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Abstract 

Blind source separation is a promising technique for the identification, localization, 

and ranking of sound sources.  

The aim of this dissertation is to offer methods for separating incoherent sound 

sources which may overlap in both the space and frequency domains by exploiting 

spatial information. This is found of interest in acoustical applications involving the 

identification and ranking of sound sources stemming from different physical origins. 

The fundamental principle of all proposed methods proceeds in two steps, the first one 

being reminiscent to source reconstruction (e.g. as in near-field acoustical holography) 

and the second one to blind source separation. Specifically, the source mixture is first 

expanded into a linear combination of spatial basis functions whose coefficients are 

set by backpropagating the pressures measured by an array of microphones to the 

source domain. This leads to a formulation similar, but no identical, to blind source 

separation. In the second step, these coefficients are blindly separated into 

uncorrelated latent variables, assigned to incoherent “virtual sources”. These are 

shown to be defined up to an arbitrary rotation. A unique set of sound sources is 

finally recovered by searching for that rotation (conjugate gradient descent in the 

Stiefel manifold of unitary matrices) which minimizes some spatial criteria, such as 

spatial variance, spatial entropy, or spatial orthogonality. This results in the proposal 

of three separation criteria coined “least spatial variance”, “least spatial entropy”, and 

“spatial decorrelation”, respectively. Meanwhile, the condition under which classical 

decorrelation (principal component analysis) can solve the problem is deduced in a 

rigorous way.  

The same concept of spatial entropy, which is central to the dissertation, is also 

exploited in defining a new criterion, the entropic L-curve, dedicated to determining 

the number of active sound sources on the source domain of interest. The idea 

consists in considering the number of sources that achieves the best compromise 
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between a low spatial entropy (as expected from compact sources) and a low 

statistical entropy (as expected from a low residual error). 

 The proposed methodology is validated on both laboratory experiments and 

numerical data, and illustrated on an industrial example concerned with the ranking of 

sound sources on the topside of a Diesel engine. The methodology can also correctly 

separate very small sources whose amplitudes are 40 dB lower than the strongest 

sources. At the same time, the robustness to the estimated number of active sources, to 

the range distance between the source domain of interest and the array of 

microphones, and to the size of aperture function is demonstrated with success. 

 

Keyword: inverse problem, backpropagation, blind source separation, principle 

of least spatial entropy, principle of least spatial variance, spatial decorrelation, 

joint approximate diagonalization 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf 
© [B. Dong], [2014], INSA de Lyon, tous droits réservés



iii 

Résumé 

La séparation aveugle de sources est une technique prometteuse pour 

l'identification, la localisation, et la classification des sources sonores. 

L'objectif de cette thèse est de proposer des méthodes pour séparer des sources 

sonores incohérentes qui peuvent se chevaucher à la fois dans les domaines spatial et 

fréquentiel par l'exploitation de l'information spatiale. De telles méthodes sont 

d'intérêt dans les applications acoustiques nécessitant l'identification et la 

classification des sources sonores ayant des origines physiques différentes. Le 

principe fondamental de toutes les méthodes proposées se décrit en deux étapes, la 

première étant relative à la reconstruction du champ source (comme par exemple à 

l'aide de l'holographie acoustique de champ proche) et la seconde à la séparation 

aveugle de sources. Spécifiquement, l'ensemble complexe des sources est d'abord 

décomposé en une combinaison linéaire de fonctions de base spatiales dont les 

coefficients sont définis en rétropropageant les pressions mesurées par un réseau de 

microphones sur le domaine source. Cela conduit à une formulation similaire, mais 

pas identique, à la séparation aveugle de sources. Dans la seconde étape, ces 

coefficients sont séparés en variables latentes décorrélées, affectées à des “sources 

virtuelles” incohérentes. Il est montré que ces dernières sont définies par une rotation 

arbitraire. Un ensemble unique de sources sonores est finalement résolu par la 

recherche de la rotation (par gradient conjugué dans la variété Stiefel des matrices 

unitaires) qui minimise certains critères spatiaux, tels que la variance spatiale, 

l'entropie spatiale, ou l'orthogonalité spatiale. Il en résulte la proposition de trois 

critères de séparation à savoir la “moindre variance spatiale”, la “moindre entropie 

spatiale”, et la “décorrélation spatiale”, respectivement. De plus, la condition sous 

laquelle la décorrélation classique (analyse en composantes principales) peut résoudre 

le problème est établit de une manière rigoureuse. 

  Le même concept d'entropie spatiale, qui est au cœur de cette thèse, est également 
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exploité dans la définition d'un nouveau critère, la courbe en L entropique, qui permet 

de déterminer le nombre de sources sonores actives sur le domaine source d'intérêt. 

L'idée consiste à considérer le nombre de sources qui réalise le meilleur compromis 

entre une faible entropie spatiale (comme prévu à partir de sources compactes) et une 

faible entropie statistique (comme prévu à partir d'une faible erreur résiduelle). 

  La méthode proposée est validée à la fois sur des expériences de laboratoire et des 

données numériques et illustrée par un exemple industriel concernant la classification 

des sources sonores sur la face supérieure d'un moteur Diesel. La méthodologie peut 

également séparer, de façon très précise, des sources dont les amplitudes sont de 40 

dB inférieur aux sources les plus fortes. Aussi, la robustesse vis-à-vis de l'estimation 

du nombre de sources actives, de la distance entre le domaine source d'intérêt et le 

réseau de microphones, ainsi que de la taille de la fonction d'ouverture est démontrée 

avec succès. 

 

MOTS-CLES: problème inverse, rétropropagation, séparation aveugle de 

sources, principe de moindre entropie spatiale, principe de moindre variance 

spatiale, décorrélation spatiale, diagonalisation conjointe approchée 
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Résumé détaillé 

La localisation et l'identification de sources sonores font partie des problèmes 

fondamentaux de l'ingénierie vibro-acoustique. Le besoin de techniques nouvelles 

pour localiser, identifier et classer les sources sonores traduit des exigences de plus en 

plus strictes en termes de qualité acoustique, en particulier dans l'industrie du 

transport. Parmi les différentes approches dédiées à ces objectifs, une solution 

populaire consiste à reconstruire les sources sonores (par exemple la pression 

pariétale ou la composante normale de la vitesse des particules) indirectement à partir 

de mesures faites à distance, telles que celles réalisées par un réseau de microphones. 

L'approche a l'avantage d'être non intrusive et assez universelle dans son principe. 

Pour ces raisons, cette technique conue sous le nom de l'imagerie acoustique est 

largement utilisée dans l'industrie. 

  Une limitation importante de l'imagerie acoustique classique est qu'elle identifie 

difficilement les sources sonores qui se chevauchent tant dans les domaines spatial et 

fréquentiel, même lorqu'elles proviennent d'origines physiques distinctes. Un exemple 

typique est donné dans l'industrie automobile par les sources sonores (par exemple, la 

combustion, l'injection, le système d'échappement, etc.) rayonnées par un moteur 

Diesel . 

L'objectif de cette thèse est de combler cette lacune en proposant une solution qui 

permette de séparer des sources incohérentes à partir de mesures à distance; 

l'incohérence mutuelle est considérée ici comme une propriété exclusive des sources 

ayant des origines physiques distinctes. Après avoir parcouru la littérature existante 

sur la séparation aveugle de sources (Blind Source Separation, BSS) en acoustique, il 

semble qu'au moins trois questions doivent être considérées dans un effort de 

développement de méthodes autonomes ayant un potentiel réel dans les applications 

industrielles: 

  1) la première question est de savoir comment séparer aveuglément des sources 
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sonores incohérentes dans le domaine fréquentiel sans références et sans avoir recours 

à des hypothèses particulières telles que la non-gaussiennatié; 

2) la deuxième question, qui est consécutive à la première, est de savoir si il y a une 

condition spécifique sous laquelle la décorrélation standard peut résoudre directement 

le problème de BSS sans aucune information supplémentaire; 

3) la troisième question, lée aux deux premières, est comment déterminer de façon 

fiable le nombre de sources sonores incidentes sur un réseau de microphones avec une 

précision acceptable, comme condition préalable à la BSS. 

Le manuscrit de thèse est divisée en deux parties: théorie et expériences. La partie I 

se compose des Chapitres 1-5 qui sont principalement concentrés sur la théorie de la 

séparation spatiale des sources sonores incohérentes. La partie II est constitué les 

Chapitres 6-7, et se concentre sur la validation des algorithmes proposés dans la partie 

I par des expériences de laboratoire, par la simulation numérique, et par un exemple 

industriel – séparation aveugle de sources sonores rayonnées par un moteur Diesel. En 

outre, l'analyse des paramètres expérimentaux par rapport aux algorithmes proposés 

est étudiée en fin de manusscrit. L'introduction concrète de chaque chapitre est 

présentée respectivement comme suit:  

Le Chapitre 1 évoque d'abord l'objectif de recherche de la présente thèse, 

c'est-à-dire la séparation aveugle de sources sonores incohérentes qui se chevauchent 

dans les deux domaines spatial et fréquentiel. Ensuite, la littérature sur le problème 

acoustique inverse est arpentée en détail. Ia discussion se concentre principalement 

sur la formation de voies (beamforming) et l’holographie acoustique de champ proche 

(Near-Field Acoustical Holography, NAH), qui sont les deux méthodes les plus 

couramment appliquées dans l'imagerie acoustique. Dans le paragraphe suivant, l'état 

de l'art sur la séparation aveugle de sources est abordé en trois points: le modèle, le 

critère de séparation aveugle de sources, et l'algorithme d'optimisation. Les 

applications de la séparation de sources en acoustique, principalement supervisée et 

aveugle, sont étudiés en détail, respectivement. Sur la base de la littérature existante, 

les défis actuels sont identifiés au paragraphe 1.5. L'organisation du reste du 

manuscrit est comme suit.  
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La théorie de base sur “la séparation spatiale des sources sonores” est introduite au 

Chapitre 2, qui se structure en deux parties: la rétropropagation et la décorrélation 

statistique des sources sonores. Dans un premier temps, les problèmes directs et 

inverses en acoustique sont examinés de façon concise. Le modèle mathématique 

général de la rétropropagation est établi comme une introduction au problème inverse. 

Pour mettre en évidence les performances de cette dernière méthodologie, un 

ensemble de bases spatiales optimales, déduites de la théorie bayésienne, est adopté 

pour rétropropager les ondes sonores à partir des mesures réalisées par un réseau de 

capteurs (par exemple, microphones) sur le domaine source d'intérêt. La décorrélation 

statistique des sources sonores est réalisée par décomposition en valeurs propres de la 

matrice de corrélation des coefficients se rapportant à la base spatiale optimale. Les 

sources virtuelles issues de la décorrélation statistique sont ensuite comparés aux 

sources réelles. On montre qu'étant donné une matrice de rotation manquante, les 

sources virtuelles ne correspondent pas aux sources réelles dans le cas général. Pour 

séparer les sources sonores par utilisation de la seule information statistique basée sur 

les sources virtuelles, une méthode aveugle classique au second ordre (Second Order 

Blind Identification, SOBI) est adoptée pour séparer aveuglément les sources sonores 

réelles à la fin du Chapitre 2. 

En se basant sur la théorie du Chapitre 2, les conditions nécessaires pour que les 

sources virtuelles coïncident bien avec les sources réelles sont étudiées du point de 

vue mathématique au début du Chapitre 3. Il est montré que celles-ci sont liées à la 

notion d'orthogonalité spatiale des sources, un cas particulier intéressant étant celui de 

sources spatialement disjointes. Cependant, cette propriété peut être éventuellement 

perdue lors de la rétropropagation en champ lointain. Pour améliorer les résultats de la 

séparation de sources spatialement disjointes, un algorithme de décorrélation 

conjointe statistique et spatiale et proposé sur la base d'une diagonalisation conjointe 

approchée (Joint Approximate Diagonalization, JAD) ou de la méthode du gradient 

conjugué (Conjugate Gradient, CG) en fin du Chapitre 3. Avec l'aide de l'information 

spatiale, les sources réelles peuvent ainsi être séparées avec succès sur la plupart des 

fréquences de travail, même basses. 
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La méthode proposée dans le Chapitre 3 ne peut cependant pas traiter les scénarios 

difficiles, par exemple avec grand chevauchement spatial ou avec un mélange de 

sources de niveaux très différents. Pour résoudre les problèmes mentionnés ci-dessus, 

deux critères de séparation spatiale sont introduits dans le Chapitre 4, à savoir le 

critère de la moindre variance spatiale (Criteria of Least Spatial Variance, CLSV) et le 

critère de la moindre entropie spatiale (Criterion of Least Spatial Entropy, CLSE), sur 

la base d'une hypothèse intuitive – la compacité spatiale. Ce critère est intéressant 

d'un point de vue pratique, car l'étendue spatiale des sources réelles est souvent 

réduite en raison de leurs origines physiques et coïncide par ailleurs bien avec le sens 

de l'audition humaine. 

Inspiré par le concept important de variance, le CLSV est présenté dans la section 

4.1, en rapport avec la distribution spatiale des sources d'intérêt. La variance spatiale 

mesure la distribution spatiale des sources sonores autour de leurs centroïdes, où le 

centroïde peut être considéré comme l'espérance spatiale de la source sonore. Il est 

évident que la distribution de la source la plus compacte correspond à la variance 

spatiale minimale. Dans un tel critère de séparation, la matrice de rotation manquant 

peut finalement être déterminée par minimisation de la variance spatiale totale des 

sources sonores. Le CLSV a l'avantage dêtre simple, mais il n'est pas adapté à la 

séparation des sources sonores compactes mais multimodales. 

Par conséquent, le CLSE est proposé pour résoudre les problèmes dans lesquels le 

CLSV est limité ou défaillant. Avant de présenter le CLSE, le concept critique 

d'entropie spatiale, inspirée par l'entropie de Shannon, est introduit au début de la 

Section 4.2. L'entropie spatiale correspondant aux sources réelles est un minimum 

parmi les valeurs de toutes les sources suggérées. C'est-à-dire que la redondance 

spatiale des sources candidates est supérieure ou égale à celle des sources réelles. 

Ainsi, l'unicité de la solution des sources réelles est garantie par la minimisation de 

l'entropie spatiale. En appliquant une optimisation similaire à celle de CLSV, chaque 

source réelle est évaluée en fonction de la matrice de rotation optimale correspondant 

au minimum de l'entropie spatiale. 

Pour plus de simplicité, le CLSV et le CLSE sont dénommés par le principe de 
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moindre complexité spatiale ou de compacité spatiale. Un organigramme de 

l'exécution du principe de moindre complexité spatiale est représenté à la Fig. 1. 

 

Start

End

Short time Fourier transform on p

Pick up all snapshots at the same 
working frequency ω

Generate the optimal spatial basis 
Φ and its coefficient vector c

calculate correlation matrix of c and 
obtain matrices U and D from its 

eigenvalue decomposition

Find matrix V from the principle of 
least spatial variance or least spatial 

entropy

Generate the mixing matrix A and 
the latent sources α

Reconstruct each separated sound 
source si

Φ

c

 

Fig. 1 Organigramme du principe de moindre complexité spatiale. 

 

Lorsque certaines sources sonores sont beaucoup plus petites que les autres, une 

version améliorée du principe de moindre complexité spatiale est proposée. Les 

éléments propres sont classés en fonction de leur entropie spatiale croissante au lieu 

de leurs niveaux comme réalisé de manière standard dans le traitement du signal des 

réseaux de capteurs. Ainsi, les très petites sources peuvent être reconstituées avec 

succès au moyen de la matrice latente obtenue et les sources virtuelles associées. 

Les fonctions de coûts découlant du principe de moindre complexité spatiale 

(c'est-à-dire CLSV et CLSE) font face au même problème: comment optimiser les 

fonctions de coût sous une forte contrainte – la matrice unitaire. Une solution possible 

est de transformer le problème d'optimisation avec contrainte dans l'espace Euclidien 

en un problème non-constraint dans la variété Stiefel engendré par les matrices 

unitaires. L'optimisation des fonctions de coût dans la variété Stiefel est exécutée par 

un algorithme du gradient conjugué avec un pas de taille optimal. Pour rechercher ce 
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dernier, deux méthodes, l'approximation polynomiale et la DFT (Transformée de 

Fourier Discrète). Du point de vue des performances, la méthode DFT est 

recommandée. 

Commun aux autres problèmes de BSS, le nombre de sources sonores doit être 

déterminé correctement à l'avance dans notre scénario. Un nombre sous-estimé de 

sources impliquera que quelques sources manqueront dans la séparation; par contre 

une surestimation du nombre des sources entrainera un calcul trop lourd et long. 

Avant d'introduire les méthodes pour répondre à cette question, la littérature sur l'état 

de l'art de la déterminationr du nombre de sources dans le traitement de signal et des 

antennes de capteurs est parcourue de manière concise. En se basant sur la littérature, 

quatre type de méthodes sont introduites. 

Les méthodes issues de la théorie de l'information impliquent principalement deux 

critères: le critères d'information d'Akaike (Akaike Information Criterion, AIC) et la 

longueur de description minimale (Minimum Description Length, MDL). Ces deux 

critères d'information sont connus pour surestimer le nombre de sources. Une autre 

approche, purement énergétique, analyse le spectre des valeurs propres et sa puissance 

cumulée. Les deux méthodes sont confrontés à la même restriction sur le rapport 

signal sur bruit (Signal-to-Noise Ratio, SNR) qui doit être suffisamment élevé pour 

qu'il y ait un écart distinct entre l'espace signal et l'espace bruit. Enfin, le même 

concept d'entropie spatiale, qui est au cœur de la thèse, est exploité pour définir un 

nouveau critère, la courbe en L entropique, dédié à la détermination du nombre de 

sources sonores actives dans le domaine source d'intérêt. L'idée consiste à considérer 

le nombre de sources qui réalise le meilleur compromis entre une faible entropie 

spatiale (comme prévu à partir de sources compactes) et une faible entropie statistique 

(comme prévu à partir d'une faible erreur résiduelle). 

Les algorithmes proposés dans les Chapitres 3-5 sont illustrés dans le Chapitre 6 

sur des expériences de laboratoire, des simulations numériques, et un exemple 

industriel, successivement. Les performances de tous les algorithmes sont discutées en 

détail. Pour commencer, le dispositif d'expériences de laboratoire est brièvement 

introduit. Les Figs. 2-3 illustrent le dispositif expérimental et le schéma de procédé 
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expérimental, respectivement. 

 

 
Fig. 2 Le dispositif d'expérimental pour valider l'algorithmes proposés (1: les haut-parleurs, 2: 

l'antenne de microphones de la roue de coupe). 
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Fig. 3 Schéma du processus expérimental. 

 

Avant de présenter les résultats de la séparation, le nombre de sources actives est 

déterminé par les quatre méthodes introduites dans le Chapitre 5. Selon l'estimation de 

ce nombre, les résultats de la séparation dans les expériences de laboratoire sont 

présentées d'abord pour la décorrélation statistique en champs proche et lointain. Les 

résultats de séparation impliquent non seulement les sources sonores séparées à la 

fréquence de travail spécifique, mais aussi les spectres de vitesse quadratique et les 
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spectres de corrélation spatiale dans toute la bande de fréquence disponible. La Fig. 4 

illustre les sources séparées par décorrélation statistique en champ proche. Comme 

prévu dans le Chapitre 3, la décorrélation statistique fonctionne bien dans le cas où la 

condition d'orthogonalité spatiale est satisfaite. 

 

 

Fig. 4 Sources séparées “virtuelles”, ˆ ( )i r , i = 1,…,4, à partir de la décorrélation statistique, 

en champ proche à 1800 Hz avec une fonction d'ouverture R = 35 cm.. 

 

Pour séparer aveuglément les sources sonores disjointes dans l'espace, le nouveau 

critère spatial dénommé “décorrélation spatiale” est ensuite appliqué à la fois en 

champs proche et lointain avec les algorithmes JAD et CG. Les résultats de la 

séparation (à la fois en champs proche et lointain) sont apparemment améliorés par 

rapport à la décorrélation statistique seule. Il est à noter qu'il n'y a pas de différence 

significative entre les résultats issus de JAD et de CG sur les résultats de la séparation. 

Les résultats sont représentés sur les Figs. 5-6, respectivement. 
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Fig. 5 Sources séparées, ˆ ( )i r , i = 1,…,4, à partir de la décorrélation statistique et spatiale 

avec diagonalisation conjointe approchée, en champ proche à 833 Hz.. 

 

 

Fig. 6 Sources séparées, ˆ ( )i r , i = 1,…,4, à partir de la décorrélation statistique et spatiale 

avec la méthode de gradient conjugué, en champ proche à 833 Hz.. 

 

Le principe de moindre complexité spatiale est alors appliqué sur les expériences de 

laboratoire dans le paragraphe suivant. Les deux critères spatiaux, CLSV et CLSE, 

sont validés par ces expériences à la fois en champs proche et lointain. Les sources 

séparées en champ proche sont représentés sur les Figs. 7-8, correspondant à CLSV et 

CLSE, respectivement. Le CLSE est recommandé parmi tous les algorithmes 

proposés en fonction de sa bonne performance. 
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Fig. 7 Sources séparées, ˆ ( , )i r , i = 1,…,4, à partir du critère de moindre variance spatiale, 

en champ proche à 833 Hz.. 

 

 

Fig. 8 Sources séparées, ˆ ( , )i r , i = 1,…,4, à partir du critère de moindre entropie spatiale, 

en champ proche à 833 Hz. 

 

Dans le dernier paragraphe de la Section 6.1, une très petite source est séparée avec 

succès en classant les éléments propres selon l'entropie spatiale croissante des sources 

virtuelles. Les résultats de la séparation en champ proche sont illustrés dans la Fig. 9 

où une source séparée est de 40 dB plus petite que les autres sources. 
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Fig. 9 Sources séparées, ˆ ( , )i r , i = 1,…,4, à partir du critère de moindre entropie spatiale, 

en champ proche à1456 Hz. 

 

Dans la Section 6.2, des expériences numériques sont mises en œuvre pour valider 

les algorithmes proposés. Ici, CLSE est appliqué pour séparer des multipôles sonores. 

Le principe de moindre complexité spatiale arrive encore à séparer les multipôles avec 

succès, même s'ils se chevauchent fortement les uns aux autres dans l'espace. 

Un exemple industriel, la séparation des sources actives rayonnée par la face 

supérieure d'un moteur Diesel, est étudiée à partir des critères spatiaux de 

décorrélation statistique et spatiale, de moindre variance spatiale, et de moindre 

entropie spatiale, respectivement. Les sources séparées à partir de CLSE sont 

montrées dans la Fig. 10. Même les petites sources produites par le moteur Diesel sont 

séparées avec succès grâce au classement des éléments propres selon l'entropie 

spatiale. 

Le Chapitre 7 concerne l'analyse paramétrique des algorithmes proposés. Le CLSE 

est l'algorithme choisi ici pour faire l'analyse paramétrique en fonction de ses bonnes 

performances dans de nombeux contextes. Tout d'abord, la robustesse au nombre de 

sources est étudiée par des expériences de laboratoire à la fois en champs proche et 

lointain et sur l'exemple industriel. Les résultats sont globalement stables. 

Deuxièmement, la distance optimale de la rétropropagation est étudiée par des 

expériences de laboratoire et sur l'exemple industriel. La distance optimale de la 
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rétropropagation est proche de la distance réelle. Le CLSE se trouve robuste par 

rapport à la distance de la rétropropagation, c'est-à-dire fonctionnant globalement bien 

non seulement pour des sous-estimées et sur-estimées. 

Troisièmement, la taille de la fonction d'ouverture de la rétropropagation est 

brièvement inspectée sur l'exemple industriel. Les algorithmes proposés peuvent 

séparer correctement les sources actives qui se situent dans la fonction d'ouverture de 

la rétropropagation quelle que soit sa taille. 

Enfin, les conclusions, les points de vue et quatre points saillants sont discutés en 

fin de manuscrit. 

 

 

Fig. 10 Sources séparées, ˆ ( , )i r , i = 1,2,5,6, à partir du critère de moindre entropie spatiale 

(moteur Diesel à 1250 Hz). 
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Part I: Theory 
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Chapter 1 Introduction 

1.1 Objectives 

  Localization and identification of sound sources are fundamental issues in sound 

and vibration engineering [1]. The need for new techniques to localize, identify, and 

rank sound sources has been recently boosted by stricter requirements in terms of 

acoustical quality, especially in the transportation industry. Among the various 

approaches dedicated to these objectives [2]-[4], one popular solution is to reconstruct 

sound sources (e.g. parietal pressure or normal component of particle velocity) 

indirectly from contactless measurements, such as returned by an array of 

microphones. This has the definite advantage of being non-intrusive as well as being 

rather universal in principle. Acoustic imaging is widely applied in the industry. 

A few examples are listed in Fig. 1.1. Figure 1.1(a) displays the sound field 

distribution on the top side of a flying airliner, where the strong sound sources are 

marked in red and the low ones in blue. Apparently, the primary sources origin from 

the entrance of the four aircraft engines and from the head of the plane. The ranking 

of the sound sources radiated from a wind turbine is conveniently identified from the 

acoustic image as shown in Fig. 1.1(b). In Fig. 1.1(c), a large source is located on the 

bottom side of a sewing machine, which mainly supports the machine. Fig. 1.1(d) 

depicts the spatial distribution of sound sources which are generated by the wheels of 

a train rolling on rails. The last panel of Fig. 1.1 shows sound sources located on the 

front side of an automobile engine, which is of interest to survey the performance of 

the engine. 

  One significant limitation of classical acoustic imaging is that it can hardly identify 

sound sources which overlap in both the spatial and frequency domains, even though 

they may stem from distinct physical origins. A typical example is given in the 

automotive industry, by the sound sources (e.g. combustion, injection, exhaust system, 

and etc.) radiated from a Diesel engine [7]-[8].  

The aim of the present dissertation is to fill this gap by proposing solutions that 
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separate incoherent sources from remote measurements – mutual incoherence is 

considered here as an exclusive property of sources originating from distinct physical 

origins. Before introducing the state-of-the-art of source separation in acoustics, the 

inverse acoustical problem is surveyed first in the next subsection. 

 

 

Fig. 1.1 Examples of reconstructing sound sources with an array of microphones: (a) the top 

side of airliner [5], (b) the blades and rotor of a wind turbine [5], (c) the bottom side of a 

sewing machine [6], (d) the connection part between rails and wheels of a train [6], and (e) 

the front side of an engine [6]. 

 

1.2 Literature survey on inverse acoustical problem 

In essence, the technique of acoustic imaging is an inverse problem. How to solve 

this kind of problem is out of the scope of the dissertation. Here only the development 

of acoustic imaging is reviewed from the historical point of view in short. 

Beamforming, one of the standard methods for source localization, is undoubtedly 
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the first proposed technique of acoustic imaging [9]-[10]. Beamforming has a series of 

advantages: high spatial resolution at high frequency, suitability to several types of 

sources (no matter moving or stationary), applicability to large target objects (for 

instance aircraft and wind turbine) to name just a few. At the same time, it also owns 

several apparent drawbacks, especially a low spatial resolution at low frequency and a 

limitation to operate in the far-field. To counter the disadvantages of beamforming, 

other methods have been developed based on other physical properties of sound 

waves. 

By applying the spatial Fourier transform and combining the evanescent waves in 

the near-field, outstanding successes have been obtained – in particular in terms of 

attainable spatial resolution – after the introduction of Near-field Acoustical 

Holography (NAH) by Maynard, Williams and Lee in the 80’s [11]-[12]. Elaborating 

on the idea of backpropagating the measured acoustical field from the array to the 

source of interest, several versions and variants of NAH have been proposed over the 

years, such as Statistically Optimized NAH (SONAH) [13]-[14], Helmholtz’s 

Equation Least-Squares (HELS) [15], the Equivalent Source Method (ESM) [16]-[18], 

and the Inverse Boundary Element Method (IBEM) [19]-[20] to name just a few. 

Reviews of these methods may be found in Refs. [21]-[22]. NAH works well at low 

frequency of interest, because of the acquisition of evanescent waves. As like the two 

sides of a coin, working in the near-field brings many attractive properties to NAH, 

but meanwhile it becomes the bottleneck in other scenarii. 

One noticeable drawback of NAH is that it needs a large number of microphones to 

break through the wavelength limitation and then reconstruct the acoustic hologram at 

high frequencies. Taking into account the cost of sensors and the technical limitation 

of the hardware, simultaneously applying too many measurements is not without 

drawback for NAH.  

Thank to its smart theory [23]-[25], Compressed Sensing (CS) has the potential to 

solve the contradiction between working at high frequencies and measuring with 

fewer microphones. G. Chardon et al. have successfully demonstrated the possibility 

of applying CS to NAH [26].  
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In fact, the inverse acoustic problem can be considered as an 

interpolation-extrapolation problem, when taking into account the process from 

measurements to the source domain of interest. In the interpolation step, the 

measurements from an array of microphones are expanded into a set of basis functions. 

For instance, the measurements are interpolated by typically plane wave functions in 

SONAH, by typically spherical wave functions in HELS, by monopoles/dipoles in 

ESM, and by generalized spherical wave functions in IBEM. Appropriate 

regularization techniques are employed to depress unstable results in the extrapolation 

step, e.g. Tikhonov regularized solution is considered in SONAH [13], which 

primarily bases on the type of basis functions in the interpolation step. 

A question is naturally proposed: is there an optimal one among all possible 

candidates of interpolation basis functions, when the topology of a source domain, the 

geometry of an array of microphones, and any possible a priori information on the 

source distribution in space are available in advance? The answer might be positive. 

The optimal basis functions for the interpolation have been found by J. Antoni with 

success under the Bayesian framework [27]. The main work of the dissertation is fully 

bases on the backpropagation with the optimal basis functions. 

For the discussion of inverse acoustical problem in detail, one tutorial [28] and two 

PhD theses [29]-[30] are recommended here. 

1.3 Literature survey on blind source separation 

  Blind source separation (BSS), a hot research topic in the signal and image 

processing community [31]-[44], originated at the beginning of the 80’s [45].The 

literature on BSS is extremely vast (it has been growing exponentially since the early 

90’s). Obviously, it is not necessary and not practical to survey all the literatures 

concerning BSS. Hereafter the main content of the present section concentrates on the 

introduction of the framework of BSS from three parts: model, criterion and 

algorithm. 

  As declared by P. Comon in Ref. [44], the ‘blind’ in BSS does not mean absolute 
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blindness, but implies to make use of a priori information as little as possible. In 

general, the a priori information is implicitly involved in the model of BSS. 

According to the physical nature of the problem of interest, the BSS model is 

categorized into linear versus nonlinear, noisy versus noiseless, instantaneous versus 

convolutive, working in the time domain versus the frequency domain, 

underdetermined versus overdetermined in terms of the numbers of sources and 

sensors… For convenient purpose, the BSS model is usually formulated in the matrix 

format, 

 *X A S , (1.1) 

where, X denotes the matrix of measurements from sensors, A is the mixing matrix, 

‘*’ stands for the mixing operation – for instance, linear or nonlinear, product or 

convolution, and S represents the matrix of sources. Obviously, without any 

complementary information, Eq. (1.1) is impossible to solve precisely, because it has 

infinite solutions for the underdetermined case and an optimal least-squares solution, 

might far from the actual one, for the overdetermined case. Note that ignoring the 

scale-permutation ambiguity is the specific unspoken rule in BSS. To improve the 

abstract of the mathematic model, S. Amari and A. Cichocki combine block diagram 

with mathematic formulas to model the BSS problem from the neural network point 

of view ([46], [43]). 

  The basic idea behind all criteria of BSS in the signal and image processing 

community is to minimize the statistical information provided by sources. The criteria 

could be roughly divided into two groups according to their statistical property: 

Gaussian and non-Gaussian sources. To separate non-Gaussian sources, their higher 

(normally more than 2)-order statistics are usually involved into the criterion. Since 

the theory of Independent Component Analysis (ICA) has been built by P. Comon 

[31], it has become, undoubtedly, the first choice for the blind separation of 

non-Gaussian sources. To solve the problem of mixed Gaussian sources, the 

corresponding criteria have to resort to the Second-Order Statistics (SOS), as the 

higher-order statistics of Gaussian sources are all null. 

To optimize the corresponding criteria and solve the modeled BSS problem, a large 
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number of algorithms have been successively proposed since the birth of BSS. Three 

classic algorithms, Joint Approximate Diagonalization of Eigen-matrices (JADE), 

Second Order Blind Identification (SOBI), and Sparse Component Analysis (SCA), 

are underlined in short here. JADE firstly forms a set of 4th-order cumulants of the 

whitened measurements and then jointly diagonalizes them to separate the sources 

[47]. It is based on the two rigorous assumptions of statistical independence and 

non-Gaussianity of the sources. SOBI applies the joint approximate diagonalization to 

a group of whitened covariance matrices of the measurements in order to separate 

Gaussian sources [48].Interestingly, sources can be considered to be sparse (more 

generally, approximately sparse) in many applications. With the help of such an 

assumption, they can be separated with SCA [49] even if the assumption of statistical 

independence is lost. Noteworthily, SCA has immeasurable potential to BSS, as more 

and more powerful algorithms from CS have been proposed to deal with sparse 

signals and images [50]-[51]. 

For the complete history on the development of BSS, the reader is referred to 

Chapter 1 of “Handbook of Blind Source Separation: Independent Component 

Analysis and Application” edited by P. Comon and C. Jutten [44]. 

1.4 State-of-the-art of source separation applied to acoustics 

In this dissertation, the research interest is limited to the scenario where all sound 

sources are located on one side of an array of microphones. If interested to other cases, 

the readers are referred to E. F. Grande’s work [29]. 

A first possibility towards the separation of sound sources is the “supervised 

separation” which makes use of a set of available references on the sources of interest 

in order to separate their contributions at the measurement points. These methods 

have attracted considerable attention since the late 70’s, after the advent of dual 

channel analyzers [52]. They are, in theory, able to separate overlapping sources (in 

time, frequency, and space), yet they crucially rely on the availability of pure 

references, perfectly correlated with the sources of interest and totally uncorrelated 
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with other sources. Early applications of supervised source separation to NAH are 

reported in Refs. [53]-[56]. A recent application to the Diesel engine example quoted 

above is found in Ref. [8]. An important practical limitation of the supervised 

separation is the difficulty of mounting reference sensors close enough to the sources 

of interest which, in general, may not be known a priori. In Ref. [57], Tomlinson 

investigated the possibility of obtaining “virtual” sources from the Principal 

Component Analysis (PCA) or partial coherence analysis of a set of non-ideal 

reference transducers. However, as early recognized by S. M. Price and R. J. Bernhard 

[58], there is no guarantee that a virtual source should endow a physical essence. 

References [59]-[62] tackle the issue from a different perspective, where “numerical” 

references are obtained from the reconstructed source field after applying NAH in a 

first step. The method has its elegance and instrumental simplicity, yet it relies on the 

assumption that references can be assigned to spatially non-overlapping sources in the 

reconstruction domain and, therefore, can hardly solve the issue raised in the present 

dissertation. 

Since striving for pure enough references is the main bottleneck of supervised 

source separation, one may wonder whether references are really necessary to achieve 

separation after all. Relaxing the need for reference is the objective of BSS which has 

been surveyed shortly in Section 1.3. BSS relies on the paradigm that a mixture of 

sources can be separated provided that sources bear different enough statistical 

properties. In a sense, sources should have disjoint support sets in some statistical 

space (of which trivial examples are the frequency and time domains).  

Although the literature on BSS is extremely vast (until June 2009, 22,000 scientific 

papers concerning BSS have been published in Engineering, Computer Science, and 

Mathematics according to Google Scholar [44]), few reports have been given to 

acoustical applications (except for speech processing which, in many aspects, is closer 

to communication signal processing than to the issue addressed in the present 

dissertation) and, as far as the authors know, none to NAH. A few examples of 

separation of sound signals are given in Refs. [63]-[64], although they are quite far 

from the objectives of the present dissertation. In Ref. [63], Zhong et al. apply a 
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standard BSS algorithm (i.e. SOBI) which forces decorrelation of separated sources at 

several time-lags); one limitation of the approach is that it assumes an instantaneous 

mixture of sources, whereas a convolutive mixture should be used as soon as 

acoustical propagation is taken into account. In Ref. [64], Teramoto and M. Khan 

propose a BSS method for acoustical signals, where the convolution mixture is turned 

into an instantaneous mixture by making use of the Euler’s equation. The requirement 

for simultaneous measurements of the sound pressure and of the particle velocity in 

the three Cartesian coordinates is a strong practical limitation of the method; in 

addition, it is limited to the separation of directions of arrival in the far-field. A rather 

advanced BSS scheme is proposed by Aichner et al. in Ref. [65], which can separate 

broadband acoustical sources in reverberant and noisy environments such as in a car 

compartment. Separation is achieved by forcing the decorrelation of the sources at 

several time-lags based on a convolutive model. Moreover, a large literature exists on 

the separation of audio signals which, at first glance, may appear somewhat relation to 

the objectives of the present dissertation; yet it is not reviewed here since these 

methods put a high demand on the specific waveform of audio signals (e.g. strong 

amplitude and frequency modulation) [66]-[68], and thus are likely to fail in any 

industrial application where sound sources do not necessarily exhibit such features.  

One reference that makes explicit account of the acoustical specificities is [69], 

wherein the authors devised a method based on the Bayesian framework to separate 

broadband sound sources in the frequency and space domains. However, the method 

may not be yet ready for industrial applications because of its high calculation burden 

plus the requirement for some critical parameters to be tuned by the user. 

1.5 Current challenges 

Reasons why standard BSS algorithms – such as developed in communication 

engineering – can hardly be applied to separate acoustical sources, are the following.  

First, most BSS algorithms require the strong assumption of statistically 

independent sources, which is much more restrictive than their mutual 
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incoherence/decorrelation1 (independence implies decorrelation, but the reverse does 

not hold true in general); related to this is the necessary condition is that no more than 

one source in the mixture can be Gaussian [[31], [34], [36], [42]-[44]]. Unfortunately, 

this is rapidly invalidated when acoustical signals are transformed into the Fourier 

domain – a common practice in acoustics and the preliminary step in NAH – since the 

Discrete Fourier Transform (DFT) makes the data quickly converge to a complex 

Gaussian distribution according to the Central Limit Theorem (CLT) [70]. This 

precludes the use of ICA, including some popular algorithms such as JADE [47]. 

Although second-order BSS (e.g. see [[48], [71]]) could separate Gaussian sources by 

forcing their decorrelation at several time-lags in the time domain (as in 

aforementioned Refs. [63] and [65]), it can be shown that it does not apply in the 

frequency domain for stationary sound sources (because stationary sources have no 

correlation in the frequency domain, independently of being separated or not). 

A second limitation is that a “source”, in acoustics, is endowed with a spatial 

distribution that is actually inexistent in BSS, where the concept is essentially a 

statistical quantity that is not necessarily being assigned to a physical essence. 

As a consequence, a third limitation is that, in acoustics, spatial propagation from 

the source to the measurements must be taken into account, typically by means of a 

Fredholm integral of the first kind (e.g. a “convolution” integral over space), in 

addition to convolution over time. Related to this the fact is that separation of sound 

sources is a severely ill-posed problem [72]-[76], especially due to the existence of 

evanescent waves that do not reach the array [77]. To the authors’ knowledge, the 

modeling of acoustical propagation has rarely been addressed in the BSS literature – 

except in the very particular case where the measurements are taken in the far-field. 

Another usual condition in BSS is that the number of sources is not greater than the 

number of sensors, or strictly less in the presence of additive noise. Concerning this 

point, the acoustical context may present an advantage since the habit is to use quite 

dense arrays, where the number of microphones is likely to overrun the number of 

                                                 
1 The terms “decorrelation’’ and “incoherence’’ are synonymous, the first one being employed in statistics and the 
second one in acoustics; a formal definition is given in Eq. (2.14). 
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active sources to be separated. 

Finally, a last limitation is that the vast majority of the BSS algorithms require the 

number of sources to be known exactly. In many acoustical applications, this quantity 

is actually an unknown parameter that is to be determined from the data beforehand; 

unfortunately, this turns out to be an extremely difficult problem with no universal 

solution. 

After surveying the existing literature on BSS in acoustics, it appears that at least 

three issues are to be answered in an endeavor to develop standalone methods with 

actual potential in industrial applications: 

1) the first issue is how to blindly separate incoherent sound sources in the 

frequency domain without references and without resorting to special assumptions 

such as non-Gaussianity; 

2) the second issue, following the first one, is whether there is a specific condition 

under which standard decorrelation can directly solve the BSS problem without any 

additional information; 

3) the third issue, interleaved with the first two ones, is how to reliably determine 

the number of sound sources impinging on an array of microphones with acceptable 

accuracy, as a prerequisite to BSS. 

1.6 Organization of the dissertation 

The rest of the dissertation is devoted to proposing solutions to these three issues. It 

is divided into two parts: Theory and Experiments. The first part involves Chapters 

1-5 and the second part Chapters 6-7. The organization of the content is introduced as 

follows.  

Chapter 2 first introduces the direct and inverse acoustical problems. It then 

formulizes a mathematical model for the BSS problem that specifically accounts for 

acoustical propagation without restriction to the far-field. Finally, a classic method for 

BSS – SOBI, is presented to deal with the proposed problem in short.  

The main content of Chapter 3 is to answer the second issue. First of all, the 
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condition under which the virtual sources returned by standard statistical decorrelation 

coincide with the actual ones is rigorously demonstrated from the mathematical point 

of view. Afterwards, it presents an original criterion, named spatial decorreltion, to 

blindly separate sound sources which are spatially disjoint. 

Chapter 4 introduces two original criteria that are apt to return unique solutions to 

the blind separation of incoherent sound sources with compact distributions. At the 

same time, the order of uncorrelated latent variables is rearranged first in terms of the 

increasing spatial entropies of virtual sources, and then the reranked virtual source are 

applied to separate very small sources whose amplitude can be 40 dB lower than the 

other ones. Lastly, the chapter describes how to optimize the cost functions derived 

from the two aforementioned original criteria, in the Stiefel manifold, in a concise 

way. 

In Chapter 5, the literature on the determination of the number of sources is first 

surveyed in short. Then four methods are discussed to determine the number of active 

sources from the recorded data. Three classic methods, the information theoretical 

criteria, the eigenvalue spectrum, and the cumulative power distribution, are presented 

first. An original criterion, coined the entropic L-curve, is then proposed at the end of 

Chapter 5. 

Chapter 6 demonstrates the effectiveness of the proposed methodology on 

laboratory experiments, on a numerical simulation, and on an industrial example. 

Based on the analysis of the separation results, the criterion of least spatial entropy is 

recommended in the end. 

In Chapter 7, the robustness of the proposed algorithm with respect to the 

experimental parameters is discussed in light of the results, from laboratory 

experiments and from an industrial example. The experimental parameters of interest 

are the number of sources, the range distance between the source domain of interest 

and the array of microphones, and the size of the aperture function, respectively. 

Conclusions and perspectives and four points are drawn at the end of the 

dissertation. 
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Chapter 2 Backpropagation and 

decorrelation of sound sources 

In this chapter, the forward and inverse problems in acoustics are introduced first. 

Based on the introduction of the inverse problem, backpropagation from 

measurements is presented using a set of optimal spatial bases. Statistical 

decorrelation of sound sources is conducted in terms of an assumption – ‘mutual 

incoherence’ based on backpropagation. The virtual sources and the actual sources are 

then compared to each other from the points of energy and spatial distribution. Finally, 

the classic BSS method – SOBI, combining with the spatial distribution of sound 

sources, are listed in short. 

2.1 The forward and inverse acoustical problems 

The forward and inverse problems are fundamentals in acoustics. A radiated sound 

field could be totally determined by a known source distribution, given the medium of 

propagation. That is the so called the forward problem. On the contrary, the inverse 

problem is to reconstruct a model to describe the unknown source distribution via a 

known sound field with the minimum error between the output of the model and the 

measurements. Figure 2.1 presents an example which identifies a fundamental 

difference between the forward problem and the inverse problem. The forward 

problem is to fix the distribution of sound field in space from the known source 

distribution, and the inverse one is the opposite. There are three sound sources (e.g. 

the membranes of loudspeakers) in a static homogenous free space, and the sound 

field generated from the sound sources is recorded by an array of microphones. The 

forward problem mission is to determine sound signals on all microphones from a 

known source distribution (e.g. parietal pressure or normal component of particle 

velocity on the membranes of loudspeakers). Instead, the object of the inverse 
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problem is much more intractable – i.e. applying measurements on the microphones to 

estimate the optimal model for the unknown source distribution with the given 

medium. 

In acoustical applications, people meet the inverse problem more frequently. 

Moreover, the inverse problem is usually ill-posed in mathematical sense, which faces 

many theoretical limitations, such as the existence of solution, the uniqueness of the 

solution, and the stability of the solution [78]-[80]. In the past decades, many 

researchers focused on the inverse problem in acoustics [[81]-[86], [72]-[77]], which 

is one of the main research topics in source identification and characterization. In this 

dissertation, the inverse problem is concerned with the backpropagation of 

measurements sampled by an array of microphones to the sound domain of interest, 

which will be introduced in the following. 
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Fig. 2.1 The forward problem and the inverse problem.  

 

2.2 Backpropagation with optimal spatial basis 

  Rather generally, let us consider the case of Ns incoherent sound sources si, i = 1, 
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2, …, Ns, radiating in a static homogenous free space to an array of M microphones 

(“incoherence” and “decorrelation” are the same to each other in this dissertation); no 

other sources are assumed in the space between the source domain and the hologram 

plane, as depicted in Fig. 2.1. Let us denote ( , ; )i mp  r  the sound pressures 

radiated from the i-th source si, i=1,…Ns, at the m-th microphone located at position 

rm (m=1, 2, …, M for a M-microphone array), at angular frequency ω, and indexed by 

the snapshot number   (in practice, a snapshot corresponds to a short-time block of 

data and, in theory, to a given realization of a stochastic process; the two concepts 

coincides when the process is stationary and ergodic, which will be assumed from 

now on). Figure 2.2 displays how to generate the snapshot of sound pressure signal, 

( , ; )mp  r , from the m-th channel of the array by using Short Time Fourier 

Transform (STFT). 
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Fig. 2.2 Illustration of the concept of snapshots: ( , ; )mp  r  denotes the short-time Fourier 

transform of the pressure signal from the m-th channel of the array, at angular frequency ω, 

and datum  . 

 

Thus, contribution ( , ; )i mp  r from the i-th source distribution, ( , ; )is  r , to the 

m-th microphone is given by the Fredholm integral [87]-[88] 

 ( , ; ) ( , ; ) ( , ; ) ( )i m i mp s G d    


 r r r r r , (2.1) 

where G(rm,r; ω) stands for the Green function of the medium and Γ for the source 

domain. In turn, the sound pressure measured by the m-th microphone is the sum of 

the contributions from the Ns sound sources, that is 

 
1

( , ; ) ( , ; ) ( , ; )
sN

m i m m

i

p p      


 r r r , (2.2) 
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where ( , ; )m  r  stands for “measurement” noise including instrumental origins as 

well as modeling errors [89]. 

Upon substituting Eq. (2.1) into Eq. (2.2) and discretizing the source domain Γ, one 

obtains the following discrete form 

 
1 1

( , ; ) ( , ; ) ( , ; ) ( ) ( , ; )
sN N

m i l m l l m

i l

p s G       
 

  r r r r r r , (2.3) 

where ΔΓ(rl) stands for the surface element on the source domain Γ at position rl and 

N for the total number of such elements. The sound pressure vector corresponding to 

the whole array can thus be expressed in a matrix form as 
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where
1

( , ; )= ( , ; )
l

sN

i li
s s   

r r is the sum of the Ns sound sources; that is in a more 

concise form, 

 ( ; ) ( ) ( ; ) ( ; )       p G Γs ε . (2.5) 

  The ultimate objective is now to separate the sound sources in their domain Γ, i.e. to 

estimate each si from p. The following parameterization is proposed towards this 

perspective. First, each sound source is modeled as the product of spatial mode Ψi 

denoting the spatial distribution of the source with a variable αi – referred to in the 

present work as the “latent variable” – describing the source random amplitude: 

 ( , ; ) ( , ) ( ; )i i is      r r . (2.6) 

Note that the spatial mode Ψi depends on space whereas it is independent of the 

snapshot number, and vice versa for the latent variable αi; in other words, Eq. (2.6)

makes separable variables r and  . This fully reflects the distinctive property of a 

sound source to be fully coherent with itself. In addition, the mutual incoherence of 
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sound sources implies that 

  *( ; ) ( ; )i j ij        , (2.7) 

where,   stands for the expectation operator (ensemble average over snapshots 

 ), superscript ‘*’ for the complex conjugate, and δij for the Kronecker delta. Without 

loss of generality, the power spectra of the latent variables are assumed unitary (i.e. 

the source magnitude is thus assigned to the spatial mode). Because in most cases it is 

not known a pripori, the spatial mode Ψi is further expanded into a series of 

predefined spatial functions, i.e. 

 
1

( , ) ( ) ( , )
K

i ki k

k

a  


  r r , (2.8) 

where K is the order of the expansion and aki is the coefficient of the k-th spatial 

function Φk assigned to the i-th spatial mode Ψi. Many choices are possible for the 

spatial functions Φk; some typical ones are the plane waves, the cylindrical or the 

spherical harmonics, and layers of monopoles or dipoles. A set of optimal spatial 

functions with minimum reconstruction error (among all possible choices given a 

source domain topology and an array geometry) is given in Ref. [27]. This optimal 

basis will be adopted from now on due to its interesting properties and in order to 

keep the reconstructed source distribution as precise as possible – however, any other 

choice would make possible the application of the proposed BSS methods of Chapters 

3 and 4. In this particular case, it has been shown that K is equal to the number M of 

microphones in the array [27].  

  Combining Eqs. (2.6) and (2.8), the source expansion has the matrix form 

 

 
( )

( ; ) ( ) ( ) ( ; )= ( ) ( ; )


        

Ψ

s Φ A α Φ c , (2.9) 

where the (l, k)-th element of matrix Φ is ( , )k l  r , the (k, i)-th element of matrix A 

is aki(ω), and the i-th element of vector α is ( ; )  i ; this defines 

 ( ; )= ( ) ( ; )    c A α  (2.10) 

as the vector of coefficients of the sound field expanded onto the spatial basis 
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{ ( , )}k  r . Upon substitution into Eq. (2.5), one arrives at the following propagation 

model 

 ( ; ) ( ) ( ) ( ) ( ; ) ( ; )         p G ΓΦ A α ε . (2.11) 

Given a set of measured pressures, the Green function of the medium and a spatial 

basis for expanding the source field, Eq. (2.11) makes it clear that the two unknown 

quantities are A and α. Referring back to Eq. (2.10), this resembles the classical BSS 

problem as stated in signal processing wherein it is conventionally written x=As, with 

A the “mixing matrix” and s the “sources” (see e.g. [90]-[92], [31]-[51]); obvious 

differences, however, are  

i) the premultiplication with the operator GΓΦ,  

ii) the explicit presence of additive noise, and  

iii) the fact that the mixing matrix does not apply directly to the sources but to the 

latent variables α which are connected to the actual physical sources through Eq. 

(2.9). 

  Instead of trying to solve Eq. (2.11) directly for A and α, a somewhat simpler – but 

suboptimal – strategy is proposed here that consists in uncoupling the problems of 

reconstruction and separation. This proceeds in two steps. First an estimate of the 

coefficient vector c is obtained by premultiplying both sides of Eq. (2.11) with the 

pseudo-inverse of operator GΓΦ, that is 

 ˆ( ; ) [ ( ) ( )] ( ; )     c G ΓΦ p . (2.12) 

This preliminary step, which will be referred to as “backpropagation” in the rest of the 

dissertation, actually amounts to reconstructing the full source distribution, as it is 

typically achieved in NAH. As well-known in the literature, this is a severely ill-posed 

problem which requires very careful regularization in designing the pseudo-inverse 

[GΓΦ]+ [[72]-[77], [81]-[86], [93]-[95]]. Although other choices are possible, the 

Bayesian regularization of Ref. [27] is adopted here due to its good performance and 

robustness. When used with a Gaussian prior for the unknown coefficients, ( ; ) c , 

Bayesian regularization returns 
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 2[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( )H H H H          G ΓΦ Φ ΓG Φ ΓG G ΓΦ  where the 

regularization parameter 2 is set automatically as that value that maximizes the 

probability of observing the data. The detailed information on the Bayesian 

regularization is referred to Appendix A. 

Now comparing with Eq. (2.11), Eq. (2.12) may be equivalently reformulated as 

 ˆ( ; ) ( ) ( ; ) + ( ; )      c A α n  (2.13) 

where n accounts for estimation noise. The second step is thus to solve Eq. (2.13) for 

A and α, which is surely easier than inverting Eq. (2.11) and resembles more the 

classical BSS problems. This “separation step” is addressed in the next section. 

2.3 Decorrelation of sound sources 

  Statistical decorrelation is often referred to as whitening in BSS, which is the first 

step of the separation [[42], [96]]. Note that “decorrelation” equals “incoherence” in 

the present dissertation. With the help of statistical decorrelation, the space of 

measurements can be divided into two orthogonal subspaces: the signal and the noise 

subspaces. Meanwhile, the two subspaces can then be represented by two groups of 

orthogonal vectors, respectively. 

2.3.1 Statistical formalization of mutual incoherence 

A source is assumed fully coherent with itself and fully incoherent with other 

sources. This distinctive property is a direct consequence of sources originating from 

different physical phenomena [57]-[59]. In a probabilistic language, this is expressed 

as follows. Now, considering all snapshots from measurements, the mutual 

incoherence between two sources si and sj reads: 

 
 

2*

22

( , ; ) ( , ; )
, , , 1,...,

( , ; ) ( , ; )

i m j n

ij m n

i m j n

p p
m n M

p p



 

   


   
    

r r
r r

r r
 (2.14) 

where  stands for the absolute value. Equation (2.14) mathematically states that 
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sound sources stemming from different origins are uncorrelated in the space domain, 

i.e. without any phase relationship [97]. Based on the formulation of mutual 

incoherence, the source distribution, corresponding to si, can be defined as 

 2( , ) ( , ; )i is   r r , (2.15) 

which is a function of the spatial variable r in the source domain Γ. 

  A further working assumption which has its importance in the present work is that 

the number of microphones in the array, say M, is greater than the number of active 

sound sources, say Ns. As discussed in the introduction, this is a very realistic 

assumption in acoustic imaging, where indeed the ratio M/Ns might be much greater 

than 1 in many applications. For instance, arrays used acoustic imaging typically 

comprise several tens of microphones to analyze a few units of sources; the example 

in section 6.3 involve an 84 microphone array (i.e. M = 84) to record the sound 

pressure signals radiated from a Diesel engine, where 2 to 3 sources (combustion 

noise and injection noise) are of interest (Ns = 2). 

2.3.2 Decorrelation from eigenvalue decomposition 

  The aim of BSS is to return an estimate of the mixing matrix, ˆ( )A , and of the 

latent variables, ˆ( ; ) α , from which the i-th source can be obtained as 

 ˆˆ ˆ( ; ) ( ) ( ) ( ; )T

i i i     s A e e  , (2.16) 

where ei stands for the i-th column of the identity matrix I and superscript ‘T’ for the 

transpose operation. Of primary interest in the following is the estimation of matrix A, 

since it makes possible to estimate the source distribution as 

 ˆ ˆˆ ( , ) ( ) ( ) ( ) ( )T T H H

i l l i i l     r e A e e A e   (2.17) 

where the orthogonality property in Eq. (2.7) has been used. This will be achieved 

thanks to the spatial properties of sound sources, i.e. spatial decorrelation and spatial 

compactness, as will be introduced in Chapters 3 and 4, respectively. From now on 

symbol ω standing for angular frequency will be omitted for notational simplification 
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whenever there is no ambiguity. 

The recovery of incoherent sound sources follows a classical approach – see e.g. 

[58]. Taking into account the statistical decorrelation for the latent variables expressed 

in Eqs. (2.7) and (2.13), one gets the following result 

   2
ˆˆ

ˆˆ
H

H H

n   
cc

C cc AA I  (2.18) 

where, for simplicity, the additive noise n has been assumed spatially white with 

variance 2 n
. In order to recover the mixing matrix A, its singular value 

decomposition, 

 1 2
1

, , , 0
s

s

N
H

i i i N

i

d d d d


     A u v  (2.19) 

is now considered, where  1 K  U u u  and 1 sN
    V v v  are two unitary 

matrices and 1diag( , )D
sNd d  is a nonnegative diagonal matrix. Substituting Eq. 

(2.19) into Eq. (2.18), it follows that 

   2 2

1 1

ˆˆ
s

s

N K
H H H

i i i n i i

i i N

d 
  

   cc u u u u , (2.20) 

which provides a unique solution for matrices U and D from the eigenvalue 

decomposition of the covariance matrix of the coefficient vector ĉ  (provided that 

2
sN nd ) [98]-[99]. The interpretation of Eq. (2.20) is a decomposition into 

incoherent components; namely, from Eqs. (2.9) and (2.15), the total source 

distribution expands as 

 2

1 1

ˆ ˆ( ) ( )
s sN N

T H H

l i l i l i i l

i i

d 
 

  r r e Φu u Φ e . (2.21) 

2.4 Virtual sources versus actual sources 

Although the above equation (2.21) reflects the conservation of energy (the energy 

of the source field equals the sum of the energies of incoherent sources), it is not 

enough to identify the actual source ˆ ( ) ri l  with the virtual source 
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2 T H H T T H H

i l i i l l i i ld e Φu u Φ e e ΦUDe e DU Φ e . Indeed, a closer comparison with Eq. 

(2.17), ˆ ( ) T H T H H

i l l i i l r e ΦUDV e e VDU Φ e  shows that the latter has no reason to be 

identified with the former since matrix V is still missing. This proves that the property 

of mutual incoherence is not a sufficient condition for separation. 

The virtual sources can be considered as orthogonal coordinate axes which span the 

whole signal space. Obviously, there should be a specific angle which corresponds to 

the physical system of interest. The specific angle involves certain special information 

which emphasizes the uniqueness of solutions. Similarly, although they have the same 

signal space as the virtual sources, the actual sources have distinct properties in terms 

of spatial distribution which imply their uniqueness. In other words, the two source 

spaces have equal energy, but have differences in spatial information. Indeed, there 

exists an infinite number of incoherent – but virtual – sources assigned to arbitrary 

unitary matrices V. Therefore, the solution to the BSS problem also requires the 

search for the actual matrix V and then the recovery of the actual sources with 

specified spatial information, which is undertaken from two points of view in 

Chapters 3 and 4, respectively. 

2.5 Blind separation of sources with SOBI 

In order to search for the missing matrix V, one classic algorithm –SOBI, which 

only simultaneously combines statistical information at specific frequencies, is 

concisely introduced here for the blind separation of sound sources [48]. The 

performance of SOBI will be compared with the proposed methods respectively from 

Chapters 3 and 4 in Part I. Based on the results from Subsection 2.3 and a group of 

preselected frequency points with center frequency ω0, SOBI is executed by the 

following implementations: 

1) Estimate the correlation matrix ˆˆ (0)H
cc

C  of the sample coefficient vector ĉ  

over   snapshots at the center frequency ω0 as shown in Eq. (2.18). The first Ns 

largest eigenvalues of ˆˆ (0)H
cc

C  and the corresponding eigenvectors are selected as 
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shown in Eq. (2.19) with the help of EVD. 

2) Estimate the noise variance – 2 n
, as the average of the left (K-Ns) smallest 

eigenvalues of ˆˆ (0)H
cc

C , i.e. 

 2 2

1

1ˆ =
s

K

n i

i Ns

d
K N


 
 , (2.22) 

when the noise is assumed to be spatially white and to converge to Gaussian white 

distribution in the frequency domain in terms of CLT [70]. The whitened coefficient 

vector, z(ω0) = [z1(ω0), …, 0( )
sNz  ]T , is then determined via 

 2 2 (1/ 2)
0 0ˆ( ) ( ) ( )H

i i n iz d    u c , (2.23) 

which is equivalent to establishing an estimate of the whitening matrix, Ŵ , by 

 2 2 (1/ 2) 2 2 (1/ 2)
1 1

ˆ ˆ ˆ[( ) , ..., ( ) ]
s s

H

n N n Nd d      W u u . (2.24) 

3) Reconstruct a series of covariance matrices ˆˆ ( )H jcc
C  according to a predefined 

set of frequency lags { | 0,1, }j j J     with 

  0 0ˆˆ
ˆ ˆ( ) ( ) ( )H

H

j j j      
cc

C c c  (2.25) 

and with ˆˆ (0)H
cc

C  when j = 0. 

4) Search for a unitary matrix V̂  as joint diagonalizer of the set 

ˆˆ{ ( ) | 0,1, }H j j J  
cc

C , i.e. 

 ˆˆ
0

ˆ Argmin off ( )H

J
H

j

j




 
  

 
 cc

V

V WC W  (2.26) 

where ‘off(·)’ denotes the sum of squares of all non-diagonal elements of the cost 

function ˆˆ
0

( )H

J
H

j

j




 cc
WC W . There are many optimization algorithms for the 

minimization of the cost function in Eq. (2.26). Here, we recommend the algorithm of 

Joint Approximate Diagonalization of the matrices proposed by J. F. Cardoso [100]. 

5) Estimate latent sources as 
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 0 0
ˆ ˆˆ ( ) ( ) α VWc , (2.27) 

and the mixing matrix A as 

 ˆ ˆ ˆ HA W V . (2.28) 

With the help of the spatial bases Φ and the estimator Â , each single sound source 

could be separated out at ω0 via Eq. (2.17). 
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Chapter 3 Blind separation of disjoint 

sources from spatial decorrelation 

In some cases, different physical origins are spatially “orthogonal” to each other, i.e. 

they have no overlap in space. In the present chapter, a novel way of combing the 

spatial orthogonality to blindly separate sound sources, is investigated in detail. 

3.1 When are virtual sources coinciding with actual sources? 

3.1.1 The general case 

In Section 2.4, the difference between the virtual sources and the actual sources was 

discussed in detail. It was shown that decorrelation is generally not a sufficient 

condition for separating the sources, that is the virtual sources returned by the 

eigenvalue decomposition of the correlation matrix ˆˆH
cc

C  do not coincide with the 

actual sources. However, it by no means implies that the virtual sources equal the 

actual ones in general. To see this, let us compare again the power produced by the 

i-th virtual source as given by Eq. (2.21) (which is reproduced here for convenience), 

 2ˆ ( ) T T H H T H H

i l l i i l i l i i ld  r e ΦUDe e DU Φ e e Φu u Φ e , (3.1) 

with the actual power as given by Eq. (2.17),  

 ( ) T H T H H

i l l i i l r e UDV e e VDU e   (3.2) 

where matrix A=UDV
H stands for the singular value decomposition of matrix A (see 

Eq. (2.19)) with D an s sN N  diagonal matrix and U ( )sM N and V ( )sN M  

two unitary matrices such that UU
H=VV

H=I. Upon identification, it readily comes that  

 
*1
1

*
,

*

1ˆ ˆ

ˆ
s

Ns
i

N is

N
H

i i k ki

k
v

v

v
    

 
 
 
  

 
s s

s UD V e s , (3.3) 
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where *
kiv  stands for element (k,i) in matrix VH. This proves that, in general, an 

actual source is a linear combination of the virtual sources. The coefficients in the 

linear combination are constrained to conserve energy (i.e. they are the elements of a 

unitary matrix), but otherwise arbitrary. This leaves infinity of possibilities. The 

question now arises whether there exists a peculiar physical situation (endowed with 

an additional constraint) where the virtual sources do equal the actual sources. 

3.1.2 An important particular case: spatially uncorrelated sources 

A sufficient condition for the virtual sources to equal the actual sources is given 

hereafter. From the results of the previous section, it is clear that such a condition 

should satisfy V = I or, more generally, V =  where  is the product of a 

permutation matrix and a diagonal matrix with unit-magnitude complex entries (i.e. 

every row and column of the matrix involves only one nonzero element with unit 

norm). In the latter case, the virtual sources are related to the actual sources up to a 

permutation  of their indices and are assigned an arbitrary phase  which does not 

change their individual powers:  

 2
( )ˆ ( ) ( ) ,   1J

i is s e J

  r r . (3.4) 

It is now proved that the scenario corresponds to the case where sound sources are 

mutually “spatially uncorrelated” in a given domain and the spatial basis  chosen 

accordingly. In mathematical language, this means that the scalar products of any pair 

of two distinct sources with respect to space is nil, i.e. 

 *, ( , ; ) ( , ; ) ( , ) 0,   i j i js s s s dM i j   


     M r r
r r r r  (3.5) 

with ( , )dM r r  a given metric introduced for sake of generality. Resorting to the 

discretization scheme introduced in subsection 2.2, this is equivalently expressed as 

 , 0,   H T H H

i j i j i j i js s i j    
M

s Ms e A Ae   (3.6) 

or simply 

 0,   T H

i j i j i j   e Ψ Ψe  (3.7) 
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in terms of the mode shapes Ψ A , with M a matrix composed of elements 

( , )k lM r r . Typical choices for M are M =  (with  defined in Eq. (2.1)), 

1M Σ Γ  (where  is defined as an aperture function in Ref. [27]) or M GΓ  as 

in Eq. (2.5) in which case the spatial orthogonality is not assessed in the source 

domain but in an arbitrary domain to which sources are radiated thanks to the Green 

function G (spatial orthogonality then applies to the radiated sources rather than the 

sources themselves). Since the above equation must be true whatever the value of the 

latent variables  ,i j   (spatial rather statistical decorrelation is of concern), this 

implies that H H
A A   must be a diagonal matrix, that is 

 

 

2
1

2

2

 

        
                  

 0 0H H

M





  
 
  
 
 
  

A A Λ   (3.8) 

where the 2
i ’s are non-negative elements (because matrix H H

A A   is 

symmetric Hermitian). At the same time, substituting A for its singular value 

decomposition given in Eq. (2.19) gives 

 H H H H HA A VDU UDV    . (3.9) 

Equating Eqs. (3.8) and (3.9), one has  

 2H H HDU UD V Λ V  , (3.10) 

which reveals in passing that the unitary matrix V and the diagonal matrix 2 are the 

eigen-elements of the Hermitian matrix H H
DU UD   (a property that will be 

exploited in subsection 3.2.2). It is now seen that Eq. (3.6) is satisfied with V =  if 

either 

i) H  I   (C.11) 

ii) or H H  UD U A   (C.12) where + stands for the pseudo-inverse 

operator. 

Condition i) is obviously more general than condition ii) and can be easily forced by 
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constructing basis  accordingly (it is actually satisfied by construction in the optimal 

setting described in Ref. [27] with 1M Σ ).  

To summarize, the virtual sources equal the actual sources (in the sense of Eq. (3.4)) 

if 

1) the sources are spatially uncorrelated in a given domain, i.e. H
Ψ Ψ  is 

diagonal as specified by Eq. (3.6) 

2) and the spatial basis  is chosen orthonormal in that domain, i.e. H  I   

as specified by Eq. (C.11). 

Condition 1) is necessary and sufficient, while condition 2) is only sufficient since 

it could be replaced by (C.12). The above proof answers the question first raised by S. 

M. Price and R. J. Bernhard in their seminal paper [58]. As far as the authors known 

this simple result has never been formulated explicitly. Indeed, the literature provides 

many examples where efforts have been lost vainly to reach the above objective 

whereas the required assumption obviously did not hold. A particular situation of 

interest is when sources of are disjoint (i.e. non-overlapping support sets). Then 

condition (1) is naturally met with M diagonal. This is investigated in some depth in 

the next subsection.  

3.2 Separation of spatially disjoint sources 

The situation with spatially disjoint sources is a particular case of spatially 

orthogonal sources. Since the disjointing is considered in the source domain rather 

than in the measurement region, the situation deserves fair practical interest. Indeed, 

there are many instances where sound sources are likelihood to originate from 

different (disjoint) spatial regions, even though their radiated fields rapidly overlap in 

space at some distance from the source domain. In mathematical terms, disjoint 

sources are characterized by the diagonality of matrix product H
Ψ Ψ  for any 

diagonal matrix M. An algorithm is designed in this subsection that exploits this 

property to achieve source separation independently of the choice of the basis  (i.e. 

condition 2) of subsection 3.1.2 is relaxed). 
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3.2.1 Enforcing spatial decorrelation with joint diagonalization 

The starting point of the proposed algorithm is Eq. (3.10) where it is seen that the 

unknown matrix V that relates the virtual sources to the actual ones is actually 

returned as the modal matrix of the matrix product H H
DU UD   wherein all 

quantities are known. Thus, in theory, matrix V can be uniquely recovered as that 

matrix that jointly diagonalises H H
DU UD   for a set of candidate metrics M. 

This novel criterion is referred to as “spatial decorrelation”, in the following. 

Therefore, the proposed algorithm is the following: 

1) Statistical decorrelation: estimate the eigen-elements U and D from the 

eigenvalue decomposition in Eq. (2.19), 

2) Construct a set of matrices  
1

K
H H

k k
DU UD    for different candidate 

metrics Mk, 

3) Spatial decorrelation: find the unitary matrix V that jointly diagonalizes the set 

of matrices  
1

K
H H

k k
DU UD   , 

4) Recover the individual sources as H

i ies UDV . 

It is noteworthy that the algorithm applies to any choice of the spatial basis . On 

the contrary, the metrics Mk should be carefully chosen. Here, the harmonic function 

is recommended for the metrics Mk. Although other orthogonal polynomials, such as 

Legendre ones and Chebyshev ones, could be employed here, they suffer from less 

smoothness on boundaries than the harmonic function does. The less smoothness on 

the boundaries is less sensitive to the rotation of the missing matrix V, which stops 

more spatial information from being applied in the joint diagonalization of spatial 

decorrelation. After all, less spatial information means smaller probability to find the 

missing matrix V.  

3.2.2 Joint approximate diagonalization 

Let us define  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf 
© [B. Dong], [2014], INSA de Lyon, tous droits réservés



31 

 [ ]( )k T H H H

ij j k iC V e VDU UDV e   . (3.13) 

The joint diagonalization of the set of weighted spatial correlation coefficients 

  [ ]

1

K
k

k
C V  may be naturally achieved by minimizing the sum of the squared 

magnitudes of their off-diagonal elements, that is 

  
2[ ]

1

ˆ Argmin Off ( )

. .     

K
k

k

Hs c



 
  

 




V

V C V

VV I

 (3.14) 

where operator Off zeroes the diagonal elements of a matrix. Fortunately, the cost 

function in Eq. (3.14) is common in the array signal processing and enjoys several 

optimization algorithms. Here, two popular algorithms – Joint Approximate 

Diagonalization(JAD) [100] based on givens rotations and the conjugate gradient 

method (CG) introduced in Section 4.3 are used. 

3.3 How does backpropagation affect the spatial disjoint at 

low frequency? 

  According to the theory of backpropagation, the spatial resolution of the 

reconstructed source distribution at low frequency is much lower than that at high 

frequency. Lower spatial resolution means lager size of sound sources in the source 

domain. Therefore, the reconstructed sources at low frequency are apparently larger 

than their real size and then they overlap to each other in the source domain of interest, 

although the actual sound sources are spatially disjoint to each other. 

  As the reconstructed sources overlap to each other at low frequency, the right hand 

of Eq. (3.8) does not hold any more. The virtual sources from only statistical 

decorrelation do not equal the actual sources, either. Fortunately, the spatial 

decorrelation can be still applied to blindly separate the spatially disjoint sources 

above a specific frequency. Undoubtedly, the lower bound of the working frequency 

band is determined by the choice of the metrics Mk and their order K. The effect of 

backpropagation on the separation of sound sources at low frequency is presented in 
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Subsection 6.1.2-6.1.5, respectively.  

The dependence of spatial decorrelation on backpropagation once again highlights 

the difficulty of the introduced issue in the present dissertation, and the difference 

between the incoherent source separation in space and the classic blind source 

separation. 
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Chapter 4 Blind separation of compact 

sources from the principle of least spatial 

complexity 

A specific assumption of the work in the present chapter is that all sound sources of 

interest are characterized by compact spatial distributions. A source distribution is said 

compact if it concentrates around a central point, yet without restriction on its shape. 

Trivial examples are monopoles, dipoles, quadrupoles, but not only. Indeed, the class 

of compact sources is infinite, despite being restrictive. However, it is surely 

consistent with many generation mechanisms of sound found in practice (e.g. a 

specific component on a Diesel engine block) and, more abstractly, with the human 

perception of a “source”. 

The postulate is thus that the actual matrix V should make the sound sources as 

spatially compact as possible, among all unitary matrices. In this chapter an important 

question arises as how to precisely measure spatial compactness. To answer the 

question, two criteria are proposed here. The first one is that a compact sound source 

has a low spatial variance about its centroid. The other one is that the compact source 

has a low entropy, in the sense that most of its energy is concentrated around one or a 

few points. Based on these two spatial criteria, two implicit cost functions involving 

matrix V are respectively deduced. The optimization strategy of the cost functions is 

finally introduced. 

4.1 Least spatial variance 

In statistics, variance is a measure of how far the points in a distribution lie from 

their mean. Therefore, it is a valid measure of compactness, leading to the “Criterion 

of Least Spatial Variance” (CLSV) which forces the separation of sound sources to 
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maximally concentrate around “hot spots”. 

The spatial variance Σi of the i-th source si is defined as 

 2
0( ) ( )i i iP d


    r r r r , (3.15) 

where 

 ( )( ) i
i

i

P





r
r  (3.16) 

stands for the normalized “intensity” of the source with ( ) ri
 the source distribution 

introduced in Eq. (2.15), 

 ( ) ( )i i d 


  r r  (3.17) 

is the source “power”, and 

 0 ( ) ( )i iP d


 r r r r  (3.18) 

is the spatial centroid of the i-th source distribution. Thus the total spatial variance Σ 

of the mixture of Ns incoherent sound sources reads 

 
1

sN

i i

i




   . (3.19) 

Substituting Eq. (2.9) into Eqs. (3.15)-(3.19) and discretizing the related integrals as 

in Eq. (2.3), one arrives at the following cost function, 

 2
0

1 1
( ) | | ( )

sN N
T H T H H

l i i l l i l

i l 

   V e ΦUDV e e VDU Φ e r r r , (3.20) 

in terms of the unknown unitary matrix V, with 

 1
0

( )

{ }

N
T H T H H

l i i l l l

l
i H T H H

i iTr






e ΦUDV e e VDU Φ e r r

r
ΓΦUDV e e VDU Φ

, (3.21) 

where  Tr  stands for the trace operator. CLSV then reads 

 ˆ Argmin ( ) 
V

V V , (3.22) 

which, by construction, tends to separate point sources. CLSV has the benefit of 

simplicity, however it might not be suited to separate compact but multimodal sound 

sources. The next criterion is designed to solve this shortcoming. 
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4.2 Least spatial entropy 

4.2.1 Introduction to spatial entropy 

Entropy, as one of the most popular concepts from physics, originating from the 

beginning of the 19th century, has widespread applicability: thermodynamics [101], 

information theory [102], statistical mechanics [103], geographics [104], and 

economics [105], to name just a few here. Among all available definitions of entropy, 

Shannon entropy is preferred here as it mainly works for measuring information, 

choice and uncertainty in data, which is very similar to our scenario but in space [102]. 

The well-known formula of Shannon entropy is 

 
1

log
N

i i

i

H K p p


   , (3.23) 

with 

 
1

1
N

i

i

p


 , (3.24) 

where K is a arbitrary positive constant, pi represents the probability of event i, and N 

denotes the total number of possible events. Similarly, Shannon also defines the 

entropy for a continuous distribution with the Probability Density Function (PDF) p(x) 

by: 

 ( ) log ( )H p x p x dx



  , (3.25) 

with 

 ( ) 1p x



 . (3.26) 

Inspired by the Shannon entropy of information theory, an original statistic concept, 

named ‘spatial entropy’, is proposed here to measure the spatial compactness of sound 

sources. The spatial entropy corresponding to the actual sources is the minimum 

among the values of all candidate sources. That is to say, the spatial redundancy of the 

candidate sources is more than that of actual sources. Thus the uniqueness of the 

solution to the actual sources is guaranteed by the spatial entropy. 
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Interestingly, the spatial entropy for sound sources has the same name as that 

proposed by M. Batty and then applied in geographical analysis in the 70’s 

[106]-[107]. In those two papers, the spatial entropy is utilized to define cutoff points 

for boundary definitions of partitioned spatial systems. Although the two concepts 

have the same name and similar mathematical formula, there are two significant 

differences: 1) in geographical analysis, the spatial entropy is only applied to the real 

number, while in acoustics, it has to deal with the complex data; 2) the spatial entropy 

suffers from no limitation in geographic analysis, while here, it needs to take into 

account the overlap between adjacent sound sources. From now on, the spatial 

entropy is limited to the one for measuring the spatial compactness of sound sources 

without supernumerary introduction. The concrete definition will be presented in the 

following subsection. 

4.2.2 The criterion of least spatial entropy 

  In an analogous manner of Shannon entropy [102] and the spatial entropy in 

geographical analysis [106]-[107], the spatial entropy Hi of the i-th source is defined 

as 

 ( ) ln ( ) ( )i i iH P P d


   r r r , (3.27) 

and the total spatial entropy H of the mixture of Ns incoherent sources as 

 
1 1

( ) ln ( ) ( )
s sN N

i i i i

i i

H H P d 


 

     r r r . (3.28) 

Upon substituting Eq. (2.9) into Eq. (3.28) and discretizing the related integrals as in 

Eq. (2.3), one arrives at the cost function 

 

1 1

( )( ) ( ) ln
{ }

sN T H T H HN
T H T H H l i i l l
l i i l l H T H H

i l i i

H
Tr 

 
    

 


e ΦUDV e e VDU Φ e r
V e ΦUDV e e VDU Φ e r

ΓΦUDV e e VDU Φ

                                                                  

(3.29) 

in terms of the unknown unitary matrix V. The “Criterion of Least Spatial Entropy” 
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(CLSE), 

 ˆ Argmin ( )H
V

V V , (3.30) 

forces the energy of the separated sound sources to well concentrate around as few as 

possible points; this encompasses sound sources such as monopoles, dipoles or 

quadrupoles for instance, but not only; in theory, it tends to favor distributions that are 

as least complex as possible.  

A flowchart of the proposed BSS method is depicted in Fig. 3.1. 

 

Start

End

Short time Fourier transform on p

Pick up all snapshots at the same 
working frequency ω

Generate the optimal spatial basis 
Φ and its coefficient vector c

calculate correlation matrix of c and 
obtain matrices U and D from its 

eigenvalue decomposition

Find matrix V from the principle of 
least spatial variance or least spatial 

entropy

Generate the mixing matrix A and 
the latent sources α

Reconstruct each separated sound 
source si

Φ

c

 

Fig. 4.1 Flowchart of the proposed BSS method. 

 

4.2.3 Ranking eigen elements according to increasing spatial 

entropy 

  Traditionally, measurements are divided into two subspaces: the signal subspace 

and the noise subspace, with eigenvalue decomposition in array signal processing. 

Most criteria to determine the boundary between the signal subspace and the noise 

subspace are based on eigenvalues of the covariance matrix of measurements [108]. 
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When there are very small sources (their power is more or less equivalent to that of 

the noises) embedded in the measurements, the traditional methods might treat such 

small sources as noise and then throw them into the noise subspace based on their 

small eigenvalues. That is to say, the very small sources have high probability to be 

ignored after the operation of statistical decorrelation introduced in subsection 2.3.2. 

  In order to solve such an intractable problem, new methods need to be proposed 

from other points of view, e.g. the spatial information, instead of the methods 

concerning the ranking of eigenvalues. As introduced above, the spatial distribution is 

a significant inherent attribute for sound sources and it can be considered as a novel 

criterion to distinguish the source and the noise. As introduced in Section 4.1 and 

Subsections 4.2.2, the actual sound sources can be treated as a linear combination of 

all virtual sources which span the whole source space. In the present chapter, the 

sound sources are all assumed to be compact in space. That means all virtual sources 

should also be compact to meet the aforementioned assumption. Moreover, the spatial 

distributions of virtual sources are robust to the size of aperture function. On the other 

hand, the spatial complexity of the noise will be magnified with the increasing size of 

aperture function. Inspired by the measures of spatial information, a method based on 

the spatial entropy (spatial variance could also be applied here) is proposed to separate 

such small sources. 

  The fundamental principle is to rank the eigenvalues and their corresponding 

eigenvectors in terms of the increasing spatial entropies of M virtual sources after the 

statistical decorrelation. Without loss of generality, the matrix V for the virtual 

sources is set to the identity matrix I. Therefore, combining Eqs. (2.16) and (2.20), the 

m-th virtual source ms  has 

 =m m m mds Φu α , (3.31) 

where mα  is the m-th latent source corresponding to ms  when V = I. The spatial 

entropy of the virtual source ms  could be directly calculated via Eq. (3.27) as 
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   2

1

( )( ) ln
{ }

T H HN
T H H l m m l l

m m m l m m l l H H
l m m

H H d
Tr

 
     

 


e Φu u Φ e r
s e Φu u Φ e r

ΓΦu u Φ
. (3.32) 

The set of spatial entropies, Hm relating to the M virtual source are reordered in the 

ascent sequence as  [ ]mH , where [ ]mH  denotes the m-th smallest spatial entropy. 

According to the first Ns smallest spatial entropy, the corresponding eigenvalues and 

eigenvectors are kept respectively as  [1] [ ]diag , ,
sNd dD  and 

[1] [ ]sN
    U u u , and the left (M - Ns) pairs of eigenvalues and eigenvectors are 

ignored. The selected matrices D  and U  then join into the search of the missing 

matrix V in the same ways as those presented in Section 3.1 and Subsection 3.2.2, 

respectively. The validation of the improved method will be illustrated in Part Ⅱ. 

  From the application point of view, there are two remarks to emphasize. Firstly, we 

should not only focus on the spatial entropies of virtual sources, but also take care of 

the corresponding eigenvalues at the same time, when selecting the eigenvalues and 

eigenvectors of interest for the following optimization. For the actual sound sources, 

on the one hand, their spatial entropies are much smaller than those from the noise; on 

the other hand, their energies (or eigenvalues) are not visibly lower than the mean 

value of the counterpart from the noises. Secondly, to counterpoise calculation 

efficiency and impressive performance, the size of the aperture function is 

recommended to be four times of the source domain of interest. After all, too small 

aperture function will depress the messy spatial distribution of the noises and block 

the identification between the related virtual sources and the noises. 

4.3 Optimization Strategy 

Both cost functions (3.22) and (3.30) have to be minimized with respect to the 

unknown matrix V. The fact that V is a unitary matrix poses a strong constraint. 

Though more than ten years has passed, in communication and array signal processing, 

the problem of optimization under unitary matrix constraint has not to its end. 

Reference [109] shortly reviews the optimization in manifolds and explains the 
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disadvantages of the manifold with a Riemannian structure. A possible solution is to 

transform the constraint optimization problem in the Euclidean space to an 

unconstraint one in the Stiefel manifold spanned by unitary matrices (e.g. Refs. 

[110]-[115]).  

4.3.1 Optimization in the Stiefel manifold 

  As mentioned by J. H. Manton [109], Newton algorithm is firstly introduced to 

optimize a cost function in manifolds. Newton algorithm suffers from the visible 

limitation – i.e. calculating Hessian of the cost function, although it owns admirable 

convergence speed – the quadratic convergence. The calculation cost for Hessian 

might be unaffordable for large matrix [110]. To avoid computing Hessian, SD 

method is then introduced [[110], [113], [115]]. As we know, SD algorithm takes 

perpendicular turns at each iteration, which is not a highly efficient way when the cost 

function is convex but approximately flat near the extremum. Luckily, CG algorithm 

might significantly improve such a drawback by combining the direction information 

from the current point and the next one [114]-[115]. Furthermore, CG algorithm 

converges superlinearly, whereas the convergence of SD algorithm is just linear. Thus 

CG algorithm is applied herein to optimize the two cost functions – Eqs. (3.22) and 

(3.30), and search for the optimal unitary matrix V. As presented in Refs [114]-[115], 

the main steps of CG algorithm in the Stiefel manifold for the two cost functions are 

summarized as follows: 

  1) Initialize the index of iteration k = 0 and Vk = I. 

2) Calculate the Euclidean gradient Ek of the cost function – say the total spatial 

entropy H(V) – with respect to the missing matrix V is calculated as, 

 




( )k
k H

H V
E

V
; (3.33) 

the corresponding Riemannian gradient Rk transformed from the Euclidean gradient 

Ek in the Stiefel manifold, 

  H H
k k k k kR E V VE . (3.34) 
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3) Evaluate whether k is the module of n2 (n a natural number). If it does, the 

related tangent direction Tk along the geodesic connecting Vk and Vk+1 becomes Tk = 

Rk; otherwise, Tk is kept.  

4) Compute the inner product of the Riemannian gradient Rk as 

  
1,
2

H

k k k kTr 
I

R R R R . (3.35) 

If the inner product is lower than the predefined threshold value, the whole 

optimization process will end up immediately. 

  5) Search for the optimal step size μk (which will be introduced in the next 

subsection). 

  6) Update the matrix Vk+1 as 

   1 exp( )k k k kV T V . (3.36) 

7) Compute the Euclidean gradient Ek+1 and the Riemannian gradient Rk+1 at Vk+1 

in the same way as Eqs. (3.33) and (3.34). 

8) Deduce the tangent direction Tk+1 at Vk+1 as 

   1 1k k k kT R T , (3.37) 

with the weighting factor 

   
 1 1{( ) }

{ }

H
k k k

k H
k k

Tr

Tr

R R R

R R
. (3.38) 

  9) Evaluate the inner product between the Riemannian gradient Rk+1 and the 

tangent direction Tk+1 at Vk+1 as 

   1 1 1 1
1,
2

H

k k k kTr     
I

T R T R , (3.39) 

where,    extracts the real part. Once the inner product becomes negative, the 

tangent direction Tk+1 is forced to be Rk+1. 

10) Update the index of iteration: k = k+1 and go back to step 2). 

The key point of successfully applying this algorithm to blind separation of sound 

sources is how to correctly deduce the Euclidean gradients Ek of the total spatial 

variance Σ(V) (Eq. (3.22)) and the total spatial entropy H(V) (Eq. (3.30)) with respect 

to the missing matrix Vk, respectively. The cost functions from the principle of least 
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spatial complexity are implicit with respect to the mixing matrix V as shown in Eqs. 

(3.22) and (3.30). To be more precise, every single element in the sums of Eqs. (3.22) 

and (3.30) is not a function of the full matrix V, but involves only one of its row.  

Unfortunately, the results from the complex-valued matrix gradient of explicit cost 

functions can not be directly applied here [117]-[122]. Thus, the Euclidean gradients 

Ek of the cost functions from the principle of least spatial complexity (see Eqs. (3.22) 

and (3.30)) needs to be derived carefully, in terms of the original definition of 

complex-valued matrix gradient of a scalar cost function. The Euclidean gradients Ek 

of the total spatial variance Σ(V) and the total spatial entropy H(V) are presented in 

Appendices B and C, respectively. 

4.3.2 Optimal step size 

  Step size is one of the crucial parameters of optimization algorithms, obviously 

besides the introduced CG algorithm in the Stiefel manifold. The main idea in Refs. 

[114]-[116] is to search for the optimal step size μk > 0 along the geodestic curve 

  =exp k kΘ T V , (3.40) 

which minimizes the cost function, e.g. the total spatial entropy H(V), as 

   Argmin ( ) Argmin expk k kH H
 

   Θ T V . (3.41) 

  To solve such a problem of minimization, two methods of line search – polynomial 

approximation and DFT, are proposed in Refs. [114]-[116], respectively. The 

polynomial approximation approach considers the optimal step size μk as the root of 

the first local minimum of the cost function (i.e. Eq. (3.41)) along a given geodesic. 

The root of the first local minimum might be too large for the last few iterations and 

then introduce aggravating oscillation near the minimum of the cost function, which 

blocks the iteration process finally converging to the optimal value. To avoid such a 

troublesome problem, a DFT-based method is proposed in Ref [114]-[116]. The goal 

of the latter approach is to select the best root from the minimum among multiple 

local minima of the cost function, which corresponds to the minimum of the cost 
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function in the set. The steps of the two introduced geodesic search approaches – 

polynomial approximation and DFT, are listed respectively in Tabs. 1 and 2 of Ref. 

[114] in detail. 

  Apparently, the optimal step size μk from the DFT-based method is much more 

reasonable than that from the polynomial approximation. As combining more local 

minima, the DFT-based method becomes more stable at the end of the iterations than 

the polynomial approximation approach. However, the cost of polynomial 

approximation algorithm is much lower than that of the DFT-based one. In our case, 

the calculation of the cost function is very expensive due to combing the optimal 

spatial basis – a very large matrix of pixel, when working with high spatial resolution. 

However, the optimal step size from the DFT-based method works much better than 

that from the polynomial approximation approach. Note that the DFT-based method is 

recommended, when there are few limitations on the calculation cost. 

To conclude and by comparison with Chapter 3, the criterion of spatial 

decorrelation is much simpler to conceive and to code than the two criteria of spatial 

compactness (i.e. CLSV and CLSE). The same as the criterion of spatial decorrelation 

for BSS, the principle of least spatial complexity also needs to determine the number 

of sources a priori. The following chapter will introduce how to deal with the 

intractable problem in advance of doing BSS. 
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Chapter 5 Determination of the number of 

sources 

Generally speaking, there are two fundamental problems in array signal processing: 

1) determining the number of sources; 2) identifying the positions of sources and 

analyzing the signal radiated from each source [124]. As a branch of array signal 

processing, BSS also faces such two problems. To the best of the author’s knowledge, 

in most proposed BSS methods, the number of sources is considered as a priori 

known [[31]-[51], [90]-[92]]. Unfortunately, in most applications, the number of 

sources is very hard, even impossible, to be known a priori. For instance, the number 

of sound sources radiated from a Diesel engine varies at different frequencies of 

interest. Therefore, some intelligent methods are required to accurately determine the 

number of sound sources beforehand, which is not anecdotic: on the one hand, if the 

source number is underestimated, some sources will be lost in the separation and the 

remaining ones will be distorted so as to account for the deficit. On the other hand, 

overestimating the number of sources will introduce spurious sources assigned to 

noise as well as more calculation efforts in the separation. In this chapter, the 

currently existing source number determination approaches are firstly surveyed and 

then four corresponding methods to tackle such a question are investigated. 

5.1 Literature survey 

In the past 60 years, the problem of determining the number of sources has attracted 

people from various fields, such as sonar, radar, communication, and geophysics, to 

name a few hereafter. From the historical point of view, the methods for determining 

the number of sources experience two primary revolutions. 

The first group of methods, named decision theoretic ones [124], becomes popular, 

after the publishment of [125] and [126]. This kind of methods relies on the statistical 
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theory of hypothesis testing, mainly concerning the eigenvalues of the spatial 

correlation matrix. For each hypothesis testing, a predefined appropriate threshold is 

required. The testing process terminates wherever there exist a likelihood ratio 

statistic lower than the predefined threshold. However, without enough a priori 

information, it is difficult to accurately set such a subjective but crucial threshold. 

Reference [127] introduces a new sphericity test to accurately determine the 

number of sources present in the acoustic field. The related distribution converges fast 

to the chi-square, and its performance is comparable with that of the information 

theoretic criteria (which will be introduced in the next paragraph). 

To conquer the subjective limitation from decision theoretic methods and apply 

more objective information embedded in the eigenvalue spectrum of the spatial 

correlation matrix, the second group of methods, called information theoretic ones 

[124], is proposed successively. The sign of its birth is the publication of the famous 

paper written by M. Wax and T. Kailath in 1985 [128]. The information theoretic 

method primarily involves two criteria: AIC [129]-[131], and MDL [132]-[134], 

respectively. Afterwards, many researchers begin to focus on the statistical 

characteristics of both two information theoretic criteria and their related application 

scenarios.  

L. C. Zhao et al. argue that the asymptotic distribution of test statistic of log 

likelihood ratio is not the chi-square; afterwards, they deduce an improved asymptotic 

distribution for the test statistic [135]. In high resolution array processing, K. M. 

Wong et al. find that AIC overestimates the number of signals at high SNR, but MDL 

underestimates the parameter at low and medium SNR. To improve the drawbacks of 

AIC and MDL, they propose a new log likelihood function under the framework of 

information theoretic criteria and modify the corresponding information theoretic 

criteria, by combining the merits of AIC and BIC [136]. In Ref. [137], W. Xu and M. 

Kaveh propose a new framework to discuss the exact and approximate asymptotic 

bounds on the estimations of AIC and MDL, respectively. Their results show that AIC 

and MDL are both very sensitive to the deviation between the samples and the ideal 

Gaussian white noise, and that the two criteria overestimate in the presence of colored 
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Gaussian noise. A. P. Liavas and P. A. Regalia comprehensively analyze the 

performances of AIC and MDL for the model order selection in different cases – i.e. 

the large gap between the signal and noise eigenvalues, and the noise eigenvalues 

dispersion [138]. E. Fishler et al. mainly conduct a general asymptotic analysis for 

MDL in the scenario of estimating the unknown number of Gaussian sources. They 

claim that the actual distribution of sources does not have much effect on the MDL 

estimator [139]. In recent years, B. Nadler pays much attention to the detection of 

signals in the non-parametric setting where no knowledge of the array manifold is 

known a priori. From the viewpoint of random matrix theory, he and his colleague 

present two new algorithms to determine the number of signals, respectively based on 

hypothesis testing and information theoretic criteria [140]-[141]. 

After surveying the existing literatures on determining the number of sources in 

array signal processing and taking into account the scenario of blind separation of 

sound sources in both the frequency and space domains introduced in Chapters 2-4, 

one significant but thorny issue is appears: how to accurately determine the number of 

sound sources in a simple but efficient way, when the number of sources varies with 

the working frequency? For instance, in the scenario where the sound sources are 

radiated from a Diesel engine, the number of significant active sources varies with the 

frequencies of interest because of the operating conditions and mechanical structures 

of the engine. To solve the proposed issue effectively, four methods from different 

mathematical grounds are introduced as follows. 

5.2 AIC and MDL 

  AIC and MDL are the two most well-known methods to detect the number of 

sources in array signal processing, as introduced in Ref. [128]. AIC and MDL, which 

are utilized to determine the number of sound sources in the scenarios introduced in 

Chapters 2-4 at the working frequency ω, are respectively formulated as 
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where ˆ
sN  is the estimated source number and N  denotes the total number of 

snapshots  . 

  Generally speaking, MDL works better than AIC. As pointed it out by G. Schwarz, 

MDL approaches toward the lower-dimensional models due to the penalty term 

multiplied by 1 log
2

N  as shown in Eq. (4.2) [132]. In Ref. [142], L. C. Zhao et al. 

prove that the estimation from MDL is consistent, but not for AIC. Furthermore, the 

number of sources will be definitely determined by AIC, as the number of snapshots, 

N , goes to infinity. Therefore, in array signal processing, MDL is preferred over AIC 

in most cases. However, AIC works much better than MDL in some difficult cases 

where, for example, no distinct gap exists between the signal and noise eigenvalues 

[143]. In our case, the number of snapshots, N , is finite due to the memory capacity 

of experimental instruments. Thus the estimations from AIC and MDL will be 

undoubtedly over the actual number of sources due to the limited snapshots, which 

will be proved by laboratory experiments, by a numerical simulation, and by an 

industrial example in Chapter6, Part II, respectively. Therefore, other methods for 

identifying the number of sound sources are necessary. 

5.3 The eigenvalue spectrum 

The classical approach to determine the number of sources is to inspect the 

eigenvalue spectrum of the correlation matrix in Eq. (2.20) [144]-[145]. In the high 
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SNR scenario, there should be a distinct gap between the eigenvalues pertaining the 

source subspace, 1 2 sNd d d   , and the (constant) eigenvalues of the noise 

subspace, 2
+1sN M nd d    [[125], [146]]. Unfortunately, this simple criterion is 

known to perform poorly when additive noise does not follow exactly the working 

assumptions (spatial whiteness) leading to Eq. (2.20) and the presence of estimation 

errors [147]. 

5.4 The cumulative power distribution 

The cumulative power of the separated sources may be a useful indicator to 

determine the number of sources [145]. Under the high SNR scenario, the cumulative 

power defined as 

 
ˆ ˆ

2

1 1

ˆ( )
s sN N

H H

s i i i i

i i

N d 
 

   u Φ ΓΦu  (4.3) 

will typically show a “knee” when the estimated number of sources equals the actual 

number, ˆ s sN N . This might be conveniently inspected by considering the fraction 

of power, 0
ˆ( ) / sN , of the first ˆ

sN  sources to the total power π0 = π(M) that can be 

explained by backpropagation from the M-microphone array. 

In practice, one may choose the fraction of power to be no less than 95%, for 

instance, which will therefore return the minimum number of sources to account for. 

Differences may therefore exist with the actual source number, but without serious 

consequence provided the BSS method is robust enough – i.e. provided that the 

separation of N1 sources returns more or less the same first N1 results as the separation 

of N2 > N1 sources. This latter assumption will be verified on experimental data in 

Section 7, Part II. 

5.5 The entropic L-curve 

Inspired by the principle of the L-curve (as used for determining the optimal 
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regularization parameter in inverse problems [148]-[150]), a novel approach coined 

entropic L-curve, is proposed hereafter. It is based on the concept of spatial and 

statistical entropies. Namely, the “solution size” is represented by the total spatial 

entropy H of the separated sources as given by Eq. (3.29), whereas the “residual size” 

is measured by the Kullback-Leibler divergence [151], L, between the full covariance 

matrix ˆˆH
cc

C  in Eq. (2.18) and its truncated version to ˆ
sN  sources, ˆˆ

ˆ ˆ( )H sN
cc

C , in Eq. 

(2.20), i.e. 
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where |·| denotes the determinant of a matrix and ln is the natural logarithm. The 

Kullback-Leibler divergence measures the statistical (relative) entropy of the residual 

error in fitting the covariance matrix with a given number of sources; therefore it 

decreases with ˆ
sN  and ultimately vanishes when ˆ =sN M . On the other hand, the 

total spatial entropy of the separated sources increases with ˆ
sN . Thus the shape of the 

curve generated by the trajectory of the source number in the plane (H, L) resembles 

an inverted “L”, where the corner points to the optimum value of ˆ
sN  in the sense of 

achieving the best compromise between not too large a statistical entropy of the 

residual error and not too large a spatial entropy of the reconstructed source (since 

compact sources are to be reconstructed). The idea of balancing between two entropic 

measures, the first one statistical and the second one spatial, seems to be investigated 

here for the first time. It is conceptually attractive since it compares two quantities 

with similar dimensions that account for the shape of the reconstructed sources and 

not only for their energy. Note that in order to keep the computational load reasonable, 
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it is recommended to compute the spatial entropy H by using the proposed CLSV 

which is much faster to converge than – even if not as accurate as – CLSE.    

As a final remark to this section, it should be emphasized again that determining the 

number of active sources is a difficult problem which may not be solved by any 

universal method. Therefore the recommendation is to use the four proposed 

strategies jointly and to take a decision from their comparison, rather than to adhere to 

one of them only.  
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Part II: Experiments 
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Chapter 6 Experiment validation 

  The algorithms proposed in Chapters 3-5 are illustrated here on laboratory 

experiments, numerical simulation, and an industrial example, successively. The 

performance of all algorithms is discussed in details. 

6.1 Laboratory experiments 

6.1.1 Experimental apparatus 

In order to validate the proposed separation algorithm, a series of experiments were 

conducted in a semi-anechoic chamber. The experimental apparatus is depicted in Fig. 

6.1. A slice wheel array (also named Pizza array) with 60 microphones was placed 

parallel to four loudspeaker membranes considered as the sound sources, at different 

distances ranging from the near-field to the far-field [152]. 

 

 
Fig. 6.1 The experimental setup for validating the proposed algorithm. (1: the loudspeakers; 2: 

the slice wheel microphone array) 

 

The distance between the microphone array and the loudspeaker membranes is 
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symbolized as Z and the spacing between the centers of two adjacent loudspeaker 

membranes as D. The combination of values of Z and D is listed in Tab. 1. The 

number of active loudspeakers – corresponding to the source number Ns – was set to 4 

throughout all experiments. All loudspeakers were driven with mutually uncorrelated 

random white noises via a multi-channel amplifier. The sampling frequency was set to 

16.384 kHz and the recording time to 4 min.  

In a preliminary step, the loudspeakers were switched on one by one – with the 3 

other ones switched off – in order to get the actual source contributions. The latter will 

serve as point of validation of the blind separation results to be presented hereafter, 

obtained when all loudspeakers are operating together (the authors insist that such 

references will not be available in practice, which is purposely the situation that 

motivates the use of BSS). The corresponding experimental process is illustrated in 

Fig. 6.2. 

 

Measurement 
frontend Power amplifier

4 Loudspeakers

Drive signals

Slice wheel array 
with 60 

microphones

Sound field

Measured signals
Data analyzer 

platform
 

Fig. 6.2 Scheme of the experimental process. 

 

During processing the 60 channel signals, the length of the snapshots was set to 4s; 

snapshots were further tapered with Hanning windows with 50% overlap. Their 

number was set to 119. 

 

Z [cm] 10 50 100 200 

D [cm] 12 18 24  

Tab. 6.1 Experimental values for distance Z and spacing D. 
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6.1.2 Separation from single statistical decorrelation 

Data were first processed by the simplest separation approach, i.e. forcing 

Statistical Decorrelation (SD). As discussed in section 4.1, only forcing the statistical 

decorrelation of the sources by diagonalizing the correlation matrix of coefficient 

vector c can provide satisfactory separation results provided the sound sources have 

spatially orthogonal distributions. 

In the near-field configuration, the distance Z was set to 10 cm, and the spacing D 

to 12 cm. In the far-field, the two parameters were selected as Z = 100 cm and D = 18 

cm. 

To present the separation results in the whole working frequency band, generally 

speaking, power spectrum is the first choice. In the dissertation, the power spectrum is 

expressed by quadratic velocity spectrum. Unfortunately, the quadratic velocity 

spectrum only provides energy information for the separation results. It needs another 

variable to describe the spatial distribution of separated sources in the whole 

frequency band of interest. Thus, separation results will be displayed by means of the 

spatial correlation spectrum between the separated and actual sources (i.e. correlation 

coefficient as a function of frequency), defined as 
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where, si denotes the i-th actual source, îs is its estimate and * stands for complex 

conjugate.  

1) Source separation in the near-field 

Preliminary to source separation, the assessment of the source number is carried out 

as shown in Figs. 6.3 and 6.4, respectively. As shown in Fig. 6.3, information 

theoretic criteria could not provide a satisfactory number of sound sources as, which 
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is reminiscent to the discussion of Section 5.2. The minima of AIC and MDL both 

correspond to ˆ
sN = 12, which largely overestimated the actual number of sources 

used in the experiement. On the contrary, the eigenvalue spectrum in Fig. 6.4(a), the 

cumulative power distribution in Fig. 6.4(b) and the entropic L-curve in Fig. 6.4(c) all 

return a valid estimate of the actual source number: the cumulative power distribution 

exhibits a corner at ˆ
sN = 4 corresponding to 99.77% of the overall power, indicated in 

Fig. 6.4(b) by a red arrow. Note that the selected point in Fig. 6.4(c) clearly illustrates 

the trade-off between the spatial and statistical entropic measures. 

 

 

Fig. 6.3 Determination of the source number Ns from inspection of (a) AIC and (b) MDL in 

the near-field at 833 Hz. 
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Fig. 6.4 Determination of the source number Ns from inspection of (a) the eigenvalue 

spectrum, (b) the cumulative power distribution, and (c) the entropic L-curve in the 

near-field at 833 Hz. 

 

In the near-field, the working frequency is set to 1800 Hz. The separation results 

from SD are depicted in Fig. 6.5. It appears that all virtual sources account for the 

sound power and that they could be successfully separated because, at this frequency, 

their supports are mainly disjoint, a sufficient condition for spatial orthogonality. To 

evaluate the separation performance, the 4 actual sources, in the near-field at 1800 Hz, 

are displayed in Fig. 6.6. Ignoring the permutation among the 4 sources (which is a 

common problem in BSS) and comparing Figs. 6.5-6.6, there are few biases between 

the virtual sources and the actual ones no matter in amplitude, in location of hottest 

points, or in spatial distribution. 

 

 

Fig. 6.5 Separated sources, ˆ ( )i r , i = 1,…,4, from single statistical decorrelation , in the 

near-field at 1800 Hz with the aperture function R = 35 cm. 
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Fig. 6.6 Actual sources, ( )i r , i = 1,…,4, from individual measurements, in the near-field at 

1800 Hz with the aperture function R = 35 cm. 

 

Next, the separation results are displayed in terms of quadratic velocity spectra in 

Fig. 6.7 and spatial correlation spectra in Fig. 6.8 in the whole available frequency 

band. In order to solve the permutation ambiguity inherent to BSS (arbitrary labeling 

of the separated sources at each frequency), the quadratic velocity spectra and the 

spatial correlation spectra were re-ordered at each frequency according to the spatial 

correlation between the separated sources and the actual ones. The lower bound of the 

spectra, i.e. the quadratic velocity and the spatial correlation, is determined by the size 

of microphone array, for instance the diameter of the slice wheel microphone array as 

shown in Fig. 6.1. On the contrary, the corresponding upper bound depends on the 

minimum spacing between two adjacent microphones. Neglecting the extremely small 

sources, for instance, in the frequency band [1300, 1500] Hz that encloses a zero in 

the quadratic velocity spectrum of the actual source s1, the energy of the separated 

sources are well consistent with that of the actual sources except in the very low 

frequency interval [400, 600] Hz. However, as shown in the spatial correlation spectra 

(see Fig. 6.8), there exists some discrepancy between the estimated and actual sources 

even though their energy distributions seemed to match well. The highest spatial 

correlation – above 0.9 – is mostly at high frequencies (say over 1600 Hz) where the 

source supports become more disjoint due to finer and finer spatial resolution. The 
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coefficients of spatial correlation between the separated sources and their 

corresponding references are 0.99, 0.98, 0.98 and 1 at 1800 Hz (see Fig. 6.8(a)-(d)), 

respectively. 

 

 

Fig. 6.7 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from single 

statistical decorrelation (red solid line) compared to actual sources (blue dashed line), in the 

near-field. 
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Fig. 6.8 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, in the near-field. 

 

2) Source separation in the far-field 

Interestingly, in this case AIC and MDL both exhibit an inflection at the correct 

number of sources, ˆ
sN = 4, as shown in Fig. 6.9, although this does not correspond to 

a minimum. The determination of the source number from the other three methods in 

the far-field is illustrated in Fig. 6.10. Figure 6.10(a) evidences an explicit gap 

between the eigenvalues of the source and noise subspaces around the actual source 

number, sN = 4. Meanwhile, this corresponds to a turning point in the power 

distribution that accounts for 99.97% of the overall power as depicted in Fig. 6.10(b). 

The corner point in the entropic L-curve is about the same value, as shown in Fig. 

6.10(c). 
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Fig. 6.9 Determination of the source number Ns from inspection of (a) AIC and (b) MDL in 

the far-field at 2437 Hz. 

 

 

Fig. 6.10 Determination of the source number Ns from inspection of (a) the eigenvalue 

spectrum, (b) the cumulative power distribution, and (c) the entropic L-curve in the far-field 

at 2437 Hz. 

 

The separated and actual sources are displayed in Figs. 6.11-6.12, respectively. 

Separation results are very satisfactory taking into account the amplitudes, the 

locations of hottest points, and the spatial distributions. This demonstrates that single 

statistical decorrelation can achieve good spatial separation provided the sources are 

spatially orthogonal, a condition which is naturally satisfied here when their supports 
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become disjoint.  

 

 

Fig. 6.11 Separated sources, ˆ ( )i r , i = 1,…,4, from single statistical decorrelation , in the 

far-field at 3600 Hz with the aperture function R = 35 cm. 

 

 

Fig. 6.12 Actual sources, ( )i r , i = 1,…,4, from individual measurements, in the far-field at 

3600 Hz with the aperture function R = 35 cm. 

 

  Figures 6.13-6.14 display the quadratic velocity spectra and the spatial correlation 

spectra in the whole available frequency band, respectively. Similar to that in the 

near-field, the boundaries of the whole working frequency band in the far-field are 

also determined by characteristic parameters of the microphone array and the distance 

Z. The quadratic velocity spectra of the separated sources match remarkably well 
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those of the actual sources, even at the zeros of the first source (see Fig. 6.13(a)). The 

reason of such an impressive coincidence in the quadratic velocity is due to the larger 

spacing – D = 18 cm used in the far-field. However, the spatial correlation spectra 

present distinct results from the quadratic velocity spectra. It is clear that above 3200 

Hz, the separated sources have high spatial correlation with the actual ones. In the 

whole work frequency band, the spatial correlation of the separated sources with 

success is basically over 0.98. That means the separated sources from single statistical 

decorrelation are more reliable with wider spacing between actual sources. 

Corresponding to Figs. 6.11-6.12, the coefficients of the spatial correlation are 0.98, 1, 

0.96 and 1 (see Fig. 6.14(a)-(d)), respectively. 

 

 

Fig. 6.13 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from single 

statistical decorrelation (red solid line) compared to actual sources (blue dashed line), in the 

far-field. 
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Fig. 6.14 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, in the far-field. 

 

6.1.3 Separation from joint statistical and spatial decorrelation 

When sound sources are disjoint in space, mainly at low and medium frequencies, 

they might be separated by enforcing Statistical and Spatial Decorrelation (2SD) 

together with joint approximate diagonalization (see Section 3.2). The experimental 

parameters of this subsection are the same as in Subsection 6.1.2.  

1) Source separation in the near-field 

To allow comparisons with the separation results of Subsection 6.1.4, the working 

frequency is chosen as 833 Hz. The separation results from single statistical 

decorrelation are depicted in Fig. 6.15 with an aperture function R = 35cm. This 

shows how the particle velocity field (normal component to the source plane), 

0 ( , ) r , reconstructed from backpropagation of the measured pressures can be 

decomposed into 4 incoherent sources. It appears that one virtual source, 1ˆ ( , ) r , 
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accounts for most of the sound power and that the other sources could hardly be 

separated by enforcing statistical decorrelation only. The reason is that at such a low 

frequency the spatial resolution is no longer sufficient to guarantee disjoint supports 

and thus spatial orthogonality. As explained in Subsection 2.4, this is no surprise since 

an infinite number of virtual sources could explain equally well the source field as 

long as the exact value of the unitary matrix V is not known. 

To improve the separation results, spatial decorrelation is then enforced on the 

virtual sources. Two optimization strategies: JAD of the matrices [100] and CG 

[114]-[115] in the Stiefel manifold, are applied to search for the missing matrix V. 

The separated results from the two strategies are illustrated in Figs. 6.16-6.17, 

respectively. Both optimization strategies return correct and compact sound sources as 

shown on the right side of the red dash line. The separation results from the two 

strategies look the same no matter the amplitude, the location of hottest points or the 

spatial distribution, ignoring the permutation among the four sources. The actual 

sources at 833 Hz with R = 35 cm are displayed in Fig. 6.18. There are few errors 

between the separated and actual sources in terms of energy and spatial distribution, 

although the shape of the second sound source is distorted a little. The example shows 

that enforcing statistical and spatial decorrelation jointly is an effective method to 

blindly separate incoherent sound sources in the near-field.  

 

 

Fig. 6.15 Separated sources, ˆ ( )i r , i = 1,…,4, from single statistical decorrelation, in the 
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near-field at 833 Hz. 

 

 

Fig. 6.16 Separated sources, ˆ ( )i r , i = 1,…,4, from statistical and spatial decorrelation with 

joint approximate diagonalization, in the near-field at 833 Hz. 

 

 

Fig. 6.17 Separated sources, ˆ ( )i r , i = 1,…,4, from statistical and spatial decorrelation with 

conjugate gradient method, in the near-field at 833 Hz. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf 
© [B. Dong], [2014], INSA de Lyon, tous droits réservés



66 

 

Fig. 6.18 Actual sources, ( )i r , i = 1,…,4, from individual measurements, in the near-field at 

833 Hz. 

 

The quadratic velocity and spatial correlation spectra in the whole available 

frequency band are shown in Figs. 6.19-6.22, respectively. Comparing Figs. 6.19-6.20 

with Fig. 6.7, the quadratic velocity spectra from 2SD degenerate a little relative to 

those from SD, as there are small differences between the rotation matrices from SD 

and 2SD. Concerning the two strategies, the quadratic velocity spectra from CG seem 

in some sort better than those from JAD, mainly on the second zero of the second 

actual source (see Fig. 6.19(b) and Fig. 6.20(b)).  

The spatial correlation spectra in Figs. 6.21-6.22 show improved separation sources 

in the whole working frequency band as compared to single statistical decorrelation, 

and ignoring the very small levels near the zeros of the quadratic velocity spectra. 

Remarkably, the spatial correlations on the third and fourth actual sources are more 

than 0.98 at most frequencies in the working band (see Fig. 6.21(c)-(d)).  
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Fig. 6.19 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from 

statistical and spatial decorrelation with joint approximate digonalization (red solid line) 

compared to actual sources (blue dashed line), in the near-field. 

 

 

Fig. 6.20 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from 

statistical and spatial decorrelation with conjugate gradient method (red solid line) compared 
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to actual sources (blue dashed line), in the near-field. 

 

 

Fig. 6.21 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from joint approximate diagonalization (blue point) compared to actual sources (red 

solid line), in the near-field. 
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Fig. 6.22 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the conjugate gradient method (blue point) compared to actual sources (red solid 

line), in the near-field. 

 

At 833 Hz, the spatial correlations coefficients between the actual and the separated 

sources, from single statistical decorrelation, joint statistical and spatial decorrelation 

with JAD and with CG, respectively, are listed in Tab. 6.2. There is no difference 

between the separated results from the spatial decorrelation with JAD and with CG, 

respectively. 

 

 s1 s2 s3 s4 

SD 0.82 0.88 0.86 1 

2SD-JAD 0.97 0.91 0.99 0.99 

2SD-CG 0.97 0.91 0.99 1 

Tab. 6.2 Spatial correlation coefficients between the actual and the separated sources, from 

single statistical decorrelation (SD), joint statistical and spatial decorrelation (2SD) with JAD 

and with CG, respectively, in the near-field at 833 Hz. 

 

2) Source separation in the far-field 

The separated sources from SD, 2SD with JAD and CG, and the actual sources are 

all displayed in Figs. 6.23-6.26, respectively. After combing statistical and spatial 

decorrelation, the separated sources, no matter from JAD or from CG, coincide 

perfectly with the actual sources. 
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Fig. 6.23 Separated sources, ˆ ( )i r , i = 1,…,4, from single statistical decorrelation, in the 

far-field at 2437 Hz. 

 

 

Fig. 6.24 Separated sources, ˆ ( )i r , i = 1,…,4, from statistical and spatial decorrelation with 

joint approximate diagonalization, in the far-field at 2437 Hz. 
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Fig. 6.25 Separated sources, ˆ ( )i r , i = 1,…,4, from statistical and spatial decorrelation with 

conjugate gradient method, in the far-field at 2437 Hz. 

 

 

Fig. 6.26 Actual sources, ( )i r , i = 1,…,4, from individual measurements, in the far-field at 

2437 Hz. 

 

The quadratic velocity and spatial correlation spectra of the separated sources are 

shown in Figs. 6.27-6.30. Just as in the near-field case, the quadratic velocity spectra 

match closely to the references except maybe near the zeros and in the low frequency 

interval [1600 2400] Hz, as depicted in Figs. 6.27-6.28. The good performance of the 

algorithms, JAD and CG, is also checked by the spatial correlation spectra (see Figs. 

6.29-6.30).  
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Fig. 6.27 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from 

statistical and spatial decorrelation with joint approximate digonalization (red solid line) 

compared to actual sources (blue dashed line), in the far-field. 

 

 

Fig. 6.28 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from 

statistical and spatial decorrelation with conjugate gradient method (red solid line) compared 
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to actual sources (blue dashed line), in the far-field. 

 

 

Fig. 6.29 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from joint approximate diagonalization (blue point) compared to actual sources (red 

solid line), in the far-field. 
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Fig. 6.30 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the conjugate gradient method (blue point) compared to actual sources (red solid 

line), in the far-field. 

 

At 2437 Hz, the spatial correlations coefficients between the actual and the 

separated sources, from single statistical decorrelation, joint statistical and spatial 

decorrelation with JAD and with CG, respectively, are listed in Tab. 6.3. The 

difference between the results is insignificant from joint statistical and spatial 

decorrelation with JAD and CG. The minimum spatial correlation is still equal to 0.97. 

 

 s1 s2 s3 s4 

SD 1 0.86 1 0.84 

2SD-JAD 0.97 1 0.99 0.98 

2SD-CG 0.99 1 1 1 

Tab. 6.3 Spatial correlation coefficients between the actual and the separated sources, from 

single statistical decorrelation (SD), joint statistical and spatial decorrelation (2SD) with JAD 

and with CG, respectively, in the far-field at 2437 Hz. 

 

In acoustical holography, the spatial orthogonality of actual sources has no reason 

to be preserved in the whole work frequency band. Due to small wave length – i.e. 

high spatial resolution at high frequency, the sizes of reconstructed sources are more 

similar to the actual ones and thus the spatial orthogonality is well inherited by the 

reconstructed sources. Unfortunately, the sizes of reconstructed sources become much 

larger than their actual counterparts at low and medium frequencies because of the 

long wave length (i.e. the low spatial resolution). In such a case, the reconstructed 

sources overlap to each other in space. Therefore, SD can provide pretty accurate 

results for BSS at high frequency (as explained in Subsection 3.1.2), but degenerates 

at low and medium frequencies, because the matrix V is no longer the normalized 

permutation matrix but a general unitary one at low and medium frequencies. 
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6.1.4 Separation from the principle of least spatial complexity 

The experimental parameters are all set as listed in Subsections 6.1.2-6.1.3 except 

for the radius of the aperture function which is set to R = 21cm. 

1) Source separation in the near-field 

First, virtual sources are computed from the eigenvalue decomposition of the 

correlation matrix ˆˆH
cc

C  and displayed on the right side of Fig. 6.31; this shows that 

the separated sources from SD depart significantly from the actual ones, which is 

similar to that in Fig. 6.15 (ignoring the errors from backpropagation by applying two 

distinct aperture functions – i.e. R = 21 cm and 35 cm, respectively, the two groups of 

virtual sources (see Figs. 6.31 and 6.15) are almost the same in terms of locations and 

amplitude of the hottest points). The latter is then estimated by using CLSV and 

CLSE. The separation results are displayed in Figs. 6.32-6.33, respectively. The 4 

actual sources, in the near-field at 833 Hz, are displayed in Fig. 6.34. 

 

 

Fig. 6.31 Separated sources, ˆ ( , )i r , i = 1,…,4, from single statistical decorrelation, in the 

near-field at 833 Hz. 
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Fig. 6.32 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial variance, 

in the near-field at 833 Hz. 

 

 

Fig. 6.33 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, in 

the near-field at 833 Hz. 
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Fig. 6.34 Actual sources, ( , )i r , i = 1,…,4, from individual measurements, in the near-field 

at 833 Hz. 

 

Comparing Figs. 6.31-6.34 with Figs. 6.15-6.18, the size of aperture function has 

insignificant effect on BSS in the near-field.  

It is seen that the separation results from the two criteria return accurate localization 

and quantification of the sources, as compared to the actual ones (up to an arbitrary 

labeling). On this example CLSV seems to be slightly more accurate than CLSE in 

estimating amplitude, but slightly inferior as for the spatial localization; indeed, the 

separated source 2ˆ ( , ) r  from CLSV has a small protrusion on its left part. More 

generally, CLSE is expected to be more robust to the separation of weak sources 

owing to the logarithmic operator which reduces the dynamic range between the 

lowest and the loudest sources. On the contrary, the squaring operation inherent to 

CLSV will increase the dynamic range and possibly jeopardize the recovery of 

sources with relatively small magnitude. However, it is observed that CLSV has a 

much faster convergence speed than CLSE in the optimization procedure – it is about 

three times faster. 

Noteworthy also is that the spatial distributions of some separated sources (e.g. 

1ˆ ( , ) r  and 2ˆ ( , ) r ) are slightly more compact than the actual sources, as a result 

of enforcing this property in the separation; this small bias is however not dramatic 

and may be even seen as an advantage since spatial resolution is thus improved. 
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Eventually, the separated results from the two spatial criteria are compared with 

those from a classic method – SOBI [[48], [71]]. SOBI was applied in a similar 

fashion as in [69] so as to jointly diagonalise the correlation matrix ˆˆH
cc

C  in a narrow 

frequency band centered at 833 Hz with bandwidth 1.75 Hz (i.e. 7 frequency bins). 

The separated sources are displayed in Fig. 6.35. SOBI could find only two distinct 

sources, 2ˆ ( , ) r  and 3ˆ ( , ) r , yet with severe disturbance and strong coupling in 

space. Similar comparisons carried on in other frequency ranges generally confirmed 

that SOBI could hardly reach the same separation performance as LCSV and CLSE 

because it does not account for spatial information, as proposed in this dissertation. 

 

 

Fig. 6.35 Separated sources, ˆ ( , )i r , i = 1,…,4, from SOBI, in the near-field at 833 Hz. 

 

Next, the separation results are displayed in terms of quadratic velocity spectra in 

the whole available frequency band for CLSV in Fig. 6.36 and for CLSE in Fig. 6.37. 

Note that the lower frequency bound is determined by the size of the microphone 

array and the upper one by the minimum spacing between two microphones. 
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Fig. 6.36 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from the 

criterion of least spatial variance (red solid line) compared to actual sources (blue dashed line), 

in the near-field. 

 

 

Fig. 6.37 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from the 

criterion of least spatial entropy (red solid line) compared to actual sources (blue dashed line), 
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in the near-field. 

 

Separation results are satisfactory for most frequencies, except at some points in 

low frequencies (mainly in interval [400, 600] Hz) and near zeros of source spectra. 

This may be explained as follows. In the near-field, the proposed method is inherently 

limited by the inability of the backpropagation process to estimate the source 

distributions below a certain lower frequency (that depends on the array size and 

signal-to-noise ratio). In this respect, CLSE seems more robust to CLSV, probably 

because it is less sensitive to the presence of additive noise for the reason invoked 

above. Moreover, at those frequencies where the energy of the source is so small 

(zeros in the spectra) that virtually only noise is measured, it makes sense that source 

separation is doomed to failure. For instance, in the frequency band [1300, 1500] Hz 

enclosing a zero in the quadratic velocity spectrum of the actual source s1 both criteria 

fail to separate the source due to its very small magnitude (see Fig. 6.36(a) and Fig. 

6.37(a)). However, it is seen that the sources separated from CLSE have in general 

spectra closer to the actual ones than for CLSV. Again, this illustrates the higher 

robustness of CLSE against additive noise. 

The spatial correlation spectra of the separation results in the whole working 

frequency band are presented for CLSV in Fig. 6.38 and for CLSE in Fig. 6.39. The 

spatial correlation spectra demonstrate again that the two criteria blindly separate the 

incoherent sound sources very well in the whole frequency band, including the zeros, 

e.g. the frequency band [1300, 1500] Hz, and the low frequency band [400, 600] Hz. 

Comparing Figs. 6.38 and 6.39, CLSE works better than CLSV not only in the regions 

with zeros but also at low frequencies; from the point of view of the spatial correlation 

spectrum, CLSE is also more robust to amplitude differences among the sound 

sources. 
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Fig. 6.38 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the criterion of least spatial variance, in the near-field. 

 

 

Fig. 6.39 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the criterion of least spatial entropy, in the near-field. 
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2) Source separation in the far-field 

The separated sources from enforcing mutual incoherence, from CLSV and CLSE, 

and the actual sources are all displayed in Figs. 6.40-6.43, respectively. It is seen that 

the reconstructed source distribution 0 ( , ) r  essentially consists in one dominant 

source plus two or three very small ones. The sources separated from enforcing only 

mutual incoherence look compact enough, but unfortunately the second and third ones 

do not match with the actual sources. On the other hand, CLSV and CLSE return 

excellent results. The sources are perfectly separated, even the smallest one which 

stands 20dB below the dominant one. 

 

 

Fig. 6.40 Separated sources, ˆ ( , )i r , i = 1,…,4, from single statistical decorrelation, in the 

far-field at 2437 Hz. 
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Fig. 6.41 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial variance, 

in the far-field at 2437 Hz. 

 

 

Fig. 6.42 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, in 

the far-field at 2437 Hz. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf 
© [B. Dong], [2014], INSA de Lyon, tous droits réservés



84 

 

Fig. 6.43 Actual sources, ( , )i r , i = 1,…,4, from individual measurements, in the far-field 

at 2437 Hz. 

 

The separation results returned by SOBI (with similar settings as before) are 

illustrated in Fig. 6.44. In this case, the separated sources look extremely scattered and 

can hardly be identified with the actual sources.  

 

 

Fig. 6.44 Separated sources, ˆ ( , )i r , i = 1,…,4, from SOBI, in the far-field at 2437 Hz. 

 

The quadratic velocity spectra of the separated sources are shown in Figs. 6.45-6.46, 

and their spatial correlation spectra in Figs. 6.47-6.48. Note that the frequency range 

could be extended much higher (up to 7200Hz) because the measurements are taken 

in the far-field. Again, CLSE evidences a better performance, in particular in its 
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ability to separate sources with very small levels. Therefore, CLSE is recommended 

as the first choice due to its robustness, provided the extra calculation cost it implies is 

affordable. 

 

 

Fig. 6.45 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from the 

criterion of least spatial variance (red solid line) compared to actual sources (blue dashed line), 

in the far-field. 
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Fig. 6.46 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from the 

criterion of least spatial entropy (red solid line) compared to actual sources (blue dashed line), 

in the far-field. 

 

 

Fig. 6.47 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the criterion of least spatial variance, in the far-field. 
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Fig. 6.48 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the criterion of least spatial entropy, in the far-field. 

 

6.1.5 Separation from ranking eigen elements according to 

increasing spatial entropy 

As seen in Figs. 6.19-6.22, 6.27-6.30, 6.36-6.39, and 6.45-6.48, the three criteria 

2SD, CLSV and CLSE could hardly separate sources with very small levels, in 

particular near the zeros of the quadratic velocity spectra (although CLSE was found 

more robust to small sources). It is shown in this section that low sources can be 

found by ranking the eigen elements of the eigenspectrum with respect to the spatial 

information (measured by spatial variance or spatial entropy) of the virtual sources 

(see in Subsection 3.2.3). The scheme of ranking eigen elements according to 

increasing spatial information can be applied in CLSE and 2SD, but not in CLSV. As 

the square operation in CLSV, small sources might be ignored in the process of 

optimizing the total spatial variance of all sources.  
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The reason why the virtual sources are selected to rank the eigen elements of the 

eigenspectrum, not the ones from CLSE, is very simple and practical: the calculation 

of CLSE is unaffordable and might take several weeks, when the number of sources 

of interest, for example, arrives at 30 (see Fig. 6.49) and the spatial resolution of 

acoustic hologram is set to, for instance, 1 mm relative to the radius of the aperture 

function – R = 35 cm. In this subsection, CLSE is applied to blindly separate such 

small sources with the aforementioned scheme. 

1) Source separation in the near-field 

In the near-field, the radius of aperture function is set to R = 35 cm and the working 

frequency is selected as 1456 Hz where one source is much smaller than the other 

sources by more than 40 dB. The spatial entropies of the first 30 virtual sources are 

illustrated in Fig. 6.49. Obviously, the first three virtual sources plus the 15th one 

(marked by the red square) deserve special interest as their spatial distributions are the 

most compact among the first 30 largest virtual sources. Keeping only the 

corresponding eigen elements in matrices D  and U  used in CLSE, the very small 

source and the other three ones could be successfully separated as shown in Fig. 6.50. 

Note that the smallest separated source has amplitude 48 dB lower than the largest 

one, (see Fig. 6.51). To indicate the performance of the improved separation method, 

the quadratic velocity and spatial correlation spectra are displayed in Figs. 6.52-6.53, 

respectively. Comparing the two figures with Figs. 6.37 and 6.39, significant 

improvement is noted.  
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Fig. 6.49 Spatial entropy of the first 30 virtual sources in the near-field at 1456 Hz. 

 

 

Fig. 6.50 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy 

with a new order, in the near-field at 1456 Hz. 

 

 

Fig. 6.51 Actual sources, ( , )i r , i = 1,…,4, from individual measurements, in the near-field 
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at 1456 Hz. 

 

 

Fig. 6.52 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from the 

criterion of least spatial entropy (red solid line) compared to actual sources (blue dashed line), 

in the near-field. 
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Fig. 6.53 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the criterion of least spatial entropy, in the near-field. 

 

2) Source separation in the far-field 

The spatial entropy of the first 30 virtual sources, the separated sources from the 

improved method, the corresponding references, and the quadratic velocity and spatial 

correlation spectra are depicted in Figs. 6.54-6.58, respectively. After selecting the 

eigen elements corresponding to the virtual sources with smallest spatial entropy 

(numbers 1, 2, 3 and 5 in Fig. 6.54), the smallest sound source could be correctly 

separated as shown in Fig. 6.54. The separation results are excellent in terms of 

amplitude and position as shown in Figs. 6.55-6.56. As seen in Figs. 6.57-6.58, the 

improved method could separate sound sources in the whole frequency band in the 

far-field with the help of CLSE, even at a few frequencies where the power of sound 

sources is similar to the background noise.  
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Fig. 6.54 Spatial entropy of the first 30 virtual sources in the far-field at 2025 Hz. 

 

 

Fig. 6.55 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy 

with a new order, in the far-field at 2025 Hz. 

 

 

Fig. 6.56 Actual sources, ( , )i r , i = 1,…,4, from individual measurements, in the far-field 
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at 2025 Hz. 

 

 

Fig. 6.57 Quadratic velocity spectra of the separated sources, ˆ ( )i  , i = 1,…,4, from the 

criterion of least spatial entropy (red solid line) compared to actual sources (blue dashed line), 

in the far-field. 
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Fig. 6.58 Spatial correlation spectra between the separated and actual sources, ( )i  , i = 

1,…,4, from the criterion of least spatial entropy, in the far-field. 

 

  All experimental parameters and their values involved in Section 6.1 are listed in 

Tab. 6.4. 

 

Z [cm] 10 50 100 200   

D [cm] 12 18 24    

f [Hz] 833 1456 1800 2025 2437 3600 

R [cm] 21 35     

Tab. 6.4 Experimental values for all parameters in the Section 6.1. 

 

6.2 Numerical experiments: simulation of the separation of 

multipoles 

As demonstrated by the results of Subsection 6.1.4, the two proposed criteria have 

excellent performance for separating compact sources such as monopoles. As a matter 
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of fact, the property of compactness is the only requirement, and more complex 

sources than monopoles could just as well be separated. This is demonstrated by 

means of numerical simulations in this subsection, and by an industrial case in the 

next subsection.  

Three superimposed sound sources are simulated: one monopole, one dipole, and 

one lateral quadrupole. The amplitudes of all sources are set identical. The 

microphone array is the same as in the previous experiments (slide wheel with 60 

microphones). The distance Z between the array and the sound sources is 50 cm and 

the working frequency is 1 kHz. The SNR is set to 40 dB. Before separation, the 

source number Ns is determined from the information theoretic criteria (AIC and 

MDL), the eigenvalue spectrum, the cumulative power distribution, and the entropic 

L-curve displayed in Figs. 6.59-6.60, respectively. The five methods all return the 

correct result, ˆ
sN  = 3 (this is found at the inflexion point of AIC and MDL, not at 

their minimum).  

 

 

Fig. 6.59 Determination of the source number Ns from inspection of (a) AIC and (b) MDL. 
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Fig. 6.60 Determination of the source number Ns from (a) the eigenvalue spectrum, (b) the 

cumulative power distribution, and (c) the entropic L-curve. 

 

Among all proposed methods, CLSE is used here to separate the sources due to its 

better performance. The separation results and their comparison to actual sources are 

displayed in Figs. 6.61-6.62, respectively. Because it has the best radiation efficiency 

towards the array, the monopole was separated first, then the dipole, and finally the 

quadrupole. The separated sources have spatial shapes that closely match the actual 

ones in all cases; errors of reconstruction in terms of magnitude are all less than 3 dB. 

Indeed, the separated sources are again slightly more focused than the actual ones 

(because their compactness is forced), which explains a small overestimation of their 

magnitude in order to keep the same power. Note also that this numerical simulation 

demonstrates that sources can be separated even though they are totally overlapping in 

space. 
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Fig. 6.61 Separated sources, ˆ ( , )i r , i = 1, 2, 3, from the criterion of least spatial entropy. 

 

 

Fig. 6.62 Actual sources, ( , )i r , i = 1, 2, 3. 
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6.3 An industrial example 

In addition to laboratory experiments, the proposed methods are illustrated here for 

the separation of sound sources produced by a Diesel engine, an industrial example 

which has for long attracted attention due to its importance – see e.g. [153]-[156] for 

the application of supervised separation to this problem. The research context and the 

full experimental apparatus is described in Ref. [8], which developed a methodology 

for separating the combustion, injection, and mechanical noises by making use of 

references and of the cyclostationary property of signals generated by a Diesel engine. 

Here, separation is achieved based on much weaker requirements, without references, 

(that is “blindly”) and without the cyclostationary assumption (results are 

“stationarized” by averaging over time). The top side of the Diesel engine is the 

source surface of interest; the distance Z from the hologram plane is 18 cm. The array 

is a slice wheel with 84 microphones. The sampling frequency is 16.384 kHz. All 

results are presented at frequency 1250 Hz as considered in Ref. [8] in order to allow 

comparisons with the latter (the working frequency 1250 Hz is a good illustration 

where several sources radiate together, with similar levels, in the audible range). 

6.3.1 Determination of the number of sources 

As before, the number of active sources is first determined before trying to separate 

them. In practice, this may not be so obvious since a Diesel engine will radiate sound 

waves originating from a myriad of different sources, which are difficult to limit to a 

finite number. The information theoretic criteria seem to provide reasonable numbers 

of sources: ˆ
sN  = 12 for AIC and ˆ

sN  = 11 for MDL, as shown in Fig. 6.63. In such 

a scenario with 84 microphones and high spatial resolution – 2 mm – searching for an 

11×11 or 12×12 matrix V would be numerically difficult. Furthermore, one may not 

expect a clear cut-off in the eigenvalue spectrum, nor a clear inflexion in the 

cumulative power distribution. This is clearly illustrated in Fig. 6.64(a). The source 

number may be set to 3, as suggested by the small gap between the third and the 
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fourth eigenvalues in Fig. 6.64(a). However, this would explain less than 85% of the 

overall power, as shown in Fig. 6.64(b). If at least 90% of the power had to be 

covered by the separated sources, then ˆ
sN = 7 would probably be a better choice as 

the red arrow shows. The inflexion point in the entropic L-curve suggests the optimal 

source number around 8, which corresponds to 95.89% of the power, as shown in Fig. 

6.64(c). 

 

 

Fig. 6.63 Determination of the source number Ns from inspection of (a) AIC and (b) MDL 

(Diesel engine at 1250 Hz). 

 

 

Fig. 6.64 Determination of the source number Ns from (a) the eigenvalue spectrum, (b) the 

cumulative power distribution, and (c) the entropic L-curve (Diesel engine at 1250 Hz). 
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6.3.2. Source separation from spatial criteria 

 Only the first four most physical separated sources returned by 2SD-JAD, 

2SD-CG, CLSV, and CLSE with ˆ
sN = 8 are displayed in Figs. 6.65, 6.67, 6.69 and 

6.71, respectively. The spatial resolution is set to 2 mm for all the separated sources 

from the Diesel engine. Note that the indices of separated sources are determined in 

terms of the ranking of their power. It is seen that, by construction, joint statistical and 

spatial decorrelation (i.e. 2SD-JAD and 2SD-CG) returns less compact sources than 

the principle of least spatial complexity (i.e. CLSV and CLSE); as discussed hereafter, 

the latter are probably farther than the former from the actual (unknown) sources. The 

spatial distribution of the separated sources from CLSV and CLSE are almost the 

same, although there are some discrepancies in the amplitude. This evidences the 

presence of sources from different spatial origins.  

According to experts (see also the discussion in Ref. [8]), the first and second 

sources correspond to combustion noise: for CLSE, the first source originates from 

the crank pulley and the second one involves part of the exhaust systems; for CLSV, 

the first two sources both involve the radiation of the crank pulley when excited by 

combustion and part of the exhaust systems; for 2SD-JAD and 2SD-CG, not only do 

the first two separated sources originate from the combustion noise, but also the third 

one, i.e. 5ˆ ( ) r  in Figs. 6.65 and 6.67, does. Interestingly, the four groups of results 

all show that combustion involves two “degrees of freedom” (i.e. uncorrelated modes). 

The fifth source from CLSE (corresponding to the fourth one from CLSV and the 

seventh ones from 2SD-JAD and 2SD-CG) is localized on the water pump and 

evidences radiation of some of its parts. The sixth source from CLSE (corresponding 

to the fifth one from CLSV) lays over the injection system of the Diesel engine and 

thus corresponds to injection noise. The other separated sources are not shown due to 

the difficulty of assigning them to definite physical origins. Unfortunately, the results 
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from 2SD (includes JAD and CG) lose the source originating from the injection noise, 

which again show some inferiority of this approach as compared to the criteria of least 

spatial complexity. 

These results from CLSV and CLSE correlate well with the separation obtained in 

Ref. [8] with the help of references on the combustion and injection processes (first 

and sixth sources). They make possible the ranking of sources, an objective of 

fundamental importance to the engineer; by way of an example, Figs. 6.66, 6.68, 6.70, 

and 6.72 display all the partial powers of the separated sources, together with the 

residual power not explained by them, from the four methods.  

 

Fig. 6.65 Separated sources, ˆ ( , )i r , i = 1,2,5,7, from joint statistical and spatial 

decorrelation with joint approximate diagonalization (Diesel engine at 1250 Hz). 
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Fig. 6.66 Ratios of power of the separated sources and of the residual power (red bar) to the 

total power from joint statistical and spatial decorrelation with joint approximate 

diagonalization (Diesel engine at 1250 Hz). 

 

 

Fig. 6.67 Separated sources, ˆ ( , )i r , i = 1,2,5,7, from joint statistical and spatial 

decorrelation with the conjugate gradient method (Diesel engine at 1250 Hz). 
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Fig. 6.68 Ratios of power of the separated sources and of the residual power (red bar) to the 

total power from joint statistical and spatial decorrelation with conjugate gradient method 

(Diesel engine at 1250 Hz). 

 

 

Fig. 6.69 Separated sources, ˆ ( , )i r , i = 1,2,4,5, from the criterion of least spatial variance 

(Diesel engine at 1250 Hz). 
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Fig. 6.70 Ratios of power of the separated sources and of the residual power (red bar) to the 

total power from the criteria of least spatial variance (Diesel engine at 1250 Hz). 

 

 

Fig. 6.71 Separated sources, ˆ ( , )i r , i = 1,2,5,6, from the criterion of least spatial entropy 

(Diesel engine at 1250 Hz). 
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Fig. 6.72 Ratios of power of the separated sources and of the residual power (red bar) to the 

total power from the criteria of least spatial entropy (Diesel engine at 1250 Hz). 

 

6.3.3 Source separation from ranking eigen elements according to 

increasing spatial entropy 

The cluster of virtual sources of interest is limited to the first 25 ones, after 

contrasting the three curves in Fig. 6.64. The spatial entropies of the first 25 virtual 

sources are depicted in Fig. 6.73. According to increasing spatial entropies, the virtual 

sources numbered as 1, 2, 3, 5, 14, 21, 4 and 16 are chosen to take part in the 

following optimization operation. After ranking the elements in matrices D and U 

according to the indices of the selected virtual sources and then applying CLSE, the 

first seven most physical sources shown in Fig. 6.74 were obtained. Remarkably, not 

only are the first four sources the same as in Fig. 6.71, but also the other three smaller 

sources, which overlap the first four sources in space, are located. The fifth source, i.e. 

6ˆ ( ) r , also comes from the injection noise, but they are radiated by different 

mechanical components. 7ˆ ( ) r  is the contribution from the combustion noise, but 

from a different component, which might be the fake copy of 1ˆ ( ) r . The last one – i.e. 

8ˆ ( ) r , involves another part of the exhaust systems. This example demonstrates the 

availability of CLSE to separate overlapping sources even in difficult industrial 
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context. Figure 6.75 displays all partial power of the separated sources plus the 

residual power. In this improved scenario, 95.07% of the overall power is involved, 

which is a little lower than the former one – 96.74% for CLSV in Fig. 6.70 and for 

CLSE in Fig. 6.72.  

 

 
Fig. 6.73 Spatial entropy of the first 25 virtual sources (Diesel engine at 1250 Hz). 

 

 

Fig. 6.74 Separated sources, ˆ ( , )i r , i = 1,2,4,5,6,7,8, from the criterion of least spatial 
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entropy, ranked according to increasing spatial entropy (Diesel engine at 1250 Hz). 

 

 
Fig. 6.75 Ratios of power of the separated sources (ranked according to their spatial entropies) 

and of the residual power (red bar) to the total power (Diesel engine at 1250 Hz). 

 

Based on all separated results, the criterion of least spatial entropy is recommended 

hereafter. To separate very small sound sources, the order of the eigen elements in 

matrix D should be rearranged according to increasing spatial entropy (or spatial 

variance) of virtual sources first. 
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Chapter 7 Parametric analysis 

  The present chapter is dedicated to analyze how the various experimental 

parameters affect BSS. Based on the results obtained in Chapter 6, it is clear that 

CLSE owns the best performance for blind separation of sound sources. Therefore, in 

the present chapter, CLSE is used systematically despite its computational cost as 

compared to the other methods. 

7.1 Robustness to the number of sources 

It is shown herein that the proposed algorithm – CLSE is robust to the estimated 

number of sources. This is demonstrated by means of three indicators: namely, the 

power, the entropy, and the spatial localization of the most intense separated sources 

are all shown to be little affected by how many other sources are considered in the 

mixture. The robustness to the number of sources is double-checked by laboratory 

experiments and on the industrial example involving sound sources produced by the 

Diesel engine. 

7.1.1 Laboratory experiments in the near-field 

By means of an example, Fig. 7.1 displays the first separated source from CLSE, in 

the near-field, when the number ˆ
sN  varies from 2 to 6, where 1( ) r  stands for the 

actual first source distribution and ˆ[ ]
1ˆ ( )sN r for its estimation assuming ˆ

sN  sources. 

The actual source number is 4. It is seen that the estimated sources look the same, 

both in magnitude and in shape, when increasing the value of ˆ
sN . 
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Fig. 7.1 The first separated source, 
ˆ[ ]

1ˆ ( )sN
 r , versus the estimated source number, ˆ

sN =1,…,6 

(criterion of least spatial entropy in the near-field at 833 Hz). 

 

The ratio of powers and the ratio of spatial entropies of the first separated source to 

the actual one are illustrated in Figs. 7.2(a) and 7.2(b), respectively, confirming an 

excellent stability with respect to the estimated source number. Finally, the 

localization of the highest peak in the first separated source versus the estimated 

source number is depicted in Fig. 7.3. The error in localization is seen to be 0.001m, 

which corresponds to the spatial resolution of the reconstructed sources. 

 

 
Fig. 7.2 (a) Power ratio of the first separated source to its actual value versus the estimated 

source number ˆ
sN . (b) Ratio of spatial entropy of the first separated source to its actual value 

versus the estimated source number ˆ
sN  (near-field at 833 Hz). 
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Fig. 7.3 Positions of the highest peak in the first separated source versus the estimated source 

number ˆ
sN : (a) position on the x-axis and (b) position on the y-axis (near-field at 833 Hz). 

 

7.1.2 Laboratory experiments in the far-field 

The first separated source from CLSE is depicted in Fig. 7.4, while the source 

number ˆ
sN  varies from 2 to 6 in the far-field at 2437 Hz. The actual number of 

sources is 4. All the sources appear very similar, if not identical, both in amplitude and 

in shape. 

 

 

Fig. 7.4 The first separated source, 
ˆ[ ]

1ˆ ( )sN
 r , versus the estimated source number ˆ

sN =1,…,6 

(criterion of least spatial entropy in the far-field at 2437 Hz). 

 

Similarly to Fig. 7.2, the ratio of powers and the ratio of spatial entropies of the first 

separated source to the actual one in the far-field are illustrated in Figs. 7.4(a) and 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf 
© [B. Dong], [2014], INSA de Lyon, tous droits réservés



111 

7.4(b), respectively, confirming again an excellent stability to the estimated source 

number. The powers of all separated sources are lower than the reference, but they 

have identical values. The difference in the powers between the separated sources and 

the actual source is likely to come from a limitation of the backpropagation process in 

the far-field. Afterwards, the localization of the highest peak in the sources versus the 

estimated source number is depicted in Fig. 7.6. Remarkably, there is no bias in 

positions of x- and y-axes. 

 

 
Fig. 7.5 (a) Power ratio of the first separated source to its actual value versus the estimated 

source number ˆ
sN . (b) Ratio of spatial entropy of the first separated source to its actual value 

versus the estimated source number ˆ
sN  (far-field at 2437 Hz). 

 

 
Fig. 7.6 Positions of the highest peak in the first separated source versus the estimated source 

number ˆ
sN : (a) position on the x-axis and (b) position on the y-axis (far-field at 2437 Hz). 
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7.1.3 Industrial example 

  To verify the robustness to the number of sources in an industrial application, CLSE 

is then applied to blindly separate sound sources radiated from the Diesel engine at 

1250 Hz with ˆ
sN  varying from 4 to 10 by steps of 2. Here, two sources of interest, 

i.e. the second and third ones (i.e. 2ˆ ( ) r  and 5ˆ ( ) r ) in Fig. 6.71, are picked out, and 

then coined as 1( ) r  and 2 ( ) r  hereafter. The separated results from CLSE are 

illustrated for 1( ) r  in Fig. 7.7 and for 2 ( ) r  in Fig. 7.8. 

 

 

Fig. 7.7 The first separated source, 
ˆ[ ]

1ˆ ( )sN
 r , versus the estimated source number ˆ

sN = 

4,6,8,10 (criterion of least spatial entropy – Diesel engine at 1250 Hz). 
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Fig. 7.8 The second separated source, 
ˆ[ ]

2ˆ ( )sN
 r , versus the estimated source number 

ˆ
sN =4,6,8,10 (criterion of least spatial entropy – Diesel engine at 1250 Hz). 

 

Similarly, Fig. 7.9 displays the ratio of powers and the ratio of spatial entropies of 

the first separated sources to their mean value and Fig. 7.10 for the second source. No 

matter the first separated source or the second one, the spatial entropy nearly keeps 

constant, although their powers fluctuate with the value of ˆ
sN . That is to say the 

shapes of the separated sources are robust to the number of sources (as shown in Figs. 

7.7-7.8), which is useful to identify the sources and locate their positions. The power 

of the first separated source varies more than the second one because the first source 

overlaps with other 7 sources in space (see Fig. 6.71). However, the bias among the 

first separated sources is less than 2dB in the amplitude of its highest peak, which 

demonstrates CLSE robustness to the number of sources from the energy point of 

view. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0040/these.pdf 
© [B. Dong], [2014], INSA de Lyon, tous droits réservés



114 

 
Fig. 7.9 (a) Power ratio of the first separated source to its mean value versus the estimated 

source number ˆ
sN . (b) Ratio of spatial entropy of the first separated source to its mean value 

versus the estimated source number ˆ
sN  (Diesel engine at 1250 Hz). (The bar ‘¯’ denotes the 

average operation on energy for Fig. 7.9(a) and on space for Fig. 7.9(b)) 
 
 

 
Fig. 7.10 (a) Power ratio of the second separated source to its mean value versus the estimated 

source number ˆ
sN . (b) Ratio of spatial entropy of the second separated source to its mean 

value versus the estimated source number ˆ
sN  (Diesel engine at 1250 Hz). 

 

  The localization of the highest peak versus the estimated source number is depicted 

for the first separated source in Fig. 7.11 and for the second one in Fig. 7.12. The 

highest peak of 4
1ˆ ( ) r
[ ]  in amplitude, locating in the left hand side of panels in Fig. 

7.7, comes from the combustion noise, and the other peak corresponds to part of the 

exhaust system. The highest peak of 4
2ˆ ( ) r
[ ]  in amplitude occupies much larger 

place than the next highest one as shown in Fig. 7.8. According to the aforementioned 

content, 2 ( ) r  originates from the water pump and its first peak mainly concentrates 
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on the tube of the water pump. Inspecting Figs. 7.11-7.12, there are very tiny errors on 

the localizations of the highest peaks of the two separated sources. Moreover, the 

maximum error on the localization is 16 mm on the direction of y-axis as presented in 

Fig. 7.11(b). The robustness of CLSE to the estimated number of sources is once 

again confirmed by the localizations of the two sources – 1( ) r  and 2 ( ) r . 

 

 
Fig. 7.11 Positions of the highest peak in the first separated source versus the estimated source 

number ˆ
sN : (a) position of the highest peak on the x-axis, (b) position of the highest peak on 

the y-axis, (c) position of the next highest peak on the x-axis, and (d) position of the next 
highest peak on the y-axis (Diesel engine at 1250 Hz). 
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Fig. 7.12 Positions of the highest peak in the second separated source versus the estimated 

source number ˆ
sN : (a) position of the highest peak on the x-axis, (b) position of the highest 

peak on the y-axis, (c) position of the next highest peak on the x-axis, and (d) position of the 
next highest peak on the y-axis (Diesel engine at 1250 Hz). 

 

7.2 Optimal distance for backpropagation 

  According to Huygens principle and to the mechanism of backpropagation, there is 

an actual distance Z0 between the reconstruction plane and the array of microphones, 

where the separated sources are the most compact. This actual distance is defined as 

the minimum of the spatial entropy (or the spatial variance) of the full reconstructed 

source field as a function of the range distance. Obviously, such an optimum should 

be close to the nominal distance between the source plane and the array. In the present 

section, BSS at the actual distance is investigated by means of the laboratory 

experiments and the industrial example. 

7.2.1 Laboratory experiments in the near-field 

  The spatial entropy of the full reconstructed source field versus the distance Z is 
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displayed in Fig. 7.13. The minimum of the curve corresponds to Zopt = 11.2 cm, 

which is close to the nominal distance Z0 = 10 cm, and coincides with the conclusion 

on the selection of reconstruction plane proposed by J. Hald [13]. Therefore, there is 

definitely a minimum corresponding to the most compact spatial distribution. Figure 

7.14 displays all separated sources on the actual source plane at Zopt = 11.2 cm. For 

comparison, separation results are compared at smaller and larger range distances in 

Fig. 7.15 and Fig. 7.16, respectively. Despite severe distortion in shape, CLSE can 

still successfully separate the sources in the case of large underestimation (Z = 5cm) 

or overestimation (Z = 22cm) of the nominal distance. This means CLSE is robust to 

the range distance Z in the near-field, even though the reconstructed sources suffer 

serious distortion and bias.  

Furthermore, the coordinates of the hottest points of the four separated sources 

versus the distance Z are listed in Tab. 7.1. Among all distances Z, the separated 

results on the actual plane Zopt provides the most accurate localization of the sources 

(see Tab. 7.1). The maximum position errors are respectively 2.3 cm in the x-axis and 

3 cm in the y-axis with respect to the localizations of the sources on the actual plane, 

which are both lower than half the spacing D0 = 12cm between the sources and one 

order of magnitude smaller than the wave length λ = 41.2cm at 833 Hz. 

 

 

Fig. 7.13 (a) Spatial entropy of the full reconstructed source field versus range distance Z 

(near-field at 833 Hz). (b) Zoom around the actual distance. 
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Fig. 7.14 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, at 

the actual range distance (near-field at 833 Hz). 

 

 

Fig. 7.15 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, at 

range distance Z = 5 cm (near-field at 833 Hz). 
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Fig. 7.16 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, at 

range distance Z = 22 cm (near-field at 833 Hz). 

 

 s1 s2 s3 s4 

Z = 5 cm (-8.3, 2.3) (3.8, 1.8) (-6, -7) (3.2, -8.8) 

Z = 10 cm (-8.3, 2.3) (3.3, 3.4) (-5.7, -10.2) (3.5, -8.2) 

Z = 11.2 cm (-8.1, 2.3) (3.2, 3.5) (-5.6, -10) (3.4, -8.2) 

Z = 22 cm (-6.4, 2.5) (3, 4.5) (-3.3, -8.5) (2.7, -7.4) 

Tab. 7.1 Coordinates (x, y) (in centimeter) of the highest peaks of four separated sources 

versus different range distances Z (near-field at 833 Hz).  

 

7.2.2 Laboratory experiments in the far-field 

  In the far-field, the curve connecting the spatial entropy to the range distance Z is 

displayed in Fig. 7.17. Here, the actual distance is identical to the nominal one, i.e Zopt 

= Z0 = 100 cm. The corresponding separation results were displayed in Fig. 6.42 (with 

the radius of aperture function, R = 21 cm). Similarly, the separated sources for 

smaller and larger range distances are depicted in Figs. 7.18 and 7.19, respectively. In 

Fig. 7.19, the lowest peak of the fourth source relates to the first actual source, yet the 

source distribution seems dominated by the same hot point as in the third separated 

source. The two figures demonstrate that CLSE is robust to the distance Z from the 
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far-field point of view. Table 7.2 records the coordinates of the hottest points of the 

four separated sources with respect to different values of the range distance Z. The 

maximum bias on position is 3.7 cm on the x-axis and 3.2 cm on the y-axis, which is 

also lower than the half of the nominal spacing D0 = 18cm in the far-field. 

 

 

Fig. 7.17 (a) Spatial entropy of the full reconstructed source field versus the range distance Z 

(far-field at 2437 Hz). (b) Zoom around the actual distance. 

 

 

Fig. 7.18 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, at 

range distance Z = 60 cm (far-field at 2437 Hz). 
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Fig. 7.19 Separated sources, ˆ ( , )i r , i = 1,…,4, from the criterion of least spatial entropy, at 

range distance Z = 180 cm (far-field at 2437 Hz). 

 

 s1 s2 s3 s4 

Z = 60 cm (-7.5, 4.6) (6, 5) (-8.6, -8.1) (4.8, -8.2) 

Z = 100 cm (-11.2, 7.8) (6.8, 7) (-10.5, -9.9) (7, -9.7) 

Z = 180 cm (-10.6, 6.4) (8, 8.6) (-9.9, -9.5) (8.2, -10.2) 

Tab. 7.2 Coordinates (x, y) (in centimeter) of the highest peaks of four separated sources 

versus different range distances Z (far-field at 2437 Hz).  

 

7.2.3 An industrial example 

  The robustness to the range distance Z between the reconstruction plane and the 

array of microphones is now verified on the Diesel engine example. In this case, the 

actual distance is found as Zopt = 21.3 cm, as shown in Fig. 7.20, which is different 

slightly from the “nominal” distance Z0 = 18 cm since the latter is known with a 

limited precision and actually represents an average distance to a non planar source 

domain . Figure 7.21 displays the primary four sources radiated from the Diesel 

engine. Contrasting them with those in Fig. 6.71, the separated sources on the actual 

plane appear more compact, especially the first and sixth ones. This is then compared 

with an underestimated range distance – Z = 9 cm (see Fig. 7.22) – and an 
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overestimated distance – Z = 27 cm (see Fig. 7.23). With varying the distance Z, the 

shape of sources zooms in and out, but overall CLSE can provide stable results. The 

coordinates of the hottest points of the four separated sources are given in Tab. 7.3. 

The maximum errors in localization is 6.6 cm on the x-axis and 4 cm on the y-axis 

relatively to the corresponding sources at the actual distance.  

 

 

Fig. 7.20 (a) Spatial entropy of the full reconstructed source field versus the range distance Z 

(Diesel engine at 1250 Hz). (b) Zoom around the actual distance. 

 

 

Fig. 7.21 Separated sources, ˆ ( , )i r , i = 1,…,8, from the criterion of least spatial entropy at 

the optimal range distance Zopt = 21.3cm (Diesel engine at 1250 Hz). 
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Fig. 7.22 Separated sources, ˆ ( , )i r , i = 1,…,8, from the criterion of least spatial entropy at 

range distance Z = 9 cm (Diesel engine at 1250 Hz). 

 

 

Fig. 7.23 Separated sources, ˆ ( , )i r , i = 1,…,8, from the criterion of least spatial entropy at 

range distance Z = 27 cm (Diesel engine at 1250 Hz). 
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 s1 s2 s3 s4 

Z = 9 cm (17.8, 60) (42.8, 80.4) (18.8, 33.4) (61.2, 53.2) 

Z = 18 cm (20.4, 62) (44, 76.8) (20.6, 27.6) (66.6, 54.4) 

Z = 21.3 cm (20, 61.4) (44.4, 76) (20.2, 27.6) (67.6, 55.6) 

Z = 27 cm (19.2, 61.6) (46, 73.8) (18, 24.6) (66.4, 52) 

Tab. 7.3 Coordinates (x, y) (in centimeter) of the highest peaks of four separated sources 

versus range different distances Z (Diesel engine at 1250 Hz).  

 

7.3 Size of the aperture function 

  In the present dissertation, the aperture function is selected as a circular Hanning 

window, which is one candidate among many others [157]. The proposed algorithms 

for BSS can work with other types of windows, but this is out of the research scope of 

the dissertation. In this section, the size of aperture function is studied in short.  

  For the laboratory experiments, the radius of the aperture function was selected as 

R = 21 cm and R = 35 cm in Chapter 6. According to the separation results introduced 

in Chapter 6, this parameter has little effect on the separation performance of the 

proposed algorithms, except for mild distortion in shape and negligible bias in 

amplitude. For the Diesel engine example, the radius of the aperture function was R = 

54 cm; separation results with radius set to R1 = 45 cm and R2 = 65 cm are depicted in 

Figs. 7.24 and 7.25, respectively. Except for the third source – 5ˆ ( ) r , the other three 

primary sources are little affected by the size of the aperture function. The reason is 

simple: the third source is close to the boundary of the aperture function as shown in 

Fig. 7.25. The coordinates of the hottest points of the four sources confirms the 

aforementioned observations. That is to say, CLSE is robust to the size of aperture 

function in such an industrial example. Based on the above discussion, the size of 

aperture function should be naturally chosen so as to enclose all sources to be 

separated. 
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Fig. 7.24 Separated sources, ˆ ( , )i r , i = 1,…,8, from the criterion of least spatial entropy 

with an aperture function of radius R = 45 cm (Diesel engine at 1250 Hz). 

 

 

Fig. 7.25 Separated sources, ˆ ( , )i r , i = 1,…,8, from the criterion of least spatial entropy 

with an aperture function of radius R = 65 cm (Diesel engine at 1250 Hz). 
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 s1 s2 s3 s4 

R = 45 cm (21.4, 60.4) (44.8, 73.8) (20, 32.8) (65.4, 50) 

R = 54 cm (20.4, 62) (44, 76.8) (20.6, 27.6) (66.6, 54.4) 

R = 65 cm (20.4, 61.4) (43.6, 73.6) (19.6, 23.6) (65.2, 54.8) 

Tab. 7.4 Coordinates (x, y) in centimeters of the highest peaks of four separated sources 

versus the radius R of aperture function (Diesel engine at 1250 Hz).  
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Conclusions 

Blind separation of sound sources evidences a number of subtleties. One major 

issue is that it involves a spatial dimension not found in classical BSS. This is both a 

difficulty (since it corresponds to an additional convolution over space), and an 

advantage since it offers the possibility of defining new separation criteria. This 

dissertation demonstrates that a unique solution to blind source separation is found by 

forcing the spatial disjointing or the spatial compactness of the separated sources, two 

assumptions which are fairly realistic in many situations. The search for spatially 

disjoint sources has led to the so-called criterion of “spatial decorrelation” and the 

search of spatially compact sources to the so-called criteria of “least-spatial variance” 

and of “least-spatial entropy”. The proposed solutions are fully original and have been 

found successful in situations where classical BSS methods fall short. 

In the first part, based on the backpropagation from the measurements to the source 

domain of interest, the reason is firstly explained in clear: missing the rotation matrix, 

why the virtual sources from only statistical decorrelation do not equal the actual 

sources.  

Inspired by the statistical decorrelation, the criterion of spatial decorrelation is 

proposed in Chapter 3 and applied to blindly separate sound sources which are 

disjoint in space. Meanwhile, the answer to the question proposed 28 years ago – 

“when do the virtual sources equal the actual sources?” – is found in success. 

The principle of least spatial complexity is introduced in Chapter 4 under the 

assumption of spatial compactness. The two variables – the spatial variance and the 

spatial entropy involved in principle of least spatial complexity, both accurately 

measure the spatial compactness in quantity. Furthermore, the corresponding cost 

functions deduced from the two spatial criteria are convex, which apparently 

simplifies the optimization process and guarantees that the local minimum is equal to 

the total minimum. 
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It is still an open problem to determine the number of sources from measurements 

in the field of array signal processing. The contribution to the open problem is 

illustrated at the end of Chapter 5. That is the criteria of least spatial entropy leads to 

the proposal of a new method, the entropic L-curve, to determine the number of active 

sources by searching for the balance between spatial and statistical entropies. To be 

safe, it is suggested to combine the entropic L-curve with other classic methods to 

determine the active sources together. 

In the second part, the proposed algorithms have been validated on laboratory, 

numerical, and industrial data. They also apply indifferently to the near-field and to 

the far-field. It can efficiently separate compact sources even with rather complex 

shapes, such as quadrupoles. Furthermore, it can separate very low sources whose 

amplitude is 40 dB less than the loudest source. Afterwards, the robustness of the 

algorithms to the experimental parameters is fully demonstrated on the laboratory and 

the industrial data.  

One definite advantage of the approach in the dissertation is that it can separate 

sound sources under weak statistical assumptions (only decorrelation is actually 

needed), including the case of stationary and Gaussian sources (which classical BSS, 

for instance SOBI, has strong difficulties to deal with no matter in the near-field or in 

the far-field).  

Four points are to be emphasized again. First, the virtual sources obtained from 

simple statistical decorrelation coincide with the actual sources if and only if the 

sources are also spatially uncorrelated. Second, the criterion of least spatial entropy is 

the first choice when searching for compact sources due to its accuracy, although it 

involves more computational demand than the criteria of spatial decorrelation and of 

least spatial variance. Third, the separation performance (whatever the criterion) 

strongly relies on the ability to first backpropagate the measurements from the array to 

the source domain. At last, the separation seems robust to the determination of the 

number of active sound sources, the range distance between the reconstruction plane 

and the array of microphones, and the size of the aperture function. 

The end of a PhD thesis by no means indicates the end of a research topic. Many 
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issues on such topic are not clear enough or even still unknown. One interesting 

question for future research is whether the proposed criteria could be extended to 

separate (partially) coherent sound sources, for instance to account for the presence of 

wave reflections. With the help of the optimal spatial basis, it is very easy to 

determine the backpropagation involving contributions from actual sources and their 

reflected ones. Here, the actual source and its reflections are coherent to each other. 

The violation of the ordinary assumption of incoherence implies that much stricter 

spatial criterion is needed, if the principle of least spatial complexity can be applied to 

blindly separate the coherent sound sources. 

Another point of interest is whether the proposed methodology could be used to 

separate sound sources radiated from rotating machines, e.g. the wind turbine. Due to 

the effect of rotation, the components which correspond to the sound origins are not 

stationary any more. That is to say, the backpropagation in the source domain of 

interest is non-stationary. The proposed methodology might be employed to separate 

such kind of non-stationary sources, if the measurements from an array of 

microphones can be stationarized first with success. 
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Appendix A 

Bayesian regularization 

  As introduced in Ref [27], the mechanism of Bayesian regularization is as follows: 

the optimal regularization parameter, i.e. the noise-to-signal ratio 2 2 2= /    (where 

β
2 denotes the mean energy of noise from measurements and α2 for the mean energy 

of sources), makes the best trade-off between an acceptable solution with highly 

physical meaning and a reasonable fitting of the measurements with respect to the 

actual sources.  

The key point in Bayesian regularization is how to adjust the parameter η2, 

according to the given source distribution and topology of an array of sensors. Let 

  p
2 2[ , | ] denote the posterior distribution of the unknown hyperparamters β2 and 

α
2 with respect to measurements p. If the priori is assumed to be the uniform 

distribution before recording data, the posterior   p
2 2[ , | ] will be proportional to 

the likelihood  p
2 2[ | , ] in terms of Bayes rule. Therefore, the optimal 

hyperparamters 2
0  and 2

0  are the ones who maximize the likelihood function 

 p
2 2[ | , ]. A practical algorithm, which is thoroughly introduced in Ref [27], is 

applied here. Consequently, a criterion derived from the likelihood function 

 p
2 2[ | , ], is  

 2 2 2ˆ( ) ln( ) ln( )
iiii

ii

I
J

M
     , (A.1) 

where 2̂  denotes the estimated mean energy of sources, M symbolizes the number 

of microphones embedded in the array, and I defines the mutual information between 

sources s(r) and measurements p as 
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where sm denotes the singular values. The three items in the cost function Eq. (A.1) 

are: i) the logarithm of the estimated mean energy, which decreases with η2 rising; ii) 

the mutual information involved in each microphone; iii) the penalty part, respectively. 

Thus the optimal regularization parameter 2
0 , corresponding to the minimum of Eq. 

(A.1), makes a balance between the least energy and maximum transfer of 

information which explains the measurements. 

  At last, three highlights of Bayesian regularization are underlined here: 

1) The cost function 2( )J   (i.e. Eq. (A.1)) is convex, which guarantees the 

existence and uniqueness of the regularization parameter 2
0 . That means it is 

convenient to adjust η2 in the theoretical framework of Bayesian regularization. 

2) The optimization of the cost function 2( )J   is very efficient, as only one 

“inversion” operation is required in the first item of Eq. (A.1). Therefore, Bayesian 

regularization obtains the regularization parameter 2
0  much easier than some classic 

regularization methods do. 

  3) It returns the optimal regularization parameter 2
0 , and the mean energies β2 and 

α
2 simultaneously, which provides the following reconstruction of the source filed 

with many benefits. 
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Appendix B  

Optimization of CLSV in Stiefiel manifold 

  Based on the cost function of the missing matrix V from the criterion of least 

spatial variance (see Eq. (3.20)), the corresponding Euclidean gradient EΣ is defined 

as 

  
H






V
E

V
. (B.1) 

To highlight the relationship between the cost function Σ(V) and the variable V, two 

intermediate variables are introduced, 

   T H T H H H H

l i l i i l l i i lF  v e ΦUDV e e VDU Φ e q v v q , (B.2) 

and 

 H H

l lq DU Φ e , (B.3) 

where vi is the i-th row of matrix V. Substituting Eqs. (B.2) and (B.3) into Eqs. (3.20) 

and (3.21), the cost function of CLSV can be rewritten as 

   2
0

1 1
( ) | | ( )

sN N

l i l i l

i l

F
 

   V v r r r , (B.4) 

with 
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1
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l i l l

l
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i i

F

Tr


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
 v r r

r
ΓΦUDV e e VDU Φ

. (B.5) 

Consequently, substituting Eqs. (B.4) and (B.5) into Eq. (B.1), the (m, k)-th element 

of the Euclidean gradient EΣ can be formulated as 

  
    2

0
* *

1 1

| |sN N
l i l i

mk
i lkm km

F

v v


 
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 

 


V v r r
E , (B.6) 

where 
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    
 

2 2
0 2 0
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km km km

F F
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and 
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with 
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' 1

{ }= ( )
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Combining Eqs. (B.9) and (B.10), one has 
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(B.11) 

which is easily calculated with the help of Eq. (B.8). Combining Eqs. (B.8), (B.9) and 

(B.11), the (m, k)-th element of the Euclidean gradient EΣ can be deduced. Finally, the 

full Euclidean gradient EΣ is given in the matrix format 
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The calculated Euclidean gradient EΣ and the cost function Σ(V) are embedded 

together into steps 2) and 7) of the CG algorithm introduced in subsection 3.3.1, and 

then the optimal matrix V is found by iterations. Accordingly, the mixing matrix A 

and the latent sources α are respectively estimated with the help of Eqs. (2.10) and 

(2.19), and the optimal V. At last, all separated sources are reconstructed based on the 

estimated A and α. 
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Appendix C  

 Optimization of CLSE in Stiefiel manifold 

  Similar to Eq. (B.1), the Euclidean gradient EH of the cost function from the 

criterion of least spatial entropy is written as 

  
H H

H




V
E

V
. (C.1) 

First of all, substituting Eqs. (B.2), (B.3) and (B.10) into Eq. (3.29), the total spatial 

entropy H(V) can be rewritten more concisely as 
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The (m, k)-th element of the Euclidean gradient EH can be formulated as 
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With the help of Eq. (B.8),  H mk
E  can be calculated. In the end, the full Euclidean 

gradient EH is depicted as 
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In the same way as described at the end of Appendix A, the separated sources from 

the principle of least spatial entropy can be reconstructed with the help of the optimal 

V. 
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