Let g(m)
be the number of queries when |U| = m. We have

a(m) = O (A%mlog*m) + 3" q(|Ui)),

where {U;}; is a f-balanced partition of U. Hence ¢(n) = O (A2n10g3 n)
Thus we complete the proof of Theorem 1.4.7.

4.4 Verification of Treewidth Bounded Graphs

In this section, we prove Theorem 1.4.8 that we recall:

Theorem 1.4.8. For verification of graphs of trecwidth w using a distance oracle,
there is a deterministic algorithm with query complexity O(A(A + wlogn)nlogn),
which is O(n) when A and w are O(polylogn).

We only need to provide an algorithm for non-edge verification, because verifying
that £ C F can be done naively. The algorithm is by recursion. It first computes
a (1/2)-balanced separator in (¢ and use it to obtain a partition of the vertices.
Then it verifies the non-edges of G between different components in the partition.
Finally, it recurses to verify the non-edges inside each component.

There is a catch because of the query oracle: by querying a pair (u, v), we would
like to get back their distance in the recursive subgraph H, but instead the oracle
returns their distance in the entire graph G. It could well be that a shortest u-to-v
path in G goes through two nodes s; and s, in the separator and the segment
between s; and s, is outside H.

As a warmup, we first provide an algorithm for the special case of chordal
graphs, because the above issue does not arise when the graph is chordal. We then
extend the algorithm to graphs of bounded treewidth: To get around that issue, we
formulate the recursive subproblem by augmenting H and adding weighted edges
between vertices of the separator.

4Since the separator is a clique, the shortest s;-to-sy path is an edge, and thus belongs to H.



4.4. Verification of Treewidth Bounded Graphs 47

4.4.1 Warm up: Chordal Graphs

The VERIFY-CHORDAL algorithm (Algorithm 4.7) receives as input a chordal graph
G = (V,E) such that &2 C E and a self-contained subset U C V, and verifies
whether every non-edge of G[U] is a non-edge of G[U].

Algorithm 4.7 Recursive Verification for Chordal Graphs

1: procedure VERIFY-CHORDAL(G, U)

2 if |U| > 4(A +1) then

3 S « (1/2)-balanced clique separator of G[U] of size at most A + 1
4: QUERY(S,U) and obtain N(S)NU

5: QUERY(N(S)NU,U)

6: for every component C' of G[U]\ S do

7 VERIFY-CHORDAL(G,C' U S)

8

9

else
QUERY (U, U)

By Corollary 4.1.5, there is a (1/2)-balanced clique separator S of G[U].?> To
confirm the non-edges between different components of G[U] \ S, it is sufficient to
query every pair in (N(S) N U) x U. This is shown in Lemma 4.4.1, which is a
main idea of the algorithmic design. Then for each component C' of G[U]\ S, we
recursively verify the non-edges inside G [C'U S]. The recursive call on the subset
C' U S still uses the global query oracle. But because S is a clique in G, for any
u,v € CUS, any shortest u-to-v path in G stays inside C'U .S, so the value returned
by QUERY (u,v) is the distance in G[C' U S].

A

Lemma 4.4.1. Assume that E C E. If 6(u,v) = d(u,v) for every (u,v) €
(N(S)NU) x U, then there is no edge in G[U] between different components of
G[UJ\ S.

Proof. Let X and Y be any two different components in the partition of G[U] \ S.
Let x be any vertex in X and y be any vertex in Y. We show that zy is not an
edge in G[U]. Let a (resp. b) be the vertex in N(S) that is closest to x (resp. y)
in G[U]. Then a € X and b € Y. Since £ C E, we have N(S) C N(S). It is
then easy to see that a, b € (N(S)NU)\ S. Without loss of generality, assume
d(a,z) < (b, y).

Since (a,y) € (N(S)NU) x U, we have 6(a,y) = d(a,y). Any shortest path in
CAT’[U} from a to y goes through S, so

0(a,y) > 6(a, ) + (S, y) = (a, S) + 1+ (b, y) = 2+ 3(b,y).

5In addition, S can be computed in polynomial time and with no queries.



48 Chapter 4. Decomposition by Separators

). Therefore d(a,y)

Since (b,y) € (N(S)NU) x U, we have 3(b,y) = d(b,y
xv?/) > 5((1,y) - 5(&, .Z') >

2+ 0(b,y) > 2+ 0(a,z). By the triangle inequality, o(
Thus xy is not an edge in G[U].

O s v

From Lemma 4.4.1, the correctness of VERIFY-CHORDAL follows by induction.
We now analyze the query complexity. Since G [U] has maximum degree A and
S has size at most A + 1, QUERY(S,U) and QUERY (N (S) NU,U) use O(A?|U|)
queries. Let g(m) be the number of queries of VERIFY-CHORDAL(G, U) when
|U| = m. We have

a(m) = O(A%m) + 3 q(m + |S]),
c

where m = |S| + >¢|C| and S is a (1/2)-balanced separator. Hence ¢(n) =
O(A%nlogn).

Remark. We note that there are simpler algorithms for verifying chordal graphs,
but the algorithm presented here conveys ideas that can be extended to verify graphs
of bounded treewidth.

4.4.2 Extension: Graphs of Bounded Treewidth

We extend Algorithm 4.7 to graphs of treewidth w. The input specification is
now the graph é, a subset U C V| plus a set F' of additional, new edges uv with
weight 0(u,v). The set F is initially empty, and increases during the recursion.
The algorithm verifies whether the metric of (U, E[U] U F[U]) is identical to that
of (U, E[U] U F[U]). Instead of S being a clique, now S is an existing bag of some
tree decomposition of width w (see Lemma 4.1.3). Verifying the non-edges between
different components is the same as before, because Lemma 4.4.1 still holds. To
verify the non-edges inside a component C'; we create new edges uv with weight
§(u,v) for all pairs (u,v) € S?, and add them to the set F' of weighted edges. Then
we make a recursive call for the vertex set C'U S and the updated set F'. Every
subgraph in the recursive call has treewidth at most w, since the new edges are
added inside S. This concludes the description and correctness of the algorithm.

For the query complexity, we need to bound the size of the neighborhood N(S)
of S: it is with respect to the subgraph E[U] U F[U], so the vertex degree is no
longer bounded by A. However, for any vertex v, the number of weighted edges
adjacent to v is bounded by the maximum bag size times the number of bags
containing v that have been used as separators in the recursive calls. Since the
graph has treewidth w, every bag has size at most w + 1. Since all separators are
(1/2)-balanced, the recursion has depth O(logn), so v belongs to O(logn) such
bags. Therefore, the degree of v is O(A + wlogn). The overall query complexity is
O(A(A +wlogn)nlogn).

Thus we proved Theorem 1.4.8.



CHAPTER 9

Side Results

5.1 Lower Bounds

In Section 5.1.1, we give lower bounds for general graphs where the maximum
degree is unbounded; and in Section 5.1.2, we give a lower bound for graphs of
maximum degree A.

5.1.1 General Graphs

Reyzin and Srivastava showed a lower bound as follows.

Lemma 5.1.1. [73] For graph reconstruction using a distance oracle, any algorithm
has query complexity 2(n?).

This (n?) lower bound can be easily extended to the graph verification problem
and/or to the shortest path oracle model as follows. Consider a graph G whose
vertices are vy, ..., v, and whose edges form a star: there is an edge v,v; for every
2 <4 < n. In addition, G' may or may not contain a new edge v;v;, for 2 <i,j5 < n.
(In the graph verification problem, the star graph is given as é) To check whether
G contains a new edge, we need to perform (n?) distance or shortest path queries.

5.1.2 Graphs of Bounded Degree

In this section, we prove Theorem 1.4.9 that we recall:

Theorem 1.4.9. For graph reconstruction using a distance oracle, assuming the
maximum degree A > 3 is such that A = o (nl/Q), any algorithm has query
complezity Q(Anlogn/log(logn/log A)).



50 Chapter 5. Side Results

To provide intuition, we first show a lower bound of Q2(Anlogn/loglogn),
assuming that n = 3t — 1, where ¢t = 2* for some integer k. Consider a family
G of graphs G as follows: the vertex set is {vy,...,v,}; the first 2¢t — 1 vertices
form a complete binary tree of height k (with leaves vy, ..., v9 1); the vertices
Vog, ..., U3¢_1 induce an arbitrary subgraph of maximum degree A — 1; there is an
edge between v; and v;4 for every i € [t, 2t — 1] and there are no other edges. Then
every vertex in GG has degree at most A, and the diameter of the graph is at most
2k + 2 = O(logn). Every distance query returns a number between 1 and 2k + 2,
so it gives O(loglogn) bits of information. From information theory, the number
of queries is at least the logarithm of the number of graphs in G divided by the
maximum number of bits of information per query. The number of graphs in G is
the number of different graphs of ¢ vertices and of maximum degree A — 1, which
is <nQ(A")) when A = o(y/n) (see [69]). Therefore, we have a query lower bound:

s (20)) _ (snioe)

O(loglogn) loglogn

To prove the bound as stated in Theorem 1.4.9, we only need to replace the
above complete binary tree by a complete (A — 1)-ary tree. The diameter of the
graph is now O(logn/log A). The theorem statement follows trivially.

5.2 Approximate Reconstruction

In this section, we study the approximate version of the reconstruction problem
using a distance oracle on general graphs (not necessarily of bounded degree). We
first give a simple algorithm (Algorithm 5.1), and then show that this algorithm is
optimal by providing a query lower bound of the same complexity.

Let G = (V, E) be a connected, undirected, and unweighted graph. Let d be the
distance metric of G. Let f be any sublinear function of n. An f-approzimation &
of the metric § is such that, for every (u,v) € V2, d(u,v) < §(u,v) < f - d(u,v).

Algorithm 5.1 receives the vertex set V' and outputs the approximate metric 5.
The algorithm repeatedly picks a node u such that the distances between u and
other nodes are not yet estimated. It then makes queries between u and all other
nodes and obtains an estimate 8 (x,y) for every node x within distance f/2 from
u and for every node y in the graph. The algorithm repeats the above until all
distances are estimated.

Theorem 5.2.1. The algorithm APPROX-RECONSTRUCT(V) computes an f-
approzimation of the graph metric § using O(n?/f) distance queries.



5.2. Approximate Reconstruction 51

Algorithm 5.1

1: procedure APPROX-RECONSTRUCT(V)

2 SV

3 while S # () do

4: u — arbitrary node from S

5: QUERY(u, S)

6 Let B be the set of nodes whose distance to u is less than f/2
7 Set &(z,y) = 1 for all pairs (z,y) € B x B with z # y

8 Set &(z,y) = 6(u,y) — 6(u, x) for all pairs (z,y) € B x (S\ B)
9: Remove B from S

10: return §

Proof. First we prove that in the end of the algorithm, for every (z,y) € V2,
we have §(z,y) < d(x,y) < f-d(x,y). For every while loop, consider any pair
(z,y) € B x B with x # y. We have

O(w,y) =1 < 0(w,y) < o(z,u) +8(u,y) < (f/2) + (f/2) = f = f-d(z,y).

Next, consider any pair (z,y) € B x (S'\ B). On the one hand, by the triangular
inequality,

On the other hand, by the triangular inequality,

Sz, y) < (0(u,y) — 0(u, x)) + 26(u, x).

The first term is 6(z, y). The second term, by the definition of B, is at most (f —1).
Since 2 € B and y ¢ B, we have §(z,) > 1, so the second term can be bounded
by f—1<(f—1)-6(x,y). Adding completes the proof of the upper bound.
Next, we analyze the query complexity of the algorithm. Let U C V be the
set of nodes u’s chosen in Line 4 during the algorithm. For every pair of distinct
nodes u,u’ € U, we have §(u,u’) > f/2. For every u € U, define N(u, f/4) as the
neighborhood of u within distance f/4. Then we have |N(u, f/4)| > f/4, since G
is connected. Observe that the sets {N(u, f/4)}, are disjoint. So there are at most
Adn/f sets, i.e., |[U| < 4n/f. For every u € U, the algorithm makes O(n) queries.
So the total number of queries is O(n?/f). O

For the lower bound, extending Lemma 5.1.1 gives the following theorem.

Theorem 5.2.2. To compute an f-approximation of the graph metric § using a
distance oracle, any algorithm requires QU(n*/f) queries.



52 Chapter 5. Side Results

Qo
Ag41 Ak42 ag43 S Qs
A2k+o1(1) A2k+01(2) A2k +01(3) cee A2k+01 (k)
A3k+03(01 (1)) A3k+09(01(2)) A3k+02(01(3)) T A3k+09 (01 (k)

Figure 5.1: In this example, f = 2; The construction of the tree is based on two
permutations oy and 0.

Proof. To simplify the proof, we assume n = 2fk + 1, for £ € N. We define a
family of instances as follows. For each f-tuple (o1,...,0¢), where every o; is a
permutation of {1,...,k}, we define an instance, which is a tree: it has one vertex
ap as the root (on the first level), k vertices aq, . .., aj on the second level, k vertices
ki1, - - -, 0ox on the third level, - - - and k vertices a, g, . ..,a,_1 on the (2f + 1)
level. For every | € [2, f] and every i € [1,k], there is an edge between the 4t}
node on level [ and the i*® node on level [ + 1. For every [ € [f + 1,2f] and every
i € [1,k], there is an edge between the i node on level I and the o;_ (i)™ node
on level [ + 1. See Fig. 5.1. We observe that every tree constructed above has k
branches from the root, and every branch is a path of 2f + 1 nodes. We will show
that any algorithm requires 2(n?/f) queries to compute an f-approximation of
the metric on these instances.

First, notice that for these instances, any f-approximation & of the metric
can be transformed into the metric  without queries: For every nodes v and v
on consecutive levels between f 4 1 and 2f + 1, uv is an edge of G if and only
if g(u,v) < 2f. This is because, if u and v are in the same branch, we have
d(u,v) = 1, thus g(u, v) < f; and if u and v are in different branches, we have
6(u,v) = 6(ag, u) + 6(ag,v) > 2f, thus d(u,v) > 2f. Therefore, we only need to
prove that any algorithm for the exact reconstruction problem requires (n?/f)
queries on these instances.

Let A be any algorithm that reconstructs these instances exactly. We assume
that A does not make redundant queries, i.e., queries whose answers can be deduced
in advance. Obviously, any query with the root is redundant. For any two node u
and v, let [, and [, be their levels. The query (u,v) is redundant when [, < f + 1
and [, < f+ 1, since the first f + 1 levels are fixed. Thus every query (u,v) is such
that [, > f+ 1 and [, > 2 (we assume [, > [, without loss of generality). The



5.2. Approximate Reconstruction 53

QUERY (ug,v1)

Yes No
QUERY (ug, v2) QUERY (us, v3)
Yes No Yes No
QUERY (uy, vq) QUERY (us, vs) QUERY (ug, vg) QUERY (u7, v7)

Figure 5.2: Decision tree of A

answer is either [, — [,, if v and v are in the same branch; or [, + [, — 2, if v and v
are in different branches. We can equivalently identify the answer as Yes or No to
the question: Are w and v in the same branch? The key is to bound the number
of Yes answers during the algorithm. We introduce the component graph H, which
represents the information from all Yes answers received by A. The vertex set of
H is defined to be the set of all nodes of level between f + 1 and 2f + 1. At the
beginning, the edge set of H is empty. Each time when A receives a Yes answer to
a query (u,v), we add an edge to H according to one of the two cases:

1.l,>f+1and l, > f+ 1. Then we add the edge uv to H.

2. l,>f+1and 2<1[, < f+ 1. Then we add the edge uw to H, where w is
the node on level f 4 1 that is in the same branch as v.

There could not be cycles in H, since otherwise there are redundant queries.
The number of connected components in H is at least k, since every connected
component in H contains nodes from the same branch of the tree and there are k
branches. The number of edges in H is the number of vertices minus the number
of connected components, which is at most k(f + 1) — k = kf. Since every Yes
answer adds an edge into H, we have A stops after at most kf Yes answers.
Next, we show the lower bound by a decision tree argument. See Figure 5.2.
First, A queries some pair (ug,v1). If the answer is Yes, it queries some pair (ug, vs),
otherwise it queries some pair (us, v3), etc. A stops if and only if it arrives at a
leaf of the decision tree. Let h be the depth of the decision tree. We only need
to prove that h = Q(n?/f). A leaf of the decision tree is identified by its root-leaf



54 Chapter 5. Side Results

path, a word over { Yes, No} of length at most h and with at most kf Yes’s.! The
total number of leaves in the decision tree is at most

h h 2hkS
Oéjzﬁjkf <J> =% (W) = (kf)I

On the other hand, the number of leaves in the decision tree is the number of
instances, which is (k!)/. Therefore,

2hH+7
kN < .
]
Using Stirling’s formula, we have h = Q(k%f) = Q(n?/f). O

1'We assume that the length of this path is exactly h by appending unnecessary No’s.



CHAPTER 0O

Conclusion

Main General Results. We have designed an algorithm for graph reconstruc-
tion using O(n3/ %) distance queries and an algorithm for graph verification using
O<n1+°(1)> distance or shortest path queries. Both algorithms decompose the graph
into subgraphs using the Voronoi cell decomposition, and then solve the problem
in the subgraphs independently. We have also given a greedy algorithm for graph
verification using either oracle and we have proved that its query complexity is
again O(nHo(l)). The greedy algorithm can be extended to graph reconstruction

using a shortest path oracle with the same query complexity O(nH"(l)).

Main Open Problem. For graph verification using either oracle and graph
reconstruction using a shortest path oracle, we have provided algorithms with near-
linear query complexity. However, we do not know whether graph reconstruction
using a distance oracle is more difficult than these problems. Hence the central open
problem: Is there a reconstruction algorithm using a near-linear number
of queries to a distance oracle?

One Failed Attempt. To design a better-than-O(n?/?) algorithm for graph
reconstruction via a distance oracle, one might try to extend the Voronoi cell
decomposition recursively, as in the algorithm for verification (Algorithm 2.5) with
query complexity O(nHo(l)). Recall that in Algorithm 2.5, the key subroutine is
SUBSET-CENTERS (Algorithm 2.4), which roughly equipartitions a subset U into
Voronoi cells. This subroutine requires no query in the verification problem, since
G is given. However, in the reconstruction problem, it would require Q(n) queries
even if the subset U is small. Therefore, we cannot obtain an efficient recursive
algorithm using this framework.



56 Chapter 6. Conclusion

Another Failed Attempt. One might try a greedy approach, which has already
been used for graph reconstruction via a shortest path oracle (Algorithm 3.2).
Recall that Algorithm 3.2 first finds a connected subgraph spanning all vertices,
and then greedily queries a pair (u,v). If the distances between u and v in the
subgraph and in the graph G are the same, then it eliminates a large number of
non-edges; otherwise it discovers an edge of G and adds it to the current subgraph.
In the distance oracle model, finding a connected subgraph spanning all vertices
can be done using O(n) queries [63]. However, given a pair of (u,v) such that their
distances in the current subgraph and in the graph G are different, Q(n/logn)
distance queries are required in general to discover an edge [16]. Therefore, the
greedy framework does not lead to an efficient algorithm for reconstruction via a
distance oracle.

Future Directions. Let us consider two potential approaches for graph recon-
struction. The first approach decomposes the graph into Voronoi cells and then
applies recursion. This approach fails when there are many connections between
different cells (since in this case, the distance between a pair of nodes in the cell is
different from their distance in the entire graph). The second approach is random
elimination: we select a set S of polylog n nodes at random, and query the distance
between every selected node and every node in the graph. If a pair uv € V? is such
that |0(u, s) — d(v, s)| > 1 for some selected node s € S, then uv is confirmed to
be a non-edge of GG. Next, we query all the pairs that are not yet confirmed. We
have tested this algorithm on random A-regular graphs, where it only requires a
near-linear number of queries. However, this approach fails when there are few
connections between different parts of the graph. For example, if the graph is a
complete binary tree, then the number of queries in the last step is quadratic.

Since the two approaches fail on opposite instances of the graphs, it might
be possible to design an algorithm that combines the two approaches and has a
near-linear query complexity:.

Special Cases of Graphs. Although for general graphs, there is no reconstruc-
tion algorithm using a near-linear number of distance queries, when the graph is
chordal or outerplanar, we have provided algorithms using O(n) distance queries.
These algorithms exploit the property that such graphs admit a small separator
such that there is no connection between different sides of the separator. Note that
when graphs have bounded degree, both chordal graphs and outerplanar graphs
have bounded treewidth. For reconstruction using a shortest path oracle and

verification using either oracle, we have further improved the query complexity
from O(nHo(l)) to O(n) for graphs of bounded treewidth.



57

Intermediate Open Problem. We would like to know whether there is a
reconstruction algorithm using a near-linear number of queries to a distance oracle,
when the graph has bounded treewidth.

Other Open Problems. As noted in [14], we could consider other objectives of
network inference, such as asking for the minimum number of queries to discover
a fixed percentage of edges and non-edges, or determining the diameter of the
network.






Part 11

Planar Graph Optimization






CHAPTER 7

Introduction

We consider two problems in planar graphs: correlation clustering and two-edge-
connected augmentation. We address them in the same work because they can be
related via planar duality, which will be discussed later.

7.1 Correlation Clustering

7.1.1 The Problem

The correlation clustering problem takes as input a graph whose edges are labelled
either (+) or (—). A (4) edge represents evidence that its endpoints belong to
the same cluster, and a (—) edge represents evidence that its endpoints belong to
different clusters. Each edge has a non-negative weight reflecting the strength of the
evidence. The goal is to find a partition of the vertices into clusters that minimizes
the total weight of the edges inconsistent with that evidence. See Fig. 7.1.

This problem was first considered by Ben-Dor, Shamir, and Yakhini [15],
motivated by some computational biology questions. Bansal, Blum, and Chawla [11]
also independently formulated and considered this problem, motivated by machine
learning problems concerning document classification.

[35] For example, the multiset of objects might consist of all authors of English
literature, and two authors belong to the same category if they correspond to
the same real person. This task would be easy if authors published papers
consistently under the same name. However, some authors might publish under
several different names such as William Shakespeare, W. Shakespeare, Bill
Shakespeare, Sir Francis Bacon, Edward de Vere, and Queen Elizabeth 1. Given




62 Chapter 7. Introduction

6.:2 i,

Figure 7.1: In this example, the instance is an unweighted grid graph. The (+)
edges are solid, and the (—) edges dashed. Dotted lines indicate an optimal partition
of vertices with inconsistent edges eq, e, €.

Figure 7.2: Image Segmentation

some confidence about the similarity and dissimilarity of the names, our goal
is to cluster the objects to maximize the probability of correctness.

This problem on general graphs is APX-hard [11, 26, 35]. In this work, we study
the case when the graph is planar. The motivation for planar graphs comes from
image segmentation. The goal is to partition the image into regions representing
different image components. See Fig. 7.2. An image is represented by a grid of
pizels. For each pair of neighboring pixels, comparing the pixels’ values yields an
assessment of how likely the pixels are to belong to the same region. There can be
spurious assessments. So global optimization is needed to find a good segmentation.
When an image is large, it is common for a visual task to first coalesce coherent
uniform neighborhoods of pixels into superpizels, using preprocessing based on
local properties such as brightness, color, and texture, see [3, 66]. We then extract
a local similarity measure on pairs of adjacent superpixels, and the goal is to find a



7.1. Correlation Clustering 63

good segmentation of the superpixel graph under that measure. Researchers have
formulated this problem as correlation clustering, e.g., [4, 5, 6, 58, 80]. They gave
experimental results based on techniques such as integer linear programming or
linear programming relaxation.

Note that the superpixel graph is planar. For correlation clustering on planar
graphs, Bachrach et al. [10] showed NP-hardness, and prior to this work, the
best algorithm with theoretical guarantee was a constant-factor approximation for
minor-excluded graphs by Demaine et al. [35].

7.1.2 Related Work

Correlation clustering and its variants have been extensively studied because of
their numerous applications, for example in computational biology [15, 19], data
mining [31], machine learning [11], and computer vision [4, 5, 6, 58, 80].

General Graphs. Correlation clustering on general (weighted) graphs is APX-
hard [11, 26, 35]. Charikar, Guruswami, and Wirth [26], and independently,
Demaine et al. [35] gave an O(logn)-approximation algorithm based on linear
programming rounding and the region-growing technique. In [26, 35|, the authors
also noted that any o(logn)-approximation algorithm for correlation clustering
would require improving the state-of-art for approximating minimum multicut.

For the variant of the problem where the goal is to maximize the total weight
of agreements, Charikar, Guruswami, and Wirth [26] showed APX-hardness and
provided a 0.7664-approximation algorithm. Independently, Swamy [75] gave a
0.7666-approximation algorithm.

Complete Graphs. Bansal, Blum, and Chawla [11] studied the problem in an
unweighted complete graph, i.e., every pair of vertices has a label of either similar
or dissimilar. They gave a constant-factor approximation algorithm (for some large
constant). Charikar, Guruswami, and Wirth [26] gave a 4-approximation algorithm
and showed APX-hardness. For maximizing agreements, a PTAS was given in [11].

In the weighted setting, for each pair of vertices, the agreement weight and
disagreement weight sum to one. Again, Bansal, Blum, and Chawla [11] gave a
constant-factor approximation algorithm (for some large constant). Ailon, Charikar,
and Newman [2] gave an algorithm that achieves expected approximation ratio 5. If
in addition the weights obey the triangular inequality, the algorithm in [2] achieves
expected approximation ratio 2, and an algorithm of worst case approximation
ratio 3 was obtained by Gionis, Mannila, and Tsaparas [44].



64 Chapter 7. Introduction

Fixed Number of Clusters. Giotis and Guruswami [45] studied the variant
when the number of clusters is limited to a constant, which might be an external
constraint. They showed that both minimizing disagreement and maximizing
agreement admit a PTAS and are NP-hard.

Noisy Input. Mathieu and Schudy [67] considered the variant where the input
graph is generated from an arbitrary partition of the vertices into clusters, such
that for each vertex pair, the similarity information is corrupted independently with
some probability p. They showed that the clusters can be reconstructed exactly
when all clusters are large or when p is small.

7.2 'Two-Edge-Connected Augmentation

7.2.1 The Problem

In the field of telecommunications, an important task is to ensure that the network
is resilient against link failures. Since failures are rare in real-life networks, it is
sufficient for the network to be resilient against single-link failures. There has been
much research on two-edge-connectivity problems, which require that there are two
edge-disjoint paths between nodes in the network. See [72] for a survey.

The two-edge-connected augmentation problem takes as input a graph G with
non-negative edge-weights and a subset R of edges of the graph. The goal is to find
a minimum-weight subset S of edges of the graph such that for every edge uv € R,
u and v are two-edge-connected in the subgraph R U .S. Without loss of generality,
we assume that edges from R have weight 0, since any minimal two-edge-connected
augmentation for (G, R) does not contain edges from R.

This problem is a generalization of the well-studied tree augmentation problem:
given a graph GG with non-negative edge-weights and given a spanning tree 1" of
G, find a minimum-weight subset S of edges such that the subgraph T"'U S is
two-edge-connected. The condition is equivalent to requiring that for each edge
uv of T', u and v are two-edge-connected in T'U S. Kortsarz, Krauthgamer, and
Lee [64] showed that tree augmentation is APX-hard. Thus two-edge-connected
augmentation is also APX-hard. Frederickson and Ja’Ja’ [41] gave a polynomial-
time 2-approximation algorithm for tree augmentation. The running time of that
algorithm was improved by Khuller and Thurimella [56], and further by Galluccio
and Proietti [42].

In this work, we study two-edge-connected augmentation in planar graphs.



7.3. Our Results 65

7.2.2 Related Work

Two-Edge-Connected Spanning Subgraph. In this problem, we want to find
a minimum-weight subgraph of G in which every pair of vertices of G is two-edge-
connected. This problem in general graphs was shown to be Max-SNP-hard by
Czumaj and Lingas [33]. Frederickson and Ja’'Ja’ [41] gave a 3-approximation
algorithm. The approximation ratio was improved to 2 (and 3/2 for unweighted
graphs) by Khuller and Vishkin [57], and to 5/4 by Jothi, Raghavachari, and
Varadarajan [53].

When the graph is planar, Eswaran and Tarjan [39] showed NP-hardness (by a
reduction from Hamiltonian cycle), and Berger and Grigni [17] gave a PTAS. One
might think that this would lead to a PTAS for two-edge-connected augmentation,
but it is not the case, because the weight of a two-edge-connected augmentation
can be much smaller than the weight of a two-edge-connected spanning subgraph.

Two-Edge-Connected Steiner Subgraph. In this problem, we are given a
subset () C V of terminals, and we want to find a minimum-weight subgraph of G in
which every pair of vertices of () is two-edge-connected. This is a generalization of
two-edge-connected spanning subgraph. Klein and Ravi [62] gave a 3-approximation
algorithm. (In fact, they solved a more general problem where the connectivity
requirements are specified for pairs of vertices.) This result was generalized to
higher connectivity requirements by Williamson et al. [79] and Goemans et al. [46].
Edge-connectivity problems were subsumed by the work of Jain [51] on survivable
network design.

When the graph is planar, Borradaile and Klein [21] gave a PTAS for a variant
of the two-edge-connected Steiner subgraph problem, where a solution is allowed
to include multiple copies of edges of the input graph. One might think that this
would lead to a PTAS for two-edge-connected augmentation, but it is not the case,
mainly because the structure property in [21] does not hold for two-edge-connected
augmentation. This issue will be discussed later.

Other Work. There is a variety of other related work, see [65] for a survey.

7.3 Our Results

The results here have been published in [B].
First, we show that in planar graphs, correlation clustering can be reduced to
two-edge-connected augmentation:



66 Chapter 7. Introduction

Theorem 7.3.1. There is a polynomial-time approxzimation-preserving reduction
from correlation clustering in weighted planar graphs to two-edge-connected aug-
mentation in weighted planar graphs.

Next, we give a polynomial-time approximation scheme (PTAS) for two-edge-
connected augmentation when the graph is planar:

Theorem 7.3.2. For any € > 0, there is a polynomial-time (1 + €)-approzimation
algorithm for two-edge-connected augmentation in weighted planar graphs.

From Theorems 7.3.1 and 7.3.2, we obtain a PTAS for correlation clustering:

Theorem 7.3.3. For any € > 0, there is a polynomial-time (1 + €)-approzimation
algorithm for correlation clustering in weighted planar graphs.

Remark. From the NP-hardness of correlation clustering in planar graphs [10]
and the reduction (Theorem 7.3.1), we know that two-edge-connected augmentation
in planar graphs is also NP-hard.

Remark. In practice, we may use an approrimation algorithm for two-edge-
connected augmentation that is different from the algorithm in Theorem 7.3.2,
and then from the reduction (Theorem 7.3.1), we obtain an algorithm for planar
correlation clustering with the same approximation factor.

7.4 Notations and Definitions

Let G be a graph with non-negative edge-weights. Let V[G] (or simply V') be its
vertex set, and let E[G] (or simply F) be its edge set. We allow G to have parallel
edges. For a subset of edges H C E|[G], we identify H with the subgraph induced
by edges from H. The weight of H is defined by > ..y weight(e). For a subset of
vertices U C V[G], we define its boundary O(U) as the set of edges uv € E[G] such
that uw € U and v € V]G] \ U.

A plane graph is a planar graph together with a planar embedding. We use the
phrases plane graph and planar graph interchangeably.

Next, we give the definitions of two optimization problems.

In the Steiner tree problem, we are given a weighted planar graph G = (V, E)
and a set ) C V of terminals, and the goal is to find a minimum-weight connected
subgraph connecting every terminal in Q).

In the Steiner forest problem, we are given a weighted planar graph G = (V, E)
and a set D of demands (s,t) € V2, and the goal is to find a minimum-weight
forest F' of G such that, for every demand (s,t) € D, s and ¢ are connected in F.

For a given optimization problem in weighted graphs, we use OPT(Z) to denote
the weight of an optimal solution for this problem on the instance Z. The parameter
7 is omitted when it is clear from the context.



7.5. Organization 67

7.5 Organization

In Chapter 8, we show the reduction from correlation clustering to two-edge-
connected augmentation in planar graphs (Theorem 7.3.1). The proof is elementary
and is based mainly on planar duality.

In Chapter 9, we review various techniques for designing approximation schemes
in planar graphs. The techniques of prize-collecting partition [13] and brick decom-
position [22] have been used to design approximation schemes for Steiner forest
and Steiner tree in their original settings. Sections 9.1 and 9.2 review these two
techniques respectively, and give slight adaptations for the two-edge-connected
augmentation problem. Section 9.3 is a short survey on previous approximation
schemes using brick decomposition. Section 9.4 presents a technical detail in the
algorithmic design, which is unique for two-edge-connected augmentation. Sec-
tion 9.5 reviews the sphere-cut decomposition technique from [37], which is useful
for the dynamic program in Section 10.4.

Chapter 10 contains the main contribution of Part II of this thesis. In this
chapter, we design an approximation scheme for two-edge-connected augmentation
in planar graphs (Theorem 7.3.2). After a preprocessing step in Section 10.1, we
give high-level ideas of the approximation scheme in Section 10.2. The difficulty
in using the brick decomposition is that, the structure property on bricks that
was used to design previous approximation schemes does not hold for two-edge-
connected augmentation. Hence the novelty of our work: we give a new structure
property on bricks (see Section 10.2). The proof of the new structure property
is in Section 10.3. Using this property, Section 10.4 gives a dynamic program to
compute a near-optimal solution. We complete the analysis of the approximation
scheme in Section 10.5.

Finally, we discuss some open problems in Chapter 11.






CHAPTER &

Reduction from Clustering to
Augmentation

In this chapter, we prove Theorem 7.3.1 that we recall:

Theorem 7.3.1. There is a polynomial-time approximation-preserving reduction
from correlation clustering in weighted planar graphs to two-edge-connected aug-
mentation in weighted planar graphs.

Let Gy be a plane graph with edge-labels in the correlation clustering problem.
Let OPT( be the minimum weight of disagreements in correlation clustering. Next,
we construct the graph G as the abstract dual' of Gy, and let R C E[G4] be
the duals of the (—) edges in Gy. Consider the problem of finding a minimum-
weight subset S; C E[G1] such that R & S; is a collection of two-edge-connected
components in GGy. This problem is called the intermediate problem. Let OPT,
be the minimum weight of a solution S; C E[G4] for the intermediate problem.
Finally, we construct the graph G, from G; by adding a copy ¢’ of e with the
same weight, for every edge e € R; the set R remains the same. Let OPT5 be the
minimum weight of a two-edge-connected augmentation Sy C E[Gs] for (G, R).

Theorem 7.3.1 follows directly from Lemmas 8.1.1 and 8.2.1, which correspond
to two stages of the reduction.

8.1 First Stage

Lemma 8.1.1. OPTy = OPT,. Any solution for the intermediate problem can be
transformed in polynomial time into a solution for correlation clustering in Gy with
the same weight.

1See for example [36] for the definition of abstract dual and its properties.



70 Chapter 8. Reduction from Clustering to Augmentation

.....

Figure 8.1: In this example, Gy is represented by the grid graph. In its dual, the
subgraph R @ S; is represented by the dotted edges. These edges separate the
plane into four faces, which define four clusters of the vertices of Gy (indicated by
the gray areas).

Proof. Tt is sufficient to show that, a set of edges Sy C E[Gy] is the disagreements
of some clustering in Gy if and only if R & S is a collection of two-edge-connected
components in G, where S; C E[G4] is the dual of Sj.

(=) Let {V;}; be a clustering of Gy with disagreements Sy. We observe that
an edge belongs to some J(V;) if and only if it is a (—) edge and an agreement or is
a (+) edge and a disagreement. Since R is the duals of the (=) edges in G and S}
is the dual of Sy, we have R @ S is the dual of |J; (V;). From the planar duality,
the dual of every 0(V;) is a union of cycles in G;. Therefore, the dual of U; 0(V;) ,
ie. R® Sy, is a collection of two-edge-connected components in (4.

(«<=) Suppose R @ S is a collection of two-edge-connected components in Gj.
For every face F' of that subgraph, define Vz as the set of vertices of G inside this
face. From the planar duality, R @& S is the dual of Up O(VE). See Fig. 8.1. Since
Sy is the dual of Sy, using the same argument as before, we deduce that {Vr}p is
a clustering of GGy with disagreements Sy. m

8.2 Second Stage

Lemma 8.2.1. OPT, > OPT;. Any two-edge-connected augmentation for (G, R)
can be transformed in polynomial time into a solution for the intermediate problem
with at most the same weight.



8.2. Second Stage 71

The following lemma is the key to prove Lemma 8.2.1. It is also used to specify
the dynamic programming table in Section 10.4.1.

Lemma 8.2.2. Let G be a plane graph. Let R be a subset of E|G|. Let S be
a minimal two-edge-connected augmentation for (G, R). Then every connected
component in the subgraph RU S is two-edge-connected.

Proof. Suppose there is a bridge edge e in the subgraph R U .S. Since S is a
two-edge-connected augmentation for (G, R), e cannot belong to R, thus e € S.
Therefore, S\ {e} remains a two-edge-connected augmentation, which contradicts
the minimality of S. [

Proof of Lemma 8.2.1. Let S; C E[G4] be an optimal solution for the intermediate
problem. We construct a subset Sy C E|[G] as follows: for every e € R, include its
copy €' in Sy if and only if e € Sy; and for every e € E[G4]\ R, include e in Sy if and
only if e € S;. It is straightforward that S; is a two-edge-connected augmentation
for (Go, R) and has the same weight as S;. Therefore OPT; > OPTS,.

Next, we show the second part of the statement. Let S, be any two-edge-
connected augmentation for (Gs, R). By removing unnecessary edges, we may
assume that Sy is minimal. Thus S; does not contain edges from R. We construct
a subset S; C E[G] as follows: for every e € R, include e in S if and only if its
copy € is in Sy; and for every e € E[G1] \ R, include e in S if and only if e € S,.
By the construction, the weight of S; is at most the weight of S;. We only need to
show that R @ S is a collection of two-edge-connected components in Gj.

By Lemma 8.2.2, RU S5 is a collection of two-edge-connected components. The
differences between RU Sy and R @ S; are the pairs of edges {e, €'} such that e € R
and e € 5 (i.e., its copy €’ belongs to S;). Consider any such edge e. Since S
is minimal and contains €', the endpoints of e belong to different components in
the subgraph RU S5 \ {e, €'}. Therefore, removing {e, e’} from R U S, remains a
collection of two-edge-connected components. Since R @ S} can be obtained from
R U Sy by repeatedly removing such pairs {e, ¢'}, we have R & S; is a collection of
two-edge-connected components. O






CHAPTER 9

Techniques

In this chapter, we review various techniques that will be used for designing the
approximation scheme in Chapter 10.

9.1 Prize-Collecting Partition

The prize-collecting partition (PC partition) technique helps to obtain approxima-
tion schemes in planar graphs, such as for Steiner forest [13] and multiway cut [12].
It is used as a preprocessing step to break down the input instance into separate
subinstances which are easier to handle. In Section 9.1.1, we review this technique
in its original settings, and in Section 9.1.2, we provide a slightly adapted version
for two-edge-connected augmentation.

9.1.1 Steiner Forest

Bateni, Hajiaghayi, and Marx [13] used an algorithm, called prize-collecting partition
(PC partition), to partition the instance into subinstances such that the solution
of each subinstance is connected. The central subroutine of this algorithm is
prize-collecting clustering (PC' clustering), with the following properties.

Theorem 9.1.1 (Theorem 3.1 from [13]). Let G be a graph with edge-weights
where every vertex v has a potential ¢,. The PC clustering algorithm (Algorithm 2
in [13]) computes in polynomial time a forest F' such that:

o The weight of F' is at most 2 ,cy ¢u;

o For any subgraph L of G, there is a set () of vertices such that:



74 Chapter 9. Techniques

Algorithm 9.1 PC-PARTITION(G, D, ¢€), see Theorem 9.1.2
1: Use the algorithm of [47] to find a Steiner forest Y of (G, D) with weight at
most 2 - OPT )
Contract each connected component of Y to build a graph G
for v € G do

¢, < 1/€ times the weight of the component corresponding to v

Apply PC clustering on G and {¢, },, thus obtaining a forest F
return connected components of the subgraph Y U F' of G

— Ypeq Pv is at most the weight of L;

— If two vertices vy, vo & @ are connected by L, then they are in the same
component of F.

Built on PC clustering, the PC partition algorithm (Algorithm 9.1) proceeds as
follows. It starts with a 2-approximate solution Y for Steiner forest, and contracts
the edges of Y. Next, it assigns potentials to vertices, and then use PC-clustering
to find a forest F'. Consider the subgraph of the uncontracted graph consisting of
the edges of the forest F' together with the edges of the 2-approximate solution
Y. The algorithm outputs the connected components in this subgraph. Bateni,
Hajiaghayi, and Marx [13] showed the following theorem of PC partition for Steiner
forest.

Theorem 9.1.2 (Theorem 3.1 from [13]). Let G be a graph with edge-weights.
Let D be a set of demand pairs. Let ¢ > 0 be a parameter. The algorithm PC-
PARTITION(G, D, €) (Algorithm 9.1) computes in polynomial time a set of connected
subgraphs Ty, ..., Ty, with the following properties:

e For every demand (s,t) € D, there is some T; containing both s and t;
o > weight(T;) < (4/e + 2)OPT (G, D);

e >, OPT(G,D;) < (14€¢)OPT(G,D), where D; is the set of demands (s,t) €
D such that both s and t belong to T;.

9.1.2 Two-Edge-Connected Augmentation

In order to use the PC Partition framework for two-edge-connected augmentation,
we first need to find a 2-approximate solution for this problem. This can be
done in polynomial time using Jain’s algorithm [51] (which solves a much more
general problem). Jain [51] showed that there is polynomial-time algorithm that
computes a 2-approximate solution for the following problem: Given a graph G



9.1. Prize-Collecting Partition 75

Algorithm 9.2 PC-PARTITION(G, R, €), see Theorem 9.1.4
1: Use the algorithm of Lemma 9.1.3 to find a two-edge-connected augmentation
Y of (G, R) with weight at most 2 - OPT )

: Contract each connected component of RUY to build a graph G

: for v € G do

¢, < 1/€ times the weight of the component corresponding to v

. Apply PC clustering on G and {¢,},, thus obtaining a forest F
return connected components of the subgraph RUY U F of G

S Ul s W N

with non-negative edge-weights, and requirements r,, € Z for each pair (u,v) of
vertices, find a minimum-weight subgraph of G such that, for each pair (u,v), the
subgraph has at least r, , edge-disjoint paths between u and v.

Let (G, R) be an instance of two-edge-connected augmentation. We construct
an instance in Jain’s problem: the graph G remains the same; for every pair of
vertices (u,v) € V2, r,, is set to 2 if uv € R and to 0 otherwise. The two problems
are equivalent, since every edge of R has weight 0 in the two-edge-connected
augmentation problem. Therefore, we have:

Lemma 9.1.3 (Corollary from [51]). There is an algorithm that computes in poly-
nomial time a two-edge-connected augmentationY" for (G, R) such that weight(Y") <
2-OPT.

The PC partition algorithm for two-edge-connected augmentation is given in
Algorithm 9.2. It is almost identical to that for Steiner forest (Algorithm 9.1),
except that the connected components are defined in the subgraph R U Y, not in
the subgraph Y. Using essentially the same proof as for Theorem 9.1.2, we obtain
the following theorem of PC partition for two-edge-connected augmentation.

Theorem 9.1.4 (Partition Theorem). Let G be a graph with edge-weights. Let R be
a subset of E[G|. Let € > 0 be a parameter. The algorithm PC-PARTITION(G, R, ¢)
(Algorithm 9.2) computes in polynomial time a set of connected subgraphs T, ..., Ty
with the following properties:

o For every edge uv € R, there is some T; containing the edge uv;
o Y, weight(T;) < (4/e + 2)OPT (G, R);

e Y. OPT(G,R;) < (1+¢)OPT(G,R), where R; is the set of edges uv € R
that are in T;.



76 Chapter 9. Techniques

9.2 Brick Decomposition

For non-local problems in weighted planar graphs in which the weight of the
optimal solution can be much smaller than the weight of the graph, the brick
decomposition technique by Borradaile, Klein, and Mathieu [22] has proved to
be quite versatile: a planar embedded subgraph M (called the mortar graph) is
selected, and the bricks are the subgraphs of G embedded in the faces of M. This
technique has been used for designing approximation schemes for problems such as
Steiner tree [20, 22|, Steiner forest [13], two-edge-connected survivability [20, 21]*,
TSP [20], and multiway cut [12]. In Section 9.2.1, we review the definition and
properties of the brick decomposition in its original settings, and in Section 9.2.2,
we provide a slightly adapted version for two-edge-connected augmentation.

9.2.1 Steiner Tree

Borradaile, Klein, and Mathieu [22] first introduced the brick decomposition tech-
nique to design approximation schemes for Steiner tree in planar graphs. They
gave the following definition and properties of the brick decomposition.

Definition 9.2.1 ([22]). Let G be a plane graph with edge-weights. Let QQ C'V be
a set of terminals. Let € > 0 be a parameter. Let M be a subgraph of G. For each
face F' of M, we define a brick B as the planar subgraph of G embedded inside the
face, including the boundary edges of F'. We denote the interior of B as the brick
without the boundary edges of F'. We call M a mortar graph of G if, for every
brick B, its boundary in counter-clockwise order is the concatenation of four paths
West g, Southp, Eastg, Northg (the subscript B is omitted when it is clear from
the context), such that:

1. The interior of B is non-empty;
2. Every terminal of () that is in B is on North or on South;

3. North is a path of minimum weight in B, and every proper subpath of South
is a path of almost minimum weight in B, i.e., its weight is at most (1 + ¢)
times the minimum weight of a path in B between its endpoints;

4. There exists an integer k = O(1/€3) and vertices sq, . .., sy ordered from left
to right along South to induce a partition of South, such that, for any vertex
x on the segment Southls;, s;11), the weight of the segment South([s;, x| is less
than € times the minimum weight of a path in B between x and North.

'For the variant in which the solution is allowed to include multiple copies of edges of the
input graph.



9.2. Brick Decomposition 77

Lemma 9.2.2 ([22]). Let G be a planar graph with edge-weights. Let Q C V be a
set of terminals. Let T be a tree in G that spans every terminal of Q. Let € > 0 be
a parameter. There is a polynomial-time algorithm that computes a mortar graph
M of G (see Definition 9.2.1), such that:

1. weight(M) = O(weight(T) /¢);

2. Y yricw g Weight(Eastp U Westg) = O(e - weight (7).

9.2.2 Two-Edge-Connected Augmentation

In the construction of the mortar graph for two-edge-connected augmentation, we
take additional care because of the edges of R. Definition 9.2.3 and Lemma 9.2.4
are the counterparts of Definition 9.2.1 and Lemma 9.2.2.

Definition 9.2.3 (Mortar Graph and Bricks). Let G be a plane graph with edge-
weights. Let R be a subset of E|G]. Let € > 0 be a parameter. Let M be a subgraph
of G. For each face F' of M, we define a brick B as the planar subgraph of G
embedded inside the face, including the boundary edges of F'. We denote the interior
of B as the brick without the boundary edges of F'. We call M a mortar graph of G
if, for every brick B, its boundary in counter-clockwise order is the concatenation
of four paths Westp, Southp, Eastp, Northg (the subscript B is omitted when it
is clear from the context), such that:

1. The interior of B is non-empty;
2. FEvery edge of R that is in B is on North;

3. South is a path of minimum weight in B, and every proper subpath of North
is a path of almost minimum weight in B, i.e., its weight is at most (1 + ¢)
times the minimum weight of a path in B between its endpoints;

4. There exists an integer k = O(1/€*) and vertices so, ..., sy ordered from left
to right along South to induce a partition of South, such that, for any vertex
x on the segment South[s;, s;11), the weight of the segment South([s;, x| is less
than € times the minimum weight of a path in B between x and North.

Lemma 9.2.4 (Mortar-Graph Lemma). Let G be a planar graph with edge-weights.
Let R be a subset of E[G]. Let T be a connected subgraph of G that contains every
edge of R. Let € > 0 be a parameter. There is a polynomial-time algorithm that
computes a mortar graph M of G (see Definition 9.2.3), such that:

1. weight(M) = O(weight(T) /e);



78 Chapter 9. Techniques

2. Y prick g Weight(Eastg U Westg) = O(€? - weight(T))).

Remark. There are several differences between the mortar graph for Steiner tree
and that for two-edge-connected augmentation.:

e Property 2 of Definition 9.2.3 requires that edges of R appear only on the
North boundaries of bricks. This can be achieved by requiring that edges of
R appear only on the North boundaries of strips during the construction.
See [22, 60] for the details of the decomposition into strips.

o Compared with Definition 9.2.1, South and North in Property 3 of Defini-
tion 9.2.3 are swapped. Indeed, in the construction of bricks in [22], the
distinction between South and North is not important.

e The parameter k in Property 4 of Definition 9.2.3 is O(1/¢*) instead of O(1/¢?)
in Definition 9.2.1. Therefore, the bound in Property 2 of Lemma 9.2.4 is
O(€* - weight(T')) instead of O(e - weight(T')) in Lemma 9.2.2.

e The brick decomposition in [22] requires that T is a tree. Later, Klein and
Mozes [61] generalized T to be any connected subgraph: Their approach is to
do the brick decomposition in each face of T.

9.3 Framework of Approximation Schemes

The approximation schemes in planar graphs for Steiner tree [20, 22|, Steiner
forest [13], two-edge-connected survivability [20, 21|, TSP [20], and multiway cut [12]
all use the brick decomposition technique, and have a similar framework which
we now summarize. First, the algorithm finds an O(1)-approximate solution and
builds a mortar graph. Next, it does Breadth-First Search (BFS) on the dual of
the mortar graph, and selects a mod-n residue j* such that edges whose levels are
congruent to j* have total weight at most 1/7 times the weight of the mortar graph.
It commits to including these edges in the ultimate solution; this decomposes the
graph into subinstances each consisting of at most 7 levels of bricks. Note that
a planar graph consisting of at most 7 BFS levels has branchwidth at most 27,
i.e., can be recursively decomposed into clusters of edges such that each cluster
has at most 27 boundary vertices. For each subinstance, it finds a near-optimal
solution by dynamic programming. Finally, it returns the union of the solutions
for all subinstances.

Remark. In the approzimation scheme for Steiner forest [13] or for multiway
cut [12], there is an additional preprocessing step of PC partition (see Section 9.1),
which reduces the instance to subinstances. This step ensures that each subinstance



9.4. Doubling Brick Boundaries 79

Algorithm 9.3 AUGMENT-CONNECTED(G, Q, T €), see [22]

1: Compute a mortar graph M of G based on () and T (Lemma 9.2.2).

2: Do BFS in the planar dual M* starting from an arbitrary vertex r. Define the
level of a vertex of M* as its BFS distance from r. Let E; denote the set of
edges of M* whose two endpoints are at level ¢ and level ¢ + 1, respectively.
Let n =©(1/€*). For j =0,1,...,n— 1, let £ be the union of E;, for all i = j
(mod 7). Let j* € [0,7 — 1] be the index which minimizes weight(&;).

3: For every connected component C of M* \ £+, let G¢ be the subgraph of G
consisting of the bricks corresponding to V[C]. Find a near-optimal Steiner
tree in G¢ by dynamic programming.

4: Return the union of the edge-sets of all Steiner trees in the previous step.?

North North

s ;
West East West East

Figure 9.1: Doubling the West, South, and East boundaries of B. The new edges
between vertices and their copies have weight 0.

admits a connected subgraph T with relatively small weight, on which a mortar
graph is built. The above framework is then applied to each subinstance.

As a concrete example, we briefly review the approximation scheme for Steiner
tree in [22]. It first computes a 2-approximate Steiner tree T" using a Minimum
Spanning Tree (MST). Next, it uses the algorithm AUGMENT-CONNECTED (Al-
gorithm 9.3), which receives a planar graph G, a set of terminals @), a connected
subgraph T', and € > 0, and outputs a near-optimal Steiner tree spanning () in G.

9.4 Doubling Brick Boundaries

In this section, we describe the operation of doubling brick boundaries, which
consists of adding to the graph artificial copies of the South, East, and West

2There are additional cares to ensure that the output is connected.



80 Chapter 9. Techniques

boundaries of bricks, and zero-weight edges between corresponding vertices. This
is a technical detail to prevent annoying special cases in the Structure Theorem
(Theorem 10.3.1).

Let G be a plane graph with edge-weights. Let M be its mortar graph. Let
P =po, -+ ,pe ({ > 1) be any boundary of a brick B. The operation of doubling
the boundary P is defined as follows. For every vertex u € P\ {po, p¢}, create a
copy o', and add an edge uu’ of weight 0;® for every edge uv on P, add an edge
u'v" of the same weight as that of uv; and for every edge uv € P x (B '\ P), replace
the edge uv by an edge u'v of the same weight. The result of doubling the West,
South, and East boundaries of a brick B is given in Figure 9.1. We denote West’,
South’, and East” as the copies of West, South, and East.

Let H be the graph obtained from G by doubling the West, South, and East
boundaries of every brick. By the definition of mortar graph (Definition 9.2.3),
West, South, and East do not contain edges of R, so no edge of R is duplicated.
We observer that the mortar graph of H is inherited from that of G.

Lemma 9.4.1 (Boundary-Doubling Lemma). A two-edge-connected augmentation
for (G, R) can be transformed into a two-edge-connected augmentation for (H, R)
in linear time without increasing the weight, and vice versa.

Proof. A solution for (G, R) can be transformed into a solution for (H, R) by
including all edges vv’, which have weight 0. Conversely, a solution S’ for (H, R)
can be transformed into a solution S for (G, R) as follows: for every boundary edge
uwv of a brick, uv is included in S if at least one of uv and u'v’ is 5. H

9.5 Sphere-Cut Decomposition

We consider a special kind of branch decomposition of plane graphs, called a
sphere-cut decomposition (see [37]): A noose of a plane graph is a Jordan curve that
intersects only vertices of the graph and not edges. A sphere-cut decomposition
of width w is a family of non-crossing nooses each intersecting at most w vertices;
the nooses form a binary tree by the enclosure relation, each leaf noose encloses
exactly one edge, and each edge is enclosed by a leaf noose. For each noose in the
sphere-cut decomposition, we refer to the set of edges enclosed as a cluster.

Lemma 9.5.1 (Sphere-Cut Lemma). Let G be a plane graph whose dual graph has
diameter k. Then G has a sphere-cut decomposition of width at most 2k, and it
can be computed in linear time.

3To simplify the notation, We define pj, := py and pj := py.



9.5. Sphere-Cut Decomposition 81

The proof of this lemma is a straightforward adaptation from the proof of
Lemma 14.6.1 in [61]: We only need to replace the branch decomposition by the
sphere-cut decomposition in that proof.






CHAPTER 10

Approximation Scheme

In this chapter, we prove Theorem 7.3.2 that we rewrite as follows:

Theorem 10.0.2 (Main Theorem). Let G be a plane graph with edge-weights. Let
R be a subset of E[G]. Let € > 0 be a parameter. The algorithm AUGMENT(G, R, ¢)

(Algorithm 10.1) computes in polynomial time a two-edge-connected augmentation
S for (G, R) such that weight(S) < (1 + ¢)OPT(G, R).

10.1 Preprocessing

In this section, we reduce the instance of two-edge-connected augmentation to
subinstances, such that every subinstance admits a connected skeleton of relatively
small weight, and that the subinstances can be solved (almost) independently. To
prove the Main Theorem, it is then sufficient to prove a related version (Theo-
rem 10.1.1), where we are given in addition a connected subgraph 7" that contains
every edge of R.

Theorem 10.1.1 (Augmentation Theorem). Let G be a plane graph with edge-
weights. Let R be a subset of E|G]|. Let T be a connected subgraph of G that
contains every edge of R. Let € > 0 be a parameter. The algorithm AUGMENT-
CONNECTED(G, R, T, €) (Algorithm 10.2) computes in polynomial time a two-edge-
connected augmentation S for (G, R) such that

weight(S) < (14 €)OPT(G, R) + €* - weight(T') .

We defer the proof of the Augmentation Theorem to later sections, and first show
how it implies the Main Theorem. We note that a connected subgraph containing
every edge of R might be much more expensive than OPT (see Figure 10.1). So



84 Chapter 10. Approximation Scheme

€1 €3

€2 €4

9]
(S

@
[=2]

Figure 10.1: In the example, R = {ey, ea, 3, €4}. The optimal two-edge-connected
augmentation consists of edges e; and eg. However, any Steiner tree connecting the
edges of R must include one of the edges e; and eg, whose weight may be much
higher than weight({es, es}).

Algorithm 10.1 AUGMENT(G, R, T,¢), see Theorem 10.0.2

1: (Th,...,Ty) < PC-PARTITION(G, R, €/7) > Theorem 9.1.4
2: for i <~ 1to k do

3 R, < RNT,
4
)

S; <= AUGMENT-CONNECTED(G, R;, T}, €/7) > Theorem 10.1.1
: return (U; S;) \ R

applying the Augmentation Theorem directly would not lead to an approximation
scheme. That is why we need to reduce the instance to almost independent
subinstances. This is achieved by the PC-PARTITION algorithm in Section 9.1.2.

Proof of the Main Theorem using the Augmentation Theorem. The output of Al-
gorithm 10.1 is a two-edge-connected augmentation for (G, R), from the Augmen-
tation Theorem and the Partition Theorem (Theorem 9.1.4).

For each instance (G, R;), by the Augmentation Theorem, we have

weight(S;) < (1 +¢/7T)OPT(G, R;) + (e/7)* - weight(T;) .

Summing the above inequality over ¢, and again using the Partition Theorem, we
deduce that the weight of the output solution is at most (1 +¢)OPT(G,R). O

In the rest of this chapter, we will prove the Augmentation Theorem.

10.2 New Use of Brick Decomposition

For all previous approximation schemes using the brick decomposition, the key was
the structure property, which says that there exists a near-optimal solution that
crosses the boundary of any brick only a bounded number of times.! However, this

!The bound depends on e.



10.2. New Use of Brick Decomposition 85

Figure 10.2: The rectangle is a brick. The solid curves represent parts of a near-
optimal solution. The dashed curves represent a u;-to-v; Jordan curve and a
u9-to-v9 Jordan curve inside the brick.

property is unachievable for two-edge-connected augmentation, which is the main
difficulty in using the brick decomposition.

Instead, we show that, after a transformation of the instance (namely, the
boundary doubling operation in Section 9.4), we have:

New Structure Property. There exists a near-optimal solution such that, for
any brick and any two vertices u,v on the boundary of the brick, there is a u-to-v
Jordan curve inside the brick that crosses the near-optimal solution only a bounded
number of times.?

This is illustrated in Figure 10.2. To prove the new structure property, we add
boundary cycles and reduce nesting in each brick. See Section 10.3.

To make use of the new structure property, we combine it with the sphere-cut
decomposition (see Section 9.5). Recall that in the framework of the approximation
schemes of Section 9.3, each subinstance contains a bounded number of levels of
bricks, thus its mortar graph has a branch decomposition of bounded width. We
observe that the branch decomposition here has the special form of a sphere-cut
decomposition: each cluster of edges is precisely the set of edges enclosed by a
Jordan curve J that intersects the mortar graph a bounded number of times. This
is where the new structure property comes in: each segment of J traversing a brick
can be replaced by a curve that intersects the near-optimal solution a bounded
number of times. This yields a new Jordan curve J’ that has a bounded number of
intersections with the near-optimal solution.

2The bound depends on e.



86 Chapter 10. Approximation Scheme

Algorithm 10.2 AUGMENT-CONNECTED(G, R, T €), see Theorem 10.1.1

1: Compute a mortar graph M of G based on R and T (Lemma 9.2.4).

2: Do BFS in the planar dual M* starting from an arbitrary vertex r. Define the
level of a vertex of M* as its BFS distance from r. Let E; denote the set of
edges of M* whose two endpoints are at level ¢ and level ¢ + 1, respectively.
Let n =©(1/€*). For j =0,1,...,n— 1, let £ be the union of E;, for all i = j
(mod 7). Let j* € [0,7 — 1] be the index which minimizes weight(&;).

3: Let H be the graph obtained from G by doubling East, South, and West
boundaries of every brick (See Section 9.4).

4: For every connected component C' of M*\ &;+, let He be the subgraph of H
consisting of the bricks corresponding to V[C]. Find a near-optimal two-edge-
connected augmentation in He by dynamic programming (See Section 10.4).

5: Return the union of the edge-sets of all two-edge-connected augmentations in
the previous step.

The above properties enable us to design a dynamic program (DP), see Sec-
tion 10.4. For each cluster of the sphere-cut decomposition, the DP enumerates
all possible intersections of the unknown near-optimal solution with the partially
unknown Jordan curve J’. The DP also enumerates all possible connectivity struc-
tures of the part of the near-optimal solution inside J’. Note that there may be
some edges of the graph that are in the parent cluster but not in the child clusters,
so the DP must do a bit of extra work to go from tables for the children to the
table for the parent (see Section 10.4.2).

The algorithm for Theorem 10.1.1 is given in Algorithm 10.2. Compared with
Algorithm 9.3, the brick decomposition is slightly different (see Section 9.2); the
boundary doubling operation is new (see Section 9.4); and the dynamic program is
novel (see Section 10.4), because it is based on the new structure property.

10.3 Structure Theorem

The Structure Theorem is the key to the approximation scheme for two-edge-
connected augmentation. It is a generalization of the new structure property in
Section 10.2.

Theorem 10.3.1 (Structure Theorem). Let G be a plane graph with edge-weights.
Let R be a subset of E[G]. Let € > 0 be a parameter. Let M be the mortar graph
of G. Let H be the graph obtained from G by doubling the South, Fast, and West
boundaries of every brick.

For any two-edge-connected augmentation Sy for (H, R), there is a two-edge-
connected augmentation S for (H, R) such that:



10.3. Structure Theorem 87

IS

Figure 10.3: The rectangle is a brick. The solid segments represent the modified
solution inside the brick. The dashed curve from u to v has few crossings with the
modified solution.

o weight(S) < (1 + e)weight(So) + 4 Y 4401 g Weight(East g U Westg);

e For any brick and any two vertices u,v on the boundary of the brick, there is

a u-to-v Jordan curve inside the brick that has O(1/€*) crossings with S, all
occurring at vertices.

The proof of the Structure Theorem consists in modifying the initial solution so
that any pair of vertices on the boundary of a brick can be connected by a curve
that has few crossings with the modified solution. Figure 10.3 shows the kind of
curve we use. It starts at a given vertex u on the brick boundary, traverses nested
paths, then bypasses South-to-North paths using South cycles (cycles formed by
parts of the South boundary and their duplicates), and finally again traverses
nested paths to reach the given vertex v on the brick boundary. In order to achieve
a small number of crossings, we must ensure that the number of nested paths
is small and that only a small number of South cycles are used to bypass the
South-to-North paths.

The construction of the solution S works on each brick in turn, modifying the
initial solution S; inside that brick. The key to prove the Structure Theorem is

the following Structure Proposition, which can be viewed as a local version of the
Structure Theorem.

Proposition 10.3.2 (Structure Proposition). Let S be any two-edge-connected
augmentation for (H, R). Let B be a brick in H. Let F be the set of edges of S that

are in the interior of B. Then there is a set of edges F3 in B with the following
properties:

Feasibility: (S\ F)U F3 is a two-edge-connected augmentation for (H, R);



88 Chapter 10. Approximation Scheme

______ P ®. %
2 -P
\p o
F’2 1
»
------ -9 l e & s — —0
Xo Skp+1 Sk, X4 Sy +1 Sko X0 Skg+1

Figure 10.4: Extracted from [22]. The North and South boundaries are indicated
by horizontal lines. The paths Py, P;, and P, are indicated by thick gray lines.

Near-Optimality: weight(F3) < (1 + ¢)weight(F) + 4weight(Eastg U Westp);

Bounded-Crossings Property: For any two vertices u,v on the boundary of B,
there erists a u-to-v Jordan curve inside the brick that has at most O(1/€*)
crossings with F3, all occurring at vertices.

Proof of the Structure Theorem using the Structure Proposition. Let S be initial-
ized as Sp. For each brick B of H in turn, we update S by (S \ F) U F3, where
I is the set of edges of S that are in the interior of B, and Fj is the set of edges
obtained from the Structure Proposition. The resulting S is a two-edge-connected
augmentation. The weight of S is increased by at most

> (e - weight(F) 4+ 4weight(Eastp U Westp) )
brick B

The Structure Theorem follows since the sets F’s are disjoint subsets of Sy. O

In the rest of this section, we prove the Structure Proposition.

10.3.1 Construction

To construct F3 from F' in the Structure Proposition, there are three steps as
follows.

Step 1: Modify F into F; by Adding East and West Cycles. We add to F’
all the edges on the two cycles East o East’ and West o West’, where East’
and West’ are copies of the East and West boundaries during the boundary
doubling operation (see Section 9.4), and we remove from F' all the edges
inside the two cycles.

Prune the result by removing unnecessary edges that are in the interior of
the brick, thus obtaining a forest. Let F} be the result.



10.3. Structure Theorem 89

Step 2: Modify F; into F; by Adding South Cycles. First, we greedily de-
fine a collection of disjoint South-to-North paths P, ..., P, (with associated
indexes ko, ..., k;) using the approach in [22]: Let sq,. .., sy be the vertices
of South in the definition of mortar graph (Definition 9.2.3). Define Py as the
East boundary. Assume P is a path in F} from some segment South[s;, s;41)
to North. Then P,y is defined to be the easternmost path in F; from
South[sy, s;) to North that does not go through any vertices of South or
North or P;. See Fig. 10.4.

Some associated notations: x; is the start vertex of P;; k; is the integer j such
that z; € South[s;, s;j11); H; is the subgraph of F that is strictly enclosed
by P;, P11, and the segments of South and North. Let ¢ be the last index
for which P, is defined. Note that ¢t < k= O(1/¢?).

For each i € [0,1], let xj and s, be the copies of z; and sy, during the boundary
doubling operation (Section 9.4). In the construction of the solution, for each
i, we add to Fy the cycle C; = South([sy,, z;] o ;2} o South’[x}, 5. ] o s}, sk,
The cycles {C;}; are called South cycles. See Figure 10.5. We remove from

Fiy all the edges inside every Cj.

Prune the result by removing unnecessary edges that are in the interior of
the brick and do not belong to any P;, thus obtaining a forest. Let Fy be the
result.

Step 3: Modify F; into F3 by Reducing Nesting. A South arch A is a path
in F, whose endpoints u and v are on South and whose other vertices are all
strictly in the interior of the brick. The u-to-v path along South is called the
base of A. We define the subgraph (strictly) enclosed by A as the subgraph
induced by the edges of Fy that are (strictly) inside the cycle A o base(A).
For a South arch A, the South arch-emptying operation is to remove from F,
the edges in subgraph strictly enclosed by A, and to add to F; the edges on
the base of A. We define the depth of South arches by induction: For every
maximally enclosing South arch, its depth is 0; For every South arch A of
depth d (d > 0), consider the subgraph strictly enclosed by A, and define
the depth of every maximally enclosing South arch in this subgraph to be
d + 1. In the construction of the solution, we apply the South arch-emptying
operation to every South arch at depth x := [1/€]. See Figure 10.6.

Similarly, we define North arch and North arch-emptying operation, except
that since the North boundary may contain edges from R, in the North
arch-emptying operation, instead of adding all the edges of the u-to-v path
along North, we add the edges of the u-to-v path along North that are not
in R (since the solution is supposed to be an augmentation of R). Again, we
apply the North arch-emptying operation to every North arch at depth k.



920 Chapter 10. Approximation Scheme

@ ST @ ST

Sky i Sk ) Sky xTq Sk

Ty

. H/d LI South LRI o —

Figure 10.6: Reducing nesting: when the solution contains more than [1/¢] nested
paths, we add a piece of the South boundary (in bold) and empty the cycle thus
created.

Prune the result by removing unnecessary edges that are in the interior of
the brick, thus obtaining a forest. Let F3 be the result. We similarly define
arch and depth in the subgraph Fj.

10.3.2 Analysis

In this section, we prove the Structure Proposition.

Proof of Feasibility. The edges that are removed during the construction of F3
are either unnecessary edges, or edges inside cycles. By the following lemma, the
result (S'\ F) U F3 is a two-edge-connected augmentation for (H, R).

Lemma 10.3.3 ([21]). Let S be a two-edge-connected augmentation for (H,R).
Let C' be a non-self-crossing cycle of S strictly enclosing no edge of R. Let S’ be
the subset of S obtained by removing the edges of S that are strictly enclosed by C'.
Then S’ is again a two-edge-connected augmentation for (H, R).

Proof of Near-Optimality. The following lemma bounds the costs of arch-
emptying operations with respect to some maximally enclosing arch Ag.



10.3. Structure Theorem 91

Lemma 10.3.4. Let Ay be a mazimally enclosing arch in Fy. Let Fy(Ag) (resp.
F3(Ao)) be the subgraph of Fy (resp. F3) enclosed by Ag. We have:

Proof. For every 1 < i < k, define A; as the set of depth-i arches in Fy(Ap). Let
A = J; A;. Since the arch emptying operations are applied to arches of depth x,
F3(Ag) — F5(Ap) is at most Y 4c4, weight(base(A)), which we want to bound.

Every A € A, is enclosed by exactly k arches from A: one from each A;. We
charge the weight of base(A) to each of the k arches. Thus the total charge for all
A e A, is KXY gca, weight(base(A)).

On the other hand, every arch A’ € A is charged by the arches A € A, that
are in the subgraph enclosed by A’. Notice that the bases of the arches charging
A" are disjoint sub-segments of base(A’). So the total weight of these bases is at
most the weight of base(A’), which is at most (1 + €)weight(A’) by the definition
of mortar graph (Definition 9.2.3). Thus we have:

kY weight(base(A)) < > (1 +e€) - weight(A’) < (1 + €) - weight(F2(Ay)) .
A€A, ATeA

Therefore, Y 4c 4, weight(base(A)) < 2e - weight(F(Ay)), as required. O

Now we bound the weight of F5. First, since F} is obtained from F' by adding
the East and West boundaries and their copies East’ and West’, we have:

weight (F) < weight(F') + 2weight(East g U West ) . (10.1)

Next, from the definition of mortar graph, for every i, weight(South[sy,, z;]) <
e - weight(P;). So the weight of the South cycle C; is at most 2¢ - weight(FP;). Since
{P,}; are disjoint paths in Fi, 3, weight(F;) < weight(F}). Therefore, we have:

weight(Fy) < (1 + 2¢)weight(Fy) . (10.2)

Finally, note that every edge of F5 is enclosed by at most two maximally enclosing
arches.®> Applying Lemma 10.3.4 to all maximally enclosing arches, and summing
them up, we have:

weight(Fy) < (1 + 4e) - weight(F3) . (10.3)

Combining Equations (10.1), (10.2), (10.3), we have:
weight(F3) < (1 + 7e)(weight(F) 4+ 2weight(Eastp U Westg)).

The statement follows by replacing € by € = €/7.

3 At most one maximally enclosing North arch and at most one maximally enclosing South
arch.



92 Chapter 10. Approximation Scheme

Proof of Bounded-Crossing Property.

Definition 10.3.5. For any two vertices u,v of the brick, consider a u-to-v Jordan
curve inside the brick that has the minimum number of crossings with F3, all
occurring at vertices. Define the distance measure §(u,v) as the number of crossing
with F3 on this curve (excluding u and v). For a vertex u of the brick and a subset
X of vertices of the brick, define §(u, X) = min,ex 6(u,v). For two subsets X and
Y of vertices of the brick, define 6(X,Y) = min,ex pey 0(u, v).

From the definition, §(u,w) < §(u,v) 4+ §(v,w) + 1, for every vertices u, v, w of
the brick.

We rewrite the Bounded-Crossings Property as follows: for every vertices u, v
on the boundary of the brick, d(u,v) = O(1/¢?).

Fact 10.3.6. The nodes of the East cycle (resp. West cycle) are on the same face
in F3, and the nodes of any South cycle are on the same face in Fj.

Step 1 of the construction enables us to reduce the case that u,v € South U
West U North U East to the case that u,v € South U North. To see this, let u, v
be any boundary vertices. We note that u is on the same face with some vertex
from South U North: when u is on East (resp. West), from Fact 10.3.6, u is on
the same face with the intersection vertex of East (resp. West) and South. Thus
d(u, South U North) = 0. Similarly, §(v, South U North) = 0. So §(u,v) is at most
2 plus the distance between a pair of vertices from South U North. To prove the
Bounded-Crossing Property, it only remains to prove Lemma 10.3.7 as follows.

Lemma 10.3.7. For any vertices u,v on South U North, §(u,v) = O(1/e*).

To prove Lemma 10.3.7, we need Lemmas 10.3.9, 10.3.11 and 10.3.12. Lem-
mas 10.3.9 and 10.3.12 are based on Lemma 10.3.8.

Lemma 10.3.8. Let A be any arch in Fs. Let u be any vertex on the base of A.
We have 6(u, A) = O(1/e).

Proof. Consider a set of arches {4, }o<i<¢ in F3, where Ag = A, and every A; (i > 1)
is the maximal enclosing arch in the subgraph strictly enclosed by A;_; such that
u € base(A;). Let £ be the last index for which Ay is defined. From Step 3 of the
construction, ¢ = O(1/e€). Let u, € A; be a vertex that is on the same face with u
in F3. For every i =/¢,...,1, let u;_; € A;_1 be a vertex that is on the same face
with u; in F3. The vertices {u;}; always exist from the construction of {A;};. Thus

we obtain ug € A with d(u,up) < €= O(1/e). O

Lemma 10.3.9. For every vertex u € North, §(u, South) = O(1/e).



10.3. Structure Theorem 93

Proof. 1f u is not on the base of any North arch, then u is on the same face of F3 with
some vertex from South, because there is no path in F3 that starts at an internal
vertex of East or West from Step 1 of the construction. Thus 6(u, South) = 0.

If u is on the base of some North arch, let A be the maximally enclosing North
arch in Fy such that u € base(A). By Lemma 10.3.8, there exists some vertex v
on the arch A such that d(u,v) = O(1/e). Using a similar argument as before, we
deduce that v is on the same face of F3 with some vertex from South. Therefore,

d(u, South) = O(1/e). O
................................. e
Pi+1 //', P’L

- - —""
............................. — Lo
Tit1 Sk z;

(a)
Pitq b
R S
.
N
A}
AY
........................ P S
Ti+1 Ski Zi
(b)
.......................... @ e
\
A\
Pi+1 : Pl
Il
4
//
4
1
1
]
1
........................ & — b
Tit1 Sk, T
(c)

Figure 10.7: The dashed paths are forbidden by the construction of {P;};.



94 Chapter 10. Approximation Scheme

Fact 10.3.10. For any ¢ < t, the subgraph H; has at most one path that goes
eastwards starting from an internal vertex of P;y1; and if such path exists, it must
end in some node of South[sy,, z;|UP; (see Figs. 10.7a and 10.7b). As a consequence,
every vertex w on Piyq has 6(w, ;1) < 1.

Lemma 10.3.11. For every i <t, 0(z;11,2;) < 2.

Proof. First, by definition of P, 1, one can see that in H;, x;,1 is on the same face
as some node w of South[sy,, ;] U P; (see Figs. 10.7b and 10.7¢). There are two
cases, depending on whether w is on South|[sy,, ;] or on FP;.

Case 1: w € South[s,, z;]. Then there is a South cycle including w and its
copy w'. Since in F3, x;,1 is on the same face as w’, and w' is on the same face as
x; (Fact 10.3.6), we have §(z;41, ;) < 1.

Case 2: w € P;. Then in Fj, the node x;,; is on the same face as w. By
Fact 10.3.10, 6(w, x;) < 1. Thus (x4, z;) < 2. O

Lemma 10.3.12. For every vertez u € South, min; d(u, z;) = O(1/¢).

Proof. We observe that z;, ...,z induce a partition of South. So we only need to
prove that, for every i < ¢t and every vertex u € South(z;y1,z;], 0(u, z;) = O(1/e).

When u € South[sy,, z;], 6(u,z;) = 0 by Fact 10.3.6. Next, consider a vertex
u € South(z;y1, S, ). Since §(z;1,2;) < 2 (Lemma 10.3.11) and every vertex w
on P; is such that §(w,z;) <1 (Fact 10.3.10), it is sufficient to show that either
d(u,z41) = O(1/e€), or 6(u, P;) = O(1/e). This is done by a case-by-case analysis
as follows (again using Fact 10.3.10).

When there is an internal vertex v of P;;; such that there is a (unique) path in
H; between v and South[sy,, z;] U P;, there are two cases:

1. There is a path between v and South[sy,,z;]. Define the arch A to be the
concatenation of this path and a segment of P;;. See the first figure of
Fig. 10.8.

2. There is a path between v and P,;. Define the arch A to be the concatenation
of this path and segments of P; and of P, ;. See the second figure of Fig. 10.8.

When there is no such vertex v, consider the maximally enclosing South arch
containing u. There are two cases:

3. This arch does not intersect P;. Define A to be this arch. See the third figure
of Fig. 10.8.

4. This arch intersects P;. Define the arch A to be the concatenation of the part
of this arch in H; and a segment of P;. See the fourth figure of Fig. 10.8.



10.3. Structure Theorem 95

—Pi+1 Pz
U ¢
........................ o ...
LTi41 u Sk, T
Pit1 P,
U/.\/
........................ o o &
Ti41 u Sk; Z;
-Pi+1 Pz

Figure 10.8: For each case, the arch A is in bold.

We note that in the first two cases, no internal vertex of A has connection to
South in H;. Therefore, every vertex of A is on the same face with x;,1. In the
third case, one can see that every vertex of A is on the same face with z;4; (the
face above the arch). In the fourth case, every vertex of A is either on the same
face with x;,1 (the face above the arch), or belongs to P;.

We conclude that in all cases, every vertex of A is either on the same face with



96 Chapter 10. Approximation Scheme

x;41 or belongs to P;. Since u is on the base of A, by Lemma 10.3.8, 6(u, A) = O(1/e¢).
Therefore, we have either 6(u,x;11) = O(1/€), or d(u, P;) = O(1/e).
This completes the proof of the lemma. O

Proof of Lemma 10.3.7. Let u,v be any vertices on South U North. Let u; (resp.
v1) be the vertex on South which minimizes 0(u,u;) (resp. é(v,v1)). Then

O(u,v) < d(u,uy) + 0(ug,v1) + 6(vy,v) + 2.
By Lemma 10.3.9, both 6 (u,u;) and §(v,v;) are O(1/€). So we only need to show
that d(ui,v1) = O(1/e?).

Let i < ¢ be the index that minimizes d(uy, z;), and let j <t be the index that
minimizes 0(vq, ;). Then

O(ur,vr) < 0(ur, x;) + 0(z, ;) + 6(xj,v1) + 2,

and
max(4,7)—1
O, xy) <|j—il+ D 6(xe2em)
£=min(%,5)
By Lemma 10.3.12, §(uy, x;) = O(1/€), 6(v1,2;) = O(1/€), and by Lemma 10.3.11,
§(we, wpy1) < 2. Recall that ¢ = O(1/e?). Therefore, 6(uy,v1) = O(1/€*). O

10.4 Dynamic Programming

In this section, we design a dynamic program (DP) to solve the two-edge-connected
augmentation problem on the instance (H, R), given that the dual of the mortar
graph has bounded diameter. From the Structure Theorem, in order to get a near-
optimal solution, we may restrict attention to solutions that satisfy the property
defined there. A dynamic program computes the best among all such solutions.

Theorem 10.4.1 (Dynamic-Programming Theorem). Let G' be a plane graph with
edge-weights. Let R be a subset of E[G]. Let € > 0 be a parameter. Let M be the
mortar graph of G. Let H be the graph obtained from G by doubling the South,
East, and West boundaries of every brick.

Assume that the dual graph of M has diameter O(1/€®). Then there is an
algorithm that computes in polynomial time a two-edge-connected augmentation S

for (H, R) such that:

weight(S) < (1+€)OPT(H,R) +4 > weight(Eastp U Westg).
brick B



10.4. Dynamic Programming 97

10.4.1 Specification of DP Table

In this section, we define the index of the DP table and the value at an index.

By the Sphere-Cut Lemma (Lemma 9.5.1), M has a sphere-cut decomposition
SC of width O(1/€*) which can be computed in linear time. The first index of the
DP table is a cluster E of SC, which is a subset of edges of M.

Let Sy C E[H]| be the optimal two-edge-connected augmentation for (H, R).
Let S C E[H] be defined in the Structure Theorem (Theorem 10.3.1). Then S is
a near-optimal two-edge-connected augmentation. We remove unnecessary edges
from S to make it minimal. By Lemma 8.2.2, every connected component in RU .S
is two-edge-connected. For every cluster E of SC, let Jg be the noose enclosing
E and of minimum number of crossings with R U S (all occurring at vertices),
breaking ties by choosing the minimally enclosing one.* It is easy to show that the
family of nooses {Jg}gesc is non-crossing.

Lemma 10.4.2. For every cluster E of SC, Jg intersects O(1/€") wvertices of
RUS.

Proof. Since SC has width O(1/€®), there is a noose enclosing E that has O(1/¢?)
intersections with M. From one intersection to the next, it goes across a single brick,
and by the Structure Theorem (Theorem 10.3.1), the part inside this brick can
be chosen so as to have O(1/e*) intersections with S, hence O(1/€*) intersections
with RU S, since no edge of R is in the interior of a brick. This results in a noose
enclosing F that has O(1/¢") intersections with RU S. O

Let Q* C V[H] denote the (unknown) set of O(1/€¢") intersection vertices of
Jg with RU S. The second index of the DP table is a subset ) C V[H] of size
O(1/€").

Next, we need a concise representation of the connectivity structure of the
part of RU S inside Jg. Let Rg (resp. I'*) denote the set of edges of R (resp.
S) that are inside Jg. Define a forest Fj from R U I by contracting every
two-edge-connected component into a node. A node of Fj is called internal if its
corresponding two-edge-connected component in Rg U I'™* does not contain any
node from @)%, i.e., the component is strictly inside Jg. We then define a forest
F~* from Fj by removing internal nodes that are singletons and splicing internal
nodes of degree 2. By the construction, F* has at most |Q*| non-internal nodes,
and every internal node has degree at least 3. So F* has at most 2|Q*| — 2 nodes.
The third index of the DP table is a forest F' of at most 2|@)| — 2 nodes. Moreover,

4Since the noose is a geometric object, it is not uniquely defined, but a discrete formulation
can be given using the face-vertex incidence graph (see [61]).

5There cannot be internal nodes of degree 1, because RUS is a collection of two-edge-connected
components.



98 Chapter 10. Approximation Scheme

there is a map ¢* giving the natural many-to-one map from Q* to nodes of F™.
The fourth index of the DP table is a map ¢ from @ to V[F]. To summarize:

Definition 10.4.3 (DP index). An index of the DP table, also called a DP index,
contains the following:

e F: a cluster of the sphere-cut decomposition SC;
e (): a subset of V[H| of size O(1/€");
o [': a forest of size at most 2|Q| — 2;
e Y a map from Q to V[F].
In addition, the triple (Q, F,%) as defined above is called a partial DP index.®

Before defining the value at a DP index, we need the concept of consistency to
relate a solution I' C E[H] with a DP index.

Definition 10.4.4 (consistency). Let (E,Q, F,v) be an index of the DP table.
We say that a subset T of E[H]| is consistent with (E,Q, F,v) if, for every node
a € V[F], there exists a connected subgraph H, of 'URg such that the endpoints of
every edge in R N H, are two-edge-connected in H,; and for every edge ab € E[F],
there exists a simple path I, in I' U Rg connecting H, and Hy, such that the
following holds:

1. Every vertex u € Q) belongs to Hy(y),

2. For every edge wv € Rp such that u and v are not two-edge-connected in
Rg UT, there is exactly one edge ab from F' such that uv € Iy,.

Let H ={H,} and T = {I.}.

We observe that I'* is consistent with (E, Q*, F*,¢*), and that any I" that is
consistent with (M, 0,0, 0?) is a two-edge-connected augmentation for (H, R).

For every DP index (E, Q, F, ¢), define its value DP(E, Q, F, 1)) as the minimum
weight among a collection of I'’s, such that:

1. Every T in this collection is consistent with (E, @, F,v); and
2. If (Q, F,¢) = (QF, F*,¢*), then I'* is in this collection.

In order to prove the Dynamic-Programming Theorem (Theorem 10.4.1), we only
need to find a polynomial-time algorithm to fill in the DP table and to output the
value DP(M, 0,0, 0%). 7

SNote that the definition of (@, F,1)) is independent of E.
"The DP outputs the value of a solution, not the solution itself; but it is easy to enrich the
DP in the standard manner so that it also outputs the solution achieving the value.




10.4. Dynamic Programming 99

Figure 10.9: The solid curves represent Jg, Jg,, and Jg,: Jg is the outermost
boundary; Jg, is the boundary of the white face on the left, and Jg, is the boundary
of the white face on the right. The dark areas belong to the hole region. The
dashed curves represent R U S inside Jg. The solid points represent vertices from

QTURIUQ:.

10.4.2 From Children to Parent

Let E be a cluster of SC. Let E and Es be its child clusters. Let Q*, QF, Q5 C V[H]
be the sets of intersections of R U S with Jg, Jg,, Jg,. The hole region is the area
inside Jg but outside Jg, and Jg, in the plane.® See Figure 10.9. We observe that
the hole region cannot contain edges from R.

Let T'* denote the set of edges of S in the hole region. Let Q* denote the set of
intersections of S with the boundary of the hole region. We have Q* C Q* URiuQs.
Thus |Q*| = O(1/€7). Similar to Section 10.4.1, the connectivity structure of I™*
can be represented by a forest E* of size at most 2[@*] — 2, together with a map
J* from Q* to V™.

We use a side table T" for the computation at hole regions. This table is indexed
by a partial DP index (Q a 1&) The concept of consistency can be extended to
(Q, F,9) by setting E = () (therefore Rp = 0). The value T(Q E,9) is defined as
the minimum weight of any I' that is consistent with (Q, F', ).

Definition 10.4.5 (compatibility). Let (Q1, F1, 1), (Q2, Fa, 1), and (Q, F, 1)) be
partial DP indezxes. Let (Q, F,v) be a partial DP index such that Q C Q1 U Q UQ.
F

We say that (Q, F,1) is compatible with (Q1, F1,v¥1), (Q2, Fa, 1), and (Q 12)
if ' and 1 can be constructed as follows:

1. F is initialized as F1 U Fy U F;

8Note that Jg, Jg,, and Jg, are non-crossing.



100 Chapter 10. Approximation Scheme

2. For every verter u € Q1 N Qa, merge the nodes 1 (u) and Yo(u) in F (idem
for every u € Q1 N Q and every u € Q2 NQ);

3. Contract two-edge-connected components in F; Let ¢ : () — Fy be the natural
extension of V1, 1o, V;

4. Remove internal nodes® of F' that are singletons and splicing internal nodes
of F' of degree 2.

Fact 10.4.6. The partial DP indexes of the near-optimal solution are compatible:
(Q*, F*,v*) is compatible with (QF, F}, V%), (Q5, Fy, %), and (Q*, F*,¢*).

Lemma 10.4.7. For i € {1,2}, let I'; C E[H] be consistent with a DP index
(E;, Qi, Fi,10;). Let ' C E[H] be consistent with a partial DP index (Q, F,1). Let
(Q, F,¢) be a partial DP index that is compatible with (Q1, F1,11), (Qa, Fa,19),
and (Q, F @2) Then T =T, UTo UT is consistent with (E,Q,F,).

Proof. For ¢« € {1,2}, Since I'; is consistent with (E;, Q;, F;,1;), there exists
‘H; and Z; according to Definition 10.4.4. Similarly, since [ is consistent with
(Q, 2 @/;), there exists H and Z according to Definition 10.4.4. By the definition of
compatibility, @ € Q;UQ,UQ and (F, ) can be constructed as in Definition 10.4.5.
We modify H and Z along the line of this construction. In each of the following
steps, the graph F' is defined in the corresponding step in Definition 10.4.5.

1. H is initialized as H{ U Hy U 7:1, and 7 is initialized as Z; U Zy uz.

2. For every vertex u € Q1 N Q2, let H' be the concatenation of Hy, () and
Hy, ) at vertex u. For every edge uv in Rp N H', u and v are either two-
edge-connected in Hy, (), or two-edge-connected in Hy, ). Therefore, u and
v are two-edge-connected in H'. We update H by HU{H"} \ {Hy, (), Hys(u) }-
Idem for every u € Q1 N Q and every u € Q» N Q.

3. For every two-edge-connected component A in F', consider the subgraphs H,
for all nodes a in A and the subgraphs I, for all edges ab in A, and let H' be
the union of these subgraphs. We show that for every edge uv in R N H', u
and v are two-edge-connected in H'. When uv belongs to a subgraph H, for
some node a in A, v and v are two-edge-connected in H,, which is a subgraph
of H'. Next, consider the case when uv belongs to a path [, for some edge ab
in A. Since A is two-edge-connected, there exists cycle in A that contains the
edge ab, let it be ay,...,a;. Define ai1 := a; and ag o := as. We construct
a cycle C'in H' that contains the edge uv: for every i € [1, k|, there is a path

9A node a in F is internal if a ¢ ¥(Q).



10.4. Dynamic Programming 101

Io,a,,, connecting H,, and H,, . For every i € [2,k + 1], let x; be the end
vertex of I,, 4, and let y; be the start vertex of I,,4,,,. Both x; and y; are in
H,,. Since H,, is connected, there is a path P, in H,, connecting z; and y;.
Let C' be the concatenation of I4,a,, P2, layas, P35+, Loy a1 s Pr1- Then C
is a cycle (not necessary simple) in H' that contains uv. Note that uv appears
in none of {H,},ca and in exactly one of {Iu}aea, and that every I, is a
single path. Thus uv appears exactly once on C'. By removing unnecessary
edges on C, we obtain a simple cycle in H' that contains uv. So u and v are

two-edge-connected in H'. Update H by H U {H'} \ {H,}aca and update Z
by I\ {Iab}abEA-

4. For every internal node of F' that is a singleton, we remove H, from H. For
every internal node of I’ of degree 2, let b and ¢ be its neighbors. Let u be
the end vertex of the path I, and let v be the start vertex of the path I,..
Both w and v are in H,. Since H, is connected, there is a path P in H,
connecting u and v. Let I, = I, o P o I,.. We remove unnecessary edges
from I, to make it a simple path. Then we remove H, from H, and update

Z by ZU{lpe} \ {Ipa, Lac}-

We prove that I' is consistent with (F, @, F,v) using H and Z constructed
above. The non-trivial part is to show that for every edge uv € Rg such that u
and v are not two-edge-connected in I' U Rg, there is exactly one edge ab from
F such that uwv € I,,. Assume without loss of generality that uv € Rg,. Then
there is some edge e in F} such that uv € I.. Since I, belongs to Z;, it belongs
to Z in Step 1. I, cannot be merged into some H' in Step 3, since otherwise u
and v are two-edge-connected in H' C I' U Rg. Therefore, after the construction,
either I, remains the same in Z, or I, is a subsegment of some I, € Z, which is the
concatenation of I, and other segments in Step 4. The statement holds in both
case. O

10.4.3 Implementation

Preprocessing. First, the algorithm fills in the side table T" during the pre-
processing. Notice that any minimal ' C E [H] that is consistent with (Q, F, Qﬁ)
contains no cycles. Therefore, every node a in a corresponds to a vertex u, in the
graph H, and every edge ab in F corresponds to a path between u, and u; in L.
To compute the value T(Q, 2 1&), the algorithm enumerates, for every a € F', the
vertex u, among V[H]. Next, for every ab € F, it computes a minimum-weight
path between u, and u;, in H \ R. The union of all these paths defines the current
. The value T(Q, F',1)) is the minimum weight of all I”s during the enumeration.

The overall running time of the preprocessing is thus polynomial.



102 Chapter 10. Approximation Scheme

Base Case in DP. First, consider a cluster F = {uv}. Then (Q*, F'*,1*) must
be one of the two configurations:

(Q4, FA,4), if edge uv belongs to exactly one of S and R,
(QF, FB ¢P), otherwise.

Here Q4 = {u,v}; F4 is a forest containing two nodes a and b and an edge ab; ¥*
maps v to a and v to b; QB = 0; FB = ; and ¢¥ = (°.

Remark. When an edge uv belongs to both S and R, we have S\ {uv} is a two-
edge-connected augmentation for (H, R\ {uv}), since S is minimal. Therefore, we
identify this case (and its DP state) with the case that uv belongs to neither S nor
R (and its DP state).

If uwv € R, we set DP(E,Q*, F4,94) = 0 and set DP(E,QP, FB 4P) to be
the minimum weight of a u-to-v path in H \ R.

If uwv ¢ R, we set DP(E,QP, FP 8) = 0 and set DP(E,Q4, F4,94) to be
the minimum weight of a u-to-v path in H \ R.

By inspection, both properties of the DP value are satisfied.

Recursive Case in DP. Next, the algorithm fills in the DP table in the order
of the index F from bottom up in SC. Consider a cluster £ = E; U E,, where
Ey,Ey, € §C. To compute the value at a DP index (E,Q, F, ), the algorithm
enumerates every combination of (Q1, F1,v1), (Qa, Fs,1s), and (Q, F, Qﬁ) that are
compatible with (@, F, ), and let DP(E,Q, F, ) be

min {DP(El, Q1. Fi, 1) + DP(Ey, Q2, Fy, ) + T(Q., F, 12)} :

From Lemma 10.4.7 and Fact 10.4.6, both properties of the DP value follow by
induction.

10.5 Putting Them Together

In this section, we prove the Augmentation Theorem that we recall:

Theorem 10.1.1 (Augmentation Theorem). Let G be a plane graph with edge-
weights. Let R be a subset of E|G]. Let T be a connected subgraph of G that
contains every edge of R. Let € > 0 be a parameter. The algorithm AUGMENT-
CONNECTED(G, R, T, €) (Algorithm 10.2) computes in polynomial time a two-edge-
connected augmentation S for (G, R) such that

weight(S) < (14 €)OPT(G, R) + €* - weight(T) .



10.5. Putting Them Together 103

By the Boundary Doubling Lemma (Lemma 9.4.1), the two-edge-connected
augmentation problems for (G, R) and for (H, R) are equivalent. Thus we only
need to prove the statement for the instance (H, R).

Let C be a connected component of M*\ &;-. Let He be the subgraph of H
consisting of the bricks corresponding to V[C]. Let M¢ be the mortar graph of
He, i.e., it consists of the boundaries of the bricks corresponding to V[C]. (M is
called a parcel in the terminology of [22].) From Lemma 8.9 in [22], the dual of M¢
has a spanning tree of depth at most 7+ 1 = O(1/€3). Therefore, we can apply the
Dynamic-Programming Theorem (Theorem 10.4.1) and obtain in polynomial time
a two-edge-connected augmentation S¢ for (He, Re) such that:

weight(Sc) < (14 €)OPT(He,Re)+4 ). weight(Easty U Westpg) .
brick B in He

Summing the above inequality over C', we have the weight of the output

weight (U SC> <(14¢€> OPT(Hc,Rc)+4 >  weight(Eastg U Westp).
c c

brick B in H

By the Mortar-Graph Lemma (Lemma 9.2.4), weight(M) = O(weight(T") /e),
therefore
weight(€+) < (1/n)weight(M) = O(e” - weight(T)).

So we have

> OPT(Hc,Rc) < OPT(H, R) 4+ O(€* - weight(T)).
C

Again by the Mortar-Graph Lemma, we have

> weight(Eastp U Westp) = O(€” - weight(T')).
brick B in H

Therefore, the weight of the output is at most
(1+¢€)OPT(H, R) + O(&* - weight(T)).

The statement follows by replacing € by ¢ = ¢/ K for some absolute constant K
that is large enough.






CHAPTER 11

Conclusion

Main Results. For planar graphs, we have provided a reduction from correlation
clustering to two-edge-connected augmentation, mainly based on planar duality.
Next, we have designed a polynomial-time approximation scheme for the latter
problem. The scheme is based on the brick decomposition from [22]. In order to
design a dynamic program to compute a near-optimal solution, we have proved a
new structure property on bricks that we recall:

New Structure Property. There exists a near-optimal solution such that, for
any brick and any two vertices u,v on the boundary of the brick, there is a u-to-v
Jordan curve inside the brick that crosses the near-optimal solution only a bounded
number of times.!

We hope that the new structure property can be used to give approximation
schemes for other problems.

An Open Problem. Recall the two-edge-connected Steiner subgraph problem
mentioned in Section 7.2.2. In this problem, we are given a subset () C V of
terminals, and we want to find a minimum-weight subgraph such that all terminals
from () are two-edge-connected in this subgraph. For the special case when () is the
set of all vertices, this becomes the two-edge-connected spanning subgraph problem,
which, in planar graphs, is NP-hard [39] and admits a PTAS [17]. Berger and
Grigni [17] raised the question of whether there is a PTAS for the Steiner version of
the problem in planar graphs. Borradaile and Klein [21] solved the relaxed version
when the solution is allowed to contain multiple copies of each edge:

!The bound depends on e.



106 Chapter 11. Conclusion

[21] We answer that question in the affirmative for the relaxed version. The
question in the case of the strict version is still open.

Let us focus on the strict version of the problem, i.e., when every edge can
be included at most once in the solution. We try to solve this problem using the
new structure property. The obstacle is that, if we only specify the set of crossing
vertices of the Jordan curve with the near-optimal solution as an DP index (as
was the case in Section 10.4.1), there is no way to ensure that the solutions on
different sides of the Jordan curve do not share edges. This does not harm in
the two-edge-connected augmentation problem, because the solution is allowed to
contain several two-edge-connected components. However, in this problem, the
solution should be a single two-edge-connected component. So sharing edges is
not allowed on different sides of a Jordan curve. Therefore, for every v and v on
the boundary of the same brick, we need to encode the u-to-v Jordan curve more
precisely. Of course, taking the complete Jordan curve requires too much memory.
Hence the open question: Is there a concise encoding of the u-to-v Jordan curve
inside the brick so that the solutions on different sides of the curve are disjoint?

Other Open Problems. There are many problems that we do not know whether
they have approximation schemes in planar graphs, such as facility location, vehicle
routing, vertex-weighted Steiner tree, and directed Steiner tree. It would be interest-
ing to try to design approximation schemes for these problems by developing new
structure properties on bricks, as has been done in our work.



List of Publications

Sampath Kannan, Claire Mathieu, and Hang Zhou. Near-linear query com-
plexity for graph inference. In proceedings of the International Colloguium on
Automata, Languages and Programming (ICALP), 2015.

Philip Klein, Claire Mathieu, and Hang Zhou. Correlation clustering and
two-edge-connected augmentation for planar graphs. In proceedings of the
Symposium on Theoretical Aspects of Computer Science (STACS), 2015.

Marc Lelarge and Hang Zhou. Sublinear-time algorithms for monomer-dimer
systems on bounded degree graphs. In Theoretical Computer Science (TCS),
548:68-78, 2014. A preliminary version appears in proceedings of the Interna-
tional Symposium on Algorithms and Computation (ISAAC), 2013.

Claire Mathieu and Hang Zhou. Graph reconstruction via distance oracles.
In proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), 2013.

Fabrice Benhamouda, Tancrede Lepoint, and Hang Zhou. Optimization of
Bootstrapping in Circuits. Manuscript in preparation.






Bibliography

1]

Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On
the bias of traceroute sampling: or, power-law degree distributions in regular
graphs. Journal of the ACM (JACM), 56(4):21, 2009.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: Ranking and clustering. Journal of the ACM, 55(5), 2008.

Sharon Alpert, Meirav Galun, Ronen Basri, and Achi Brandt. Image segmenta-
tion by probabilistic bottom-up aggregation and cue integration. In Computer
Vision and Pattern Recognition, pages 1-8. IEEE, 2007.

Amir Alush and Jacob Goldberger. Ensemble segmentation using efficient
integer linear programming. Pattern Analysis and Machine Intelligence,
34(10):1966-1977, 2012.

Amir Alush and Jacob Goldberger. Break and conquer: Efficient correlation
clustering for image segmentation. In Similarity-Based Pattern Recognition,
volume 7953, pages 134-147. Springer, 2013.

Bjoern Andres, Jorg H. Kappes, Thorsten Beier, Ullrich Kothe, and Fred A.
Hamprecht. Probabilistic image segmentation with closedness constraints. In
International Conference on Computer Vision, pages 2611-2618. IEEE, 2011.

Dana Angluin and Jiang Chen. Learning a hidden graph using O(log n) queries
per edge. In Learning Theory, pages 210-223. Springer, 2004.

Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved
routing strategies with succinct tables. Journal of Algorithms, 11(3):307-341,
1990.

Baruch Awerbuch and David Peleg. Routing with polynomial communication-
space trade-off. SIAM Journal on Discrete Mathematics, 5(2):151-162, 1992.



110 BIBLIOGRAPHY

[10] Yoram Bachrach, Pushmeet Kohli, Vladimir Kolmogorov, and Morteza Zadi-
moghaddam. Optimal coalition structure generation in cooperative graph
games. In Conference on Artificial Intelligence, 2013.

[11] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56(1-3):89-113, 2004.

[12] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Philip N. Klein, and
Claire Mathieu. A polynomial-time approximation scheme for planar multiway
cut. In Symposium on Discrete Algorithms, pages 639-655. STAM, 2012.

[13] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Déniel Marx.
Approximation schemes for Steiner forest on planar graphs and graphs of
bounded treewidth. Journal of the ACM, 58(5):21, 2011.

[14] Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael
Hoffmann, Matis Mihal’ak, and L. Shankar Ram. Network discovery and
verification. IEEE Journal on Selected Areas in Communications, 24(12):2168-
2181, 2006.

[15] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6(3/4):281-297, 1999.

[16] Fabrice Benhamouda. Personal communication, 2014.

[17] A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning sub-
graphs in planar graphs. In International Colloguium on Automata, Languages
and Programming, volume 4596, pages 90-101, 2007.

[18] Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and
clique trees. In Graph theory and sparse matriz computation, pages 1-29.
Springer, 1993.

[19] Sebastian Bocker and Jan Baumbach. Cluster editing. In The Nature of
Computation. Logic, Algorithms, Applications, volume 7921, pages 33-44.
Springer, 2013.

[20] Glencora Borradaile, Erik D Demaine, and Siamak Tazari. Polynomial-time
approximation schemes for subset-connectivity problems in bounded-genus
graphs. Algorithmica, 68(2):287-311, 2014.

[21] Glencora Borradaile and Philip N. Klein. The two-edge connectivity survivable
network problem in planar graphs. International Colloquium on Automata,
Languages and Programming, pages 485-501, 2008.



BIBLIOGRAPHY 111

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(nlogn)
approximation scheme for Steiner tree in planar graphs. ACM Transactions
on Algorithms, 5(3):31, 2009.

Mathilde Bouvel, Vladimir Grebinski, and Gregory Kucherov. Combinatorial
search on graphs motivated by bioinformatics applications: A brief survey. In
Graph-Theoretic Concepts in Computer Science, pages 16—27. Springer, 2005.

Gerth Stglting Brodal, Rolf Fagerberg, Christian N.S. Pedersen, and Anna
Ostlin. The complexity of constructing evolutionary trees using experiments.
In International Colloquium on Automata, Languages and Programming, vol-
ume 28, page 140. Springer, 2001.

Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Network
tomography: recent developments. Statistical Science, 19:499-517, 2004.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering
with qualitative information. Journal of Computer and System Sciences,
71(3):360-383, 2005.

Gary Chartrand and Frank Harary. Planar permutation graphs. Annales de
Uinstitut Henri Poincaré (B) Probabilités et Statistiques, 3(4):433-438, 1967.

Daniel Chen, Leonidas J. Guibas, John Hershberger, and Jian Sun. Road
network reconstruction for organizing paths. In SODA, pages 1309-1320, 2010.

Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for
finding graphs. In STOC, pages 749-758. ACM, 2008.

F. Chung, M. Garrett, R. Graham, and D. Shallcross. Distance realization
problems with applications to internet tomography. Journal of Computer and
System Sciences, 63:432-448, 2001.

William W. Cohen and Jacob Richman. Learning to match and cluster large
high-dimensional data sets for data integration. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 475-480. ACM, 2002.

Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algo-
rithms, 38(1):170-183, 2001.

Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost k-

connected spanning subgraph problem. In Symposium on Discrete Algorithms,
pages 281-290. STAM, 1999.



112 BIBLIOGRAPHY

[34] Luca Dall’Asta, Ignacio Alvarez-Hamelin, Alain Barrat, Alexei Vazquez, and
Alessandro Vespignani. Exploring networks with traceroute-like probes: Theory
and simulations. Theoretical Computer Science, 355(1):6-24, 2006.

[35] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Corre-
lation clustering in general weighted graphs. Theoretical Computer Science,
361(2):172-187, 2006.

[36] Reinhard Diestel. Graph Theory. Electronic library of mathematics. Springer,
2006.

[37] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Effi-
cient exact algorithms on planar graphs: Exploiting sphere cut decompositions.
Algorithmica, 58(3):790-810, 2010.

[38] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with
low stretch factor. Journal of Algorithms, 46(2):97-114, 2003.

[39] Kapali P. Eswaran and R. Endre Tarjan. Augmentation problems. SIAM
Journal on Computing, 5(4):653-665, 1976.

[40] Pierre Fraigniaud and Cyril Gavoille. Memory requirement for universal
routing schemes. In Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing, pages 223-230. ACM, 1995.

[41] Greg N. Frederickson and Joseph Ja’Ja. Approximation algorithms for several
graph augmentation problems. SIAM Journal on Computing, 10(2):270-283,
1981.

[42] Anna Galluccio and Guido Proietti. A faster approximation algorithm for
2-edge-connectivity augmentation. In International Symposium on Algorithms
and Computation, pages 150-162, 2002.

[43] Cyril Gavoille and Marc Gengler. Space-efficiency for routing schemes of
stretch factor three. Journal of Parallel and Distributed Computing, 61(5):679
— 687, 2001.

[44] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggre-
gation. ACM Transactions on Knowledge Discovery from Data, 1(1), 2007.

[45] Toannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed
number of clusters. In Theory of Computing, pages 1167-1176. ACM, 2006.



BIBLIOGRAPHY 113

[46]

M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and
D. P. Williamson. Improved approximation algorithms for network design
problems. In Symposium on Discrete Algorithms, SODA 94, pages 223-232.
STAM, 1994.

Michel X. Goemans and David P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Computing,
24(2):296-317, 1995.

Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs
under the additive model. Algorithmica, 28(1):104-124, 2000.

Jotun J Hein. An optimal algorithm to reconstruct trees from additive distance
data. Bulletin of Mathematical Biology, 51(5):597-603, 1989.

Shinichi Honiden, Michael E. Houle, and Christian Sommer. Balancing graph
voronoi diagrams. In ISVD, pages 183-191. IEEE, 20009.

Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica, 21(1):39-60, 2001.

David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of computer and system sciences, 9(3):256-278, 1974.

Raja Jothi, Balaji Raghavachari, and Subramanian Varadarajan. A 5/4-
approximation algorithm for minimum 2-edge-connectivity. In Symposium on
Discrete Algorithms, pages 725-734. SIAM, 2003.

Sampath K. Kannan, Eugene L. Lawler, and Tandy J. Warnow. Determining
the evolutionary tree using experiments. Journal of Algorithms, 21(1):26 — 50,
1996.

Ming-Yang Kao, Andrzej Lingas, and Anna Ostlin. Balanced randomized tree
splitting with applications to evolutionary tree constructions. In STACS 99,
pages 184-196. Springer, 1999.

Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for
graph augmentation. Journal of Algorithms, 14(2):214-225, 1993.

Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph
carvings. Journal of the ACM, 41(2):214-235, 1994.

Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo.
Higher-order correlation clustering for image segmentation. In Advances in
Neural Information Processing Systems, pages 1530-1538, 2011.



114 BIBLIOGRAPHY

[59] Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-
based evolutionary tree reconstruction. In SODA, pages 444-453. SIAM,
2003.

[60] Philip N. Klein. A subset spanner for planar graphs: with application to
subset TSP. In Symposium on Theory of Computing, pages 749-756. ACM,
2006.

[61] Philip N. Klein and Shay Mozes. Optimization algorithms for planar graphs.
In preparation, manuscript at http://planarity.org.

[62] Philip N. Klein and R. Ravi. When cycles collapse: A general approximation
technique for constrained two-connectivity problems. In Integer Programming
and Combinatorial Optimization, pages 3955, 1993.

[63] Mathias Baek Tejs Knudsen. Personal communication, 2014.

[64] Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approxi-
mation for vertex-connectivity network design problems. SIAM Journal on
Computing, 33(3):704-720, 2004.

[65] Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity
problems. Approzimation Algorithms and Metahueristics, 2007.

[66] David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to
detect natural image boundaries using local brightness, color, and texture cues.
Pattern Analysis and Machine Intelligence, 26(5):530-549, 2004.

[67] Claire Mathieu and Warren Schudy. Correlation clustering with noisy input.
In Symposium on Discrete Algorithms, pages 712-728, 2010.

[68] Hanna Mazzawi. Optimally reconstructing weighted graphs using queries. In
SODA, pages 608-615. STAM, 2010.

[69] Brendan D McKay and Nicholas C Wormald. Asymptotic enumeration by
degree sequence of graphs with degrees o(n'/?). Combinatorica, 11(4):369-382,
1991.

[70] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM (JACM), 36(3):510-530, 1989.

[71] Bruce A. Reed. Algorithmic aspects of tree width. In Recent advances in
algorithms and combinatorics, pages 85-107. Springer, 2003.



BIBLIOGRAPHY 115

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Mauricio Resende and Panos Pardalos. Handbook of optimization in telecom-
munications. Springer, 2008.

Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries
with a focus on edge counting. In Algorithmic Learning Theory, pages 285-297.
Springer, 2007.

Lev Reyzin and Nikhil Srivastava. On the longest path algorithm for re-
constructing trees from distance matrices. Information processing letters,
101(3):98-100, 2007.

Chaitanya Swamy. Correlation clustering: maximizing agreements via semidef-
inite programming. In Symposium on Discrete Algorithms, pages 526-527.
STAM, 2004.

Fabien Tarissan, Matthieu Latapy, and Christophe Prieur. Efficient measure-
ment of complex networks using link queries. In INFOCOM Workshops, pages
254-259. ITEEE, 2009.

Mikkel Thorup and Uri Zwick. Compact routing schemes. In Symposium on
Parallel Algorithms and Architectures, pages 1-10. ACM, 2001.

M.S. Waterman, T.F. Smith, M. Singh, and W.A. Beyer. Additive evolutionary
trees. Journal of Theoretical Biology, 64(2):199 — 213, 1977.

David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazi-
rani. A primal-dual approximation algorithm for generalized Steiner network
problems. Combinatorica, 15(3):435-454, 1995.

Julian Yarkony, Alexander Ihler, and Charless C Fowlkes. Fast planar correla-
tion clustering for image segmentation. In Furopean Conference on Computer
Vision, volume 7577, pages 568-581. Springer, 2012.



	Acknowledgements
	Prologue
	I Network Inference
	Introduction
	Background
	The Problem
	Related Work
	Our Results
	Notations and Definitions
	Organization

	Voronoi Cell Decomposition
	Technique from Compact Routing
	Reconstruction via a Distance Oracle
	Subroutine: Selecting Centers
	Algorithm and Analysis

	Verification via a Distance Oracle
	Subroutine: Selecting Centers
	Algorithm and Analysis


	Greedy Algorithms
	Verification via a Distance Oracle
	Reconstruction via a Shortest Path Oracle

	Decomposition by Separators
	Preliminaries
	Reconstruction of Chordal Graphs
	Subroutine: Computing a Shortest Path
	Subroutine: Partitioning by a Set
	Algorithm and Analysis

	Reconstruction of Outerplanar Graphs
	Subroutine: Partitioning by a Polygon
	Algorithm and Analysis

	Verification of Treewidth Bounded Graphs
	Warm up: Chordal Graphs
	Extension: Graphs of Bounded Treewidth


	Side Results
	Lower Bounds
	General Graphs
	Graphs of Bounded Degree

	Approximate Reconstruction

	Conclusion

	II Planar Graph Optimization
	Introduction
	Correlation Clustering
	The Problem
	Related Work

	Two-Edge-Connected Augmentation
	The Problem
	Related Work

	Our Results
	Notations and Definitions
	Organization

	Reduction from Clustering to Augmentation
	First Stage
	Second Stage

	Techniques
	Prize-Collecting Partition
	Steiner Forest
	Two-Edge-Connected Augmentation

	Brick Decomposition
	Steiner Tree
	Two-Edge-Connected Augmentation

	Framework of Approximation Schemes
	Doubling Brick Boundaries
	Sphere-Cut Decomposition

	Approximation Scheme
	Preprocessing
	New Use of Brick Decomposition
	Structure Theorem
	Construction
	Analysis

	Dynamic Programming
	Specification of DP Table
	From Children to Parent
	Implementation

	Putting Them Together

	Conclusion

	List of Publications
	Bibliography

