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Abstract

Many real-world decision making problems consist of - in most cases - several

conflicting objectives, the solutions of which is a set of trade-offs called the

Pareto-optimal set. Recently, hybrid evolutionary metaheuristics based algo-

rithms proved their efficiency and effectiveness in handling this class of prob-

lems. They have been utilized to find a good approximation to the Pareto-

optimal set. However, the approximation set must possess solutions with high

convergence towards the Pareto-optimal set and hold a good diversity in order

to demonstrate a good approximation. Hybrid evolutionary metaheuristics tend

to enhance search capabilities, by improving intensification and diversification,

through incorporating different cooperative metaheuristics. So that, we are con-

cerned with developing a new search strategy through incorporating different

search strategies such that the new strategy exploits the advantages as well as

avoid the drawbacks of the original strategies. In this thesis, new hybrid evolu-

tionary metaheuristics approaches are developed based on the framework of the

MOEA/D [Zhang & Li 2007].

First, the Hybrid Evolutionary Metaheuristics (HEMH) is proposed. In HEMH,

the search process is divided into two phases. In the first phase, the DM-GRASP

is applied to obtain an initial set of high quality solutions dispersed along the

Pareto front. Then, the search efforts are intensified on the promising regions

around these solutions through the second phase. The greedy randomized path-

relinking with local search or reproduction operators are applied to improve the

quality and to guide the search process to explore the non-discovered regions

in the search space. The two phases are combined with a suitable evolution-

ary framework for supporting the integration and cooperation. Moreover, the

efficient solutions explored over the search are collected in an external archive.

Second, a comparative study is developed to study the effect of the hybridiza-

tion of different metaheuristics with MOEA/D framework. four proposals of

hybridization are considered in this study, the first proposal is to combine the

adaptive discrete differential evolution operator with MOEA/D. The second one

is to combine the greedy path-relinking operator with MOEA/D. the third and

the fourth proposals combine both of them with MOEA/D using two different

ways.

Third, based on the results of the developed comparative study, an improved hy-

brid evolutionary metaheuristics (HEMH2) is presented. Unlike HEMH, HEMH2

uses simple inverse greedy algorithm to construct its initial population. Then,

the search efforts are directed to improve these solutions by exploring the search
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space using the adaptive binary differential evolution. After a certain num-

ber of evaluations, greedy path relinking is applied on high quality solutions

to investigate the non-visited regions in the search space. During evaluations,

the dynamic-sized neighborhood structure is adopted to shrink/extend the mat-

ing/updating range. Furthermore, the Pareto adaptive epsilon concept is used

to control the archiving process with preserving the extreme solutions.

Motivated by the results achieved by the previous proposed algorithms for the

discrete search domains, a new hybrid evolutionary approach with search strat-

egy adaptation (HESSA) is proposed to deal with the continuous search domains.

In HESSA, the search process is carried out through adopting a pool of different

search strategies, each of which has a specified success ratio. A new offspring is

generated using a randomly selected strategy. Then, according to the success of

the generated offspring to update the population or the archive, the success ratio

of the selected strategy is adapted. This provides the ability for HESSA to adopt

the appropriate search strategy according to the problem on hand. Furthermore,

the cooperation among different strategies leads to improve the exploration and

the exploitation of the search space. The proposed pool is combined to a suitable

evolutionary framework for supporting the integration and cooperation. More-

over, the efficient solutions explored over the search are collected in an external

repository to be used as global guides to the search process.

All the proposed algorithms are verified and tested against some of the state of

the art MOEAs using a set of test instances commonly used in the literature.

The experimental results indicate that all proposals are highly competitive and

can be considered as viable alternatives.

Keywords:

Multiobjective Optimization; Hybrid Metaheuristics; Evolutionary Algorithms;

DM-GRASP; Path-relinking; Adaptive Binary Differential Evolution; 0/1 Mul-

tiobjective Knapsack Problems; Search Strategy adaptation.



Résumé1

La prise de décision est une partie intégrante de notre vie quotidienne. Lors

de ces prises de décision, le décideur est confronté le plus souvent à des prob-

lèmes composés de plusieurs objectifs habituellement contradictoires. Dans ce

travail de thèse, nous traitons des problèmes d’optimisation multiobjectif dans

des espaces de recherche continus ou discrets. Dans l’optimisation multiobjectif,

il n’y a généralement pas de solution optimale qui satisfasse tous les objectifs

à la fois. Il faut donc trouver des solutions de compromis, non “dominées” par

d’autres solutions, appelées solutions Pareto optimales. Les méthodes classiques

pour générer les solutions Pareto optimales agrègent généralement les fonctions

objectifs en une seule fonction et souffrent de plusieurs limitations. Récem-

ment, des algorithmes basés sur les métaheuristiques hybrides évolutionnaires

ont prouvé leur efficacité dans le traitement de ce type de problèmes et ont

permis de lever certaines de ces limitations. Ces algorithmes permettent de

manipuler et de générer des ensembles de solutions (populations de solutions)

qui convergent tout le long de l’ensemble des solutions Pareto optimales. Dans

cette thèse, nous avons développé plusieurs nouveaux algorithmes basés sur les

métaheuristiques hybrides évolutionnaires et en particulier sur l’algorithme de

décomposition MOEA/D [Zhang & Li 2007].

Tout d’abord, nous avons proposé l’algorithme HEMH (Hybrid Evolutionary

MetaHeuristic). HEMH utilise l’algorithme DM-GRASP pour construire une

population initiale de solutions de bonne qualité dispersées le long de l’ensemble

des solutions Pareto optimales. La phase de génération de populations succes-

sives à partir de cette population initiale est assurée par, soit des opérateurs

de reproduction (croisement, mutation), soit par l’algorithme du Path Relinking

glouton randomisé. L’ensemble des “bonnes” solutions trouvées au cours de cette

phase est collecté dans une archive externe. Les résultats montrent que HEMH

génère un ensemble de solutions de grande qualité. Une étude comparative a été

réalisée pour étudier l’effet de l’hybridation de différentes méthodes de généra-

tion de solutions. Quatre variantes d’hybridation ont été étudiées: MOEADde,

MOEADpr, MOEADdp1 et MOEADdp2. Les résultats expérimentaux montrent

la supériorité de toutes les variantes hybrides proposées sur les algorithmes orig-

inaux: MOEA/D et SPEA2. Malgré ces bons résultats, notre approche pos-

sède quelques limitations qui sont levées dans une version améliorée de HEMH:

HEMH2 et deux autres variantes, appelées HEMHde et HEMHpr.

Contrairement à HEMH, HEMH2 utilise un algorithme glouton inverse simple

1Un résumé détaillé de la thèse en français est disponible à la Page 187 (Appendix A).
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pour constituer la population initiale. La phase de génération de populations est

assurée cette fois-ci par la combinaison de l’algorithme du Path Relinking et du

Adaptive Binary DE. Pendant cette phase, une structure de voisinage dynamique

est adoptée pour réduire/augmenter le croisement/mise à jour des solutions. En

outre, le concept ”pareto adaptive epsilon” est utilisé pour contrôler le processus

d’archivage avec la préservation des solutions extrêmes. Les résultats expérimen-

taux montrent la supériorité de toutes les propositions HEMH2 et HEMHde sur

la MOEA/D et HEMH. Il est clair que, le Adaptive Binary DE inclus dans les

HEMH2 et HEMHde a de meilleures capacités d’exploration qui pallient aux ca-

pacités de recherche locales contenues dans la HEMH original. Ainsi, HEMH2

et HEMHde surpassent HEMH.

Motivés par ces résultats dans un espace discret, nous avons proposé un nouvel

algorithme baptisé HESSA (Hybrid Evolutionary approach with Search Strat-

egy Adaptation) pour explorer un espace continu de recherche. Dans HESSA,

le processus de recherche, pendant le processus d’évolution, peut être réalisé par

différentes stratégies de recherche. Cela donne la possibilité à HESSA d’adopter

la stratégie de recherche appropriée en fonction du problème étudié. En outre,

la coopération entre les différentes stratégies conduit à améliorer l’exploration

et l’exploitation de l’espace de recherche. L’ensemble proposé est combiné à un

cadre évolutif adapté pour favoriser l’intégration et la coopération. L’ensemble

des “bonnes” solutions trouvées au cours de la recherche est stocké dans un

référentiel externe qui est utilisé comme guide global. Les résultats expérimen-

taux montrent la supériorité de HESSA à la fois sur MOEA/D et dMOPSO dans

la plupart des tests.

Tous les algorithmes proposés ont été vérifiés, testés et comparés à certaines

méthodes de l’état de l’art des MOEAs, en utilisant un ensemble d’exemples

couramment utilisés dans la littérature. Les résultats expérimentaux indiquent

que toutes les propositions sont très compétitives et peuvent être onsidérés

comme une alternative fiable.

Mots-clés:

Optimisation multi-objectifs; Métaheuristiques hybrides; Algorithmes évolution-

naires; Problèmes du sac à dos multi-objectifs 0/1; Adaptation de la stratégie de

recherche.
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Contents vii

List of Figures xiii

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

Nomenclatures xxiii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Multiobjective Decision making 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Single objective vs. multiple objectives . . . . . . . . . . . . . . . 8

2.3 Multiobjective Optimization Problem . . . . . . . . . . . . . . . . 9

2.3.1 Pareto optimality . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Weakly and Strictly Efficient Solutions . . . . . . . . . . . 12

−vii−



viii Contents

2.3.3 Bounds on the Pareto-optimal set . . . . . . . . . . . . . . 14

2.3.4 Pareto Epsilon optimality . . . . . . . . . . . . . . . . . . 14

2.4 Multiobjective Knapsack Problem . . . . . . . . . . . . . . . . . . 15

2.4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Classification of multiobjective methods . . . . . . . . . . . . . . 16

2.6 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Concepts and definitions . . . . . . . . . . . . . . . . . . . 20

2.6.2 Assessment indicators . . . . . . . . . . . . . . . . . . . . 20

2.7 Classical Methods for MODM . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Scalarization Techniques . . . . . . . . . . . . . . . . . . . 23

2.7.2 Interactive methods . . . . . . . . . . . . . . . . . . . . . . 30

2.7.3 Goal programming methods . . . . . . . . . . . . . . . . . 31

2.7.4 Fuzzy programming methods . . . . . . . . . . . . . . . . 32

2.8 Drawbacks of classical Methods . . . . . . . . . . . . . . . . . . . 33

3 Optimization Metaheuristics: A Survey 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Classification of Metaheuristics . . . . . . . . . . . . . . . . . . . 41

3.5 Single-solution based metaheuristics . . . . . . . . . . . . . . . . . 43

3.5.1 Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Simple Local Search . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 GRASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.4 Iterated Local Search . . . . . . . . . . . . . . . . . . . . . 49

3.5.5 Variable Neighborhood Search . . . . . . . . . . . . . . . . 50

3.5.6 Guided Local Search . . . . . . . . . . . . . . . . . . . . . 51

3.5.7 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . 54

3.5.8 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Population-based metaheuristics . . . . . . . . . . . . . . . . . . . 57

3.6.1 Evolutionary computations . . . . . . . . . . . . . . . . . . 57

3.6.2 Other Evolutionary Algorithms . . . . . . . . . . . . . . . 63



Contents ix

3.6.3 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Multiobjective Metaheuristics . . . . . . . . . . . . . . . . . . . . 75

3.7.1 Fitness assignment strategies . . . . . . . . . . . . . . . . 75

3.7.2 Diversity preservation . . . . . . . . . . . . . . . . . . . . 77

3.7.3 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7.4 Multiobjective Evolutionary Algorithms . . . . . . . . . . 78

3.8 Hybrid Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8.1 Hybrid Metaheuristics classifications . . . . . . . . . . . . 85

3.8.2 Multiobjective Hybrid Metaheuristics . . . . . . . . . . . . 87

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 HEMH: A Hybrid Evolutionary Metaheuristics 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 A review of GRASP and data mining . . . . . . . . . . . . . . . . 93

4.2.1 GRASP Algorithm . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 GRASP with Data Mining (DM-GRASP) . . . . . . . . . 94

4.3 Path Relinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 The MOEA/D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 MOEA/D Framework . . . . . . . . . . . . . . . . . . . . 96

4.4.2 MOEA/D Features . . . . . . . . . . . . . . . . . . . . . . 97

4.5 HEMH: Hybrid Evolutionary Metaheuristics . . . . . . . . . . . . 98

4.5.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.2 The Proposed HEMH . . . . . . . . . . . . . . . . . . . . . 98

4.6 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.1 Tested Algorithms and instances . . . . . . . . . . . . . . 107

4.6.2 Parameters settings . . . . . . . . . . . . . . . . . . . . . . 109

4.6.3 Performance Assessment metrics . . . . . . . . . . . . . . . 111

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Hybrid Metaheuristics based on MOEA/D 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



x Contents

5.2 MOEA/D Framework . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Adaptive Discrete Differential Evolution . . . . . . . . . . . . . . 121

5.4 Greedy Path-Relinking . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Proposed Hybridization Variants . . . . . . . . . . . . . . . . . . 125

5.6 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.1 Parameter settings . . . . . . . . . . . . . . . . . . . . . . 126

5.6.2 Assessment Metrics . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 An Improved Hybrid Evolutionary Metaheuristics 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 HEMH, an overview . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Adaptive Binary Differential Evolution . . . . . . . . . . . . . . . 139

6.4 Path Relinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 Pareto Adaptive ε-Dominance Archiving . . . . . . . . . . . . . . 142

6.6 The Proposed HEMH2 . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7.1 Parameter settings . . . . . . . . . . . . . . . . . . . . . . 146

6.7.2 Assessment Metrics . . . . . . . . . . . . . . . . . . . . . . 148

6.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 A Search Strategy Adaptation based Approach 155

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 A Review of Search Operators . . . . . . . . . . . . . . . . . . . . 156

7.2.1 Genetic operators . . . . . . . . . . . . . . . . . . . . . . . 156

7.2.2 Differential Evolution operator . . . . . . . . . . . . . . . . 158

7.2.3 Particle swarm optimization . . . . . . . . . . . . . . . . . 158

7.2.4 Guided Mutation operator . . . . . . . . . . . . . . . . . . 159

7.3 The proposed HESSA . . . . . . . . . . . . . . . . . . . . . . . . 159



Contents xi

7.3.1 Multiple Search Strategies Adaptation . . . . . . . . . . . 160

7.3.2 HESSA framework . . . . . . . . . . . . . . . . . . . . . . 161

7.3.3 HESSA procedure . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.1 Parameter settings . . . . . . . . . . . . . . . . . . . . . . 164

7.4.2 Assessment Metrics . . . . . . . . . . . . . . . . . . . . . . 167

7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8 Conclusions and Perspectives 183

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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A.3 Historique des Métaheuristiques . . . . . . . . . . . . . . . . . . . 190
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Methodology . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . 6

In this introductory chapter, an overview of the thesis context is provided in

section 1.1. Section 1.2 describes the problem statement. The research objec-

tives and the methodology are presented in sections 1.3 and 1.4 respectively.

Moreover, the principle contributions are highlighted in section 1.5. Finally, the

organization of the dissertation is presented in section 1.6.

1.1 Overview

Industries, companies, decision makers, people and others face many problems

everyday. Most of those problems have many trade-offs as well as many con-

flicting objectives with often higher complex search space. It is natural to want

everything to be as good as possible, in other words, optimal. It is too hard

for a decision maker to take a decision in such problems. Regarding that many

problems in our life can be formulated as optimization problems, optimization

became one of the most important research fields. Optimization techniques es-

pecially metaheuristics represent a promising area of research as they achieved

very attractive results with real life problems. Single and multiple objective op-

timization problems can be used to formulate any problem to help the decision

maker to take an optimal or a near optimal decision. Much advancement has

been achieved in this domain since it was initiated. Many optimization methods

have been proposed such as classical (Exact Methods or traditional methods such

as Branch-and-Bound, dynamic and mathematical programing approaches etc.),

−1−
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Intelligent based methods (Evolutionary Computations), heuristic, metaheuris-

tics etc. All of those optimization techniques differ from each in terms of the

quality of the obtained solution and the time required to get these solutions. In

the last decades, hybridization among different optimization techniques has more

increased interest, especially in handling multiobjective optimization. Hybridiza-

tion aims to incorporate and combine different search techniques with each other

to enhance the search capabilities. It can improve both of intensification and di-

versification toward the preferred solutions and concentrates the search efforts to

investigate the promising regions in the search space. In this thesis, we are con-

cerned with using hybrid metaheuristics based techniques to solve multiobjective

optimization problems in both discrete and continuous search domains.

1.2 Problem Statement

Many of real world optimization problems can be modeled as Multiobjective Op-

timization Problems (MOP), which are often characterized by their large size

and the presence of multiple, conflicting objectives. The difficulty of a problem

arises when there are conflict between different goals and objectives. On the

one hand, instead of a single optimal solution, competing goals give rise to a

set of Pareto-optimal solutions. On the other hand, the search space can be too

large and too complex to be solved by exact methods. In general, the basic task

in multiobjective optimization is the identification of the set of Pareto optimal

solutions or even a good approximation set to the true Pareto front (PF ). Any

solution of these set is optimal in the sense that no improvement can be made

on a component of the objective vector without degradation of at least another

of its components. Based on the nature of the search space, the general multiob-

jective optimization problems involves two basic classes. The first class is called

continuous multiobjective problems in which the solutions are encoded in real-

valued variables. The second class is the discrete multiobjective problems that

uses discrete decision variables. In the second class, we find the multiobjective

combinatorial optimization (MOCO) problems.

Many real world optimization problems with multiple conflicting objectives exist

in divers fields as science, commerce, economy, finance and industry which are

of great complexity. Thus, efficient optimization strategies are required that are

able to deal with these difficulties. Over the past decades, lots of new ideas

have been investigated and studied to solve multiobjective optimization prob-

lems. Classical methods for generating the Pareto optimal solutions aggregate

the objective functions into a single, parametrized objective function by analogy

to decision making before search. These methods suffer from some limitations

such as: generating one efficient solution at a time, the requirement to prior

knowledge and the requirement to time exponentially proportion with problem



1.3. Research Objectives 3

size. The researchers found the metaheuristic based techniques are a promising

tool that can treat the limitations of the conventional methods. These techniques

have the ability to find a set of optimal solutions in each simulation run by using

population-based stochastic search and optimization methods like Evolutionary

Computations (EC).

Over the last years, a large number of search algorithms were reported that do

not purely follow the concepts of one single classical metaheuristic, but they at-

tempt to obtain the best from a set of different metaheuristics (and even other

kinds of optimization methods) that perform together, complement each other

and augment their exploration capabilities to produce a profitable synergy from

their combination. These approaches are commonly referred to as hybrid meta-

heuristics [Raidl 2006]. Intensification and diversification are the two major is-

sues when designing a global search method [Blum & Roli 2003]. Diversification

generally refers to the ability to visit many and different regions in the search

space whereas, intensification refers to the ability to obtain high quality solu-

tions within those regions. A search algorithm must balance between sometimes-

conflicting two goals. It is a complicated task for metaheuristics to provide ad-

equate balance between intensification and diversification, but the hybrid meta-

heuristics can give the ability to control the balance between intensification

and diversification through involving the design of hybrid metaheuristics with

search algorithms specializing in intensification and diversification, which com-

bines these types of algorithms with the objective of compensating each other and

put together their complementary behaviors [Lozano & Garćıa-Mart́ınez 2010].

1.3 Research Objectives

Decision Making plays an important role to solve our daily life problems, the

problem becomes more difficult to handle in case of multiple objectives are in-

volved with highly complex search space. In this case, the decision makers need

powerful techniques and effective tools to help them to handle these decision

tasks. Recently, hybrid metaheuristics achieve successful results in handling a

wide range of optimization problems with single or multiple objectives. They

have received increased interest due to their simplicity and their ability to provide

the efficient solutions for hard optimization tasks in a most reasonable execution

time. In this work, the main target is to study and develop hybrid metaheuris-

tic based approaches for handling real life multiobjective optimization problems.

The developed approaches should have the ability to maintain good balance be-

tween intensification and diversification to obtain a high quality approximation

to the PF. This can be achieved by enhancing the current approaches through

developing new hybrid schemes that have the ability to concentrate the search

efforts for discovering the most promising regions in the search space. Also, the
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developed hybrid schemes should have the ability to combine different cooper-

ative search techniques in an integrated framework in order to augment their

exploration capabilities and to maximize their cooperation with each other. The

methodology described in the next section is used to achieve these objectives.

1.4 Thesis Methodology

In this thesis, we study how to improve the efficiency and to enhance

the performance of metaheuristics through developing hybridization among

different types of metaheuristics or other techniques. In order to accom-

plish this task with obtaining consistence results, a library which contains

different metaheuristics methods and tools has been built. The library

is constructed from the algorithms proposed in this thesis. Besides, col-

lecting and revising different metaheuristics techniques that proposed in

the literature especially those techniques that used in comparative stud-

ies and experimental designs provided in the thesis. The proposed library

was implemented using c++ according to the principles of object-oriented

programming. The set of algorithms collected from literature include NSGA-

II [Deb et al. 2000], SPEA2 [Zitzler et al. 2001], MOEA/D [Zhang & Li 2007],

GRASPM [Vianna & Arroyo 2004], dMOPSO [Mart́ınez & Coello 2011]

etc. The library also includes some of the search operators and tools

used in the algorithms that proposed in this study such as local search,

greedy randomized path-relinking , adaptive binary differential evolution,

pattern mining and DM-GRASP. The developed library also contains

the set of test problems that used in the studies provided in the thesis.

In order to assess the proposed algorithms against the state of the art

algorithms, a set of assessment indicators are also involved in the pro-

posed library including the set coverage indicator [Zitzler & Thiele 1999],

hypervolume [Zitzler & Thiele 1999], generational and inverted genera-

tional [Van Veldhuizen & Lamont 2000], maximum spread [Zitzler et al. 2000]

and the unary additive epsilon [Zitzler et al. 2003]. Concerning the preserva-

tion of the efficient solutions, the proposed library involves some of different

archiving strategies such as crowding distances [Deb et al. 2000], epsilon dom-

inance, adaptive grid [Knowles & Corne 2000], and Pareto-adaptive epsilon

dominance [Hernández-Dı́az et al. 2007]. Finally, the proposed Library is used

to carry out the comparative studies and also to implement our proposals such

as HEMH, HEMH2, HESSA and their variants which are provided in this thesis.

1.5 Thesis Contribution

The main contributions of this thesis are summarized in the following points:
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• A hybrid evolutionary metaheuristics HEMH based on DM-GRASP and

greedy randomized path-relinking is proposed. The experimental results

indicate the superiority of the decomposition based MOEAs over the Pareto

dominance based MOEAs. the proposed HEMH is able to intensify the

search process for discovering the most promising regions in the search

space through the combination among different metaheuristics techniques

that integrate each others. HEMH algorithm has the ability to find a good

approximation set of high quality solutions using a small set of uniformly

distributed search directions due to the use of path-relinking and local

search strategies.

• Other four different hybridization variants within MOEA/D framework

are presented, MOEADde, MOEADpr, MOEADdp1 and MOEADdp2. The

experimental results indicate the superiority of all proposed hybrid vari-

ants over the original MOEA/D and SPEA2 for most test instances. For

bi-objective MOKP test instances, path-relinking operator has the best

performance followed by differential evolution and standard crossover and

mutation. Where in MOKP test instances with three or four objectives,

differential evolution has the superiority, followed by path-relinking and

standard crossover and mutation.

• An improved hybrid evolutionary metaheuristics HEMH2 and two other

variants called HEMHde and HEMHpr are proposed to enhance HEMH per-

formance. The experimental results indicate the superiority of all proposals

HEMH2 and HEMHde over the original MOEA/D and HEMH. It is clear

that, the adaptive binary differential evolution included in both HEMH2

and HEMHde has better exploration capabilities which overcome the lo-

cal search capabilities contained in the original HEMH. Therefore both of

HEMH2 and HEMHde outperform HEMH. The adaptive binary differen-

tial evolution can achieve better performance than path-relinking. So, in

some cases, HEMHde can achieve highly competitive results compared with

HEMH2.

• A hybrid evolutionary approach with search strategy adaptation HESSA for

handling multiobjective continuous problems is proposed. In HESSA, the

search process is controlled by adapting the search strategies used during

the evolution process. The experimental results indicate the superiority of

HESSA over both MOEA/D and dMOPSO on the most of test problems

used. HESSA combines among different cooperative search operators that

intensify the search process to discover the promising regions in the search

space and enhance the ability to explore high quality solutions. HESSA is

able to adapt the search process by adopting the suitable search operator

to the problem on hand.
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1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the basic concepts of

multiobjective decision making problems, with concentration on the traditional

methods used in handling these problems, especially their classification and their

drawbacks that force researchers to direct their attention to metaheuristics based

techniques for handling these types of problems. The nature of metaheuristics

based multiobjective is provided in Chapter 3 in more details, with focusing the

lights on some of the commonly used metaheuristic approaches such as, Path-

Relinking, GRASP, Local Search, Differential Evolution, Tabu Search, Simulated

annealing, ACO, Particle Swarm, etc. As, we are concerned with enhancing

the multiobjective search techniques through developing hybrid metaheuristic

approaches. Chapter 4 provides a hybrid evolutionary metaheuristic approach

(HEMH) based on combination between DM-GRASP and greedy randomized

path-relinking with local search or reproduction operators to handle MOKP,

with testing its efficiency using different test instances and quality assessment

metrics. A comparative study among different four proposals that combine both

adaptive discrete differential evolution operator and/or greedy path-Relinking

within MOEA/D is presented in chapter 5. The four proposals tend to determine

the best combination of search operators that can be used to improve the results

of HEMH. Based on the results achieved in chapter 5 , chapter 6 presents a

modified version of the HEME called HEMH2. Motivated by the results achieved

in both HEMH and HEMH2 for discrete search space. Chapter 7 introduces a

Hybrid Evolutionary Approach with Search Strategy Adaptation (HESSA) for

multiobjective continuous optimization. Finally, the conclusions and perspectives

for the whole thesis are listed in chapter 8.



Chapter 2

Multiobjective Decision making
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2.1 Introduction

Decision making is an integral part of our daily life. It ranges in scope from the

individual to the largest groups and societies, including nations and, ultimately,

organization at the global level. It considers situations ranging in complexity

from the simple to the most complex involving multiobjective, so with multiple

−7−
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objectives, confliction will appear. Multiple criteria decision making (MCDM)

[Zeleny 1982, Gál et al. 1999, Triantaphyllou 2000] deals with decision situations

where the decision maker has several usually conflicting objectives. In typical

real-life problems, there is no ideal alternative can be considered as the optimal

for each objective. Hence, the most important task in multiple criteria decision

making is to find a good compromise solution which performs the best alterna-

tive from the decision maker’s point of view, taking into account all objectives

simultaneously. Consequently, the quality of the compromise will depend on the

decision maker’s preferences. According to many authors [Zimmermann 1991]

MCDM is divided into Multiobjective Decision Making (MODM) and Multi-

Attribute Decision Making (MADM). Practically, MODM studies decision prob-

lems in which the decision space is continuous as in mathematical programming

problems with multiple objective functions. On the other hand, MADM con-

centrates on problems with discrete decision spaces. In these problems the set

of decision alternatives has been predetermined. In general, the Decision Maker

(DM) is primarily concerned to find“the most”promising alternative with respect

to limited resources. In this dissertation, we deal with multiobjective optimiza-

tion problems weather with continuous or discrete search space.

2.2 Single objective vs. multiple objectives

Many real world decision making problems involve simultaneous optimization

of multiple objectives. In principle, multiobjective optimization is very differ-

ent than the single-objective optimization. In single-objective optimization one

attempts to obtain the best decision which is usually the global minimum or

the global maximum depending on the nature of the optimization problem. On

the contrary, in a multiobjective optimization with usually conflicting objectives,

there is no single optimal solution with respect to all objectives. The interaction

among different objectives gives rise to a set of compromised solutions, largely

known as the efficient, trade-off, nondominated, noninferior or Pareto-optimal

solutions[Chankong & Haimes 1983]. This set contains the solutions which are

superior to the rest of solutions in the search space when all objectives are con-

sidered. The choice of one solution over the others requires knowledge and pref-

erence information from the decision maker (DM). Thus, both of the search and

decision making are required. Multiple objectives encountered in real-life prob-

lems can often be expressed as mathematical functions of a variety of forms, i.e.,

not only do we deal with conflicting objectives, but with objectives of different

structures. Multiobjective optimization has its roots in the 19th century in a

work in economy of Edgeworth and Pareto [Edgeworth 1961, Pareto 1964]. It

was initially applied to economic sciences and management, and gradually to

engineering sciences.
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In the following, the formulation of the multiobjective optimization problem is

presented as well as some of the basic related concepts and definitions.

2.3 Multiobjective Optimization Problem

Without loss of generality, the general multiobjective optimization problem

(MOP) is formulated as follows1:

Min : F (x) = (f1(x), f2(x), ..., fm(x))
T

s.t. : gj(x) ≤ 0, ∀j = 1, 2, ..., k

x = (x1, x2, ..., xn)
T ∈ Rn

(2.1)

where F (x) is the m-dimensional objective vector, fi(x) is the i
th objective func-

tion to be minimized, ∀i = 1, ...,m, x = (x1, x2, ..., xn)
T is the n-dimensional

decision vector, gj(x) is the jth constraints, ∀j = 1, 2, ..., k. A feasible solution

x ∈ Rn must respect the k constraints. Therefore, the feasible region in the deci-

sion variables space is given by the set S = {x ∈ Rn : gj(x) ≤ 0, ∀j = 1, 2, ..., k}.
Consequently, the feasible region in the objective (criterion) space, that is the

evaluation of the feasible set S (also called the attainable objective set), is given

by Z = F (S) = {F (x) : x ∈ S}.
According to the formulation above, the MOP consists of m ≥ 2 objective func-

tions, n decision variables and k ≥ 0 constraints. The objective functions and

constrains can be linear [Steuer 1986] or non-linear [Miettinen 1999] and the

variables are contentious. Therefore, an infinite number of solutions are fea-

sible. The MOP’s evaluation function, F : S → Z maps the decision vector

x = (x1, x2, ..., xn)
T to its corresponding vector y = (y1, y2, ..., ym)

T in the objec-

tive space as represented in Fig. 2.1 for the case n = 2 and m = 3.

As well-known, the modeling of many of real-life applications involves discrete

decision variables. Considering the MOP formulation in (2.1), if the decision

variables are discrete, i.e. x ∈ Nn, where N is the set of natural numbers,

the MOP is called “Multiobjective Integer Problem” (MOIP). the decision space

is defined as S = {x ∈ Nn : gj(x) ≤ 0, ∀j = 1, 2, ..., k}. The Multiobjec-

tive combinatorial optimization (MOCO) problem is a MOIP with binary de-

cision variables, i.e. x ∈ 0, 1. The decision space in this case is defined as

S = {x ∈ 0, 1 : gj(x) ≤ b, ∀j = 1, 2, ..., K}. The objective vector F (x) and the

set of constrains g(x) defines the structure of the MOCO problem. In this disser-

tation, we will deal with the general MOP as well as MOCO represented by the

multiobjective knapsack problems (MOKP).The general concepts and definitions

related to MOP and MOCO will be discussed in the next sections. According

1The minimization case is considered in our discussion
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Figure 2.1: Search spaces in multiobjective optimization problems

to the nature of the objective functions and the constraints forming the feasible

region, different types of MOP can be defined as follows:

Definition 2.1 (Linear MOP) [Miettinen 1999]: The MOP is called linear

(MOLP) if all objective functions and all constraints are linear. if at least one ob-

jective function or constraint is nonlinear, then MOP will be nonlinear (MONLP)

Definition 2.2 (Convex function) [Miettinen 1999]: A function f : Rn → R
is convex if for all x1, x2 ∈ Rn, is true that f(αx1 + (1− α)x2) ≤ αf(x1) + (1−
α)f(x2) for all 0 ≤ α ≤ 1.

Definition 2.3 (Convex set) [Miettinen 1999]: A set S ⊂ Rn is convex if

x1, x2 ∈ S implies that αx1 + (1− α)x2) ∈ S for all 0 ≤ α ≤ 1. see Fig. 2.2

Definition 2.4 (Convex MOP) [Miettinen 1999]: A multiobjective optimiza-

tion problem (MOP) is called convex if all objective functions and the feasible

region are convex.

As mentioned before, the basic task in MOP is to identify the set of efficient

“trade-offs” solutions. The concept of Pareto-optimality must be used in deter-

mining a set of MOP solutions. This concept will be defined precisely in details

in the following section.

2.3.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes

all the objective functions of a multiobjective optimization problem. Therefore,
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we normally look for “trade-offs”, rather than single solutions when dealing with

multiobjective optimization problems. In this case, the notions of optimality are

different. These notions are presented through the following definitions.

Definition 2.5 (Complete optimal solution) [Sakawa 1993]: A solution x∗

is said to be a complete optimal solution of MOP, if and only if there exists

x∗ ∈ S such that fj(x
∗) ≤ fj(x), ∀j = 1, 2, ...,m, ∀x ∈ S.

In general, such a complete optimal solution that simultaneously minimizes all

of the multiple objective functions does not always exist when the objective

functions conflict with each other. Thus, the Pareto optimal concept is defined

as follows:

Definition 2.6 (Pareto-optimal solution) [Miettinen 1999]: A decision vec-

tor x∗ ∈ S corresponding the objective vector F (x∗) is said to be a Pareto opti-

mal (“efficient”) solution of MOP, if there does not exist another decision vector

x ∈ S which is at least as good as x∗ with respect to all objectives and strictly

better for at least one objective i.e. if there is no x ∈ S such that fi(x) ≤ fi(x
∗),

∀i = 1, 2, ...,m and fj(x) < fj(x∗) for at least one index j.

Definition 2.7 (Pareto dominance) [Engelbrecht 2007]: An objective vector

u = (u1, u2, ..., um) is said to dominate the objective vector v = (v1, v2, ..., vm) (de-

noted by “u � v”) if and only if u is partially less than v, i.e. ∀i ∈ {1, 2, ...,m} :

ui ≤ vi and ∃i ∈ 1, 2, ...,m : ui < vi.

Practically, definitions 2.6 and 2.7 are the same. However, Pareto-optimality

(“Efficiency”) typically refers to a vector of decision variables in the decision space
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S, whereas dominance refers to vectors in the objective space Z. By applying

the above concepts to the solutions in the feasible search space S, we can obtain

the Pareto optimal (efficient) set for MOP in (2.1) according to the definitions

below.

Definition 2.8 (Pareto-optimal set) For a given MOP F (x), the set of effi-

cient solutions (Pareto optimal set “P∗”) is defined as:

P∗ = {x ∈ S|�y ∈ S : F (y) � F (x)}. (2.2)

The vectors x∗ corresponding to the solutions included in the Pareto optimal

set are sometimes called a nondominated or a noninferior solution since it is

not inferior to other feasible solutions. The image of the Pareto optimal set in

the objective function space is known as “Pareto front” (PF∗) according to the

following definition:

Definition 2.9 (Pareto front) For a given MOP, F (x) and Pareto optimal

set P∗, the Pareto front (PF∗) is defined as:

PF∗ = {F (x) = (f1(x), ..., fm(x))|x ∈ P∗}. (2.3)

Fig. 2.3 depicts the above concepts, which is to minimize two conflicting ob-

jectives f1 and f2. All Pareto optimal solutions lies on the boundary of the

attainable region, the Pareto front is represented by the bold line, thus solutions

A, B, C, and D are members in the Pareto optimal set, and it can be observed

that solution F dominates G (F � G) but at the same time solution B dominates

both F and G (B � F&B � G). It can be observed also that solutions E and

F are incomparable (E ≺� F ).

2.3.2 Weakly and Strictly Efficient Solutions

If we use the weak and strict component wise order, we will obtain the definitions

of weakly and strictly Pareto-optimal solution as follows

Definition 2.10 (Weak Pareto optimality) [Coello et al. 2007]: A feasible

solution x of MOP is called weakly Pareto optimal, if there does not exist an-

other feasible solution x́ which is strictly better with respect to all objectives i.e.

�x́ ∈ S : fj(x́) < fj(x), ∀j = 1, 2, ...,m.
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Figure 2.3: Illustration of Pareto optimality concept

Definition 2.11 (Strict Pareto Optimality) [Coello et al. 2007]: A solution

x is said to be a strictly Pareto optimal solution of MOP, if there is no x́ ∈ S,
x́ �= x such that fj(x́) ≤ fj(x), for j = 1, 2, ...,m.
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Figure 2.4: Strict and weak Pareto optimality

For convenience, letXCO,XP andXWP denote complete optimal, Pareto optimal

and weak Pareto optimal solution sets, respectively. Then from their definitions,

it can be easily understood that the following relation holds:

XCO ⊆ XP ⊆ XWP (2.4)

In Fig. 2.4, the dashed line represents the set of weakly Pareto optimal criterion

vectors. The Pareto optimal criterion vectors are located at the fat line between
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the black points.

2.3.3 Bounds on the Pareto-optimal set

According to the above concepts, we formally define the ideal and nadir points as

lower and upper bounds on Pareto-optimal solutions. thes points gives indication

of the range of the values which nondominated points can attain. They are often

used as reference points for some solutions techniques in order to find a most

preferred solutions for a decision maker.

Definition 2.12 (Ideal objective vector) [Miettinen 1999]: The ideal objec-

tive vector z∗ = (z∗1 , ..., z
∗
m) is composed of the best attainable objective function

values. Each component z∗j is calculated by minimizing the corresponding objec-

tive function fj over the feasible decision space S. i.e.z∗j = Minx∈Sfj(x), ∀j =

1, ...,m.

Definition 2.13 A Utopian objective vector z∗∗ ∈ Rm is a vector whose compo-

nents are slightly smaller than that of the ideal objective vector. i.e. z∗∗i = z∗1−εi,

with εi > 0, for all i = 1, ...,m

Definition 2.14 (Nadir objective vector) [Miettinen 1999]: The nadir ob-

jective vector znad = (znad1 , ..., znadm ) is constructed using the worst values of objec-

tive functions in the complete Pareto-optimal front. i.e. znadj = Maxx{fj(x)|x ∈
P∗, }, ∀j, where P∗ is the Pareto-optimal set the objective.

The ideal and Nadir points provide important information about a multiobjec-

tive optimization problem (MOP). For a decision maker facing a multiobjective

problem, they show the possible range of the objective values of all his criteria

over the Pareto set: They are exact lower respectively upper bounds for the set

of efficient solutions. Figure (2.5) shows the ideal and nadir and utobian points

in the objective function space

2.3.4 Pareto Epsilon optimality

Many of Multiobjective optimization problems may have many or even infinite

Pareto optimal solutions. its is very time consuming, if not impossible to obtain

the complete PF∗. On the other hand, the decision maker (DM) may not be

interested in having a large number of efficient solutions to deal with. Therefore

many of solution techniques tends to fined a manageable set of efficient solu-

tions which are a good representative to PF∗. The concept of Pareto epsilon

arises to extend the previous definitions to provide a method to control the dis-

tances among efficient solutions along PF∗ to reach a manageable set with good

representation.
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Figure 2.5: Bounds of Pareto optimal set

Definition 2.15 (Pareto ε-dominance) [Coello et al. 2007]: A vector u =

(u1, u2, ..., um) is said to epsilon-dominate another vector v = (v1, v2, ..., vm)

(denoted by u �ε v) if for some ε > 0 ui is partially less than vi + ε, i.e.

∀i ∈ {1, 2, ...,m} : ui ≤ vi + ε and ∃i ∈ 1, 2, ...,m : ui < vi + ε where ε > 0.

Definition 2.16 (Pareto ε-optimality) [Coello et al. 2007]: A solution x ∈
S corresponding the objective vector u = F (x) = (f1(x), ..., fm(x) is said to be

a Pareto epsilon optimal with respect to S, if and only if there is no x́ ∈ S for

which v = F (x́) = (f1(x́), ..., fm(x́)) epsilon dominates u.

Definition 2.17 (Pareto ε-optimal set) For a given MOP F (x), the Pareto

epsilon optimal set (P∗
ε ) is defined as:

P∗
ε = {x ∈ S|�y ∈ S : F (y) �ε F (x)}. (2.5)

Definition 2.18 (Pareto ε-front) For a given MOP, F (x) and Pareto epsilon

optimal set P∗
ε , the Pareto epsilon front (PF∗

ε) is defined as:

PF∗
ε = {F (x) = (f1(x), ..., fm(x))|x ∈ P∗

ε }. (2.6)

2.4 Multiobjective Knapsack Problem

2.4.1 Problem Statement

Generally, a 0/1 knapsack problem consists of a set of items, weight and profit

associated with each item, and an upper bound for the capacity of the knapsack.
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Figure 2.6: Pareto Epsilon optimality

The task is to find a subset of items which maximizes the total of the profits

in the subset, yet all selected items fit into the knapsack, i.e., the total weight

does not exceed the given capacity [Martello & Toth 1990]. this single-objective

problem can be extended directly to an MOP by allowing an arbitrary number of

knapsacks. Formally the multiobjective 0/1 knapsack problem considered here

is defined in the following way: Given a set of n items and a set of m knapsacks,

as follows:

Maximize
x

fi(x) =
n∑

j=1

cijxj, ∀i ∈ {1, ...,m}

subject to
n∑

j=1

wijxj ≤ Wi, ∀i ∈ {1, ...,m}

x = (x1, ..., xn)
T ∈ {0, 1}n

(2.7)

where, cij ≥ 0 is the profit of the jth item in the ith knapsack, wij ≥ 0 is

the weight of the jth item in the ith knapsack, and Wi is the capacity of the

ith knapsack. When xj = 1, it means that the jth item is selected and put in

all knapsacks. The MOKP is NP-hard and can model a variety of applications

in resource allocation. It was formulated and solved by [Zitzler & Thiele 1999]

using the strength Pareto evolutionary algorithm (SPEA). Since then the prob-

lem has become a standard benchmark that has been solved by many other re-

searchers as [Deb et al. 2000, Zhang & Li 2007, Bandyopadhyay et al. 2008] and

widely used in testing multiobjective metaheuristics.

2.5 Classification of multiobjective methods

Depending on when the Decision-maker (DM) articulate his preference concern-

ing the different objectives and how optimization and the Decision process are
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combined, multiobjective optimization methods can be broadly classified into the

following categories as summarized in Fig. 2.7

Multiobjective  
Optimization 
Problem (MOP) 

No articulation of 
preference information 

A Priori aggregation  
of  preference info. 

Progressive articulation 
of  preference info. 

Posteriori articulation 
of  preference info. 

MinMax formulation 

Weighted sum 
Non-linear combination 
Fuzzy logic 
Acceptability functions 
Lexicographic approach 
Utility theory 
Goal programming 
……. 

STEM method 
Interactive surrogate worth 
Tchebychef method 
Method of Steuer 
Reference point method 
GUESS Method 
Light Beam Search 
……. 
Weighted sum 
Weighted Tchebycheff 

-constraint method 
Normal boundary Interaction 
Multiobjective EA 
Multiobjective Hybrid MH 
……. 

Figure 2.7: Classification of MOP solution methods

• No articulation of preference information (search only): In this method

DM’s opinions are not taken into consideration, so the multiobjective op-

timization problems are treated using more relatively simple method and

the solution obtained is presented to the DM to accept or reject the solu-

tion. Examples are the Min-Max formulation and global criterion method

[Hwang et al. 1980, Steuer 1986, Miettinen 1999]

• Priori articulation of preference information (Decision before search): The

DM’s in this method must specify his preference and opinions before so-

lution stage (Fig. 2.8). The difficulty is that the DM does not necessarily

know what is possible to attain in the problem and how realistic the expec-

tations are. The most easy and widely used method is the weighted sum ap-

proach [Steuer 1986]. They also include several methods such as Goal pro-

gramming, utility function, lexicographic approach...etc[Miettinen 1999].
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Figure 2.8: Mechanism of Priori methods

• Progressive articulation of preference information (Decision during search):

The DM can articulate preferences during the interactive optimization pro-

cess. After each optimization step, a number of alternative tradeoffs is

presented on the basis of which the DM can interact though specifica-

tion of his farther preference information, respectively guides the search.

These methods usually progresses by changing the search direction base

on inputs from DM or by progressively reducing the search space. They

contains several methods such as STEM method [Benayoun et al. 1971],

Steuer’s Method [Steuer & Choo 1983], interactive surrogate worth method

[Miettinen 1999]...etc. The advantages of these types of methods are:

1. There is no need for “a priori” preference information,

2. It is a learning process where the DM gets a better understanding of

the problem.

3. Only local preference information is needed.

4. Its is more likely that the DM accepts the final solution as he takes

an active part in the search.

Some disadvantages are:

1. The Solutions are depending on how well the DM can articulate his

preference.

2. A high effort is required from the DM during the whole process.

3. The required computational effort is higher than in the previous meth-

ods.
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4. In case of changing the DM or even the preferences, the search process

has to started.

• Posteriori articulation of preference information (Decision after search):

There are a number of techniques that allow to first search the solution

space for generating all the Pareto optimal solutions or a representative

subset of the Pareto optimal solutions and then present them to the decision

maker (Fig. 2.9). These techniques attempts to solve the multiobjective op-

timization problem by constructing several scalarizations. The solution to

each scalarization yields a Pareto optimal solution, whether locally or glob-

ally. some of these methods such as normal boundary intersections (NBI)

[Das & Dennis 1998] and normal constraints (NC) [Messac et al. 2003] are

constructed with the target of obtaining evenly distributed Pareto points

that give a good evenly distributed approximation of the real set of Pareto

points. The big advantages with these types of methods are that the so-

lutions are independent from the DM preferences. However some of these

methods suffer from large computation and the DM has too many solutions

to choose from.

Multiple trade-off solutions   MOP: 
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Figure 2.9: Mechanism of Posteriori methods

2.6 Quality Assessment

As mentioned before, the set of Pareto-optimal solutions P∗ is the target output
for MOP solution method. Thus, it is so important for multiobjective optimiza-

tion to assess and compare the relative quality of the respective outputs of their

solution methods and algorithms. However, It is not straightforward to measure

the quality of a given technique in generation good approximations of Pareto

front PF∗ in this section, some concepts and definitions related to performance
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assessment in multiobjective optimization methods are introduced. we refer to

[Zitzler et al. 2008] for more details.

2.6.1 Concepts and definitions

Definition 2.19 (Pareto Front Approximation) An approximation of a

Pareto front in a attainable objective space Z is a set A ∈ 2Z which contains

only mutually non-dominated points i.e. ∀x, x́ ∈ A, x ≺� x́. We denote the set

of all such approximations as φZ .

Definition 2.20 (Quality Indicator) A quality indicator is a function I :

φZ → R which assigns a real value to each approximation, the smaller is be-

ing the better.

A quality indicator is thus a function which associates a quantitative measure of

goodness to each approximating set, in the same way a cost function ranks each

solution in single criteria optimization. Many variants have been proposed and

we present two of them which are commonly used.

2.6.2 Assessment indicators

In this thesis, two types of assessment indicators are used. The first one is

the binary indicators which are used to compare each pair of techniques. The

second type is the unary indicators which are used to assess each technique

independently of the others. In the following, the assessment metrics which are

used in this thesis are briefly discussed.

Let A, B ⊂ Rm be two approximations to the Pareto front (PF∗). Let P ∗ ⊂ Rm

be a set of uniformly distributed points along the PF∗ or an upper approximation

to the PF∗ (e.g. “Reference Set”). Given a reference point r∗ ∈ Rm, the following

metrics can be expressed as follows:

2.6.2.1 The Set Coverage (IC)

The IC indicator [Zitzler & Thiele 1999] is used to compare two approximation

sets. In this indicator, the function IC maps the ordered pair (A,B) to the

interval [0, 1] as follows:

IC(A,B) =
|u : u ∈ B, ∃v : v ∈ A, v ≺ u|

|B| (2.8)

where IC(A,B) represents the percentage of the solutions in B that are dom-

inated by at least one solution from A. The value of IC(A,B) = 1 means all

solutions in B are dominated by or equal to solutions in A. In contrast, the
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value of IC(A,B) = 0 means none of the solution in a set B are covered by the

set A. IC(B,A) is not necessarily equal to 1− IC(A,B). If IC(A,B) is large and

IC(B,A) is small, then A is better than B in a sense.

2.6.2.2 The Hypervolume (IHyp)

The hypervolume IHyp indicator can be used as a unary or a binary indicator. In

its unary form, the hypervolume indicator associated with an approximation set

A describes the volume of the hyper objective space that is weakly dominated

by the points of the approximation set A and dominates the reference point r∗

[Zitzler & Thiele 1999] as illustrated in Fig. 2.10 (left). The larger the value of

IHyp, the better is the approximation set A. The IHyp indicator is mathematically

defined as follows:

IHyp(A, r
∗) = L (∪u∈A {y : u � y � r∗}) (2.9)

where L is the Lebesgue measure of a set. The binary form of the hypervolume

indicator is usually called the ”referenced hypervolume” (IRhyp). The IRhyp in-

dicator represents the hypervolume dominated by the reference set P ∗ and not

by A as shown in Fig. 2.10 (right). The more the value of IRhyp close to 0, the

better is the approximation A. The IRhyp is expressed in terms of the IHyp as

follows:

IRhyp(A,P
∗, r∗) = IHyp(P

∗, r∗)− IHyp(A, r
∗) (2.10)

Generally, the reference set P ∗ is considered as the optimal Pareto front or al-

ternatively extracted from the union of all obtained fronts. The reference point

r∗ may also be expressed using the upper bound of each objective function.
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Figure 2.10: Illustration of hypervolume and referenced hypervolume
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2.6.2.3 Generational Distance and Inverted Generational Distance

Generational Distance (IGD)[Van Veldhuizen & Lamont 2000] and Inverted Gen-

erational Distance (IIGD) of a set A are defined as:

IGD(A,P
∗) =

∑
u∈A {minv∈P ∗d(u, v)}

|A| (2.11)

IIGD(A,P
∗) =

∑
u∈P ∗ {minv∈Ad(u, v)}

|P ∗| (2.12)

where d(u, v) is the Euclidean distance between u, v in Rm. The IGD(A,P
∗)

measures the average distance from A to the nearest solution in P ∗ that reflects

the closeness of A to P ∗. If the approximation set A is included in the reference

set P ∗, the generational distance will be equal to 0. In contrast, the IIGD(A,P
∗)

measures the average distance from P ∗ to the nearest solution in A that reflects

the spread of A to a certain degree. The lower value of both IGD(A,P
∗) and

IIGD(A,P
∗) means the better quality of A in terms of convergence and diversity

respectively.

2.6.2.4 R3-indicator (IR3)[Knowles & Corne 2002]:

The IR3 indicator uses a set of utility functions u, which can be any scalar function

that expresses the preferences of the decision maker. Using a sufficiently large

set of evenly distributed normalized weight vectors Λ, the utility functions u is

defined by weighted sum function or weighted Tchebycheff function or augmented

Tchebycheff function as used here. The IR3 indicator can be evaluated as follows:

IR3(A,P
∗) =

∑
λ∈Λ [u

∗(λ, P ∗)− u∗(λ,A)] /u∗(λ, P ∗)
|Λ| (2.13)

where u∗ represents the maximum value of the utility function u using the weight

vector λ and the Pareto approximation set A as follows:

u∗(λ,A) = maxz∈Au(λ, z)

where u(λ, z) = −(max1≤j≤mλj|z∗j − zj| + ρ
∑m

j=1 |z∗j − zj|) represents the aug-

mented Tchebycheff utility function, ρ is a small positive integer, z∗ is the ideal

objective vector. This is for each weight vector λ = [λ1, ..., λm] ∈ Λ, such that

λi ∈ [0, 1] and
∑m

i=1 λi = 1. The IR3 is a hybrid indicator that measures both

convergence and diversity. It gives a scalar value in the range [0,∞). The smaller

the value of IR3(A,P
∗), the better is the approximation set A.
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2.6.2.5 Maximum Spread (IMS):

This metric was proposed by [Zitzler et al. 2000] to evaluate the maximum ex-

tension covered by the non-dominated solutions in A as follows:

IMS(A) =

√√√√ m∑
j=1

[(
max

|A|
i=1f

i
j

)
−
(
min

|A|
i=1f

i
j

)]2
(2.14)

where m is the number of objectives in the given problem. One should note that

the higher value indicate the better performance.

2.6.2.6 The unary additive Epsilon (Iε+): [Zitzler et al. 2003]

The unary additive ε-indicator Iε+, which is a distance-based indicator, gives

the minimum ε value by which each point in an approximation set A has to be

translated in the objective space to weakly dominate the reference set P ∗ as the

following formula:

Iε+(A,P
∗) = infε∈R{∀z′ ∈ P ∗, ∃z ∈ A : z �ε+ z2} (2.15)

where z �ε+ z′ if and only if: zj − ε ≥ z′j, this is for all j = 1, ...,m.

2.7 Classical Methods for MODM

Classical methods for generating the Pareto optimal set aggregate the objectives

into a single, parameterized objective function by analogy to decision making

before search. Several optimization runs with different parameters setting are

performed in order to achieve a set of solutions which approximates the Pareto

optimal set. This section introduces the main methods for solving the MODM

problem which are:

1. Scalarization Techniques

2. Interactive Approach.

3. Goal Programming Approach.

4. Fuzzy programming Approach.

2.7.1 Scalarization Techniques

These methods have been proposed for characterizing optimal solution depending

upon the different methods to scalarize the Multiobjective problems. In this

section, we review several popular techniques that related to our work in this

thesis.
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2.7.1.1 Global criterion methods

The main idea behind most global criterion methods [Zeleny 1982,

Miettinen 1999] is to use an exponential sum to yield a single function. They

are based on minimizing the relative distances (typically expressed as Lp-norm)

between the candidate solution and the ideal point z∗. Thus the MOP stated in

(2.1) is reformulated as follows:

Minimize
x

(
m∑
i=1

(fi(x)− z∗i )
p

)1/p

subject to x ∈ S
(2.16)

where 1 ≤ p ≤ ∞. The value of p provides different ways to calculate the

distance. the most frequently used values is p = 1 for simple formulations (“Ob-

jective sum method”) and p = 2 for Euclidean distance, and p = ∞ for Min-max

formulation (“Tchebycheff norm”) (see Fig. 2.11). The output is just one point

on the Pareto front, which the decision maker has to accept as a final solution.

different points in the Pareto front can be obtained by changing the exponent p

and by assigning the single objectives different weights.
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Figure 2.11: Global criterion method

2.7.1.2 The weighted sum approach

The weighted sum approach [Gass & Saaty 1955, Miettinen 1999] was the first

technique developed for the generation of noninferior solutions for multiobjec-

tive optimization. This method is very efficient computationally speaking, and
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can be applied to generate a strongly nondominated solutions to be used as an

initial solution in other techniques. In this method the MOP stated in (2.1)

is transformed into weighted sum problem Fws(x,Λ) by associating each objec-

tive function with a weighting coefficient and minimize the weighted sum of the

objectives as follows:

Minimize
x

Fws(x,Λ) =
m∑
j=1

λjfj(x)

subject to x ∈ S
(2.17)

where Λ = [λ1, ..., λm] is a m-components weight vector such that
∑m

j=1 λj = 1

and λj ≥ 0 for each j. The weighting coefficients of the weighted sum prob-

lem give the “trade-off” rate information between the objective functions. This

method suffers from some drawbacks. First, a satisfactory, a priory selection

of weights does not necessarily guarantee that the final solution will be ac-

ceptable. Second, it is impossible to obtain points on non-convex portions

in of the Pareto optimal set in the objective space by solving the problem

F (x,Λ)[Das & Dennis 1997]. This is illustrated in Fig. 2.12 for weights λ1, λ2,

solution x is sought to minimize y = λ1f1(x) + λ2f2(x). This equation can be

reformulated as f2(x) = (−λ1/λ2)f1(x) + y/λ2, which defines a line with slope

(−λ1/λ2) and intercept y/λ2 (solid line in Fig. 2.12). Graphically, the optimiza-

tion process corresponds to move this line downwards until no feasible objective

vector below it and at least one feasible objective vector is on it. However, the

points (A and B) will never be detected whether the slope increased or decreased.

Finally, varying the weights consistently and continuously may not necessarily

result in an even distribution of Pareto optimal set.

2.7.1.3 The weighted metric method

The weighted metric method [Zeleny 1982, Miettinen 1999] seeks to minimizing

the weighted distances to the ideal point z∗. Thus the MOP stated in (2.1) is

reformulated according to formula (2.18).

Minimize
x

F (x,Λ, z∗) =

(
m∑
i=1

λi |fi(x)− z∗i |p
)1/p

subject to x ∈ S
(2.18)

where Λ = [λ1, ..., λm] is a m-components weight vector such that
∑m

i=1 λi = 1

and λi ≥ 0 for each i and 1 ≤ p ≤ ∞. As mentioned before, the exponent p

provides different ways to calculate the distance. For p = 1, the formula 2.18

gives the weighted sum method, for p = 2 the distance is a weighted Euclidean
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Figure 2.12: Weighted sum approach

distance in Rm. The formulation with p = ∞ leads to the so-called weighted

Tchebycheff problem that is formulated as follows:

Minimize
x

F tc(x,Λ, z∗) = Max
1≤i≤m

{λi |fi(x)− z∗i |}
subject to x ∈ S

(2.19)

For each Pareto-optimal point x∗ there exists a weight vector Λ such that x∗ is

the optimal solution of F tc(x,Λ, z∗) stated in (2.19) and each optimal solution

of F TC(x|Λ, z∗) is a Pareto optimal solution of MOP stated in (2.1). Therefore,

one can obtain different Pareto optimal solution by changing the weight vector.

this method is theoretically interesting because it has the ability to find any

Pareto-optimal point. even for non-convex problems. The only weakness of this

approach is that its aggregation function is not smooth for a continuous MOP.

2.7.1.4 The ε-constraint method

The ε-constraint method [Haimes et al. 1971, Miettinen 1999] is one of the best

known scalarization techniques to handle MOP. It converts the MOP into its

corresponding jth ε-constrained problem that formulated by selecting one of the

objective functions as the objective function while the others are used as con-

strains bounded by some allowable levels εi. The ε-constraint problem F (x, ε) is
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defined by formula 2.20 as:

minimize
x

F (x, ε) = fj(x)

subject to fi(x) ≤ εi, ∀i = 1, 2, ...,m. i �= j

x ∈ S
(2.20)

In order to find multiple Pareto optimal solutions, the upper bounds, εi, are var-
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Figure 2.13: Epsilon constrained method

ied by the optimizer. As the converse of the weighting method, the ε-constraint

method has the ability to obtain solutions associated with non-convex parts of

the Pareto front PF∗. Fig. 2.13 depicts this fact, by setting j = 1, the bold line

represents the new constraint, while the decision vector related to the point A

minimizes f1(x) among the remaining solutions. It can be seen from Fig. 2.13 the

weakness of this method. If the upper bounds are not chosen appropriately (i.e.

ε2 = r), the obtained new feasible set might be empty, i.e. there is no feasible

solution to F (x, ε). To avoid this problem, a suitable rang of values for the εi
must have been known.

2.7.1.5 Normal Boundary intersection (BI) methods

The Normal boundary intersection (NBI) [Das & Dennis 1998] seeks to find

evenly distributed points on the Pareto front in response of deficiencies.in the

weighted sum approach. It originally designed for nonlinear continuous opti-

mization problems. the idea is the projecting elements of specific convex hull

(CHIM) of points towards the boundary of the attainable region Z in the objec-

tive space.
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Definition 2.21 (Convex hull of Individual Minima (CHIM)) for every

i=1, ...,m,.let x∗
i ∈ S be the point in decision space which minimizes the ith

objective function fi(x) in MOP stated in (2.1), Let F ∗
i = F (x∗

i ) and z∗ is the

ideal point, The convex hull of the individual minima (CHIM) is the set

CHIM = {MΛ : Λ = [λ1, ..., λm]
T ,

m∑
i=1

λi = 1, λi ≥ 0}

where M is m×m pay-off matrix whose ith column is F ∗
i −z∗. Thus, the diagonal

elements of M is 0.

Fig. 2.14 depicts the CHIM for two-objective problem. The NBI method trans-

forms the MOP into the formula 2.21 as follows

minimize
x,t

F nbi(x,Λ, z∗) = t

subject to MΛ + tn̂ = F (x)− z∗,

x ∈ S, t ∈ R

(2.21)

where Λ is a weight vector, n̂ = −M(

m︷ ︸︸ ︷
−1, ...,−1) is a quasi normal vector points

towards the origin, MΛ represents a point in the CHIM. n̂ gives the NBI method

the property that for any Λ, a solution point is independent of how the objective

functions are scaled. As Λ is systematically modified, the solution to (2.21) yields

an even distribution of Pareto optimal points representing the complete Pareto

front. this nice feature makes the method really appealing in practice. one

drawback of the NBI technique is that it may return points which are dominated

if the boundary is non-convex.

2.7.1.6 Penalty Boundary intersection (PBI) method

The Normal boundary intersection (NBI) [Das & Dennis 1998] and the Normal

constraint method [Messac et al. 2003] are classified as boundary intersection BI

approaches. they were designed for continuous MOP. Geometrically, these BI

approaches aim to find intersection points of the most bottom boundary and

set of lines. if these lines are evenly distributed in a sense, one can expect that

the result intersections points provides a good approximation to the whole PF∗.
Mathematically, we consider the following scalar optimization problem

minimize F bi(x,Λ, z∗) = d

subject to F (x)− z∗ = dΛ

x ∈ S
(2.22)
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Figure 2.14: Illustration of CHIM on two-objective problem

where Λ and z∗ are the weight vector and the ideal point respectively. As illus-

trated in Fig. 2.15 left, the constraint F (x)−z∗ = dΛ ensures that F (x) is always

in L, the line with direction Λ and passing through z∗. the goal is to push F (x)

as low as possible so that i reaches the boundry of the attainable region. One of

the drawbacks of this approach is that it has to handle the equality constraints.

the penalty can deal with the constrains as follows

minimize F pbi(x,Λ, z∗) = d1 + θd2

subject to x ∈ S (2.23)

where

d1 =

∥∥(F (x)− z∗)TΛ
∥∥

‖Λ‖
and

d2 = ‖(F (x)− (z∗ + d1Λ)‖
θ is a preset penalty parameters. let y is the projection of F (x) on the line

L. As shown in Fig. 2.15 right, d1 is the distance between z∗ and y. d2 is the

distance between F (x) and L. if θ is set appropriately, the solutions to (2.22) and

(2.23) should be very close. this method is called penalty boundary intersection

(PBI) method. the general (BI) approach have advantages over Tchebycheff

approach such as in case of more than two objectives, if both BI approaches an

Tchebycheff use the same set of evenly distributed weight vectors , the resultant

optimal solutions in PBI should much more uniformly distributed than those

obtained by Tchebycheff [Das & Dennis 1998]. second, if x dominats y it is still
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Figure 2.15: Illustration of BI approach (left) and PBI approach (right)

possible that F tc(x,Λ, z∗) = F tc(y,Λ, z∗) while it is rare for PBI or BI aggregation
functions.

2.7.2 Interactive methods

An interactive approach (Fig. 2.16) requires active progressive interaction be-

tween the decision maker and the analyst throughout the solution process. The

main frame of an interactive approach is normally characterized by three basic

steps:

1. Solve the problem based on some initial set of parameters to obtain a

feasible, preferable non-inferior solution.

2. Ask the decision maker to evaluate this solution.

3. Use the decision maker’s response to formulate a new set of parameters,

forming a new problem to be solved.

Step (1)-(3) are repeated until the decision maker is satisfied with the current

solution or no further action can be taken by the method. When the interactive

algorithms are applied to real life problems the most critical factor is the func-

tional restrictions placed on the objective functions, constraints on the unknown

preference function. There exist some methods of interaction the light focused

on the following:

• Feasible region reduction methods: Each iteration of these methods gener-

ally consists of three phases. In the calculation phase, an efficient solution

which is nearest to the ideal obtained. In the decision phase, the DM in-

teracts with the method, and his response is used to construct additional

constraints in the feasible region as a reduction phase.
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• Feasible direction methods: These methods starts with a feasible solution

and interactively performance to two steps: in the direction finding step,

the DM provides the information about his preference in the neighborhood

of the current solution by specifying values of local trade-off among criteria.

Then the step size is determined from the current solutions along the usable

direction.

• Trade off cutting plane method: This type is unique in the way. It isolates

the best compromise solution by reducing the objective space using cutting

plane method.

A priori  

knowledge 
Decision 

Maker 
Preferences  Solution 

Method MOP Solution 
Results 

Feedback 

Figure 2.16: Illustration of Interactive approach for MOP

There is a number of real-world situations in which the decision maker cannot

easily discriminate between a pair of alternatives because of cognitive strain or

because of the lack of sufficient information.

2.7.3 Goal programming methods

In goal programming [Charnes et al. 1955, Charnes & Cooper 1961, Ijiri 1965],

the goals (aspiration levels) bj are specified for each objective function fj(x).

Then, the total deviation from the goals
∑m

i |dj| is minimized, where dj is the

deviation from the goal bj for the jth objective. To model the absolute values,

dj is split into two parts d+j and d−j , such that d+j ≥ 0, d−j ≥ 0 and d+j d
−
j = 0.

Consequently, |dj| = d+j − d−j . The deviational variables d+j and d−j represents

underachievement and overachievement respectively, where achievement implies

that a goal has been reached. In general, the MOP is reformulated as follows:

Minimize
m∑
i=1

(d+i + d−i )

subject to fj(x) + d+j − d−j ≤ bj, ∀j = 1, ...,m.

d+j , d
−
j ≥ 0, d+j × d−j = 0, ∀j = 1, ...,m.

x ∈ S

(2.24)

Lee and Olson [Lee & Olson 1999] provide an extensive review of applications

for goal programming. However, despite its popularity and wide range of ap-
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plications, there is no guarantee that it provides a Pareto optimal solution. In

addition, Equ. 2.24 has additional variables and nonlinear equality constraints,

both of which can be troublesome with larger problems. There are several meth-

ods for treating the goal programming; some of them are stated here as follows:

• Archimedean goal programming (or weighted goal programming) con-

stitutes a subclass of goal programming, in which weights are as-

signed to the deviation of each objective from its perspective goal

[Charnes & Cooper 1977].

• The preemptive (or lexicographic) goal programming approach is similar

to the lexicographic method in that the deviations |dj| = d+j + d−j for the

objectives are ordered in terms of priority and minimized lexicographically.

Archimedean goal programming and preemptive goal programming provide

Pareto optimal solutions if the goals form a Pareto optimal point or if all de-

viation variables, d+j for functions being increased and d−j for functions be-

ing reduced; have positive values at the optimum [Miettinen 1999]. The lat-

ter condition suggests that all of the goals must be unattainable. Generally,

however, Archimedean and preemptive goal programming can result in non-

Pareto optimal solutions [Zeleny 1982]. Zeleny [Zeleny 1982] briefly mentions

multigoal programming, in which various functions of are minimized as inde-

pendent objective functions in a vector optimization problem. Hwang and Ma-

sud [Hwang & Masud 1979] present the goal attainment method, initially pro-

posed by Gembicki [Gembicki & Haimes 1975], which is computationally faster

than typical goal programming methods. Finally , we should refer to a recent

textbook [Jones & Tamiz 2010] in which a comprehensive overview of the state-

of-the-art in goal programming is provided.

2.7.4 Fuzzy programming methods

In Reality, majority of the optimization models in real life contains linguistic

terms. Fuzzy sets theory created an opportunity to handle linguistic terms in

mathematical programming models. The concept of fuzzy sets [Sakawa 1993] is

based on multi valued logic where a statement could be simultaneously party

true and party false. In fuzzy logic, a membership function μ(.) expresses the

degree of truthfulness of a statement, in the range from μ = 0, indicating that

the statement is false to μ = 1 for truth. This is the opposite of binary logic

where a statement can be only false or true. In case of multiobjective problem,

the membership function enables the problem solver to associate a normalized

value to each objective μi(fi(x)), which expresses the degree of satisfaction of

the considered objective . The value of fi(x) is fuzzified by μi to yield a value in
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the range [0,1], which quantifies how well a solution satisfies the requirements.

An example of a membership function is depicted in Fig. 2.17.

if

iμ
1
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Figure 2.17: Illustration of a membership function

Once the fuzzification has been performed the actual value of each objective has

been transformed into logic values. These values have to be aggregated to one

in order to get an overall value for the design. In fuzzy logic, this could be

implemented by several different rules. The most common are the min operator

which returns as an output the minimum value of the μi on which is operates,

and the product operator which returns the product of all individual operators.

Hence the overall objective function can be expressed as:

Minimize
x

m∏
i=1

μi(fi(x))

subject to x ∈ S
(2.25)

2.8 Drawbacks of classical Methods

Although, the conventional methods are widely used in solving MODM problems,

they are suffering from some drawbacks as discussed below.

1. There are some assumptions must be valid in the objective functions and/or

constraints in the problem under consideration. Such as smoothness, dif-

ferentiability, continuity, etc. This weak point makes these methods unable

to deal with the optimization problems that violates these assumptions.

2. These methods gives only one efficient solution at a time, this means many

different optimization runs needed to obtain multiple solutions.

3. When dealing with large-scale problems that contain huge number of con-

straints and objectives, these conventional methods need a long time expo-
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nentially proportion with the size of the problem to reach a set of efficient

solution.

4. Most of these classical methods can find Pareto-optimal solutions. How-

ever, when dealing with special problems with non-convex Pareto-optimal

fronts, they cannot find all the Pareto-optimal solutions.

5. Most of the classical methods and algorithms require some prior knowl-

edge which acts as DM preferences such as suitable weights or ε values

etc.[Deb 2001].

To overcome these limitations, the researchers found the metaheuristic based

techniques, such as evolutionary computations, are a promising tool that can

treat the drawbacks of conventional MODM methods. These techniques have

the ability to find a set of optimal solutions in each simulation run. This was

made possible during the last decade by using population-based metaheuristics

and their hybridization whether with other metaheuristics or with other search

techniques. These hybridization schemes are commonly called hybrid evolution-

ary metaheuristics. In hybrid evolutionary metaheuristics, since a population

of solutions is processed in each iteration, the outcome is also a population of

solutions. However, if an optimization problem has multiple optimal solutions,

the hybrid evolutionary metaheuristic is suitable to capture multiple solutions

in its final population. The next chapters will discuss and concentrate those

techniques in details.
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3.1 Introduction

Nowadays, metaheuristic based techniques, especially hybrid metaheuristics

play an important role in solving many real-world problems, which have often

multiple-conflict objectives. Due to this importance, a lot of research efforts have

been done in this promising area. In this chapter, an overview of metaheuris-

tic search and optimization algorithms is provided. The chapter is organized

as follows: Section 3.2 presents an overview of general search and optimization

techniques. Metaheuristics and their characteristics are introduced in section 3.3.

Section 3.4 discusses the different classifications of metaheuristics. In Sections

3.5 and 3.6, a quick review on some of the important metaheuristic algorithms

is outlined with introducing the basic concepts of the algorithms related to the

thesis work. In this review, the single solution based metaheuristic is discussed

in details in section 3.5. Also, the population based metaheuristics which include

Evolutionary Computations (EC) based techniques and Swarm Intelligence (SI)

based algorithms are presented in section 3.6. Section 3.7 introduce some ba-

sic concepts related multiobjective optimization using metaheuristic approaches

with highlighting some of these algorithm, specially those used in the compara-

tive studies provided in this thesis work. Moreover, a review on metaheuristics

hybridization is discussed in section 3.8. Finally, a summary for this chapter is

provided in section 3.9.

3.2 General Overview

Many real-life optimization problems in diverse fields such as industry, science,

engineering, economics, and business are often complex, NP-hard and conse-

quently difficult to solve. These optimization problems usually have several con-

tradictory objectives that are difficult to be satisfied simultaneously. In practice,

their modeling is continuously evolving in terms of constraints and objectives.

The resolution of these problems cannot be performed in an exact manner within

a reasonable amount of time, and their resource requirements are ever increasing.

To deal with such an issue, the design of resolution methods must be based on

the joint use of advanced approaches from combinatorial optimization, large-scale

parallelism and engineering methods.

Global Search and optimization techniques can be classified into two basic classes,

deterministic and probabilistic (also called stochastic) as illustrated in Fig. 3.1.



3.2. General Overview 37

Deterministic algorithms are most often used if a clear relation between the char-

acteristics of the possible solutions and their utility for a given problem exists.

Then, the search space can efficiently be explored to find “acceptable” solutions

in “acceptable” time by incorporating problem domain knowledge. In determin-

istic algorithms, each execution step involves at most one way to proceed. If no

way to proceed exists, the algorithm will terminate. Deterministic algorithms

do not contain instructions that use random numbers in order to decide what

to do or how to modify data. As shown in Fig. 3.1, deterministic algorithms in-

clude branch and bound search techniques, calculus based techniques and state

space search [Russell & Norvig 2010, Bednorz 2008] which involve greedy search,

hill-climbing algorithms, depth-first search, breadth-first search, best-first search

and A∗ search algorithm. These deterministic methods are successfully used

in solving a wide variety of problems [Hwang & Masud 1979, Goldberg 1989,

Mostaghim & Teich 2003]. If the relation between a candidate solution and its

“fitness” are not so obvious or too complicated, or the dimensionality of the

search space is very high, it becomes harder to solve a problem deterministically.

However, many multiobjective optimization problems are high-dimensional, dis-

continuous, multimodal, and/or NP-Complete. Deterministic methods are often

ineffective when applied to NP-Complete or other high-dimensional problems be-

cause they are suffering from their requirement for problem domain knowledge

(heuristics) to direct or limit the search in these large search spaces. Prob-

lems exhibiting one or more of these above characteristics are termed irregu-

lar [Veldhuizen 1999].

Because many real worlds’ scientific and engineering problems are irregular,

therefore deterministic search techniques are unsuitable. In this case, proba-

bilistic algorithms come into play as alternative algorithms which produce high

quality (or near-optimal) solutions in a reasonable amount of time. The ini-

tial work in this area started from about six decades ago. Now, it has become

one of most important research fields in optimization [Robbins & Monro 1951,

Bledsoe & Browning 1959, Bremermann 1962]. Unlike deterministic algorithms,

probabilistic search techniques include at least one instruction that acts on the

basis of random numbers [Hromkovic 2005]. An especially relevant family of

probabilistic algorithms are the Monte Carlo-based approaches. Stochastic search

approaches such as Simulated Annealing (SA), Tabu search (TS) and Evolution-

ary Computation (EC) techniques were developed as alternative approaches for

solving these irregular problems [Goldberg 1989, Michalewicz 1996]. Stochastic

methods require function which assign fitness value to each possible solution, and

a mapping mechanism between the problem and algorithm domains. Although

some of them can find the optimum, most cannot guarantee the optimal solution.

In general, they provide good enough solutions to a wide range of optimization
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Figure 3.1: The taxonomy of global optimization algorithms [Weise 2009]

problems which traditional deterministic search methods find difficulty in such

cases [Goldberg 1989]. In global optimization algorithms, heuristics help to de-

cide which one of a set of possible solutions is to be examined next. Heuristics

are usually employed in deterministic algorithms to define the processing order of

the candidate solutions, as done in greedy search. Whereas probabilistic methods

may only consider those elements of the search space that have been selected by

the heuristic in further computations.
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Heuristic [Michalewicz & Fogel 2004] can be defined as a “technique which seeks

good (near-optimal) solutions at a reasonable computational cost without being

able to guarantee either feasibility or optimality, or even in many cases to state

how close to optimality a particular feasible solution is” [Reeves 1993]. For ex-

ample, constructive (greedy) algorithms which construct the solution in a series

of steps based on the strategy of making the best decision (according to a certain

criterion) at each step. Also, local search which explores neighboring solutions

in an attempt to improve the current solution.

In the last three decades, a new advanced heuristic algorithms commonly called

“Metaheuristics” have been widely developed and applied to a variety of opti-

mization problems [Reeves 1993, Voss et al. 1999, Glover & Kochenberger 2003,

Aarts & Lenstra 1997, Osman & Laporte 1996, Rayward-Smith 1996]. The term

“Metaheuristics” is firstly introduced by Glover in [Glover 1986]. It can be de-

scribed as an iterative search strategy that guides the process over the search

space in the hope of finding the optimal solution.

According to Voss et al. [Voss et al. 1999], a metaheuristic is described as “an

iterative master process that guides and modifies the operations of subordinate

heuristics to efficiently produce high-quality solutions. It may manipulate a com-

plete (or incomplete) single solution or a collection of solutions at each iteration.

The subordinate heuristics may be high (or low) level procedures, or a simple

local search, or just a construction method”. In the following sections, the meta-

heuristic based techniques will be concentrated and described in more details.

3.3 Metaheuristics

As mentioned before, metaheuristics are a new class of approximate algo-

rithms which try to combine basic heuristic methods in higher level frame-

works in order to efficiently and effectively explore the search space. This

class of algorithms includes, but is not restricted to, Genetic Algorithms

(GA) [Holland 1975], Simulated Annealing (SA) [Kirkpatrick et al. 1983], Tabu

Search (TS) [Hansen 1986], Artificial immune system [Farmer et al. 1986,

Bersini & Varela 1990], Ant Colony Optimization (ACO) [Dorigo 1992], Parti-

cle Swarm Optimization (PSO) [Kennedy & Eberhart 1995], Differential Evo-

lution (DE) [Kennedy & Eberhart 1995], Scatter Search (SS) [Glover 1977],

Evolution Strategies (ES) [Rechenberg 1973], Estimation of Distribution algo-

rithm [Baluja 1994] etc. As approximate algorithms, metaheuristics sacrifice the

guarantee of finding optimal solutions for the sake of getting good solutions in

a significantly reduced amount of time. Metaheuristic techniques have received

increased interest due to their ability to provide “acceptable” solutions in a rea-

sonable amount of time for solving hard and complex optimization problems. In
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general, metaheuristics based techniques are not problem specific and contain

mechanisms to avoid getting trapped on local optima. Due to the generality

of the metaheuristic concept it is hardly possible to give a precise definition of

what a metaheuristic exactly is. Metaheuristic search methods can be simply

described as upper level general methodologies (templates) that can be used as

guiding strategies in designing underlying heuristics to solve specific optimiza-

tion problems [Talbi 2009]. We refer to [Blum & Roli 2003, Blum & Roli 2008]

for several other proposed definitions.

The success of metaheuristics relies on providing a balance between the exploita-

tion (intensification) of the accumulated search experiences and the exploration

(diversification) of the search space to identify regions with high quality solu-

tions in the search space. Intensification refers to focusing the search into certain

regions of the solution space to discover the high quality solutions, while diversifi-

cation refers to expanding the search by exploring unvisited regions of the solution

space. Nevertheless of the problem domain, the intensification and diversifica-

tion mechanisms are fundamental components of any global search method. The

metaheuristic should achieve a dynamic and adaptive compromise between inten-

sification and diversification in order to be able to achieve good results. Adequate

balance between diversification and intensification is important, on one side to

quickly identify regions with high quality solutions, and on the other side not

to waste too much time in regions of the search space which are either already

explored or which do not provide high quality solutions. The main differences

among the existing metaheuristics concerns the particular way in which they try

to achieve this balance.

According to [Blum & Roli 2003], metaheuristics are characterized by the follow-

ing properties:

• Metaheuristics are strategies that “guide” the search process to efficiently

explore the search space for finding near-optimal solutions.

• Techniques which constitute metaheuristic algorithms range from simple

local search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in confined

areas of the search space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific and may make use of domain-

specific knowledge in the form of heuristics that are controlled by the upper

level strategy.

In the following section, the different classifications of metaheuristics will be
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discussed

3.4 Classification of Metaheuristics

Metaheuristic approaches can be classified according to different aspects which

are usually related to how these approaches operate over the search space during

the search process. Some of these aspects are discussed as follows:

• Nature inspired vs. non-nature inspired : Many metaheuristics are in-

spired by natural processes: evolutionary algorithms and artificial immune

systems from biology; ants, bees colonies, and particle swarm optimiza-

tion from swarm intelligence into different species (social sciences); and

simulated annealing from physics. Sometimes, it is difficult to identify

to which class a particular algorithm can be classified, as illustrated in

[Blum & Roli 2003]. Also, this classification is not appropriate or adequate

for many hybrid metaheuristics.

• Memory usage vs. memory-less methods : Some metaheuristic algorithms

use a memory that contains some information extracted online during the

search [Taillard et al. 2001] such as short-term and long-term memories in

tabu search. While other metaheuristics are memoryless; that is, no infor-

mation extracted dynamically is used during the search. Some examples of

this class are local search, GRASP, and simulated annealing.

• Deterministic vs. stochastic: A deterministic metaheuristic makes deter-

ministic decisions to solve an optimization problem (e.g., local search, tabu

search). In stochastic metaheuristics, some random rules are applied during

the search (e.g., simulated annealing, evolutionary algorithms). In deter-

ministic algorithms, using the same initial solution will lead to the same

final solution, whereas in stochastic metaheuristics, different final solutions

may be obtained from the same initial solution. This characteristic must

be taken into account in the performance evaluation of metaheuristic algo-

rithms.

• Iterative vs. greedy : Iterative algorithms start with a complete solution

(or population of solutions) and apply some search operators on it at each

iteration. Whereas greedy algorithms start from an empty solution, and

assign a decision variable of the problem at each step until achieving a

complete solution. Most of the metaheuristics are iterative algorithms.

• Single-solution vs. Population-based search: This is the most com-

monly used aspect for metaheuristics classifications in the literature

[Boussäıd et al. 2013]. In single-solution based algorithms (referred to as

trajectory methods), a single solution is used to explore the search space
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which provide more chance to intensify the search in local regions. Whereas

in population-based algorithms, a whole population of solutions is evolved

during the search process which lead to better diversification in the whole

search space. The most common examples of single-solution methods

are: basic local search, simulated annealing, tabu search, greedy random-

ized adaptive search procedure, variable neighborhood search, guided local

search, iterated local search and others. Examples for population-based

methods include: genetic algorithms, scatter search, ant colony systems,

and mimetic algorithms, evolutionary strategies (although some of them

are single-solution), particle swarm systems, cultural algorithms, etc. The

result of hybridizing single-solution approach with a population based ap-

proach is a population-based approach as a mimetic algorithms which in-

corporate local search into genetic algorithms.

Here, Single-solution vs. Population-based classification is adopted in this con-

text. Moreover, Fig. 3.2 1, depicts the different aspects used for metaheuristics

classifications.

Figure 3.2: The Different classifications of metaheuristics algorithms

1http://en.wikipedia.org/wiki/Metaheuristic
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3.5 Single-solution based metaheuristics

In this section, single-solution based algorithms are presented. The search pro-

cess starts by improving a single initial solution which iteratively moves as tra-

jectory in the search space [Crainic & Toulouse 2003]. In the following, we start

to present the constructive heuristic algorithm followed by the basic local search

procedure. Then, the “intelligent” extensions of local search algorithms which

improve its capabilities to escape local optimum are also discussed. These exten-

sions include GRASP, iterated local search, variable neighborhood search, guided

local search, simulated annealing and tabu search algorithms.

3.5.1 Greedy Heuristics

A constructive or greedy heuristic [Edmonds 1971] executes a number of iter-

ations to build a complete solution. Starting from an empty solution, greedy

algorithms assign a value to one decision variable at a time until constructing a

complete solution. Assuming the solution of an optimization problem consists

of a set of n components E = {e1, e2, ..., en} where each component ei repre-

sents the ith decision variable. Beginning with an empty solution s, the idea is

to use a heuristic to select a new unselected component ei at each iteration to

be included to s according to feasibility conditions until x is completed. Once

an element ei is selected to be part of the solution s, it is never replaced by

another element. Alg. 3.1 summarizes the construction process. During the

construction the order is maintained static. So, a greedy heuristic is able to

generate the same solution every time it is executed on the same problem with

the same heuristic. In general, a greedy strategy does not produce an opti-

mal solution in many problems, but nonetheless a greedy heuristic may produce

locally optimal solutions that approximate a global optimal solution in a rea-

sonable computation time. However, greedy heuristic can be used as an initial

stage. It can be used to generate quite good initial solutions. Then, more in-

tensive search procedures can be used to enhance and upgrade those solutions

[Burke et al. 1998, Corne & Ross 1996, Kafafy et al. 2012a].

3.5.2 Simple Local Search

The basic local search (LS) or iterative improvement algorithms starts from an

initial candidate solution and attempt to iteratively improve the current solution

through exploring its appropriately defined neighborhood [Aarts & Lenstra 1997]

(Fig. 3.5 (a)). The neighborhood is formally defined as follows:

Definition 3.1 (Neighborhood structure) [Blum & Roli 2003]: A neigh-

borhood structure is a function N : S ← 2S that assigns to every s ∈ S a
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Algorithm 3.1 Greedy Heuristics

1: Begin:
2: s ← ∅; � Begin with an empty solution s
3: E ← {e1, e2, ..., en}; � Initialize the set of unselected components E
4: repeat:
5: ei ←LocalHeuristics(E); � Use Heuristics to select ei to be added to s
6: if s ∪ ei is feasible then: � Check feasibility of adding ei to s
7: s ← s ∪ ei; � Adding ei to s
8: E ← E/{ei}; � Delete ei from E
9: end if
10: until s is completed
11: End

set of neighbors N (s) ⊆ S. N (s) is called the neighborhood of s. Often, neigh-

borhood structures are implicitly defined by specifying the changes that must be

applied to a solution s in order to generate all its neighbors. The application of

such an operator that produces a neighbor s′ ∈ N (s) of a solution s is commonly

called a move.

Typically, every candidate solution has a neighborhood space that contains more

than one neighbor solution. Local search algorithms move from solution to solu-

tion in the neighborhood space of candidate solutions by applying local changes,

until all candidate neighbors are worse than the current solution, meaning a lo-

cal search is stuck at a locally minimal2 point. Termination conditions of local

search can also based on CPU time bound, or the maximum number of iterations

without improvement reached. The local minimal is the best solution(s) in the

defined neighborhood and can be formally defined as follows:

Definition 3.2 (Local Minimum) [Blum & Roli 2003]: A locally minimal so-

lution (or local minimum) with respect to a neighborhood structure N is a solution

ŝ such that ∀s ∈ N (ŝ) : f(ŝ) ≤ f(s) (Fig 3.3). We call ŝ a strict locally minimal

solution if f(ŝ) < f(s), ∀s ∈ N (ŝ).

Algorithm 3.2 Local Search (LS)

1: Begin:
2: s ←GenerateInitialSolution( ); � By either greedy or random methods
3: while ∃s′ ∈ N (s) such that f(s′) < f(s) do:
4: s ←ChooseImprovingNeighbor(N (s)); � select a neighbor solution to improve the

current one
5: end while
6: End

2Without loss of generality, Minimization case is considered
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Figure 3.3: Local optimum and global optimum in a search space.

The template of the local search algorithm is described in Alg. 3.2. The ini-

tial solution can be generated either using random or greedy approaches. There

is always a trade-off between the use of random and greedy initial solutions

in terms of the quality of solutions and the computational time. The perfor-

mance of local search is affected by tow issues. The first one is the choice of

the neighborhood structure. A strong neighborhood produces local optima that

are largely independent of the quality of the initial solution while a weak neigh-

borhood produces local optima that is highly correlated to the initial solution

[Papadimitriou & Steiglitz 1998]. The second issue is how to explore solutions in

the neighborhood(s), some of the possible strategies used to select the candidate

solutions are explained as follows:

• Deterministic Iterative Improvement: In this strategy, each iteration is

responsible for generating one neighboring solution. The new generated

solution replaces the current solution only if it is better. The search stops

when no better neighboring solution is found. This strategy leads to parti-

tion the search space S into so-called basins of attraction of local minima

[Prestwich & Roli 2005]. The basin of attraction of a local minimum s′ ∈ S
is the set of all solutions s for which the search terminates in s′ when started

from the initial solution s.

• Best Iterative improvement: In this strategy, the neighborhood structure

is exhaustively explored to return one of the solutions with the lowest

objective function value. Hence, all possible moves are tried for a solution

to select the best neighboring solution. This type of exploration may be

time-consuming for large neighborhoods.

• First improvement: In this strategy, the first improving neighbor that is

better than the current solution is selected to improve the current solution.
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This means a partial evaluation of the neighborhood. When no improve-

ment is found, a complete evaluation of the neighborhood is performed.

The improvement strategies above can be implemented in the ChooseImprov-

ingNeighbor(N (s)) module. The performance of these strategies strongly de-

pends on the definition of the neighborhood structure N . A compromise in terms

of quality of solutions and search time may consist in using the first improvement

strategy when the initial solution is randomly generated.

Although, simple iterative improvement local search heuristics are simple and

easy to implement, they have unsatisfactory performance due to producing local

minimum. The quality of the obtained local minimum depends on the initial

solution used. To avoid getting stuck in poor local optima, various strategies

have been incorporated into local search producing a number of metaheuristics

approaches. The main goal of these strategies is to achieve good balance between

intensification and diversification as mentioned. According to [Talbi 2009], these

strategies can be classified into different families as in the following as well as

depicted in Fig. 3.4:

• Iterating from different initial solutions : as applied in multistart local

search, iterated local search(ILS), GRASP.

• Accepting non-improving neighbors : as applied in simulated annealing (SA)

and tabu search (TS). This can be done through allowing moves that de-

teriorate the current solution to have a chance to escape local optimum.

• Changing the landscape of the problem: as applied in both variable neigh-

borhood search strategies (VNS) and guided local search (GLS). In VNS,

the neighborhood structure is changed during the search process, whereas

in GLS, the objective function or the constraints of the problem on hand

is perturbed.

In the following, we present some of the most important local search based meta-

heuristics.

3.5.3 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) is a memory-less

multi-start metaheuristic algorithm, which combines a randomized constructive

heuristics with local search [Glover & Kochenberger 2003]. It was proposed by

Feo and Resende in [Feo & Resende 1989, Feo & Resende 1995]. The main idea

of GRASP is based on repeatedly improving starting solutions by local search.

Each iteration of the GRASP algorithm consists of two phases: construction
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and local search. In the construction phase, a feasible completed solution is

built using greedy randomized heuristics. Since this solution is not guaranteed

to be locally optimal, a local search is performed to improve this solution in

the second phase. This process is repeated until stopping criterion is met and

the best solution found is taken as a result. Alg. 3.3 illustrates the GRASP

procedure. In the following two subsections, each phase is briefly explained.

Algorithm 3.3 GRASP(α)

Inputs:
α ∈ (0, 1]: A parameter for constructing the restricted candidate list RCL

1: Begin:
2: s∗ ← ∅; � The best solution found so far
3: repeat:
4: s ← ∅; � Begin with an empty partial solution
5: s′ ←Construction(s, α); � Apply greedy randomize construction to s
6: s ←LocalSearch(s′); � Apply local search to s′

7: if (F (s) < F (s∗)) then: � Apply fitness comparison to get the best
8: s∗ ← s; � Update the best solution
9: end if
10: until termination criterion is satisfied
11: return s∗; � Return the best solution
12: End

3.5.3.1 Greedy Randomized Construction

The greedy randomized construction procedure merges randomize to greedy al-

gorithm for producing a divers set of good quality initial solutions, from which

to start local search. In this phase, a candidate solution is built iteratively by
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incorporating an element into a partial solution at each iteration until a complete

solution is built. This means the solution must be defined as a set of elements.

At each iteration of the construction phase, a partial solution s (usually empty)

is taken. The candidate list (CL) is formed by all the elements which can be in-

cluded to the partial solution without violating feasibility. The CL is decreasingly

ordered according to the values of a greedy function which used to evaluate the

benefit of selecting each element. The so-called restricted candidate list (RCL) is

formed by the best candidates of the CL. Then, the element to be added to the

partial solution is randomly picked from the RCL, which represents the prob-

abilistic aspect of GRASP. The restriction of the RCL may depend on either

the number of elements (cardinality-based) or their quality (value-based) that is

the most used strategy [Resende & Ribeiro 2003]. Cardinality-based restriction

means the RCL list consists of the p best candidate in CL. Whereas, value-based

restriction means RCL consists of all elements with values greater than or equal

to cmin+α× (cmax− cmin), where p and α are parameters to control the balance

between greediness and randomness components of the partial solution, and cmin

and cmax are the values of the best and worst elements, respectively. In practice,

the parameter α may be either fixed or adaptive. Algorithm 3.4 summarizes the

construction procedure.

Algorithm 3.4 Construction(s, α)

Inputs:
α ∈ (0, 1]: A parameter for constructing the restricted candidate list RCL

1: Begin:
2: repeat:
3: RCL ←BuildRCL(s, α); � Construct RCL
4: e ←SelectElementAtRandom(RCL); � Choose an element e to be added to s
5: s ←AddElement(e); � Add element e to s
6: until s becomes a completed solution
7: return s;
8: End

3.5.3.2 Local Search Phase

After the construction step, the constructed solutions are not guaranteed to be

local optima. So, it is useful to apply local search step to improve the con-

structed solutions. Traditionally, a simple local search algorithm is applied.

Nevertheless, more sophisticated local search methods with good global search

ability, such as simulated annealing and tabu search, variable neighborhood

search etc, can also be used to improve the constructed solutions in GRASP

[de la Peña 2004, Resende 2008, Villegas et al. 2010]. Path-relinking strategy

can also used to improve search capabilities of GRASP [Festa & Resende 2013].

Alg. 3.5 illustrates the general procedure of GRASP local search phase which
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applied to improve the constructed solution s.

Algorithm 3.5 LocalSearchPhase(s)

1: Begin:
2: s∗ ← s; � set s as initial point to start the search
3: while (∃s′ ∈ N (s∗) : F (s′) < F (s∗)) do: � Improve the current point by neighborhood

investigation
4: s∗ ← s′;
5: end while
6: return s∗;
7: End

In general, GRASP performance is highly sensitive to the parameter α, it

is important to select its values carefully. Thus, several strategies are pro-

posed to fit α [Talbi 2009], such as initializing to a constant value, dynam-

ically changing according to some probability distribution or automatically

adaptation during the search process. As an example, in reactive GRASP

[Prais & Ribeiro 2000], α is periodically updated based on the quality of the

obtained solutions. However, GRASP can be more effective if the construc-

tion procedure samples the most promising regions of the search space, and

able to produce solutions belong to basins of attraction of different local op-

tima. More extensive details of GRASP and its applications on combinato-

rial optimization can be found in[Festa & Resende 2002, Festa & Resende 2009a,

Festa & Resende 2009b, Resende & Ribeiro 1997]. Moreover, GRASP adapta-

tions to continuous optimization is also proposed in [Hirsch et al. 2007].

3.5.4 Iterated Local Search

Iterated Local search (ILS) is a simple metaheuristic that exploits both local

search and a perturbation operator [Glover & Kochenberger 2003]. The idea is

instead of repeatedly applying a local search procedure to randomly generated

starting solutions, ILS generates the starting solution for the next iteration by

perturbing the local optimum found at the current iteration (see Fig. 3.5 (b)).

The aim of this idea is that the perturbation mechanism produces a solution

that is located in the basin of attraction of a local minimum that is better than

and closed to the current solution. The importance of perturbation mechanism

due to twofold: firstly, a too weak perturbation may not be sufficient to escape

from the basin of attraction of the current local optimum; secondly, a too strong

perturbation would make the algorithm similar to a multistart local search with

randomly generated starting solutions. Thus, perturbation mechanism must be

designed in such a way that achieve this aim. Alg.3.6 summarizes the steps of

this metaheuristic.

First, the algorithm starts with an initial solution s and perform local search
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Algorithm 3.6 Iterated Local Search (ILS)

1: Begin:
2: s ←GenerateInitialSolution( ); � Internalize the current solution
3: s′ ←LocalSearch(s);
4: repeat:
5: p ←Perturbation(s′,history); � Perturb the obtained local optimum s′

6: ŝ ←LocalSearch(p);
7: s′ ←ApplyAcceptanceCriterion(ŝ,s′,history);
8: until termination condition is met
9: End

to improve s until a local optimum s′ is found. Then, the current solution s′ is
perturbed to obtain the solution p and a different local optimum ŝ is obtained

by performing local search on p. Finally, the resulting solution ŝ may either

be accepted as new current solution, or not according to the function ApplyAc-

ceptanceCriterion(ŝ, s′),history which implements the acceptance criterion. The

balance between intensification and diversification can be controlled by both the

acceptance criterion and the perturbation mechanism. For example, an extreme

acceptance criterion in terms of intensification is to accept only improving so-

lutions. Another extreme criterion in terms of diversification is to accept any

solution, regardless its quality. Many acceptance criteria that balance the two

goals may be applied [Talbi 2009]. A recent review of ILS, its extensions and

its applications is found in [Lourenço et al. 2010]. Also, adaptive perturbation

strategy is found in[Benlic & Hao 2013].

3.5.5 Variable Neighborhood Search

The variable neighborhood search (VNS) metaheuristic is introduced in

[Mladenović & Hansen 1997]. VNS adopts the strategy of using more than one

neighborhood structure during the search process in order to escape local min-

imum (see Fig. 3.5(d)). This is based on the fact that a local minimum with

respect to a certain neighborhood function N1 is not necessarily a local min-

imum with respect to a different neighborhood function N2. To develop such

idea, VNS has to define a set of neighborhood structures, and to dynamically

swap between these different neighborhood structures during the search process.

Alg. 3.7 summarizes the basic steps of VNS metaheuristic.

At the initialization step, a set of neighborhood structures Nk (∀k = 1, ..., kmax)

are defined. Then, the current solution s is initialized. Each iteration of the

algorithm involves three basic steps: shaking, local search, and move. At each

iteration, the shaking step is carried out through randomly selecting the solution

s′ form the kth neighborhood structure of the current solution Nk(s). Then, local

search procedure is applied to improve the solution s′, for producing the solution
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Algorithm 3.7 Variable Neighborhood Search (VNS)

1: Begin:
2: Define a set of neighborhood structures Nk, ∀k = 1, ..., kmax

3: s ←GenerateInitialSolution( ); � Initialize the current solution
4: repeat:
5: k ← 1; � Intialize with 1st neighborhood structure
6: while k < kmax do: � Inner Loop
7: s′ ←PickAtRandom(Nk(s)); � Shaking phase
8: s′′ ←LocalSearch(s′); � Local search phase
9: if f(s′′) < f(s) then: � if s′′ better than s
10: s ← s′′; � Update the current solution
11: k ← 1;
12: else:
13: k ← k + 1; � Update neighborhood structure
14: end if
15: end while
16: until termination condition is met
17: End

s′′. The local search can use any neighborhood structure and is not restricted

to the set Nk, ∀k = 1, ..., kmax. After local search step, in case of the new local

optima s′′ is better than the current solution s, Then, s′′ replaces s and the same

search procedure is thus restarted from the solution s′′ in the first neighborhood

N1. Otherwise, the algorithm moves to the next neighborhood Nk+1 and a new

shaking phase starts by randomly generating a new solution in this neighbor-

hood and it attempts to improve it using local search. The process of changing

neighborhoods in case of no improvements corresponds to a diversification of the

search. For recent surveys of VNS extensions and its adaptations to tackle contin-

uous optimization problems, we refer to [Hansen et al. 2008, Hansen et al. 2010]

and [Liberti & Drazic 2005, Mladenović et al. 2008, Carrizosa et al. 2012]. Also,

hybridization of VNS with other metaheuristics, such as GRASP, can also be

found in [Villegas et al. 2010, Salehipour et al. 2011]

3.5.6 Guided Local Search

Guided local search (GLS) [Voudouris 1997, Voudouris & Tsang 1999] is a meta-

heuristic which adopts the strategy of modifying the search landscape through

dynamically changing the objective function (see Fig. 3.5(c)). The idea of us-

ing modified objective functions in GLS is to escape from the local optimal by

gradually reducing its attractiveness. Changing objective functions dynamically

can be achieved by penalizing solution features that occur frequently in visited

solutions. The penalized features leads to increasing the objective function of

solutions that contain these features. This cause changing the search landscape

and thus gradually reducing the attractiveness of the current local minimum.
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As described in Alg. 3.8, GLS starts with an initial solution s that is improved by

local search until a local optima s∗ is found. Then, in each iteration the original

objective function f(s) is adapted to obtain the so-called “augmented” objective

function f ′(s). Then, the local search is restarted using the augmented function,

which is designed to bring the search out of the local optimum. First, a set of

features ftk, k = 1, ..., n has to be defined to distinguish between solutions with

different characteristics, so that regions of similarity around local minimum can

be recognized and avoided. For each feature fti a cost function ci is defined. Each

feature is also associated with a penalty pi to record the number of occurrences

of the feature in local minimum. The penalties are initialized to 0 and updated

when the local search reaches a local minimum. Given an objective function f

and a solution s, the augmented function f ′(s) is given by:

f ′(s) = f(s) + λ
n∑

i=1

piIi(s) (3.1)

where λ represents the regularization parameter and, Ii(s) is an indicator function

that indicates whether the feature fti is present in the solution s:

Ii(s) =

{
1 if fti ∈ s

0 otherwise,
(3.2)

GLS uses the augmented function above to allow it to guide the Local Search

algorithm out of the local minimum, through penalizing features present in that

local minimum. Each time a local optimum is found by the local search, GLS

intends to penalize the most ”unfavorable features” of this local optimum. The

idea is to make the local minimum more costly than the surrounding search space,

where these features are not present. This way, solutions exhibiting other features

become more attractive, and the search can escape from the local minimum.

When a local optimum s∗ is reached, the utility ui of penalizing a feature fti is

calculated as follows:

ui(s
∗) = Ii(s

∗)
ci

1 + pi
(3.3)

where ci is the cost of the feature fti. This means, if a given feature fti is

not present in the local minimum s∗, the utility of penalizing feature fti is 0.

The higher the cost ci of this feature, the greater the utility of penalizing it.

Besides, the more times it has been penalized (the greater pi), the lower the

utility of penalizing it again. Then, the feature with the highest utility will

be penalized by increasing its penalty pi by 1, and the scaling of the penalty

is normalized by λ. The balance between intensification an diversification is

controlled by λ. Large values of λ encourage diversification, while small values
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intensify the search around the local optimum [Talbi 2009]. More details about

GLS adaptation for continuous optimization and its extensions to population

based metaheuristic can be found in [Voudouris 1998] and [Zhang et al. 2003,

Tairan & Zhang 2010]. Other GLS extensions to Multiobjective optimization

can be found in [Alsheddy 2011].

Algorithm 3.8 Guided Local Search (GLS)

1: Begin:
2: {fti|i = 1, ..., n} ←DefineFeatures( ); � Select a set of features
3: s ←GenerateInitialSolution( ); � Initialize the current solution
4: pi ← 0; ∀i = 1, ..., n � Initialize penalties
5: repeat:
6: f ′(s) ←AugmentedFunction(s, λ); � Compute f ′ as in Equ. (3.1)
7: s∗ ←LocalSearch(s, f ′); � Improve s using the augmented f ′

8: ui(s
∗) ←ComputeUtilizes(s∗, i); ∀i = 1, ..., n � Compute ui as in Equ. (3.3)

9: for each feature fti with maximum ui(s
∗) do: � penalize features with max. util.

10: pi ← pi + 1;
11: end for
12: until the stopping condition is satisfied
13: End
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3.5.7 Simulated Annealing

Simulated annealing (SA) is a metaheuristic that explores new areas of the so-

lution space by allowing the degradation of a solution under some conditions, in

order to escape from local optimum. The idea of SA is inspired by the annealing

process of metal and glass, which assumes a low energy configuration when first

heated up and then cooled down sufficiently slowly. SA transposes the process

of the annealing to the solution of an optimization problem: the objective func-

tion of the problem, similar to the energy of a material, is then minimized, by

introducing a dummy temperature T , which is a simple controllable parameter

of the algorithm. SA was first presented as a search algorithm for CO problems

in [Kirkpatrick et al. 1983] and [Černỳ 1985]. The main principle is that im-

proving candidate solutions are always accepted while non-improving candidate

solutions are accepted with a certain probability. This probability of accepting

non-improving solutions is calculated according to the current temperature of

the algorithm. The search process is stared with a high initial temperature T ,

which means a high probability for accepting non-improving solutions. The tem-

perature is gradually decreased during the search process, thus, the probability

to accept non-improving solutions is also reduced. The algorithm accepts only

improving solutions when temperature goes to zero until the stopping condition.

Simulated annealing framework is described in Alg.3.9. Firstly, an initial solution

s is generated either randomly or using constructive heuristic. The temperature

T is also initialized. At each iteration k, a solution s′ is randomly selected from

the neighborhood N (s) of the current solution s. The generated neighbor s′ is
always accepted as new current solution if it improves the objective function.

Otherwise, s is accepted with a probability p which is a function of both the

current temperature Tk and the amount of degradation of the objective function

(f(s′)− f(s)). In general, this probability is computed based on the Boltzmann

distribution:

p(s′|Tk, s), f(s)) = e
− f(s′)−f(s)

Tk (3.4)

The current temperature Tk is adapted at each iteration according to the so-called

cooling schedule that defines the value of Tk at each iteration k, Tk+1 = Q(Tk, k),

where Q(Tk, k) is a function of current temperature and the iteration number.

The selection of an adequate cooling schedule is crucial for the performance and

highly dependent on the problem domain. One of the most used cooling schedules

follows the geometric low Tk+1 = αTk, where α ∈ (0, 1) is the cooling factor,

which correspondence to exponential decay of the temperature. The cooling rule

may be varied during the search for tuning the balance between intensification

and diversification. In other words, the search process may start with linearly

decreasing T in order to sample the search space. Then, T might follow a rule
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such as the geometric one to converge to local minimum at the end of the search.

SA has been successfully applied to several discrete or continuous optimiza-

tion problems. The adaptation of SA to continuous optimization problems

has been particularly studied [Courat et al. 1994]. A wide bibliography can be

found in [Fleischer 1995, Beyer & Schwefel 2002, Alba 2005]. Several interest-

ing variants of SA have been proposed in the literature as Threshold Accepting

[Dueck & Scheuer 1990] and Extremal Optimization [Boettcher & Percus 2002]

etc.

Algorithm 3.9 Simulated Annealing (SA)

1: Begin:
2: s ←GenerateInitialSolution( ); � Initialize s the current solution
3: k ← 0; � Initialize the iteration counter
4: Tk ←SetInitialTemperature( ); � Specify initial temperature
5: while termination conditions not met do:
6: s′ ←PickNeighborAtRandom(N (s)); � Randomly select a neighbor solution
7: if (f(s′) < f(s)) then:
8: s ← s′; � Update current solution
9: else:

10: Accept s′ as new solution with probability p(s′|Tk, s) = e
− f(s′)−f(s)

Tk

11: end if
12: k ← k + 1 � Update iteration counter
13: Tk ←AdaptTemperature( ); � Adapt temperature using cooling schedule
14: end while
15: End

3.5.8 Tabu Search

Tabu search (TS) is a metaheuristic that exploits the search history through us-

ing flexible and adaptive memory structures, both to escape from local minimum

and to implement an exploitative strategy. The use of memory, which stores in-

formation related to the search process, represents the particular feature of tabu

search. The basic ideas of Tabu search were first introduced in [Glover 1986] and

the algorithm was proposed in [Glover 1989]. Basically, Tabu Search behaves like

a deterministic local search strategy where, at each iteration, the best solution

in the neighborhood of the current solution is selected as the new current solu-

tion, but it accepts non-improving solutions to escape from local optima when

all neighbors are non-improving solutions. Various types of memory structures

are commonly used to remember specific properties of the trajectory through the

search space that the algorithm has undertaken. A short-term memory, known

as the tabu list, stores recently visited solutions (or attributes of recently visited

solutions) to forbid revisiting these solutions and therefore to prevent from end-

less cycling and forces the search to accept even deteriorating moves. Long-term
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memory is used to collect information during the overall search process that per-

mits the identification of common properties in good visited solutions and also

to attempt to visit solutions with varying properties from those already visited.

In the following, the basic framework of tabu search procedure is described in

Alg. 3.10.

Firstly, the algorithm uses the tabu lists which store the features of recently

visited solutions. A lot of tabu lists may be used corresponding to the different

types of considered features. At the beginning of the search process, an initial

solution s is generated and the tabu lists (TL1,...,TLk) are initialized as empty

sets. To apply a move, the neighborhood of the current solution N (s) is checked

to exclude those neighbor solutions which contain solution features currently

stored in the tabu lists. These solutions are said to violate tabu conditions.

Now, we have a restricted set of neighbors Na(s). It must be noted that storing

only features of solutions may allow excluding some of high quality unvisited

solutions. This problem is tackled by defining aspiration criteria which allow to

include a solution in the restricted set of neighbors even though it violates a tabu

condition. At each iteration, the best solution s′ is chosen from Na(s) as the

new current solution. Moreover, the corresponding features of this solution are

added to the tabu lists with removing the oldest solution features if the tabu lists

have reached their maximally allowed sizes. Finally, the algorithm stops when a

termination condition is met.

Algorithm 3.10 Tabu Search (TS)

1: Begin:
2: s ←GenerateInitialSolution( );
3: InitializeTabuLists(TL1,...,TLk);
4: repeat:
5: Na(s) ← {s′ ∈ N (s)|s′ does not violate a tabu condition, or it satisfies at least one
6: aspiration condition }
7: s′ ← argmin{f(s′′)|s′′ ∈ Na(s)}
8: UpdateTabuLists(TL1,...,TLk,s,s

′);
9: s ← s′

10: until termination condition is met
11: End

In tabu search, the search process is affected by the length of the tabu list which

controls the memory of algorithm during the search process. The small length

of the tabu list leads to concentrating the search on small area in the search

space. While large length prevents revisiting a large number of solutions, and

thus forces the search to explore large regions in the search space. The tabu list

length can also be changed during the search, leading to more robust algorithms,

like reactive tabu search [Battiti & Tecchiolli 1994]

An extensive description of TS and its concepts can be found in
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[Glover & Laguna 1997]. TS was designed for, and has predominately

been applied to combinatorial optimization problems. However, adap-

tations of TS to continuous optimization problems have been proposed

[Cvijovic & Klinowski 1995, Chelouah & Siarry 2000]. The interested reader can

find representative applications of TS in [Taillard 1991, Battiti & Protasi 1996].

3.6 Population-based metaheuristics

In Population-based metaheuristics algorithms, a population of solutions is

adopted rather than operating on single solution. The most commonly used

population based algorithms are evolutionary computations (EC) based algo-

rithms and swarm intelligence(SI) based algorithms. EC algorithms simulate the

natural evolution process which are based on the Darwinian concept of “Survival

of the Fittest”. They tackle hard optimization problems through improving a

population of initial solutions by using selection, recombination and mutation

operators. In SI algorithms, the idea is to produce computational intelligence

by exploiting simple analogs of social interaction, rather than purely individual

cognitive abilities.

3.6.1 Evolutionary computations

Evolutionary Computation (EC) is the general term expresses several optimiza-

tion algorithms that are inspired by the Darwinian principles of natural selection.

EC Algorithms are usually called evolutionary algorithms (EA) as they are based

on the evolutionary principles in solving optimization problems. EAs involve

the domains of genetic algorithms (GA) [Holland 1975], evolutionary strategies

(ES) [Rechenberg 1973], evolutionary programming (EP) [Fogel et al. 1966], and

genetic programming (GP) [Koza 1992] which share the same principle of pro-

ducing better solution by simulating the evolution of individual structures via

processes of selection, recombination, and mutation reproduction. In general,

EAs operates on an initial population of solutions to the problem on hand. At

each algorithm iteration, a number of Evolutionary operators is applied to the

individuals of the current population to generate the individuals of the popu-

lation of the next generation. the new offspring is generated by applying both

recombination (crossover) on the parent individuals, then mutation operator is

also applied to cause a self-adaptation of the offspring to promote diversity. The

new offspring is evaluated to identify their fitness. Finally, the new population

is formed by selection from both the parents individuals and the new generated

offspring according to their fitness which is matched with the principle “Survival

of the Fittest” in nature evolution. This process is continued until stopping con-

dition is satisfied. The general framework of EA is described in Alg.3.11. In this
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algorithm, P denotes the population of individuals. A population of offspring

(P ′′) is generated by the application of recombination and mutation operators

and the individuals for the next population are selected from the union of the

old population P and the offspring population P ′′. EAs have more research

Algorithm 3.11 Evolutionary computation (EC)

1: Begin:
2: P ←GenerateInitialPopulation( );
3: P ←EvaluateFitness(P );
4: while termination condition not met do
5: P ′ ←SelectParents(P ); � Select parents individuals
6: P ′′ ←Recombination(P ′); � Generate new offspring from P ′

7: P ′′ ←Mutation(P ′′); � Apply mutation to P ′′

8: P ′′ ←EvaluateFitness(P ′′); � Evaluate the offspring population
9: P ←SelectNextPop(P ∪ P ′′); � Select the next population from union of P ∪ P ′′

10: end while
11: End

attention over the last decades. Many surveys about EAs and its successful ap-

plication in combinatorial optimization problems are found in [Bäck 1996] and

[Bianchi et al. 2009]. There are also many successful applications in constrained

optimization [Coello Coello 2002] and multibjective optimization which are one

of the current trends in developing EAs [Coello et al. 2007]. In the following sec-

tions, a brief discussion on both genetic algorithms and evolutionary strategies

is involved.

3.6.1.1 Genetic Algorithms

Genetic algorithms (GA) [Holland 1975] are considered as the most well known

evolutionary optimization techniques. The typical Genetic Algorithm (GA) con-

sists of a number of steps on its way to finding the preferred solutions which

include the characteristic procedures that an EA runs through [Coello 2000a,

Deb 2001, Fonseca & Fleming 1995, Goldberg 1989, Michalewicz 1996]. These

steps can be summarized as follows:

• Representing (encoding) solutions of the problem on hand as a population

of individuals.

• A way to initialize the population of individuals.

• A fitness function which returns a rating for each individual.

• Evolutionary operators (selection, crossover and mutation) that may be

applied to parents individuals to create offspring.

• Termination criteria for the algorithm.

Here, the basic steps of GA are described in more details as follows.
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1. Encoding solutions and initializing population: GAs needs a way to

represent information in the individual. According to the tackled problem, there

are several ways for representation. The most commonly used representation

techniques are binary encoding in which the individual is represented by string

bits, 0 or 1, floating point encoding in which the real values is used directly to

represent the decision variables and permutation encoding in which a sequence of

numbers is used to represent the decision variables. After choosing the encoding

method, a population of solutions must be initialized to operate on it. The

initial population should be as diverse as possible to cover the different regions

in the search space. The most common ways to initialize populations is random

generation or using the constructive heuristics. There are no hard rules for

determining the size of the population. Generally, larger populations guarantee

greater diversity, but they use more computer resources.

2. Fitness evaluation: In this step, the quality of an individual x, is measured

by a fitness function, f(x). The fitness value of each individual is calculated by

the fitness function, and is not necessarily equal to the objective value. This

step plays the most important role for selection in the next step. The constraints

can also be handled in this step by using penalty functions to penalize potential

solutions that are infeasible by degrading their fitness values.

3. Selection: The selection operator is intended to improve the average quality

of the population by giving individuals of higher quality a higher probability of

survival. Thereby, selection acts as an intensification strategy through focusing

the search on promising regions in the search space. The objective of the selection

method is to assign individuals with the largest fitness a higher probability of

reproduction. There are different kinds of selection operators, e.g., Tournament

and Roulette Wheel Selection [Goldberg 1989, Deb 2001]. In Tournament Selec-

tion, k individuals are chosen at random and the best one is selected to survive

into the next generation, whereas in Roulette Wheel Selection, each population

member is assigned a proportion of the Roulette Wheel equal to the ratio of its

fitness to the sum of the entire population’s fitness as depicted in Fig.3.6. To re-

duce the bias of the roulette selection strategy, the stochastic universal sampling

(SUS) may be used. An outer roulette wheel is placed around the pie with k

equally spaced pointers. In the SUS strategy, a single spin of the roulette wheel

will simultaneously select all the k individuals for reproduction.

Depending on the problems and their restrictions, certain characteristics can be

applied on the selection process. If elitism is implemented, some high quality

individuals will be selected to survive from one generation to the next one. If

the selection operator uses much selection pressure, i.e., it emphasizes the popu-

lation’s best solution by assigning many copies of it, the algorithm will lose the
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diversity of its solutions very quickly. On the other hand, if the selection pressure

is very low, the method will behave like a random search. The handling of the

constraints can also be carried out in the selection step [Deb 2001]. This method

compares two selected individuals, if both of them are feasible, the individual

with “better” fitness value is selected. In the case that one of them is infeasi-

ble, the feasible individual is selected and when both of them are infeasible, the

individual with smaller overall constraint violation is chosen.

A 

B 

C 

D 

Roulette wheel  
selection 

A 

B 

C 

D 

Stochastic universal 
sampling 

Outer 

Individuals A B C D 

Fitness 4 3 2 1 

Probability 0.4 0.3 0.2 0.1 

Figure 3.6: Roulette Wheel Selection vs. stochastic universal sampling

4. Crossover: Crossover is a process in which new individuals are gener-

ated by exchanging features of the selected parents to producing new offspring

that explore new points in the search space, with the intent of improving the

fitness of the next generation. The primary exploitation operator in genetic al-

gorithms is crossover, a version of artificial mating. There are various types of

crossover operators, depending on the encoding of individuals, the problem, the

search space, and many other parameters. For example, the crossover opera-

tors for string (bit-string or integer value) individuals are: single point, mul-

tiple point, and uniform [Michalewicz 1996], whereas, for real-valued individ-

uals the crossover operators such as: the average crossover[Nomura 1997], the

heuristic crossover [Wright et al. 1991], the flat crossover [Radcliffe 1991], the

blend crossover (BLX-α) [Eshelman & Schaffer 1993], the intermediate crossover

[Voigt et al. 1995], the simulated binary crossover(SBX) [Deb & Agrawal 1995],

the uni-modal distribution crossover (UNDX) [Ono et al. 2003], the simplex

crossover(SPX) [Tsutsui et al. 1999a] and the parent centric crossover(PCX)

[Deb et al. 2002]. Indeed, the main idea in utilizing crossover is examining the

search space locally. This is particularly achieved for bit-string coding of in-

dividuals. The crossover operator is usually applied on two randomly selected

individuals with a probability of PC [Spears 2000].

• Single point crossover: This is achieved by randomly choosing a crossing

point along the string. All the string elements (bits) following the crossing

point are exchanged. Fig.3.7 shows this type applied on bit-string.
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• n-point crossover: This operator functions similarly to the single point

cross-over operator, except that n crossover points are randomly chosen.

The segments of the string between the n points are exchanged. Fig.3.7

depicts this type applied on permutation string with n = 2.

• Uniform crossover: This operator is the extreme version of the previous

operators. It randomly chooses different bits from each of the parents,

with equal probabilities.

• Simulated binary crossover (SBX): This operator is introduced by Deb et

al. [Deb 2001] for real vector individuals. Indeed, SBX simulates the single

point crossover on real vectors.

Parent 1 0 1 1 1 1 0 1 

Parent 2 1 1 0 0 1 1 1 

0 1 1 1 1 1 1 Offspring1 

Cross-point 

Parent 1 1 3 9 5 8 2 4 

Parent 2 1 2 8 9 5 6 7 

CP1 CP2 

1P-Xover 
1 1 0 0 1 0 1 Offspring2 

1 3 8 9 5 2 4 Offspring1 
2P-Xover 

1 2 9 5 8 6 7 Offspring2 

Figure 3.7: One and two points crossover for binary and permutation strings

5. Mutation: Mutation operators are applied on the individuals of a popula-

tion with a certain probability Pm. There are different mutation operators de-

pending on the encoding of the individuals [Spears 2000]. For bit-string individu-

als, Mutation changes a bit from 0 to 1 and vice versa, whereas in real individuals

a mutated variable is replaced by a new random variable as depicted in Fig.3.8.

There are many mutation operators reported in the literature, such as uniform,

non-uniform, whole non-uniform, boundary mutation [Michalewicz 1996], and

polynomial mutation [Deb & Agrawal 1995]. The aim of mutation is to apply a

sudden large change on the individuals for performing global searching.

0 1 1 1 1 0 1 1 Mutation 0 1 0 1 1 1 1 1 

6.2 3.1 7.3 8.5 Mutation 6.2 3.1 4.7 8.5 

Figure 3.8: Mutation on binary and real value encoding
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6. Termination: Generally in EAs, the algorithm still run until satisfying a

stopping condition. Termination criteria can be defined by a maximum number

of generations (or function evaluations) or when there has been no change in

the population for a given number of generations. In this case, reproduction

operators will have no further effect.

The general GA structure is described in Alg.3.12. Firstly, GA encodes and ini-

tializes a population of individuals to start the search process. Each individual

in the initial population is evaluated through computing its fitness. At each it-

eration, the genetic operators is applied to the current population for generating

new individuals. First, the parent individuals are chosen by selection opera-

tor. Then, the new generated individuals are created by applying crossover in

which two or more selected parent individuals are recombined to produce one

or more new individuals (offspring). Mutation operator is also applied to make

a self-adaptation of the offspring. The resulting offspring are evaluated and a

suitable selection strategy is then applied to determine which individuals will

be maintained into the next generation. This evolutionary process is continued

until a termination condition is satisfied. Many variants of GAs have been devel-

Algorithm 3.12 Genetic Algorithm (GA)

1: Begin:
2: P ←EncodeAndInitializePopulation( );
3: P ←FitnessEvaluation( );
4: repeat:
5: Parents ←Selection(P );
6: P ′ ←Crossover(Parents);
7: P ′′ ←Mutation(P ′);
8: P ′′ ←FitnessEvaluation( );
9: P ←SelectTheFittest(P ,P ′′);
10: until termination condition is satisfied
11: End

oped and applied to a wide range of optimization problems including hybrid GAs

[Sinha & Glodberg 2003] and multiobjective optimization [Konak et al. 2006].

3.6.1.2 Evolutionary Strategies

Like genetic algorithms, Evolutionary Strategies (ES) are a subclass of Evo-

lutionary Algorithms which are originally developed in [Rechenberg 1965,

Rechenberg 1973]. While genetic algorithms emphasize recombination (high

crossover probability) as the main search mechanism and usually use self-

adaptation (low mutation probability) only as a supportive mechanism, evolu-

tionary strategies emphasize both mechanisms as fundamental for searching. In

most cases, ESs are applied to tackle continuous optimization where real-values

are used to represent individuals. ESs operate on two distinct postulations, one
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for the parents individuals and the other for the generated offspring. They usu-

ally depends specific Gaussian distributed mutation and sometimes Crossover to

generate of offspring from parents population. An elitist replacement is then also

used to keep the best individuals to be the parents for the next generation. The

basic notation (μ+ λ)ES where μ is the number of parents and λ is the number

of offspring (usually λ ≥ μ), represents an evolutionary strategy that in each

generation selects the best μ individuals from the μ+λ individuals (parents and

offspring) in total. The modified notation (μ, λ)ES indicates that λ offspring are

generated from the μ parents but the best μ individuals are selected only from

the λ offspring. Other two well-known ES notation are known as (μ/ρ+ λ) and

(μ/ρ, λ) in which the parameter ρ refers to the number of parents involved in

the procreation of one offspring. The genral frame work of ES is described in

Alg.3.13

As mentioned, the mutation in ES follows normal distribution with zero mean

and standard deviation r, which controls the mutation step size. The parameter

r can be kept constant or dynamically adjusted by assigning different values

depending on the number of generations or by incorporating feedback from the

search process.

Algorithm 3.13 Evolutionary Strategies (ES)

Inputs: μ: number of parents, λ: number of offspring

1: Begin:
2: P ←InitializePopulation(μ); � Generate μ parent individuals
3: P ←Evaluation(P ); � Evaluate the μ individuals
4: while stopping criterion not met do:
5: P ′ ←GenerateOffspring(P, λ); � Generate λ offspring from μ parents
6: P ′ ←Evaluation(P ′); � Evaluate the λ individuals
7: P ←Elitism(P, P ′); � Choose the best μ individuals from parents and offspring
8: end while
9: End

More details about theoretical investigation of evolutionary search strate-

gies on a variety of problem classes that have contributed can be found in

[Beyer & Schwefel 2002, Kramer 2010].

3.6.2 Other Evolutionary Algorithms

In this section, some of the others evolutionary algorithm are described. these

algorithms includes differential evolution, scatter search, path relinking and

mimetic algorithms.
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3.6.2.1 Differential Evolution

Differential evolution (DE) is considered as one of the most powerful approaches

for tackling continuous global optimization [Price et al. 2005]. DE adopts the

concept of a larger population from GA beside self-adapting mutation from ES

[Storn & Price 1995, Storn & Price 1997]. Since It was proposed to solve Cheby-

cheff polynomial fitting problem [Storn & Price 1997], DE has become a very

reliable strategy for many different optimization tasks. The basic idea of DE is

based on the so-called differential mutation which refers to using vector differ-

ences for perturbing the vector population. The differential mutation has been

integrated in a novel recombination operator of two or more solutions in order

to direct the search towards high quality solutions.

As any evolutionary algorithm, DE operates on a population of candidate solu-

tions for the optimization problem to be solved. The initial population is ran-

domly initialized in the beginning of the evaluation process. At each iteration,

the recombination operator which composed of differential mutation followed by

crossover is applied for generating new individuals which are evaluated to deter-

mine their fitness. Each individual (target individual) of the population competes

against a new generated individual (trial individual) to determine which one will

be maintained into the next generation. The trial individual is produced by

recombining a target individual with the so-called “mutant individual” which is

created by applying the differential mutation. In order to explain this process in

details, Assume P = {x1, x2, ..., xN} is a population ofN target individuals where

each ith individual xi = (x1
i , x

2
i , ..., x

n
i ) consists of n components, ∀i ∈ {1, ..., N}.

For each target individual xi ∈ P , a new trial individual ui is generated through

applying the differential mutation on a number of selected distinct target indi-

viduals, followed by crossover as explained in the following subsections:

Differential mutation

The simplest form of this operation is that a mutant individual vi for each

target individual xi ∈ P is generated by multiplying the amplification factor F

by the difference of two random individuals (xr2, xr3), and the result is added to

another third random individual xr1, as shown below:

vi = xr1 + F × (xr2 − xr3) (3.5)

where r1, r2, r3 ∈ {1, 2, ..., N}are random indexes such that r1 �= r2 �= r3 �= i.

The scaling factor F ∈ [0, 1] is a control parameter for scaling the difference

vector. This operation enables DE to explore the search space and maintain

diversity. There are many strategies for implementing differential mutation ac-

cording to which individual to be mutated and the number of difference vector
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used. The general mutation strategy denoted as “DE/x/y”, where x represents

the individual to be mutated, y denotes the number of difference vectors used.

For instance, DE/rand/1 [Storn 1996], DE/best/1 [Storn 1996], DE/rand-to-

best/2 [Qin et al. 2009], rand/2/dir [Mezura-Montes et al. 2006], DE/current-

to-rand/1[Iorio & Li 2004], DE/current-to- best/1 [Price et al. 2005]. There are

also other mutation strategies, such as best/n/bin, rand/n/bin, best/n/exp,

rand/n/exp, ”current-to-rand/n”, and ”rand-to-current/n”, where n can be equal

to any integer value [Price et al. 2005].

Crossover

After producing the mutant individual vi corresponding to the target individual

xi, Crossover operator is applied on both to yield the trial individual ui. The two

different schemes to implement crossover are exponential and binary crossover as

described in the following paragraphs. The DE family of algorithms commonly

uses one of those schemes although it is known that binomial is generally better

than exponential.

Exponential crossover: In this crossover scheme, a random index l ∈
{1, ..., n} is selected, where n represents the individual length. This index acts as

a starting point in the target individual, from where the crossover or exchange

of components with the donor individual starts. Another integer L ∈ {1, ..., n}
is also chosen to represent the number of components that the donor individual

actually contributes to the target. After the generation of l and L, the trial

individual is obtained as:

uj
i =

{
vji for j = 〈l〉n , 〈l + 1〉n , ..., 〈l + L− 1〉n
xj
i for all other j ∈ {1, ..., n} (3.6)

where i ∈ {1, 2, ..., N}, is individuals’ index, j ∈ {1, 2, ..., n}, is components’

index, the angular brackets 〈l〉n denote a modulo function with modulus n, with

a starting index l.

Binomial crossover: In this crossover scheme, for each component j ∈
{1, ..., n}, a random number rand(j) ∈ [0, 1] is generated. The jth component

is exchanged if the random number rand(j) is less than or equal to a crossover

rate (CR). In this case, the number of components inherited from the donor

individual has a (nearly) binomial distribution

uj
i =

{
vji if rand(j) ≤ CR, orj = jrand

xj
i otherwise, ∀j = 1, ..., n.

(3.7)
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where rand ∈ [0, 1], and jrand ∈ {1, ..., n} is a randomly chosen index, which

ensures the trial individual ui gets at least one component from the mutant

individual vi.

Finally, after obtaining the trial individual ui, its important to decide whether

or not it should become a member of the current population. To do so, the trial

vector uj
i is compared to the target vector xj

i using the fitness function evaluation

as descried in formula (3.8). The whole DE algorithm process is also showed in

Alg. (3.14)

xi =

{
ui if f(ui) < f(xi)

xi otherwise
(3.8)

Algorithm 3.14 Differential Evolution (DE)

Inputs: N : Population size, F : Scaling factor, CR: Crossover rate

1: Begin:
2: P = {x1, ..., xN} ←InitializePopulation( );
3: while termination conditions not met do:
4: for each i ∈ {1, ..., N} do: � for each target individual xi

5: xr1, xr2, xr3 ←SelectAtRandom(P ); � Where: i �= r1 �= r2 �= r3
6: vi ←ApplyDiffrentialMutation(xr1, xr2, xr3, F ); � mutant individual vi
7: ui ←ApplyCrossover(xi, vi, CR); � trial individual ui

8: if f(ui) < f(xi)) then � if ui is better than xi

9: xi ← ui; � update P by replacing xi with ui

10: end if
11: end for
12: end while
13: End

According to the strategy implemented in differential mutation and also the type

of crossover used, different variants of DE have been suggested [Price et al. 2005].

As mentioned in differential mutation, the General notation used to express a

DE variant is “DE/x/y/z”, where x specifies the individual to be mutated, which

currently can be rand (a randomly chosen individual) or “best” (the best indi-

vidual in the current population), y is the number of difference vectors used, and

z denotes the crossover scheme. The simplest and the most commonly used DE

variant is “DE/rand/1/bin”.

As discussed above, DE has only three input control parameters, the population

size N , the scaling factor F , and the crossover control parameter CR. These

parameters my be kept fixed during the optimization process. Therefore, vari-

ous strategies is proposed [Liu & Lampinen 2005, Teng et al. 2009] to make the

setting of the parameters self-adaptive according to the learning experiences.

Due to the success of DE in tackling single-objective optimization problems in

continuous search spaces, It is extended to handle other problems as multi-
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objective optimization [Mezura-Montes et al. 2008] and combinatorial problem

[Zhang et al. 2009, Kafafy et al. 2012a]. Several modified versions of DE are

available in literature for improving the performance of basic DE including hy-

bridized versions, where DE is combined with some other algorithm to produce a

new algorithm. we refer to [Chakraborty 2008, Neri & Tirronen 2010] for a more

details of many of the existing variants and applications of DE.

3.6.2.2 Scatter Search

Scatter search (SS) is a population based metaheuristic in which the search pro-

cess depends on maintaining a set of high-quality and diversified solutions called

“reference set”. The new solutions are generated through combining their parents

solutions which are selected from the reference set [Laguna et al. 2003]. In SS

algorithm, an initial population satisfying the conditions of diversity and quality

is generated. The reference set of small size is then constructed by selecting good

representative solutions from the population. The reference set is used to con-

struct subsets of selected solutions for combination. The selected solutions are

combined to provide starting solutions to an improvement procedure by means

of local search before using them to update the reference set. According to the

result of the improvement procedure, the reference set and even the population of

solutions are updated to incorporate both high-quality and diversified solutions.

The process is iterated until a stopping criterion is satisfied. SS provides diver-

sification and intensification to the search process through using the diversified

reference set and applying local search to improve the solutions’ quality.

Algorithm 3.15 Scatter Search (SS)

1: Begin:
2: P ←CreateDiversifiedPopulation( ); � By using greedy heuristics
3: P ←Improvement(P ); � By using local search means
4: RefSet ←UpdateRefrenceSet(P ); � keep high quality and diversified sols.
5: while termination conditions not met do:
6: SubSets ←SubsetsGeneration(P );
7: repeat:
8: Sols ←SolutionCombinations(SubSets);
9: P ←Improvement(Sols); � By using local search means & update P
10: until termination condition 1 is met
11: RefSet ←UpdateRefrenceSet(P );
12: end while
13: End

The main steps of the Scatter Search algorithm are presented in Alg. 3.15. They

involve different procedures which are explained in the following:

• CreateDiversifiedPopulation(): This procedure generates a set of
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diverse initial solutions using for example greedy procedures to diversify

the search.

• Improvement(): In this procedure, local search strategies are applied on

trial solutions for obtaining local optima.

• UpdateRefrenceSet(): This procedure collects the best solutions in

terms of both quality and diversity to update the reference set RefSet.

• SubsetsGeneration(): This procedure operates on the reference set

RefSet to produce subsets of solutions for creating new trial solutions.

• SolutionCombination(): In this procedure, a given subset of solutions

are combined using for example linear combinations or generalized rounding

to discrete variables, for producing new trial solution. The linear combi-

nations are chosen to produce points both inside and outside the convex

regions spanned by the reference solutions in Euclidean space. The path

relinking strategies can also be attended in this task. That is, the path

between two solutions will generally yield solutions that share common

attributes with the input solutions in the neighborhood space.

SS has been successfully applied to a wide range of applications, a detailed

overview and references on these methods are provided in [Glover et al. 2003].

The basic principles of SS and its recent works can be found in

[Laguna et al. 2003] and [Resende et al. 2010b] respectively.

3.6.2.3 Path Relinking

Path relinking (PR) metaheuristic was proposed in the context of scatter search

and tabu search [Glover 1996, Glover et al. 2000]. The main idea of path re-

linking is to investigate the trajectory in the search space connecting a starting

solution s and a target solution t. This can be accomplished by selecting moves

that introduce attributes contained in the target solutions, and incorporating

them in an intermediate solution initially originated in the starting solution.

Thus, the path between two solutions in the search space (neighborhood space)

will generally provide solutions that share common attributes with the input so-

lutions. However, PR attempts to find the best solution found in the sequence of

neighboring solutions in the decision space which are generated from the start-

ing solution to the target solution. The general template of the PR procedure is

presented in Alg. 3.16. Initially, an intermediate solution x is initialized by the

starting solution s. At each iteration, the best move m in terms of the objective

function and decreasing the distance between the two solutions x and t is selected

and applied to x. This is repeated until the distance is equal to 0. finally, the

best solution found in the explored trajectory is returned. Fig. 3.9 depicts this

process.
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Figure 3.9: Path Relinking strategies

Algorithm 3.16 Path Relinking (PR)

Inputs: s: starting solution, t: target solution

1: Begin:
2: x ← s; � initialize intermediate solution x
3: while dist(x, t) �= 0 do:
4: m ←FindTheBestMove(x, t); � the best move that decreases dist(x, t)
5: x ←ApplyMove(x,m); � Apply the move m to x
6: end while
7: End

In PR metaheuristic, for each pair of solutions s and t, several strategies to select

the starting and the target solution are found. Some of these ways are described

as follows:

• Forward : In this strategy, the relinking process starts from the worst solu-

tion among s and t.

• Backward : The relinking process in this strategy starts from the better

solution among s and t. As starting from the best gives the algorithm a

better chance to investigate in more details the neighborhood of the most

promising solutions, the backward strategy is in general better than the

forward one [Ribeiro et al. 2002].

• Backward and forward relinking : In this strategy, two paths are constructed

in parallel, using alternatively s as the starting and the target solutions.

This means, an additional computation time overhead which is not surely

balanced by the quality of the obtained solutions.

• Mixed relinking : As in the backward and forward relinking strategy, two

paths are constructed in parallel from s and t but the guiding solution is

an intermediate.

Moreover, Path-relinking extensions to multiobjective are found in

[Zeng et al. 2013a, Zeng et al. 2013b].
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3.6.2.4 Memetic Algorithms

The term memetic algorithms (MA) has been used to identify a broad class of hy-

brid metaheuristics: evolutionary algorithms that incorporate local search heuris-

tics, specialised recombination/mutation operators and/or other “helpers” specif-

ically designed to exploit the knowledge of the problem domain [Moscato 1989,

Moscato 1999]. While genetic algorithms are inspired by the metaphor of genes,

memetic algorithms are inspired by the metaphor of memes. A gene is the unit of

genetic information that is propagated biologically between generations during

the evolution process. A meme is the unit of conceptual information (knowl-

edge, ideas, behaviour, customs, etc.) that is transmitted by imitation from

one generation to the next one. Then by incorporating the available knowl-

edge about the problem into an evolutionary algorithm, the working metaphor

is that of evolving a population both biologically and culturally. Since the term

memetic was introduced some time after researchers have started to study this

kind of hybrids, it is common that names such as genetic local search, hybrid

genetic algorithms and others are used when referring to memetic algorithms

[Reeves 1996, Falkenauer 1996, Burke & Smith 2000, Jaszkiewicz 2002a].

3.6.3 Swarm Intelligence

Swarm Intelligence (SI) algorithms[Pinto et al. 2005, Runkler 2008] is an inno-

vative distributed intelligent paradigm for solving optimization problems that

takes inspiration from the collective behavior of a group of social insect colonies

and of other animal societies. SI Algorithms consist of a population of simple

agents that cooperate by an indirect communication medium, and do movements

in the decision space. Although there is normally no centralized control structure

dictating how individual agents should behave, local interactions between such

agents often lead to the emergence of global and self-organized behavior. Among

the most successful swarm intelligence inspired optimization algorithms are ant

colony and particle swarm optimization.

3.6.3.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population-based metaheuristic inspired

from swarm intelligence [Eberhart et al. 2001]. It was initially introduced in

[Kennedy & Eberhart 1995] as a global optimization technique and soon became

a very popular global optimizer, mainly in problems in which the decision vari-

ables are real numbers [Eberhart et al. 2001, Engelbrecht 2007]. PSO simulates

the social behavior of natural organisms such as bird flocking and fish schooling

to solve optimization problems. It has been successfully designed for continuous

optimization problems. PSO consists of a population of particles, which contrary
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to EA, survive up to the last generation. Each particle is a candidate solution to

the problem, and is represented by a velocity, a position in the search space and

has a memory which helps it in remembering its previous best position. The par-

ticles search the decision space by flying with a special speed (velocity) towards

their “guide” by using their experience from the past generations. Moreover,

every particle swarm has some sort of topology describing the interconnections

among the particles. The set of particles to which a particle i is topologically

connected is called i′s neighborhood. Thus, the particle in the swarm can in-

terchange the information with every particle belongs to its neighborhood. The

neighborhood may be the entire population or some subset of it. The two most

commonly used neighborhood topologies are known as gbest (for “global best”)

and lbest (for “local best”). In the global one, particles are moving to the best

particle that has been found so far. This leads the algorithm to have a quick

convergence pattern. However, it may thus become trapped in local optima. On

the other hand, in the local PSO, each particle’s velocity is adjusted accord-

ing to both its personal best and the best particle within its neighborhood. In

this variant, the algorithm can escape from getting stuck in local optima, but

it may suffer from a slower convergence pattern [Liang & Suganthan 2006]. The

effects of various population topologies on the particle swarm algorithm were

investigated in [Kennedy & Mendes 2002].

A PSO method can be formulated as follows. A set of N particles are considered

as a population Pt in the generation t. Each particle i in n-dimensional decision

space S has a position defined by xi = (xi1, ..., xin) and a velocity defined by

vi = (vi1, ..., vin). At each generation t, Each particle i successively adjusts its

position xi toward the global optimum according to the following two factors:

the best position visited by itself (personal best) denoted as xpb
i = (xpb

i1 , ..., x
pb
in)

and the best position visited by the whole swarm (gbest) (or lbest, the best

position visited by its neighborhood denoted as xlb
i = (xlb

i1, ..., x
lb
in)) denoted as

xgb
i = (xgb

i1 , ..., x
gb
in). Thus, the velocity vi and the position xi at generation t + 1

can be calculated as follows:

vi(t+ 1) = w × vi(t) + c1r1(x
pbest
i − xi(t)) + c2r2(x

gbest
i − xi(t)) (3.9)

xi(t+ 1) = xi(t) + vi(t+1) (3.10)

where, vi(t) is the velocity of particle i at generation t, and vi ∈ [−vmax, vmax]

keep the particles from flying out of the problem space, w is the inertia weight

factor, c1, c2 are the acceleration coefficients, r1, r2 are uniform random numbers

within [0, 1]. The lbest PSO can be obtained by replacing xgbest
i in formula (3.9)

with xlbest
i for each particle i.

However, there are three fundamental elements for the calculation of the next
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position of a particle: according to its own velocity, towards it best performance

and the best performance of its best informant. The way in which these three

vectors are combined linearly via confidence coefficients is the bases of all the

versions of the classic PSO. The three fat arrows represent such combination,

which will give the next position of the particle. Fig.3.10 shows this process.
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Figure 3.10: Changing particles’ positions in PSO

In PSO, the performance of each particle is measured according to a predefined

fitness function, which is related to the problem to be solved. Alg.3.17 summa-

rizes the structure of the general PSO algorithm.

Algorithm 3.17 Particle Swarm Optimization(PSO)

1: Begin: t ← 0;
2: for each Particle i ∈ {1, ..., N} do: � for each particle xi

3: xi(t) ←InitializeParticle( ); � initialize particles positions
4: vi(t) ←InitializeVelocity( ); � initialize velocity
5: f(xi(t)) ←Evaluation(xi(t)); � Evaluate particle xi

6: end for
7: while t < tmax do:
8: for each Particle i ∈ {1, ..., N} do: � for each particle xi

9: vi(t+ 1) ←AdaptVelocity(vi(t), xi(t), x
pbest
i , xgbest

i ); � use formula 3.9
10: xi(t+ 1) ←UpdatePositions(vi(t+ 1), xi(t)); � use formula 3.10
11: f(xi(t+ 1)) ←Evaluation(xi(t+ 1)); � Evaluate particle xi

12: if f(xi(t+ 1)) < f(xpbest
i ) then: xpbest

i ← xi(t+ 1); � update personal best

13: if f(xi(t+ 1)) < f(xgbest
i ) then: xgbest

i ← xi(t+ 1); � update global best
14: end for
15: t ← t+ 1; � update iteration counter
16: end while
17: End

The inertia weight w is employed to control the impact of the previous history of

velocities on the current velocity, thus to influence the trade-off between global
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and local exploration abilities of the particles [Shi & Eberhart 1998]. A larger

inertia weight w facilitates global exploration (i.e., diversifies the search in the

whole search space) while a smaller inertia weight tends to facilitate local explo-

ration to fine-tune the current search area (i.e., intensifies the search). Suitable

selection of the inertia weight w can provide a balance between global and lo-

cal exploration abilities and thus requires less iterations on average to find the

optimum. Rather than applying inertia to the velocity memory, an alternative

version of PSO proposed in [Clerc & Kennedy 2002], in which a constriction fac-

tor τ is applied for the velocity adjustment as given as follows:

vi(t+ 1) = τ × [vi(t) + c1r1(x
pbest
i − xi(t)) + c2r2(x

gbest
i − xi(t))] (3.11)

where τ = 2

|ϕ−2+
√

ϕ2−4ϕ|
and ϕ = ϕ1+ϕ2, ϕ > 4. This version of PSO eliminates

the parameter vmax, where ϕ = 0.729, while c1 = c2 = 1.49445.

The effectiveness of the particle swarm algorithm comes from interactions of par-

ticles with their neighbors. As one particle discovers an optimum, it becomes

the best in the neighborhood and attracts (guides) the other particles to itself.

Indeed, there is no selection process in a PSO method, unlike EAs. One of the

drawbacks of the standard PSO is premature convergence and trapping in local

optima. More research has been developed to provide PSO convergence results

through understanding theoretically how PSO algorithm works and why under

certain conditions it might fail to find a good solution [Clerc & Kennedy 2002,

van den Bergh & Engelbrecht 2006]. Moreover, considerable research has been

also conducted into further refinement of the original formulation of PSO in

both continuous and discrete problem spaces[Kennedy & Eberhart 1997], and

areas such as parallel implementation [Banks et al. 2007] and MultiObjective

Optimization [Reyes-Sierra & Coello 2006]. Modified versions of PSO based

on diversity, mutation, crossover and efficient initialization using different dis-

tributions and low-discrepancy sequences are discussed in [Pant et al. 2009].

Finally, a large number of hybrid variants have been proposed, such as

[Valdez et al. 2011, Idoumghar et al. 2011, Dor et al. 2012].

3.6.3.2 Ant Colony Optimization (ACO)

The ant colony optimization (ACO) [Dorigo et al. 1996] is a metaheuristic in-

spired by the collective behavior of ants when finding the shortest path between

a food source and their nest. When searching their food, these ants initially

explore the area surrounding their nest by performing a randomized walk. while

exploring paths, ants deposit a volatile substance called pheromone for marking

some favorable paths that should guide other ants to the food source. They use

the amount of pheromone deposited to decide which path to follow. After some
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time, and due to the pheromone evaporation as time passes, the shortest path

between food source and the nest will have high level of pheromone concentra-

tions, and therefore it becomes more attractive to more ants. An ant colony

optimization algorithm exploits this idea to tackle hard combinatorial optimiza-

tion problems. The algorithm emulate the idea through developing the so-called

a parametrized probabilistic model (pheromone mode) that consists of a set of

parameters (pheromone values) act as the memory that keeps track of the search

process. ACO consists of a set of artificial ants that incrementally construct so-

lutions by adding components to their solutions. This can be done through an it-

erative process composed of two steps. In the first step, solutions are constructed

using a pheromone model, that is, a parametrized probability distribution over

the solution space. The constructed solutions and possibly solutions that were

constructed in earlier iterations are used to modify the pheromone values in a

way that is deemed to bias future sampling toward high quality solutions.

The general framework of a basic ACO metaheuristic is described in Alg. 3.18.

After initializing pheromone values, ACO iterates over three steps until stopping

criterion. The first step is the module AntBasedSolutionConstruction()

in which a set of solutions to the tackled problem is probabilistically constructed

from a set of solution components using artificial ants. Then, the pheromone

values are updated by the module PheromoneUpdate() in the second step.

A standard pheromone update consists of two mechanisms: pheromone evapora-

tion and pheromone deposit. First, a pheromone evaporation, which uniformly

decreases all the pheromone values, is performed. Practically, pheromone evapo-

ration is needed to avoid a premature convergence of the algorithm to suboptimal

solutions and then favoring the exploration of unvisited areas of the search space.

The pheromone deposit is applied after all ants have finished constructing a so-

lution. The pheromone values are increased on solution components that are

associated with a chosen set of high quality solutions. The goal is to make these

solution components more attractive for ants in the following iterations. Many

different schemes for pheromone update have been proposed within the ACO

framework. Finally, Daemon actions are optional steps that refer to any central-

ized operation which cannot be performed by a single ant. The most used daemon

action consists in the application of local search to the constructed solutions.

A recent overview of ACO can be found in [Dorigo & Stutzle 2010]. It reveals

that the majority of the currently published articles on ACO are clearly on its

application to computationally challenging problems. For more details on ACO

algorithm and its applications, we refer to [Dorigo et al. 1996, Blum & Roli 2001]

and [Gambardella & Dorigo 2000, Merkle et al. 2002, Shmygelska & Hoos 2005]
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Algorithm 3.18 Ant colony optimization(sol)

1: Begin:
2: InitializePheromoneValues( );
3: repeat:
4: AntBasedSolutionConstruction( );
5: PheromoneUpdate( );
6: DaemonActions( );
7: until termination condition is met
8: End

3.7 Multiobjective Metaheuristics

Solving multiobjective optimization problems using metaheuristics becomes an

active research filed, especially population-based metaheuristics as they can si-

multaneously explore the search space with achieving convergence to the true

Pareto front and uniform diversity. The multiobjective metaheuristic algorithm

involves three basic search components. These components are the fitness as-

signment strategy, diversity preservation and elitism. Fitness assignment assigns

a scalar-valued fitness to a vector objective function in order to guide the search

algorithm toward Pareto optimal solutions. Diversity preservation strategy helps

to generate a diverse set of Pareto solutions in the objective and/or the decision

space. The elitism strategies tries to maintain and use the elite solutions for

improving the performance of a metaheuristic algorithm. These components are

briefly discussed in the following.

3.7.1 Fitness assignment strategies

Fitness assignment is used to map the vector fitness to a scalar value which is

used to measure the solution quality. The fitness assignment strategies used in

multiobjective metaheuristics contain four basic categories as explained in the

following.

• Scalar approaches : These strategies are essentially based on converting

the MOPs into single objective problems and then the metaheurstic al-

gorithms are applied to the single objective problem. These strategies in-

clude the scalarization techniques explained in section 2.7.1. As mentioned,

these methods need the decision maker to have good information about the

problem. The most common metaheuristics based on these strategies are

MOSA (multiobjective simulated annealing) algorithm [Ulungu et al. 1999]

and MOTS (Multiobjective Tabu Search) algorithm which is a one of the

first scalar approaches adapted to tabu search [Hansen 1997].

• Criterion-based approaches : In these strategies, the search is performed



76 Chapter 3. Optimization Metaheuristics: A Survey

by treating the various objective functions separately such as the paral-

lel selection in evolutionary algorithms, parallel pheromone update in ant

colony optimization, and lexicographic ordering. The most common par-

allel selection in evolutionary algorithms designed in the vector evaluated

GA [Schaffer 1985], in which the individuals are selected from the current

population according to each objective, independently from the other ones.

In sequential or Lexicographic Approaches, the search process is performed

according to a given preference order [Fishburn 1974] of the objective de-

fined by the decision maker.

• Pareto-based approaches : Unlike the other approaches that use scalariza-

tion or treat the objectives separately, these strategies use the concept of

dominance and Pareto optimality to guide the search process as introduced

in [Goldberg 1989]. Thus, there is no need to transform the MOP into a

single objective one. These approaches deal simultaneously with a set of

solutions that allow to find several members of the Pareto optimal set in

a single run of the algorithm. They also have the ability to reach Pareto

solutions in the non-convex portions of the Pareto front. The commonly

used approaches use these fitness assignment are NSGA-II and SPEA2.

To guide the search toward the true Pareto front, several Pareto rank-

ing procedures are applied. The most popular dominance-based ranking

procedures are dominance rank, dominance depth and dominance count

[Zitzler et al. 2004]. In dominance rank, each solution is ranked based on

number of solutions in the population that dominate it. Whereas in dom-

inance depth, the population is decomposed into several fronts. The first

front which has rank 1 is constructed from the nondominated solutions of

the population. This front is eliminated form the population. The second

front which has rank 2 is calculated by the same manner and the process

is continued until obtaining empty population. In the dominance count,

each solution takes a rank based on the number of solutions dominated by

it (see Fig.3.11).
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Figure 3.11: Some dominance-based ranking methods
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• Indicator-based approaches: In these strategies, a performance quality in-

dicator [Zitzler et al. 2004] is adopted to guide the search process toward

the Pareto front. Several advantages gained by these approaches as incor-

porating the decision maker preferences into the optimization algorithm

and there is no need to use diversity maintenance.

3.7.2 Diversity preservation

In order to obtain a good approximation to Pareto front, it is important in pop-

ulation based metaheuristic to preserve the diversity of the population during

the search process. The fitness assignment methods tend to favor the conver-

gence toward the Pareto optimal front. However, these methods are not able to

guarantee that the approximation obtained will be of good quality in terms of di-

versity, either in the decision or objective space. There are several methods used

to preserve the diversity in population based metaheuristics. These methods can

be classified into three categories, kernel methods, Nearest-Neighbor Methods

and Histogram methods. In kernel methods, a kernel function which takes the

distance between solutions as argument, is used to estimate the density of the

solution. Whereas in Nearest-Neighbor methods, the distance between a given

solution i and its kth nearest neighbors are taken into account to estimate the

density of the solution. In histograms methods, the search space is divided into

several hypergrids defining the neighborhoods. The density around a solution is

estimated by the number of solutions in the same box of the grid, see Fig.3.12.
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Figure 3.12: Diversity maintaining strategies

3.7.3 Elitism

Elitism or archiving strategy is a mechanism used to maintain the high quality

solutions encountered during the search process. By using elitism, it can be

guaranteed that the maximum fitness of the population never decreases from

one generation to the next, and hence, a faster convergence of the population

can be achieved. Elitism strategy can be designed as either passive or active. In

passive elitism, a secondary population, called archive, is used only to store these
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high-quality solutions without any participation on the search process. Whereas

in active elitism, the archived solutions are used to generate new solutions. Active

elitism leads to achieve faster convergence toward the Pareto front for a better

approximation of the Pareto front [Zitzler & Thiele 1999]. The archive updating

strategy may depend on size, convergence and diversity criteria. In size criteria,

a specified number of nondominated solutions are stored in the archive. If the

archive reaches its maximum size, the convergence and diversity are used to

update it. In convergence criteria, fitness assignment strategies such as scalar

fitness, dominance based or indicator based strategies are used to update the

archive. Dominance based strategies are the most common used methods in

which nondominated solutions are stored in the archive to reach its maximum

size and then diversity criteria should be applied. The ε-dominance concept in

which the objective space is divided into hyper boxes with a certain size ε can be

applied to update the archive [Laumanns et al. 2002]. Each hyper box maintains

only one solution. The Pareto adaptive paε-dominance which allows adaptive size

to each hyper box can also used [Hernández-Dı́az et al. 2007]. Fig.3.13 depicts

updating the archive using both ε-dominance and paε-dominance. Generally, the

archive updating process is designed based on both convergence and diversity

criteria.
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Figure 3.13: Updating archive by ε-dominance vs. paε-dominance

3.7.4 Multiobjective Evolutionary Algorithms

One of the goals of multiobjective optimization is to approximate the set of Pareto

optimal solutions. Sets of solutions can be easily found in one simulation run by

EAs. Indeed, EAs explore the search space by several individuals in the popula-

tion. Therefore, they can simultaneously explore the search space and under cer-

tain additional assumptions can converge to a set of optimal solutions. In other
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words, in single-objective optimization the whole population converges to a single

minimum, whereas in multiobjective optimization they can theoretically converge

to the set of Pareto-optimal solutions [Rudolph 1998, Rudolph & Agapie 2000].

This advantage has attracted many researchers to solve MOPs using Multiob-

jective Evolutionary Algorithms (MOEAs). In the following sections, an intro-

duction to MOEA history and a brief summary for some of these methods are

introduced.

3.7.4.1 MOEA history

The MOEAs’ history goes back to the first MOEA, called Vector Evaluated

Genetic Algorithm (VEGA) that introduced in [Schaffer 1985]. This method

adopts the criterion-based selection. VEGA is the simplest possible MOEA and

is a straightforward extension of a single-objective EA. In [Kursawe 1991], Kur-

sawe introduced his method which adopts the same idea as VEGA. Later, Fon-

seca and Fleming (MOGA) [Fonseca et al. 1993], Horn and Nafpliotis (NPGA)

[Horn et al. 1994], and Srinivas and Deb (NSGA) [Srinivas & Deb 1994] in-

troduced other kinds of MOEAs which use Pareto-based selection, niching

and visual comparisons. These methods eliminate the limitations of VEGA

in achieving a good diversity of solutions by introducing the non-domination

concept and an explicit diversity-preservation operator. After, Zitzler and

Thiele added elitism as an important part in MOEA [Zitzler & Thiele 1999],

which can guarantee convergence. Their method, Strength Pareto Evolu-

tionary Algorithm (SPEA) and also later methods from Knowles and Corne

(PAES,PESA) [Knowles & Corne 1999, Corne et al. 2000], Deb et al. (NSGAII)

[Deb et al. 2000] and Zitzler et al. (SPEA2) [Zitzler et al. 2001] made another

category of MOEA based on archiving, elitism, and quantitative performance

metrics. These methods are supposedly faster and better than the previous

methods. This is due to the elite-preserving operator. An elite-preserving op-

erator gives the elite solutions to be directly carried over to the next genera-

tions. Therefore, it ensures that the fitness of the best solution does not dete-

riorate. Recently, instead of using Pareto concepts, some researchers introduce

MOEAs which adopts the decomposition of the original MOP into a set of single-

objective subproblems based on the conventional mathematical programming

in approximating the PF [Miettinen 1999]. Some of MOEAs adopt this idea

such as MOGLS [Jaszkiewicz 2002b, Ishibuchi & Murata 1998] and MOEA/D

[Zhang & Li 2007].

3.7.4.2 MOEA methods

The MOEA methods are arranged into Pioneers (VEGA) , Classic (First genera-

tions), and Elitist (second generation) categories. These methods constitute the



80 Chapter 3. Optimization Metaheuristics: A Survey

basic part of the MOEA, however there are many other recorded MOEA methods

for particular problems [Deb 2001, Coello et al. 2007]. The first and the second

generations are based on the Pareto dominance concept. Here, some of the most

popular of these methods are briefly discussed.

Vector Evaluated Genetic Algorithm (VEGA): In VEGA [Schaffer 1985],

the objective-wise selection is adopted. It works efficiently for some generations,

but in some cases suffers from the principal of not using the domination criterion

in fitness evaluation. Therefore, it is not able to deliver a good spread of solu-

tions in some cases. In VEGA only the selection operator was modified so that

at each generation, a number of sub-populations were generated by performing

proportional selection according to each objective function in turn. Thus, for a

problem with k objectives, k sub-populations of size N/k each would be gener-

ated, assuming a total population size of N . These sub-populations would be

shuffled together to obtain a new population of size N , on which the GA would

apply the crossover and mutation operators in the usual way.

MOEAs First Generation: The major step towards the first generation of

MOEAs is given by David Goldberg [Goldberg 1989]. Goldberg analyzes VEGA

and proposes a selection scheme based on the concept of Pareto optimality. Gold-

berg not only suggested what would become the standard first generation MOEA,

but also indicated that stochastic noise would make such algorithm useless un-

less some special mechanism was adopted to block convergence. First generation

MOEAs typically adopt niching or fitness sharing for that sake. Also, first gener-

ation MOEA is characterized by the use of selection mechanisms based on Pareto

ranking. The most representative algorithms from the first generation include

the Nondominated Sorting Genetic Algorithm (NSGA) [Srinivas & Deb 1994],

the Niched Pareto Genetic Algorithm (NPGA) [Horn et al. 1994] and the Mul-

tiobjective Genetic Algorithm (MOGA) [Fonseca et al. 1993]. Here, NSGA is

introduced as follows:

Nondominated Sorting Genetic Algorithm (NSGA): It was proposed in

[Srinivas & Deb 1994]. This approach is based on several layers of classifications

of the individuals as suggested by Goldberg [Goldberg 1989]. Before selection is

performed, the population is ranked on the basis of nondomination: all nondom-

inated individuals are classified into one category (with a dummy fitness value,

which is proportional to the population size, to provide an equal reproductive po-

tential for these individuals). To maintain the diversity of the population, these

classified individuals are shared with their dummy fitness values. Then this group

of classified individuals is ignored and another layer of nondominated individuals

is considered. The process continues until all individuals in the population are

classified. Stochastic proportionate selection is adopted for this technique. Since
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individuals in the first front have the maximum fitness value, they always get

more copies than the rest of the population. This allows searching for nondomi-

nated regions, and results in convergence of the population toward such regions.

Sharing by its part helps to distribute the population over the Pareto frontier of

the problem.

MOEAs Second Generation: The second generation of MOEAs was born

with the introduction of the notion of elitism. In the context of multiobjective

optimization, elitism usually (although not necessarily) refers to the use of an

external population to retain the nondominated individuals. The use of this

external file raises several questions:

• How does the external file interact with the main population?

• What do we do when the external file is full?

• Do we impose additional criteria to enter the file instead of just using Pareto

dominance?

Elitism can also be introduced through the use of a selection in which parents

compete with their children and those which are nondominated (and possibly

some additional criterion such as providing a better distribution of solutions)

are selected for the following generation. In the following, some of the second

generation MOEAs implement elitism will be discussed.

Strength Pareto Evolutionary Algorithm (SPEA): SPEA

[Zitzler & Thiele 1999] is conceived as a way of integrating different MOEAs.

It uses an archive containing nondominated solutions previously found (called

external nondominated set). At each generation, nondominated individuals are

copied to the external nondominated set. For each individual in this external

set, a strength value is computed. This strength is similar to the ranking value of

MOGA [Fonseca et al. 1993], since it is proportional to the number of solutions

to which a certain individual dominates. It should be obvious that the external

nondominated set is in this case the elitist mechanism adopted.

In SPEA, the fitness of each member of the current population is computed

according to the strengths of all external nondominated solutions that dominate

it. In Addition, a clustering technique is used to keep diversity.

Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2

[Zitzler et al. 2001] is an improved version of SPEA. It has three main differ-

ences with respect to its predecessor:

1. SPEA2 incorporates a fine-grained fitness assignment strategy which takes

into account for each individual the number of individuals that dominate
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it and the number of individuals by which it is dominated.

2. It uses a nearest neighbor density estimation technique which guides the

search more efficiently.

3. It has an enhanced archive truncation method that guarantees the preser-

vation of boundary solutions.

Therefore, in this case the elitist mechanism is just an improved version of the

previous. The procedure which describes SPEA2 steps is presented in Alg. 3.19

as follows:

Algorithm 3.19 SPEA2(N,ArchSize)

Inputs:
N : Population size
ArchSize: Archive size

1: Begin:
2: P0 ←InitializeRandomPopulation( ); � Initial Population of size N

3: Arch0 ← φ; � Begin with an empty archive

4: t ← 0
5: while t ≤ MaxGen do:
6: FitnessAssignment(Pt, Archt); � Calculate fitness values of individuals in Pt, Archt

7: Archt+1 ←CollectNondominatedIndividuals(Pt, Archt);
8: Archt+1 ←ArchiveTruncation(Archt+1, ArchSize);
9: MatingPool ←BinaryTournamentSelection(Archt+1);
10: Pt+1 ←ApplyCrossoverMutation(MatingPool);
11: t ← t+ 1;
12: end while
13: return Archt; � Return the best Pareto rank

14: End

Elitist Nondominated Sorting GA (NSGA-II): NSGA-II is proposed

in [Deb et al. 2000] as a revised version of the NSGA [Srinivas & Deb 1994],

which uses elitism and a crowded comparison operator that keeps diversity with-

out specifying any additional parameters. Alg. 3.20 provides the NSGA-II pro-

cedure. In this algorithm, the offspring population Qt of size N is created from

the parent population Pt of size N . First, these two populations are combined

to form a population Rt of size 2N . Then, a nondominated sorting procedure is

used to classify the entire population Rt as follows:

1. Nondominated individuals are calculated from Rt and are called nondomi-

nated solutions of the first frontier. Then, these are temporarily disregarded

from Rt and the nondominated solutions of the remaining elements of Rt

are then determined and called non dominated solutions of 2nd frontier.

This procedure is continued until all the members of Rt are classified into

a non-dominated frontiers. This is called sorting process.
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2. After the sorting process, the new population is filled with solutions of dif-

ferent nondominated fronts, one at a time. The filling starts with the best

nondominated front. Since Rt has 2N solutions and the new population

must have N solutions, just N best solutions appear in the new population

(N solutions from the best frontiers). In the case of inadequate available

space in the new population to accommodate all solutions of a nondomi-

nated set, a crowding strategy is used to identify solutions which reside in

less crowded areas (in the objective space).

The NSGA-II does not use an external memory as the previous algorithms. But,

the elitist mechanism consists of combining the best parents with the best off-

spring obtained (selection). Fig. 3.14 depicts the procedure of NSGAII. A new

variant of NSGA2 is called CNSGA2 [Deb et al. 2003], which uses a clustering

technique instead of a crowding strategy in the second step.

Figure 3.14: NSGAII procedure [Deb et al. 2003]

3.8 Hybrid Metaheuristics

Over the last few years, hybrid metaheuristics based algorithms become an im-

portant research issue in the filed of optimization. Due to this importance, a

lot of research efforts have been employed to investigate and improve the per-

formance of these algorithms. With the exception of memetic algorithms, the

metaheuristics described above can be considered pure in the sense that they are

not a combination of two or more approaches. Hybrid metaheuristics have proven

to be successful in many optimization problems and particularly in practical or

real-world problems. The main motivation for the hybridization of different al-

gorithmic concepts has been to obtain better performing systems that exploit

and combine advantages of the individual pure strategies, that is, hybrids are

believed to benefit from synergy. Choosing an adequate combination of multiple
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Algorithm 3.20 NSGA-II(N)

Inputs:
N : Population size

1: Begin:
2: P0 ←MakeInitalRandomPopulation( ); � Initial Population of size N

3: Q0 ←MakeNewPopulation(P0); � Apply crossover & mutation to construct new population

4: R0 ← φ ∧ t ← 0
5: while t ≤ MaxGen do:
6: Rt ← Pt ∪Qt � Combine parent and offspring populations

7: F ← FastNonDominatedSort(Rt); � Divide the combined population into fronts

8: Pt+1 ← φ ∧ i ← 1;
9: while |Pt+1|+ |Fi| ≤ N do: � While population size is not full

10: CrowdingDistance(Fi); � Calculate crowding measure in Fi

11: Pt+1 ← Pt+1 ∪ Fi; � Include the ith rank into the population

12: i ← i+ 1;
13: end while
14: Sort(Fi,≺n); � Sort in descending order using ≺n

15: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)]; � Fill population untill size N

16: Qt+1 ←MakeNewPopulation(Pt+1);
17: t ← t+ 1;
18: end while
19: return F1; � Return the best Pareto rank

20: End

algorithmic concepts is the key for achieving top performance in solving many

hard optimization problems.

In Hybrid metaheuristics, two or more algorithms are combined to develop a hy-

brid approach better suited for the given problem [Glover & Kochenberger 2003].

The hybridization of metaheuristics has been proposed at various levels and in

different ways. For example, the components of one metaheuristic can be em-

bedded into another (using tabu lists within a genetic algorithm) or one meta-

heuristic can be used as a component to enhance the performance of another

(simulated annealing as the local search phase in variable neighborhood search

or in GRASP). The most common different types of combinations are considered

as follows:

• Combining metaheuristics with (complementary) metaheuristics.

• Combining metaheuristics with exact methods from mathematical pro-

gramming approaches that are mostly used in operations research.

• Combining metaheuristics with constraint programming approaches devel-

oped in the artificial intelligence community.

• Combining metaheuristics with machine learning and data mining tech-

niques.
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In the following, the classifications of hybrid metaheuristic are discussed.

3.8.1 Hybrid Metaheuristics classifications

Many classification schemes for hybrid metaheuristics have been proposed in liter-

ature [Cotta-Porras 1998, Calégari et al. 1999, Hertz & Kobler 2000, Talbi 2002,

Puchinger & Raidl 2005, El-Abd & Kamel 2005]. For example, the framework

proposed in [Hertz & Kobler 2000] which describes a wide range of evolution-

ary algorithms including their hybrids with local search. The authors illustrate

their framework by using it to describe various evolutionary algorithms including

genetic algorithms, scatter search and ant systems. A similar taxonomy called

Table of Evolutionary Algorithms (TEA) was proposed in [Calégari et al. 1999]

to compare the principles of various evolutionary algorithms also including some

hybrids. Another taxonomy of hybrid metaheuristics presented in [Talbi 2002]

(See Fig. 3.15). In this taxonomy, The hybridization is classified hierarchically

into two levels. The first one distinguishes between low-level combination in

which a given function of a metaheuristic is replaced by another metaheuristic vs.

high-level combination in which the different metaheuristics are self-contained.

The second level distinguishes between rely hybridization in which a set of meta-

heuristic is applied one after another vs. teamwork hybridization in which many

parallel cooperating agents, where each agent carries out a search in a solution

space. Consequently, there are four classes according to this hierarchy as follows:

• low-level Relay hybridization: This class of hybrids represents algorithms

in which a given metaheuristic is embedded into a single-solution meta-

heuristic.

• low-level teamwork hybridization: In this class, a metaheuristic as local

search is embedded into a Population based metaheuristic such as evolu-

tionary algorithms. This class of hybrid algorithms is very popular and has

been applied successfully to many optimization problems.

• high-level Relay hybridization: In this class, the self-contained metaheuris-

tics are executed in a sequence. For example, the initial solution of a given

metaheuristic may be generated by another optimization algorithm.

• high-level teamwork hybridization: This class involves several selfcontained

algorithms performing a search in parallel and cooperating to find an opti-

mum.

In [Raidl 2006], the most important aspects of some different classifica-

tions [Cotta-Porras 1998, Talbi 2002, BLUM et al. 2005] are combined with

both the classifications with particular respect to parallel metaheuristics

[El-Abd & Kamel 2005, Puchinger & Raidl 2005] and with respect to the
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Figure 3.15: Hybrid metaheuristics classification (design issue) [Talbi 2002]

hybridization of metaheuristics with exact optimization techniques from

[Puchinger & Raidl 2005]. Fig.3.16 depicts the various classes and properties

that used to categorize hybrids of metaheuristics. As can be seen, the first

branch describes which types of algorithms are hybridized as discussed above.

The second branch distinguishes the level at which the different algorithms are

combined that may be High-level combinations or low level. In high level com-

bination, the original algorithms are just cooperate over a relatively well defined

interface; there is no direct relationship of the internal workings of the algorithms.

In contrast, algorithms in low-level combinations strongly depend on each other

i.e. a given function of a metaheuristic can be replaced by another metaheuristic.

According to the order of execution, the hybrid metaheuristic can be classified to

relay, interleaved and parallel models. On relay model, one algorithm is strictly

performed after the other, and information is passed only in one direction i.e.

each using the output of the previous as its input. Whereas in interleaved and

parallel models, there are many cooperating and parallel agents, where each agent

carries out a search in a solution space. Parallel algorithms can be classified ac-

cording the architecture (SIMD: single instruction, multiple data streams versus

MIMD: multiple instruction, multiple data streams), the granularity of paral-

lelism (fine- versus coarse-grained), the hardware (homogeneous versus heteroge-

neous), the memory strategy (shared versus distributed memory), the task and

data allocation strategy (static versus dynamic), and whether the different tasks

are synchronized or run in an asynchronous way. More details about hybrid par-

allel metaheuristic can be found in [El-Abd & Kamel 2005, Cotta et al. 2005].

Based on the control strategy used, hybrid metaheuristic contains integrative

and collaborative (cooperative) combinations. In integrative approaches, an al-

gorithm is considered as an embedded components in another. For example in

memetic algorithms in which the local search strategy is embedded in evolu-



3.8. Hybrid Metaheuristics 87

tionary algorithms. Also, in Very large scale neighborhood search (VLSN) ap-

proaches [Ahuja et al. 2002], exact techniques such as dynamic programming to

efficiently find best solutions in specifically designed large neighborhoods within

a local search based metaheuristic. Also embedding more powerful algorithms

like path-relinking [Glover et al. 2000] or by exact techniques based on branch

and bound on population based metaheuristic. In collaborative combinations, al-

gorithms exchange information, but are not part of each other. For example, the

popular island model [Goldberg 1989] for parallelizing evolutionary algorithms

falls into this category. We can further classify the traditional island model as

a homogeneous approach since several instances of the same metaheuristic are

performed.

3.8.2 Multiobjective Hybrid Metaheuristics

Metaheuristic hybridization for multiobjective optimization follows the same

classifications above with considering the additional search components used in

multiobjective case. The hybridization of Metaheuristics for multiobjective op-

timization field usually follows three basic schemes. The first one is the combi-

nation among different metaheuristics which provids more efficient behavior and

higher flexibility than using pure metaheuristics. The second schemes is to com-

bine metaheuristics with Exact methods such as branch and bound techniques.

The third scheme is to combine metaheurstics with data mining techniques. in

the following, each scheme will be presented in some details.

3.8.2.1 Combining different metaheuristics

The strate forward method for metaheuristic hybridization is to combine dif-

ferent types of metaheurstics to improve the effectiveness of the pure ones.

These schemes of hybridization follow the hierarchical classification provided in

[Talbi 2002] that explained above. In the Low level relay class, an adaptive hybrid

approach involves different single solution based metaheristics which are adap-

tively used according to their performance during the search process. In low level

team work class, the cooperation is achieved between population based meta-

heuristics that have good diversification capabilities and the single solution based

metaheuristics that marked by good intensification capabilities. the common ex-

ample that follows this class are embedding the local search into the genetic

algorithms to handle multiobjective optimization problems constructing the so-

called MOGLS [Ishibuchi & Murata 1998, Jaszkiewicz 2002b]. The local search

algorithm can also be adapted for multiobjective optimization by considering

the Pareto dominance relation to check the neighborhood of each solution of the

Pareto approximation set. The new generated solutions are used to update the

Pareto approximation set with eliminating the dominated solutions. This method
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Figure 3.16: A summarized classification of hybrid metaheuristics [Raidl 2006]

is called Pareto local search (PLS). In high level relay hybrids, a self contained

multiobjective metaheurstics are executed in a sequence such as using intensi-

fication strategies to improve the approximation set obtained by a population
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based metaheurstics [Deb & Goel 2001]. Also, path relinking can be combined

with any multiobjecive metaheurstics to fill the gaps and to intensify the search

around the Pareto approximation set. Finally, in the high level cooperative class,

a several multiobjective metaherstics are run in parallel and cooperative form to

find the Pareto approximation set. The most work in this class is related to evolu-

tionary algorithms [Golovkin et al. 2002, Meunier et al. 2000] and there are also

works related to alternative methods as tabu search [Al-Yamani et al. 2002].

3.8.2.2 Combining metaheuristics with exact methods

In these schemes, the exact methods are cooperated with metaheurstics to im-

prove their performance through either minimizing the time of obtaining the

set of Pareto optimal solutions or improving the quality of the obtained so-

lutions. The most common example is the cooperation between branch and

bound approach and Genetic Algorithms to solve bi-objective flow shop problems

[Basseur et al. 2004]. As considered in [Basseur et al. 2004], the cooperation be-

tween exact methods and metaheurstics can be achieved according to one of the

following forms. The first one is to use metaheuristics to generate the upper

bounds of the exact algorithms such as using the Pareto optimal approximation

set as an upper bound to the exact algorithms. The second form is to use exact

approaches to explore the very large neighborhoods which leads to reduce the

search space explored by the exact algorithm through pruning the nodes when

the solution in the construction is far from the initial Pareto solutions. The third

form is to use exact algorithms to explore a given regions in the search space.

This can be preformed by using exact algorithms to solve subproblems which

generated by metaheurstics.

3.8.2.3 Combining metaheuristics with data mining

In this hybridization schemes, data mining techniques such as feature selection,

association rules, clustering and classifications are incorporated into metaheuris-

tics to improve their capabilities in tackling multiobjective optimization prob-

lems. These techniques can be applied to help the search operators to gener-

ate offspring sharing the characteristics of nondominated solutions and avoid-

ing those dominated solutions [Jourdan et al. 2005]. Another important issue

is to use data mining techniques to adapt parameter settings to make better

convergence in metaheuristics. This can be achieved by exploiting the informa-

tion gained and regarding the current ability of each operator to produce better

quality solutions. There are other methods used to adjust parameters settings

according to the diversity criterion [Coyne & Paton 1994]. As an example, incor-

porating the adaptive mutation operator in MOEAs. This can be done by using

different mutation operators simultaneously and try to adapt the probability of
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selecting each operator according to its performance during the search process

[Basseur et al. 2003]. This means that the algorithm will adopt the the operator

with better performance according to to the tackled problem.

3.9 Summary

This chapter presents an overview on some key stones needed to achieve our the-

sis objectives. At the begining, an overview of the global search and optimization

techniques is provided which can be classified into two basic classes, determin-

istic and probabilistic. Where, probabilistic methods are more suitable to solve

irregular multiobjective optimization problems that are high-dimensional, discon-

tinuous, multimodal, and/or NP-Complete. Hence, stochastic algorithms come

into play as alternative algorithms which produce high quality solutions in a rea-

sonable amount of time. In global optimization algorithms, heuristics help to

decide which one of a set of possible solutions is to be examined next. Heuristics

are usually employed in deterministic algorithms to define the processing order of

the candidate solutions, as done in greedy search. Whereas probabilistic meth-

ods may only consider those elements of the search space that have been selected

by the heuristic in further computations. Then, an overview of metaheuristics

is presented. Metaheurstics are new class of approximate algorithms which try

to combine basic heuristic methods in higher level frameworks in order to effi-

ciently and effectively explore the search space. They have been widely developed

and applied to a variety of optimization problems. As approximate algorithms,

metaheuristics sacrifice the guarantee of finding optimal solutions for the sake of

getting good solutions in a significantly reduced amount of time. The main clas-

sification for metaheuristics is single-solution vs. population-based search. This

chapter explains in details some of those search techniques. The multiobjec-

tive metaheuristic algorithm involves three additional basic search components.

These components are the fitness assignment strategy, diversity preservation and

elitism. Two or more metaheuristic algorithms can be combined to develop a

hybrid approach better suited for a given problem. The main motivation for

metaheuristic hybridization concepts is to obtain better performing systems that

exploit and combine advantages of the individual pure strategies. The hybridiza-

tion of Metaheuristics for multiobjective optimization field usually follows three

basic schemes. The first one is the combination among different metaheuris-

tics. The second schemes combine metaheuristics with exact methods. The

third schemes combine metaheurstics with data mining techniques. In this the-

sis, some proposed hybrid metaheuristics for solving multiobjective optimization

problems will be considered. The next chapter presents the first proposed hybrid

evolutionary metaheuristic approach called HEMH.
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4.1 Introduction

Many of real world optimization problems can be modeled as multiobjective

combinatorial optimization (MOCO) problems, which are often characterized by

their large size and the presence of multiple, conflicting objectives. In general, the

basic task in multiobjective optimization is the identification of the set of Pareto

−91−
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optimal solutions or even a good approximation set to the Pareto front (PF ).

Despite progress in solving multiobjective combinatorial optimization problems

exactly, the large size often means that metaheuristics are required for their so-

lution in a reasonable time. However, multiobjective metaheuristics efficiently

solve MOCO problems generating sets of approximately Pareto optimal solu-

tions [Lamont & Veldhuizen 2002, Deb 2001]. Many of metaheuristics have been

introduced in the last thirty years [Glover et al. 2003] such as evolutionary algo-

rithms, simulated annealing, tabu search, variable neighborhood search, scatter

search, path relinking, multistart and iterated local search, guided local search,

differential evolution, ant colony optimization, particle swarm optimization and

greedy randomized adaptive search procedure (GRASP)...etc. An overview of

various of these methods was presented in chapter 3.

Multiobjective evolutionary algorithms (MOEAs) are a very active research area.

They have recently received increased interest because they offer practical ad-

vantages in facing difficult optimization problems including their simplicity, their

flexibility, and their robust response for changing circumstances. They also are

able to capture several Pareto-optimal solutions in a single run. Recently, solving

multiobjective optimization problems and their applications using evolutionary

algorithms have been investigated by many authors [Lamont & Veldhuizen 2002,

Coello 2000b, Jaszkiewicz 2003, Stewart et al. 2004, Farina et al. 2004]. Pareto

dominance based algorithms such as NSGA-II [Deb et al. 2000] and SEPA2

[Zitzler et al. 2001] have been dominantly used in recent studies in this area.

Based on many traditional mathematical programming methods for approx-

imating the PF [Miettinen 1999], the approximation of the PF can be de-

composed into a number of single objective optimization subproblems. Some

of MOEAs adopt this idea for their fitness assignment such as MOGLS

[Jaszkiewicz 2002b, Ishibuchi & Murata 1998] and MOEA/D [Zhang & Li 2007].

They optimize aggregations of the objectives with selected aggregation coeffi-

cients, which make them very easy, at least in principle, to use single objective

local search for improving individual solutions. By using aggregations of the

objectives, a decision maker’s preference has been incorporated into MOEAs

[Deb & Sundar 2006].

Many of the search algorithms attempt to obtain the best from a set of

different MHs that perform together, complement each other and augment

their exploration capabilities. They are commonly called Hybrid metaheuris-

tics [Raidl 2006]. Intensification and diversification are the two major issues

when designing a global search method [Blum & Roli 2003]. Diversification gen-

erally refers to the ability to visit many and different regions in the search

space whereas, intensification refers to the ability to obtain high quality solu-

tions within those regions. A search algorithm must balance between sometimes-
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conflicting two goals. It is a complicated task for metaheuristics to provide ad-

equate balance between intensification and diversification, but the hybrid meta-

heuristics can give the ability to control the balance between intensification

and diversification through involving the design of hybrid metaheuristics with

search algorithms specializing in intensification and diversification, which com-

bines these types of algorithms with the objective of compensating each other and

put together their complementary behaviors [Lozano & Garćıa-Mart́ınez 2010].

This chapter tends to study the hybridization of different metaheuristics and

analyze its effect on handling MOCO problems. It develops a Hybrid Evolu-

tionary Metaheuristics (HEMH) which combines different metaheuristics inte-

grated with each other to enhance the search capabilities. It incorporates both

of DM-GRASP [Ribeiro et al. 2006] and Path-relinking [Glover 1996] within the

MOEA/D [Zhang & Li 2007] framework. The main goals are to capture the ben-

efits of those techniques with providing cooperation, integration and adequate

balance between intensification and diversification to improve the search capa-

bilities and to concentrate the search efforts to investigate the promising regions

in the search space. This can be achieved by applying Path-relinking or repro-

duction operators on high quality solutions obtained by DM-GRASP. The search

process is divided into two phases. In the first one, the DM-GRASP is applied to

obtain an initial set of high quality solutions uniformly dispersed along the Pareto

front. Then, the search efforts are intensified on the promising regions around

these solutions through the second phase. The greedy randomized path-relinking

with local search or reproduction operators are applied to improve the quality

and to guide the search to explore the non-discovered regions in the search space.

The two phases are combined with a suitable evolutionary MOEA/D framework

supporting the integration and cooperation. Moreover, the efficient solutions ex-

plored over the search are collected in an external archive. The rest of the chapter

is organized as follows: In section 4.2, an overview of GRASP and data mining is

highlighted. In section 4.3 the Path relinking strategy is discussed, the MOEA/D

framework and its features are presented in section 4.4. In section 4.5, the pro-

posed HEMH is motivated and presented. In additions, experimental design and

experimental results are involved in sections 4.6 and 4.7 respectively. Finally,

summary and some directions for further research are presented in section 4.8.

4.2 A review of GRASP and data mining

In this section, a quick review of GRASP procedure and its cooperation with

data mining techniques is provided in the following.
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4.2.1 GRASP Algorithm

As mentioned in section 3.5.3, GRASP [Feo & Resende 1989] is a multi-start

metaheuristics algorithm, which repeatedly improves starting solutions by local

search. It is a two phase iterative process. The first phase of any GRASP iter-

ation is called the greedy randomized construction, in which an initial complete

solution is built. Since this solution is not guaranteed to be locally optimal,

a local search strategy is performed in the second phase. This process is re-

peated until stopping criterion is met and the best solution found is taken as

a result. The greedy randomized construction seeks to produce a divers set

of good quality starting solutions from which to start local search. This can be

achieved by adding randomize to the simple greedy algorithm as explained in sec-

tion 3.5.3.1. Following the construction step, local search is invoked to improve

starting solutions. In local search phase, two basic strategies are often considered

to accept local search moves, first improvement and best improvement. The first

improvement accepts the first neighbor with better quality examined as a new

current solution. In contrast, the best improvement examines all neighbors and

accepts the best one as a new current solution. As mentioned in section 3.5.3.2,

more local search methods with good global search ability, such as simulated

annealing and tabu search, etc have been suggested to improve the starting

solutions [de la Peña 2004]. The whole GRASP process is summarized by the

procedure in Alg. 3.3. Also, the construction and the local search procedures are

described in Alg. 3.4 and Alg. 3.5 respectively.

4.2.2 GRASP with Data Mining (DM-GRASP)

In the original GRASP, iterations are performed independently from each other.

Consequently, the knowledge acquired in the past iterations is not exploited in

the subsequent iterations. Data mining techniques have recently begun to find

their way into metaheuristics [Jourdan et al. 2006]. These techniques can be used

to extract solutions patterns that reoccur in high quality solutions. The idea is

that patterns found in good quality solutions could be used to guide the search,

leading to a more effective exploration of the solution space. The basic concept of

incorporating data mining in GRASP is that patterns found in the high quality

solutions obtained in earlier iterations can be used to improve the search process,

leading to a more effective exploration of the search space, and consequently, a

cooperative behavior is achieved instead of building each solution independently.

The resulting heuristic is the so-called “DM-GRASP” [Ribeiro et al. 2006] which

has the ability to achieve promising results not only in terms of solution qual-

ity but also in terms of execution time required to obtain satisfactory solutions.

DM-GRASP involves two basic phases [Santos et al. 2008]. The first one is re-
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sponsible for generating an elite set D through executing pure GRASP for n

iterations and selecting the best solutions found. Then, data mining is applied

on D to extract a set of patterns P . Next, the hybrid phase is performed in which

a number of slightly different iterations are executed. In these iterations, the con-

struction receives a pattern p ∈ P as a partial solution from which a complete

solution will be built. This process is completely summarized in Alg. 4.1.

Algorithm 4.1 DM-GRASP(n)

1: Begin:
2: s∗ ← ∅;D ← ∅;
3: for i ← 1 to n do: � Apply pure GRASP
4: s′ ←Construction(s);
5: s′′ ←LocalSearchPhase(s′);
6: D ←UpdateEliteSet(s′′);
7: if (F (s′′) < F (s∗)) then: � Fitness comparison
8: s∗ ← s′′;
9: end if
10: end for
11: P ←PatternMining(D); � Extract patterns from Elite set
12: p ←GetPattern(P); � Select one pattern
13: repeat: � Apply the hybrid phase
14: s ←Construction(p);
15: s′ ←LocalSearchPhase(s);
16: if (F (s′) < F (s∗)) then: � Fitness comparison
17: s∗ ← s′;
18: end if
19: until termination criterion is met
20: return s∗;
21: End

4.3 Path Relinking

As discussed in section 3.6.2.3, Path relinking (PR) generates new solutions

by exploring trajectories that connect high-quality solutions by starting from

one of these solutions, called starting solution xs, and generating a path in the

neighborhood space that leads toward the other solution, called guiding solu-

tion xt. Starting the relinking process from the best of xs, xt provides a bet-

ter chance to investigate in more detail the neighborhood of the most promis-

ing solutions [Ribeiro et al. 2002]. Path-relinking represents a major enhance-

ment to the basic GRASP procedure, leading to significant improvements in

both time and solutions quality. Two basic strategies are used, in one; path-

relinking is applied as intensification strategy to each local optimum obtained

after the local search phase. In the other, path-relinking is applied to all pairs

of elite solutions, either periodically during the GRASP iterations or after all

GRASP iterations have been performed as a post-optimization step. The use of
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path-relinking within a GRASP procedure, as an intensification strategy applied

to each locally optimal solution, was first proposed in [Laguna & Mart́ı 1999].

It was followed by several extensions, improvements, and successful appli-

cations [Canuto et al. 2001, Resende & Ribeiro 2003, Resende & Werneck 2004,

Resende & Ribeiro 2005, Resende & Werneck 2006, Resende et al. 2010a]. In

this work, path relinking will be used as an essential part of the proposed HEMH

as intensification strategy to improve the performance and enhance the efficiency.

4.4 The MOEA/D

The MOEA/D [Zhang & Li 2007] is a recently developed MOEA in which the

decomposition idea is applied instead of dominance relation. The MOEA/D

simultaneously optimizes a set of N single objective subproblems obtained by

decomposing the MOP formulated in Equ. 2.1 according to corresponding set

of N uniformly distributed weight vectors {Λ1, ...,ΛN} by using a scalarization

technique as explained in Equ. 2.17 and Equ. 2.19. Each weight vector Λ =

[λ1, λ2, ..., λm] has m component corresponding to the m objectives. Equ. 4.1

depicts how Λ can be generated whereas, Equ. 4.2 defined the number of different

weight vectors could be obtained.

m∑
i=1

λi = 1, ∀λi ∈ {0/H, 1/H, ..., H/H}, ∀i = 1, 2, ...,m (4.1)

N =

(
H +m− 1

m− 1

)
(4.2)

where H is a positive integer. Thus, The MOEA/D population size (N) is

controlled by both H and m.

4.4.1 MOEA/D Framework

The MOEA/D framework can be explained as a cellular MOEA

[Ishibuchi et al. 2009] with a neighborhood structure in the m-dimensional

weight space. A single cell with a single individual is located at the same place

as each weight vector in the m-dimensional weight space. That is, each cell has

its own weight vector, which is used in the scalarizing function for evaluating

the individual in that cell. Neighbors of a cell are defined by the Euclidean

distance between cells in the weight space. The number of neighbors of each cell

(including itself) is prespecified. The nondominated solutions obtained over the

search process are maintained in external archive. To generate an offspring for a

cell, two parents are randomly selected from its neighbors. The offspring is gen-

erated by crossover and mutation, which is compared with the individual in the
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Figure 4.1: The MOEAD structure

current cell using the scalarizing function. If the offspring is better, the current

individual is replaced with the offspring. The offspring is also compared with

each neighbor. The scalarizing function with the weight vector of each neighbor

is used in the comparison. All neighbors, which are inferior to the offspring,

are replaced with the offspring (i.e., local replacement). MOEA/D has lower

computational complexity at each generation than NSGA-II [Deb et al. 2000]

and MOGLS [Ishibuchi & Murata 1998].

4.4.2 MOEA/D Features

MOEA/D framework is characterized by the following:

• MOEA/D depends on scalar optimization methods since each scalar opti-

mization problem has its best solution found so far in the current popula-

tion.

• Each individual has a different weight vector corresponding to a scalar

optimization subproblem. Thus the number of the weight vectors is the

same as the population size.

• Each scalar optimization problem has several neighboring subproblems.

• The optimal solutions of two neighboring subproblems should be similar.

• Each subproblem is optimized in MOEA/D by using information from its

neighboring subproblems.
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Based on the above framework of the MOEA/D and its features, it is clear that is

the most suitable evolutionary framework to carry out the proposed hybridization

with DM-GRASP and Path relinking metaheuristics to develop the proposed

HEMH to enhance the performance and improve the capabilities.

4.5 HEMH: Hybrid Evolutionary Metaheuris-

tics

In the following, the motivations of this research are discussed. Then, the HEMH

applied on 0/1 MOKP will be described in more details.

4.5.1 Motivations

The Motivations of this work are expressed as follows:

• It is well known that, GRASP discovers the search space with multistart

independent manner through building each solution point independently.

Thus, we have the motivations of using data mining to extract good pat-

terns form high quality solutions obtained in earlier GRASP iterations.

Then these patterns is used to build new solutions for the next GRASP

iterations. Hence, achieving the cooperation among GRASP iterations.

• The second motivation is related to use genetic operators for increasing the

smoothness; as a result of using high quality solutions as inputs for genetic

operators, we can deduce the generated offspring solutions will also have

high quality.

• Incorporating path-relinking helps to discover solutions beyond elite points

as a post optimization strategy. This means, on the one hand, to increase

the intensification in the promising regions, on the other hand, we don’t

need to use a large set of predefined weight vectors (search directions)

for good discovering to the Pareto front and decreasing the bad effects of

scalarization techniques used in case of non-convex Pareto front shapes.

• Path relinking give the ability to investigate the non-convex regions and to

discover the promising solutions lies on them due to its ability to tracing

most of solutions lies on the path between starting and guiding solutions.

4.5.2 The Proposed HEMH

In this context, the HEMH approach will be described in more details. Like

MOEA/D [Zhang & Li 2007], HEMH needs a decomposition technique to con-

vert MOKP formulated in Equ. 2.7 into a set of single objective subproblems.
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In this chapter, the weighted sum approach described in Equ. 2.17 was used

because it performed better than weighted Tchebycheff described in Equ. 2.19

on 0/1 MOKP [Ishibuchi et al. 2009]. However, if we have a set of N uniformly

distributed weight vectors {Λ1, ...,ΛN}, correspondingly, we have N single objec-

tive subproblems where the ith subproblem is formulated according to Equ. 2.17

with Λ = Λi. HEMH attempts to simultaneously optimize these N subproblems.

Each subproblem has a set of subproblems located in its own neighborhood. The

set of neighborhoods of the ith subproblem includes all the subproblems with the

T closest weight vectors {Λ1, ...,ΛN} to the weight vector Λi according to the

Euclidean distance in the weight space.

In the next subsections, The HEMH framework is discussed with illustrations for

its components and modules. Then, the whole procedure is explained.

4.5.2.1 HEMH framework

The HEMH framework contains two populations, main population and Archive.

The main population consists of N members in which a solution is maintained

for each search direction (subproblem) i.e. the ith member in the population

represents the best solution discovered for the ith subproblem. The main popula-

tion is also used to define the neighborhoods for each subproblem. The Archive

collects all efficient solutions explored over the search process. It is periodically

updated by new explored solutions. In HEMH, the search process consists of

two basic phases, “initialization” and “main loop”. Initialization is responsible

for obtaining an initial set of high quality solutions dispersed into Pareto front,

whereas the main loop is responsible for discovering more new solutions in the

most promising regions through applying greedy randomized path-relinking or

reproduction on the set of high quality solutions previously obtained in the ini-

tialization phase. Figure 4.2 depicts the HEMH flow diagram which clarifies the

whole process. In the following, the two phases above will be described in more

details.

Initialization phase

In this phase, DM-GRASP is applied to generate an initial set of high quality

solutions that represent an initial approximation to the Pareto front to fill the

main population. Firstly, original GRASP is applied on each objective func-

tion separately to construct a set of elite solutions from which a set of good

patterns is extracted using data mining. Then, for each subproblem, one of

the extracted patterns is selected as a partial solution to construct the current

solution. DM-GRASP consists of three basic modules, Construction, Lo-

calSearch and Pattern-Mining. The procedures of both Construction

and LocalSearch were proposed in [Vianna & Arroyo 2004]. In the following,
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each of these modules that applied on MOKP will be described in details.

Construction: The construction procedure is presented in Alg. 4.2. It receives

as input parameters an initial pattern p copied in the partial solution x to be built,

Percentage α used in the selection of the next element to be inserted in x, the

preference vector Λ = [λ1, ..., λm], and Archive to store efficient solutions. The

algorithm returns the built solution x as an output. In lines (2-6), the pattern p is

copied into x and the candidate list CL is initialized to an empty set. Then, CL

is constructed by inserting all unselected elements (with xj = 0, ∀j ∈ {1, ..., n})
sorted in decreasing order according to the ratio below:

m∑
i=1

λi.cij/

m∑
i=1

wij (4.3)

The loop in lines (7-15) is responsible for completing the partial solution x. First,

the restricted candidate list (RCL) is composed of α×|CL| first elements of CL

as shown in line 8. Then, an item j is selected at random from RCL to be

inserted into x. This process is repeated while the insertion of j does not violate

any restriction of the problem. The loop in lines (16-22) completes the solution
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x. Finally, Archive is updated by x and x is returned as an output (lines 23-24).

Algorithm 4.2 Construction(p, α,Λ, Arch)

Inputs:
p: initial partial solution
α: parameter for building RCL
Λ = [λ1, ..., λm]: Search direction
Arch: List of collected efficient solutions

1: Begin:
2: x ← p; � Initialize current solution with p
3: CL ← ∅; � Initialize candidate list CL
4: while (∃j : xj = 0∧maxn

j=1(
∑m

i=1 λicij/
∑m

i=1 wij)) do:� Arrange items in CL using Equ. 4.3

5: CL ← AppendItem(CL, j);
6: end while
7: repeat: � Begin construction process
8: RCL ← BuildRCL(CL,α); � Select the first α× |CL| elements
9: j ←SelectAtRandom(RCL);
10: y ←AddItem(x, j);
11: if (y does not violate any constraint of MOKP in Equ. 2.7) then:
12: x ← y; � Update current solution x
13: CL ← RemoveItem(CL, j); � Remove jth Element from CL
14: end if
15: until (y violates any constraint of MOKP in Equ. 2.7)
16: for i ← 1 to |CL| do:
17: e ← Get the jth element in CL
18: y ←AddItem(x, e);
19: if (y does not violate any constraint of MOKP in Equ. 2.7) then:
20: x ← y; � Update current solution x
21: end if
22: end for
23: Arch ←UpdateArchive(x); � Update Archive by the constructed solution
24: return x;
25: End

Local search: In the local search step, the constructed solution x is im-

proved through investigating its neighbors. Alg. 4.3 presents the local

search procedure which uses the first improvement strategy as mentioned in

[Vianna & Arroyo 2004]. It receives as input parameters a solution x to be

improved, parameter β used at reconstruction process, the preference vector

Λ = [λ1, ..., λm], and Archive Arch to store efficient solutions obtained. It simply

returns the improved solution x as an output. It begins by initializing all posi-

tions of the array Mark by “false” (lines 2-4), which is important to terminate

the procedure. An item e can be removed from knapsacks only if Marke = false.

While there exist elements to be removed (i.e. still unmarked), the loop in lines

(5-21) is executed. In line 5, a copy of solution x is copied into an auxiliary

solution y. The elements that present the smallest ratio defined in Equ. 4.3 are

removed from y. This process is repeated until there exist an element � that
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is out of knapsacks and may be inserted without violation of any restriction of

the problem (lines 7-10). The construction module is invoked to complete the

construction of y (line 11). If y is better than x, then x is updated by y and

Mark is reinitialized (lines 12-16). Thus, the process is repeated using the new

solution x. If y is not better than x, then, in line 18, the first element that is

removed from y through the loop in lines(7-10) is marked. Finally, Archive Arch

is updated by x and x is returned as an output (lines 22-23).

Algorithm 4.3 LocalSearch(x, β,Λ, Arch)

Inputs:
x: Solution to be refined
β: parameter for building RCL at reconstruction of x
Λ = [λ1, ..., λm]: Search direction
Arch: List of collected efficient solutions

1: Begin:
2: for j ← 1 to n do:
3: Markj ← false. � Initialize Mark array
4: end for
5: while (∃j ∈ {1, ..., n} : Markj = false) do:
6: y ← x;
7: repeat:
8: find j : yj = 1 ∧Markj = false ∧minn

j=1(
∑m

i=1 λi.cij/
∑m

i=1 wij)
9: y ← RemoveItem(y, j);
10: until ∃� : y� = 0 ∧ y ← FlipBit(y, �) does not violate any constraint in (2.7)
11: y ←Construction(y, β,Λ, Arch); � Reconstruct the solution y
12: if (Fws(y,Λ) > Fws(x,Λ)) then: � Fws is the weighted sum fun. (2.17) for MOKP in (2.7)

13: x ← y;
14: for i ← 1 to n do:
15: Marki ← false. � Reinitialize Mark array
16: end for
17: else:
18: find j : xj = 1 ∧Markj = false ∧minn

j=1(
∑m

i=1 λi.cij/
∑m

i=1 wij)
19: Markj ← true.
20: end if
21: end while
22: Arch ←UpdateArchive(x);
23: return x;
24: End

Pattern Mining: The pattern mining procedure presented in Alg. 4.4 receives

as input parameters the set of minimum supports σ = {σ1, ..., σ|σ|} that represent

the minimum ratios of repetition of an item to be included in a pattern and E
that represents the set of high quality solutions. It returns the extracted set of

patterns P as an output. The repetition ratio is simply calculated for each item

with respect to the E members.

For each minimum support value σk ∈ σ, ∀k ∈ {1, ..., |σ|}, each item has repe-
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tition ratio greater than or equal σk is inserted into pk ∈ P . Finally, the set of

collected patterns P is returned as an output.

Algorithm 4.4 PatternMining(σ,E)

Inputs:
σ: Set of minimum supports
E: Set of Elite solutions

1: Begin:
2: for each item j ∈ {1, ..., n} do:
3: valj ← 0;
4: for each y ∈ E do: � For each elite solution y
5: valj ← valj + yj ;
6: end for
7: end for
8: P ← ∅; � Initialize set of patterns P
9: for each k ∈ {1, ..., |σ|} do:
10: pk ← ∅; � Initialize new pattern the set of patterns p
11: for each item j ∈ {1, ..., n} do:
12: if (valj ≥ σk) then:
13: pk ← pk ∪ jth item;
14: end if
15: end for
16: P ← P ∪ pk; � update the set of patterns P
17: end for
18: return P;
19: End

Main Loop phase

In this phase, greedy randomize path-relinking or reproduction by crossover

and mutation is applied to the solutions previously obtained in the initializa-

tion phase to intensify the search process in the regions surrounding the Pareto

front. This means, concentrating the search efforts on the promising regions to

discover new high quality solutions along the Pareto frontier. In the following,

different components and modules used in “main loop”‘ phase are explained in

more details.

Greedy Randomized Path-relinking: The greedy randomized path-

relinking procedure is presented in Alg. 4.5. It receives as input parameters the

starting solution xs, the guiding solution xt, the search direction Λ = [λ1, ..., λm]

and the parameter α that controls the balance of greediness and randomness of

the next move selection. As an output, it simply returns the best intermediate

solution found in the path form xs to xt. The procedure starts by choosing the

best of xs and xt to start with (lines 2-4). Then, the best solution x∗, the best

fitness z∗, the candidate lists CL and CLcmp are initialized in lines (5-7). In lines

(8-13), the candidate lists CL and CLcmp are constructed. Every unmatched j
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between xs and xt with xs
j = 0 is inserted into CL in descending order according

to formula in Equ. 4.3, whereas every unmatched j between xs and xt with xs
j = 1

is inserted into CLcmp in increasing order according to formula in Equ. 4.3.

Algorithm 4.5 GreedyRandomPathRelink(xs, xt, α,Λ, Arch)

Inputs:
xs, xt: Starting and Guiding Solutions
α ∈ [0, 1]: Parameter to control greediness/randomness move selection
Λ = [λ1, ..., λm]: Search direction
Arch: List of collected efficient solutions

1: Begin:
2: if (Fws(xt,Λ) > Fws(xs,Λ)) then: � Fws is the weighted sum fun. (2.17) for MOKP in (2.7)

3: Swap(xs, xt); � Select the best of xs and xt to start with

4: end if
5: x∗ ← xs; � Initialize the best solution found so far
6: z∗ ← Fws(xs,Λ); � Fws is the weighted sum fun. (2.17) for MOKP in (2.7)

7: CL ← ∅; CLcmp ← ∅; � Initialize CL and CLcmp

8: while (∃j : xs
j �= xt

j ∧ xs
j = 0 ∧maxn

j=1(
∑m

i=1 λicij/
∑m

i=1 wij)) do: � Construct CL

9: CL ← Append(j);
10: end while
11: while (∃j : xs

j �= xt
j ∧ xs

j = 1 ∧minn
j=1(
∑m

i=1 λicij/
∑m

i=1 wij)) do: � Construct CLcmp

12: CLcmp ← Append(j);
13: end while
14: x ← xs; � Start relinking process

15: repeat:
16: RCL ← Build(CL,α); � The first α× |CL| elements of CL

17: Δ(x, xt) ← |{j ∈ {1, ..., n} : xj �= xt
j}|; � Compute Hamming distance between x, xt

18: if x does not violate constrains in (2.7) then:
19: �∗ ←SelectAtRandom(RCL);
20: CL ← Remove(CL, �∗);
21: else:
22: �∗ ← GetTheFirstElement(CLcmp);
23: CLcmp ← Remove(CLcmp, �

∗);
24: end if
25: x ← FlipBit(x, �∗);
26: y ←GreedyRepair(x,Λ);
27: if (Fws(y,Λ) > z∗) then: � Fws is the weighted sum fun. (2.17) for MOKP in (2.7)

28: x∗ ← y;
29: z∗ ← Fws(y,Λ)
30: end if
31: until (Δ(x, xt) = 1)
32: if (x∗ �= xs) then:
33: x∗ ←LocalSearch(x∗, β,Λ, Arch); � Apply local search
34: end if
35: return x∗;
36: End

The relinking process started in line 14 in which the intermediate solution x is

initialized by the starting solution xs. Now, the procedure is ready to build the

path connects xs with xt gradually by creating intermediate solutions through
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execution of the loop in lines 15-31. Initially, the RCL is composed of α× |CL|
first elements of CL as shown in line 16. Then, the Hamming distance Δ(x, xt)

which represents the number of unmatched items between x and xt is calculated

in line 17. The next move is carried out by selecting one of unmatched l∗ to be

matched, if the intermediate x is feasible, then, l∗ is randomly extracted from

RCL, otherwise the first element of CLcmp is extracted to be l∗ (lines 18-24). The
new intermediate solution x is obtained by flipping the item xl∗ corresponding

to the selected index l∗ in the current intermediate solution x (line 25). If the

current x is infeasible, the GreedyRepair module is invoked on it to obtain

a feasible solution y (line 29). In line 31-34, the best solution x∗ and the best

fitness z∗ are updated by y. This process is repeated until there exist only one

unmatched item between the current intermediate solution x and guiding solution

xt. In lines 32-34, Local search is invoked to improve the best solution found in

the path x∗ only if x∗ �= xs to guarantee applying local search only on a new

solution. Finally, the improved x∗ is simply returned as an output.

Reproduction: Reproduction means to generate offspring from parent indi-

viduals using crossover and mutation. Crossover is performed by exchanging

specified parts of parents with each other, whereas mutation is performed by

filliping specified components of the parent individual. There are several strate-

gies to carry out crossover and mutation depending upon the representation as

mentioned in section 3.6.1.1. Here, the single point crossover and binary muta-

tion are adopted. Figures 3.7 and 3.8 illustrate the single point crossover and

mutation used in binary representation respectively.

Greedy Repair: In this module, the infeasible solution x is repaired to be

feasible. Alg. 4.6 implements the GreedyRepair procedure which takes the

solution to be repaired x and the weight vector Λ as input parameters. The

main idea is to remove the item which has the minimum value of the formula in

Equ. 4.3 from the infeasible solution x. This process is repeated until x becomes

feasible. Then, x is returned as an output. If the solution x is already feasible,

then x is returned without change.

Update solutions: The UpdateSolutions procedure presented in Alg. 4.7

takes three parameters, the solution y, the number of solutions must be updated

t and the range of the main population from which solutions are selected to be

updated M . The procedure starts with selecting a solution xj from Pop for

update. Then, xj is compared with y according to the weight sum function in

Equ. 2.17 using the weight vector Λj, if y is better than xj, then, xj is replaced

by y and deleted from M . This process is repeated until t iterations or M will

be empty.



106 Chapter 4. HEMH: A Hybrid Evolutionary Metaheuristics

Algorithm 4.6 GreedyRepair(x,Λ)

Inputs:
x: Solution to be repaired
Λ = [λ1, ..., λm]: Search direction

1: Begin:
2: y ← x;
3: while y violates any constraint of MOKP in Equ. 2.7 do:
4: find j : yj = 1 ∧minn

j=1(
∑m

i=1 λi.cij/
∑m

i=1 wij)
5: y ← RemoveItem(y, j);
6: end while
7: return y;
8: End

Algorithm 4.7 UpdateSolutions(y, t,M)

Inputs:
y: The offspring solution
t: Max. replaced solutions
M : Updating Range

1: Begin:
2: c ← 0;
3: repeat:
4: j ←SelectAtRandom(M);
5: if (Fws(y,Λj) > Fws(x,Λj)) then: � Fws is the weighted sum fun. (2.17) for MOKP in (2.7)

6: xj ← y; � update xj by y
7: c ← c+ 1; � update counter c
8: M ← M\{j}; � Remove j from M
9: end if
10: until (c = t ∨M = ∅)
11: End

4.5.2.2 HEMH procedure

As shown in Alg. 4.8, the proposed HEMH procedure is presented. HEMH pro-

cedure receives a list of input parameters including the number of subproblems

considered (population size) N , the size of neighborhood for each subproblem T ,

the maximum number of updated solutions t, the probability of selecting parents

from neighborhoods δ, the parameter used in the construction step α, the param-

eter used in the local search process β, the minimum support which used in the

pattern mining process σ and the minimum hamming distance allowed to apply

path-relinking ε. The procedure starts with initializing a set of N uniformly dis-

tributed weight vectors {Λ1, ...,ΛN}, each one represents the search direction for

a single objective subproblem. Then, HEMH constructs the neighborhood struc-

ture for each ith subproblem through calculating the Euclidean distance between

the weight vector Λi and each one of the set of all weight vectors {Λ1, ...,ΛN}
and choosing the T closest subproblems. In the initialization phase, the ini-

tial population members are initialized using DM-GRASP. Firstly, pure GRASP
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is applied on each objective function separately collecting elite solutions in the

archive. Then, pattern mining is applied on the archive to extract the set of

patterns P . For each population member, a randomly selected pattern p ∈ P
is assigned as an input to the Construction procedure to build a complete

solution on which the LocalSearch procedure is applied. The resulting so-

lution is the ith member in the initial population. In the main-loop phase, the

search process is intensified on the promising regions surround the solutions pre-

viously obtained in the initialization phase. This can be done through applying

the greedy randomized path-relinking or even reproduction (crossover and mu-

tation). For each ith subproblem, The mating/updating range M is determined

to be either its neighborhood (Local) with probability equals to δ, or the whole

population (Global). To generate a new offspring y, two parent individuals xj

and xk are randomly selected from M . Then, Hamming distance Δ(xj, xk) is

calculated. The greedy randomize path-relinking is applied to generate y only if

Δ(xj, xk) ≥ ε. Otherwise, reproduction by crossover and mutation is considered.

If y is infeasible, the GreedyRepair module is invoked to make it feasible.

Now, the offspring y is used to update the current population through updating

t solutions from mating/updating range M including f the current solution of

the ith subproblem. The UpdateSolutions module is invoked to perform this

task. The Archive is also updated by every generated offspring. The whole pro-

cess is repeated until stopping criterion is met. Finally, the Archive is returned

as an output. The whole process of the proposed HEMH is summarized in the

flowchart illustrated in Fig. 4.3.

4.6 Experimental design

In this section, the proposed HEMH is verified and tested to approve its efficiency

and effectiveness against some of the other MOEAs in solving MOKP. HEMH

was implemented and compiled using Microsoft visual C++ version 6. All of

these experiments have been performed on PC workstation with (2 CPUs) Intel

X5670 2.93 GHz and 16 GB of RAM. The experimental settings will be discussed

in the following.

4.6.1 Tested Algorithms and instances

In order to verify the performance of HEMH, some of the state-of-the-art

MOEAs are considered in this study such as NSGAII [Deb et al. 2000],

SPEA2 [Zitzler et al. 2001], GRASPM [Vianna & Arroyo 2004] and

MOEA/D [Zhang & Li 2007]. NSGAII and SPEA2 which represent the

tow most popular Pareto-based MOEAs are explained in details in section

3.7.4.2. GRASPM is a multiobjective extension of the original GRASP proposed
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Algorithm 4.8 HEMH(N, T, t, δ, α, β, σ, ε)

Inputs:
N : Population size or number of subproblems
T : Neighborhood size for each weight vector
t ≤ T : Maximum number of replaced solutions
δ ∈ [0, 1]: Probability of selecting parents from neighborhood
α ∈ [0, 1]: Parameter for building RCL used in GRASP
β ∈ [0, 1]: Parameter for local search
σ: Set of Minimum support
ε: Minimal hamming distance for applying Path-relinking

1: Begin: � Initialization Phase by DMGRASP

2: Wv ← {Λ1, ...,ΛN}; � Generate a set of N uniformly distributed weight vectors

3: for i ← 1 to N do: � Neighborhood construction for each subproblem

4: Neighborsi ← {i1, ..., iT}; � where Λi1, ...,ΛiT are the T closest weight vectors to Λi

5: end for
6: for i ← 1 to m do: � Apply pure GRASP on each objective separately

7: s ← ∅;
8: s′ ←Construction(s, α,Λfi , Arch);
9: s′′ ←LocalSearch(s′, β,Λfi , Arch);
10: Arch ←UpdateArchive(s′′);
11: end for
12: P ←PatternMining(σ,Arch); � Construction of Pattern set

13: for i ← 1 to N do: � Apply DM-GRASP to get an initial population

14: p ←SelectAtRandom(P); � Select a pattern p

15: xi ←Construction(p, α,Λi, Arch); � Λi is the weight vector correspond to ith objective

16: xi ←LocalSearch(xi, β,Λi, Arch);
17: P ←AddSubProblem(xi,Λi); � Add ith subproblem to the population P

18: end for
19: repeat: � Main Loop Phase

20: for i ← 1 to N do:
21: r ←Random(0,1); � Generate a random number ∈ [0, 1]

22: if (r < δ) then: � Determine the mating/updating range M for each ith subproblem

23: M ← Neighborsi;
24: else:
25: M ← {1, 2, ..., N};
26: end if
27: j, k ←SelectAtRandom(M); � Randomly select two parents

28: if (Δ(xj , xk) < ε) then: � Hamming distance between xj and xk

29: y ←Reproduction(xj , xk); � Apply 1-point crossover followed by mutation

30: y ←GreedyRepair(y,Λi);
31: else:
32: y ←GreedyRandomPathRelink(xj , xk, α,Λi, Arch);
33: end if
34: P ←UpdateSolutions(y, t,M);
35: Arch ←UpdateArchive(y);
36: end for
37: until Stopping criterion is satisfied
38: return Arch; � Return the list of efficient solutions collected

39: End
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Figure 4.3: the proposed HEMH flowchart

to tackle the MOKP. It adopts the scalarzation techniques to convert the orignal

MOKP to a set of single objective knapsack problem. The MOEA/D is the

most popular decomposition based MOEAs as discussed in section 4.4. Besides,

the set of MOKP test instances listed below in Table 4.1 are commonly used

in the comparison of multiobjective metaheuristics. It has been generated

by Zitzler & Thiele in [Zitzler & Thiele 1999]. Since that, this set of test

instances has become a standard benchmark that has been solved by many other

researchers [Bandyopadhyay et al. 2008, Zhang & Li 2007, Deb et al. 2000] and

widely used in testing multiobjective metaheuristics. In this work, this set is

adopted to perform the experimental design to verify and test the proposed

HEMH.

4.6.2 Parameters settings

In this section, the different parameters used for each MOEA are discussed.

For MOEA/D, the parameter (H) which controls the number of weight vectors

or also the population size (N), is determined with its corresponding (N) for

each problem instance in table 4.1 above according to the complexity. Thus,

all of MOEA/D, NSGA-II and SPEA2 use the same population size (N),

whereas GRASPM uses (N) as the number of weight vectors. in HEMH,

a small population size should be used to encourage path-relinking usage
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Table 4.1: The set of used knapsack test instances

Instance
N(H) HEMH N(H) MaxEvals

Name Knaps(m) Items(n)
KSP252 2 250 150(149) 75(74) 75000
KSP502 2 500 200(199) 100(99) 100000
KSP752 2 750 250(249) 125(124) 125000
KSP253 3 250 300(23) 153(16) 150000
KSP503 3 500 300(23) 153(16) 150000
KSP753 3 750 300(23) 153(16) 150000
KSP254 4 250 364(11) 165(8) 182000
KSP504 4 500 364(11) 165(8) 182000
KSP754 4 750 364(11) 165(8) 182000

instead of reproduction by crossover and mutation. the values of (H) and

the corresponding values of (N) used in HEMH for each problem instance

is also listed in table 4.1. The initial populations used in NSGA-II, SPEA2

and MOEA/D are randomly generated from the decision space such that each

solution x = (x1, ..., xn)
T ∈ {0, 1}T , where xi = 1 with probability equals to 0.5.

The maximum number of function evaluations (MaxEvals) depicted in table 4.1

is used as a stopping criterion for each MOEA. In both HEMH and GRASPM

in which the local search strategy is adopted, each fitness comparison performed

inside the local search procedure is considered as a function evaluation for

fair comparison. For each compared MOEA, all efficient solutions encountered

over the generations are collected in the archive. In these experiments, the

same reproduction operator which combines the single-point crossover and

the standard mutation is considered. Crossover is preformed with probability

equals to 1, whereas mutation is performed for each item independently with

probability equals to 1
n
. In both NSGAII and SPEA2, tournament selection

is used with tournament size equals to 2. The other control parameters used

in these experiments are listed in table 4.2. Finally, the statistical analysis is

applied on 30 independent runs for each MOEA on each test instance.

Table 4.2: Set of common parameters used

Parameters
Algorithms

MOEA/D GRASPM HEMH
Neighborhood size: T 10 - 10
Max. no. of replaced solutions: t - - 5
RCL definition parameter: α - 0.1 0.1
Reconstruction parameter: β - 0.5 0.5
Set of minimum support: σ - - {1}
Parents selection probability: δ - - 0.9
Minimal Hamming distance: ε - - 10
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4.6.3 Performance Assessment metrics

Due to the nature of MOP, multiple performance indicators should be used in

order to investigate the performance of the compared MOEA in terms of both

convergence and diversity. In these experiments, two types of indicators are used.

The first one is the binary indicators which are used to compare each pair of

MOEAs such as set coverage IC indicator which is discussed in details in section

2.6.2.1. The second type is the unary indicators which are used to assess each

MOEA independently of the others such as hypervolume (IHyp), generational dis-

tance (IGD), inverted generational distance (IIGD) and Maximum spread (IMS)

indicators. These indicators are presented in sections 2.6.2.2, 2.6.2.3, 2.6.2.3 and

2.6.2.5 respectively.
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Figure 4.4: Results of the coverage indicator IC

In these experiments, the reference set P ∗is alternatively formed for each problem

instance by gathering all of non-dominated solutions found by all of the compared

MOEAs. The reference point r∗ used in hypervolume IHyp calculations is chosen

to be the origin. In all experimental results here, the values of all of these metrics

are evaluated after normalizing all the approximation sets in the objective space
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in the range [1,2].

4.7 Experimental Results

Here, the different simulation results are shown in details. Firstly, Fig. 4.4 shows

the results of the set coverage (IC) indicator. It contains a chart (with scale 0

at the bottom and 1 at the top) for each ordered pair of the compared MOEAs.

Each chart consists of nine box plots representing the distribution of IC values.

Each box plot (from left to right) represents an instance in table 4.1 (from top to

down) respectively. A chart located in the raw of algorithm A and the column

of algorithm B presents the values of coverage of approximations generated by

algorithm B by approximations generated by algorithm A. Additionally, the me-

dian values of IC indicator are listed in table B.1. According to these results, It

is clear that HEMH and GRASPM outperform the rest MOEAs. It is also clear

that HEMH performs better or even slightly better than GRASPM for all test

instances.

Table 4.3: Results of the Hypervolume indicator (IHyp)

Instance
Algorithm

NSGAII SPEA2 MOEA/D GRASPM HEMH
KSP252 6.680E-01 6.576E-01 7.763E-01 7.948E-01 7.976E-01
KSP502 5.889E-01 5.842E-01 7.492E-01 7.710E-01 7.757E-01
KSP752 5.516E-01 5.469E-01 7.540E-01 7.702E-01 7.751E-01
KSP253 4.129E-01 3.994E-01 5.342E-01 5.538E-01 5.580E-01
KSP503 3.175E-01 3.070E-01 4.982E-01 5.247E-01 5.308E-01
KSP753 2.665E-01 2.599E-01 4.861E-01 5.211E-01 5.270E-01
KSP254 2.122E-01 2.094E-01 3.334E-01 3.502E-01 3.553E-01
KSP504 1.325E-01 1.498E-01 2.922E-01 3.235E-01 3.306E-01
KSP754 9.766E-02 1.145E-01 2.666E-01 3.124E-01 3.216E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

Figure 4.5: Results of the Hypervolume indicator IHyp
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The experimental results of the hypervolume IHyp indicator are listed in table 4.3

which contains the average values of the indicator achieved over 30 independent

runs. These results are also visualized in Fig. 4.5. The detailed statistical analysis

of IHyp are provided in table B.2. According to these results, it is clear that

the HEMH outperforms all the compared MOEAs. Since, it has the maximum

average IHyp values. This indicates the ability to improve both convergence and

diversity. Whereas, GRASPM and MOEAD have the second and the third rank

respectively in all test instances.

In table 4.4, the average values of the generational distance IGD indicator are

listed. Additionally, Fig. 4.6 visualizes these results. The detailed statistical

analysis for IHyp are also provided in table B.3. According to the generational dis-

tance results, the HEMH outperforms all the compared MOEAs. The GRASPM

algorithm achieves the second rank followed by the MOEAD which takes the

third rank with respect to all test instances. This means that the HEMH has

the capabilities of discovering solutions as near as possible to the Pareto front.

Table 4.4: Results of the Generational distance indicator (IGD)

Instance
Algorithm

NSGAII SPEA2 MOEA/D GRASPM HEMH
KSP252 3.240E-03 3.142E-03 1.457E-03 4.020E-04 2.307E-04
KSP502 4.424E-03 4.555E-03 1.458E-03 3.500E-04 1.747E-04
KSP752 4.171E-03 4.993E-03 1.009E-03 2.889E-04 1.462E-04
KSP253 1.622E-03 1.377E-03 4.457E-04 1.771E-04 1.261E-04
KSP503 2.369E-03 1.984E-03 4.468E-04 1.312E-04 9.126E-05
KSP753 3.345E-03 2.912E-03 4.760E-04 1.041E-04 7.739E-05
KSP254 1.538E-03 1.042E-03 2.849E-04 1.516E-04 1.140E-04
KSP504 2.571E-03 1.576E-03 3.203E-04 9.534E-05 8.983E-05
KSP754 3.173E-03 2.017E-03 4.009E-04 8.047E-05 6.864E-05

0.00E+00
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2.00E-03

3.00E-03
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Figure 4.6: Results of the Generational Distance indicator IGD
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The results of the inverted generational distance IIGD comparisons are listed in

table 4.5 below, which contains the average values of the IGD-indicator over 30

independent runs. Also, Fig. 4.7 visualizes these results. The detailed statistical

analysis for IIGD are also provided in table B.4. From these results, It is clear

that the HEMH outperforms all of the rest MOEAs, which reflects its ability

to obtain solutions with good spread over the Pareto Frontier. The results also

indicate that the GRASPM achieves the second rank followed by the MOEAD

which take the third rank with respect to all test instances.

Table 4.5: Average results of the Inverted generational distance (IIGD)

Instance
Algorithm

NSGAII SPEA2 MOEA/D GRASPM HEMH
KSP252 7.899E-03 8.608E-03 8.094E-04 3.468E-04 3.161E-04
KSP502 8.438E-03 8.595E-03 8.236E-04 2.467E-04 1.717E-04
KSP752 8.295E-03 8.126E-03 5.864E-04 2.055E-04 1.378E-04
KSP253 1.007E-03 1.153E-03 1.921E-04 9.910E-05 8.606E-05
KSP503 1.028E-03 1.143E-03 1.791E-04 9.015E-05 7.263E-05
KSP753 1.045E-03 1.124E-03 1.673E-04 8.099E-05 6.300E-05
KSP254 3.838E-04 4.127E-04 1.075E-04 8.232E-05 7.264E-05
KSP504 3.899E-04 3.968E-04 1.037E-04 7.686E-05 6.203E-05
KSP754 4.040E-04 4.081E-04 1.084E-04 7.057E-05 5.611E-05

0.00E+00
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Figure 4.7: Average results of the Inverted Generational Distance IIGD

Table 4.6 and Fig. 4.8 below show the average values of the maximum spread IMS

indicator for all test instances. Also, The detailed statistical analysis for IMS are

provided in table B.5. Based on these results, the HEMH has the superiority over

other MOEAs, followed by GRASPM. This assures their capabilities of exploring

the extreme regions in the search space due to the local search used in both of

them, which intensify the search on extremes.
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Table 4.6: Results of the Maximum Spread indicator (IMS)

Instance
Algorithm

NSGAII SPEA2 MOEA/D GRASPM HEMH
KSP252 5.168E-01 4.705E-01 1.373E+00 1.360E+00 1.374E+00
KSP502 3.788E-01 3.678E-01 1.309E+00 1.371E+00 1.393E+00
KSP752 2.598E-01 2.736E-01 1.317E+00 1.354E+00 1.367E+00
KSP253 8.916E-01 7.604E-01 1.650E+00 1.677E+00 1.702E+00
KSP503 6.653E-01 5.536E-01 1.653E+00 1.703E+00 1.708E+00
KSP753 4.758E-01 3.851E-01 1.644E+00 1.713E+00 1.725E+00
KSP254 1.234E+00 9.954E-01 1.903E+00 1.944E+00 1.981E+00
KSP504 1.066E+00 7.832E-01 1.902E+00 1.975E+00 1.985E+00
KSP754 8.273E-01 5.803E-01 1.838E+00 1.958E+00 1.960E+00

0.00E+00

5.00E-01

1.00E+00

1.50E+00
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Figure 4.8: Results of the Maximum Spread indicator IMS

In figures 4.9, 4.10 and 4.11, the approximation sets obtained by each MOEA

are visualized for bi-objective instances KSP252, KSP502 and KSP752 respec-

tively . Each figure contains 2 scatter graphs. The big one depicts the whole

approximation sets whereas the small one in the left bottom corner focused on

the part bounded by the small rectangle. In Fig. 4.9, HEMH and GRASPM

achieves nearly the same points. From Fig. 4.10 and Fig. 4.11, it is clear that the

solutions obtained by HEMH have the best quality. It is also noted from figures

that the quality of solutions obtained by HEMH is slightly increased gradually

as the size of instance increased. This can be explained as, the larger the size

of instance is, the more chance of hamming distance between any two selected

solutions to increase. Consequently, path-relinking has more chance to be in-

voked instead of reproduction. This reflects the role played by path-relinking in

improving the search capabilities of HEMH.
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4.8 Summary

In this chapter, a hybrid evolutionary metaheuristics (HEMH) based on DM-

GRASP and greedy randomize path-relinking to solve multiobjective knapsack

problems is presented. The proposed HEMH is verified using a set of test in-

stances commonly used in the literature. The HEMH is compared with four of

the most popular MOEAs that considered as the state-of-the art of the field. A

set of quality assessment indicators is also considered to evaluate the performance

for all the compared MOEAs. The experimental results indicate the superiority
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Figure 4.11: The obtained Pareto approximation set for KSP752 Instance

of the decomposition based MOEAs over the Pareto dominance based MOEAs.

They also indicate the superiority of local search based MOEAs especially the

HEMH. Since, it has an average performance highly competitive with respect

to the compared MOEAs based on the assessment indicators used in the study.

The main contribution of the proposed HEMH is the combination among differ-

ent metaheuristics techniques that intensify the search process in discovering the

most promising regions in the search space and enhance the ability to explore high

quality solutions. The second contribution is the ability to find a good approx-

imation set of high quality solutions using a small set of uniformly distributed

search directions due to the use of path-relinking and local search strategies.

In the next chapter, we tend to investigate how to enhance the search process

proposed in second phase of HEMH through exploring the results of combining

different recombination operators within the MOEA/D framework regardless of

the quality of the solutions obtained by the first phase.
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5.1 Introduction

Over the last years, a large number of search algorithms were reported that do

not purely follow the concepts of one single classical metaheuristics, but they

attempt to obtain the best from a set of different metaheuristics (and even other

kinds of optimization methods) that perform together, complement each other

and augment their exploration capabilities to produce a profitable synergy from

their combination. These approaches commonly referred to as hybrid metaheuris-

tics [Raidl 2006]. A promising way to obtain hybrid metaheuristics concerns the

combination of several search algorithms with strong specialization in intensifica-

tion and/or diversification. The flexible architecture of evolutionary algorithms

(EA) allows specialized models to be obtained with the aim of providing intensi-

fication and/or diversification. In fact, the design of hybrid metaheuristics with

−119−
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EA is an innovative line of research with prospective future as a way for obtain-

ing search algorithms that may achieve accurate and reliable solutions to hard

real-world problems. This can be accomplished through the improvement of EA

performance as well as improving the quality of the obtained solutions.

Hybrid Metaheuristics aim to incorporate and combine different metaheuristics

with each other to enhance the search capabilities. They can improve both of

intensification and diversification toward the preferred solutions and concentrate

the search efforts to investigate the promising regions in the search space. As

mentioned in chapter 4, a new hybrid evolutionary metaheuristics (HEMH) in

which the search process is divided into two phases was developed. The first phase

constructs an initial population of high quality solutions using DM-GRASP,

whereas in the second phase, the greedy randomized path-relinking and/or re-

production operators are applied within the MOEA/D framework to improve the

solutions previously obtained. This leads to intensify the search process in the re-

gions surrounding the Pareto front and therefore, concentrating the search efforts

on the promising regions to discover new high quality solutions. In this work, the

efforts are concentrated on enhancing the search process proposed in the second

phase regardless of the quality of the solutions obtained in the initialization phase.

The basic motivation of this work is to obtain the most suitable combinations

of search operators that improves the performance of the MOEA/D framework.

Hence, extending these combinations to improve the proposed HEMH previously

discussed. In this context, The competitive results achieved by the adaptive

discrete differential evolution proposed in [Zhang et al. 2009] motivated us to

combine it within the MOEA/D framework. Moreover, path-relinking could im-

prove the search if it is applied on high quality solutions [Kafafy et al. 2011]. So,

this chapter tends to study and analyze the effect of hybridization of the adaptive

discrete differential evolution operator and/or path-relinking operators with the

MOEA/D framework in handling MOCO problems. We study four proposals of

hybridization, the first proposal is to combine adaptive discrete differential evolu-

tion operator within MOEA/D. The second one is to combine the path-relinking

operator within MOEA/D. The third and the fourth proposals combine both of

them in MOEA/D. The main goals are to determine the benefits and limitations

of those techniques by studying possible combinations and their effects on the

search capabilities. The rest this chapter is organized as follows: In section 5.2,

the MOEA/D framework was reviewed. In section 5.3, an overview on adap-

tive discrete differential evolution is highlighted. The path-Relinking strategy

is discussed in section 5.4. The proposed hybridization variants are presented

in section 5.5. In addition, the experimental design and results are involved in

sections 5.6 and 5.7 respectively. Section 5.8 presents some concluding remarks.

Finally, the summary and some directions for further research are presented in
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section 5.9.

5.2 MOEA/D Framework

Based on many traditional mathematical programming methods for approxi-

mating the PF [Miettinen 1999], the approximation of the PF can be decom-

posed into a number of single objective optimization subproblems. MOEA/D

[Zhang & Li 2007] is considered as the most recently developed MOEA in which

the decomposition idea is adopted instead of Pareto dominance concept. The

MOEA/D framework and its features are explained in details in section 4.4.

Here, the MOEA/D procedure is reviewed as it represents an essential part in

this work. Alg.5.1 reviews the MOEA/D pseudocode.

Algorithm 5.1 MOEAD(N, T, t, δ)
Inputs:
N : Population size or number of subproblems used
T, t: Neighborhood size & Maximum allowable replaced solutions
δ ∈ [0, 1]: Probability of selecting parents from neighborhood

1: Begin:
2: Λ ←InitializeWeightVectors( ); � Generate a set of N evenly distributed weight vectors

3: B ←InitializeNeighborhood( ); � Construct the neighborhood structure

4: P ←InitializePopulation( ); � Generate initial solution for each subproblem

5: z ←InitializeRefPoint( );
6: repeat: � The main loop
7: for all (i ∈ {1, 2, ..., N}) do � For each ith subproblem

8: Mi ←
{
B(i) if(rnd ∈ [0, 1] < δ)

P otherwise
� Determine the Mating/Updating rang Mi

9: xa, xb ← Selection(Mi, i): � Randomly Select two parents solutions xa and xb

10: u ←Reproduction(xi, x
a, xb, xc, F0, CR0, a1, a2); � Apply crossover and mutation

11: y ←GreedyRepair(u,Λi);
12: EvaluateFitness(y); � Evaluate the offspring y

13: z ←UpdateRefPoint(y);
14: P ←UpdateSolutions(y, t,Mi); � Update the population P

15: end for
16: until Stopping criterion is satisfied
17: return P ;

5.3 Adaptive Discrete Differential Evolution

As explained in section 3.6.2.1, the success of the DE algorithm relies on the

differential mutation operator. It employs difference vectors built with pairs of

candidate solutions in the search domain. The difference vector are scaled and

added to a third point, producing the so-called mutant vector. In this chapter, we

propose to use the differential mutation operator as an additional operator within

the MOEA/D framework. We choose the adaptive discrete differential evolution
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strategy proposed in [Zhang et al. 2009] to study its effect on the MOEA/D

exploration capabilities in the discrete domains. This strategy is described in

Alg. 5.2. Assume P is a population of N individuals. The main idea is to select

at random three distinct individuals xr1, xr2, xr3 from P for each target individual

xi ∈ P, ∀i ∈ {1, ..., N}. The mutant individual vi is produced by applying the

differential uniform mutation on which called the parent base individual xr1 with

the rate pm. pm is calculated based on the parent differential individuals (xr2,

xr3) as follows:

pm = F · (Δ (xr2, xr3) /n) (5.1)

where Δ is the Hamming distance, n is the individual length and F denotes

the scaling factor. Then, crossover is used to produce the new individual ui as

follows:

uj
i =

{
vji if rnd(j) ≤ CR, or j = e,∀j = 1, ..., n.

xj
i otherwise, ∀j = 1, ..., n.

(5.2)

where rnd(j) ∈ [0, 1] is the jth random number generated by random number

generator, e is a component of a random sequence S selected from {1, ..., n} to

insure that at least one component of ui is contributed by vi and CR ∈ [0, 1]

denotes the crossover factor. The mutation scaling factor F and the crossover

factor CR are adapted periodically to avoid premature convergence as follows:

F = F0 · e(−a1.(G/Gmax)) (5.3)

CR = CR0 · e(−a2.(G/Gmax)) (5.4)

where G, Gmax are the current and the maximum evolutionary generation re-

spectively, F0, CR0 are the initial values of the scaling factor and the crossover

operator respectively. a1 and a2 are plus constants. Finally, the new generated

individual ui is returned.

5.4 Greedy Path-Relinking

As described in section 3.6.2.3, Path-relinking generates new solutions by

investigating the neighborhood space to explore trajectories that connect high

quality solutions. it was suggested in [Glover et al. 2000] to integrate intensifi-

cation and diversification strategies in the context of tabu search and scattered

search. In this chapter, greedy path-relinking will be used as an intensification

strategy in the MOEA/D framework, integrated with either reproduction by

crossover and mutation or adaptive discrete differential evolution. It will be

invoked in the higher generations to guarantee applying the relinking process on

high quality solutions to improve the performance and enhance the efficiency.

The greedy path-relinking operator that proposed here differs from the greedy
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Algorithm 5.2 ABDifferentialEvolution(x, y1, y2, y3, F0, CR0, a1, a2)
Inputs:
x: Current individual
y1, y2, y3: Three parent individuals
F0, CR0 ∈ [0, 1]: Scaling factor and crossover rate
G,Gmax: Current and maximum generations

1: Begin:
2: F ← F0 · e(−a1.(G/Gmax)); � Adapting scaling factor F

3: CR ← CR0 · e(−a2.(G/Gmax)); � Adapting crossover rate CR

4: pm ← F · (Δ (y2, y3) /n); � Compute Hamming distance according to Equ. 5.1

5: v ← Mutation(y1,pm); � Mutation

6: for all j ∈ {1, ..., n} do: � Crossover

7: if (rnd(j) ≤ CR ∨ j = e) then:
8: uj ← vj ;
9: else
10: uj ← xj ;
11: end if
12: end for
13: return u;

randomized one proposed in section 4.5.2.1 in tow issues. First, it depends on

greedy strategy instead of greedy randomized one, which means, the best move

is selected directly and thus there is no need to the restricted candidate list

(RCL). Second, it adopts changing two bits per move in order to accelerate the

time consumed in the relinking process.

The proposed greedy path-relinking procedure receives the inputs listed in

Alg. 5.3. Firstly, the best of xs and xt is chosen to start with. Then, the best

fitness z∗ and the best solution x∗ are initialized. The candidate lists CL and

CLcmp are constructed. Every unmatched j between xs and xt with xs
j = 0 is in-

serted into CL in descending order according to the ratio in formula in Equ. 5.5.

whereas, every unmatched j between xs and xt with xs
j = 1 is inserted into CLcmp

in increasing order according to Equ. 5.5.

m∑
i=1

λi cij/

m∑
i=1

wij (5.5)

The procedure builds the path that connects xs with xt gradually by creating

intermediate points through execution of the relinking loop. Initially, the inter-

mediate solution x is set to xs. Then, the number of unmatched items between

x and xt (Δ (x, xt)) is calculated. The next move is carried out by selecting two

of unmatched �1, �2 to be matched. If both CL and CLcmp are not empty, then

the first elements of CL and CLcmp are extracted to be �1 and �2 respectively.

Else if one of them is empty, then, the first and second element of the non empty
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one will be extracted to be �1 and �2 respectively. The new intermediate x is

obtained by flipping the two items (x�1 , x�2) corresponding to the selected indexes

�1 and �2 in the current intermediate x. If x is infeasible, the Greedy-Repair is

invoked to get the feasible solution y. Then, z∗ and x∗ are updated by y. This

process is repeated until there is only one unmatched item between the current

intermediate x and the guiding xt. Finally x∗ is returned.

Algorithm 5.3 GreedyPathRelinking(xs, xt,Λ)
Inputs:
xs, xt: Starting and Guiding solutions
Λ = [λ1, ..., λm]: weight vector of the current subproblem

1: Begin:
2: x∗ ←GetTheBestOf(xs, xt,Λ); � By computing Fws(xs,Λ), Fws(xt,Λ) based on Equ. 2.17

3: if x∗ �= xs then: Swap(xs, xt); � To begin Relinking from the best

4: z∗ ← Fws(x∗,Λ); � Compute Fws(x∗,Λ) according to Equ. 2.17

5: CL&CLcmp ← ∅;

6: while ∃j|j /∈ CL ∧ xs
j �= xt

j ∧ xs
j = 0 ∧Maxn

j=1

(∑m
i=1 λicij∑m
i=1 wij

)
do:

7: CL ←Append(j);
8: end while
9: while ∃j|j /∈ CLcmp ∧ xs

j �= xt
j ∧ xs

j = 1 ∧Minn
j=1

(∑m
i=1 λicij∑m
i=1 wij

)
do:

10: CLcmp ←Append(j);
11: end while
12: x ← xs;
13: Δ(x, xt) ← |{j ∈ {1, ..., n} : xj �= xt

j}|; � Compute Hamming distance Δ(x, xt)

14: while Δ(x, xt) ≥ 2 do: � Relinking loop

15: if |CL| �= 0 ∧ |CLcmp| �= 0 then: � CL&CLcmp are not empty

16: �1 ← ExtractTheFirstElement(CL) � Extract the 1st element

17: �2 ← ExtractTheFirstElement(CLcmp)
18: else if |CL| > 1 then:
19: �1 ← ExtractTheFirstElement(CL)
20: �2 ← ExtractTheFirstElement(CL)
21: else:
22: �1 ← ExtractTheFirstElement(CLcmp)
23: �2 ← ExtractTheFirstElement(CLcmp)
24: end if
25: x ← FlipBits(x, �1, �2);
26: y ←Repair(x,Λ)
27: if (Fws(y,Λ) > z∗) then: � Compute Fws(y,Λ) according to Equ. 2.17

28: x∗ ← y; z∗ ← Fws(y,Λ);
29: end if
30: Δ(x, xt) ← |{j ∈ {1, ..., n} : xj �= xt

j}|; � Update the Hamming distance Δ(x, xt)

31: end while
32: return x∗;
33: End
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5.5 Proposed Hybridization Variants

In this work, we study the effect of using both of adaptive differential evolution

operator proposed in [Zhang et al. 2009] and/or proposed path-relinking as a re-

production operator instead of standard reproduction (crossover and mutation)

in MOEA/D framework. So we have four algorithm variants, the first variant

is called MOEADde in which the adaptive discrete differential evolution com-

pletely replaces crossover and mutation operators. The second variant is called

MOEADpr in which the proposed path-relinking operator is applied with the

crossover and standard mutation after a certain number of evaluations to guaran-

tee the existence of high quality solutions. Pseudo codes in Alg. 5.4 and Alg. 5.5

describe MOEADpr and MOEADde respectively. In the third and the fourth

variants, both of differential evolution and path-relinking replaces crossover and

mutation, they are called MOEADdp1 and MOEADdp2 respectively. Fig.5.1 de-

picts these different variants.

Search  operators 

MOEA/D Framework 

Crossover 
Mutation 

Path-
Relinking 

Adaptive  
Discrete DE 

MOEA/Dde MOEA/D MOEA/Dpr 

Variants 

MOEA/Ddp 

Figure 5.1: The proposed hybridization variants

In Both MOEADde and MOEADpr, the set of uniform weight vectors Λ is calcu-

lated, followed by construction of the neighborhood structure. The initial popu-

lation is also generated (lines 2-5). Then the main loop is executed until achieving

the maximum evaluations (line 6). To generate a new offspring for each subprob-

lem i, the mating/updating range (M) is determined to be either the neighbor-

hood of the ith subproblem (Local), or the whole population (Global) according

to a certain probability (σ). This can give a better chance for selecting distinct

parents, which encourages the path-relinking to be invoked in MOEADpr, or al-

lows the differential evolution to operate on distinct individuals in MOEADde.

Then, parent selection is performed. In case of MOEADpr (Alg. 5.4), two parents
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xj and xk are randomly selected from M . Then, the path-relinking operator is

used only if the Hamming distance between the two selected parent is greater

than a certain value ε and the number of evaluations Eval exceeds a certain ra-

tio (γ) of the maximum evaluations allowed to guarantee applying path-relinking

on high quality solutions. Else, the standard reproduction operator is applied

to generate the new offspring. In case of MOEADde variant (Alg. 5.5), three

distinct parent individuals are randomly selected to apply adaptive discrete dif-

ferential evolution on them. The new generated offspring is evaluated, and used

to update the reference point z and also updating the population according to

the parameter t, which is used to limit the number of replaced solutions. Finally,

the efficient solution set in the final population is returned as an output. In

both MOEADdp1 and MOEADdp2, some modifications are applied on MOEADde

(Alg. 5.5) to involve path-relinking after certain number of evaluations that car-

ried out to assure the existence of high quality solutions. These modifications

can be briefed as follows: when the number of evaluations Eval exceeds a cer-

tain value (γ ×MaxEvals) previously determined to involve path-relinking, we

have three selected parents xa, xb and xc in the selection step (Alg. 5.5:line 9).

If we randomly choose two of them which have Hamming distance greater than

a certain value (ε) to apply path-relinking on instead of differential evolution,

we will get the MOEADdp1 variant. On the other hand, assuming the Hamming

distance conditions1 are satisfied, if we apply path-relinking on the three selected

parents(xa, xb and xc) in the following manner: randomly choosing two individ-

uals (xa,xc) to apply path-relinking producing a new individual y, then applying

path-relinking on y and xb, we will get MOEADdp2 variant. The pseudo code

of both MOEADdp1 and MOEADdp2 can be obtained by replacing lines 10-11 in

Alg. 5.5 by the pieces of code shown in Alg. 5.6 and 5.7 respectively.

5.6 Experimental Design

In this work, all experiments have been performed on DELL PC with Intel Core

i5-2400 CPU, 3.10 GHz and 4.0 GB of RAM. The comparative study for different

algorithm variant was carried out on the set of test instances listed below in table

5.1, which are commonly used in literature. SPEA2 [Zitzler et al. 2001] algorithm

is also used in this study.

5.6.1 Parameter settings

Here, the different parameters used for each algorithm are discussed. The pop-

ulation size (N) used in SPEA2 is shown in table 5.1. For MOEA/D and

its variants MOEADde, MOEADpr, MOEADdp1 and MOEADdp2, the parame-

1it means that xj and xk can be chosen for path-relinking only if: Δ(xj , xk) ≥ ε
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Algorithm 5.4 MOEADpr(N, T, t, δ, ε, γ)

Inputs:
N,T, t: Population size, Neighborhood size & No. of replaced solutions
δ ∈ [0, 1]: Prob. of selecting parents from neighborhood
ε, γ: Min. Hamming distance, Min. evaluations allowed for path-relink

1: Begin:
2: Λ ←InitializeWeightVectors( );
3: B ←InitializeNeighborhood( );
4: P ←InitializePopulation( );
5: z ←InitializeRefPoint( ); Eval ← 0;
6: while (Eval < MaxEvals) do � main loop
7: for all (i ∈ {1, 2, ..., N}) do
8: M ←

{
B(i) if(rnd ∈ [0, 1] < δ)

P otherwise

9: xj , xk ← Selection(M, i) � select 2 elements
10: if (Δ(xj , xk) ≥ ε ∧ Eval ≥ γ ×MaxEvals) then
11: y ←PathRelinking(xj ,xk,Λi);
12: else
13: u ←Reproduction(xj ,xk);
14: y ←GreedyRepair(u,Λi)
15: end if
16: EvaluateFitness(y);
17: z ←UpdateRefPoint(y);
18: P ←UpdateSolutions(y, t,M);
19: Eval ←Update( );
20: end for
21: end while
22: return P ;

Table 5.1: Set of knapsack test instances

Instance Knaps.(m) Items(n) SPEA2(N) N(H) MaxEvals
KSP252 2 250 150 150(149) 75000
KSP502 2 500 200 200(199) 100000
KSP752 2 750 250 250(249) 125000
KSP253 3 250 200 300(23) 100000
KSP503 3 500 250 300(23) 125000
KSP753 3 750 300 300(23) 150000
KSP254 4 250 250 364(11) 125000
KSP504 4 500 300 364(11) 150000
KSP754 4 750 350 364(11) 175000

ter H which controls both the number of weight vectors and the population

size (N) is determined for each instance in table 5.1 according to the complex-

ity. The initial population used is randomly generated such that each member

x = (x1, ..., xn)
T ∈ {0, 1}T , where xi = 1 with probability equal to 0.5. The max-

imum number of evaluations (MaxEvals) is used as a stopping criterion for each

algorithm. For each algorithm, all efficient solutions rest in the final iteration is

used as the final approximation set. In these experiments, single-point crossover
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Algorithm 5.5 MOEADde(N, T, t, δ, F0, CR0, a1, a2)
Inputs:
N,T, t: Population size, Neighborhood size & No. of replaced solutions
δ ∈ [0, 1]: Prob. of selecting parents from neighborhood
F0, CR0 ∈ [0, 1]: Scaling factor and Crossover rate

1: Begin:
2: Λ ←InitializeWeightVectors( );
3: B ←InitializeNeighborhood( );
4: P ←InitializePopulation( );
5: z ←InitializeRefPoint( ); Eval ← 0;
6: while (Eval < MaxEvals) do � main loop
7: for all (i ∈ {1, 2, ..., N}) do
8: M ←

{
B(i) if(rnd ∈ [0, 1] < δ)

P otherwise

9: xa, xb, xc ← Selection(M, i): � Where: xi �= xa �= xb �= xc

10: u ←ABDifferentialEvolution(xi, x
a, xb, xc, F0, CR0, a1, a2);

11: y ←GreedyRepair(u,Λi);
12: EvaluateFitness(y);
13: z ←UpdateRefPoint(y);
14: P ←UpdateSolutions(y, t,M);
15: Eval ←Update( );
16: end for
17: end while
18: return P ;

Algorithm 5.6 MOEADdp1(N, T, t, δ, ε, γ, F0, CR0, a1, a2)

Replace lines (10-11) in Alg.5.5 by the following:

1: xj , xk ← RandomSelection(xa, xb, xc);
2: if (Δ(xj , xk) ≥ ε ∧ Eval ≥ γ ×MaxEvals) then
3: y ←PathRelinking(xj ,xk,Λi);
4: else
5: u ←ABDifferentialEvolution(xi, x

a, xb, xc, F0, CR0, a1, a2);
6: y ←GreedyRepair(u,Λi);
7: end if

Algorithm 5.7 MOEADdp2(N, T, t, δ, ε, γ, F0, CR0, a1, a2)

Replace lines(10-11) in Alg.5.5 by the following:

1: xa, xc ← RandomSelection(xa, xb, xc);
2: if (Δ(xa, xc) ≥ ε ∧ Eval ≥ γ ×MaxEvals) then
3: y ←PathRelinking(xj , xk,Λi);
4: if (Δ(xb, y) ≥ ε) then
5: y ←PathRelinking(y, xb,Λi);
6: end if
7: else
8: u ←ABDifferentialEvolution(xi, x

a, xb, xc, F0, CR0, a1, a2);
9: y ←GreedyRepair(u,Λi);
10: end if



5.7. Experimental Results 129

and standard mutation were considered. Mutation was performed for each item

independently with probability (1/n). SPEA2 uses single point crossover with

probability=1 and tournament selection with tournament size=2. The other con-

trol parameters are listed in table 5.2. Finally, the statistical analysis is applied

on 30 independent runs for each test instance.

Table 5.2: Set of common parameter used

Parameters
MOEA/D variants

MOEA/D MOEA/Dde MOEA/Dpr MOEA/Ddp

Neighborhood size: T 10 10 10 10
Max. replaced solutions: t 2 2 2 2
Parents selection: δ - 0.9 0.9 0.9
Ratio to apply Path-relink: γ - - 0.7 0.7
Min. Hamming Distance: ε - - 10 10
Initial crossover rate: CR0 - 0.4 - 0.4
Initial scaling factor: F0 - 0.4 - 0.4
Plus constants: a1, a2 - 2, 2 - 2, 2

5.6.2 Assessment Metrics

In order to assess the quality of the solutions obtained by each algorithm, some

of the quality assessment indicators are used in these experiments including bi-

nary and unary indicators. These indicators include the set coverage IC indicator

which is used to compare each pair of MOEAs as discussed in section 2.6.2.1.

They also include indicators to assess each MOEA independently such as ref-

erenced hypervolume (IRhyp), generational distance (IGD), inverted generational

distance (IIGD) and R3 (IMR3) indicators which are presented in sections 2.6.2.2,

2.6.2.3, 2.6.2.3 and 2.6.2.5 respectively.

In these experiments, the reference set P ∗ is alternatively formed for each problem

instance by gathering all nondominated solutions found by all of the compared

algorithms in all runs. Also, all approximation sets are normalized in the range

[1,2].

5.7 Experimental Results

Here, the different simulation results are shown in details. Firstly, Fig.5.2 depicts

the results of IC metric. It contains a chart (with scale 0 at the bottom and

1 at the top) for each ordered pair of the compared algorithms. Each chart

consists of nine box plots representing the distribution of IC values. Each box

plot (from left to right) represents an instance in table 5.1 (from top to down),

respectively. A chart located in the raw of algorithm A and the column of

algorithm B presents the values of coverage of the approximations generated by

algorithm B by approximations generated by algorithm A. It is clear from the
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results in Fig.5.2 that all four hybrid variants outperform the original MOEA/D

in most test instances. It is also clear that MOEADpr has the best performance

for all bi-objective test instances.

8

6

4

2

SPEA2

8

6

4

2
MOEA/D

8

6

4

2
MOEADde

8

6

4

2
MOEADpr

8

6

4

2
MOEADdp1

8

6

4

2
MOEADdp2

Figure 5.2: Results of IC indicator

The results of IRH listed in table 5.3 contain the average of IRH values achieved

over 30 independent runs for each test instance for each algorithm. Fig.5.3 visu-

alizes the average values. It is clear that all hybrid variants outperform the orig-

inal MOEA/D for all 3 and 4 objective test instances especially Path-relinking

based variants (MOEADpr, MOEADdp1 and MOEADdp2), since they have the

minimum average values. We find also, MOEADpr has the best performance

with respect to most instances, while the differential evolution based variants

(MOEADde, MOEADdp1 and MOEADdp2) have poor performance with respect

to bi-objective instance compared with the original MOEA/D.
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Table 5.3: Average results of the referenced Hypervolume (IRhyp)

Instance
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252 4.45E-01 4.07E-02 1.48E-01 2.96E-02 1.41E-01 1.43E-01
KSP502 6.51E-01 4.76E-02 1.72E-01 3.06E-02 1.68E-01 1.70E-01
KSP752 7.32E-01 3.97E-02 1.19E-01 2.86E-02 1.13E-01 1.11E-01
KSP253 1.58E+00 2.09E-01 1.80E-01 1.40E-01 1.64E-01 1.67E-01
KSP503 2.11E+00 2.50E-01 2.12E-01 1.40E-01 1.86E-01 1.94E-01
KSP753 2.41E+00 2.85E-01 2.80E-01 1.21E-01 2.62E-01 2.53E-01
KSP254 4.00E+00 8.34E-01 6.49E-01 6.11E-01 6.10E-01 6.10E-01
KSP504 5.05E+00 1.06E+00 6.55E-01 4.92E-01 5.66E-01 5.66E-01
KSP754 5.76E+00 1.29E+00 7.50E-01 5.07E-01 6.09E-01 5.79E-01

0.0E+00
1.0E+00
2.0E+00
3.0E+00
4.0E+00
5.0E+00
6.0E+00

Figure 5.3: Average results of the referenced hypervolume indicator IRhyp

In table 5.4, the average values of the generational distance IGD are listed. Ad-

ditionally, Fig. 5.4 visualizes the average values. According to IGD measure, it

is clear that the proposed hybrid variants outperform the original MOEA/D for

most instances since they have the minimum average values. Also, MOEADpr

outperforms with respect to bi-objective test instances, while both MOEADdp1

and MOEADdp2 have the superiority in the rest. In contrast, we find the differ-

ential evolution based variants especially MOEADde achieve bad results than the

original MOEA/D in bi-objective instances. This means that all hybrid variants

have the capabilities of discovering solutions as near as possible to the Pareto

frontier.
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Table 5.4: Average results of the generational distance indicator(IGD)

Instance
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252 2.79E-03 1.39E-03 2.25E-03 1.12E-03 2.22E-03 2.33E-03
KSP502 3.98E-03 1.53E-03 2.34E-03 1.10E-03 2.18E-03 2.36E-03
KSP752 4.62E-03 1.28E-03 1.38E-03 1.23E-03 1.27E-03 1.24E-03
KSP253 3.71E-03 1.88E-03 7.39E-04 9.77E-04 6.55E-04 6.30E-04
KSP503 4.06E-03 2.13E-03 7.12E-04 1.24E-03 5.93E-04 6.08E-04
KSP753 4.18E-03 2.10E-03 8.06E-04 1.05E-03 6.55E-04 6.37E-04
KSP254 5.17E-03 2.37E-03 9.84E-04 1.33E-03 8.76E-04 8.61E-04
KSP504 6.34E-03 3.18E-03 9.58E-04 1.02E-03 5.98E-04 6.17E-04
KSP754 6.75E-03 3.69E-03 9.73E-04 1.39E-03 6.08E-04 5.51E-04

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

Figure 5.4: Average results of the generational distance indicator IGD

The experimental results of the inverted generational distance (IIGD) are

listed in table 5.5. Fig. 5.5 depicts these results. These results are iden-

tical with IGD-metric, where MOEADpr performs better in bi-objective and

both MOEADdp1 and MOEADdp2 perform better with respect to many-objective.
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Table 5.5: average results of the inverted generational distance(IIGD)

Instance
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252 1.09E-02 1.00E-03 2.31E-03 8.37E-04 2.40E-03 2.25E-03
KSP502 1.16E-02 9.72E-04 1.89E-03 7.05E-04 1.88E-03 1.89E-03
KSP752 1.27E-02 7.96E-04 1.29E-03 7.04E-04 1.20E-03 1.16E-03
KSP253 2.24E-03 6.11E-04 4.48E-04 4.99E-04 4.38E-04 4.35E-04
KSP503 2.83E-03 6.12E-04 4.11E-04 4.82E-04 3.99E-04 4.01E-04
KSP753 3.15E-03 5.93E-04 3.89E-04 4.27E-04 3.79E-04 3.70E-04
KSP254 1.45E-03 6.80E-04 5.54E-04 6.07E-04 5.53E-04 5.49E-04
KSP504 1.69E-03 6.51E-04 4.56E-04 4.82E-04 4.41E-04 4.37E-04
KSP754 1.91E-03 6.88E-04 4.40E-04 4.81E-04 4.14E-04 4.07E-04

0.0E+00

5.0E-03

1.0E-02

1.5E-02

Figure 5.5: Average results of the inverted generational distance IIGD

The R-indicator IR3 illustrated in table 5.6 and depicted by Fig. 5.6 confirms the

results of the previous metrics. It indicates that MOEADpr variant outperforms

with respect to bi-objective test instances. Where, MOEADdp1 and MOEADdp2

have the best performance with respect to the other instances.
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Table 5.6: Average results of R3 indicator (IR3)

Instance
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252 4.28E-02 5.27E-03 1.08E-02 3.85E-03 1.09E-02 1.12E-02
KSP502 7.98E-02 6.66E-03 1.40E-02 4.64E-03 1.33E-02 1.40E-02
KSP752 9.61E-02 6.46E-03 8.11E-03 5.64E-03 7.23E-03 7.16E-03
KSP253 6.07E-02 1.09E-02 6.29E-03 6.65E-03 5.82E-03 5.79E-03
KSP503 9.74E-02 1.32E-02 7.08E-03 7.26E-03 5.91E-03 6.27E-03
KSP753 1.21E-01 1.45E-02 8.34E-03 6.52E-03 7.25E-03 7.06E-03
KSP254 7.24E-02 1.55E-02 1.03E-02 1.11E-02 9.66E-03 9.63E-03
KSP504 1.06E-01 2.05E-02 1.08E-02 9.09E-03 8.93E-03 9.00E-03
KSP754 1.38E-01 2.54E-02 1.21E-02 1.02E-02 9.17E-03 8.81E-03

0.0E+00

5.0E-02

1.0E-01

1.5E-01

Figure 5.6: Average results of the R3 indicator IR3

5.8 Concluding Remarks

Regarding the above results on MOKP test instances, we can deduce the following

remarks:

• MOEADpr variant achieves better results than the original MOEA/D for

all test instances in all used metrics.

• MOEADde variant outperforms the original MOEA/D for test instance with

3 or 4 objective. Conversely, it deteriorates the MOEA/D performance

concerning bi-objective instances.

• The performance of both MOEADdp1 and MOEADdp2 is highly affected

by MOEADde performance. Since they depend on differential evolution

strategy more than path-relinking.
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In general, path-relinking operator has the ability to improve the performance of

the MOEA/D for all instances especially with bi-objective instances. Whereas

differential evolution improves the MOEA/D performance in three and four

objectives instances. Consequently, the performance of their hybrid variants

MOEADdp1 and MOEADdp2 is enhanced.

5.9 Summary

In this chapter, four different hybridization variants within MOEA/D framework

are presented. The first one is called MOEADde which involves the adaptive dis-

crete differential evolution as a recombination operator within MOEA/D Frame-

work. The second is called MOEADpr, which uses the path-relinking operator

with the standard reproduction operators. In the third and fourth variants both

of differential evolution and path-relinking are used. The four proposals are com-

pared with the original MOEA/D and SPEA2 using a set of MOKP instances

commonly used in the literature. A set of quality assessment indicators is also

used to assess the performance. The experimental results indicate the superior-

ity of all proposed hybrid variants over the original MOEA/D and SPEA2 for

most test instances. In bi-objective test instances, we found that MOEADpr has

the superiority, while MOEADde has poor performance. On the other hand, in

case of instances with three or four objectives, the performance of the differen-

tial evolution is improved. Consequently, all proposed variants achieve better

performance. They have an average performance highly competitive with re-

spect to the original MOEA/D and SPEA2 based on the assessment indicators

used in this study. The general conclusion we have is: for bi-objective MOKP

test instances, path-relinking operator has the first rank followed by the stan-

dard crossover and mutation then differential evolution. Where in MOKP test

instances with three or four objectives, differential evolution and path-relinking

perform better than standard crossover and mutation. In the next chapter, these

results will be exploited to improve the HEMH [Kafafy et al. 2011] presented in

chapter 4 . We will also study how to improve the performance of differential

evolution on discrete search domains.
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6.1 Introduction

Hybrid evolutionary metaheuristics incorporate different cooperative meta-

heuristics to enhance the search capabilities. As discussed before, the

HEMH [Kafafy et al. 2011] presented in chapter 4 involves two phases search pro-

cess. First, a set of initial high quality solutions is constructed by DMGRASP.

Then, the greedy randomized path relinking and reproduction (crossover and

mutation) operators were applied to improve these initial solutions. The whole

process is combined into the MOEA/D framework. There is no doubt that DM-

GRASP produces high quality initial solutions, but it consumes more time and

evaluations which means a little chance to improve these initial solutions by the

second phase. According to the comparative study [Kafafy et al. 2012b] provided

in chapter 5, the second phase can be improved by using different combinations of

−137−
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search operators rather than using only path relinking and classical crossover and

mutation. Due to these reasons, this chapter tends to improve the performance

of HEMH through developing a new version called HEMH2 with another two

variants called HEMHde and HEMHpr. The main motivations of this work are

to overcome the limitations from which the performance of HEMH suffers. Un-

like HEMH, HEMH2 uses simple inverse greedy algorithm to construct its initial

population. Then, the search efforts are directed to improve these solutions by

exploring the search space using the adaptive binary differential evolution rather

than classical crossover and mutation. After a certain number of evaluations, the

greedy path relinking operator is applied on the high quality solutions obtained

to investigate the non-visited regions in the search space. During evaluations,

a dynamic-sized neighborhood structure is adopted to shrink/extend the mat-

ing/updating range. Furthermore, the Pareto adaptive epsilon concept is used to

control the archiving process with preserving the extreme solutions. Moreover, all

improvement proposals and their effects on the search process will be discussed in

details. The reminder of this chapter is organized as follows: HEMH framework

is reviewed in section 6.2. Section 6.3 explains the adaptive binary differential

evolution. Greedy path relinking strategy is discussed in section 6.4. In section

6.5, the archiving process using Pareto Adaptive ε-dominance is explained. The

proposed HEMH2 and its variants are presented in section 6.6. Additionally, the

experimental design and results are involved in sections 6.7 and 6.8 respectively.

Finally, the summary and future works are involved in section 6.9.

6.2 HEMH, an overview

In HEMH, a combination of different cooperative metaheuristics is provided to

handle 0/1 MOKP. The MOEA/D framework [Zhang & Li 2007] is adopted to

carry out the combination. The weighted sum defined in Equ. (2.17) is considered

to decompose the MOKP formulated in Equ. (2.7) into a set of N single objective

subproblems, based on a set of N evenly distributed weight vectors {Λ1, ...,ΛN}.
HEMH attempts to simultaneously optimize these subproblems. The HEMH

framework consists of the following:

• A population P of N individuals, P = {x1, ..., xN}, where xi represents the

current solution of the ith subproblem.

• A set of N evenly distributed weight vectors {Λ1, ...,ΛN}, correspond to

the N subproblems. Each Λ = [λ1, ..., λm] has m components correspond to

m-objectives, such that:
∑m

i=1 λi = 1, ∀λi ∈ {0/H, ..., H/H}, and H ∈ Z+.

• A neighborhood Bi for each subproblem i ∈ {1, ..., N}, which includes all

subproblems with the T closest weight vectors {Λi1, ...,ΛiT} to Λi.
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• An archive to collect all efficient solutions explored over the search process.

The HEMH consists of two basic phases, initialization and main loop. In the

initialization phase, an initial population of high quality solutions is constructed

by applying DMGRASP on each subproblem. Then, the search efforts are con-

centrated on the promising regions to explore new efficient solutions. In the main

loop phase, for each subproblem i, the mating/updating range Mi is chosen to be

either the neighborhood Bi or the whole population P . Then, two individuals are

randomly selected fromMi for reproduction. Single point crossover and mutation

or greedy randomize path relinking is applied on the selected individuals to gen-

erate a new offspring, which is used to update Mi and the archive. This process

is repeated until a certain number of evaluations. We refer to [Kafafy et al. 2011]

for more details. The limitations that affect the HEMH performance are briefed

as:

• Despite using DMGRASP achieves high quality initial solutions, it con-

sumes more time and evaluations especially with large populations. Thus,

the second phase will not have enough chance to improve the search process.

• Collecting all efficient solutions causes waste in time and storage space

especially in many objective cases. So, archiving process should be con-

trolled.

• For each subproblem i, the mating/updating range Mi is either the fixed

(static) size neighborhood Bi or the whole population P . This may cause

less execution of path relinking, or consume more time.

• Reproduction is made only by single point crossover and mutation or greedy

randomized path relinking.

• Path relinking adopts single bit flipping per move and also uses local search

to improve the generated solution. This causes more time consumption.

From the above, this chapter presents an improved version of HEMH called

HEMH2 with two variants HEMHde and HEMHpr, which have the ability to

overcome those limitations and can achieve an enhanced performance.

6.3 Adaptive Binary Differential Evolution

As mentioned in section 3.6.2.1, differential evolution (DE) is a simple and effi-

cient evolutionary algorithm to solve optimization problems mainly in continuous

search domains [Chakraborty 2010, Price et al. 2005]. DE’s success relies on the
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differential mutation, that employs difference vectors built with pairs of candi-

date solutions in the search domain. Each difference vector is scaled and added

to another candidate solution, producing the so-called mutant vector. Then,

DE recombines the mutant vector with the parent solution to generate a new

offspring. The offspring replaces the parent only if it has an equal or better

fitness. DE has some control parameters as the mutation factor F , that used

to scale the difference vectors, and the crossover rate CR. In this chapter, an

adaptive binary DE strategy is introduced to improve the exploration capabil-

ities of HEMH instead of classical crossover and mutation. The procedure of

this strategy is described in Alg. 6.1. Given a population P of N individuals,

where each individual represented by a n-component 0/1 vector. The main idea

is to select at random three distinct individuals xa, xb and xc from P for each

target individual xi ∈ P , ∀i ∈ {1, ..., N}. The mutant individual vi is produced

by applying binary differential mutation on the selected individuals according

to formula in Equ. 6.1. First, the difference vector is calculated by applying

logical XOR on the two parent differential individuals xb and xc. Then, vi is

determined by applying logical OR on the parent based individual xa and the

difference vector previously obtained. Finally, the new generated offspring ui is

produced by applying crossover according to formula in Equ. 6.2.

vi = xa + (xb ⊕ xc) (6.1)

ui
j =

{
vij if rnd(j) ≤ CR, or j ∈ e, ∀j = 1, ..., n.

xi
j otherwise, ∀j = 1, ..., n.

(6.2)

where rnd(j) ∈ [0, 1] is a random number generated for the jth component, n is

the individual length, e is a random sequence selected from the range {1, ..., n}
to insure that at least one component of ui is contributed by vi and CR ∈ [0, 1]

denotes crossover rate. Here, CR is adapted periodically to avoid the premature

convergence based on Equ. 6.3 proposed in [Zhang et al. 2009].

CR = CR0 · e(−a.(G/Gmax)) (6.3)

where G and Gmax are the current and the maximum evolutionary generations,

CR0 is the initial crossover rate. a is a constant. Finally, the whole process is

depicted in Fig. 6.1.

6.4 Path Relinking

As mentioned in sections 4.3 and 5.4, path relinking operator generates new so-

lutions through exploring the trajectories that connect high quality solutions.

Starting from the starting solution xs, path relinking builds a path in the neigh-
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Algorithm 6.1 AdaptiveBinaryDiffEvol(x, xa, xb, xc, CR0, a)
Inputs:
x: Current solution
xa, xb, xc: Parents individuals
CR0 ∈ [0, 1]: Crossover rate
a: Plus constant

1: Begin:
2: CR ← CR0 · e−a×(G/Gmax); � Adapt Crossover rate CR

3: for all j ∈ {1, ..., n} do: � For all items

4: vj = xa
j + (xb

j ⊕ xc
j); � Binary Diff. Mutation

5: uj ←
{
vj if rnd(j) ≤ CR ∨ j ∈ e,

xj otherwise.

6: end for
7: return u;
8: End
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Figure 6.1: The adaptive binary differential evolution

borhood space that leads toward the guiding solution xt. The relinking pro-

cedure has a better chance to investigate in more details the neighborhood

of the most promising solutions if relinking starts from the best of xs and xt

[Ribeiro et al. 2002]. In this chapter, the greedy path relinking with two bits per

move [Kafafy et al. 2012b] is used as an intensification strategy, integrated with

the adaptive binary differential evolution. It will be invoked on the higher gener-

ations to guarantee applying the relinking process only on high quality solutions.

The procedure of the greedy path relinking operator used here is explained in

details in section 5.4 as shown in Alg. 5.3.
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6.5 Pareto Adaptive ε-Dominance Archiving

It is well known that elitism plays an important role to achieve better convergence

for MOEAs. In this work, the elitist schemes are adopted through maintaining

an external archive of nondominated solutions discovered during the whole evo-

lutionary process. Also, the maintained solutions inside the external archive is

used as global guides to the whole search process. In order to achieve better di-

versity, the Pareto adaptive ε−dominance, the so-called paε-dominance proposed

in [Hernández-Dı́az et al. 2007], is used to update the external archive. At each

generation , so as to include a solution into this archive, it is compared with each

member already contained in the archive using paε-dominance after the grid is

generated. The procedure is described in the following.

Every solution in the archive is assigned a box index vector (B(f) =

(B1, B2, ..., Bm)
T ∈ Zm), where m is the number of objectives) which is cal-

culated for the objective vector f = (f1, f2, ..., fm) as follows:

Bi(f) =

⎢⎢⎢⎣ log( εi1pvi−(pvi−1)fi
εi1

)

log( 1
pvi

)
+ 1

⎥⎥⎥⎦ (6.4)

where p controls the shape of the curve (or surface), T is the number of points

desired by the decision maker (desired archive size), εi1 is the size of the first box

for each dimension in the objective space (Fig. 6.2), and vi controls the speed of

variation. these parameters satisfy the following equations:{
εi1 =

(pvi−1)p(T−1)vi

pTvi−1

(1− 21/p)pTvi + 21/ppTvi/2 − 1 = 0
(6.5)

The box index vector divides the whole objective space into hyper-boxes (see

Fig.6.2). With the box index vectors calculated for the offspring y and each

archive member x, the offspring y updates the archive as explained in Alg. 6.2,

where Bx indicates the box index vector of solution x. More details for this

procedure can be found in [Deb et al. 2005b].

By using the paε-dominance method, the good properties of the original ε-

dominance can be maintained, such as ensuring both properties of convergence

towards the Pareto optimal set and properties of diversity among the solutions

found in a small computation time, while overcoming the main limitation of

ε-dominance: the loss of several nondominated solutions from the hyper-grid

adopted in the archive.
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Figure 6.2: The Pareto ε-dominance Archiving

Algorithm 6.2 UpdateArchive
paε(y, Archive)

Inputs:
y: Offspring that will update the Archive
Archive: The external Archive

1: Begin:
2: if By of the offspring dominates Bx of any Archive member x then:
3: Delete all of the dominated Archive members
4: Accept the offspring y
5: else if By is dominated by Bx of any Archive member x then:
6: Reject the offspring y
7: else:
8: if y shares the same grid with an Archive member x then:
9: if y dominates x or y is closer to the grid than x then:
10: Delete x from the Archive and accept offspring y
11: else:
12: Reject the offspring y
13: end if
14: else:
15: Insert offspring y into Archive
16: end if
17: end if
18: return Archive;
19: End

6.6 The Proposed HEMH2

Motivated by the results achieved in [Kafafy et al. 2012b], some proposals are

adopted to improve HEMH performance and to overcome the limitations dis-
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cussed. The main differences between HEMH2 and its predecessor are briefly

presented as follows:

• Initial population is created using the simple inverse greedy algorithm

(Alg.6.3) for each search direction rather than DMGRASP. The quality

of the obtained initial solutions will be affected, but this will give a better

chance to the second phase to improve and enhance the search process.

• Instead of collecting all efficient solutions, the Pareto-adaptive epsilon dom-

inance (paε-dominance) [Hernández-Dı́az et al. 2007] explained in section

6.5 is adopted to control the quality and the quantity of the efficient solu-

tions collected in the external archive.

• Dynamic neighborhood size that permit to shrink/extend the neighborhood

for each subproblem is considered. Consequently, the parent solutions of a

subproblem are always selected from its neighborhood. This can overcome

the limitations of the binary differential mutation.

• The adaptive binary DE is used as a reproduction operator instead of

crossover and mutation beside the path relinking.

• Path relinking is applied only after a certain number of evaluations as a

post optimization strategy. This action guarantees the existence of high

quality solutions. Moreover, path relinking flips two bits at each relinking

step.

• In HEMH2, local search is avoided either after path relinking or after in-

verse greedy construction as proposed in HEMH.

Algorithm 6.3 InverseGreedy(x,Λ)
Inputs:
x: Initial Solution
Λ = [λ1, ..., λm]: Search direction

1: Begin:
2: CL ← ∅;
3: for all j ∈ {1, ..., n} do: xj ← 1; � Put all

4: while ∃j|j /∈ CL ∧Minn
j=1

(∑m
i=1 λicij∑m
i=1

wij

)
do:

5: CL ← Append(j); � set items in ascending all

6: end while
7: while x violates any constraint in formulation in Equ. (2.7) do:
8: j ←ExtractTheFirst(CL);
9: x ←RemoveItem(x, j);
10: end while
11: return x;
12: End
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Now, the reasons behind the above proposals are explained. Firstly, there is no

doubt that generating the initial population using DMGRASP can achieve better

quality solutions, but it forces us to use small populations. In some cases, local

search highly consumes more time and evaluations to investigate a small speci-

fied region in the search space. Consequently, the main loop phase has a small

chance to improve the search process. To overcome this limitation, the inverse

greedy construction is proposed. From the empirical results, the inverse greedy

obtains solutions as close as possible to the boundary regions than simple greedy

construction. Secondly, using paε-dominance will control the size of the archive,

especially in many objective cases. Consequently, saving more resources of time

and storage space with persevering the quality of the collected solutions. Thirdly,

the poor performance of the binary differential mutation occurs when treating

differential individuals with large Hamming distance. Selecting parents from the

whole population can encourage this scenario. In HEMH2, parents of each sub-

problem are always selected from its neighborhood which has a dynamic size, this

guarantees obtaining individuals with suitable Hamming distances. Fourthly, the

adaptive binary DE empirically has the ability to explore the search space better

than classical crossover and mutation. Thus, the performance of HEMH will be

improved by adopting adaptive binary DE for reproduction rather than crossover.

Finally, the proposed path relinking applies two bits flipping/move, that mini-

mizes the whole relinking time. Also, avoiding local search saves both time and

evaluations. Fig. 6.3 depicts the whole process in HEMH2.
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Figure 6.3: The framework of the proposed HEMH2

In Alg. 6.4, the HEMH2 procedure is introduced. Firstly, a set of N evenly

distributed weight vectors is created. Then, the neighborhood structure is con-

structed for each subproblem i by assigning all subproblems sorted increasingly

by the Euclidean distance between their weight vectors and the current weight

vector Λi. After that, an initial population P is created by applying the inverse

greedy (Alg.6.3) for each search direction. Now, the main loop is executed until
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achieving the maximum evaluations Mevls (line 13). For each subproblem i,

Selection routine is invoked to determine the current size of the neighborhood

Bi such that: |Bi| = T + r, where T and r represent the number of different

and repeated solutions in Bi respectively. This means, the Selection routine

extends Bi size to guarantee the existence of at least T different solutions and

randomly selects three of them xa, xb and xc for reproduction. Two of the three

selected parents xj, xk are chosen randomly. Then, path relinking is used only if

the Hamming distance Δ(xj, xk) is greater than a certain value ε and the number

of evaluations Eval exceeds a certain ratio γ of the maximum evaluations Mevls

allowed to guarantee applying path relinking on high quality solutions. Else, the

adaptive binary DE is applied to generate a new offspring y. The new generated

offspring y is evaluated and used to update the neighborhood (Bi) according to

the parameter t, which controls the number of replaced solutions. The Archive

is also updated by y according to paε-dominance [Hernández-Dı́az et al. 2007].

Finally, the Extreme solutions are added to the archive which is returned as an

output.

In order to study the effects of both adaptive binary DE and path relinking oper-

ators distinctly, two additional algorithms variants called HEMHde and HEMHpr

are considered. Both of them have the same procedure as HEMH2 explained in

Alg. 6.4 except that HEMHde only adopts adaptive binary DE for reproduction.

Whereas, HEMHpr replaces the adaptive binary DE in HEMH2 procedure by

crossover and mutation.

6.7 Experimental Design

In this chapter, both MOEA/D and HEMH are involved to verify our propos-

als. The comparative study for different algorithms is carried out on a set of

test instances from the literature [Zitzler & Thiele 1999] listed in table 6.1. All

experiments are performed on a PC with Intel Core i5-2400 CPU, 3.10 GHz and

4.0 GB of RAM.

6.7.1 Parameter settings

Here, the different parameters used for each algorithm are discussed. For

MOEA/D and our proposals HEMHde, HEMHpr and HEMH2, the parameter

H which controls the population size N by the relation (N = CH+m−1
m−1 ) is

determined for each instance in table 6.1 according to the complexity. The

initial population used in MOEA/D is randomly generated such that each

member x = (x1, ..., xn)
T ∈ {0, 1}T , where xi = 1 with probability equal

to 0.5. For HEMH, the parameter H́ that controls the population size Ń is
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Algorithm 6.4 HEMH2(N, T, t, ε, γ, CR0, a)
Inputs:
N : Population size or no. of subproblems
T : Min. neighborhood size
t: Max. replaced solutions
ε: Min. hamming distance
γ: Controls Path-relinking execution
CR0 ∈ [0, 1]: Crossover rate
a: Plus constant

1: Begin:
2: Wv ← {Λ1, ...,ΛN}; � Initialize set of N evenly distributed weight vectors

3: for i ← 1 to N do: � Construct Neighborhoods

4: Bi ← [i1, ..., iN ]; � where Λi1, ...,ΛiNare

5: end for � increasingly sorted by Euclidean Distance to Λi

6: Arch ← ∅; � Empty archive

7: Evals ← 0;
8: for i ← 1 to N do: � Initialization phase

9: xi ←InverseGreedy(xi,Λi); � Initialize xi by inverse greedy method

10: P ←AddSubProblem(xi,Λi); � add ith subproblem to the population P

11: Extremes ←Update(xi); � update set of extreme solutions

12: Evals ← Evals+ 1;
13: end for
14: while (Evals < MaxEvals) do: � The main Loop

15: for i ← 1 to N do: � for each subproblem i

16: xa, xb, xc ← Selection(Bi, i); � Where: xi �= xa �= xb �= xc

17: xj , xk ← RandSelection(xa, xb, xc);
18: D ← Δ(xj , xk); � Compute Hamming distance

19: E ← γ ×MaxEvals; � min. eval for PR

20: if (D ≥ ε ∧ Eval ≥ E) then:
21: y ←PathRelinking(xj ,xk,Λi);
22: else:
23: u ←AdaptiveBinaryDiffEvol(xi, xa, xb, xc, CR0, a);
24: y ←Repair(u,Λi)
25: end if
26: P ←UpdateSolutions(y, t, Bi); � Update the Population P

27: Arch ← UpdateArchive
paε(y,Arch); � Update Archive by Pareto Adaptive Epsilon

28: Extremes ←Update(y);
29: Evals ← Evals+ 1;
30: end for
31: end while
32: Arch ← AddExtremes(Extremes); � Add extremes to the archive

33: return Arch;
34: End

also considered. HEMH uses the parameters α=0.1 and β=0.5. The maxi-

mum number of evaluations (Mevls) is used as a stopping criterion for each

algorithm. For fair comparison, the same archiving strategy based on paε-

dominance [Hernández-Dı́az et al. 2007] are applied to each algorithm to get the

final approximation set. The paε-dominance uses the archive size (As) listed in

table 6.1. HEMH applies the path relinking proposed here. Single-point crossover
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and standard mutation are considered. Mutation was performed for each item

independently with probability (1/n). The other control parameters are listed in

table 6.2. Finally, the statistical analysis is applied on 30 independent runs for

each instance.

Table 6.1: Set of knapsack instances

Instances Knaps.(m) Items(n) N(H) Ń(H́) As Mevls
KSP252 2 250 150(149) 75(74) 150 75000
KSP502 2 500 200(199) 100(99) 200 100000
KSP752 2 750 250(249) 125(124) 250 125000
KSP253 3 250 300(23) 153(16) 200 100000
KSP503 3 500 300(23) 153(16) 250 125000
KSP753 3 750 300(23) 153(16) 300 150000
KSP254 4 250 364(11) 165(8) 250 125000
KSP504 4 500 364(11) 165(8) 300 150000
KSP754 4 750 364(11) 165(8) 350 175000

Table 6.2: Set of common parameters

Parameters
Algorithms

HEMH HEMHde HEMHpr HEMH2
Neighborhood size: T 10 10 10 10
Max. replaced solutions: t 2 2 2 2
Parents selection: δ 0.9 - - -
Min. support: σ {1} - - -
Ratio controls PR: γ - - 0.8 0.8
Min. Hamming Distance: ε 10 - 10 10
initial crossover rate: CR0 - 0.4 - 0.4
Plus constant: a - 2 - 2

6.7.2 Assessment Metrics

In order to assess the quality of the solutions obtained by each algorithm, some

of the quality assessment indicators are used in these experiments including bi-

nary and unary indicators. These indicators include the set coverage IC indicator

which is used to compare each pair of MOEAs as discussed in section 2.6.2.1.

They also include indicators to assess each MOEA independently such as ref-

erenced hypervolume (IRhyp), generational distance (IGD), inverted generational

distance (IIGD) and R3 (IR3) indicators which are presented in sections 2.6.2.2,

2.6.2.3, 2.6.2.3 and 2.6.2.5 respectively.

In these experiments, the reference set P ∗ for each instance is formed by gathering

all efficient solutions found by all algorithms in all runs. Also, all approximation

sets are normalized in the range [1,2].
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Figure 6.4: Results of the coverage IC indicator

6.8 Experimental Results

In this section, the different simulation results are shown in details. Firstly,

Fig.6.4 depicts the results of IC metric. It contains a chart (with scale 0 at the

bottom and 1 at the top) for the ordered pairs depicted. Each chart consists of

nine box plots representing the distribution of IC values. Each box plot (from

left to right) represents an instance in table 6.1 (from top to down) respectively.

Besides, the median values of IC indicator are also presented in table B.11. It

is clear from the results in both Fig.6.4 and table B.11 that all the proposals

HEMH2, HEMHde and HEMHpr outperform the original MOEA/D in all test

instances. Whereas, Both HEMH2 and HEMHde outperform HEMH for all test

instances. Also, HEMHpr slightly performs better than HEMH in most test

instances.



150 Chapter 6. An Improved Hybrid Evolutionary Metaheuristics

Table 6.3: Average results of the referenced hypervolume (IRhyp)

Instances
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KSP252 4.66E-02 1.02E-02 6.07E-03 9.33E-03 6.08E-03
KSP502 5.67E-02 1.55E-02 5.57E-03 1.16E-02 5.56E-03
KSP752 4.73E-02 1.64E-02 3.84E-03 7.34E-03 3.94E-03
KSP253 2.24E-01 1.21E-01 8.85E-02 1.09E-01 8.77E-02
KSP503 2.76E-01 1.16E-01 7.39E-02 9.01E-02 7.39E-02
KSP753 2.89E-01 8.85E-02 6.48E-02 7.63E-02 6.39E-02
KSP254 8.56E-01 5.55E-01 4.26E-01 4.90E-01 4.27E-01
KSP504 1.07E+00 4.53E-01 3.96E-01 4.10E-01 3.84E-01
KSP754 1.23E+00 3.93E-01 3.54E-01 3.64E-01 3.41E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

Figure 6.5: Average results of the referenced hypervolume IRhyp

In table 6.3, the average values of the referenced hypervolume IRhyp indicator are

listed. Additionally, Fig. 6.5 visualizes theses values. The details of the statistical

analysis for IRhyp are also provided in table B.12. According to these results, it is

clear that HEMH2 has the best performance in all test instances except KSP252,

KSP752 and KSP254 where HEMHde has the best performance. Moreover, the

IRhyp results indicate taht HEMH2 and the two proposed variants HEMHde and

HEMHpr outperform both MOEAD and the original HEMH in all test instances

used.

Table 6.4 contains the average values for the generational distance IGD indicator.

Also, Fig. 6.6 visualizes theses values. The details of the statistical analysis

for IGD are shown in table B.13. These results indicate that HEMH2 has the

superiority followed by HEMHde in all test instances except KSP502, KSP752 and

KSP254 where HEMHde has the best performance. According to the generational

distance IGD results, the three proposed variants HEMH2, HEMHde and HEMHpr

outperform both the original MOEA/D and HEMH.
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Table 6.4: Average results of the generational distance (IGD)

Instances
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KSP252 1.50E-03 5.17E-04 3.40E-04 5.74E-04 3.37E-04
KSP502 1.53E-03 4.41E-04 1.44E-04 3.12E-04 1.54E-04
KSP752 1.33E-03 4.77E-04 7.52E-05 1.91E-04 7.81E-05
KSP253 1.98E-03 6.83E-04 3.92E-04 6.82E-04 3.88E-04
KSP503 2.25E-03 4.95E-04 2.76E-04 4.25E-04 2.70E-04
KSP753 2.16E-03 3.63E-04 2.17E-04 2.77E-04 2.07E-04
KSP254 2.52E-03 1.14E-03 6.07E-04 9.13E-04 6.14E-04
KSP504 3.45E-03 6.63E-04 4.08E-04 5.14E-04 3.62E-04
KSP754 3.79E-03 4.91E-04 2.88E-04 3.56E-04 2.53E-04

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

Figure 6.6: Average results of the generational distance (IGD)

In tables 6.5, the average values of the inverted generational distance IIGD indica-

tors are listed. Additionally, Fig. 6.7 visualizes theses values. The details of the

statistical analysis for IIGD indicator are also provided in table B.14 . Accord-

ing to these results, it is clear that HEMHde has the best performance in all test

instances except KSP754 in which HEMH2 has the best performance. Moreover,

the IIGD results indicate that all the proposed variants HEMH2, HEMHde and

HEMHpr outperform both MOEA/D and the original HEMH in all test instances

used in this study.

The average results for the R3 IR3 indicator are listed in table 6.6. The vi-

sualization for these results are illustrated in Fig. 6.8. Moreover, the details of

the statistical analysis for IR3 indicator are also listed in table B.15. These re-

sults indicate the superiority of HEMHde in handling bi-objectives test instances,

whereas HEMH2 has the superiority in solving test instances with three and four

objective functions. The IR3 indicator results confirm the results of the other

indicators where the proposed HEMH2 and its variants HEMHde and HEMHpr

outperform both MOEA/D and the original HEMH in all test instances used in

this study.
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Table 6.5: Average results of the Inverted. Generational Distances (IIGD)

Instances
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KSP252 9.32E-04 4.83E-04 3.49E-04 4.51E-04 3.50E-04
KSP502 7.31E-04 2.72E-04 1.31E-04 2.10E-04 1.32E-04
KSP752 5.41E-04 2.43E-04 7.89E-05 1.14E-04 7.95E-05
KSP253 6.31E-04 4.48E-04 3.83E-04 4.41E-04 3.84E-04
KSP503 5.28E-04 3.33E-04 2.58E-04 2.99E-04 2.60E-04
KSP753 4.55E-04 2.46E-04 1.93E-04 2.24E-04 1.95E-04
KSP254 6.75E-04 5.69E-04 4.88E-04 5.33E-04 4.91E-04
KSP504 5.95E-04 4.04E-04 3.46E-04 3.67E-04 3.46E-04
KSP754 5.46E-04 3.28E-04 2.71E-04 2.85E-04 2.70E-04

0.0E+00

2.0E-04

4.0E-04
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Figure 6.7: Average results of the Inverted. Generational Distances (IIGD)

In general, based on those results, it is clear that the proposals HEMH2, HEMHde

and HEMHpr outperform the original MOEA/D and HEMH. Since they achieve

the minimum average values for all assessment indicator adopted in the study.

Moreover, the proposed HEMH2 and HEMHde have the superiority for all test

instances, followed by HEMHpr. In some cases, it is observed that HEMHde

achieves better results than HEMH2 and HEMHpr, depending upon the adaptive

binary differential evolution. This reflects that the adaptive binary differential

evolution capabilities in exploring the search space are more effective than path

relinking and classical crossover and mutation.
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Table 6.6: Average results of the R3 indicator (IR3)

Instances
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KSP252 6.05E-03 1.88E-03 1.29E-03 2.32E-03 1.30E-03
KSP502 7.30E-03 2.06E-03 6.89E-04 1.62E-03 7.12E-04
KSP752 6.88E-03 2.47E-03 5.46E-04 1.21E-03 5.54E-04
KSP253 1.11E-02 5.62E-03 4.49E-03 5.24E-03 4.48E-03
KSP503 1.34E-02 5.16E-03 3.83E-03 4.60E-03 3.78E-03
KSP753 1.42E-02 4.25E-03 3.38E-03 3.92E-03 3.32E-03
KSP254 1.61E-02 9.70E-03 7.86E-03 8.84E-03 7.84E-03
KSP504 2.02E-02 7.91E-03 7.18E-03 7.40E-03 7.06E-03
KSP754 2.39E-02 7.02E-03 6.02E-03 6.26E-03 5.82E-03

0.0E+00

5.0E-03

1.0E-02
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Figure 6.8: Average results of the R3 indicator (IR3)

6.9 Summary

In this chapter, an improved hybrid evolutionary metaheuristics HEMH2 and

two other variants called HEMHde and HEMHpr are proposed to enhance HEMH

performance. The HEMH2 adopts the inverse greedy procedure in its initializa-

tion phase. Both adaptive binary DE and greedy path relinking operators are

used. The HEMHde only uses adaptive binary DE to generate the new offspring

whereas, HEMHpr uses crossover and mutation beside path-relinking. The pro-

posals are compared with the original MOEA/D and their predecessor HEMH

using a set of MOKP instances from the literature. A set of quality assessment in-

dicators is also used to assess the performance. The experimental results indicate

the superiority of all proposals over the original MOEA/D and the predecessor

HEMH based on the assessment indicators used in this study. According to these

results, we can deduce that the adaptive binary differential evolution included

in both HEMH2 and HEMHde has better exploration capabilities which over-

come the local search capabilities contained in the original HEMH. Therefore
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both of HEMH2 and HEMHde outperform HEMH. In some cases, HEMHde can

achieve highly competitive results compared with HEMH2 based on the adaptive

binary differential evolution which can achieve better performance than greedy

path-relinking. In the next chapter, we will extend our proposals to handle mul-

tiobjective optimization problems in the continuous search domains.
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7.1 Introduction

Hybrid evolutionary algorithms have been successfully applied to solve numer-

ous multiobjective optimization problems (MOP). In our previous research work

in [Kafafy et al. 2011] and [Kafafy et al. 2012a] which are presented in the pre-

vious chapters 4 and 6 respectively, the new hybrid evolutionary metaheuristics

HEMH and its improved version HEMH2 are proposed for discrete search do-

mains. According to the experimentation, they have the ability to enhance the
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search capabilities through adopting different combinations of search operators

combined with the MOEA/D framework. Motivated by these results, this chapter

tries to extend this work to the continuous search domains. It studies the cooper-

ation of different search operators and analyzes its effects on handling continuous

MOPs. In this chapter, a new hybrid evolutionary approach with search strategy

adaptation (HESSA) [Kafafy et al. 2013] which incorporates a pool of adaptive

search strategies within the MOEA/D framework is presented. The main goals

are to capture the benefits of those strategies with providing cooperation and

integration among them for improving search capabilities. Also, to make the

approach capable of selecting the most suitable search strategy according to the

problem on hand. In HESSA, the search process is carried out through adopting

a pool of different search strategies, each of which has a specified success ratio.

A new offspring is generated using a randomly selected strategy. Then, accord-

ing to the success of the generated offspring to update the population and/or

the archive, the success ratio of the selected strategy is adapted. This provides

the ability for HESSA to adopt the appropriate search strategy according to

the problem on hand. Furthermore, the cooperation among different strategies

leads to improve the exploration and the exploitation of the search space. The

proposed pool is combined to a suitable evolutionary framework for supporting

the integration and cooperation. Moreover, the efficient solutions explored over

the search are collected in an external repository to be used as global guides for

the whole search process. The remainder of this chapter is organized as follows.

In section 7.2, some of the different search operators are overviewed. The pro-

posed HESSA is presented in section 7.3. In additions, the experimental design

and results are involved in sections 7.4 and 7.5 respectively. Finally, section 7.6

presents the conclusions and some further directions.

7.2 A Review of Search Operators

In chapter 3, global search techniques especially metaheuristic based algorithms

are reviewed in details. Here, the concentration is directed to the different search

operators which used in this work. In this section, the components of the search

strategies used in this research will be briefly reviewed as follows:

7.2.1 Genetic operators

As discussed in section 3.6.1.1, crossover and mutation are the two most pop-

ular genetic operators. Crossover is the process of exchanging the genetic ma-

terial of the parents to create new offspring. Whereas, the mutation opera-

tor is used to preserve the diversity of the population during generations. In

the literature, various types of crossover and mutation were proposed. These
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types are successfully used to handle different types of optimization prob-

lems in the continuous search domains. In this context, the SBX crossover

[Deb & Agrawal 1995], Multiple parents crossover [Elsayed et al. 2011] and poly-

nomial mutation [Deb & Agrawal 1995] will be focused.

7.2.1.1 SBX crossover

The simulated binary crossover (SBX) is widely used in practice. It has been

found to work well in many test problems that have a continuous search space.

From a pair of parents xa and xb, the SBX crossover produces an offspring y as

follows:

y =

{
1
2

(
(1 + β)xa + (1− β)xb

)
if: p ≤ 0.5

1
2

(
(1− β)xa + (1 + β)xb

)
otherwise

(7.1)

β =

{
(2u)1/(1+ηc), u ≤ 0.5

(1/(2− 2u))1/(1+ηc) , otherwise
(7.2)

where p, u ∈ [0, 1] are two uniform random numbers and ηc is the distribution

index.

7.2.1.2 Multi-parents crossover

various multi-parents crossover were proposed in the literature for continuous

search domains such as simplex (SPX) [Tsutsui et al. 1999b], parents centric

(PCX) [Deb et al. 2002], etc. However, the new multiple parents crossover

(MPC) proposed in [Elsayed et al. 2011] will be used here. According to Equ. 7.3,

the MPC crossover constructs a new offspring y, from three different randomly

selected parents xa, xb and xc as follows:

y =

⎧⎨
⎩

xa + β × (xb − xc) if: p ≤ 1
3

xb + β × (xa − xc) if: 1
3
< p ≤ 2

3

xc + β × (xa − xb) otherwise

(7.3)

where β ∼ N(μ, σ) is a Gaussian random number and p ∈ [0, 1] is a uniform

random number.

7.2.1.3 Polynomial mutation

In polynomial mutation, the probability to produce a child near to the parent is

greater than the probability to produce one distant it. The mutant offspring x́

can be produced as:

x́j =

{
xj + δj × (bj − aj) with probability pm
xj with probability 1− pm

(7.4)
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∀δj =
{
(2uj)

1/(1+ηm) − 1, uj ≤ 0.5

1− (2− 2uj)
1/(1+ηm) otherwise

(7.5)

where uj ∈ [0, 1] is a random number. The distribution index ηm and the muta-

tion rate pm are two control parameters. aj and bj are the lower and the upper

limits of xj.

7.2.2 Differential Evolution operator

As reviewed in section 3.6.2.1, differential evolution (DE) uses differential muta-

tion to employ the difference vectors built with pairs of candidate solutions in the

search domain. Each difference vector is scaled and added to another candidate

solution, producing the so-called mutant vector. Then, DE recombines the mu-

tant vector with the parent solution to generate a new offspring. The offspring

replaces the parent only if it has an equal or better fitness. There are different

strategies to carry out this process such as ”DE/rand/n/bin”, ”DE/best/n/exp”,

”DE/rand-to-best/n/bin”, etc, where n is the number of difference vectors used

[Price et al. 2005]. In this work, the ”DE/rand/1/bin”strategy is considered. DE

has some control parameters as scaling factor F , that used to scale the difference

vectors, and crossover rate CR. Given a population P of N individuals, the idea

is to randomly select three distinct individuals xa, xb and xc from P for each

target individual xi ∈ P , ∀i ∈ {1, ..., N}. The mutant individual vi is produced

according to Equ. 7.6. Then, the binomial crossover is applied on vi and xi to

produce a new offspring ui as:

vi = xa + F × (xb − xc) (7.6)

ui
j =

{
vij if rnd ≤ CR, or j = jrnd,

xi
j otherwise, ∀j = 1, ..., n.

(7.7)

where rnd ∈ [0, 1] and jrnd ∈ {1, ..., n} is a random chosen index to insure that

at least one component of ui is contributed by vi, n is the individual length and

CR ∈ [0, 1].

7.2.3 Particle swarm optimization

PSO is a population-based stochastic optimization technique that simulates the
social behavior of bird flocking and fish schooling as mentioned in section 3.6.3.1.
It was originally proposed in [Kennedy & Eberhart 1995]. PSO consists of a
population of particles (solutions). Each particle i has its own position xi and
moves through the search space with an adaptable velocity vi towards the best
position that it has achieved xi

pb and the overall best solution xi
gb. For each ith

particle at generation t, the velocity and the new position for the next generation
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can be evaluated as follows:

vi(t+1) = w · vi(t)+c1r1(x
i
pb − xi(t))+c2r2(x

i
gb − xi(t)) (7.8)

xi(t+1) = xi(t) + vi(t+1) (7.9)

where w ≥ 0 represents the inertia weight, c1 and c2 are the acceleration coeffi-

cients and r1, r2 ∼ U(0, 1)n. For each j, if xi
j(t + 1) violates its domain [aj, bj],

it will be repaired and also its velocity vi(t+ 1) will be reset as follows:

xi
j(t+ 1) =

{
aj if xi

j(t+ 1) < aj
bj if xi

j(t+ 1) > bj
vij(t+ 1) = −γvij(t+ 1)

(7.10)

where aj and bj are lower and upper bounds of the jth component respectively.

Here, the parameter γ is set to 1.

7.2.4 Guided Mutation operator

Guided mutation proposed in [Hsieh et al. 2007] provides an integration between
global and local search capabilities, through guiding the rotation of the evolu-
tionary strategy (ES) mutation ellipses, for global search, and using the regular
ES operation to conduct local search to find the promising solution. In guided
mutation, the new solution y is generated from its parent x using the guided
target solution t as follows:

yj =

{
xj + 0.5(tj − xj)× r +R×N(0, 1) with pm

xj + 0.5(tj − xj)× r with 1− pm
(7.11)

∀R =

{
0.1× |t− x| if 0.1× |t− x| > μ

μ otherwise
(7.12)

where r ∼ N(0, 1) is a Gaussian number and pm is the mutation rate. The new

offspring y consists of the current position of its parent x, the guided vector

derived from its target t and the mutation step R which specified by the distance

|t − x| and bounded by the control parameter μ. Finally, An illustration of the

guided mutation operator is depicted in Fig. 7.1.

7.3 The proposed HESSA

In this context, the proposed HESSA is presented in more details. In the research

work in [Kafafy et al. 2011, Kafafy et al. 2012b, Kafafy et al. 2012a], the influ-

ence of incorporating different cooperative metaheuristics in MOEA/D frame-

work was examined for discrete search domains. The achieved results motivate
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Figure 7.1: Illustration of Guided Mutation

us to extend the idea to the continuous case. However, an adaptive multiple

search strategies are adopted for tackling continuous search domains. In the

following subsections, the components of the proposed HESSA are discussed.

7.3.1 Multiple Search Strategies Adaptation

In this work, a pool of multiple search strategies is adopted to generate the new

offspring solutions instead of using a single strategy as depicted by Fig. 7.2.

To generate a new offspring, the candidate pool is accessed for selecting one

search strategy for each target individual in the current population. During

evolution, each certain number of consecutive pool’s invokes is considered as a

learning period (LP ). The more successfully one strategy behaved in the previous

learning period to generate promising solutions, the more probability it will be

chosen in the current learning period to be used for generating the new offspring

solutions. At each learning period, the probability of selecting each strategy from

the candidate pool are summed to 1. These probabilities are adapted gradually

during the evolution process. In the initial learning period, all strategies have the

same chance to be selected, i.e., each strategy k has a probability pk =
1
K
, where

K is the total number of strategies in the candidate pool. During each learning

period, each strategy k can be chosen to generate the new solution according

to its probability pk using the stochastic universal selection [Baker 1987]. The

number of selecting each strategy k is represented by callsk. Each strategy

is considered to achieve a success if it has the ability to generate an offspring

capable of updating the current population. The number of successful calls for

each strategy k is registered by suck. The number of invokes for the candidate

pool is expressed as: callstot =
∑L

l=1

∑K
k=1 callsk,l, where, L is the total number

of learning periods in the whole evolution. However, after each learning period l
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Figure 7.2: The structure of the candidate pool.

Table 7.1: Set of reproduction strategies used

Strategy Description
SBXPM The SBX crossover is applied on two parents followed by polynomial muta-

tion to generate an offspring.
DEXPM The differential evolution is applied on three selected parents followed by

polynomial mutation.
MPCPM The multiple parent crossover is applied on three selected parents followed

by polynomial mutation.
GM Guided mutation is used to produce an offspring from its parent and the

global guide solution.
PSO Particle swarm computes a new position from the current parent, its per-

sonal best and global guide.

(when callstot%LP = 0), the probability of selecting each strategy k for the next

learning period pk,l+1 will be adapted according to the following formulas:

pk,l+1 =
sucRk,l∑K
k=1 sucRk,l

(7.13)

sucRk,l =

{
suck,l
callsk,l

+ ε if callsk,l > 0, ∀k, l
ε otherwise

(7.14)

where sucRk,l is the success rate of the kth strategy at the learning period l.

The small constant value ε = 0.01 is used to avoid the possible null success rates.

Consequently, the strategies with null success rate have a chance to be chosen for

generating offspring. Both suck,l and callsk,l represent the number of successful

invokes and the total number of invokes of the kth strategy at the learning period

l.

7.3.2 HESSA framework

Like MOEA/D [Zhang & Li 2007], the proposed approach uses a decomposition

technique to convert the MOP formulated in Equ. 2.1 into a set of single objec-

tive subproblems. The weighted Tchebycheff approach described in formula in

Equ. 2.19 is used in this study. However, if we have a set of N evenly distributed
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weight vectors {Λ1, ...,ΛN}, correspondingly after decomposition, we have N sin-

gle objective subproblems. The proposed algorithm attempts to simultaneously

optimize these subproblems. Each subproblem i has its own set of neighbors

called Bi, which includes all the subproblems with the T closest weight vectors

{Λi1, ...,ΛiT} to Λi in terms of Euclidean distance. The structure of the proposed

framework is briefed as follows:

• A population P of N individuals, P = {x1, ..., xN}, where xi represents

the current solution of the ith subproblem. Each individual xi has its own

velocity vi, its personal best position xi
pb and its age ai.

• A set of N evenly distributed weight vectors {Λ1,...,ΛN}, correspond to

the N subproblems. Each Λ = [λ1,..., λm] has m components correspond

to m-objectives, such that:
∑m

i=1 λi = 1, ∀λi ∈ {0/H, 1/H, ..., H/H} and

N = CH+m−1
m−1 , ∀H ∈ Z+.

• A neighborhood Bi for each subproblem i ∈ {1, ..., N}, which includes all

subproblems with the T closest weight vectors {Λi1, ...,ΛiT} to Λi.

• A set of adaptive reproduction strategies contained in a Pool for generating

new solutions. Each strategy is selected according to its probability as

mentioned above. Table 7.1 summarizes the set of adopted strategies.

• An external archive to collect efficient solutions explored over the search

process. The archive also plays the role of global leaders repository.

Finally, the structure of HESSA is depicted in Fig. 7.3.

7.3.3 HESSA procedure

After constructing the proposed framework, the proposed approach implements

two basic phases. The first one is the initialization phase in which an initial pop-

ulation is randomly generated, whereas the second is the main-loop in which the

search efforts are conducted to improve the initial population. The whole process

is summarized in Alg. 7.1. Firstly, in lines (2-5), a set of N evenly distributed

weight vectors is initialized. Then, the neighborhood structure Bi is constructed

for each subproblem i by assigning all subproblems with the T closest weight

vectors to Λi. The candidate Pool is also built using the adopted reproduction

strategies. The archive and the evaluation counter are initialized. Secondly, the

initial population is constructed in lines (6-18). For each subproblem i, the cur-

rent solution xi is randomly initialized. Then, xi is evaluated and used to update

the reference point r∗ [Zhang & Li 2007], the personal best xi
pb and the archive.

The velocity vi and the age ai are also initialized by 0. The ith subproblem is
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Figure 7.3: HESSA Algorithm structure

appended to the population P . Now, the main-loop is executed until achiev-

ing the maximum evaluations Mevals (lines 19-37). For each subproblem i, the

mating/updating range Mi is chosen to be either the neighborhood Bi or the

whole population. Then, three different parent solutions are randomly selected

from Mi for reproduction. The global leader xi
gb is randomly selected from the

archive. A reproduction strategy Sk is also selected from the Pool for generating

the new offspring y through invoking the Reproduction module. According to

the selected strategy Sk, the offspring y is generated. In case of using the guided

mutation or the particle swarm, the age parameter ai controls the generation

process. In this case, if ai exceeds the maximum allowable age Ta, a Gaussian

value as: N(1
2
[xi

gb − xi
pb], |xi

gb − xi
pb|) is assigned to y. After that, the offspring y

is evaluated and used to update the reference point r∗. The current population

P is updated by invoking the UpdateSolutions module. The Archive is also

updated by y according to the crowding distance. The evaluation counter is up-

dated and checked. At the end of each learning period, the Pool is adapted by

calculating the probability pk for each strategy k according to Equ. 7.13. At the

end of the evolution, the archive is returned.

In the UpdateSolutions module explained in Alg. 7.3, the offspring y updates

the population P as follows: a random index j is selected from the updating

range Mi. Then, the current solution of the jth subproblem xj is updated only if

y achieves better scalar fitness according to Equ. 2.19. In this case, the success

of the selected strategy Suck is increased. And the age aj is reset. Also, the
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personal best xj
pb is updated by the same manner. Finally the selected index j

is eliminated from Mi. If the current solution xj is not updated, its age aj is

increased. This process continues until updating t solution or Mi becomes empty.

7.4 Experimental Design

In this chapter, HESSA is verified using some of the state of the art MOEAs

as: MOEA/D1 [Zhang & Li 2007], MOEA/D2 [Li & Zhang 2009] and dMOPSO

[Mart́ınez & Coello 2011]. As well known, MOEA/D1 applies SBX-crossover and

polynomial mutation (SBXPM) as a search strategy, whereas MOEA/D2 adopts

a search strategy consists of differential evolution followed by polynomial mu-

tation (DEXPM). In addition, dMOPSO is really based on PSO strategy com-

bined with the MOEA/D framework. Also, a set of standard test problems

which cover MOPs with different PFs’ characteristics as convexity, concavity,

disconnections and multifrontality is adopted. The test problems contain bi-

objectives test MOPs including Fonseca, Kursawe [Coello et al. 2006], ZDT1,

ZDT2, ZDT3, ZDT4 and ZDT6 proposed in [Zitzler et al. 2000]. They also

contain three-objectives MOPs such as DTLZ2, DTLZ4, DTLZ6 and DTLZ7

proposed in [Deb et al. 2005a]. The mathematical formulation and the charac-

teristics of both bi-objective and three-objective test problems used in this study

are shown in tables 7.2 and 7.3 respectively. According to these tables, 30 deci-

sion variables are used for ZDT1, ZDT2 and ZDT3, whereas ZDT4 and ZDT6

are tested by 10 decision variables. In DTLZ2, DTLZ4 and DTLZ6, 12 decision

variables are used, whereas DTLZ7 is tested by 22 decision variables. All exper-

iments are performed on a PC with Intel Core i5-2400 CPU, 3.1 GHz and 4 GB

of RAM.

7.4.1 Parameter settings

For each algorithm, the population size N and the maximum evaluations

MaxEvals are set to 100, 10000 for bi-objective problems and 300, 30000 for

three-objective test problems respectively. The archive size and the learning

period LP are set to N , 1000 respectively. In dMOPSO and HESSA, the in-

ertia weight w and coefficients c1, c2 used in PSO are uniformly generated as

U(0.1, 0.5) for w and U(1.2, 2) for c1 and c2 as used in [Mart́ınez & Coello 2011].

For HESSA, the guided mutation parameter μ is set to 0.03 and the mutation

rate Pm is set to 1/n. In MPC crossover, β is set to N(0.7, 0.1) as used in

[Elsayed et al. 2011]. The other common parameters are depicted in table 7.4.

Finally, the statistical analysis is applied on 30 independent runs for each test

MOP.
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Algorithm 7.1 HESSA(N, T, t, LP, δ, pc, pm, ηc, ηm, CR, F, Ta)
Inputs:
N : Population size or no. of sub-problems
T : Minimum neighborhood size
t: Maximum replaced solutions
LP : Learning period
δ: probability of selecting parents from neighborhood
pc, pm: Crossover and mutation probabilities
ηc, ηm: Distribution indexes for crossover and mutation
CR,F : Crossover rate & scaling factor for differential evolution
Ta: Maximum allowable age

1: Begin:
2: Wv ← {Λ1, ...,ΛN}; � initialize a set of N evenly distributed weight vectors

3: for i ← 1 to N do: � Construct Neighborhood structures

4: Bi ← [i1, ..., iT ]; � where Λi1, ...,ΛiT are T closest to Λi in terms of Euclidean distance

5: end for
6: Pool ←ConstructPool(sbxpm,dexpm,mpcpm,gm,pso); � 5 strategies

7: Eval ← 0; � initialize Evaluation counter

8: Arch ← ∅; � initialize with empty archive

9: for i ← 1 to N do: � Initialization phase

10: xi
j ← U(aj , bj), ∀j = 1, ..., n. � get a uniform random xj ∈ [aj , bj ]

11: xi ←Evaluate(xi); � Evaluate xi

12: r∗ ←UpdateReferencePoint(xi); � Update reference point r∗

13: xi
pb ← xi; � Initialize personal best

14: vi ← 0; ai ← 0 � Initialize velocities & ages

15: P ←AddSubProblem(xi,Λi, vi, xi
pb, ai); � add the ith subproblem

16: Arch ←UpdateArchive(xi); � update Arch

17: Eval ← Eval + 1; � update Eval

18: end for
19: while (Eval < MaxEvals) do: � Main Loop

20: for i ← 1 to N do: � determine the mating/updating rang Mi

21: Mi ←
{
Bi if(rnd ∈ [0, 1] < δ)

1, ..., N otherwise

22: xa, xb, xc ← SelectParents(Mi, i); � Where: xi �= xa �= xb �= xc

23: xi
gb ← SelectGlobalBest(Arch); � randomly select the global guide

24: Sk ←SelectStrategy(Pool); � select a strategy Sk from Pool

25: callsk ← callsk + 1; � update # of calls for strategy Sk

26: y ←Reproduction(Sk,x
i,xa,xb,xc,vi,xi

pb,x
i
gb,ai); � Apply search strategy

27: y ←Evaluate(y); � Evaluate y

28: r∗ ←UpdateReferencePoint(y); � Update reference point r∗

29: P ←UpdateSolutions(y, t,Mi, P, Sk, r
∗);

30: Arch ← UpdateArchive(y, Sk); � crowding distance

31: callstot ← callstot + 1; � update total calls

32: Eval ← Eval + 1; � update Eval

33: if (callstot%LP = 0) then: � The End of learning period

34: Pool ←AdaptPool(Pool); � recalculate pk for each strategy k

35: end if � The End of Pool Adaptation

36: end for � The End of Generation

37: end while
38: return Arch;
39: End
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Algorithm 7.2 Reproduction(Sk, x
i, xa, xb, xc, vi, xi

pb, x
i
gb, ai)

Inputs:
Sk: the selected strategy
xi: the current solution
xa, xb, xc: three selected parents
vi, ai: velocity and age
xi
pb, x

i
gb: the personal best and the guide

1: Begin:
2: if (Sk = ”sbxpm”) then: � SBX crossover then Polynomial mutation

3: y ←Crossover(xa, xb);
4: y ←PolyMutation(y);
5: else if (Sk = ”dexpm”) then: � Differential Evolution & Polynomial mutation

6: y ←DiffEvolution(xi, xa, xb, xc, CR, F );
7: y ←PolyMutation(y);
8: else if (Sk = ”mpcpm”) then: � Multi-Parent crossover & Polynomial mutation

9: y ←MPCrossover(xa, xb, xc, xi
gb);

10: y ←PolyMutation(y);
11: else if (Sk = ”gm”) then: � Apply Guided Mutation or reset y

12: y ←
{

GuidedMutation(xi, xi
gb); if: ai < Ta

N( 12 [x
i
gb − xi

pb], |xi
gb − xi

pb|) otherwise

13: else if (Sk = ”pso”) then: � Apply Particle Swarm or reset y

14: y ←
{

PSO(xi, xi
pb, x

i
gb, v

i, ai); if: ai < Ta

N( 12 [x
i
gb − xi

pb], |xi
gb − xi

pb|) otherwise
15: end if � The End of Reproduction

16: return y; � return the new generated offspring

17: End

Algorithm 7.3 UpdateSolutions(y, t,Mi, P, Sk, r
∗)

Inputs:
y: the new solution
t: the Maximum replaced solutions
P : the current population
Mi: the updating rang of the ith sub-problem
Sk: the selected search strategy
r∗: the reference point

1: Begin:
2: c ← 0; � initialize counter

3: while (c < t ∧ Mi �= ∅) do: � update Loop

4: j ←SelectRandomIndex(Mi); � randomly select index j

5: if (FTc(y,Λj , r∗) ≤ FTc(xj ,Λj , r∗)) then: � in case of success

6: xj ← y; � update jth subproblem

7: aj ← 0; c ← c+ 1; � reset age, update counter

8: suck ← suck + 1; � update # of success for strategy Sk

9: if (FTc(xj ,Λj , r∗) ≤ FTc(xj
pb,Λ

j , r∗)) then:
10: xj

pb ← xj ; � update the personal best

11: end if
12: Mi ←RemoveIndex(Mi, j); � exclude j from Mi

13: else: aj ← aj + 1; � in case of failure, update age aj

14: end if
15: end while
16: return P ; � return the updated population P

17: End
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Table 7.2: List of the bi-objective test problems

Problem Mathematical formulation Comments

Fonseca

f1(x) = 1− exp(−∑n
i=1 (xi − 1√

n
)2)

f2(x) = 1− exp(−∑n
i+1 (xi +

1√
n
)2)

−4 ≤ xi ≤ 4, i = 1, ..., n., n = 3

Non-Convex

Kursawe
f1(x) =

∑n−1
i=1 (−10e(0.2)×

√
x2
i+x2

i+1)
f2(x) =

∑n
i=1 (|xi|0.8 + 5sin(xi)

3)
−5 ≤ xi ≤ 5, i = 1, ..., n., n = 3

Disconnected

ZDT1

f1(x) = x1

f2(x) = g(x)[1−√x1/g(x)]
g(x) = 1 + 9 (

∑n
i=2 xi) /(n− 1)

0 ≤ xi ≤ 1, i = 1, ..., n. n = 30

Convex

ZDT2

f1(x) = x1

f2(x) = g(x)[1− (x1/g(x))
2]

g(x) = 1 + 9 (
∑n

i=2 xi) /(n− 1)
0 ≤ xi ≤ 1, i = 1, ..., n. n = 30

Non-Convex

ZDT3

f1(x) = x1

f2(x) = g(x)h(x)
g(x) = 1 + 9 (

∑n
i=2 xi) /(n− 1)

h(x) = [1−
√

x1

g(x)
− x1

g(x)
sin(10πx1)]

0 ≤ xi ≤ 1, i = 1, ..., n. n = 30

Convex, Discon-
nected

ZDT4

f1(x) = x1

f2(x) = g(x)[1− (x1/g(x))
2]

g(x) = 1 + 10(n− 1) + h(x)
h(x) =

∑n
i=2 [x

2
i − 10cos(4πxi)]

x1 ∈ [0, 1],−5 ≤ xi ≤ 5, i = 2, ..., n. n = 10

Non-Convex,
Multifrontal

ZDT6

f1(x) = 1− e−4x1sin6(6πx1)
f2(x) = g(x)[1− (f1(x)/g(x))

2]
g(x) = 1 + 9[(

∑n
i=2 x

2
i )/(n− 1)]0.25

0 ≤ xi ≤ 1, i = 1, ..., n. n = 30

Non-Convex,
Many-to-one,
Non-uniform

7.4.2 Assessment Metrics

In order to assess the quality of the solutions obtained by each algorithm, some

of the quality assessment indicators are used in these experiments including bi-

nary and unary indicators. These indicators include the set coverage IC indicator

which is used to compare each pair of MOEAs as discussed in section 2.6.2.1.

They also include indicators to assess each MOEA independently such as ref-

erenced hypervolume (IRhyp), generational distance (IGD), inverted generational

distance (IIGD) and unary additive epsilon (Iε+) indicators which are presented
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Table 7.3: List of three-Objective Test Problems

ProblemMathematical formulation Comments

DTLZ2

f1(x) = cos(x1π/2)cos(x2π/2)(1 + g(x))
f2(x) = cos(x1π/2)sin(x2π/2)(1 + g(x))
f3(x) = sin(x1π/2)(1 + g(x))
g(x) =

∑n
i=3 (xi − 0.5)2

0 ≤ xi ≤ 1, ∀i = 1, ..., n, n = 12

Non-Convex,
Scalable,
Multimodal

DTLZ4

f1(x) = cos(xα
1π/2)cos(x

α
2π/2)(1 + g(x))

f2(x) = cos(xα
1π/2)sin(x

α
2π/2)(1 + g(x))

f3(x) = sin(xα
1π/2)(1 + g(x))

g(x) =
∑n

i=3 (xi − 0.5)2

0 ≤ xi ≤ 1, ∀i = 1, ..., n, n = 12

Non-Convex,
Separable,
Unimodal

DTLZ6

f1(x) = x1

f2(x) = x2

f3(x) = (1 + g(x))h(f1, f2, f3, g)
g(x) = 9

n−2

∑n
i=3 xi

h(f1, f2, f3, g) = 3−∑3
i=1

(
fi
1+g

(1 + sin(3πfi))
)

0 ≤ xi ≤ 1, ∀i = 1, ..., n, n = 22

Unimodal,
Bias, Many-
to-one-
mapping

DTLZ7

f1(x) =
1
10

∑10
i=1 xi

f2(x) =
1
10

∑20
i=11 xi

f3(x) =
1
10

∑30
i=21 xi

g1(x) = f3(x) + 4f1(x)− 1 ≥ 0
g2(x) = f3(x) + 4f2(x)− 1 ≥ 0
g3(x) = 2f3(x) + f1(x) + f2(x)− 1 ≥ 0
0 ≤ xi ≤ 1, ∀i = 1, ..., n, n = 30

Disconnected

Table 7.4: Set of common parameters

Parameters
Algorithms

MOEAD1 MOEAD2 dMOPSO HESSA
Neighborhood size: T 30 30 - 30
Max. Replaced Solutions: t - 2 - 2
Parents selection Prob.: δ - 0.9 - 0.9
Crossover rate: pc 1 - - 1
Crossover index: ηc 20 - - 20
Mutation rate: pm 1/n 1/n - 1/n
Mutation index: ηm 20 20 - 20
DE parameters: CR,F - 1,0.5 - 1,0.5
Age threshold: Ta - - 2 2
PBI penalty value: θ - - 5 -
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in sections 2.6.2.2, 2.6.2.3, 2.6.2.3 and 2.6.2.6 respectively. In these experiments,

the True Pareto front for each test problem is used as the reference set P ∗. Also,
the reference point r∗ used in the referenced hypervolume (IRhyp) calculations is

set as the nadir vectors taken from the reference set P ∗ of each test problems.
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Figure 7.4: Results of the coverage IC indicator

7.5 Experimental Results

In this section, the different simulation results are shown in details. Firstly, the

results of the set coverage IC indicator are shown in Fig. 7.4 which contains a

chart (with scale 0 at the bottom and 1 at the top) for each ordered pair of

the compared MOEAs. Each chart consists of Eleven box plots representing

the distribution of IC values. The box plots (from left to right) correspond to

test problems Fonseca, Kursawe, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ2,

DTLZ4, DTLZ6 and DTLZ7 respectively. A chart located in the raw of algorithm

A and the column of algorithm B presents the values of coverage of approxima-

tions generated by algorithm B by approximations generated by algorithm A.
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Additionally, the median values of IC indicator are listed in table B.16. Accord-

ing to these results, it is clear that HESSA generally performs better than the

other algorithms in all test MOPs except DTLZ2 and DTLZ4 with respect to

MOEAD1, and slightly have the same performance with dMOPSO in DTLZ6.

The results listed in table 7.5 express the average and the standard deviation

of the referenced hypervolume IRH indicator. The detailed statistical results of

IRH are also presented in table B.17. These results indicate that HESSA is able

to achieve better performance in all bi-objective test MOPs except Fonseca, and

have the second best performance in three-objective test problems except DTLZ4

in which it achieves the best performance.

In table 7.6, the average and the standard deviation of the IGD indicator are

shown. Additionally, table B.18 shows the detailed statistical analysis for these

values. It is clear that these results confirm the previous results of the IRH in-

dicator in most test problems. For DTLZ4, HESSA achieves the second best

performance after MOEAD1, whereas in DTLZ7, HESSA achieves the best per-

formance followed by MOEAD1.

For the IIGD indicator, the average and the standard deviation are shown in table

7.7. Also, table B.19 lists more details for the IIGD results. According to these

results, HESSA outperforms the other algorithms in all bi-objective test problems

except Fonseca. It has also the second best performance in most three-objective

test problems except DTLZ4 in which HESSA achieves the best performance.

These results typically confirm the results of the IRH indicator.

Finally, table 7.8 shows the average and the standard deviation of the epsilon Iε+
indicator. The detailed statistical analysis for Iε+ is shown in table B.20. These

results are nearly the same as those obtained by the previous indicators. HESSA

achieves the best performance in all test problems except Fonseca, DTLZ2 and

DTLZ4, in which MOEAD2 has the best performance. Generally from the above

results, HESSA achieves the best performance in most cases or at least the second

best performance.

Concerning the search strategy adaptation in HESSA, Fig. 7.5 and Fig. 7.6 depict

the adaptation of different search strategies for bi-objective and three-objective

test problems. Here, The runs with the minimum IIGD values are considered.

For each test problem, it is clear that all search strategies begin with the same

probability to be selected to launch the search process. The learning process

for each search strategy proceeds during the evolutions. At the end of each

learning period, the performance of each search strategy is evaluated to adapt

its probability of selection. This reflects the ability of HESSA to control the

search process by launching the suitable search strategy at the appropriate time

for each test instances.
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Table 7.5: Results of IRhyp indicator (Average,σ)
MOPs MOEAD1 MOEAD2 dMOPSO HESSA
Fonse 5.03e− 36.5e−4 3.64e− 34.3e−5 1.19e− 21.4e−3 4.08e− 31.1e−4

Kursa 2.94e− 11.8e−2 3.83e− 13.7e−2 1.49e+ 02.1e−1 2.77e− 11.3e−2

ZDT1 2.92e− 21.5e−2 4.50e− 18.9e−2 2.36e− 22.5e−3 5.50e− 32.0e−4

ZDT2 1.87e− 18.1e−2 3.33e− 10.0e+0 1.23e− 11.4e−1 5.48e− 34.7e−4

ZDT3 2.28e− 22.3e−2 6.22e− 16.3e−2 3.09e− 26.2e−3 5.65e− 32.9e−4

ZDT4 1.05e− 17.5e−2 6.66e− 11.1e−8 1.01e− 11.2e−1 5.53e− 34.3e−4

ZDT6 1.54e− 22.6e−3 1.32e− 18.8e−2 8.76e− 33.6e−3 2.16e− 41.2e−5

DTLZ2 4.61e− 21.3e−3 4.84e− 21.1e−3 1.21e− 16.7e−3 4.64e− 21.1e−3

DTLZ4 1.40e− 11.3e−1 2.05e− 23.0e−2 5.81e− 21.2e−2 4.01e− 41.1e−3

DTLZ6 1.11e− 26.9e−3 2.67e− 47.6e−6 7.71e− 41.6e−4 3.11e− 43.4e−6

DTLZ7 1.71e− 12.1e−2 5.36e− 11.2e−1 1.67e− 12.0e−2 1.69e− 15.2e−3

Table 7.6: Results of IGD indicator (Average,σ)
MOPs MOEAD1 MOEAD2 dMOPSO HESSA
Fonse 1.56e− 32.4e−4 9.96e− 43.3e−5 4.49e− 35.1e−4 1.14e− 35.8e−5

Kursa 8.56e− 31.2e−3 1.09e− 21.6e−3 4.89e− 28.7e−3 7.46e− 36.6e−4

ZDT1 5.15e− 31.4e−3 3.67e− 19.7e−2 1.29e− 21.8e−3 8.30e− 41.2e−4

ZDT2 1.06e− 31.4e−3 4.58e− 11.6e−1 1.35e− 21.1e−2 9.12e− 42.8e−4

ZDT3 5.83e− 36.5e−3 5.06e− 11.0e−1 8.87e− 31.6e−3 2.70e− 31.6e−4

ZDT4 7.15e− 28.1e−2 1.75e+ 16.4e+0 1.87e− 31.3e−3 8.38e− 42.4e−4

ZDT6 1.35e− 22.1e−3 2.15e− 11.9e−1 5.45e− 39.0e−3 2.62e− 33.7e−5

DTLZ2 5.85e− 31.1e−4 7.85e− 32.4e−4 6.85e− 25.0e−3 6.33e− 31.7e−4

DTLZ4 2.51e− 21.1e−2 3.60e− 23.0e−3 4.58e− 25.2e−3 3.51e− 21.4e−3

DTLZ6 4.19e− 22.8e−2 3.72e− 38.4e−5 4.42e− 32.3e−4 3.85e− 36.8e−5

DTLZ7 2.25e− 21.7e−3 1.69e− 17.4e−2 5.20e− 26.2e−3 2.19e− 24.0e−4

Table 7.7: Results of IIGD indicator (Average,σ)
MOPs MOEAD1 MOEAD2 dMOPSO HESSA
Fonse 4.21e− 34.5e−4 3.57e− 32.2e−5 1.63e− 25.3e−3 3.70e− 35.9e−5

Kursa 4.24e− 21.2e−3 4.42e− 21.2e−3 1.06e− 12.1e−2 4.20e− 25.2e−4

ZDT1 3.87e− 23.2e−2 3.90e− 19.6e−2 1.48e− 21.5e−3 4.05e− 37.1e−5

ZDT2 2.46e− 11.2e−1 8.98e− 11.5e−1 1.95e− 12.7e−1 4.00e− 31.2e−4

ZDT3 2.67e− 22.7e−2 4.66e− 17.6e−2 1.75e− 22.4e−3 1.06e− 21.1e−4

ZDT4 1.05e− 16.8e−2 6.48e+ 02.8e+0 1.60e− 11.8e−1 4.11e− 31.3e−4

ZDT6 1.93e− 23.4e−3 1.63e− 12.2e−1 3.63e− 31.1e−3 1.89e− 31.6e−5

DTLZ2 3.72e− 22.0e−4 3.81e− 23.4e−4 7.33e− 24.6e−3 3.73e− 22.3e−4

DTLZ4 1.69e− 11.4e−1 2.99e− 25.2e−3 4.41e− 26.5e−3 2.98e− 22.0e−3

DTLZ6 3.82e− 22.6e−2 4.39e− 33.2e−5 7.72e− 37.2e−4 4.52e− 31.5e−5

DTLZ7 2.24e− 11.5e−1 3.76e− 11.8e−1 8.94e− 25.1e−2 1.15e− 13.5e−3

Table 7.8: Results of Iε+ indicator (Average,σ)
MOPs MOEAD1 MOEAD2 dMOPSO HESSA
Fonse 9.09e− 02.0e−0 6.47e− 31.4e−4 7.45e− 23.3e−2 7.07e− 33.7e−4

Kursa 8.79e− 21.6e−2 1.09e− 11.4e−2 4.57e− 11.9e−1 8.24e− 29.0e−3

ZDT1 1.10e− 17.0e−2 4.88e− 11.2e−1 2.88e− 23.7e−3 8.25e− 34.1e−4

ZDT2 7.21e− 12.6e−1 1.42e+ 01.7e−1 3.26e− 14.4e−1 7.44e− 34.5e−4

ZDT3 1.27e− 11.8e−1 8.66e− 11.7e−1 4.64e− 21.2e−2 1.51e− 24.2e−4

ZDT4 2.13e− 11.0e−1 6.80e+ 02.8e+0 2.53e− 12.3e−1 8.91e− 38.4e−4

ZDT6 2.85e− 24.9e−3 3.09e− 12.4e−1 2.99e− 28.6e−3 5.03e− 32.3e−4

DTLZ2 8.76e− 24.2e−3 7.83e− 28.1e−3 1.07e− 16.1e−3 8.44e− 24.8e−3

DTLZ4 4.33e− 13.3e−1 8.24e− 25.7e−2 1.38e− 11.8e−2 6.39e− 21.0e−2

DTLZ6 4.30e− 22.1e−2 1.02e− 22.6e−4 1.47e− 21.9e−3 1.04e− 21.5e−4

DTLZ7 6.16e− 16.3e−1 9.65e− 16.0e−1 2.49e− 12.1e−1 1.68e− 13.9e−3
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Figure 7.5: Search Strategy Adaptation for bi-objectives test problems

In Fig. 7.5, concerning Fonseca test problem, it is shown that DEXPM search

strategy achieves the highest probability of selection followed by SBXPM,

whereas MPCPM, GM and PSO achieve lower values for probability of selection

during the learning periods. For Kursawe, SBXPM has the highest probability

of selection followed by DEXPM then MPCPM, whereas GM and PSO has lower

values for probability of selection during the different learning periods. For ZDT1,

ZDT2 and ZDT4 test problems, the search strategies with the highest probability

of selection are SBXPM, DEXPM and MPCPM interchangeably, where GM and

PSO has lower values for selection probabilities. In ZDT3, DEXPM gains the

highest probability of selection during whole the search process, whereas both

SBXPM and MPCPM has the medium values of selection probabilities, then GM

and PSO achieves the lower values of selection probabilities. In ZDT6, despite
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Figure 7.6: Search Strategy Adaptation for three-objectives test problems

all strategies has close values for probability of selection, it is clear that DEXPM

an SBXPM performs better followed by MPCPM.

In Fig. 7.6, concerning DTLZ2, DTLZ4 and DTLZ7, SBXPM performs better

since it has the highest probability of selection followed by DEXPM and MPCPM

search strategies, whereas both GM and PSO achieve weak performance in these

test instances. For DTLZ6, the strategies with the highest probability of selection

are SBXPM,DEXPM and MPCPM interchangeably, whereas both GM and PSO

has the lowest values of selection probabilities.

In general, it is obvious form both Fig. 7.5 and Fig. 7.6 that, SBXPM have

the best performance followed by DEXPM and MPCPM for all test problems

except Fonseca in which DEXPM has the best performance, whereas GM and

PSO search strategies achieve weak performance.

Here, the scatter plots of the results achieved by the compared algorithms are

considered. For bi-objective test problems, the scatter plots presented in Fig. 7.7,

Fig. 7.8, Fig. 7.9, Fig. 7.10, Fig. 7.11, Fig. 7.12 and Fig. 7.13 contain the final

Pareto fronts achieved by each algorithm for Fonseca, Kursawe, ZDT1, ZDT2,

ZDT3, ZDT4 and ZDT6 test problems. Also, for tri-objective test problems,
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Fig. 7.14, Fig. 7.15, Fig. 7.16 and Fig. 7.17 present the scatter plots which contain

the final Pareto fronts achieved by each algorithm for DTLZ2, DTLZ4, DTLZ6

and DTLZ7 test problems respectively. In these plots, the runs that achieve the

minimum IIGD values are considered.

In both Fig. 7.7 and Fig . 7.8, the approximation sets achieved by the compared

algorithms for Fonseca and Kursawe test problems are plotted respectively . It

is clear that, HESSA, MOEAD1 and MOEAD2 achieves approximation sets of

high quality solutions uniformly distributed along the True Pareto Front.

According to the scatter plots illustrated in Fig. 7.9, Fig. 7.10 and Fig. 7.11 in

which the approximation sets achieved by the compared algorithms for ZDT1,

ZDT2 and ZDT3 are plotted respectively. It is clear that HESSA achieves high

quality approximation sets with high convergence and diversity to the true Pareto

front fallowed by MOEAD1 and dMOPSO.

Figure 7.12 visualizes the approximation sets achieved by each algorithm for

ZDT4. These results indicate that HESSA achieves good approximation set in

terms of convergence and diversity with respect to the other algorithms followed

by dMOPSO and MOEAD1.

Figure 7.13 plots the approximation sets obtained by each algorithm for ZDT6.

These results indicate that HESSA has the best performance followed by

MOEAD2 then MOEAD1 followed by dMOPSO.

Fig. 7.14 depict the approximation sets obtained by each algorithm for DTLZ2.

The results indicate that each of HESSA, MOEAD1 and MOEAD2 perform better

as they achieve high quality approximation sets in terms if convergence and

diversity with respect to the true Pareto front. This reflects the search strategy

adaptation plots for DTLZ2 in Fig. 7.6, where SPXPM and DEXPM have the

highest probability for selection as the most suitable search strategies for this

test problem. Regarding that MOEAD1 and MOEAD2 adopts SPXPM and

DEXPM search strategies respectively. Moreover, we can conclude that PSO is

not suitable for this problem. So, dMOPSO achieves weak performance with

DTLZ2. Also, PSO has low values for probability of selection in HESSA.

Fig. 7.15 plots the approximation sets obtained by each algorithm for DTLZ4.

The results declare that HESSA and MOEAD1 has better performance with

DTLZ4, whereas MOEAD2 and dMOPSO achieve weak results. It is clear that

both HESSA and MOEAD1 obtained more solutions dispersed along the PF

more than MOEAD2 and dMOPSO. So, in Fig.7.6 with DTLZ4 it is obvious

that SPXPM has the highest probability of selection which is a basic component

in MOEAD1 framework.

Fig. 7.16 depicts the approximation sets obtained by each algorithm for DTLZ6.

It is clear that each of HESSA, MOEAD1 and MOEAD2 nearly achieve the
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same results with DTLZ6 which is slight better than dMOPSO. We can see the

reflection for those results in Fig.7.6 with problem DTLZ6 where each SPXPM

and DEXPM have the higher and close probability of selection and PSO has

slightly lower values for the probability of selection.

Fig. 7.17 depicts the approximation set obtained by each algorithm for DTLZ7.

As can be seen, DTLZ7 is a multi-frontlty problem, it has a four front. MOEAD1

can reach only one of them. MOEAD2 is able to reach two of the four fronts.

dMOPSO can reach the four parts of the front but it is obvious that the solutions

obtained is far from the the true ones. In contrast, HESSA is able to reach the

four front parts, whereas the solutions obtained is more close to the true ones.

In general, we can conclude that the most suitable strategy for the problem

on hand usually has higher selection probability during the learning periods.

This proves the ability of HESSA to launch the most suitable strategy at the

appropriate time for the problem on hand.
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Figure 7.7: The Pareto fronts achieved for Fonseca test problems

7.6 Summary

In this chapter, a hybrid evolutionary approach with search strategy adapta-

tion (HESSA) for handling multiobjective continuous problems is presented. In

HESSA, the search process is controlled by the adaption of the search strate-

gies used during the evolution process. HESSA is verified using a set of test
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Figure 7.8: The Pareto fronts achieved for Kursawe test problems
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Figure 7.9: The Pareto fronts achieved for ZDT1 test problems
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Figure 7.10: The Pareto fronts achieved for ZDT2 test problems
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Figure 7.11: The Pareto fronts achieved for ZDT3 test problems
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Figure 7.12: The Pareto fronts achieved for ZDT4 test problems
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Figure 7.13: The Pareto fronts achieved for ZDT6 test problems
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Figure 7.14: The Pareto fronts achieved for DTLZ2 test problems
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Figure 7.15: The Pareto fronts achieved for DTLZ4 test problems
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Figure 7.16: The Pareto fronts achieved for DTLZ6 test problems
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Figure 7.17: The Pareto fronts achieved for DTLZ7 test problems



7.6. Summary 181

MOPs commonly used in the literature. HESSA is also compared with three

state of the art MOEAs. A set of quality indicators is also considered to evaluate

the performance for all the compared MOEAs. The experimental results indi-

cate the superiority of HESSA over both MOEA/D and dMOPSO on the most

of test problems used. They also indicate that HESSA has an average perfor-

mance highly competitive with respect to the compared MOEAs based on the

assessment indicators used in this study. The contribution of HESSA is the com-

bination among different cooperative search operators that intensify the search

process to discover the promising regions in the search space and enhance the

ability to explore high quality solutions. The second contribution is the ability

to adapt the search process by using the suitable search operator to the problem

on hand.
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8.1 Conclusions

In this chapter, the general results obtained from the previous chapters will

be summarized. Moreover, the contributions of this thesis will be mentioned

concerning every proposed algorithm.

In chapter 4, a hybrid evolutionary metaheuristics (HEMH) based on DM-

GRASP and greedy randomized path-relinking to solve multiobjective knapsack

problems is presented. The proposed HEMH is verified using a set of test MOKP

instances commonly used in the literature. The HEMH is compared with four

of the most popular MOEAs that considered as the state-of-the art. A set of

quality assessment indicators is also considered to evaluate the performance for

all the compared MOEAs. The experimental results indicate the superiority

of the decomposition based MOEAs over the Pareto dominance based MOEAs.

They also indicate the superiority of local search based MOEAs especially the

proposed HEMH. Since, it has an average performance highly competitive with

respect to the compared MOEAs based on the assessment indicators used in the

study. The main contribution of the proposed HEMH is the combination among

different metaheuristics techniques that intensify the search process in discover-

ing the most promising regions in the search space and enhance the ability to

explore high quality solutions. The second contribution is the ability to find a

good approximation set of high quality solutions using a small set of uniformly

distributed search directions due to the use of path-relinking and local search

strategies.

In chapter 5, four different hybridization variants within the MOEA/D frame-

work are presented. The first one is called MOEADde which involves the adaptive

discrete differential evolution as a recombination operator within the MOEA/D

−183−
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Framework. The second is called MOEADpr, which uses the greedy path re-

linking operator with the standard reproduction operators. In the third and

the fourth variants, both of adaptive discrete differential evolution and greedy

path-relinking are adopted. The four proposals are compared with the original

MOEA/D and SPEA2 using a set of MOKP test instances commonly used in

the literature. A set of quality assessment indicators was also used to assess the

performance of the compared algorithms. The experimental results indicate the

superiority of all proposed hybrid variants over the original MOEA/D and SPEA2

for most test instances. In bi-objective test instances, we found that variants that

contained greedy path-relinking have the superiority, especially MOEADdp2 vari-

ant. On the other hand, in case of instances with three or four objectives, the

MOEADde variant has the best performance followed by MOEADdp2. They have

an average performance highly competitive with respect the original MOEA/D

and SPEA2 based on the assessment indicators used in this study. The gen-

eral conclusions can be drawn are: for bi-objective MOKP test instances, greedy

path-relinking operator has the first rank followed by the adaptive discrete dif-

ferential evolution and the standard reproduction by crossover and mutation.

Where in MOKP test instances with three or four objectives, the adaptive dis-

crete differential evolution has the superiority, followed by path-relinking and

then the standard reproduction by crossover and mutation.

In chapter 6, an improved hybrid evolutionary metaheuristics HEMH2 and two

other variants called HEMHde and HEMHpr are proposed to enhance HEMH per-

formance. The HEMH2 adopts the inverse greedy procedure in its initialization

phase. Both adaptive binary differential evolution and greedy path relinking op-

erators are used. The HEMHde only adopts the adaptive binary differential evolu-

tion whereas, HEMHpr uses crossover and mutation beside greedy path relinking.

The proposals are compared with the original MOEA/D and their predecessor

HEMH using a set of MOKP test instances from the literature. A set of quality

assessment indicators is also used to assess the performance. The experimen-

tal results indicate the superiority of all proposals over the original MOEA/D

and their predecessor HEMH based on the assessment indicators used in this

study. According to these results, we can deduce that the adaptive binary differ-

ential evolution included in both HEMH2 and HEMHde has better exploration

capabilities which overcome the local search capabilities that contained in the

original HEMH. Therefore, both of HEMH2 and HEMHde outperform HEMH.

In some cases, HEMHde can achieve highly competitive results compared with

HEMH2 based on the adaptive binary differential evolution which can achieve

better performance than greedy path relinking operator.

In chapter 7, a hybrid evolutionary approach with search strategy adaptation

(HESSA) is presented for handling multiobjective continuous problems. In
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HESSA, the search process is controlled by adapting the search strategies used

during the evolution process. HESSA is verified using a set of test MOPs com-

monly used in the literature. HESSA is also compared with three state of the

art MOEAs. A set of quality assessment indicators is also considered to evaluate

the performance for all the compared MOEAs. The experimental results indi-

cate the superiority of HESSA over both MOEA/D and dMOPSO on the most

of test problems used. They also indicate that HESSA has an average perfor-

mance highly competitive with respect to the compared MOEAs based on the

assessment indicators used in this study. The contribution of HESSA is the com-

bination among different cooperative search strategies that intensify the search

process to discover the promising regions in the search space and enhance the

ability to explore high quality solutions. The second contribution is the ability

to adapt the search process by using the suitable search strategy to the problem

on hand.

Finally, this thesis provides several hybrid evolutionary metaheuristics algorithms

for handling multiobjective decision making problems. The general conclusion

can be drawn is that all of the proposed algorithms have the ability to achieve

highly competitive results with respect to the state of the art algorithms taken

from the literature.

8.2 Perspectives

Concerning the proposed algorithms, there are several possible aspects for future

work have arisen form this research. These aspects can be summarized as follows:

1. General perspectives

• The tuning parameters of the proposed approaches especially HEMH2,

HEMHde and HESSA will be investigated as well as their convergence

analysis.

• Investigate and study how to exploit decision makers’ preferences to

guide the search process for the proposed algorithms.

• Fuzzy AHP can be combined in the proposed algorithms to help in

selecting the most suitable efficient solution according to the decision

makers’ preferences.

• Hybridization with other techniques such as scatter search technique,

ant-colony optimization and DNA computing,...etc should be studied.

• Fuzzy linguistic variables may be used to extract the preferences of

the decision makers which can be used to direct the search efforts to

the preferred regions instead of the whole search space. This could

lead to minimize the search time.
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• Enhancing the performance of the archiving process used in the pro-

posed algorithms for controlling the quality of the obtained solutions.

• Parallel implementations should be investigated for improving the pro-

posed approaches.

• Large scale problems should be considered to get benefit of the pro-

posed approaches.

2. Perspectives concerning HEMH2 and its variants

• Studying how to exploit other metaheuristics to improve the perfor-

mance of HEMH2 and its variants and to extend their capabilities to

solve other types of multiobjective combinatorial optimization prob-

lems and real world problems.

• Fuzzy logic controller based on quality assessment metrics could be

adopted for adapting the neighborhood size for each subproblem in

HEMH2.

3. Perspectives concerning HESSA

• Improving the performance of HESSA by extending the idea of the

dynamic sized-neighborhoods and by using other search strategies.

• Studying the use of quality assessment metrics to adapt the search

strategies in HESSA as will as the archiving strategy.
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A.1 Introduction

La prise de décision est une partie intégrante de notre vie quotidienne. Elle con-

cerne les individus, les sociétés, les grands groupes internationaux, les nations
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et va jusqu’aux organisations au niveau global. Elle considère des situations

s’étendant dans la complexité, des problèmes simples aux plus complexes à ob-

jectifs multiples. Ainsi, avec des objectifs multiples, l’incompatibilité apparâı-

tra. La prise de décision multi-objectifs (MODM) [Zeleny 1982, Gál et al. 1999,

Triantaphyllou 2000] traite des situations de décision où le décideur a plusieurs

objectifs habituellement contradictoires. Dans les problèmes typiques de la vie

réelle, il n’y a aucune alternative idéale pouvant être considérée comme solu-

tion optimale pour chaque objectif. Par Conséquent, la tâche la plus importante

dans des problèmes de décision multicritères ou multiobjectifs est de trouver une

bonne solution de compromis qui remplit la meilleure alternative du point de

vue du décideur, prenant en considération tous les objectifs simultanément. En

conséquence, la qualité du compromis dépend des préférences du décideur.

Plusieurs situations réelles sont représentées comme de problèmes d’optimisation

multiobjectifs (MOP). Ces problèmes sont souvent caractérisés par leur grande

taille et la présence de multiples objectifs contradictoires. En général, la tâche

principale dans le processus d’optimisation multiobjectifs consiste à identifier

l’ensemble des solutions Pareto optimales, ou obtenir une bonne approximation

vis-à-vis du front de Pareto (PF). Plusieurs métaheuristiques ont été introduites

durant les trente dernières années [Coello et al. 2006], comme les algorithmes

évolutionnaires (EA), les stratégies d’évolution (ES), le recuit simulé (SA), la

recherche Tabu (TS), la Scatter Search (SS), l’optimisation par essaim particu-

laires (PSO), l’évolution différentielle (DE) [Blum & Roli 2003].

Les algorithmes évolutionnistes multi-objectifs (MOEAs) sont des domaines de

recherche très prometteurs aujourd’hui. En fait, ces algorithmes permettent

de fournir plusieurs avantages pour résoudre les problèmes d’optimisation dif-

ficiles. Plusieurs travaux sur la résolution des problèmes MOPs et leurs appli-

cations utilisant les algorithmes évolutionnistes sont proposés dans la littéra-

ture [Deb et al. 2000, Farina et al. 2004, Jaszkiewicz 2003, Zitzler et al. 2001,

Zitzler & Thiele 1999]. Les approches de NSGAII [Deb et al. 2000] et de

SEPA2 [Zitzler et al. 2001] sont les approches Pareto les plus populaires à base

de MOEAs. Basée sur plusieurs méthodes traditionnelles de programmation

mathématiques [Miettinen 1999], l’approximation du PF peut être décomposée

en plusieurs sous-problèmes mono-objectif.

Plusieurs approches de MOEAs adoptent ce principe d’ailleurs, comme dans les

approches de MOGLS [Jaszkiewicz 2002b] et de MOEA/D [Zhang & Li 2007].

Plusieurs algorithmes de recherche visent à obtenir le meilleur de l’ensemble

des différentes métaheuristiques qui s’exécutent ensemble, qui sont complémen-

taires et qui augmentent leurs capacités d’exploration. Ces méthodes sont

généralement appelés des méthaheuristiques hybrides. La diversification et

l’intensification [Blum & Roli 2003] sont deux éléments majeurs lors de la con-
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ception d’une méthode de recherche globale. La diversification signifie la capacité

de visiter plusieurs régions de l’espace de recherche, tandis que l’intensification

signifie la capacité d’obtenir de bonnes solutions pour ces régions. Un algo-

rithme de recherche permet de satisfaire ces deux buts, pour faire face aux con-

flits qui peuvent exister. Les métaheuristiques hybrides permettent de contrôler

cet équilibre [Lozano & Garćıa-Mart́ınez 2010].

Dans cette thèse, nous proposons de nouvelles metaheuristiques hybrides

pour faire face aux problèmes combinatoires multiobjectifs et aux problèmes

d’optimisation continue multiobjectifs. Les expériences que nous avons menées

démontrent que ces nouvelles approches permettent d’obtenir de meilleurs résul-

tats vis-à-vis des approches de l’état de l’art. Ce résumé est organisé comme

suit : après l’introduction, la section A.2 présente brièvement l’énoncé du

problème. Dans la section A.3 un bref aperçu sur les métaheuristiques est

présenté. Les contributions de la thèse sont mises en évidence dans la sec-

tion A.4. Les travaux proposés qui sont présentés dans cette thèse, également

publiés dans [Kafafy et al. 2011], [Kafafy et al. 2012b], [Kafafy et al. 2012a]

et [Kafafy et al. 2013] sont brièvement présentés et discutés dans, respective-

ment, les sections A.5, A.6, A.7 et A.8. Enfin, une brève conclusion achève ce

résumé dans la section A.9.

A.2 Exposé du problème

Dans l’optimisation multiobjectif, il n’y a généralement pas de solution opti-

male qui satisfasse tous les objectifs à la fois. Il faut donc trouver des solutions

de compromis, non dominées par d’autres solutions, appelées solutions Pareto

optimales [Chankong & Haimes 1983]. Sans perte de généralité, le problème

d’optimisation multi-objectifs (MOP) est formulé comme suit:

Min : F (x) = (f1(x), f2(x), ..., fm(x))
T

s.t. : gj(x) ≤ 0, ∀j = 1, 2, ..., k

x = (x1, x2, ..., xn)
T ∈ Rn

(A.1)

Où F (x) est un vecteur des objectifs à m-dimensions, fi(x) est la ième fonction

objectif à minimiser, ∀i = 1, ...,m, x = (x1, x2, · · · , xn)
T est le vecteur décision à

n-dimensions, gj(x) est la j ème contrainte, ∀j = 1, 2, ..., k. Une solution x ∈ Rn

réalisable doit respecter les k contraintes.

Il est important dans l’optimisation multicritère d’évaluer et de comparer la

qualité relative des sorties respectives des méthodes de résolution et des al-

gorithmes, nous renvoyons à [Zitzler et al. 2008] pour plus de détails. Dans

cette thèse, deux types d’indicateurs d’évaluation sont utilisées. Le premier
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concerne les indicateurs binaires qui sont utilisés pour comparer chaque couple

de techniques telles que la couverture d’ensemble (IC) [Zitzler & Thiele 1999].

Le deuxième type concerne les indicateurs unaires qui sont utilisés pour éval-

uer chaque technique indépendamment des autres, comme les indicateurs : Hy-

pervolume (IHyp) [Zitzler & Thiele 1999], Generational Distance (IGD), Inverted

Generational Distance (IIGD), R3-indicator (IR3) [Knowles & Corne 2002], Max-

imum Spread (IMS) [Zitzler et al. 2000] et l’indicateur Unary Additive Epsilon

(Iε+) [Zitzler et al. 2003].

Les méthodes classiques pour générer les solutions Pareto optimales agrègent les

fonctions objectif en une seule fonction paramétrée par analogie avec la prise

de décision avant la recherche. Plusieurs cycles d’optimisation avec différents

paramétrages sont effectués afin de parvenir à un ensemble de solutions qui ap-

proche l’ensemble optimal de Pareto. Les principales méthodes pour résoudre

le problème de type MODM sont des techniques de Scalarization [Zeleny 1982,

Miettinen 1999, Gass & Saaty 1955, Miettinen 1999, Das & Dennis 1998], des

approches interactives [Sakawa 1982, Branke et al. 2008], Goal Programming

[Charnes et al. 1955, Charnes & Cooper 1961, Ijiri 1965, Hwang & Masud 1979,

Lee & Olson 1999, Jones & Tamiz 2010] et Fuzzy programming [Sakawa 1993].

Ces méthodes classiques présentent quelques inconvénients. Premièrement, les

fonctions objectif et/ou les contraintes du problème doivent satisfaire certaines

hypothèses telles que la dérivabilité, la continuité, etc. Deuxièmement, ces méth-

odes ne donnent qu’une bonne solution à la fois. Troisièmement, ces méthodes

nécessitent un temps de calcul long exponentiellement proportionnel à la taille du

problème pour atteindre un ensemble de bonnes solutions. Quatrièmement, elles

ne peuvent pas trouver toutes les solutions Pareto optimales lorsqu’il s’agit de

problèmes particuliers avec les fronts de Pareto non convexes. Enfin, la plupart

des méthodes classiques nécessitent une connaissance préalable, par exemple sur

les poids appropriés ou valeurs ε [Deb 2001].

Pour pallier à ces limitations, les chercheurs ont trouvé que les métaheuristiques

représentent un outil prometteur qui peut pallier aux inconvénients des méthodes

MODM conventionnels. Ces techniques ont la capacité de trouver un ensemble

de solutions optimales à chaque exécution de la simulation. Dans la section A.3

suivante, un bref aperçu des métaheuristiques est présenté.

A.3 Historique des Métaheuristiques

La recherche globale et les techniques d’optimisation peuvent être classés

en deux catégories de base : déterministes et probabilistes. Les al-

gorithmes déterministes sont le plus souvent utilisées dans le cas de

problème de dimension raisonnable [Russell & Norvig 2010, Bednorz 2008,
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Hwang & Masud 1979, Goldberg 1989, Mostaghim & Teich 2003]. Si la dimen-

sion de l’espace de recherche est très élevée, il devient plus difficile de ré-

soudre un problème de manière déterministe. En outre, de nombreux prob-

lèmes d’optimisation multiobjectif sont de grande dimension, discontinus, mul-

timodaux, et/ou NPcomplets ; ils sont appelés irréguliers [Veldhuizen 1999].

Par conséquent, les algorithmes probabilistes (stochastique) entrent en jeu

comme pour produire des solutions de bonne qualité (quasi-optimales)

dans un délai raisonnable [Robbins & Monro 1951, Bledsoe & Browning 1959,

Bremermann 1962]. Les techniques de recherche probabilistes compren-

nent au moins une fonction à base de nombres aléatoires [Hromkovic 2005,

Goldberg 1989, Michalewicz 1996]. Les méthodes stochastiques nécessitent une

fonction qui attribue une valeur d’ajustement pour chaque solution possible,

et un mécanisme de mise en correspondance entre le problème et les domaines

de l’algorithme. Bien que certains d’entre eux puissent trouver l’optimum, la

plupart ne peuvent pas garantir cette solution optimale [Goldberg 1989]. Dans

les algorithmes d’optimisation globale, les heuristiques permettent de décider

lequel d’un ensemble de solutions possibles doit être examinée par la suite. Les

heuristiques sont habituellement utilisées dans les algorithmes déterministes pour

définir l’ordre de traitement des solutions candidates, comme cela se fait dans une

méthode glouton. Alors que les méthodes probabilistes ne peuvent tenir compte

de ces éléments de l’espace de recherche qui ont été sélectionnés par l’heuristique

dans d’autres calculs.

Une heuristique [Michalewicz & Fogel 2004] peut être définie comme une “tech-

nique qui vise les bonnes solutions (quasi-optimales) à un coût de calcul

raisonnable sans être en mesure de garantir la faisabilité ou l’optimalité,

voire dans de nombreux cas à indiquer comment approcher de l’optimalité

une solution particulière réalisable” [Reeves 1993]. Au cours des trois

dernières décennies, de nouveaux algorithmes heuristiques avancées communé-

ment appelés “Metaheuristiques” ont été largement développés et appliqués

à une variété de problèmes d’optimisation [Reeves 1993, Voss et al. 1999,

Glover & Kochenberger 2003, Aarts & Lenstra 1997, Osman & Laporte 1996,

Rayward-Smith 1996]. Le terme “Métaheuristique” est d’abord introduit par

Glover dans [Glover 1986]. Il peut être décrit comme une stratégie de recherche

itérative qui guide le processus en dehors de l’espace de recherche dans l’espoir

de trouver la solution optimale.

Selon Voss et al. [Voss et al. 1999] une métaheuristique est décrite comme “un

processus itératif mâıtre qui guide et modifie les opérations d’heuristiques subor-

données à produire efficacement des solutions de grande qualité. Il peut manip-

uler une solution unique complète (ou partielle) ou un ensemble de solutions à

chaque itération. Les heuristiques subordonnées peuvent être de niveau élevé ou
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faible, comme elle peuvent se résumer à une recherche locale simple, ou tout sim-

plement une méthode de construction”. Les métaheuristiques représentent une

nouvelle classe d’algorithmes approximatifs qui tentent de combiner des méth-

odes heuristiques de base dans les méthodes de haut niveau afin d’explorer effi-

cacement l’espace de recherche. Comme les algorithmes approximatifs, les mé-

taheuristiques sacrifient la garantie de trouver des solutions optimales dans le

but d’obtenir de bonnes solutions pour un temps réduit de façon significative.

Nous nous référons à [Talbi 2009, Blum & Roli 2003, Blum & Roli 2008] pour

plusieurs autres définitions proposées.

Le succès des métaheuristiques repose sur la fourniture d’un équilibre dynamique

et adaptatif entre l’exploitation (intensification) des expériences accumulées de

recherche et l’exploration (diversification) de l’espace de recherche pour identifier

de nouvelles régions. L’intensification permet de concentrer la recherche dans

certaines régions de l’espace, tandis que la diversification permet l’expansion de

la recherche en explorant les régions non visités de l’espace. Les mécanismes

d’intensification et de diversification sont des éléments fondamentaux de toute

méthode de recherche globale.

Les métaheuristiques peuvent être classées selon différents aspects qui

sont généralement liés à la façon dont elles fonctionnent sur l’espace de

recherche. Elles peuvent être classées comme “solution unique” versus “popu-

lation” [Boussäıd et al. 2013], “déterministe” versus “stochastique”, “inspiré de la

nature” versus “non-inspiré de la nature” [Blum & Roli 2003], “avec mémoire”

versus “sans mémoire” [Taillard et al. 2001], etc.

Pour les métaheuristiques n’utilisant qu’une solution, le processus de

recherche commence par l’amélioration d’une solution initiale unique

qui se déplace de manière itérative comme trajectoire dans l’espace de

recherche [Crainic & Toulouse 2003]. Les algorithmes à base de solution

unique comprennent une heuristique constructive comme les heuristiques

gloutonnes [Edmonds 1971] et GRASP [Glover & Kochenberger 2003,

Feo & Resende 1989, Feo & Resende 1995], la recherche locale sim-

ple [Aarts & Lenstra 1997] et ses extensions intelligentes qui améliorent

ses capacités d’échapper à l’optimum local tel que recherche locale

réitérée [41], la recherche à voisinage variable [Mladenović & Hansen 1997],

la recherche locale guidée [Voudouris 1997, Voudouris & Tsang 1999],

le recuit simulé [Kirkpatrick et al. 1983, Černỳ 1985] et la méthode

tabou [Glover 1986, Glover 1989].

Pour les métaheuristiques à base de population, une population de solutions est

adoptée plutôt que d’opérer sur une solution unique. Les algorithmes à base

de populations les plus couramment utilisés sont les algorithmes évolutionnaires
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et les algorithmes basés sur l’intelligence en essaim (SI). Les algorithmes évolu-

tionnaires simulent le processus d’évolution naturelle qui se base sur le concept

darwinien de la “survie du plus fort”. Ils abordent les problèmes d’optimisation

difficiles grâce à l’amélioration d’une population de solutions initiales en utilisant

des opérateurs de sélection, de recombinaison et de mutation tels que des algo-

rithmes génétiques (GA) [Holland 1975], les stratégies évolutives (ES), évolution

différentielle (DE) [Price et al. 2005], la recherche de nuages [Laguna et al. 2003],

le le Path Relinking [Glover 1996, Glover et al. 2000], les algorithmes mémé-

tiques (MA) [Moscato 1989, Moscato 1999], etc. Dans les algorithmes SI,

l’idée est de produire l’intelligence artificielle en exploitant l’analogie avec

l’interaction sociale, plutôt que les capacités cognitives purement individuelles,

tels que l’optimisation par essaims particulaires (PSO) [Eberhart et al. 2001,

Kennedy & Eberhart 1995] et l’optimisation par colonie de fourmis (ACO)

[Dorigo et al. 1996], etc.

La résolution de problèmes d’optimisation multi-objectifs à l’aide de méta-

heuristiques devient un champ de recherche très actif, en particulier avec

les métaheuristiques à base de populations. Dans leur fonctionnement,

les métaheuristiques de trois composants importants : la stratégie de

l’affectation de l’ajustement, la préservation de la diversité et de l’élitisme.

L’affectation de l’ajustement assigne une forme scalaire à un vecteur de fonc-

tions d’objectif afin de guider l’algorithme de recherche vers les solutions

optimales de Pareto. Il existe quatre grandes catégories dans les straté-

gies d’affectation de d’ajustement utilisés dans les métaheuristiques multi-

critères, les approches scalaires [Ulungu et al. 1999, Hansen 1997], les approches

fondée sur des critères [Fishburn 1974, Fishburn 1974], les approches à base

du Pareto [Goldberg 1989, Zitzler et al. 2004] et les approches fondées sur

des indicateurs [Zitzler et al. 2004]. La stratégie de préservation de la di-

versité contribue à générer un ensemble de bonnes solutions dans l’espace

de l’objectif et/ou de décision. L’élitisme ou stratégie d’archivage est

un mécanisme servant à maintenir les solutions de bonne qualité rencon-

trés pendant le processus de recherche. Ainsi, une convergence rapide de

la population peut être atteinte [Zitzler & Thiele 1999, Laumanns et al. 2002,

Hernández-Dı́az et al. 2007].

De nombreux chercheurs ont naturellement développé des algorithmes évolu-

tionnaires pour résoudre des problèmes multi-objectifs (MOEAs). Les MOEAs

peuvent être classés en quatre catégories. Les algorithmes fondés sur des critères

sont marquées à l’aide de schéma de sélection en fonction e chaque objectif séparé-

ment comme dans (VEGA) [Schaffer 1985]. Les algorithmes de Pareto utilisent

un système de sélection basé sur le concept d’optimum de Pareto. Ils peuvent

être divisés en deux générations. Dans la première génération [Goldberg 1989],
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l’utilisation du partage d’ajustement et le partage nichage combiné avec

classement Pareto est considérée. Elle contient des approches telles que NSGA

[Srinivas & Deb 1994], NPGA [Horn et al. 1994] et MOGA [Fonseca et al. 1993].

La deuxième génération est née avec l’introduction de la notion d’élitisme.

Il contient des approches telles que la SPEA [Zitzler & Thiele 1999], SPEA2

[Zitzler et al. 2001], PAES [Knowles & Corne 2000], NSGA-II [Deb et al. 2000],

NPGA2 [Erickson et al. 2001, Horn et al. 1994, Oei et al. 1991],

PESA [Corne et al. 2000] et MOPSO [Coello Coello & Lechuga 2002,

Hu & Eberhart 2002, Parsopoulos & Vrahatis 2002, Mostaghim & Teich 2003].

Les approches fondées sur des indicateurs dont la recherche est guidée par

un indicateur de qualité de la performance [Zitzler & Künzli 2004]. Et les

approches à base de décomposition où le MOP est divisé en série de N prob-

lèmes mono-objectif qui commencent simultanément par les algorithmes tels

que MOGLS [Jaszkiewicz 2002b], MOEA/D [Zhang & Li 2007] et dMOPSO

[Mart́ınez & Coello 2011].

Deux ou plusieurs algorithmes métaheuristiques peuvent être combinées

pour développer une approche hybride mieux adaptée pour un prob-

lème donné [Glover & Kochenberger 2003, Raidl 2006, Cotta-Porras 1998,

Talbi 2002, BLUM et al. 2005, El-Abd & Kamel 2005, Puchinger & Raidl 2005,

Puchinger & Raidl 2005]. La motivation principale de concepts d’hybridation

des métaheuristiques est d’obtenir des systèmes plus performants qui exploitent

et combinent les avantages les méthodes employées séparément.

L’hybridation des métaheuristiques dans le domaine d’optimisation multicritère

suit généralement trois schémas de base. Le premier est la combinaison en-

tre les différentes métaheuristiques qui fournit un comportement plus efficace

et de plus grande flexibilité que d’utiliser les métaheuristiques pures comme in-

diqué dans [Talbi 2002, Ishibuchi & Murata 1998, Jaszkiewicz 2002b]. Le sec-

ond associe les métaheuristiques avec des méthodes exactes, telles que les tech-

niques de Branch and Bound [Basseur et al. 2004]. Le troisième schéma asso-

cie les métaheuristiques avec des techniques d’exploration de données, comme

dans [Jourdan et al. 2005, Coyne & Paton 1994, Basseur et al. 2003]. Dans

cette thèse, certaines métaheuristiques hybrides pour résoudre des problèmes

d’optimisation multi-objectifs seront exposées.

A.4 Contribution de la thèse

Les principales contributions de cette thèse sont résumées dans les points suiv-

ants:

• Tout d’abord, nous avons proposé l’algorithme HEMH (Hybrid Evolution-

ary MetaHeuristic). HEMH utilise l’algorithme DM-GRASP pour con-
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struire une population initiale de solutions de bonne qualité dispersées le

long de l’ensemble des solutions Pareto optimales. La phase de généra-

tion de populations successives à partir de cette population initiale est

assurée par, soit des opérateurs de reproduction (croisement, mutation),

soit par l’algorithme du Path Relinking glouton randomisé. L’ensemble

des bonnes solutions trouvées au cours de cette phase est collecté dans une

archive externe. Les résultats montrent que HEMH génère un ensemble

de solutions de grande qualité. Une étude comparative a été réalisée pour

étudier l’effet de l’hybridation de différentes méthodes de génération de

solutions. Quatre variantes d’hybridation ont été étudiées : MOEADde,

MOEADpr, MOEADdp1 et MOEADdp2. Les résultats expérimentaux mon-

trent la supériorité de toutes les variantes hybrides proposées sur les algo-

rithmes originaux : MOEA/D et SPEA2. Malgré ces bons résultats, notre

approche possède quelques limitations qui sont levées dans une version

améliorée de HEMH : HEMH2 et deux autres variantes, appelées HEMHde

et HEMHpr.

• Contrairement à HEMH, HEMH2 utilise un algorithme glouton inverse

simple pour constituer la population initiale. La phase de génération de

populations est assurée cette fois-ci par la combinaison de l’algorithme du

Path Relinking et du Adaptive Binary DE. Pendant cette phase, une struc-

ture de voisinage dynamique est adoptée pour réduire/augmenter le croise-

ment/mise à jour des solutions. En outre, le concept pareto adaptive ep-

silon est utilisé pour contrôler le processus d’archivage avec la préservation

des solutions extrêmes. Les résultats expérimentaux montrent la supéri-

orité de toutes les propositions HEMH2 et HEMHde sur la MOEA/D et

HEMH. Il est clair que, le Adaptive Binary DE inclus dans les HEMH2 et

HEMHde a de meilleures capacités d’exploration qui pallient aux capacités

de recherche locales contenues dans la HEMH original. Ainsi, HEMH2 et

HEMHde surpassent HEMH.

• Motivés par ces résultats dans un espace discret, nous avons proposé un

nouvel algorithme baptisé HESSA (Hybrid Evolutionary approach with

Search Strategy Adaptation) pour explorer un espace continu de recherche.

Dans HESSA, le processus de recherche, pendant le processus d’évolution,

peut être réalisé par différentes stratégies de recherche. Cela donne la pos-

sibilité à HESSA d’adopter la stratégie de recherche appropriée en fonction

du problème étudié. En outre, la coopération entre les différentes stratégies

conduit à améliorer l’exploration et l’exploitation de l’espace de recherche.

L’ensemble proposé est combiné à un cadre évolutif adapté pour favoriser

l’intégration et la coopération. L’ensemble des bonnes solutions trouvées

au cours de la recherche est stocké dans un référentiel externe qui est utilisé
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comme guide global. Les résultats expérimentaux montrent la supériorité

de HESSA à la fois sur MOEA/D et dMOPSO dans la plupart des tests.

Tous les algorithmes proposés ont été vérifiés, testés et comparés à certaines

méthodes de l’état de l’art des MOEAs, en utilisant un ensemble d’exemples

couramment utilisés dans la littérature. Les résultats expérimentaux indiquent

que toutes les propositions sont très compétitives et peuvent être considérés

comme une alternative fiable.

A.5 HEMH: Métaheuristiques évolutionnaire

hybrides

Dans cette recherche, une nouvelle approche hybride appelée

HEMH [Kafafy et al. 2011] est proposée. HEMH intègre à la fois le DM-

GRASP [Ribeiro et al. 2006] et le Path Relinking dans le cadre MOEA/D. Cela

permet de tirer profit des avantages de ces techniques à des fins de coopération,

d’intégration et d’équilibre adéquat entre l’intensification et la diversification

pour améliorer les capacités de recherche. L’utilisation de HEMH est motivée

par le fait que :

• l’utilisation Data Mining pour extraire les bons motifs, qui seront réutilisés

pour construire de nouvelles solutions, permettra d’atteindre la coopération

entre les itérations du GRASP.

• la reproduction à partir de solutions de grande qualité conduit souvent à

produire une descendance de meilleure qualité.

• l’intégration du Path Relinking aidera à trouver de meilleures solutions

grâce à l’intensification dans ces régions.

• le Path Relinking donne la possibilité d’explorer les régions non-convexes

pour découvrir des solutions prometteuses.

A.5.1 Contexte du HEMH

Comme MOEA/D [Zhang & Li 2007], HEMH utilise une technique de décompo-

sition (approche basée sur la somme pondérée) pour convertir MOKP formulée

dans Equ. 2.7 par N problèmes mono-objectifs en utilisant un ensemble de N

vecteurs poids uniformément répartis {Λ1, ...,ΛN}. HEMH optimise simultané-

ment ces N sous-problèmes. L’ensemble des voisins du ième sous-problème in-

clut tous les sous-problèmes avec les T vecteurs de poids {Λ1, ...,ΛN} les plus

proches du vecteur de poids Λi en cours. Le MOEA/D est utilisé dans HEMH

avec quelques légères modifications. Il contient deux populations : la population
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principale et l’archive. La population principale se compose de N membres dans

lesquels un individu est maintenu dans chaque direction de recherche. Il est égale-

ment utilisé pour définir les voisinages pour chaque sous-problème. L’archive est

utilisée pour collecter toutes les bonnes solutions explorées au cours de l’ensemble

du processus de recherche. L’archive est périodiquement mise à jour par les nou-

velles solutions explorées en ajoutant des solutions non dominées et en enlevant

les dominées. Le processus de recherche d’HEMH est divisé en deux phases

de base : “l’initialisation” et “La boucle principale”. La phase d’initialisation

utilise le DM-GRASP [Jourdan et al. 2006, Ribeiro et al. 2006] pour obtenir une

première série de solutions de bonne qualité uniformément dispersées dans le

front de Pareto. Alors que la phase de la “boucle principale” est utilisée pour

l’amélioration de cet ensemble et la découverte de plus de solutions dans les ré-

gions les plus prometteuses. Dans ce sens, le Path Relinking et les opérateurs

génétiques sont appliqués sur l’ensemble des solutions obtenues dans la phase

d’initialisation jusqu’à ce que le critère d’arrêt soit atteint.

A.5.2 L’algorithme HEMH

Dans la phase d’initialisation, le DM-GRASP génère une première série de so-

lutions de bonne qualité qui permet d’obtenir la population principale. Tout

d’abord, le GRASP initial [Glover et al. 2003] est appliqué sur chaque fonction

objectif séparément pour construire un ensemble de solutions “d’élite”. A partir

de cet ensemble on extrait un ensemble de bons motifs en utilisant le data mining.

Ensuite, pour chaque sous-problème, l’un des motifs extraits est choisi comme so-

lution partielle pour construire la solution en cours. Dans la “boucle principale”,

on applique le Path Relinking glouton aléatoire ou l’opérateur de reproduction

classique sur les solutions précédemment obtenues dans la phase d’initialisation.

Ceci permet d’intensifier le processus de recherche dans les régions entourant le

front de Pareto. Cela conduit à concentrer les efforts de recherche sur les régions

prometteuses pour la découverte de nouvelles solutions de bonne qualité.

Comme expliqué dans Alg.4.8, La procédure HEMH commence par identifier

l’ensemble des voisinages pour chaque sous-ensemble i en calculant la distance

euclidienne entre Λi et chaque vecteur de poids dans l’ensemble {Λ1, ...,ΛN}
et en choisissant les T sous-problèmes les plus proches. Les premiers membres

de la population sont initialisés à l’aide DM-GRASP. Tout d’abord, le GRASP

est appliqué séparément sur chaque fonction objectif en collectant des solutions

d’élite dans l’archive. Ensuite, l’extraction de motifs est appliquée sur l’archive

pour extraire l’ensemble des motifs P . Pour chaque élément de la population,

un motif p ∈ P est considéré comme une entrée de la procédure de construction

de la solution complète (où la recherche locale est appliquée). Le résultat est le

ième membre dans la population initiale. Dans la deuxième phase, le processus de
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recherche est intensifié dans les régions prometteuses au delà des solutions déjà

obtenues précédemment, et ce grâce à l’application du Path Relinking glouton

randomisé ou encore la reproduction (croisement et mutation). Pour chaque

sous-ensemble i, l’intervalle de reproduction/mise à jour (M) est déterminé pour

être soit son voisinage (local) avec une probabilité égale à δ, soit l’ensemble de la

population (global). Pour générer la nouvelle descendance y, deux parents xj et

xk sont choisis aléatoirement. Ensuite, la distance de Hamming Δ(xj, xk) entre

xj et xk est calculée. Le Path Relinking glouton randomisé est appliquée pour

générer y seulement si Δ(xj, xk) ≥ ε. Dans le cas contraire, la reproduction est

prise en compte. Si y n’est pas réalisable, alors y est corrigée. La descendance y

est utilisée pour mettre à jour à la fois la solution du ième sous-problème et des

t solutions de M . L’archive est également mise à jour par chaque descendance

générée. L’ensemble du processus est répété jusqu’à ce que le critère d’arrêt soit

atteint ; l’archive est retournée comme sortie.

A.5.3 Résultats du HEMH

Le HEMH proposé a été testé à l’aide d’un ensemble de tests MOKP couram-

ment utilisé dans la littérature. HEMH est comparé avec quatre MOEAs les plus

connus de l’état de l’art : NSGA-II, SPEA2, MOEA/D et GRASPM. Un en-

semble d’indicateurs d’évaluation de qualité a également été utilisé pour évaluer

la performance de tous les MOEAs comparés tels que IC [Zitzler & Thiele 1999],

IHyp[Zitzler & Thiele 1999], IGD, IIGD and IMS[Zitzler et al. 2000]. Les résul-

tats expérimentaux montrent la supériorité de la décomposition basée sur les

MOEAs à base de dominance de Pareto. Ils indiquent également la supérior-

ité de la recherche locale utilisée avec les MOEAs, en particulier le HEMH. En

conséquence, le rendement moyen est très compétitif par rapport aux MOEAs.

La principale contribution de notre algorithme est la combinaison entre les dif-

férentes techniques de métaheuristiques qui intensifient le processus de recherche

pour découvrir les régions les plus prometteuses dans l’espace de recherche et

améliorent la capacité d’explorer des solutions de bonne qualité. La seconde

contribution est la capacité à trouver un bon ensemble d’approximation des so-

lutions de bonne qualité utilisant un petit ensemble de directions de recherche

uniformément réparties grâce à l’utilisation du Path Relinking et les stratégies

de recherche locale.

A.6 Métaheuristiques hybride basées sur le

MOEA/D

Nous étudions ici l’effet de l’utilisation, à la fois de l’opérateur Adaptive Bi-

nary DE proposé dans [Zhang et al. 2009] et/ou du Path Relinking glouton
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[Glover et al. 2000] comme opérateur de reproduction à la place de la reproduc-

tion standard (croisement et mutation) dans MOEA/D. La motivation de base

de ce travail est d’obtenir les combinaisons les plus appropriées d’opérateurs de

recherche afin d’améliorer la performance des MOEA/D ; et donc, utiliser ces

combinaisons pour améliorer notre HEMH précédemment exposé. Nous avons

ici quatre variantes de l’algorithme, la première variante appelée MOEADde, dans

laquelle l’Adaptive Binary DE remplace complètement les opérateurs de croise-

ment et de mutation dans MOEA/D. La seconde variante est appelée MOEADpr

dans laquelle l’opérateur du Path Relinking glouton est appliqué avec le croise-

ment et mutation standard après un certain nombre d’évaluations pour garantir

l’existence de solutions de bonne qualité. Dans la troisième et la quatrième vari-

ante, l’Adaptive Binary DE et le Path Relinking remplacent le croisement et la

mutation, ils sont appelés respectivement MOEADdp1 et MOEADdp2.

A.6.1 Algorithmes pour les variantes hybrides

Dans les méthodes MOEADde et MOEADpr présentés respectivement dans

Alg. 5.5 et Alg. 5.4, l’ensemble Λ de vecteurs uniformes de poids est généré, suivi

de la construction de la structure de voisinage. La population initiale est égale-

ment générée de façon aléatoire. Ensuite, la boucle principale est exécutée jusqu’à

la réalisation des évaluations maximales. Afin de générer une nouvelle descen-

dance pour chaque sous-ensemble i, la région de reproduction/mise à jour (M)

est déterminée pour être à la fois le voisinage du ième sous-problème (local) ou

l’ensemble de la population (globale) en fonction d’une certaine probabilité (σ).

Cela peut donner de meilleures chances de sélection de parents distincts, ce qui

encourage le Path Relinking à être utilisé dans MOEADpr, ou permet l’évolution

différentielle de fonctionner sur des individus distincts dans MOEADde. La sélec-

tion des parents est ensuite effectuée. Dans le cas de MOEADpr, les deux parents

xj et xk sont choisis au hasard à partir de M . Ensuite, l’opérateur du Path Re-

linking n’est utilisée que si la distance de Hamming entre les deux parents sélec-

tionnés est supérieure à une certaine valeur ε, et le nombre d’évaluations Eval

dépasse un certain ratio (γ) des évaluations maximales autorisées pour garan-

tir l’application du Path Relinking sur des solutions de bonne qualité. Sinon,

l’opérateur de reproduction standard est appliqué pour générer la nouvelle de-

scendance. Dans le cas de la variante MOEADde, trois individus parents distincts

sont choisis au hasard pour appliquer l’Adaptive Binary DE. La nouvelle descen-

dance générée est évaluée et utilisée pour mettre à jour le point de référence z et

mettre à jour également la population en fonction du paramètre t. Celui-ci per-

met de limiter le nombre de solutions remplacées. Enfin, l’ensemble des bonnes

solutions mis dans la population finale est retourné comme une sortie.

Dans les deux variantes MOEADdp1 et MOEADdp2 présentées dans Alg. 5.6
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et Alg. 5.7, quelques modifications sont appliquées sur MOEADde. Ces mod-

ifications peuvent être opérées de la manière suivante : lorsque le nombre

d’évaluations Eval dépasse une certaine valeur (γ ×MaxEvals) préalablement

déterminée pour utiliser le Path Relinking, nous avons trois parents sélection-

nés xa, xb et xc dans l’étape de sélection. Si nous choisissons au hasard deux

d’entre eux qui ont distance de Hamming supérieure à une certaine valeur (ε)

pour appliquer le Path Relinking au lieu du Adaptive Binary DE, nous obtien-

drons la variante MOEADdp1. D’autre part, en supposant que les conditions de

distance de Hamming1 sont remplies, si nous appliquons le Path Relinking sur

les trois parents sélectionnés (xa, xb et xc) de la manière suivante : choisir aléa-

toirement deux individus (xa,xc) pour appliquer le Path Relinking générant un

nouvel individu y, ensuite appliquant le Path Relinking de nouveau sur y et xb,

nous obtenons la variante MOEADdp2.

A.6.2 Les résultats des variantes hybrides

Dans cette partie, les quatre propositions ont été comparées avec MOEA/D

et SPEA2 d’origine en utilisant un ensemble d’exemples MOKP de la lit-

térature. Un ensemble d’indicateurs d’évaluation de la qualité, y com-

pris IC [Zitzler & Thiele 1999], IRhyp[Zitzler & Thiele 1999], IGD, IIGD and

IR3 [Knowles & Corne 2002], a également été utilisée pour évaluer la performance.

Dans la plupart des cas, les résultats expérimentaux montrent la supériorité de

toutes les variantes hybrides proposées sur le MOEA/D initial et SPEA2. Dans

le cas des tests bi-objectifs, nous avons constaté que le MOEADpr est meilleur,

tandis que le MOEADde a une moins bonne performance. D’autre part, dans

le cas des exemples avec trois ou quatre objectifs, la performance du Adaptive

Binary DE est améliorée. Par conséquent, toutes les variantes proposées per-

mettent d’atteindre une meilleure performance. Ils ont un rendement moyen

très compétitif par rapport à la MOEA/D et SPEA2 basés sur les indicateurs

d’évaluation utilisés dans cette étude. La conclusion générale que nous avons

retenu est pour les exemples de test MOKP bi-objectifs, l’opérateur du Path

Relinking a le mieux classé, suivi par le croisement standard, la mutation et

l’Adaptive Binary DE. Cependant, dans les cas des tests MOKP avec trois ou

quatre objectifs, l’du Adaptive Binary DE et le Path Relinking ont un meilleur

rendement que le croisement standard et la mutation.

1cela veut dire que xj et xk peut être choisi pour le Path Relinking seulement si: Δ(xj , xk) ≥
ε
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A.7 HEMH2: Un HEMH amélioré

Motivés par les résultats obtenus dans [Kafafy et al. 2012b], ce travail est une

extension de HEMH [Kafafy et al. 2011] basé sur l’élaboration d’une nouvelle ver-

sion appelée HEMH2 avec deux autres variantes: HEMHde et HEMHpr. Les prin-

cipales motivations de ce travail ont pour but de surmonter les limites des perfor-

mances de HEMH. Les principales différences entre HEMH2 et son prédécesseur

sont brièvement présentées ici :

• la population initiale est créée en utilisant le glouton inverse simple dans

chaque direction de recherche plutôt que le DM-GRASP. La qualité des so-

lutions initiales obtenues sera affectée, mais cela nous donnera une meilleure

chance lors de la seconde phase d’améliorer et de renforcer le processus de

recherche.

• au lieu de recueillir toutes les bonnes solutions, la dominance epsilon du

Pareto-adaptatif (paε-dominance) [Hernández-Dı́az et al. 2007] est adoptée

pour contrôler la quantité des bonnes solutions recueillies dans les archives.

• la taille du voisinage dynamique, qui permet de diminuer/augmenter le

voisinage pour chaque sous-problème, est prise en compte.

• le DE binaire adaptatif est utilisé comme opérateur de reproduction au lieu

du croisement et de la mutation avec le Path Relinking.

• le Path Relinking est appliqué seulement après un certain nombre

d’évaluations comme stratégie de post-optimisation. Cette action garantit

l’existence de solutions de meilleure qualité. En outre, le Path Relinking

retourne deux bits à chaque étape.

• Avec HEMH2, la recherche locale est évitée soit après le Path Relinking

soit après la construction du glouton inverse tel que proposé dans HEMH.

Pourquoi ces changements? Tout d’abord, il ne fait aucun doute que la génération

de la population initiale avec DMGRASP peut construire de meilleures solutions,

mais elle nous contraint à utiliser de petites populations. Dans certains cas, la

recherche locale nécessite beaucoup plus de temps et d’évaluations pour explorer

une petite région spécifiée dans l’espace de recherche. Par conséquent, la “boucle

principale” a une petite chance d’améliorer le processus de recherche. Pour con-

tourner cette limitation, la construction du glouton inverse a été proposée. A

partir de résultats empiriques, on s’est aperçut que le glouton inverse donne des

solutions aussi proches que possible des régions limitrophes qu’un glouton sim-

ple. Deuxièmement, en l’utilisation de paε-dominance va contrôler la taille de

l’archive, en particulier dans de le cas où le nombre d’objectifs est grand. Par con-

séquent, on économise davantage de ressources en temps et en espace de stockage
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tout en conservant la qualité des solutions recueillies. Troisièmement, les faibles

performances de la mutation différentielle binaire se produit lors du traitement

des individus différentiels avec une grande distance de Hamming. Sélectionner

les parents à partir de toute la population peut encourager ce scénario. Avec

HEMH2, les parents de chaque sous-problème sont toujours choisis à partir du

voisinage ayant une taille dynamique, ceci garantit l’obtention d’individus avec

des distances de Hamming appropriées. Quatrièmement, l’Adaptive Binary DE a

empiriquement la possibilité d’explorer l’espace de recherche mieux que le croise-

ment et la mutation classique. Ainsi, la performance de HEMH sera améliorée

par l’adoption du Adaptive Binary DE pour la reproduction plutôt que le croise-

ment. Enfin, le Path Relinking proposée applique deux aller/retour sur les bits,

ce qui minimise tout le temps de réédition des liens. Enfin, éviter la recherche

locale permet de gagner en temps et en évaluations.

A.7.1 L’algorithme HEMH2

La procédure HEMH2 est expliquée dans Alg. 6.4. Tout d’abord, un ensemble

de N vecteurs de poids uniformément répartis est créé. Ensuite, la structure de

voisinage est construite pour chaque sous-problème i en attribuant tous les sous-

problèmes, triés par ordre croissant de la distance euclidienne entre les vecteurs

de poids et le vecteur de poids courant Λi. Ensuite, la population initiale P est

créée en appliquant le glouton inverse dans chaque direction de recherche. La

boucle principale est exécutée jusqu’à la réalisation des évaluations maximales

MaxEvals. Pour chaque sous-problème i, la routine de sélection est utilisée

pour déterminer la taille actuelle du voisinage Bi tels que: |Bi| = T + r, où T et

r représentent le nombre de solutions différentes et répétés dans Bi, respective-

ment. Cela signifie que la routine de sélection étend la taille Bi pour garantir

l’existence d’au moins T solutions différentes et choisit au hasard trois d’entre

eux xa, xb et xc pour la reproduction. Deux des trois parents sélectionnés xj

et xk sont choisis au hasard. Ensuite, le Path Relinking n’est utilisé que si la

distance de Hamming Δ(xj, xk) est supérieure à une certaine valeur ε et que le

nombre d’évaluations Eval dépasse un certain ratio γ des évaluations maximales

MaxEvals. Sinon, l’Adaptive Binary DE est appliqué pour générer une nouvelle

descendance y. La nouvelle descendance générée y est évaluée et utilisée pour

mettre à jour le voisinage (Bi) en fonction du paramètre t, ce qui détermine le

nombre de solutions remplacées. L’archive est également mise à jour par y selon

paε-domination [Hernández-Dı́az et al. 2007]. Enfin, les solutions extrêmes sont

mises à jour dans l’archive et retournées comme sortie.

Pour étudier les effets de le DE binaire adaptatif et les opérateurs du Path Re-

linking distinctement, deux variantes supplémentaires de l’algorithme appelées

HEMHde et HEMHpr sont considérées. Toutes les deux ont la même procédure
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que HEMH2 à la seule différence que le HEMHde utilise l’Adaptive Binary DE

pour la reproduction. Tandis que le HEMHpr remplace l’Adaptive Binary DE

dans la procédure HEMH2 par le croisement et la mutation.

A.7.2 Résultats du HEMH2

La méthode HEMH2 et deux autres variantes appelées HEMHde et HEMHpr

ont pour but d’améliorer les performances du HEMH. Les propositions

ont été comparées avec le MOEA/D et le HEMH d’origine à l’aide

d’exemples MOKP de la littérature. Un ensemble d’indicateurs de qualité,

comme IC [Zitzler & Thiele 1999], IRhyp[Zitzler & Thiele 1999], IGD, IIGD and

IR3 [Knowles & Corne 2002] a également été utilisé pour évaluer les performances.

Les résultats expérimentaux montrent la supériorité de toutes les propositions sur

la MOEA/D et HEMH d’origine en se basant sur les indicateurs d’évaluation util-

isés. Selon les résultats, nous pouvons déduire que l’Adaptive Binary DE inclus

dans HEMH2 et HEMHde a de meilleures capacités d’exploration qui pallient aux

capacités de recherche locales contenues dans le HEMH originel. On peut donc

dire que les deux algorithmes HEMH2 et HEMHde sont meilleurs que HEMH.

Dans certains cas, HEMHde peut atteindre des résultats très compétitifs par rap-

port à HEMH2 (basé sur l’Adaptive Binary DE) qui peut atteindre de meilleures

performances que le Path Relinking.

A.8 HESSA: Une stratégie de recherche basée

sur l’adaptation

Dans les travaux de recherche dans [Kafafy et al. 2011, Kafafy et al. 2012b,

Kafafy et al. 2012a], l’influence de l’intégration des différentes métaheuristiques

coopératives dans le MOEA/D a été examinée pour les espaces de recherche

discrets. Les résultats obtenus nous ont incités à étendre l’idée au cas con-

tinu, en élaborant une approche évolutionnaires hybride (HESSA) qui intègre

un ensemble de stratégies de recherche adaptatives dans le MOEA/D. L’objectif

principal est de tirer parti des avantages de ces stratégies grâce à la coopéra-

tion et l’intégration. L’objectif est également de rendre l’approche capable de

sélectionner la stratégie de recherche adaptée en fonction du problème étudié.

A.8.1 Adaptation de la stratégie de recherche

Dans HESSA, au lieu d’utiliser une seule stratégie, un groupement de plusieurs

stratégies de recherche est adopté pour générer les nouvelles solutions (descen-

dances). Pour générer une nouvelle descendance, l’ensemble des candidats est

accessible pour sélectionner une stratégie de recherche pour chaque individu cible
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dans la population actuelle. Au cours de l’évolution, chaque élément du bassin est

considéré lors de la période d’apprentissage (LP ). La meilleure stratégie obtenue

durant la période d’apprentissage précédente est utilisée pour générer les solutions

prometteuses, et la plus probable sera choisie dans la période d’apprentissage

actuel et sera utilisée pour générer les nouvelles solutions des descendants. A

chaque phase d’apprentissage, la somme des probabilités de sélection de chaque

stratégie dans le bassin de candidats est égale à 1. Ces probabilités sont adaptées

progressivement au cours du processus de l’évolution. Dans la période initiale

d’apprentissage, toutes les stratégies ont la même chance d’être choisies, à savoir,

chaque stratégie k a une probabilité pk =
1
K
, où K est le nombre total de straté-

gies dans le bassin de candidats. Au cours de chaque période d’apprentissage,

chaque stratégie k peut être choisie afin de générer la nouvelle solution en fonction

de sa probabilité pk en utilisant la sélection stochastique universelle [Baker 1987].

Le nombre de sélections de chaque stratégie k est représenté par callsk. Chaque

stratégie est considérée pour obtenir un succès si elle a la capacité de générer une

descendance capable de mettre à jour la population actuelle. Le nombre d’appels

réussis pour chaque stratégie k est inscrit dans suck. Le nombre total dans le

bassin de candidats est exprimée comme suit : callstot =
∑L

l=1

∑K
k=1 callsk,l,

où L est le nombre total de périodes d’apprentissage dans l’ensemble du pro-

cessus d’évolution. Cependant, après chaque période d’apprentissage l (quand

callstot%LP = 0), la probabilité de sélection de chaque stratégie k pour la

prochaine période d’apprentissage pk,l+1 sera adaptée selon les formules suivantes

:

pk,l+1 =
sucRk,l∑K
k=1 sucRk,l

(A.2)

sucRk,l =

{
suck,l
callsk,l

+ ε if callsk,l > 0, ∀k, l
ε otherwise

(A.3)

où sucRk,l est le taux de réussite de la ième stratégie dans la période

d’apprentissage l. La petite valeur constante ε = 0.01 est utilisée pour éviter

les taux de réussite nuls. Par conséquent, les stratégies ayant un taux de réus-

site nul ont une chance d’être choisies pour générer une descendance. Les deux

quantités suck,l et callsk,l représentent le nombre de succès (invoke) et le nombre

total de (invoke) de la kème stratégie dans la période d’apprentissage l.

A.8.2 La méthode HESSA

Comme MOEA/D [Zhang & Li 2007], HESSA utilise le Tchebycheff pondéré

comme technique de décomposition pour convertir la MOP en un ensemble

de sous-problèmes mono-objectif. Si nous avons un ensemble de N vecteurs
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poids uniformément répartis {Λ1, ...,ΛN} suite à la décomposition, nous avons

N sous-problèmes mono-objectif. HESSA tente d’optimiser simultanément ces

sous-problèmes. Chaque sous-problème i a son propre ensemble de voisins appelé

Bi, qui inclut tous les sous-problèmes avec les T vecteurs poids les plus proches

{Λi1, ...,ΛiT} de Λi en termes de distance euclidienne. La structure du cadre

proposé est résumée comme suit :

• une population P of N individus, P = {x1, ..., xN}, où xi représente la

solution en cours du ième sous-problème. Chaque individu xi a sa propre

vitesse vi, sa meilleure position personnelle xi
pb et son d’âge ai.

• un ensemble de N vecteurs de poids uniformément répartis {Λ1,...,ΛN},
correspondrait aux N sous-problèmes. Chaque Λ = [λ1,..., λm] possède m

composantes correspondant aux m-objectifs, tels que:
∑m

i=1 λi = 1, ∀λi ∈
{0/H, 1/H, · · · , H/H} and N = CH+m−1

m−1 , ∀H ∈ Z+.

• un voisinage Bi pour chaque sous-problème i ∈ {1, ..., N}, qui com-

prend tous les sous-problèmes avec les T vecteurs poids les plus proches

{Λi1, · · · ,ΛiT} de Λi.

• un ensemble de stratégies de reproduction adaptative contenues dans un

bassin (Pool) pour générer de nouvelles solutions. Chaque stratégie est

choisie en fonction de sa probabilité, comme mentionné ci-dessus. Le

tableau A.1 résume l’ensemble des stratégies adoptées.

• une archive externe pour collecter les bonnes solutions explorées lors du

processus de recherche. L’archive joue également le rôle de référentiel des

“leaders” globaux.

Table A.1: Ensemble des stratégies de reproduction utilisées

Stratégie Description de la stratégie
SBXPM Le croisement SBX [Deb & Agrawal 1995] est appliqué sur les deux parents

suivi par une mutation polynomiale [Deb & Agrawal 1995].
DEXPM L’évolution différentielle [Chakraborty 2010, Price et al. 2005] est ap-

pliquée sur trois parents sélectionnés suivie d’une mutation polynomi-
ale [Deb & Agrawal 1995].

MPCPM Le croisement multiple de parents[Elsayed et al. 2011] est appliqué sur trois
parents sélectionnés suivis de la mutation polynomiale.

GM La mutation guidée [Hsieh et al. 2007] est utilisée pour produire une descen-
dance depuis son parent et la solution globale guidée.

PSO Les essaims particulaires [Kennedy & Eberhart 1995] calculent une nouvelle
position à partir du parent actuel, de son record personnel et du guide global.
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A.8.3 L’algorithme HESSA

Après la construction du cadre proposé, HESSA met en oeuvre deux phases

principales. La première est la phase d’initialisation, dans laquelle une pop-

ulation initiale est générée de manière aléatoire. La seconde phase représente

la boucle principale dans laquelle les recherches sont effectuées afin d’améliorer

la population initiale. Alg. 7.1 explique la procédure HESSA. Tout d’abord,

un ensemble de N vecteurs de poids uniformément répartis est initialisé. En-

suite, la structure de voisinage Bi est construite pour chaque sous-ensemble i

en attribuant tous les sous-problèmes correspondants aux T vecteurs de poids

les plus proches de Λi. Le bassin (Pool) de candidats est également construit

en utilisant les stratégies de reproduction adoptées. Les archives et le compteur

d’évaluation sont initialisés. Dans un second temps, la population initiale est

construite. Pour chaque sous-population i, la solution actuelle xi est initialisée

aléatoirement. Ensuite, xi est évaluée et utilisée pour mettre à jour le point de

référence r∗ [Zhang & Li 2007], le record personnel xi
pb et l’archive. La vitesse vi

et l’âge ai sont également initialisés à 0. Le ième sous-problème est affecté à la

population P . Par la suite, la boucle principale est exécutée jusqu’à la réalisation

des évaluations maximales MaxEvals. Pour chaque sous-ensemble i, l’intervalle

d’accouplement/mise à jour Mi est choisi pour être soit le voisinage Bi soit la

population entière. Puis, trois solutions parentes différentes sont choisies au

hasard à partir de Mi pour la reproduction. Le leader global xi
gb est sélectionné

aléatoirement à partir des archives. Une stratégie globale de reproduction Sk est

également sélectionnée dans le bassin pour générer la nouvelle descendance y.

Selon la stratégie Sk choisie, la descendance y est générée. En cas de l’utilisation

de la mutation guidée ou des essaims particulaires, le paramètre âge ai contrôle

le processus de génération. Dans ce cas, si ai dépasse le l’âge maximum autorisé

Ta, une valeur gaussienne : N(1
2
[xi

gb − xi
pb], |xi

gb − xi
pb|) est affecté à y. Ensuite,

le descendant y est évalué et utilisé pour mettre à jour le point de référence r∗.
La population actuelle P est mise à jour en invoquant le module UpdateSo-

lutions. L’archive est également mise à jour par y en fonction de la distance

de surpeuplement. Le compteur d’évaluation est mis à jour et vérifié. A la fin

de chaque période d’apprentissage, le bassin (Pool) est adapté en calculant la

probabilité pk pour chaque stratégie k selon (Equ. A.2). A la fin de l’évolution,

l’archive est retournée.

Dans le module UpdateSolutions (Alg. 7.3), la descendance y met à jour la

population P comme suit : un indice aléatoire j est choisi dans la gamme Mi des

mises à jour. Ensuite, la solution actuelle du jème sous-problème xj est actualisée

si et seulement si y réalise une meilleure performance. Dans ce cas, la réussite de

la stratégie choisie Suck est augmentée ; l’âge aj est réinitialisé. Aussi, le record

personnel xj
pb est mis à jour de la même manière. Enfin l’index sélectionné j est
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éliminé de Mi. Si la solution courante xj n’est pas mise à jour, son âge aj est

augmenté. Ce processus se poursuit jusqu’à ce que la mise à jour t ou solution

Mi devienne vide.

A.8.4 Résultats de la méthode HESSA

HESSA a été testée à l’aide d’un ensemble de tests MOPs [Coello et al. 2006,

Zitzler et al. 2000, Deb et al. 2005a] couramment utilisé dans la domaine.

HESSA a également été comparée à trois MOEAs de l’état de l’art :

MOEA/D1 [Zhang & Li 2007], MOEA/D2 [Li & Zhang 2009] et dMOPSO

[Mart́ınez & Coello 2011]. Un ensemble d’indicateurs de qualité, inclu-

ant IC [Zitzler & Thiele 1999], IRhyp[Zitzler & Thiele 1999], IGD, IIGD and

Iε+ [Zitzler et al. 2000] a également été examinée pour évaluer la performance de

tous les MOEAs comparés. Les résultats expérimentaux montrent la supériorité

de HESSA à la fois sur MOEA/D et dMOPSO dans la plupart des tests effectués.

Ils indiquent également que HESSA a une performance moyenne très compéti-

tive par rapport aux MOEAs basés sur les indicateurs d’évaluation utilisés dans

cette étude. La contribution de HESSA réside dans la combinaison des différents

opérateurs de recherche coopératifs qui intensifient le processus de recherche pour

découvrir les régions prometteuses dans l’espace de recherche et d’améliorer la

capacité d’explorer des solutions de bonne qualité. La seconde contribution est la

capacité d’adapter le processus de recherche en utilisant l’opérateur de recherche

approprié au problème étudié.

A.9 Conclusions et perspectives

Dans cette thèse, nous avons proposé plusieurs approches de métaheuristiques hy-

brides. Ces approches comprennent HEMH, MOEADde, MOEADpr, MOEADdp1,

MOEADdp2, HEMH2, HEMHde et HEMHpr pour le domaine discret de recherche

et HESSA pour le domaine continu. Ces approches ont été testées et validées

sur un ensemble de problèmes d’optimisation multi-objectifs de la littérature.

Un ensemble d’indicateurs d’évaluation de la qualité tels que IC , IHype, IGD,

IIGD, IR3 , IMS et Iε+ a été utilisé pour évaluer les performances des approches

hybrides proposées. Toutes les approches proposées donnent des résultats très

compétitifs par rapport aux autres méthodes comparables dans la littérature. Les

approches proposées sont en mesure d’intensifier le processus de recherche de ré-

gions prometteuses de l’espace de recherche et d’améliorer la capacité d’explorer

des solutions de bonne qualité. La combinaison de différentes techniques méta-

heuristiques qui s’intègrent les uns aux autres, a un rôle important. Dans les

travaux futurs, les paramètres de réglage des algorithmes proposés seront étudiés

ainsi que l’analyse de leur convergence. Nous allons étendre les algorithmes pro-
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posés à des applications de la vie réelle. Nous allons examiner aussi comment

inclure le décideur dans le processus de recherche.



Appendix B

Detailed Statistical Results

In this appendix, the whole tables of the experimentation that carried out to

verify the proposed algorithms in the whole thesis are provided. For the ex-

perimental results that provided in chapter 4 to verify the HEMH, the details of

the statistical analysis including Coverage indicator IC (Table B.1), hypervolume

IHyp (Table B.2), generational distance IGD (Table B.3), inverted generational

distance IIGD (Table B.4) and the maximum spread IMS (Table B.5) indicators

are presented respectively.

For the experimental results provided in chapter 5, the statistical analysis of this

comparative study includes the coverage indicator IC (Table B.6), the referenced

hypervolume IRhyp (Table B.7), the generational distance IGD (Table B.8), the

inverted generational distance IIGD (Table B.9) and the R3 IR3 (Table B.10)

quality assessment indicators are showed respectively.

With respect to the experimentation that carried out to verify the HEMH2 in

chapter 6. The details of the statistical analysis which includes the coverage

indicator IC (Table B.11), the referenced hypervolume IRhyp (Table B.12), the

generational distance IGD (Table B.13), the inverted generational distance IIGD

(Table B.14) and the R3 IR3 (Table B.15) indicators are provided respectively.

For the experimentation which carried out to verify the proposed HESSA in

chapter 7. The details of the statistical analysis of this comparative study

including the coverage indicator IC (Table B.16), the referenced hypervolume

IRhyp (Table B.17), the generational distance IGD (Table B.18), inverted

generational distance IIGD (Table B.19) and the unary additive epsilon Iε+
(Table B.20) indicators are presented respectively.
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Table B.2: Detailed results of the hypervolume indicator IHyp (Ch. 4)

Inst. Stat.
Algorithms

NSGAII SPEA2 MOEAD GRASPM HEMH

KSP252

Max. 6.997E-01 6.795E-01 7.826E-01 7.957E-01 7.980E-01
Min. 6.006E-01 6.102E-01 7.707E-01 7.940E-01 7.972E-01
Mean 6.680E-01 6.576E-01 7.763E-01 7.948E-01 7.976E-01
Med. 6.688E-01 6.606E-01 7.760E-01 7.949E-01 7.976E-01
S.D. 2.085E-02 1.441E-02 3.255E-03 4.128E-04 2.407E-04

KSP502

Max. 6.193E-01 6.037E-01 7.548E-01 7.718E-01 7.764E-01
Min. 5.480E-01 5.624E-01 7.442E-01 7.704E-01 7.752E-01
Mean 5.889E-01 5.842E-01 7.492E-01 7.710E-01 7.757E-01
Med. 5.906E-01 5.863E-01 7.497E-01 7.710E-01 7.757E-01
S.D. 1.685E-02 1.208E-02 2.898E-03 3.370E-04 2.766E-04

KSP752

Max. 5.728E-01 5.662E-01 7.599E-01 7.707E-01 7.756E-01
Min. 5.305E-01 5.294E-01 7.464E-01 7.692E-01 7.746E-01
Mean 5.516E-01 5.469E-01 7.540E-01 7.702E-01 7.751E-01
Med. 5.513E-01 5.463E-01 7.543E-01 7.702E-01 7.751E-01
S.D. 1.186E-02 1.020E-02 2.662E-03 3.393E-04 2.427E-04

KSP253

Max. 4.297E-01 4.220E-01 5.382E-01 5.547E-01 5.587E-01
Min. 3.909E-01 3.822E-01 5.285E-01 5.532E-01 5.569E-01
Mean 4.129E-01 3.994E-01 5.342E-01 5.538E-01 5.580E-01
Med. 4.147E-01 3.987E-01 5.339E-01 5.537E-01 5.581E-01
S.D. 9.997E-03 9.128E-03 2.341E-03 3.627E-04 3.890E-04

KSP503

Max. 3.325E-01 3.313E-01 5.047E-01 5.255E-01 5.318E-01
Min. 2.998E-01 2.878E-01 4.933E-01 5.239E-01 5.300E-01
Mean 3.175E-01 3.070E-01 4.982E-01 5.247E-01 5.308E-01
Med. 3.190E-01 3.052E-01 4.976E-01 5.246E-01 5.308E-01
S.D. 9.236E-03 1.053E-02 2.666E-03 4.383E-04 4.036E-04

KSP753

Max. 2.851E-01 2.728E-01 4.919E-01 5.220E-01 5.283E-01
Min. 2.428E-01 2.449E-01 4.813E-01 5.202E-01 5.263E-01
Mean 2.665E-01 2.599E-01 4.861E-01 5.211E-01 5.270E-01
Med. 2.675E-01 2.604E-01 4.863E-01 5.211E-01 5.271E-01
S.D. 9.554E-03 6.641E-03 2.345E-03 3.933E-04 4.992E-04

KSP254

Max. 2.227E-01 2.200E-01 3.373E-01 3.512E-01 3.561E-01
Min. 1.987E-01 1.985E-01 3.303E-01 3.495E-01 3.537E-01
Mean 2.122E-01 2.094E-01 3.334E-01 3.502E-01 3.553E-01
Med. 2.123E-01 2.102E-01 3.334E-01 3.502E-01 3.554E-01
S.D. 6.346E-03 5.724E-03 1.851E-03 4.046E-04 5.008E-04

KSP504

Max. 1.467E-01 1.575E-01 2.968E-01 3.245E-01 3.319E-01
Min. 1.144E-01 1.399E-01 2.878E-01 3.229E-01 3.297E-01
Mean 1.325E-01 1.498E-01 2.922E-01 3.235E-01 3.306E-01
Med. 1.312E-01 1.485E-01 2.921E-01 3.234E-01 3.306E-01
S.D. 7.694E-03 4.868E-03 2.368E-03 4.383E-04 5.611E-04

KSP754

Max. 1.105E-01 1.232E-01 2.745E-01 3.130E-01 3.222E-01
Min. 8.366E-02 1.058E-01 2.606E-01 3.116E-01 3.207E-01
Mean 9.766E-02 1.145E-01 2.666E-01 3.124E-01 3.216E-01
Med. 9.798E-02 1.155E-01 2.669E-01 3.125E-01 3.217E-01
S.D. 6.995E-03 3.900E-03 3.676E-03 3.598E-04 3.681E-04
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Table B.3: Detailed results of the Generational distance indicator IGD (Ch. 4)

Inst. Stat.
Algorithms

NSGAII SPEA2 MOEAD GRASPM HEMH

KSP252

Max. 4.829E-03 5.008E-03 1.738E-03 6.272E-04 5.294E-04
Min. 2.012E-03 1.701E-03 1.032E-03 3.165E-04 1.933E-04
Mean 3.240E-03 3.142E-03 1.457E-03 4.020E-04 2.307E-04
Med. 3.221E-03 3.136E-03 1.450E-03 3.635E-04 2.157E-04
S.D. 6.467E-04 6.855E-04 1.766E-04 8.522E-05 6.703E-05

KSP502

Max. 7.153E-03 6.835E-03 1.821E-03 4.066E-04 2.113E-04
Min. 2.555E-03 2.856E-03 1.154E-03 3.191E-04 1.548E-04
Mean 4.424E-03 4.555E-03 1.458E-03 3.500E-04 1.747E-04
Med. 4.358E-03 4.395E-03 1.420E-03 3.460E-04 1.746E-04
S.D. 1.022E-03 9.488E-04 1.804E-04 2.013E-05 1.525E-05

KSP752

Max. 5.686E-03 6.866E-03 1.294E-03 3.161E-04 1.718E-04
Min. 2.981E-03 3.586E-03 7.719E-04 2.667E-04 1.224E-04
Mean 4.171E-03 4.993E-03 1.009E-03 2.889E-04 1.462E-04
Med. 4.185E-03 5.015E-03 1.009E-03 2.893E-04 1.469E-04
S.D. 6.408E-04 8.126E-04 1.074E-04 1.154E-05 9.424E-06

KSP253

Max. 2.041E-03 1.734E-03 5.314E-04 1.855E-04 1.316E-04
Min. 1.302E-03 8.992E-04 3.928E-04 1.702E-04 1.198E-04
Mean 1.622E-03 1.377E-03 4.457E-04 1.771E-04 1.261E-04
Med. 1.593E-03 1.363E-03 4.366E-04 1.773E-04 1.263E-04
S.D. 1.840E-04 1.872E-04 3.828E-05 3.574E-06 2.858E-06

KSP503

Max. 2.907E-03 2.562E-03 5.129E-04 1.371E-04 9.769E-05
Min. 1.863E-03 1.500E-03 3.770E-04 1.266E-04 8.631E-05
Mean 2.369E-03 1.984E-03 4.468E-04 1.312E-04 9.126E-05
Med. 2.360E-03 2.010E-03 4.501E-04 1.310E-04 9.113E-05
S.D. 2.342E-04 2.569E-04 3.233E-05 2.758E-06 2.568E-06

KSP753

Max. 4.594E-03 3.726E-03 5.252E-04 1.110E-04 8.206E-05
Min. 2.422E-03 2.243E-03 3.989E-04 1.003E-04 7.149E-05
Mean 3.345E-03 2.912E-03 4.760E-04 1.041E-04 7.739E-05
Med. 3.412E-03 2.820E-03 4.746E-04 1.041E-04 7.816E-05
S.D. 4.527E-04 4.380E-04 2.975E-05 2.714E-06 2.505E-06

KSP254

Max. 1.972E-03 1.226E-03 3.186E-04 1.563E-04 1.181E-04
Min. 1.185E-03 8.447E-04 2.498E-04 1.463E-04 1.096E-04
Mean 1.538E-03 1.042E-03 2.849E-04 1.516E-04 1.140E-04
Med. 1.469E-03 1.036E-03 2.864E-04 1.518E-04 1.140E-04
S.D. 1.973E-04 1.065E-04 1.620E-05 2.532E-06 2.028E-06

KSP504

Max. 3.344E-03 2.078E-03 3.566E-04 9.880E-05 9.686E-05
Min. 1.848E-03 1.252E-03 2.981E-04 9.216E-05 8.455E-05
Mean 2.571E-03 1.576E-03 3.203E-04 9.534E-05 8.983E-05
Med. 2.605E-03 1.539E-03 3.201E-04 9.507E-05 8.999E-05
S.D. 3.175E-04 2.080E-04 1.465E-05 1.932E-06 3.098E-06

KSP754

Max. 4.050E-03 2.592E-03 4.415E-04 7.332E-05 8.556E-05
Min. 2.639E-03 1.637E-03 3.426E-04 6.442E-05 7.660E-05
Mean 3.173E-03 2.017E-03 4.009E-04 6.864E-05 8.047E-05
Med. 3.099E-03 1.971E-03 4.021E-04 6.866E-05 8.027E-05
S.D. 4.121E-04 2.646E-04 2.471E-05 1.931E-06 2.478E-06
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Table B.4: Detailed results of the inverted Generational distance IIGD (Ch. 4)

Inst. Stat.
Algorithms

NSGAII SPEA2 MOEAD GRASPM HEMH

KSP252

Max. 1.117E-02 1.135E-02 1.075E-03 4.923E-04 4.931E-04
Min. 4.945E-03 7.062E-03 5.981E-04 2.799E-04 2.131E-04
Mean 7.899E-03 8.608E-03 8.094E-04 3.468E-04 3.161E-04
Med. 7.866E-03 8.623E-03 8.029E-04 3.296E-04 2.921E-04
S.D. 1.280E-03 9.324E-04 1.078E-04 5.493E-05 7.437E-05

KSP502

Max. 9.713E-03 9.792E-03 1.004E-03 2.781E-04 2.509E-04
Min. 7.057E-03 7.878E-03 6.489E-04 2.311E-04 1.228E-04
Mean 8.438E-03 8.595E-03 8.236E-04 2.467E-04 1.717E-04
Med. 8.385E-03 8.529E-03 8.098E-04 2.428E-04 1.633E-04
S.D. 6.428E-04 4.465E-04 9.653E-05 1.133E-05 3.123E-05

KSP752

Max. 9.136E-03 8.825E-03 7.622E-04 2.246E-04 1.714E-04
Min. 7.455E-03 7.074E-03 4.661E-04 1.880E-04 1.161E-04
Mean 8.295E-03 8.126E-03 5.864E-04 2.055E-04 1.378E-04
Med. 8.238E-03 8.213E-03 5.845E-04 2.066E-04 1.350E-04
S.D. 4.265E-04 4.790E-04 6.343E-05 9.935E-06 1.529E-05

KSP253

Max. 1.237E-03 1.412E-03 2.283E-04 1.011E-04 8.882E-05
Min. 7.728E-04 9.801E-04 1.701E-04 9.630E-05 8.327E-05
Mean 1.007E-03 1.153E-03 1.921E-04 9.910E-05 8.606E-05
Med. 9.951E-04 1.159E-03 1.909E-04 9.930E-05 8.618E-05
S.D. 1.030E-04 9.227E-05 1.473E-05 1.313E-06 1.384E-06

KSP503

Max. 1.128E-03 1.263E-03 2.100E-04 9.393E-05 7.525E-05
Min. 9.057E-04 9.969E-04 1.477E-04 8.705E-05 7.004E-05
Mean 1.028E-03 1.143E-03 1.791E-04 9.015E-05 7.263E-05
Med. 1.020E-03 1.166E-03 1.796E-04 9.018E-05 7.272E-05
S.D. 6.349E-05 7.278E-05 1.255E-05 1.966E-06 1.340E-06

KSP753

Max. 1.124E-03 1.211E-03 1.834E-04 8.325E-05 6.535E-05
Min. 9.681E-04 1.027E-03 1.439E-04 7.850E-05 5.890E-05
Mean 1.045E-03 1.124E-03 1.673E-04 8.099E-05 6.300E-05
Med. 1.052E-03 1.130E-03 1.659E-04 8.103E-05 6.313E-05
S.D. 4.279E-05 3.856E-05 9.302E-06 1.204E-06 1.438E-06

KSP254

Max. 4.190E-04 4.612E-04 1.151E-04 8.340E-05 7.474E-05
Min. 3.441E-04 3.623E-04 1.005E-04 8.034E-05 7.093E-05
Mean 3.838E-04 4.127E-04 1.075E-04 8.232E-05 7.264E-05
Med. 3.832E-04 4.124E-04 1.071E-04 8.238E-05 7.264E-05
S.D. 1.683E-05 2.491E-05 3.966E-06 7.525E-07 9.043E-07

KSP504

Max. 4.255E-04 4.187E-04 1.140E-04 7.803E-05 6.330E-05
Min. 3.635E-04 3.638E-04 9.692E-05 7.524E-05 5.983E-05
Mean 3.899E-04 3.968E-04 1.037E-04 7.686E-05 6.203E-05
Med. 3.878E-04 3.989E-04 1.034E-04 7.695E-05 6.213E-05
S.D. 1.407E-05 1.518E-05 3.757E-06 6.674E-07 7.498E-07

KSP754

Max. 4.260E-04 4.302E-04 1.169E-04 7.132E-05 5.790E-05
Min. 3.766E-04 3.914E-04 9.931E-05 6.965E-05 5.489E-05
Mean 4.040E-04 4.081E-04 1.084E-04 7.057E-05 5.611E-05
Med. 4.043E-04 4.064E-04 1.079E-04 7.058E-05 5.609E-05
S.D. 1.279E-05 1.020E-05 5.263E-06 3.188E-07 7.786E-07
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Table B.5: Detailed results of the Maximum Spread indicator IMS (Ch. 4)

Inst. Stat.
Algorithms

NSGAII SPEA2 MOEAD GRASPM HEMH

KSP252

Max. 7.251E-01 5.757E-01 1.446E+00 1.452E+00 1.432E+00
Min. 3.294E-01 3.074E-01 1.307E+00 1.295E+00 1.314E+00
Mean 5.168E-01 4.705E-01 1.373E+00 1.374E+00 1.360E+00
Med. 5.100E-01 4.643E-01 1.369E+00 1.367E+00 1.356E+00
S.D. 8.844E-02 6.244E-02 4.005E-02 4.533E-02 2.986E-02

KSP502

Max. 4.802E-01 4.328E-01 1.382E+00 1.450E+00 1.425E+00
Min. 2.769E-01 2.840E-01 1.238E+00 1.325E+00 1.312E+00
Mean 3.788E-01 3.678E-01 1.309E+00 1.393E+00 1.371E+00
Med. 3.826E-01 3.718E-01 1.304E+00 1.389E+00 1.365E+00
S.D. 4.890E-02 3.511E-02 2.957E-02 3.208E-02 3.078E-02

KSP752

Max. 3.239E-01 3.627E-01 1.356E+00 1.402E+00 1.386E+00
Min. 1.871E-01 2.056E-01 1.285E+00 1.336E+00 1.322E+00
Mean 2.598E-01 2.736E-01 1.317E+00 1.367E+00 1.354E+00
Med. 2.664E-01 2.693E-01 1.315E+00 1.369E+00 1.355E+00
S.D. 3.565E-02 3.868E-02 1.740E-02 1.716E-02 1.649E-02

KSP253

Max. 1.046E+00 8.647E-01 1.698E+00 1.735E+00 1.715E+00
Min. 7.342E-01 6.212E-01 1.610E+00 1.666E+00 1.642E+00
Mean 8.916E-01 7.604E-01 1.650E+00 1.702E+00 1.677E+00
Med. 8.985E-01 7.631E-01 1.653E+00 1.703E+00 1.679E+00
S.D. 7.537E-02 5.273E-02 2.518E-02 1.848E-02 1.774E-02

KSP503

Max. 7.563E-01 6.336E-01 1.704E+00 1.736E+00 1.745E+00
Min. 5.819E-01 4.894E-01 1.603E+00 1.686E+00 1.671E+00
Mean 6.653E-01 5.536E-01 1.653E+00 1.708E+00 1.703E+00
Med. 6.641E-01 5.488E-01 1.651E+00 1.708E+00 1.703E+00
S.D. 4.855E-02 4.251E-02 2.425E-02 1.157E-02 1.463E-02

KSP753

Max. 5.481E-01 4.685E-01 1.683E+00 1.755E+00 1.748E+00
Min. 3.980E-01 3.243E-01 1.616E+00 1.699E+00 1.681E+00
Mean 4.758E-01 3.851E-01 1.644E+00 1.725E+00 1.713E+00
Med. 4.774E-01 3.826E-01 1.640E+00 1.722E+00 1.713E+00
S.D. 4.469E-02 3.035E-02 1.958E-02 1.665E-02 1.647E-02

KSP254

Max. 1.409E+00 1.100E+00 1.946E+00 2.012E+00 1.989E+00
Min. 1.124E+00 9.098E-01 1.853E+00 1.932E+00 1.896E+00
Mean 1.234E+00 9.954E-01 1.903E+00 1.981E+00 1.944E+00
Med. 1.226E+00 9.853E-01 1.910E+00 1.981E+00 1.945E+00
S.D. 7.022E-02 5.198E-02 2.511E-02 1.964E-02 2.503E-02

KSP504

Max. 1.153E+00 9.137E-01 1.938E+00 2.020E+00 2.011E+00
Min. 9.762E-01 7.053E-01 1.839E+00 1.961E+00 1.934E+00
Mean 1.066E+00 7.832E-01 1.902E+00 1.985E+00 1.975E+00
Med. 1.066E+00 7.820E-01 1.906E+00 1.981E+00 1.977E+00
S.D. 5.056E-02 4.412E-02 2.216E-02 1.333E-02 1.819E-02

KSP754

Max. 9.144E-01 6.423E-01 1.890E+00 1.988E+00 1.994E+00
Min. 7.653E-01 5.135E-01 1.796E+00 1.925E+00 1.924E+00
Mean 8.273E-01 5.803E-01 1.838E+00 1.960E+00 1.958E+00
Med. 8.235E-01 5.840E-01 1.836E+00 1.953E+00 1.953E+00
S.D. 3.196E-02 3.765E-02 2.146E-02 1.628E-02 1.855E-02
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216 Appendix B. Detailed Statistical Results

Table B.7: Detailed results of referenced hypervolume indicator IRhyp (Ch. 5)

Inst. Stat.
Algorithms

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252

Max. 5.318E-01 6.050E-02 3.002E-01 4.449E-02 4.177E-01 3.081E-01
Min. 3.407E-01 2.726E-02 6.865E-02 1.255E-02 6.032E-02 8.009E-02
Mean 4.455E-01 4.069E-02 1.476E-01 2.962E-02 1.407E-01 1.433E-01
Med. 4.525E-01 4.084E-02 1.454E-01 3.116E-02 1.251E-01 1.321E-01
S.D. 5.222E-02 9.318E-03 5.081E-02 8.030E-03 6.951E-02 5.735E-02

KSP502

Max. 8.219E-01 5.805E-02 3.131E-01 5.239E-02 3.528E-01 3.374E-01
Min. 5.323E-01 3.490E-02 7.901E-02 1.763E-02 6.990E-02 6.354E-02
Mean 6.508E-01 4.756E-02 1.715E-01 3.061E-02 1.685E-01 1.697E-01
Med. 6.385E-01 4.793E-02 1.542E-01 3.098E-02 1.707E-01 1.495E-01
S.D. 5.121E-02 6.684E-03 6.261E-02 7.408E-03 5.920E-02 6.454E-02

KSP752

Max. 7.954E-01 5.275E-02 2.134E-01 3.890E-02 1.902E-01 2.270E-01
Min. 6.849E-01 2.660E-02 5.594E-02 1.634E-02 6.669E-02 7.014E-02
Mean 7.320E-01 3.968E-02 1.194E-01 2.859E-02 1.130E-01 1.114E-01
Med. 7.321E-01 3.908E-02 1.125E-01 2.732E-02 1.080E-01 9.934E-02
S.D. 2.912E-02 5.903E-03 3.703E-02 5.832E-03 2.909E-02 3.592E-02

KSP253

Max. 1.752E+00 2.341E-01 2.386E-01 1.618E-01 2.742E-01 2.652E-01
Min. 1.421E+00 1.869E-01 1.254E-01 1.213E-01 1.181E-01 1.181E-01
Mean 1.582E+00 2.093E-01 1.802E-01 1.404E-01 1.644E-01 1.666E-01
Med. 1.557E+00 2.099E-01 1.794E-01 1.417E-01 1.603E-01 1.589E-01
S.D. 9.482E-02 1.068E-02 2.984E-02 9.520E-03 3.303E-02 3.030E-02

KSP503

Max. 2.271E+00 2.868E-01 2.934E-01 1.701E-01 2.706E-01 2.640E-01
Min. 2.017E+00 2.261E-01 1.406E-01 1.100E-01 1.315E-01 1.215E-01
Mean 2.113E+00 2.499E-01 2.117E-01 1.402E-01 1.861E-01 1.937E-01
Med. 2.113E+00 2.517E-01 2.087E-01 1.439E-01 1.790E-01 1.896E-01
S.D. 6.484E-02 1.434E-02 3.862E-02 1.238E-02 3.819E-02 4.150E-02

KSP753

Max. 2.479E+00 3.149E-01 4.899E-01 1.898E-01 4.069E-01 3.945E-01
Min. 2.310E+00 2.595E-01 1.840E-01 8.832E-02 1.617E-01 1.542E-01
Mean 2.407E+00 2.846E-01 2.803E-01 1.213E-01 2.619E-01 2.526E-01
Med. 2.407E+00 2.852E-01 2.521E-01 1.214E-01 2.500E-01 2.508E-01
S.D. 4.348E-02 1.559E-02 7.967E-02 1.994E-02 6.326E-02 5.118E-02

KSP254

Max. 4.219E+00 9.091E-01 7.524E-01 6.732E-01 7.031E-01 7.608E-01
Min. 3.800E+00 7.450E-01 5.394E-01 5.745E-01 5.174E-01 5.469E-01
Mean 4.002E+00 8.336E-01 6.491E-01 6.112E-01 6.100E-01 6.102E-01
Med. 4.004E+00 8.317E-01 6.518E-01 6.069E-01 6.069E-01 6.099E-01
S.D. 1.233E-01 4.693E-02 4.734E-02 2.407E-02 4.694E-02 5.151E-02

KSP504

Max. 5.251E+00 1.119E+00 8.203E-01 5.321E-01 6.837E-01 7.018E-01
Min. 4.766E+00 1.002E+00 5.529E-01 4.569E-01 4.815E-01 4.656E-01
Mean 5.050E+00 1.056E+00 6.550E-01 4.920E-01 5.663E-01 5.656E-01
Med. 5.040E+00 1.063E+00 6.485E-01 4.944E-01 5.446E-01 5.621E-01
S.D. 1.114E-01 3.031E-02 6.270E-02 1.846E-02 6.193E-02 5.935E-02

KSP754

Max. 5.939E+00 1.359E+00 8.623E-01 6.278E-01 8.075E-01 7.911E-01
Min. 5.542E+00 1.210E+00 6.057E-01 4.441E-01 4.790E-01 4.916E-01
Mean 5.763E+00 1.288E+00 7.500E-01 5.070E-01 6.092E-01 5.788E-01
Med. 5.764E+00 1.287E+00 7.564E-01 5.046E-01 6.011E-01 5.522E-01
S.D. 1.015E-01 3.583E-02 6.046E-02 3.854E-02 6.978E-02 7.238E-02
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Table B.8: Detailed results of the Generational distance indicator IGD (Ch. 5)

Inst. Stat.
Algorithms

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252

Max. 3.748E-03 1.905E-03 5.970E-03 1.664E-03 9.152E-03 6.650E-03
Min. 1.662E-03 1.096E-03 8.868E-04 7.937E-04 4.860E-04 9.528E-04
Mean 2.788E-03 1.395E-03 2.254E-03 1.117E-03 2.224E-03 2.327E-03
Med. 2.901E-03 1.413E-03 2.046E-03 1.091E-03 1.653E-03 1.980E-03
S.D. 6.424E-04 2.049E-04 1.116E-03 1.928E-04 1.655E-03 1.352E-03

KSP502

Max. 8.454E-03 2.047E-03 5.078E-03 1.789E-03 5.416E-03 5.430E-03
Min. 2.268E-03 1.137E-03 7.823E-04 6.432E-04 4.252E-04 4.916E-04
Mean 3.977E-03 1.528E-03 2.339E-03 1.096E-03 2.183E-03 2.357E-03
Med. 3.909E-03 1.515E-03 2.243E-03 1.047E-03 2.091E-03 2.034E-03
S.D. 1.258E-03 2.017E-04 1.159E-03 2.929E-04 1.091E-03 1.186E-03

KSP752

Max. 6.567E-03 1.576E-03 3.005E-03 1.826E-03 2.463E-03 2.798E-03
Min. 2.622E-03 9.311E-04 6.044E-04 8.018E-04 4.188E-04 5.883E-04
Mean 4.615E-03 1.277E-03 1.377E-03 1.233E-03 1.267E-03 1.243E-03
Med. 4.591E-03 1.293E-03 1.295E-03 1.201E-03 1.239E-03 1.152E-03
S.D. 8.286E-04 1.610E-04 6.039E-04 2.754E-04 4.740E-04 5.606E-04

KSP253

Max. 4.521E-03 2.412E-03 1.004E-03 1.338E-03 1.014E-03 1.074E-03
Min. 2.791E-03 1.555E-03 5.824E-04 7.052E-04 5.290E-04 4.821E-04
Mean 3.710E-03 1.880E-03 7.393E-04 9.769E-04 6.552E-04 6.303E-04
Med. 3.715E-03 1.850E-03 7.109E-04 9.432E-04 6.338E-04 5.898E-04
S.D. 3.756E-04 1.680E-04 1.212E-04 1.316E-04 1.138E-04 1.253E-04

KSP503

Max. 4.772E-03 2.388E-03 1.083E-03 1.620E-03 9.580E-04 8.978E-04
Min. 3.253E-03 1.845E-03 4.582E-04 8.939E-04 4.171E-04 3.993E-04
Mean 4.055E-03 2.133E-03 7.124E-04 1.237E-03 5.929E-04 6.079E-04
Med. 4.022E-03 2.154E-03 7.008E-04 1.219E-03 5.477E-04 5.769E-04
S.D. 4.473E-04 1.577E-04 1.532E-04 1.741E-04 1.415E-04 1.564E-04

KSP753

Max. 5.093E-03 2.412E-03 1.848E-03 1.963E-03 1.281E-03 1.138E-03
Min. 3.161E-03 1.646E-03 5.023E-04 6.964E-04 3.440E-04 3.124E-04
Mean 4.180E-03 2.100E-03 8.055E-04 1.047E-03 6.549E-04 6.369E-04
Med. 4.143E-03 2.108E-03 6.756E-04 9.896E-04 6.241E-04 6.486E-04
S.D. 4.641E-04 1.518E-04 3.305E-04 2.753E-04 2.108E-04 1.823E-04

KSP254

Max. 5.919E-03 2.760E-03 1.204E-03 1.632E-03 1.003E-03 9.995E-04
Min. 4.592E-03 1.958E-03 8.584E-04 1.121E-03 7.645E-04 7.602E-04
Mean 5.174E-03 2.375E-03 9.844E-04 1.333E-03 8.759E-04 8.608E-04
Med. 5.136E-03 2.377E-03 9.730E-04 1.361E-03 8.636E-04 8.505E-04
S.D. 3.724E-04 1.989E-04 8.002E-05 1.185E-04 6.831E-05 6.681E-05

KSP504

Max. 7.383E-03 3.548E-03 1.060E-03 1.258E-03 7.939E-04 8.340E-04
Min. 5.224E-03 2.836E-03 8.333E-04 7.444E-04 4.863E-04 5.124E-04
Mean 6.345E-03 3.182E-03 9.583E-04 1.018E-03 5.975E-04 6.175E-04
Med. 6.403E-03 3.173E-03 9.472E-04 1.019E-03 5.794E-04 6.117E-04
S.D. 6.138E-04 1.663E-04 6.640E-05 1.299E-04 8.075E-05 6.993E-05

KSP754

Max. 7.880E-03 4.079E-03 1.216E-03 2.156E-03 9.110E-04 8.094E-04
Min. 5.680E-03 3.327E-03 8.349E-04 8.301E-04 4.825E-04 4.505E-04
Mean 6.749E-03 3.690E-03 9.731E-04 1.394E-03 6.080E-04 5.506E-04
Med. 6.728E-03 3.702E-03 9.499E-04 1.327E-03 5.930E-04 5.341E-04
S.D. 4.891E-04 2.032E-04 9.070E-05 2.864E-04 1.001E-04 7.967E-05
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Table B.9: Detailed results of the inverted generational distance IIGD (Ch. 5)

Inst. Stat.
Algorithms

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252

Max. 1.308E-02 1.405E-03 4.218E-03 1.177E-03 6.107E-03 4.496E-03
Min. 8.295E-03 7.725E-04 1.194E-03 5.911E-04 1.238E-03 1.175E-03
Mean 1.094E-02 1.001E-03 2.310E-03 8.373E-04 2.397E-03 2.253E-03
Med. 1.113E-02 9.677E-04 2.255E-03 8.109E-04 2.042E-03 2.098E-03
S.D. 1.412E-03 1.685E-04 7.278E-04 1.391E-04 1.086E-03 8.431E-04

KSP502

Max. 1.446E-02 1.319E-03 3.680E-03 1.042E-03 4.469E-03 3.944E-03
Min. 9.317E-03 7.389E-04 7.384E-04 5.022E-04 8.030E-04 6.635E-04
Mean 1.157E-02 9.725E-04 1.892E-03 7.049E-04 1.885E-03 1.888E-03
Med. 1.147E-02 9.644E-04 1.815E-03 7.018E-04 1.875E-03 1.720E-03
S.D. 1.126E-03 1.368E-04 7.859E-04 1.420E-04 7.652E-04 8.199E-04

KSP752

Max. 1.429E-02 9.765E-04 2.403E-03 9.891E-04 2.026E-03 2.367E-03
Min. 1.169E-02 6.011E-04 5.810E-04 4.850E-04 7.723E-04 7.501E-04
Mean 1.272E-02 7.963E-04 1.290E-03 7.041E-04 1.200E-03 1.164E-03
Med. 1.258E-02 7.981E-04 1.257E-03 6.680E-04 1.142E-03 1.067E-03
S.D. 6.852E-04 8.925E-05 4.196E-04 1.296E-04 3.090E-04 3.809E-04

KSP253

Max. 2.638E-03 7.180E-04 5.069E-04 5.350E-04 5.098E-04 5.086E-04
Min. 1.875E-03 5.622E-04 4.259E-04 4.815E-04 4.057E-04 4.051E-04
Mean 2.237E-03 6.106E-04 4.475E-04 4.995E-04 4.384E-04 4.348E-04
Med. 2.243E-03 6.049E-04 4.418E-04 4.964E-04 4.314E-04 4.298E-04
S.D. 1.959E-04 3.094E-05 1.852E-05 1.438E-05 2.055E-05 2.192E-05

KSP503

Max. 3.053E-03 6.580E-04 4.821E-04 5.284E-04 4.559E-04 4.496E-04
Min. 2.556E-03 5.704E-04 3.705E-04 4.366E-04 3.684E-04 3.627E-04
Mean 2.833E-03 6.123E-04 4.114E-04 4.821E-04 3.991E-04 4.008E-04
Med. 2.825E-03 6.145E-04 4.109E-04 4.838E-04 3.916E-04 3.999E-04
S.D. 1.325E-04 2.559E-05 2.355E-05 2.134E-05 2.427E-05 2.478E-05

KSP753

Max. 3.356E-03 6.524E-04 5.460E-04 5.748E-04 4.652E-04 4.389E-04
Min. 2.917E-03 5.048E-04 3.305E-04 3.744E-04 3.212E-04 3.224E-04
Mean 3.147E-03 5.932E-04 3.891E-04 4.270E-04 3.789E-04 3.703E-04
Med. 3.144E-03 5.952E-04 3.800E-04 4.188E-04 3.703E-04 3.642E-04
S.D. 8.229E-05 3.026E-05 5.059E-05 4.128E-05 3.611E-05 2.902E-05

KSP254

Max. 1.616E-03 7.028E-04 5.733E-04 6.274E-04 5.922E-04 5.723E-04
Min. 1.314E-03 6.519E-04 5.433E-04 5.933E-04 5.339E-04 5.304E-04
Mean 1.455E-03 6.795E-04 5.543E-04 6.073E-04 5.534E-04 5.489E-04
Med. 1.466E-03 6.784E-04 5.530E-04 6.051E-04 5.500E-04 5.486E-04
S.D. 7.174E-05 1.678E-05 7.721E-06 8.953E-06 1.415E-05 1.129E-05

KSP504

Max. 1.848E-03 6.950E-04 4.807E-04 5.071E-04 4.622E-04 4.583E-04
Min. 1.555E-03 6.228E-04 4.353E-04 4.665E-04 4.255E-04 4.248E-04
Mean 1.686E-03 6.510E-04 4.565E-04 4.821E-04 4.406E-04 4.372E-04
Med. 1.692E-03 6.503E-04 4.560E-04 4.820E-04 4.385E-04 4.364E-04
S.D. 6.662E-05 1.543E-05 1.011E-05 8.329E-06 9.948E-06 8.849E-06

KSP754

Max. 2.027E-03 7.402E-04 4.618E-04 5.482E-04 4.352E-04 4.435E-04
Min. 1.829E-03 6.444E-04 4.208E-04 4.471E-04 3.940E-04 3.908E-04
Mean 1.913E-03 6.882E-04 4.400E-04 4.807E-04 4.137E-04 4.073E-04
Med. 1.913E-03 6.878E-04 4.401E-04 4.770E-04 4.137E-04 4.066E-04
S.D. 4.701E-05 2.391E-05 1.103E-05 2.129E-05 1.011E-05 9.965E-06
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Table B.10: Detailed results of the R3 indicator IR3 (Ch. 5)

Inst. Stat.
Algorithms

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KSP252

Max. 5.620E-02 8.040E-03 3.069E-02 6.359E-03 4.740E-02 3.292E-02
Min. 2.729E-02 3.829E-03 3.737E-03 2.324E-03 2.506E-03 3.957E-03
Mean 4.276E-02 5.269E-03 1.080E-02 3.852E-03 1.095E-02 1.118E-02
Med. 4.264E-02 5.253E-03 9.793E-03 3.868E-03 8.057E-03 9.217E-03
S.D. 8.257E-03 8.906E-04 5.959E-03 8.723E-04 8.960E-03 7.194E-03

KSP502

Max. 1.173E-01 9.085E-03 3.206E-02 7.217E-03 3.924E-02 3.590E-02
Min. 5.652E-02 4.798E-03 3.886E-03 3.000E-03 2.252E-03 2.123E-03
Mean 7.976E-02 6.663E-03 1.402E-02 4.641E-03 1.331E-02 1.402E-02
Med. 7.767E-02 6.600E-03 1.284E-02 4.592E-03 1.244E-02 1.127E-02
S.D. 1.058E-02 1.038E-03 7.562E-03 1.144E-03 7.525E-03 7.955E-03

KSP752

Max. 1.120E-01 7.852E-03 1.926E-02 8.386E-03 1.551E-02 1.874E-02
Min. 8.604E-02 4.389E-03 3.065E-03 3.563E-03 1.639E-03 2.965E-03
Mean 9.610E-02 6.456E-03 8.113E-03 5.638E-03 7.231E-03 7.162E-03
Med. 9.577E-02 6.471E-03 7.226E-03 5.472E-03 6.860E-03 6.379E-03
S.D. 6.514E-03 8.864E-04 4.056E-03 1.169E-03 3.092E-03 3.755E-03

KSP253

Max. 7.031E-02 1.269E-02 8.000E-03 7.731E-03 8.001E-03 9.371E-03
Min. 5.007E-02 9.638E-03 5.363E-03 5.647E-03 4.967E-03 4.847E-03
Mean 6.068E-02 1.091E-02 6.286E-03 6.649E-03 5.819E-03 5.792E-03
Med. 6.061E-02 1.095E-02 6.151E-03 6.633E-03 5.601E-03 5.603E-03
S.D. 5.549E-03 7.884E-04 6.146E-04 4.666E-04 6.841E-04 9.135E-04

KSP503

Max. 1.109E-01 1.530E-02 1.022E-02 9.152E-03 8.552E-03 8.195E-03
Min. 9.064E-02 1.168E-02 5.522E-03 5.665E-03 4.736E-03 4.793E-03
Mean 9.741E-02 1.317E-02 7.081E-03 7.263E-03 5.909E-03 6.272E-03
Med. 9.729E-02 1.330E-02 6.944E-03 7.185E-03 5.774E-03 6.141E-03
S.D. 5.071E-03 7.779E-04 1.084E-03 7.550E-04 9.936E-04 1.030E-03

KSP753

Max. 1.280E-01 1.590E-02 1.581E-02 1.130E-02 1.219E-02 1.133E-02
Min. 1.138E-01 1.255E-02 5.618E-03 5.071E-03 4.393E-03 4.268E-03
Mean 1.215E-01 1.451E-02 8.344E-03 6.521E-03 7.248E-03 7.059E-03
Med. 1.216E-01 1.452E-02 7.551E-03 6.163E-03 6.852E-03 7.281E-03
S.D. 3.621E-03 7.520E-04 2.533E-03 1.229E-03 1.928E-03 1.645E-03

KSP254

Max. 8.006E-02 1.685E-02 1.132E-02 1.223E-02 1.100E-02 1.102E-02
Min. 6.590E-02 1.392E-02 9.068E-03 1.013E-02 8.846E-03 8.693E-03
Mean 7.239E-02 1.553E-02 1.031E-02 1.110E-02 9.660E-03 9.627E-03
Max. 7.223E-02 1.569E-02 1.039E-02 1.113E-02 9.530E-03 9.495E-03
S.D. 3.786E-03 8.313E-04 4.766E-04 5.810E-04 5.563E-04 5.609E-04

KSP504

Max. 1.129E-01 2.169E-02 1.237E-02 9.675E-03 1.073E-02 1.135E-02
Min. 9.573E-02 1.923E-02 9.903E-03 8.317E-03 7.879E-03 7.768E-03
Mean 1.058E-01 2.046E-02 1.081E-02 9.093E-03 8.931E-03 9.005E-03
Med. 1.054E-01 2.038E-02 1.078E-02 9.161E-03 8.666E-03 8.889E-03
S.D. 3.993E-03 6.233E-04 6.714E-04 3.160E-04 8.179E-04 7.112E-04

KSP754

Max. 1.446E-01 2.720E-02 1.350E-02 1.278E-02 1.152E-02 1.164E-02
Min 1.288E-01 2.315E-02 1.028E-02 8.414E-03 7.780E-03 7.743E-03
Mean 1.377E-01 2.540E-02 1.208E-02 1.018E-02 9.174E-03 8.808E-03
Med. 1.375E-01 2.534E-02 1.210E-02 1.008E-02 8.899E-03 8.621E-03
S.D. 4.173E-03 8.719E-04 7.780E-04 9.183E-04 9.378E-04 8.216E-04
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Table B.12: Detailed results of referenced hypervolume indicator IRhyp (Ch. 6)

Inst. Stat.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2

KSP252

Max. 6.021E-02 1.494E-02 7.324E-03 1.095E-02 6.831E-03
Min. 3.228E-02 7.413E-03 5.002E-03 7.871E-03 5.124E-03
Mean 4.664E-02 1.024E-02 6.065E-03 9.328E-03 6.085E-03
Med. 4.718E-02 9.902E-03 6.041E-03 9.374E-03 6.080E-03
S.D. 7.220E-03 2.022E-03 5.871E-04 5.516E-04 3.885E-04

KSP502

Max. 6.743E-02 2.558E-02 1.105E-02 1.700E-02 9.554E-03
Min. 4.294E-02 9.317E-03 3.198E-03 8.948E-03 3.376E-03
Mean 5.666E-02 1.554E-02 5.568E-03 1.156E-02 5.557E-03
Med. 5.542E-02 1.579E-02 5.264E-03 1.133E-02 5.232E-03
S.D. 6.593E-03 2.969E-03 1.770E-03 1.809E-03 1.497E-03

KSP752

Max. 5.800E-02 2.120E-02 4.557E-03 8.001E-03 4.940E-03
Min. 3.836E-02 1.230E-02 3.084E-03 6.251E-03 2.868E-03
Mean 4.735E-02 1.639E-02 3.844E-03 7.344E-03 3.939E-03
Med. 4.681E-02 1.611E-02 3.813E-03 7.407E-03 3.856E-03
Med. 4.566E-03 2.143E-03 4.717E-04 3.826E-04 5.285E-04

KSP253

Max. 2.857E-01 1.413E-01 9.922E-02 1.211E-01 9.298E-02
Min. 2.031E-01 1.065E-01 8.211E-02 9.786E-02 8.249E-02
Mean 2.243E-01 1.209E-01 8.854E-02 1.094E-01 8.766E-02
Med. 2.252E-01 1.210E-01 8.910E-02 1.096E-01 8.736E-02
S.D. 1.675E-02 6.960E-03 3.594E-03 5.035E-03 2.206E-03

KSP503

Max. 3.034E-01 1.322E-01 7.725E-02 9.852E-02 7.848E-02
Min. 2.495E-01 1.067E-01 6.907E-02 8.386E-02 6.921E-02
Mean 2.755E-01 1.159E-01 7.388E-02 9.006E-02 7.393E-02
Med. 2.749E-01 1.159E-01 7.407E-02 8.998E-02 7.371E-02
S.D. 1.365E-02 5.455E-03 2.068E-03 3.131E-03 2.388E-03

KSP753

Max. 3.346E-01 9.951E-02 6.745E-02 8.273E-02 6.891E-02
Min. 2.556E-01 7.949E-02 6.254E-02 7.202E-02 5.863E-02
Mean 2.891E-01 8.854E-02 6.480E-02 7.633E-02 6.392E-02
Med. 2.868E-01 8.842E-02 6.475E-02 7.554E-02 6.391E-02
S.D. 1.900E-02 4.021E-03 1.185E-03 2.445E-03 2.321E-03

KSP254

Max. 9.020E-01 5.928E-01 4.471E-01 5.162E-01 4.544E-01
Min. 7.855E-01 5.184E-01 4.022E-01 4.636E-01 4.064E-01
Mean 8.565E-01 5.548E-01 4.256E-01 4.904E-01 4.268E-01
Med. 8.551E-01 5.594E-01 4.256E-01 4.896E-01 4.247E-01
S.D. 2.337E-02 1.839E-02 1.123E-02 1.135E-02 1.209E-02

KSP504

Max. 1.121E+00 4.715E-01 4.055E-01 4.304E-01 4.052E-01
Min. 9.843E-01 4.361E-01 3.795E-01 3.869E-01 3.659E-01
Mean 1.067E+00 4.533E-01 3.955E-01 4.097E-01 3.844E-01
Med. 1.074E+00 4.552E-01 3.964E-01 4.080E-01 3.839E-01
S.D. 2.779E-02 1.012E-02 6.406E-03 1.067E-02 9.509E-03

KSP754

Max. 1.300E+00 4.145E-01 3.687E-01 3.726E-01 3.642E-01
Min. 1.158E+00 3.615E-01 3.438E-01 3.504E-01 3.240E-01
Mean 1.226E+00 3.934E-01 3.540E-01 3.644E-01 3.407E-01
Med. 1.228E+00 3.965E-01 3.525E-01 3.670E-01 3.398E-01
S.D. 3.220E-02 1.322E-02 6.451E-03 6.808E-03 8.409E-03



222 Appendix B. Detailed Statistical Results

Table B.13: Detailed results of the Generational distance indicator IGD (Ch. 6)

Inst. Stat.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2

KSP252

Max. 1.897E-03 6.878E-04 4.263E-04 6.836E-04 3.858E-04
Min. 1.117E-03 3.982E-04 2.690E-04 4.463E-04 2.821E-04
Mean 1.496E-03 5.172E-04 3.399E-04 5.740E-04 3.373E-04
Med. 1.439E-03 5.207E-04 3.323E-04 5.738E-04 3.297E-04
S.D. 2.089E-04 6.227E-05 4.033E-05 4.528E-05 2.759E-05

KSP502

Max. 1.771E-03 7.116E-04 2.347E-04 3.697E-04 2.332E-04
Min. 1.271E-03 3.199E-04 1.102E-04 2.665E-04 1.250E-04
Mean 1.534E-03 4.411E-04 1.441E-04 3.119E-04 1.538E-04
Med. 1.540E-03 4.206E-04 1.369E-04 3.099E-04 1.504E-04
S.D. 1.338E-04 7.166E-05 2.750E-05 2.865E-05 2.434E-05

KSP752

Max. 1.666E-03 5.630E-04 8.311E-05 2.105E-04 8.511E-05
Min. 9.312E-04 3.811E-04 6.842E-05 1.726E-04 6.800E-05
Mean 1.330E-03 4.775E-04 7.516E-05 1.914E-04 7.809E-05
Med. 1.313E-03 4.830E-04 7.515E-05 1.903E-04 7.804E-05
S.D. 1.778E-04 4.004E-05 3.507E-06 1.099E-05 4.203E-06

KSP253

Max. 2.366E-03 7.851E-04 4.666E-04 7.650E-04 4.984E-04
Min. 1.673E-03 6.093E-04 3.434E-04 6.174E-04 3.345E-04
Mean 1.982E-03 6.833E-04 3.922E-04 6.823E-04 3.879E-04
Med. 1.975E-03 6.894E-04 3.908E-04 6.791E-04 3.828E-04
S.D. 1.809E-04 4.018E-05 2.829E-05 3.693E-05 3.694E-05

KSP503

Max. 2.577E-03 6.025E-04 3.018E-04 4.724E-04 2.953E-04
Min. 1.886E-03 4.171E-04 2.501E-04 3.900E-04 2.437E-04
Mean 2.253E-03 4.954E-04 2.756E-04 4.246E-04 2.701E-04
Med. 2.267E-03 4.953E-04 2.761E-04 4.217E-04 2.708E-04
S.D. 1.434E-04 4.085E-05 1.390E-05 2.077E-05 1.244E-05

KSP753

Max. 2.704E-03 4.159E-04 2.341E-04 3.070E-04 2.576E-04
Min. 1.835E-03 3.190E-04 2.028E-04 2.572E-04 1.789E-04
Mean 2.163E-03 3.633E-04 2.168E-04 2.766E-04 2.071E-04
Med. 2.174E-03 3.595E-04 2.155E-04 2.789E-04 2.060E-04
S.D. 1.873E-04 2.611E-05 9.193E-06 1.252E-05 1.384E-05

KSP254

Max. 2.795E-03 1.347E-03 6.585E-04 1.042E-03 6.715E-04
Min. 2.250E-03 1.031E-03 5.658E-04 8.295E-04 5.605E-04
Mean 2.524E-03 1.140E-03 6.069E-04 9.133E-04 6.137E-04
Med. 2.507E-03 1.130E-03 6.016E-04 9.109E-04 6.130E-04
S.D. 1.405E-04 7.578E-05 2.699E-05 4.798E-05 3.048E-05

KSP504

Max. 3.928E-03 7.390E-04 4.927E-04 5.699E-04 4.371E-04
Min. 3.174E-03 5.822E-04 3.728E-04 4.721E-04 3.110E-04
Mean 3.455E-03 6.628E-04 4.082E-04 5.142E-04 3.621E-04
Med. 3.434E-03 6.632E-04 4.055E-04 5.166E-04 3.594E-04
S.D. 1.700E-04 3.349E-05 2.509E-05 2.434E-05 2.487E-05

KSP754

Max. 4.064E-03 5.387E-04 3.082E-04 3.809E-04 2.812E-04
Min. 3.437E-03 4.463E-04 2.569E-04 3.324E-04 2.299E-04
Mean 3.788E-03 4.907E-04 2.876E-04 3.558E-04 2.525E-04
Med. 3.788E-03 4.901E-04 2.894E-04 3.518E-04 2.522E-04
S.D. 1.403E-04 2.640E-05 1.311E-05 1.401E-05 1.282E-05
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Table B.14: Detailed results of Inverted Generational distance IIGD (Ch. 6)

Inst. Stat.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2

KSP252

Max. 1.228E-03 7.532E-04 3.910E-04 5.079E-04 3.892E-04
Min. 7.499E-04 3.797E-04 3.102E-04 3.957E-04 3.223E-04
Mean 9.318E-04 4.827E-04 3.485E-04 4.510E-04 3.501E-04
Med. 9.100E-04 4.391E-04 3.471E-04 4.512E-04 3.508E-04
S.D. 1.217E-04 8.776E-05 2.021E-05 2.216E-05 1.691E-05

KSP502

Max. 8.747E-04 3.360E-04 2.191E-04 2.671E-04 2.159E-04
Min. 6.092E-04 2.225E-04 1.112E-04 1.806E-04 1.173E-04
Mean 7.308E-04 2.717E-04 1.311E-04 2.096E-04 1.325E-04
Med. 7.179E-04 2.655E-04 1.245E-04 2.051E-04 1.284E-04
S.D. 6.640E-05 3.047E-05 2.363E-05 1.931E-05 1.726E-05

KSP752

Max. 6.536E-04 3.206E-04 8.775E-05 1.206E-04 8.372E-05
Min. 4.176E-04 2.012E-04 7.410E-05 1.072E-04 7.586E-05
Mean 5.413E-04 2.435E-04 7.886E-05 1.141E-04 7.952E-05
Med. 5.464E-04 2.395E-04 7.834E-05 1.141E-04 7.973E-05
S.D. 6.291E-05 2.740E-05 2.883E-06 3.843E-06 2.133E-06

KSP253

Max. 7.126E-04 4.639E-04 3.933E-04 4.642E-04 4.118E-04
Min. 5.801E-04 4.264E-04 3.699E-04 4.256E-04 3.718E-04
Mean 6.311E-04 4.485E-04 3.828E-04 4.408E-04 3.845E-04
Med. 6.250E-04 4.468E-04 3.819E-04 4.393E-04 3.838E-04
S.D. 3.393E-05 9.077E-06 5.635E-06 8.951E-06 7.950E-06

KSP503

Max. 5.604E-04 3.457E-04 2.672E-04 3.090E-04 2.687E-04
Min. 4.891E-04 3.224E-04 2.513E-04 2.891E-04 2.541E-04
Mean 5.282E-04 3.327E-04 2.578E-04 2.987E-04 2.601E-04
Med. 5.281E-04 3.311E-04 2.581E-04 2.985E-04 2.596E-04
S.D. 1.869E-05 6.802E-06 3.773E-06 4.749E-06 3.509E-06

KSP753

Max. 5.230E-04 2.519E-04 1.974E-04 2.325E-04 2.021E-04
Min. 4.080E-04 2.369E-04 1.884E-04 2.177E-04 1.884E-04
Mean 4.554E-04 2.465E-04 1.933E-04 2.237E-04 1.947E-04
Med. 4.580E-04 2.471E-04 1.931E-04 2.233E-04 1.948E-04
S.D. 2.511E-05 3.920E-06 2.502E-06 4.130E-06 3.335E-06

KSP254

Max. 6.973E-04 5.909E-04 5.027E-04 5.472E-04 5.053E-04
Min. 6.389E-04 5.514E-04 4.777E-04 5.218E-04 4.768E-04
Mean 6.746E-04 5.693E-04 4.883E-04 5.327E-04 4.906E-04
Med. 6.713E-04 5.688E-04 4.883E-04 5.319E-04 4.903E-04
S.D. 1.436E-05 9.560E-06 6.426E-06 5.985E-06 7.154E-06

KSP504

Max. 6.431E-04 4.114E-04 3.549E-04 3.793E-04 3.540E-04
Min. 5.698E-04 3.930E-04 3.336E-04 3.578E-04 3.377E-04
Mean 5.946E-04 4.042E-04 3.463E-04 3.671E-04 3.458E-04
Med. 5.915E-04 4.047E-04 3.464E-04 3.667E-04 3.461E-04
S.D. 1.673E-05 4.424E-06 4.250E-06 4.945E-06 3.893E-06

KSP754

Max. 5.717E-04 3.349E-04 2.771E-04 2.932E-04 2.753E-04
Min. 5.139E-04 3.213E-04 2.649E-04 2.791E-04 2.641E-04
Mean 5.457E-04 3.276E-04 2.711E-04 2.846E-04 2.704E-04
Med. 5.466E-04 3.283E-04 2.711E-04 2.845E-04 2.706E-04
S.D. 1.498E-05 3.772E-06 2.756E-06 2.930E-06 2.816E-06
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Table B.15: Detailed results of R3 indicator IR3 (Ch. 6)

Inst. Stat.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2

KSP252

Max. 7.752E-03 2.255E-03 1.593E-03 2.858E-03 1.587E-03
Min. 4.251E-03 1.595E-03 9.857E-04 1.873E-03 9.430E-04
Mean 6.049E-03 1.880E-03 1.293E-03 2.321E-03 1.299E-03
Med. 5.963E-03 1.886E-03 1.300E-03 2.324E-03 1.300E-03
S.D. 8.222E-04 1.622E-04 1.425E-04 1.945E-04 1.495E-04

KSP502

Max. 8.721E-03 2.581E-03 7.981E-04 1.848E-03 8.199E-04
Min. 5.713E-03 1.632E-03 6.239E-04 1.457E-03 6.401E-04
Mean 7.303E-03 2.065E-03 6.885E-04 1.621E-03 7.115E-04
Med. 7.236E-03 2.042E-03 6.830E-04 1.624E-03 7.048E-04
S.D. 7.212E-04 1.789E-04 5.115E-05 9.450E-05 4.259E-05

KSP752

Max. 8.726E-03 2.887E-03 5.850E-04 1.319E-03 5.998E-04
Min. 4.826E-03 2.194E-03 5.016E-04 1.079E-03 5.144E-04
Mean 6.879E-03 2.470E-03 5.458E-04 1.210E-03 5.541E-04
Med. 6.808E-03 2.475E-03 5.452E-04 1.204E-03 5.524E-04
S.D. 9.836E-04 1.534E-04 2.047E-05 5.805E-05 2.086E-05

KSP253

Max. 1.238E-02 6.091E-03 4.838E-03 5.740E-03 4.795E-03
Min. 1.003E-02 5.296E-03 4.201E-03 4.958E-03 4.241E-03
Mean 1.112E-02 5.619E-03 4.490E-03 5.245E-03 4.481E-03
Med. 1.108E-02 5.585E-03 4.508E-03 5.237E-03 4.478E-03
S.D. 5.664E-04 2.031E-04 1.402E-04 1.859E-04 1.407E-04

KSP503

Max. 1.453E-02 5.696E-03 4.017E-03 4.958E-03 4.058E-03
Min. 1.207E-02 4.720E-03 3.575E-03 4.295E-03 3.510E-03
Mean 1.336E-02 5.161E-03 3.827E-03 4.604E-03 3.783E-03
Med. 1.338E-02 5.145E-03 3.836E-03 4.604E-03 3.782E-03
S.D. 6.632E-04 2.261E-04 1.255E-04 1.545E-04 1.206E-04

KSP753

Max. 1.565E-02 4.636E-03 3.576E-03 4.232E-03 3.701E-03
Min. 1.192E-02 4.024E-03 3.207E-03 3.691E-03 3.146E-03
Mean 1.424E-02 4.251E-03 3.381E-03 3.924E-03 3.320E-03
Med. 1.436E-02 4.229E-03 3.366E-03 3.916E-03 3.311E-03
S.D. 8.822E-04 1.478E-04 7.930E-05 1.381E-04 1.183E-04

KSP254

Max. 1.728E-02 1.025E-02 8.223E-03 9.222E-03 8.303E-03
Min. 1.489E-02 8.879E-03 7.225E-03 8.232E-03 7.419E-03
Mean 1.606E-02 9.704E-03 7.864E-03 8.841E-03 7.836E-03
Med. 1.600E-02 9.678E-03 7.867E-03 8.859E-03 7.784E-03
S.D. 5.778E-04 3.335E-04 2.196E-04 2.258E-04 2.406E-04

KSP504

Max. 2.105E-02 8.498E-03 7.632E-03 7.904E-03 7.338E-03
Min. 1.869E-02 7.398E-03 6.778E-03 7.002E-03 6.748E-03
Mean 2.024E-02 7.910E-03 7.182E-03 7.396E-03 7.063E-03
Med. 2.027E-02 7.887E-03 7.194E-03 7.358E-03 7.064E-03
S.D. 5.432E-04 2.411E-04 1.780E-04 2.014E-04 1.483E-04

KSP754

Max. 2.513E-02 7.625E-03 6.244E-03 6.548E-03 6.062E-03
Min. 2.263E-02 6.535E-03 5.875E-03 5.774E-03 5.550E-03
Mean 2.395E-02 7.022E-03 6.021E-03 6.260E-03 5.822E-03
Med. 2.397E-02 6.920E-03 6.039E-03 6.282E-03 5.809E-03
S.D. 5.792E-04 2.860E-04 1.013E-04 1.818E-04 1.288E-04
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Table B.17: Detailed results of referenced hypervolume indicator IRhyp (Ch. 7)

Inst. Stat.
Algorithms

MOEA/D1 MOEA/D2 dMOPSO HESSA

Fonseca

Max. 8.010E-03 3.738E-03 1.600E-02 4.403E-03
Min. 4.523E-03 3.566E-03 9.968E-03 3.892E-03
Mean 5.034E-03 3.636E-03 1.191E-02 4.081E-03
Med. 4.831E-03 3.637E-03 1.177E-02 4.042E-03
S.D. 6.643E-04 4.354E-05 1.408E-03 1.152E-04

Kursawe

Max. 3.236E-01 4.951E-01 2.066E+00 3.047E-01
Min. 2.655E-01 3.303E-01 1.127E+00 2.585E-01
Mean 2.935E-01 3.834E-01 1.494E+00 2.770E-01
Med. 2.922E-01 3.853E-01 1.470E+00 2.765E-01
S.D. 1.832E-02 3.812E-02 2.181E-01 1.293E-02

ZDT1

Max. 7.309E-02 5.705E-01 2.842E-02 5.958E-03
Min. 1.152E-02 2.385E-01 1.910E-02 5.102E-03
Mean 2.919E-02 4.502E-01 2.355E-02 5.496E-03
Med. 2.492E-02 4.688E-01 2.377E-02 5.454E-03
S.D. 1.531E-02 9.024E-02 2.569E-03 2.044E-04

ZDT2

Max. 2.963E-01 3.328E-01 3.328E-01 6.789E-03
Min. 7.875E-03 3.328E-01 6.557E-03 4.748E-03
Mean 1.871E-01 3.328E-01 1.230E-01 5.480E-03
Med. 2.062E-01 3.328E-01 3.971E-02 5.434E-03
S.D. 8.272E-02 2.823E-16 1.400E-01 4.734E-04

ZDT3

Max. 9.093E-02 7.072E-01 4.414E-02 6.493E-03
Min. 8.700E-03 4.429E-01 1.682E-02 5.039E-03
Mean 2.278E-02 6.221E-01 3.093E-02 5.654E-03
Med. 1.258E-02 6.329E-01 3.103E-02 5.644E-03
S.D. 2.365E-02 6.436E-02 6.268E-03 2.926E-04

ZDT4

Max. 3.629E-01 6.662E-01 4.402E-01 6.450E-03
Min. 3.487E-02 6.662E-01 7.502E-03 4.832E-03
Mean 1.050E-01 6.662E-01 1.007E-01 5.528E-03
Med. 7.629E-02 6.662E-01 5.774E-02 5.532E-03
S.D. 7.603E-02 1.129E-16 1.177E-01 4.412E-04

ZDT6

Max. 2.084E-02 2.659E-01 1.849E-02 2.727E-04
Min. 1.088E-02 2.718E-04 3.427E-03 2.063E-04
Mean 1.537E-02 1.324E-01 8.761E-03 2.160E-04
Med. 1.448E-02 1.378E-01 8.067E-03 2.130E-04
S.D. 2.622E-03 8.931E-02 3.686E-03 1.256E-05

DTLZ2

Max. 4.853E-02 5.204E-02 1.370E-01 4.844E-02
Min. 4.400E-02 4.666E-02 1.096E-01 4.387E-02
Mean 4.610E-02 4.839E-02 1.209E-01 4.644E-02
Med. 4.622E-02 4.830E-02 1.210E-01 4.667E-02
S.D. 1.344E-03 1.093E-03 6.858E-03 1.099E-03

DTLZ4

Max. 4.196E-01 4.349E-02 6.444E-02 3.489E-02
Min. 3.049E-02 2.564E-02 3.350E-02 2.629E-02
Mean 1.744E-01 2.873E-02 4.539E-02 3.019E-02
Med. 1.573E-01 2.793E-02 4.471E-02 2.994E-02
S.D. 1.272E-01 4.128E-03 6.556E-03 2.224E-03

DTLZ6

Max. 2.721E-02 2.860E-04 1.307E-03 3.167E-04
Min. 1.512E-04 2.481E-04 5.223E-04 3.037E-04
Mean 1.105E-02 2.667E-04 7.711E-04 3.108E-04
Med. 1.082E-02 2.674E-04 7.416E-04 3.113E-04
S.D. 7.024E-03 7.691E-06 1.631E-04 3.462E-06

DTLZ7

Max. 2.777E-01 7.238E-01 2.064E-01 1.764E-01
Min. 1.564E-01 3.290E-01 1.275E-01 1.549E-01
Mean 1.710E-01 5.359E-01 1.666E-01 1.692E-01
Med. 1.661E-01 5.476E-01 1.623E-01 1.709E-01
S.D. 2.168E-02 1.246E-01 2.035E-02 5.296E-03
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Table B.18: Detailed results of the generational distance indicator IGD (Ch. 7)

Inst. Stat.
Algorithms

MOEA/D1 MOEA/D2 dMOPSO HESSA

Fonseca

Max. 2.596E-03 1.057E-03 5.470E-03 1.304E-03
Min. 1.321E-03 9.167E-04 3.650E-03 1.008E-03
Mean 1.565E-03 9.962E-04 4.491E-03 1.135E-03
Med. 1.515E-03 9.982E-04 4.457E-03 1.132E-03
S.D. 2.480E-04 3.309E-05 5.200E-04 5.914E-05

Kursawe

Max. 1.182E-02 1.571E-02 7.051E-02 8.893E-03
Min. 6.488E-03 7.653E-03 3.691E-02 6.436E-03
Mean. 8.561E-03 1.089E-02 4.892E-02 7.460E-03
Med. 8.430E-03 1.073E-02 4.702E-02 7.343E-03
S.D. 1.256E-03 1.634E-03 8.805E-03 6.696E-04

ZDT1

Max. 9.072E-03 5.429E-01 1.646E-02 1.080E-03
Min. 2.804E-03 1.531E-01 8.954E-03 6.334E-04
Mean 5.149E-03 3.674E-01 1.288E-02 8.304E-04
Med. 4.955E-03 3.892E-01 1.289E-02 8.115E-04
S.D. 1.405E-03 9.837E-02 1.805E-03 1.240E-04

ZDT2

Max. 6.852E-03 7.787E-01 3.134E-02 1.747E-03
Min. 2.259E-04 1.665E-01 0.000E+00 5.174E-04
Mean 1.065E-03 4.582E-01 1.346E-02 9.119E-04
Med. 4.474E-04 4.711E-01 1.685E-02 9.020E-04
S.D. 1.443E-03 1.600E-01 1.141E-02 2.874E-04

ZDT3

Max. 3.435E-02 6.905E-01 1.233E-02 2.998E-03
Min. 2.811E-03 2.347E-01 5.708E-03 2.366E-03
Mean 5.832E-03 5.057E-01 8.874E-03 2.697E-03
Med. 4.070E-03 5.129E-01 9.154E-03 2.710E-03
S.D. 6.653E-03 1.022E-01 1.635E-03 1.613E-04

ZDT4

Max. 3.505E-01 3.685E+01 6.545E-03 1.292E-03
Min. 1.004E-02 6.718E+00 7.607E-04 4.422E-04
Mean 7.155E-02 1.754E+01 1.871E-03 8.383E-04
Med. 4.303E-02 1.624E+01 1.360E-03 7.952E-04
S.D. 8.253E-02 6.550E+00 1.327E-03 2.435E-04

ZDT6

Max. 1.825E-02 7.097E-01 4.024E-02 2.689E-03
Min. 9.670E-03 2.412E-03 1.463E-03 2.558E-03
Mean 1.345E-02 2.152E-01 5.453E-03 2.625E-03
Med. 1.280E-02 1.848E-01 2.501E-03 2.633E-03
S.D. 2.098E-03 1.980E-01 9.171E-03 3.745E-05

DTLZ2

Max. 6.069E-03 8.335E-03 8.320E-02 6.703E-03
Min. 5.656E-03 7.203E-03 5.854E-02 5.980E-03
Mean 5.850E-03 7.847E-03 6.851E-02 6.331E-03
Med. 5.843E-03 7.871E-03 6.804E-02 6.308E-03
S.D. 1.116E-04 2.426E-04 5.035E-03 1.776E-04

DTLZ4

Max. 3.459E-02 3.971E-02 6.267E-02 3.948E-02
Min. 1.123E-08 2.782E-02 3.328E-02 3.150E-02
Mean 2.438E-02 3.688E-02 4.615E-02 3.535E-02
Med. 2.363E-02 3.720E-02 4.481E-02 3.516E-02
S.D. 9.510E-03 2.545E-03 7.019E-03 1.772E-03

DTLZ6

Max. 1.166E-01 3.856E-03 4.886E-03 3.973E-03
Min. 3.586E-03 3.529E-03 3.989E-03 3.719E-03
Mean 4.189E-02 3.717E-03 4.423E-03 3.855E-03
Med. 3.824E-02 3.718E-03 4.455E-03 3.852E-03
S.D. 2.823E-02 8.566E-05 2.321E-04 6.941E-05

DTLZ7

Max. 2.359E-02 3.820E-01 6.076E-02 2.232E-02
Min. 1.353E-02 7.373E-02 3.472E-02 2.091E-02
Mean 2.246E-02 1.692E-01 5.200E-02 2.187E-02
Med. 2.269E-02 1.461E-01 5.324E-02 2.201E-02
S.D. 1.754E-03 7.546E-02 6.344E-03 4.044E-04
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Table B.19: Detailed results of inverted generational distance IIGD (Ch. 7)

Inst. Stat.
Algorithms

MOEA/D1 MOEA/D2 dMOPSO HESSA

Fonseca

Max. 5.980E-03 3.627E-03 3.101E-02 3.826E-03
Min. 3.835E-03 3.534E-03 8.443E-03 3.618E-03
Mean 4.212E-03 3.574E-03 1.627E-02 3.699E-03
Med 4.038E-03 3.574E-03 1.525E-02 3.687E-03
S.D. 4.590E-04 2.246E-05 5.371E-03 6.034E-05

Kursawe

Max. 4.669E-02 4.753E-02 1.591E-01 4.370E-02
Min. 4.111E-02 4.235E-02 8.171E-02 4.145E-02
Mean 4.238E-02 4.416E-02 1.059E-01 4.204E-02
Med. 4.197E-02 4.422E-02 9.781E-02 4.195E-02
S.D. 1.185E-03 1.244E-03 2.139E-02 5.275E-04

ZDT1

Max. 1.214E-01 5.462E-01 1.779E-02 4.266E-03
Min. 8.070E-03 1.832E-01 1.210E-02 3.942E-03
Mean 3.871E-02 3.904E-01 1.484E-02 4.053E-03
Med. 2.755E-02 4.014E-01 1.508E-02 4.043E-03
S.D. 3.208E-02 9.745E-02 1.565E-03 7.240E-05

ZDT2

Max. 4.354E-01 1.210E+00 6.096E-01 4.389E-03
Min. 4.837E-03 5.494E-01 4.918E-03 3.844E-03
Mean 2.457E-01 8.981E-01 1.953E-01 4.000E-03
Med. 2.667E-01 8.789E-01 2.312E-02 3.988E-03
S.D. 1.266E-01 1.528E-01 2.737E-01 1.199E-04

ZDT3

Max. 1.203E-01 5.960E-01 2.146E-02 1.088E-02
Min. 1.096E-02 2.884E-01 1.143E-02 1.047E-02
Mean 2.675E-02 4.664E-01 1.745E-02 1.064E-02
Med. 1.434E-02 4.755E-01 1.772E-02 1.061E-02
S.D. 2.768E-02 7.729E-02 2.416E-03 1.081E-04

ZDT4

Max. 3.073E-01 1.311E+01 6.306E-01 4.386E-03
Min. 2.338E-02 1.538E+00 5.433E-03 3.903E-03
Mean 1.055E-01 6.483E+00 1.602E-01 4.106E-03
Med. 8.396E-02 6.197E+00 1.055E-01 4.096E-03
S.D. 6.942E-02 2.804E+00 1.819E-01 1.272E-04

ZDT6

Max. 2.615E-02 7.416E-01 7.206E-03 1.913E-03
Min. 1.337E-02 1.856E-03 2.343E-03 1.846E-03
Mean 1.935E-02 1.635E-01 3.626E-03 1.890E-03
Med. 1.888E-02 4.484E-02 3.250E-03 1.892E-03
S.D. 3.426E-03 2.260E-01 1.105E-03 1.632E-05

DTLZ2

Max. 3.763E-02 3.881E-02 8.504E-02 3.780E-02
Min. 3.680E-02 3.736E-02 6.456E-02 3.686E-02
Mean 3.718E-02 3.808E-02 7.331E-02 3.727E-02
Med. 3.719E-02 3.808E-02 7.426E-02 3.728E-02
S.D. 2.027E-04 3.433E-04 4.707E-03 2.356E-04

DTLZ4

Max. 4.196E-01 4.349E-02 6.444E-02 3.489E-02
Min. 3.049E-02 2.564E-02 3.350E-02 2.629E-02
Mean 1.744E-01 2.873E-02 4.539E-02 3.019E-02
Med. 1.573E-01 2.793E-02 4.471E-02 2.994E-02
S.D. 1.272E-01 4.128E-03 6.556E-03 2.224E-03

DTLZ6

Max. 1.095E-01 4.447E-03 9.986E-03 4.566E-03
Min. 3.973E-03 4.322E-03 6.670E-03 4.500E-03
Mean 3.820E-02 4.394E-03 7.717E-03 4.519E-03
Med. 3.456E-02 4.399E-03 7.492E-03 4.518E-03
S.D. 2.623E-02 3.271E-05 7.274E-04 1.547E-05

DTLZ7

Max. 7.880E-01 9.099E-01 3.602E-01 1.234E-01
Min. 1.129E-01 1.390E-01 6.877E-02 1.109E-01
Mean 2.241E-01 3.761E-01 8.938E-02 1.151E-01
Med. 1.265E-01 3.659E-01 7.957E-02 1.136E-01
S.D. 1.560E-01 1.817E-01 5.145E-02 3.549E-03
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Table B.20: Detailed results of unary additive Epsilon indicator Iε+ (Ch. 7)

Inst. Stat.
Algorithms

MOEA/D1 MOEA/D2 dMOPSO HESSA

Fonseca

Max. 1.531E-02 6.806E-03 1.288E-01 8.026E-03
Min. 7.058E-03 6.262E-03 1.689E-02 6.544E-03
Mean 9.089E-03 6.469E-03 7.447E-02 7.069E-03
Med. 8.567E-03 6.440E-03 7.416E-02 7.052E-03
S.D. 2.021E-03 1.442E-04 3.366E-02 3.811E-04

Kursawe

Max. 1.489E-01 1.388E-01 1.126E+00 1.204E-01
Min. 7.276E-02 8.438E-02 2.614E-01 7.288E-02
Mean 8.787E-02 1.085E-01 4.575E-01 8.238E-02
Med. 8.234E-02 1.071E-01 3.826E-01 7.970E-02
S.D. 1.616E-02 1.379E-02 1.961E-01 9.132E-03

ZDT1

Max. 2.510E-01 6.790E-01 3.593E-02 9.272E-03
Min. 2.323E-02 2.514E-01 2.222E-02 7.568E-03
Mean 1.103E-01 4.884E-01 2.878E-02 8.248E-03
Med. 8.952E-02 4.942E-01 2.835E-02 8.211E-03
S.D. 7.164E-02 1.200E-01 3.777E-03 4.188E-04

ZDT2

Max. 9.574E-01 1.771E+00 1.000E+00 8.342E-03
Min. 1.281E-02 1.060E+00 1.095E-02 6.542E-03
Mean 7.207E-01 1.420E+00 3.264E-01 7.438E-03
Med. 8.220E-01 1.385E+00 4.341E-02 7.400E-03
S.D. 2.632E-01 1.693E-01 4.486E-01 4.578E-04

ZDT3

Max. 6.664E-01 1.271E+00 7.513E-02 1.568E-02
Min. 1.547E-02 5.155E-01 2.339E-02 1.364E-02
Mean 1.265E-01 8.656E-01 4.638E-02 1.514E-02
Med. 2.362E-02 8.879E-01 4.563E-02 1.526E-02
S.D. 1.875E-01 1.682E-01 1.182E-02 4.300E-04

ZDT4

Max. 4.518E-01 1.344E+01 7.695E-01 1.126E-02
Min. 5.329E-02 1.837E+00 1.286E-02 7.724E-03
Mean 2.132E-01 6.801E+00 2.535E-01 8.910E-03
Med. 1.751E-01 6.519E+00 2.383E-01 8.876E-03
S.D. 1.046E-01 2.813E+00 2.300E-01 8.514E-04

ZDT6

Max. 3.778E-02 8.324E-01 4.838E-02 5.686E-03
Min. 1.972E-02 4.869E-03 1.499E-02 4.752E-03
Mean 2.846E-02 3.088E-01 2.990E-02 5.026E-03
Med. 2.756E-02 2.949E-01 2.788E-02 4.934E-03
S.D. 4.977E-03 2.404E-01 8.734E-03 2.361E-04

DTLZ2

Max. 9.210E-02 9.176E-02 1.187E-01 9.236E-02
Min. 7.582E-02 6.657E-02 9.394E-02 7.437E-02
Mean 8.762E-02 7.829E-02 1.075E-01 8.443E-02
Med. 8.857E-02 7.880E-02 1.075E-01 8.536E-02
S.D. 4.302E-03 8.235E-03 6.170E-03 4.832E-03

DTLZ4

Max. 9.778E-01 2.374E-01 2.495E-01 8.665E-02
Min. 6.017E-02 5.144E-02 1.083E-01 4.934E-02
Mean 4.818E-01 7.273E-02 1.490E-01 6.233E-02
Med. 6.319E-01 6.022E-02 1.422E-01 6.067E-02
S.D. 3.082E-01 4.488E-02 2.992E-02 8.695E-03

DTLZ6

Max. 9.990E-02 1.054E-02 1.875E-02 1.061E-02
Min. 9.118E-03 9.236E-03 1.051E-02 9.912E-03
Mean 4.304E-02 1.019E-02 1.468E-02 1.036E-02
Med. 4.304E-02 1.024E-02 1.468E-02 1.036E-02
S.D. 2.087E-02 2.675E-04 1.968E-03 1.535E-04

DTLZ7

Max. 2.535E+00 2.724E+00 1.349E+00 1.728E-01
Min. 1.653E-01 3.995E-01 1.508E-01 1.557E-01
Mean 6.159E-01 9.651E-01 2.493E-01 1.679E-01
Med. 1.717E-01 7.649E-01 2.049E-01 1.685E-01
S.D. 6.363E-01 6.142E-01 2.131E-01 4.013E-03
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[Černỳ 1985] VLADIMÍR Černỳ. Thermodynamical approach to the traveling

salesman problem: An efficient simulation algorithm. Journal of opti-

mization theory and applications, vol. 45, no. 1, pages 41–51, 1985. (Cited

on pages 54 and 192.)

[Chakraborty 2008] Uday K Chakraborty. Advances in differential evolution,

volume 143. Springer-Verlag New York Incorporated, 2008. (Cited on

page 67.)

[Chakraborty 2010] U.K. Chakraborty. Advances in Differential Evolution.

Studies in Computational Intelligence. Springer, 2010. (Cited on

pages 139 and 205.)

[Chankong & Haimes 1983] V. Chankong and Y.Y. Haimes. Multiobjective De-

cision Making Theory and Methodology. Elsevier Science, New York,

1983. (Cited on pages 8 and 189.)



Bibliography 235

[Charnes & Cooper 1961] A. Charnes and W.W. Cooper. Management mod-

els and industrial applications of linear programming. Numeéro v. 1 de
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Francisco Almeida andMaŕıa J. Blesa Aguilera andChristian Blum andJ.
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tion. Numeéro v. 1 de Applied information technology. Plenum, 1993.

(Cited on pages 11, 32 and 190.)

[Salehipour et al. 2011] Amir Salehipour, Kenneth Sörensen, Peter Goos and
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