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The aim of this dissertation is to offer methods for separating incoherent sound sources which may overlap in both the space and frequency domains by exploiting spatial information. This is found of interest in acoustical applications involving the identification and ranking of sound sources stemming from different physical origins.

The fundamental principle of all proposed methods proceeds in two steps, the first one being reminiscent to source reconstruction (e.g. as in near-field acoustical holography)

and the second one to blind source separation. Specifically, the source mixture is first expanded into a linear combination of spatial basis functions whose coefficients are set by backpropagating the pressures measured by an array of microphones to the source domain. This leads to a formulation similar, but no identical, to blind source separation. In the second step, these coefficients are blindly separated into uncorrelated latent variables, assigned to incoherent "virtual sources". These are shown to be defined up to an arbitrary rotation. A unique set of sound sources is finally recovered by searching for that rotation (conjugate gradient descent in the Stiefel manifold of unitary matrices) which minimizes some spatial criteria, such as spatial variance, spatial entropy, or spatial orthogonality. This results in the proposal of three separation criteria coined "least spatial variance", "least spatial entropy", and "spatial decorrelation", respectively. Meanwhile, the condition under which classical decorrelation (principal component analysis) can solve the problem is deduced in a rigorous way.

The same concept of spatial entropy, which is central to the dissertation, is also exploited in defining a new criterion, the entropic L-curve, dedicated to determining the number of active sound sources on the source domain of interest. The idea consists in considering the number of sources that achieves the best compromise ii between a low spatial entropy (as expected from compact sources) and a low statistical entropy (as expected from a low residual error).

The proposed methodology is validated on both laboratory experiments and numerical data, and illustrated on an industrial example concerned with the ranking of sound sources on the topside of a Diesel engine. The methodology can also correctly separate very small sources whose amplitudes are 40 dB lower than the strongest sources. At the same time, the robustness to the estimated number of active sources, to the range distance between the source domain of interest and the array of microphones, and to the size of aperture function is demonstrated with success.
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Ré sumé

La séparation aveugle de sources est une technique prometteuse pour l'identification, la localisation, et la classification des sources sonores.

L'objectif de cette thèse est de proposer des méthodes pour séparer des sources sonores incohérentes qui peuvent se chevaucher à la fois dans les domaines spatial et fréquentiel par l'exploitation de l'information spatiale. De telles méthodes sont d'intérêt dans les applications acoustiques nécessitant l'identification et la classification des sources sonores ayant des origines physiques différentes. Le principe fondamental de toutes les méthodes proposées se décrit en deux étapes, la première étant relative à la reconstruction du champ source (comme par exemple à l'aide de l'holographie acoustique de champ proche) et la seconde à la séparation aveugle de sources. Spécifiquement, l'ensemble complexe des sources est d'abord décomposé en une combinaison linéaire de fonctions de base spatiales dont les coefficients sont définis en rétropropageant les pressions mesurées par un réseau de microphones sur le domaine source. Cela conduit à une formulation similaire, mais pas identique, à la séparation aveugle de sources. Dans la seconde étape, ces coefficients sont séparés en variables latentes décorrélées, affectées à des "sources virtuelles" incohérentes. Il est montré que ces dernières sont définies par une rotation arbitraire. Un ensemble unique de sources sonores est finalement résolu par la recherche de la rotation (par gradient conjugué dans la variété Stiefel des matrices unitaires) qui minimise certains critères spatiaux, tels que la variance spatiale, l'entropie spatiale, ou l'orthogonalité spatiale. Il en résulte la proposition de trois critères de séparation à savoir la "moindre variance spatiale", la "moindre entropie spatiale", et la "décorrélation spatiale", respectivement. De plus, la condition sous laquelle la décorrélation classique (analyse en composantes principales) peut résoudre le problème est établit de une manière rigoureuse.

Le même concept d'entropie spatiale, qui est au coeur de cette thèse, est également iv exploité dans la définition d'un nouveau critère, la courbe en L entropique, qui permet de déterminer le nombre de sources sonores actives sur le domaine source d'intérêt.

L'idée consiste à considérer le nombre de sources qui réalise le meilleur compromis entre une faible entropie spatiale (comme prévu à partir de sources compactes) et une faible entropie statistique (comme prévu à partir d'une faible erreur résiduelle).

La méthode proposée est validée à la fois sur des expériences de laboratoire et des L'objectif de cette thèse est de combler cette lacune en proposant une solution qui permette de séparer des sources incohé rentes à partir de mesures à distance; l'incohérence mutuelle est considérée ici comme une propriété exclusive des sources ayant des origines physiques distinctes. Après avoir parcouru la littérature existante sur la séparation aveugle de sources (Blind Source Separation, BSS) en acoustique, il semble qu'au moins trois questions doivent être considérées dans un effort de développement de méthodes autonomes ayant un potentiel réel dans les applications industrielles:

1) la première question est de savoir comment séparer aveuglément des sources vi sonores incohérentes dans le domaine fréquentiel sans références et sans avoir recours à des hypothèses particulières telles que la non-gaussiennatié;

2) la deuxième question, qui est consécutive à la première, est de savoir si il y a une condition spécifique sous laquelle la décorrélation standard peut résoudre directement le problème de BSS sans aucune information supplémentaire;

3) la troisième question, lée aux deux premières, est comment déterminer de façon fiable le nombre de sources sonores incidentes sur un réseau de microphones avec une précision acceptable, comme condition préalable à la BSS.

Le manuscrit de thèse est divisée en deux parties: théorie et expériences. La partie I se compose des Chapitres 1-5 qui sont principalement concentrés sur la théorie de la séparation spatiale des sources sonores incohérentes. La partie II est constitué les Chapitres 6-7, et se concentre sur la validation des algorithmes proposés dans la partie I par des expériences de laboratoire, par la simulation numérique, et par un exemple industriel -séparation aveugle de sources sonores rayonnées par un moteur Diesel. En outre, l'analyse des paramètres expérimentaux par rapport aux algorithmes proposés est étudiée en fin de manusscrit. L'introduction concrète de chaque chapitre est présentée respectivement comme suit:

Le Chapitre 1 évoque d'abord l'objectif de recherche de la présente thèse, c'est-à-dire la séparation aveugle de sources sonores incohérentes qui se chevauchent dans les deux domaines spatial et fréquentiel. Ensuite, la littérature sur le problème acoustique inverse est arpentée en détail. Ia discussion se concentre principalement sur la formation de voies (beamforming) et l'holographie acoustique de champ proche (Near-Field Acoustical Holography, NAH), qui sont les deux méthodes les plus couramment appliquées dans l'imagerie acoustique. Dans le paragraphe suivant, l'état de l'art sur la séparation aveugle de sources est abordé en trois points: le modèle, le critère de séparation aveugle de sources, et l'algorithme d'optimisation. Les applications de la séparation de sources en acoustique, principalement supervisée et aveugle, sont étudiés en détail, respectivement. Sur la base de la littérature existante, les défis actuels sont identifiés au paragraphe 1.5. L'organisation du reste du manuscrit est comme suit.

vii La théorie de base sur "la séparation spatiale des sources sonores" est introduite au Chapitre 2, qui se structure en deux parties: la rétropropagation et la décorrélation statistique des sources sonores. Dans un premier temps, les problèmes directs et inverses en acoustique sont examinés de façon concise. Le modèle mathématique général de la rétropropagation est établi comme une introduction au problème inverse.

Pour mettre en évidence les performances de cette dernière méthodologie, un ensemble de bases spatiales optimales, déduites de la théorie bayésienne, est adopté pour rétropropager les ondes sonores à partir des mesures réalisées par un réseau de Chapter 1 Introduction

Objectives

Localization and identification of sound sources are fundamental issues in sound and vibration engineering [1]. The need for new techniques to localize, identify, and rank sound sources has been recently boosted by stricter requirements in terms of acoustical quality, especially in the transportation industry. Among the various approaches dedicated to these objectives [2]- [START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF], one popular solution is to reconstruct sound sources (e.g. parietal pressure or normal component of particle velocity)

indirectly from contactless measurements, such as returned by an array of microphones. This has the definite advantage of being non-intrusive as well as being rather universal in principle. Acoustic imaging is widely applied in the industry.

A few examples are listed in Fig. 1.1. One significant limitation of classical acoustic imaging is that it can hardly identify sound sources which overlap in both the spatial and frequency domains, even though they may stem from distinct physical origins. A typical example is given in the automotive industry, by the sound sources (e.g. combustion, injection, exhaust system, and etc.) radiated from a Diesel engine [START_REF] Lafon | Séparation de sources couplée aux techniques d'imagerie acoustique: Application au rayonnement de moteurs Diesel (Separation of sources coupled with techniques of acoustic imaging: application on the influence of Diesel engines[END_REF]- [START_REF] Lafon | The concept of cyclic sound intensity and its application to acoustical imaging[END_REF].

The aim of the present dissertation is to fill this gap by proposing solutions that separate incoherent sources from remote measurements -mutual incoherence is considered here as an exclusive property of sources originating from distinct physical origins. Before introducing the state-of-the-art of source separation in acoustics, the inverse acoustical problem is surveyed first in the next subsection. sewing machine [START_REF]Acoustic camera[END_REF], (d) the connection part between rails and wheels of a train [START_REF]Acoustic camera[END_REF], and (e) the front side of an engine [START_REF]Acoustic camera[END_REF].

Literature survey on inverse acoustical problem

In essence, the technique of acoustic imaging is an inverse problem. How to solve this kind of problem is out of the scope of the dissertation. Here only the development of acoustic imaging is reviewed from the historical point of view in short.

Beamforming, one of the standard methods for source localization, is undoubtedly the first proposed technique of acoustic imaging [START_REF] Billingsley | The acoustic telescope[END_REF]- [START_REF] Michel | History of acoustic beamforming[END_REF]. Beamforming has a series of advantages: high spatial resolution at high frequency, suitability to several types of sources (no matter moving or stationary), applicability to large target objects (for instance aircraft and wind turbine) to name just a few. At the same time, it also owns several apparent drawbacks, especially a low spatial resolution at low frequency and a limitation to operate in the far-field. To counter the disadvantages of beamforming, other methods have been developed based on other physical properties of sound waves.

By applying the spatial Fourier transform and combining the evanescent waves in the near-field, outstanding successes have been obtained -in particular in terms of attainable spatial resolution -after the introduction of Near-field Acoustical Holography (NAH) by Maynard, Williams and Lee in the 80's [START_REF] Maynard | Nearfield acoustic holography:Ⅰ. Theory of generalized holography and the development of NAH[END_REF]- [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography[END_REF]. Elaborating on the idea of backpropagating the measured acoustical field from the array to the source of interest, several versions and variants of NAH have been proposed over the years, such as Statistically Optimized NAH (SONAH) [START_REF] Hald | Basic theory and properties of statistically optimized near-field acoustical holography[END_REF]- [START_REF] Jacobsen | Statistically optimized near field acoustic holography using an array of pressure-velocity probes[END_REF], Helmholtz's Equation Least-Squares (HELS) [START_REF] Wu | On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method[END_REF], the Equivalent Source Method (ESM) [START_REF] Sarkissian | Extension of measurement surface in near-field acoustic holography[END_REF]- [START_REF] Pereira | Acoustic imaging in enclosed spaces[END_REF],

and the Inverse Boundary Element Method (IBEM) [START_REF] Schuhmacher | Sound source reconstruction using inverse boundary element calculations[END_REF]- [START_REF] Oey | Effect of sensor proximity over the non-conformal hologram plane in the near-field acoustical holography based on the inverse boundary element method[END_REF] to name just a few.

Reviews of these methods may be found in Refs. [START_REF] Magalhães | Sound sources reconstruction techniques: A review of their evolution and new trends[END_REF]- [START_REF] Wu | Methods for reconstructing acoustic quantities based on acoustic pressure measurements[END_REF]. NAH works well at low frequency of interest, because of the acquisition of evanescent waves. As like the two sides of a coin, working in the near-field brings many attractive properties to NAH, but meanwhile it becomes the bottleneck in other scenarii.

One noticeable drawback of NAH is that it needs a large number of microphones to break through the wavelength limitation and then reconstruct the acoustic hologram at high frequencies. Taking into account the cost of sensors and the technical limitation of the hardware, simultaneously applying too many measurements is not without drawback for NAH.

Thank to its smart theory [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF]- [START_REF] Donoho | Compressed sensing[END_REF], Compressed Sensing (CS) has the potential to solve the contradiction between working at high frequencies and measuring with fewer microphones. G. Chardon et al. have successfully demonstrated the possibility of applying CS to NAH [START_REF] Chardon | Near-field acoustic holography using sparse regularization and compressive sampling principles[END_REF].

In fact, the inverse acoustic problem can be considered as an interpolation-extrapolation problem, when taking into account the process from measurements to the source domain of interest. In the interpolation step, the measurements from an array of microphones are expanded into a set of basis functions.

For instance, the measurements are interpolated by typically plane wave functions in SONAH, by typically spherical wave functions in HELS, by monopoles/dipoles in ESM, and by generalized spherical wave functions in IBEM. Appropriate regularization techniques are employed to depress unstable results in the extrapolation step, e.g. Tikhonov regularized solution is considered in SONAH [START_REF] Hald | Basic theory and properties of statistically optimized near-field acoustical holography[END_REF], which primarily bases on the type of basis functions in the interpolation step.

A question is naturally proposed: is there an optimal one among all possible candidates of interpolation basis functions, when the topology of a source domain, the geometry of an array of microphones, and any possible a priori information on the source distribution in space are available in advance? The answer might be positive.

The optimal basis functions for the interpolation have been found by J. Antoni with success under the Bayesian framework [START_REF] Antoni | A Bayesian approach to sound source reconstruction: Optimal basis, regularization and focusing[END_REF]. The main work of the dissertation is fully bases on the backpropagation with the optimal basis functions.

For the discussion of inverse acoustical problem in detail, one tutorial [START_REF] Kim | Can we hear the shape of a noise source?[END_REF] and two

PhD theses [START_REF] Grande | Near-field acoustic holography with sound pressure and particle velocity measurements[END_REF]- [START_REF] Chu | Bayesian approach in acoustic source localization and imaging[END_REF] are recommended here.

Literature survey on blind source separation

Blind source separation (BSS), a hot research topic in the signal and image processing community [START_REF] Comon | Independent component analysis: A new concept?[END_REF]- [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Application[END_REF], originated at the beginning of the 80's [START_REF] Hérault | Space or time adaptive signal processing by neural networks models[END_REF].The literature on BSS is extremely vast (it has been growing exponentially since the early 90's). Obviously, it is not necessary and not practical to survey all the literatures concerning BSS. Hereafter the main content of the present section concentrates on the introduction of the framework of BSS from three parts: model, criterion and algorithm.

As declared by P. Comon in Ref. [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Application[END_REF], the 'blind' in BSS does not mean absolute blindness, but implies to make use of a priori information as little as possible. In general, the a priori information is implicitly involved in the model of BSS.

According where, X denotes the matrix of measurements from sensors, A is the mixing matrix, '*' stands for the mixing operation -for instance, linear or nonlinear, product or convolution, and S represents the matrix of sources. Obviously, without any complementary information, Eq. (1.1) is impossible to solve precisely, because it has infinite solutions for the underdetermined case and an optimal least-squares solution, might far from the actual one, for the overdetermined case. Note that ignoring the scale-permutation ambiguity is the specific unspoken rule in BSS. To improve the abstract of the mathematic model, S. Amari and A. Cichocki combine block diagram with mathematic formulas to model the BSS problem from the neural network point of view ( [START_REF] Amari | Adaptive blind signal processing-neural network approaches[END_REF], [START_REF] Cichocki | Adaptive blind signal and image processing -Learning algorithms and applications[END_REF]).

The basic idea behind all criteria of BSS in the signal and image processing community is to minimize the statistical information provided by sources. The criteria could be roughly divided into two groups according to their statistical property:

Gaussian and non-Gaussian sources. To separate non-Gaussian sources, their higher (normally more than 2)-order statistics are usually involved into the criterion. Since the theory of Independent Component Analysis (ICA) has been built by P. Comon [START_REF] Comon | Independent component analysis: A new concept?[END_REF], it has become, undoubtedly, the first choice for the blind separation of non-Gaussian sources. To solve the problem of mixed Gaussian sources, the corresponding criteria have to resort to the Second-Order Statistics (SOS), as the higher-order statistics of Gaussian sources are all null.

To optimize the corresponding criteria and solve the modeled BSS problem, a large number of algorithms have been successively proposed since the birth of BSS. Three classic algorithms, Joint Approximate Diagonalization of Eigen-matrices (JADE), Second Order Blind Identification (SOBI), and Sparse Component Analysis (SCA), are underlined in short here. JADE firstly forms a set of 4th-order cumulants of the whitened measurements and then jointly diagonalizes them to separate the sources [START_REF] Cardoso | Blind beamforming for non Gaussian signals[END_REF]. It is based on the two rigorous assumptions of statistical independence and non-Gaussianity of the sources. SOBI applies the joint approximate diagonalization to a group of whitened covariance matrices of the measurements in order to separate Gaussian sources [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF].Interestingly, sources can be considered to be sparse (more generally, approximately sparse) in many applications. With the help of such an assumption, they can be separated with SCA [START_REF] Gribonval | A survey of sparse components analysis for blind source separation: Principle, perspectives and new challenges[END_REF] even if the assumption of statistical independence is lost. Noteworthily, SCA has immeasurable potential to BSS, as more and more powerful algorithms from CS have been proposed to deal with sparse signals and images [START_REF] Casanovas | Blind Audiovisual Source Separation Based on Sparse Redundant Representations[END_REF]- [START_REF] Kleinsteuber | Blind Source Separation with Compressively Sensed Linear Mixtures[END_REF].

For the complete history on the development of BSS, the reader is referred to Chapter 1 of "Handbook of Blind Source Separation: Independent Component Analysis and Application" edited by P. Comon and C. Jutten [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Application[END_REF].

State-of-the-art of source separation applied to acoustics

In this dissertation, the research interest is limited to the scenario where all sound sources are located on one side of an array of microphones. If interested to other cases, the readers are referred to E. F. Grande's work [START_REF] Grande | Near-field acoustic holography with sound pressure and particle velocity measurements[END_REF].

A first possibility towards the separation of sound sources is the "supervised separation" which makes use of a set of available references on the sources of interest in order to separate their contributions at the measurement points. These methods have attracted considerable attention since the late 70's, after the advent of dual channel analyzers [START_REF] Bendat | Random Data: Analysis and Measurement Procedures[END_REF]. They are, in theory, able to separate overlapping sources (in time, frequency, and space), yet they crucially rely on the availability of pure references, perfectly correlated with the sources of interest and totally uncorrelated with other sources. Early applications of supervised source separation to NAH are reported in Refs. [START_REF] Hallman | Multi-reference near-field acoustical holography[END_REF]- [START_REF] Ruhala | Separation of leading edge, trailing edge, and sidewall noise sources from rolling tires[END_REF]. A recent application to the Diesel engine example quoted above is found in Ref. [START_REF] Lafon | The concept of cyclic sound intensity and its application to acoustical imaging[END_REF]. An important practical limitation of the supervised separation is the difficulty of mounting reference sensors close enough to the sources of interest which, in general, may not be known a priori. In Ref. [START_REF] Tomlinson | Partial source discrimination in near field acoustic holography[END_REF], Tomlinson investigated the possibility of obtaining "virtual" sources from the Principal Component Analysis (PCA) or partial coherence analysis of a set of non-ideal reference transducers. However, as early recognized by S. M. Price and R. J. Bernhard [START_REF] Price | Virtual coherence: A digital signal processing technique for incoherent source identification[END_REF], there is no guarantee that a virtual source should endow a physical essence.

References [START_REF] Nam | Visualization of multiple incoherent sources by the backward prediction of near-field acoustic holography[END_REF]- [START_REF] Nam | A partial field decomposition algorithm and its examples for near-field acoustic holography[END_REF] tackle the issue from a different perspective, where "numerical" references are obtained from the reconstructed source field after applying NAH in a first step. The method has its elegance and instrumental simplicity, yet it relies on the assumption that references can be assigned to spatially non-overlapping sources in the reconstruction domain and, therefore, can hardly solve the issue raised in the present dissertation.

Since striving for pure enough references is the main bottleneck of supervised source separation, one may wonder whether references are really necessary to achieve separation after all. Relaxing the need for reference is the objective of BSS which has been surveyed shortly in Section 1.3. BSS relies on the paradigm that a mixture of sources can be separated provided that sources bear different enough statistical properties. In a sense, sources should have disjoint support sets in some statistical space (of which trivial examples are the frequency and time domains).

Although the literature on BSS is extremely vast (until June 2009, 22,000 scientific papers concerning BSS have been published in Engineering, Computer Science, and Mathematics according to Google Scholar [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Application[END_REF]), few reports have been given to acoustical applications (except for speech processing which, in many aspects, is closer to communication signal processing than to the issue addressed in the present dissertation) and, as far as the authors know, none to NAH. A few examples of separation of sound signals are given in Refs. [START_REF] Zhong | Application of the blind source separation method to feature extraction of machine sound signals[END_REF]- [START_REF] Teramoto | Real-time acoustic blind signal separation system based on the spatio-temporal gradient analysis[END_REF], although they are quite far from the objectives of the present dissertation. In Ref. [START_REF] Zhong | Application of the blind source separation method to feature extraction of machine sound signals[END_REF], Zhong et al. apply a standard BSS algorithm (i.e. SOBI) which forces decorrelation of separated sources at several time-lags); one limitation of the approach is that it assumes an instantaneous mixture of sources, whereas a convolutive mixture should be used as soon as acoustical propagation is taken into account. In Ref. [START_REF] Teramoto | Real-time acoustic blind signal separation system based on the spatio-temporal gradient analysis[END_REF], Teramoto and M. Khan propose a BSS method for acoustical signals, where the convolution mixture is turned into an instantaneous mixture by making use of the Euler's equation. The requirement for simultaneous measurements of the sound pressure and of the particle velocity in the three Cartesian coordinates is a strong practical limitation of the method; in addition, it is limited to the separation of directions of arrival in the far-field. A rather advanced BSS scheme is proposed by Aichner et al. in Ref. [START_REF] Aichner | A real-time blind source separation scheme and its application to reverberant and noisy acoustic environments[END_REF], which can separate broadband acoustical sources in reverberant and noisy environments such as in a car compartment. Separation is achieved by forcing the decorrelation of the sources at several time-lags based on a convolutive model. Moreover, a large literature exists on the separation of audio signals which, at first glance, may appear somewhat relation to the objectives of the present dissertation; yet it is not reviewed here since these methods put a high demand on the specific waveform of audio signals (e.g. strong amplitude and frequency modulation) [START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF]- [START_REF] Wu | Audio signal separation via a combination procedure of time-reversal and deconvolution process[END_REF], and thus are likely to fail in any industrial application where sound sources do not necessarily exhibit such features.

One reference that makes explicit account of the acoustical specificities is [START_REF] Zhang | Bayesian space-frequency separation of wide-band sound sources by a hierarchical approach[END_REF], wherein the authors devised a method based on the Bayesian framework to separate broadband sound sources in the frequency and space domains. However, the method may not be yet ready for industrial applications because of its high calculation burden plus the requirement for some critical parameters to be tuned by the user.

Current challenges

Reasons why standard BSS algorithms -such as developed in communication engineering -can hardly be applied to separate acoustical sources, are the following.

First, most BSS algorithms require the strong assumption of statistically independent sources, which is much more restrictive than their mutual incoherence/decorrelation1 (independence implies decorrelation, but the reverse does not hold true in general); related to this is the necessary condition is that no more than one source in the mixture can be Gaussian [ [START_REF] Comon | Independent component analysis: A new concept?[END_REF], [START_REF] Lee | A unifying information-theoretic framework for independent component analysis[END_REF], [START_REF] Hyvärinen | Independent component analysis: Algorithms and application[END_REF], [START_REF] Hyvärinen | Independent Component Analysis[END_REF]- [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Application[END_REF]]. Unfortunately, this is rapidly invalidated when acoustical signals are transformed into the Fourier domain -a common practice in acoustics and the preliminary step in NAH -since the Discrete Fourier Transform (DFT) makes the data quickly converge to a complex Gaussian distribution according to the Central Limit Theorem (CLT) [START_REF] Brillinger | Time Series: Data Analysis and Theory[END_REF]. This precludes the use of ICA, including some popular algorithms such as JADE [START_REF] Cardoso | Blind beamforming for non Gaussian signals[END_REF].

Although second-order BSS (e.g. see [ [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF], [START_REF] Antoni | A study and extension of second-order blind source separation to operational modal analysis[END_REF]]) could separate Gaussian sources by forcing their decorrelation at several time-lags in the time domain (as in aforementioned Refs. [START_REF] Zhong | Application of the blind source separation method to feature extraction of machine sound signals[END_REF] and [START_REF] Aichner | A real-time blind source separation scheme and its application to reverberant and noisy acoustic environments[END_REF]), it can be shown that it does not apply in the frequency domain for stationary sound sources (because stationary sources have no correlation in the frequency domain, independently of being separated or not).

A second limitation is that a "source", in acoustics, is endowed with a spatial distribution that is actually inexistent in BSS, where the concept is essentially a statistical quantity that is not necessarily being assigned to a physical essence.

As a consequence, a third limitation is that, in acoustics, spatial propagation from the source to the measurements must be taken into account, typically by means of a Fredholm integral of the first kind (e.g. a "convolution" integral over space), in addition to convolution over time. Related to this the fact is that separation of sound sources is a severely ill-posed problem [START_REF] Nelson | Estimation of acoustic source strength by inverse methods: Part I, Conditioning of the inverse problem[END_REF]- [START_REF] Kim | Optimal regularization for acoustic source reconstruction by inverse methods[END_REF], especially due to the existence of evanescent waves that do not reach the array [START_REF] Williams | Regularization methods for near-field acoustical holography[END_REF]. To the authors' knowledge, the modeling of acoustical propagation has rarely been addressed in the BSS literatureexcept in the very particular case where the measurements are taken in the far-field.

Another usual condition in BSS is that the number of sources is not greater than the number of sensors, or strictly less in the presence of additive noise. Concerning this point, the acoustical context may present an advantage since the habit is to use quite dense arrays, where the number of microphones is likely to overrun the number of active sources to be separated.

Finally, a last limitation is that the vast majority of the BSS algorithms require the number of sources to be known exactly. In many acoustical applications, this quantity is actually an unknown parameter that is to be determined from the data beforehand; unfortunately, this turns out to be an extremely difficult problem with no universal solution.

After surveying the existing literature on BSS in acoustics, it appears that at least three issues are to be answered in an endeavor to develop standalone methods with actual potential in industrial applications: 1) the first issue is how to blindly separate incoherent sound sources in the frequency domain without references and without resorting to special assumptions such as non-Gaussianity;

2) the second issue, following the first one, is whether there is a specific condition under which standard decorrelation can directly solve the BSS problem without any additional information;

3) the third issue, interleaved with the first two ones, is how to reliably determine the number of sound sources impinging on an array of microphones with acceptable accuracy, as a prerequisite to BSS.

Organization of the dissertation

The rest of the dissertation is devoted to proposing solutions to these three issues. It is divided into two parts: Theory and Experiments. The first part involves Chapters 1-5 and the second part Chapters 6-7. The organization of the content is introduced as follows.

Chapter 2 first introduces the direct and inverse acoustical problems. It then formulizes a mathematical model for the BSS problem that specifically accounts for acoustical propagation without restriction to the far-field. Finally, a classic method for BSS -SOBI, is presented to deal with the proposed problem in short.

The main content of Chapter 3 is to answer the second issue. First of all, the condition under which the virtual sources returned by standard statistical decorrelation coincide with the actual ones is rigorously demonstrated from the mathematical point of view. Afterwards, it presents an original criterion, named spatial decorreltion, to blindly separate sound sources which are spatially disjoint.

Chapter 4 introduces two original criteria that are apt to return unique solutions to the blind separation of incoherent sound sources with compact distributions. At the same time, the order of uncorrelated latent variables is rearranged first in terms of the increasing spatial entropies of virtual sources, and then the reranked virtual source are applied to separate very small sources whose amplitude can be 40 dB lower than the other ones. Lastly, the chapter describes how to optimize the cost functions derived from the two aforementioned original criteria, in the Stiefel manifold, in a concise way.

In Chapter 5, the literature on the determination of the number of sources is first surveyed in short. Then four methods are discussed to determine the number of active sources from the recorded data. Three classic methods, the information theoretical criteria, the eigenvalue spectrum, and the cumulative power distribution, are presented first. An original criterion, coined the entropic L-curve, is then proposed at the end of Chapter 5.

Chapter 6 demonstrates the effectiveness of the proposed methodology on laboratory experiments, on a numerical simulation, and on an industrial example.

Based on the analysis of the separation results, the criterion of least spatial entropy is recommended in the end.

In Chapter 7, the robustness of the proposed algorithm with respect to the experimental parameters is discussed in light of the results, from laboratory experiments and from an industrial example. The experimental parameters of interest are the number of sources, the range distance between the source domain of interest and the array of microphones, and the size of the aperture function, respectively.

Conclusions and perspectives and four points are drawn at the end of the dissertation.

Chapter 2 Backpropagation and decorrelation of sound sources

In this chapter, the forward and inverse problems in acoustics are introduced first.

Based on the introduction of the inverse problem, backpropagation from measurements is presented using a set of optimal spatial bases. Statistical decorrelation of sound sources is conducted in terms of an assumption -'mutual incoherence' based on backpropagation. The virtual sources and the actual sources are then compared to each other from the points of energy and spatial distribution. Finally, the classic BSS method -SOBI, combining with the spatial distribution of sound sources, are listed in short.

The forward and inverse acoustical problems

The forward and inverse problems are fundamentals in acoustics. A radiated sound field could be totally determined by a known source distribution, given the medium of propagation. That is the so called the forward problem. On the contrary, the inverse problem is to reconstruct a model to describe the unknown source distribution via a known sound field with the minimum error between the output of the model and the measurements. Figure 2.1 presents an example which identifies a fundamental difference between the forward problem and the inverse problem. The forward problem is to fix the distribution of sound field in space from the known source distribution, and the inverse one is the opposite. There are three sound sources (e.g. the membranes of loudspeakers) in a static homogenous free space, and the sound field generated from the sound sources is recorded by an array of microphones. The forward problem mission is to determine sound signals on all microphones from a known source distribution (e.g. parietal pressure or normal component of particle velocity on the membranes of loudspeakers). Instead, the object of the inverse problem is much more intractable -i.e. applying measurements on the microphones to estimate the optimal model for the unknown source distribution with the given medium.

In acoustical applications, people meet the inverse problem more frequently.

Moreover, the inverse problem is usually ill-posed in mathematical sense, which faces many theoretical limitations, such as the existence of solution, the uniqueness of the solution, and the stability of the solution [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]- [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]. In the past decades, many researchers focused on the inverse problem in acoustics [ [START_REF] Hald | STFT -A unique technique for scan-based near-field acoustic holography without restrictions on coherence[END_REF]- [START_REF] Holland | The application of inverse methods to spatially-distributed acoustic sources[END_REF], [START_REF] Nelson | Estimation of acoustic source strength by inverse methods: Part I, Conditioning of the inverse problem[END_REF]- [START_REF] Williams | Regularization methods for near-field acoustical holography[END_REF]], which is one of the main research topics in source identification and characterization. In this dissertation, the inverse problem is concerned with the backpropagation of measurements sampled by an array of microphones to the sound domain of interest, which will be introduced in the following.
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The forward problem and the inverse problem.

Backpropagation with optimal spatial basis

Rather generally, let us consider the case of N s incoherent sound sources s i , i = 1, 2, …, N s , radiating in a static homogenous free space to an array of M microphones ("incoherence" and "decorrelation" are the same to each other in this dissertation); no other sources are assumed in the space between the source domain and the hologram plane, as depicted in Fig. the snapshot number  (in practice, a snapshot corresponds to a short-time block of data and, in theory, to a given realization of a stochastic process; the two concepts coincides when the process is stationary and ergodic, which will be assumed from now on). 

i m i m p s G d         r r r r r , (2.1) 
where G(r m ,r; ω) stands for the Green function of the medium and Γ for the source domain. In turn, the sound pressure measured by the m-th microphone is the sum of the contributions from the N s sound sources, that is 1 ( , ; ) ( , ; ) ( , ; )

s N m i m m i pp           r r r , (2.2) 
where ( , ; ) m    r stands for "measurement" noise including instrumental origins as well as modeling errors [START_REF] Pintelon | System identification: A frequency domain approach[END_REF].

Upon substituting Eq. (2.1) into Eq. (2.2) and discretizing the source domain Γ, one obtains the following discrete form 11 ( , ; ) ( , ; ) ( , ; ) ( ) ( , ; )
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where ΔΓ(r l ) stands for the surface element on the source domain Γ at position r l and N for the total number of such elements. The sound pressure vector corresponding to the whole array can thus be expressed in a matrix form as ,; )
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00 is the sum of the N s sound sources; that is in a more concise form,
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( ; ) ( ) ( ; ) ( ; )         pG Γs ε . (2.5)
The ultimate objective is now to separate the sound sources in their domain Γ, i.e. to estimate each s i from p. The following parameterization is proposed towards this perspective. First, each sound source is modeled as the product of spatial mode Ψ i denoting the spatial distribution of the source with a variable α i -referred to in the present work as the "latent variable" -describing the source random amplitude:

( , ; ) ( , ) ( ; )

i i i s        rr. (2.6)
Note that the spatial mode Ψ i depends on space whereas it is independent of the snapshot number, and vice versa for the latent variable α i ; in other words, Eq. (2.6) makes separable variables r and  . This fully reflects the distinctive property of a sound source to be fully coherent with itself. In addition, the mutual incoherence of sound sources implies that

  * ( ; ) ( ; ) i j ij          , (2.7) 
where,

 

 stands for the expectation operator (ensemble average over snapshots  ), superscript '*' for the complex conjugate, and δ ij for the Kronecker delta. Without loss of generality, the power spectra of the latent variables are assumed unitary (i.e. the source magnitude is thus assigned to the spatial mode). Because in most cases it is not known a pripori, the spatial mode Ψ i is further expanded into a series of predefined spatial functions, i.e.

( , )

( ) ( , )

K i ki k k a         rr , (2.8) 
where K is the order of the expansion and a ki is the coefficient of the k-th spatial function Φ k assigned to the i-th spatial mode Ψ i . Many choices are possible for the spatial functions Φ k ; some typical ones are the plane waves, the cylindrical or the spherical harmonics, and layers of monopoles or dipoles. A set of optimal spatial functions with minimum reconstruction error (among all possible choices given a source domain topology and an array geometry) is given in Ref. [START_REF] Antoni | A Bayesian approach to sound source reconstruction: Optimal basis, regularization and focusing[END_REF]. This optimal basis will be adopted from now on due to its interesting properties and in order to keep the reconstructed source distribution as precise as possible -however, any other choice would make possible the application of the proposed BSS methods of Chapters 3 and 4. In this particular case, it has been shown that K is equal to the number M of microphones in the array [START_REF] Antoni | A Bayesian approach to sound source reconstruction: Optimal basis, regularization and focusing[END_REF].

Combining Eqs. (2.6) and (2.8), the source expansion has the matrix form

() ( ; ) ( ) ( ) ( ; )= ( ) ( ; )            Ψ s Φ A α Φ c , ( 2.9) 
where the (l, k)-th element of matrix Φ is ( , )

kl   r , the (k, i)-th element of matrix A is a ki (ω)
, and the i-th element of vector α is ( ; )

   i ; this defines ( ; )= ( ) ( ; )      cA α (2.10)
as the vector of coefficients of the sound field expanded onto the spatial basis

{ ( , )} k   r
. Upon substitution into Eq. (2.5), one arrives at the following propagation model

( ; ) ( ) ( ) ( ) ( ; ) ( ; )           pG ΓΦ A α ε . (2.11)
Given a set of measured pressures, the Green function of the medium and a spatial basis for expanding the source field, Eq. (2.11) makes it clear that the two unknown quantities are A and α. Referring back to Eq. (2.10), this resembles the classical BSS problem as stated in signal processing wherein it is conventionally written x=As, with A the "mixing matrix" and s the "sources" (see e.g. [START_REF] Choi | Blind source separation and independent component analysis : A Review[END_REF]- [START_REF] Theis | Linear geometric ICA: Fundamentals and algorithms[END_REF], [START_REF] Comon | Independent component analysis: A new concept?[END_REF]- [START_REF] Kleinsteuber | Blind Source Separation with Compressively Sensed Linear Mixtures[END_REF]); obvious differences, however, are i) the premultiplication with the operator GΓΦ,

ii) the explicit presence of additive noise, and

iii) the fact that the mixing matrix does not apply directly to the sources but to the latent variables α which are connected to the actual physical sources through Eq.

(2.9).

Instead of trying to solve Eq. (2.11) directly for A and α, a somewhat simpler -but suboptimal -strategy is proposed here that consists in uncoupling the problems of reconstruction and separation. This proceeds in two steps. First an estimate of the coefficient vector c is obtained by premultiplying both sides of Eq. (2.11) with the pseudo-inverse of operator GΓΦ, that is

ˆ( ; ) [ ( ) ( )] ( ; )         cG ΓΦ p .
(2.12)

This preliminary step, which will be referred to as "backpropagation" in the rest of the dissertation, actually amounts to reconstructing the full source distribution, as it is typically achieved in NAH. As well-known in the literature, this is a severely ill-posed problem which requires very careful regularization in designing the pseudo-inverse

[GΓΦ] + [[72]-[77], [81]-[86], [ 93 
]- [START_REF] Paillasseur | Regularization for improving the deconvolution in real-time near-filed acoustic holography[END_REF]]. Although other choices are possible, the Bayesian regularization of Ref. [START_REF] Antoni | A Bayesian approach to sound source reconstruction: Optimal basis, regularization and focusing[END_REF] is adopted here due to its good performance and robustness. When used with a Gaussian prior for the unknown coefficients, ( ; )

 c , Bayesian regularization returns   2 [ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ) H H H H            G ΓΦ Φ ΓG Φ ΓG G ΓΦ
where the regularization parameter  2 is set automatically as that value that maximizes the probability of observing the data. The detailed information on the Bayesian regularization is referred to Appendix A. Now comparing with Eq. (2.11), Eq. (2.12) may be equivalently reformulated as

ˆ( ; ) ( ) ( ; ) + ( ; )         cA α n (2.13)
where n accounts for estimation noise. The second step is thus to solve Eq. (2.13) for

A and α, which is surely easier than inverting Eq. (2.11) and resembles more the classical BSS problems. This "separation step" is addressed in the next section.

Decorrelation of sound sources

Statistical decorrelation is often referred to as whitening in BSS, which is the first step of the separation [ [START_REF] Hyvärinen | Independent Component Analysis[END_REF], [START_REF]Whitening transformation[END_REF]]. Note that "decorrelation" equals "incoherence" in the present dissertation. With the help of statistical decorrelation, the space of measurements can be divided into two orthogonal subspaces: the signal and the noise subspaces. Meanwhile, the two subspaces can then be represented by two groups of orthogonal vectors, respectively.

Statistical formalization of mutual incoherence

A source is assumed fully coherent with itself and fully incoherent with other sources. This distinctive property is a direct consequence of sources originating from different physical phenomena [START_REF] Tomlinson | Partial source discrimination in near field acoustic holography[END_REF]- [START_REF] Nam | Visualization of multiple incoherent sources by the backward prediction of near-field acoustic holography[END_REF]. In a probabilistic language, this is expressed as follows. Now, considering all snapshots from measurements, the mutual incoherence between two sources s i and s j reads: ( ,;) ( ,; )
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rr rr rr (2.14) where stands for the absolute value. Equation (2.14) mathematically states that sound sources stemming from different origins are uncorrelated in the space domain, i.e. without any phase relationship [START_REF] Fahy | Sound Intensity. 2nd Ed[END_REF]. Based on the formulation of mutual incoherence, the source distribution, corresponding to s i , can be defined as

2 ( , ) ( , ; ) ii s       rr , (2.15) 
which is a function of the spatial variable r in the source domain Γ.

A further working assumption which has its importance in the present work is that the number of microphones in the array, say M, is greater than the number of active sound sources, say N s . As discussed in the introduction, this is a very realistic assumption in acoustic imaging, where indeed the ratio M/N s might be much greater than 1 in many applications. For instance, arrays used acoustic imaging typically comprise several tens of microphones to analyze a few units of sources; the example in section 6. 

Decorrelation from eigenvalue decomposition

The aim of BSS is to return an estimate of the mixing matrix, ˆ()  A , and of the latent variables, ˆ( ; )  α , from which the i-th source can be obtained as

ˆ( ; ) ( ) ( ) ( ; ) T i i i        s A e e  , (2.16) 
where e i stands for the i-th column of the identity matrix I and superscript ' T ' for the transpose operation. Of primary interest in the following is the estimation of matrix A, since it makes possible to estimate the source distribution as

ˆ( , ) ( ) ( ) ( ) ( ) T T H H i l l i i l        r e A e e A e 
(2.17)

where the orthogonality property in Eq. (2.7) has been used. This will be achieved thanks to the spatial properties of sound sources, i.e. spatial decorrelation and spatial compactness, as will be introduced in Chapters 3 and 4, respectively. From now on symbol ω standing for angular frequency will be omitted for notational simplification whenever there is no ambiguity.

The recovery of incoherent sound sources follows a classical approach -see e.g. [START_REF] Price | Virtual coherence: A digital signal processing technique for incoherent source identification[END_REF]. Taking into account the statistical decorrelation for the latent variables expressed in Eqs. (2.7) and (2.13), one gets the following result

  2 ˆˆˆĤ HH n      cc C cc AA I (2.18)
where, for simplicity, the additive noise n has been assumed spatially white with variance 2

 n . In order to recover the mixing matrix A, its singular value decomposition, 12 1 , , , 0 

s s N H i i i N i d d d d         A u v (2.

Virtual sources versus actual sources

Although the above equation (2.21) reflects the conservation of energy (the energy of the source field equals the sum of the energies of incoherent sources), it is not enough to identify the actual source   re ΦUDV e e VDU Φ e shows that the latter has no reason to be identified with the former since matrix V is still missing. This proves that the property of mutual incoherence is not a sufficient condition for separation.

The virtual sources can be considered as orthogonal coordinate axes which span the whole signal space. Obviously, there should be a specific angle which corresponds to the physical system of interest. The specific angle involves certain special information which emphasizes the uniqueness of solutions. Similarly, although they have the same signal space as the virtual sources, the actual sources have distinct properties in terms of spatial distribution which imply their uniqueness. In other words, the two source spaces have equal energy, but have differences in spatial information. Indeed, there exists an infinite number of incoherent -but virtual -sources assigned to arbitrary unitary matrices V. Therefore, the solution to the BSS problem also requires the search for the actual matrix V and then the recovery of the actual sources with specified spatial information, which is undertaken from two points of view in Chapters 3 and 4, respectively.

Blind separation of sources with SOBI

In order to search for the missing matrix V, one classic algorithm -SOBI, which only simultaneously combines statistical information at specific frequencies, is concisely introduced here for the blind separation of sound sources [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF]. The performance of SOBI will be compared with the proposed methods respectively from 2) Estimate the noise variance -2

 n , as the average of the left (K-N s ) smallest eigenvalues of ˆˆ(0)

H cc C , i.e. 22 1 1 ˆ= s K ni iN s d KN     , (2.22)
when the noise is assumed to be spatially white and to converge to Gaussian white distribution in the frequency domain in terms of CLT [START_REF] Brillinger | Time Series: Data Analysis and Theory[END_REF]. The whitened coefficient vector,

z(ω 0 ) = [z 1 (ω 0 ), …, 0 () s N z  ] T , is then determined via 2 2 (1/ 2) 00 ( ) ( ) ( ) 
H i i n i zd      uc , (2.23) 
which is equivalent to establishing an estimate of the whitening matrix, Ŵ , by

2 2 (1/ 2) 2 2 (1/ 2) 11 ˆˆ[( ) , ..., ( ) ] ss H n N n N dd        W u u . (2.24)
3) Reconstruct a series of covariance matrices ˆˆ() (2.28)

H j  cc C according to a predefined set of frequency lags { | 0,1, } j jJ     with   00 ˆˆˆ( ) ( ) ( ) H H j j j          cc C c c (2.
With the help of the spatial bases Φ and the estimator  , each single sound source could be separated out at ω 0 via Eq. (2.17).

Chapter 3 Blind separation of disjoint sources from spatial decorrelation

In some cases, different physical origins are spatially "orthogonal" to each other, i.e.

they have no overlap in space. In the present chapter, a novel way of combing the spatial orthogonality to blindly separate sound sources, is investigated in detail.

3.1 When are virtual sources coinciding with actual sources? 

N s i Ni s N H i i k ki k v v v            ss s UD V e s  , (3.3) 
where * ki v stands for element (k,i) in matrix V H . This proves that, in general, an actual source is a linear combination of the virtual sources. The coefficients in the linear combination are constrained to conserve energy (i.e. they are the elements of a unitary matrix), but otherwise arbitrary. This leaves infinity of possibilities. The question now arises whether there exists a peculiar physical situation (endowed with an additional constraint) where the virtual sources do equal the actual sources.

An important particular case: spatially uncorrelated sources

A sufficient condition for the virtual sources to equal the actual sources is given hereafter. From the results of the previous section, it is clear that such a condition should satisfy V = I or, more generally, V =  where  is the product of a permutation matrix and a diagonal matrix with unit-magnitude complex entries (i.e.

every row and column of the matrix involves only one nonzero element with unit norm). In the latter case, the virtual sources are related to the actual sources up to a permutation  of their indices and are assigned an arbitrary phase  which does not change their individual powers:

2 () ˆ( ) ( ) , 1 J ii s s e J      rr . (3.4)
It is now proved that the scenario corresponds to the case where sound sources are mutually "spatially uncorrelated" in a given domain and the spatial basis  chosen accordingly. In mathematical language, this means that the scalar products of any pair of two distinct sources with respect to space is nil, i.e. * , ( , ; ) ( , ; ) ( , ) 0, kl M  rr. Typical choices for M are M =  (with  defined in Eq. (2.1)),

i j i j s s s s dM i j            M rr r r
1   M ΣΓ (where  is defined as an aperture function in Ref. [27]) or  MG Γ as in Eq. (2.5) in which case the spatial orthogonality is not assessed in the source domain but in an arbitrary domain to which sources are radiated thanks to the Green function G (spatial orthogonality then applies to the radiated sources rather than the sources themselves). Since the above equation must be true whatever the value of the latent variables   , ij  (spatial rather statistical decorrelation is of concern), this implies that HH AA   must be a diagonal matrix, that is (C.12) where + stands for the pseudo-inverse operator.

Condition i) is obviously more general than condition ii) and can be easily forced by constructing basis  accordingly (it is actually satisfied by construction in the optimal setting described in Ref. [START_REF] Antoni | A Bayesian approach to sound source reconstruction: Optimal basis, regularization and focusing[END_REF] with

1   M Σ ).
To summarize, the virtual sources equal the actual sources (in the sense of Eq. (3.4)) if 1) the sources are spatially uncorrelated in a given domain, i.e. Condition 1) is necessary and sufficient, while condition 2) is only sufficient since it could be replaced by (C.12). The above proof answers the question first raised by S. M. Price and R. J. Bernhard in their seminal paper [START_REF] Price | Virtual coherence: A digital signal processing technique for incoherent source identification[END_REF]. As far as the authors known this simple result has never been formulated explicitly. Indeed, the literature provides many examples where efforts have been lost vainly to reach the above objective whereas the required assumption obviously did not hold. A particular situation of interest is when sources of are disjoint (i.e. non-overlapping support sets). Then condition (1) is naturally met with M diagonal. This is investigated in some depth in the next subsection.

Separation of spatially disjoint sources

The situation with spatially disjoint sources is a particular case of spatially orthogonal sources. Since the disjointing is considered in the source domain rather than in the measurement region, the situation deserves fair practical interest. Indeed, there are many instances where sound sources are likelihood to originate from different (disjoint) spatial regions, even though their radiated fields rapidly overlap in space at some distance from the source domain. In mathematical terms, disjoint sources are characterized by the diagonality of matrix product H ΨΨ  for any diagonal matrix M. An algorithm is designed in this subsection that exploits this property to achieve source separation independently of the choice of the basis  (i.e. condition 2) of subsection 3.1.2 is relaxed).

Enforcing spatial decorrelation with joint diagonalization

The starting point of the proposed algorithm is Eq. (3.10) where it is seen that the unknown matrix V that relates the virtual sources to the actual ones is actually returned as the modal matrix of the matrix product HH DU UD   wherein all quantities are known. Thus, in theory, matrix V can be uniquely recovered as that matrix that jointly diagonalises

HH DU UD  
for a set of candidate metrics M.

This novel criterion is referred to as "spatial decorrelation", in the following.

Therefore, the proposed algorithm is the following:

1) Statistical decorrelation: estimate the eigen-elements U and D from the eigenvalue decomposition in Eq. (2.19),

2) Construct a set of matrices  

1 K HH k k  DU UD    for different candidate metrics M k ,
3) Spatial decorrelation: find the unitary matrix V that jointly diagonalizes the set of matrices   [START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF] Recover the individual sources as

1 K HH k k  DU UD    ,
H ii e  s UDV  .
It is noteworthy that the algorithm applies to any choice of the spatial basis . On the contrary, the metrics M k should be carefully chosen. Here, the harmonic function is recommended for the metrics M k . Although other orthogonal polynomials, such as Legendre ones and Chebyshev ones, could be employed here, they suffer from less smoothness on boundaries than the harmonic function does. The less smoothness on the boundaries is less sensitive to the rotation of the missing matrix V, which stops more spatial information from being applied in the joint diagonalization of spatial decorrelation. After all, less spatial information means smaller probability to find the missing matrix V.

Joint approximate diagonalization

Let us define [] () k T H H H ij j k i C  V e VDU UDV e    . (3.13)
The joint diagonalization of the set of weighted spatial correlation coefficients

    [] 1 K k k 

CV

may be naturally achieved by minimizing the sum of the squared magnitudes of their off-diagonal elements, that is

  2 [] 1 ˆArgmin Off ( ) . . K k k H sc        V V C V VV I (3.14)
where operator Off zeroes the diagonal elements of a matrix. Fortunately, the cost function in Eq. (3.14) is common in the array signal processing and enjoys several optimization algorithms. Here, two popular algorithms -Joint Approximate Diagonalization(JAD) [100] based on givens rotations and the conjugate gradient method (CG) introduced in Section 4.3 are used.

How does backpropagation affect the spatial disjoint at low frequency?

According to the theory of backpropagation, the spatial resolution of the reconstructed source distribution at low frequency is much lower than that at high frequency. Lower spatial resolution means lager size of sound sources in the source domain. Therefore, the reconstructed sources at low frequency are apparently larger than their real size and then they overlap to each other in the source domain of interest, although the actual sound sources are spatially disjoint to each other.

As the reconstructed sources overlap to each other at low frequency, the right hand of Eq. (3.8) does not hold any more. The virtual sources from only statistical decorrelation do not equal the actual sources, either. Fortunately, the spatial decorrelation can be still applied to blindly separate the spatially disjoint sources above a specific frequency. Undoubtedly, the lower bound of the working frequency band is determined by the choice of the metrics M k and their order K. The effect of backpropagation on the separation of sound sources at low frequency is presented in Trivial examples are monopoles, dipoles, quadrupoles, but not only. Indeed, the class of compact sources is infinite, despite being restrictive. However, it is surely consistent with many generation mechanisms of sound found in practice (e.g. a specific component on a Diesel engine block) and, more abstractly, with the human perception of a "source".

The postulate is thus that the actual matrix V should make the sound sources as spatially compact as possible, among all unitary matrices. In this chapter an important question arises as how to precisely measure spatial compactness. To answer the question, two criteria are proposed here. The first one is that a compact sound source has a low spatial variance about its centroid. The other one is that the compact source has a low entropy, in the sense that most of its energy is concentrated around one or a few points. Based on these two spatial criteria, two implicit cost functions involving matrix V are respectively deduced. The optimization strategy of the cost functions is finally introduced.

Least spatial variance

In statistics, variance is a measure of how far the points in a distribution lie from their mean. Therefore, it is a valid measure of compactness, leading to the "Criterion of Least Spatial Variance" (CLSV) which forces the separation of sound sources to maximally concentrate around "hot spots".

The spatial variance Σ i of the i-th source s i is defined as 2 0 ( ) ( ) 

i i i Pd       r r r r , (3.15) where () () 

Least spatial entropy 4.2.1 Introduction to spatial entropy

Entropy, as one of the most popular concepts from physics, originating from the beginning of the 19th century, has widespread applicability: thermodynamics [101],

information theory [START_REF] Shannon | A mathematical theory of communication[END_REF], statistical mechanics [START_REF] Jaynes | Information theory and statistical mechanics[END_REF], geographics [START_REF] Wilson | Entropy in Urban and Regional Modelling[END_REF], and economics [START_REF] Roegen | The Entropy Law and the Economic Process[END_REF], to name just a few here. Among all available definitions of entropy, Shannon entropy is preferred here as it mainly works for measuring information, choice and uncertainty in data, which is very similar to our scenario but in space [START_REF] Shannon | A mathematical theory of communication[END_REF].

The well-known formula of Shannon entropy is

1 log N ii i H K p p    , (3.23) with 1 1 N i i p    , (3.24) 
where K is a arbitrary positive constant, p i represents the probability of event i, and N denotes the total number of possible events. Similarly, Shannon also defines the entropy for a continuous distribution with the Probability Density Function (PDF) p(x) by: Interestingly, the spatial entropy for sound sources has the same name as that proposed by M. Batty and then applied in geographical analysis in the 70's

( ) log ( ) H p x p x dx     , ( 3 
[106]- [START_REF] Batty | Entropy in spatial aggregation[END_REF]. In those two papers, the spatial entropy is utilized to define cutoff points for boundary definitions of partitioned spatial systems. Although the two concepts have the same name and similar mathematical formula, there are two significant differences: 1) in geographical analysis, the spatial entropy is only applied to the real number, while in acoustics, it has to deal with the complex data; 2) the spatial entropy suffers from no limitation in geographic analysis, while here, it needs to take into account the overlap between adjacent sound sources. From now on, the spatial entropy is limited to the one for measuring the spatial compactness of sound sources without supernumerary introduction. The concrete definition will be presented in the following subsection.

The criterion of least spatial entropy

In an analogous manner of Shannon entropy [START_REF] Shannon | A mathematical theory of communication[END_REF] and the spatial entropy in geographical analysis [START_REF] Batty | Spatial entropy[END_REF]- [START_REF] Batty | Entropy in spatial aggregation[END_REF], the spatial entropy H i of the i-th source is defined as ( ) ln ( ) ( ) forces the energy of the separated sound sources to well concentrate around as few as possible points; this encompasses sound sources such as monopoles, dipoles or quadrupoles for instance, but not only; in theory, it tends to favor distributions that are as least complex as possible.

i i i H P P d      r r r , ( 3 
A flowchart of the proposed BSS method is depicted in Fig. 3 

Ranking eigen elements according to increasing spatial entropy

Traditionally, measurements are divided into two subspaces: the signal subspace and the noise subspace, with eigenvalue decomposition in array signal processing.

Most criteria to determine the boundary between the signal subspace and the noise subspace are based on eigenvalues of the covariance matrix of measurements [START_REF] Krim | Two decades of array signal processing research: The parametric approach[END_REF].

When there are very small sources (their power is more or less equivalent to that of the noises) embedded in the measurements, the traditional methods might treat such small sources as noise and then throw them into the noise subspace based on their small eigenvalues. That is to say, the very small sources have high probability to be ignored after the operation of statistical decorrelation introduced in subsection 2.3.2.

In order to solve such an intractable problem, new methods need to be proposed from other points of view, e.g. the spatial information, instead of the methods concerning the ranking of eigenvalues. As introduced above, the spatial distribution is a significant inherent attribute for sound sources and it can be considered as a novel criterion to distinguish the source and the noise. As introduced in Section 4.1 and Subsections 4.2.2, the actual sound sources can be treated as a linear combination of all virtual sources which span the whole source space. In the present chapter, the sound sources are all assumed to be compact in space. That means all virtual sources should also be compact to meet the aforementioned assumption. Moreover, the spatial distributions of virtual sources are robust to the size of aperture function. On the other hand, the spatial complexity of the noise will be magnified with the increasing size of aperture function. Inspired by the measures of spatial information, a method based on the spatial entropy (spatial variance could also be applied here) is proposed to separate such small sources.

The fundamental principle is to rank the eigenvalues and their corresponding eigenvectors in terms of the increasing spatial entropies of M virtual sources after the statistical decorrelation. Without loss of generality, the matrix V for the virtual sources is set to the identity matrix I. respectively. The validation of the improved method will be illustrated in Part Ⅱ.

From the application point of view, there are two remarks to emphasize. Firstly, we should not only focus on the spatial entropies of virtual sources, but also take care of the corresponding eigenvalues at the same time, when selecting the eigenvalues and eigenvectors of interest for the following optimization. For the actual sound sources, on the one hand, their spatial entropies are much smaller than those from the noise; on the other hand, their energies (or eigenvalues) are not visibly lower than the mean value of the counterpart from the noises. Secondly, to counterpoise calculation efficiency and impressive performance, the size of the aperture function is recommended to be four times of the source domain of interest. After all, too small aperture function will depress the messy spatial distribution of the noises and block the identification between the related virtual sources and the noises.

Optimization Strategy

Both cost functions (3.22) and (3.30) have to be minimized with respect to the unknown matrix V. The fact that V is a unitary matrix poses a strong constraint.

Though more than ten years has passed, in communication and array signal processing, the problem of optimization under unitary matrix constraint has not to its end.

Reference [START_REF] Manton | On the role of differential geometry in signal processing[END_REF] shortly reviews the optimization in manifolds and explains the disadvantages of the manifold with a Riemannian structure. A possible solution is to transform the constraint optimization problem in the Euclidean space to an unconstraint one in the Stiefel manifold spanned by unitary matrices (e.g. Refs.

[110]- [START_REF] Abrudan | Advanced optimization algorithms for sensor arrays and multi-antenna communications[END_REF]).

Optimization in the Stiefel manifold

As mentioned by J. H. Manton [START_REF] Manton | On the role of differential geometry in signal processing[END_REF], Newton algorithm is firstly introduced to optimize a cost function in manifolds. Newton algorithm suffers from the visible limitation -i.e. calculating Hessian of the cost function, although it owns admirable convergence speed -the quadratic convergence. The calculation cost for Hessian might be unaffordable for large matrix [START_REF] Manton | Optimization algorithms exploiting unitary constraints[END_REF]. To avoid computing Hessian, SD method is then introduced [[110], [START_REF] Abrudan | Steepest descent algorithms for optimization under unitary matrix constraint[END_REF], [START_REF] Abrudan | Advanced optimization algorithms for sensor arrays and multi-antenna communications[END_REF]]. As we know, SD algorithm takes perpendicular turns at each iteration, which is not a highly efficient way when the cost function is convex but approximately flat near the extremum. Luckily, CG algorithm might significantly improve such a drawback by combining the direction information from the current point and the next one [START_REF] Abrudan | Conjugate gradient algorithm for optimization under unitary matrix constraint[END_REF]- [START_REF] Abrudan | Advanced optimization algorithms for sensor arrays and multi-antenna communications[END_REF]. Furthermore, CG algorithm converges superlinearly, whereas the convergence of SD algorithm is just linear. Thus CG algorithm is applied herein to optimize the two cost functions -Eqs. (3.22) and

(3.30), and search for the optimal unitary matrix V. As presented in Refs [START_REF] Abrudan | Conjugate gradient algorithm for optimization under unitary matrix constraint[END_REF]- [START_REF] Abrudan | Advanced optimization algorithms for sensor arrays and multi-antenna communications[END_REF],

the main steps of CG algorithm in the Stiefel manifold for the two cost functions are summarized as follows:

1) Initialize the index of iteration k = 0 and V k = I.

2) Calculate the Euclidean gradient E k of the cost function -say the total spatial entropy H(V) -with respect to the missing matrix V is calculated as,

   () k k H H V E V ; (3.33)
the corresponding Riemannian gradient R k transformed from the Euclidean gradient

E k in the Stiefel manifold,  HH k k k k k R E V V E . (3.34)
3) Evaluate whether k is the module of n 2 (n a natural number). If it does, the related tangent direction T k along the geodesic connecting V k and V k+1 becomes

T k = R k ; otherwise, T k is kept. 4) Compute the inner product of the Riemannian gradient R k as   1 , 2 H k k k k Tr  I R R R R . (3.35)
If the inner product is lower than the predefined threshold value, the whole optimization process will end up immediately.

5) Search for the optimal step size μ k (which will be introduced in the next subsection).

6) Update the matrix V k+1 as 

   1 exp( ) k k k k V T V . ( 3 
T k+1 at V k+1 as     1 1 1 1 1 , 2 H k k k k Tr        I T R T R , ( 3.39) 
where,    extracts the real part. Once the inner product becomes negative, the tangent direction T k+1 is forced to be R k+1 .

10) Update the index of iteration: k = k+1 and go back to step 2).

The key point of successfully applying this algorithm to blind separation of sound sources is how to correctly deduce the Euclidean gradients E k of the total spatial variance Σ(V) (Eq. (3.22)) and the total spatial entropy H(V) (Eq. (3.30)) with respect to the missing matrix V k , respectively. The cost functions from the principle of least spatial complexity are implicit with respect to the mixing matrix V as shown in Eqs.

(3.22) and (3.30). To be more precise, every single element in the sums of Eqs. (3.22) and (3.30) is not a function of the full matrix V, but involves only one of its row.

Unfortunately, the results from the complex-valued matrix gradient of explicit cost functions can not be directly applied here [START_REF] Brandwood | A complex gradient operator and its application in adaptive array theory[END_REF]- [START_REF] Hjørungnes | Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications[END_REF]. Thus, the Euclidean gradients E k of the cost functions from the principle of least spatial complexity (see Eqs. 

Optimal step size

Step size is one of the crucial parameters of optimization algorithms, obviously besides the introduced CG algorithm in the Stiefel manifold. The main idea in Refs.

[114]- [START_REF] Abrudan | Efficient line search methods for Riemannian optimization under unitary matrix constraint[END_REF] is to search for the optimal step size μ k > 0 along the geodestic curve

  = exp kk   Θ TV , (3.40) 
which minimizes the cost function, e.g. the total spatial entropy H(V), as

    Argmin ( ) Argmin exp k k k HH      Θ TV. (3.41) 
To solve such a problem of minimization, two methods of line search -polynomial approximation and DFT, are proposed in Refs. [START_REF] Abrudan | Conjugate gradient algorithm for optimization under unitary matrix constraint[END_REF]- [START_REF] Abrudan | Efficient line search methods for Riemannian optimization under unitary matrix constraint[END_REF], respectively. The polynomial approximation approach considers the optimal step size μ k as the root of the first local minimum of the cost function (i.e. Eq. (3.41)) along a given geodesic.

The root of the first local minimum might be too large for the last few iterations and then introduce aggravating oscillation near the minimum of the cost function, which blocks the iteration process finally converging to the optimal value. To avoid such a troublesome problem, a DFT-based method is proposed in Ref [START_REF] Abrudan | Conjugate gradient algorithm for optimization under unitary matrix constraint[END_REF]- [START_REF] Abrudan | Efficient line search methods for Riemannian optimization under unitary matrix constraint[END_REF]. The goal of the latter approach is to select the best root from the minimum among multiple local minima of the cost function, which corresponds to the minimum of the cost function in the set. The steps of the two introduced geodesic search approachespolynomial approximation and DFT, are listed respectively in Tabs. 1 and 2 of Ref.

[114] in detail.

Apparently, the optimal step size μ k from the DFT-based method is much more reasonable than that from the polynomial approximation. As combining more local minima, the DFT-based method becomes more stable at the end of the iterations than the polynomial approximation approach. However, the cost of polynomial approximation algorithm is much lower than that of the DFT-based one. In our case, the calculation of the cost function is very expensive due to combing the optimal spatial basis -a very large matrix of pixel, when working with high spatial resolution.

However, the optimal step size from the DFT-based method works much better than that from the polynomial approximation approach. Note that the DFT-based method is recommended, when there are few limitations on the calculation cost.

To conclude and by comparison with Chapter 3, the criterion of spatial decorrelation is much simpler to conceive and to code than the two criteria of spatial compactness (i.e. CLSV and CLSE). The same as the criterion of spatial decorrelation for BSS, the principle of least spatial complexity also needs to determine the number of sources a priori. The following chapter will introduce how to deal with the intractable problem in advance of doing BSS.

Chapter 5 Determination of the number of sources

Generally speaking, there are two fundamental problems in array signal processing:

1) determining the number of sources; 2) identifying the positions of sources and analyzing the signal radiated from each source [START_REF] Williams | Detection: Determining the number of sources[END_REF]. As a branch of array signal processing, BSS also faces such two problems. To the best of the author's knowledge, in most proposed BSS methods, the number of sources is considered as a priori known [[31]- [START_REF] Kleinsteuber | Blind Source Separation with Compressively Sensed Linear Mixtures[END_REF], [START_REF] Choi | Blind source separation and independent component analysis : A Review[END_REF]- [START_REF] Theis | Linear geometric ICA: Fundamentals and algorithms[END_REF]]. Unfortunately, in most applications, the number of sources is very hard, even impossible, to be known a priori. For instance, the number of sound sources radiated from a Diesel engine varies at different frequencies of interest. Therefore, some intelligent methods are required to accurately determine the number of sound sources beforehand, which is not anecdotic: on the one hand, if the source number is underestimated, some sources will be lost in the separation and the remaining ones will be distorted so as to account for the deficit. On the other hand, overestimating the number of sources will introduce spurious sources assigned to noise as well as more calculation efforts in the separation. In this chapter, the currently existing source number determination approaches are firstly surveyed and then four corresponding methods to tackle such a question are investigated.

Literature survey

In the past 60 years, the problem of determining the number of sources has attracted people from various fields, such as sonar, radar, communication, and geophysics, to name a few hereafter. From the historical point of view, the methods for determining the number of sources experience two primary revolutions.

The first group of methods, named decision theoretic ones [START_REF] Williams | Detection: Determining the number of sources[END_REF], becomes popular, after the publishment of [START_REF] Bartlett | A note on the multiplying factors for various χ 2 approximations[END_REF] and [START_REF] Lawley | Tests of significance of the latent roots of the covariance and correlation matrices[END_REF]. This kind of methods relies on the statistical theory of hypothesis testing, mainly concerning the eigenvalues of the spatial correlation matrix. For each hypothesis testing, a predefined appropriate threshold is required. The testing process terminates wherever there exist a likelihood ratio statistic lower than the predefined threshold. However, without enough a priori information, it is difficult to accurately set such a subjective but crucial threshold.

Reference [START_REF] Williams | Using the sphericity test for source detection with narrow-band passive arrays[END_REF] introduces a new sphericity test to accurately determine the number of sources present in the acoustic field. The related distribution converges fast to the chi-square, and its performance is comparable with that of the information theoretic criteria (which will be introduced in the next paragraph).

To conquer the subjective limitation from decision theoretic methods and apply more objective information embedded in the eigenvalue spectrum of the spatial correlation matrix, the second group of methods, called information theoretic ones [START_REF] Williams | Detection: Determining the number of sources[END_REF], is proposed successively. The sign of its birth is the publication of the famous paper written by M. Wax and T. Kailath in 1985 [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF]. The information theoretic method primarily involves two criteria: AIC [START_REF] Akaike | Information theory and extension of the maximum likelihood principle[END_REF]- [START_REF] Akaike | Likelihood of a model and information criteria[END_REF], and MDL [START_REF] Schwarz | Estimating the dimension of a model[END_REF]- [START_REF] Rissanen | A universal priori for the integers and estimation by minimum description length[END_REF],

respectively. Afterwards, many researchers begin to focus on the statistical characteristics of both two information theoretic criteria and their related application scenarios.

L. C. Zhao et al. argue that the asymptotic distribution of test statistic of log

likelihood ratio is not the chi-square; afterwards, they deduce an improved asymptotic distribution for the test statistic [START_REF] Zhao | Remarks on criteria for detection of number of signals[END_REF]. In high resolution array processing, K. M. After surveying the existing literatures on determining the number of sources in array signal processing and taking into account the scenario of blind separation of sound sources in both the frequency and space domains introduced in Chapters 2-4, one significant but thorny issue is appears: how to accurately determine the number of sound sources in a simple but efficient way, when the number of sources varies with the working frequency? For instance, in the scenario where the sound sources are radiated from a Diesel engine, the number of significant active sources varies with the frequencies of interest because of the operating conditions and mechanical structures of the engine. To solve the proposed issue effectively, four methods from different mathematical grounds are introduced as follows.

AIC and MDL

AIC and MDL are the two most well-known methods to detect the number of sources in array signal processing, as introduced in Ref. [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF]. AIC and MDL, which are utilized to determine the number of sound sources in the scenarios introduced in Chapters 2-4 at the working frequency ω, are respectively formulated as

        1 ˆ1 ˆ1 ˆˆˆÂ IC 2 log 2 2 1 ˆs s s M MN i iN s s s s M i iN s d N M N N N M N d MN                   , ( 4.1) 
and
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where ˆs N is the estimated source number and N  denotes the total number of snapshots  .

Generally speaking, MDL works better than AIC. As pointed it out by G. Schwarz, MDL approaches toward the lower-dimensional models due to the penalty term multiplied by 1 log 2 N  as shown in Eq. (4.2) [132]. In Ref. [142], L. C. Zhao et al. prove that the estimation from MDL is consistent, but not for AIC. Furthermore, the number of sources will be definitely determined by AIC, as the number of snapshots, N  , goes to infinity. Therefore, in array signal processing, MDL is preferred over AIC in most cases. However, AIC works much better than MDL in some difficult cases where, for example, no distinct gap exists between the signal and noise eigenvalues [START_REF] Williams | Comparison of AIC and MDL to the minimum probability of error criterion[END_REF]. In our case, the number of snapshots, N  , is finite due to the memory capacity of experimental instruments. Thus the estimations from AIC and MDL will be undoubtedly over the actual number of sources due to the limited snapshots, which will be proved by laboratory experiments, by a numerical simulation, and by an industrial example in Chapter6, Part II, respectively. Therefore, other methods for identifying the number of sound sources are necessary.

The eigenvalue spectrum

The classical approach to determine the number of sources is to inspect the eigenvalue spectrum of the correlation matrix in Eq. (2.20) [START_REF] Otto | Principal component analysis for noise source identification[END_REF]- [START_REF] Jolliffe | Principal Component Analysis[END_REF]. In the high SNR scenario, there should be a distinct gap between the eigenvalues pertaining the source subspace, 12 , [START_REF] Latombe | Détection et caractérisation des signaux à plusieurs composants à partir de la matrice interspectrale (Detection and characterization of several-component signal from the interspectral matrix[END_REF]]. Unfortunately, this simple criterion is known to perform poorly when additive noise does not follow exactly the working assumptions (spatial whiteness) leading to Eq. (2.20) and the presence of estimation errors [START_REF] Kompella | A technique to determine the number of incoherent sources contributing to the response of a system[END_REF].

The cumulative power distribution

The cumulative power of the separated sources may be a useful indicator to determine the number of sources [START_REF] Jolliffe | Principal Component Analysis[END_REF]. Under the high SNR scenario, the cumulative power defined as , of the first ˆs N sources to the total power π 0 = π(M) that can be explained by backpropagation from the M-microphone array.

In practice, one may choose the fraction of power to be no less than 95%, for instance, which will therefore return the minimum number of sources to account for.

Differences may therefore exist with the actual source number, but without serious consequence provided the BSS method is robust enough -i.e. provided that the separation of N 1 sources returns more or less the same first N 1 results as the separation of N 2 > N 1 sources. This latter assumption will be verified on experimental data in Section 7, Part II.

The entropic L-curve

Inspired by the principle of the L-curve (as used for determining the optimal regularization parameter in inverse problems [START_REF] Hansen | Analysis of discrete ill-posed problems by means of the L-curve[END_REF]- [START_REF] Hansen | Rank-Deficient and Discrete Ill-Posed Problem: Numerical Aspects of Linear Inversion[END_REF]), a novel approach coined entropic L-curve, is proposed hereafter. It is based on the concept of spatial and statistical entropies. Namely, the "solution size" is represented by the total spatial entropy H of the separated sources as given by Eq. (3.29), whereas the "residual size"

is measured by the Kullback-Leibler divergence [START_REF] Kullback | Information Theory and Statistics[END_REF], L, between the full covariance (2.20), i.e.

 
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  ˆ22 ˆˆ1 1 2 2 2 22 ˆ1 ˆˆ, ˆˆ , 1, , 1 ˆ, ˆs 
H s s N K HH s i i i n i i i iN i i n s K ni iN s Nd d d i N d KN                      cc C u u u u (4.5) 
where |•| denotes the determinant of a matrix and ln is the natural logarithm. The Kullback-Leibler divergence measures the statistical (relative) entropy of the residual error in fitting the covariance matrix with a given number of sources; therefore it decreases with ˆs N and ultimately vanishes when ˆ= s NM . On the other hand, the total spatial entropy of the separated sources increases with ˆs N . Thus the shape of the curve generated by the trajectory of the source number in the plane (H, L) resembles an inverted "L", where the corner points to the optimum value of ˆs N in the sense of achieving the best compromise between not too large a statistical entropy of the residual error and not too large a spatial entropy of the reconstructed source (since compact sources are to be reconstructed). The idea of balancing between two entropic measures, the first one statistical and the second one spatial, seems to be investigated here for the first time. It is conceptually attractive since it compares two quantities with similar dimensions that account for the shape of the reconstructed sources and not only for their energy. Note that in order to keep the computational load reasonable, it is recommended to compute the spatial entropy H by using the proposed CLSV which is much faster to converge than -even if not as accurate as -CLSE.

As a final remark to this section, it should be emphasized again that determining the number of active sources is a difficult problem which may not be solved by any universal method. Therefore the recommendation is to use the four proposed strategies jointly and to take a decision from their comparison, rather than to adhere to one of them only.

Chapter 6 Experiment validation

The algorithms proposed in Chapters 3-5 are illustrated here on laboratory experiments, numerical simulation, and an industrial example, successively. The performance of all algorithms is discussed in details.

Laboratory experiments 6.1.1 Experimental apparatus

In order to validate the proposed separation algorithm, a series of experiments were conducted in a semi-anechoic chamber. The experimental apparatus is depicted in Fig. In a preliminary step, the loudspeakers were switched on one by one -with the 3 other ones switched off -in order to get the actual source contributions. The latter will serve as point of validation of the blind separation results to be presented hereafter, obtained when all loudspeakers are operating together (the authors insist that such references will not be available in practice, which is purposely the situation that motivates the use of BSS). The corresponding experimental process is illustrated in 

Separation from single statistical decorrelation

Data were first processed by the simplest separation approach, i.e. forcing Statistical Decorrelation (SD). As discussed in section 4.1, only forcing the statistical decorrelation of the sources by diagonalizing the correlation matrix of coefficient vector c can provide satisfactory separation results provided the sound sources have spatially orthogonal distributions.

In the near-field configuration, the distance Z was set to 10 cm, and the spacing D to 12 cm. In the far-field, the two parameters were selected as Z = 100 cm and D = 18 cm.

To present the separation results in the whole working frequency band, generally speaking, power spectrum is the first choice. In the dissertation, the power spectrum is expressed by quadratic velocity spectrum. Unfortunately, the quadratic velocity spectrum only provides energy information for the separation results. ( ,; )

N i l i l l i NN i l i l ll ss ss                rr rr , ( 5.1) 
where, s i denotes the i-th actual source, ˆi s is its estimate and * stands for complex conjugate.

1) Source separation in the near-field

Preliminary to source separation, the assessment of the source number is carried out as shown in Figs. 6.3 and 6.4, respectively. As shown in Fig. 6.3, information theoretic criteria could not provide a satisfactory number of sound sources as, which is reminiscent to the discussion of Section 5.2. The minima of AIC and MDL both correspond to ˆs N = 12, which largely overestimated the actual number of sources used in the experiement. On the contrary, the eigenvalue spectrum in Fig. 6.4(a), the cumulative power distribution in Fig. 6.4(b) and the entropic L-curve in Fig. 6.4(c) all return a valid estimate of the actual source number: the cumulative power distribution exhibits a corner at ˆs N = 4 corresponding to 99.77% of the overall power, indicated in In the near-field, the working frequency is set to 1800 Hz. The separation results from SD are depicted in Fig. 6.5. It appears that all virtual sources account for the sound power and that they could be successfully separated because, at this frequency, their supports are mainly disjoint, a sufficient condition for spatial orthogonality. To evaluate the separation performance, the 4 actual sources, in the near-field at 1800 Hz, are displayed in Fig. 6.6. Ignoring the permutation among the 4 sources (which is a common problem in BSS) and comparing Figs. 6.5-6.6, there are few biases between the virtual sources and the actual ones no matter in amplitude, in location of hottest points, or in spatial distribution. 

2) Source separation in the far-field

Interestingly, in this case AIC and MDL both exhibit an inflection at the correct number of sources, ˆs N = 4, as shown in Fig. 6.9, although this does not correspond to a minimum. The determination of the source number from the other three methods in the far-field is illustrated in Fig. 6.10. Figure 6.10(a) evidences an explicit gap between the eigenvalues of the source and noise subspaces around the actual source number, s N = 4. Meanwhile, this corresponds to a turning point in the power distribution that accounts for 99.97% of the overall power as depicted in Fig. 6.10(b).

The corner point in the entropic L-curve is about the same value, as shown in Fig. 6.10(c). The separated and actual sources are displayed in Figs. 6.11-6.12, respectively.

Separation results are very satisfactory taking into account the amplitudes, the locations of hottest points, and the spatial distributions. This demonstrates that single statistical decorrelation can achieve good spatial separation provided the sources are spatially orthogonal, a condition which is naturally satisfied here when their supports become disjoint. 

Separation from joint statistical and spatial decorrelation

When sound sources are disjoint in space, mainly at low and medium frequencies, they might be separated by enforcing Statistical and Spatial Decorrelation (2SD) together with joint approximate diagonalization (see Section 3.2). The experimental parameters of this subsection are the same as in Subsection 6.1.2.

1) Source separation in the near-field

To allow comparisons with the separation results of Subsection 6.1.4, the working frequency is chosen as 833 Hz. The separation results from single statistical decorrelation are depicted in Fig. 6.15 with an aperture function R = 35cm. This shows how the particle velocity field (normal component to the source plane), 0 ( , )

 r , reconstructed from backpropagation of the measured pressures can be decomposed into 4 incoherent sources. It appears that one virtual source, 1 ˆ( , )

 r , accounts for most of the sound power and that the other sources could hardly be separated by enforcing statistical decorrelation only. The reason is that at such a low frequency the spatial resolution is no longer sufficient to guarantee disjoint supports and thus spatial orthogonality. As explained in Subsection 2.4, this is no surprise since an infinite number of virtual sources could explain equally well the source field as long as the exact value of the unitary matrix V is not known.

To improve the separation results, spatial decorrelation is then enforced on the virtual sources. Two optimization strategies: JAD of the matrices [100] and CG [START_REF] Abrudan | Conjugate gradient algorithm for optimization under unitary matrix constraint[END_REF]- [START_REF] Abrudan | Advanced optimization algorithms for sensor arrays and multi-antenna communications[END_REF] in the Stiefel manifold, are applied to search for the missing matrix V.

The separated results from the two strategies are illustrated in Figs. 6.16-6.17 The spatial correlation spectra in Figs. 6.21-6.22 show improved separation sources in the whole working frequency band as compared to single statistical decorrelation, and ignoring the very small levels near the zeros of the quadratic velocity spectra.

Remarkably, the spatial correlations on the third and fourth actual sources are more than 0.98 at most frequencies in the working band (see Fig. 6.21(c)-(d)). At 833 Hz, the spatial correlations coefficients between the actual and the separated sources, from single statistical decorrelation, joint statistical and spatial decorrelation with JAD and with CG, respectively, are listed in Tab. 6.2. There is no difference between the separated results from the spatial decorrelation with JAD and with CG, respectively. 

2) Source separation in the far-field

The separated sources from SD, 2SD with JAD and CG, and the actual sources are all displayed in Figs. 6.23-6.26, respectively. After combing statistical and spatial decorrelation, the separated sources, no matter from JAD or from CG, coincide perfectly with the actual sources. At 2437 Hz, the spatial correlations coefficients between the actual and the separated sources, from single statistical decorrelation, joint statistical and spatial decorrelation with JAD and with CG, respectively, are listed in Tab. 6.3. The difference between the results is insignificant from joint statistical and spatial decorrelation with JAD and CG. The minimum spatial correlation is still equal to 0.97. In acoustical holography, the spatial orthogonality of actual sources has no reason to be preserved in the whole work frequency band. Due to small wave length -i.e.

high spatial resolution at high frequency, the sizes of reconstructed sources are more similar to the actual ones and thus the spatial orthogonality is well inherited by the reconstructed sources. Unfortunately, the sizes of reconstructed sources become much larger than their actual counterparts at low and medium frequencies because of the long wave length (i.e. the low spatial resolution). In such a case, the reconstructed sources overlap to each other in space. Therefore, SD can provide pretty accurate results for BSS at high frequency (as explained in Subsection 3.1.2), but degenerates at low and medium frequencies, because the matrix V is no longer the normalized permutation matrix but a general unitary one at low and medium frequencies.

Separation from the principle of least spatial complexity

The experimental parameters are all set as listed in Subsections 6.1.2-6.1.3 except for the radius of the aperture function which is set to R = 21cm. It is seen that the separation results from the two criteria return accurate localization and quantification of the sources, as compared to the actual ones (up to an arbitrary labeling). On this example CLSV seems to be slightly more accurate than CLSE in estimating amplitude, but slightly inferior as for the spatial localization; indeed, the separated source 2 ˆ( , )

 r from CLSV has a small protrusion on its left part. More generally, CLSE is expected to be more robust to the separation of weak sources owing to the logarithmic operator which reduces the dynamic range between the lowest and the loudest sources. On the contrary, the squaring operation inherent to CLSV will increase the dynamic range and possibly jeopardize the recovery of sources with relatively small magnitude. However, it is observed that CLSV has a much faster convergence speed than CLSE in the optimization procedure -it is about three times faster.

Noteworthy also is that the spatial distributions of some separated sources (e.g.

ˆ( , )

 r and 2 ˆ( , )

 r ) are slightly more compact than the actual sources, as a result of enforcing this property in the separation; this small bias is however not dramatic and may be even seen as an advantage since spatial resolution is thus improved.

Eventually, the separated results from the two spatial criteria are compared with those from a classic method -SOBI [ [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF], [START_REF] Antoni | A study and extension of second-order blind source separation to operational modal analysis[END_REF]]. SOBI was applied in a similar fashion as in [START_REF] Zhang | Bayesian space-frequency separation of wide-band sound sources by a hierarchical approach[END_REF] Next, the separation results are displayed in terms of quadratic velocity spectra in the whole available frequency band for CLSV in Fig. 6.36 and for CLSE in Fig. 6.37.

Note that the lower frequency bound is determined by the size of the microphone array and the upper one by the minimum spacing between two microphones. Separation results are satisfactory for most frequencies, except at some points in low frequencies (mainly in interval [400, 600] Hz) and near zeros of source spectra.

This may be explained as follows. In the near-field, the proposed method is inherently limited by the inability of the backpropagation process to estimate the source distributions below a certain lower frequency (that depends on the array size and signal-to-noise ratio). In this respect, CLSE seems more robust to CLSV, probably because it is less sensitive to the presence of additive noise for the reason invoked above. Moreover, at those frequencies where the energy of the source is so small (zeros in the spectra) that virtually only noise is measured, it makes sense that source separation is doomed to failure. For instance, in the frequency band [1300, 1500] Hz enclosing a zero in the quadratic velocity spectrum of the actual source s 1 both criteria fail to separate the source due to its very small magnitude (see Fig. 6.36(a) and Fig.

6.37(a)

). However, it is seen that the sources separated from CLSE have in general spectra closer to the actual ones than for CLSV. Again, this illustrates the higher robustness of CLSE against additive noise.

The spatial correlation spectra of the separation results in the whole working frequency band are presented for CLSV in Fig. 6.38 and for CLSE in Fig. 6.39. The spatial correlation spectra demonstrate again that the two criteria blindly separate the incoherent sound sources very well in the whole frequency band, including the zeros, e.g. the frequency band [1300, 1500] Hz, and the low frequency band [400, 600] Hz.

Comparing Figs. 6.38 and 6.39, CLSE works better than CLSV not only in the regions with zeros but also at low frequencies; from the point of view of the spatial correlation spectrum, CLSE is also more robust to amplitude differences among the sound sources. The separation results returned by SOBI (with similar settings as before) are illustrated in Fig. 6.44. In this case, the separated sources look extremely scattered and can hardly be identified with the actual sources. and their spatial correlation spectra in Figs. 6.47-6.48. Note that the frequency range could be extended much higher (up to 7200Hz) because the measurements are taken in the far-field. Again, CLSE evidences a better performance, in particular in its ability to separate sources with very small levels. Therefore, CLSE is recommended as the first choice due to its robustness, provided the extra calculation cost it implies is affordable. 

Separation from ranking eigen elements according to increasing spatial entropy

As seen in Figs. 6.19-6.22, 6.27-6.30, 6.36-6.39, and 6.45-6.48, the three criteria 2SD, CLSV and CLSE could hardly separate sources with very small levels, in particular near the zeros of the quadratic velocity spectra (although CLSE was found more robust to small sources). It is shown in this section that low sources can be found by ranking the eigen elements of the eigenspectrum with respect to the spatial information (measured by spatial variance or spatial entropy) of the virtual sources (see in Subsection 3.2.3). The scheme of ranking eigen elements according to increasing spatial information can be applied in CLSE and 2SD, but not in CLSV. As the square operation in CLSV, small sources might be ignored in the process of optimizing the total spatial variance of all sources.

The reason why the virtual sources are selected to rank the eigen elements of the eigenspectrum, not the ones from CLSE, is very simple and practical: the calculation of CLSE is unaffordable and might take several weeks, when the number of sources of interest, for example, arrives at 30 (see Fig. 6.49) and the spatial resolution of acoustic hologram is set to, for instance, 1 mm relative to the radius of the aperture function -R = 35 cm. In this subsection, CLSE is applied to blindly separate such small sources with the aforementioned scheme.

1) Source separation in the near-field

In the near-field, the radius of aperture function is set to R = 35 cm and the working frequency is selected as 1456 Hz where one source is much smaller than the other sources by more than 40 dB. The spatial entropies of the first 30 virtual sources are illustrated in Fig. 6.49. Obviously, the first three virtual sources plus the 15th one (marked by the red square) deserve special interest as their spatial distributions are the most compact among the first 30 largest virtual sources. Keeping only the corresponding eigen elements in matrices D and U used in CLSE, the very small source and the other three ones could be successfully separated as shown in Fig. 6.50.

Note that the smallest separated source has amplitude 48 dB lower than the largest one, (see Fig. 6.51). To indicate the performance of the improved separation method, the quadratic velocity and spatial correlation spectra are displayed in Figs. 

2) Source separation in the far-field

The spatial entropy of the first 30 virtual sources, the separated sources from the improved method, the corresponding references, and the quadratic velocity and spatial correlation spectra are depicted in Figs. 6.54-6.58, respectively. After selecting the eigen elements corresponding to the virtual sources with smallest spatial entropy (numbers 1, 2, 3 and 5 in Fig. 6.54), the smallest sound source could be correctly separated as shown in Fig. Tab. 6.4 Experimental values for all parameters in the Section 6.1.

Numerical experiments: simulation of the separation of multipoles

As demonstrated by the results of Subsection 6.1.4, the two proposed criteria have excellent performance for separating compact sources such as monopoles. As a matter of fact, the property of compactness is the only requirement, and more complex sources than monopoles could just as well be separated. This is demonstrated by means of numerical simulations in this subsection, and by an industrial case in the next subsection.

Three superimposed sound sources are simulated: one monopole, one dipole, and one lateral quadrupole. The amplitudes of all sources are set identical. The microphone array is the same as in the previous experiments (slide wheel with 60 microphones). The distance Z between the array and the sound sources is 50 cm and the working frequency is 1 kHz. The SNR is set to 40 dB. Before separation, the source number N s is determined from the information theoretic criteria (AIC and MDL), the eigenvalue spectrum, the cumulative power distribution, and the entropic L-curve displayed in Figs. 6.59-6.60, respectively. The five methods all return the correct result, ˆs N = 3 (this is found at the inflexion point of AIC and MDL, not at their minimum). Indeed, the separated sources are again slightly more focused than the actual ones (because their compactness is forced), which explains a small overestimation of their magnitude in order to keep the same power. Note also that this numerical simulation demonstrates that sources can be separated even though they are totally overlapping in space. 

An industrial example

In addition to laboratory experiments, the proposed methods are illustrated here for the separation of sound sources produced by a Diesel engine, an industrial example which has for long attracted attention due to its importance -see e.g. [START_REF] Raff | A review of vehicle noise studies carried out at the institute of sound and vibration research with a reference to some recent research on petrol engine noise[END_REF]- [START_REF] Albright | Conditioned source analysis, a technique for multiple input system identification with application to combustion energy separation in piston engines[END_REF] for the application of supervised separation to this problem. The research context and the full experimental apparatus is described in Ref. [START_REF] Lafon | The concept of cyclic sound intensity and its application to acoustical imaging[END_REF], which developed a methodology for separating the combustion, injection, and mechanical noises by making use of references and of the cyclostationary property of signals generated by a Diesel engine.

Here, separation is achieved based on much weaker requirements, without references, (that is "blindly") and without the cyclostationary assumption (results are "stationarized" by averaging over time). The top side of the Diesel engine is the source surface of interest; the distance Z from the hologram plane is 18 cm. The array is a slice wheel with 84 microphones. The sampling frequency is 16.384 kHz. All results are presented at frequency 1250 Hz as considered in Ref. [START_REF] Lafon | The concept of cyclic sound intensity and its application to acoustical imaging[END_REF] in order to allow comparisons with the latter (the working frequency 1250 Hz is a good illustration where several sources radiate together, with similar levels, in the audible range).

Determination of the number of sources

As before, the number of active sources is first determined before trying to separate them. In practice, this may not be so obvious since a Diesel engine will radiate sound waves originating from a myriad of different sources, which are difficult to limit to a finite number. The information theoretic criteria seem to provide reasonable numbers of sources: ˆs N = 12 for AIC and ˆs N = 11 for MDL, as shown in Fig. 6.63. In such a scenario with 84 microphones and high spatial resolution -2 mm -searching for an 11×11 or 12×12 matrix V would be numerically difficult. Furthermore, one may not expect a clear cut-off in the eigenvalue spectrum, nor a clear inflexion in the cumulative power distribution. This is clearly illustrated in Fig. 6.64(a). The source number may be set to 3, as suggested by the small gap between the third and the fourth eigenvalues in Fig. 6.64(a). However, this would explain less than 85% of the overall power, as shown in Fig. 6.64(b). If at least 90% of the power had to be covered by the separated sources, then ˆs N = 7 would probably be a better choice as the red arrow shows. The inflexion point in the entropic L-curve suggests the optimal source number around 8, which corresponds to 95.89% of the power, as shown in Fig. 6.64(c). 

Source separation from spatial criteria

Only the first four most physical separated sources returned by 2SD-JAD, 2SD-CG, CLSV, and CLSE with ˆs N = 8 are displayed in Figs. 6.65, 6.67, 6. According to experts (see also the discussion in Ref. [START_REF] Lafon | The concept of cyclic sound intensity and its application to acoustical imaging[END_REF]), the first and second sources correspond to combustion noise: for CLSE, the first source originates from the crank pulley and the second one involves part of the exhaust systems; for CLSV, the first two sources both involve the radiation of the crank pulley when excited by combustion and part of the exhaust systems; for 2SD-JAD and 2SD-CG, not only do the first two separated sources originate from the combustion noise, but also the third one, i.e. 5 ˆ()  r in Figs. 6.65 and 6.67, does. Interestingly, the four groups of results all show that combustion involves two "degrees of freedom" (i.e. uncorrelated modes).

The fifth source from CLSE (corresponding to the fourth one from CLSV and the seventh ones from 2SD-JAD and 2SD-CG) is localized on the water pump and evidences radiation of some of its parts. The sixth source from CLSE (corresponding to the fifth one from CLSV) lays over the injection system of the Diesel engine and thus corresponds to injection noise. The other separated sources are not shown due to the difficulty of assigning them to definite physical origins. Unfortunately, the results from 2SD (includes JAD and CG) lose the source originating from the injection noise, which again show some inferiority of this approach as compared to the criteria of least spatial complexity.

These results from CLSV and CLSE correlate well with the separation obtained in

Ref. [START_REF] Lafon | The concept of cyclic sound intensity and its application to acoustical imaging[END_REF] with the help of references on the combustion and injection processes (first and sixth sources). They make possible the ranking of sources, an objective of fundamental importance to the engineer; by way of an example, Figs. 6.66, 6.68, 6.70, and 6.72 display all the partial powers of the separated sources, together with the residual power not explained by them, from the four methods. 

Source separation from ranking eigen elements according to increasing spatial entropy

The cluster of virtual sources of interest is limited to the first 25 ones, after contrasting the three curves in Fig. 6.64. The spatial entropies of the first 25 virtual sources are depicted in Fig. 6.73. According to increasing spatial entropies, the virtual sources numbered as 1, 2, 3, 5, 14, 21, 4 and 16 are chosen to take part in the following optimization operation. After ranking the elements in matrices D and U according to the indices of the selected virtual sources and then applying CLSE, the first seven most physical sources shown in Fig. 6.74 were obtained. Remarkably, not only are the first four sources the same as in Fig. 6.71, but also the other three smaller sources, which overlap the first four sources in space, are located. The fifth source, i.e. Based on all separated results, the criterion of least spatial entropy is recommended hereafter. To separate very small sound sources, the order of the eigen elements in matrix D should be rearranged according to increasing spatial entropy (or spatial variance) of virtual sources first.

Chapter 7 Parametric analysis

The present chapter is dedicated to analyze how the various experimental parameters affect BSS. Based on the results obtained in Chapter 6, it is clear that CLSE owns the best performance for blind separation of sound sources. Therefore, in the present chapter, CLSE is used systematically despite its computational cost as compared to the other methods. The actual source number is 4. It is seen that the estimated sources look the same, both in magnitude and in shape, when increasing the value of ˆs N . 

Laboratory experiments in the far-field

The first separated source from CLSE is depicted in Fig. 7.4, while the source number ˆs N varies from 2 to 6 in the far-field at 2437 Hz. The actual number of sources is 4. All the sources appear very similar, if not identical, both in amplitude and in shape. 

Industrial example

To verify the robustness to the number of sources in an industrial application, CLSE is then applied to blindly separate sound sources radiated from the Diesel engine at 1250 Hz with ˆs N varying from 4 to 10 by steps of 2. Here, two sources of interest, i.e. the second and third ones (i.e. 2 ˆ()  r and 5 ˆ()  r ) in Fig. 6.71, are picked out, and then coined as 1 ()  r and 2 ()  r hereafter. The separated results from CLSE are illustrated for 1 ()  r in Fig. 7.7 and for 2 ()  r in Fig. 7.8. The localization of the highest peak versus the estimated source number is depicted for the first separated source in Fig. 7.11 and for the second one in Fig. 7.12. The highest peak of 

Optimal distance for backpropagation

According to Huygens principle and to the mechanism of backpropagation, there is an actual distance Z 0 between the reconstruction plane and the array of microphones, where the separated sources are the most compact. This actual distance is defined as the minimum of the spatial entropy (or the spatial variance) of the full reconstructed source field as a function of the range distance. Obviously, such an optimum should be close to the nominal distance between the source plane and the array. In the present section, BSS at the actual distance is investigated by means of the laboratory experiments and the industrial example.

Laboratory experiments in the near-field

The spatial entropy of the full reconstructed source field versus the distance Z is displayed in Fig. 7.13. The minimum of the curve corresponds to Z opt = 11.2 cm, which is close to the nominal distance Z 0 = 10 cm, and coincides with the conclusion on the selection of reconstruction plane proposed by J. Hald [START_REF] Hald | Basic theory and properties of statistically optimized near-field acoustical holography[END_REF]. Therefore, there is definitely a minimum corresponding to the most compact spatial distribution. 

Laboratory experiments in the far-field

In the far-field, the curve connecting the spatial entropy to the range distance Z is displayed in Fig. 7.17. Here, the actual distance is identical to the nominal one, i.e Z opt = Z 0 = 100 cm. The corresponding separation results were displayed in Fig. 

An industrial example

The robustness to the range distance Z between the reconstruction plane and the array of microphones is now verified on the Diesel engine example. In this case, the actual distance is found as Z opt = 21.3 cm, as shown in Fig. 7.20, which is different slightly from the "nominal" distance Z 0 = 18 cm since the latter is known with a limited precision and actually represents an average distance to a non planar source domain . Figure 7.21 displays the primary four sources radiated from the Diesel engine. Contrasting them with those in Fig. 6.71, the separated sources on the actual plane appear more compact, especially the first and sixth ones. This is then compared with an underestimated range distance -Z = 9 cm (see Fig. The maximum errors in localization is 6.6 cm on the x-axis and 4 cm on the y-axis relatively to the corresponding sources at the actual distance. 

Size of the aperture function

In the present dissertation, the aperture function is selected as a circular Hanning window, which is one candidate among many others [START_REF] Harris | On the use of windows for harmonic analysis with the discrete Fourier transform[END_REF]. The proposed algorithms for BSS can work with other types of windows, but this is out of the research scope of the dissertation. In this section, the size of aperture function is studied in short.

For the laboratory experiments, the radius of the aperture function was selected as 

Conclusions

Blind separation of sound sources evidences a number of subtleties. One major issue is that it involves a spatial dimension not found in classical BSS. This is both a difficulty (since it corresponds to an additional convolution over space), and an advantage since it offers the possibility of defining new separation criteria. This dissertation demonstrates that a unique solution to blind source separation is found by forcing the spatial disjointing or the spatial compactness of the separated sources, two assumptions which are fairly realistic in many situations. The search for spatially disjoint sources has led to the so-called criterion of "spatial decorrelation" and the search of spatially compact sources to the so-called criteria of "least-spatial variance" and of "least-spatial entropy". The proposed solutions are fully original and have been found successful in situations where classical BSS methods fall short.

In the first part, based on the backpropagation from the measurements to the source domain of interest, the reason is firstly explained in clear: missing the rotation matrix, why the virtual sources from only statistical decorrelation do not equal the actual sources.

Inspired by the statistical decorrelation, the criterion of spatial decorrelation is proposed in Chapter 3 and applied to blindly separate sound sources which are disjoint in space. Meanwhile, the answer to the question proposed 28 years ago -"when do the virtual sources equal the actual sources?" -is found in success.

The principle of least spatial complexity is introduced in Chapter 4 under the assumption of spatial compactness. The two variables -the spatial variance and the spatial entropy involved in principle of least spatial complexity, both accurately measure the spatial compactness in quantity. Furthermore, the corresponding cost functions deduced from the two spatial criteria are convex, which apparently simplifies the optimization process and guarantees that the local minimum is equal to the total minimum. In the second part, the proposed algorithms have been validated on laboratory, numerical, and industrial data. They also apply indifferently to the near-field and to the far-field. It can efficiently separate compact sources even with rather complex shapes, such as quadrupoles. Furthermore, it can separate very low sources whose amplitude is 40 dB less than the loudest source. Afterwards, the robustness of the algorithms to the experimental parameters is fully demonstrated on the laboratory and the industrial data.

One definite advantage of the approach in the dissertation is that it can separate sound sources under weak statistical assumptions (only decorrelation is actually needed), including the case of stationary and Gaussian sources (which classical BSS, for instance SOBI, has strong difficulties to deal with no matter in the near-field or in the far-field).

Four points are to be emphasized again. First, the virtual sources obtained from simple statistical decorrelation coincide with the actual sources if and only if the sources are also spatially uncorrelated. Second, the criterion of least spatial entropy is the first choice when searching for compact sources due to its accuracy, although it involves more computational demand than the criteria of spatial decorrelation and of least spatial variance. Third, the separation performance (whatever the criterion) strongly relies on the ability to first backpropagate the measurements from the array to the source domain. At last, the separation seems robust to the determination of the number of active sound sources, the range distance between the reconstruction plane and the array of microphones, and the size of the aperture function.

The end of a PhD thesis by no means indicates the end of a research topic. Many issues on such topic are not clear enough or even still unknown. One interesting question for future research is whether the proposed criteria could be extended to separate (partially) coherent sound sources, for instance to account for the presence of wave reflections. With the help of the optimal spatial basis, it is very easy to determine the backpropagation involving contributions from actual sources and their reflected ones. Here, the actual source and its reflections are coherent to each other.

The violation of the ordinary assumption of incoherence implies that much stricter spatial criterion is needed, if the principle of least spatial complexity can be applied to blindly separate the coherent sound sources.

Another point of interest is whether the proposed methodology could be used to separate sound sources radiated from rotating machines, e.g. the wind turbine. Due to the effect of rotation, the components which correspond to the sound origins are not stationary any more. That is to say, the backpropagation in the source domain of interest is non-stationary. The proposed methodology might be employed to separate such kind of non-stationary sources, if the measurements from an array of microphones can be stationarized first with success.
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Appendix A Bayesian regularization

As introduced in Ref [START_REF] Antoni | A Bayesian approach to sound source reconstruction: Optimal basis, regularization and focusing[END_REF], the mechanism of Bayesian regularization is as follows: the optimal regularization parameter, i.e. the noise-to-signal ratio 2 2 2 =/    (where β 2 denotes the mean energy of noise from measurements and α 2 for the mean energy of sources), makes the best trade-off between an acceptable solution with highly physical meaning and a reasonable fitting of the measurements with respect to the actual sources.

The key point in Bayesian regularization is how to adjust the parameter η 2 , according to the given source distribution and topology of an array of sensors. Let where s m denotes the singular values. The three items in the cost function Eq. (A.1) are: i) the logarithm of the estimated mean energy, which decreases with η 2 rising; ii) the mutual information involved in each microphone; iii) the penalty part, respectively.

Thus the optimal regularization parameter 2 0  , corresponding to the minimum of Eq.

(A.1), makes a balance between the least energy and maximum transfer of information which explains the measurements.

At last, three highlights of Bayesian regularization are underlined here:

1) The cost function 2 () J  (i.e. Eq. (A.1)) is convex, which guarantees the existence and uniqueness of the regularization parameter 2 0  . That means it is convenient to adjust η 2 in the theoretical framework of Bayesian regularization.

2) The optimization of the cost function 2 () J  is very efficient, as only one "inversion" operation is required in the first item of Eq. (A.1). Therefore, Bayesian regularization obtains the regularization parameter 2 0  much easier than some classic regularization methods do.

3) It returns the optimal regularization parameter 2 0  , and the mean energies β 2 and α 2 simultaneously, which provides the following reconstruction of the source filed with many benefits.

Appendix B Optimization of CLSV in Stiefiel manifold

Based on the cost function of the missing matrix V from the criterion of least spatial variance (see Eq. 
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The calculated Euclidean gradient E Σ and the cost function Σ(V) are embedded together into steps 2) and 7) of the CG algorithm introduced in subsection 3.3.1, and then the optimal matrix V is found by iterations. Accordingly, the mixing matrix A and the latent sources α are respectively estimated with the help of Eqs. (2.10) and

(2.19), and the optimal V. At last, all separated sources are reconstructed based on the estimated A and α. 
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In the same way as described at the end of Appendix A, the separated sources from the principle of least spatial entropy can be reconstructed with the help of the optimal V.
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  d i : i-th diagonal element of matrix D u i : i-th column of matrix U v i : i-th column of matrix V ω 0 : center frequency of a frequency band z: whitened version of coefficient vector c W: whitening matrix  : frequency lag J: number of frequency lags or pure imaginary number 1 J  j: index of the frequency lag   off : sum of squares of all non-diagonal elements of the cost function Σ: spatial variance Σ: aperture function P: normalized intensity of a sound source i  : i-th source power 0i r : spatial centroid of the i-th source distribution of the cost function H with respective to matrix V R k : Riemannian gradient T k : tangent direction along a geodesic  CV : k-th weighted spatial correlation matrix [] k ij C : (i, j)-th element of   [] k CV N  : total number of snapshots  ˆ1 s M iN   : product of variables from i= ˆ1 s N  to i=M L: Kullback-Leibler divergence (generally noted as D KL ) |A|: determinant of matrix A distance between the microphone array and the loudspeaker membranes D: spacing between the centers of two adjacent loudspeaker membranes f: working frequency (in Hz) vii R: radius of the applied aperture function i  : spatial correlation coefficient between the i-th sound source and its reference () i : spatial correlation spectrum s i : i-th actual source i Abstract Blind source separation is a promising technique for the identification, localization, and ranking of sound sources.
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  données numériques et illustrée par un exemple industriel concernant la classification des sources sonores sur la face supérieure d'un moteur Diesel. La méthodologie peut également séparer, de façon très précise, des sources dont les amplitudes sont de 40 dB inférieur aux sources les plus fortes. Aussi, la robustesse vis-à-vis de l'estimation du nombre de sources actives, de la distance entre le domaine source d'intérêt et le réseau de microphones, ainsi que de la taille de la fonction d'ouverture est démontrée avec succès. MOTS-CLES: problè me inverse, ré tropropagation, sé paration aveugle de sources, principe de moindre entropie spatiale, principe de moindre variance spatiale, dé corré lation spatiale, diagonalisation conjointe approché e Ré sumé dé taillé La localisation et l'identification de sources sonores font partie des problèmes fondamentaux de l'ingénierie vibro-acoustique. Le besoin de techniques nouvelles pour localiser, identifier et classer les sources sonores traduit des exigences de plus en plus strictes en termes de qualité acoustique, en particulier dans l'industrie du transport. Parmi les différentes approches dédiées à ces objectifs, une solution populaire consiste à reconstruire les sources sonores (par exemple la pression pariétale ou la composante normale de la vitesse des particules) indirectement à partir de mesures faites à distance, telles que celles réalisées par un réseau de microphones. L'approche a l'avantage d'être non intrusive et assez universelle dans son principe. Pour ces raisons, cette technique conue sous le nom de l'imagerie acoustique est largement utilisée dans l'industrie. Une limitation importante de l'imagerie acoustique classique est qu'elle identifie difficilement les sources sonores qui se chevauchent tant dans les domaines spatial et fréquentiel, même lorqu'elles proviennent d'origines physiques distinctes. Un exemple typique est donné dans l'industrie automobile par les sources sonores (par exemple, la combustion, l'injection, le système d'échappement, etc.) rayonnées par un moteur Diesel .

  capteurs (par exemple, microphones) sur le domaine source d'intérêt. La décorrélation statistique des sources sonores est réalisée par décomposition en valeurs propres de la matrice de corrélation des coefficients se rapportant à la base spatiale optimale. Les sources virtuelles issues de la décorrélation statistique sont ensuite comparés aux sources réelles. On montre qu'étant donné une matrice de rotation manquante, les sources virtuelles ne correspondent pas aux sources réelles dans le cas général. Pour séparer les sources sonores par utilisation de la seule information statistique basée sur les sources virtuelles, une méthode aveugle classique au second ordre (Second Order Blind Identification, SOBI) est adoptée pour séparer aveuglément les sources sonores réelles à la fin du Chapitre 2. En se basant sur la théorie du Chapitre 2, les conditions nécessaires pour que les sources virtuelles coïncident bien avec les sources réelles sont étudiées du point de vue mathématique au début du Chapitre 3. Il est montré que celles-ci sont liées à la notion d'orthogonalité spatiale des sources, un cas particulier intéressant étant celui de sources spatialement disjointes. Cependant, cette propriété peut être éventuellement perdue lors de la rétropropagation en champ lointain. Pour améliorer les résultats de la séparation de sources spatialement disjointes, un algorithme de décorrélation conjointe statistique et spatiale et proposé sur la base d'une diagonalisation conjointe approchée (Joint Approximate Diagonalization, JAD) ou de la méthode du gradient conjugué (Conjugate Gradient, CG) en fin du Chapitre 3. Avec l'aide de l'information spatiale, les sources réelles peuvent ainsi être séparées avec succès sur la plupart des fréquences de travail, même basses. viii La méthode proposée dans le Chapitre 3 ne peut cependant pas traiter les scénarios difficiles, par exemple avec grand chevauchement spatial ou avec un mélange de sources de niveaux très différents. Pour résoudre les problèmes mentionnés ci-dessus, deux critères de séparation spatiale sont introduits dans le Chapitre 4, à savoir le critère de la moindre variance spatiale (Criteria of Least Spatial Variance, CLSV) et le critère de la moindre entropie spatiale (Criterion of Least Spatial Entropy, CLSE), sur la base d'une hypothèse intuitive -la compacité spatiale. Ce critère est intéressant d'un point de vue pratique, car l'étendue spatiale des sources réelles est souvent réduite en raison de leurs origines physiques et coïncide par ailleurs bien avec le sens de l'audition humaine. Inspiré par le concept important de variance, le CLSV est présenté dans la section 4.1, en rapport avec la distribution spatiale des sources d'intérêt. La variance spatiale mesure la distribution spatiale des sources sonores autour de leurs centroïdes, où le centroïde peut être considéré comme l'espérance spatiale de la source sonore. Il est évident que la distribution de la source la plus compacte correspond à la variance spatiale minimale. Dans un tel critère de séparation, la matrice de rotation manquant peut finalement être déterminée par minimisation de la variance spatiale totale des sources sonores. Le CLSV a l'avantage dêtre simple, mais il n'est pas adapté à la séparation des sources sonores compactes mais multimodales.
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 23 Fig. 2 Le dispositif d'expérimental pour valider l'algorithmes proposés (1: les haut-parleurs, 2:l'antenne de microphones de la roue de coupe).
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 456789 Fig. 4 Sources séparées "virtuelles", ˆ() i  r , i = 1,…,4, à partir de la décorrélation statistique,

Fig. 10

 10 Fig. 10 Sources séparées, ˆ( , ) i  r , i = 1,2,5,6, à partir du critère de moindre entropie spatiale

Figure 1 .

 1 1(a) displays the sound field distribution on the top side of a flying airliner, where the strong sound sources are marked in red and the low ones in blue. Apparently, the primary sources origin from the entrance of the four aircraft engines and from the head of the plane. The ranking of the sound sources radiated from a wind turbine is conveniently identified from the acoustic image as shown in Fig. 1.1(b). In Fig. 1.1(c), a large source is located on the bottom side of a sewing machine, which mainly supports the machine. Fig. 1.1(d) depicts the spatial distribution of sound sources which are generated by the wheels of a train rolling on rails. The last panel of Fig. 1.1 shows sound sources located on the front side of an automobile engine, which is of interest to survey the performance of the engine.

Fig. 1 . 1

 11 Fig. 1.1 Examples of reconstructing sound sources with an array of microphones: (a) the top side of airliner [5], (b) the blades and rotor of a wind turbine [5], (c) the bottom side of a

  radiated from the i-th source s i , i=1,…N s , at the m-th microphone located at position r m (m=1, 2, …, M for a M-microphone array), at angular frequency ω, and indexed by

Figure 2 .

 2 2 displays how to generate the snapshot of sound pressure signal, ( , ; ) m p  r , from the m-th channel of the array by using Short Time Fourier Transform (STFT).

Fig. 2 . 2

 22 Fig. 2.2 Illustration of the concept of snapshots: ( , ; ) m p

  3 involve an 84 microphone array (i.e. M = 84) to record the sound pressure signals radiated from a Diesel engine, where 2 to 3 sources (combustion noise and injection noise) are of interest (N s = 2).

Chapters 3

 3 and 4 in Part I. Based on the results from Subsection 2.3 and a group of preselected frequency points with center frequency ω 0 , SOBI is executed by the following implementations: 1) Estimate the correlation matrix ˆˆ(0) H cc C of the sample coefficient vector ĉ over  snapshots at the center frequency ω 0 as shown in Eq. (2.18). The first N s largest eigenvalues of ˆˆ(0) H cc C and the corresponding eigenvectors are selected as shown in Eq. (2.19) with the help of EVD.

4 )

 4 Search for a unitary matrix V as joint diagonalizer of the set ˆ{ (•)' denotes the sum of squares of all non-diagonal elements of the cost function are many optimization algorithms for the minimization of the cost function in Eq.(2.26). Here, we recommend the algorithm of Joint Approximate Diagonalization of the matrices proposed by J. F. Cardoso[100].5) Estimate latent sources as

H

  ΨΨ  is diagonal as specified by Eq. (3.6) 2) and the spatial basis  is chosen orthonormal in that domain, i.e. H  I   as specified by Eq. (C.11).

Subsection 6 .Chapter 4

 64 1.2-6.1.5, respectively. The dependence of spatial decorrelation on backpropagation once again highlights the difficulty of the introduced issue in the present dissertation, and the difference between the incoherent source separation in space and the classic blind source separation. Blind separation of compact sources from the principle of least spatial complexity A specific assumption of the work in the present chapter is that all sound sources of interest are characterized by compact spatial distributions. A source distribution is said compact if it concentrates around a central point, yet without restriction on its shape.

9 )

 9 centroid of the i-th source distribution. Thus the total spatial variance Σ of the mixture of N s incoherent sound sources reads 1 into Eqs. (3.15)-(3.19) and discretizing the related integrals as in Eq. (2.3), one arrives at the following cost function, construction, tends to separate point sources. CLSV has the benefit of simplicity, however it might not be suited to separate compact but multimodal sound sources. The next criterion is designed to solve this shortcoming.

  Shannon entropy of information theory, an original statistic concept, named 'spatial entropy', is proposed here to measure the spatial compactness of sound sources. The spatial entropy corresponding to the actual sources is the minimum among the values of all candidate sources. That is to say, the spatial redundancy of the candidate sources is more than that of actual sources. Thus the uniqueness of the solution to the actual sources is guaranteed by the spatial entropy.

Fig. 4 . 1

 41 Fig. 4.1 Flowchart of the proposed BSS method.
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 789 Compute the Euclidean gradient E k+1 and the Riemannian gradient R k+1 at V k+1 in the same way as Eqs. (3.33) and (3.34). Deduce the tangent direction T k+1 at V k+1 as Evaluate the inner product between the Riemannian gradient R k+1 and the tangent direction

  (3.22) and(3.30)) needs to be derived carefully, in terms of the original definition of complex-valued matrix gradient of a scalar cost function. The Euclidean gradients E k of the total spatial variance Σ(V) and the total spatial entropy H(V) are presented in Appendices B and C, respectively.

Wong

  et al. find that AIC overestimates the number of signals at high SNR, but MDL underestimates the parameter at low and medium SNR. To improve the drawbacks of AIC and MDL, they propose a new log likelihood function under the framework of information theoretic criteria and modify the corresponding information theoretic criteria, by combining the merits of AIC and BIC [136]. In Ref. [137], W. Xu and M. Kaveh propose a new framework to discuss the exact and approximate asymptotic bounds on the estimations of AIC and MDL, respectively. Their results show that AIC and MDL are both very sensitive to the deviation between the samples and the ideal Gaussian white noise, and that the two criteria overestimate in the presence of colored Gaussian noise. A. P. Liavas and P. A. Regalia comprehensively analyze the performances of AIC and MDL for the model order selection in different cases -i.e. the large gap between the signal and noise eigenvalues, and the noise eigenvalues dispersion [138]. E. Fishler et al. mainly conduct a general asymptotic analysis for MDL in the scenario of estimating the unknown number of Gaussian sources. They claim that the actual distribution of sources does not have much effect on the MDL estimator [139]. In recent years, B. Nadler pays much attention to the detection of signals in the non-parametric setting where no knowledge of the array manifold is known a priori. From the viewpoint of random matrix theory, he and his colleague present two new algorithms to determine the number of signals, respectively based on hypothesis testing and information theoretic criteria [140]-[141].

( 4 . 3 )

 43 will typically show a "knee" when the estimated number of sources equals the actual number, ˆ ss NN . This might be conveniently inspected by considering the fraction

6. 1 .

 1 A slice wheel array (also named Pizza array) with 60 microphones was placed parallel to four loudspeaker membranes considered as the sound sources, at different distances ranging from the near-field to the far-field[START_REF] Hald | Array designs optimized for both low-frequency NAH and high-frequency Beamforming[END_REF].

Fig. 6 . 1

 61 Fig. 6.1 The experimental setup for validating the proposed algorithm. (1: the loudspeakers; 2: the slice wheel microphone array)

Fig. 6 Fig. 6 . 2

 662 Fig. 6.2.

  It needs another variable to describe the spatial distribution of separated sources in the whole frequency band of interest. Thus, separation results will be displayed by means of the spatial correlation spectrum between the separated and actual sources (i.e. correlation coefficient as a function of frequency), defined as

Fig. 6 .

 6 Fig. 6.4(b) by a red arrow. Note that the selected point in Fig. 6.4(c) clearly illustrates the trade-off between the spatial and statistical entropic measures.

Fig. 6 . 3

 63 Fig. 6.3 Determination of the source number N s from inspection of (a) AIC and (b) MDL in the near-field at 833 Hz.

Fig. 6 . 4

 64 Fig. 6.4 Determination of the source number N s from inspection of (a) the eigenvalue spectrum, (b) the cumulative power distribution, and (c) the entropic L-curve in the near-field at 833 Hz.

Fig. 6 . 5

 65 Fig. 6.5 Separated sources, ˆ() i  r , i = 1,…,4, from single statistical decorrelation , in the

Fig. 6 . 6 Fig. 6 . 7

 6667 Fig. 6.6 Actual sources,

Fig. 6 . 8

 68 Fig. 6.8 Spatial correlation spectra between the separated and actual sources,

Fig. 6 . 9 Fig. 6 .

 696 Fig. 6.9 Determination of the source number N s from inspection of (a) AIC and (b) MDL in the far-field at 2437 Hz.

Fig. 6 .

 6 Fig. 6.11 Separated sources, ˆ() i  r , i = 1,…,4, from single statistical decorrelation , in the

Fig. 6 .

 6 Fig. 6.12 Actual sources,

Figures 6 .

 6 Figures 6.13-6.14 display the quadratic velocity spectra and the spatial correlation spectra in the whole available frequency band, respectively. Similar to that in the near-field, the boundaries of the whole working frequency band in the far-field are also determined by characteristic parameters of the microphone array and the distance Z. The quadratic velocity spectra of the separated sources match remarkably well

Fig. 6 .

 6 Fig. 6.13 Quadratic velocity spectra of the separated sources, ˆ() i , i = 1,…,4, from single

Fig. 6 .

 6 Fig. 6.14 Spatial correlation spectra between the separated and actual sources,

  , respectively. Both optimization strategies return correct and compact sound sources as shown on the right side of the red dash line. The separation results from the two strategies look the same no matter the amplitude, the location of hottest points or the spatial distribution, ignoring the permutation among the four sources. The actual sources at 833 Hz with R = 35 cm are displayed in Fig.6.18. There are few errors between the separated and actual sources in terms of energy and spatial distribution, although the shape of the second sound source is distorted a little. The example shows that enforcing statistical and spatial decorrelation jointly is an effective method to blindly separate incoherent sound sources in the near-field.
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 6 Fig. 6.15 Separated sources, ˆ() i  r , i = 1,…,4, from single statistical decorrelation, in the

Fig. 6 .

 6 Fig. 6.17 Separated sources, ˆ() i  r , i = 1,…,4, from statistical and spatial decorrelation with

Fig. 6 .

 6 Fig. 6.18 Actual sources,

Fig. 6 .Fig. 6 .Fig. 6 .

 666 Fig. 6.19 Quadratic velocity spectra of the separated sources, ˆ() i , i = 1,…,4, from

Tab. 6 . 2

 62 Spatial correlation coefficients between the actual and the separated sources, from single statistical decorrelation (SD), joint statistical and spatial decorrelation (2SD) with JAD and with CG, respectively, in the near-field at 833 Hz.

Fig. 6 .Fig. 6 .

 66 Fig. 6.23 Separated sources, ˆ() i  r , i = 1,…,4, from single statistical decorrelation, in the

Fig. 6 .Fig. 6 .

 66 Fig. 6.25 Separated sources, ˆ() i  r , i = 1,…,4, from statistical and spatial decorrelation with

Fig. 6 .Fig. 6 .Fig. 6 .

 666 Fig. 6.27 Quadratic velocity spectra of the separated sources, ˆ() i , i = 1,…,4, from

Tab. 6 . 3

 63 Spatial correlation coefficients between the actual and the separated sources, from single statistical decorrelation (SD), joint statistical and spatial decorrelation (2SD) with JAD and with CG, respectively, in the far-field at 2437 Hz.

1 )

 1 Source separation in the near-field First, virtual sources are computed from the eigenvalue decomposition of the correlation matrix ˆˆH cc C and displayed on the right side of Fig. 6.31; this shows that the separated sources from SD depart significantly from the actual ones, which is similar to that in Fig. 6.15 (ignoring the errors from backpropagation by applying two distinct aperture functions -i.e. R = 21 cm and 35 cm, respectively, the two groups of virtual sources (see Figs. 6.31 and 6.15) are almost the same in terms of locations and amplitude of the hottest points). The latter is then estimated by using CLSV and CLSE. The separation results are displayed in Figs. 6.32-6.33, respectively. The 4 actual sources, in the near-field at 833 Hz, are displayed in Fig. 6.34.

Fig. 6 .

 6 Fig. 6.31 Separated sources, ˆ( , ) i  r , i = 1,…,4, from single statistical decorrelation, in the

Fig. 6 .Fig. 6 .

 66 Fig. 6.32 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial variance,

Fig. 6 .

 6 Fig. 6.34 Actual sources,

  so as to jointly diagonalise the correlation matrix ˆˆH cc C in a narrow frequency band centered at 833 Hz with bandwidth 1.75 Hz (i.e. 7 frequency bins). The separated sources are displayed in Fig. 6.35. SOBI could find only two distinct sourcessevere disturbance and strong coupling in space. Similar comparisons carried on in other frequency ranges generally confirmed that SOBI could hardly reach the same separation performance as LCSV and CLSE because it does not account for spatial information, as proposed in this dissertation.

Fig. 6 .

 6 Fig. 6.35 Separated sources, ˆ( , ) i  r , i = 1,…,4, from SOBI, in the near-field at 833 Hz.

Fig. 6 .

 6 Fig. 6.36 Quadratic velocity spectra of the separated sources, ˆ() i , i = 1,…,4, from the

Fig. 6 .

 6 Fig. 6.38 Spatial correlation spectra between the separated and actual sources, () i  

Fig. 6 . 2 )

 62 Fig.6.39 Spatial correlation spectra between the separated and actual sources, () i  
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 6 Fig. 6.40 Separated sources, ˆ( , ) i  r , i = 1,…,4, from single statistical decorrelation, in the

Fig. 6 .Fig. 6 .

 66 Fig. 6.41 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial variance,

Fig. 6 .

 6 Fig. 6.43 Actual sources,

Fig. 6 .

 6 Fig. 6.44 Separated sources, ˆ( , ) i  r , i = 1,…,4, from SOBI, in the far-field at 2437 Hz.

Fig. 6 .

 6 Fig. 6.45 Quadratic velocity spectra of the separated sources, ˆ() i , i = 1,…,4, from the

Fig. 6 .

 6 Fig. 6.46 Quadratic velocity spectra of the separated sources, ˆ() i , i = 1,…,4, from the

Fig. 6 .

 6 Fig. 6.47 Spatial correlation spectra between the separated and actual sources, () i  

Fig. 6 .

 6 Fig. 6.48 Spatial correlation spectra between the separated and actual sources, () i  

Fig. 6 .

 6 Fig. 6.49 Spatial entropy of the first 30 virtual sources in the near-field at 1456 Hz.
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 66 Fig. 6.50 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy

Fig. 6 .

 6 Fig. 6.53 Spatial correlation spectra between the separated and actual sources, () i  

6 . 54 .

 654 The separation results are excellent in terms of amplitude and position as shown in Figs. 6.55-6.56. As seen in Figs. 6.57-6.58, the improved method could separate sound sources in the whole frequency band in the far-field with the help of CLSE, even at a few frequencies where the power of sound sources is similar to the background noise.
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 6 Fig. 6.54 Spatial entropy of the first 30 virtual sources in the far-field at 2025 Hz.

Fig. 6 .Fig. 6 .

 66 Fig. 6.55 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy

Fig. 6 .

 6 Fig. 6.58 Spatial correlation spectra between the separated and actual sources, () i  

Fig. 6 .

 6 Fig. 6.59 Determination of the source number N s from inspection of (a) AIC and (b) MDL.

Fig. 6 .

 6 Fig. 6.60 Determination of the source number N s from (a) the eigenvalue spectrum, (b) the cumulative power distribution, and (c) the entropic L-curve.

Fig. 6 .

 6 Fig. 6.61 Separated sources, ˆ( , ) i  r, i = 1, 2, 3, from the criterion of least spatial entropy.

Fig. 6

 6 Fig. 6.62 Actual sources,

Fig. 6 .

 6 Fig. 6.63 Determination of the source number N s from inspection of (a) AIC and (b) MDL (Diesel engine at 1250 Hz).

Fig. 6 .

 6 Fig. 6.64 Determination of the source number N s from (a) the eigenvalue spectrum, (b) the cumulative power distribution, and (c) the entropic L-curve (Diesel engine at 1250 Hz).

69 and 6 .

 6 [START_REF] Antoni | A study and extension of second-order blind source separation to operational modal analysis[END_REF], respectively. The spatial resolution is set to 2 mm for all the separated sources from the Diesel engine. Note that the indices of separated sources are determined in terms of the ranking of their power. It is seen that, by construction, joint statistical and spatial decorrelation (i.e. 2SD-JAD and 2SD-CG) returns less compact sources than the principle of least spatial complexity (i.e. CLSV and CLSE); as discussed hereafter, the latter are probably farther than the former from the actual (unknown) sources. The spatial distribution of the separated sources from CLSV and CLSE are almost the same, although there are some discrepancies in the amplitude. This evidences the presence of sources from different spatial origins.
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 6 Fig. 6.65 Separated sources, ˆ( , ) i  r , i = 1,2,5,7, from joint statistical and spatial

Fig. 6 .

 6 Fig. 6.66 Ratios of power of the separated sources and of the residual power (red bar) to the total power from joint statistical and spatial decorrelation with joint approximate diagonalization (Diesel engine at 1250 Hz).

Fig. 6 .

 6 Fig. 6.67 Separated sources, ˆ( , ) i  r , i = 1,2,5,7, from joint statistical and spatial

Fig. 6 .

 6 Fig. 6.68 Ratios of power of the separated sources and of the residual power (red bar) to the total power from joint statistical and spatial decorrelation with conjugate gradient method (Diesel engine at 1250 Hz).
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 6 Fig. 6.69 Separated sources, ˆ( , ) i  r , i = 1,2,4,5, from the criterion of least spatial variance

Fig. 6 .

 6 Fig. 6.70 Ratios of power of the separated sources and of the residual power (red bar) to the total power from the criteria of least spatial variance (Diesel engine at 1250 Hz).

Fig. 6 .

 6 Fig. 6.71 Separated sources, ˆ( , ) i  r , i = 1,2,5,6, from the criterion of least spatial entropy

Fig. 6 .

 6 Fig. 6.72 Ratios of power of the separated sources and of the residual power (red bar) to the total power from the criteria of least spatial entropy (Diesel engine at 1250 Hz).

Fig. 6 .

 6 Fig. 6.73 Spatial entropy of the first 25 virtual sources (Diesel engine at 1250 Hz).

Fig. 6 .

 6 Fig. 6.74 Separated sources, ˆ( , ) i  r , i = 1,2,4,5,6,7,8, from the criterion of least spatial

Fig. 6 .

 6 Fig. 6.75 Ratios of power of the separated sources (ranked according to their spatial entropies) and of the residual power (red bar) to the total power (Diesel engine at 1250 Hz).
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 1711 Robustness to the number of sourcesIt is shown herein that the proposed algorithm -CLSE is robust to the estimated number of sources. This is demonstrated by means of three indicators: namely, the power, the entropy, and the spatial localization of the most intense separated sources are all shown to be little affected by how many other sources are considered in the mixture. The robustness to the number of sources is double-checked by laboratory experiments and on the industrial example involving sound sources produced by the Diesel engine. Laboratory experiments in the near-field By means of an example, Fig.7.1 displays the first separated source from CLSE, in the near-field, when the number ˆs N varies from 2 to 6, where 1 () for its estimation assuming ˆs N sources.

Fig. 7 . 1

 71 Fig. 7.1 The first separated source,

Fig. 7 .

 7 Fig. 7.2 (a) Power ratio of the first separated source to its actual value versus the estimated source number ˆs N . (b) Ratio of spatial entropy of the first separated source to its actual value

Fig. 7 . 3

 73 Fig. 7.3 Positions of the highest peak in the first separated source versus the estimated source number ˆs N : (a) position on the x-axis and (b) position on the y-axis (near-field at 833 Hz).

Fig. 7 . 4 6 (

 746 Fig. 7.4 The first separated source,

Fig. 7 .

 7 Fig. 7.5 (a) Power ratio of the first separated source to its actual value versus the estimated source number ˆs N . (b) Ratio of spatial entropy of the first separated source to its actual value

Fig. 7 . 6

 76 Fig. 7.6 Positions of the highest peak in the first separated source versus the estimated source number ˆs N : (a) position on the x-axis and (b) position on the y-axis (far-field at 2437 Hz).

Fig. 7 . 7

 77 Fig. 7.7 The first separated source,

Fig. 7 . 8

 78 Fig. 7.8 The second separated source,

Fig. 7 .Fig. 7 .

 77 Fig. 7.9 (a) Power ratio of the first separated source to its mean value versus the estimated source number ˆs N . (b) Ratio of spatial entropy of the first separated source to its mean value

  Fig. 7.11(b). The robustness of CLSE to the estimated number of sources is once again confirmed by the localizations of the two sources -1 ()  r and 2 ()  r .

Fig. 7 .

 7 Fig. 7.11 Positions of the highest peak in the first separated source versus the estimated source number ˆs N : (a) position of the highest peak on the x-axis, (b) position of the highest peak on the y-axis, (c) position of the next highest peak on the x-axis, and (d) position of the next highest peak on the y-axis (Diesel engine at 1250 Hz).

Fig. 7 .

 7 Fig. 7.12 Positions of the highest peak in the second separated source versus the estimated source number ˆs N : (a) position of the highest peak on the x-axis, (b) position of the highest peak on the y-axis, (c) position of the next highest peak on the x-axis, and (d) position of the next highest peak on the y-axis (Diesel engine at 1250 Hz).
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 77 Fig. 7.15 and Fig. 7.16, respectively. Despite severe distortion in shape, CLSE can still successfully separate the sources in the case of large underestimation (Z = 5cm) or overestimation (Z = 22cm) of the nominal distance. This means CLSE is robust to the range distance Z in the near-field, even though the reconstructed sources suffer serious distortion and bias. Furthermore, the coordinates of the hottest points of the four separated sources versus the distance Z are listed in Tab. 7.1. Among all distances Z, the separated results on the actual plane Z opt provides the most accurate localization of the sources (see Tab. 7.1). The maximum position errors are respectively 2.3 cm in the x-axis and 3 cm in the y-axis with respect to the localizations of the sources on the actual plane, which are both lower than half the spacing D 0 = 12cm between the sources and one order of magnitude smaller than the wave length λ = 41.2cm at 833 Hz.

Fig. 7 .

 7 Fig. 7.13 (a) Spatial entropy of the full reconstructed source field versus range distance Z (near-field at 833 Hz). (b) Zoom around the actual distance.

Fig. 7 .

 7 Fig. 7.14 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy, at

Fig. 7 .

 7 Fig. 7.15 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy, at range distance Z = 5 cm (near-field at 833 Hz).

Fig. 7 .

 7 Fig. 7.16 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy, at

1

 1 Coordinates (x, y) (in centimeter) of the highest peaks of four separated sources versus different range distances Z (near-field at 833 Hz).

  Fig. 7.19, the lowest peak of the fourth source relates to the first actual source, yet the source distribution seems dominated by the same hot point as in the third separated source. The two figures demonstrate that CLSE is robust to the distance Z from the

Fig. 7 .

 7 Fig. 7.17 (a) Spatial entropy of the full reconstructed source field versus the range distance Z (far-field at 2437 Hz). (b) Zoom around the actual distance.

Fig. 7 .

 7 Fig. 7.18 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy, at

Fig. 7 .

 7 Fig. 7.19 Separated sources, ˆ( , ) i  r , i = 1,…,4, from the criterion of least spatial entropy, at

Z

  = 180 cm (-10.6, 6.4) (8, 8.6) (-9.9, -9.5) (8.2, -10.2) Tab. 7.2 Coordinates (x, y) (in centimeter) of the highest peaks of four separated sources versus different range distances Z (far-field at 2437 Hz).

  7.22) -and an overestimated distance -Z = 27 cm (see Fig. 7.23). With varying the distance Z, the shape of sources zooms in and out, but overall CLSE can provide stable results. The coordinates of the hottest points of the four separated sources are given in Tab. 7.3.

Fig. 7 .

 7 Fig. 7.20 (a) Spatial entropy of the full reconstructed source field versus the range distance Z (Diesel engine at 1250 Hz). (b) Zoom around the actual distance.

Fig. 7 . 123 Fig. 7 .

 71237 Fig. 7.21 Separated sources, ˆ( , ) i  r , i = 1,…,8, from the criterion of least spatial entropy at

Fig. 7 .

 7 Fig. 7.23 Separated sources, ˆ( , ) i  r , i = 1,…,8, from the criterion of least spatial entropy at

R = 21 Fig. 7 . 25 .

 21725 Figs. 7.24 and 7.25, respectively. Except for the third source -5 ˆ()  r , the other three

Fig. 7 .

 7 Fig. 7.24 Separated sources, ˆ( , ) i  r , i = 1,…,8, from the criterion of least spatial entropy

Fig. 7 .

 7 Fig. 7.25 Separated sources, ˆ( , ) i  r , i = 1,…,8, from the criterion of least spatial entropy

  It is still an open problem to determine the number of sources from measurements in the field of array signal processing. The contribution to the open problem is illustrated at the end of Chapter 5. That is the criteria of least spatial entropy leads to the proposal of a new method, the entropic L-curve, to determine the number of active sources by searching for the balance between spatial and statistical entropies. To be safe, it is suggested to combine the entropic L-curve with other classic methods to determine the active sources together.
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p 22 [ 2 0  and 2 0

 2222 , | ] denote the posterior distribution of the unknown hyperparamters β 2 and α 2 with respect to measurements p. If the priori is assumed to be the uniform distribution before recording data, the posterior p 22 [ , | ] will be proportional to the likelihood  p 22 [ | , ] in terms of Bayes rule. Therefore, the optimal hyperparamters are the ones who maximize the likelihood function  p 22 [ | , ]. A practical algorithm, which is thoroughly introduced in Ref [27], is applied here. Consequently, a criterion derived from the likelihood function  estimated mean energy of sources, M symbolizes the number of microphones embedded in the array, and I defines the mutual information between sources s(r) and measurements p as

1 )

 1 (3.20)), the corresponding Euclidean gradient E Σ is defined as To highlight the relationship between the cost function Σ(V) and the variable V, two intermediate variables are introduced, is the i-th row of matrix V. Substituting Eqs. (B.2) and (B.3) into Eqs. (3.20) and (3.21), the cost function of CLSV can be rewritten as Eqs. (B.4) and (B.5) into Eq. (B.1), the (m, k)-th element of the Euclidean gradient E Σ can be formulated as

  

  

  

  

  

  

  

  

  

  

  

  

  to the physical nature of the problem of interest, the BSS model is categorized into linear versus nonlinear, noisy versus noiseless, instantaneous versus convolutive, working in the time domain versus the frequency domain,

	underdetermined versus overdetermined in terms of the numbers of sources and	
	sensors… For convenient purpose, the BSS model is usually formulated in the matrix
	format,	
	* X A S , 	(1.1)

  Coordinates (x, y) in centimeters of the highest peaks of four separated sources versus the radius R of aperture function (Diesel engine at 1250 Hz).

	s 1	s 2	s 3	s 4
	R = 45 cm (21.4, 60.4) (44.8, 73.8) (20, 32.8)	(65.4, 50)
	R = 54 cm (20.4, 62)	(44, 76.8) (20.6, 27.6) (66.6, 54.4)
	R = 65 cm (20.4, 61.4) (43.6, 73.6) (19.6, 23.6) (65.2, 54.8)
	Tab. 7.4			

  calculated with the help of Eq. (B.8). Combining Eqs. (B.8), (B.9) and (B.11), the (m, k)-th element of the Euclidean gradient E Σ can be deduced. Finally, the full Euclidean gradient E Σ is given in the matrix format

		  i FF 2 0 * || l l i l km v v   * i km       v r r v	2 || 0 l i  r r		2 || 0 * li km v   rr	l F	  i v ,	(B.7)
		  * li km F v   v		* HH l i km v  q v v q i l 		** lr ri km * qv v 1 s  N r      	i l v q			* mi lk i l q v q ,	(B.8)
	and									
											2
									N	
		2 || 0 * km li v   rr	l    r	  ii {} 1 () l i l l l H T H H F Tr    v r r ΓΦUDV e e VDU Φ	* km v 	,	(B.9)
	with									
											N
		{ Tr ΓΦUDV e e VDU Φ H T H i i	H	}=	l   ' 1	  '' ( ) i ll F  vr .	(B.10)
	Combining Eqs. (B.9) and (B.10), one has
		NN
		  11 **     ' () = {} l i l l l i l ll km km N H T H H ii i l FF vv Tr F  v r r v r      ΓΦUDV e e VDU Φ  v
											l	1 
	  **       '' ' ' ' ' 11 1 1 1 =-N N N N N l i l i l i l i l ll ll l l l km km FF F F F vv                                      vv  r v v r	  i v	  	2
								  * 11 v           * * 12 1 s N v v    
			E 	  	      V v r r        * * 21 22 = H v v v   , * 2 s N          	(B.6)
	where							       * * * 12 s s s s N N N N v v v          

' , (B.11) which is easily

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf © [B. Dong], [2014], INSA de Lyon, tous droits réservés

The terms "decorrelation'' and "incoherence'' are synonymous, the first one being employed in statistics and the second one in acoustics; a formal definition is given in Eq.(2.14). Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf © [B. Dong], [2014], INSA de Lyon, tous droits réservés

Appendix C Optimization of CLSE in Stiefiel manifold

Similar to Eq. (B.1), the Euclidean gradient E H of the cost function from the criterion of least spatial entropy is written as

First of all, substituting Eqs. (B.2), (B.3) and (B.10) into Eq. (3.29), the total spatial entropy H(V) can be rewritten more concisely as

The (m, k)-th element of the Euclidean gradient E H can be formulated as
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1. Bin DONG, Jérôme ANTONI, Blind separation of uncorrelated sound sources from the principle of least spatial complexity, the 19th international congress on sound and vibration, Vilnius, Lithuania, July 08-12, 2012. Blind source separation is a promising technique for the identification, localization, and ranking of sound sources. The aim of this dissertation is to offer methods for separating incoherent sound sources which may overlap in both the space and frequency domains by exploiting spatial information. This is found of interest in acoustical applications involving the identification and ranking of sound sources stemming from different physical origins. The fundamental principle of all proposed methods proceeds in two steps, the first one being reminiscent to source reconstruction (e.g. as in near-field acoustical holography) and the second one to blind source separation. Specifically, the source mixture is first expanded into a linear combination of spatial basis functions whose coefficients are set by backpropagating the pressures measured by an array of microphones to the source domain. This leads to a formulation similar, but no identical, to blind source separation. In the second step, these coefficients are blindly separated into uncorrelated latent variables, assigned to incoherent "virtual sources". These are shown to be defined up to an arbitrary rotation. A unique set of sound sources is finally recovered by searching for that rotation (conjugate gradient descent in the Stiefel manifold of unitary matrices) which minimizes some spatial criteria, such as spatial variance, spatial entropy, or spatial orthogonality. This results in the proposal of three separation criteria coined "least spatial variance", "least spatial entropy", and "spatial decorrelation", respectively. Meanwhile, the condition under which classical decorrelation (principal component analysis) can solve the problem is deduced in a rigorous way. T he same concept of spatial entropy, which is central to the dissertation, is also exploited in defining a new criterion, the entropic L-curve, dedicated to determining the number of active sound sources on the source domain of interest. The idea consists in considering the number of sources that achieves the best compromise between a low spatial entropy (as expected from compact sources) and a low statistical entropy (as expected from a low residual error). The proposed methodology is validated on both laboratory experiments and numerical data, and illustrated on an industrial example concerned with the ranking of sound sources on the topside of a Diesel engine. The methodology can also correctly separate very small sources whose amplitudes are 40 dB lower than the strongest sources. At the same time, the robustness to the estimated number of active sources, to the range distance between the source domain of interest and the array of microphone, and to the size of aperture function is demonstrated with success. 
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