
HAL Id: tel-01175006
https://theses.hal.science/tel-01175006

Submitted on 10 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical modeling and experimental investigation of
fine particle coagulation and dispersion in dilute flows

Bart Janssens

To cite this version:
Bart Janssens. Numerical modeling and experimental investigation of fine particle coagulation and
dispersion in dilute flows. Mechanics [physics.med-ph]. Université de La Rochelle; École Royale
Militaire (Bruxelles), 2014. English. �NNT : 2014LAROS014�. �tel-01175006�

https://theses.hal.science/tel-01175006
https://hal.archives-ouvertes.fr

VON KARMAN INSTITUTE FOR FLUID DYNAMICS
TURBOMACHINERY & PROPULSION DEPARTMENT

UNIVERSITÉ DE LA ROCHELLE - UFR SCIENCE ET
TECHNOLOGIE

ECOLE DOCTORALE SCIENCES ET INGÉNIERIE EN MATÉRIAU, MÉCANIQUE,
ÉNERGÉTIQUE ET AÉRONAUTIQUE

LABORATOIRE DES SCIENCES DE L’INGÉNIEUR POUR L’ENVIRONNEMENT

ROYAL MILITARY ACADEMY
DEPARTMENT OF MECHANICAL ENGINEERING

Numerical modeling and experimental
investigation of fine particle coagulation

and dispersion in dilute flows

Cover art: Particle-laden turbulent channel flow, with vertical cuts and streamlines colored
by streamwise particle velocity and the bottom wall colored by particle concentration.

Thesis presented by Bart Janssens in order to obtain the degree of “Doctor of Philosophy
in Applied Sciences - Mechanics”, Université de la Rochelle, France and Royal Military
Academy, Belgium, 10th of July 2014.

Promoter: Prof. Tony Arts (von Karman Institute for Fluid Dynamics, Belgium)
Supervisor: Prof. Walter Bosschaerts (Royal Military Academy, Belgium)
Co-Supervisor: Karim Limam (Maı̂tre de conférences, Université de La Rochelle, France)

Doctoral Committee:

Prof. Gérard Degrez (Université Libre de Bruxelles, Belgium)
Asst Prof. Benoı̂t Marinus (Royal Military Academy, Belgium)
Prof. Hassane Naji (Université d’Artois, France)
Asst Prof. Elmar Recker (Royal Military Academy, Belgium)
Prof. Dirk Saelens (KU Leuven, Belgium)

A selection of doctoral theses published by the von Karman Institute:

Benefits of flow control on compressor blade aerodynamics
(F.C. Şahin, Université Catholique de Louvain, Belgium, June 2014)

Spectroscopic measurements of sub- and supersonic plasma flows for the investigation of at-
mospheric re-entry shock layer radiation
(D. Le Quang Huy, Université Blaise Pascal, France, June 2014)

Development of a high temperature cooled fast response probe for gas turbine applications
(M. Mersinligil , Université Catholique de Louvain, Belgium, May 2014)

Experimental investigation of induced supersonic boundary layer transition
(H. Bottini, Universidad Politecnica de Catalunya (UPC), Spain, March 2014)

Multi-scale models and computational methods for aerothermodynamics
(A. Munafo, École Centrale de Paris, France, January 2014)

Experimental aerothermal performance of turbofan bypass flow heat exchangers
(L. Villafañe, Universidad Politécnica de Valencia, Spain, December 2013)

A full catalogue of publications is available from the library.

Numerical Modeling and Experimental Investiga-
tion Fine Particle Coagulation and Dispersion in
Dilute Flows
Keywords: finite element method, disperse multiphase flow, Eulerian method, particle coag-
ulation, experimental validation

c©2014 by Bart Janssens
D/2014/0238/649, T. Magin, Editor-in-Chief
Published by the von Karman Institute for Fluid Dynamics with permission.

All rights reserved. Permission to use a maximum of two figures or tables and brief excerpts in scientific and
educational works is hereby granted provided the source is acknowledged. This consent does not extend to
other kinds of copying and reproduction, for which permission requests should be addressed to the Director of
the von Karman Institute.

ISBN 978-2-87516-081-2

For Francis, in memoriam.

Contents

Abstract ix

Acknowledgments xi

Nomenclature xiii

1 Introduction 1
1.1 Background . 1
1.2 Scope and objectives . 2
1.3 Thesis outline . 2

I Modeling 5

2 Dispersed flow modeling: a review 7
2.1 Fundamental concepts . 7

2.1.1 Particle concentration 7
2.1.2 Particle response time 7
2.1.3 Dilute flow . 8
2.1.4 Rarefied flow effects 9

2.2 Literature review . 9
2.2.1 Particle transport . 9
2.2.2 Particle coagulation 10
2.2.3 Stabilized finite element methods 11
2.2.4 Experimental methods 12

2.3 Modeling choices . 13

3 Numerical method 15
3.1 Fluid model . 15

3.1.1 Coupled formulation 15
3.1.2 Segregated formulation 18
3.1.3 Performance aspects 21

3.2 Discrete phase model . 26
3.2.1 Monodisperse flows . 26
3.2.2 Polydisperse flows . 31

4 Domain specific language 49
4.1 Finite element discretization 50

vi Contents

4.2 Construction of the language 52

4.2.1 The language layer . 53

4.2.2 The algorithm implementation layer 54

4.2.3 External libraries . 59

4.2.4 User defined terminals 60

4.2.5 Integration into a framework 63

4.2.6 Compatibility with matrix expression templates 64

4.3 Application examples . 64

4.3.1 Poisson problem . 64

4.3.2 Navier-Stokes equations using Chorin’s method 66

4.3.3 PSPG/SUPG stabilized incompressible Navier-Stokes 70

4.4 Performance analysis . 70

4.4.1 Poisson problem . 71

4.4.2 Chorin’s method . 74

4.4.3 Channel flow simulation 76

4.5 Conclusion and future work 77

II Validation 79

5 Reference cases 81

5.1 Fluid model . 81

5.1.1 Taylor-Green vortices 81

5.1.2 Turbulent channel flow 86

5.2 Particle model . 90

5.2.1 Taylor-Green vortices 90

5.2.2 Burgers vortex . 99

5.2.3 Turbulent channel flow 104

6 Experimental validation 107

6.1 Experimental setup . 107

6.2 Flow measurements . 108

6.2.1 Horizontal plane (A) 110

6.2.2 Inlet detail (B) . 111

6.2.3 Center plane (C) . 117

6.2.4 Numerical model validation 117

6.3 Particle behavior . 120

6.3.1 PDA measurements 120

6.3.2 Multi-Wavelength Light Extinction 122

6.3.3 Numerical model validation 132

Contents vii

III Conclusion 135

7 Conclusion and further work 137
7.1 Conclusions . 137
7.2 Further work . 139
7.3 Future developments . 140

7.3.1 Language development 140
7.3.2 Performance improvements 140
7.3.3 Numerical improvements 140
7.3.4 Extending the applicability 141
7.3.5 Potential applications 141

8 Bibliography 143

Abstract

The present work deals with the development of a framework for the mod-
eling of dispersed flows, including the effect of coagulation on the particle
size distribution. We also explore some techniques for experimental valida-
tion. Models are developed for incompressible, isothermal flow containing
particles that have a small relaxation time compared to the fluid time scale.

For the dispersed phase, an equilibrium Eulerian approach is used, extrap-
olating the particle velocity from the fluid velocity. The size distribution is
modeled using the Direct Quadrature Method of Moments. In practice, this
results in solving transport equations for the weights and abscissa of a Dirac
delta approximation of the size distribution. To model the effect of coagula-
tion, a collision kernel that makes use of the resolved instantaneous velocity
is developed.

All transport equations are solved using the Finite Element Method. For
the fluid, the Streamline Upwind and Pressure Stabilized Petrov-Galerkin
method are used, with additional grad-div stabilization. To decrease the
solution time for DNS, a segregated formulation with an explicit advection
term is proposed. The particle transport equations require cross-wind diffu-
sion in addition to the streamline upwind stabilization when large gradients
occur.

All work is available in the open source Coolfluid 3 framework, using an
Embedded Domain Specific Language we developed for the implementation
of finite element models. The resulting code closely resembles the variational
form of the equations and is generic in terms of element type and the number
of spatial dimensions.

A first validation uses literature results as reference. Correctness and
accuracy of the methods are verified using the Taylor-Green vortex flow.
For the fluid and particle concentration, direct numerical simulation of a
turbulent channel flow is performed. The particle coagulation kernel is tested
using particles of different sizes falling through a Burgers vortex.

Finally, some experimental validation techniques are used on a small test
chamber. Particle image velocimetry is used for the fluid motion, while
the size distributions are measured using Phase Doppler Anemometry and
Multiple Wavelength Light Extinction. The light extinction technique was
found to produce size distributions that could provide valuable reference
data for our particle model.

Acknowledgments

The successful completion of this work would not have been possible without
the help of many people, so I would like to express my gratitude here.

First of all I thank my promotors, Prof. Arts, Prof. Bosschaerts and
Prof. Limam for offering me the opportunity to do this work and for their
valuable support throughout the research. I am grateful for the great amount
of freedom they allowed, without which it would have been impossible to
delve into the C++ programming aspects of the work. I also thank the
reporters and other members of the jury for their questions and comments
on the manuscript.

I am also most grateful to the Coolfluid 3 team. Tiago, thanks for intro-
ducing me to the team and for involving me in the Coolfluid 3 transition.
Tamás, thank you for your “How to implement a Navier-Stokes solver in 10
easy steps” tutorial, and the countless intersting discussions and debugging
sessions (yes there were bugs but they are all gone now). Willem, thank you
for working out lots of the Coolfluid 3 basics, especially the wonderful mesh
structure that is essential for all other work.

Of course my colleagues at the RMA were always ready to lend a hand,
and I thank all of them. Elmar, thank you for the many hours you helped
me with the experiments and all the useful comments on my work. Benôıt,
many thanks for all the interesting discussions we had as well as the detailed
comments made on the manuscript.

The most interesting results in the experimental work are without a doubt
the light extinction measurements. Many thanks, Imre, for making this
possible and for all the help with the experiments and discussions about the
results.

Finally, I thank my family and especially my lovely wife. Lynn, thank
you for your love and support during all these years, I know it was difficult
at times. I know your father would have loved to see me finish this work, so
I dedicate it to him. He is sorely missed.

Nomenclature

Roman Symbols

a Acceleration [m/s2]
Ae Element stiffness matrix
Cα Cunningham correction for phase α
dp Particle diameter [m]
dα Diameter associated with particle phase α [m]
Db Diffusion coefficient due to Brownian motion [m2/s]
f Particle number distribution function [m-6]
fα Particle number distribution function value at vα [m-6]
g Acceleration associated with the body force [m/s2]
gij Element metric tensor [m-2]
h Element length scale [m]
kB Boltzmann constant, 1.3806488 · 10−23 [J/K]
Kn Knudsen number
L Linear operator
n Particle number concentration [m-3]
nt Total particle number concentration for all sizes [m-3]
N Number of elements or number of phases
Nu Element shape function vector for the variable u
p Kinematic pressure [m2/s2]
rp Particle radius [m]
Rαγ Particle collision radius (i.e. the sum of radii) [m]
t Time [s]
∆t Time step [s]
Te Element mass matrix
u Fluid velocity vector [m/s]
ũ Value of unknown u interpolated by its associated

shape functions
ue Element vector of unknown coefficients associated

with variable u
Ua Horizontal Taylor-Green background velocity [m/s]
U Mean x-velocity [m/s]
Uc Mean centerline x-velocity in the experiment [m/s]
Um Mean x-velocity across the inlet height [m/s]
v Particle velocity vector [m/s]
vp Particle volume [m3]
vα Particle volume associated with particle phase α [m3]

xiv Nomenclature

Va Vertical Taylor-Green background velocity [m/s]
Vs Initial maximal Taylor-Green swirl velocity [m/s]
V Mean y-velocity [m/s]
V Volume [m3]
w Relative velocity between particles [m/s]
wr Radial component of the relative velocity between [m/s]

particles
W Mean z-velocity [m/s]
x Position vector [m]
xe Vector of unknowns for an element
xui Block of the element vector for component i of u
x̃ Finite element approximation of x

Greek Symbols

αp Particle volume fraction
β Density ratio parameter
ηk Kolmogorov length scale [m]
µ Dynamic viscosity of the fluid [kg/ms]
µg Geometric mean of the particle diameter [m]
ν Kinematic viscosity of the fluid [m2/s]
ω Vorticity [s-1]
Ωe Volume of a single element [m3]
ρf Density of the fluid [kg/m3]
ρp Density of the particle [kg/m3]
σab Collision cross section for two particles a and b [m2]
σg Geometric standard deviation of dp
θ Parameter for the theta-scheme
τ Generalized particle relaxation time [s]
τc Average time between particle collisions [s]
τk Kolmogorov time scale [s]
τp Particle relaxation time [s]
τps PSPG stabilization coefficient [s]
τsu SUPG stabilization coefficient [s]
τbu Grad-div (bulk) stabilization coefficient [m2/s]
ζα Weighted particle diameter cαdα for phase α [m]

Chapter 1

Introduction

1.1 Background

The behavior of fine particles in a carrier fluid is of importance in many
fields. One area of concern is the effect of particle pollution in the air we
breathe: small particles enter the body through the respiratory system or the
skin and may constitute a health risk [1]. This pollution consists of both
solid and liquid particles that are much heavier than the air that carries
them. A wide range of sizes can be observed, with the smallest particles
starting at a few nanometers. Particles larger than 10 µm do not penetrate
into the respiratory system and are not considered in most studies. Particles
in the size range below 100 nm are thought to be more hazardous [2], though
the chemical composition of the particles strongly affects their toxicity [3].
These nanoparticles only make up a small portion of the total mass of the
particles, but they are usually present in high numbers. In the case of high
number concentration and polydisperse particle distributions, the effect of
particle coagulation is enhanced.

Proper understanding of the behavior of these particles can also be applied
to the development of air handling units that are able to filter out the
pollutants.

A related area is the study of soot particles in exhaust plumes [4]. Par-
ticle number concentrations near the point of emission are high enough to
promote coagulation, so we must take this effect into account to obtain a
correct particle size distribution. In this context, a detailed study of the
evolution of soot particles through a turbine would also be possible.

Volcanic aerosols in the high altitude atmosphere also fall into the size
range that is considered here. This kind of aerosol is transported over long
distances during long periods of time (weeks or months). Numerical model-
ing can aid in assessing the risk that these aerosols pose to air traffic [5].

Finally, in the context of defense and security, it is useful to be able to
predict the effects of an attack using chemical or biological aerosols, such
as anthrax spores [6]. A practical model could be used to evaluate possible
release scenarios in a building, allowing for the construction of a database
of emergency response plans.

2 Chapter 1. Introduction

1.2 Scope and objectives

The main objective of the current work is to develop a numerical model
for the behavior of discrete particles in a continuous carrier phase. The
particles are assumed to be heavy with respect to the carrier phase, with
a size range from 10 nm to 10 µm when we use air at standard conditions.
The continuous phase is restricted to an isothermal, incompressible flow.

We assume that the motion of the particles is governed by the influence of
the flow rather than inter-particle collisions — i.e. a “dilute” regime. Fur-
thermore, the influence of the particles on the continuous phase is neglected
(one-way coupling). We do consider the effect of particle coagulation, i.e.
particles may collide and form larger particles. The term coagulation is used
synonymously with aggregation here, and applies to both droplets and solid
particles.

The numerical work is part of Coolfluid 3, a cutting-edge C++ frame-
work [7]. The actual numerical models are implemented using an embed-
ded domain specific language, allowing for a concise formulation that stays
close to the original mathematical formulation. This abstraction greatly
improves code readability and simplifies experimentation with the many
different models that can be found in the literature. This kind of simplifi-
cation usually implies a performance penalty, but this effect is negligible in
our code.

Finally, the model needs to be validated. We use available data from lit-
erature as well as our own experiment. The objective of the experiment is to
investigate the feasibility of producing validation data sets that are detailed
enough to validate the model. It is beyond the scope of this work, however,
to produce an actual quantitative validation from our own experiments.

The original contribution of the work lies in the development of a finite
element model for a dispersed flow that takes into account the effect of co-
agulation on the size distribution. Many models are described in literature,
but the effect of coagulation is rarely taken into account. We develop a
coagulation kernel that relies on DNS data of the fluid model, intended as a
basis for future development of coarser models. The implementation using
a domain specific language is also new in this field, and helps to ensure the
continued performance, maintainability and extensibility of the code. Fi-
nally, the lack of experimental data on particle coagulation in the literature
led to the development of our own experimental setup to explore some new
validation techniques.

1.3 Thesis outline

After this introduction, the work is divided into three parts: modeling,
validation and conclusions. Chapter 2 starts with an overview of some fun-
damental concepts for disperse flows. Next, we provide an overview of the

1.3. Thesis outline 3

available methods for modeling dispersed two-phase flow, and we explain
some of the choices that we make for the rest of the work. Chapter 3 deals
with the modeling of the continuous and the dispersed phase. The domain
specific language that we use to implement the models is explained in chapter
4, together with the application to the current fluid model. These chapters
make up part I of the work. In part II we validate the model, using data
from literature in chapter 5 and our own experimental setup as described in
chapter 6. The conclusions of the work are summarized in part III.

Part I

Modeling

Chapter 2

Dispersed flow modeling: a review

2.1 Fundamental concepts

In this section, we present some fundametal concepts related to dispersed
flow, using [8] and [9] as reference.

2.1.1 Particle concentration

In this work, we will mostly work with particle number concentrations, de-
fined as the ratio of the number of particles δN in a volume δV large enough
to get a stationary average:

n ≡ lim
δV→δV0

δN

δV
(2.1)

When dealing with measurements, we will also need the particle volume
fraction, writing δVp for the volume occupied by the particles in the reference
volume:

αp ≡ lim
δV→δV0

δVp
δV

(2.2)

2.1.2 Particle response time

The particle response time follows directly from the equation of motion of
a small sphere in Stokes flow [8]:

dv

dt
=

18µ

ρpd2
p

(u− v) (2.3)

The factor on the right hand side has dimensions [s-1], so the particle re-
sponse time is:

τp ≡
ρpd

2
p

18µ
(2.4)

The particle response time can be compared to a fluid time scale τf using
the Stokes number:

St ≡ τp
τf

(2.5)

8 Chapter 2. Dispersed flow modeling: a review

The Stokes number plays a fundamental role in the particle behavior. For
St� 1, the particle velocity is closely related to the fluid velocity, while for
St� 1 the particle velocity undergoes little influence from the fluid. Conse-
quently, modeling assumptions for both kinds of particles are fundamentally
different and we must have an idea of the Stokes numbers in order to make
an appropriate choice.

Numerical example

We consider a plane channel flow (see also figure 5.6) with air at standard
conditions, i.e. µ = 1.8 × 10−5 kg/(ms) and ρf = 1.2 kg/m3. The channel
half-height h is 10 cm. This situation could represent a simple model for
a ventilation duct, as might be studied in an air quality problem. A fluid
time scale can be defined as τf = ν/u2

τ . As shown in [10], this time scale
is smaller than the Kolmogorov time scale at all locations in the channel.
The friction velocity uτ can be computed from Dean’s correlation [11] for
the skin friction coefficient cf = 2u2

τ/U
2 = 0.073Re−0.25

m , where U is the
channel bulk velocity and Rem is the Reynolds number with respect to U
and the channel height 2h.

The particles have a density of ρp = 1000 kg/m3. Using this data, we
can compute the particle response times for different particle sizes as well
as the bulk velocity that results in St = 1. Table 2.1 presents the results

dp (µm) τp (µs) U (m/s) Rem

10 309 4.57 61000
2 12.3 28.8 384000
0.1 0.0309 883 1.18× 107

Table 2.1: Particle response times and flow properties to obtain St = 1 for
a plane channel flow.

for different sizes. Even at the largest particle size targeted in this work,
the mean velocity is already higher than what is used in many indoor air
quality applications. As the particle size decreases, the flow velocity must
increase sharply to match the very small particle response times, reaching
values far outside our application domain.

From this result, we conclude that models that assume St . 1 are suitable
for our work. Both the fluid and particle time scale depend on the exact
application, so this hypothesis should be checked for each specific case.

2.1.3 Dilute flow

A dispersed flow is considered dilute when the particle motion is dominated
by fluid forces, rather than inter-particle collisions. This condition is satis-
fied if the average time between collisions τc is large when compared to the

2.2. Literature review 9

particle response time, i.e. a flow is dilute if

τp
τc
< 1 (2.6)

The average time between collisions is the inverse of the particle collision
frequency, which can be derived from the kinetic theory presented in section
3.2.2:

τc =
(
nπd2

pvr
)−1

(2.7)

Here, vr is the relative velocity between particles, and it depends on the flow
conditions. The above formula is valid for a monodisperse flow. In the case
of a polydisperse flow where the instantaneous fluid velocity is known (i.e.
DNS) the derivations from sections 3.2.2 and 3.2.2 can be used to obtain a
more accurate value.

2.1.4 Rarefied flow effects

As the particle size decreases it may approach the mean free path of the
molecules of the carrier phase. This effect is quantified by the Knudsen
number:

Kn ≡ λf
rp

(2.8)

Equation (2.4) is obtained assuming Stokes flow, thus implying a continuous
carrier flow and Kn � 1. Various corrections are possible as Kn increases,
the simplest being the Cunningham correction factor of the form:

Cp ≡ 1 +AKn (2.9)

Equation (2.4) is then corrected by multiplying with Cp. According to [12]
and using A = 1.591, this formula should be valid up to Kn ≈ 5.

Many more advanced corrections are available, see e.g. [13]. Recent mea-
surements, valid for a wider range of Knudsen numbers, can be found in e.g.
[14, 15].

2.2 Literature review

2.2.1 Particle transport

The techniques for dealing with particles fall into two categories: Lagrangian
methods, where individual particles are tracked; and Eulerian methods,
where properties related to the particles are treated as a continuous field. A
recent overview of advances related to both methods is provided in [16]. In
[17], the methods are classified as a function of Stokes number. In the limit
St→ 0, particles track the fluid exactly and their properties are transported
using the fluid velocity. For St . 0.2, an equilibrium Eulerian approach al-
lows extrapolating the fluid velocity from the carrier flow velocity without

10 Chapter 2. Dispersed flow modeling: a review

solving additional transport equations [17, 18]. The applicability of the Eu-
lerian approach can be further extended up to St ≈ 1 by including equations
for the particle momentum. This method was successfully applied to sprays
in [19] and is sometimes called the “two-fluid approach”.

As the Stokes number increases further, the use of a Lagrangian method is
necessary. Since these methods require the least amount of modeling, they
are often used to generate direct numerical simulation data for disperse flow,
as in e.g. [20, 10]. In air quality applications, the Lagrangian method has
been used in e.g. [21].

Another concept in the modeling of the dispersed flow is the coupling
between the phases. One-way coupling means that only the influence of the
fluid on the particles is considered. In two-way coupling, the influence of
the particles on the flow is considered, as in e.g. [22]. The particles may
modulate the turbulence spectrum, provided that the particle diameter and
volume fraction are significant. Finally, four-way coupling adds the effect of
particle collisions [23] on the motion of the particles. Both these effects can
be neglected for the dilute flows considered here.

Given the small Stokes numbers targeted in this work, the Eulerian meth-
ods appear to be the most appropriate. These methods can be derived from
a probability density function that statistically describes the particle prop-
erties (e.g. mass, velocity, temperature, ...). Writing a transport equation
for this function and then integrating over the appropriate set of unknowns
results in transport equations for particle concentration and momentum [24].
For small particle relaxation times, the momentum equations can be sim-
plified to directly extrapolate the particle velocity from the fluid velocity,
resulting in the “diffusion-inertia model” as used in [25] and [26]. This
model makes assumptions regarding turbulence modeling to include effects
of velocity fluctuations on the particles.

An easier method to obtain essentially the same equations is to extrapolate
the particle velocity from the fluid velocity using the general equation of
motion of a particle (presented in [27]) and use the resulting velocity in a
transport equation for the particle concentration. This approach is followed
in [17], where no assumptions regarding turbulence modeling are made.

2.2.2 Particle coagulation

Even though the flows under consideration are characterized by a low vol-
ume fraction for the dispersed phase, the number concentration typically
increases as the particle size decreases [28]. For high number concentra-
tions, coagulation may have an impact on the evolution of the particle size
distribution [29]. Accounting for this effect requires a solution of the popula-
tion balance equation [30]. A direct simulation is possible using Monte-Carlo
methods [31, 32, 33], but this is expensive in the context of fluid simulations.
In [34], a stochastic particle method is applied, in which particles are traced
through phase-space much like they are traced through the physical space.

2.2. Literature review 11

Another approach is to divide the particle size distribution into size bins.
This method requires a transport equation for each bin, and source terms
describe the effects of coagulation. It is applied in [25] and also related to
sectional methods [35]. The drawback here is that the number of bins can
be rather large and is fixed for all positions and times.

Recently, finite difference schemes were applied to the population balance
equation, obtaining an accurate direct solution for the size distributions
[36]. The authors concede that this method is computationally expensive,
however.

A promising method that fits well with Eulerian methods is the Quadra-
ture Method of Moments [37, 38]. It relies on the transport of lower order
moments of the size distribution, which are approximated using a quadrature
method. It was later extended to obtain the Direct Quadrature Method of
Moments [39], where the size distribution is approximated using Dirac delta
functions and the weights and abscissa are transported, rather than the mo-
ments. At a first glance, selecting delta functions appears similar to choosing
size bins, but the difference is that both the weights (e.g. concentration) and
the abscissa (e.g. volume) are transported. This means the initial choice
of the delta approximation does not need to account for possible growth
of particles, since the required abscissa will be recomputed for each time
step and location. Consequently, even a few delta functions can suffice to
obtain accurate moments for the size distribution. Another advantage of
this method is that it can be applied to problems where the phase-space is
multi-dimensional, as in e.g. [19], where the particle velocity is included in
the phase space along with the size. The diffusion-inertia model was also
extended using this technique to study bubble coagulation [40].

The disadvantage of the moment methods is that only a finite set of
moments of the distribution are recovered. Techniques to reconstruct a
distribution from these moments exist [41, 42], but in general this problem
is ill conditioned. A recent overview of the moment methods and related
techniques is available in [43].

2.2.3 Stabilized finite element methods

The finite element method is attractive because of its solid mathematical
foundation and natural ability to deal with higher order approximations.
Complex geometries can be studied using unstructured grids. Its applica-
tion to the Navier-Stokes equations has been hindered by several sources of
instability. First, the Galerkin finite element method corresponds to a cen-
tral differencing method, which is unstable for advection-dominated prob-
lems. Second, only certain combinations of element types for the pressure
and velocity are stable, due to the Babuška-Brezzi condition [44, 45].

Using the Streamline Upwind Petrov-Galerkin (SUPG) method, the in-
stability due to the central difference type approximation was removed in
[46]. Later, a pressure-stabilizing Petrov-Galerkin term was added [47]. At

12 Chapter 2. Dispersed flow modeling: a review

higher Reynolds numbers, an additional grad-div stabilization is needed [48].
In [49], Crank-Nicolson time stepping was combined with an extrapolation
of the velocity to linearize the equations, resulting in a method that only
requires the solution of a single linear system each time step.

The SUPG method was applied successfully to perform direct numerical
simulation of a turbulent channel flow in [50]. The stabilization parame-
ters influence the solution of a turbulent flow, and in [51], the interaction
between numerical dissipation for SUPG and the LES subgrid model is stud-
ied. Computations of the stabilization parameters can be found in [52, 53].

A theoretical foundation for these methods is established in [54], giving
rise to the variational multiscale method. This also provides an alternative
way to derive Large Eddy Simulation methods, as derived in [55, 56]. The
method was applied using NURBS elements in [57]. We also note that in
the case of linear shape functions as used in this work, the SUPG method
is equivalent to the Galerkin/Least Squares (GLS) method (see e.g. [54]).

2.2.4 Experimental methods

The LaSIE laboratory in La Rochelle has conducted a series of experiments
related to particle behavior in air quality applications [58, 59, 60, 61, 62].
Particles are counted using an optical particle counter (see e.g. [9] for the
working principle) and the technique allows quick measurements of the size
distribution even for very dilute flows. A disadvantage is that it relies on
sampling the air, making it difficult to use this technique to validate a CFD
model where particle concentration may be heterogeneous.

Phase Doppler Anemometry overcomes this limitation and allows non-
intrusive measurements at the intersection of two laser beams. The disad-
vantage is that it is limited to (in our context) large particles: in [63], 1 µm
is the smallest particle radius considered. Typically, the technique is used
on even larger particles, as in e.g. [64] where particles of 60 µm or larger
were used.

The Multiple Wavelength Light Extinction technique [65, 66] uses the at-
tenuation of a beam of light to measure the size distribution of particles. The
measurement volume is the intersection between the particle cloud and the
beam of light, resulting in a much larger measurement volume than PDA.
Nevertheless, it is a non-intrusive technique that can provide local informa-
tion about the particle size distribution and concentration in a flow. When
a combined UV-halogen light source is used, particle diameters ranging from
10 nm to 2 µm can be measured.

2.3 Modeling choices

Since the Stokes numbers encountered in our applications are expected
to be small, an equilibrium Eulerian approach seems most appropriate to

2.3. Modeling choices 13

model the particle phase. The coagulation will be modeled using the Direct
Quadrature Method of Moments, since this appears to be a good compro-
mise between efficiency an accuracy. All transport equations, including the
fluid, will be implemented in a finite element framework.

Chapter 3

Numerical method

3.1 Fluid model

We present an overview of the SUPG method as detailed in [49]. This im-
plicit method using a coupled system of equations is then reformulated using
a semi-implicit, predictor-multicorrector scheme in an attempt to improve
scalability for large, unsteady 3D problems requiring small time steps.

3.1.1 Coupled formulation

The conservation equations for incompressible flow are:

∇ · u = 0 (3.1)

∂u

∂t
+ (u · ∇)u+

u(∇ · u)

2
+∇p− ν∇2u = 0 (3.2)

We use the skew symmetric formulation for the advection term in the mo-
mentum equation for improved conservation of energy [67]. To obtain the
finite element formulation, we multiply the equations with a set of weight-
ing functions, interpolate the unknowns between discrete nodes using shape
functions and integrate over the domain. The weighting and shape func-
tions are chosen to be identical, yielding a Galerkin formulation. The time
derivative is approximated using the θ-method. This procedure yields a dis-
crete system, with an unknown pressure and velocity at time level n + 1
to be computed at each node in the mesh. The global shape functions are
non-zero only in a node and its surrounding elements. This means that the
integrals can be evaluated as a sum of integrals over these elements. This
global system can thus be written as the sum of N element contributions:

N∑
e=1

(
1

∆t
Te + θAe

)(
xn+1
e − xne

)
= −Aexne (3.3)

The parameter θ controls the time stepping and should be set to 1 for a
forward Euler method or 0.5 for the Crank-Nicolson scheme. The vector of
unknowns at the element level is laid out by grouping the nodal values per
unknown, i.e. for a 3D element with m+ 1 nodes:

xne =
[
pn0 · · · pnm (un0)0 · · · (un0)m · · · (un2)m

]
(3.4)

16 Chapter 3. Numerical method

This results in the following block structure for the matrices Ae and Te:

Ae =

[
App Apu
Aup Auu

]
=

App Apu0

Apu1
Apu2

Au0p Au0u0
Au0u1

Au0u2

Au1p Au1u0 Au1u1 Au1u2

Au2p Au2u0 Au2u1 Au2u2

 (3.5)

We now apply the stabilized finite element method to equations (3.1) and
(3.2) to obtain the following expressions for each block:

App =

∫
Ωe

τps∇NT
p ∇NpdΩe (3.6)

Apui =

∫
Ωe

((
Np +

τpsũadv · ∇Np
2

)T
(∇Nu)i

+ τps (∇Np)T
i ũadv∇Nu

)
dΩe

(3.7)

Auiuj =

∫
Ωe

(
τbu (∇Nu)i (3.8)

+
1

2
(ũadv)i (Nu + τsuu∇Nu)

)T

(∇Nu)j dΩe (3.9)

Auiui =

∫
Ωe

(
ν∇NT

u ∇Nu

+ (Nu + τsuũadv∇Nu)
T
ũadv∇Nu

)
dΩe +Auiuj

(3.10)

Auip =

∫
Ωe

(Nu + τsuũadv∇Nu)
T

(∇Np)i dΩe (3.11)

Tpui =

∫
Ωe

τps (∇Np)T
i NudΩe (3.12)

Tuiui =

∫
Ωe

(Nu + τsuũadv∇Nu)
T
NudΩe (3.13)

Here, Nu and Np are the shape functions for the velocity and pressure, re-
spectively. They are row vectors of size m+1 with coefficients depending
on the spatial coordinates. We use mapped coordinates so the integrals can
easily be evaluated numerically using Gaussian quadrature. The indices i
and j iterate over the number of dimensions of the problem, indicating a
single component of a vector variable or a row of a gradient matrix ∇N .
A recent overview of the stabilization terms is provided in [52]. The stabi-
lization terms are multiplied with their respective stabilization coefficients
τps for the PSPG stabilization, τsu for the SUPG stabilization and τbu for
the bulk viscosity term. The PSPG term allows the use of equal-order in-
terpolation for the velocity and the pressure. It introduces a non-zero App
block, consisting of the Laplacian of the pressure. The SUPG stabilization

3.1. Fluid model 17

corresponds to upwinding in the streamwise direction, i.e. the weight of
upstream nodes is increased. The bulk viscosity term is necessary for flows
that are strongly dominated by advection, and is sometimes called “grad-
div” stabilization [52] or the “least squares on incompressibility constraint”
[53]. The values for the stabilization parameters must be chosen carefully:
they should be large enough to obtain the stabilizing effect, but if they are
too large the scheme becomes too dissipative and accuracy suffers. The
definitions given in [53] are:

τsu1 =
h

2 ‖ũadv‖
(3.14)

τsu2 =
∆t

2
(3.15)

τsu3 =
h2

4ν
(3.16)

τsu =

(
1

τsu1
+

1

τsu2
+

1

τsu3

)−1

(3.17)

τps =τsu (3.18)

τbu =τsu ‖ũadv‖2 (3.19)

Here, h is a characteristic element length. In [68], a systematic study com-
paring different definitions of h was conducted, concluding that a length
scale based on the minimal edge length of an element gives the best result
in the case of high aspect ratio elements. For aspect ratios closer to one,
results were comparable to other possible definitions (maximum edge length
and edge length in the streamwise direction). This leads us to choose the
minimum element edge length as our definition for h.

In [50], definitions based on the element metric tensor gij (i.e. the element
shape function inverse Jacobian matrix multiplied with its transpose) are
used (using index notation):

τ2
su1 =

1

uigijuj
(3.20)

τsu2 =
∆t

2
(3.21)

τ2
su3 =

1

ν2gijgij
(3.22)

τsu =

(
1

τ2
su1

+
c21
τ2
su2

+
c2
τ2
su3

)− 1
2

(3.23)

τps =τsu (3.24)

τbu =
1

τsugii
(3.25)

The parameters c1 and c2 are introduced in [50] and allow further control

18 Chapter 3. Numerical method

of the stabilization. Values c1 = 1 and c2 = 16 correspond to the definitions
in [53], while in [50] the authors choose 4 ≤ c1 ≤ 16 and c2 = 36, adjusting
values to obtain better results for a direct simulation of channel flow. When
c1 is increased, the time component of the stabilization gains in importance,
resulting in an overall lower PSPG/SUPG stabilization. Due to equation
(3.25), however, the grad-div term increases. It seems necessary to only
apply the adjustment using c1 and c2 to τsu and τps and ignore it for τbu, to
avoid a too high dissipation.

The advection velocity uadv is calculated using a Taylor series expansion:

uadv = 2.1875un − 2.1875un−1 + 1.3125un−2 − 0.3125un−3 (3.26)

This technique allows us to linearize the equations without resorting to an
iterative technique, thus solving only one linear system per time step, at the
(very modest) cost of storing the velocity for the previous 4 time steps for
every node.

In [49], the global linear system 3.3 is solved by directly applying the
GMRES method. It is preconditioned either with algebraic multigrid or
ILU factorization. There is no stability condition for the time step if we set
0.5 ≤ θ ≤ 1, and the scheme is second order accurate in time when setting
θ = 0.5. Storing the coupled system is expensive, and depending on the
mesh and the flow configuration the iterative method may converge slowly.

3.1.2 Segregated formulation

An alternative to solving the complete system is to split it into separate
linear systems for the velocity and the pressure. We follow the method
proposed in [46]. Introducing the velocity- and pressure differences between
two time levels ∆u and ∆p, we can rewrite the momentum equation as a
function of the acceleration a = ∆u/∆t:

(Tuu + θ∆tAuu)a+ θAup∆p = −Auuun −Auppn (3.27)

Defining a∗ = a+(Tuu+θ∆tAuu)−1θAup∆p we obtain a linear system that
can be solved for a∗:

(Tuu + θ∆tAuu)a∗ = −Auuun −Auppn (3.28)

The continuity equation is:

(Tpu + ∆tApu)a+App∆p = −Apuun −Apppn (3.29)

Using the definition of a∗, we can rewrite this into a linear system for the
pressure difference ∆p between two time steps:(

(Tpu + ∆tApu) (Tuu + θ∆tAuu)
−1
θAup −App

)
∆p

= Tpua
∗ +Apu (un + ∆ta∗) +Appp

n (3.30)

3.1. Fluid model 19

Note that the system matrix for the pressure is the Schur complement of
the velocity block in the original system. We can now first solve the linear
system for a∗, then solve the ∆p system and finally get the acceleration
from

a = a∗ − (Tuu + θ∆tAuu)−1θAup∆p (3.31)

So far, we have only solved the coupled system in a different way, alge-
braically equivalent to a direct solution. In addition to solving a separate
linear system for the velocity and the pressure, we also need the inverse
(Tuu + θ∆tAuu)−1 to construct the matrix for the pressure system. Doing
this directly is not possible on a large mesh, so simplification is needed to
obtain an efficient method. When we simplify steps in the algorithm, the
result will no longer be identical to the solution of the coupled system, so
we introduce an iterative algorithm that can be executed M times each time
step. The linear systems will be solved for the difference between two inner
iterations m and m + 1, i.e. ∆a = am+1 − am and ∆pm+1 = pm+1 − pm.
From this, we also have um = un + ∆tam and pm = pn +

∑m
i=0 ∆pi. The

modified a∗ is then:

a∗m = am + (Tuu + θ∆tAuu)−1θAup

(
m∑
i=0

∆pi

)
(3.32)

Filling this into the original system (3.28) and using the definition of a∗

yields:

(Tuu + θ∆tAuu) ∆a∗ = −Auuum −Auppm

− (Tuu + θ∆tAuu)am +Auu∆tam

+ (1− θ)Aup

(
m∑
i=0

∆pi

)
(3.33)

For the continuity equation we start from:

(Tpu + ∆tApu)∆a+App(

m+1∑
i=0

∆pi) =

−Apuun −Apppn − (Tpu + ∆tApu)am (3.34)

With ∆a = ∆a∗ − (Tuu + θ∆tAuu)−1θAup∆p
m+1 this becomes:(

(Tpu + ∆tApu) (Tuu + θ∆tAuu)
−1
θAup −App

)
·

∆pm+1 = Tpu∆a∗ +Apu (um + ∆t∆a∗)

+Appp
m + Tpua (3.35)

With the problem formulated this way, we can now apply a predictor-
multicorrector iterative scheme:

20 Chapter 3. Numerical method

1: u0 = un

2: p0 = pn

3: a0 = 0
4: for m = 0 to M − 1 do
5: Solve linear system (3.33) for ∆a∗

6: Solve linear system (3.35) for ∆pm+1

7: Compute:
∆a = ∆a∗ − (Tuu + θ∆tAuu)

−1
θAup∆p

m+1

8: Update um+1 = um + ∆t∆a
9: Update pm+1 = pm + ∆pm+1

10: end for

Without simplifications to the systems, executing the iteration once will im-
mediately provide the correct velocity- and pressure updates. The solution
of the velocity system is difficult due to the advective terms. These terms
have an important impact on the convergence rate of the iterative solvers
and introduce a direct dependency of the matrix coefficients on the velocity.
An easy fix is to drop the advection terms from the velocity system matrix,
treating them explicitly (i.e. setting θ=0 for those terms). We assemble the

simplified velocity matrices Ãuu and T̃uu using the following expressions:

Ãuiui =

∫
Ωe

(ν + τbu)∇NT
u ∇Nu dΩe (3.36)

Ãuiuj =

∫
Ωe

τbu(∇Nu)T
i (∇Nu)j dΩe (i 6= j) (3.37)

T̃uiui =

∫
Ωe

NT
u Nu dΩe (3.38)

The system matrix of this simplified velocity system is now symmetric and
much better conditioned, due to the removal of the advective terms. The
coefficients only depend on the viscosity and τbu, so they do not vary much
in time, especially if the time step is small. This allows us to reuse the same
velocity matrix over a range of time steps, reducing the time required for
assembly and preconditioner setup. For the pressure system, we first need
an approximation for (Tuu + θ∆tAuu)−1. As suggested in [46], the inverse
of the lumped velocity mass matrix ML is a good candidate, i.e. we sum all
the elements of a row and then put that value on the diagonal, making the
inverse trivial to compute. The same approximation is used in [53]. After
this change, the pressure system matrix becomes:(

(Tpu + ∆tApu)M−1
L θAup −App

)
(3.39)

If we ignore the stabilization terms and apply partial integration to the
pressure gradient term in the momentum equation, we have Aup = −AT

pu,
hinting that the structure of the pressure matrix and the Poisson problem

3.1. Fluid model 21

are similar. This leads us to simplify the pressure matrix as follows:

((Tpu + ∆tApu)M−1
L θAup −App) ≈

− θ(τps + ∆t)

∫
Ωe

∇NT
p ∇Np dΩe (3.40)

This approximation is remarkably similar to the approximation of the Schur
complement of the velocity block for flows where the time term is dominant,
as described in [69]. In our work the time term is indeed large due to the
small time steps under consideration. The validity of our approximation
is further confirmed by the Taylor-Green test case. The resulting matrix
is symmetric and only depends on the solution through the value of τps.
Numerical experiments show that the adjustment of τps in the matrix has no
effect on the accuracy, so we can reuse the same pressure matrix during the
complete calculation. This opens up the possibility of using a direct solution
method or reusing the preconditioner. While the original matrix required a
sparse matrix product, the simplification can be assembled on a per-element
basis. This greatly simplifies the code and speeds up the assembly. This can
be important in the case of deforming meshes or variable time steps, where
the pressure matrix does change with each time step.

3.1.3 Performance aspects

In this section we assess the performance of the segregated method. We
use the direct numerical simulation of plane channel flow as a basis for
the different tests, limiting the computations to 100 time steps to reduce
the computational overhead. This test fits the objectives of the method
perfectly, since a DNS requires small time steps due to the physics of the
flow. The meshes used in the tests are based on those from [12] and [15],
using a hexahedral mesh that is refined towards the walls. We note the mesh
size in the Nx × Ny × Nz format, where each Ni represents the number of
nodes in the corresponding direction i (not counting periodic nodes twice).
The streamwise direction corresponds to x, the wall-normal direction is y
and z is the spanwise direction. Specifications for the machines used in
the tests are listed in table 3.1. The computationally expensive steps in

RMA Cluster VKI Cluster
Processor type Xeon E5520 Opteron 6376
Cores per node 8 64
RAM per core 3 GB 4 GB
Interconnect 1 Gb ethernet InfiniBand
Nb. nodes 30 28

Table 3.1: Machines used in the tests

the algorithm are the solution of the linear systems and the computation of

22 Chapter 3. Numerical method

the coefficients for the system matrices and right hand side vectors, i.e. the
evaluation of the element integrals. For the fully coupled method, the matrix
coefficients need to be recomputed each time step, since they depend on the
advection velocity and only one linear system needs to be solved. For the
segregated method, the matrix for the pressure system is constant for the
whole simulation. The velocity matrix depends on the solution only through
the τbu stabilization parameter. This means that the matrix coefficients are
also approximately constant. Surprisingly, this results in a linear increase of
the solution time per time step, as shown by the dashed line in figure 3.1.
We can eliminate this effect by recomputing the coefficients every 100 time
steps, resulting in a constant solution time (solid line in figure 3.1).

0 2000 4000 6000 8000 10000

Number of time steps

3.4

3.6

3.8

4.0

4.2

A
v
er

a
g
e

ti
m

e
p

er
ti

m
e

st
ep

(s
)

No reset

Reset 100

Figure 3.1: Average wall clock time per time step for a 64× 129× 64 mesh
on 64 cores on the RMA cluster. “No reset” means one single
velocity matrix assembly. “Reset 100” means one velocity matrix
assembly every 100 time steps.

Since we mostly eliminated the matrix assembly from the computation,
the cost for the segregated method is dominated by the solution of both
linear systems and the computation of the right hand side coefficients. This
work must be done every iteration, i.e. twice every time step in practice.
Figure 3.2 presents the scaling of the segregated method in the strong sense,
i.e. keeping the problem size constant while increasing the number of pro-
cessors. The assembly operations follow the ideal scaling (i.e. half the time
each time the number of cores is doubled) closely. This is to be expected,
since this step does not depend on communication and only requires addi-
tional ghost elements as the number of mesh partitions is increased. The
timing marked as “other” corresponds to some aspects of the computation

3.1. Fluid model 23

that take a negligible amount of time, such as the update of the solution
and the extrapolation of the velocity for the linearization. The matrix as-
semblies are also included here and confirmed to be negligible in time, since
they are executed at most once every 100 steps. Most of the time is spent
solving the linear systems. We solve the velocity system using the Conjugate
Gradient (CG) method, preconditioned using ILU factorization. The scal-
ing is not ideal, but better than the scaling for the pressure system, which
we solve using CG preconditioned with algebraic multigrid (AMG). This no
longer scales when moving from 256 to 512 cores, making the solution of the
pressure system the dominant factor at 512 cores.

64 128 256 512

Number of cores

0

5

10

15

20

25

30

A
v
er

a
g
e

ti
m

e
p

er
ti

m
e

st
ep

(s
)

RHS assembly

Other

Velocity solution

Pressure solution

Ideal scaling

Figure 3.2: Strong scaling of the average wall clock time per time step for a
128 × 257 × 128 mesh on the VKI cluster. The RHS assembly
timing comprises the sum of all coefficient computations for the
right hand side vectors.

For smaller problems, it is feasible to solve the pressure system using
a direct method. Figure 3.3 illustrates the effect on the timings for two
different mesh sizes. The AMG timings are obtained using the same settings
as before, while the MUMPS timings use the MUMPS parallel sparse direct
solver [16] for the pressure system. Since the pressure matrix is constant,
we only need to perform the expensive factorization once and can then
apply this in all subsequent time steps. The small (32× 65× 32) and large
(64× 129× 64) problems used 8 and 64 cores, respectively, thus keeping the
workload per core constant. According to the ideal scaling law, the timings
for the large and small problems should be identical, but especially on the
RMA cluster the communication overhead becomes prohibitive for the large
mesh. This is an effect of the 1Gb Ethernet interconnect. The assembly

24 Chapter 3. Numerical method

operations —which do not require intensive communication— do follow the
ideal scaling almost perfectly.

AMG (a) MUMPS (a) AMG (b) MUMPS (b)
0

1

2

3

4

5

6
A

v
er

a
g
e

ti
m

e
p

er
ti

m
e

st
ep

(s
)

RHS

Other

Velocity solution

Pressure solution

Figure 3.3: Comparison between Algebraic Multigrid (AMG) and a direct
solver (MUMPS) for the pressure system, using mesh sizes (a)
32× 65× 32 and (b) 64× 129× 64. Left bars are for the RMA
cluster, right bars for the VKI cluster. Results are averaged over
1000 time steps.

The switch to MUMPS is very effective on the small problem: the solu-
tion time for the pressure system becomes negligible compared to the total
timing, while it is the dominant factor when using AMG. The total solu-
tion time is nearly halved as a result. For the large problem, we see that
the scaling for MUMPS is much worse than AMG, resulting in very little
benefit. On the RMA cluster, the initial factorization took 842 s. Since we
averaged the timing over 2000 iterations, there is still a contribution of 0.42
s from the initial factorization in the average timing. This part will dimin-
ish as the number of iterations increases. On the VKI cluster the initial
factorization only took 95 s, illustrating the importance of communication
in this step. As is typical for a direct method, the cost of the factorization
increases non-linearly: on the small problem the timings were 5.3 s (RMA)
and 6.6 s (VKI). For very large problems, the cost of the initial factorization
becomes prohibitive, and the factorization itself can no longer be stored be-
cause it is much denser than the original matrix. The poor scaling of the
application of the factorization is surprising, and might be due to our use of
the Trilinos interface to access MUMPS. This interface also forbids the use
of the symmetric solver, so better results should be possible by interfacing
with MUMPS directly.

Memory usage is dominated by the storage of the linear systems. For the

3.1. Fluid model 25

coupled method, the memory required to store the sparse matrix can be
computed as follows, using a structured hexahedral grid where 27 nodes are
adjacent to each other:

(27 nodes per row · 4 variables · 12 bytes + 4 bytes) ·
(4 equations · number of nodes)

We assume double precision, i.e. 8 bytes per coefficient and 32 bits for
integers, i.e. 4 bytes per integer to store the coefficient index and row size.
For a mesh with 10 million nodes, this yields a storage cost of 52 GB. In the
case of the segregated solver, two matrices need to be stored, but because
each matrix is smaller the total size is less: 3.25 GB for the pressure system
and 29.25 GB for the velocity system. The savings are modest, and when
using a direct solver for the pressure the segregated solver will even use
more memory than the coupled method. On modern hardware, such as the
clusters used in this work, problems are typically distributed over a large
number of CPUs with a sufficient amount of RAM to allow either method
to be chosen.

Segregated Coupled
Mesh ts (s) Scaling tc (s) Scaling tc/ts

32× 65× 32 1.44 - 7.64 - 5.31
32× 129× 32 4.78 3.32 35.46 4.64 7.42
32× 257× 32 12.26 2.57 277.96 7.84 22.67

32× 65× 32 random 1.70 - 15.26 - 8.98
32× 129× 32 random 3.60 2.12 66.00 4.33 18.35
32× 257× 32 random 11.99 3.33 575.30 8.72 47.98

Table 3.2: Comparison of the average time per time step for the segregated
and the coupled method. Scaling is the time on the current mesh
divided by the time on the previous mesh. All simulations are
carried out on the RMA cluster on 8 cores.

In a final test, we compare the timings per time step for the segregated
and the coupled method on three different meshes, gradually finer in the
wall-normal direction. The segregated solver uses the AMG method for
the pressure system as described before. For the coupled method, we also
use algebraic multigrid preconditioning, using the defaults optimized for
advection-diffusion problems. The iterative solver is GMRES from the Belos
package. Two sets of initial conditions were used: the laminar solution and
a random disturbance of the laminar solution. The latter is typically used
to initialize a DNS. Time steps were chosen to obtain a Courant number of
around 0.15.

Table 3.2 summarizes the results. All tests are carried out on 8 cores on
the RMA cluster, so we expect the solution time to double each time the

26 Chapter 3. Numerical method

number of mesh nodes doubles. The “mesh scaling” factor in the table lists
the ratio between the current time and the time on the previous mesh, and
it is always above the ideal value of 2, with significantly higher values for
the coupled method. For the segregated method, the initial condition has
little impact on the solution time, but for the coupled method the added
randomness appears to double the solution time. As the mesh is refined, the
coupled method can take up to 48 times as long as the segregated method, so
for short time steps there is a clear benefit of using the segregated approach.

3.2 Discrete phase model

We use the Eulerian approach for the modeling of the fluid phase. In what
follows, we first present the transport equation for the concentration of par-
ticles of a single, fixed size. We then extend this method to account for
polydisperse particle distributions with coagulation effects.

3.2.1 Monodisperse flows

For monodisperse flows, it is possible to write a single transport equation
for the particle concentration. We follow the approach of Ferry et al. [17],
which is a fairly intuitive description of how the transport equation can be
obtained. Similar models are also described by Simonin [24] and Zaichik et
al. [26], where the model is obtained by integrating a probability density
function in phase space. While more rigorous, this approach is much harder
to follow and the resulting transport equation is the same.

The basic assumption is that we can write a transport equation for the
particle number concentration n as follows:

∂n

∂t
+∇ · (nv) = Db∇2n (3.41)

The velocity v is the particle velocity, and the above equation is valid only if
we suppose that the particle velocity can be represented as an Eulerian field.
This is a strong hypothesis, since the particle velocity not only depends on
the fluid velocity but also on the particle initial conditions. Two particles
with different initial velocities might still have different velocities at the same
time t and position x. If the particle relaxation time τp is sufficiently small
with respect to the fluid velocity time scale, it can be shown (see [17]) that
the effect of particle initial conditions decreases exponentially fast, and an
Eulerian velocity field may be used.

Generally speaking, the particle velocity field v is obtained from a trans-
port equation, as computed from the probability density function in i.e. [26].
For the small particle relaxation times considered here, however, it is pos-
sible to omit this extra set of transport equations and to write the particle
velocity as an expansion of the fluid velocity, resulting in the equilibrium

3.2. Discrete phase model 27

Eulerian method. The expansion can be obtained from the particle equation
of motion, to be discussed in detail in the following section.

Particle equation of motion

The Maxey and Riley [27] equation describes the motion of a small spherical
particle moving in a constant density flow and reads:

dv

dt
=
ρp − ρf
ρp

g︸ ︷︷ ︸
Buoyancy

+
ρf
ρp

Du

Dt︸ ︷︷ ︸
Fluid acceleration

− 1

τp
(v − u)︸ ︷︷ ︸

Stokes drag

+
ρf
2ρp

(
Du

Dt
− dv

dt

)
︸ ︷︷ ︸

Added mass

−
9
√
µρf

dpρp
√
π

∫ t

0

1√
1− s

d

ds
(v − u) ds︸ ︷︷ ︸

Basset history

(3.42)

Here, d/dt denotes the total derivative following the particle, while D/Dt
is the total derivative following the fluid. The first term is the buoyancy
or Archimedes force felt by the particle. The second term, labeled “fluid
acceleration” here, represents the force that the particle would feel if its
density were equal to the fluid density. Together with the ρfg term in
the buoyancy, this is an effect that can be computed from the undisturbed
flow. The remaining terms take into account the effect of the disturbed
flow, and are obtained from the solution of an unsteady Stokes problem
around a sphere. This implies that the Reynolds number associated with
the relative velocity between fluid and particle is assumed to be small. The
first of these terms is the drag force, inversely proportional to the particle
relaxation time. The added mass term can be interpreted as an inertia
term that is also derived from the disturbed flow computation. Finally, the
Basset history term models the unsteady development of the flow around
the particle.

Before we exploit this equation, we will examine possible simplifications,
based on the expected importance of the different terms. The fluid accel-
eration, added mass and Basset history forces are present only when un-
steady flow or particle motion is considered. They are usually important if
ρp . O(ρf). As found in [70], with ρp � ρf their importance must be eval-
uated using the ratio dp/ηk, where ηk is the Kolmogorov length scale, i.e.
the smallest fluid length scale in the present context of incompressible flow.
If dp < ηk, the unsteady terms can be neglected. In [18], numerical tests
are performed using the equilibrium Eulerian approach, indicating that the
model remains valid when the particle response time stays below the order
of the Kolmogorov time scale, i.e. τp . τk. For particles with ρp � ρf , this

28 Chapter 3. Numerical method

results in dp < ηk/2. This means that for the entire validity range of the
equilibrium Eulerian approach, the unsteady terms can be neglected, since
we are in the case ρp � ρf and dp < ηk. The latter condition can be verified
from table 2.1 by estimating the fluid time scale as

√
ντf , indicating that

the particle diameter is at least 6 times smaller than the Kolmogorov length
scale for the largest particles.

Nevertheless, we choose to retain the fluid acceleration and added mass
terms, since they bring no significant complexity to the model and including
them allows a comparison with the bubble simulations of [71]. The Basset
history force greatly complicates the implementation of the model, so we will
always neglect it. This is perfectly valid for the targeted applications, but
care should be taken if the flow strays too much from the criteria ρp � ρf
and dp < ηk. Armenio et al. [72] show that for larger particles, the Basset
force is important for all density ratios. The importance of memory effects is
also demonstrated in [73] and [74], again showing stronger effects for larger
and lighter particles. Efficient methods to evaluate the Basset term can be
found in i.e. [75, 76].

In equation (3.42) we also omitted the so-called Faxén correction terms,
which are proportional to d2

p∇2u. These terms become important only when
dp > ηk [77, 78], so they can be neglected on the same grounds as the
unsteady terms.

Rewriting equation (3.42) by regrouping terms and removing the Basset
force yields:(

1 +
ρf
2ρp

)
dv

dt
=
ρp − ρf
ρp

g − 1

τp
(v − u) +

3

2

ρf
ρp

Du

Dt
(3.43)

We now look for an approximate solution for the particle velocity from the
above equation. First we have:

v = u− τp
[(

1 +
ρf
2ρp

)
dv

dt
− ρp − ρf

ρp
g − 3

2

ρf
ρp

Du

Dt

]
(3.44)

If we consider τp as a small parameter, we can already see that this equation
yields the trivial zeroth order approximation v = u, valid only for perfect
tracer particles. Recursively replacing v on the right hand side using equa-
tion (3.44) itself yields the first order approximation:

v = u− τp
[(

1 +
ρf
2ρp

)
du

dt
− ρp − ρf

ρp
g − 3

2

ρf
ρp

Du

Dt

]
+O(τ2

p) (3.45)

Higher order expansions can be obtained by writing out the O(τ2) part and
recursively substituting again the expression for v. However, as concluded
in [17] the second order approximation does not always yield better results,
so it is not worth the effort in practice and we will use equation (3.45)
without the O(τ2

p) terms to obtain the particle velocity. Note that this is

3.2. Discrete phase model 29

equivalent to the approximation dv/dt ≈ du/dt and results in the locally
implicit method as formulated in [18].

The equation is still implicit in v due to the definition of the total deriva-
tives:

du

dt
=
∂u

∂t
+ v · ∇u =

Du

Dt
+ (v − u) · ∇u (3.46)

In [17], this is avoided by approximating dv/dt ≈ Du/Dt. This is less
accurate because now (v − u) · ∇u is neglected. As indicated in [18], this
term is important in the prediction of wall-normal transport of streamwise
velocity, since the wall-normal component of v may differ significantly from
that of u. Filling in equation (3.46) into equation (3.45) results in:

v = u− τp
(

1− ρf
ρp

)(
I + τp

(
1 +

ρf
2ρp

)
∇u
)−1(

Du

Dt
− g
)

(3.47)

Here, I is the identity matrix. The matrix that needs to be inverted is only
size 3x3 for three dimensional problems, so this equation is still very cheap
to solve compared to a full momentum transport equation for the particle
phase.

Equation (3.47) is difficult to apply to the limit case of bubbles, where
ρf/ρp → ∞ and τp → 0. This can be avoided by introducing the density
ratio parameter β and the generalized relaxation time τ as defined in [17]:

β ≡ 3

2ρp/ρf + 1
(3.48)

τ ≡ τp
(

1 +
ρf
2ρp

)
(3.49)

Substituting into equation (3.47) yields:

v = u− τ (1− β) (I + τ∇u)
−1

(
Du

Dt
− g
)

(3.50)

Comparing with the equations found in literature, equation (3.50) is iden-
tical to the result found in [18] except for the factor (1 − β). This stems
from the fact that [18] only accounts for gravity and Stokes drag forces.
This also corresponds to β = 0, which is the limit for heavy particles with
ρp/ρf →∞ and τ → τp. It is another way to illustrate that the added mass
and fluid acceleration forces become negligible as the density ratio increases.
If we neglect the locally implicit contribution (I + τ∇u)

−1
we recover the

general formulation of [17]. Finally, in the limit case of bubbles we have
β = 3 as ρp/ρf → 0 and we obtain the equation given in [71]. Note that for
bubbles we have, using equations (3.49) and (2.4) with τp → 0:

τ = τp
ρf
2ρp

=
d2
p

36ν
(3.51)

30 Chapter 3. Numerical method

This is exactly the bubble relaxation time as given in [71].
In conclusion, with equation (3.50) we have generalized the locally-implicit

approach of [18], accounting for the added mass and fluid acceleration forces,
thus making the equation applicable to both bubbles and heavy solid parti-
cles.

Finite element formulation

Equation (3.41) is basically a scalar advection-diffusion equation, where the
velocity field is not divergence free. We apply the same SUPG stabilization
as for the flow field, resulting in the following expressions for the element
matrices:

An =

∫
Ωe

(Nn + τsuṽ∇Nn)
T

(ṽ∇Nn + div ṽNn) +Db∇NT
n∇Nn dΩe

(3.52)

Tn =

∫
Ωe

(Nn + τsuṽ∇Nn)
T
Nn dΩe (3.53)

As for the fluid model, we assemble a linear system, using θ time integration
(we note m for the time step to avoid confusion with the number concen-
tration n): ∑

N

(
1

∆t
Tn + θAn

)(
nm+1
e − nme

)
= −Annme (3.54)

Before the previous equation can be solved, we need to supply it with the
particle velocity. The finite element formulation for equation (3.50) reads,
when omitting the local-implicit term for clarity and only writing the time
step at (n− 1):(∫

Ωe

NT
v Nv dΩe

)
(ve)i =

∫
Ωe

NT
u

[
ũ− τ (1− β)

(
ũ− ũn−1

∆t

+ ũ · grad ũ

)]
i

dΩe (3.55)

On the left hand side,
(
vn+1
e

)
appears next to a mass matrix, so we need to

solve a linear system of equations over the domain in order to find the parti-
cle velocity. Even though a linear system involving only the mass matrix is
easy to solve, the cost is still much greater than a direct application of the
locally implicit formulation of equation (3.50). This becomes prohibitive es-
pecially when polydisperse particle distributions need to be considered. One
easy fix would be to lump the mass matrix, resulting in a diagonal system
that is trivial to solve. As another alternative, we can also approximate

3.2. Discrete phase model 31

the gradient matrix ∇u as the average of the gradient at the center of each
element surrounding a node. The resulting gradient field can then be used
to evaluate the particle velocity at each node k using equation (3.50) with
a first-order difference in time:

vk = uk − τ (1− β) (I + τ (∇u)k)
−1

(
uk − un−1

k

∆t
+ uk (∇u)k − gk

)
(3.56)

Numerical experiments in section 5.2.1 show that this approach maintains
second order accuracy and is more accurate than lumping the mass matrix
of the full finite element formulation.

Stabilization

Equations (3.52) and (3.53) already contain the SUPG stabilization as used
in the flow equations. In the presence of steep concentration gradients, this
is not enough to prevent spurious oscillations and additional stabilization is
needed [79]. Different methods are compared in [79, 80], but none of them
provide a complete solution to the problem. We add an artificial dissipation
term of the form ∫

Ωe

a0τad∇NT
n∇Nn dΩe (3.57)

Here, the stabilization coefficient τad depends on the local element size and
concentration gradient and is computed following the crosswind diffusion
method presented in [79]. The parameter a0 allows ad-hoc control over the
amount of diffusion that is added. There is no general rule to determine the
value of this parameter. It must be chosen so that the dissipation is enough
to avoid the oscillations, but small enough so the accuracy of the solution
is not affected too much. In order to guarantee that the concentration
remains positive in the entire domain we also resorted to cutting negative
values. Note that the authors of [81] also had to apply this technique when
solving a chemically reacting flow using SUPG. They also conclude that the
elimination of spurious oscillations in the presence of steep concentration
gradients is currently an unsolved problem.

3.2.2 Polydisperse flows

When we take into account the effect of coagulation, particles of different
sizes can appear in the flow. We deal with this problem using the direct
quadrature method of moments (DQMOM) of [39].

In a polydisperse flow, particles with many different sizes may coexist,
so we need a way to describe what the different particle sizes are. To this
end, we define a particle distribution function f(vp,x, t). It depends on the
particle volume vp as well as position and time. The particle volume is the
property we wish to track, while position and time are external variables.

32 Chapter 3. Numerical method

In this sense, we can think of f(vp,x, t) as representing a particle size dis-
tribution function in terms of particle volume, defined at every point in the
domain and at every time. Integrating this function at a given position and
time over a particle volume range [va, vb] will give the number of particles
per unit of volume in the physical space at that point and at that time that
have a particle volume comprised in the interval [va, vb]. This also implies
that f has units [m-6]. The choice of particle volume as internal coordinate
allows some simplification of the coagulation source term equations (3.70)
and (3.71).

If we now want to generalize the monodisperse particle model given by
equation (3.41), we need to write the transport of the distribution func-
tion, instead of just the number concentration for a single size (using f ≡
f(vp,x, t) for clarity):

∂f

∂t
+∇ · (fv) = Db∇2f + Sf (3.58)

This equation has the same form as (3.41), except for the additional source
term Sf , which we will use to model the particle coagulation. More gener-
ally, this term would also include effects such as fragmentation, evaporation,
nucleation and growth. Since we have no direct way to translate a transport
of a distribution function into a numerical model, some kind of approxima-
tion is required. In [39], the function f is approximated by a weighted sum
of Dirac delta functions:

f(vp,x, t) ≈
N∑
α=1

fα(x, t)δ (vp − vα(x, t)) (3.59)

The set of weights fα and abscissas vα associated with each Dirac function
form different particle “phases”, each with a number density function value
fα and particle volume vα. They depend on time and position, though we
will omit this from the notation from now on to avoid the clutter. The
idea of the DQMOM method is to write transport equations for fα and the
weighted particle volume ζα = fαvα:

∂fα
∂t

+∇ · (fαvα) =Dα∇2fα + aα (3.60)

∂ζα
∂t

+∇ · (ζαvα) =Dα∇2ζα + bα (3.61)

These equations are very similar to the original equation for the concen-
tration transport (3.41), but the difference in particle size means that each
phase will also have a distinct particle velocity vα. This is a consequence
of the dependency of the particle relaxation time τp on the particle volume.
For the same reason, we also have a different diffusion coefficient Dα for
each phase. The terms aα and bα are source terms that are linked to the
source term Sf in equation (3.58). We remind that these terms also depend

3.2. Discrete phase model 33

on the position and time. By formally substituting the distribution function
(3.59) into equation (3.58) and using equations (3.60) and (3.61) and then
applying a moment transform (details in [39]), it is possible to obtain the
following equation for each moment k:

(1− k)

N∑
α=1

vkαaα + k

N∑
α=1

vk−1
α bα = S̄k + C̄k (3.62)

The moment source term S̄k is given by the moment transform:

S̄k =

∞∫
0

vkpSf (vp) dvp (3.63)

The term C̄k arises from the diffusion and is defined as follows:

C̄k = k(k − 1)

N∑
α=1

vk−2
α fαDα

∂vα
∂xi

∂vα
∂xi

(3.64)

Since we have N unknown aα and N unknown bα, we need to write equation
(3.62) for the first 2N moments (i.e. k = 0, ..., 2N − 1) to obtain a linear
system. Since the coefficients of the system matrix always contain 1 in the
first two rows and powers of the particle volume in the other rows, it is
necessary to normalize the particle volumes to obtain volumes near unity,
or the matrix determinant will be too close to zero to obtain an accurate
solution in double precision arithmetic. This system must then be solved
at every node to obtain the values of aα and bα. Once these source terms
are known in the whole domain, the transport equations (3.60) and (3.61)
can be solved. Before we can do that, however, we need to define the source
term Sf , which is the subject of the next section.

Particle coagulation: kinetic theory

Equation (3.58) describes the time rate of change of the particle distribution
function. One possible source of change is the coagulation of particles. In
this work, we consider only the possibility that two particles may collide to
form a new one, i.e. we neglegt the interaction between 3 or more particles
at the same time. We also deal only with spherical particles.

The expression for the source term can be derived using the kinetic theory
of gases. To build up the source term, we start with the probability that a
particle of volume va undergoes a collision as it moves a distance ds through
a cloud of particles with volumes vb. The situation is illustrated in figure 3.4,
viewing the particle a (dark gray) and the cloud of particles with volume vb
along the direction that a is moving. Note that this configuration is identical
to that used for the calculation of the mean free path length in a gas in [82].
The probability of collision is determined by the ratio of the area covered

34 Chapter 3. Numerical method

Figure 3.4: Dark-gray particle a moving over a distance ds through an area
dA perpendicular to the direction of motion, encountering a
cloud of light-gray particles b.

by particles and the empty area. For the area of the particles, we have to
consider both particles. If they are closer together than the sum of their
radii ra + rb, they will make contact, so the effective collision cross section
is σab ≡ π(ra + rb)

2, or in terms of the volume:

σab = π

((
3

4π
va

) 1
3

+

(
3

4π
vb

) 1
3

)2

(3.65)

To get the total area over which a collision can happen, we just have to
multiply σab with the total number of particles b that can be encountered,
assuming there is no overlap between particles as in figure 3.4. The number
of particles b in the volume dsdA is given by f(vb) dvb dsdA. Multiplying
with the collision cross section and dividing by the total area yields the
probability that a single particle a will collide with any of the particles b:

σabf(vb) dvb ds (3.66)

Of course we do not have a single particle a, but their number is also given
by the distribution function, so we must multiply (3.66) with f(va). The
result has the dimension of f and describes the number of collisions between
a and b per unit volume and per elementary volume variation around va.
To obtain a source term for equation (3.58) we still need to account for
the time variation, which we do by dividing by an elementary time change
dt. The factor ds

dt appears, which is equal to the relative velocity between
particles a and b. This can be seen by supposing that group b is not moving

3.2. Discrete phase model 35

in figure 3.4 and particle a is then moving at a velocity equal to the relative
velocity between both groups. Finally, we recognize that equation (3.58) is
a function of vp, so we need to consider all possible combinations of va and
vb that yield a particle of vp. Writing va = vp − vb, we can now integrate
over all possible vb to obtain:

S+
f =

1

2

∫ vp

0

β (vp − vb, vb) f (vp − vb) f (vb) dvb (3.67)

Note that we only integrate up to vp since both colliding particles must
be smaller than vp to create a particle of volume vp. We also divide by 2,
since otherwise we would count each pair of particles twice. β is the collision
kernel, and it encompasses the collision cross section and the relative velocity
between any two particles α and γ:

β (vα, vγ) = |vα − vγ |π

((
3

4π
vα

) 1
3

+

(
3

4π
vγ

) 1
3

)2

(3.68)

So far, we have only considered the creation of new particles with volume
vp, which is why we wrote S+

f instead of just Sf in equation (3.67). When
a particle p collides with any other particle b, however, it will form a new
particle of a different volume, so this constitutes a removal from the number
of particles with volume vp. Following the same reasoning as above, we can
write a sink term for this:

S−f = f(vp)

∫ ∞
0

β (vp, vb) f (vb) dvb (3.69)

The final source term is then Sf = S+
f −S

−
f , where S+

f is typically called the

birth rate due to coagulation and S−f the death rate. The expressions we
obtained here are very similar to [83], except that there the particle velocity
is included in the particle phase space.

To close equation (3.62), we have to compute the integral (3.63). Starting
with S+

f , we first approximate f using (3.59), yielding, after distributing the
sum:

S+
f ≈

1

2

N∑
α=1

N∑
γ=1

∫ vp

0

β (vp − vb, vb) fαfγδ (vp − vb − vα) δ (vb − vγ) dvb

Using the property of Dirac delta functions where
∫∞
−∞ g(x)δ(x−a) dx = g(a)

for any function g and knowing that vb ≤ vp, we can eliminate the integral:

S+
f ≈

1

2

N∑
α=1

N∑
γ=1

β (vp − vγ , vγ) fαfγδ (vp − vγ − vα)

36 Chapter 3. Numerical method

To evaluate the moment transform (3.63) for the k-th moment, we need to
multiply with vkp and integrate with vp ranging to infinity. This allows us
to remove the remaining Dirac function and yields:

S̄+
k =

1

2

N∑
α=1

N∑
γ=1

(vα + vγ)
k
β (vα, vγ) fαfγ (3.70)

Applying the same transformation to S−f as for S+
f results in:

S̄−k =

N∑
α=1

N∑
γ=1

vkαβ (vα, vγ) fαfγ (3.71)

Coagulation in non-uniform flow

In the previous section, we derived a collision model based on a relatively
straightforward kinetic theory. Unfortunately, this theory does not hold in
the case of a non-uniform flow, even if we suppose the velocities are com-
pletely known as in i.e. DNS. The problem lies in the definition of the
collision kernel β. When we examine equation (3.68), it becomes clear that
the relative velocity (vγ − vα) in the above formulation is non-zero only for
particles of different size. Saffman and Turner already pointed out in their
famous paper [84] that turbulence also causes particles of the same size to
collide, and they derive a formula for the collision kernel in isotropic turbu-
lence. Further study of the literature reveals that the theory of section 3.2.2
is commonly known as the cylindrical formulation [85]. Using this descrip-
tion, the collision kernel can also be interpreted as a volumetric flow rate
through a disk with radius Rαγ = rα + rγ . The underlying assumption is
therefore that the velocity remains constant on a length scale of the order
of the collision radius. In turbulent flow, this assumption is invalid, even
on length scales as small as the collision radius. On this small scale, the
relative velocity can be computed from the velocity gradient tensor, so it
depends on the relative direction between the two particles. For this reason,
the cylindrical approximation is often replaced by the spherical formulation,
which can correctly model this anisotropy by considering all possible orien-
tations. The difference between both approaches is discussed in great detail
in [85]. The collision kernel is now written as the incoming volumetric flow
rate through the collision sphere (figure 3.5). Following [86], we can split up
the radial component of the relative velocity wr as:

w−r = wr w+
r = 0 (wr < 0)

w−r = 0 w+
r = wr (wr > 0)

Now, the integral of the incoming flux over the collision sphere is the collision
kernel:

βαγ = R2
αγ

∫ 2π

0

dφ

∫ π

0

−w−r sin θ dθ (3.72)

3.2. Discrete phase model 37

vα

vγ

w

Collision sphere
rγ

Rαγ

wr rα

Figure 3.5: The collision sphere model for two colliding particles α and γ.

Let us now determine an expression for wr, applied to the situation where
we have DNS data for the flow field, from which we derive particle velocities
using equation (3.50). Suppose we have a particle α moving with a velocity
vα and a second particle γ at a distance Rαγ = rα + rγ . Its velocity at that
location is then, using index notation for the gradient and vector between
the particles:

vγ |x=xγ
= vγ + (Rαγ)j

∂(vγ)i
∂xj

(3.73)

The particle location is only indicated when x 6= xα. The relative velocity
is then:

w = vγ |x=xγ
− vα = vγ − vα + (Rαγ)j

∂(vγ)i
∂xj

(3.74)

The difference vγ − vα is as before only due to the different particle size,
while the gradient term encapsulates the effect of non-uniform flow. In
[85], it is shown that the cylindrical and spherical approaches are equivalent
when the flow is uniform, so we can keep our previously found kernel (3.68)
and apply the spherical approach only to the velocity difference due to the
gradient. Both kernels can then be added to find the global collision kernel.

The radial component of the relative velocity is:

wr =
1

|Rαγ |
(Rαγ)j

∂(vγ)i
∂xj︸ ︷︷ ︸
gij

(Rαγ)i (3.75)

If we assume a direct simulation of the flow, the elements of the gradient
tensor gij are constant, known coefficients. The challenge now lies in the
computation of the integral (3.72) as an easy to evaluate function of these
coefficients. To do this, we need to either determine where wr is negative, or
combine integrals of wr and its absolute value over the entire sphere. Since
integrating the absolute value also requires knowledge of the location of sign
changes, both methods present the same difficulty. Because of the symmetry

38 Chapter 3. Numerical method

of the multiplication with the radius vector, we can replace gij with the rate
of strain tensor sij = (gij + gji)/2, reducing the number of coefficients to
6. If in equation (3.75) we let the components of the separation vector be
(x, y, z), then the equation wr = 0 represents a quadric surface. Its principal
axes are given by the eigenvectors of the strain rate matrix sij . Since we are
integrating over a sphere, the orientation of the quadric surface in space is
of no importance, and the problem becomes much simpler if we can work in
a coordinate system that is aligned with the principal axes. Because sij is
real and symmetric, we can always find an orthonormal set of eigenvectors
and replace sij by the diagonal matrix of its eigenvalues (λ1, λ2, λ3). This
proces yields the following equation for the locus where the radial relative
velocity is zero:

λ1x
2 + λ2y

2 + λ3z
2 = 0 (3.76)

The shape of this surface can be classified according to the signs of the
eigenvalues. To simplify further, we assume λ1 ≥ λ2 > 0 and λ3 < 0. Later
we will show how other cases can be reduced to this one, or solved more
easily. Dividing by −λ3 and setting k1 = −λ1/λ3 and k2 = −λ2/λ3 yields:

k1x
2 + k2y

2 = z2 (3.77)

This is the equation for an elliptic cone, with negative values of wr found
only inside its volume. The problem of evaluating integral (3.72) can now
be stated geometrically: integrate −wr over the surface of the parts of a
sphere that lie inside an elliptic cone. This is illustrated in figure 3.6. To

Figure 3.6: Intersection of an elliptic cone (aligned with the Z-axis) and a
sphere. Negative radial relative velocities are found only inside
the cone and must be integrated over the light-gray part of the
sphere.

simplify the integration procedure, we will use spherical coordinates. As
Rαγ only appears as a constant factor, we will ignore it in the derivations

3.2. Discrete phase model 39

and multiply the final result with R3
αγ . Using x = cosφ sin θ, y = sinφ sin θ

and z = cos θ, equation (3.77) becomes:

sin2 θ
(
k1 cos2 φ+ k2 sin2 φ

)
− cos2 θ = 0 (3.78)

Figure 3.6 shows that the boundary of the spherical cap ranges over all
values of the azimuthal angle, i.e. 0 ≤ φ ≤ 2π, while the polar angle θ
ranges from 0 to some value determined by the intersection. To find this
value, we solve equation (3.78) for θ. Since the problem is symmetric, only
values in the range 0 ≤ θ ≤ π/2 are of interest, and the solution is:

θmax = cos−1

√ k1 cos2 φ+ k2 sin2 φ

k1 cos2 φ+ k2 sin2 φ+ 1

 (3.79)

The integrand of equation (3.72) is minus the left hand side of equation
(3.78) multiplied with sin θ. The primitive function is:

1

3
cos θ

(
3
(
k1 cos2 φ+ k2 sin2 φ

)
− cos2 θ

(
k1 cos2 φ+ k2 sin2 φ+ 1

))
Substituting the integration limits yields:

1

Rαγ

∫ θmax

0

−w−r
−λ3

sin θ dθ =
2
(
k1 cos2 φ+ k2 sin2 φ

) 3
2

3
√
k1 cos2 φ+ k2 sin2 φ+ 1

− 1

3

(
2k1 cos2 φ+ 2k2 sin2 φ− 1

)
This expression must be integrated over φ. Because of the symmetry, we
also restrict this to 0 ≤ φ ≤ π/2, remembering that the result is a factor 8
too small. The second term, corresponding to θ = 0, is easy to integrate.
The first term corresponds to the limit imposed on θ by the intersection
of the cone and the sphere. It is impossible to find a closed form for this
integral. We can prove this using figure 3.6 and the divergence theorem:
the integral we seek is also the volume integral of ∇ ·w in the solid volume
minus the surface integral of w over the dark gray surface. The integral over
the dark surface is closely related to the calculation of the circumference of
an ellipse, so it has no closed form. The final expression for the collision
kernel is then:

βαγ = 8(−λ3)R3
αγ

(∫ π
2

0

2
(
k1 cos2 φ+ k2 sin2 φ

) 3
2

3
√
k1 cos2 φ+ k2 sin2 φ+ 1

dφ

− π

6
(k1 + k2 − 1)

)
(3.80)

The second term here is proportional to the divergence of the particle veloc-
ity field, while the integral in the first term requires numerical evaluation.

40 Chapter 3. Numerical method

The function is smooth over the integration interval and we find that a six
point Gaussian quadrature yields satisfactory results. To complete the dis-
cussion, we must still account for all possible combinations of eigenvalue
signs.

First, consider the case of only one positive eigenvalue, i.e. λ1 ≤ λ2 < 0
and λ3 > 0. With respect to the above procedure, the sign of the cone
expression changes, so we are calculating the integral of −w+

r . Following
[86], this can be used to retrieve the integral of w−r as follows:∫

ΩR

w−r dΩR =

∫
ΩR

wr dΩR −
∫

ΩR

w+
r dΩR (3.81)

The integral of wr is easy to find, using directly the full expression of wr:

R2
αγ

∫ 2π

0

dφ

∫ π

0

Rαγ
(
sin2 θ

(
λ1 cos2 φ+ λ2 sin2 φ

)
+ λ3 cos2 θ

)︸ ︷︷ ︸
wr

sin θ dθ

=
4πR3

αγ

3
(λ1 + λ2 + λ3) (3.82)

Combining equations (3.81) and (3.82), we can use the result of (3.80) (i.e.
the integral of −w+

r now) and add the result of equation (3.82). The collision
kernel is then the opposite of this value. Working this out yields:

βαγ = 8λ3R
3
αγ

(∫ π
2

0

2
(
k1 cos2 φ+ k2 sin2 φ

) 3
2

3
√
k1 cos2 φ+ k2 sin2 φ+ 1

dφ

)
(3.83)

Note that the result (3.82) is proportional to the divergence of the particle
velocity field. This shows the connection of the current theory to i.e. [84,
87, 85], where zero-inertia particles are studied in incompressible flow. In
this case the particle velocity field is divergence-free everywhere and the
absolute values of w+

r and w−r are equal. The collision kernel then reduces
to the integral of |wr| over half the sphere. In our formulation, equations
(3.83) and (3.80) would yield the same value except for the sign.

A second possibility is that of having one of the eigenvalues equal to 0.
Setting λ1 > λ2 = 0 and λ3 < 0, the cone degenerates into a wedge, but
expression (3.80) remains valid. Due to the simplification, however, a closed
form can be found:

βαγ = 8(−λ3)R3
αγ

(
1

3

(√
k1 + (k1 − 1) tan−1

(√
k1

))
− π

6
(k1 − 1)

)
(3.84)

In practice, this can be used when one of the eigenvalues gets too close to
0, to avoid using a very small λ3 that would produce very high values of

3.2. Discrete phase model 41

k1 or k2, which would degrade the accuracy of the numerical integration.
It is also the most general case in 2D simulations, so there the numerical
integration is avoided.

The final possibility is that of all eigenvalues having the same sign, pos-
sibly including one or more zeros. If they are all positive, wr is positive
for any direction and the collision kernel is 0. If they are all negative, the
problem reduces to the opposite of equation (3.82), i.e.:

βαγ = −
4πR3

αγ

3
(λ1 + λ2 + λ3) (3.85)

Table 3.3 presents a summary of all the possibilities, recalling that the eigen-
values may always be reordered to fit exactly one of these cases. We can

λ1 λ2 λ3 βαγ
> 0 > 0 < 0 Equation (3.80)
< 0 < 0 > 0 Equation (3.83)
> 0 0 < 0 Equation (3.84)
≤ 0 ≤ 0 ≤ 0 Equation (3.85)
> 0 > 0 > 0 0

Table 3.3: The possible combinations of eigenvalues of the particle rate of
strain tensor.

immediately verify that the method recovers the correct result in the case
of pure shear flow. Setting ∂vx/∂z = a, the eigenvalues of the rate of strain
tensor are: λ1 = a/2, λ2 = 0 and λ3 = −a/2. This case is covered by
equation (3.84) with k1 = 1, yielding:

βαγ =
4

3
aR3

αγ (3.86)

This corresponds to the correct value as given in i.e. [85] and first com-
puted by von Smoluchowski in 1917. After deriving the above equations, we
discovered —unsurprisingly— that this has been done before. In [88], the
equations are developed assuming an incompressible particle velocity field
(i.e. the limit of zero inertia), while [89] generalizes this for a compressible
field as we have done. We do however make a small new contribution with
the geometrical interpretation of the problem (figure 3.6) and the closed
form for a single zero eigenvalue in equation (3.84).

Brownian coagulation

So far, we only considered the velocity gradient and particle relaxation time
differences as possible sources of relative particle velocities. In reality, for
very small particles, the Brownian motion also causes relative motion be-
tween particles. In our experiments, we always have Kn < 1, so we can use

42 Chapter 3. Numerical method

the Brownian coagulation kernel for the continuum regime as given in e.g.
[9]:

βB
αγ =

2kBT

3µ

(
Cα
dα

+
Cγ
dγ

)
(dα + dγ) (3.87)

Here, we use the Cunningham slip correction factor as in [12]: Cα = 1 +
1.591 Knα. In [90], a more general formulation is given that is also valid
much smaller particles, i.e. in the free molecular regime where Kn > 1. As
shown in e.g. [91], the Brownian collision kernel may not be just added to
our previously found kernels, although this is still a common approximation.
In [92], using a quadratic interpolation between the collision kernel due to
fluid motion and the Brownian collision kernel was found to be a better
approach.

The log-normal distribution

The log-normal distribution is often used as an approximation for real distri-
butions, especially when considering Brownian coagulation [93, 94]. Devia-
tions may be significant when sedimentation of particles becomes important
[95]. Nevertheless, the log-normal approximation is widely used and provides
a useful test case for the collision model when considering only Brownian
coagulation. In this section, we will present the equations for the log-normal
distribution, as well as the relations between the various possible formula-
tions using different dependent and independent variables. We will then
use the moments for the distribution to calculate the Dirac delta function
approximation and finally compare the results of the DQMOM method with
[93].

A log-normal distribution for the particle number concentration as a func-
tion of the particle diameter can be written as:

f(dp) =
nt√

2π lnσgdp
exp

−
(

ln
dp
µg

)2

2 ln2 σg

 (3.88)

Here, µg and σg are geometric mean and standard deviation of dp, i.e when
sampling n particles:

µg = n

√√√√ n∏
i=1

di (3.89)

σg = exp

√√√√∑n

i=1

(
ln di

µg

)2

n

 (3.90)

From these definitions, it is seen that µg has length units while σg is di-
mensionless. In the following expressions, µg always appears in a ratio with

3.2. Discrete phase model 43

dp in the exponent, thus ensuring dimensional correctness. Note that lnµg
and lnσg are the mean and standard deviation of the normal distribution
of ln dp. The factor nt is the total number density of the particles, i.e. the
result of integrating the distribution over all particle sizes.

Since we use the particle volume vp as independent variable it is useful
to rewrite equation (3.88) as a function of vp = (π/6)d3

p. The change of
variables results in:

f(vp) =
nt√

2π3 lnσgvp
exp

−
(

ln
6vp
πµ3

g

)2

18 ln2 σg

 (3.91)

Note that this is equivalent to using the geometric mean and standard de-
viation of the particle volume.

Instead of the number concentration, some measurements use the vol-
ume fraction as dependent variable. For this, equation (3.88) needs to be
multiplied with the volume of the particle vp, yielding:

fx(dp) =
πntd

2
p

6
√

2π lnσg
exp

−
(

ln
dp
µg

)2

2 ln2 σg

 (3.92)

The factor d3
p can be brought into the exponent as exp (3 ln dp), clearly

demonstrating that the resulting distribution is still log-normal, although
the expression is more complicated:

fx(dp) =
nt√

2πσddp

π

6
µ3
g exp

(
9

2
ln2 σg

)
exp

(
− (ln dp − µx)

2

2 ln2 σ2
g

)
(3.93)

Here, the mean is µx = lnµg + 3 ln2 σg.
Once the distribution is known, we can derive a Dirac delta function

approximation as input for boundary or initial conditions for the simulations.
To get an approximation using N phases, we can compute the first 2N
moments of the distribution and solve the polynomial system for fα and vα
with 0 ≤ k ≤ 2N − 1:

N∑
α=1

fαv
k
α =

∫ ∞
0

vkpf(vp) dvp (3.94)

Application

Here, we consider a simple application using initially log-normally distributed
particles undergoing Brownian coagulation, suitable for comparison with the
results from [93]. Since the particle diameters are on the order of microns or

44 Chapter 3. Numerical method

even less, we normalize all diameters using the geometric mean, so all com-
putations can be done using a dimensionless µgn = 1. The solution of the
polynomial system for a monovariate distribution as is the case here could
be done efficiently using the Product-Difference algorithm [38], but since we
only need to solve it once to obtain initial conditions we used Mathematica1

to solve the system. Table 3.4 lists the parameters for the Dirac delta ap-

σg v1 v2 f1 f2

1.5 0.92677 25.049 0.99293 7.0661× 10−3

2.0 4.4908 2.6269× 104 1.0000 2.2352× 10−6

3.0 1.1961× 102 3.2339× 1011 1.0000 7.1054× 10−15

Table 3.4: Values of the abscissa vα and weights fα, with N = 2 and for
three different geometric standard deviations.

proximation of equation (3.59), using two phases. The geometric standard
deviation has a dramatic effect on the values of the parameters, resulting
in a steep increase for the abscissa and a strong decrease of the weight of
the second Dirac function. If we choose more than 2 Dirac functions, the
third volume and weight take even more extreme values. These results are
due to the nature of the log-normal distribution, with the moment values
increasing sharply as the order and σg increase.

In [93], analytical formulas are derived for the evolution of the parameters
of a log-normal size distribution for particles undergoing Brownian coagula-
tion in the continuum regime, i.e. using kernel (3.87) without Cunningham
correction. Figures 3.7 to 3.9 compare the results of our DQMOM imple-
mentation with the analytical results. The quality of the results depends
greatly on the value of σg. For σg = 1.5, all quantities are reproduced cor-
rectly. For the decay in number concentration, the DQMOM appears to be
insensitive to the changes in standard deviation, with the error reaching a
value of up to 20% for σg = 3. Likewise, there is a tendency to underpredict
the geometric mean diameter, as seen in figure 3.8. The standard deviation,
on the other hand, is reproduced quite well even for a the initial σg of 3
(figure 3.9).

If we reconstruct log-normal distributions using the mean and standard
deviation obtained from the DQMOM, the results from figures 3.10 and 3.11
are obtained. Again, the deviation is greatest for the highest σg.

We believe the above difficulties stem from the properties of the log-
normal distribution, which lends itself poorly to approximation by Dirac
delta functions. This is evident from table 3.4, where the values for σg = 3
are very close to a monodisperse distribution, with the weight f2 almost zero.
Increasing the number of phases also does not help: the next Dirac function
will have a lower weight and higher volume still, and in fact numerical

1http://www.wolfram.com

http://www.wolfram.com

3.2. Discrete phase model 45

10−2 10−1 100 101

(n02kBT/(3µ))t

0.0

0.2

0.4

0.6

0.8

1.0
n
t
/
n
0

DQMOM

Lee [93]

Figure 3.7: Evolution of the number concentration nt with respect to the
initial concentration n0. Initial geometric standard deviations,
from top to bottom: 1.5, 2.0, 3.0.

10−2 10−1 100 101

(n02kBT/(3µ))t

1

2

3

4

5

6

7

µ
g
/
µ
0

DQMOM

Lee [93]

Figure 3.8: Evolution of the normalized mean particle diameter. Initial ge-
ometric standard deviations, from top to bottom: 1.5, 2.0, 3.0.

instabilities arise making a solution impossible. In [93], it was found that
σg evolves to an asymptotic value of about 1.32, which is below the value
of 1.5 for which the DQMOM still produces accurate results. Therefore, it

46 Chapter 3. Numerical method

10−2 10−1 100 101

(n02kBT/(3µ))t

1.0

1.5

2.0

2.5

3.0

3.5

σ
g

DQMOM

Lee [93]

Figure 3.9: Evolution of the geometric standard deviation. Initial geometric
standard deviations, from top to bottom: 1.5, 2.0, 3.0.

10−2 10−1 100 101 102

dp/d0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
/
n
0

DQMOM

Lee [93]

Figure 3.10: The reconstructed log-normal distributions at dimensionless
times (n02kBT/(3µ))t 0.25, 2.5 and 10 for initial σg = 2

is expected that for distributions resulting from coagulation, no great issues
regarding accuracy should arise.

3.2. Discrete phase model 47

10−2 10−1 100 101 102

dp/d0

0.0

0.1

0.2

0.3

0.4

0.5

0.6
f
/
n
0

DQMOM

Lee [93]

Figure 3.11: The reconstructed log-normal distributions at dimensionless
times (n02kBT/(3µ))t 0.25, 2.5 and 10 for initial σg = 3

Colission efficiency

We close this discussion of particle coagulation with an important remark
regarding the assumptions of our model. The above theory equates collision
with coagulation. Indeed, if we apply equations (3.70) and (3.71) directly
to close the system (3.62), then we have assumed that every collision results
in coagulation. As explained in i.e. [9] and [83], a collision efficiency needs
to be taken into account. For the sake of simplicity, we will ignore this issue
in the current work and continue to assume that every collision leads to
coagulation, with exact mass conservation.

Algorithm implementation

The algorithm for polydisperse flow is assembled from the transport equa-
tions for monodisperse flow, so it can be seen as a layer on top of a single
transport equation in the form of (3.58), but solving this equation mul-
tiple times and calculating the source terms as needed. No additional fi-
nite element discretizations are needed. The algorithm works as follows:

1: Choose a set of N particle volumes vα and distribution function values
fα

2: Compute the fluid flow field
3: for all α in 1..N do
4: Compute the velocity field vα using equation (3.56)

48 Chapter 3. Numerical method

5: Compute the particle velocity field gradients at the nodes, using the
average of surrounding elements

6: end for
7: for all nodes in the mesh do
8: Compute the moment source terms using equations (3.70) and (3.71).

The coagulation kernel is the sum of equation (3.68) and the result of
table 3.3.

9: Compute the diffusion effect using (3.64)
10: Solve the linear system (3.62) (with 2N equations)
11: end for
12: for all α in 1..N do
13: Solve equations (3.60) and (3.61)
14: end for
15: Start the next time step, i.e. go to step 2.

Chapter 4

Domain specific language

The application of the finite element method (FEM) requires the discretiza-
tion of the integral form of the partial differential equations that govern the
physics, thus transforming the problem into a set of algebraic equations that
can be solved numerically. In essence, the resulting numerical model only
depends on the governing equations and the set of basis and test functions.
From the point of view of a model developer, it would therefore be ideal
to only need to specify these parameters in a concise form that closely re-
sembles the mathematical formulation of the problem, without sacrificing
computational efficiency.

Our implementation is part of Coolfluid 3 [7], a C++ framework intended
primarily for the solution of fluid dynamics problems and available as open
source under the LGPL v3 license. The system is designed around a “Com-
ponent” class that can provide a dynamic interface through Python scripting
and a GUI. Model developers will typically write a set of Components to
build a solver for a given set of equations, using functionality provided by our
framework and external libraries. Problem-dependent settings such as the
mesh, boundary conditions and model parameters can then be controlled
through Python or a GUI, though these aspects are beyond the scope of
the current work. In this context, we provide an Embedded Domain Spe-
cific Language (EDSL) that can be used to implement finite element solver
components. It uses a notation similar to the mathematical formulation of
the weak form of a problem (see e.g. equations (3.6) - (3.13) and (3.52) -
(3.53)), allowing the programmer to focus on the physics rather than coding
details. We assume a typical finite element workflow, where a global linear
system is assembled from element matrix contributions. Our language can
also describe boundary conditions and field arithmetic operations.

All language elements consist of standard C++ code, so they easily embed
into the components of our framework. An extension mechanism is available,
allowing any developer to implement his own language elements without
touching the library code. The performance overhead will be shown to be
quantified and compared to the global solution time for our applications.
The implementation uses the Boost.Proto [96] framework, which builds on
template meta programming techniques for generating highly efficient code.

The automatic generation of code based on an intuitive specification of
the physical problem is of course a feature that is highly desirable for any
numerical simulation framework. One example of previous work providing

50 Chapter 4. Domain specific language

such functionality is OpenFOAM [97], a C++ library primarily intended for
fluid mechanics. It allows for the easy expression of differential equations by
providing an embedded tensor manipulation language, specific to finite vol-
ume discretizations. The FEniCS project [98] provides an easy and efficient
method for developing finite element discretizations. The approach differs
from ours in that the language is embedded into Python and compiled using
a just-in-time compiler. It also offers the option of automated analytical
evaluation of integrals [99]. Another example is the FEEL++ project [100],
which also provides a domain specific language embedded into C++ using
expression templates.

The existence of all these excellent projects notwithstanding, we decided
to implement our own framework for tight integration with the Coolfluid
data structures and to support our workflow of building user-configurable
components. The implementation relies on expression templates, just like
FEEL++, but we use Boost.Proto to handle the expression template genera-
tion and to define a grammar for our language, resulting in simpler and easier
to maintain code. Even though our language is not as feature-complete as
the more established FEEL++ and FEniCS projects, we do believe that
the easy integration of user-defined extensions into the language is a unique
feature. The purpose of the current chapter is to present how Proto can be
used to construct a language for finite element modeling —based on a generic
example— and to show the capabilities and performance of the language we
developed.

This chapter is structured as follows. In section 4.1 the mathematical
formulation of the integral form will be laid out in order to clearly define
the class of problems that is supported. Next, in section 4.2 the mechanics
for constructing and interpreting the EDSL are explained in detail, based
on a simple application. Section 4.3 contains some application examples
—including the SUPG method from section 3.1.1— and section 4.4 a per-
formance analysis. Finally, in section 4.5 we present our conclusions and
suggest future work.

4.1 Finite element discretization

This section presents a brief overview of the finite element method, based
on the weighted residual Galerkin formulation as reviewed in [101]. The
objective is to introduce the notation with which we align our language.
Consider the following differential equation with a linear operator L, to be
solved over a domain Ω:

L (u) = 0 (4.1)

The above equation (together with the boundary conditions) represents the
mathematical model for the phenomenon we want to study, and the solution
u is a function of the independent variables, typically the spatial dimensions
and time. We now multiply each equation j from equation (4.1) with a

4.1. Finite element discretization 51

weighting function v and then integrate over the domain:∫
Ω

vL (u) dΩ = 0 (4.2)

If a solution satisfies this integral formulation for all possible weighting
functions, it also solves equation (4.1). The Finite Element Method ap-
proximates the unknown function u using a linear combination of n shape
functions Ni (x) with the unknown coefficients ui:

u ≈
n∑
i=1

Ni (x)ui ≡ ũ (4.3)

The shape functions depend only on the spatial coordinates x and to simplify
the notation we will from here on just write Ni instead of Ni (x). We can also
write the linear combination for one unknown in vector form as ũ = Nuue.
Here, N is a row vector with the shape functions associated with unknown
u and ue is the column vector of the unknowns coefficients.

Due to the linearity of the operator we have L (Nue) = L (N)ue. This
hypothesis is acceptable for the applications targeted by our framework. In
the Galerkin method, equation (4.2) is written by substituting v with the
shape function associated with each coefficient. This results in a discrete
linear system with unknowns ue:∫

Ω

NTL (N)ue dΩ = 0 (4.4)

If we choose piecewise shape functions, defined over nΩ elements Ωe that
subdivide the problem domain, the global integral can be replaced by a sum
of integrals:

nΩ∑
e=1

∫
Ωe

NT
u L (Nu)ue dΩe = 0 (4.5)

For each element, the contributions to the system matrix are
∫
NT
u L (Nu) dΩe,

which we call the element matrix A. It is a square matrix with a size equal
to the number of coefficient values (nodes) in the element. Each entry of
the element matrix contributes to a value in the global matrix, and only el-
ements that share a given node need to participate in the sum for its global
value. We also assume that the calculation of the shape function values in
each element happens in a local coordinate system, replacing the depen-
dency on the global coordinates x mentioned earlier by a dependency on
mapped coordinates ξ, again omitted to keep the notation clear.

In the case of a system of linear differential equations, we have a vector
of unknowns u and there is an equation for each unknown. In this case,
the above procedure is applied to each equation and variable, where we are
free to choose a different shape function for each unknown. The matrix

52 Chapter 4. Domain specific language

notation of equation (4.5) can be preserved in this case, but ue is now a
column vector with all of the unknowns for an element, forming a segment
of ni unknowns for each unknown ui, where ni is the number of coefficients
that is used in its associated shape function. The shape function vector is
arranged in the same way, so the final element matrix can be divided into
blocks associated with each combination of unknowns, as in equation (3.5).
To distinguish the shape function associated with each unknown, we add an
index to the shape function vector, so shape functions associated with u are
written as Nu

The matrix assembly procedure is the same for all problems, only the
values of the element matrices depend on the initial equation (4.1). This
observation drives the current work: we will present a convenient language
to write out the element equations and automate the steps that are com-
mon for all finite element discretizations. Conceptually, we support any
approximation that fits into the above formulation, but for now only shape
functions of the Lagrange family are implemented.

As an example, we consider the steady heat conduction equation k∇2T +
q̇ = 0, where T is the unknown temperature, k is the thermal conductivity
and q̇ is a volumetric heat source term. We choose interpolating shape
functions so that T̃ = NTTe and ˜̇q = Nq̇q̇e, allowing for different shape
functions for the heat and temperature. Introducing these into equation
(4.5) and applying integration by parts to the Laplacian yields the following
discrete linear system:

nΩ∑
e=1

∫
Ωe

k (∇NT)
T∇NTTe dΩe −

∫
Γe

NT (∇NTTe) · dn−
∫

Ωe

NT
T

˜̇q dΩe = 0

(4.6)

The first term contains the element matrix: A =
∫
k (∇NT)

T∇NT dΩe. The
second term is the integral over the boundary of the normal derivative of
the temperature, i.e. the surface heat flux. It can be used to set a Neumann
boundary condition or must vanish when we impose a Dirichlet boundary
condition. The third term depends on the imposed nodal values of the heat
source term, so it contributes to the right hand side of the linear system.
From this simple example, the basic requirements for our language can be
identified: provide access to the shape functions and their derivatives, as
well as nodal values of the variables; control the evaluation of integrals; and
allow the application of boundary conditions. Finally, we must be able to
express the assembly into global matrices and vectors.

4.2 Construction of the language

Our language consists of three levels of implementation, as shown in figure
4.1. The top level contains the language itself, which consists of keywords
that the user combines into an expression. Because the language is embed-

4.2. Construction of the language 53

ded, only valid C++ expressions are allowed, but we can define the inter-
pretation freely via operator overloading. This is the job of the algorithm
implementation layer. Here, the language is parsed and appropriate actions
—called semantic actions in language grammar terms— are linked to each
part of the input. Some of the actions may result in calls to a shape function
library or matrix operations, so the final layer contains all external libraries
needed to execute these. The remainder of this section will focus on each
layer in more detail, using a simple stand-alone example. This allows us
to easily demonstrate the techniques used in Coolfluid 3 while avoiding the
need to explain the details of our mesh structure and linear algebra interface,
which are beyond the scope of the present work. The example will result in
a program that can use a shape function to interpolate the coordinates on
each element and print out the result, using the following syntax:

1 // Create a mesh
2 mesh_data some_mesh;
3 // ... mesh initialization skipped here
4 // Loop over the elements and print out the centroid coordinates
5 for_each_element(some_mesh, cout_ << N(centroid)*element_coords << "\n");

The second argument in the call at line 5 is a Proto expression, where N is
the shape function, centroid represents the mapped coordinates of element
center and element_coords represents the coordinates of all element nodes.
In what follows, we will show how we can evaluate this expression.

Boost.Proto
Grammar + Transforms

Expression

Data

Sparse matrix
library

Dense matrix
library

Numerical integration
library

Shape function
library

L
an

gu
ag

e
A

lg
or

ith
m

im
pl

em
en

ta
tio

n
E

xt
er

na
l

lib
ar

ie
s

Mesh

Figure 4.1: The structure of the program, showing the three different levels
of the implementation

4.2.1 The language layer

Using the Boost.Proto [96] library, expressions are constructed from so-
called “terminals”. These are C++ objects that are instances of the Proto
terminal class, which overloads all of the C++ operators. Combining dif-
ferent terminals using operators builds an expression that can be evaluated
later. This expression is analogous to the expression templates used in e.g.
FEEL++ [100]. Building such an expression is extremely easy: listing 4.1 is

54 Chapter 4. Domain specific language

a complete C++ program, where lines 20 and 21 contain expressions, built
from the terminals defined at lines 12 to 15. The terminals can be combined
using any of the overloadable C++ operators. Because this includes the
function call operator, they can also be used as functions, as on line 21. The
result of each expression is an expression tree, retaining the concrete type
of each element in the expression. This is the same kind of data structure
that we encounter in any expression template library and it is generated for
us by Proto here. Figure 4.2 shows the expression tree for line 21.

In Coolfluid 3, the language elements are also defined using terminals, but
we have of course many more keywords to perform the required operations
to build a complete finite element model. Many of these elements will be
demonstrated in section 4.3.

So far, the expressions do nothing. The goal of the current example is to
correctly interpret the expression at line 21 and make it print the centroid
of all the elements in a mesh. This is the subject of the next section, where
we will show how to parse the expression and take appropriate action.

1 #include <iostream>
2 #include <boost/proto/proto.hpp>
3

4 using namespace boost;
5

6 // Different types to distinguish terminals at compile time
7 struct element_coords_tag {};
8 struct centroid_tag {};
9 struct shape_func_tag {};

10

11 // Some statically created terminals
12 proto::terminal< centroid_tag >::type const centroid = {};
13 proto::terminal< element_coords_tag >::type const element_coords = {};
14 proto::terminal< shape_func_tag >::type const N = {};
15 proto::terminal< std::ostream & >::type cout_ = { std::cout };
16

17 int main(void)
18 {
19 // The terminals can be combined into any valid C++ expression
20 (centroid + element_coords * cout_) / N;
21 cout_ << N(centroid)*element_coords << "\n";
22 }

Listing 4.1: Generating expressions from Boost.Proto terminals.

4.2.2 The algorithm implementation layer

The algorithm implementation layer in figure 4.1 takes care of the inter-
pretation of expressions and the execution of the associated actions. In
this section, we will take a top-down approach to evaluating our example
expression. To this end, we will first define a class —grammar in Proto
terminology— capable of parsing the expression. The class defined in list-
ing 4.2 describes the language that we use in our example expression. The
grammar is defined entirely in a templated type from which fem_grammar

4.2. Construction of the language 55

<<

<<

cout

*

()

N

centroid

element coords"\n"

Figure 4.2: The expression tree for line 21 in listing 4.1

derives. This notation is actually the embedded domain specific language
provided by Proto itself for defining a grammar. The or_ construct allows
us to list a series of rules (each a Proto grammar in itself) that are checked
in sequence. The use of the when statement allows us to first describe what
kind of syntax we expect, followed by a second argument —the semantic
action— that describes what to do when a given expression is encountered.
In the case of terminals, we can use the type (classes ending in _tag here)
to distinguish them at compile time. The grammar can be used to check
the validity of an expression at compile time, using the proto::matches

metafunction. In this case, only the first argument of each when clause
is considered and no action is taken. We can also use fem_grammar as a
C++ functor on an expression, in which case our grammar acts as a Proto
“transform”, evaluating the expression by executing the semantic actions
embedded into the grammar. The classes that perform these actions are not
defined yet, so that will be our next step.

To evaluate the code in our example, we need to retrieve the element coor-
dinates, get the shape function parameters associated with the centroid and
evaluate the shape functions. These are executed by the semantic actions in
our grammar and they are implemented as C++ functors that are named
“primitive transforms” in Proto. Listing 4.3 shows the primitive transform
that evaluates shape functions. The shape function values are computed by
the function call operator overload at line 16, taking two arguments: the
mapped coordinates coord and a data argument that provides access to
shape function data. Their types are specified through template parameters
that embed the size of the involved vectors: this is necessary because we use
the Eigen [102] library for matrix computations, which allows setting ma-
trix sizes at compile time. Operations on small matrices are more efficient if
their size is fixed like this. The concrete type CoordT is a vector with a size
equal to the number of spatial dimensions, while the type DataT depends on
the element type in use, since the size of the element shape function vector
is equal to the number of element nodes as described in section 4.1. On line
20, we use the element shape function to compute the value and store it
back in the data. This technique allows us to return a reference on line 22,

56 Chapter 4. Domain specific language

1 // Grammar to evaluate the expression:
2 // cout_ << N(centroid)*element_coords << "\n"
3 struct fem_grammar :
4 // Match the following rules in order:
5 proto::or_
6 <
7 // Evaluate element_coords using the eval_element_coord transform:
8 proto::when<proto::terminal<element_coords_tag>, eval_element_coord(proto::_data)>,
9 // Evaluate centroid using the eval_centroid transform

10 proto::when<proto::terminal<centroid_tag>, eval_centroid(proto::_data)>,
11 // Evaluate shape functions using the eval_shape_func transform
12 proto::when
13 <
14 proto::function<proto::terminal<shape_func_tag>, proto::_>,
15 eval_shape_func(fem_grammar(proto::_child1), proto::_data)
16 >,
17 // On any other expression: perform the default C++ action
18 proto::_default<fem_grammar>
19 >
20 {
21 };

Listing 4.2: Grammar capable of parsing a simple expression for
interpolating coordinates using a shape function.

avoiding a potentially expensive copy of the data. The implementation of
shape_function() is provided by a simple element type, that in the concep-
tual overview of figure 4.1 is part of the external libraries layer (see section
4.2.3 listing 4.6). The rest of the code (lines 3 to 13) is only used at compile
time and computes the return type of the functor, needed by Proto so it can
pass along the result. Starting with C++11 the result type of a functor can
be obtained from the compiler and this code is no longer needed.

We still need to complete the definition of the data used by the functor.
It holds the knowledge about the concrete element type and holds the finite
element mesh that we use, as can be seen from listing 4.4. We are completely
free to define this type as we see fit, since Proto passes it along as a template
parameter. In our example, we provide convenience typedefs to access the
shape function types and storage for results. The data changes for each
element, so we have a set_element function that is called by the element
looping algorithm (still to be discussed). The entire class is templated on
the element type.

So far, we have shown how to implement leaf nodes like the shape function
N in figure 4.2. What is still missing is the implementation of the binary
operators and the output. The top-level grammar in listing 4.2 takes care of
this on line 18: we ask Proto to perform the default C++ action when none
of the earlier rules are matched, recursively calling fem_grammar to interpret
any subtrees. This way, the terminal _cout is expanded to its value —the
standard output stream— and the shift operator has its usual meaning for
stream output. When the product is encountered, the left and right side
get evaluated using fem_grammar, and the results are multiplied using the

4.2. Construction of the language 57

1 struct eval_shape_func : proto::callable
2 {
3 // C++ result_of declaration
4 template<typename Signature>
5 struct result;
6

7 // C++ result_of implementation
8 template<class ThisT, typename CoordT, typename DataT>
9 struct result<ThisT(CoordT, DataT)>

10 {
11 typedef const typename
12 boost::remove_reference<DataT>::type::element_t::shape_func_t& type;
13 };
14

15 template<typename CoordT, typename DataT>
16 const typename DataT::element_t::shape_func_t& operator()(const CoordT& coord,
17 DataT& data) const
18 {
19 // Evaluate the shape function at the given mapped coordinates
20 data.shape_func = DataT::element_t::shape_function(coord);
21 // Return a reference to the result, stored in data
22 return data.shape_func;
23 }
24 };

Listing 4.3: Primitive transforms to evaluate the shape functions

default C++ multiplication, which is in this case a matrix product from the
Eigen library.

Using predefined transforms from the Proto framework and user-defined
function objects allows for the creation of arbitrarily complex grammars,
which can call themselves as transforms recursively. This concise embedded
language describing grammars is a key feature of Proto: it makes it possible
to indicate how to evaluate an expression without resorting to complicated
metaprogramming techniques, resulting in code that is easier to read and
maintain.

To obtain a working code, we still need to implement the loop over the
elements and generate the data that is used in expression evaluation. The
data is templated on the concrete element type, but as can be seen from
listing 4.6 the mesh data at line 20 lacks this information at compile-time.
This makes sense, since in a real application the user loads the mesh and so
the software cannot know what concrete type is used at compile time. To
select the element at run time, we need to generate code for all the element
types that are supported by the solver. In this example, we will support both
1D line elements and 2D triangle elements. The difference in the mesh data
lies in the number of columns in the coordinates and connectivity tables,
so we can use that to determine which mesh we are using. By checking
for each supported element type if the mesh matches, we can execute the
correct code at runtime. We use the MPL functor defined in listing 4.5 to
match the correct element type to the mesh. The functor is executed for
each item in a list of allowed elements (line 37), resulting in cleaner code

58 Chapter 4. Domain specific language

1 template<typename ElementT>
2 struct dsl_data
3 {
4 // Required by Eigen to store fixed-size data
5 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
6 // The concrete element type
7 typedef ElementT element_t;
8 // The type of the coordinates for all element nodes
9 typedef Eigen::Matrix<double, element_t::nb_nodes, element_t::dimension> coord_mat_t;

10

11 // Construct using the mesh
12 dsl_data(const fem::mesh_data& d) : mesh_data(d)
13 {
14 }
15

16 // Set the current element
17 void set_element(const int e)
18 {
19 for(int i = 0; i != element_t::nb_nodes; ++i)
20 for(int j = 0; j != element_t::dimension; ++j)
21 coord_mat(i,j) = mesh_data.coordinates[mesh_data.connectivity[e][i]][j];
22 }
23

24 // Reference to the mesh
25 const fem::mesh_data& mesh_data;
26 // Storage for the coordinates of the current element nodes
27 coord_mat_t coord_mat;
28 // Value of the last shape function computation
29 typename element_t::shape_func_t shape_func;
30 };

Listing 4.4: Data passed to the primitive transforms

than a long list of if-else statements. Once the element type check at line 13
passes, the data can be constructed and we can start the loop, updating the
data for each element at line 23. The actual expression is executed using our
grammar at line 24, passing the expression and data as the first and third
argument, respectively. The 0 is the Proto state, which is not used here.
The expression itself remains a template parameter, allowing us to write
any kind of Proto expression in a call to for_each_element and keeping all
compile-time information. Both of these properties are key advantages over
a similar system that could be set up using virtual functions. By generating
code for a list of predefined element types, the technique can be seen as a
special case of generative programming [103], where the code to generate is
defined through the MPL vector of element types.

In Coolfluid 3, the process is more complicated, since we can have dif-
ferent shape functions for the geometry and each variable that appears in
an expression. This means we must now generate code for every possible
combination of shape functions. We chose to organize the data so that each
unknown that appears in an expression has its own data structure, aggre-
gated into a global data structure for the expression. This approach makes
it possible to have a unified data structure supporting expressions with an
arbitrary number of variables. Another complication is the possibility to

4.2. Construction of the language 59

mix different element types in one mesh, e.g. triangles and quadrilaterals.
We solve this by organizing the mesh into sets that contain only one element
type, and then deal with each region in turn. The complete algorithm to
create the data and loop over a set of elements of the same type is as follows:

Require: Mesh with field data for n variables
Require: A compile-time list of m shape functions Ni that may be used
Require: An expression E
Ensure: Construction of context data of the correct type
for all shape functions Ni do
if Ni matches the geometry shape function then

set geometry shape function: Ng = Ni
for all variables V do
for all Nj compatible with Ng do
if Nj matches the variable shape function then

set NV = Nj
end if

end for
end for
create context data d using known Ng and NV (∀V)
for all elements e do

execute grammar(E, d)
end for

end if
end for

At this point we might wonder what happens if we try to evaluate an
expression that makes no sense, such as line 20 of listing 4.1. Unfortunately,
this often results in a very long list of compiler messages, exposing Proto
implementation details and long template types. In the current example, it
would be easy to fix using compile-time error messages, but for a more com-
plex EDSL this is difficult and we have not yet implemented a satisfactory
error handling system. We do intend to handle some common cases, and
already errors from Eigen indicating incompatible matrix expressions come
through, but they are often obscured by a great number of other errors.

4.2.3 External libraries

The example code uses the simplest possible data structures: the mesh
simply contains arrays for the coordinates and the element nodes. The
shape functions are simplified to only provide the functionality needed for
coordinate interpolation. Listing 4.6 shows the code for a first order 1D line
element of the Lagrange family, together with the data for the mesh.

In Coolfluid 3, we provide our own mesh data structure, shape function
library and numerical integration framework. For operations at the element
level, the Eigen [102] library is used, since it provides highly optimized
routines for small, dense matrices. Finally, sparse matrix operations —

60 Chapter 4. Domain specific language

1 /// MPL functor to loop over elements
2 template<typename ExprT>
3 struct element_looper
4 {
5 element_looper(const fem::mesh_data& m, const ExprT& e) : mesh(m), expr(e)
6 {
7 }
8

9 template < typename ElemT >
10 void operator()(ElemT) const
11 {
12 // Bail out if the shape function doesn’t match
13 if(ElemT::dimension != mesh.coordinates.shape()[1] || ElemT::nb_nodes != mesh.

connectivity.shape()[1])
14 return;
15

16 // Construct helper data
17 dsl_data<ElemT> data(mesh);
18

19 // Evaluate for all elements
20 const int nb_elems = mesh.connectivity.size();
21 for(int i = 0; i != nb_elems; ++i)
22 {
23 data.set_element(i);
24 fem_grammar()(expr, 0, data);
25 }
26 }
27

28 const fem::mesh_data& mesh;
29 const ExprT& expr;
30 };
31

32 /// Execute the given expression for every element in the mesh
33 template<typename ExprT>
34 void for_each_element(const fem::mesh_data& mesh, const ExprT& expr)
35 {
36 // Allowed element types
37 typedef mpl::vector2<fem::line1d, fem::triag2d> element_types;
38 mpl::for_each<element_types>(element_looper<ExprT>(mesh, expr));
39 }

Listing 4.5: The element looping algorithm.

required for the solution of the linear system arising from the element-wise
assembly— are performed using the Trilinos [104] library.

4.2.4 User defined terminals

If we want to extend the language with new functionality, this currently
requires modification to the grammar (listing 4.2). Since this is part of the
programming framework, it’s not something that’s supposed to be modified
by the user of the language. To provide more flexibility, we allow users to
define new terminals that can be used in expressions without modifying the
grammar. We will show here how this works, by providing an overview of
how this could be added to our example code. Let’s return to the definition
of terminals, tagged using empty classes as in listing 4.7. We created a
terminal with the template class user_op as type. Its use as a function (line

4.2. Construction of the language 61

1 // 1D line element
2 struct line1d
3 {
4 static const int nb_nodes = 2; // Number of nodes
5 static const int dimension = 1;
6

7 // Type of the mapped coordinates
8 typedef Eigen::Matrix<double, 1, dimension> coord_t;
9 // Type of the shape function vector

10 typedef Eigen::Matrix<double, 1, nb_nodes> shape_func_t;
11

12 // Compute the shape function vector at mapped coordinate c
13 static shape_func_t shape_function(const coord_t& c);
14

15 // Return the mapped coordinate of the centroid
16 static const coord_t& centroid();
17 };
18

19 // Unstructured mesh data
20 struct mesh_data
21 {
22 // The coordinates for each node
23 boost::multi_array<double, 2> coordinates;
24 // The nodes (index into coordinates above) for each element
25 boost::multi_array<int, 2> connectivity;
26 };

Listing 4.6: Element type for first order line elements of the Lagrange family
and mesh data structure

1 template<typename T> struct user_op {};
2 struct my_callable {};
3 // A terminal typed using the above structs
4 proto::terminal< user_op<my_callable> >::type const my_op = {};
5 // Can be used as a function
6 my_op(1,2,3);

Listing 4.7: Definition of a terminal allowing user extension

5) can be matched using the grammar:

proto::function< proto::terminal< user_op<proto::_> >, proto::vararg<proto::_> >

Here, proto::_ is a wildcard that matches any type and vararg allows the
function to have any number of arguments. This kind of construct is exactly
what we need to make my_op a user defined terminal, though we still have
to provide a way to evaluate the expression. Adding a when clause yields
the code that we need to add to fem_grammar (listing 4.2):

proto::when
<

proto::function< proto::terminal< user_op<proto::_> >, proto::vararg<proto::_> >,
evaluate_user_op(proto::function< proto::_, proto::vararg<fem_grammar> >)

>

This uses fem_grammar to evaluate all function arguments and then calls
the evaluate_user_op primitive transform to evaluate the call (not listed

62 Chapter 4. Domain specific language

here for the sake of brevity). In evaluate_user_op, we use the template
argument to user_op (my_callable here) as a functor to evaluate the op-
erator. This allows the user to define how the terminal should be evaluated
without ever needing to touch the core grammar, by simply implementing
the correct function call operator in the type that is passed to user_op.

In Coolfluid 3, this technique is used to implement specialized code for
certain solvers, directly setting entries of the element matrix when analyt-
ical expressions are known. Some core functions, such as the gradient and
divergence operations, are also defined this way. Listing 4.8 shows the im-
plementation for the divergence operation. On line 9, we have the function
call implementation, where var is expanded into the data associated with
the unknown for which we want to compute the divergence. This data is
then used to access the gradient matrix (line 12), much like we computed
the shape function value in our previous example (i.e. line 20 in listing 4.3).
The terminal is statically created on line 30, using the MakeSFOp metafunc-
tion to avoid a long Proto type name. We can easily overload the function
signature by additional function call operators. This is used on line 24 to
provide an alternative divergence call that does not take a mapped coordi-
nate as an argument, but evaluates at the current quadrature point instead.

1 // Operator definition
2 struct DivOp
3 {
4 // The result is a scalar
5 typedef Real result_type;
6

7 // Return the divergence of unknown var, computed at mapped_coords
8 template<typename VarT>
9 Real operator()(const VarT& var, const typename VarT::MappedCoordsT& mapped_coords)

10 {
11 // Get the gradient matrix
12 const typename VarT::GradientT& nabla = var.nabla(mapped_coords);
13 Real result = 0.;
14 // Apply each component and return the result
15 for(int i = 0; i != VarT::EtypeT::dimensionality; ++i)
16 {
17 result += nabla.row(i) * var.value().col(i);
18 }
19 return result;
20 }
21

22 // Divergence at the current quadrature point
23 template<typename VarT>
24 Real operator()(const VarT& var);
25 };
26

27 // The terminal to use in the language
28 // divergence(v, xi): compute the divergence at any mapped coordinate xi
29 // divergence(v): compute the divergence at current quadrature point
30 static MakeSFOp<DivOp>::type const divergence = {};

Listing 4.8: Definition of the Coolfluid 3 gradient operation, using a user-
defined terminal

4.2. Construction of the language 63

4.2.5 Integration into a framework

So far, we have focused on building a small language, with the element loop-
ing function as entry point. In Coolfluid 3, our EDSL is used to implement
reusable solver components, so before showing the concrete examples in sec-
tion 4.3 we have to present a few concepts about our framework and how it
interfaces with our EDSL.

Each class in Coolfluid 3 is derived from the Component base class, which
offers infrastructure to set options at run time and holds an arbitrary num-
ber of child components, thus creating a tree. A particular subclass Action
implements the Command pattern [105], and we derive a class from that
for working with expressions, called ProtoAction. Expressions can then be
added to an object tree by creating a ProtoAction and setting its expression
using the set_expression function. The framework executes it transpar-
ently just like any other Action. Expressions in Coolfluid 3 can loop over
either elements or nodes, using different grammars. The node expressions
are primarily used for setting boundary and initial conditions, and to update
the solution.

We also need a way of accessing the mesh and the unknowns, which we do
by making use of FieldVariable terminals. A basic action for looping over
nodes could be added to a parent component as in listing 4.9, in this case
setting the temperature to 288 K. Here, the temperature is defined on line

1 // Terminal that refers to the temperature
2 FieldVariable<0, ScalarField> T("T", "temperature_field");
3 // Create a new action, as a child component of parent
4 Handle<ProtoAction> action = parent.create_component<ProtoAction>("Action");
5 // Set an expression to loop over nodes
6 action->set_expression(nodes_expression(T = 288.));
7 // Execute the action
8 action->execute();

Listing 4.9: Loop over nodes, setting a temperature field

2, indicating that it is stored as variable T in the field temperature_field.
This seems redundant here, but fields can store more than one variable. Fur-
thermore, we need to be able to distinguish each variable at compile time,
which is why we number each variable using the first template argument.
Each distinct variable that is used in the same expression must have a differ-
ent number. The second template argument specifies whether we are dealing
with a scalar or a vector. We then create the expression component and set
its expression on line 6, choosing an expression that loops over nodes and
simply assigns the value 288 to the temperature field here. Boundary and
initial conditions are provided in a similar fashion, but there the component
is parametrized on the field and variable names, so it can be reused in any
solver.

64 Chapter 4. Domain specific language

4.2.6 Compatibility with matrix expression templates

At the element level, matrix calculations are delegated to the Eigen library,
which uses its own expression templates. As it turns out, such libraries
cause problems when embedded into a Proto expression tree. A library like
Eigen will, in the case of complex operations, create temporary matrices on
the fly. When a temporary object is passed on through the transforms that
evaluate our expressions we return references to these temporary objects,
resulting in memory errors. The problem is common to all modern matrix
expression template libraries, and Iglberger et al. [106] review some cases
where these temporaries might appear. To handle this issue, we preprocess
the expressions using a special grammar: whenever a matrix product is
found, the multiplication expression is modified to store a temporary matrix
—allocated only once— that can hold the result of the multiplication. Any
matrix multiplication result is then stored in the Proto expression itself
and a reference to it is returned during matrix product evaluation. The
preprocessing happens by calling an additional transform in the element
looping function, so the whole process is transparent to the user of the
expressions and allows writing matrix arithmetic of arbitrary complexity.

4.3 Application examples

In this section we list a few example problems and evaluate the overhead
from using a high level abstraction.

4.3.1 Poisson problem

The first test case we present is the Poisson problem for a scalar function u
and source term f , defined over the domain Ω and with boundary Γ:

∇2u+ f = 0 over Ω (4.7)

u = u0 over Γ (4.8)

The problem is completely equivalent to the heat conduction example in
equation 4.6, so the equation for each element becomes:∫

Ωe

∇NT
u∇Nuue dΩe =

∫
Ωe

NT
u f̃ dΩe (4.9)

Listing 4.10 shows how to implement the assembly procedure for the system
using our EDSL. The variables for the problem are defined as scalars on lines
2 and 4. The expression itself spans lines 12 to 22, and is valid in this case
for all first order elements of the Lagrange family that are implemented in
Coolfluid 3. The first statement is group, and it is used to join together the
following expressions into a single expression, i.e. the grammar is executed
for each argument to the group call. Placing all statements inside a single

4.3. Application examples 65

1 // The unknown function. The first template argument is a constant to distinguish each
variable at compile time

2 FieldVariable<0, ScalarField> u("u", solution_tag());
3 // The source term, to be set at runtime using an initial condition
4 FieldVariable<1, ScalarField> f("f", "source_term");
5

6 // Action handling the assembly
7 Handle<ProtoAction> assembly = create_component<ProtoAction>("Assembly");
8 // Set the expression
9 assembly->set_expression(elements_expression

10 (
11 mesh::LagrangeP1::CellTypes(), // All first order Lagrange elements
12 group
13 (
14 _A = _0, _a = _0,// The element matrix and RHS vector, initialized to 0
15 element_quadrature // Integration over the element
16 (
17 _A(u) += transpose(nabla(u)) * nabla(u),
18 _a[u] += transpose(N(u))*f
19),
20 system_matrix += _A, // Assemble into the global linear system
21 system_rhs += _a
22)
23));

Listing 4.10: Implementation of the assembly procedure for the Poisson
problem.

expression ensures we only need to loop over the elements once to perform
all actions.

To assemble the system matrix, we use an element matrix A, which is
first set to zero on line 14. The element matrix terminal can be used as a
regular matrix in computations, but there is also a transform to evaluate the
function call operator. If an expression of the form _A(u) is encountered,
it returns only the rows of the element matrix that refer to the equation
for u (i.e. all rows in this case). If we pass a second variable as argument,
the returned matrix only contains the columns that refer to it, so _A(u, u)

would return a block that only contains the u contributions from the u equa-
tion (again, all rows and columns in this case). This notation is convenient
in the presence of multiple variables to select only the relevant entries in
an element matrix. The size of the element matrix is also determined by
looking for blocks like this, so here we only use _A(u) to indicate that the
element matrix contains only a single equation for u. The same applies to
the element right hand side vector _a using square brackets.

We call element_quadrature to perform a numerical integration using
Gauss quadrature on all of its arguments. Each expression must be of the
form LHS += RHS, where the LHS is a part of an element matrix or vector and
the RHS is the expression to integrate. There is a primitive transform that
picks these expressions apart, evaluates the right hand side at each Gauss
point, multiplies with the weights and Jacobian determinant and then sums
up the contributions into the LHS. The required quadrature order is deter-

66 Chapter 4. Domain specific language

mined based on the orders of the shape functions of the passed arguments.
Line 17 represents the product ∇NT

u∇Nu, where we simplify ∇Nu into
nabla(u) to get a shorter notation in our language. Likewise, the compu-
tation of the right hand side integral on line 18 uses N(u) to get the shape
function vector Nu and f to get the interpolated value f̃ . Since all of these
terminals appear inside the quadrature, they are evaluated at the quadrature
points and we can omit the mapped coordinates argument. This results in
expressions that closely mimic the mathematical notation of equation (4.9).
Finally, the element contributions are assembled into the global system at
lines 20 and 21. The system_matrix and system_rhs terminals keep track
of wrapper objects for a Trilinos matrix and vector, using a generic linear
solver API that is part of Coolfluid. They are initialized in a base class that
provides the functionality for working with expressions and linear systems.

The code in listing 4.10 builds a component that assembles the linear
system. At run time, it can be combined with other components to add
initial and boundary conditions and to solve the linear system, all of which
can be controlled from a Python script.

4.3.2 Navier-Stokes equations using Chorin’s method

The Navier-Stokes equations for incompressible flow with velocity vector u,
pressure p and kinematic viscosity ν are:

∇ · u = 0 (4.10)

∂u

∂t
+ (u · ∇)u+

∇p
ρ
− ν∇2u = 0 (4.11)

We will first solve this system of equations using Chorin’s method [107],
since this will allow us to easily compare performance later on with the
same example from the FEniCS project. Chorin proposed an iterative time
stepping scheme, computing first an auxiliary velocity uaux, followed by the
pressure and finally the corrected velocity at the new time step. The weak
form (written again for a single element) for the uaux equation is:(

1

∆t

∫
Ωe

NT
u Nu dΩe︸ ︷︷ ︸
Tuiui

+ν

∫
Ωe

∇NT
u∇Nu dΩe︸ ︷︷ ︸
Auiui

)
(uaux

e)i =

1

∆t

∫
Ωe

NT
u ũ

n
i dΩe −

∫
Ωe

NT
u ũ

n∇Nu (une)i dΩe ≡ aui (4.12)

The superscript n indicates the known solution at time step n. The index i
represents the i-th component of the velocity here, which is a scalar in the
case of the interpolated value ũni and a vector of values for each node of the
element for the unknowns (uaux

e)i. This means that for each value of i, we
insert a square block with dimension equal to the number of nodes into the

4.3. Application examples 67

element matrix, and a corresponding segment into the element right hand
side vector. We split up the element matrix as indicated by the braces, where
Tuiui indicates the block corresponding to the rows and columns of compo-
nent i of the velocity. The code to build this linear system is presented
in listing 4.11. To get a stable solution, we will interpolate the velocity

1 // Allow a mix of first and second order shape functions
2 typedef boost::mpl::vector2<mesh::LagrangeP1::Triag2D, mesh::LagrangeP2::Triag2D>

LagrangeP1P2;
3 // Kinematic viscosity, as a user-configurable constant:
4 PhysicsConstant nu("kinematic_viscosity");
5 // The velocity
6 FieldVariable<0, VectorField> u("u", "navier_stokes_u_velocity", "cf3.mesh.LagrangeP2");
7 // LSSActionUnsteady links with the linear algebra backend and the time tracking
8 Handle<LSSActionUnsteady> auxiliary_lss =
9 create_component<LSSActionUnsteady>("AuxiliaryLSS");

10 // The matrix assembly
11 Handle<ProtoAction> auxiliary_mat_assembly =
12 auxiliary_lss->create_component<ProtoAction>("MatrixAssembly");
13 auxiliary_mat_assembly->set_expression(elements_expression(LagrangeP1P2(),
14 group
15 (
16 _A(u) = _0, _T(u) = _0,
17 element_quadrature
18 (
19 _A(u[_i], u[_i]) += transpose(nabla(u))*nabla(u),
20 _T(u[_i], u[_i]) += transpose(N(u))*N(u)
21),
22 auxiliary_lss->system_matrix += auxiliary_lss->invdt()*_T + nu*_A
23)));
24

25 // RHS assembly
26 Handle<ProtoAction> auxiliary_rhs_assembly =
27 auxiliary_lss->create_component<ProtoAction>("RHSAssembly");
28 auxiliary_rhs_assembly->set_expression(elements_expression(LagrangeP1P2(),
29 group
30 (
31 _a[u] = _0,
32 element_quadrature
33 (
34 _a[u[_i]] += auxiliary_lss->invdt() * transpose(N(u))*u[_i] -
35 transpose(N(u))*(u*nabla(u))*_col(nodal_values(u), _i)
36),
37 auxiliary_lss->system_rhs += _a
38)));

Listing 4.11: Code to build the linear system for uaux in Chorin’s method

and pressure using second and first order shape functions, respectively (the
Taylor-Hood element). If we restrict the solver to triangles, we can obtain
this using the typedef on line 2. The actual shape function is chosen at run
time, but we enforce the use of second order for the velocity here through
the third constructor argument for the velocity variable on line 6. We use
separate actions for the system matrix and right hand side assembly, since
in this case the matrix coefficients don’t change with time, so we can run
the assembly procedure only once. The definition of the element matrices
A and T is provided on lines 19 and 20. The Laplacian is written exactly

68 Chapter 4. Domain specific language

the same as in the Poisson problem (section 4.3.1), but a new aspect is
the introduction of the index _i when indexing into the element matrix. It
is automatically expanded into a loop over the number of physical dimen-
sions, addressing the diagonal blocks of the element matrices as defined in
equation (4.12). The same applies for the mass matrix on line 20, and both
matrices are combined and assembled into the global system on line 22. The
auxiliary_lss component provides access to the terminals related to the
linear system and the time. Here, invdt returns a reference to the inverse
of the time step, which is controlled by the user running the simulation.

In the right hand side expression on line 34, the index _i is used again,
using u[_i] to get each component of the interpolated velocity vector ũ.
The last term represents the advection, and it requires access to a single
component of the nodal values vector ue. We store the nodal values for a
vector variable as a matrix, with each column corresponding to one physical
component of the vector. This matrix is obtained using the nodal_values

function while individual columns can be addressed using _col. The nota-
tion is a bit verbose, but this could be fixed by introducing a user defined
terminal for the advection operation.

The next step in Chorin’s algorithm calculates the pressure, through the
following Poisson problem:∫

Ωe

∇NT
u∇Nu dΩep

n+1
e = − 1

∆t

∫
Ωe

NT
p (∇Np)i dΩe (uaux

e)i (4.13)

Listing 4.12 shows the code for this system, again using two assembly ac-
tions. For the right hand side assembly on line 22, we used the divergence

function that was defined in listing 4.8. We could also write this in terms of
the nodal values matrix like this:

element_quadrature(_a[p] += transpose(N(p))*nabla(u)[_i]*_col(nodal_values(u), _i))

On line 23, we call the lit function on invdt. This is actually a Proto
function that constructs a terminal in-place, and it is needed to delay the
evaluation of the minus sign, which would otherwise be evaluated right away
by C++, resulting in the storage of a copy of the negative inverse timestep
at expression creation, rather than a reference to the current value.

The final step of the algorithm updates the velocity, using the gradient of
the newly calculated pressure:∫

Ωe

NT
u Nu dΩe

(
un+1
e

)
i

=

∫
Ωe

NT
u ũ

aux
i dΩe −∆t

∫
Ωe

NT
u (∇Np)i p

n+1
e dΩe

(4.14)
The system matrix is the mass matrix, so as seen in listing 4.13 we assemble
it in its own action. The gradient function on line 18 is defined using the
user defined function mechanism, and just as is the case with the divergence
it can be written using nodal values as well:

transpose(N(u))*(u[_i] - lit(correction_lss->dt()) * (nabla(p)[_i]*nodal_values(p))[0])

4.3. Application examples 69

1 // The pressure field, using the default first order shape function
2 FieldVariable<1, ScalarField> p("Pressure", pressure_lss->solution_tag());
3 // The linear system manager
4 Handle<LSSActionUnsteady> pressure_lss = create_component<LSSActionUnsteady>("

PressureLSS");
5 // The assembly action
6 Handle<ProtoAction> pressure_mat_assembly =
7 pressure_lss->create_component<ProtoAction>("MatrixAssembly");
8 pressure_mat_assembly->set_expression(elements_expression(LagrangeP1(),
9 group

10 (
11 _A(p) = _0,
12 element_quadrature(_A(p) += transpose(nabla(p))*nabla(p)),
13 pressure_lss->system_matrix += _A
14)));
15

16 Handle<ProtoAction> pressure_rhs_assembly =
17 pressure_lss->create_component<ProtoAction>("RHSAssembly");
18 pressure_rhs_assembly->set_expression(elements_expression(LagrangeP1P2(),
19 group
20 (
21 _a[p] = _0,
22 element_quadrature(_a[p] += transpose(N(p))*divergence(u)),
23 pressure_lss->system_rhs += -lit(pressure_lss->invdt())*_a
24)));

Listing 4.12: Pressure Poisson problem for Chorin’s method

1 Handle<LSSActionUnsteady> correction_lss = create_component<LSSActionUnsteady>("
CorrectionLSS");

2

3 Handle<ProtoAction> correction_matrix_assembly = correction_lss->create_component<
ProtoAction>("MatrixAssembly");

4 correction_matrix_assembly->set_expression(elements_expression(LagrangeP1P2(),
5 group
6 (
7 _A(u) = _0,
8 element_quadrature(_A(u[_i], u[_i]) += transpose(N(u))*N(u)),
9 correction_lss->system_matrix += _A

10)));
11

12 Handle<ProtoAction> correction_rhs_assembly = correction_lss->create_component<
ProtoAction>("RHSAssembly");

13 correction_rhs_assembly->set_expression(elements_expression(LagrangeP1P2(),
14 group
15 (
16 _a[u] = _0,
17 element_quadrature(_a[u[_i]] +=
18 transpose(N(u))*(u[_i] - lit(correction_lss->dt()) * gradient(p)[_i])),
19 correction_lss->system_rhs += _a
20)));

Listing 4.13: The code for the correction step in Chorin’s method

The implementation of Chorin’s method shows how different systems can
be combined to solve a problem with multiple unknowns, each interpolated
using a different shape function. The coding of the assembly procedure
closely follows the mathematical formulation.

70 Chapter 4. Domain specific language

4.3.3 PSPG/SUPG stabilized incompressible Navier-Stokes

The easy implementation of the method presented in section 3.1.1 was one of
the main resaons for developing our language. Equations (3.6) to (3.13) are
assembled into a single linear system using the elements expression defined
in listing 4.14 (showing only the part relevant to the assembly itself). Since

1 assembly->set_expression(elements_expression
2 (
3 AllElementsT(),
4 group
5 (
6 _A = _0, _T = _0,
7 compute_tau(u, nu_eff, u_ref, lit(tau_ps), lit(tau_su), lit(tau_bulk)),
8 element_quadrature
9 (

10 _A(p , u[_i]) += transpose(N(p) + tau_ps*u_adv*nabla(p)*0.5) * nabla(u)[_i]
11 + tau_ps * transpose(nabla(p)[_i]) * u_adv*nabla(u),
12 _A(p , p) += tau_ps * transpose(nabla(p)) * nabla(p) / rho,
13 _A(u[_i], u[_j]) += transpose((tau_bulk + 1./3.*nu_eff)*nabla(u)[_i]
14 + 0.5*u_adv[_i]*(N(u) + tau_su*u_adv*nabla(u))) * nabla(u)[_j

],
15 _A(u[_i], u[_i]) += nu_eff * transpose(nabla(u)) * nabla(u)
16 + transpose(N(u) + tau_su*u_adv*nabla(u)) * u_adv*nabla(u),
17 _A(u[_i], p) += transpose(N(u) + tau_su*u_adv*nabla(u)) * nabla(p)[_i] / rho,
18 _T(p , u[_i]) += tau_ps * transpose(nabla(p)[_i]) * N(u),
19 _T(u[_i], u[_i]) += transpose(N(u) + tau_su*u_adv*nabla(u)) * N(u)
20),
21 system_rhs += -_A * _x,
22 _A(p) = _A(p) / theta,
23 system_matrix += invdt() * _T + theta * _A
24)));

Listing 4.14: The assembly of the PSPG/SUPG stabilized incompressible
Navier-Stokes equations.

only one linear system is involved, the code is integrated into the framework
in the same way as in listing 4.10. The value of the coefficients τ depend on
local element properties, as explained in section 3.1.1. We calculate them
using a user-defined terminal compute_tau, passing a reference to a double
for each coefficient (line 7). On line 13, we use indices _i and _j to create a
nested loop over the dimension of the problem, filling all Auiuj blocks. The
right hand side from equation (3.3) is built by applying the element matrix
A to the current element unknowns xe, represented by _x. On line 22, we
divide by θ to avoid the use of the θ scheme on the continuity equation,
improving stability. Finally, on line 23 we write the system matrix as in the
left hand side of equation (3.3).

4.4 Performance analysis

In this section we discuss the results of some performance tests, using the
application examples from the previous section. Table 4.1 lists our system

4.4. Performance analysis 71

Poisson and Chorin PSPG/SUPG (per machine)
CPU(s) Intel i7-2600 Two Intel Xeon E5520
RAM 16 GB 24 GB
Operating system Fedora 18 CentOS 6.2
Compiler GCC 4.7.2 GCC 4.8.0
Trilinos version 11.4.1 11.2.3

Table 4.1: System characteristics for the performance tests.

characteristics, where the SUPG/PSPG test uses a different system because
it concerns a large-scale test run on our cluster.

4.4.1 Poisson problem

Our first performance test concerns the Poisson problem. The element equa-
tions (4.9) can easily be calculated analytically when using linear shape func-
tions, allowing a comparison between manually coded versions, a code using
a virtual function interface to the shape functions and code generated using
our language. Additionally, we will compare with a specialized user-defined
terminal containing the manually coded version and with DOLFIN [98] from
the FEniCS project. Problem (4.9) is completed with boundary conditions
and a source term identical to the Poisson demo case from FEniCS:

f = −6 over Ω (4.15)

u = 1 + x2 + 2y2 over Γ (4.16)

When using linear shape functions, the solution for the discrete system cap-
tures the analytical solution up to machine precision at the nodes. As an
illustration, the code for the specialized user-defined terminal is presented
in listing 4.15. The terminal assemble_triags can then be used to directly
assemble the linear system as shown on line 41. The manually coded ver-
sion uses the same algorithm, but here we also loop over elements directly,
avoiding the use of Proto entirely.

We first run a test on the unit square, divided into 1000 parts in both the x
and y direction. Each square cell is divided into two triangles and first order
shape functions from the Lagrange family are used. Table 4.2 summarizes
the results, with labeling as follows: “Proto” is the code using our EDSL
(see listing 4.10); “Specialized” is the user-defined terminal from listing 4.15;
“Manual” is the manually coded assembly loop; “Virtual” is the code using
the virtual function interface to the shape functions as it is available in
Coolfluid 3 and finally “DOLFIN” is the code generated by the FEniCS
project demo. All timings represent the average of 10 assembly runs. Due
to the simplicity of the Poisson problem, the insertion into the global sparse
matrix structure can actually be more expensive than the evaluation of the
element integrals. We run the benchmark using both the Trilinos backend

72 Chapter 4. Domain specific language

1 // Specialized code for triangles
2 struct PoissonTriagAssembly
3 {
4 typedef void result_type;
5 // Functor that takes: source term f, Linear system lss, element matrix and vector acc
6 template<typename FT, typename LSST>
7 void operator()(const FT& f, LSST& lss, math::LSS::BlockAccumulator& acc) const
8 {
9 typedef mesh::LagrangeP1::Triag2D ElementT;

10 // Get the coordinates of the element nodes
11 const ElementT::NodesT& nodes = f.support().nodes();
12

13 // Compute normals
14 ElementT::NodesT normals;
15 normals(0, XX) = nodes(1, YY) - nodes(2, YY);
16 // ... repetitive code omitted
17 // Jacobian determinant
18 const Real det_jac = normals(2, YY)*normals(1, XX) - normals(1, YY)*normals(2, XX);
19 const Real c = 1. / (2.*det_jac);
20

21 // Indices of the nodes of the current element
22 acc.neighbour_indices(f.support().element_connectivity());
23

24 for(Uint i = 0; i != 3; ++i)
25 for(Uint j = 0; j != 3; ++j)
26 acc.mat(i, j) = c * (normals(i, XX)*normals(j, XX) + normals(i, YY)*normals(j,

YY));
27

28 // Get the values of the source term
29 const Real f0 = f.value()[0];
30 // ... f1 and f2
31 acc.rhs[0] = (2*f0 + f1 + f2);
32 // ... acc.rhs[1] and acc.rhs[2]
33 acc.rhs *= det_jac/24.;
34 lss.matrix().add_values(acc);
35 lss.rhs().add_rhs_values(acc);
36 }
37 };
38 // Create an terminal that can be used as a function in a proto expression
39 static MakeSFOp<PoissonTriagAssembly>::type const assemble_triags = {};
40 // Usage example:
41 assembly->set_expression(elements_expression
42 (
43 boost::mpl::vector1< mesh::LagrangeP1::Triag2D>(),
44 assemble_triags(f, system_matrix, m_block_accumulator)
45));

Listing 4.15: Code for the specialized user-defined terminal, valid for linear
shape functions over a triangle.

(using an Epetra CRS matrix) and a “dummy” matrix —i.e. not storing
any data— to properly time the assembly procedure. As seen from table 4.2,
the overhead of the matrix insertion is about 0.3 s in Coolfluid 3 and 0.8 s in
DOLFIN, i.e. at least of the order of the time it takes to compute the element
matrix itself. When comparing the timings for the dummy matrix, we see
that the generic Proto code —which uses second order Gauss quadrature—
is more than 5 times slower than the manually coded version. The difference
between the specialized and the manual versions is much smaller. Since the
specialized code still uses the Proto element looping mechanism, we can

4.4. Performance analysis 73

Dummy matrix Epetra matrix
Wall clock Relative Wall clock Relative

Proto 0.32 s 1 0.61 s 1
Proto Specialized 0.069 s 0.22 0.35 s 0.57
Manual 0.054 s 0.17 0.34 s 0.56
Virtual 2.82 s 8.81 3.18 s 5.21
DOLFIN 0.31 s 0.97 1.13 s 1.85

Table 4.2: Linear system assembly times (wall clock time and timing relative
to Proto) for the Poisson problem on the unit square, using first
order triangle shape functions on a 1000x1000 grid.

conclude that its inherent overhead is small. We confirmed this by profiling
the assembly with gperftools1, generating the call graphs shown in figure 4.3.
Each graph starts off in the base class TimedAction. On the left, the generic
Proto code is seen to be mostly inlined into the element looper, with only
10% of the time spent in calls to shape functions. For the specialized and
manual versions, these calls are no longer made and everything is inlined,
either in the Proto element loop or in the concrete implementation of the
manual loop. The overhead in the generic Proto code is due to the extra
matrix operations involved in the second order quadrature. For the user-
defined terminal, some small overhead remains, due to index conversions in
the Proto data structure that are used in the case that the expression is only
used on part of the mesh.

The virtual function implementation performs much worse than any other
method. Like Proto, it allows writing generic code for all elements, but
does so by using virtual function calls and dynamically allocated matrices.
This makes the method much slower than the Proto code. A separate test
comparing dynamically and statically sized matrices (size 4x4) from the
Eigen library shows a slowdown by a factor of about 8 for dynamic matrices
when running matrix-matrix and matrix-vector multiplications, reinforcing
the results from table 4.2.

In DOLFIN, the right hand side and the matrix are computed using sep-
arate assembly loops. The presented timing is the total time spent on as-
sembly, divided by the number of assembles executed. For this particular
case, Proto and DOLFIN result in the same performance. This is surprising,
since the more advanced integration routines in DOLFIN detect here that
first order quadrature is sufficient, while our Proto code assumes the worst
case and applies second order integration.

The above observation leads us to perform the test in 3D, using a unit
cube with 100 segments in each direction and built up of tetrahedra. We only
compare the Proto and DOLFIN versions, since this code can be applied in
3D without modification. The effect of the quadrature order is obvious here,

1http://code.google.com/p/gperftools

http://code.google.com/p/gperftools

74 Chapter 4. Domain specific language

Dummy matrix Epetra matrix
Wall clock Relative Wall clock Relative

Proto, default 3.29 s 1 5.51 s 1
Proto, hexahedra 4.60 s 1.40 5.65 s 1.03
Proto, 1st order 0.81 s 0.25 2.64 s 0.48
DOLFIN 1.22 s 0.37 5.05 s 0.92

Table 4.3: Linear system assembly times (wall clock time and timings rela-
tive to the default Proto implementation) for the Poisson prob-
lem on the unit cube, using first order tetrahedron or hexahedron
shape functions on a 100x100x100 grid.

with our second order quadrature being almost three times slower than the
first order quadrature performed by DOLFIN. To check if this is the only
effect, we temporarily forced our code to use first order quadrature, i.e. using
one quadrature point instead of four. The speedup is as expected, but we do
emphasize that it is only obtained after modification of the integration code:
we do not have a method for determining the integration order based on the
terms appearing in the equations. Instead, our integration system assumes
there is a mass matrix term in the equation, and proceeds to choose the
integration order based on the shape function. If the performance penalty
is significant, as is mostly the case with simple problems, it is possible to
use a user-defined terminal to override the integration method, or even to
avoid numerical integration altogether.

We also include some results for hexahedral elements, where the second
order quadrature is necessary. The element matrix dimension is also dou-
bled, resulting in longer computation times for the matrix operations. We
see that this is compensated here when inserting into the sparse matrix, due
to the lower number of elements (each hexahedron represents 6 tetrahedra).

4.4.2 Chorin’s method

In Chorin’s method, there are a total of 6 different assembly loops to be run:
one for each system matrix, and one for each right hand side. Even though
the matrices only need to be assembled once for the simulation, we present
timings here for comparison purposes. Table 4.4 summarizes the results. We
see that except for the auxiliary matrix assembly, DOLFIN is faster every
time, with a very large discrepancy for the correction matrix assembly. This
is due to an optimization in DOLFIN, which recognizes the coefficients of
the element matrix can easily be precomputed, avoiding quadrature. Our
code does not allow this optimization to happen automatically, although it
is of course possible to add a user-defined terminal. In the auxiliary matrix,
the same term appears, but here it is divided by ∆t, causing DOLFIN to
apply quadrature.

4.4. Performance analysis 75

common
TimedAction

execute
0 (0.0%)

of 326 (99.1%)

Proto
ProtoAction

execute
0 (0.0%)

of 326 (99.1%)

326

Proto
ElementLooperImpl

run
296 (90.0%)

of 326 (99.1%)

296

mesh
LagrangeP1

Triag
compute_value

19 (5.8%)
of 22 (6.7%)

16

boost
detail

sp_counted_base
release

0 (0.0%)
of 6 (1.8%)

6

mesh
LagrangeP1

Triag
compute_gradient

6 (1.8%)

3

mesh
LagrangeP1

Triag2D
compute_jacobian

5 (1.5%)

4

Proto
ElementsExpression

loop
0 (0.0%)

of 326 (99.1%)
326

326

13

3

6

3

4

common
TimedAction

execute
0 (0.0%)

of 71 (100.0%)

Proto
ProtoAction

execute
0 (0.0%)

of 71 (100.0%)

71

Proto
ElementsExpression

loop
71 (100.0%)

71

71
UFEM
demo

PoissonManualAssembly
execute

53 (98.1%)

common
TimedAction

execute
0 (0.0%)

of 53 (98.1%)

53

Figure 4.3: Call graphs of optimized code for the Poisson element matrix
computation, from left to right: the generic Proto code, the
Proto code with user-defined terminal and the manually coded
version.

Dummy matrix Epetra matrix
Proto DOLFIN Proto DOLFIN
Wall Wall Relative Wall Wall Relative

Aux. matrix 4.33 s 10.15 s 2.34 7.17 s 17.98 s 2.51
p matrix 0.28 s 0.19 s 0.67 0.53 s 0.75 s 1.42
Corr. matrix 2.38 s 0.22 s 0.09 5.23 s 8.09 s 1.55
Aux. RHS 3.12 s 1.17 s 0.375 3.18 s 2.32 s 0.73
p RHS 0.85 s 0.40 s 0.47 0.86 s 0.85 s 0.99
Corr. RHS 1.23 s 0.35 s 0.28 1.26 s 1.59 s 1.26

Table 4.4: Assembly times for each step in Chorin’s method, compared
between our Proto expressions and DOLFIN. Relative is the
DOLFIN timing in multiples of the Proto timing.

The Proto-generated code is currently sub-optimal for the assemblies of
the right hand sides. This is due to some missed chances for matrix reuse:

76 Chapter 4. Domain specific language

the advection operation in equation (4.12), for example, is calculated once
for every component. While this effect is significant when we eliminate the
influence of the linear system, it is much less apparent when looking at the
results for Epetra matrices and vectors. This leads us to conclude that our
performance level is adequate for practical use and the element matrix and
vector calculations will not be a dominant factor in the total solution time.

4.4.3 Channel flow simulation

In the last performance test, we take a look at a practical example, us-
ing the PSPG/SUPG stabilized Navier-Stokes formulation from listing 4.14.
The test problem is the flow between two infinite flat plates, i.e. a 3D chan-
nel flow with two periodic directions. We initialize the flow using a laminar
solution with centerline Reynolds number of 11250 with respect to the chan-
nel half-height. We apply periodic boundary conditions in the stream- and
span-wise directions and a no-slip condition at the walls. The average tim-
ings for the first 100 timesteps (initial Courant number: 0.57) are presented
in table 4.5. We ran the test using hexahedra and tetrahedra, where the

CPU Element Assembly Solution Solution
Assembly

32
Hexa 8.97 s 90.90 s 10.14
Tetra 7.69 s 73.06 s 9.51
Tetra Specialized 2.73 s 70.95 s 25.99

64
Hexa 4.89 s 48.33 s 9.88
Tetra 4.14 s 40.59 s 9.81
Tetra Specialized 1.45 s 40.15 s 27.67

128
Hexa 3.05 s 32.91 s 10.47
Tetra 2.58 s 54.53 s 21.13
Tetra Specialized 0.99 s 46.32 s 46.70

Table 4.5: Assembly and solution times for the coupled PSPG/SUPG stabi-
lized Navier-Stokes equations (listing 4.14) on a 3D channel flow
with 128 hexahedra (tetrahedralized in the tetra cases) in each
direction.

test on tetrahedra also used a specialized code wrapped into a user-defined
terminal (“Tetra Specialized” in the table). The linear system was solved
using the Belos Block GMRES method from Trilinos, preconditioned using
ML algebraic multigrid. We tweaked the settings to obtain the fastest pos-
sible solution time. We see that the solution of the system takes about 10
times as long as its assembly using our EDSL. This shows that even for the
relatively complicated assembly expressions of equations (3.6) - (3.13), our
language can be used to assemble the system efficiently. Any further opti-
mization should first focus on the linear system solution before the assembly
will become a bottleneck.

4.5. Conclusion and future work 77

The user-defined code for tetrahedra results in a further speedup factor of
2.5. In this case, the code was reused from a previous version of the solver,
written only for tetrahedra. A domain specific language can also assist
in developing hand-tuned code, however: using the language we can first
easily specify the generic formulation, and then check the element matrices of
manually coded optimizations against the automatically generated matrices.

4.5 Conclusion and future work

We presented a domain specific language for the implementation of finite
element solvers, embedded in C++. The language mirrors mathematical
notation faithfully, allowing users to focus on the modeling of the physical
problem. It is set apart from other work in this area by the use of the
Boost.Proto library, which allows using concise grammars to describe and
extend the functionality of the language. This mechanism was explained in
detail using a stand-alone example. The addition of user defined terminals
allows using hand-optimized code when possible, while staying within the
automated framework for element looping.

We also analyzed the performance, demonstrating acceptable abstraction
overhead when compared to manual implementations and FEniCS. A large
scale test with the PSPG/SUPG method for the incompressible Navier-
Stokes equations showed that assembly took up to 10% of the linear system
solution time.

Possible directions for future development include changes to the numer-
ical integration framework, to better deduce the required quadrature order.
On a more technical level, some parts of the code could be simplified by
using new features of the C++11 standard, such as variadic templates and
automatic return type deduction. Better error handling can also be looked
into. One final interesting possibility is the investigation of expression op-
timization techniques. Using grammars, it is theoretically possible to scan
the expressions for recurring matrix products, and calculate each product
only once, for example.

Part II

Validation

Chapter 5

Reference cases

5.1 Fluid model

5.1.1 Taylor-Green vortices

We first apply the flow solver to the Taylor-Green periodic vortices, advected
by a constant velocity field. The advantage of this test case is that it is a
time dependent problem with an analytical solution in closed form. It is
therefore ideal to perform some numerical tests regarding the accuracy of
the method. The velocity components, the pressure and the vorticity as a
function of spatial coordinates and time are:

u =Ua − Vs cos
(π
D

(x− Uat)
)

sin
(π
D

(y − Vat)
)
e−

2νπ2

D2 t

v =Va + Vs sin
(π
D

(x− Uat)
)

cos
(π
D

(y − Vat)
)
e−

2νπ2

D2 t

p =− V 2
s

4
(cos(2

π

D
(x− Uat))+

cos(2
π

D
(y − Vat)))e−

4νπ2

D2 t

ω =
2Vsπ

D
cos(

π

D
(x− Uat)) cos(

π

D
(y − Vat))e−

4νπ2

D2 t

This flow field represents two-dimensional, periodic vortices with diameter
D and initial maximal swirl velocity Vs, advected by the advection velocity
(Ua,Va), and dissipating due to the kinematic viscosity ν. We use the fol-
lowing values in our tests (based on [49]): D = 0.5 m, Vs = 1 m/s, Ua = 0.3
m/s, Va = 0.2 m/s and ν = 0.001 m2/s. The flow field is visualized in figure
5.1, using contours of the dimensionless vorticity ω/ω0 and dimensionless
time tVs/(2D). From these images, it is clear that the vortex centers move
along the advection velocity vector. Viscosity redistributes the vorticity un-
til it uniformly reaches zero everywhere in the domain, as indicated by the
decrease in vorticity magnitude in the figures.

For the numerical simulations, we initialize the flow with the analytical
solution at time t = 0 and set periodic boundary conditions in both direc-
tions. Since this determines the pressure only up to a constant, we impose
the pressure in the center of the domain, setting it equal to the analytical
solution at every time step. In a first test, we will determine the effect of

82 Chapter 5. Reference cases

-0.50 -0.25 0.00 0.25 0.50

x/2D

-0.50

-0.25

0.00

0.25

0.50

y
/
2
D

-0.8

-0.8 -0.8

-0.8

-0
.5

-0.5 -0.5

-0
.5

-0
.2

-0
.2

-0
.2

-0
.2

0
.0

0.0 0.0

0
.0

0.2

0
.2

0.2

0.2 0.2

0
.5

0.5

0.5

0.
5

0
.5

0.8

0.
8

0.8

0.8 0.8

(a) t = 0

-0.50 -0.25 0.00 0.25 0.50

x/2D

-0.50

-0.25

0.00

0.25

0.50

y
/
2
D

-0.8

-0.8

-0.8

-0.5

-0.5

-0.5

-0
.2

-0
.2

-0
.2

0
.0

0
.0

0.0

0.0

0.2

0.2

0.2

0.5

0.5

0.5

0.8

0.8

0.8

(b) t = 2.5

Figure 5.1: Contours of dimensionless vorticity, at dimensionless time 0 (a)
and 2.5 (b).

the number of inner iterations M, using a grid of 64x64 quadrilaterals that
are triangulated for the triangle element tests. In figure 5.2, the error of the
segregated solution is compared to the fully coupled solution, defining the
relative difference with the coupled solution as, for the x-component of the

5.1. Fluid model 83

1 2 3 4 5 6 7 8

Number of iterations M

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101
102
103
104

R
el

a
ti

v
e

d
iff

er
en

ce
w

it
h

co
u

p
le

d
so

lu
ti

o
n

Quads, 0.004

Triags, 0.004

Quads, 6.0

Triags, 6.0

Figure 5.2: Comparison between the fully coupled solution of the linear sys-
tem and the current method, as a function of the number of
inner iterations and at two dimensionless times 0.004 (i.e. after
one time step) and 6.0.

velocity:
maxΩ |uc − us|
maxΩ |uc − uth|

(5.1)

Here, uc is the solution of the coupled system of equations, us is the segre-
gated solution and uth is the analytical solution. For M = 1 and at time
6, the difference between the segregated and the coupled solution is about
10 times greater than the error between the fully coupled solution and the
analytical solution, i.e. the absolute error is an order of magnitude greater.
When we increase the number of iterations to two, the difference between
both methods is two orders of magnitudes smaller than the absolute er-
ror, i.e. the difference is negligible and increasing the number of iterations
further is not necessary. The difference flattens off after 4 iterations. At
the first time step (time 0.004), the iterative technique converges towards
the coupled solution as the number of iterations increases. Again, the differ-
ence with the coupled solution decreases with two orders of magnitude when
using two iterations instead of one. We conclude from these observations
that two inner iterations offer a good balance between computational cost
and accuracy. This is no surprise: in [46] the authors point out that the
term including the effect of the mass matrix on the acceleration in the right
hand side of the velocity system only contributes from the second iteration
onwards, since we initialize the acceleration to zero each time step.

From figure 5.2, it is clear that the difference between the two methods

84 Chapter 5. Reference cases

0 5 10 15 20

Dimensionless time

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

X
v
el

o
ci

ty
er

ro
r

Quads, segregated

Triags, segregated

Quads, coupled

Triags, coupled

Figure 5.3: Maximum error over the domain for the x-component of the
velocity, for triangles and quadrilaterals and using the coupled
and segregated solution method using two inner iterations.

is greater at time 6 than after the first time step. This effect is better
illustrated in figure 5.3, where we have plotted the errors maxΩ |uc − uth| and
maxΩ |us − uth| as a function of time. Both errors reach a maximum around
time 10, and so does the difference between both methods. This difference
between the segregated and coupled solution remains small, varying between
2 % and 4 % of the difference with the analytical solution. This confirms
that two inner iterations suffice to reproduce the results of the fully coupled
solution.

Figure 5.4 shows the error for a series of meshes with N × N quadrilat-
erals (triangulated for the triangle results). The time step was adapted to
maintain a constant Courant number of 0.32 at the start of the simulation,
using ∆t = 0.256/N . We calculate the error as the maximum of the absolute
value of the difference with the analytical solution over the entire domain,
taking the maximum of either component for the velocity error. The veloc-
ity error after one time step (dashed line) follows the second order slope,
while the pressure error follows the first order slope. The errors at time 10
(i.e. near the maximum of figure 5.3) decrease with a slope between first
and second order. These effects are due to the time stepping: if we lower
the Courant number to 0.03, the pressures also follow the second order law,
as illustrated in figure 5.4. The errors for the coupled and the segregated
method overlap, further confirming the equivalence of both methods at the
time steps considered here.

Figure 5.5 shows the evolution of the maximum norm of the velocity error

5.1. Fluid model 85

32 64 128 256 512 1024

Grid size

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

V
el

o
ci

ty
er

ro
r

Quads, segreg.

Quads, coupled

Triags, segreg.

Triags, coupled

2nd order slope

1st order slope

32 64 128 256 512 1024

Grid size

10−7

10−6

10−5

10−4

10−3

10−2

P
re

ss
u

re
er

ro
r

Quads, segreg.

Quads, coupled

Triags, segreg.

Triags, coupled

CFL 0.03

1st order slope

Figure 5.4: Maximum norm of the error for the velocity vector and the pres-
sure, as a function of mesh size and with a constant Courant
number of 0.32. The dashed lines connect the errors after one
time step, the solid lines those at time 10. The lower plot
also shows pressure error for quadrilateral elements computed
at Courant number 0.03, denoted by the circles.

for increasing Courant numbers. The Courant number is computed here
using the maximum velocity projection for all element edges. The segregated
method becomes unstable when the Courant number reaches values close to
0.8, which is in line with the theoretical limits from [46]. Although we are
using Crank-Nicolson time stepping, the errors in figure 5.5 do not decrease

86 Chapter 5. Reference cases

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Courant number

0.002

0.003

0.004

0.005

0.006

0.007

V
el

o
ci

ty
er

ro
r

Quads, segregated

Quads, coupled

Triags, segregated

Triags, coupled

Figure 5.5: Maximum norm of the error for the velocity vector as a function
of Courant number on the 64x64 grid.

along a second order slope. Further tests with the fully coupled scheme show
that second order in time is only visible at Courant number 2 and higher. In
[108], a similar effect is visible in the numerical tests and this is attributed
to the spatial component of the error.

5.1.2 Turbulent channel flow

The plane channel flow, i.e. the flow between two infinite flat plates driven
by a uniform force parallel to the plates, is one of the most widely used
benchmark cases for turbulent flow simulations. The configuration is il-

x

yh

h

U

g

Figure 5.6: Problem configuration for the channel flow

lustrated in figure 5.6, looking along the z-axis which corresponds to the
spanwise direction. The acceleration due to the driving force is denoted g,
h is the channel half-height and U is the average streamwise velocity, which
is also the only non-zero average velocity component.

The Reynolds number is usually defined in terms of the half-height and
friction velocity, i.e. Reτ ≡ uτh/ν. For Reτ = 180, reference DNS data is

5.1. Fluid model 87

available from [109]. These results were later extended to Reτ = 395 and
Reτ = 590 in [110]. Their data is available online1 and is the standard
reference for channel flows at the given Reynolds numbers.

The turbulent channel flow is a challenging test for Large Eddy Simulation
[111]. Although we are not attempting any turbulence modeling in this work,
it is interesting to see how our implementation performs in the case of direct
numerical simulation. The purpose of our simulations is twofold. First, we
want to asses the accuracy of the chosen solution method using a turbulent
flow and gain insight in the dissipative nature of the solution scheme. For
a sufficiently fine mesh, the reference results should be recovered. Second,
DNS results with particles in the flow are available from e.g. [10], so we need
an accurate turbulent flow field as a basis for particle model validation.

To keep the mesh resolution requirements reasonable, and to match with
available results including particles, we only consider Reτ = 180.

Solution method

The simulation was performed using meshes with different resolutions, fol-
lowing the characteristics listed in table 5.1. The first column in this table
lists the number of nodes in each direction, not counting the periodic nodes
in the x and z directions. The parameter b defines the grading by using the

Nx ×Ny ×Nz ∆x+ ∆y+|y=0 ∆z+ b

32× 65× 32 70.69 11.06 23.56 0.9544
64× 65× 64 35.34 11.06 11.78 0.9544
128× 129× 128 17.67 5.422 5.890 0.9500
256× 257× 256 8.846 2.711 2.945 0.9500

Table 5.1: Properties of the different meshes.

formula from [50] to compute the y-coordinates of the nodes:

y =
h

b
tanh

(
ξ tanh−1 b

)
(5.2)

Here, ξ is uniformly spaced over the interval [−h, h]. The domain size is
the same as in [110] and [50], i.e. 4πh in the x-direction and 4πh/3 in the
z-direction. Our coarsest mesh matches the coarsest mesh from [50] exactly.
The resolution of 128 × 129 × 128 was also used in [110], but they used
Chebyshev points in the wall-normal direction, resulting in a different mesh
grading.

The simulations were carried out using the semi-implicit, segregated solver
described in section 3.1.2. For stabilization we used the formulation based
on the metric tensor (equations (3.20) to (3.25)), using the standard c1 = 1

1http://turbulence.ices.utexas.edu/MKM_1999.html

http://turbulence.ices.utexas.edu/MKM_1999.html

88 Chapter 5. Reference cases

and c2 = 16. Table 5.2 lists the time steps used for the different simulations,
together with the time over which statistics were collected. The dimension-
less time step is defined as ∆t+ ≡ ∆tu2

τ/ν. The flow was forced using a

Mesh ∆t+ Iterations Flow-throughs CFL

32× 65× 32 0.324 270000 601 0.19
64× 65× 64 0.130 124000 110 0.095
128× 129× 128 0.0648 160000 71 0.14
256× 257× 256 0.0324 90000 20 0.15

Table 5.2: Time steps and statistic collection durations.

constant body force, computed from the target friction Reynolds number
Reτ = 180. We initialized using the laminar solution, with up to 30% per-
turbation from a uniform random distribution. This is the same technique
as used in [50], but it is in contrast with [110], where a constant mass flux is
imposed by adjusting the mean pressure gradient. The advantage of using a
constant driving force is that no adjustment procedure is needed. The dis-
advantage is that it takes many iterations for the flow to decelerate to the
fully turbulent state. To mitigate this problem, we only applied the above
initialization on the coarsest mesh, and initialized the finer simulations us-
ing interpolation of the turbulent solution on the coarse grid. All averaging
was done both in time and in the homogeneous (i.e. parallel to the walls)
directions.

Results

Profiles of the mean velocity, RMS velocity fluctuations and the shear stress
are presented in figures 5.7, 5.8 and 5.9, respectively. Throughout the fig-
ures, the solid black lines represent the reference results from [110], the solid
gray line are the results on our finest mesh and the dashed and dotted lines
are the coarser meshes. Each graph represents the profiles for both the top
and bottom half of the channel, overlaid on the same graph for comparison.
Except for the finest mesh, both sides overlap, indicating good statistical
convergence.

From figure 5.7, it is immediately obvious that coarser meshes lead to an
over-prediction of the mean velocity near the center of the channel. This is
consistent with the results from e.g. [57], although in [50] the mean velocity
is lower than the reference results [110], using an identical 32 × 64 × 32
mesh. This is due to the adjustment using the parameter c1 in equation
(3.23), which was set to 16 in [50]. The finest mesh result visually overlaps
with the reference DNS.

The over-prediction of the maximum
√
u′u′ on coarse meshes, seen in

figure 5.8, is consistent with other results, including [50, 57, 112]. Again,

5.1. Fluid model 89

100 101 102

y+

0

5

10

15

20
u
+

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

Figure 5.7: Mean velocity profiles

0 20 40 60 80 100 120 140 160 180

y+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

√ v
′ v
′ /
u
τ
,
√ w

′ w
′ /
u
τ
,
√ u
′ u
′ /
u
τ

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

Figure 5.8: RMS velocity fluctuations, from top to bottom:
√
u′u′/uτ ,√

w′w′/uτ ,
√
v′v′/uτ

the finest mesh produces the correct result, but there is a slight difference
between the top and bottom half of the channel. This is due to an incomplete
statistical convergence, since we were only able to collect statistics for 20
flow-through times in this case, corresponding already to more than a full
month of simulation using 4 nodes on the VKI cluster (see table 3.1).

90 Chapter 5. Reference cases

0.0 0.2 0.4 0.6 0.8 1.0

(|y| − h)/h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

∣ ∣ (ν∂
U
/
∂
y
)/
u
2 τ

∣ ∣ ,∣ ∣ ∣u′ v′
/
u
2 τ

∣ ∣ ∣and
su

m

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

Figure 5.9: Absolute values of the shear stresses on both sides of the channel,
i.e. the mean shear stress (

∣∣(ν∂U/∂y)/u2
τ

∣∣, near unity at the

wall), the Reynolds shear stress (
∣∣u′v′/u2

τ

∣∣, zero at the wall and
the center) and their sum.

In figure 5.9 an over-prediction of the Reynolds shear stress is observed for
coarse meshes. This results in an apparent violation of the stress balance,
which can be shown theoretically to be exactly linear (e.g. [113]). The
simulations are only a numerical approximation, however, and the resulting
errors may cause deviations from the stress balance. It is clear, however,
that the imbalance in the stresses is greatly reduced as the mesh is refined.

The energy spectra presented in figures 5.10 to 5.12 were computed using
the Fast Fourier transform on the streamwise and spanwise velocity auto-
correlation functions. As expected, the finest mesh results are close to the
reference spectra, but they are still quite noisy due to the incomplete con-
vergence of the statistics. In most cases, the spectra for the 128× 129× 128
mesh drop off sooner than the reference DNS, indicating that our finite ele-
ment discretization is more dissipative than the spectral/Chebyshev method
used in [110].

5.2 Particle model

5.2.1 Taylor-Green vortices

In [71], the preferential concentration of bubbles in the Taylor-Green vor-
tex flow was studied, using equation (3.50), except for the locally-implicit

5.2. Particle model 91

100 101

kx

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
u
u

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101 102

kz

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
u
u

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101

kx

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
u
u

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101 102

kz

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
u
u

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

Figure 5.10: Energy spectra for u′u′. Left: streamwise direction, right:
spanwise direction. Top: Centerline, bottom: y+ ≈ 5

92 Chapter 5. Reference cases

100 101

kx

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
v
v

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101 102

kz

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
v
v

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101

kx

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
v
v

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101 102

kz

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
v
v

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

Figure 5.11: Energy spectra for v′v′. Left: streamwise direction, right: span-
wise direction. Top: Centerline, bottom: y+ ≈ 5

5.2. Particle model 93

100 101

kx

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
w
w

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101 102

kz

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
w
w

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101

kx

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
w
w

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

100 101 102

kz

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
w
w

Ref. [110]

32× 65× 32

64× 65× 64

128× 129× 128

256× 257× 256

Figure 5.12: Energy spectra for w′w′. Left: streamwise direction, right:
spanwise direction. Top: Centerline, bottom: y+ ≈ 5

94 Chapter 5. Reference cases

factor. We repeat the same test here, to verify the correctness of our im-
plementation. We adapt the parameters to match the study [71], so we set
Ua = Va = 0, Vs = 1/4π m/s and ν = 1/5000 m2/s. For the particle phase,
we set τ = 1/4 s and β is set to 0 for solid particles and 3 for bubbles.
To stay coherent with the reference data, we use the non-dimensional time
4πVst/2D.

Before moving on to the particle concentration field, we examine the par-
ticle velocity itself. Due to the explicit nature of equation (3.50) and the
simple analytical solution of the flow field, it is possible to compute an an-
alytical solution of the particle velocity field and use that to investigate the
errors resulting from different approximations (discussed in section 3.2.1) of
the velocity gradient. The analytical solution was obtained using computer
algebra software and is omitted here for the sake of brevity. Figure 5.13
shows the evolution of the error as we increase the grid size from 32x32 to
512x512. The grid is graded in the vertical direction, to assess the effect
of a non-uniform mesh. The complete finite element formulation (equation
(3.55)) yields the most accurate result. The node-based formulation of equa-
tion (3.56) has an error that is almost twice as large, but still follows the
second order slope. Finally, the finite element formulation that makes use
of a lumped mass matrix is almost an order of magnitude less accurate than
the other methods. Given the large gain in performance and the small cost
in accuracy, the node-based formulation is chosen for this work. Figure 5.14

32 64 128 256 512

Grid size

10−7

10−6

10−5

10−4

10−3

V
el

o
ci

ty
er

ro
r

FEM

Lumped

Nodes

2nd order slope

Figure 5.13: Maximum norm of the particle velocity error over the do-
main when compared with the analytical solution, at non-
dimensional time 2

shows the particle velocity field, using vectors and contours of the X-velocity.

5.2. Particle model 95

The contours for the Y-velocity are not shown, but could be obtained by
rotating the figure 90◦ counter clockwise. Due to the particle inertia, solid
particles migrate out of the vortices. Bubbles tend to accumulate near the
vortex centers, due to the effect of the fluid acceleration force. These effects
can be seen in the velocity vector field, where the vectors circling the cen-
tral vortex are directed more towards the center for bubbles than for solid
particles.

The velocity vectors also indicate that the particle velocity field is not
divergence-free. Around the point (1/4, 1/4) in figure 5.14a for example,
the horizontal vectors are shorter than the vertical vectors at an equal dis-
tance from this point, resulting in a non-symmetric distribution of the par-
ticles. This effect is reflected in the particle concentration distributions,
shown in figure 5.15. For both bubbles and solid particles, the concentra-
tion field shows stretched patches at the corners between vortices, which are
the result of the different magnitudes for the horizontal and vertical velocity
components. As expected, the concentration field for the bubbles shows a
maximum near the vortex centers, while the solid particles migrate away
from the vortex centers. The streamlines also show the particles spiraling
outwards for solid particles and inwards for bubbles. To do a quantitative
analysis of the concentration field, it is possible to obtain an analytical so-
lution of the particle concentration evolution with time, as was also done
in [71]. We extend the analysis to be applicable for all values of β and we
retain the locally implicit term. The equation is obtained by observing that
the concentration reaches an extremum at the vortex center, so its gradient
reaches zero. Neglecting Brownian motion, we obtain the following equation
for the concentration:

dc

dt
+ c(t) (∇ · v)x=0,y=0 = 0 (5.3)

Filling in the expression for the divergence of the Taylor-Green particle
velocity field, evaluated at the origin, yields the time evolution of the con-
centration at the vortex center:

c(t) = c0 exp

[
(β − 1)

(
1

2νπ2τ
+

1

D2

)(
4νπ2t

−D2 log

(
D2 exp

(
4νπ2t

D2

)
+ (πVsτ)2

))]
·
(
D2 + (πVsτ)2

)(β−1)(D2/(2νπ2τ)+1)
(5.4)

We can compare this with the result from [71], adapted to our notation and
generalized for any β:

c(t) = c0 exp

[
V 2
s (β − 1)τ

2ν

(
1− exp

(
−4νπ2t

D2

))]
(5.5)

96 Chapter 5. Reference cases

-0.50 -0.25 0.00 0.25 0.50

x/2D

-0.50

-0.25

0.00

0.25

0.50

y
/
2
D

-0.8

-0
.8

-0.8

-0
.5

-0.5

-0
.5

-0.2

-0
.2

-0.2

0
.0

0.0

0
.0

0.0

0
.0

0.2

0.2

0
.2

0
.5

0.
5

0.5

0.8

0.8

0.8

(a) Bubbles (β = 3)

-0.50 -0.25 0.00 0.25 0.50

x/2D

-0.50

-0.25

0.00

0.25

0.50

y
/
2
D

-0
.8

-0
.8

-0
.8

-0.5

-0.5

-0
.5

-0.2 -0.2

-0.2

0.0

0
.0

0
.0

0
.0

0.0

0.2

0
.2 0

.2

0.5

0.5
0.5

0.8

0.8 0.8

(b) Solid particles (β = 0)

Figure 5.14: Velocity vectors and contours of the X-velocity for the particles,
normalized by Vs, at non-dimensional time 2.

Figure 5.16 plots both equations, together with the numerical result on a
64x64 uniform mesh. Both analytical solutions and the numerical solution
appear to be very close together. The excellent agreement can be explained
by the small particle relaxation time (τ = 1/4) which satisfies the hypothesis
of the equilibrium Euler model very well. When we increase the relaxation

5.2. Particle model 97

-0.50 -0.25 0.00 0.25 0.50

x/2D

-0.50

-0.25

0.00

0.25

0.50
y
/
2
D

0
.8

0.8

0
.8

0.8

0.9

0.9

0
.9

0.9
1
.1

1.1

1.
1

1.
1

1.1

1.1

1.1
1.1

1.1

1.2 1.2 1.
2

1.2

1.2

1.
2

1.
2 1.2

1.2

1.4

1
.4

1.
4 1

.4

1.4

(a) Bubbles (β = 3)

-0.50 -0.25 0.00 0.25 0.50

x/2D

-0.50

-0.25

0.00

0.25

0.50

y
/
2
D

0.
9

0.
9

0.9

0.9

0.
9

1
.0

1.0

1.
0

1
.0 1.

0

1
.0

1.0
1.01.0

1.0

1.0

1.
0

1.0

1
.1

1.1

1.1

1.1

1
.21.

2

1
.2

1.
2

(b) Solid particles (β = 0)

Figure 5.15: Particle streamlines and volume fraction contours, normalized
by the initial uniform volume fraction and shown at non-
dimensional time 2.

time to τ = 3/4, the simpler analytical model (5.4) predicts peak concen-
trations that are more than twice as large as the values from the locally
implicit approach. This indicates that the higher accuracy of the approx-
imation dv/dt ≈ du/dt becomes more important as τ increases. At this

98 Chapter 5. Reference cases

0 2 4 6 8 10 12 14 16

4πVst/2D

0

5

10

15

20
c c 0

Eq. (5.4)

Eq. (5.5)

Numerical

(a) τ = 1/4, mesh size 64

0 2 4 6 8 10 12 14 16

4πVst/2D

0

1000

2000

3000

4000

5000

6000

7000

8000

c c 0

Eq. (5.4)

Eq. (5.5)

Numerical

(b) τ = 3/4, mesh size 512

Figure 5.16: Particle volume fraction at the domain center for bubbles (β =
0), relative to the initial concentration c0, for relaxation times
τ = 1/4 and τ = 3/4

relatively high relaxation time, steep concentration gradients appear in the
solution, and a mesh size of 512 was necessary to avoid oscillations and
negative concentrations.

When increasing τ , we should mind the basic hypothesis of the equilibrium
Euler approach, namely that the particle velocity field can be represented as

5.2. Particle model 99

32 64 128 256 512

Grid size

10−6

10−5

10−4

C
o
n

ce
n
tr

a
ti

o
n

er
ro

r

Figure 5.17: Error of the bubble volume concentration at the vortex center
at time 0.1, normalized by the initial concentration. Evolution
as a function of uniform mesh size, with the second order slope
as reference (dotted line).

a unique vector field over the domain. In [17], a rigorous condition was es-
tablished to verify that this is the case. The condition is that all eigenvalues
of the matrix

1

2

(
∇v +∇vT

)
(5.6)

are greater than −1/τ at every node in the domain. We have verified that
this condition is satisfied for both relaxation times used in the current test.

In figure 5.17, we plot the evolution of the error at the vortex center as a
function of the mesh size. For each grid, the simulation was run up to time
0.1 and the time step was adjusted to keep a constant Courant number as
3.2/N , where N is the number of grid points. The expected second order
slope is almost recovered, with a slight deviation that is likely due to errors
introduced by the time discretization.

5.2.2 Burgers vortex

In [89], the collision rates of rain drops are studied using the same collision
kernel as we describe in table 3.3, using the Burgers vortex as fluid flow field.
The method is based on the calculation of particle trajectories, so collision
rates in [89] are only visualized on top of particle trajectories. Still, it is
possible to compare the collision rate fields that we obtain with the figures
from [89] to verify the correctness of our implementation.

100 Chapter 5. Reference cases

The Burgers vortex is often used to approximate a turbulent structure.
The velocity components of the flow field are given by:

u = − r2
0yω0

2(x2+y2)

(
1− e

− x
2+y2

r20

)
(5.7)

v =
r2
0xω0

2(x2+y2)

(
1− e

− x
2+y2

r20

)
(5.8)

Here, ω0 is the vorticity at the center of the vortex and r0 is a parameter
related to the size of the vortex. In this validation of the particle collision
model, we directly impose these values as a steady flow field and no fluid
computation is performed.

Three particle sizes are considered, the properties of which are listed in
table 5.3 in the presence of a weak and strong vortex. The Stokes number

Weak Strong
(ω0 = 18 s−1, (ω0 = 180 s−1,
r0 = 1 cm) r0 = 1/3 cm)

Diameter (µm) τp (s) Stw Sts

20 1.3× 10−3 2.5× 10−3 2.5× 10−2

40 5.2× 10−3 1.0× 10−3 1.0× 10−2

80 2.1× 10−2 4.0× 10−2 4.0× 10−1

Table 5.3: Particle relaxation time and Stokes numbers for the weak and
strong vortices.

is defined as 0.11ω0τp, where the factor 0.11 appears because this number
is defined at the location of the maximum flow velocity. To simulate the
effect of gravity, an acceleration of 10 m/s2 is imposed for the body force on
the particles. The initial condition and boundary condition at the top are
a uniform concentration for each particle size.

Figures 5.18 and 5.19 show the resulting collision rates. The collision rate
is defined as:

nα(x, t)nγ(x, t)

nα0nγ0
βαγ (5.9)

This is the collision kernel multiplied with the product of the particle num-
ber concentrations, normalized by the initial (uniform) concentration. The
collision kernel βαγ is the sum of equation (3.68) and the appropriate ex-
pression from table 3.3. In [89], results are only presented along particle
trajectories, and large gaps are present. Overall, however, our contours
appear to match with their values.

It is also interesting to compare the collisions between particles of different
sizes with the collisions between particles of the same size. Figure 5.20 shows
the collision rate among particles with dp = 20 µm . In contrast with figures

5.2. Particle model 101

-4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

y
(c

m
)

45

6

7
8

9

1
0

1
1

11

(a) Collision rate between dp = 20 µm and dp = 40 µm , in 10−11 m3s−1

-4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

y
(c

m
)

5

6

8
10

11

12

1
41
6

1
6

1
6

(b) Collision rate between dp = 20 µm and dp = 80 µm , in 10−10m3s−1

-4 -2 0 2 4 6 8 10

x (cm)

-10

-8

-6

-4

-2

0

2

4

y
(c

m
)

12

1
3

14

15

1
6

1
6

1
7

1
7

1
8 1

8
18

1
9

19

(c) Collision rate between dp = 40 µm and dp = 80 µm , in 10−9m3s−1

Figure 5.18: Collision rates for the weak vortex

102 Chapter 5. Reference cases

-4 -2 0 2 4 6 8

-6

-4

-2

0

2

y
(c

m
)

1

3

5
7

9
1
1

11

(a) Collision rate between dp = 20 µm and dp = 40 µm , in 10−11 m3s−1

-4 -2 0 2 4 6 8

-6

-4

-2

0

2

y
(c

m
)

2

6
9

1
2

1
6

1
6

2
0

20

(b) Collision rate between dp = 20 µm and dp = 80 µm , in 10−10m3s−1

-4 -2 0 2 4 6 8

x (cm)

-6

-4

-2

0

2

y
(c

m
)

0
1

2

2

2

234

(c) Collision rate between dp = 40 µm and dp = 80 µm , in 10−9m3s−1

Figure 5.19: Collision rates for the strong vortex

5.2. Particle model 103

-6 -4 -2 0 2 4 6

x (cm)

-3

-2

-1

0

1

2

3
y

(c
m

)

0

0

1

1

2

2 33

4

4

5

5

6

7
8

Figure 5.20: Collision rate among 20 µm particles for the weak vortex, in
10−14m3s−1

5.18 and 5.19, the collision rate far from the vortex is zero, since the flow is
almost uniform and gravity has no effect on the collision rate of particles of
the same size. The collision rate is also 3 orders of magnitude smaller than
the rate between the 20 µm and 40 µm particles.

Oscillations

To obtain the above results, the crosswind diffusion (equation (3.57)) had
to be used, with a0 = 0.1 for the weak and a0 = 1 for strong vortex. Figure
5.21 illustrates the effect of the stabilization for the strong vortex. Without

-1.0 -0.5 0.0 0.5 1.0

x (cm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

y
(c

m
)

0.1

0.2

(a) a0 = 1

-1.0 -0.5 0.0 0.5 1.0

x (cm)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

y
(c

m
)

0.1

0.2

3
.0

3.0

(b) a0 = 0

Figure 5.21: Contours of n/n0 for the 80 µm particles after 0.06 s in the
strong vortex.

104 Chapter 5. Reference cases

stabilization (a0 = 0), pronounced spurious oscillations are visible, and the
solution deteriorates before steady state is reached. With stabilization (a0 =
1), the field is smoother but the values of the concentration are less extreme,
as indicated by the smaller contours. This illustrates that the stabilization
requires adjustment to find an appropriate value for a0 that results in neither
too little nor too much dissipation.

5.2.3 Turbulent channel flow

In [10], DNS and LES of particle laden channel flow is performed, using
Lagrangian tracking for the particles. Averaged concentration profiles are
presented for a number of particle relaxation times τ+

p ≡ τpu
2
τ/ν, ranging

from 1 to 25. Since the fundamental assumption is that the particle relax-
ation time is small with respect to the fluid time scale, we only compare
using τ+

p = 1 and also include additional results for τp = 0.1.
In channel flow, preferential concentration near the walls occurs as the

particle time scale approaches the fluid time scale [114]. When this hap-
pens, local concentration gradients also increase, and the use of stabiliza-
tion such as crosswind diffusion becomes necessary. The difficulty here is a
correct choice of the parameter a0: it should be large enough to eliminate
the oscillations, but not so large as to destroy the correct evaluation of the
preferential concentration effect.

To perform our computations, we set the initial particle concentration to
1. The flow field was initialized using the last field from the statistically
converged turbulent channel flow from section 5.1.2. We then observed the
time history of the concentration near the wall (at y+ = 0.5 and y+ = 4.5)
and averaged over the homogeneous directions once a statistically steady
state for the concentration was reached. Figure 5.22 summarizes the results.
For the small particle relaxation time τ+

p = 0.1, the concentration remains
almost uniform across the channel. Large gradients do not appear, and the
crosswind diffusion was not switched on. Also, no negative concentrations
appeared so the clipping to zero never occurred.

For τ+
p = 1, the particle relaxation time is closer to the Kolmogorov time

scale of the fluid, resulting in the appearance of preferential concentration.
This is also accompanied with steep concentration gradients, necessitating
the use of crosswind diffusion. For a0 = 0.005 (i.e. the black lines) the
normalized concentration n/n0 reaches almost 3 near the wall on the fine
mesh. This is still well below the value of 4 obtained in [10]. On both
meshes, the centerline concentration has increased to 1.5. This is an effect
of the clipping of the concentration to avoid negative values, since starting
from a uniform unit concentration it is impossible to obtain a higher average
value over the entire channel span. The fact that the clipping has such a
large effect indicates that the stabilization is insufficient.

The gray lines correspond to a0 = 0.05. Here, the centerline concentration
remains near 1 as expected, but the effect of preferential concentration is

5.2. Particle model 105

101 102

y+

1.0

1.5

2.0

2.5

3.0

n
/
n
0

τ+p = 0.1, 64× 65× 64

τ+p = 1, 64× 65× 64

τ+p = 1, 128× 129× 128

Figure 5.22: Particle concentration profiles. Black lines: a0 = 0.005, gray
lines: a0 = 0.05. For τ+

p = 0.1, no crosswind diffusion was
needed.

also much less pronounced.
We conclude that while the basic trend of preferential concentration is

visible, the numerical values are far from DNS reference results from e.g.
[10]. The current formulation of the model is therefore only valid for small
values of the relaxation times, though this may be sufficient for the study of
nanoparticles, depending on the exact size of the particles and the fluid time
scales. To extend the domain of applicability, more advanced stabilization
techniques are required, such as the flux-corrected-transport (FCT) method
used in [115].

Chapter 6

Experimental validation

The objective of the experiments is to study the feasibility of measuring
particle size distributions and their evolution in time in interesting flow
configurations, and to determine if the resulting data is appropriate for
model validation. While within the scope of this work it is not possible to
carry out a fully quantitative validation, we will demonstrate that the ap-
plied techniques for measuring and post-processing open the way to future
experiments that could be used to perform a detailed validation and fine-
tuning of the model. One of the important effects that we wish to capture
is the coagulation of liquid or solid particles in air. So far, but a few experi-
ments that attempt to measure this phenomenon have been published. One
example is [63], where the authors study coagulation of DEHS (Di-Ethyl-
Hexyl-Sebacat) droplets in grid generated turbulence.

In our experiments, we generate a flow field that is easy to reproduce
numerically and study the dispersion and coagulation of particles. With
the available particle generation techniques, a sufficient particle concentra-
tion for coagulation could only be obtained in low-speed flow, so we expect
Brownian motion to be the dominant factor in the coagulation process.

6.1 Experimental setup

The experimental setup is presented in figure 6.1. The test section consists
of a cube with an edge length of 56 cm and an inlet and outlet slot of 1 cm ×
50 cm, located at 3 cm from the bottom and the top of the box, respectively.
The configuration is such that a circulation zone should appear, which we
hope will promote the residence time of the particles and give them enough
time to coagulate. The air inlet is conditioned using a device similar to a
wind tunnel, with a settling chamber followed by a convergent duct. The
system is fed using an electronically regulated fan, with settings ranging from
0 to 50 in intervals of 0.1. These settings are linked to air velocities at the
inlet of the test chamber. To facilitate optical access for PIV measurements,
the test chamber is made of plexi-glass. The setup as it was used during the
flow field measurements is depicted in figure 6.2.

108 Chapter 6. Experimental validation

56 cm

Inlet

Outlet

Circulation

20 cm7 cm
Honey- 1 cm high

30 cm long
3 cm

zone

comb

Figure 6.1: Schematic of the experimental setup.

Figure 6.2: Photograph of the experimental setup.

6.2 Flow measurements

The flow field is characterized using 2D PIV measurements, with the pur-
pose of providing validation data for the fluid model and to characterize the
inlet conditions for the simulations based on all experiments using the inlet
depicted in figure 6.1. Most measurements will be focused around the center
plane, where the flow should be approximately two-dimensional, justifying
the use of 2D PIV. We used a commercial system provided by Dantec, a
complete description can be found in [116]. The measurements were per-
formed in three planes, shown together with the coordinate system in figure
6.3. Plane A is a horizontal cut across the inlet, plane B provides a detailed
view of the inlet flow at the center plane and plane C provides a global view
of the center plane. Camera and laser sheet were positioned using a traverse,
allowing placement with an accuracy of 0.5 mm.

For each considered fan setting and camera position, image pairs were
processed using the ”Adaptive Correlation” method in Dantec Dynamic-
Studio 3.31. We used an initial window size of 64 × 64 pixels, refined to
32× 32 pixels with 50% overlap. The default validation settings were used,
i.e. vectors with a magnitude that deviate more than 50 % from the value of
the average of the surrounding vectors are discarded. Table 6.1 lists the dif-

6.2. Flow measurements 109

x

z

y A

B

C

Figure 6.3: Coordinate system and locations of the measurements.

ferent fan settings with averaged flow quantities and image capture settings.
The x-component of the velocity is indicated by Uc for the time-averaged
centerline velocity and Um for the mean velocity over the z-direction at the
center plane. The Reynolds number Rem is defined with respect to the inlet
height D and Um. The time difference ∆t between the PIV frames differs

Fan Uc Um Rem ∆tA ∆tB ∆tC
setting (m/s) (m/s) (µs) (µs) (µs)

2 0.44 0.3 209 750
5 0.77 0.57 397 400
10 1.21 0.94 648 400 250 8000
20 2.19 1.76 1217 250 150 3000
30 3.22 2.63 1824 200 100 2000
50 5.26 4.35 3008 50

Table 6.1: Fan settings with velocity and time between PIV frames.

between measurements due to the differences in physical size of the measure-
ment area. Table 6.2 details the image sizes, number of image pairs taken
and the average validation rate. The significantly lower rate for plane A is
due to some reflections and background noise that could not be eliminated.
The number of image pairs for planes A and B corresponds to the size of
the image buffer. While the software allows combining several measurement
series into one, using just one buffer was more convenient and we assume

110 Chapter 6. Experimental validation

Plane x-size y− or Vector # images Validation
(mm) z-size (mm) spacing (mm) rate (%)

A 130 99 1.57 284 69.8
B 57 43 0.70 284 99.6
C 227 174 2.77 852 95.0

Table 6.2: Properties of the measurement windows for the different planes.

the estimate of the mean velocity is satisfactory in the high-velocity region
near the entrance.

The flow was seeded using olive oil droplets, generated by a Laskin nozzle.

6.2.1 Horizontal plane (A)

The measurements in the horizontal plane serve to determine the inlet ve-
locity in the spanwise direction and to verify the flow symmetry. Figure 6.4
shows the velocity profiles that we obtained. It is clear that the symmetry

100 200 300 400 500

y (mm)

0

1

2

3

4

5

6

U
c

(m
/
s)

10

20

30

Figure 6.4: Horizontal velocity at the centerline of the inlet slot for different
fan settings.

is not respected. Closer examination of the 30 cm inlet duct (see figure
6.1) indicated that it was not manufactured accurately, and the inlet height
varied between 0.8 cm and 1.2 cm instead of the prescribed 1.0 cm. In [117],
the same inlet device was used to study plane offset jets and the inlet was
replaced by a more accurately constructed 1 m duct. Figure 6.5 shows the
resulting profiles, indicating that symmetry in the horizontal plane is satis-

6.2. Flow measurements 111

factory. For the measurements that we present here, the PIV results were
obtained using the short 30 cm inlet, while the later particle experiments
were done using an improved 1 m inlet.

100 200 300 400 500

y (mm)

0

1

2

3

4

5

6

U
c

(m
/
s)

10

20

30

40

50

Figure 6.5: Horizontal velocity at the centerline of the inlet slot.

6.2.2 Inlet detail (B)

The detailed measurements at the inlet help to quantify the velocity profile
for the purpose of defining the boundary conditions for the numerical model.
The measurements were taken in a 58 mm x 44 mm plane, resulting in 16
velocity vectors across the inlet height. These measurements also allow a
characterization of the recirculation zone near the inlet, resulting in flow
configuration similar to an offset jet (figure 6.6). The offset jet was studied

x1

H

D

x

z

u

Figure 6.6: Schematic of the offset jet flow at the inlet.

112 Chapter 6. Experimental validation

in detail in [118, 119]. Even though our configuration is similar, additional
experiments carried out in [117] showed that the reattachment lengths do
not match with a pure offset jet flow, probably due to the confinement of
the flow in the box. Figure 6.7 compares both situations for the same value
of H and D, indicating a lower reattachment length in the case of a pure
offset jet.

0 500 1000 1500 2000 2500 3000 3500 4000

Rem

5

6

7

8

9

10

11

12

x
1
/
D

Present

Reference [117]

Figure 6.7: Comparison of the reattachment length x1 between the present
measurements and a pure offset jet with the same offset ratio
H/D, normalized by the height of the inlet slot D.

Before presenting the inlet velocity profiles, we will now use the detailed
images near the inlet to quantify the errors of the PIV system using artificial
images. We make use of [120] to generate the images. The idea is to generate
artificial particle images, taking into account the optical properties of the
system. The particle positions are obtained using a known displacement
field, which we generate here using a 2D laminar simulation of the region
near the inlet. The result of the PIV algorithm when applied to the artificial
image can then be compared with the known displacement, resulting in an
estimate of the error. Figure 6.8 shows a comparison of a real image and a
synthetic one (colors are inverted for clarity). The artifacts visible in the real
image are due to light reflections that could not be eliminated completely.
In figure 6.8c, the velocity contours from the simulation and from PIV on
the synthetic images are overlaid, while the relative error is shown in figure
6.8d. The error is larger in the shear layer, where it can locally exceed
10%. Further from the jet, the relative error can no longer be calculated
accurately, since the velocity is close to 0 m/s. Some noise is present in
the lower left corner in the experimental results, due to background and

6.2. Flow measurements 113

(a) Real image (b) Synthetic image

10 20 30 40 50

x (mm)

5

10

15

20

25

30

35

40

z
(m

m
)

0.0

0.0

0.0

0.3

0.3
0.4

(c) x-velocity contours (m/s).

10 20 30 40 50

5

10

15

20

25

30

35

40

z
(m

m
)

0 2 4 6 8 10

(d) Relative velocity error (%)

Figure 6.8: Real and synthetic images (inverted for clarity) and the veloc-
ity field from simulation (thick lines) and PIV on the synthetic
images (thin lines), as well as the relative error.

reflections that could not be eliminated.

The error analysis represents an ideal situation: we only compute the
error due to the correlation procedure. Errors due to the placement of the
laser sheet and particles entering and leaving the sheet are not accounted
for. It is for this simple test also assumed that the particles follow the flow
perfectly. In future work, more detailed error analysis should be possible,
using 3D simulations and the particle concentration model to account for
all these effects.

We will now discuss the vertical velocity profile across the inlet. The
measured profile can be used to impose a boundary condition for the nu-
merical simulations. Figure 6.9 shows the average velocity profile as well
as the RMS value of the fluctuation. Measurements were taken at 3 mm
from the inlet due to reflections. The velocity profiles are normalized using

114 Chapter 6. Experimental validation

29.00 30.47 31.95 33.42 34.90 36.37 37.85 39.32

z (mm)

0.0

0.2

0.4

0.6

0.8

1.0
U

/
U
c

Laminar

Rem = 209

Rem = 648

Rem = 1217

Rem = 1824

Rem = 3008

(a) Mean velocity

29.00 30.47 31.95 33.42 34.90 36.37 37.85 39.32

z (mm)

0

1

2

3

4

5

u
rm

s
/
u
τ

DNS, Re = 5600

Rem = 648

Rem = 1217

Rem = 1824

Rem = 3008

(b) RMS values

Figure 6.9: Mean x-velocity profile across the inlet (top) and RMS fluctua-
tions (bottom)

the centerline velocity (values listed in table 6.1) and the solid line indicates
the laminar profile. Only fan setting 02 matches this profile closely. For
the other profiles, we need to find out if they are flatter due to the onset of
turbulence, or if we are simply dealing with a developing laminar profile. In

6.2. Flow measurements 115

30 32 34 36 38 40

z (mm)

0.0

0.5

1.0

1.5

2.0

2.5

U
(m

/
s)

Laminar

Experiment

Figure 6.10: Velocity profile for fan setting 20 from [117], compared with the
laminar profile. Average over 600 measurements.

[121], a correlation is given to compute the development length:

L

D
=
(

0.6311.6 + (0.0442Rem)
1.6
)(1

1.6)
(6.1)

According to this equation, the development length for fan setting 10 should
be 28.7 cm, but we see that the laminar profile is not reached. Some fluctu-
ations are present in figure 6.9b, but at this low Reynolds number the flow
should be laminar. To determine if fully developed turbulence exists, we
compare with the results of the DNS from [109], at Rem = 5600. This is
considered to be a low Reynolds number for turbulent channel flow, so we
can expect that the flow will remain laminar at our much lower values, i.e.
at least up to fan setting 20. The measured RMS values are much higher,
however, and also far from symmetric, indicating that this statistic is not
converged. For the two highest Reynolds numbers, a fully developed flow
would present RMS values below those from the DNS, so this indicates that
the flow is not yet developed.

Later results from [117] reconstructed the profile by making measurements
in horizontal planes at different heights near the inlet, using the 1 m inlet.
The resulting profile for fan setting 20 is shown in figure 6.10. The result
is clearly laminar, so for the purpose of particle experiments —done at fan
settings below 20— we can use a laminar boundary condition for the inlet.

116 Chapter 6. Experimental validation

0 100 200 300 400 500
0

100

200

300

400

500
-0.2-0.1

0.0

0.0 0.
0

0.1

0.3

0 100 200 300 400 500
0

100

200

300

400

500
-0.8

-0.4

0.0

0.0

0.0

0.4
0.81.2 1.2

0 100 200 300 400 500
0

100

200

300

400

500

-0.1 0.0

0.1

0.
3

0 100 200 300 400 500
0

100

200

300

400

500

-0.5

-0.2

0.0

0.
0

0.
2

0.5
0.8

1.
0

0 100 200 300 400 500
0

100

200

300

400

500

0.1

0.
1

0.1

0.2 0.2

0.2

0.2

0.2

0.2

0.
2

0.3

0.
3

0.4

0 100 200 300 400 500
0

100

200

300

400

500

0.2

0.2

0.4

0.4

0.
6

0.6

0.6

0.8

0.8

0.
8

1.0

1.0

1.2 1.21.4

Figure 6.11: op to bottom: x-velocity , z-velocity and streamlines over ve-
locity magnitude. Left: setting 10, right 30. Coordinates in
mm.

6.2. Flow measurements 117

Coarse Medium Fine

Minimum cell size (mm) 5 2.5 1.8
Maximum cell size (mm) 30 27.5 19.8
Number of nodes 824560 4285050 8069527
time step (segregated) (s) 5× 10−4 2.5× 10−4 2.5× 10−4

time step (coupled, θ = 1) (s) 0.01 0.01 -
time step (coupled, θ = 0.5) (s) 2× 10−3 5× 10−4 -

Table 6.3: Statistics for the different meshes.

6.2.3 Center plane (C)

The measurements taken in the center plane are presented in figure 6.11.
Because of the size of the measurement plane, each image is a combination
of 3 measurements in the x direction and 4 measurements in the y direction.
The borders of the images are indicated by the dashed lines. In the areas of
overlap, the average of all available measurements was taken. To improve
convergence of the statistics for this measurement, each window consists
of 3 acquisitions of 284 images, so the corner overlap between 4 camera
position averages a total of 12 acquisitions or 3408 images. Only a few small
discontinuities are visible near the image boundaries, suggesting that this
number of acquisitions is sufficient to obtain a converged average.

In the streamline plots, the existence of a circulation zone is evident, with
the center moving more towards the box center for the higher fan setting.
This kind of circulation zone should promote particle residence time, which
should give particles more time to coagulate. We will investigate this in
section 6.3.

6.2.4 Numerical model validation

The measurements of the velocity field at the center plane serve as validation
data for the fluid simulations. The objective is to verify that the main
features of the flow are reproduced on a mesh that is small enough to obtain
a solution in a reasonable time frame. Unlike the channel flow simulations,
we are not after a completely accurate description of the flow, since —as will
be clear from the particle experiments— we expect Brownian coagulation to
dominate, thus limiting the effect of the flow on the particle size distribution.
We also limit the simulation to fan setting 10, since at higher settings no
coagulation could be observed at all.

Table 6.3 lists the properties of the different meshes that we used for the
simulations. A fully unstructured tetrahedral mesh was generated using
Gmsh1, applying a grading in the z-direction so the mesh is finer near the

1http://www.geuz.org/gmsh

http://www.geuz.org/gmsh

118 Chapter 6. Experimental validation

floor and the ceiling of the box. The listed cell sizes are the minimum and
maximum imposed by the grading function, but due to the unstructured
nature of the meshing process some deviations from these sizes are likely.

0 100 200 300 400 500

x (mm)

0

100

200

300

400

500

z
(m

m
)

0.3

0.
3

0.1

0
.0

0.0

0
.0

-0.1
0.0

-0.3

-0.2

-0.1

0.0

0.1

0.3

0.5

U
(m

/
s)

Figure 6.12: Contours of mean x-velocity. Filled contours represent the ex-
perimental values, the lines the numerical simulation.

0 100 200 300 400 500

x (mm)

0

100

200

300

400

500

z
(m

m
)

0.
0

-0
.1

0
.0

0
.1

0
.3

0
.0

-0.3

-0.2

-0.1

0.0

0.1

0.3

0.5

W
(m

/
s)

Figure 6.13: Contours of mean z-velocity. Filled contours represent the ex-
perimental values, the lines the numerical simulation.

Figures 6.12 and 6.13 present contours of the velocity components on the

6.2. Flow measurements 119

coarse mesh using the implicit Euler method. Overall, the main features of
the flow are captured. A more detailed comparison is possible using the

0 100 200 300 400 500 600

z (mm)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

U
(m

/
s)

PIV

Coarse (segregated)

Medium (segregated)

Fine (segregated)

Coarse (implicit Euler)

Figure 6.14: Profiles for the mean x-velocity along the vertical centerline (x
= 280 mm)

0 100 200 300 400 500 600

x (mm)

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

W
(m

/
s)

PIV

Coarse (segregated)

Medium (segregated)

Fine (segregated)

Coarse (implicit Euler)

Figure 6.15: Profiles for the mean y-velocity along the horizontal centerline
(z = 280 mm)

centerline profiles of figures 6.14 and 6.15. Although the overall shape of the
profile is reproduced, the value of the velocities deviate significantly from

120 Chapter 6. Experimental validation

the measurements. Moreover, refining the grid does not show improvement,
leading even to larger errors for the W -profile. When using a coarse DNS, it
is not guaranteed that the error decreases monotonically [122], so the present
results suggest that even finer meshes are needed to improve the results.

To use the computing resources more efficiently, it is useful to compare
the coupled and the segregated approach. Due to the explicit treatment
of the advection term, the segregated solver imposes a severe restriction,
especially since the mesh near the inlet is fine and the velocity is high. Table
6.3 lists the time steps that could be used. The Crank-Nicolson scheme also
becomes unstable in this case if the time steps are larger than the values
in the table. Per time step, the segregated method was between 5 and 8
times faster than the coupled methods, but since we could use 20 times
longer time steps using the implicit Euler method it was the fastest method
overall. Using 64 CPUs, the solution on finest mesh took 30 s per time step
using the segregated solver, so it was impractical to run this case using the
available computing power.

6.3 Particle behavior

6.3.1 PDA measurements

In a first test, the ability to observe particle coagulation in the box was
checked using the Dantec PDA system available at the RMA. The objective
of the experiment is to compare the size distributions of particles directly
from the Laskin nozzle with particles that went through the box.

The measurement of the output of the Laskin nozzle is shown in figure
6.16. The distributions overlap, confirming repeatability of a measurement
of the same size distribution.

Particles were injected into the fan inlet and measured at the box outlet.
To perform the measurement, we switched on the fan and particle genera-
tor, injecting particles through the fan. We then waited until the system
reached a steady state, i.e. when there was no longer a visual change in
concentration in the box. At this point, the particle generator was switched
off and PDA measurements were taken for 400 s, resulting in a signal that
indicates the particle size vs. time in the measurement volume. Figure 6.17
shows the result for fan setting 10. As the measurement time increases,
no new particles had the opportunity to enter the box, since the particle
injection is stopped at the start of the measurement. We would then expect
that the measured distributions contain larger and larger particles as time
passes. The measured distributions show a decrease of the number of small
particles and an increase of the large ones, indicating that this is indeed the
case.

We must note that the accuracy of the PDA system for particles this small
is not guaranteed, but the difference with the output from the Laskin nozzle
indicates that the effect observed in figure 6.17 is significant.

6.3. Particle behavior 121

0 1 2 3 4 5 6

dp (µm)

0

200

400

600

800

1000

1200

N
u

m
b

er
o
f

p
a
rt

ic
le

s

t=0.0s

t=9.6s

t=19.6s

t=29.7s

t=39.5s

Figure 6.16: Same as figure 6.17, but measured directly at the Laskin nozzle
outlet.

0 1 2 3 4 5 6

dp (µm)

0

200

400

600

800

1000

1200

1400

1600

N
u

m
b

er
o
f

p
a
rt

ic
le

s

t=0.0s

t=48.3s

t=83.2s

t=119.3s

t=163.3s

Figure 6.17: Time evolution of the particle size histogram. Times are dis-
tributed so that each curve corresponds to a sample of 12000
particles passing through the measurement volume. Measure-
ment for fan setting 10.

122 Chapter 6. Experimental validation

6.3.2 Multi-Wavelength Light Extinction

The setup and processing system for the Multi-Wavelength Light Extinc-
tion (MWLE) technique is developed by Horváth et al. [65] at the VKI.
The working principle of the technique is illustrated in figure 6.18. The
incident light beam is scattered and absorbed by the particles, resulting in
an attenuated light beam. The spectrum of the attenuated light is then
compared to the spectrum in the absence of particles, from which the trans-
mittance spectrum of the particle cloud is obtained. This can then be used
to derive the size distribution using an inverse method. The obtained result
represents an average along the entire intersection between the beam and the
particle cloud. When using a combination of UV and halogen light sources
it is possible to measure particles from about 20 nm to 2000 nm. This makes
the technique suitable to measure particles much smaller than what is pos-
sible using PDA. The output of the processing algorithm is a distribution
function for the particle volume fraction as a function of particle size, i.e. it
has units [1/m] and integrating a segment of this function yields the volume
fraction of particles with sizes between the integration boundaries.

Detector

Incident,
polychromatic

beam

Scattering,
absorption

Attenuated
beam

Figure 6.18: Mult-wavelength light extinction working principle.

Calibrated sphere measurements

Measurements of calibrated polystyrene particles were performed, dispersing
one particle size for each measurement to obtain a monodisperse flow. The
objective of these tests is to verify the accuracy of the technique with respect
to the predicted particle sizes. Figure 6.19 summarizes the result, with the
expected mean diameter indicated by the vertical dotted lines. The error is
less than 5 % on the measured particle size peak value.

Measurements without flow

The purpose of the first experiment was to check the possibility of observing
coagulation with the available particle generator and measurement system.
To this end, we sealed the box as much as possible and filled it with particles
during a set time interval. After the filling phase, we measured the size

6.3. Particle behavior 123

0 200 400 600 800 1000 1200

Particle size (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
li
ze

d
V

o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

356 nm

535 nm

1000 nm

Figure 6.19: Size distributions for three sizes of calibrated polystyrene par-
ticles.

distributions at different time intervals. The MWLE technique operates
along a line, so we took measurements over the entire span of the outlet.
Measuring just outside the box circumvents the UV-blocking effect of the
plexi-glass.

The aerosol generator used is a Topas ATM 220, capable of generating
number concentrations in excess of 108 particles / cm3. It can generate
both solid particles and droplets. We first used solid KCl particles. In
all tests, particles were injected for a 5 minute period. The fan was then
activated after a certain settling time, and the distributions were measured
immediately as the particles started leaving the box. This procedure leaves
the settling period as the main opportunity for particles to coagulate. By
activating the fan, fresh air is introduced, so the flow is diluted. This means
that during the evacuation phase, coagulation is less likely to occur, also
because this phase is much shorter than the settling time. Figure 6.20 shows
the resulting size distribution for settling times of 0, 10 and 20 minutes.
Particle coagulation would be expressed by a shift to the right in the size
distribution, and we do indeed observe a very small shift here. The result is
hardly convincing, however.

Using KCl and the available aerosol generator, it was not possible to get a
denser particle cloud to further enhance the coagulation, so in a second at-
tempt DEHS oil droplets were injected into the box. The particle generator
operates on pressurized air, and the amount of droplets can be controlled
by adjusting the inlet pressure. In figures 6.21 and 6.22, the size distri-
butions for injector pressures of 0.5 and 5 bar are shown. In both cases,

124 Chapter 6. Experimental validation

0 500 1000 1500 2000

Particle size (nm)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) No wait

10 min

20 min

Figure 6.20: Size distributions for KCl, for three different settling times.

0 500 1000 1500 2000

Particle size (nm)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

V
o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) No wait

10 min

20 min

Figure 6.21: Size distribution for DEHS, with an injector pressure of 0.5 bar
and measured 20 s after fan on.

an effect from coagulation is observed, but the shift to the right is much
more pronounced in the 5 bar case, due to the higher particle concentration.
Note also that the distribution becomes significantly narrower for the higher
pressure. For the 5 bar test, we measured the size distributions at regular
time intervals, starting 15 s after switching on the fan and stopping after

6.3. Particle behavior 125

120 s. The limits of this time interval were dictated by the limitations of the
measurement technique. If the flow is too dense (i.e. right after switching on
the fan) then multiple scattering will disturb the measurement. Conversely,
after 120 s the flow becomes so dilute that an accurate measurement is no
longer possible. Figure 6.22 shows the volume fraction distributions for the
first and last measurements. The volume fraction decreased by a factor of
10, but the shape of the size distribution remains the same, with the peak
value remaining in the same location. As the concentration decreases, we
expect the prediction of the absolute value of the concentration to be less
accurate, and it can be seen that the relative magnitudes of the peaks differ
between both measurements. The initial time of 15 s was chosen so that the
transmittance of the light beam was optimal to obtain an accurate result,
so we expect the earlier measurements to be the most reliable. Figure 6.23
illustrates the effect of the time between the activation of the fan and the
measurement. To better show the effect, we use the particle number con-
centration (converted following the formulas in section 3.2.2), normalized
by the maximum concentration measured at the same interval between fan
activation and measurement but without the settling phase. Under this nor-
malization, we would expect the respective curves for the 10 and 20 minute
settling times to overlap (i.e. all gray curves should overlap, and all black
curves as well), but as can be seen there is a discrepancy between the mea-
surements taken after 15 and 30 s on the one hand, and those taken at 90 s
and 120 s on the other hand. For further validation of the numerical model,
we choose the measurements after 15 s and 30 s as the most representative
of the actual situation inside the box.

Measurements with flow

A second series of measurements was taken with a flow in the box. After
some experimentation, it was found that moving the air outlet to the bottom
of the box while injecting particles from the top generated the longest parti-
cle residence times. The new configuration is shown in figure 6.24. Different
measurement positions were used, depending on the fan setting. Positions 1
and 2 could be used at fan setting 10, measuring continuously through the
box:

1. Start fan at desired speed (10 or higher)

2. Start injection and timer

3. Measure repeatedly inside the box

At fan settings 4 and 5, the flow became to dense and we had to measure in
point 3:

1. Start fan at desired speed

2. Start injection and timer

126 Chapter 6. Experimental validation

0 500 1000 1500 2000

Particle size (nm)

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

V
o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) No wait

10 min

20 min

0 500 1000 1500 2000

Particle size (nm)

0.000

0.005

0.010

0.015

0.020

V
o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) No wait

10 min

20 min

Figure 6.22: Size distribution for DEHS, with an injector pressure of 5 bar
and measured 15 s (top) and 120 s (bottom) after fan on.

3. Measure initial concentration

4. Stop particle injection after X minutes

5. Measure the outflow repeatedly

For fan settings 4 and 5, the results are shown in figures 6.25 and 6.26.
As before, the density of the particles prohibits measurements during and
immediately after injection. At these low fan settings, best results were

6.3. Particle behavior 127

0 200 400 600 800 1000

Particle size (nm)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012
N

o
rm

a
li
ze

d
n
u

m
b

er
co

n
ce

n
tr

a
ti

o
n 15 s

30 s

90 s

120 s

Figure 6.23: Illustration of the spread on the measurements taken at differ-
ent times after the fan was switched off. The black lines: 10
minutes settling time, gray lines: 20 minutes settling time.

obtained when measuring 3 minutes after the end of the injection, so this
is what is presented in the graphs. Because of the different injection dura-
tions, absolute values of the concentrations varied, so the distributions are
normalized using the maximum value. At both fan settings, the effect of
coagulation becomes apparent after 5 minutes of injection, but it seems to
evolve to a steady state, since even the 48 minute injection at fan setting 5
does not differ much from the result after 10 minutes. This can be explained
by the fact that there is a permanent flow through the system, both of fresh
air and new particles for as long as the injection is active. Even though the
difference in fan speed is small, there is a visible difference in the offsets
after 10 minutes. We also did this test at fan setting 10, but there the effect
of coagulation is no longer visible in the distributions.

Due to the lower number density inside the box at fan setting 10, it was
possible to measure while the particle injection was active. We took advan-
tage of this to measure the concentration evolution in points 1 and 2 of fig-
ure 6.24. Figure 6.27 presents the volume fraction distribution at 3 different
times. The number concentration in point 2 (located in the recirculation
zone under the inlet jet) increases more slowly than the concentration in
point 1. This is logical, since we inject particles from the top, and the clean
air coming in through the inlet slot separates point 2 from this injection.

With the current setup, it is only possible to observe coagulation at fan
settings far below 10. At this low speed, it can be expected that coagulation
is still dominated by the effect of Brownian motion and that the flow itself

128 Chapter 6. Experimental validation

Air in Out

Particles

1

2
3

56 cm

1 cm
3 cm

Figure 6.24: Experimental setup, after moving the inlet to the bottom to
increase particle residence time. Points 1 and 2 are at 5.3 cm
from the left wall. Point 1 is at 4.8 cm from the floor, point 2
at 1.0 cm.

0 500 1000 1500 2000

Particle size (nm)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
V

o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

Initial

1 min injection

5 min injection

10 min injection

Figure 6.25: Normalized (with respect to maximum) volume fraction in
point 3, for fan setting 4 and for different injection times.

6.3. Particle behavior 129

0 500 1000 1500 2000

Particle size (nm)

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
li
ze

d
V

o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

Initial

5 min injection

10 min injection

48 min injection

Figure 6.26: Normalized (with respect to maximum) volume fraction in
point 3, for fan setting 5 and for different injection times.

0 500 1000 1500 2000

Particle size (nm)

0.00

0.05

0.10

0.15

0.20

V
o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) Point 1

Point 2

Figure 6.27: Evolution of the volume fraction distribution above and below
the inlet jet (points 1 and 2), measured at times 30 s, 60 s and
120 s (lines ordered from bottom to top at each point)

has little effect. The limiting factor here is the flow rate from the aerosol
generator: if the fan speed is increased too much, the aerosol is diluted down
to a level so that coagulation can no longer be measured during the time

130 Chapter 6. Experimental validation

the particles spend in the box. To maintain a higher velocity while still

0 500 1000 1500 2000

Particle size (nm)

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
V

o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

8.8cm

Full

Figure 6.28: Measurement after 10 minutes in the original box compared to
a measurement in the 8.8 cm box after 4 minutes of injection
and 2.5 minutes of waiting before the measurement.

having a high particle concentration, we reduced the span of the box to 8.8
cm, and then repeated the measurement at fan setting 10. In figure 6.28,
we compare the normalized distributions after 10 minutes and 4 minutes
for both boxes. Even with the 8.8 cm span, the concentration was too
high to do a measurement immediately after the injection, so we waited 2.5
minutes before measuring the size distribution. Even though the injection
time was shorter in the smaller box, there is a clear shift to the right in the
distribution.

Generator output

To characterize the inlet conditions for later numerical simulation, we also
measured the output of the aerosol generator directly. Figure 6.29 shows
the distribution function for the volume fraction for 4 different measurement
series. From this, we computed a number density distribution function (fig-
ure 6.30), since this is a required input for the computation. Even though
there is little difference between the measured volume fractions, the transfor-
mation to a number concentration distribution shows considerable spread,
especially for the smaller particles. As in figure 6.23, this is caused by the
division by d3

p. Since this number becomes very small as dp → 0, the number
concentration in figure 6.30 does not reach zero for dp = 0 nm as would be
expected.

6.3. Particle behavior 131

0 500 1000 1500 2000

Particle size (nm)

0

1

2

3

4

5

6

7

8
V

o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) 01

02

03

04

Figure 6.29: Measured volume fraction distribution at the outlet of the
aerosol generator, using an input pressure of 5 bar.

0 500 1000 1500 2000

Particle size (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
u

m
b

er
co

n
ce

n
tr

a
ti

o
n

d
is

tr
ib

u
ti

o
n

(m
−
4
)

1e21

01

02

03

04

Figure 6.30: Number concentration, transformed from figure 6.29.

For the numerical algorithm, we need an estimation of the number con-
centration distribution, but from the above measurements it is not clear
which result should be used. In an attempt to clarify this, we will fit a log-
normal distribution to the measurements, and check for consistency between
the volume fraction and number concentration results. Since there is little

132 Chapter 6. Experimental validation

spread on the measurements, we will only do this for the first series. Figure

100 101 102 103 104

dp (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
N

u
m

b
er

co
n

ce
n
tr

a
ti

o
n

d
is

tr
ib

u
ti

o
n

(m
−
4
)

1e21

Vol. fraction

Fit

Figure 6.31: Fitted curve for the number concentration distribution, ignor-
ing particles smaller than 200 nm.

6.31 shows the result of the fit, where we used the number concentration
computed from the volume fraction (dotted line in the figure) to compute
the fit. Due to the large errors on this transformation for small particle
sizes, we only used particles larger than 200 nm to compute the fit. For
clarity, the particle size axis is logarithmic. Figure 6.32 shows the result of
transforming the fit to a volume fraction distribution, together with the cor-
responding measurement. The shapes are very similar, indicating that the
log-normal distribution is a good approximation for the measured distribu-
tions. We conclude that the above fitting procedure is suitable to compute
the approximations of the distributions as needed for the simulations.

6.3.3 Numerical model validation

The data we presented above can be used to validate the numerical model to
a certain extent. Although the measurements without flow were primarily
intended to investigate the possibility of observing coagulation at all, the
provided data is useful to check the Brownian coagulation kernel.

Brownian coagulation

We will now apply the procedure from section 3.2.2 to model the situation
in the box without flow. This should correspond to Brownian coagulation,

6.3. Particle behavior 133

100 101 102 103 104

dp (nm)

0

1

2

3

4

5

6

7

8
V

o
lu

m
e

fr
a
ct

io
n

d
is

tr
ib

u
ti

o
n

(1
/
m

) Measured

Fit

Figure 6.32: Transformation of the fit from figure 6.31 to a volume fraction
distribution, compared to the corresponding measurement.

so we only need to fit a log-normal distribution to the initial concentration,
and then the time evolution of the distribution should be reproduced.

As previously mentioned, the purpose of the measurements without flow
was merely to determine the occurrence of coagulation. Due to the density
of the particles, it was impossible to measure the concentration inside the
box directly. For the numerical simulation, it is this concentration that is
needed to obtain the correct coagulation rate. By scaling up the number
concentration measured after 15 s with no settling (solid line in figure 6.22,
top) we could obtain an initial condition from which coagulation rate that
matches the experiment could be found. Figure 6.33 shows the result of the
simulation together with the measurements. For reference, we also show the
result using the analytical formulas from [93] as also used in section 3.2.2.
To obtain these results, we scaled up the measured initial concentration
by a factor of 3, assuming that this is a good approximation of the initial
concentration inside the box. We then fitted a log-normal distribution with
σg = 1.59 and µg = 281 nm and computed the Dirac delta approximation
to use the DQMOM to track the time evolution of the distribution. Since
there is no flow, the computation was performed on a 1x1 2D quadrilateral
mesh. The results are scaled down again by a factor of 3 to compare with
the measurements. Note that for the DQMOM, we applied the Cunningham
correction, which explains why here the peak value of the DQMOM is below
the results using [93], i.e. exactly the opposite of what was obtained in
section 3.2.2 without the Cunningham correction. Since the initial geometric
standard deviation was found to be less than 2, there would be very little

134 Chapter 6. Experimental validation

102 103

dp (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f
(m

-4
)

1e19

Measured

DQMOM

Lee [93]

Figure 6.33: The size distributions without settling, and after 10 and 20
minutes (from top to bottom).

difference between the DQMOM and Lee’s formulas if we neglected the
Cunningham correction (see figure 3.10). For these small particles, however,
the Cunningham correction must be applied.

The model reproduces the measured distributions fairly well, assuming
that the fit for the initial concentration is indeed correct. This then also
confirms that what we observed was indeed mainly Brownian coagulation.
In would be useful to do a more quantitative experiment, where the concen-
tration inside the coagulation container could be measured directly, so no
guesses regarding the initial conditions would be needed.

Part III

Conclusion

Chapter 7

Conclusion and further work

7.1 Conclusions

The objective of this work was to develop a framework for the numerical
study of dispersed particle-laden flow. In addition to this, we investigated
appropriate methods for model validation. We mainly targeted applications
in the context of air pollution, where the particle mass loading is low, but
the number concentrations can be high and particle coagulation may have
an effect on the particle size distribution. The focus was on particles smaller
than 10 µm.

A study of available literature pointed out that in this context, Eulerian
models are most suitable. The main restriction of these models is that the
particle relaxation time must not be too high, which is indeed the case for
the small particles under consideration.

In recent years, techniques have been developed to allow using the finite
element method in flow problems, using equal-order interpolation for the
velocity and the pressure. Due to the solid mathematical foundation and
extensibility to higher order interpolations, this is an attractive method to
use. It is also applicable to a wide variety of problems, including the Eulerian
particle transport model.

Since the application of the finite element method to a given problem al-
ways follows the same scheme, we decided to first make it as easy as possible
to write a finite element solver. To this end, we developed an Embedded
Domain Specific Language. It allows model developers to implement a fi-
nite element model by writing code that closely resembles the weak form
of the mathematical equations. Parts of the element matrix can be spec-
ified directly if needed. A unique feature is the possibility for the user to
extend the language with his own functions. We also believe it is the first
language for the finite element method to use the Boost Proto library, which
simplifies the development of this kind of embedded language. This work
is implemented in the open source Coolfluid 3 project [7], ensuring future
availability of the code and encouraging collaboration.

As a first step in the development of the fluid model, the existing Coolfuid
2 solver for triangles and tetrahedra [49] was implemented using our embed-
ded domain specific language. This enabled the solver for quadrilateral,
hexahedral and prism elements. Adding additional element types requires

138 Chapter 7. Conclusion and further work

implementing the shape functions and related operations in the Coolfluid 3
framework, but no modification of the solver code is necessary.

Since the current work focuses on DNS to obtain an instantaneous fluid
velocity for the particle model, we then explored methods to accelerate the
solution of the flow equations when small time steps need to be imposed. The
result was an adaptation of the predictor-multicorrector algorithm [46] to
the SUPG/PSPG/Grad-Div stabilized equations, resulting in a considerable
gain in efficiency in the context of DNS.

Given the small particle relaxation times, an Eulerian method was chosen.
Starting from the particle equation of motion, it is possible to extrapolate
the particle velocity from the fluid, eliminating the need to solve an extra
set of momentum transport equations. In this formulation, it is possible
to increase the accuracy using a locally implicit method [18]. Even though
the additional cost of this method is small, we have shown on the Taylor-
Green vortex case that it leads to an improved prediction of the particle
concentration. The locally implicit model was also formulated so that it can
be applied to both bubbles and solid particles.

To quantify the effect of particle coagulation, we implemented the recent
Direct Quadrature Method of Moments (DQMOM) [39] to solve the popu-
lation balance equations. This method tracks the weights and abscissa of a
Dirac delta function approximation of the particle size distribution. Both
the weights and abscissa are transported using advection-diffusion equa-
tions, so each time and position is associated with the appropriate Dirac
delta approximation of the size distribution. This means that only a limited
number (typically 3 or less) of delta functions are needed to get an accurate
description of the moments of the size distribution.

So far, we found no previous use of the DQMOM combined with a di-
rect numerical simulation of the flow. To make this possible, we derived a
collision kernel (also previously derived in [89]) that makes no assumptions
regarding the statistics of the fluid velocity. The resulting integral needs to
be solved numerically in general, but we also derived an analytical expres-
sion that is valid in 2D and certain other flow configurations. Furthermore, a
geometrical interpretation was given to the equation for the collision kernel,
using the eigenvalues of the rate of strain tensor for the particle velocity.

Finally, we explored some possibilities for experimental validation. The
basis for the experiments was a cube with a rectangular inlet and outlet,
resulting in a simple flow configuration for numerical modeling. To quantify
the flow, 2D PIV measurements were performed and it was found that a
laminar velocity profile could be imposed at the inlet. We also discovered
that the flow was too complex for direct numerical simulation using the
available computing resources, resulting in a poor agreement between the
computed and measured velocity fields, although the main features of the
flow were recovered.

The main experimental challenge was the detection of coagulation in a
complex flow, using non-intrusive methods. For this aspect, we were able to

7.2. Further work 139

use the Multiple Wavelength Light Extinction technique, newly developed at
the von Karman Institute for Fluid Dynamics. In a static test (i.e. without
flow) Brownian coagulation was observed and could be reproduced using the
numerical model. We did have to make an assumption regarding the initial
number concentration, since it was impossible to measure this directly due
to the high particle number density. The capacity to measure particle size
distributions directly in the flow was also demonstrated.

7.2 Further work

An obvious and necessary extension for the flow model is turbulence mod-
eling. We believe that using Large Eddy Simulation would be most appro-
priate, since it provides the most accurate instantaneous velocity field for
the particle model. The challenge here is to find a turbulence model that
interacts appropriately with the numerical diffusion already imposed by the
stabilization terms. The models based on the Variational Multiscale Method
seem like a good candidate here. The concentration transport equation and
the collision kernels will also require modification when turbulence modeling
is added.

The existing channel simulations can be repeated for higher Reynolds
numbers to provide reference data for the development of the turbulence
models. We can also leverage the strength of the finite element method, and
try to solve the channel problem on a fully unstructured grid, where the grid
refinement is not restricted to the wall-normal direction.

When computing the particle concentration transport, steep concentra-
tion gradients present a numerical difficulty. The solution can deteriorate
even if the particle relaxation time is less than the theoretical limit of the Eu-
lerian method. Implementation of more advanced stabilization techniques,
such as the flux-corrected transport method [115] seem promising.

Another challenge is the matching of the numerical and experimental size
distributions. So far, we used the log-normal approximation to match both,
but a more general approach would be needed if the experimental distribu-
tion does not closely match a theoretical continuous distribution.

The applied measurement techniques can be used in additional experi-
ments. A Taylor-Couette flow is a good candidate, since it would allow
studying the particles in a closed environment at variable levels of turbu-
lence. As the particle time scale approaches the fluid time scale, effects of
fluid turbulence levels on the size distribution evolution may be observed
and used as validation data for simulations.

Until now, we considered that each collision leads to coagulation. More
detailed experiments could be conducted with different kinds of particles, to
observe changes in the coagulation rate with respect to the particle proper-
ties and provide data to refine existing models.

140 Chapter 7. Conclusion and further work

7.3 Future developments

7.3.1 Language development

Further improvements to the embedded domain specific language presented
in this work are possible. In 2011, a new C++ standard was released with
changes that can make the code behind our language more concise and
maintainable. At the same time, more effort should be spent on making the
language more user friendly, with better error reporting as a major concern.

On the functional level, the system to mix different interpolation orders
could be simplified. Some advanced features such as expression optimization
and the option to choose different back-ends such as the GPU can also be
explored.

Finally, the possibility of extending the language to methods closely re-
lated to the finite element method, such as the residual distribution method
or the discontinuous Galerkin method can be investigated.

7.3.2 Performance improvements

In the segregated solver, the solution time of the pressure system is the dom-
inant factor. Currently, we interface with the MUMPS direct solver through
the Trilinos interface, which does not allow the use of the symmetric solver
in MUMPS. A direct interface between Coolfluid 3 and MUMPS would al-
low us to use the symmetric solver, halving the memory use and hopefully
improving performance and scalability. For larger problems, even the sym-
metric MUMPS solver will not suffice. For this situation, more efficient
iterative methods are needed.

Large problems require a parallel solution of the problem. For now, we
use the classic MPI parallel communication layer, combined with automated
grid partitioning. Modern alternatives to MPI, such as Charm++1 or HPX2,
may be useful to obtain better scaling.

7.3.3 Numerical improvements

So far, we limited the work to first order elements of the Lagrange family.
An extension to higher order elements may lead to more accurate results,
but this needs a lot of further research. The stabilization terms may need
modification, so we expect that it is not simply a matter of adding new
element types and shape functions.

The current time stepping algorithm is fairly primitive. Methods such as
the generalized-α method used in [50] should be expored, again with the
objective to achieve a higher accuracy and possibly allow larger time steps.

1http://charm.cs.uiuc.edu/research/charm
2http://stellar.cct.lsu.edu

http://charm.cs.uiuc.edu/research/charm
http://stellar.cct.lsu.edu

7.3. Future developments 141

7.3.4 Extending the applicability

The current solver is limited to incompressible, isothermal flow. Other flow
regimes should be considered. As a first step, variable density flow using
the Boussinesq approximation should be fairly straightforward. After that,
inclusion of the full energy equation and later an extension to compressible
flow would be useful.

The particle model currently covers only a small part of the full spectrum
of dispersed flow. A natural extension would be the inclusion of two-way
coupling, i.e. to consider the effect of particles on the flow field. Broaden-
ing of the applicable size range is also a possible research goal, where first
the particle velocity could be included in the phase space. For the largest
particles, the only option would be to add Lagrangian particle tracking.

7.3.5 Potential applications

As it stands, the model is limited to low Reynolds number flows, due to the
lack of turbulence modeling. The current model should be seen as a basis
for further model development. Since it relies on DNS data, particle behav-
ior is not influenced by uncertainties inherent in turbulence modeling, and
simulation data from our model can be used as reference data for turbulence
model development.

In incompressible flow, problems of air pollution would be a typical appli-
cation. As the model is extended to include more flow regimes, applications
inside turbo machinery, for example to study the effect of volcanic ash,
could also be targeted. Finally, soot formation in combustion should also be
a possible application, since the DQMOM can easily be extended to include
several particle growth mechanisms.

Chapter 8

Bibliography

[1] C. A. Pope and D. W. Dockery. “Health Effects of Fine Particulate
Air Pollution: Lines that Connect”. In: J. Air & Waste Manage.
Assoc. 56 (2006), pp. 709–742.

[2] K. Donaldson, V. Stone, A. Seaton, and W. MacNee. “Ambient parti-
cle inhalation and the cardiovascular system: potential mechanisms.”
In: Environ. Health Perspect. 109 Suppl 4 (2001), pp. 523–7.

[3] K. Donaldson, A. Seaton, et al. “A short history of the toxicology of
inhaled particles”. In: Part Fibre Toxicol 9.1 (2012), p. 13.

[4] N. Riemer, M. West, R. A. Zaveri, and R. C. Easter. “Simulating
the evolution of soot mixing state with a particle-resolved aerosol
model”. In: Journal of Geophysical Research: Atmospheres (1984–
2012) 114.D9 (2009).

[5] N. Bukowiecki, P. Zieger, E. Weingartner, Z. Jurányi, M. Gysel, B.
Neininger, B. Schneider, C. Hueglin, A. Ulrich, A. Wichser, et al.
“Ground-based and airborne in-situ measurements of the Eyjafjal-
lajökull volcanic aerosol plume in Switzerland in spring 2010”. In:
Atmospheric Chemistry and Physics 11.19 (2011), pp. 10011–10030.

[6] V. P. Reshetin and J. L. Regens. “Simulation modeling of anthrax
spore dispersion in a bioterrorism incident”. In: Risk Analysis 23.6
(2003), pp. 1135–1145.

[7] T. Quintino, W. Deconinck, B. Janssens, T. Bányai, Q. Gasper, et al.
Coolfluid 3. http://coolfluid.github.com. 2012.

[8] C. Clayton, S. Martin, and T. Yutaka. Multiphase Flows with Droplets
and Particles. CRC, 1997.

[9] A. Renoux and D. Boulaud. Les aérosols, physique et métrologie. Ed.
by. Lavoisier. 1998.

[10] J. G. M. Kuerten. “Subgrid modeling in particle-laden channel flow”.
In: Physics of Fluids 18.2, 025108 (2006), p. 025108.

[11] R. W. Johnson. Handbook of fluid dynamics. Crc Press, 1998.

[12] M. Yu, J. Lin, H. Jin, and Y. Jiang. “The verification of the Taylor-
expansion moment method for the nanoparticle coagulation in the
entire size regime due to Brownian motion”. In: Journal of Nanopar-
ticle Research 13.5 (2011), pp. 2007–2020.

144 Chapter 8. Bibliography

[13] Z. Li and H. Wang. “Drag force, diffusion coefficient, and electric
mobility of small particles. I. Theory applicable to the free-molecule
regime”. In: Phys. Rev. E 68.6 (2003), p. 061206.

[14] G. W. M. S. R. K. Jung Hyeun Kim and D. Y. H. Pui. “Slip Correc-
tion Measurements of Certified PSL Nanoparticles Using a Nanome-
ter Differential Mobility Analyzer (Nano-DMA) for Knudsen Number
From 0.5 to 83”. In: Journal of Research of the National Institute of
Standards and Technology 110.1 (2005).

[15] H. Jung, G. W. Mulholland, D. Y. Pui, and J. H. Kim. “Re-evaluation
of the slip correction parameter of certified PSL spheres using a
nanometer differential mobility analyzer (NDMA)”. In: Journal of
Aerosol Science 51 (2012), pp. 24–34.

[16] S. Balachandar and J. K. Eaton. “Turbulent dispersed multiphase
flow”. In: Annual Review of Fluid Mechanics 42 (2010), pp. 111–133.

[17] J. Ferry and S. Balachandar. “A fast Eulerian method for disperse
two-phase flow”. In: International Journal of Multiphase Flow 27.7
(2001), pp. 1199–1226.

[18] J. Ferry, S. L. Rani, and S. Balachandar. “A locally implicit improve-
ment of the equilibrium Eulerian method”. In: International journal
of multiphase flow 29.6 (2003), pp. 869–891.

[19] R. O. Fox, F. Laurent, and M. Massot. “Numerical simulation of
spray coalescence in an Eulerian framework: direct quadrature method
of moments and multi-fluid method”. In: Journal of Computational
Physics 227.6 (2008), pp. 3058–3088.

[20] S. Elghobashi and G. C. Truesdell. “Direct simulation of particle
dispersion in a decaying isotropic turbulence”. In: Journal of Fluid
Mechanics Digital Archive 242.-1 (1992), pp. 655–700.

[21] C. Béghein, Y. Jiang, and Q. Y. Chen. “Using large eddy simulation
to study particle motions in a room”. In: Indoor Air 15.4 (2005),
pp. 281–290.

[22] M. Boivin, O. Simonin, and K. D. Squires. “On the prediction of
gas–solid flows with two-way coupling using large eddy simulation”.
In: Physics of Fluids 12.8 (2000), p. 2080.

[23] B. Vreman, B. J. Geurts, N. Deen, J. Kuipers, and J. Kuerten. “Two-
and four-way coupled Euler–Lagrangian large-eddy simulation of tur-
bulent particle-laden channel flow”. In: Flow, Turbulence and Com-
bustion 82.1 (2009), pp. 47–71.

[24] O. Simonin. “Statistical and continuum modelling of turbulent reac-
tive particulate flows”. In: Theoretical and experimental modelling of
particulate flow. von Karman Institute Lecture Series. 2000.

[25] P. Nerisson. “Modélisation du transfert des aérosols dans un local
ventilé”. PhD thesis. Université de Toulouse, 2009.

145

[26] L. Zaichik, N. Drobyshevsky, A. Filippov, R. Mukin, and V. Strizhov.
“A diffusion-inertia model for predicting dispersion and deposition of
low-inertia particles in turbulent flows”. In: International Journal of
Heat and Mass Transfer 53.1 (2010), pp. 154–162.

[27] M. R. Maxey and J. J. Riley. “Equation of motion for a small rigid
sphere in a nonuniform flow”. In: Physics of fluids 26 (1983), p. 883.

[28] L. S. Hughes, G. R. Cass, J. Gone, M. Ames, and I. Olmez. “Physical
and Chemical Characterization of Atmospheric Ultrafine Particles in
the Los Angeles Area”. In: Environmental Science & Technology 32.9
(1998), p. 1153.

[29] W. W. Nazaroff. “Indoor particle dynamics”. In: Indoor Air 14.s7
(2004), pp. 175–183.

[30] D. Ramkrishna. Population balances: Theory and applications to par-
ticulate systems in engineering. Academic press, 2000.

[31] H. Zhao, C. Zheng, and M. Xu. “Multi-Monte Carlo approach for
general dynamic equation considering simultaneous particle coagula-
tion and breakage”. In: Powder Technology 154.2-3 (2005), pp. 164–
178.

[32] H. Zhao, A. Maisels, T. Matsoukas, and C. Zheng. “Analysis of four
Monte Carlo methods for the solution of population balances in dis-
persed systems”. In: Powder Technology 173.1 (2007), p. 38.

[33] H. Zhao and C. Zheng. “Correcting the multi-Monte Carlo method
for particle coagulation”. In: Powder Technology 193.1 (2009), p. 120.

[34] M. Bini and W. Jones. “Large-eddy simulation of particle-laden tur-
bulent flows”. In: Journal of Fluid Mechanics 614 (2008), pp. 207–
252.

[35] S. Garrick, K. Lehtinen, and M. Zachariah. “Nanoparticle coagula-
tion via a Navier–Stokes/nodal methodology: Evolution of the parti-
cle field”. In: Journal of Aerosol Science 37.5 (2006), p. 555.

[36] V. John and C. Suciu. “Direct discretizations of bi-variate population
balance systems with finite difference schemes of different order”. In:
Chemical Engineering Science 106 (2014), pp. 39–52.

[37] D. L. Marchisio, R. D. Vigil, and R. O. Fox. “Quadrature method of
moments for aggregation–breakage processes”. In: Journal of colloid
and interface science 258.2 (2003), pp. 322–334.

[38] D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. D. Vigil, and A.
A. Barresi. “Quadrature method of moments for population-balance
equations”. In: AIChE Journal 49.5 (2003), pp. 1266–1276.

[39] D. L. Marchisio and R. O. Fox. “Solution of population balance equa-
tions using the direct quadrature method of moments”. In: Journal
of Aerosol Science 36.1 (2005), pp. 43–73.

146 Chapter 8. Bibliography

[40] L. Zaichik, R. Mukin, L. Mukina, and V. Strizhov. “Development
of a diffusion-inertia model for calculating bubble turbulent flows:
Isothermal polydispersed flow in a vertical pipe”. In: High Tempera-
ture 50.5 (2012), pp. 621–630.

[41] V. John, I. Angelov, A. Öncül, and D. Thévenin. “Techniques for the
reconstruction of a distribution from a finite number of its moments”.
In: Chemical Engineering Science 62.11 (2007), pp. 2890–2904.

[42] L. De Souza, G. Janiga, V. John, and D. Thévenin. “Reconstruction
of a distribution from a finite number of moments with an adap-
tive spline-based algorithm”. In: Chemical Engineering Science 65.9
(2010), pp. 2741–2750.

[43] D. L. Marchisio and R. O. Fox. Computational models for polydisperse
particulate and multiphase systems. Cambridge University Press, 2013.

[44] I. Babuška. “Error-bounds for finite element method”. In: Numer.
Math. 16.4 (1971), pp. 322–333.

[45] F. Brezzi. “On the existence, uniqueness and approximation of saddle-
point problems arising from Lagrangian multipliers.” English. In: Re-
vue française d’automatique, informatique, recherche opérationnelle.
Analyse numérique 8.1 (1974), pp. 129–151.

[46] A. N. Brooks and T. J. Hughes. “Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis
on the incompressible Navier-Stokes equations”. In: Computer meth-
ods in applied mechanics and engineering 32.1 (1982), pp. 199–259.

[47] T. E. Tezduyar, S. Mittal, S. Ray, and R. Shih. “Incompressible
flow computations with stabilized bilinear and linear equal-order-
interpolation velocity-pressure elements”. In: Computer Methods in
Applied Mechanics and Engineering 95.2 (1992), pp. 221–242.

[48] M. Olshanskii and A. Reusken. “Grad-div stablilization for Stokes
equations”. In: Mathematics of Computation 73.248 (2004), pp. 1699–
1718.

[49] T. Bányai, D. Vanden Abeele, and H. Deconinck. “A fast fully-coupled
solution algorithm for the unsteady incompressible Navier-Stokes equa-
tions”. In: Conference on Modelling Fluid Flow (CMFF’06). Bu-
dapest, Hungary, 2006.

[50] A. V. Trofimova, A. E. Tejada-Mart́ınez, K. E. Jansen, and R. T.
Lahey. “Direct numerical simulation of turbulent channel flows using
a stabilized finite element method”. In: Computers & Fluids 38.4
(2009), pp. 924–938.

[51] A. E. Tejada-Martınez and K. E. Jansen. “On the interaction between
dynamic model dissipation and numerical dissipation due to stream-
line upwind/Petrov–Galerkin stabilization”. In: Computer methods
in applied mechanics and engineering 194.9 (2005), pp. 1225–1248.

147

[52] M. Braack, E. Burman, V. John, and G. Lube. “Stabilized finite
element methods for the generalized Oseen problem”. In: Computer
methods in applied mechanics and engineering 196.4 (2007), pp. 853–
866.

[53] T. Tezduyar and S. Sathe. “Stabilization parameters in SUPG and
PSPG formulations”. In: Journal of computational and applied me-
chanics 4.1 (2003), pp. 71–88.

[54] T. J. Hughes. “Multiscale phenomena: Green’s functions, the Dirichlet-
to-Neumann formulation, subgrid scale models, bubbles and the ori-
gins of stabilized methods”. In: Computer methods in applied me-
chanics and engineering 127.1 (1995), pp. 387–401.

[55] T. J. Hughes, L. Mazzei, and K. E. Jansen. “Large eddy simulation
and the variational multiscale method”. In: Computing and Visual-
ization in Science 3.1-2 (2000), pp. 47–59.

[56] T. J. Hughes, A. A. Oberai, and L. Mazzei. “Large eddy simulation
of turbulent channel flows by the variational multiscale method”. In:
Physics of Fluids (1994-present) 13.6 (2001), pp. 1784–1799.

[57] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, and G. Scov-
azzi. “Variational multiscale residual-based turbulence modeling for
large eddy simulation of incompressible flows”. In: Computer Methods
in Applied Mechanics and Engineering 197.1 (2007), pp. 173–201.

[58] M. Abadie. “Contribution à l’étude de la pollution particulaire :
rôle des parois, rôle de la ventilation”. PhD thesis. Université de
La Rochelle, 2000.

[59] J. Bouilly. “Etude de l’impact de la pollution particulaire sur la
qualité de l’air intérieur en site urbain”. PhD thesis. Université de
La Rochelle, 2003.

[60] T. Denes. “Etude de l’impact sur les particules fines de la ventila-
tion sur la qualité de l’air intérieur”. PhD thesis. Université de La
Rochelle, 2007.

[61] J. E. Hijri. “Etude de la remise en suspension particulaire, évaluation
de son impact sur la qualité de l’air intérieur”. PhD thesis. FSTT de
Tanger en co-tutelle avec ULR, 2008.

[62] L. Olea. “Contribution à l’étude du transfert de particules solides
dans le bâtiment: Rôle des fissures et ouvertures réduites”. PhD the-
sis. Université de La Rochelle, 2009.

[63] P. Duru, D. Koch, and C. Cohen. “Experimental study of turbulence-
induced coalescence in aerosols”. In: International Journal of Multi-
phase Flow 33.9 (2007), p. 987.

148 Chapter 8. Bibliography

[64] S. Laın, M. Sommerfeld, and J. Kussin. “Experimental studies and
modelling of four-way coupling in particle-laden horizontal channel
flow”. In: International journal of heat and fluid flow 23.5 (2002),
pp. 647–656.

[65] I. Horvath, E. Pescini, P. Colinet, and M. R. Vetrano. “Applica-
tion de la technique spectroscopique d’extinction à un écoulement
de nanoparticules”. In: 13ième Congrès Francophone de Techniques
Laser. 2012.

[66] I. T. Horvath, M. R. Vetrano, and P. Colinet. “Validation of the
Multi-Wavelength Light Extinction technique for the characteriza-
tion of solid nanoparticles”. In: European Conference on Liquid At-
omization and Spray Systems (ILASS 2013). 2013.

[67] T. A. Zang. “On the rotation and skew-symmetric forms for incom-
pressible flow simulations”. In: Applied Numerical Mathematics 7.1
(1991), pp. 27–40.

[68] S. Mittal. “On the performance of high aspect ratio elements for
incompressible flows”. In: Comput. Methods Appl. Mech. Engrg. 188
(2000), pp. 269–287.

[69] T. Heister and G. Rapin. “Efficient augmented Lagrangian-type pre-
conditioning for the Oseen problem using Grad-Div stabilization”. In:
International Journal for Numerical Methods in Fluids 71.1 (2013),
pp. 118–134.

[70] Y. Ling, M. Parmar, and S. Balachandar. “A scaling analysis of
added-mass and history forces and their coupling in dispersed multi-
phase flows”. In: International Journal of Multiphase Flow 57 (2013),
pp. 102–114.

[71] O. Druzhinin and S. Elghobashi. “Direct numerical simulations of
bubble-laden turbulent flows using the two-fluid formulation”. In:
Physics of Fluids 10 (1998), p. 685.

[72] V. Armenio and V. Fiorotto. “The importance of the forces acting
on particles in turbulent flows”. In: Physics of Fluids 13.8 (2001),
pp. 2437–2440.

[73] A. Daitche and T. Tél. “Memory effects are relevant for chaotic
advection of inertial particles”. In: Physical Review Letters 107.24
(2011), p. 244501.

[74] K. Guseva, U. Feudel, and T. Tél. “Influence of the history force
on inertial particle advection: Gravitational effects and horizontal
diffusion”. In: Physical Review E 88.4 (2013), p. 042909.

[75] A. Daitche. “Advection of Inertial Particles in the Presence of the His-
tory Force: Higher Order Numerical Schemes”. In: Journal of Com-
putational Physics 254 (2013), pp. 93–106.

149

[76] M. Van Hinsberg, J. ten Thije Boonkkamp, and H. Clercx. “An ef-
ficient, second order method for the approximation of the Basset
history force”. In: Journal of Computational Physics 230.4 (2011),
pp. 1465–1478.

[77] E. Calzavarini, R. Volk, M. Bourgoin, E. Lévêque, J.-F. Pinton, F.
Toschi, et al. “Acceleration statistics of finite-sized particles in tur-
bulent flow: the role of Faxén forces”. In: Journal of Fluid Mechanics
630 (2009), p. 179.

[78] H. Homann, J. Bec, et al. “Finite-size effects in the dynamics of
neutrally buoyant particles in turbulent flow”. In: Journal of Fluid
Mechanics 651 (2010), p. 81.

[79] V. John and P. Knobloch. “On spurious oscillations at layers dimin-
ishing (SOLD) methods for convection–diffusion equations: Part I–A
review”. In: Computer Methods in Applied Mechanics and Engineer-
ing 196.17 (2007), pp. 2197–2215.

[80] V. John and P. Knobloch. “On spurious oscillations at layers di-
minishing (SOLD) methods for convection–diffusion equations: Part
II–Analysis for P1 and Q1 finite elements”. In: Computer Methods in
Applied Mechanics and Engineering 197.21 (2008), pp. 1997–2014.

[81] V. John, T. Mitkova, M. Roland, K. Sundmacher, L. Tobiska, and A.
Voigt. “Simulations of population balance systems with one internal
coordinate using finite element methods”. In: Chemical Engineering
Science 64.4 (2009), pp. 733–741.

[82] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures
on Physics, Desktop Edition Volume I. Vol. 1. 2013.

[83] F. Laurent, M. Massot, and P. Villedieu. “Eulerian multi-fluid model-
ing for the numerical simulation of coalescence in polydisperse dense
liquid sprays”. In: Journal of Computational Physics 194.2 (2004),
pp. 505–543.

[84] P. Saffman and J. Turner. “On the collision of drops in turbulent
clouds”. In: Journal of Fluid Mechanics 1.01 (1956), pp. 16–30.

[85] L.-P. Wang, A. S. Wexler, and Y. Zhou. “Statistical mechanical de-
scriptions of turbulent coagulation”. In: Physics of Fluids (1994-
present) 10.10 (1998), pp. 2647–2651.

[86] Y. Zhou, A. S. Wexler, and L.-P. Wang. “On the collision rate of
small particles in isotropic turbulence. II. Finite inertia case”. In:
Physics of Fluids 10.5 (1998), p. 1206.

[87] L.-P. Wang, A. S. Wexler, and Y. Zhou. “On the collision rate of small
particles in isotropic turbulence. I. Zero-inertia case”. In: Physics of
Fluids 10.1 (1998), p. 266.

150 Chapter 8. Bibliography

[88] R. Mei and K. C. Hu. “On the collision rate of small particles in
turbulent flows”. In: Journal of Fluid Mechanics 391 (1999), pp. 67–
89.

[89] R. J. Hill. “Geometric collision rates and trajectories of cloud droplets
falling into a Burgers vortex”. In: Physics of Fluids (1994-present)
17.3 (2005), p. 037103.

[90] L. I. Zaichik and V. M. Alipchenkov. “The coagulation of aerosol
particles in turbulent flow”. In: High Temperature 46.5 (2008), p. 666.

[91] M. Williams. “A unified theory of aerosol coagulation”. In: Journal
of Physics D: Applied Physics 21.6 (1988), p. 875.

[92] L. I. Zaichik and V. M. Alipchenkov. “The effect of Brownian motion
on collisions between aerosol particles in turbulent flow”. In: High
Temperature 46.4 (2008), p. 502.

[93] K. Lee. “Change of particle size distribution during Brownian coag-
ulation”. In: Journal of Colloid and Interface Science 92.2 (1983),
pp. 315–325.

[94] N. Park, J. Y. Yoo, and H. Choi. “Discretization errors in large eddy
simulation: on the suitability of centered and upwind-biased com-
pact difference schemes”. In: Journal of Computational Physics 198.2
(2004), pp. 580–616.

[95] G. Lindauer and A. Castleman Jr. “Behavior of aerosols undergoing
Brownian coagulation and gravitational settling in closed systems”.
In: Journal of Aerosol Science 2.2 (1971), pp. 85–91.

[96] E. Niebler. “Proto: a compiler construction toolkit for DSELs”. In:
Proceedings of the 2007 Symposium on Library-Centric Software De-
sign - LCSD ’07. LCSD ’07. Montreal, Canada: ACM, 2007, pp. 42–
51.

[97] H. G. Weller. “A tensorial approach to computational continuum me-
chanics using object-oriented techniques”. In: Computers in Physics
12.6 (1998), p. 620.

[98] A. Logg and G. N. Wells. “DOLFIN: Automated finite element com-
puting.” In: ACM Trans. Math. Softw. 37.2 (2010).

[99] M. S. Alnæs and K.-A. Mardal. “On the efficiency of symbolic compu-
tations combined with code generation for finite element methods”.
In: ACM Transactions on Mathematical Software 37.1 (2010), p. 1.

[100] C. Prud’homme. “A domain specific embedded language in C++
for automatic differentiation, projection, integration and variational
formulations”. In: Scientific Programming 14.2 (2006), pp. 81–110.

[101] O. Zienkiewicz and R. Taylor. The Finite Element Method. Ed. by
F. Edition. Butterworth Heinemann, 2000.

151

[102] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org.
2010.

[103] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Boston, MA: Addison-Wesley, 2000.

[104] M. A. Heroux and J. M. Willenbring. Trilinos Users Guide. Tech.
rep. SAND2003-2952. 2003.

[105] R. Johnson, R. Helm, J. Vlissides, and E. Gamma. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1995.

[106] K. Iglberger, G. Hager, J. Treibig, and U. Rüde. “Expression Tem-
plates Revisited: A Performance Analysis of Current Methodologies.”
In: SIAM J. Scientific Computing 34.2 (2012).

[107] A. J. Chorin. “Numerical solution of the Navier-Stokes equations”.
In: Mathematics of computation 22.104 (1968), pp. 745–762.

[108] R. Codina, J. Principe, O. Guasch, and S. Badia. “Time dependent
subscales in the stabilized finite element approximation of incom-
pressible flow problems”. In: Computer Methods in Applied Mechan-
ics and Engineering 196.21 (2007), pp. 2413–2430.

[109] J. Kim, P. Moin, and R. Moser. “Turbulence statistics in fully de-
veloped channel flow at low Reynolds number”. In: Journal of Fluid
Mechanics 177 (1987), pp. 133–166.

[110] R. D. Moser, J. Kim, and N. N. Mansour. “Direct numerical sim-
ulation of turbulent channel flow up to Reτ = 590”. In: Physics of
Fluids 11.4 (1999), pp. 943–945.

[111] U. Piomelli and P. Sagaut. “Large Eddy Simulation. Theory and
Applications”. In: von Karman Institute Lecture Series. 2012.

[112] Y. Morinishi and O. V. Vasilyev. “A recommended modification to
the dynamic two-parameter mixed subgrid scale model for large eddy
simulation of wall bounded turbulent flow”. In: Physics of Fluids
13.11 (2001), pp. 3400–3410.

[113] H. Tennekes and J. L. Lumley. A first course in turbulence. MIT
press, 1972.

[114] J. G. M. Kuerten and A. W. Vreman. “Can turbophoresis be pre-
dicted by large-eddy simulation?” In: Physics of Fluids 17.1, 011701
(2005), p. 011701.

[115] V. John and E. Schmeyer. “On finite element methods for 3d time-
dependent convection-diffusion-reaction equations with small diffu-
sion”. In: BAIL 2008-Boundary and Interior Layers. Springer, 2009,
pp. 173–181.

152 Chapter 8. Bibliography

[116] E. Recker, W. Bosschaerts, and P. Hendrick. “Numerical and exper-
imental study of a hydrogen gas turbine combustor using the jet in
cross-flow principle”. PhD thesis. Royal Military Academy, 2012.

[117] R. N. Habiyambere. “Experimentele studie van de karakteristieken
van Offset jet flows”. MA thesis. Royal Military Academy, 2013.

[118] P. Rajesh Kanna and M. K. Das. “Numerical simulation of two-
dimensional laminar incompressible offset jet flows”. In: International
Journal for Numerical Methods in Fluids 49.4 (2005), pp. 439–464.

[119] A. Nasr and J. Lai. “A turbulent plane offset jet with small offset
ratio”. In: Experiments in Fluids 24.1 (1998), pp. 47–57.

[120] B. Lecordier and J. Westerweel. “The EUROPIV synthetic image
generator (SIG)”. In: Particle image velocimetry: recent improve-
ments. Springer, 2004, pp. 145–161.

[121] F. Durst, S. Ray, B. Ünsal, and O. Bayoumi. “The development
lengths of laminar pipe and channel flows”. In: Journal of Fluids
Engineering 127.6 (2005), pp. 1154–1160.

[122] J. Meyers and P. Sagaut. “Is plane-channel flow a friendly case for the
testing of large-eddy simulation subgrid-scale models?” In: Physics
of Fluids 19.4 (2007), pp. 48105–49900.

	Abstract
	Acknowledgments
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Scope and objectives
	1.3 Thesis outline

	I Modeling
	2 Dispersed flow modeling: a review
	2.1 Fundamental concepts
	2.1.1 Particle concentration
	2.1.2 Particle response time
	2.1.3 Dilute flow
	2.1.4 Rarefied flow effects

	2.2 Literature review
	2.2.1 Particle transport
	2.2.2 Particle coagulation
	2.2.3 Stabilized finite element methods
	2.2.4 Experimental methods

	2.3 Modeling choices

	3 Numerical method
	3.1 Fluid model
	3.1.1 Coupled formulation
	3.1.2 Segregated formulation
	3.1.3 Performance aspects

	3.2 Discrete phase model
	3.2.1 Monodisperse flows
	3.2.2 Polydisperse flows

	4 Domain specific language
	4.1 Finite element discretization
	4.2 Construction of the language
	4.2.1 The language layer
	4.2.2 The algorithm implementation layer
	4.2.3 External libraries
	4.2.4 User defined terminals
	4.2.5 Integration into a framework
	4.2.6 Compatibility with matrix expression templates

	4.3 Application examples
	4.3.1 Poisson problem
	4.3.2 Navier-Stokes equations using Chorin's method
	4.3.3 PSPG/SUPG stabilized incompressible Navier-Stokes

	4.4 Performance analysis
	4.4.1 Poisson problem
	4.4.2 Chorin's method
	4.4.3 Channel flow simulation

	4.5 Conclusion and future work

	II Validation
	5 Reference cases
	5.1 Fluid model
	5.1.1 Taylor-Green vortices
	5.1.2 Turbulent channel flow

	5.2 Particle model
	5.2.1 Taylor-Green vortices
	5.2.2 Burgers vortex
	5.2.3 Turbulent channel flow

	6 Experimental validation
	6.1 Experimental setup
	6.2 Flow measurements
	6.2.1 Horizontal plane (A)
	6.2.2 Inlet detail (B)
	6.2.3 Center plane (C)
	6.2.4 Numerical model validation

	6.3 Particle behavior
	6.3.1 PDA measurements
	6.3.2 Multi-Wavelength Light Extinction
	6.3.3 Numerical model validation

	III Conclusion
	7 Conclusion and further work
	7.1 Conclusions
	7.2 Further work
	7.3 Future developments
	7.3.1 Language development
	7.3.2 Performance improvements
	7.3.3 Numerical improvements
	7.3.4 Extending the applicability
	7.3.5 Potential applications

	8 Bibliography

