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Abstract of thesis presented to the Senate of Universiti Putra Malaysia and École 
Doctorale 406 Chimie Moléculaire Université Pierre et Marie Curie in fulfillment of 

the requirement for the degree of Doctor of Philosophy 
 
 

SYNTHESIS, CHARACTERIZATION AND BIOACTIVITIES OF 
DITHIOCARBAZATE-SCHIFF BASE LIGANDS AND THEIR METAL 

COMPLEXES 
By 

LOW MAY LEE 
2014 

 
 

There is an urgent need to discover new drugs with novel mechanisms of action, 

higher activity and improved selectivity to address the severe challenge of multi-

drug resistance in treating bacterial infections and cancer. In view of this, Schiff 

bases derived from S-substituted dithiocarbazate and their corresponding metal 

complexes with a plethora of potentially exciting biological activities and 

coordination chemistry are attractive candidates for consideration. Macroacyclic and 

open chain metal complexes of tetradentate NNSS and bidentate NS Schiff base 

ligands derived from the condensation of S-benzyldithiocarbazate (SBDTC) and S-

methyldithiocarbazate (SMDTC) with 2,5-hexanedione, methyl levulinate, levulinic 

acid, 4-carboxybenzaldehyde and 3-acetylcoumarin have been prepared. The 

compounds were fully characterized with various physico-chemical and 

spectroscopic methods. A total of 11 crystals structure were determined throughout 

this work. In order to provide more insight into the behaviour of the complexes in 

solution, electron paramagnetic resonance (EPR) and cyclic voltammetry (CV) 

experiments were performed. Conjugation of the most promising antimicrobial 

compound (Schiff base of SBDTC with 4-carboxybenzaldehyde) to various vectors 

(polyarginine, polyethylene glycol (PEG) and phe-arg-!-napthylamide (PA!N) was 
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achieved using either standard solid phase or solution synthetic methodologies to 

prepare improved therapeutic agents. Among the conjugates, the nonaarginine (R9) 

derivatives showed the most encouraging synergistic effect upon conjugation and 

complexation to copper ion with enhanced water solubility, bacteria cell membrane 

permeability and bioactivity. The Cu(II) R9 derivatives possess remarkable 

antibacterial activity against a wide spectrum of bacteria and in particular, highly 

efficacious against S. aureus with MIC values up to 1-0.5 µM when tested against 

nine strains of Gram-positive and Gram-negative bacteria. This appears to be the 

pioneer study to show that the conjugation of polyarginine to dithiocarbazate 

compounds can greatly influence their therapeutic potential. Cytotoxic assay was 

also carried out for selected non-conjugated compounds. All the selected Cu(II) 

complexes assayed against breast cancer cells lines (MCF-7 and MDA-MB-231) 

exhibited good cytotoxicity with lower IC50 values in comparison to their respective 

ligands. This work highlights the relevance of metal complexation strategy to 

stabilize the ligands and improve their bioactivity. The structure-activity 

relationships of the compounds are discussed. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia dan École 
Doctorale 406 Chimie Moléculaire Université Pierre et Marie Curie 

sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah 
 

  
SINTESIS, PENCIRIAN DAN AKTIVITI BIOLOGI LIGAN 

DITIOKARBAZAT-BES SCHIFF DAN KOMPLEKS LOGAM  
Oleh 

LOW MAY LEE 
2014 

 
Terdapat keperluan segera untuk menemui ubat-ubatan baru dengan mekanisme 

baru, aktiviti yang lebih tinggi dan tindakan yang lebih khusus bagi menangani 

cabaran yang serius iaitu rintangan terhadap pelbagai ubat-ubatan dalam rawatan 

jangkitan bakteria dan kanser. Memandangkan situasi ini, bes Schiff dan kompleks 

logam yang berasal daripada S-gantian ditiokarbazat yang mempunyai pelbagai 

potensi aktiviti biologi dan kimia koordinasi menarik merupakan calon-calon yang 

baik untuk pertimbangan. Kompleks logam bersistem makro-bukan-kitaran dan 

rantaian-terbuka masing-masing dengan ligan tetradentat NNSS dan bidentat NS bes 

Schiff yang berasal daripada kondensasi antara S-benzilditiokarbazat (SBDTC) dan 

S-metilditiokarbazat (SMDTC) dengan 2,5-heksanadion, metil levulinat, asid 

levulinik, 4-carboxibenzaldehid dan 3-asetilcoumarin telah disediakan. Semua 

sebatian tersebut telah dicirikan sepenuhnya dengan pelbagai kaedah fiziko-kimia 

dan spektroskopi. Sebanyak 11 struktur kristal telah ditentukan sepanjang kajian ini. 

Untuk memberi gambaran yang lebih jelas terhadap sifat-sifat kompleks dalam 

larutan, eksperimen elektron resonans paramagnet (EPR) dan voltammetri berkitar 

(CV) telah dijalankan. Konjugasi sebatian yang paling berpotensi antimikrob (bes 

Schiff SBDTC dengan 4-carboxibenzaldehid) dengan pelbagai vektor (poliarginine, 

polietilena glikol (PEG) dan phe-arg-!-naptilamida (PA!N)) telah berjaya dicapai 
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sama ada melalui metodologi sintetik standard peptida fasa pepejal atau larutan bagi 

penyediaan agen terapeutik yang lebih baik. Antara sebatian yang dikonjugasi, 

nonaarginine (R9) derivatif menunjukkan kesan sinergi yang paling menggalakkan 

melalui konjugasi dan juga pengkompleksan dengan ion kuprum yang turut 

membawa kepada perningkatan kelarutan dalam air, ketelapan terhadap membran 

sel bakteria dan bioaktiviti sebatian. Cu(II) R9 derivatif memiliki aktiviti 

antibakteria yang terbaik terhadap spektrum bakteria yang luas dan khususnya, 

sangat berkesan terhadap S. aureus dengan nilai-nilai MIC sehingga 1-0.5 "M 

apabila diuji terhadap sembilan jenis bakteria Gram-positif dan Gram-negatif. Ini 

merupakan kajian perintis yang menunjukkan bahawa konjugasi antara polyarginine 

dengan sebatian ditiokarbazat boleh mempengaruhi potensi terapeutik mereka. 

Kajian sitotoksik juga dijalankan untuk segelintir sebatian yang tidak dikonjugasi. 

Semua Cu(II) kompleks yang diuji terhadap sel-sel kanser payudara (MCF-7 dan 

MDA-MB-231) menunjukkan sifat sitotoksik yang baik dengan nilai-nilai IC50 yang 

lebih rendah berbanding dengan ligan masing-masing. Ini menunjukkkan  

kesesuaian strategi pengkompleksan dengan ion logam untuk menstabilkan ligan dan 

meningkatkan bioaktiviti mereka. Perhubungan di antara struktur dan aktiviti 

sebatian juga dibincang. 
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Résumé de thèse présenté au Sénat de Université Putra Malaysia et de l'École 
Doctorale Chimie Moléculaire 406 Université Pierre et Marie Curie à 

l'accomplissement de l'obligation pour le grade de docteur en philosophie 
 

SYNTHÈSE, LA CARACTÉRISATION ET DE BIOACTIVITÉS 

DITHIOCARBAZATE - BASE DE SCHIFF LIGANDS ET LEUR MÉTAL 

COMPLEXES  

Par  

LOW MAY LEE  

2014 

Il y a de nos jours un besoin urgent de découvrir de nouveaux médicaments avec de 

nouveaux mécanismes d'action, une activité plus élevée et une meilleure sélectivité 

pour relever le défi de la multirésistance dans le traitement des infections 

bactériennes et le cancer. Dans cette perspective, des bases de Schiff dérivées de 

dithiocarbazates S-substitué et leurs complexes métalliques correspondants sont des 

candidats intéressants puisqu’ils peuvent être facilement synthétisés et permettent 

une grande diversité de coordination. Dans cette étude, des complexes 

macroacycliques tetradentes SSNN et bidente NS dont les ligands sont issus de la 

condensation de la S-benzyldithiocarbazate (SBDTC) ou de la S-

methyldithiocarbazate (SMDTC) avec la 2,5-hexanedione, le lévulinate de méthyle, 

l'acide lévulinique, le 4-carboxybenzaldéhyde ou le 3-acétylcoumarine ont été 

préparés. Les ligands et complexes synthétisés ont été entièrement caractérisés par 

différentes méthodes spectroscopiques et physico-chimiques. 11 structures 

cristallines ont été obtenues au cours de ce travail et afin d’étudier en détail la 

géométrie, la stabilité et les propriétés de ces complexes en solution, des expériences 

de résonance paramagnétique électronique (RPE), de titration calorimétrique 

isotherme et de voltamétrie cyclique (CV) ont été réalisées. L’activité 
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antibactérienne de ces complexes a ensuite été étudiée et a permis de sélectionner un 

complexe « leader » (plus efficace, s et fonctionnalisable). Ce complexe a alors été 

modifié afin d’augmenter sa stabilité en milieux biologique, sa solubilité dans l’eau 

ainsi que son activité. Il a été conjugué avec différentes entités  des peptides 

pénétrants, un polyéthylène glycol (PEG) et un peptide inhibiteur des pompes 

d’efflux bactériennes (Phe-Arg-!-napthylamide (PA!N)). Parmi les conjugués 

obtenus, ceux comportant un peptide avec 9 arginines (R9) ont montré un effet 

synergique lors de la formation des complexes puisque l’activité anti-bactérienne 

des complexes s’est avérée meilleure que celle des ligands et du cuivre seuls. Ces 

complexes ont montré une remarquable activité antibactérienne sur neuf souches de 

bactéries Gram-positives et Gram-négatives et en particulier, ils se sont avérés très 

efficaces contre S.aureus avec des valeurs de concentration minimale inhibitrice 

(CMI) de 1 à 0,5 µM. L’activité anti-cancéreuse des complexes non-conjugués a 

également été étudiée. Tous les complexes de cuivre sélectionnés et testés sur des 

cellules de cancer du sein MCF7 et MDA-MB- 231 ont montré une cytotoxicité 

élevée avec des valeurs de CI50 plus faibles pour les complexes par rapport à leurs 

ligands respectifs. Ceci met à nouveau en évidence la pertinence d’utiliser les 

complexes métalliques, pour à la fois stabiliser les ligands et générer des composés 

plus actifs. Les relations structure-activité des composés sont discutées. 
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initiated in the direction of the arrow. 

 
3.23 Plot of the anodic (Ipa) and cathodic (Ipc) current with the square 

root of scan rate for Cu(SMML)2. 
 
4.1 Schematic diagram of a functionalized bis(thiosemicarbazone) 

conjugated to a biologically active molecule (BAM). 
 
4.2 Applications of cell-penetrating peptides as molecular delivery 

vehicles. 
 
4.3 CPP loading and targeting strategies.  
 
4.4 Chromatograms of PEG-SB4CB synthesized via Fmoc strategy. 

(a) Crude (b) Purified. Detection at ! = 220 nm (top) and 280 nm 
(bottom). The peak at 17.5 min corresponds to the expected 
product. 

 
4.5 RP-HPLC chromatograms obtained on a C8 column. Samples 

were eluted  using a gradient of acetonitrile from 5 to 95% in 
water over 30 min with 1 mL min-1  flow rate at room 
temperature (both solvents contain 0.1% TFA). Detection: ! = 
220 nm (top) and 280 nm (bottom). 

 
4.6 Chromatograms of PA!N-SB4CB synthesized in solution. (a) 

Crude (b) Purified. The peak at 21.5 min corresponds to the 
expected product. 
 

4.7 1H and 13C spectra of the Schiff base-conjugate (R1-SB4CB). 
 

4.8 MALDI spectra of R9-SB4CB. The hydrolyzed fragment 
(cleavage of C=N bond) is noticeable during MALDI 
characterization. 
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4.9 UV-Vis titration of various ligands (concentration set at ca.  2.5 
x 10-5 M) with Cu(OAc)2.H2O (concentration set at ca. 5 x 10-4 
M)  at 25°C. a) Titration of R1-SB4CB in methanol and its 
corresponding titration curve monitored at 340 nm. b) Titration 
of SM4CB in acetate buffer pH 6 and its corresponding titration 
curve monitored at 340 nm. c) Titration of R9-SM4CB in acetate 
buffer pH 6 and its corresponding titration curve monitored at 
340 nm. 

 
4.10 UV-Vis spectra obtained by addition of Cu(OAc)2.H2O at 25°C 

to a solution of R9-SB4CB (ca. 2.5 x 10-5 M) at a) pH 4 (0.1 M 
acetate buffer), b) pH 7.4 (0.01 M PBS buffer) and at c) pH 9 
(0.1 M borate buffer).  

 
4.11  LC chromatogram of Cu(R1-SB4CB)2 (top) and R1-SB4CB 

(bottom) showing the two isomeric peaks with similar molecular 
mass. A linear gradient elution developed from holding time of 5 
min at 100% (0.1% formic acid in water ) and then from 0-60% 
(0.1% formic acid in acetonitrile) in 30 min. Experiments were 
carried out at a flow rate of 10 µL min-1 at room temperature 
with peaks detection at 220 nm and 280 nm. 
 

 4.12 ITC titration of Cu(R9-SB4CB)2, Cu(OAc)2 (concentration at ca. 
5 x 10-5 M) was added every 300 s to the ligand R9-SB4CB 
solution (concentration at ca. 1 x 10-5 M) in 0.1M acetate buffer 
at pH 6.. The top curve represents the corrected heat flow with 
time. The bottom curve represents the heat of reaction (measured 
by peak integration) as a function of Cu/ligand ratio. The solid 
line is the best theoretical fit to the experimental data. The three 
first points were removed for the fitting. 
 

4.13 The EPR spectra of both parent and conjugated compounds (1 
mM) in frozen DMF were indicative of the same species being 
formed with approximate calculated g! and g! values of ~2.05 
and ~2.15, respectively. Microwave frequency 9.50 GHz, 
microwave power 0.25 mW, modulation amplitude 0.2 mT, 
modulation frequency 100 kHz, time constant 164 ms, T = 50 K. 
 

 4.14 EPR spectra of 1mM Cu(R9-SB4CB)2 and Cu(OAc)2 in frozen 
acetate buffer pH 6 (0.1 M) are different from one another. 
Microwave frequency 9.50 GHz, microwave power 0.2 mW, 
modulation amplitude 0.2 mT, modulation frequency 100 kHz, 
time constant 164 ms, T = 50 K. 
 

 4.15 Cyclic voltammograms of Cu(R1-SB4CB)2 and Cu(SB4CB)2, 
1.7 mM in anhydrous deoxygenated DMF with 0.1 M 
tetrabutylammonium perchlorate as the supporting electrolyte. 
Working electrode glassy carbon; counter electrode Pt wire; 
reference electrode Ag/AgCl, scan rate 100 mV/s. All sweeps 
were initiated in the direction of the arrow. 
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CHAPTER 1 

INTRODUCTION 

 

The use of novel, exotic original compounds from nature’s chest to treat diseases has 

been a quest of mankind since ancient time (Li and Vederas, 2009). Although 

natural products have historically been a rich source of lead therapeutic molecules, 

Harvey (2008, p. 894) pointed out that “the difficulties in access and supply, 

complexities of natural product chemistry and inherent slowness of working with 

them” have contributed to the de-emphasis of natural products programs in industry 

over the years. It is foreseeable that developments in the field of synthesis will only 

continue as synthetic compounds hold the upper hand in meeting the demand of the 

highly competitive pharmaceutical industry to adapt to the current state-of-the-art 

advancement in science and technology (Ferguson, 1975; Li and Vederas, 2009; 

Strohl, 2000).   

 

In term of metal-containing drugs, the platinum drug cisplatin introduced clinically 

in 1971 and approved by Food and Drug Administration  (FDA) in late 1978, has 

been the most e!ective metal-based anticancer drug in the market (Hoeschele, 2009; 

Swarts et al., 2008). The resounding therapeutic success of cisplatin and its 

analogues has triggered tremendous effort in search of alternative metal-based 

chemotherapeutic agents in the past few decades (Ronconi and Fregona, 2009; 

Jakupec et al. 2008). The rationale for these studies is that metal centers other than 

platinum might open up new avenues in the development of clinically useful drug 

(Ronconi et al., 2006). Furthermore, there is an urgency to discover and characterize 

new drugs with enhanced activity, selectivity, bioavailability and fewer side-effects 
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than conventional drugs to treat current diseases. Figure 1.1 highlights the steady 

decrease in not only the commercialization but also the discovery for new antibiotics 

after the 1980s while the serious threat of antimicrobial resistance continues to 

prevail as reflected in the increasing occurrence of Methicillin-resistant 

Staphylococcus aureus (MRSA) over the same period (Bandow and Metzler-Nolte, 

2009; Patra et al., 2012b).  In addition, parallel concern over acquired drug 

resistance and serious side-effects of current anti-cancer drugs in the midst of the 

rise of cancer, in particular breast cancer as one of the leading causes of death 

worldwide, also drives the need to develop better alternatives (Ahmad et al., 2013; 

Yang et al., 2013; Ronconi and Fregona, 2009).   

 

Figure 1.1. (a) Decade-wise approval of new antibiotics and (b) prevalence of 
MRSA (Source: Patra et al., 2012b) 
 

Many publications have highlighted the rich diversity and potential of metal 

complexes for the design of novel therapeutic agents (Fricker, 2007; Haas and 

Franz, 2009; Ronconi and Sadler, 2007; Hambley, 2007; Thompson and Orvig, 

2006; Meggers, 2009). The intrinsic nature of metal centers, characteristic 

coordination modes, accessible redox states and tuneable thermodynamic and kinetic 

properties allow metal complexes to offer potential advantages over organic agents 
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alone (Rijt and Sadler, 2009). In addition, Sadler (2009, p. 10647) stated that “the 

ligands not only control the reactivity of the metal but also play critical roles in 

determining the nature of interactions involved in the recognition of biological target 

sites such as deoxyribonucleic acid (DNA), enzymes and protein receptors” (p. 

10647). The great expansion of research in the coordination chemistry of nitrogen- 

and sulphur-containing ligands such as Schiff bases derived from 

thiosemicarbazones and dithiocarbazates has taken place during recent years (Pelosi, 

2010; Beraldo and Gambinob, 2004; Ali and Livingstone, 1974). Schi! base metal 

complexes have played a prominent role in the development of coordination 

chemistry. This area of research has a wide spectrum, ranging from synthesis to 

application in many diverse fields. Schiff bases are condensation products of 

primary amines and aldehydes or ketones (e.g. RCH=NR’, where R and R’ may 

represents alkyl and/or aryl substituents) that have often been used as chelating 

ligands for preparation of complex compounds which are useful as catalysts, in 

various biological systems, polymers and dyes besides some uses as antifertility and 

enzymatic agents (Kumar et al., 2009; Soliman and Linert, 2007). Since this class of 

ligands possess both hard nitrogen and soft sulphur donor atoms, they are capable to 

act as good chelating agents for various metal ions (Mohamed et al., 2009). The 

flexibility and bioactivity of nitrogen and sulphur containing Schiff bases have also 

been associated with the presence of both imino (-N=CH-) and thioamino (-(C=S)-

NH-) moieties in their structures (Tarafder et al., 2008). Coordination of such 

compounds with metal ions often enhances their activities (Lobana et al., 2009). The 

low cost as well as the relatively easy preparation of Schiff base derivatives also 

provide a major attraction in creating novel leads that can be synthesized in a 

practical and step-economical fashion.   



4 
 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 S-substituted dithiocarbazate 

Schiff base ligands formed from dithiocarbazates are a class of particularly 

important Schiff bases which have been of immense interest owing to their 

potentially beneficial pharmacological properties and their wide variety of bonding 

modes and stereochemistry. Dithiocarbazates easily form “an interesting series of 

ligands whose properties can be modified by introducing different organic 

substituents” to form stable complexes with a wide variety of metal ions (Tarafder et 

al., 2002b, p. 2691). In 1974, Ali and Livingstone first reviewed the chemistry of 

nitrogen-sulphur (NS) chelating ligands. Since then, much has been published about 

metal complexes with dithiocarbazate. Most of the work has focused upon S-methyl 

and S-benzyldithiocarbazate Schiff bases and complexes, while other S-substituted 

derivatives have been studied recently (Figure 2.1). They include S-allyl (Islam et 

al., 2014), isomeric S-2-/3-/4-picolyl (Khoo et al., 2014; Crouse et al., 2004; Khoo, 

2008), isomeric S-2-/3-/4-methylbenzyl (Ravoof et al., 2011; Ravoof et al., 2010; 

Ravoof, 2008), S-napthylmethyl (How, 2008), S-quinolin-2yl-methyl (How, 2008), 

S-4-nitrobenzyl (Pavan et al., 2010; Maia et al., 2010) and S-4-chlorobenzyl (Li et 

al., 2009).   
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Figure 2.1. Various S-substituents at position R1 in dithiocarbazates. 

 

2.2 Schiff bases and metal complexes 

Many Schiff base ligands have been obtained by the condensation of an aldehyde or 

a ketone with dithiocarbazate. Figure 2.2 illustrates the different carbonyl 

compounds that have been used as precursors for the ligands preparation with 

condensation at position R2. The resulting Schiff bases and their respective metal 

complexes of these selected examples of alkyl, aryl and heteroatomic carbonyl 

compounds are biologically active and will be discussed in the following section. 

Other Schiff bases with substituents involving amino acid, sugars and calixarene are 

shown in Figure 2.3a. Apart from the varied S-substituents, modifications at N1 

atom of the dithiocarbazate derivatives have also been reported (Figure 2.3b). The 

ligands can be further classified as mono(dithiocarbazate) and bis(dithiocarbazate) 

which could result in open chain and macroacyclic metal complexes upon 

complexation. There are also reports of mixed ligand complexes of dithiocarbazate 

derived ligands with saccharinate ion (Ravoof et al., 2007), phenanthroline bases 

(Sasmal et al., 2008) and triphenylphosphine (Maia et al., 2010) as co-ligands.  
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(a) Alkyl and aryl series 

 
 

 
(b) Heteroatomic series 

 
 
Figure 2.2. Examples of different carbonyl compounds that have been used 
for the preparation of dithiocarbazate ligands (a) alkyl and aryl series (b) 
heteroatomic series.   
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(a) Schiff bases with sugars, amino acid and calixarene. 
 

 

                                          
 
(Sources: Iskander et al., 2003; Cattabriga et al., 1998; Sun et al., 2009) 
 
(b) Other derivatives with modifications at N1 atom 

 
   

 
Figure 2.3. Examples of different dithiocarbazate derivatives (a) with sugars, 
amino acid and calixarene (b) with modifications at N1 atom 
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Structural determination show that these dithiocarbazate related compounds could 

exist differently either as E or Z diastereoisomers relative to the azomethine C=N 

bond or as cis-cis, cis-trans, trans-cis and trans-trans conformations around the C-N 

and C-S bonds (Figure 2.4) (Lanfredi et al., 1977). They also form thiol-thione 

tautomers and, if a hydroxy functional group is present, S=C or C=S conformation 

could result based on the direction of the thiocarbonyl group either towards or away 

from the intramolecular hydrogen bonding (Figure 2.5) (Krasowska et al., 2010).  In 

general, dithiocarbazate related compounds normally crystallize in trans-cis 

configuration around the C=S bond in both the S-substituted dithiocarbazate and its 

Schiff base ligands. They also commonly form intermolecular bonds via NH···S 

hydrogen bonding and CH···S interactions. The Schiff base coordinates divalent 

metal ion in its iminothiolate form. Therefore, deprotonation of thioamide N-atom is 

typical in dithiocarbazate Schiff base coordination chemistry. The conversion of 

C=S double bond to a single C-S bond is also anticipated due to “tautomerism of the 

dithiocarbazate ligand to its iminothiolate form” (Ravoof et al., 2007, p 1163).  A 

number of bonding modes and geometries (e.g. tetrahedral,  square planar, square 

pyramidal and octahedral) have been observed for the dithiocarbazate derivatives 

with transition, non-transition and heavy metals as well as actinides (Tarafder et al., 

2002b; Maia et al., 2010; Ravoof et al., 2004; Takjoo et al., 2011).  !

 

Figure 2.4. Different conformations of dithiocarbazate (Source: Lanfredi et al., 
1977) 
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(a)                                                           (b)     

 

Figure 2.5. (a) Thione-thiol tautomerism (b) C=S and S=C conformers (Source: 
Krasowska et al., 2010) 
 

2.3 Biological activity 

Dithiocarbazate derivatives are of great interest particularly in the development of 

novel therapeutic compounds because of their vast spectrum of biological activity. 

Many researchers have synthesized these compounds as target structures and have 

evaluated their biological activities.  A compilation of literature reports focusing on 

the significant bioactivities of a variety of dithiocarbazate carried out during the past 

several decades will be presented herein.  

  

2.3.1 Anticancer activity  

The Schiff base derived from S-methyldithiocarbazate (SMDTC) with isatin 

(SMISA) and its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal complexes were 

evaluated in vitro against MDA-MB-231 (human breast carcinoma cells not 

expressing nuclear estrogen receptors,  ER-) and MCF-7 (human breast carcinoma 

cells expressing nuclear estrogen receptors, ER+) cancer cell lines. SMISA was 

found to be inactive, however Ni(SMISA)2 and Cu(SMISA)2 exhibited marked 

activity against the MCF-7 with IC50 (!g/mL) values of 3.5 and 0.45, respectively, 

whereas Zn(SMISA)2 and Cd(SMISA)2 were moderately active. Cd(SMISA)2 was 

also active against the MDA-MB-231 with IC50 value of 1.7 !g/mL. The active 

compounds demonstrated better IC50 values than the standard drug tamoxifen (IC50 
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against MCF-7= 5.0 !g/mL; IC50 against MDA-MB-231= 8.0 !g/mL) (Manan et al., 

2011b). Another closely related study involving S-benzyldithiocarbazate (SBDTC) 

Schiff bases derived from 5-fluoroisatin, 5-chloroisatin, 5-bromoisatin showed that 

the cytotoxic activity of the halo substituted isatins against the MCF-7 breast cancer 

cell lines tested was in the order of Br (2.6 !g/mL) > F (3.2 !g/mL) > Cl 

(14.0 !g/mL) (Manan et al., 2011a). The ONS Schiff base of SBDTC with 

salicylaldehyde and its Zn(II) and Sb(III) complexes were also strongly active 

against human cell T-lymphoblastic leukemia CEM-SS (IC50= 2.3 to 4.3 !g/mL) 

while the Cu(II), U(VI) and Th(IV) complexes were moderately active. The Ni(II), 

Zr(IV) and Cr(III) complexes were found to be inactive. Complexation seems to 

reduce the cytotoxicity of this ligand (Tarafder et al., 2000a). 

   

A bridged dimeric Cu(II) complex of the Schiff base product of condensation 

of SBDTC and 2-acetylpyridine, Cu2Cl2(L)2  (Figure 2.6) was identified as the best 

inhibitor of cell motility with nanomolar potency from the screening performed by 

Beshir et al (2008). The compound appeared to be selective for certain cell lines as it 

was most active towards Madin-Darby canine kidney (MDCK) cells followed by 

human breast carcinoma T47D cells, less in human breast carcinoma BT20 cells and 

show a weaker activity in human colorectal carcinoma HCT116 cells.  From the 

structure-activity relationship investigation, Beshir et al. (2008) concluded that a 

two-ligand structure with bulky nonpolar S-substituents in a transoid conformation 

is important for the antimigratory activity of these metal-ligand complexes.  
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Figure 2.6. Compounds with antimigratory activity (Source: Beshir et al., 2008) 
 
 
 
The Schiff base of SMDTC with 2-acetylpyridine and its Mn and Co complexes 

have been synthesized. The free ligand (IC50= 21.7 !M) and its metal complexes 

(IC50= 4.5 !M for Mn and 25.4 !M for Co) exhibited significant and different 

antitumor activity against human acute myelocytic leukemia cell line (K562) (Chen 

et al., 2011). 

 

The tridentate NNS Schiff base derived from SMDTC with pyridine-2-

carboxaldehyde and the Mn complex of analogous Schiff base prepared by 

condensing SBDTC with pyridine-2-carboxaldehyde showed significant antitumor 

activity against leukemia cell line K562 with IC50 values in the !M range, 37 !M 

and 31 !M, respectively (Zhang et al., 2011a). The Schiff base SBDTC-pyridine-2-

carboxaldehyde was also cytotoxic with an IC50 value of 5.90 !g/mL against CEM-

SS cells while the Cu(II), Cd(II), Zn(II), Sb(II) and Co(II) complexes were strongly 

cytotoxic with IC50 values of 2.20 !g/mL, 2.30 !g/mL, 5 !g/mL, 1.6 !g/mL and 

0.35 !g/mL, respectively (Tarafder et al., 2000c; Tarafder et al., 2000c). In addition, 

the Cu(II) and Cd(II) complexes were effective against human colon 

adenocarcinoma cells (HT-29) with their corresponding IC50 values of 2.60 !g/mL  

and 3.10 !g/mL  (Tarafder et al., 2001b).  Another Schiff base synthesized by 
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reacting S-4-picolyldithiocarbazate (S4PDTC) with pyridine-2-carboxaldehyde 

(Pc4PDTC) showed moderate cytotoxicity against human myeloid leukemia cells 

(HL-60) with IC50 value of 9 !g/mL while the Schiff base synthesized by reacting  

S4PDTC with 4-carboxybenzaldehyde (Cb4PDTC) was inactive. Complexing 

Pc4PDTC with Cd(II) and Cu(II) enhanced its cytotoxicity from moderately to 

highly active (IC50 value of 1.20-1.70 !g/mL). Pc4PDTC containing two pyridine 

rings and its Cd(II) and Cu(II) complexes were also highly active against colon 

cancer cells HT-29 with IC50 value " 1.0 !g/mL (Khoo et al., 2014). S-2-

picolyldithiocarbazate (S2PDTC) proved moderately active against HT-29 and 

weakly active toward CEM-SS with IC50 values of 9.5 and 24.0 !g/mL, respectively, 

while among its Schiff bases reported herein, only the NNS Schiff base with 

pyridine-2-carboxaldehyde showed strong activity toward CEM-SS and HT-29 with 

IC50 values of 2.3 !g/mL. All of the Ni(II) complexes were inactive against CEM-SS 

cancer cells (Crouse et al., 2004). 

 

SBDTC-2-acetylthiophene (SB2ATP), IC50 = 13 !g/mL and Cd(SB3ATP)2, IC50 = 9 

!g/mL showed significant bioactivity towards human promyelocytic leukemia cells 

(HL-60). SB2ATP, SBDTC-3-acetylthiophene (SB3ATP), Co(SB2ATP)2, 

Cu(SB2ATP)2, Cu(SB3ATP)2, Zn(SB2ATP)2 and Cd(SB2ATP)2  were also 

selective with significant chemotherapeutic activity against MCF-7 with IC50 = 1.4–

4.2 !g/mL. The Schiff bases however displayed higher cytotoxic activity compared 

to their metal complexes except for Cu(SB3ATP)2 (Chan et al., 2008).  The Zn 

complex of the Schiff base, SBDTC-5-methyl-2-furaldehyde was also found to be 

highly active against CEM-SS leukemia cell line with IC50 value of 2.0 !g/mL, 

while the Cd complex was slightly less active than that of Zn with IC50 value of 4.95 



13 
 

!g/mL (Tarafder et al., 2002a).  The Cd(II) complexes of SMDTC with 2-furyl-

methylketone and 5-methyl-2-furaldehyde and Co(II) complex of SMDTC-2-furyl-

methylketone were found to be very active against CEM-SS and cervical cancer 

cells (HELA) with IC50 values between 1.8 and 3.6 !g/mL (Chew et al., 2004). The 

Pb(II) complex of SBDTC with 5-methyl-2-furaldehyde was highly cytotoxic 

against leukemic cells CEM-SS with IC50 of 3.25 !g/mL (Tarafder et al., 2002b). 

The Cu (II), Ni (II) and Zn (II) complexes of SMDTC with 2-furylmethylketone 

showed very good activity against CEM-SS cells with IC50 values of 1.6, 2.1 and 3.0 

!g/mL, respectively. The Cu(II) and Zn(II) complexes were also highly active 

against HELA cells with IC50 values of 1.5 and 2.1 !g/mL (Tarafder et al., 2002c).  

 

The comparison of cytotoxic activity of SMDTC-2-benzolpyridine, SBDTC-2-

benzolpyridine and their metal complexes indicated that the presence of bulky 

nonpolar S-substituents on dithiocarbazate moiety and complexation with metals can 

enhance the cytotoxic activities. In particular, the Zn(II) complex of the S-benzyl 

derivative effectively inhibited K562 leukemia cell line at a concentration more than 

61-fold lower than the Schiff base ligand and the IC50 values of both Zn(II) 

complexes were also higher against the normal hepatocyte QSG7701 cell line, 

demonstrating that the compounds were able to distinguish the tumor cells from 

normal cells (Li et al., 2012). The pentadentate Schiff base of 2,6-diacetylpyridine 

with SBDTC exhibited marked cytotoxicity against CEM-SS giving IC50 value of 

4.3 !g/mL, but its Ni(II) complex was inactive (Ali et al., 2001a). The Schiff bases 

of both SMDTC- and SBDTC-6-methyl-2-formylpyridine exhibited strong 

cytotoxicity against human ovarian cancer (Caov-3) cell lines with the S-methyl 

derivative (IC50 = 1.0 !g/mL) being twice as active as the S-benzyl derivative. The 
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Pt complex of the S-methyl derivative was moderately active but the Pd(II) complex 

was only weakly active against this cancer. None of the complexes of S-benzyl 

derivatives are active against the ovarian cancer cell line (Caov-3) (Ali et al., 2006). 

The mixed-ligand complexes of general formula, [Cu(NNS)(sac)] involving six 

NNS Schiff bases ligands (SBDTC or SMDTC with 2-acetylpyridine, 2-

benzoylpyridine and 6-methyl-2-formylpyridine, respectively) and sac (the 

saccharinate anion)  (Figure 2.7) were found to be highly active against the leukemic 

cell line HL-60 with IC50 values of 0.25-0.80 !g/mL but only the Cu complex with 

SBDTC-2-acetylpyridine exhibit strong cytotoxicity against Caov-3, IC50 = 0.40 

!g/mL (Ravoof et al., 2007; Ravoof et al., 2004).  

(a)        (b) 

      

Figure 2.7. (a) Schiff bases of SBDTC with 2-acetylpyridine, 2-benzoylpyridine 
and 6-methyl-2-formylpyridine, respectively in thione form (b) saccarinate 
anion (Source: Ravoof et al., 2007) 
 

A tridentate nitrogen-sulfur Schiff base synthesized by condensation of 6-methyl-2-

formylpyridine with S-3-methylbenzyldithiocarbazate was strongly active against 

MCF-7 and MDA-MB-231 cell lines with IC50= 0.3 and 2.2 !g/mL, respectively. Its 

metal complexes also showed high selectivity with Cu(II), Ni(II) and Zn(II) 

complexes strongly active against only MCF-7, whereas the Cd(II) complex was 

strongly active only against MDA-MB-231, although the complexes were less active 

in comparison to the ligand itself (Ravoof et al., 2010). 
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The OS donor ligand derived from the reaction of SBDTC with benzoyl chloride and 

its Cu(II), Ni(II) and Pb(II) complexes displayed marked cytotoxicity against HL-60 

leukemia cells with IC50" 5.0 !g/mL while Cd(II) and Co(II) complexes were only 

moderately cytotoxic. In this case, the ligand was more potent compared to its metal 

complexes (How et al., 2008). SBDTC and its Sn(II) complex were very effective 

against renal carcinoma Tk10 kidney cancer cells and leukemia TK6 cell line. The 

IC50 values were in the range 1.0-4.0 !g/mL with SBDTC being the most active 

compound. The SNNS quadridentate Schiff base of SBDTC with benzil and its 

Sn(II) complex were also effective against skin cancer cells (UACC melanoma) with 

IC50 of 5.2 and 2.7 !g/mL, respectively (Tarafder et al., 2000b). The NS Schiff base 

prepared by condensing SBDTC with 2,3-butanedione (1:1 mole ratio) was strongly 

active against leukemic cells CEM-SS with IC50 value of 2.05 !g/mL (Tarafder et 

al., 2001a).    

 

2.3.2 Antibacterial and antifungal activity 

The Schiff base formed from pyridine-2-carboxaldehyde SMDTC and its Zn 

complex showed marked and broad antimicrobial and antifungal activities compared 

to the S-benzyl derivatives with MIC values as low as 12.5 !g/mL (Zhang et al., 

2011a).  The antibacterial activity of the Schiff bases of SBDTC with ferrocene-

based chalcones containing a F or Cl substituent in the para position or a pyridine 

ring were the most active in the series and their activity against Gram-negative 

bacterial (Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa)) 

strains was found to be higher than that for the drugs ketoconazole, kanamycin and 

penicillin (Liu et al., 2012). In another closely related investigation, the Zn(II) and 

Cu(II) complexes of SBDTC with ferrocene-based chalcone Schiff base ligand 
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containing  a  para-Cl substituent and the Zn(II) complex of SBDTC with ferrocene-

based chalcone having a methyl group in the aromatic ring were the most active in 

the series with  MIC values in the range of 1.319 ! 10"8 M to 3.750 ! 10"7 M against 

bacteria and fungi tested (Staphylococcus aureus (S. aureus), Bacillus cereus (B. 

cereus), E. coli, P. aeruginosa, Aspergillus niger (A. niger), Aspergillus fumigatus 

A. fumigates) (Liu et al., 2013). SMDTC-2-benzolpyridine and its Cu(II) 

complex showed excellent activity against Gram positive bacteria (Bacillus subtilis 

(B. subtilis), S. aureus) and yeast (Candida lusitaniae (C. lusitaniae)) with MIC 

values of 1-5 !g/mL. It was found that the SMDTC derived ligand was more potent 

than the SBDTC derivative towards the tested microorganisms and complexation 

with metals also had a synergetic effect resulting in enhanced antimicrobial activity 

(Li et al., 2012). Both the Cu(II) complex of the Schiff base S4PDTC with pyridine-

2-carboxaldehyde and the Cd(II) complex of S4PDTC 4-carboxybenzaldehyde 

(Cb4PDTC) showed good antifungal activity against Candida albicans (C. albicans) 

with MIC values lower than Nystatin (Khoo et al., 2014) . The Schiff base derived 

from SBDTC with pyrrole-2-carboxaldehyde was a stronger antifungal agent than 

Nystatin against Saccaromyces ceciricaee (S. ceciricaee) and Candida lypolytica ( 

C. lypolytica) (Tarafder et al., 2002a). The NSS Schiff bases of S2PDTC with 2-

acetylfuran showed better activity than Nystatin toward against the fungus, C. 

lypolytica while its metal complexes were not active (Crouse et al., 2004).  Co(II) 

complex of SMDTC with 2-furyl-methylketone and Cd (II) complex of SMDTC 

with 5-methyl-2-furaldehyde gave the most effective activity against fungi tested (C. 

lypolytica and Aspergillus ochraceus (A. ochraceous) (Chew et al., 2004) while the 

Cu(II) complex of  SMDTC with 2-furylmethylketone showed clear activity against 

C. lypolytica  with better activity than Nystatin (Tarafder et al., 2002c). Bi(III) and 
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As(III) metal complexes of SBDTC-3-acetylcoumarin (L) with the formula 

[ClBi(L)2] and [PhAs(L)2] showed low MIC values (10#!g/mL for bacterial strain B. 

subtilis and 16#!g/mL for fungal strain Fusarium oxysporum (F. oxysporum)). The 

metal complexes were more active against fungal strains compared to bacterial 

strains and had better activity than the free ligands (Dawara et al., 2012). In the 

series with salicylaldehyde Schiff base of isonicotinoyldithiocarbazic acid, the best 

activity was shown by the Ni(II) complex (MIC = 75 !g/mL) against the gram-

negative pathogenic strain of E. coli (Kalia et al., 2012). The Cd complex of the 

SNNS Schiff base SBDTC-benzil was active against bacteria P. aeroginosa and B. 

cereus with the MIC values better or comparable to kanamycin (Tarafder et al., 

2000b). The Cu(II) complex of SBDTC-salicylaldehyde proved to be the best in the 

series against B. cereus (MIC=79.6 !g/mL) (Tarafder et al., 2000a).  

 

2.3.3 Iron chelators 

All dithiocarbazate ligands derived from either SBDTC or SMDTC with 2-

acetylpyridine, di-2-pyridylketone and 2-pyridinecarbaldehyde were more effective 

than standard desferrioxamine B (DFO) at releasing intracellular Fe and SMDTC-2-

pyridinecarbaldehyde was the most active of all compounds tested. Furthermore, the 

three SMDTC derivatives were more effective at mobilising intracellular 59Fe than 

their corresponding SBDTC analogues. 2-pyridinecarbaldehyde derivatives with 

both SMDTC and SBDTC exhibit no apparent cytotoxicity (>10 !M). This property, 

in combination with their high activity in sequestering intracellular Fe present ideal 

properties for a chelator in the treatment of Fe overload. The other four 

dithiocarbazates (with 2-acetylpyridine and di-2-pyridyl ketone) showed moderate to 

potent anti-proliferative activity which may be problematic for treatment of Fe 
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overload. On the other hand, the anti-proliferative activity of these compounds can 

be advantageous in the treatment of cancer (Basha et al., 2012). 

 

2.3.4 Antituberculosis activity 

Ni, Co and Zn complexes of a non-Schiff base isonicotinoyldithiocarbazic acid 

ligand synthesized from isoniazid with carbon disulphide showed MIC values of 2, 2 

and 50 !g/mL against Mycobacterium tuberculosis (M. tuberculosis) H37Rv, and 10, 

100 and 50 !g/mL against a multi-drug-resistant strain of M. tuberculosis. They had 

little cytotoxic effect on the transformed human rhabdomyosarcoma cell line RD 

cells making them potentially useful to treat multi-drug resistant tuberculosis 

infections (Kanwar et al., 2008). Others dithiocarbazate derivatives such as 2-/3-/4-

pyridinecarbonimidoyldithiocarbazic acid esters, methyl 3-[amino(pyrazin-2-

yl)methylidene]-2-methyldithiocarbazate and benzyl 3-[amino(pyrazin-2-

yl)methylidene]-2-methyldithio carbazate have been studied and were among the 

promising classes of compounds showing action against tuberculosis (Olczak et al., 

2010). In another study by Pavan et al. (2010), dithiocarbazate compounds derived 

from benzoylacetone showed poor activity. The low activity was associated with the 

difference in the molecular structures from the potent analogues which contained 

pyridine rings further affirming that the aromatic heteroatom N moiety played an 

important role in the anti-tuberculosis activity of the compounds (Pavan et al., 

2010).  

 

2.3.5 Antiamoebic activity 

Mixed ligand Pt(II) and Pd(II) complexes prepared with ONS Schiff bases derived 

from SBDTC and 2-hydroxyacetophenone (Figure 2.8) or SBDTC and 4-phenyl-
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2,4-butanedione, and neutral phosphine ligands exhibited biological activity on 

extra- and intra-cellular forms of Trypanosoma cruzi  in a time- and concentration-

dependent manner with IC50 values ranging from 7.8 to 18.7 !M. Nonetheless, the 

most active compound with IC50 = 0.6 !M was the ligand SBDTC-4-phenyl-2,4-

butanedione which also presented a trypanocidal activity on trypomastigote form 

better than the drug benznidazole (Maia et al., 2010).  

 

Figure 2.8. Mixed ligand Pt(II) and Pd(II) complexes with Schiff base (derived 
from SBDTC and 2-hydroxyacetophenone) and phosphine ligands (Source: 
Maia et al., 2010) 
 

Pd(II) complexes of Schiff bases SMDTC-2-acetylpyridine and SBDTC-2-

acetylpyridine also showed potent activity against HK-9 strain of  Entamoeba 

histolytica (E. histolytica) trophozoites with IC50 = 0.19 and 0.16 !g/mL, 

respectively (Neelam et al., 2000). Dioxovanadium(V) complexes of Schiff bases 

formed between bromo substituted salicylaldehyde and dithiocarbazates (IC50 = 1.35 

!M) (Maurya et al., 2003) , the dinuclear potassium dioxovanadium(V) complex of 

SBDTC-5,5-methylbis(salicylaldehyde) (IC50 = 0.092 !M) (Maurya et al., 2012) and 

Pd(II) complex of SBDTC-5-nitrothiophene-2-carboxaldehyde (IC50 = 0.28 !g/mL)  

(Bharti et al., 2002) were the most active among their respective series and each 

showed substantially better amoebocidal action than metronidazole, a commonly 

used drug against the protozoan parasite E. histolytica. 
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2.3.6 Other biological properties 

Methyl 3-phenyldithiocarbazate was found to decrease the rate of brassinin (a 

crucial plant defense produced by crucifers) detoxification making it among 

potential detoxification inhibitors (Pedras and Jha, 2006). Oxovanadium(IV) 

complexes with mixed-ligands  SMDTC-salicylaldehyde and N,N-donor 

phenanthroline bases like 1,10-phenanthroline (phen), dipyrido[3,2-d:2$,3$-

f]quinoxaline (dpq) and dipyrido[3,2-a:2$,3$-c]phenazine (dppz) (Figure 2.9) showed 

good binding to calf thymus DNA with binding constant values in the range of 

7.4 ! 104–2.3 ! 105 M"1. The complexes also showed poor chemical nuclease 

activity in the dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen 

peroxide while both dpq and dppz complexes showed efficient DNA cleavage 

activity under UV-A radiation (365 nm) via a type-II mechanistic pathway involving 

formation of singlet oxygen (1O2) as the reactive species (Sasmal et al., 2008).  

 

Figure 2.9.  Ternary structures of VO complexes and the phenanthroline bases 
used. (Source: Sasmal et al., 2008) 
 

A series of dithiocarbazate Schiff bases of SBDTC with various hydroxyl-

substituted benzaldehydes were tested for their xanthine oxidase (XO) inhibitory 

activity. The Schiff base with the hydroxy substituent in the para-position on the 

benzaldehyde unit was the most potent. It displayed significantly increased potency 

over the benchmark allopurinol under the assay conditions employed (95±4% 
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inhibition at 50 !M and IC50 = 0.7±0.1 !M) (Leigh et al., 2011). SBDTC (Tarafder et 

al., 2001b) and the Ni and Cu complexes of SBDTC-2,3-butanedione (Tarafder et 

al., 2001a) were found to be stronger antioxidants than Vitamin E.  Antioxidant 

properties of SBDTC and two other Schiff bases synthesized by reacting  S4PDTC 

with pyridine-2-carboxaldehyde (Pc4PDTC) and 4-carboxybenzaldehyde 

(Cb4PDTC) were also found to be comparable to the commercially available  

synthetic antioxidant buthylatedhydroxytoluene (BHT) (Tarafder et al., 2001b; Khoo 

et al., 2014). Alkyl pyridine-carbonyldithiocarbazates were shown to be uncouplers 

of oxidative phosphorylation in mitochondria. Greater activity was observed with 

increasing alkyl chain length, the optimum being C9, indicating the influence of 

hydrophobicity towards the activity (Terada et al., 1978; Kubota et al., 1978). 

Technetium-nitrido complexes of the Schiff base S-methyl 3-(2-hydroxyphenyl 

methylene) dithiocarbazate had been investigated as potential Tc-99m nitrido tumor 

imaging disposition in mice (Borel et al., 1992). N-methyl-SMDTC had also been 

effectively used for high-yield preparation of nitrido Tc-99m and Re-188 

radiopharmaceuticals (Uccelli et al., 2011; Boschi et al., 2010). The anti-fertility 

data indicated a highly significant decline in the motility of sperm as well as in 

sperm count in the treated animals in the case of dimethyltin(IV) complex derived 

from SBDTC-4-nitrobenzanilide (Singh et al., 2009). The results suggested that the 

ligand of SBDTC-3-acetylcoumarin was most effective in reducing fertility and 

complexation with bismuth and arsenic enhanced its activity (Dawara et al., 2012). 

The pescticide activity and DNA cleavage activity of Ge(IV) complex with SBDTC-

3-fomylchromone Schiff base were found to be better in comparison to the ligand 

itself (Dawara et al., 2011). 
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At this stage, it is impossible to draw any meaningful correlations from this limited 

and diverse group. A library of compounds must be systematically designed and 

their activities determined in order to achieve that. The above reports on 

dithiocarbazate, its Schiff bases and metal complexes highlight that even subtle 

change in the structures lead to dramatic alterations of the biological properties of 

this class of compounds. The pharmacological activities of these metal complexes 

depend on the type of metal ion, its ligands and the structure of the compounds. 

These factors play important roles in the recognition of target sites.  In conjunction 

with the continuous effort to develop new derivatives that possess potent biological 

activities, the major aim of the present work is to expand the synthesis involving 

multidentate dithiocarbazate derivatives to include bioconjugation and to explore the 

biological potential of the compounds synthesized to determine their cytotoxicity 

and their potencies against selected bacterial strains expressing a multi-drug 

resistance phenotype. Although many new dithiocarbazate derivatives have been 

added to the family in recent years, there is still no clear structure-activity 

relationship to explain their activity. The actual mechanism of action is still 

unknown. Electron paramagnetic resonance (EPR) and electrochemistry have been 

carried out in this work to connect the biological activities to their structures and 

redox properties in order to identify features that promote better activity. It is 

expected that this structure-activity analysis will serve to orient further synthetic 

efforts towards determining the optimum features essential to promote higher 

bioactivities and ultimately to guide future work designed to reveal their mode of 

action.   
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2.4 Objectives 

1. To synthesize bioactive Schiff bases (i.e. potentially bi-, tri- or tetradentate 

ligands) and their open chain or macroacyclic metal complex systems 

derived from S-substituted dithiocarbazates. 

2. To incorporate grafting work with vectors (i.e. polyarginine, polyethylene 

glycol (PEG) and phe-arg-%-napthylamide (PA%N)) in order to prepare 

improved therapeutic agents.  

3. To characterize the synthesized compounds using various physico-chemical 

and spectroscopic techniques.  

4. To study the biological activity of the compounds prepared and to attempt to 

elucidate their structure-activity relationships. 
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CHAPTER 3 

NON-CONJUGATED PARENTS COMPOUNDS 

 

In this work, three series of parent compounds: (i) tetradentate NNSS ligands (ii) 

potentially bidentate NS or tridentate ONS ligands with acid or ester functionalities 

and (iii) potentially bidentate NS or tridentate ONS ligands with natural ketone 

moiety were prepared by condensation of S-substituted dithiocarbazates with 2,5-

hexanedione, methyl levulinate, levulinic acid, 4-carboxybenzaldehyde and 3-

acetylcoumarin. All were complexed with copper to synthesize their respective 

metal complexes.   

 

 3.1 Introduction 

3.1.1 Ligand systems 

3.1.1.1 Tetradentate NNSS 

Macrocyclic and macroacyclic Schiff bases have been widely studied (Vigato and 

Tamburini, 2004). They show various coordination abilities and potential 

applications in biology which range from therapeutic drug candidates to diagnostic 

agents (Holland et al., 2008) and they provide synthetic models for the metal 

containing sites in metalloproteins and metalloenzymes (Gennari et al., 2012). It is 

therefore worthwhile to explore these interesting properties by investigating the 

synthesis and characterization of new Cu(II) bis(dithiocarbazate) in this work. The 

compounds are analogues of the Cu(II) bis(thiosemicarbazone) that have garnered 

much attention resulting in biological breakthroughs (Paterson and Donnelly, 2011) 

particularly as radiopharmaceuticals (Donnelly, 2011).  
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It is anticipated that the replacement of nitrogen atom with sulphur may provide 

interesting results warranting further exploration into dithiocarbazate compounds. 

Moreover, to form the Schiff bases, the 2,5-hexanedione has been chosen to expand 

the ligand flexibility by introducing backbones containing more than two carbons. 

This enhanced flexibility may facilitate increased tetrahedral distortion leading to 

incorporation of metal cations that prefer non-square planar geometries such as 

Cu(I) ion. Previous studies have shown that physico-chemical properties such as 

redox potential as well as biological activity have been related to the geometry at the 

metal site (Durot et al., 2005; Drew et al., 1995; Rorabacher, 2004; Basha et al., 

2012; Jansson et al., 2010). These were fine examples demonstrating the marked 

influence of ligand environment towards the redox potential of their respective 

Cu(II)/Cu(I), Fe(III)/Fe(II) and Mn(III/II) metal systems. While choice of the metal 

ions and substituent functional groups of the ligands have been carefully chosen to 

affect the geometry of metal complexes (Ostermeier et al., 2010; Jones and 

McCleverty, 1970; Cowley et al., 2004; Stefani et al., 2012), the studies by Diaz et 

al. (1998;1999) that highlighted the differences in coordination geometry identified 

using EPR by comparing the open chain and cyclic metal complex system which 

subsequently affect their biological activity was found to be particularly attractive 

since this analytical tool enabled a structural view of the complexes in solution. The 

group noted that the Cu(II) complexes of the open chain mono(thiosemicarbazone) 

with a higher degree of tetrahedral distortion should be further explored as 

potentially better SOD-like mimics than the macroacyclic bis(thiosemicarbazone) 

complexes. Although the reports were primarily focused on superoxide dismutase 

(SOD) mimics, it would also be meaningful to carry out such comparison in this 
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work as the open chain system will be envisaged to offer interesting diversity and 

aid towards the understanding of the structure-bioactivity relationship.   

 

3.1.1.2 Potentially bidentate NS or tridentate ONS ligands with an acid or ester 

functionality  

The open chain series in this work consisting ligands of methyl levulinate and 

levulinic acid with SBDTC and SMDTC as well as their corresponding Cu(II) 

complexes will be a worthy comparison to their macroacyclic Cu(II) tetradentate 

system with 2,5-hexanedione bis(dithiocarbazate). Furthermore, the Schiff base 

derivatives containing the acid or ester functional group have proved to be attractive 

from both biological and physico-chemical aspects. For instance, recent attention 

was dedicated to metal complexes of &-ketoglutaric acid (Baldini et al., 2004) and 

pyruvic acid thiosemicarbazone (Diaz et al., 1994; Wiecek et al., 2009). These 

aliphatic ligands with a variety of potential donor atoms and many possible 

conformations provided a versatile chelating behavior. In addition, the metal 

complexes were found to be potent against the selected human leukemia and cancer 

cell lines tested and thus may be regarded as potentially significant antitumor agent 

(Baldini et al., 2004; Diaz et al., 1994; Wiecek et al., 2009). Similiarly, the 

analogous Schiff base keto-ester methylpyruvate with SMDTC has been screened by 

the National Cancer Institute, Bethesda, Maryland and has been found to exhibit 

promising activity against leukemia cells as mentioned by Ali et al. (2001b). The 

authors also stated that the “ligand coordinated to the metal(II) ion as a 

uninegatively charged tridentate chelating agent via the carbonylic oxygen atom, the 

azomethine nitrogen atom and the thiolato sulfur atom” but resulted in varied 

conformation geometry with different metal (Ali et al., 2001b p. 1037). The Cu(II) 



27 
 

complexes have the general formula, CuLX (L= Schiff base; X=Cl", Br") with a 

distorted square-planar structure whereas the Zn(II), Cd (II) and Ni(II) complexes of 

empirical formula, ML2 supported a six-coordinate distorted octahedral structure for 

these complexes as confirmed by the  X-ray crystallographic structural analysis (Ali 

et al., 2001b; Ali et al., 1999; Ali et al., 2004). To date, metal complexes of methyl 

levulinate or levulinic acid dithiocarbazate have not been reported although 

semicarbazone derivatives of levulinic acid have been identified as potent 

anticonvulsant agents showing broad spectrum of activity with low neurotoxicity 

(Navneet and Pradeep, 2005). 

 

Since the carbonylic oxygen atom and the azomethine nitrogen atom are further 

apart with three carbons in between them, these ligands could adapt NS bidentate 

chelation ability different from the ONS chelating ligands with &-ketoglutaric acid, 

pyruvic acid or methyl pyruvate. In addition, 4-carboxybenzaldehyde was utilized to 

form the Schiff bases in order to provide insight on the influence of an aromatic 

acid.  As most sulphur-nitrogen chelating ligands and their complexes are highly 

hydrophobic and their low solubility in water imposes experimental limitations in 

biological studies, the introduction of a hydrophilic group such as -COOH in 

systems should permit increased solubility in water (Pogni et al., 2000). Besides 

that, the presence of a carboxylic functional group would allow for further ligand 

optimization via bioconjugation to improve the properties of the compounds and 

their applications.  
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3.1.1.3 Potentially bidentate NS or tridentate ONS ligands with natural potent 

aldehyde or ketones moieties. 

In order to expand the synthesis and exploration of dithiocarbazate derivatives, 

attention was also directed herein to aromatic dithiocarbazate derived from natural 

aldehydes or ketones that had well established medicinal properties. The rationale 

behind this attempt was based on the prospect of the synergistic effects developed 

from integration of the promising bioactivity of individual components (i.e. metal 

center and ligand comprising the carbonyl group and substituted dithiocarbazate 

moiety). A number of publications had highlighted the potential of utilizing such 

natural aromatic compounds like chromone (Barve et al., 2006; Khan et al., 2009), 

chalcone (Zhang et al., 2011b) and curcumin (Padhye et al., 2009). This prompted 

the preparation of new metal complexes with Schiff base formed from the 

condensation of SBDTC and 3-acetylcoumarin in this work. Coumarin derivatives 

are attractive because of their wide variety of biological activities including 

antioxidant, antibacterial, antifungal and cytotoxic (Datta et al., 2011; Bagihalli et 

al., 2008; Phaniband et al., 2011; Kulkarni et al., 2009; Creaven et al., 2009). 

Moreover, the reported coumarin Schiff bases and their metal complexes were 

shown to exhibit outstanding luminescence properties which may provide advantage 

for application of these compounds as probes (Datta et al., 2011). Further findings 

reveal that the coumarin derivatives interact strongly with DNA and can cause DNA 

cleavage (Phaniband et al., 2011; Kulkarni et al., 2009).   
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3.1.2 Choice of metals  

3.1.2.1 Copper 

Copper complexes represent a class of compounds that have been subjected to 

intensive research because of their potential therapeutic applications (Duncan and 

White, 2012) in particular as effective antitumor (Chakraborty et al., 2010: Afrasiabi 

et al., 2003) and antibacterial agents (Li et al., 2000; Joseph et al., 2012). A number 

of related thiosemicarbazone copper complexes have been found to be active in cell 

destruction, as well as in the inhibition of DNA synthesis (Ferrari et al., 2002a; 

Ferrari et al., 2002b; Bisceglie et al., 2012; Ferrari et al., 2004) Cancer cells have 

also been shown to take up greater amounts of copper than normal cells (Jansson et 

al., 2010). The altered metabolism of cancer cells and the differential response 

between normal and cancer cells to copper are the basis for the development of 

copper complexes endowed with anticancer characteristics (Gandin et al., 2013). 

Recently, copper(II) complexes of thiosemicarbazone NNSS ligands have been 

explored extensively as radiopharmaceuticals for the specific targeting of hypoxic 

tissue (Donnelly, 2011).  They are also known to be stable (Kass = 1018), neutral and 

can easily cross cellular membranes (Paterson and Donnelly, 2011; Donnelly, 2011; 

Ngarivhume et al., 2005). Copper complexes with such multidentate Schiff base 

ligands are attractive for study because of their rich spectroscopic and magnetic 

properties that often change during the course of enzyme catalysis (Ferrari et al., 

2002b). Copper also exhibits different oxidation states affirming its important role as 

a model to provide better understanding of biological metalloenzymes and 

metalloprotein systems (Balamurugan et al., 2006; Knoblauch et al., 1999; 

'ura(ková et al., 1999). For instance, the CuN2S2 chromophore is present in blue 

copper proteins such as plastocyanine (Donnelly, 2011; Sarkar et al., 2009). With 
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these examples in mind and following the interest concerning the electrochemical 

investigation into the Cu(I)-Cu(II) redox couple,  it is only logical for copper ion to 

serve as an excellent choice in the continuing search for new and effective 

metallodrugs.  

 

3.1.2.2 Zinc 

In addition to Cu(II) complexes, another two metal complexes, zinc(II) and 

rhenium(I) will be presented as well. Both are important as their complexes are 

diamagnetic and this facilitates complementary methods of detection to EPR 

spectroscopy for the Cu(II) complex through the use of nuclear magnetic resonance 

(NMR) spectroscopy for Zn(II) and Re(I) species (Kirin et al., 2005). In addition, 

one of the most promising previous findings by Awidat (2005) was that bis (S-

methyl-%-N-(2-acetylfuran)dithiocarbazate) (SMDB) complexed with zinc was 

found to shown remarkable selectivity towards brain cancer cells with a toxicity 

towards normal cells that was relatively much lower than tamoxifen, the current 

drug of choice in the treatment of brain cancer. The IC50 values for SMDB-Zn on 

glioma cell lines A172, U87MG, T98G and normal brain cell line HCN-2 were at 

3.7 !g/mL, 1.76 !g/mL, 2.7 !g/mL and 7 !g/mL, respectively (Awidat, 2005). 

Zn(II) complexes of the analogous bis(thiosemicarbazone) were also found to be 

weakly fluorescent owing to intraligand excitation and this fluorescence has been 

used to track the uptake and intracellular distribution of the Zn(II) complexes in 

diverse cancer cell lines (Lim et al., 2010). The understanding of intracellular 

distribution of these complexes is important to design compounds that are selective 

towards specific tissues and organelles (Holland et al., 2007). 
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3.1.2.3 Rhenium 

Although different dithiocarbazate metal complexes have been investigated, few 

works deal with Re complexes (Mevellec et al., 2002; Boschi et al., 2010) and none 

has yet to report on a Re(I) tricarbonyl core. Much significant progress in targeted 

rhenium (Re-188 and Re-186) radiopharmaceuticals recently has focused on the use 

of the Re carbonyl core (Donnelly, 2011). The use of radionuclides has increased the 

demand for new complexes containing carrier-free radionuclides having reasonable 

half lives and proper energy of radiation (Fuks et al., 2010). The carbonyl approach 

exploits the stability of the metal tricarbonyl core whilst allowing a variety of bi- 

and tridentate ligands to react with it to further functionalize these with 

biomolecules or targeting vectors (Donnelly, 2011; Amoroso et al., 2007; Santos et 

al., 2004; Clède et al., 2013). Because of the small size and charge of the  fac-

Re(CO)3
+ group, it does not significantly influence biological properties of even the 

smallest biomolecules used in the synthesis of radiopharmaceuticals making it an 

attractive candidate not just for medicinal therapeutic application but also as 

diagnostic agents (Fuks et al., 2010; François et al., 2014; Clède et al., 2012) For 

instance, an innovative approach to prepare a rhenium tricarbonyl complex with a 4-

(2-pyridyl)-1,2,3-triazole (pyta) ancillary ligand endowed with luminescent and 

infrared properties allowed a relevant bio-imaging correlative study using both 

infrared (IR) and luminescence modalities (Clède et al., 2012). Vibrational 

spectroscopies are attractive for bio-imaging as in the case of vibrational excitations 

in the IR region where no photo-bleaching is induced in contrast to what is observed 

with organic fluorophores in the visible or UV-range. Furthermore, IR-probes also 

show advantages in their stability in biological environments and intense absorption 
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in the 1800-2200 cm"1 range which is the transparent IR window of biological media 

(Clède et al., 2013; Clède et al., 2012; Policar et al., 2011).  

 

3.2 Methodology 

3.2.1 Materials 

All chemicals and solvents were of analytical grade and were used as received 

without further purification. Common solvents for solution synthesis were obtained 

from either Carlo Ebra or VMR. Anhydrous DMF was from Sigma Aldrich or Acros 

Organics and DMSO of HPLC grade was from Alfa Aesar. Chemicals: Benzyl 

chloride (Aldrich), iodomethane (Merck), potassium hydroxide (Merck), 

hydrazinium hydroxide (Merck), carbon disulfide (Merck), 2,5-hexanedione 

(Merck), methyl levulinate (Alfa Aesar), levulinic acid (Janssen), 4-

carboxylbenzaldehyde (Acros Organics), 3-acetylcoumarin (Aldrich), copper (II) 

acetate monohydrate (HmbG chemicals), zinc (II) acetate (Touzart), rhenium (I) 

pentacarbonyl chloride (Strem chemicals), tetrabutylammonium perchlorate (Fluka), 

tetrabutylammonium hexafluorophosphate (Fluka). SBDTC and SMDTC were 

prepared as previously reported (Chan et al., 2008; Chew et al., 2004).  

 

3.2.2 Instrumentation 

The IR spectra were recorded in the range of 550–4000 cm"1 on a Perkin-Elmer 100 

series FT-IR spectrophotometer in ATR mode. Microanalyses were carried out using 

either a Leco CHNS-932 analyzer, a LECO TruSpec CHN/CHNS instrument or 

performed at the CNRS (Gif-sur-Yvette and Vernaison, France). The UV–Vis 

spectra were recorded on a Cary 300 bio spectrophotometer (200-800 nm) or Perkin 

Elmer Lambda 45 with a 1 cm optical path quartz cuvette. 1H NMR and 13C NMR 
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spectra were recorded with Bruker DRX300 spectrometers. The chemical shifts 

(!/ppm) were calibrated relative to residual solvent signals. Electrospray-ionization 

(ESI) mass spectra were recorded with a Finnigan Mat 95S in the BE configuration 

at low resolution. High resolution (HR) mass spectra were obtained on a JEOL MS 

700 spectrometer (CI or FAB) or on a Bruker hybride APEX spectrometer. EPR 

spectra were recorded on an X-band Bruker Elexsys 500 spectrometer equipped with 

a continuous flow helium cryostat (Oxford Instruments) and a temperature control 

system. The field modulation frequency was 100!kHz. The spectra were all recorded 

under non-saturating conditions. Cyclic voltametry (CV) measurements were 

recorded under argon using a 620C electrochemical analyzer (CH Instruments, Inc). 

The working electrode was a glassy carbon disk, a Pt wire was used as counter-

electrode and the reference electrode was an Ag/AgCl electrode (0.223!V versus 

NHE). Immediately before the measurement of each voltammogram, the working 

electrode was carefully polished with alumina suspensions (1, 0.3 and 0.05 !m, 

successively), sonicated in an ethanol bath and then washed carefully with ethanol. 

The solutions were made up of 100 µL of the complexes in anhydrous deoxygenated 

DMF (0.01 M) with 0.5 mL of tetrabutylammonium perchlorate or 

tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte. 

Peak potentials, Ep, and half-wave potentials, E1/2, were referenced to the 

ferrocene/ferrocinium couple, 0.54 V in DMF versus SCE. The 

ferrocene/ferrocinium half-wave potential under the conditions used was 0.07 V.  

RP-HPLC analysis was carried out using Waters HPLC system connected to Breeze 

software that consisted of combination of a dual wavelength UV-Vis absorbance 

detector (Waters 2487) and a binary pump (Waters 1525) equipped with an 

analytical cell for reaction monitoring or purity checking. The analytical 
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measurements were performed using either a ACE C8 or C18 column (250x4.5mm) 

packed with spherical 5 µm particles of 300 Å pore size. Experiments were carried 

at room temperature. Injection volume was 50 µL.  

approximately 1 mg/mL. Two methods were employed 

A crystal mounted on a glass fiber using 

50 K in a stream of cold N2 was 

unit. Diffraction data were measured 

monochromated Mo 

= 0.71073 Å). Intensity data were processed with the CrysAlis Pro 

. The structures were solved using the direct-methods 

which located all non-hydrogen atoms. 

squares refinement was carried out using CRYSTALS 

. Coordinates and anisotropic thermal 

s were located in a 

difference map. Those attached to carbon atoms were repositioned geometrically. 

The H atoms were initially refined with soft restraints on the bond lengths and 

angles to regularize their geometry, after which the positions were refined with 

, Cu(SMML)2 and 

ray diffraction data was collected by using a Kappa X8 APPEX II 

radiation (  = 0.71073 

was mounted on a CryoLoop (Hampton Research) with Paratone-N 

(Hampton Research) as cryoprotectant and then flash frozen in a nitrogen-gas stream 

at 100 K. The temperature of the crystal was maintained at the selected value (100K) 
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within an accuracy of ±1 K by means of a 700 series Cryostream cooling device. 

The data were corrected for Lorentz polarization, and absorption effects. The 

structure was solved by direct methods using SHELXS-97 (Sheldrick, 1997a) and 

refined against F2 by full-matrix least-squares techniques using SHELXL-97 

(Sheldrick, 1997b) with anisotropic displacement parameters for all non-hydrogen 

atoms. Hydrogen atoms were located on a difference Fourier map and introduced 

into the calculations as a riding model with isotropic thermal parameters. All 

calculations were performed by using the crystal structure crystallographic software 

package WINGX (Farrugia, 1999).   

 

3.2.3 Synthesis 

3.2.3.1   Macroacyclic Cu(II) system with  tetradentate NNSS ligands 

SBHD The title compound was synthesized with some modification of the method 

described by Ali et al. (1987). 2,5-hexanedione (0.587 mL, 0.005 mol, 1 equiv) was 

added to a hot solution of SBDTC (1.983 g, 0.01 mol, 2 equiv) in absolute ethanol 

(150 mL) and the mixture was further heated for 5 min. A white precipitate was 

formed and was immediately filtered off, washed with cold ethanol and dried in 

vacuo over silica gel to yield the expected Schiff base (0.997 g, Yield 42%). 

Elemental analysis for C22H26N4S4: Calcd. C 55.66, H 5.52, N 11.80; Found C 

54.79, H 5.59, N 11.75.  1H NMR (300 MHz, DMSO-d6) ) 12.18 (s, 2H), 7.39 -7.20 

(m, 10H), 4.40 (s, 4H), 1.96 (s, 6H). 13C NMR (75 MHz, DMSO-d6) ) 197.16, 

158.26, 137.15, 129.15, 128.41, 127.05, 37.56, 34.05, 17.74. IR: # (cm-1) = 3147 (m, 

b), 1640 (w), 1054 (s), 981 (m), 828 (m). UV-Vis in DMSO: "max nm (log ! ) = 276 

(4.32), 308 (4.41), *360 (3.32, sh). RP-HPLC: RT (min) = 15.3, 18.3, 22.4. 
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SMHD SMDTC (1.222 g, 0.01 mol, 2 equiv) was dissolved in hot ethanol (150 mL) 

and 2,5-hexanedione (0.587 mL, 0.005 mol, 1 equiv) was added to this solution. The 

mixture was heated while being stirred to reduce the volume to 1/3 of the original 

volume. The mixture was kept at 4°C overnight and white precipitate was formed. 

The product was filtered off, washed with cold ethanol and dried in vacuo over silica 

gel to afford 1.129 g of SMHD (Yield 70%). The compound was further 

recrystallized from methanol and crystals suitable for X-ray diffraction analysis 

were obtained from the same solvent through slow evaporation at room temperature. 

Elemental analysis for C10H18N4S4: Calcd. C 37.24, H 5.63, N 17.37; Found C 

37.86, H 4.87, N 17.84. 1H NMR (300 MHz, DMSO-d6) ) 12.13 (s, 2H), 2.57 (s, 

4H), 2.43 (s, 6H), 2.00 (s, 6H). 13C NMR (75 MHz, DMSO-d6) ) 198.95, 157.63, 

33.97, 17.77, 16.94. IR: # (cm–1) = 3111 (m, b), 1628 (m), 1046 (s), 988 (m), 827 

(m).  UV-Vis in DMSO: "max nm (log ! ) = 276 (4.25), 305 (4.37), *360 (2.75, sh). 

RP-HPLC: RT (min) = 6.4, 11.1, 18.7. 

 

CuSBHD The copper complex was prepared by adding copper (II) acetate 

monohydrate, Cu(OAc)2.H2O (0.020 g, 0.0001 mol, 1 equiv) in acetonitrile (20 mL) 

to a solution of SBHD (0.047 g, 0.0001 mol, 1 equiv) in acetonitrile (150 mL) at 

room temperature. The solution was stirred for an hour and then concentrated to 

reduce volume before being placed at 4°C overnight. The product was filtered off to 

yield 0.039 g (Yield 73%). The compound was recrystallized from acetonitrile and 

black crystals of diffraction quality were obtained from the same solvent after 

several days through slow evaporation at 4°C. Elemental analysis for C22H25CuN4S4: 

Calcd. C 49.27, H 4.51, N 11.85; Found C 49.40, H 4.63, N 10.46. ESI-MS: m/z = 

[M+H]+ Calcd. 536.04, Found 536.02; [M+Na]+ Calcd. 558.02, Found 558.01; 
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[M+K]+ Calcd. 573.99, Found 573.98; [2M+3H]+ Calcd. 1073.08, Found 1073.04. 

IR: # (cm–1) = 1629 (m), 1606 (w), 992 (s), 955 (s), 857 (m). UV-Vis in DMSO: "max 

nm (log !) = 275 (4.37), *294 (4.26, sh), *340 (4.01, sh), *400 (3.55, sh), *600 

(2.45, sh). RP-HPLC: RT (min) = 28.5. 

  

CuSMHD The copper complex was prepared by adding Cu(OAc)2.H2O (0.200 g, 

0.001 mol, 1 equiv) in methanol (20 mL) to a hot solution of the above SMHD 

(0.322 g, 0.001 mol, 1 equiv) in methanol (100 mL). The reaction was heated until 

the volume reduced to 1/3 of the original volume and then placed at 4°C overnight. 

The product which formed was filtered off to afford 0.296 g of CuSMHD (Yield 

77%). The compound was further recrystallized from acetonitrile and black crystals 

of diffraction quality were obtained from the same solvent after several weeks 

through slow evaporation at room temperature. Elemental analysis for: 

C10H17CuN4S4: Calcd. C 31.27, H 4.20, N 14.59; Found C 31.35, H 4.24, N 14.64. 

ESI-MS: m/z = [M + H]+ Calcd. 383.97, Found 383.96; [M+Na]+ Calcd. 405.96, 

Found 405.94; [M+K]+ Calcd. 421.93, Found 421.92. IR: # (cm–1) = 1628 (m), 

1611(w), 1000 (s), 964 (s), 821 (m). UV-Vis in DMSO: "max nm (log !) = 273 (4.34), 

*294 (4.24, sh), *340 (3.99, sh), *400 (3.49, sh) *600 (2.43, sh). RP-HPLC: RT 

(min) = 23.3.  

 

SBPY SBPY was a side product from the initial attempt to synthesize SBHD. 

Prolonged heating and purification via column chromatography caused the desired 

compound to undergo cyclization forming a pyrrole. Single crystals of diffraction 

quality were obtained from DMSO and analyzed by single crystal X-ray diffraction. 

ESI-MS: m/z = [M + H]+ Calcd. 277.08, Found 277.08; [M + Na]+ Calcd. 299.07, 
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Found 299.06.  1H NMR (300 MHz, DMSO-d6): ! (ppm) = 12.29 (s, 1H), 7.45 – 

7.20 (m, 5H), 5.69 (s, 2H), 4.45 (s, 2H), 2.00 (s, 6H). 13C NMR (75 MHz, DMSO-

d6): ! (ppm) = 204.09, 136.30, 129.02, 128.55, 127.43, 126.50, 104.34, 38.17, 

10.99. IR: # (cm–1) = 3264 (m), 2917 (w), 1055 (s), 972 (w), 828 (w). UV-Vis in 

DMSO: "max nm (log ! ) = 282 (4.02). RP-HPLC: RT (min) = 22.3.  

 
3.2.3.2 Open chain Cu(II) system with bidentate NS ligands with acid or ester   

functionality 

Preparation of ligands  

The general procedure used to prepare the ligands can be summarized as follows: to 

a solution (the solvent differs depending on the compound; each is reported below) 

of S-substituted dithiocarbazate, an equimolar amount of levulinic acid/ methyl 

levulinate/4-carboxybenzaldehyde (dissolved in the same solvent) was added 

dropwise. The mixture was heated to reduce the volume by about 1/3 of the original 

volume and then placed in the refrigerator overnight. The products formed were 

filtered, washed with diethyl ether and dried in vacuo over silica gel. Each 

compound was recrystallized from the solvent used for its synthesis and crystals 

suitable for X-ray diffraction analysis were obtained from the same solvent through 

slow evaporation at room temperature. The structures of four ligands were 

successfully solved by SCXRD analysis. The purity and stability of the products 

dissolved in the minimum quantity of CH3OH or DMSO-water mixture were 

checked by RP-HPLC.  

 

SMML 1.222 g (0.01 mol, 1 equiv) of SMDTC was solubilized in 100 mL of hot 

ethanol. An equimolar amount (1.22  mL, 0.01 mol, 1 equiv) of methyl levulinate 

was added dropwise to the solution of the dithiocarbazate, heated and stirred for one 
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to two hours until the volume was reduced to yield 1.062 g of product (Yield 45 %). 

HR-MS: m/z = [M+Na]+ Calcd. 257.03889, Found 257.03934. 1H NMR (300 MHz, 

CD3OD) ) 3.66 (s, 3H), 2.65 (s, 4H), 2.51 (s,3H), 1.99 (s, 3H).  13C NMR (75 MHz, 

CD3OD) ) 202.68, 175.37, 156.36, 52.27, 34.23, 30.81, 30.61, 17.79, 17.31. IR: # 

(cm–1) = 3224 (m) 1717 (s) 1640 (m) 1025 (s) 990 (s) 834 (m). UV-Vis in DMSO: 

"max nm (log ! ) = 274 (3.97), 304 (4.29). RP-HPLC: RT (min) = 6.4 (SMDTC) and 

15.3 (SMML).  

 

SMLA 0.611 g (0.005 mol, 1 equiv) of SMDTC was solubilized in 50 mL of hot 

acetonitrile. An equimolar amount (0.50 mL, 0.005 mol, 1 equiv) of levulinic acid 

was added dropwise to the solution of the dithiocarbazate, heated and stirred for one 

to two hours until the volume was reduced to yield 0.357 g of product (Yield 33 %). 

HR-MS: m/z = [M+Na]+ Calcd. 243.02324, Found 243.02334. 1H NMR (300 MHz, 

CD3OD) ) 2.63 (s, 4H), 2.52 (s, 3H), 1.99 (s, 3H). 13C NMR (75 MHz, CD3OD) ) 

202.70, 176.84, 156.56, 34.39, 30.69, 17.81, 17.38. IR: # (cm–1) = 3163 (w, b) 1715 

(m) 1638 (m) 1067 (s) 923 (w) 819 (m). UV-Vis in DMSO: "max nm (log ! ) = 273 

(4.05), 304 (4.32). RP-HPLC: RT (min) = 6.3 (SMDTC) and 11.7 (SMLA).  

 

SBML 1.000 g (0.005 mol, 1 equiv) amount of SBDTC was solubilized in 50 mL of 

hot ethanol. An equimolar amount (0.61 mL, 0.005 mol, 1 equiv) of methyl 

levulinate was added dropwise to the solution of the dithiocarbazate, heated and 

stirred for one to two hours until the volume was reduced to yield 0.911 g of product 

(Yield 59 %). HR-MS: m/z = [M+Na]+ Calcd. 333.07019, Found 333.07034. 1H 

NMR (300 MHz, CD3OD) ) 7.40 – 7.20 (m, 5H), 4.44 (s, 2H), 3.47 (s, 3H), 2.61 (s, 

4H), 1.98 (s, 3H). 13C NMR (75 MHz, CD3OD) ) 200.87, 175.39, 156.61, 138.50, 
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130.53, 129.65, 128.40, 52.12, 40.01, 34.15, 30.47, 17.38. IR: # (cm–1) = 3201 (w) 

1717 (s) 1642 (w) 1029 (s) 984 (m) 782 (m). UV-Vis in DMSO: "max nm (log ! ) = 

275 (4.15), 306 (4.33). RP-HPLC: RT (min) = 15.3 (SBDTC) and 20.0 (SBML). 

 

SBLA SBDTC (2.000 g, 0.01 mol, 1 equiv) was dissolved in 100 mL of hot 

acetonitrile. An equimolar amount (1 mL, 0.01 mol, 1 equiv) of levulinic acid was 

added dropwise to the solution of the dithiocarbazate, heated and stirred for one to 

two hours until the volume was reduced to yield 1.595 g of product (Yield 54 %). 

HR-MS: m/z = [M+Na]+ Calcd. 319.05454, Found 319.05468. 1H NMR (300 MHz, 

CD3OD) ) 7.40 – 7.17 (m, 5H), 2.60 (s, 4H), 4.47 (s, 2H), 1.98 (s, 3H).13C NMR 

(300 MHz, CD3OD) ) 200.88, 176.77, 156.91, 138.70, 130.47, 129.59, 128.30, 

39.81, 34.38, 30.64, 17.44. IR: # (cm–1) = 3116 (w, b) 1698 (s) 1652 (w) 1047 (s) 

925 (s) 778 (m). UV-Vis in DMSO: "max nm (log ! ) = 275 (4.10), 306 (4.28). RP-

HPLC: RT (min) = 15.3 (SBDTC) and 17.5 (SBML).  

 

SBEL 1.000 g (0.005 mol, 1 equiv) of SBDTC was solubilized in 50 mL of hot 

ethanol. An equimolar amount (0.61 mL, 0.005 mol, 1 equiv) of levulinic acid was 

added dropwise to the solution of the dithiocarbazate, heated and stirred for one to 

two hours until the volume was reduced to yield 0.327 g of product. (Yield 44%). 

HR-MS: m/z = [M+Na]+ Calcd. 347.08584, Found 347.08601. 1H NMR (300 MHz, 

CD3OD) ) 7.39 – 7.20 (m, 5H), 4.44 (s,2H),  3.93 (q, J = 6, 2H), 2.59 (s, 3H), 1.98 

(s, 4H), 1.02 (t, J = 6, 3H).  13C NMR (75 MHz, CD3OD) ) 200.83, 174.98, 156.62, 

138.43, 130.57, 129.69, 128.43, 61.68, 40.09, 34.09, 30.64, 17.43, 14.50. IR: # (cm–

1) = 3217 (w) 1717 (s) 1642 (w) 1029 (s) 983 (m) 782 (m). UV-Vis in DMSO: "max 
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nm (log ! ) = 275 (4.11), 306 (4.30). RP-HPLC: RT (min) = 15.3 (SBDTC) and 21.1 

(SBEL).  

 

SM4CB 0.611 g (0.005 mol, 1 equiv) amount of SMDTC was solubilized in 40 mL 

of hot acetonitrile. An equimolar amount (0.751 g, 0.005 mol, 1 equiv) of 4-

carboxybenzaldehyde was dissolved in  200 mL of hot acetonitrile, added dropwise 

to the solution of the dithiocarbazate, heated and stirred for 2 hours until the volume 

was reduced to yield 0.817 g of product. (Yield 73%). HR-MS: m/z = [M+H]+ Calcd. 

255.02565, Found 255.02574. 1H NMR (300 MHz, DMSO-d6) ) 13.44 (s, 1H), 

13.16 (s, 1H), 8.29 (s, 1H), 7.92 (dd, J = 55.5, 9, 4H), 2.54 (s, 3H). 13C NMR (75 

MHz, DMSO-d6) ) 199.01, 166.83, 145.14, 137.40, 132.25, 129.90, 127.43, 16.82. 

IR: # (cm–1) = 3108 (w, b) 1688 (s) 1612 (w) 1046 (s) 927 (s) 795 (m). UV-Vis in 

DMSO: "max nm (log ! ) = 348 (4.54), *360 (4.48,sh). RP-HPLC: RT (min) = 13.3. 

 

SB4CB 0.496 g (0.0025 mol, 1 equiv) amount of SBDTC was dissolved in 20 mL of 

hot acetonitrile. An equimolar amount (0.375 g) of 4-carboxybenzaldehyde was 

dissolved in 150 mL of hot acetonitrile, added dropwise to the solution of the 

dithiocarbazate, heated and stirred for 2 hours until the volume was reduced to yield 

0.462 g of product. (Yield 56 %). HR-MS: m/z = [M+H]+ Calcd. 331.05695, Found 

331.05700. 1H NMR (300 MHz, DMSO-d6) ) 13.48 (s, 1H), 13.15 (s, 1H), 8.29 (s, 

1H), 7.89 (dd, J = 57, 9, 4H), 7.46-7.24 (m, 5H), 4.49 (s, 2H). 13C NMR (75 MHz, 

DMSO-d6) ) 197.13, 166.81, 145.47, 137.26, 136.63, 132.30, 129.90, 129.31, 

128.54, 127.50, 127.31, 37.69. IR: # (cm–1) = 3089 (w, b) 1688 (s) 1611 (w) 1036 (s) 

929 (m) 797 (s). UV-Vis in DMSO: "max nm (log ! ) = 349 (4.51), * 364 (4.44,sh). 

RP-HPLC: RT (min) = 16.8.  
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Preparation of Cu(II) complexes  

To a solution of the ligand (the solvent differs depending on the compound and is 

reported below), a solution containing an half-molar amount of Cu(OAc)2·H2O 

dissolved in methanol was added dropwise. The resulting mixture was stirred 

overnight at room temperature, concentrated and then let to stand at room 

temperature. Only for obtaining complexes with the ligands SM4CB and SB4CB, 

was the solution heated to reduce the volume by about 1/3 of the original volume 

and then let to cool to room temperature or placed in the refrigerator overnight. The 

black or brown products formed were filtered, washed with pentane and dried in 

vacuo over silica gel. The structures of two Cu(II) complexes were successfully 

solved by single crystal X-ray analysis. The purity and stability of the products 

dissolved in the minimum quantity of CH3OH/DMSO-water mixture were analyzed 

by RP-HPLC.  

 

Cu(SMML)2 0.234g (0.001 mol, 1 equiv) of SMML was solubilized in 50 mL of 

methanol. 0.100 g (0.0005 mol, 0.5 equiv) of Cu(OAc)2·H2O was then dissolved in 

10 mL of methanol, added to the ligand solution, and stirred overnight. Black solid 

was precipitated. The solid was collected by filtration, washed with pentane and 

dried to give Cu(SMML)2 (0.419 g, 79 %). Black crystals of diffraction quality were 

obtained from ethanol solution after several days through slow evaporation at room 

temperature. Elemental analysis for C16H26CuN4S4O4: Calcd. C 36.24, H 4.94, N 

10.64; Found C 36.41, H 5.03, N 10.64. ESI-MS: m/z = [M+H]+ Calcd. 530.03, 

Found 530.02; [M+Na]+ Calcd. 552.01, Found 552.00. IR: # (cm–1) = 1726 (s), 1610 

(m), 1009 (s) 983 (s) 860 (m). UV-Vis in DMSO: "max nm (log !) = 273 (4.45), 428 

(3.32), *607 (3.08,sh). RP-HPLC: RT (min) = 14.1 and 21.4. 



43 
 

Cu(SMLA)2 0.131 g (0.0006 mol, 1 equiv) of SMLA was solubilized in 25 mL of 

methanol. 0.060 g (0.0003 mol, 0.5 equiv) of Cu(OAc)2·H2O was then dissolved in 

10 mL of methanol, added to the ligand solution, and stirred overnight. The solution 

was concentrated to reduce volume, triturated with acetonitrile and allow to stand. 

Black solid was precipitated. The solid was collected by filtration, washed with 

pentane and dried to give Cu(SMLA)2 (0.065 g, 43 %).  Black crystals of diffraction 

quality were obtained from methanol after several weeks through slow evaporation 

at 4°C. Elemental analysis for C14H26CuN4S4O6: Calcd. C 31.24, H 4.87, N 10.41; 

Found C 31.58, H 4.31, N 10.48. ESI-MS: m/z = [M+H]+ Calcd. 502.00, Found 

501.99; [M+Na]+ Calcd. 523.98, Found 523.97. IR: # (cm–1) = 3660- 2160 (b) 1701 

(s) 1608 (m) 948 (s) 914 (m) 853 (m). UV-Vis in DMSO: "max nm (log !) = 270 

(4.46), 307 (4.14,sh), 428 (3.10), *488(3.00,sh) * 608 (2.85,sh). RP-HPLC: RT 

(min) = 16.6. 

 

Cu(SBML)2 0.186 g (0.0006 mol, 1 equiv) of SBML was solubilized in 30 mL of 

toluene. 0.060 g (0.0003 mol, 0.5 equiv) of Cu(OAc)2·H2O was then dissolved in 10 

mL of methanol, added to the ligand solution, and stirred overnight. The solution 

was concentrated to reduce volume, triturated with pentane and allow to stand. 

Black solid was precipitated. The solid was collected by filtration, washed with 

pentane and dried to give Cu(SBML)2 (0.131 g, 64%). Elemental analysis for 

C28H34CuN4S4O4: Calcd. C 49.28, H 5.02, N 8.21; Found C 50.07, H 5.09, N 8.31. 

ESI-MS: m/z = [M+Na]+ Calcd. 704.08, Found 704.06. IR: # (cm–1) = 1726 (s) 1614 

(m) 1009 (s) 981 (s) 764 (m). UV-Vis in DMSO: "max nm (log !) = 273 (4.51), 433 

(3.28), * 496 (3.18,sh), *608 (3.05,sh). RP-HPLC: RT (min) = 19.0 and 25.0. 
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Cu(SBLA)2 0.178 g (0.0006 mol, 1 equiv) of SBLA was solubilized in 30 mL of 

toluene. 0.060 g (0.0003 mol, 0.5 equiv) of Cu(OAc)2·H2O was then dissolved in 10 

mL of ethanol, added to the ligand solution, and stirred overnight. The solution was 

concentrated to reduce volume, triturated with pentane and allow to stand. Black 

solid was precipitated. The solid was collected by filtration, washed with pentane 

and dried to give Cu(SBLA)2 (0.125 g, 64%). Elemental analysis for 

C28H30CuN4S4O4: Calcd. C 47.72, H 4.62, N 8.56; Found C 47.15, H 4.64, N 8.51. 

ESI-MS: m/z = [M+Na]+ Calcd. 676.04, Found 676.03. IR: # (cm–1) = 3330-2300 (b) 

1698 (s) 1613 (w) 1600 (w) 948 (s) 919 (s) 763 (w). UV-Vis in DMSO: "max nm (log 

!) = 272 (4.48), 431 (3.30), *471(3.24, sh), *608 (3.05, sh). RP-HPLC: RT (min) = 

16.8 and 21.2.  

 

Cu(SM4CB)2 0.203 g (0.0008 mol, 1 equiv) of SM4CB was solubilized in 150 mL 

of hot acetonitrile. 0.080 g (0.0004 mol, 0.5 equiv) of Cu(OAc)2·H2O was then 

dissolved in 20 mL of acetonitrile, added to the ligand solution, and heated at 82°C 

(reflux temperature) with stirring for one-two hour until the volume was reduced. 

The solution was allowed to stand at 4°C overnight. Brown solid was precipitated. 

The solid was collected by filtration, washed with pentane and dried to give 

Cu(SM4CB)2 (0.167 g, 73 %). Elemental analysis for C20H18CuN4S4O4: Calc C 

42.13, H 3.18, N 9.83; Found C 41.84, H 3.39, N 9.65. ESI-MS: m/z = [M+3Na-

2H]+ Calcd. 635.91, Found 635.90; [M+2Na-H]+ Calcd. 613.93, Found 613.92; 

[M+Na]+ Calcd. 591.95, Found 591.94. IR: # (cm–1) = 3280-2320 (b) 1687 (s) 1607 

(m) 964 (m) 939 (m) 819 (m). UV-Vis in DMSO: "max nm (log !) = 322 (4.45). RP-

HPLC: RT (min) = 13.3. 
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Cu(SB4CB)2 0.1322 g (0.0004 mol, 1 equiv) of SB4CB was solubilized in 75 mL of 

acetonitrile. 0.040 g (0.0002 mol, 0.5 equiv) of Cu(OAc)2·H2O was then dissolved 

in 10 mL of acetonitrile, added to the ligand solution, and heated at 82°C (reflux 

temperature) with stirring for one-two hour until the volume was reduced. The 

solution was allowed to stand at 4°C overnight. Brown solid was precipitated. The 

solid was collected by filtration, washed with pentane and dried to give Cu(SB4CB)2 

(0.106 g, 73 %). Elemental analysis for C32H26CuN4S4O4: Calcd. C 53.21, H 3.63, N 

7.76; Found C 53.39, H 3.81, N 7.65. ESI-MS: m/z = [M+3Na-2H]+ Calcd. 787.98, 

Found 787.96, [M+2Na-1H]+ Calcd. 765.99, Found 765.98, [M+Na]+ Calcd. 744.01, 

Found 744.00. IR: # (cm–1) = 3280-2350 (b) 1687 (s) 1605 (m) 958 (m) 915 (m) 816 

(m). UV-Vis in DMSO: "max nm (log !) = 322 (4.48). RP-HPLC: RT (min) = 16.8.  

 

3.2.3.3 Open chain Cu(II) system with bidentate NS ligands with natural ketone 

moiety 

SBCM This compound was prepared by a slight modification of a previously 

reported procedure (Dawara et al., 2012). SBDTC (0.397 g, 0.002 mol) was 

dissolved in hot absolute ethanol (40 mL). An equimolar amount of 3-

acetylcoumarin also dissolved in hot absolute ethanol (0.378 g, 60 mL) was added 

dropwise to the solution of the dithiocarbazate. The mixture was heated over 2-3 

hours until finally the volume was 1/3 of the original volume to produce orange 

precipitate. The solution was allowed to stand for a few hours at 4°C. The product 

was filtered off, washed with pentane and dried in vacuo over silica gel to afford 

0.619 g of SBCM (Yield 84 %). HR-MS: m/z = [M+Na]+ Calcd. 391.05454, Found 

391.05492. 1H NMR (300 MHz, DMSO-d6) ) 12.56 (s, 1H), 12.50 (s, 0H), 8.19 (s, 

1H), 8.10 (s, 0H), 7.85 (dd, J = 7.8, 1.4, 1H), 7.77 – 7.60 (m, 2H), 7.50 – 7.21 (m, 
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12H), 4.48 (s, 2H), 4.42 (s, 1H), 2.34 (s, 3H), 2.20 (s, 1H). IR: # (cm–1) = 3025 (w) 

2872 (w) 1700 (s) 1559 (m) 1042 (m) 999 (s) 841 (m). UV-Vis in DMSO: "max nm 

(log ! ) = 286 (4.22), *342 (4.12, sh). RP-HPLC: RT (min) = 23.7. 

 

Cu(SBCM)2 The ligand (0.0368g, 0.0001 mol, 1 equiv) was dissolved in hot 

solution of ethanol:acetonitrile (2:1 ratio, 100 mL). Cu(OAc)2·H2O (0.010 g, 

0.00005 mol, 0.5 equiv) dissolved in 10 ml of ethanol was added and the reaction 

mixture was stirred at room temperature overnight. The solution was concentrated to 

reduce volume and allow to stand. Dark brown solid was precipitated. The solid was 

collected by filtration, washed with pentane and dried under vacuum to afford the 

expected complexes Cu(SBCM)2. (0.031 g, 78 %) Elemental analysis for 

C38H30CuN4S4O4: Calcd. C57.16 H 3.79 N 7.02; Found C 56.53, H 3.80, N 7.02. 

ESI-MS: m/z = [M+K]+ Calcd. 836.02, Found 836.01; [M+Na]+ Calcd. 820.04, 

Found 820.03; [M+H]+ Calcd. 798.06, Found 798.05. IR: # (cm–1) = 1726 (s) 1565 

(m) 986 (s) 965 (s) 853 (w) 839 (w). UV-Vis in DMSO: "max nm (log !) = 285 

(4.48), *341 (4.42, sh), 606 (2.95). RP-HPLC: RT (min) = 23.5 and 28.0. 

 

Zn(SBCM)2 The ligand (0.0368g, 0.0001 mol, 1 equiv) was dissolved in hot 

solution of ethanol:acetonitrile (2:1 ratio, 100 mL). Zn(OAc)2 (0.009 g, 0.00005 mol, 

0.5 equiv) dissolved in 10 ml of ethanol was added and the reaction mixture was 

stirred at room temperature overnight. The solution was concentrated to reduce 

volume allow to stand. White solid was precipitated. The solid was collected by 

filtration, washed with pentane and under vacuum to afford the expected complexes 

Zn(SBCM)2. (0.033 g, 83%) Elemental analysis for C38H30ZnN4S4O4: Calcd. C 

57.03, H 3.78, N 7.00; Found C 56.49, H 3.84, N 7.10. ESI-MS: m/z = [M+H]+ 
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Calcd. 799.1, Found 799.5. 1H NMR (300 MHz, DMSO-d6) ) 8.22 (s, 2H), 7.76 (t, J 

= 7.1, 4H), 7.52 (dd, J = 16.7, 8.4, 4H), 7.36 – 7.20 (m, 10H), 3.87 (s, 4H), 2.53 (s, 

6H). IR: # (cm–1) = 1706 (s) 1567 (m) 984 (s) 952 (m) 843 (w). UV-Vis in DMSO: 

"max nm (log !) = 292 (4.50), *344 (4.41, sh). RP-HPLC: RT (min) = 23.4. 

 

Re(SBCM)2  

The ligand (0.074 g, 0.0002 mol, 1 equiv) was dissolved in toluene (30 mL) at 110 

°C. Re(CO)5Cl (0.072 g, 0.0002 mol, 1 equiv) was added and the reaction mixture 

was refluxed overnight. A yellow precipitate appeared. The reaction was cooled 

down to room temperature, filtered and the solid was washed with toluene.  The 

solid dried under vacuum to afford the expected complexes (0.0441 g, 33 %). 

Yellow-orange crystals of diffraction quality were obtained from toluene after 

several weeks through slow evaporation at room temperature.  Elemental analysis 

for C44H30ReN4S4O10: Calcd. C 41.44, H 2.37, N 4.39; Found C 40.04, H 2.41, N 

4.43. ESI-MS: m/z = [M+H]+ Calcd. 1275.00, Found 1275.00, [M+Na]+ Calcd. 

1296.98, Found 1296.98. 1H NMR (300 MHz, DMSO-d6) ) 1H NMR (300 MHz, 

DMSO) ) 8.30 (s, 2H), 7.73 – 7.65 (m, 4H), 7.50 – 7.40 (m, 8H), 7.38 – 7.24 (m, 

7H), 4.45 (s, 4H), 2.52 (s, 4H). IR: # (cm–1) = 2017 (s) 1914 (s) 1892 (s) 1724 (s) 

1566 (m) 1022 (m) 1004(m) 846 (w) UV-Vis in DMSO: "max nm (log !) = 2.86 

(4.53), *325 (4.44,sh). RP-HPLC: RT (min) = 25.7. 
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3.3 Results and discussion 

3.3.1. Synthesis  

The synthesis of S-substituted dithiocarbazates were performed as already described 

(Chan et al., 2008; Chew et al., 2004). Carbon disulfide and hydrazine were reacted 

in basic ethanolic conditions. After workup the expected dithiocarbazate was 

directly engaged into the nucleophilic substitution with methyl iodide or benzyl 

chloride to afford SMDTC and SBDTC, respectively. The tetradentate NNSS Schiff 

base ligands were then prepared with variations from the method described by Ali et 

al. (1987) involving the condensation reaction between the respective S-substituted 

dithiocarbazates and 2,5-hexanedione in 2:1 ratio (Scheme 3.1: a-d). The initial 

attempt to synthesize the ligand SBHD with prolonged heating or purification using 

column chromatography showed that this compound underwent cyclization to its 

pyrrole derivative as confirmed by NMR, ESI, elemental analysis and single crystal 

X-ray diffraction. The bis(dithiocarbazate) was postulated to form first, subsequently 

hydrolyzed into mono(dithiocarbazate) and SBDTC (Patel et al., 2009; Chaviara et 

al., 2005). It is likely that the mono(dithiocarbazate) then underwent cyclization to a 

pyrrole via the Paal-Knorr reaction. However, such a side reaction was not 

previously described during the formation of bis(thiosemicarbazone) with 2,5-

hexanedione (Gingras et al., 1962) although there have been reports of the formation 

of pyrazole upon reaction with 1,3-diketones (Ali et al., 2013b; Iskander et al., 1982; 

Casas et al., 2008; Centore et al., 2013) and others cyclic byproducts from related 

reactions (Christlieb and Dilworth, 2006; Ali et al., 2013a). To our knowledge, this 

is the first description of a pyrrole derived from a dithiocarbazate. Encouraged by 

the remarkable pharmacological properties of functionalized pyrrole (Liu et al., 

2008; Fürstner, 2003), the compound was tested for its antimicrobial activity and the 
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results are discussed in Chapter 5. The Schiff base SBHD was finally obtained by 

either stirring the dione and SBDTC at room temperature for 30 min or by heating 

for only 5 min. 

                                                

Scheme 3.1. Synthesis of the non-conjugated parent compounds. (a) CS2, KOH, 
EtOH, 0°C, 1 hr (b) CH3I or PhCH2Cl, EtOH, 0°C, 5 hr (c) For SMHD (2,5- 
hexanedione, EtOH, 79°C, 1 hr), for SBHD (2,5 hexanedione, EtOH, 79°C, 5 
min) (d) For CuSMHD (Cu(OAc)2·H2O, MeOH, 65°C , 1hr), for CuSBHD 
(Cu(OAc)2, acetonitrile, r.t., 1hr). (e) For SMML and SBML (methyl levulinate, 
EtOH, 79°C, 1 hr), for SMLA and SBLA (levulininc acid, acetonitrile, 82°C, 
1h), for SM4CB and SB4CB (4-carboxy benzaldehyde, acetonitrile, 82°C, 2h)  
(f) For Cu(SMML)2  and Cu(SMLA)2 (Cu(OAc)2·H2O, MeOH, r.t, overnight), 
for Cu(SBML)2  and Cu(SBLA)2 (Cu(OAc)2·H2O, toluene, r.t, overnight), for 
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Cu(SM4CB)2 and Cu(SB4CB)2 (Cu(OAc)2·H2O, acetonitrile, 82°C, 2h). (g) 3-
acetylcoumarin, EtOH, 79°C, 2 hr. (h) Cu(OAc)2·H2O or Zn(OAc)2,  
EtOH:ACN (2:1 ratio), r.t, overnight   (i) Re(CO)5Cl, toluene, 110 °C, 
overnight.  
 

White precipitates were formed. The SMHD ligand was synthesized by heating to 

reduce the volume without the occurrence of such side reaction. The expected 

compound SMHD that precipitated was filtered off and recrystallized to afford pure 

SMHD with good yields. The tetra-coordinated Cu(II) complexes with NNSS 

coordination of these ligands were obtained from the reaction of copper(II) acetate 

with equimolar amounts of the respective ligand in acetonitrile for SBHD and in 

methanol for SMHD. The complexes were isolated by filtration with yields of 77% 

and 73% for CuSMHD and CuSBHD, respectively. Black crystals were grown from 

acetonitrile.   

 

Six bidentate Schiff base ligands with acid or ester functionality were prepared via 

the condensation reaction between the respective S-substituted dithiocarbazates and 

carbonyl compounds in equimolar amount (Scheme 3.1: a,b,e-f).The reactions with 

methyl levulinate were carried out in ethanolic solution at 79°C whereas the 

reactions involving both levulinic acid and 4-carboxybenzaldehyde containing the 

acid-COOH functionality were done in hot acetonitrile solution. The attempt to 

synthesize the ligand SBLA in ethanol did not yield the expected compound. 

Instead, an esterification reaction occurred with the concomitant formation of a 

ligand bearing an ethyl ester (SBEL). The reaction of copper(II) acetate salts with 

the Schiff base ligands in 1:2 ratio yielded crystalline complexes of the formula, 

CuL2 in which the ligands were bidentate. Depending on the ligands, different 

reaction conditions have been set up in order to optimize the yield and purity of the 
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complexes. Early trials at high temperature and and in polar alcoholic solution often 

resulted in oily products and further efforts to crystallize the complexes were futile. 

The structures of four Schiff bases (SMML, SBML, SBEL, SBLA) and two Cu (II) 

complexes, Cu(SMML)2 and Cu(SMLA)2 were confirmed by single-crystal X-ray 

analyses.   

 

The synthesis of the bidentate NS Schiff base with natural ketone moiety, SBCM 

and its proposed structures of metal complexes are schematically represented in 

Scheme 3.1 (a,b,g-i). The complexes Cu(SBCM)2 and Zn(SBCM)2 were prepared by 

reacting SBCM with metal(II) acetate in ethanol:acetonitrile (2:1 ratio) solution 

mixture at room temperature whereas the adduct, Re2(SBCM)2, was obtained by 

refluxing the free ligand with ReCl(CO)5 in toluene. The single crystal of the Re(I) 

complex was also grown from toluene.  

 

The purity and stability of the ligands and their corresponding complexes at 

physiological pH are important prerequisites for the evaluation of their biological 

activity. Therefore RP-HPLC experiments have been performed to gain insights into 

their stability in aqueous solutions. The tetradentate ligands and their respective 

Cu(II) complexes were eluted on a C18-column with an increasing amount of 

acetonitrile (CH3CN) in H2O (from 5% to 100% of CH3CN over 30 minutes), 

containing 0.1 % trifluoroacetic acid (TFA) to maintain the pH. The compounds 

were detected using a UV detector at 220 nm and 280 nm. The chromatograms of 

the pure ligands of the tetradentate series showed 3 peaks that could correspond 

respectively to the hydrolyzed hydrazone, the expected ligand and the pyrrole 

byproduct (Figure 3.1) whereas the complexes showed only a single peak 
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corresponding to the copper complexes (Figure 3.2). The bidentate series with acid 

or ester functionality were also eluted on a RP-HPLC C8-column with a solvent 

system similar to those used for the tetradentate ligands. For the aliphatic Schiff 

bases (SMML, SMLA, SBML, SBLA, SBEL), the chromatograms of the ligands 

showed two peaks corresponding to the starting S-substituted dithiocarbazate and 

the expected ligand whereas the complexes showed mainly a single peak 

corresponding to the copper complexes. Another peak (the intensity differed from 

one compound to the other) was also visible for the copper(II) complexes that may 

be due to either isomerization or to dissociation to 1:1 Cu:L complexes. The 

chromatograms of SMML and Cu(SMML)2 are shown in Figure 3.3 and 3.4 

respectively as examples, the rest of the chromatograms can be found in the 

Appendices. The aromatic acid Schiff bases (SM4CB and SB4CB) on the other hand 

showed only one peak corresponding to the ligands which indicated their enhanced 

stability as compared to their aliphatic counterparts (Figure 3.5). Similiarly, the 

chromatograms of SBCM and its complexes showed mainly a single peak 

highlighting the stability of the aromatic coumarin derivatives. In conclusion, the 

observations indicated that the -C=N- hydrazone bond in the aliphatic free ligands 

could undergo hydrolysis but when complexed, the stability of the ligands was 

significantly increased in acidic conditions and it appears clearly that aromatic 

Schiff bases were more stable. The difference in the ligands and metal complexes 

stability is noteworthy as metal-complexation could then be used as a mean to 

protect the ligand from degradation that could occur in the biological before it could 

reach its target. 
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Figure 3.1. RP-HPLC chromatogram of SBHD at 220 nm (top) and 280 nm 
(bottom).  
 

 

Figure 3.2. RP-HPLC chromatogram of CuSBHD. 
 

 

 Figure 3.3. RP-HPLC chromatogram of SMML. 
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Figure 3.4. RP-HPLC chromatogram of Cu(SMML)2. 

 
Figure 3.5. RP-HPLC chromatogram of SM4CB. 
 

The proposed structures and stoichiometry was initially established by elemental 

analysis and mass spectrometry. The analytical data for the metal complexes agreed 

well with the formulations proposed. All the mass spectra show signals 

corresponding to the molecular weight of either the protonated complexes or the 

complexes with sodium or potassium. These results confirm 1:1 metal to ligand 

stoichiometry for CuSMHD, CuSBHD and a dimeric Re2(SBCM)2 whereas 

Cu(SMML)2, Cu(SMLA)2, Cu(SBML)2, Cu(SBLA)2, Cu(SM4CB)2, Cu(SB4CB)2, 

Cu(SBCM)2 and Zn(SBCM)2 demonstrated  1:2 metal to ligand stoichiometry. Upon 

complexation of metal ion with S-substituted dithiocarbazate derived Schiff base 

ligand, a deprotonation of the nitrogen of the dithiocarbazate is expected, leading to 

an iminothiolate. Coordination via NS atoms would be anticipated. However, the O 
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atom present in the ligands containing acid, ester or coumarin moiety could also 

potentially participate in metal coordination. In order to confirm the formation of the 

metal complexes and to characterize them, several other techniques were employed. 

 

3.3.2 Characterization of metal complexes in solid state 

3.3.2.1 FT-IR 

Two examples of the FT-IR spectra used to monitor complexation, one from 

tetradentate series and the other from bidentate series are shown in Figure 3.6 and 

3.7, respectively. The IR spectra for the rest of the compounds can be found in the 

Appendices. The IR spectra of the tetradentate ligands and bidentate SMML and 

SBML ligands exhibit characteristic bands +NH at ca. 3130 and 3200 cm-1, 

respectively. Strong broad structured bands spanning from around 3300–2300 

cm"1 appeared in the spectra of the ligands SMLA, SBLA, SM4CB and SB4CB 

which contained the acid functionality and their respective Cu(II) complexes due 

to +OH, +NH and +CH overlapping stretching vibrations. The IR spectrum of 

coumarin-derived SBCM however showed only a weak band at 

3056 cm"1 assignable to #(NH) stretching. Another band attributed to #(SH) was 

noticeable at 2872 cm"1. These observations demonstrated that while most of the 

ligands existed in thione form, SBCM existed in both thione and thiolate forms in 

the solid state. In addition, all the ligands possess bands +(C=N) at 1652-1559 cm-1, 

+(C=S) at 1067-1025 cm-1, +(CSS) at 990-923 cm-1and v(NN) at 841-778 cm-1. 

Upon formation of the complexes, the band corresponding to the +(NH) stretching of 

the ligands disappeared. The +(C=N) attributed to azomethine bond was observed to 

experience a downward shift of 5-40 cm-1  in most of the spectra with the exception 

of metal complexes of SBCM that shifted to higher wavenumbers (~1566 cm-1). A 
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second band due to +(N=C) in complexes containing anionic dithiocarbazate 

moieties was also resolved (Rapheal et al., 2007) for CuSMHD, CuSBHD and 

Cu(SBLA)2. The hydrazinic +(N-N) band also shifted to either higher and lower 

wavenumbers upon complexation. All these observations indicates the deprotonation 

of the Schiff base ligands and coordination via the azomethine nitrogen atom during 

complexation with metal ion which resulted in the adoption of a more stable 

structure where the conjugated system was elongated in the complexes as compared 

to the free ligands. The disappearance of +(C=S) and the splitting of the asymmetric 

+(CSS) band into two peaks in the spectra of the all metal complexes were strong 

evidence of coordination via the thiolate sulfur atoms (Crouse et al., 2004; Akbar Ali 

and Tarafdar, 1977). In the bidentate series, the strong band at 1717-1687 cm"1 of 

the ligands can be assigned to the carbonyl +(C=O). The band remained unchanged 

upon complexation in the spectra of Cu(SM4CB)2, Cu(SB4CB)2 and Cu(SBLA)2 but 

slightly shifted for Cu(SMML)2, Cu(SBML)2, Cu(SMLA)2, Cu(SBCM)2, 

Zn(SBCM)2 and Re2(SBCM)2. Despite the shift in wavenumbers, the X-ray 

structures solved for Cu(SMML)2, Cu(SMLA)2 and Re2(SBCM)2 revealed that the 

metal ions were coordinated by the bidentate ligands via only the azomethine 

nitrogen and thiolate sulfur atoms. No coordination via the carbonylic oxygen was 

observed. Such a shift can be interpreted as being caused by the vibrational coupling 

of the C=O in the solid state H-bonded structure (Ferrari et al., 2000). Single crystal 

X-ray analyses of the ligands and complexes indicated the formation of 

intermolecular hydrogen bonds involving the carbonylic oxygen and the presence of 

other short contacts. Previous publications had also reported comparable shifting 

that did not correspond to coordinated O atoms (Creaven et al., 2009). Fac-geometry 
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around the rhenium atom is also confirmed by the three characteristic Re-(CO) 

vibrations at 2017, 1914 and 1892 cm-1. 

 

Figure 3.6. FT-IR spectra recorded for ligand SBHD and complex CuSBHD. 

 

Figure 3.7. FT-IR spectra recorded for ligand SMML and complex 
Cu(SMML)2. 
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3.3.2.2 Single crystal XRD description  

The ORTEP diagrams of the compounds in the tetradentate series SBPY, SMHD, 

CuSMHD and CuSBHD with atomic numbering schemes are shown in Figure 3.8. 

Selected bond lengths and bond angles are depicted in Table 3.1 and 3.2. 

 

  

 

Figure 3.8. ORTEP drawing of (a) SMHD (b) SBPY (c) CuSMHD and (d) 
CuSBHD. Ellipsoids are drawn at the 50% probability level. 
 
 
 
 

(a) (b) 

(d) 

(c) 
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Table 3.1. Selected bond lengths for SBPY, SMHD, CuSMHD and CuSBHD. 
 
Compound Bond lengths  (Å) 
 C=S C-S C-N N-N C=N 
SMHD 1.657(4) 1.763(3) 1.337(4) 1.392(3) 1.281(4) 
CuSMHD 1.738(2), 

1.737(1) 
1.753(1), 
1.758(2) 

1.290(2), 
1.289(2) 

1.407(1), 
1.418(2) 

1.288(2), 
1.292(2) 

CuSBHD 
 

1.734(2), 
1.740(2) 

1.758(2), 
1.756(2) 

1.287(2), 
1.287(2) 

1.418(2), 
1.401(2) 

1.291(2), 
1.284(2) 

SBPY 1.647(2) 1.748(2) 1.354(2) 1.380(2) 1.386(2), 
1.389(2) 

 N-Cu N-Cu S-Cu S-Cu N-Cu 
CuSMHD 2.071(1) 1.993(1) 2.246(4) 2.266(4) 2.071(1) 
CuSBHD 1.978(1) 2.056(1) 2.252(4) 2.248(4) 1.978(1) 
  

Table 3.2. Selected bond angles for CuSMHD, CuSBHD, CuATSM (Blower et 
al., 2003) and CuAATSM (Cowley et al., 2004). 
 
Bond angles (°) CuSMHD CuSBHD CuATSM CuAATSM 
S-Cu-N 85.75(3) 84.36(4) 85.13 86.79(5) 
N-Cu-N 104.21(5) 99.61(5) 80.60 96.10(7) 
N-Cu-S 84.89(3) 85.26(4) 85.11 85.60(5) 
S-Cu-S 92.80(2) 91.67(2) 109.23 91.74(2) 
 

The crystal structure of SMHD reveals an (E, E’) conformation with respect to the 

hydrazone bond and a center of symmetry at the middle of the C7-C7’ single bond. 

The molecule crystallized in trans-cis configuration around the S(NH)C=S moiety 

(highlighted in Figure 3.8 (a)) very similar to most Schiff bases derived from 

dithiocarbazate (Low et al., 2013; Ravoof et al., 2007). The S-methyl group was cis 

across the C2-S1 bond while the ketone moiety was trans along the C2-N4 bond 

with respect to the terminal thione S atom. The bond lengths N5-C6 (1.281 Å) and 

S3-C2 (1.657 Å) are consistent with a double-bond of a hydrazone and a 

thiocarbonyl, respectively. The values are comparable to related NNSS tetradentate 

ligands (Jasinski et al., 2003; Xu et al., 2002; Paterson et al., 2010). The bond 

lengths N4-C2 (1.337 Å) and S1-C9 (1.763 Å) are shorter than typical covalent 
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single-bond distance (N-C 1.47 Å and C-S 1.81 Å), indicating higher order bond 

character. This can result from delocalization of electron density within the 

dithiocarbazate S1-C2(=S3) and N4-C2(=S3) ,-systems. The ligand appears 

essentially planar in the solid state and no hydrogen bonding was observed. The 

pyrrole byproduct SBPY crystallized in a monoclinic system with a space group of P 

21/c. The central C7S1C8S2N1 residue is planar while both the benzyl and pyrrole 

rings are inclined to this plane forming interplanar angles of 71.87o and 88.30o, 

respectively. A comparison of the selected bond lengths and bond angles with 

SMHD show that the molecule also crystallized in trans-cis configuration around the 

S(NH)C=S moiety similar to the Schiff bases with intermediate bond length 

indicative of extensive conjugation and ,-delocalization over the molecules and 

other intermolecular interactions. 

 

It is expected that the Cu(II) ion would be four-coordinated by the ligands in their 

iminothiolate form. N-deprotonation is typical in dithiocarbazate Schiff base 

coordination chemistry (Manan et al., 2011b; Jasinski et al., 2003; Paterson et al., 

2010). Tautomerism of the dithiocarbazate ligand to its iminothiolate form is also 

anticipated to convert the C=S bond to a single C–S bond but in most cases the bond 

length lies between the C-S single bond (1.82 Å) and C=S double bond (1.56 Å) 

indicative of a partial double bond character (Ravoof et al., 2007). This is the case 

for both complexes where the C-S distance is 1.738 Å and 1.734 Å for CuSMHD 

and CuSBHD, respectively. The increase in the C-S bond distance as compared to 

the uncoordinated neutral ligand showed that the ligand is dianionic upon 

coordination. In addition, the C2-N4 bond length is about 1.337 Å in the free ligand 

whereas this bond shortened in both metal complexes (1.290 Å and 1.287 Å for 
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CuSMHD and CuSBHD, respectively) suggesting an enhancement of their double 

bond character. In order to accommodate the metal, the ethylene from the 

hexanedione adopts a gauche conformation forming a seven-membered chelate ring 

surrounding the Cu ion. It has been reported that seven membered chelate rings with 

two hydrazone bonds have a tendency to favour tetrahedral coordination of metal 

ions (Nandi et al., 1984). The deviation from planarity can be assessed by measuring 

the sum of the four angles, N-Cu-S, S-Cu-S, S-Cu-N and N-Cu-N, for which 360° 

would be obtained for an ideal planar arrangement and 437.6° for an ideal 

tetrahedral arrangement (Knoblauch et al., 1999). The sum of these angles around 

the central copper metal in this complex are consistent with a slightly distorted 

square planar geometry with CuSMHD showing a more significant distortion than 

CuSBHD (367.65° and 360.9° respectively). The interplanar angles between two N-

Cu-S planes of 35.65° and 31.22° for CuSMHD and CuSBHD, respectively, 

confirms that CuSBHD is the more planar molecule. The Cu-N (1.98-2.07 Å) and 

Cu-S (2.24-2.27 Å) bond distances of both CuSMHD and CuSBHD are almost 

similar to the typical Cu(II) N2S2 complexes of related ligands (Blower et al., 2003; 

Cowley et al., 2004). When compared with other Cu(II) complexes of the same 

family with zero (CuATSM), one (CuAATSM) or two carbons (CuSMHD and 

CuSBHD) linking the two hydrazones, it appears clearly that the distortion from 

planar geometry increases with the number of carbons (360.07°, 360.23°, 360.9° and 

367.65° for CuATSM, CuAATSM, CuSBHD and CuSMHD respectively).  

 

Since the substituents are remote from the metal center, the solid state structures of 

the two complexes are almost identical. In the crystallographic lattice, the two 

benzyl groups adopt different orientations (syn/anti) with respect to their adjacent 
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coordinated S-donor atoms similar to the Cu(II) complex reported by Ali et al. 

(2013b). Together these data show that the tetradentate Cu(II) complexes are indeed 

formed and adopt a slightly distorted square planar geometry. 

 
The crystal structures of the Schiff base ligands (SMML, SBML, SBEL, SBLA) and 

two Cu(II) complexes (CuSMML and CuSMLA) with their atom numbering 

schemes and intermolecular hydrogen bonds are shown in Figures 3.9 and Figure 

3.10. Selected bond lengths and bond angles are given in Tables 3.3 to 3.8. 

(a)  

 
 

(b) 

 

  
Figure 3.9. ORTEP diagrams and intermolecular hydrogen bonds (shown as 
dotted line) of (a) SMML and (b) SBLA Ellipsoids are drawn at the 50% 
probability level. 
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(c) 

  
(d) 

 

 
Figure 3.9 (continued). ORTEP diagrams and intermolecular hydrogen bonds 
(shown as dotted line) of (c) SBML (d) SBEL. Ellipsoids are drawn at the 50% 
probability level. 
 

SBML and SBEL crystallized in space group of P 21/n whereas SMML and SBLA 

crystallized in space groups P 21/c and P-1, respectively. The Schiff bases are in the 

thione form with C=S bond distances ranging from 1.662 to 1.681 Å. As observed 

for the tetradentate ligands, the bond lengths were intermediate between a C–S 

single bond and a C=S double bond possibly due to the extensive conjugation over 

the C=N-N-C chain and other intermolecular interactions. The N-N bond distance 

varied from 1.378 to 1.394 Å in the Schiff bases, showing that the bond was shorter 
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than a single bond, indicating significant ,-charge delocalization along the 

dithiocarbazate moiety. The attachment of the methyl levulinate/levulinic acid 

groups to the imino nitrogen atoms was probably responsible for the shortening of 

the N-N distance. Trans-cis conformation was observed in all the Schiff bases 

around the -SC(=S)NH- moiety. The methyl levulinate/levulinic acid moiety was 

trans with respect to the terminal thione S atom about the C-N bond while the S-

methyl/S-benzyl group was cis with respect to the terminal thione S atom about the 

C-S bond. The bond angles in the Schiff bases were close to 120º consistent with sp2 

hybridization. The C"O (carbonylic) and C"O (hydroxylic) distances of 1.21 and 

1.33 Å demonstrate typical localized bonds like those reported for carboxylic groups 

in thiosemicarbazone &-ketoglutaric acid (Ferrari et al., 2002a).  

 

SMML and SBLA featured centrosymmectric H-bonded dimeric motifs held by 

strong intermolecular hydrogen bonds (N–H···O, 2.932 Å) and (O-H·· ·O, 2.662 Å), 

respectively. The (N-H·· ·O) motif was also observed in SBML and SBEL but they 

were different from the dimeric SMML. Two (N–H···O) bonds linked the dimeric 

SMML together while the individual (N-H···O, 2.902 Å for SBEL and 2.933 Å for 

SBML) bond from one ligand were linked to two separate ligands forming a 

continuous chain in both SBML and SBEL.  

  

The Schiff bases are also not planar. Both the benzyl rings and the methyl 

levulinate/levulinic acid moieties are in a twisted conformation at particular angles. 

A remarkable difference in the Schiff bases is the orientation of the 

=C(CH3)CH2CH2COOR chains (where R = H, CH3, CH2CH3 ) highlighted by the 

varied inclination angles between the allylic (=C(CH3)CH2CH2) and the terminal 
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carbocyclic acid/ester (-COOR) planes. The deviation from planarity between the 

two plans can be arranged as SBLA< SBML < SBEL < SMML while the order of 

planarity of the dithiocarbazate plane with respect to the allylic plane in the Schiff 

bases can be placed as follows SBLA > SMML > SBML > SBEL. The benzyl ring 

in all S-benzyl derivatives was almost perpendicular to the dithiocarbazate plane. 

The perpendicularity of the benzyl ring towards the dithiocarbazate plane can be 

ordered SBLA > SBEL > SBML.  

 

Table 3.3. Selected bond lengths for SMML, SBML, SBEL and SBLA. 
 
Compound Bond lengths  (Å) 
 C=S C-S C-N N-N 
SMML 1.6635 1.7560 1.3427 1.3797 
SBLA 1.6806 1.7758 1.3624 1.3940 
SBEL 1.6663 1.7567 1.3390 1.3989 
SBML 1.6617 1.7636 1.3418 1.3941 
 C=N C=O C-O  
SMML 1.2846 1.2112 1.3352  
SBLA 1.2944 1.2418 1.3303  
SBEL 1.2853 1.2110 1.341  
SBML 1.2854 1.2102 1.3346  
 

Table 3.4. Selected bond angles for SMML, SBML, SBEL and SBLA. 
  
Compound Bond angles (°)  
 S-C=S S=C-N N-N=C S-C-N 
SMML 125.24 121.55 119.04 113.19 
SBLA   124.30 122.81 120.49 112.89 
SBEL 125.68 121.47 116.00 112.83 
SBML   126.64 120.57 116.37 112.79 
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Table 3.5. Intermolecular hydrogen bonds for SMML, SBML, SBEL and 
SBLA. 
 
Compound D-H-A (Å) 
SMML N1-H1 O1 (2.932) 
SBLA O1-H1 O2 (2.662) 
SBEL NI-H1 O1  (2.902) 
SBML N2-H1 O1 (2.933) 

 

Table 3.6. Selected dihedral angles between the two planes for SMML, SBML, 
SBEL and SBLA.  
 

Compound Dihedral 
angles (°) 

Compound Dihedral 
angles (°) 

SMML   SBEL 
S2C2S1N1N2 
(dithiocarbazate) and 
C3C4C5C6 (ML) 
S2C8S1N1N2 
(dithiocarbazate)  and 
O1C7O2C8(ML) 
C3C4C5C6 (ML)  and 
O1C7O2C8(ML) 
 

 
5.74 
 
 
77.67 
 
79.19 

S1C8 S2N1N2 
(dithiocarbazate) and 
C9C10C11C12 (EL) 
S1C8 S2N1N2 
(dithiocarbazate) and 
O1C13O2C14C15 (EL) 
S1S2C8N1N2 
(dithiocarbazate) and 
C1C2C3C4C5C6C7 (benzyl) 
C9C10C11C12 (EL) and 
O1C13O2C14C15 (EL) 

 
30.62 
 
 
68.59 
 
 
77.52 
 
74.96 

 

 
SBLA 

 
 

 
SBML 

 
 

S2C8S1N1N2 
(dithiocarbazate) and 
C9C10C11C12 (LA) 
S2C8S1N1N2 
(dithiocarbazate)  and 
C13O2O1(LA) 
S2C8S1N1N2 
(dithiocarbazate) and 
C1C2C3C4C5C6C7 
(benzyl) 
C9C10C11C12 (LA) 
and C13O2O1(LA) 

 
3.49 
 
 
2.68 
 
 
78.54 
 
 
2.48 

S1C7S2N2N1 
(dithiocarbazate)  and 
C3C4C5C6 (ML) 
S1C7S2N2N1 
(dithiocarbazate)  and 
O1C2O2C1(ML) 
S1C7S2N2N1 
(dithiocarbazate) and 
C8C9C10C11C12C13C14 
(benzyl) 
C3C4C5C6 (ML) and 
O1C2O2C1(ML) 

 
18.64 
 
 
77.62 
 
 
72.71 
 
 
74.43 
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Cu(SMML)2 crystallized in the C 2/c space group as a centrosymmetric complex in 

which the two ligands were symmetrically related to each other and have the same 

bond angles and distances. The central copper atom was bis-chelated by the 

uninegatively charged bidentate ligand through the azomethine nitrogen atoms (N2) 

and thiolate sulfur atoms (S1). Both nitrogen and sulfur atoms in the two ligands are 

coordinated at the same position relative to each other. The sum of the four angles, 

N-Cu-S, S-Cu-S, S-Cu-N, and N-Cu-N, in the complex was 374.33° confirming 

significant deviation from the square-planar geometry about the copper ions. Neither 

the carbonylic nor hydroxylic oxygen of the methyl levulinate moiety participated in 

complexation. The conjugation system of the moieties was influenced by 

coordination with the metal as shown by slight lengthening of the N–N bond 

distance (1.407 Å). The bond lengths in the dithiocarbazate moiety that are expected 

to be most affected by coordination are azomethine C–N and C–S. The C1–S1 and 

C1-N1 bond lengths in the complex were 1.737 and 1.296 Å respectively. The C1–

S1 distance was longer than that observed in the Schiff base, SMML, indicating 

single bond character as expected when complexation involves the ligand in its thiol 

form. The C1–N1 bond distances in the complex were also typical for double bonds 

in Schiff bases compounds clearly indicating that complexation involves 

deprotonation at N1.  
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Figure 3.10. ORTEP diagrams of (a) Cu(SMML)2 and (b) Cu(SMLA)2 with 
intermolecular hydrogen bonds (shown as dotted lines) in (c). Ellipsoids are 
drawn at the 50% probability level. 

 (a)  

 
             (b)  

 
                 (c) 
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Table 3.7. Selected bond lengths for Cu(SMML)2 and Cu(SMLA)2 
 
Compound Bond lengths (Å) 
 C=S C-S C-N N-N C=N 
Cu(SMML)2 1.7366 1.7466 1.2958 1.4066 1.2962 
Cu(SMLA)2 1.7423(1) 

1.7420(1) 
1.7372(1) 
1.7469(1) 

1.2987 
1.2861(1) 

1.4096(1) 
1.4099(1) 

1.2875(1) 
1.2873(1) 

 N-Cu N-Cu S-Cu S-Cu  
Cu(SMML)2 2.0109 2.0109 2.2195 2.2195  
Cu(SMLA)2 1.9898(1) 1.9912(1) 2.2356(1) 2.2287(1)  
 
Table 3.8. Selected bond angles for Cu(SMML)2 and Cu(SMLA)2. 
 
Bond  
angles (°) 

Cu(SMML)2 
 

Cu(SMLA)2 

S-Cu-N 86.15 84.57 
N-Cu-N 106.43 102.28 
N-Cu-S 86.15 85.89 
S-Cu-S 95.60 107.38 
 
 

Cu(SMLA)2 crystallized in P 21/n space group within an asymmetric unit in which  

two nonequivalent ligand molecules were present with one methanol molecule. 

Similar to Cu(SMML)2, deprotonation of the ligand lead to tautomerization to the 

iminothiolate. While coordinating in the iminothiolate form, the negative charge 

generated on the sulfur atom was delocalized in the C=N-N=C chain as indicated by 

the intermediate C(2)-N(1) = (1.2987 and 1.2861(1) Å), N(1)-N(2) = (1.4096(1) and 

1.4099(1) Å) and N(2)-C(3) = (1.2875(1) and 1.2873(1) Å) bond lengths. The 

lengthening of the C-S bond in the complex can be attributed to enethiolization. The 

380.12° sum of angles around the Cu2+ ion in Cu(SMLA)2 indicated that the 

complex was appreciably distorted from regular square-planar geometry. The Cu–S 

(2.2356(1) and 2.2287(1) Å) and Cu–N (1.9898(1) and 1.9912(1) Å) bond lengths 

are similar to those of the bis-chelated four coordinate copper(II) complex of the 

related isatin Schiff base of SMDTC (Manan et al., 2011b; Ali et al., 2008). The 
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difference between the bond lengths in the same complex can be ascribed to the 

constraints imposed by chelation. The packing for Cu(SMLA)2 was also determined. 

In addition to the interactions between the (O3-H·· ·O4) bond involving two 

neighbouring independent molecules similar to its free ligand SBLA, an extended 

network of hydrogen bonds involving the crystallized methanol molecule and the 

other ligand in Cu(SMLA)2 that was closed to the solvent molecule was also 

observed. The linkage involved the hydroxylic oxygen atom (O2) of one complex 

molecule, the alcoholic oxygen atom (O3) of methanol and the uncoordinated 

azomethine nitrogen atom (N1) from another complex molecule. The continuous 

hydrogen bond networks developed were (O2–H2···O5, 2.655 Å) and (O5-H5···N1, 

2.854 Å). As a consequence of these H-bond systems, the two ligands were not 

planar in the portion involved in metal coordination and the terminal chains with the 

carboxylic group which bridged the adjacent molecule were fairly distorted as can 

be seen from the dihedral angles involving the levulinic acid moiety (84.78° for C3–

C4–C5 and C6-C7-O1-O2, 89.31° for C10–C11–C12 and C13-C14-O4-O3). The 

presence of methanol in the lattice highlights the spatial effect in which the terminal 

chains with the carboxylic group were forced to align in parallel whereas in 

Cu(SMML)2 the ester terminal chains were almost 180° from one another  

minimizing steric constraints. This explains the observation that Cu(SMLA)2 was 

more distorted from square planar than  Cu(SMML)2. 

 

The ORTEP diagram of Re2(SBCM)2 complex with atomic numbering scheme is 

shown in Figure 3.11. Selected bond lengths and bond angles are given in Tables 3.9 

and 3.10. The complex crystallized in P 21/c space group with unit cell parameters 

a=14.7072(4), b=12.6588(3), c=12.1386(3) and &=90o, %=99.374(1)o, -=90o. A 
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number of thiosemicarbazone complexes of Re(I) carbonyl compounds have been 

studied by X-ray diffraction (Carballo et al., 2002; Santos et al., 2004). However, to 

date, this is the first Re(I) tricarbonyl complex with a dithiocarbazate Schiff base 

ligand to have been characterized structurally by X-ray diffractometry.  

Crystallographic analysis of the complex Re2(SBCM)2 in this work showed that the 

rhenium atom was octahedrally coordinated to (i) three carbonyl carbon atoms in 

fac arrangement, (ii) the N and S atoms of the deprotonated bidentate 

dithiocarbazate Schiff base ligand with 3-acetylcoumarin in which the metal forms a 

five-membered chelate ring and (iii) the sulfur atom of a neighbouring molecule that 

had replaced the chloride atom resulting in a centrosymmetric dimer. The Re-S-

Re bridge (Re-S = 2.4669 (1) and 2.5565 (1) Å) was more asymmetric than Re 

complex (a) (data adopted from Carbolla et al., 2002). Like Re complex (a), the 

planar Re2S2 diamond for Re2(SBCM)2  in which the Re-Re distance was too long 

for any significant bonding interaction, had bond angles close to 90°. The three Re-

C distances were close to one another with an average bond distance of 1.916 Å in 

the range shown by numerous other Re(I) complexes containing the 

Re(CO)3
+ core (Czerwieniec et al., 2005; Fuks et al., 2010). The Re-N (2.2002(1) 

Å), Re-S (2.4669(1) Å) and Re-S’ (2.5565(1) Å) distances do not differ significantly 

from those determined for Re complex (a). Therefore, it can be concluded that in the 

dimeric Re2(SBCM)2 complex the geometry around each Re center was slightly 

distorted octahedral. The C12-S1 was shorter (1.7755 Å) in this complex in 

comparison to (a), but it was longer than in most free dithiocarbazate Schiff bases 

(ca 1.6 Å) suggesting a predominantly thiol character upon complexation. This 

conclusion was reinforced by the observed shortening of N2-C12 (ca. 1.34 Å from 

the previous series in this work and 1.2638 Å in Re2(SBCM)2). The configuration 
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around this latter bond was Z (because of the N1-S1 chelation to the rhenium) and 

the configuration with respect to C10-N1 was E (C8C10N1N2 = 179.94). The 

dihedral angle between the dithiocarbazate plane and the plane of the coumarin ring 

was 83.07° whereas the dithiocarbazate plane and the plane of benzyl ring were at 

75.22° to one another. The experimentally found N1-Re-S1 bond angle was only 

79.13°. Such deviation from the ideal value of 90° can be explained by the relatively 

strong tensions in the six-membered ring formed by the bidentate ligand and the 

Re(I) cation. It can be also seen that both C-Re-S axial angles are about 174°. The 

two CO molecules present in the equatorial plane form with Re(I) the angles 96.43° 

and 93.16°, respectively. There were also intermolecular interactions from the apical 

carbonyl oxygen from one molecule to the equatorial carbonyl oxygen and the 

uncoordinated nitrogen of the neighbouring molecule forming (O5-O3, 2.932 Å and 

O5-N2, 2.906 Å) bonds. It is plausible that the short distances were due to hydrogen 

bonding.   

 

Figure 3.11. ORTEP diagram and intermolecular interactions (shown as dotted 
red line) for Re2(SBCM)2. Ellipsoids are drawn at the 50% probability level. 
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Figure 3.11 (continued). ORTEP diagram and intermolecular interactions 
(shown as dotted red line) for Re2(SBCM)2. Ellipsoids are drawn at the 50% 
probability level. 
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Table 3.9. Main bond lengths (Å) and angles (°) in the coordination sphere 
around the rhenium atom.  
 

Reference for compound (a): Data 
adopted from (Carbolla et al., 2002) 

 
 
 
 
 
 
 
 
 

Table 3.10. Bond lengths (Å) and angles (°) in the dithiocarbazate fragments. 
 

 
   

Bond angles Re2(SBCM)2 (a) 
C20-Re-C22 90.26 90.3(6) 
C20-Re-C21 88.8 88.7(6) 
C22-Re-C21 86.74 91.1(5) 
C20-Re-N 89.06 91.3(5) 
C22-Re-N 172.13 171.7(4) 
C21-Re-N 101.08 97.1(4) 
C20-Re-S 96.43 90.8(5) 
C22-Re-S 93.16 94.1(4) 
C21-Re-S 174.77 174.8(4) 
N-Re-S 79.13 77.8(3) 
C20-Re-S’ 175.62 172.0(4) 
C22-Re-S’ 93.99 91.5(4) 
C21-Re-S’ 92.5 99.0(5) 
N-Re-S’ 86.58 85.8(3) 
S-Re-S’ 82.29 81.34(12) 
Re-X-Re’ 97.71 98.66(12) 
C12-S-Re 95.48 95.4(4) 
C10-N-Re 128.54 130.0(8) 
N2-N1-Re 118.98 116.4(7) 

Bond lengths Re2(SBCM)2 (a) 
Re1-C20 1.9161 1.868(17) 
Re1-C22 1.9185 1.924(13) 
Re1-C21 1.9123 1.901(14) 
Re-N 2.2002 2.210(9) 
Re-S 2.4669 2.465(3) 
Re-S 2.5565 2.537(4) 
Re-Re’ 3.7830 3.794(11) 
C20-O3 1.1421 1.162(16) 
C22-O5 1.1416 1.135(14) 
C21-O4 1.1539 1.159(15) 

Bond 
lengths 

Re2(SBCM)2 

S1-C12 1.7755 
S2-C12 1.7509 
N2-C12 1.2638 
N2-N1 1.4203 
N1-C10 1.2887 
C8-C10 1.4879 

Bond 
angles 

Re2(SBCM)2  

C12-N2-N1 116.70 
C10-N1-N2 111.83 
N2-C12-S2 119.94 
N2-C12-S1 127.24 
S1-C12-S2 112.78 
N1-C10-C8 120.79 
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3.3.3 Characterization of metal complexes in solution 

3.3.3.1 NMR 

The NMR spectra of ligands SMML (Figure 3.12), SMLA, SBML, SBLA and 

SBEL were recorded in CD3OD whereas SM4CB, SB4CB (Figure 3.13), SBCM, 

SMHD, SBHD, Zn(SBCM)2 and Re2(SBCM)2 were carried out in DMSO-d6 due to 

their low solubility in CD3OD at room temperature. The NH signal was not observed 

in any of the 1H NMR spectra in CD3OD due to fast exchange with solvent. 

However, the spectra illustrated the expected hydrogens for each compound. The S-

methyl derivatives (SMML and SMLA) showed characteristics signals at ca. 2.52 

ppm attributed to S-CH3 while the S-benzyl derivatives (SBML, SBLA and SBEL) 

displayed distinct multiplets of their five aromatic protons and singlets of their S-

CH2 protons at ca. 7.40-7.17 ppm and 4.45 ppm, respectively. The proton signals for 

the two CH2 groups of both levulinic acid and methyl levulinate were found to be 

identical at ca. 2.62 ppm whereas the -CH3 group was at ca. 1.98 ppm. Other 

distinctive signals arising from the protons of the ester Schiff bases were observed at 

3.66 ppm (-OCH3 of SMML), 3.47 ppm (-OCH3 of SBML) and 3.93 ppm in 

addition to 1.02 ppm (-OCH2CH3 of SBEL). The spectra of aromatic acid ligands 

SM4CB and SB4CB in DMSO-d6 demonstrated signals at  8.29 ppm and 8.01-7.80 

ppm attributed to  -CH=N and aromatic hydrogens of 4-carboxybenzaldehyde 

moiety, respectively. Both ligands also showed characteristic signals of their S-

substituted dithiocarbazate similar to those discussed above. The -NH 

(dithiocarbazate) signal of both SM4CB and SB4CB occurred at ca. 13 ppm whereas 

for SMHD and SBHD occurred at ca.12.15 indicating the presence of thioimine NH. 

This signal and the absence of the C-SH signal at ca. 4 ppm indicated that in 

solution the thione tautomer remains as the predominant species (Roy et al., 2007). 
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The NH signals above 12 ppm indicate that the Z-configurational isomer is 

predominant (Rebolledo et al., 2005). The presence of -SC(=S)NH- at ca. 200 ppm 

in the 13C NMR spectra of all the Schiff bases indicated that the thione form 

predominates in solution. This signal was shifted downfield due to the deshielding 

effect of the neighbouring amine nitrogen and electronegative sulphur.  The C=N 

signal appeared at ca. 156 ppm of the result of hydrazone bond formation when 

carbonyl compounds react with the S-substituted dithiocarbazate. The -S-CH2 peak 

occurred upfield at ca. 40 ppm while the S-CH3 peak was found at ca. 17 ppm. The 

aromatic carbons were observed at ca. 138 - 127 ppm as expected. The 1H NMR 

spectrum of SBCM in DMSO-d6 however showed double set of signals due to 

existence of SBCM in two isomeric forms. Such observation has been reported by 

Hunoor et al. (2010) with 3-acetylcoumarin-isonicotinoylhydrazone. The relative 

percentage of the two isomers was found to be 60% and 40%. The singlets at 12.56, 

4.48 and 2.34 are assigned to -NH, -CH2-S-, -CH3 (3-acetylcoumarin), respectively. 

Overlapping signals from the coumarin and benzyl rings were observed in the 

aromatic region at 7.85-7.21 ppm. Upon complexation of SBCM with Zn(II) and 

Re(I), the hydrazone proton signal disappeared, which clearly indicates 

deprotonation of NH by enolisation. The downfield shift of methyl protons for both 

complexes further supports the coordination through azomethine nitrogen. The 

others protons in the 1H NMR spectra of the complexes have not shown considerable 

change. Due the low solubility of the coumarin derivatives, it was impossible to 

record good 13C-NMR spectra.   
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Figure 3.12.  1H NMR and 13C NMR spectra of SMML 
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Figure 3.13.  1H NMR and 13C NMR spectra of SB4CB 
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3.3.3.2 UV-VIS 

Electronic spectra of all the metal complexes in DMSO were scanned in the region 

200–800 nm at concentrations between 25 µM and 1 mM. The electronic spectra of 

the Schiff bases showed two bands, from ca. 273 nm to 364 nm arising from ,.,* 

and n.,* transitions. For all the metal complexes, the first band corresponding to 

the ,.,* (256-300 nm) transition is always observed, whereas the second 

intraligand band at higher wavelength (300-400 nm) ascribed to n.,* band showed 

either a blue shift with a reduction of intensity or disappeared. This is due to 

donation of the lone pair of electrons to the metal and hence the coordination of the 

azomethine group (Latheef and Kurup, 2008). Most Cu(II) complexes with the 

exception of Cu(SM4CB)2 and Cu(SB4CB)2 showed the presence of ligand-to-metal 

charge transfer (LMCT) band (400-450 nm) arising from S.M(II) interaction. 

Some spectra of the d9 Cu(II) complexes also revealed the presence of a broad d-d 

band at ca. 604 nm attributed to 2B1g.2A1g for a distorted square planar 

environment around the copper(II) ion due to Jahn-Teller distortion (West et al., 

1993; Nair and Joseyphus, 2008). There was a slight hypsochromic shift at 325 nm 

in the spectrum of the Re2(SBCM)2 complex whereas in the Zn(SBCM)2 complex a  

slight batochromic shift was seen at 292 nm. Two examples of the UV-Vis spectra 

each for tetradentate series and bidentate series are shown in Figure 3.14. 

 

Cu(SM4CB)2 and Cu(SB4CB)2, however, showed neither the sulfur-to-copper 

LMCT band at 400 nm nor the d-d band. The absence of these bands even at high 

concentration (1 mM) suggests that the ligand does not have a suitable low-lying 

antibonding ,* orbital (Ali et al., 2001b). These two complexes showed a broad 

band spanning 300-400 nm with / max at ca. 322 nm. The spectra of the complexes 
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were different from those of the free ligands that showed intra-ligand transitions at 

ca. 349 nm and 362 nm. The changes observed for the complexes were in agreement 

with the results of titration experiment carried out in both DMSO and 0.1M acetate 

buffer solution in order to ascertain the formation of the Cu(II) complexes with the 

proposed 1:2 metal to ligand stoichiometry. In these titration experiments, the 

changes in the UV-Vis spectra were obvious with an absorption band at 300-325 nm 

arising when the complex formed while the intensity of ligand band at "max * 345 nm 

decreased upon addition of Cu(OAc)2 Complexation proceeded with a sharp end-

point at 0.5 equivalents with clear isosbestic points indicative of a single 

complexation event (Figure 3.15).   
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Figure 3.14. (a) UV-Vis spectra recorded for tetradentate series at 25 !M in 
DMSO using a cell length of 1 cm. The insert shows the d-d band of the two 
complexes at concentration of 1 mM. (b)  UV-Vis spectra recorded for SMML 
and Cu(SMML)2 at 25 !M. Insert shows d-d band of the complex at 1 mM. 

 

(b) 

(a) 
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Figure 3.15. UV-Vis spectra obtained by addition of Cu(OAc)2.H2O at 25°C to a 
solution of SM4CB (ca. 2.5 x 10-5 M)  in DMSO solution as well as in 0.1 M 
acetate buffer, pH6.  

 
3.3.3.3 EPR  

Examples of EPR spectra are shown in Figure 3.16. EPR parameters for all 

complexes are summarized in Table 3.11. Spectra of the frozen solutions for all 

tetradentate and bidentate Schiff base Cu(II) parent complexes in DMF showed the 

presence of one major species. They are typical of mononuclear d9 Cu(II) complexes 

with axial symmetry and distorted square planar geometry with the unpaired 

electrons lying mainly in the dx
2-dy

2. The spectra also exhibited partially resolved 

superhyperfine features. The g! values for all the complexes are similiar to those 

previously reported for Cu(II)N2S2 complexes (Jasinski et al., 2003; Diaz et al., 
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1998; Hueting et al., 2010). It have reported that g|| higher than 2.3 are indicative of 

a predominantly ionic character for metal-ligand bonds, whereas g|| smaller than 2.3 

reveal metal-ligand bonds with predominantly covalent character, which was the 

case here. In addition, the relatively small g! value (g! near 2.20) suggested a strong 

nitrogen character in the singly occupied molecular orbital (Kivelson and Neiman, 

2004; Chikate et al., 2005). EPR spectroscopy is sensitive to angular distortions at 

the Cu(II) centre, particularly those involving distortions from planar to tetrahedral 

geometry. As a general rule, distortion from planar towards tetrahedral geometry 

results in a decrease in A! and an increase in g! (Ali et al., 2005). The empirical 

factor f (= g||/0||) (Joseph et al., 2012; Krishna et al., 2008) is a measure of deviation 

from idealized geometry. Its value ranges between 105 and 135 cm for square planar 

complexes, depending on the nature of coordinated atoms, while for a structure 

distorted toward the tetrahedron the values can be much larger and values from 160 

to 242 cm suggest a moderate to considerable distortion in the geometry. For 

macroacylic Cu(II) complexes, CuSBHD reflects only a slightly higher degree of 

tetrahedral distortion compared with CuSMHD in solution but both complexes 

appear close to square planar geometry. They are however less planar than other 

reported C-C backbone analogues most likely due to the extension of carbon 

backbone (Jasinski et al., 2003; Diaz et al., 1998; Hueting et al., 2010). In the 

bidentate series, the complexes with aliphatic acid or ester substituents 

(Cu(SMML)2, Cu(SMLA)2, Cu(SBML)2 and Cu(SBLA)2) were more distorted (with 

f values at ca. 147 cm) than those with aromatic acid or coumarin substituents 

(Cu(SM4CB)2 and Cu(SB4CB)2 at ca. 125 cm; Cu(SBCM)2 at f = 135 cm), which 

are within the perfect range for square planar complexes. Finally, molecular orbital 
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coefficient &2 (in-plane 1-bonding) was calculated using the equations below 

(Rapheal et al., 2007; Chandra and Sangeetika, 2004) : 

&2=(A!/0.036)+(g!"2.0036)+3/7(g""2.0036)+0.04 

The &2 value of 0.5 indicates complete covalent bonding, while 1.0 suggests 

complete ionic bonding. The observed values between 0.61 and 0.70 for all series 

indicated that these copper complexes have some covalent character as suggested 

above. 

 

Figure 3.16. The EPR spectrum of CuSMHD, CuSBHD, Cu(SMML)2 and 
Cu(SM4CB)2 at 1 mM in frozen DMF.  Microwave frequency 9.50 GHz, 
microwave power 0.25 mW, modulation amplitude 0.2 mT, modulation 
frequency 100 kHz, time constant 164 ms, T=50 K. 
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Table 3.11. EPR parameters measured from the spectra of the copper(II) 
complexes.  

Compound g//   g" A//[a]    f[b] $2 
CuSMHD 2.15 2.06 460 (153) 141 0.64 
CuSBHD 2.16 2.06 451 (150) 143 0.64 
Cu(SMML)2 2.15 2.05 438 (146) 147 0.61 
Cu(SMLA)2 2.15 2.06 438 (146) 147 0.62 
Cu(SBML)2 2.15 2.05 438 (146) 147 0.61 
Cu(SBLA)2 2.15 2.05 443 (148) 145 0.61 
Cu(SM4CB)2 2.15 2.05 504 (168) 128 0.67 
Cu(SB4CB)2 2.15 2.05 531 (177) 121 0.70 
Cu(SBCM)2 2.15   2.05 478 (159) 135 0.65 
[a] Unit in MHz, in bracket = A// x 10-4 cm-1 [b] Unit in cm.  
 

The spectra in DMF (see Appendices) for all Cu(II) parent complexes also show the 

presence of an additional minor component. Because of their lability, the bidentate 

Schiff base Cu(II) complexes may exhibit different solution and solid state structures 

(Jansson et al., 2010). In particular, transoid or cisoid ligands conformation (Figure 

3.17) with respect to the central metal-coordinated rings may exist for such 

complexes in an open chained system (Beshir et al., 2008; Blumberg and Peisach, 

2003; Da Silva et al., 1999).  

 

Figure 3.17. Transoid and cisoid ligands conformation. 
 

The aliphatic acid or ester substituted parent compounds Cu(SMML)2, Cu(SBML)2,  

Cu(SMLA)2  and Cu(SBLA)2 demonstrated that the g// region for the minor species 

shifted further to the left of the magnetic field whereas for aromatic Cu(SM4CB)2 
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and Cu(SB4CB)2, the presence of the minor species was further to the right of the 

magnetic field relative to the dominant species. Although there is no evidence to 

make a definitive assignment, single crystals of both Cu(SMML)2 and Cu(SMLA)2 

were determined by X-ray diffraction to adopt cisoid orientation. It can be argued 

that the predominant orientation in the solid may be indicative of an energetically 

preferred state in solution. Thus, the observation may serve as an indirect indication 

that the cisoid orientation is more favourable in aliphatic Cu(II) complexes and can 

be tentatively assigned as the major species. The difference observed in the aromatic 

series Cu(SM4CB)2 and Cu(SB4CB)2 could point toward that both compounds have 

stronger preference for a transoid conformation since the cisoid structure will result 

in more steric hindrance especially with the presence of the aromatic ring. This 

ordering of the structures is also consistent with the interpretation of EPR results 

that the mainly transoid Cu(SM4CB)2 and Cu(SB4CB)2 were more planar as 

compared to the their aliphatic counterparts as indicated by the f values. This 

proposal is also in agreement with the LC-MS results for the Cu(II)-bioconjugate in 

this work that showed two peaks with the same mass.  

 

Other possibilities that can also be taken into account are previous findings that 

reported partially dissociation of CuL2 upon dissolution to afford the corresponding 

1:1 Cu/ligand complexes (Jansson et al., 2010; Diaz et al., 1998; Pogni et al., 2000). 

The observed EPR spectra of the complexes could be a composite of the 1:2 and 1:1 

Cu/ligand complexes. In the case for 1:1 complex, DMF solvent molecules (also O-

donors) are expected to participate in coordination to form CuL(DMF)2 complex. 

Assuming that the minor species is a 1:1 and the dominant species is 1:2, the g// 

region for 1:1 should shift further to the left of the magnetic field (Faller et al., 
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2012). This was observed only for compound Cu(SMML)2, Cu(SBML)2,  

Cu(SMLA)2   and Cu(SBLA)2. In addition, solvent molecules are known to be able to 

alter the geometry of the Cu(II) complexes although their coordination is weak 

(Umamaheswari et al., 2014). Thus, water or an DMF molecule could potentially 

coordinate in the apical position of the Cu(II) complexes giving rise to a penta-

coordinated compound with rhombic symmetry. The spectra of conjugated 

complexes Cu(R1-SB4CB)2 and Cu(R9-SB4CB)2  in aqueous solution revealed the 

minor species observed in pure DMF as the dominant species (Figure 3.18 and 

3.19). However, this analogy is not definitive as the observation could only be the 

result of solvent effect. Other hypotheses could involve the presence of Cu(II)-DMF 

complex although this can in fact be ruled out in this instance since the free Cu2+ 

species in DMF did not match the parent compounds. Figure 3.20 illustrates possible 

representation of the Cu(II) complexes that could exist in solution. 

 

 
 
Figure 3.18. The EPR spectrum of Cu(R1-SB4CB)2 at 1 mM in various 
solvents. #: major species, *: minor species.   
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Figure 3.19. The EPR spectrum of Cu(R9-SB4CB)2 at 1 mM in various 
solvents. #: major species, *: minor species.   

 

Figure 3.20. The different possible species of the Cu(II) complexes that could 
exist in solution. 
 

3.3.3.4 Electrochemistry 

As redox properties have been linked to bioactivity (i.e. SOD and anticancer 

properties) of metal complexes ('ura(ková et al., 1999; Jansson et al., 2010) and in 

order to gain a better understanding of the influence of different functional group 

have on the electronic properties of coordinated metal centers, the electrochemical 

properties of the various Cu(II) complexes were described herein. Figure 3.21 and 

Table 3.12 show the profile of the Cu(II) complexes obtained with SMHD and 

SBHD at a scan rate of 100 mVs"1. Both complexes undergo an electrochemically 

irreversible one-electron reduction at Epc = -0.328 and -0.285 V/(Ag/AgCl and 

standard Fc/Fc+ = 0.56 V), respectively, coupled with an oxidation at Epa= 0.069 and 

0.129 V/(Ag/AgCl). These waves can be assigned to the irreversible 
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oxidation/reduction wave for Cu(II)/Cu(I) (Paterson et al., 2010). The redox 

properties of the ligands were also investigated but they were found to be innocent. 

The irreversible nature of the copper-centered redox waves in the present study 

differed from the analogues CuATSM and CuAATSM (Blower et al., 2003; Cowley 

et al., 2004) previously reported to demonstrate quasi-reversible reduction. The loss 

of reversibility observed in this work is most likely related to the differences in 

geometry rearrangement of Cu(II)/Cu(I) ions in this ligand system that possesses 

two carbons between the two hydrazones functions. The Cu(II)/Cu(I) redox 

potentials of CuSMHD and CuSBHD are also more positive than the previous 

examples. The ease of deformation away from planarity seems to favour reduction. 

The differences in redox potential between CuSMHD and CuSBHD can also be due 

to changes in inductive effects of the substituents. Altering the terminal S-

substitutent (from methyl to benzyl) induces a weak effect on the Cu redox 

potentials which could be rationalized by a stronger electron-donating effect of the 

methyl group (Basha et al., 2012). The oxidation process at higher positive potential 

has previously been assigned to the copper(III/II) redox couple. It is interesting to 

note occurrence of an additional peak, which can be attributed to the reduction of a 

species produced by the second oxidation. However, the nature of this oxidized 

complex has not been determined. 
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Figure 3.21. Cyclic voltammograms of the Cu complexes at 1.7 mM in 
anhydrous deoxygenated DMF containing 0.1 M tetrabutylammonium 
hexafluorophosphate as the supporting electrolyte. Working electrode: glassy 
carbon; counter electrode: Pt wire; reference electrode: Ag/AgCl, scan rate: 
100 mV/s. All sweeps were initiated in the direction of the arrow. 
 

Table 3.12. Electrochemical data for CuSMHD and CuSBHD versus Ag/AgCl. 

 Cu(II)/Cu(I) Cu(III)/Cu(II) 

 Epc/V Epa/V Epc/V Epa/V 

CuSMHD -0.328 0.069 0.195 0.899 

CuSBHD -0.285 0.129 0.357 0.870 
 

All bidentate parent compounds displayed qualitatively similar redox behaviour in 

the series, yet the characteristic one-electron Cu(II)/Cu(I) quasi reversible reduction 

waves were shifted depending on the ligand (Table 3.13). The measured reduction 

potentials clearly correlate with the electron-donating ability of the functional group 

and also the S-substituted dithiocarbazate. Similar to the previous tetradentate series, 

the S-methyl derivatives showed lower Cu(II)/Cu(I)  reduction potential at Epc= -

0.092 to -0.114 V as compared to the S-benzyl derivatives at Epc= -0.021 to -0.079 
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V. Among the functional groups the reduction potential towards the more negative 

can be arranged in the following order Cu(SMML)2 <Cu(SMLA)2 <Cu(SM4CB)2. 

Cyclic voltammograms were also recorded at different scan rates between 0.4 V and 

-0.4 V vs. Ag/AgCl from 0.02 V/s to 0.5V/s for all the compounds which showed 

similar trend. Taking Cu(SMML)2 as an example (Figure 3.22), the peak currents 

were still found to be proportional to scan rates with the peak currents ratio of the 

anodic signal and the cathodic signal (ipa/ipc) remained close to 1 (Table 3.14) 

independent of the sweep rate used indicating the reversibility and stability of the 

electrochemically generated product (Evans et al., 1983). Furthermore, when 

plotting the peak current as a function of the square root of the scan rate for 

reversible electron transfer, a linear correlation was found although not particularly 

perfect suggesting that the redox process is confined to the surface (Figure 3.23). 

However, another indicator of reversible electron transfer called the current 

function, whose values were given by (ip / +1/2) were not entirely constant anymore 

for all scan rates and the most obvious indication that the process was not 

completely reversible was the separation of anodic and cathodic peak potential. 

Inspection of the voltammetric data shows that at increasing scan rates, the reduction 

(Epc) and oxidation (Epa) peaks are shifted to more negative and positive values 

respectively. The separation between them, 2Ep, exceeds the Nernstian requirement 

of 59 mV expected for a reversible one-electron process. For Cu(SMML)2, this 

value increases from 2Ep = 78 mV at 0.05 V/s to 2Ep = 135 mV at 5 V/s indicating a 

kinetic inhibition of the electron transfer process (dos Santos-Claro, 2005). This 

behavior cannot be attributed to some uncompensated solution resistance, as the 

internal standard Fc/Fc+ couple, that shows rapid heterogeneous electron transfer in 

most of the solvents, gave a 2Ep value of 51 mV (measured at v = 0.1 V/s). Thus, 
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any possible uncompensated resistance is sufficiently small so that the resulting 

voltage drops are negligible compared to the 2Ep values attributable to kinetic 

effects (Parajón-Costa et al., 2004). Therefore the reaction of higher scan rates can 

be considered to be quasi-reversible and this quasi-reversibility associated with the 

reduction process probably arises as a consequence of a geometry change towards a 

distorted tetrahedral environment around the Cu(I) species 

. 

Table 3.13. Electrochemical data for the Cu(II) complexes vs Ag/AgCl at 0.1V  
 Cu(II)/Cu(I) Cu(II) 

/Cu(III) 
 Epa[V] Epc[V] 2Ep=Epa-

Epc[mV] 
2E1/2=0.5 
(Epa+Epc) [V] 

ipa/ipc Epa[V] 

Cu(SMML)2  0.002 -0.092  94 -0.045 1.00 1.000 
Cu(SMLA)2 -0.014 -0.095  81 -0.055  0.60 0.998 
Cu(SM4CB)2 -0.011 -0.114 103 -0.063 1.11 1.006 
Cu(SBML)2  0.021 -0.066 87 -0.023 1.01 1.001 
Cu(SBLA)2  0.008 -0.078 86 -0.035 0.84 0.985 
Cu(SB4CB)2  0.015 -0.079 94 -0.032 0.88 1.029 
Cu(SBCM)2  0.077 -0.021 98  0.028 1.19 0.973 
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Figure 3.22. Cyclic voltammograms of the Cu(SMML)2 at 1.7 mM in anhydrous 
deoxygenated DMF containing 0.1 M tetrabutylammonium perchlorate as the 
supporting electrolyte. Working electrode: glassy carbon; counter electrode: Pt 
wire; reference electrode: Ag/AgCl. (a) and (b) Scan rate= 0.1 V/s. (c) Various 
scan rates= 0.02, 0.05, 0.1, 0.2, 0.5 V/s. All sweeps were initiated in the direction 
of the arrow. 

 
 

(a) 

(c) 

(b) 
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Figure 3.23. Plot of the anodic (Ipa) and cathodic (Ipc) current with the square 
root of scan rate for Cu(SMML)2. 
 

Table 3.14. Electrochemical data for the Cu(SMML) vs Ag/AgCl at various 
scan rate (V/s).  
 

 Cu(II)/Cu(I)  
Cu(SMML)2 Epa[V] Epc[V] 2Ep=Epa-

Epc[mV] 
2E1/2=0.5 
(Epa+Epc) [V] 

ia/ic ip / +1/2 

0.02 -0.001 -0.079 78 -0.040 0.97 -68.32 
0.05  0.002 -0.085 87 -0.042 0.96 -65.87 
0.10  0.002 -0.092 94 -0.045 1.00 -67.45 
0.20  0.012 -0.097 109 -0.043 0.95 -63.50 
0.50  0.021 -0.114 135 -0.047 0.95 -60.61 

 
 

3.4 Conclusion 

Two series of metal complexes (either macroacyclic or open chain) with 

dithiocarbazate Schiff base chelating ligands have been successfully synthesized and 

characterized. Although the Schiff bases derived from the keto-ester (methyl 

levulinate), keto-acid (levulinic acid and 4-carboxybenzaldehyde) and natural ketone 

derivative, 3-acetylcoumarin, contained O atoms that could potentially participate in 

coordination, the ligands behaved as bidentate NS ligands coordinating to the central 

metal through the azomethine nitrogen atom and the thiolate sulphur atom in all 
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complexes. Eleven structures of the compounds have been determined by single 

crystal X-ray crystallographic analysis. The 1H, 13C NMR and FTIR spectra of the 

Schiff bases indicated that the ligands retained the thione form in both solid state 

and solution. Only the ligand SBCM existed in both thione and thiolate form in solid 

state. RP-HPLC analysis of the free ligands showed that the aromatic ligands were 

more stable than the aliphatic ligands. Their stability was further improved upon 

complexation. Electronic and EPR spectra showed that most of the paramagnetic 

Cu(II) complexes had distorted square planar geometries with the exception of 

Cu(SB4CB)2, Cu(SM4CB)2 and Cu(SBCM)2 as demonstrated from their empirical 

factor f (= g||/0||). Cu(II) complexes with aliphatic acid and ester bidentate ligands 

(145-147 cm) confirm slightly higher degree of tetrahedral distortion than those with 

tetradentate ligands (141 and 143 cm) in solution. However, Cu(SM4CB)2, 

Cu(SB4CB)2 and Cu(SBCM)2 that possess aromatic acid or coumarin substituents 

(Cu(SM4CB)2 and Cu(SB4CB)2 at ca. 125 cm; Cu(SBCM)2 at f = 135 cm) are in the 

square planar range. The Re(I) and Zn(II) complexes were diamagnetic. There were 

also differences between the macroacyclic and open chain Cu(II) complexes with 

regard to their electrochemistry. The latter series showed Cu(II)/Cu(I) quasi 

reversibility at more positive potential whereas the former series was not reversible 

suggesting that the open chain Cu(II) complexes can accommodate Cu(I) more 

easily as a result of their flexibility. To sum up, this chapter demonstrated that by 

using a convergent synthesis strategy, a library of complexes with tune stabilities, 

geometries and electrochemical properties can be generated. In addition, the 

introduction of carboxylic acid functions opens the possibility to conjugate these 

complexes with vectors. The biological activities of all these compounds were 

evaluated and are discussed in Chapter 5.  
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CHAPTER 4 

FUNCTIONALIZED COMPOUNDS 

 

4.1 Introduction 

4.1.1 Key drawbacks of metallodrugs  

In the past years, much e!ort has been devoted to synthesis and testing of metal 

complexes in search of new metal metallodrugs for biological application. However, 

only a fraction of the thousands of tested metal compounds has entered clinical trials 

or has been approved worldwide with many challenging issues in terms of favorable 

selectivity, solubility, and stability as well as knowledge about their mode of action 

remaining unsolved (Fricker, 2007; Timerbaev et al., 2006).  

 

The poor water solubility of many metal complexes is one of the key drawbacks “in 

the course of their analysis or application” (Miklán et al., 2007, p. 108). Studies in 

aqueous and buffer solutions are of utmost importance for an understanding of the 

mechanism of action of bioactive molecules and the design of stronger chelators 

(Milunovic et al., 2012). Such is the case for thiosemicarbazone derived Schiff base 

metal complexes (Enyedy et al., 2010; Raja et al., 2011).  There is relatively few 

information that is available in the literature for these families of compounds as such 

investigations are often hampered by the low aqueous solubility of the compounds. 

There are also cases in which a high amount of DMSO is used to pre-dissolve the 

metal complexes in order to overcome their poor solubility in aqueous media during 

biological studies. However, the use of DMSO affects the reliability of the results 

obtained. DMSO has been shown to considerably retard the growth of fungi and 

cancerous cells and lead to bacteria and cell death at above certain concentrations 
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(Dolan et al., 2013; Ng et al., 2013). Therefore, compounds that are highly water-

soluble are preferred for biological applications as they enable preclinical 

development of a drug candidate without the use of solubilizers (Bacher et al., 

2013). 

 

Apart from that, cell uptake and metal complex accumulation are also challenges for 

medicinal and bioinorganic chemistry. The efficient and rapid passage of metal 

complexes into cells remains a major hurdle in the design of potential therapeutic 

agents. A significant number of drug candidates and probe molecules fail because of 

insufficient cell uptake, requiring high quantities of drug administration, which often 

leads to undesirable side effects (Rijt et al., 2011) Only molecules in a narrow range 

of molecular weight and polarity are able to directly cross the plasma membrane by 

passive diffusion (Brunner and Barton, 2006). It is therefore critical to optimize the 

properties of their cellular uptake in the effort to develop potent and selective metal 

complexes as chemotherapeutic or diagnostic agents. 

 

The capability to design and synthesize new molecules with tuned functions offers a 

powerful and efficacious way to overcome these shortcomings. Recently, new 

strategies have been developed in an attempt to maximize the impact of drugs on 

cancer cells and minimize the problem of adverse side effects through effective 

delivery of complexes with tumour-targeting properties and biologically-active 

ligands (Hambley, 2007; Storr et al., 2006; Thompson and Orvig, 2006; Thompson 

and Orvig, 2003). The use of multifunctional ligands that adequately bind metal ions 

and also include specific targeting features is an attractive choice which is gaining 

popularity today with applications at the forefront of all areas of medicinal inorganic 
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chemistry research. The field has benefited greatly from advances in targeted ligand 

design, which lead to the development of improved therapeutic agents (Ronconi and 

Sadler, 2007).  

 

4.1.2 Conjugated metal complexes  

By combining ligands or metal complexes with vectors, a large number of new 

bioconjugates with interesting biological properties can be prepared. An excellent 

review by Nils Metzler-Nolte (2010, p. 195) gives an overview of the use of 

peptides “as targeting vectors for the directed delivery of metal-based drugs or 

probes for biomedical investigations”. The numerous peptides that have been 

utilized “include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake 

peptides (TAT and poly-Arg) and intracellular localization sequences”. These 

bioconjugates display biomedical applications in radiopharmaceutical, as anticancer 

and antibacterial drugs or targeted CO-releasing molecules as well as in biosensor 

applications. 

 

4.1.2.1 Schiff base conjugate 

As this work involves dithiocarbazate derivatives, the development of Schiff base 

metal complex bioconjugates from the family of nitrogen-sulphur donor ligands will 

be specifically highlighted (Donnelly, 2011; Paterson and Donnelly, 2011). To date, 

the concept of bifunctional ligands has been most successfully applied to 

radioimaging with Cu(II) bis(thiosemicarbazone) (Figure 4.1). Many new 

tetradentate bifunctional bis(thiosemicarbazone) chelators have been designed and 

conjugated to various vectors such as the tumor targeting bombesin derivative 

BBN(7-14)-NH2 that has high affinity for gastrin-releasing peptide (GRP) receptors 
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(Paterson et al., 2010; Hueting et al., 2010), somatostatin derived octreotide that 

detects somatostatin-receptor-positive tumors (Cowley et al., 2007), pyrene 

fluorophore tags for cellular imaging (Lim et al., 2010) and water-soluble glucose 

derivatives (Holland et al., 2007) to name a few. 

 

Figure 4.1. Schematic diagram of a functionalized bis(thiosemicarbazone) 
conjugated to a biologically active molecule (BAM) (Source: Hueting et al., 
2010). 
 

Conjugates of tridentate salicylaldehyde thiosemicarbazone (STSC) and 2-

formylpyridine thiosemicarbazone (FTSC) coupled to a single amino acid of L- or 

D-proline (Pro) with good chelating properties and improved aqueous solubility 

have recently been reported (Milunovic et al., 2012; Bacher et al., 2013). As a result, 

various techniques have been used to conduct detailed studies on the stoichiometry 

and thermodynamic stability of metal ions with the Pro-TSC conjugates in a 

water/DMSO mixture. Most importantly, conjugation resulted in enhancement of 

their antiproliferative activity. While several studies exploring the multifunctional 

ligand-peptide conjugates concept using thiosemicarbazone derivatives have been 

highlighted, there are no reports of its application to dithiocarbazate analogues prior 

to this work. In the following parts, focus will be directed to polyethylene glycol 

(PEG) and cell penetrating peptides (CPPs) which are vectors used for conjugation 

in this work. 
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4.1.2.2 PEGylation 

PEGylation describes the covalent modification of proteins, peptides, antibody 

fragments or non-peptide small drug molecules by attachment to one or more 

polyethylene glycol (PEG) chains. PEG is a non-toxic, non-immunogenic, non-

antigenic polymer that is highly water soluble and has been approved by FDA. 

PEGylation is used as a well-recognized approach for drug delivery (Harris and 

Chess, 2003; Riley and Riggs-Sauthier, 2008; Veronese and Pasut, 2005). The 

introduction of PEG into pharmaceuticals improves their pharmacokinetics with “a 

prolonged residence in body, a decreased degradation by metabolic enzymes and a 

reduction or elimination of protein immunogenicity” (Veronese and Pasut, 2005, p 

1451). There is an emerging interest in the use of metal-PEG complexes in 

biological studies (Stephan et al., 2005; Heldt et al., 2004) including work on the 

modification of cisplatin with PEG (Dhar et al., 2011; Ohya et al., 2001) as well as 

PEGylated iridium cyclometalated complexes that showed improved aqueous 

solubility and cell permeability (Li et al., 2010). 

   

4.1.2.3 Cell penetrating peptide as cell delivery vectors  

Crossing the plasma membrane is a challenge for some molecules with many 

potential drugs not displaying the required balance between lipophilicity and 

positive charge allowing for membrane permeability while supporting aqueous 

solubility. These limitations greatly prevent them from reaching their desired target 

in cellulo and results in the reduction of their therapeutics efficacy (Stewart et al., 

2008). Others like polynucleic acids (PNAs) would not be able to penetrate into cells 

due to the presence of their high negative charge (Walrant et al., 2011). Over the 

past two decades, CPPs, also called “Trojan horse peptides”, have attracted 
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tremendous attention and found numerous applications in biology and medicine 

(Vives, 2005; Fonseca et al., 2009). CPPs are short peptides (5-30 amino acids)  

capable of translocation through the cellular plasma membrane on their own 
or together with cargoes. They often contain basic amino acid side chains 
and are in many cases amphipathic. The first CPPs were derived from 
naturally occurring proteins such as TAT from HIV-TAT and penetratin 
from the Antennapedia homeodomain (Regberg et al., 2012, p. 991). 
  

Subsequently, many new CPPs either protein-derived or synthetic derivatives have 

been produced and optimized as cell delivery agents (Regberg et al., 2012; Dietz and 

Bähr, 2004; Lundberg and Langel, 2003). Their unique ability to cross the plasma 

membrane and internalize in cells make them very powerful tools to revolutionize 

the transportation of a great variety of different substances ranging from small 

therapeutic drugs to large proteins and DNA (Figure 4.2).  

 

Figure 4.2. Applications of cell-penetrating peptides as molecular delivery 
vehicles (Source: Stewart et al., 2008). 
 

The use of CPPs as molecular vehicles also offers a number of benefits over other 

delivery vectors which include lower toxicity and controlled administration. CPPs 

are obviously an excellent vector to transport various materials across the cell 

membrane and will continue to attract much interest for further exploration in the 

synthetic front (Figure 4.3) and prospective applications (Regberg et al., 2012). 
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Figure 4.3. CPP loading and 
targeting strategies. (Source: 
Regberg et al., 2012) 
(A) Covalent conjugation of 
CPP to cargo 
(B) CPP coupled to targeting 
ligand and cargo 
 (C) Activatable CPP, after 
cleavage of the linker the 
peptide dissociates from the 
polyanion and becomes an 
active CPP  
(D) Non-covalent complex of 
CPPs and cargo 
(oligonucleotides or other 
macromolecules) formed by 
electrostatic and hydrophobic 
interactions. 
 

Among the CPPs, arginine-rich derivatives of human immunodeficiency virus- 

trans-activator of transcription (HIV-TAT) are the most studied. The importance of 

guanidinium-side chain of arginine (Arg) has been demonstrated. When the 

positively charged Arg groups were replaced with neutral alanine amino acids, it led 

to drastic reduction of cell uptake. Furthermore, polyarginine are known to penetrate 

cells more successfully than other polycationic peptides of equal length containing 

lysine, ornithine and histidine (Mitchell et al., 2000). High cell uptake for 

polyarginine were observed for chain lengths of 8 to 15 arginine residues with the 

optimum range being 7 to 9 (Wender  et al., 2000) whereas chain lengths longer than 

15 arginine residues were less efficient to cross the cell membrane (Miklán et al., 

2007; Rijt et al., 2011; Brunner and Barton, 2006). Although polyarginine had 

efficiently delivered diverse conjugated proteins and peptides, only limited reports 

are available on its capacity to enhance delivery of metallodrugs. For instance, a 

great increase in nuclear accumulation has been observed by Barton and coworkers 
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(Brunner and Barton, 2006; Puckett and Barton, 2009) for rhodium and ruthenium-

octaarginine conjugates that target DNA mismatches. Dolan et al. (2013) described 

the very water soluble iridium polyarginine conjugate that displayed a doubling of 

increase cytotoxicity with a decrease in IC50 values as compared to the parent 

complex. The conjugate significantly accumulated in the nucleus whereas the parent 

did not. A few prominent papers have established the influence of the peptide chain 

length on bioactivity. For instance, Rijt et al. (2011) showed that the  

there is a correlation between longer arginine chain length and cell uptake, 
nuclear uptake, DNA binding, and cytotoxicity of the osmium conjugates in 
the following order: eight arginine residues >> five arginine residues ! one 
arginine ~ unfunctionalized. 

 

As will be discussed in Chapter 5, antimicrobial evaluation of non-conjugated 

copper(II) complexes exhibit promising biological activities but suffer from low 

water solubility and poor membrane permeability across bacteria. The molecular 

design strategy employed to circumvent these main drawbacks as well as the 

synthetic efforts made to prepare complexes with enhanced bioactivity will be 

presented herein.  

 

4.1.2.4 Design of the metal complex-peptide conjugates  

There are several strategies available to prepare metal complex-peptide conjugates 

(Metzler-Nolte, 2010; Splith et al., 2010; Dirscherl and Koenig, 2008; Heinze et al., 

2008; Kirin et al., 2005; Liolios et al., 2012; Dirscherl et al., 2007) (Scheme 4.1). 

The most common is to couple the metal complex during solid-phase peptide 

synthesis (SPPS) while the peptide is still retained on the resin (Scheme 4.1a). This 

method carries the benefit of advantages from SPPS of convenient, flexible 

incorporation of metal complexes at any position of the amino acid sequence, high 
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labeling second and third options are definitely preferable for metal

(option b) or ligands (option c) that are sensitive towards SPPS conditions

two strategies prevent demetallation and decomposition of the metal complexes.

Scheme 4.1. Strategies to prepare metal complex conjugated with peptides.
 

To generate the copper complexes in this work, the strategy based on 

with bidentate ligands was employed as shown below (Scheme 4.2). To allow the 

conjugation of the complexes with various vectors (PEG, peptides), 

a reactive function in the ligand structure is required. Among the orthogonal reactive 

functions, carboxylic acid has been chosen since it is an easy-to

can react with the terminal amine function of the peptides and the PE

Table 4.1 summarized the conjugates that were synthesized and characterized in this 
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yield and high purity of the conjugates providing the compound is stable enough to 

ligand can be synthesized 

ution complexation with metal ions (Scheme 

4.1b). The other is to attach the metal complexes in solution after the peptide 

synthesis has been completed on the resin, cleaved and purified (Scheme 4.1c). The 

ely preferable for metal-complexes 

(option b) or ligands (option c) that are sensitive towards SPPS conditions. These 

two strategies prevent demetallation and decomposition of the metal complexes. 

 

x conjugated with peptides. 

To generate the copper complexes in this work, the strategy based on Scheme 4.1b 

with bidentate ligands was employed as shown below (Scheme 4.2). To allow the 

conjugation of the complexes with various vectors (PEG, peptides), the presence of 

a reactive function in the ligand structure is required. Among the orthogonal reactive 

to-handle group that 

can react with the terminal amine function of the peptides and the PEG derivative. 

Table 4.1 summarized the conjugates that were synthesized and characterized in this 
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Scheme 4.2. Synthetic pathway for the synthesis of the functionalized copper 
complexes. 
 
Table 4.1. Selected ligands and their Cu(II) complexes conjugates that were 
synthesized and studied.  
 R1 R2 Compounds 

abbreviation 
Cu(II) complexes 
abbreviation 

Parent 
compound 

-CH2C6H5 -OH SB4CB Cu(SB4CB)2 

 
 
Conjugates 

-CH2 C6H5 -NH-(EtO)2-
CH2CONH2 

PEG-SB4CB Cu(PEG-SB4CB)2 

-CH2 C6H5 -NH-R-CONH2 R1-SB4CB Cu(R1-SB4CB)2 
-CH2 C6H5 -NH-R4-CONH2 R4-SB4CB Cu(R4-SB4CB)2 
-CH2 C6H5 -NH-R9-CONH2 R9-SB4CB Cu(R9-SB4CB)2 
-CH2 C6H5 -NH-RW9-CONH2 RW9-SB4CB Cu(RW9-SB4CB)2 
-CH2 C6H5 -NH-FR-CONH-

Naphth. 
PA%N-SB4CB Cu(PA%N-SB4CB)2 

Parent 
compound 

-CH3 -OH SM4CB Cu(SM4CB)2 

Conjugates -CH3 -NH-R9-CONH2 R9-SM4CB Cu(R9-SM4CB)2 
-CH3 -NH-RW9-CONH2 RW9-SM4CB Cu(RW9-SM4CB)2 

Note: R is the one letter nomenclature for arginine and RW9 corresponds to the 
sequence RRWWRRWRR in which W is tryptophan. F is phenylalanine. Naphth. is 
napthylamide.  
 

In this strategy, symmetrical ligands are involved leading to complexes bearing two 

functionalizing groups. Since most of the conjugation work in the literature focuses 

on tetradentate bis(thiosemicarbazones) containing only a single targeting agent (for 
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radiopharmaceutical purposes), having two functional groups may or may not 

produce the desired results. In fact, in some instances, it could be counterproductive 

as this can further compromise the pharmacokinetics. On the other hand, this 

bivalent approach could also impart higher affinity and selectivity. Ma et al. (2011) 

described the preparation of ligands with two carboxylate functional groups that bear 

two tumor-targeting peptides. The presence of dimeric CPPs in ligands (Hoyer et al., 

2012) and Pt complexes (Abramkin et al., 2012) have been reported to dramatically 

improve their capacity to enter various cells increasing their cytotoxicity potential.  

 

A complex having a PEG was first designed to increase the water solubility.  PEG is 

a neutral water solubilizing agent that does not show any antimicrobial activity. 

Therefore it was to be anticipated that this conjugation would highlight only the 

bioactivity of the complex itself, while enhancing its water solubility. In addition, 

PEG functionalized with carboxylic acid and amine is commercially available. To 

eventually modulate the bacteria uptake of the complexes, the ligands were also 

conjugated to a CPP R9. As mentioned before, cell uptake is optimum for peptides 

having from 8 to 15 arginine residues. Since the complexes preparation involved two 

equivalents of ligand in which two peptides were to be introduced leading to a total 

of 18 arginine residues, thus in addition to R9, different peptide chain with lengths 

of one (R1) or four arginines (R4) were introduced to determine their potential 

influence on the antimicrobial activity of the conjugates. In addition to that, some 

CPPs and antimicrobial peptides (AMPs) are known to share several common 

characteristics such as high density in basic residues and an amphipathic secondary 

structure (a hydrophobic side and a cationic side) in membrane environments (Strøm 

et al., 2003). Recent reports have shown that conjugation of metal binding ligands 
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with AMPs significantly enhances the permeability and activity of the compounds 

against bacteria that have developed cross-resistance against conventional antibiotics 

(Chantson et al., 200534 Chantson et al., 200634 Pagès et al., 2013). Since these 

bioactive peptide sequences consist mainly of arginine and tryptophan, it would also 

be desirable to utilize RW9 (a CPP derived from penetratin) as a vector for 

bioconjugation in search of new improved antibacterial agent (Walrant et al., 2011). 

And not least, a peptide known as an inhibitor of bacteria efflux pumps was grafted 

also. The challenge of multi-drug resistance has become a pressing issue in treating 

bacterial infections and one resistance pathway of multi-drug resistant bacteria 

involves the “over-expression of efflux pumps which expel structurally unrelated 

antibiotics thus decreasing their intracellular concentration” (Nikaido and Pagès, 

2012, p. 340; Pagès and Amaral, 2009). Recent attention has been directed to the 

discovery of small molecules that inhibit the efflux pumps of the “resistance-

nodulation-division (RND) family in gram-negative bacteria” (Okandeji et al., 2011, 

p. 7679). These compounds “act by competitively binding the substrate interacting 

sites of RND-family efflux” (Santos et al., 2012, p. 292) and for that reason, the 

efflux pumps inhibitors (EPIs) are often used as adjuvants to restore susceptibility of 

MDR bacterial pathogens to drugs. “The prototypical inhibitor of RND-family 

efflux pumps in gram-negative bacteria is” a C-capped dipeptide, MC-207,110 (Phe-

Arg-%-naphthylamide, PA%N) (Okandeji et al., 2011, p. 7679). In this work, the 

adjuvant PA%N was directly linked to the antibacterial agent, namely the Cu(II) 

complex in order to eventually reveal any synergistic effect. At this moment, there is 

no knowledge of the mechanism of antimicrobial activity of dithiocarbazate derived 

Schiff base compounds and therefore efflux pumps give us a potential starting target. 

It was hoped that during the pursuit of this target, light would be shed on the 
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problem and show the path to improving the activity and pharmacological properties 

of our lead compounds. 

 

 4.2  Methodology 

4.2.1 Materials 

All chemicals and solvents used were similar to those mentioned in Chapter 3 unless 

stated otherwise herein. Peptide synthesis: 4-Methylbenzhydrylamine (MBHA) resin 

(0.54 mmol/g, Iris Biotech GmbH), fluorenlymethyloxycarbonyl(Fmoc)-rink amide 

resin MBHA resin (0.52 mmol/g, Iris Biotech GmbH), tert-butoxycarbonyl (Boc)-L-

Arg (Tos)-OH (Iris Biotech GmbH), Boc-L-Trp (CHO)-OH (Neosystem 

Laboratoire), Fmoc-AEEA-OH (Iris Biotech GmbH), PA%N (Bachem), 

hydroxybenzotriazole, HOBt (Molekula), N,N,N$,N$-Tetramethyl-O-(1H-

benzotriazol-1-yl)uraniumhexafluorophosphate, O-(Benzotriazol-1-yl)-N,N,N$,N$-

tetramethyluronium hexafluorophosphate, HBTU (Novabiochem), 1-

[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium3-oxid hexa-

fluorophosphate,  HATU (Iris Biotech GmbH), 1-hydroxy-7-azabenzotriazole,  

HOAt (GL BioChem (Shanghai) Ltd/ Applied Biosystems), N,N-

diisopropylethylamine, DIEA (Alfa Aesar), piperidine (Carlo Ebra RS), TFA (Carlo 

Ebra RS), hydrofluoric acid, HF (Merck), triisopropylsilane, TIS (Merck), N-

methyl-2-pyrrolidone, NMP (Merck), acetic acid (AnalaR Normapur,VMR 

chemicals). Buffers: Acetate buffer pH 4 and 6, 0.1 M (Na acetate-Janssen Chimica, 

acetic acid-AnalaR Normapur, VMR chemicals), PBS pH 7.4, 0.01M (Sigma 

Aldrich tablet) and borate buffer ph 9 (Na tetraborate-Acros Organics).   
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4.2.2 Instrumentation 

All instrumentations were similar to those mentioned in Chapter 3 unless stated 

otherwise herein. Peptides and conjugates were characterized by MALDI-TOF-MS 

in the positive ion reflector mode on an ABI Voyager DE-Pro MALDI-TOF mass 

spectrometer (Applied Biosystems) using as matrix a saturated solution of CHCA in 

CH3CN/H2O/TFA (50:50:0.1 v:v:v). LC-MS was carried out using an Applied 

Biosystems QTRAP LC-MS/MS System with a linear gradient elution developed 

from holding time of 5 min at 100% A and then from 0-60% B in 30 min. Eluent A 

was 0.1% formic acid in water, while eluent B was 0.1% formic acid in acetonitrile. 

Experiments were carried out at a flow rate of 10 µL min-1 at room temperature with 

a microLC C18 column1 mm in diameter with UV detector. Peaks were detected at 

220 nm and 280 nm. ITC titrations were performed and analysed using the Nano 

ITC standard volume calorimetry (TA Instruments) apparatus. Aliquots (10 !L) of 

the Cu(II)(OAc)2 solution  were added to the solution of the ligand in 0.1M acetate 

buffer at pH 6. An equilibration time of 300 s was allowed between each addition. 

Measurements were conducted at 25 °C in a 983 µL cell volume with a 250 µL 

syringe with stirring rate 300 RPM. The concentrations of the metal salts and of the 

ligands were adjusted to yield total conversion and a good signal/noise ratio for each 

experiment. All enthalphy of reactions (2H) values were corrected against the heat 

of dilution. ITC results were analyzed using the Nano Analyze software supplied 

(version 2.1.6), utilizing a one binding site model. The crude products (conjugated 

ligands) were analyzed and purified by RP-HPLC using three Waters HPLC systems 

connected to Breeze software:  

System A was similar to Chapter 3. 
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System B consisted of combination of a dual wavelength UV-Vis absorbance 

detector (Waters 2487) and a binary pump (Waters 1525) equipped with and a semi-

preparative cell for purification purposes. Purification of crude products was 

achieved with C8 semi preparative column (250!10mm, 5 µm particles of 300 Å 

pore size). Experiments were carried out at a flow rate of 4 mL min-1 at room 

temperature. Injection volume was 1.5 mL. Sample concentration was 

approximately 10 mg/mL. 

System C consisted of a dual wavelength UV-Vis absorbance detector (Waters 

2487) and a Waters 600 preparative pump.  Purification of crude products was 

achieved with a Waters X-bridge C18 preparative column (19!50mm, 5 µm 

particles of 300 Å pore size). Experiments were carried out at a flow rate of 10 mL 

min-1 at room temperature. Injection volume was 1.5 mL. Sample concentration was 

approximately 10 mg/mL. 

All the peaks were detected at 220 nm and 280 nm. All the HPLC experiments were 

performed using water containing 0.1% of TFA as eluent A and acetonitrile 

containing 0.1% of TFA as eluent B. Several elution gradients were developed for 

the different compounds as detailed in the synthetic section. 

 

4.2.3 Synthesis 

General procedure A  

The PEG derivative was synthesized on solid support by Fmoc strategy using Fmoc 

protected MBHA Rink amide resin (loading 0.52 mmol/g). The resin was swollen in 

DCM one hour prior to use. Fmoc removal was performed by using 20% (v:v) 

piperidine in NMP once for 1 min and then once for 15 min. The resin was washed 

five times with NMP. Then, a solution of Fmoc-AEEA-OH (3 equiv) was 
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preactivated with HBTU/HOBt (3 equiv/3 equiv) and DIEA (6 equiv) in NMP (1 

mL for 0.1 g of resin) and added to the resin in a reaction vessel (polypropylene 

syringe). After completion (monitored by Kaiser test for primary amines, in case of 

positive Kaiser test, the same amino acid was condensed again until a negative test is 

obtained) the Fmoc group of the PEG derivative was removed as previously 

described. A solution of Schiff base (SB4CB) (3 equiv) was preactivated with 

HATU/HOAt (3 equiv/3 equiv) and DIEA (6 equiv) in NMP (1 mL for 0.1 g of 

resin) and added to the resin. The mixture was allowed to react on the automatic 

shaker for 2 hours. Cleavage from the resin was performed by shaking for 3 h with a 

solution of 5 mL of TIS (2.5%), deionised water (2.5%), and TFA (95%). The 

mixture was then filtered and the volume of the solution was reduced by 

evaporation. Cold diethyl ether was then added to precipitate the compound, which 

was then centrifuged for 5 min at 8000 RPM (three times). The compound was 

solubilized in deionised water and lyophilized. The crude product was then purified 

with preparative RP-HPLC.  For N-terminus acetylated PEG, instead of the coupling 

with the ligand, the acetylation was performed with 10% acetic anhydride in DCM 

for 1 hour at room temperature. The compound was cleaved as described but no 

precipitation occurred upon addition of diethyl ether. The crude was purified by 

silica-gel column chromatography. 

  

PEG-SB4CB 

To PEG-NH2 on Fmoc-MBHA Rink amide resin (0.25 g, 0.13 mmol) was added a 

solution of SB4CB (0.129 g, 0.39 mmol, 3 equiv), HATU (0.148 g, 0.39  mmol, 3 

equiv), HOAt (0.053 g, 0.39 mmol, 3 equiv) and DIPEA (0.136 mL, 0.78 mmol, 6 

equiv) in DMF (2.5 mL). The crude peptide material was purified with System C: 
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gradient elution of 5 to 100% of B in A for 10 min. The peak eluted at 7.2 min. The 

fraction was freeze-dried to give PEG-SB4CB as a cream powder. Analytical RP-

HPLC (System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 17.5 

min. HR-MS: m/z = [M+Na]+ Calcd. 497.12877, Found 497.12892. 1H NMR (300 

MHz, CD3OD) ! 8.57 (s, 1H), 8.08 (s, 1H), 7.82 (dd, J = 19.5, 9, 4H), 7.45 – 7.21 

(m, 5H), 4.52 (s, 2H), 3.96 (s, 2H), 3.69 (s, 6H), 3.59 (d, J =6, 2H). 13C NMR (75 

MHz, CD3OD) ! (ppm) 200.29, 175.93, 169.77, 145.41, 138.40, 138.36, 137.28, 

130.54, 129.71, 129.02, 128.71, 128.49, 72.11, 71.38, 71.22, 70.71, 41.05, 39.91. 

 

AcPEG-NH2 (PEGAC) 

PEG-NH2 on Fmoc-MBHA Rink amide resin (0.784 g, 0.42 mmol) was acetylated 

with 10% acetic anhydride in DCM for 1 hour at room temperature.  The crude was 

purified by silica-gel column chromatography eluted with a gradient of MeOH in 

DCM from 4/96 to 10/90 (v:v) MeOH/DCM to yield the expected compound. The 

expected compound fraction was evaporated to give AcPEG-NH2 as a colourless 

oily solid (88 mg, 98%). HR-MS: m/z = [M+Na]+ Calcd. 227.10023, Found 

227.10031. 1H NMR (300 MHz, CD3OD) ) 3.99 (s, 2H), 3.72-3.64 (m, 4H), 3.56 (t, 

J = 6, 2H), 3.40 – 3.34 (m, 2H), 1.95 (s, 3H). 13C NMR (75 MHz, CD3OD) ) 175.95, 

173.71, 72.06, 71.38, 71.22, 70.89, 40.54, 22.65. 

 

General procedure B 

Side-chain protected polyarginine (R1, R4, R9 and RW9) were assembled on 

MBHA resin (loading 0.54 mmol/g) either manually or using the peptide synthesizer 

(Applied Biosystem 433A) with HBTU/HOBt as coupling agents. All amino acids 

were coupled as Boc derivatives. The side chain Arg residue was protected by a 
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tosyl group and the tryptophan side chain was protected by a formyl group. For 

RW9, deformylation was performed with 20% piperidine in NMP for approximately 

2 hours (sequential time length addition 1 min, 3 min, 5 min, 7 min, 15 min, 30 min 

and finally 60 min) prior to Boc removal and coupling to the Schiff base. Boc 

removal was perfomed by using TFA for 1 min (twice) and washed with 10% DIEA 

in DCM. Coupling was the same as for Fmoc synthesis. Cleavage from the resin and 

tosyl protecting group removal was performed using HF in the presence of dimethyl 

sulfide for 2 hours at 0°C. After HF removal, cold diethyl ether was added to 

precipitate the peptide. The precipitate was collected, redissolved using 10% acetic 

acid in water and lyophilized. For N-terminus acetylated peptides, the acetylation 

was performed with 10% acetic anhydride in DCM for 1 hour at room temperature.  

 

R1-SB4CB  

To R1-NH2 on MBHA resin (0.25 g, 0.135 mmol) was added a solution of SB4CB 

(0.135 g, 0.405 mmol, 3 equiv), HATU (0. 154 g, 0.405 mmol, 3 equiv), HOAt 

(0.055 g, 0.405 mmol, 3 equiv) and DIPEA (0.140 mL, 0.810 mmol, 6 equiv) in 

DMF (2.5 mL). The crude peptide material was purified with System C: gradient 

elution of 5 to 100% B in A for 10 min. The peak eluted at 6.06 min. The fraction 

was freeze-dried to give R1-SB4CB as a cream powder. Analytical RP-HPLC 

(System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 16.1 min. LC-

MS: m/z = [M+H]+ Calcd. 486.17, Found 486.10. 1H NMR (300 MHz, CD3OD) ) 

8.10 (s, 1H), 7.86 (dd, J = 27, 9, 4H), 7.44 – 7.22 (m, 5H), 4.61 (dd, J = 9, 3, 1H), 

4.53 (s, 2H), 3.24 (td, J = 7.5, 3, 2H), 2.06 – 1.94 (m, 1H), 1.90 – 1.63 (m, 3H). 13C 

NMR (75 MHz, CD3OD) ! = 200.36, 176.66, 169.66, 158.79, 145.29, 138.74, 
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138.35, 136.70, 130.53, 129.71, 129.26, 128.70, 128.50, 54.55, 42.12, 39.93, 30.44, 

26.65  

 

R4-SB4CB  

To R4-NH2 on MBHA resin (0.25 g, 0.135 mmol) was added a solution of SB4CB 

(0.135 g, 0.405 mmol, 3 equiv), HATU (0. 154 g, 0.405 mmol, 3 equiv), HOAt 

(0.055 g, 0.405 mmol, 3 equiv) and DIPEA (0.140 mL, 0.810 mmol, 6 equiv) in 

DMF (2.5 mL). The crude peptide material was purified with System C: gradient 

elution of 30 to 50% B in A for 10 mins. The peak eluted at 3.34 min. The fraction 

was freeze-dried to give R4-SB4CB as a cream powder. Analytical RP-HPLC 

(System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 14.0 min. 

MALDI-TOF-MS: m/z = [M+H]+ Calcd. 954.48, Found 954.49. 1H NMR (300 

MHz, CD3OD) ) 8.10 (s, 1H), 7.87 (dd, J = 27, 6, 4H), 7.44 – 7.23 (m, 5H), 4.55 – 

4.47 (m, 3H), 4.43 – 4.31 (m, 3H), 3.28 – 3.13 (m, 8H), 2.00 – 1.61 (m, 16H). 

 

R9-SB4CB 

To R9-NH2 on MBHA resin (0.25 g, 0.135 mmol) was added a solution of SB4CB 

(0.135 g, 0.405 mmol, 3 equiv), HATU (0. 154 g, 0.405 mmol, 3 equiv), HOAt 

(0.055 g, 0.405 mmol, 3 equiv) and DIPEA (0.140 mL, 0.810 mmol, 6 equiv) in 

DMF (2.5 mL). The crude peptide material was purified with System C: gradient 

elution of 5 to 100% B in A for 10 min. The peak eluted at 4.86 min. The fraction 

was freeze-dried to give R9-SB4CB as a cream powder. Analytical RP-HPLC 

(System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 13.3 min.  

MALDI-TOF-MS: m/z = [M]+ Calcd. 1733.98, Found 1733.93. 1H NMR (300 MHz, 
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CD3OD) ) 8.11 (s, 1H), 7.89 (dd, J = 39, 9, 4H), 7.44 – 7.23 (m, 5H), 4.53 (s, 2H), 

4.40 – 4.17 (m, 9H), 3.30 – 3.09 (m, 18H), 2.02 – 1.52 (m, 36H). 

 

RW9-SB4CB  

To RW9-NH2 on MBHA resin (0.25 g, 0.135 mmol) was added a solution of 

SB4CB (0.135 g, 0.405 mmol, 3 equiv), HATU (0. 154 g, 0.405 mmol, 3 equiv), 

HOAt (0.055 g, 0.405 mmol, 3 equiv) and DIPEA (0.140 mL, 0.810 mmol, 6 equiv) 

in DMF (2.5 mL). The crude peptide material was purified with System C: gradient 

elution of 5 to 100% B in A for 10 min. The peak eluted at 5.69 min. The fraction 

was freeze-dried to give RW9-SB4CB as a cream powder. Analytical RP-HPLC 

(System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 16.5 min.  

MALDI-TOF-MS: m/z = [M]+ Calcd. 1823.91, Found 1823.27. 1H NMR (300 MHz, 

CD3OD) ) 8.06 (s, 1H), 7.79 (dd, J = 45, 9, 4H), 7.55 (d, J = 6, 1H), 7.46 – 7.22 (m, 

10H), 7.17 – 6.84 (m, 9H), 4.61 (dd, J = 9, 6, 1H), 4.54 (s, 2H), 4.48 (td, J = 4.5, 3, 

2H), 4.33 – 4.21 (m, 3H), 4.14 – 4.00 (m, 3H), 3.35 (s, 5H), 3.27 – 2.95 (m, 15H), 

1.97 – 1.37 (m, 24H). 

 

R9-SM4CB  

To R9-NH2 on MBHA resin (0.25 g, 0.135 mmol) was added a solution of SM4CB 

(0.089 g, 0.405 mmol, 3 equiv), HATU (0. 154 g, 0.405 mmol, 3 equiv), HOAt 

(0.055 g, 0.405 mmol, 3 equiv) and DIPEA (0.140 mL, 0.810 mmol, 6 equiv) in 

DMF (2.5 mL). After cleavage, the crude peptide material was purified with System 

C: gradient elution of 5 to 100% B in A for 10 min. The peak eluted at 4.32 min. 

The fraction was freeze-dried to give R9-SM4CB as a cream powder. Analytical RP-

HPLC (System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 11.8 
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min.  MALDI-TOF-MS: m/z = [M+H]+ Calcd. 1658.95, Found 1658.78. 1H NMR 

(300 MHz, CD3OD) ) 8.11 (s, 1H), 7.91 (dd, J = 39, 9, 4H), 4.42 – 4.20 (m, 9H), 

3.30 – 3.11 (m, 18H), 2.60 (s, 3H), 2.04 – 1.55 (m, 36H). 

 

RW9-SM4CB  

To RW9-NH2 on MBHA resin (0.25 g, 0.135 mmol) was added a solution of 

SM4CB (0.089 g, 0.405 mmol, 3 equiv), HATU (0. 154 g, 0.405 mmol, 3 equiv), 

HOAt (0.055 g, 0.405 mmol, 3 equiv) and DIPEA (0.140 mL, 0.810 mmol, 6 equiv) 

in DMF (2.5 mL). The crude peptide material was purified with System C: gradient 

elution of 20 to 50% B in A for 10 min. The peak eluted at 6.11 min. The fraction 

was freeze-dried to give RW9-SM4CB as a cream powder. Analytical RP-HPLC 

(System A: gradient elution of 5 to 100% of B in A for 30 min): RT = 14.0 min.  

MALDI-TOF-MS: m/z = [M+H]+ Calcd. 1748.89, Found 1748.45. 1H NMR (300 

MHz, CD3OD) ) 8.07 (s, 1H), 7.95 (d, J = 9, 2H), 7.77 (d, J = 6, 2H), 7.55 (d, J = 6, 

1H), 7.46 – 7.28 (m, 5H), 7.19 – 6.84 (m, 9H), 4.57 (dd, J = 15, 9, 1H), 4.49 – 4.36 

(m, 2H), 4.33 – 4.17 (m, 3H), 4.14 – 3.96 (m, 3H), 3.28 – 2.96 (m, 15H), 2.61 (s, 

3H), 1.94 – 1.27 (m, 24H). 

 

AcR1-NH2 (R1AC) 

To R1-NH2 on MBHA resin (0.25 g, 0.135 mmol), the acetylation was performed 

with 10% acetic anhydride in DCM for 1 hour at room temperature. The crude 

peptide material was purified with System C: gradient elution of 0 to 30% B in A for 

10 mins. The peak eluted at 3.26 min. The fraction was freeze-dried to give R4AC 

as a cream powder. Analytical RP-HPLC (System A: gradient elution of 0 to 30% of 

B in A for 30 min): RT = 4.0 min. HR-MS: m/z = [M+H]+ Calcd. 216.14550, 
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Found 216.14556. 1H NMR (300 MHz, CD3OD) ) 4.35 (dd, J = 9, 6, 1H), 3.28 – 

3.17 (m, 2H), 2.01 (s, 3H), 1.96 – 1.83 (m, 1H), 1.75 – 1.59 (m, 3H). 13C NMR (75 

MHz, CD3OD) ) 176.79, 173.61, 54.00, 42.09, 30.38, 26.46, 22.66. 

 

AcR4-NH2 (R4AC)  

To R4-NH2 on MBHA resin (0.25 g, 0.135 mmol), the acetylation was performed 

with 10% acetic anhydride in DCM for 1 hour at room temperature. The crude 

peptide material was purified with System C: gradient elution of 0 to 30% B in A for 

10 min. The peak eluted at 4.36 min. The fraction was freeze-dried to give R4AC as 

a cream powder. Analytical RP-HPLC (System A: gradient elution of 0 to 30% of B 

in A for 30 min): RT = 6.8 min.  MALDI-TOF-MS: [M+K]+ Calcd. 836.02, Found 

722.33; [M+Na]+ Calcd. 820.04, Found 706.37; [M+H]+ Calcd. 684.45, Found 

684.38. 1H NMR (300 MHz, CD3OD) ) 4.38 – 4.24 (m, 4H), 3.21 (t, J = 6.6, 8H), 

2.02 (s, 3H), 1.98 – 1.56 (m, 16H). 

 

AcR9-NH2 (R9AC) 

To R9-NH2 on MBHA resin (0.25 g, 0.135 mmol), the acetylation was performed 

with 10% acetic anhydride in DCM for 1 hour at room temperature. The crude 

peptide material was purified with System B: gradient elution of 0 to 30% B in A for 

30 min. The peak eluted at 9 min. The fraction was freeze-dried to give R9AC as a 

cream powder. Analytical RP-HPLC (System A: gradient elution of 5 to 100% of B 

in A for 30 min): RT = 6.0 min.  MALDI-TOF-MS: [M+K]+ Calcd. 836.02, Found 

1486.90; [M+Na]+ Calcd. 1502.87, Found 1486.90; [M+H]+ Calcd. 1464.95, Found 

1464.93. 1H NMR (300 MHz, CD3OD) ) 4.35 – 4.12 (m, 9H), 3.28 – 3.16 (m, 18H), 

2.04 (s, 3H), 1.96 – 1.63 (m, 36H). 
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AcRW9-NH2 (RW9AC) 

To RW9-NH2 on MBHA resin (0.25 g, 0.135 mmol), the acetylation was performed 

with 10% acetic anhydride in DCM for 1 hour at room temperature. The crude 

peptide material was purified with System B: gradient elution of 5 to 100% B in A 

for 30 mins. The peak eluted at 12 min. The fraction was freeze-dried to give 

RW9AC as a cream powder. Analytical RP-HPLC (System A: gradient elution of 5 

to 100% of B in A for 30 min): RT = 10.6 min. MALDI-TOF-MS: [M+K]+ Calcd. 

836.02, Found 1593.72; [M+Na]+ Calcd. 820.04, Found 1577.75; [M+H]+ Calcd. 

1554.89, Found 1554.78. 1H NMR (300 MHz, CD3OD) ) 7.56 (d, J = 9, 1H), 7.48 – 

7.30 (m, 5H), 7.14 – 6.89 (m, 9H), 4.60 (dd, J = 9, 6, 1H), 4.44 (dd, J = 15, 9, 2H), 

4.34 – 4.21 (m, 2H), 4.15 – 3.98 (m, 4H), 3.36 (d, J = 5.7, 1H), 3.29 – 2.94 (m, 

16H), 2.05 (s, 3H), 1.89 – 1.29 (m, 24H). 

 

Procedure C (Solution synthesis) 

PA"N-SB4CB  

The ligand SB4CB (10 mg, 0.061 mmol, 1 equiv), PA%N.2HCl (23.5 mg, 0.091 

mmol, 1.5 equiv), HATU (17.3 mg, 0.091 mmol, 1.5 equiv) and HOAt (6.2mg, 

0.091 mmol, 1.5 equiv) were placed in a round-bottom flask under argon. Dried 

DMF (1 mL) was added followed by DIEA (0.026 mL, 0.303 mmol, 5 equiv). The 

reaction mixture was stirred overnight at room temperature. Analytical HPLC 

showed conversion of starting material into a less polar product >50%. After 

dilution with water, the crude peptide material was purified with System C: gradient 

elution of 5 to 100% B in A for 10 min. The peak eluted at 8.57 min. The fraction 

was freeze-dried to give PA%N-SB4CB as a yellowish solid. Analytical HPLC: RT = 

21.5 min. MALDI-TOF-MS: m/z = [M+H]+ Calcd. 759.29, Found 759.24. 1H NMR 
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(300 MHz, CD3OD) ) 8.19 (d, J = 3, 1H), 8.06 (s, 1H), 7.86 – 7.73 (m, 7H), 7.58 – 

7.05 (m, 14H), 4.83 (dd, J = 9, 6, 1H), 4.58 (dd, J = 15, 6, 1H), 4.53 (s, 2H), 3.29 – 

3.07 (m, 4H), 2.04 – 1.61 (m, 4H). 

 

Preparation of copper (II) complexes, CuL2 

To the bioconjugate L (mmol, 2 equiv) in methanol was added a solution of 

Cu(OAc)2·H2O (mmol, 1 equiv), the solution mixture was stirred overnight and then 

evaporated to dryness to give brown oily solid.   

 

4.3 Results and discussion 

4.3.1 Synthesis  

The synthesis of the bidentate dithiocarbazate Schiff base ligand bioconjugates with 

PEG and peptides are reported here for the first time as well as the synthesis of their 

Cu(II) complexes. The preparation of eight new ligand-vector conjugates and their 

Cu complexes containing Schiff base ligands derived from the condensation of 

SMDTC/SBDTC with 4-carboxybenzaldehyde and various vectors comprising 

CPPs, PEG and EPI are detailed in this work. In addition, five acetylated vectors 

were also prepared for meaningful comparison during the antimicrobial evaluation. 

The compounds were synthesized using either solid phase peptide synthesis 

techniques or solution phase coupling conditions. The presence of metal ion and/or 

Schiff base in the system can interfere with standard conjugation synthetic 

procedures. Therefore, the procedure needs to be optimized accordingly for each 

compound to prevent hydrolysis, decomposition and demetallation.  
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In the case of Schiff base ligand-PEG conjugate, the conjugation was performed via 

Fmoc strategy using a rink amide resin (Scheme 4.3). The synthesis for PEG 

conjugates was relatively straightforward. The PEG amino acid was coupled using 

standard HBTUand HOBt coupling reagents in basic conditions. After Fmoc 

deprotection, the coupling of the Schiff base was performed using HATU and 

HOAt. Cleavage from the resin of the ligand-PEG conjugate was achieved in the 

cocktail mixture of 95% TFA, 2.5% TIS and 2.5% water. Only one major peak 

assignable to the product was observed in the crude chromatogram (Figure 4.4). The 

ligand was purified by reverse-phased HPLC and the complex was formed in 

MeOH. The acetylated PEG carboxamide was synthesized similarly to be used as a 

control compound for the biological tests. 

 

 

Scheme 4.3. Synthesis of the PEGylated copper complex by Fmoc strategy. (a) 
20% piperidine in NMP, 1 ! 5 min, 1 ! 30 min. (b) HBTU, HOBt, DIEA, Fmoc-
AEEA-OH, anhydrous DMF, 30 min-1 hr. (c) HATU, HOAt, DIEA, Schiff base 
ligand, anhydrous DMF, 2 hr (d) 95% TFA, 2.5% TIS and 2.5% H2O, 3 hr (e) 
Cu(OAc)2 in MeOH, r.t. overnight. 
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(a) 

          

(b)

 

Figure 4.4. Chromatograms of PEG-SB4CB synthesized via Fmoc strategy. (a) 
Crude (b) Purified. Detection at ! = 220 nm (top) and 280 nm (bottom). The 
peak at 17.5 min corresponds to the expected product. 

 
 

While the Fmoc strategy was relatively straightforward for PEG conjugates, the 

synthesis was problematic for polyarginine conjugates. Problems arose because the 

CPPs themselves were difficult to assemble using Fmoc strategy which required 

multiple repeat couplings and long reaction times. Although the synthesis was 

monitored by the Kaiser test which indicated that the coupling and deprotection at 

each step was successful, the final result after cleavage of the conjugates from the 

resin was not satisfactorily with the presence of a mixture of polyarginine (R9, R8, 

R7) or Fmoc-protected polyarginine in the chromatograms of crude products. In 

addition to that, the HPLC profile was not always reproducible and at times, 

hydrolysis of the Schiff base hydrazone moiety was observed with the hydrolyzed 

byproduct peak being almost equal to the peak of the desired product. As a result, 



122 
 

preparation of the polyarginine peptides was then performed using Boc-strategy on 

MBHA resin to obtain C-carboxamide peptides. The CPPs couplings were 

performed using tosyl and formyl as side-chain protecting groups for arginine and 

tryptophan respectively and HBTU/HOBt as coupling reagents (Scheme 4.4). The 

Boc groups were removed using pure TFA for 1 min the first time and repeat for 5 

mins. The ligands were introduced at the N-terminal amino group of the protected 

resin bound polyarginine with HATU/HOAt as coupling agents for efficient 

coupling without the need for repeat coupling. The compounds were removed from 

the resin simultaneously with the cleavage of the tosyl side-chain protecting groups 

in HF in the presence of anisole and dimethysulfide (Me2S) as radical scavengers. 

However, in some cases the presence of anisole led to an unexpected byproduct, 

which has a very similar retention time to that of the expected compound, 

consequently, only Me2S was employed (Figure 4.5). If the conjugates were found to 

contain formyl-protected tryptophan, the formyl deprotection was subsequently 

carried out with 20% piperidine in NMP prior to coupling with Schiff base ligands. 

Otherwise, when deformylation was carried out after the coupling of the Schiff base, 

total hydrolysis of the Schiff base moiety resulted. The product was purified by RP-

HPLC and compounds were obtained as yellow powders readily soluble in either 

water or organic solvents such as DMSO, DMF and methanol. N-acetylated versions 

were synthesized for all conjugated peptides by following the same procedures. The 

final acetylation was performed using acetic anhydride in DCM 10/90 v:v. 
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Scheme 4.4. Synthesis of ligand-peptide conjugates by Boc-strategy. (a) HBTU, 
HOBt, DIEA and Boc-Arg(Tos)-OH in NMP for 30 min. (b) Neat TFA, 2 ! 1 
min then 20% DIEA in DCM. (c) HATU, HOAt, DIEA and Schiff base ligands 
in anhydrous DMF for 2 hr. (d) HF and Me2S for 2 hr at 0°C. (e) Cu(OAc)2 in 
MeOH, r.t. overnight.  
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(a) 

(b) 

(c) 

(d) 

Figure 4.5. RP-HPLC 
chromatograms 
obtained on a C8 
column. Samples were 
eluted  using a 
gradient of acetonitrile 
from 5 to 95% in 
water over 30 min 
with 1mL min-1  flow 
rate at room 
temperature (both 
solvents contain 0.1% 
TFA). Detection: ! = 
220 nm (top) and 280 
nm (bottom) 
 
(a) HPLC profile of 
the crude R9-SM4CB 
conjugate from Boc-
strategy with the 
addition of anisole 
during HF-cleavage. 
The peak at ~6 min is 
the hydrolyzed 
compound, the peak at 
11.8 min is the desired 
product while the 
peak at ~14.5 min is 
the byproduct caused 
by anisole. 
 
(b) RP-HPLC profile 
of the crude R9-
SM4CB conjugate 
from Boc-strategy 
without the addition of 
anisole during HF-
cleavage. The 
byproduct observed in 
(a) caused by anisole 
was no longer visible. 
 
(c) RP-HPLC elution 
profile of the crude 
R9-SM4CB conjugate 
from Fmoc-strategy. 
The profile was less 
well resolved as 
compared to Boc-
strategy and not 
always reproducible.  
 
(d) RP-HPLC elution 
profile of the purified 
R9-SM4CB. 
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It should also be noted that among the early attempts to functionalize the parent 

compounds, aliphatic side chain ligands from levulinic acid were utilized. However, 

the standard SPPS were unsuccessful as they resulted in total hydrolysis of the 

Schiff base moiety. Although alternative approaches were adopted to synthesize the 

conjugate in solution via ring-opening of succinic anhydride and formation of acyl 

chloride, the ligands were found to be unstable under these reaction conditions. This 

showed that aliphatic side chain ligands are not suitable for use in bioconjugation. 

The rigid carboxylate benzyl ring in 4-carboxylbenzaldehyde derivatives (SM4CB 

and SB4CB) provided suitable stability and functionality for coupling by SPPS. The 

ability to survive the synthesis and purification conditions is important and the stable 

4-carboxybenzaldehyde derived Schiff base ligands were deemed most suitable for 

bioconjugation in this work.  

 

The conjugation of SB4CB with the efflux pump inhibitor PA%N was effected 

through solution synthesis (Scheme 4.5). 

 

Scheme 4.5. Solution synthesis of PA"N-SB4CB (a) HATU, HOAt, DIEA and 
Schiff base ligand mixture in anhydrous DMF overnight at r.t. (b) in MeOH 
overnight.!



126 
 

The carboxyl group of SB4CB was coupled to the free N-terminal amino group of 

phenylalanine with the coupling agents HATU/HOAt in anhydrous DMF. The 

reaction progress was monitored by RP-HPLC. Although an excess of PA%N was 

used, the reaction did not proceed to completion even after 24 hours with the peaks 

corresponding to the starting materials still visible in the chromatograms (Figure 

4.6). The product PA%N-SB4CB along with the unreacted starting material were 

separated using preparative HPLC.  

(a) 

  

(b) 

 

Figure 4.6. Chromatograms of PA"N-SB4CB synthesized in solution. (a) Crude 
(b) Purified. The peak at 21.5 min corresponds to the expected product. 
 
 
The purity of each ligand and aceylated peptide was confirmed by the presence of a 

single peak in the reverse-phased HPLC chromatogram. The purity for all the 

compounds was ensured to be >95%. The copper complexes were finally obtained 
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by mixing a 0.5 equivalent of Cu(OAc)2 to the ligand in MeOH. All ligand 

conjugates and their respective complexes were comprehensively characterized 

spectroscopically. 

 

4.3.2 Characterization of ligands conjugates 

4.3.2.1 NMR 

All ligands were analyzed by NMR spectroscopy in order to confirm the integrity of 

the Schiff base hydrazone moiety. For illustration, the example of R1-SB4CB will 

be discussed here while the rest of the spectra are available in the Appendices. 1H 

and 13C spectra of R1-SB4CB in CD3OD are shown in Figure 4.7. The presence of 

the Schiff base is immediately apparent from the NMR spectra of the bioconjugates. 

R1-SB4CB possesses peaks that corresponds to the SB4CB moiety: characteristic 

resonance signals at ) 8.10 ppm and 7.90-7.80 ppm attributed to -CH=N and the 

aromatic ring of 4-carboxybenzaldehyde moiety, the 5 aromatic protons of SBDTC 

in the region of 7.43-7.23 ppm and the presence of a singlet of the S-CH2 protons 

observed at 4.53 ppm. These chemicals shifts of SB4CB moiety are consistent in 

almost all the NMR spectra of the bioconjugates with exception of RW9-SB4CB 

and PA%N- SB4CB in which the SB4CB aromatic region multiplets overlapped with 

the peptides tryptophan, phenylalanine and napthylamide protons. For SM4CB 

derived conjugates, the aromatic ring in the region of 7.43-7.23 ppm and S-CH2 

protons at 4.53 ppm were absent while the distinctive methyl signal for SMDTC was 

clearly visible at 2.61 ppm. Signals arising from the protons of arginine were 

observed at ca. 4.85-4.59 ppm, 3.26-3.21 ppm and 2.06-1.62 ppm corresponding to 

&-CH, )-CH2 and %, --CH2 respectively. The &-CH2 peaks shifted highfield with 

increasing number of arginine with the signals observed at ca. 4.40-4.17 ppm for 
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R9-SB4CB. In RW9 derivatives, the tryptophan %-CH2 signal partially overlapping 

with the arginine )-CH2 protons as well as the CD3OD solvent peak while the &-CH 

of tryptophan can be easily located between ca. 4.60-4.45 ppm. Such overlappings 

were also observed for PA%N-SB4CB in which the protons of &-CH and %-CH2 each 

overlapped with the CD3OD solvent peaks at 4.78 ppm and 3.31 ppm. For PEG-

SB4CB, the 10 protons of PEG can be found in the region ca. 4.00-3.50 ppm. In 

principle, dithiocarbazate derivatives can exhibit thione-thiol tautomerism due to the 

presence of thioamide function –NH-C(S)SR. In the 13C NMR spectra of R1-

SB4CB, the presence of -NH-C(=S)S at ) 200.36 ppm indicates that the Schiff bases 

predominate as the thione form in solution (if thiol form is present, a signal at ca. 

158 ppm will be observed) (How, 2008). This signal was shifted downfield due to 

the deshielding effect of the neighbouring amine nitrogen and electronegative 

sulphur. The CH=N signal of the Schiff base occurred at 145.29 ppm indicative of 

the hydrazone bond which was formed when 4-carboxybenzaldehyde reacted with 

the SBDTC. The -S-CH2 peak occurred relatively upfield at 39.93 ppm. The 

aromatic carbons were observed around 138-128 ppm as expected for carbons in 

aromatic rings. In addition, the spectrum also showed the expected signals with 

carbon atoms of arginine giving four signals at ) 26.65, 30.44, 42.12 and 54.55 ppm 

while the two amide and one amine carbon atoms gave signals at ) 176.66, 169.66 

and 158.79 ppm. Overall, the NMR spectra of all the bioconjugates were comparable 

and in agreement with the expected structure, which confirm their formation. 
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Figure 4.7. 1H and 13C spectra of the Schiff base-conjugate (R1-SB4CB). 
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4.3.2.2 MALDI-TOF-MS/ESI-MS 

In addition to NMR, the ligand-conjugates were also analyzed with mass 

spectrometry either MALDI-TOF-MS or ESI-MS for molecules of molecular weight 

less than 500. The mass spectral data of the compounds are shown in the 

Appendices. As an example, the mass spectrum of one of the ligand-conjugates, R9-

SB4CB, is shown in Figure 4.8. The MALDI mass spectra of the new ligand 

conjugates mainly gave peaks that correspond to their protonated form. The MALDI 

mass spectra of all ligands also showed the fragment corresponding to the 

hydrolyzed Schiff base moiety (cleavage of C=N bond). Since the MALDI analysis 

involves laser irradiation and the use of an acidic matrix, it was anticipated that this 

observed hydrolysis could occur during the mass experiment. In some cases, this 

peak was the main peak with a larger relative abundance than that of the targeted 

ligand-conjugate itself. 

 

   

Figure 4.8. MALDI spectra of R9-SB4CB. The hydrolyzed fragment (cleavage 
of C=N bond) is noticeable during MALDI characterization. 
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4.3.3 Characterization of metal-complexes conjugates  

The targeted Cu(II) complexes of the above described bidentate Schiff base ligands 

involve two identical ligands and a copper(II) ion. Consequently, all the 

bioconjugate complexes were prepared in situ by mixing methanolic solutions of the 

ligands and Cu(II)(OAc)2 in a 2:1 ratio. The hydrophilic polyarginine may contain 

many bound water molecules and trifluoroacetate counterions. Therefore, it is 

difficult to ascertain the actual peptide concentration based on the weight of the 

lyophilized conjugate. The concentration was thus determined with reference to the 

extinction coefficient of the Schiff base chromophore that absorbs at 340 nm. Upon 

complexation, the colour of the reaction mixture changes to brown, which serves 

evidence for complexation in the duration when left to stir overnight. As both the 

ligands and metal complexes showed the same retention time in RP-HPLC, the 

reaction could not be monitored or purified using HPLC. The expected 

complexation was monitored by UV-Vis spectroscopy and the identification of the 

complexes was further confirmed by EPR, LC-MS and ITC as discussed below. 

 

4.3.3.1 UV-Vis  

UV-Vis titrations were performed to ascertain the formation of the expected ML2 

complex. The titration was carried out in MeOH, which mirrored the actual synthetic 

procedure and also in acetate buffer pH 6 for aqueous solution studies. Upon 

addition of Cu(OAc)2, the changes in UV-Vis spectra are noticeable with a broad 

absorption band arising from the formed complex which range from 300-400 nm 

with "max ~325!nm (log !! " 3.96) while the intensity of the band corresponding to 

ligands at "max ~340 nm (log !! "!4.64) decreases. For all the ligands, the titration, 

performed at a concentration in the range of 10-5 M, proceeds with a sharp end-point 
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at 0.5 equivalent with clear isosbestic points indicative of a single complexation 

event. This low-energy region of the UV-Vis spectrum is the same for the 

conjugated ligands and the parent compounds, which strongly suggests an identical 

Cu coordination into the Schiff base ruling out possible coordination to peptide 

chains of the bioconjugate. The 1:2 stoichiometry of the complex was verified by the 

plot of absorbance (abs.) against equivalent of Cu. Examples of UV-Vis titration 

curves obtained are shown in Figure 4.9. 

(a) 

 

(b)  
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(c) 

 

Figure 4.9. UV-Vis titration of various ligands (concentration set at ca.  2.5 x 10-
5 M) with Cu(OAc)2.H2O (concentration set at ca. 5 x 10-4 M)  at 25°C. a) 
Titration of R1-SB4CB in methanol and its corresponding titration curve 
monitored at 340 nm. b) Titration of SM4CB in acetate buffer pH 6 and its 
corresponding titration curve monitored at 340 nm for comparison with 
conjugated compounds. c) Titration of R9-SM4CB in acetate buffer pH 6 and 
its corresponding titration curve monitored at 340 nm. 
 
 

Understanding the behavior of these compounds in aqueous and buffer systems 

under physiological conditions (pH range 6.0-7.4) is important for the study of 

biological activity. Many Schiff bases derived from S-substituted dithiocarbazate 

prepared to date and their metal complexes suffer from poor aqueous solubility that 

hinders investigation of their properties. The tremendous increase in solubility of 

their bioconjugate derivatives allows for some investigations to be carried out as 

well as their complexation in aqueous solution. The complexation of Cu(II) was 

confirmed to be pH dependent.  After screening a range of aqueous buffer solutions, 

acetate buffer (pH 6) was utilized as it does not interfere with the UV absorption and 

the complexation proceeded well. Attempts were unsuccessful with water (no 

complexation) and buffers such as HEPES (no complexation), TRIS (no 

complexation), MOPS (changes in the UV-Vis signature too small for analysis), 

PBS (precipitation of the ligands) and borate buffer (reduction of the Cu(II) ion / 
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formation of hydroxide at high pH). When the reaction solutions were monitored by 

UV-Vis, the distinct "max shift and end-point at 0.5 equivalents were observed at pH 

6 (0.1 M acetate buffer) and pH 7.4 (0.01M PBS) but were not observed at pH 4 (0.1 

M acetate buffer) and 9 (0.1 M borate buffer) (Figure 4.10). As mentioned earlier, 

Schiff bases derived from DTC readily undergo thiol-thione tautomerism at 

equilibrium mixture in solution (Ali et al., 2003). In the presence of metal ions, the 

equilibrium state is more favourable towards the thiol form that spontaneously 

deprotonate to give a thiolate anion for metal coordination (Hossain et al., 1996; 

Tarafder et al., 2002a). At low pH, the deprotonation required for coordination is 

presumably suppressed. Furthermore, the thione sulphur has strong electron 

withdrawing effect that causes the amide proton to be slightly acidic which is 

stabilized in strong acidic condition. No complexation at high pH could be due to 

hydrolysis of Schiff bases, reduction of the Cu(II) ion or formation of hydroxide that 

resulted in precipitation. 

(a) 

 

Figure 4.10. UV-Vis spectra obtained by addition of Cu(OAc)2.H2O at 25°C to a 
solution of R9-SB4CB (ca. 2.5 x 10-5 M) at a) pH 4 (0.1 M acetate buffer), b) pH 
7.4 (0.01 M PBS buffer) and at c) pH 9 (0.1 M borate buffer).  
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(b) 

 

(c) 

 
 
Figure 4.10 (continued). UV-Vis spectra obtained by addition of Cu(OAc)2.H2O 
at 25°C to a solution of R9-SB4CB (ca. 2.5 x 10-5 M) at a) pH 4 (0.1 M acetate 
buffer), b) pH 7.4 (0.01 M PBS buffer) and at c) pH 9 (0.1 M borate buffer).  
 

4.3.3.2 LC-MS 

The identities of all metal complexes were verified by LC-MS experiments 

involving an electron spray ionisation. Table 4.2 summarizes the data for all Cu(II) 

dithiocarbazate Schiff base ligand-conjugates in solution in MeOH. Both copper 

complexes Cu(R1-SB4CB)2 and Cu(PEG-SB4CB)2 gave the expected signals in the 

electrospray mass spectra (positive ion detection mode) which correspond to the 
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protonated cations with the expected isotope pattern. The identities of Cu(PAßN-

SB4CB)2 and Cu(R4-SB4CB)2 were confirmed by their respective double charged 

(2+) ions.. As shown in Figure 4.11, the chromatogram of R1-SB4CB showed two 

well-separated peaks with identical MS spectra and the same behavior was observed 

for its metal complex Cu(R1-SB4CB)2. This may highlight the presence of 

diastereoisomers (E/Z hydrazone bound or cisoid/transoid complexes). The same 

was observed for Cu(R4-SB4CB)2 and Cu(PEG-SB4CB)2 but for Cu(PA%NSB)2 the 

second peak was not very obvious. It is also interesting to note that the isotopic 

pattern of Cu(R1-SB4CB)2 and Cu(PEG-SB4CB)2 seems to be the result of an 

overlapping of two isotopic patterns. The copper (II) complexes also showed several 

similar fragment ions of [CuL]+ and the ligand [L+H]+ most likely due to 

decomposition in the gas phase. The hydrolyzed ligand signal appeared when 

MALDI was used however was not apparent in the ES-MS spectra due to the fact 

that electron-spray ionization is generally considered a “softer” technique. 

 

Table 4.2. LC-ES-MS data for all Cu(II) dithiocarbazate Schiff base ligand-
conjugates and R1-SB4CB for comparison. 
 

Compound Rt 
[min] 

Exact Masscalcd 
[MH+] 

Exact Massexpt 
 

Cu(R1-SB4CB)2 15.1 & 17.6 1032.27 [M+H]+ = 1031.9 & 1030.1 
R1-SB4CB 15.3 & 17.5 486.18 [M+H]+ = 486.1 
Cu(PEG-SB4CB)2 15.2 & 16.1 1010.21 [M+H]+ = 1010.6 & 1011.5 
Cu(PA%NSB)2 15.2 1578.50 [M+2H]2+ = 789.1 
Cu(R4-SB4CB)2 14.0 & 17.3 1968.87 [M+2H]2+ = 986.1 and 986.1 
Cu(R9-SB4CB)2 Results pending 
Cu(R9-SM4CB)2 Results pending 
Cu(RW9-SB4CB)2 Results pending 
Cu(RW9-SM4CB)2 Results pending 



137 
 

 

Figure 4.11. LC chromatogram of Cu(R1-SB4CB)2 (top) and R1-SB4CB 
(bottom) showing the two isomeric peaks with similar molecular mass. A linear 
gradient elution developed from holding time of 5 min at 100% (0.1% formic 
acid in water ) and then from 0-60% (0.1% formic acid in acetonitrile) in 30 
min. Experiments were carried out at a flow rate of 10 µL min-1 at room 
temperature with peaks detection at 220 nm and 280 nm. 
 

4.3.3.3  ITC 

Isothermal Titration Calorimetry (ITC), commonly used in the characterization of 

interactions between biomolecules, provides a complete thermodynamic 

characterization of an interaction (Grossoehme et al., 2010; Cisnetti et al., 2012; 

Ostermeier et al., 2010). In this work, ITC experiments were undertaken to 

determine the thermodynamic parameters for the interaction of selected peptide 

conjugate ligands with Cu(II) ions during complexation in aqueous solution. The 
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metal ion was titrated into the ligand and all experiments were run in duplicate or 

triplicate and corrected for buffer interactions. ITC directly measures the heat 

released after each injection of copper. The curves obtained were fitted using the 

integrated software, which calculates the enthalpy of the reactions (5H), the 

stoichiometry (n) and the association constant (Kass). For the compounds in this 

work, the reactions were endothermic with 5H values ranging from 12.2 to 159.8 kJ 

mol-1 (Table 4.3). For all combinations tested, the association constant (log Kass) was 

of the order ca. 6, in the same range as the parent compound, and the stoichiometry 

close to the theoretical value of 0.5. These data strongly support the formation of the 

expected ML2 complexes in agreement with the UV-Vis titrations: Cu2+ + 2(L) . 

[CuL2]2+. Also, the conjugation doesn’t seem to affect the complex formation to a 

large extent. An example of the ITC experiment for Cu(R9-SB4CB)2, the most 

stable complex, is shown below (Figure 4.12). 

 

Table 4.3. Thermodynamic parameters of conjugated ligand complexation with 
copper determined by ITC at 25 °C.  

 log(Kass) 
5H 

(kJ mol-1) n 5S 
(J mol-1K-1) 

Cu(R1-SB4CB)2 6.00 74.4 0.42 364.5 
Cu(R9-SM4CB)2 6.56 12.2 0.53 166.4 
Cu(R9-SB4CB)2 5.94 24.9 0.49 196.5 
Cu(RW9-SB4CB)2 6.72 60.8 0.55 332.4 
Cu(RW9-SM4CB)2 6.75 36.1 0.43 249.0 
Cu(SB4CB)2 

[a] 5.30 264.6 0.43 984.2 
[a] Parent compounds are given for the purpose of comparison. 
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Figure 4.12. ITC titration of Cu(R9-SB4CB)2, Cu(OAc)2 (concentration at ca. 5 
x 10-5 M) was added every 300 s to the ligand R9-SB4CB solution 
(concentration at ca. 1 x 10-5 M) in 0.1M acetate buffer at pH 6.. The top curve 
represents the corrected heat flow with time. The bottom curve represents the 
heat of reaction (measured by peak integration) as a function of Cu/ligand 
ratio. The solid line is the best theoretical fit to the experimental data. The 
three first points were removed for the fitting. 
 
Note: ITC experiments had been carried out for R4, PABNSB, PEG-SB4CB and 
SM4CB but to no avail. R4 suffered from peptide aggregation while PABNSB, 
PEG-SB4CB and SM4CB were not sufficiently water soluble for meaningful 
investigations. 
 

4.3.3.4 EPR 

Metal binding to the Schiff base ligand-vector conjugates were investigated using 

EPR spectroscopy for this paramagnetic d9 Cu(II) system (Table 4.4). The EPR 

spectra of frozen solutions of the parent compounds Cu(SB4CB)2 and Cu(R9-

SB4CB)2 in DMF (1 mM) show a well-resolved axial Cu(II) signal with significant 

separation of g" and g! (Figure 4.13). Both spectra, with g!"> g" are typical of axially 

symmetric mononuclear d9 CuII complexes in a ground state doublet with the 

unpaired electron residing in a dx2- y2 orbital. The g and A parameters, and especially 

g! and A!, indicate that the metal coordination environment involves two nitrogen 

atoms in a square-planar geometry for all complexes. The EPR spectra of the 
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bioconjugated complexes are expected to be very similar to those of their parent 

compounds, as observed here. The close similarity of the spectra is a strong 

indication that the Cu(II) ion is indeed coordinated to the ligand moiety of SB4CB 

or SM4CB in the bioconjugated system rather than unspecifically bound to the 

peptide sequence. Furthermore, the similarity of the EPR parameters of the 

complexes indicate that conjugation of the C-functionalized Schiff base ligands with 

polyarginine and other vectors such as PEG and PA%N has very little effect on its 

Cu(II) chelating behaviour. Due to the importance of water as a medium in 

biological investigation, the EPR spectrum of Cu(R9-SB4CB)2 was also recorded in 

acetate buffer at pH 6 (Figure 4.14). Although the compound showed larger 

distortion from planarity with the increase of f value as compared to the spectra 

measured in DMF, the f value is still within the square planar range. In addition, the 

spectrum was different from that of aquated Cu(II) ions in aqueous solution 

indicating that the ligands remained coordinated  to Cu(II) ions in that environment. 

 

Figure 4.13. The EPR spectra of both parent and conjugated compounds (1 
mM) in frozen DMF were indicative of the same species being formed with 
approximate calculated g  and g!!!! values of ~2.05 and ~2.15, respectively. 
Microwave frequency 9.50 GHz, microwave power 0.25 mW, modulation 
amplitude 0.2 mT, modulation frequency 100 kHz, time constant 164 ms, T = 50 
K. 
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Figure 4.14: EPR spectra of 1mM Cu(R9-SB4CB)2 and Cu(OAc)2 in frozen 
acetate buffer  pH 6 (0.1 M) are different from one another. Microwave 
frequency 9.50 GHz, microwave power 0.2 mW, modulation amplitude 0.2 mT, 
modulation frequency 100 kHz, time constant 164 ms, T = 50 K. 
 
 
Table 4.4. EPR parameters measured from the spectra of the copper( II) 
complexes. 

Compound g// g  A//[a]  f[b] $2 

Cu(R1-SB4CB)2 2.16 2.06 523 (174) 124 0.71 

Cu(PEG-SB4CB)2 2.15 2.06 541 (180) 119 0.71 

Cu(PA%NSB)2 2.16 2.06 515 (172) 126 0.70 

Cu(R4-SB4CB)2 2.16 2.06 509 (170) 127 0.69 

Cu(R9-SB4CB)2 2.16 2.06 513 (171) 126 0.70 

Cu(R9-SM4CB)2 2.16 2.06 524 (175) 123 0.71 

Cu(RW9-SB4CB)2 2.16 2.06 514 (171) 126 0.70 

Cu(RW9-SM4CB)2 2.16 2.06 519 (173) 125 0.70 

Cu(SB4CB)2
[c] 2.15 2.05  531 (177) 121 0.70 

Cu(SM4CB)2
[c] 2.15 2.05  504 (168) 128 0.67 

Cu(R9-SB4CB)2-pH 6 2.13 2.05 463 (154) 138 0.61 

[a] Unit in MHz, in bracket = A// x 10-4 cm-1 [b] Unit in cm. [c] Parent compounds 
for comparison purpose. 
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4.3.3.5 Electrochemistry  

The electrochemistry properties of Cu(R1-SB4CB)2, Cu(PEG-SB4CB)2 and 

Cu(PA%N-SB4CB)2 were also tested in DMF (Table 4.5) . The voltametric waves 

were not reversible unlike those of the parent compounds (Figure 4.15). This 

observation may be due to slow electron transfer or the bulkiness/hindered structure 

of the functionalized compounds.  

 
 
Figure 4.15. Cyclic voltammograms of Cu(R1-SB4CB)2 and Cu(SB4CB)2, 1.7 
mM in anhydrous deoxygenated DMF with 0.1 M tetrabutylammonium 
perchlorate as the supporting electrolyte. Working electrode: glassy carbon; 
counter electrode: Pt wire; reference electrode: Ag/AgCl, scan rate: 100 mV/s. 
All sweeps were initiated in the direction of the arrow. 
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Table 4.5. Electrochemical data vs Ag/AgCl. 

 

4.4 Conclusion 

This work shows the successful synthesis of copper complexes with bidentate 

dithiocarbazate Schiff base-conjugates which further demonstrates the ligands 

versatility for bioconjugation via SPPS for the first time. A series of ligand-

bioconjugates were readily synthesized by either SPPS or solution phase synthesis. 

The synthetic pathways investigated are robust and can be applied to other 

bioconjugating groups. The conjugated ligands were characterized with HPLC, 

NMR and MS. Cu(II) ion complexation was achieved in situ and studied by a 

combination of LC-MS, UV-Vis, EPR, ITC and CV. The results indicate specific 

structural features of the metal bioconjugate complexes prepared in situ that exactly 

match those of the parent metal complexes. The formation of the desired complexes 

has been proven unambiguously and these complexes show dissociation constants in 

the low micromolar range. The effect of the vector conjugate is evident in the 

increase of the water solubility of the ligands and their metal complexes thus 

allowing investigation in aqueous solution to be carried out. The successful 

conjugation and facile complexation with copper suggest that the Schiff bases 

SB4CB and SM4CB may be suitable for further optimization with other targeting 

 Cu(II)/Cu(I) Cu(II)/ 
Cu(III) 

 Epa[V] Epc[V] 2Ep=Epa-
Epc[mV] 

2E1/2=0.5 
(Epa+Epc) [V] 

ipa/ipc Epa[V] 

Cu(SB4CB)2 0.015 -0.079 94 -0.032 0.88 1.029 
Cu(R1-
SB4CB)2 

0.200 -0.083 - - - 1.103 

Cu(PEG-
SB4CB)2 

0.171 -0.098 - - - 1.103 

Cu(PA%N-
SB4CB)2 

0.193 -0.082 - - - 1.090 
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groups. Such optimization is anticipated to result in enhanced biological properties 

as well as offering the possibility of being utilized for radioimaging. In addition, 

only two different substituents on the S-dithiocarbazate moiety (a methyl and a 

benzyl) were investigated in this work but many others can be introduced in the 

same way, which would potentially give access to a larger library of complexes. All 

the compounds presented here were further evaluated for their potential 

antimicrobial activity which will be discussed in the next chapter. 
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CHAPTER 5 

BIOLOGICAL ACTIVITIES 

 

5.1 Introduction 

5.1.1 Mechanism of action of antimicrobial agents and multi-drug resistance  

Bacteria could be broadly classified into Gram-positive and Gram-negative groups 

based on the outcome of Gram staining. The major difference between both groups 

is the structural organization outside the plasma membrane as shown in Figure 5.1 

(Lolis and Bucala, 2003).  According to Salton and Kim (1996), “most Gram-

positive bacteria have a thick (20 to 80 nm) and continuous cell wall which is 

composed largely of peptidoglycan”. The peptidoglycan is linked covalently to 

“other cell wall polymers such as the teichoic acids, polysaccharides, and 

peptidoglycolipids”.  On the contrary, Gram-negative bacteria have a thin (5 nm to 

10 nm) peptidoglycan layer and another outer membrane structure outside the layer. 

In addition, lipoprotein molecules can be found in between the membrane structure 

and peptidoglycan layer while the lipopolysaccharides (LPS) are on the exterior 

surface of the outer membrane structure. 

 

During an infection, “bacterial cells grow and divide, replicating repeatedly to reach 

large numbers”. In order to do so, bacteria “must synthesize or take up many types 

of biomolecules” causing cell deaths and disruption of cell function of the host 

organisms (Neu and Gootz, 1996). Bacteria could also promote infection and disease 

by producing toxins that can exert their effects directly on a target cell or by 

disabling the immune system (Deisingh and Thompson, 2002). 
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Figure 5.1. Structural features of the cell wall that distinguishes the Gram-
positive from the Gram-negative bacteria (Source: Lolis and Bucala, 2003) 
 

Antibacterial agents act against bacteria by interfering with vital processes for 

growth and division (Figure 5.2) that are specific to bacteria. They can be separated 

into groups depending on their target as listed by Neu and Gootz (1996) and 

O'Connell et al. (2013): 

(1) Cell walls.  

These peptidoglycan cell walls in bacteria and their synthetic pathways are 

an interesting target for specific treatment. For instance, penicillins and 

cephalosporins (ß-lactam antibiotics) inhibit peptidoglycan polymerization 

while vancomycin (a glycopeptide) not only inhibits this polymerization but 

also prevents the polymer cross-linking. 
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(2) Cytoplasmic membranes.  

Polymyxin binds to the bacterial LPS and then disrupts the plasma 

membrane causing leakage.  

(3) Bacterial nucleic acid synthesis.  

Quinolones prevent DNA replication by binding to topoisomerase!IV or 

DNA gyrase. Nitroimidazoles such as metronidazole is reduced by an 

electron transport protein in anaerobic bacteria. The reduced drug damage 

DNA. Rifampin blocks mRNA synthesis by binding to DNA directed RNA 

polymerase 

(4) Protein synthesis or ribosome function.  

Aminoglycosides and tetracycline interfere with ribosome function by 

binding to the 30S ribosomal subunit and thus preventing translation 

initiation and tRNA binding. Another class of protein synthesis inhibitors 

includes chloramphenicol, erythromycin and clindamycin that disrupt 

translocation and peptidyl transferase activity by binding to the 50S 

ribosomal subunit. 

(5) Metabolic pathway or folate synthesis.  

Both sulfonamides and trimethoprim interfere with folate metabolism in the 

bacterial cell by competitively blocking the biosynthesis of tetrahydrofolate 

needed for DNA replication.  

Antibacterial agents that kill bacteria as demonstrated by antibiotics that inhibit cell-

wall construction are categorized as bactericidal while agents that only prevent or 

slow down the growth of the bacteria as exemplified by tetracyclines which stop 

protein synthesis are termed as bacteriostatic (O'Connell et al., 2013).  In addition, 

“antimicrobial agents such as penicillin are active against only a narrow spectrum of 
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bacteria whereas others such as ampicillin inhibit a broad range of Gram-negative 

and Gram-positive bacteria” (Coates et al., 2002, p. 898). The combination of 

several antimicrobial agents has been known to display higher activity in 

comparison to using the individual component alone. For instance, sulfamethoxazole 

and trimethoprim (also known as co-trimoxazole) are synergistic in inhibiting folic 

acid metabolism by acting at different sites (Masters et al., 2003). Sulfamethoxazole 

and trimethoprim have specific affinity for pteridine synthetase and dihydrofolate 

reductase, respectively. Nonetheless, the combinations of antimicrobial agents 

should be practiced with caution to ensure that the result is not detrimental in which 

one agent reduces the efficacy of the other. 

 

Figure 5.2. Mechanism of antimicrobial agents. (Source: Neu and Gootz ,1996) 
 

 
Over the years, evolution of bacteria has resulted in varied mechanisms to protect 

themselves from the toxicity of antibacterials which lead to the challenge of multi-

drug resistance (MDR) (Walsh, 2000; Taubes, 2008; Boucher et al., 2009; Stratton, 

2003; Cloete, 2003). This has become a severe issue in treating bacterial infections 

as the worldwide dissemination of resistant bacteria has dramatically compromised 
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the efficiency of the antibiotic families and consequently increases the frequency of 

therapeutic failure (Pagès and Amaral, 2009). Tenover (2006, p. S3) has also stated 

that: 

Bacteria may be intrinsically resistant to 61 class of antimicrobial agents, or 
may acquire resistance by de novo mutation or via the acquisition of 
resistance genes from other organisms. Acquired resistance genes may 
enable a bacterium to produce enzymes that destroy the antibacterial drug, to 
express efflux systems that prevent the drug from reaching its intracellular 
target, to modify the drug’s target site, or to produce an alternative metabolic 
pathway that bypasses the action of the drug. 

 

Therefore, continuous effort to discover new antibacterials with novel mechanism of 

action and to further understand the resistance mechanisms is required in order to 

fight the issue of MDR. Two classes of antimicrobial agents, the antimicrobial 

peptides and the efflux pump inhibitors are the focus of the following discussion. 

 

5.1.2 Antimicrobials peptides  

Since the synthetic work detailed herein involves CPPs that are known to share 

similar features with antimicrobial peptides (AMPs), it is worthwhile to highlight 

this class of compounds to aid interpretation and discussion of the results. The 

investigation of AMPs as antibacterial agents is currently of great interest as such 

compounds may offer several advantages over traditional antibacterial agents. The 

advantages highlighted by O'Connell et al. (2013, p. 10720) include AMPs reduced 

tendency to create resistance and their appealing “immunomodulatory, anti-

inflammatory and anti-endotoxin activities”. These peptides also share the same 

fundamental structural features: they are relatively small in size ranging from 12 to 

50 amino acid residues, they contain a net excess of positively charged residues and 

around 50% of hydrophobic residues resulting in amphipathic structure which is a 

crucial prerequisite to interact with the bacteria membrane (Strøm et al., 2003; 



150 
 

O'Connell et al., 2013). The phospholipid membrane of bacterial cells is the main 

target for AMPs. As shown in Figure 5.3 (Zasloff, 2002), bacterial membranes differ 

from the membranes of plants and mammalians in which the outer leaflet of the 

bilayer that is exposed to the extracellular environment is composed mainly of 

negatively charged lipids in bacteria whereas the leaflet in multicellular animal is 

made of neutral lipids. Many hypotheses have therefore been presented for the 

mechanism of action of AMPs (Brogden, 2005; Hancock and Lehrer, 1998) 

including 

fatal depolarization of the normally energized bacterial membrane, the 
creation of physical holes that cause cellular contents to leak out, the 
activation of deadly processes such as induction of hydrolases that degrade 
the cell wall, the scrambling of the usual distribution of lipids between the 
leaflets of the bilayer, resulting in disturbance of membrane functions, and 
the damaging of critical intracellular targets after internalization of the 
peptide (Zasloff, 2002, p. 390).  
 
 

 

Figure 5.3. The membrane target of antimicrobial peptides of multicellular 
organisms and the basis of specificity (Source: Zasloff, 2002) 
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5.1.3 Efflux pumps and inhibitors  

As previously mentioned in Chapter 4 (p.107), one primary resistance pathway of 

multi-drug resistant bacteria involves the over-expression of efflux pumps. The 

pumps have different affinity towards the diverse antibacterial drugs but most of the 

drugs are recognized by either one or more than one efflux pumps. From the 

illustration of Piddock (2006) in Figure 5.4a, 

there are five main families of efflux pumps in bacteria: the ATP binding 
cassette (ABC) family, the major facilitator superfamily (MFS), multi-drug 
and toxic compound extrusion (MATE) family, the resistance nodulation 
division (RND) family, and the small multi-drug resistance (SMR) family. 
While members of the ABC, MFS, MATE and SMR families of efflux 
pumps are commonly observed in Gram-positive bacteria, efflux pumps in 
the RND, MFS and ABC families are often found in Gram-negative bacteria 
(Okandeji et al. 2011, p. 7679).  

 

There is certainly a good deal of attention to combat efflux pumps due to their 

crucial role in many MRD phenotypes of pathogenic bacteria. According to 

Okandeji et al. (2011), two strategies can be applied: either circumventing their 

activity by preparing “derivatives of antibacterial drugs that are poor substrates of 

efflux pumps” or directly inhibit the efflux pumps through identification of an 

original anti resistance weapon called the efflux pump inhibitors (EPIs). EPIs cannot 

be considered as antibiotics but as adjuvants that will help other antibiotics to be 

efficient. A number of chemicals, such as phenylalanine arginine-%-napthylamide 

(PA%N), 1-(1-naphthylmethyl)-piperizine, quinoline derivatives as well as natural 

products like  alkaloid reserpine have been found to inhibit bacterial efflux pumps 

(Kuete et al., 2011; Stavri et al., 2007). The use of these EPIs facilitates significant 

reduction of resistance to antibiotics in which the isolates were previously resistant 

(Kuete et al., 2011). In the search of new and potent antimicrobial agents in this 

study, the role of efflux pump had been investigated using pump-deleted strains and 
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PA%N-conjugates. The efflux pumps AcrAB and TolC of RND-family were chosen 

for investigation because they are often linked with the resistance of Gram-negative 

bacteria that are problematic to treat until now (Pagès and Amaral, 2009; Nikaido 

and Pagès, 2012; Vecchione et al., 2009; Okandeji et al., 2011; Piddock, 2006; 

Kuete et al., 2011; Stavri et al., 2007).   

 

 

Figure 5.4. (a) Diagrammatic comparison of the five families of efflux pumps 
(Source: Piddock, 2006) (b) Targeting the efflux pump. Illustrations of various 
targets in the efflux pump complex of RND family (Source: Pagès and Amaral, 
2009)  
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5.1.4 Contribution of metal complexes to the improvement of antimicrobial 

agents 

The rich coordination geometry of metals offers an exciting platform for the 

discovery of new and potent metallodrugs with novel mechanisms of action (Sadler: 

N. J. Farrer and P. J. Sadler, 2011). These attributes may allow antibacterial metal 

complexes to be less likely to induce resistance in bacteria or at least to delay 

development of resistance. The geometrical arrangement of ligands in metal 

complexes, which vary according to the number and types of ligands bound to the 

metal centre, and to the coordination preference of the metal, affect their bioactivity 

(Ng et al., 2013). In the past few decades, we have witnessed the development and 

evolution of potential antibacterial agents derived from metal-based compounds 

although the mechanisms of their action are still not well understood. Patra et al. 

(2012b) reviewed work that explored organometallic derivatization of existing drugs 

as an attractive approach to overcome the resistance issue. For instance, organo 

ruthenium derivatives of quinolones (topoisomerase II enzyme inhibitor which 

unwinds DNA and interferes with DNA replication) showed good activity and were 

proven to have direct interaction with double-stranded DNA (Turel et al., 2010, 

Chen et al., 2004). It is interesting to note that organometallic derivatives of 

platensimycin (bacterial fatty acid biosynthesis inhibitor) appeared to completely 

change the mechanism of action. The compound no longer inhibited FabF enzyme 

but exhibited multi-causal death effect (Patra et al., 2009; Patra et al., 2012a). The 

review also discussed metal-specific mode of action of potential metallodrugs 

derived from arsenic, silver and gold ions. In some cases, it has been shown that the 

activity of a metal-derivatized drug could be the sum of the activity of the original 

drug and the inherent toxicity of the metal ion (Patra et al., 2012b). In reviews by 
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Beraldo and Gambinob (2004), and Pelosi (2010) the significant bioactivities of 

Schiff base ligands derived from semicarbazones and thiosemicarbazones and their 

metal complexes were demonstrated.  Enhancement of activity upon complexation 

was shown to be related to changes in either lipophilicity or redox effects with 

possible mechanisms of action involving production of free radicals, metal complex 

DNA interaction or inhibition of metalloenzymes. In very recent years, modification 

of metallocenes with peptides has been shown to not only enhance activity but also 

to alter the specificity of the compounds towards either Gram-positive or Gram-

negative bacteria. (Metzler-Nolte, 2010; Chantson et al., 2005; Chantson et al., 

2006). This strategy was also utilized by Jean-Marie Pages, Isabelle Artaud and 

coworkers (Pagès et al., 2013) in preparing a multicomponent metal chelating group-

short antimicrobial peptide-fluorescent tag conjugate. The compound proved to be 

active against multi-drug resistant clinical isolates while the imaging investigation 

allowed determination of the localization and accumulation of the active compound 

inside bacteria (Pagès et al., 2013). Previously, the team had developed highly 

efficient inhibitors of bacterial metalloenzymes involved in the N-formyl-

methionine excision pathway of nascent polypeptides (Petit et al., 2009; Huguet et 

al., 2012; Mamelli et al., 2009). They adopted the strategy of delivering the drug 

inhibitor via a metal-chaperone (Alimi et al., 2012). Metallodrugs consist of two 

parts: the drug, usually a hydroxamic acid, and an ancillary ligand as shown in 

Figure 5.5 below. The mechanism of action involves dissociation of the 

metallodrugs inside the bacteria promoting the delivery of the drug to its target 

(Artaud et al., 2014).  
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Figure 5.5. Example of a metallodrug that consists of hydroxamic acid and an 
ancillary ligand (Alimi et al., 2012). 
 

All the examples above clearly demonstrate that there is a need to expand 

investigations in the field of metals in medicine and they attest to the significant role 

of metals in combating multi-drug resistance in bacteria to address the toxic effects 

of antimicrobial agents. Strategies used to search for effective drugs for a given 

target are of two types. The first involves a detailed knowledge of the target that 

allows the tailoring of suitable inhibitors whereas the second, a screening procedure, 

is applied when a compound is expected to show bioactivity but the target(s) against 

which it is effective is not known (Ferrari et al., 2002a). In this work, latter 

procedure was adopted. While much developmental effort has focused on the 

anticancer activity of dithiocarbazate Schiff bases and their metal complexes, study 

of the antimicrobial activity of these types of compounds has not been thoroughly 

explored. Therefore, a number of Cu(II) analogs were synthesized without specific 

molecular targets in view. The compounds were screened against a range of 

microbes with the intention of subsequently trying to correlate the biological 

activities with both solid and solution structures and their physico-chemical 

properties in order to orient further synthetic efforts towards obtaining the optimum 

geometry around the Cu ion essential to promote higher bioactivities and ultimately 

to reveal their mode of action. 
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5.2 Methodology  

5.2.1 Antimicrobial testing (MIC determination) 

5.2.1.1 Bacterial strains, culture media and chemicals 

The bacteria chosen for this study are listed in the Table 5.1 below. The 

microorganisms studied included reference (from the American Type Culture 

Collection) and clinical (Laboratory collection) strains of gram negative bacteria  E. 

coli, E. aerogenes, A. baumannii, K. pneumoniae, P. aeruginosa and Salmonella 

enterica (S. enterica) serotype Typhimurium as well as gram positive S. aureus. 

EA289 is an E. aerogenes KANS (sensitive to kanamycin, MDR isolate that exhibits 

active efflux of norfloxacin and efflux pump overproduction), EA298 constructed 

from EA289 is deleted of TolC (Pradel and Pagès, 2002). AG100 is an E. coli Wild 

Type (WT) and AG100A is its KANR (resistant to kanamycin) derivative, deleted of 

AcrAB and hypersensitive to chloramphenicol, tetracycline, ampicillin and nalidixic 

acid (Viveiros et al., 2005). Strains were grown at 37°C on Mueller-Hinton medium 

24 h prior to any assay. Mueller-Hinton broth (MHB) was used for the susceptibility 

test. Chemicals polymyxin!B nonapeptide (PMBN) were obtained from Sigma-

Aldrich and the culture medium was purchased from Becton Dickinson. 
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Table 5.1. Bacteria strains. 

KANR, resistance to kanamycin 
 

5.2.1.2 Determination of bacterial susceptibility 

The respective minimum inhibition concentration (MIC) of the sample against 

targeted bacteria were determined using the broth dilution method previously 

described (Mallea et al., 1998). Susceptibilities were determined in 96-wells 

microplates with an inoculum of 2!105 cfu in 200 µL of MHB containing two-fold 

serial dilutions of samples. MICs were determined in the presence of 5 % or 0.5% of 

DMSO. In the first case, a 20! concentration range of each compound was prepared 

in DMSO 100%. In the second case, a 200! concentration range of each compound 

was prepared in DMSO 100% and then diluted with H2O to obtain a 20! 

concentration range in DMSO 10%. Then 10 µl of these ranges were added to 190 

µl of inoculum. The MICs of samples were determined after 18 h incubation at 

37°C, following addition (50 !l) of 0.2 mg/mL iodonitrotetrazolium (INT) and 

incubation at 37°C for 30 minutes. MIC is defined as the lowest sample 

Bacteria 
strains Features References 
Escherichia coli 
AG100 Wild-type E. coli K-12 (Viveiros et al., 2005) 
AG100A AG100 %acrAB::KANR (Viveiros et al., 2005) 
Enterobacter aerogenes 
EA289 KAN sensitive derivative of EA27 (Pradel and Pagès, 2002)  
EA298 EA 289 tolC::KANR (Pradel and Pagès, 2002) 
Acinetobacter baumannii 
ATCC19606 Reference strain - 
Klebsiella pneumoniae 
ATCC12296 Reference strain - 
Pseudemonas aeruginosa 
PA 01 Reference strain - 
Salmonella enterica serotype Typhimurium 
SL696 Wild-type, metA22, trpB2, strAi20 (Plesiat and Nikaido, 1992) 
Staphylococcus aureus 
SA1199 Wild-type clinical, methicilin-

susceptible 
(Kaatz et al., 1987) 
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concentration that prevented the color change of the medium and exhibited complete 

inhibition of microbial growth. The range of samples concentration used for MIC 

determination is universally accepted to be in doubling dilution steps up and down 

from 1 mg/L as required (Andrews, 2001). Therefore, the sample dilution range was 

from 0-128 µM. Samples were tested alone or in the presence of PMBN at 51.2 

mg/L final concentration (1/5 of its direct MIC). All assays were performed in 

duplicate or triplicate. Ciprofloxafin was used as standard antibiobic reference. 

 

5.2.2  In vitro cytotoxicity testing  

The cell lines used for testing, MCF-7 (human breast cancer cells possessing nuclear 

esstrogen receptor) and MDA-MB-231 (human breast cancer cells without nuclear 

estrogen receptor) were obtained from the National Cancer Institute, U.S.A. Both 

cell lines were cultured in RPMI-1640 / DMEM (High glucose) (Sigma) medium 

supplemented with 10% fetal calf serum. The cells were plated into 96-well plate at 

cell density 6000 cells/well and incubated for 24 hours. After 24 hours, the media 

(5% serum) were discarded and cells rinsed with PBS solution. 200 µL of a series of 

concentrations (50.0, 25.0, 10.0, 5.0, 1.0 and 0.5 µM) for each sample prepared was 

added to each well. The 96-well plate was incubated for another 72 hr, after which 

the well plate was removed from incubator. Cytotoxicity was determined using the 

microtitration of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay (Sigma, USA) as reported by Mosmann (1983). 20 µL of MTT 

solution (5 mg/mL) was added to each well. The plate was wrapped with aluminium 

foil and incubated for 4 hours. After 4 hours, 200 µL of sample containing MTT 

solution was discarded from the well. 200 µL of DMSO was added to each well to 

dissolve the formazan crystals formed. The effect of the compound on cell line 
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viability was measured on an automated spectrophotometric plate reader (model 

MRX II microplate Elisa reader) at a test wavelength of 570 nm. Cytotoxicity was 

expressed as IC50, i.e. the concentration that reduced the absorbance of treated cells 

by 50% with reference to the control (untreated cells). The IC50 values were 

determined from the plotted absorbance data for the dose-response curves. Controls 

that contained only cells were included for each sample. Tamoxifen was used as the 

cytotoxic standard.  

 

5.3 Results and discussion 

The free Schiff bases and their Cu(II) complexes as well as their bioconjugates 

described in the previous chapters were tested in collaboration with Dr. Laure 

Maigre and Professor Jean-Marie Pagès of Facultés de Médecine (UMR-MD1), 

Université de la Méditerranée, Marseille, France for the compounds ability to inhibit 

the growth of nine strains of both gram-negative and gram-positive bacteria. The 

effects of membrane permeabilizing agent (PMBN) and efflux pumps were 

investigated in an attempt to link the activity of these compounds with the bacteria 

penetration and the detoxification mechanisms of bacteria. Such investigations 

constitute the pioneering effort with these dithiocarbazate derivatives. 

 

5.3.1 Antimicrobial evaluation 

5.3.1.1 Macroacyclic Cu(II) system with tetradentate NNSS ligands 

The initial synthesis and MIC evaluation involved tetradentate bis(dithiocarbazate) 

ligands and their respective Cu(II) complexes as shown in Table 5.2. As noted in 

previous chapters, a major drawback of these dithiocarbazate-Schiff bases is their 

poor solubility in aqueous solution. To ensure complete dissolution of the tested 
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compounds, up to 5% (v:v) of DMSO was used. Indeed, it is not ideal since DMSO 

could be toxic to bacteria at such a high concentration and/or could modify the 

membrane permeability (Yu and Quinn, 1994), thus affecting the apparent MIC 

values.  

 

DMSO effect 

It has been shown that solutions from 1% to 10% DMSO considerably affect the 

growth of fungi and cancerous cells, and with a 15% solution, growth of certain 

bacteria is effectively eliminated (Notman et al., 2006; Yu and Quinn, 1998; Ng et 

al., 2013). This is also the case for bacteria strains A. Baumannii and P. Aeroginosa 

at 5% of DMSO thus preventing the determination of the MIC under this condition. 

DMSO has also been reported to enhance permeability of the lipid membrane and 

also to cause the cell membrane to become less rigid facilitating membrane diffusion 

of exogenous species (Randhawa, 2006; Ghajar and Harmon, 1968; Anselet al., 

1969; Dolan et al., 2013). As shown below (Figure 5.6), in comparison to 5% 

DMSO, 0.5% DMSO would not significantly affect the growth of the bacteria as 

compared to 5% DMSO. Therefore, it is important to keep in mind that DMSO is 

not necessarily innocent.  
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(a) 

 

    

(b) 

 

Figure 5.6. Influence of DMSO on the growth of bacteria strains over time. (a) 

AG100 and (b) EA289 
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      Table 5.2. Antimicrobial activity of the tetradentate series. 
 

 
  

 Minimum inhibitory concentration (MIC)  (µM) 
Compound Gram- Gram+ 

 E. coli E. aerogenes A. 
baumannii K. pneumoniae P. 

aeruginosa S. enterica S. aureus 

 AG100WT 
AG100A 
acrAB- 

EA289 
 acrAB+ 

EA298 
 tolC- 

ATCC 
19606 

ATCC  
11296 PA01 SL696 SA1199 

% DMSO 0.5 5 0.5 5 0.5 5 0.5 5 0.5 0.5 5 0.5 0.5 5 0.5 5 

SMHD >128 >128 >128 >128 >128 128-64 >128-
128 >128 64 128 64 128-64 >128 >128 32 64-32 

+PMBN 32 32 16 16 >128-
128 64 128 32 16 64 32-16 16-8 64 32 32-16 64-32 

CuSMHD >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 

+PMBN >128 >128 >128 1-2 >128 >128 >128-
128 0.5-1 >128 >128 >128 >128 >128 >128 >128 >128 

SBHD >128 128 >128 128 >128 128-64 >128-
128 64 >128 >128 128 >128 >128 >128 >128 64-32 

+PMBN >128 64 128-32 32-16 >128-
128 64 >128-

64 16-4 128-64 128-64 32-16 64-32 >128 64 16 128 

CuSBHD >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 
+PMBN >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 
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Colour code: MIC values or average MIC values 6 64 µM = red, "10 µM = green, in between 64 µM and 10 µM = colourless.  MIC values 
higher than 64 µM indicate inactivity.  

SBPY >64 >64 >64 >64 >64 >64 >64 >64 >128 >128 >128 >128 >128 >128 128 128-64 

+PMBN 64 64 32 16 >64 64 32 4 >128-
128 >128 64 >128-128 64 64-32 128-64 128 

Cu(Ac)2 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 
+PMBN >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 >128 

Ciprofloxacin 0.03 0.06 0.008 0.015 64 64 32 32 2 0.25 - 0.5-0.25 0.03 - 1 - 
+PMBN 0.015 0.03 0.008 0.008 64 128 32 16 2 0.125 - - 0.03 - 1-0.5 - 
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Differences could be observed among the MIC values obtained with different 

concentrations of DMSO (0.5% or 5%) for certain molecules, particularly for 

CuSMHD against the mutated strains E. coli acrAB- and E. aerogenes TolC-. For 

this molecule, the MICs obtained with concentrations of DMSO, 2.5%, 1.5% and 

1% were all > 128 µM while with 5% DMSO, the MIC value was in the range 1-2 

and 0.5-1 µM, respectively. Because of the effect of DMSO on bacterial growth, it 

was not possible to confirm that the value truly reflects specific antimicrobial 

activity of the compound itself but it more likely corresponds to a synergetic effect 

of DMSO and the compound. The MIC values at 0.5% DMSO are more significant 

and will be discussed. However, in 0.5% DMSO, partial precipitation of the 

compounds could not be excluded which would lead to the determination of 

overestimated MIC values i.e. underestimation of the biological effect at the 

apparent concentration. 

 

Influence of membrane permeabilizing agent on bioactivity 

Since it has been reported that the low permeability of the outer membrane (Stratton, 

2003; Cloete, 2003; Tenover, 2006; Strøm et al., 2003; Zasloff, 2002; Pagès  and 

Amaral, 2009; Nikaido and Pagès, 2012) is a prime factor limiting intracellular 

activity of potential antimicrobial compounds, it is expected that the presence of a 

membrane permeabilizing agent would act synergistically with the compounds under 

study to promote their antimicrobial efficiency by facilitating increased uptake of the 

compounds. Among the permeabilizing agents, Polymyxin B nonapeptide (PMBN) 

has been used. PMBN is a cationic cyclic peptide derived from the antibacterial 

peptide polymyxin B (PMB). PMBN is an extremely poor antimicrobial agent but it 

is still capable of binding to lipid A of Gram-negative bacteria lipopolysaccharide 
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(LPS) like its parent compound, rendering the bacteria susceptible to various 

hydrophobic antibiotics. This capacity of PMBN to bind to bacteria with relatively 

high affinity and to permeabilize their outer membrane is often referred to as 

“sensitizing activity” and points to a novel therapeutic direction (Tsubery et al., 

2000 and Tsubery et al., 2001). The compounds were therefore tested in the 

presence and absence of sub-inhibitory concentrations of PMBN (used at 1/5 its 

direct MIC value). Without PMBN all compounds were inactive against the strains 

tested (MIC > 64 µM) except for the ligands SMHD and SBHD against S. aureus. 

However, a significant increase of up to 3-fold improvement of MIC values on both 

Gram-negative and Gram-positive bacteria was observed for the organic compounds 

SMHD, SBHD and SBDP in presence of PMBN. These results strongly suggest that 

the compounds, although toxic, do not penetrate the bacteria membrane efficiently. 

This lack of penetration hinders their intrinsic toxicity and leads to an apparent high 

MIC.  

 

Efflux of the compounds 

The role of efflux pumps was investigated using pump-deleted strains of Gram-

negative E. coli and E. aerogenes. SMHD also seems more active (16 µM) towards 

the isogenic derived strain, in which the efflux pump AcrAB genes are deleted as 

compared to wild-type E. coli (64 µM). No significant activity was observed for 

SMHD in the absence likewise in presence of efflux pump for E. aerogenes. SBPY 

show differences in the MDR clinical isolate EA289 overexpressing the AcrAB 

efflux pump and on its efflux negative TolC- derivative EA298 with improvement in 

MIC from >64 µM to 32 µM. These results confirmed that SBPY is recognized by 

the efflux pumps and expelled from the bacteria thus limiting their bioactivity. 



166 
 

Effect of the dithiocarbazate substituent  

Nevertheless, the ligand SMHD showed a broad range of moderate activity in the 

presence of PMBN with the most promising MIC values at or around 16 µM against 

E.Coli acrAB-, A. Baumannii, P. aeroginosa and S. aureus thus making it a potential 

candidate for improvement. It is known that the biological activity of dithiocarbazate 

compounds can be greatly modified in the presence of different substituents. For 

instance, inhibition of E. coli and S. aureus by the Schiff base prepared from 2-

benzoylpyridine with SMDTC is highly effective whereas that of the SBDTC 

compound shows no activity (Hossain et al., 1996).  

 

Differences in activity against gram-positive and gram-negative bacteria  

Apart from that, both SMHD and SBHD were moderately active against gram 

positive S. aureus. Typically, antibacterial molecules are more active toward Gram-

positive than Gram-negative bacteria (Lessa et al., 2012; Bolla et al., 2011), as the 

additional outer membrane of the latter organisms impairs or slow down the drug 

uptake, which could be the case here. 

 

Effect of complexation 

Contrary to what has been usually reported in the literature that metal complexation 

enhances the bioactivity of ligands (Nandi et al., 1984; Joseph et al., 2012), in this 

case, the formation of the copper complexes induces a loss of antibacterial potency 

of the compounds. Similar losses in activity were previously reported with Pd(II) 

and Pt(II) complexes with acetone Schiff bases (Ali et al., 2002). The observation 

for this tetradentate series of compounds can be explained by the lower solubility of 

the metal complexes or by the lower stability of the hydrazone moiety in the case of 
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the free ligands. As mentioned before (Chapter 3, p. 51), depending on the pH, the 

ligands can be hydrolyzed in aqueous solution leading to several reactive products 

that can be toxic towards bacteria. At this stage it is not possible to deduce a clear 

structure-activity relationship from the limited number of compounds tested. 

Nonetheless, the Cu series complexed with tetradentate ligands was found to show a 

wide range of activity from non-active to active. 

 

5.3.1.2 Open chain Cu(II) system with bidentate NS ligands with acid or ester 

functionality 

Efforts have been devoted to significantly improve the aqueous solubility of the 

above-mentioned compounds and to address the lack uptake of compounds due to 

low permeability of the outer membrane as well as the efficiency of efflux pumps. 

The synthesis was extended to another series based on Cu(II) complexes of bidentate 

ligands which are more soluble. 

 

Influence of membrane permeabilizing agent on bioactivity 

The bidentate ligands involved aliphatic ester, aliphatic acid or aromatic acid 

functionalities and were derived from both SMDTC and SBDTC. They were 

initially screened against a panel of four strains of bacteria with and without the 

presence of PMBN and the more promising compounds were further tested, in total 

nine strains of bacteria. These bidentate compounds were much more water soluble 

than their tetradentate counterparts and MIC studies could be performed with only 

0.5% of DMSO. It has been previously shown that this amount does not inhibit the 

growth of bacteria. The general observations of the results summarized in Table 5.3 

indicated that the bidentate series was more active than the tetradentate series in 
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0.5% DMSO. Upon introduction of PMBN, the impressive improvement in 

biological activity showed that these compounds also did not cross the cell 

membrane of Gram-negative bacteria efficiently. In the following discussion only 

results obtained in presence of PMBN will be discussed. 

 

Table 5.3. Antimicrobial activity of non-conjugated bidentate series. 

 

 

 

 
Minimum Inhibitory concentration (MIC) (µM) 

 
E. coli E. aerogenes 

Compound AG100 WT 
AG100A 
AcrAB- 

EA289 
AcrAB+ 

EA298 
TolC- 

SMML >128 >128 >128 >128 
+ PMBN 1/5 64 32 >128 128 - 64 
Cu(SMML)2 >128 128 >128 >128 
+ PMBN 1/5 64 16 >128-128 64 - 16 

SMLA >128 >128 >128 >128 
+ PMBN 1/5 64 32 >128 128 - 64 
Cu(SMLA)2 >64 >64 >64 >64 
+ PMBN 1/5 64 32 >64 32 

SBML >128 128 >128 >128- 128 
+ PMBN 1/5 16 16 >128-128 64 - 16 
Cu(SBML)2 >128 32-16 >128 >128 
+ PMBN 1/5 16 4 >128 4 

SBLA >128 128 >128 128 
+ PMBN 1/5 32 8 128 64 - 16 
Cu(SBLA)2 >128 >128 >128 >128 
+ PMBN 1/5 32-16 8-4 >128 8 

SBEL >128 >128 >128 >128 
+ PMBN 1/5 32 16 >128-128 128 - 16 

SM4CB >64 >64 >64 >64 
+ PMBN 1/5 >64 >64 - 32 >64 >64 
Cu(SM4CB)2 >64 >64 >64 >64 



169 
 

+ PMBN 1/5 64 32 >64 64 
SB4CB >64 >64 - 64 >64 >64 

+ PMBN 1/5 32 16 >64 16 
Cu(SB4CB)2 >64 >64 >64 >64 
+ PMBN 1/5 8 8 >64 8 - 4 

Colour code: MIC values or average MIC values 6 64 µM = red, "10 µM = 
green, in between 64 µM and 10 µM = colourless.  MIC values higher than 64 
µM indicate inactivity.  
 

Efflux of the compounds 

The influence of the efflux pump was verified by the improvement in MIC values 

against strains of E. coli and E. aerogenes lacking the selected efflux pump. Most 

compounds showed at least 2-fold increase in antimicrobial activity towards E. coli 

AcrAB- and E. aerogene TolC-. In contrast, only SBML, Cu(SB4CB)2 and SM4CB 

showed no difference in activity against pump-deleted strains with the first two 

compounds having similar MIC values against E. coli strains and the latter against E. 

aerogenes strains indicating that the compounds were not driven out by the pump. 

Therefore, the reduction in antimicrobial activity of most compounds tested, like 

many of the current antibiotics, can be also primarily attributed to the presence of 

efflux pumps 

 

Planarity of the ligands 

Another factor that could affect the bioactivity of the Schiff bases is their planarity. 

Investigations by Olczak et al. (2007) has suggested that planarity of the pyridin-2-yl 

or pyrazin-2-ylformamide thiosemicarbazone fragment could be a prerequisite for 

tuberculostatic activity.  The antimicrobial activity of the ligands SMML, SBML, 

SBEL and SBLA in which their crystal structures have been solved, can be arranged 

as SMML< SBEL< SBML< SBLA against all the 4 strains tested.  The more active 

SBLA also appeared to be most planar when considering the inclination angles 
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between (i) the allylic (=C(CH3)CH2CH2) and the terminal carbocyclic acid/ester (-

COOR) planes (ii)  the dithiocarbazate and the allylic planes, but appears to acquire 

greater perpendicularity of the benzyl ring towards the dithiocarbazate plane.  

 

Stability of the ligand 

The results demonstrated that the free ligand SB4CB with the aromatic acid 

substituent exhibited the lowest MIC values indicating a higher potency among the 

compounds in this series. This efficacy might be due to the presence of the aromatic 

ring that increases the stability of the compounds. It has been noted in the Chapter 3 

(p. 52) that the aliphatic Schiff bases (SMML, SMLA, SBML, SBLA and SBEL) 

were hydrolyzed when chromatographed by RP-HPLC with solvent system 

containing 0.1% TFA. On the other hand, the aromatic Schiff bases (SM4CB and 

SB4CB) were found to be stable when monitored by HPLC and UV-Vis 

spectroscopy under similar conditions. No hydrolysis was observed even after 24 

hours (18 hours is the duration required for MIC assay).  

 

Effect of complexation 

Many of the well known antibiotics like tetracyclines, quinolones and bleomycin are 

chelating agents and their actions are improved by the presence of metal ions, in 

particular copper ion (Ming, 2003; Efthimiadou et al., 2008). Thus, the synthesis and 

study of metal complexes with drugs used in clinical practice as well as promising 

ligands which may exhibit synergistic activity has attracted much attention as an 

approach to new drug development (Turel et al., 2010). Upon complexation with 

copper, most of the non-conjugated bidentate series compounds tested in this work 

showed equal or lower MIC values. The free copper (II) acetate was also screened 
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against all strains and was found inactive (MIC >128 !M). The lack of growth 

inhibition activity for copper (II) acetate confirmed that the observed growth 

inhibition within experimental threshold was not due to the intrinsic biological 

activity of copper (II) free metal (Ng et al., 2013). To compare the complexation 

effect independently from the efficiency of the ligands, the ratio of MIC of the free 

ligand to that of the Cu(II) complex (which had been multiplied by 2 due to the 

coordination of two ligands in a complex) was calculated for the series of molecules 

and for each strain. A ratio above one is taken to mean that the enhanced biological 

activity is the result of a synergistic effect afforded by the complexation (the activity 

is due not only to the ligand itself) whereas a ratio less than one implies that the 

complexation is deleterious. As shown in Figure 5.7, the beneficial effect of the 

complexation for the ligands highly depends on the bacteria strain.  

 

Figure 5.7. Effect of complexation on the non-conjugated bidentate series of 
molecules against the different strains of E. coli (AG100 T and AG100A acrAB-
)   and E. aerogenes (EA289 acrAB- and EA298 tolC-). The ratio MIC (free 
ligand) / MIC(complexed ligand) has been calculated with the MIC (in presence 
of PMBN) reported  according to the stoichiometry of the complex.  
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The complexation did not play a crucial role on the three first tested strains E. coli 

WT, E. coli acrAB- and E. aerogenes acrAB+ since majority of the MIC ratio values 

were 1. Only Cu(SB4CB)2, Cu(SBML)2 and Cu(SMLA)2 showed positive 

complexation effect towards E. coli WT, E. coli AcrAB- and E. aerogenes AcrAB+, 

respectively. Interestingly, the complexation improved the activity for most of 

compounds with the exception of Cu(SM4CB)2 against the efflux pump TolC 

deleted E. aerogenes strain whereas such an effect is not observed on the strain 

possessing the TolC pump. This also demonstrated that complexation effectively 

decreases the efflux of the active molecules in the TolC pump deleted strain. The 

observed efficiency of the metal complexes could be linked to the significant 

changes in the physico-chemical properties of the compounds upon chelation. For 

instance, the molecular weight is doubled, the spatial geometry varied and new 

redox properties appear since the compounds now involved a metal. Besides that, 

the polarity of the metal complex is reduced to a greater extent in comparison to its 

free ion because of the overlap of the ligand orbital and partial sharing of the 

positive charge of the metal ion with the donor groups. Furthermore, it increases the 

delocalization of ,-electrons over the whole chelate ring and enhances the 

lipophilicity of complexes in aqueous solutions, which may modify the interactions 

with cellular membranes (Raman, et al., 2003; Tiwari et al., 2012; Lobana et al., 

2009). The changes in the metal complexes may also be compatibility with the 

hydrophobic pocket in the target site of the bacteria which further strengthen the 

binding of the complexes to the microbe contributing to their enhanced activity 

(Ming, 2003; Efthimiadou et al., 2008).   
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Effect of the dithiocarbazate substituent 

There is also a general trend that the S-benzyl derived ligands and their metal 

complexes showed better activity than the S-methyl derivatives in this series. There 

have been mixed past reports on the bioactivity between SBDTC derivatives as 

compared to the SMDTC (Hossain, et al., 1996; Pavan et al., 2010). The stronger 

activity of S-benzyl derivatives could possibly be attributed to a higher cellular 

uptake due to an increased lipophilicity. In order to further access the structure-

activity relationship, the biological activities of the compounds were correlated with 

the electrochemical properties as well as their structures in both solid state (SCXRD) 

and solution (EPR). 

 

Redox potential of metal complexes 

The redox potentials for the two series were recorded by cyclic voltammetry in 

anhydrous DMF. The obvious differences between the two series were that Cu(II) 

complexes of the bidentate series revealed a quasi-reversible reduction wave for 

Cu(II)/Cu(I) couples with Epc ranging from -0.066 V to -0.114 V/(Ag/AgCl with  

Fc/Fc+ = 0.563  V) (Chapter 3, page 88-94). On the other hand, both CuSMHD and 

CuSBHD in the tetradentate ligands series underwent an electrochemically 

irreversible one-electron reduction at Epc = -0.328 and -0.285 V which were more 

negative than their bidentate counterparts. The more positive redox potential could 

be an explanation for the greater activity of the bidentate series. A higher redox 

potential means that Cu(II) reduction is easier, and consequently a higher content of 

Cu(I) could be continuously generated due to the reversibilty. Cu(I) is prone to 

participate in Fenton-type reactions that produce reactive oxygen species (ROS), 

which can damage biomolecules within cells (Jansson et al., 2010). Radical 
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generation has also been proposed as a mechanism of cytotoxicity of Cu(II) and 

Fe(III) thiosemicarbazone (Jansson et al., 2010). This certainly suggests that the role 

of the reduction of the Cu(II) complexes in the antimicrobial action of the 

compounds cannot be excluded. In both series, the redox potentials were higher in 

the case of the benzyl-substituted compound than in the case of the methyl, which 

could be explained by a weaker electron-donating effect of the benzyl group. Again, 

the complexes having the higher redox potential were found to be more active. This 

supports the suggestion that the easier reduction to Cu(I) may be responsible for the 

increased activity. 

 

Geometry of metal complexes 

As previously mentioned in Chapter 3 (page 25, 88), there are correlation among 

redox potential, geometry and biological activity. Because of the difference in 

geometric preferences for Cu(II) (Jahn-Teller distortion favors square planar 

geometry) and Cu(I) (as a d10 ion, there is no electronic preference for a particular 

geometry) (Rorabacher, 2004), it would be anticipated that compounds with more 

positive Cu(II)/Cu(I) reduction potential (which goes with Cu(I) being more stable) 

are the least planar. The enhanced flexibility of the bidentate series as compared to 

the tetradentate series may facilitate increased square planar distortion leading to 

incorporation of Cu(I) ion that prefer non-square planar geometries. The information 

with regard to the deviation from planarity in the solid state can be accessed from 

the crystal structures. The crystal structures were obtained for Cu(SMML)2, 

Cu(SMLA)2, CuSMHD and CuSBHD. The bond angles about the central copper 

metal were consistent with a distorted square planar geometry with the sum of the 

angles around Cu exceeds 360°. The bidentate series, Cu(SMML)2 and Cu(SMLA)2 
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(374.33° and 380.12°, respectively) displayed a more significant distortion than 

CuSMHD and CuSBHD (367.65° and 360.9° respectively). The angles between two 

N-Cu-S planes confirmed the deviation from planarity of the complexes in the order 

Cu(SMLA)2 > Cu(SMML)2 > CuSMHD > CuSBHD. The bidentate series with more 

positive Cu(II)/Cu(I) redox potentials also demonstrated higher antimicrobial 

activity than their more planar tetradentate counterparts although the difference in 

bioactivity between the compounds in the same series was less pronounced. The 

EPR spectra recorded in DMF for both series indicated distorted square planar 

geometry for most Cu(II) complexes. Referring to the empirical factor f (= g||/0||) 

(Joseph et al., 2012; Krishna et al., 2008) of the compounds shown in Chapter 3 (p. 

83), Cu(II) complexes with aliphatic acid and ester bidentate ligands (145-147 cm) 

confirm slightly higher degree of tetrahedral distortion than those with tetradentate 

ligands (141 and 143 cm) in solution. However, there are exceptions with 

Cu(SM4CB)2 and Cu(SB4CB)2 formed by the more active aromatic acid bidentate 

ligands. Both complexes revealed lower f values (128 and 121 cm, respectively) 

which are in the square planar range. 

  

At this stage, the growth inhibitory mechanism of action and molecular target for the 

compounds carried out in this work is unclear. Nonetheless, others mechanisms of 

action are possible. For example, square planar Cu(II) complexes have often been 

associated with their ability to interact with DNA, the central target for most 

therapeutic agents (Manikandamathavan, et al., 2013). One of the proposed 

mechanism for these complexes involved the reduction of the DNA-intercalated 

Cu(II) complexes by glutathione or ascorbate, and followed by reoxidation of Cu(I) 

with dioxygen or in the presence of hydrogen peroxide. This leads to the generation 
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of active radicals which cause oxidative stress with irreversible damage to DNA 

resulting in induction of apoptosis (Gilbert et al., 1999; da Silveira et al, 2008; 

Borrás et al., 2007). Different binding interactions that affect metabolic pathways or 

even equally critical cellular processes have also been observed for Cu(II) 

thiosemicarbazone analogues. Their anti-tumour activity has been attributed to either 

inhibition of the enzyme ribonucleotide reductase, topoisomerase IIa or more 

recently a multi-drug resistance protein (MDR1) (Bisceglie, et al., 2012; Ferrari, et 

al., 2004; Finch, et al., 2000; Kovala-Demertzi et al., 1999). Although these 

proposed mechanisms are ambiguous, results point towards structure and redox 

potential dependent antimicrobial efficacy of the dithiocarbazate compounds.  

 

5.3.1.3 Functionalized compounds 

Having identified the most promising ligand (SB4CB) and Cu(II) complex, 

Cu(SB4CB)2, the ligand was further functionalized with various vectors and the 

MIC values are shown in Table 5.4.  

Table 5.4. Antimicrobial activity of bioconjugate series. 

 

    

Minimum Inhibitory concentration (MIC) 
(µM) 

E. coli E. coli 

Compound 
AG100 

WT 
AG100A 
acrAB- 

EA289 
acrAB+ 

EA298 
tolC- 

PEGAC >128 >128 >128 >128 
+ PMBN 1/5 >128 >128 >128 >128 
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PEG-SB4CB >128 64 >128 >128 
+PMBN 1/5 16 8 >128 16 

Cu(PEG-SB4CB)2  >128 >128 >128 >128 
+ PMBN 1/5 16 4 >128 8-4 

PA%N-SB4CB  >128 >128 >128 >128 
+ PMBN 1/5 >128 >128 >128 >128 

Cu(PA%N-SB4CB)2  >128 >128 >128 >128 
+ PMBN 1/5 >128 >128 >128 >128 

R1AC >128 >128 >128 >128 
+ PMBN 1/5 >128 >128 >128 >128 
R1-SB4CB  >128 32 >128-128 128-64 
+PMBN 1/5 16 8 128 16 

Cu(R1-SB4CB)2  >128 64 >128 128-64 
+ PMBN 1/5 16-8 4 >128 8-4 

R4AC >128 >128 >128 >128 
+ PMBN 1/5 >128 >128 >128 >128 
R4-SB4CB  32 16-8 64 16 
+PMBN 1/5 16 4 64 8-4 

Cu(R4-SB4CB)2 16-8 8-4 >64-32 8 
+ PMBN 1/5 8 2 >64-64 4-2 

R9-Ac 8 8 8 8 
+ PMBN 1/5 4 4 8 8 
R9-SB4CB  8 8 8 4 
+PMBN 1/5 4 4 4 4 

Cu(R9-SB4CB)2  4 4 4 4 
+ PMBN 1/5 2 2 4 2 

RW9-Ac 2 2 8 - 4 2 
+ PMBN 1/5 2 2 4 2 
RW9-SB4CB 16 - 4 16 16 - 8 8 
+ PMBN 1/5 8 8 8 8 

Cu(RW9-SB4CB)2 8 - 4 8 - 4 16 - 8 8 - 4 
+ PMBN 1/5 8 4 8 8 

Colour code: MIC values or average MIC values 6 64 µM = red, "10 µM = 
green, in between 64 µM and 10 µM = colourless.  MIC values higher than 64 
µM indicate inactivity.  

 

Influence of membrane permeabilizing agent on bioactivity 

The antimicrobial activity and water solubility of this series were observed to be 

improved with conjugation in comparison to the parent compounds with the 

exception of PA%N conjugates. The PEG and R1 conjugates demonstrated 

significant improved activity only upon introduction of PMBN. This indicates that 

the addition of a neutral PEG and a positive charge from R1 were not sufficient for 
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uptake across the cell membrane of the bacteria. In contrast, it is positive to 

highlight that R4, R9 and RW9 conjugates were already active without the presence 

of PMBN. The increase in the cationic nature of the polyarginine derivatives allows 

better interaction and subsequently permeability across the negatively charged 

bacteria membrane as anticipated. Therefore, the MIC values obtained for these 

compounds either showed no difference or improved only 2-fold with the presence 

of PMBN. The slightly better activity in some cases of the polyarginine derivatives 

with PMBN point out that conjugation has yet to bring about optimum uptakes and 

the improved MIC values may be a result of synergistic effect between PMBN and 

conjugated ligands. Nonetheless, polyarginine conjugates appeared to be most 

efficient in crossing the cell membrane compared to the unconjugated compounds 

and other vectors.  

 

Efflux of the compounds 

The PEG, R1 and R4 conjugates also showed at least 2-fold increase in MIC values 

against pump deleted strains E. coli AcrAB- and E. aerogene TolC-. However, for 

R9 and RW9 derivatives, the MIC values remained the same with or without the 

presence of efflux pump. This is another encouraging observation that conjugation 

to CPP R9 and RW9 is beneficial as they are not affected by the efflux pumps. The 

PA%N conjugate was inactive against all strains tested. This conjugate was initially 

designed to assess the effect of efflux pump as well as to reveal any synergistic 

effect of the conjugate with possible new mechanism of action. However, the lack of 

activity reported with regards to this conjugate certainly demised the potential for 

positive synergistic effect.  
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Influence of arginine chain lengths on bioactivity 

In addition to the noticeable trend with PMBN and efflux pumps, there is also 

correlation of higher bacterial growth inhibition potency with arginine chain lengths. 

The improvement of the MIC values averaged against all four strains upon 

conjugation of SB4CB to polyarginine is in the following order: R9-SB4CB > RW9-

SB4CB> R4-SB4CB > R1-SB4CB > SB4CB. In order to identify the contribution of 

each moiety in the conjugates, acetylated free peptides and PEG were tested as well. 

The acetylated vectors PEGAC, R1AC and R4AC were totally inactive with MIC 

>128 µM. The improved activity observed for the conjugates of these three vectors 

could have benefited from the better water solubility, permeability and cell uptakes 

of the conjugates. In contrast, RW9AC proved to be highly active against all the 

strains while R9AC also showed activity against them. As previously mentioned 

(Chapter 5, p. 149), CPPs and antimicrobial peptides are known to show similar 

characteristics, in particular amphiphilicity, which is a crucial factor determining the 

antibacterial activity of peptides. This seems to be the case for the CPP RW9. 

Noting the antimicrobial activity of the acetylated R9AC and RW9AC, these two 

vectors could have contributed their activity to the improved MIC values as 

demonstrated by the conjugates.   

 

Effect of complexation 

According to the Figure 5.8, most of the bioconjugated Cu(II) complexes showed 

equal or lower MIC values compared to the ligands indicating that complexation 

with Cu(II) did not contribute significantly to the observed activity of the ligands. 

The conjugates also showed resemblance to the parent compound in which 

complexation improved the efficiency against E. aerogenes TolC- strain as 



180 
 

demonstrated by the compounds Cu(PEG-SB4CB)2 and Cu(R1-SB4CB)2. On the 

other hand, both compounds showed deleterious ligands effect against E. coli WT.  

 

 
 

Figure 5.8. Effect of complexation on the conjugated bidentate series of 
molecules against the different strains of E. coli (AG100 T and AG100A acrAB-
)   and E. aerogenes (EA289 acrAB- and EA298 tolC-) 
 

Final antimicrobial evaluation against 9 strains of bacteria  

Despite the MIC ratio values, R9 and RW9 conjugates proved to be most potent 

derivatives that could escape from the efflux pump and penetrate cell membrane 

with good aqueous solubility. It therefore worthwhile to further explore their 

antimicrobial activity by extending the MIC determination to another five strains of 

bacteria for the conjugates, the acetylated vectors as well as the parent compounds 

for comparison (Table 5.5). The parent compounds SB4CB and Cu(SB4CB)2 were 

most active against gram positive bacteria S. aureus even without the presence of 

PMBN and both compounds also showed a wide spectrum of activity against the 

other gram negative strains in the presence of PMBN.  
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  Minimum inhibitory concentration (MIC)  (µM) 
Compound Gram- Gram+ 

 E. coli E. aerogenes A. 
baumannii 

K. 
pneumoniae 

P. 
aeruginosa S. enterica S. aureus 

 AG100WT 
AG100A 
acrAB- 

EA289 
acrAB+ 

EA298 
tolC- 

ATCC 
19606 

ATCC 
11296 PA01 SL696 SA1199 

SB4CB >64 >64 - 64 >64 >64 128 >128 >128 >128 16 
+ PMBN 1/5 32 16 >64 16 32 32 32 32 8 
Cu(SB4CB)2 >64 >64 >64 >64 >128 >128 >128 >128 8 - 4 
+ PMBN 1/5 8 8 >64 8 - 4 32 >128 64 64 8 

SM4CB >64 >64 >64 >64 >128 >128 >128 >128 64 - 32 
+ PMBN 1/5 >64 >64 - 32 >64 >64 64 128 32 >128 64 
Cu(SM4CB)2 >64 >64 >64 >64 >128 >128 >128 >128 16 
+ PMBN 1/5 64 32 >64 64 >128 >128 128 >128 32 

R9-Ac 8 8 8 8 >128 16 >128 64 - 16 >128 
+ PMBN 1/5 4 4 8 8 >128 16 >128 8 - 4 64 - 32 
R9-SB4CB 8 8 8 4 32 32 128 - 64 16 4 

+ PMBN 1/5 4 4 4 4 32 16 128 8 4 
Cu(R9-SB4CB)2 4 4 4 4 64 32 32 8 2 

+ PMBN 1/5 2 2 4 2 64 16 32 4 1 
R9-SM4CB 8 8 16 - 8 16 - 8 64 32 - 16 128 16 8 
+ PMBN 1/5 4 4 8 8 32 16 - 8 >128 4 2 

Cu(R9-SM4CB)2 8 - 4 4 8 4 64 16 64 8 8 - 4 
+ PMBN 1/5 4 2 4 4 64 8 128 4 - 2 1 - 0.5 

Table 5.5. Final antimicrobial evaluation against 9 strains of bacteria  
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Colour code: MIC values or average MIC values 6 64 µM = red, "10 µM = green, in between 64 µM and 10 µM = colourless.  MIC values 
higher than 64 µM indicate inactivity.  

RW9-Ac 2 2 8 - 4 2 64 - 32 16 - 8 64 - 32 4 - 2 4 
+ PMBN 1/5 2 2 4 2 128 - 64 8 4 - 2 1 2 
RW9-SB4CB 16 - 4 16 16 - 8 8 32 32 16 8 4 
+ PMBN 1/5 8 8 8 8 32 >16 8 4 2 

Cu(RW9-
SB4CB)2 8 - 4 8 - 4 16 - 8 8 - 4 64 - 32 32 16 8 4 - 2 

+ PMBN 1/5 8 4 8 8 32 >16 8 4 1 
RW9-SM4CB 8 - 2 8 - 4 8 - 4 4 8 16 - 8 16 4 - 2 2 - 1 
+ PMBN 1/5 8 4 8 8 16 16 16 - 8 2 - 1 1 

Cu(RW9-
SM4CB)2 2 8 - 4 8 4 16 - 8 16 - 8 16 2 - 1 1 

+ PMBN 1/5 4 2 4 4 16 16 8 1 1 - 0.5 
Ciprofloxacine 0.03 0.008 64 32 2 0.25 0.5- 0.25 0.03 1 
+ PMBN 1/5 0.015 0.008 64  32 2 0.125  -  0.03 1 - 0.5 
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It is likely that the complexes were more active against the Gram-positive bacteria 

due to the ease of penetration through the cell wall as compared to the Gram-

negative bacteria. It should be noted that SM4CB, the less active S-methyl analogue 

of SB4CB ligand was also functionalized with R9 and RW9 in order to better 

understand the conjugation effect. This led to further positive results including the 

synthesis of a new compound, R9-SM4CB that was active against most of the 

bacteria. It is particularly interesting to note the construct of active R9-SM4CB 

against S. aureus with MIC values of 8 µM (without the presence of PMBN) from 

R9AC (MIC >128 µM) and SM4CB (MIC= 64 µM), both of which were inactive 

under identical conditions. Comparing the efficacy of the compounds against the 

different strains of bacteria, the MIC values of the ligands conjugates were 

considerably better as compared to the parent compounds. Upon conjugation, the 

functionalized compounds exhibited improved antimicrobial activity with MIC 

values in the micromolar concentration range, as low as 1-0.5 µM.  However, in 

comparison with the R9 and RW9 acetylated free peptides, the improvement in MIC 

values of the conjugates were less striking although there were some exceptions that 

will be discussed herein. RW9AC proved to be active against E. coli, E. aerogenes, 

K. pneumoniae, S. enterica and S. aureus but less active against A. baumannii and P. 

aeruginosa. While R9AC also showed activity against some of the bacteria strains, it 

was completely inactive against A. baumannii, P. aeruginosa and S. aureus. 

Conjugation to R9 did not essentially change the antibacterial activity of R9 against 

gram-negative bacteria E. coli, E. aerogenes ArcAB+, K. pneumoniae, P. 

aeruginosa and S. enterica. The no improvement observation could mean that the 

activity is only due to the peptide and not to the parent compound. The RW9 

conjugates showed either similar or increased MIC values as compared to acetylated 
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RW9 when evaluated against E. coli, E. aerogenes, K. pneumoniae and S. enterica. 

The conjugation of Schiff base with RW9 apparently compromises the antimicrobial 

activity of RW9 although the compounds were still active with respect to the 

bacteria mentioned previously. Notwithstanding this, R9 conjugates displayed 2 to 

4- fold of enhancement in activity against A. baumannii from inactive R9AC 

(MIC>128 µM) to moderately active (MIC 32 and 64 µM for R9-SB4CB and R9-

SM4CBCB, respectively). Likewise, RW9-SM4CB (MIC 8 µM) also showed 

improvement from RW9AC with the same strain. The highlight of the MIC results 

was definitely the high activity against the Gram-positive S. aureus in which R9-

SB4CB, R9-SM4CB and RW9-SM4CB all showed better MIC values than their 

parent ligands as well as their respective acetylated free peptides. In addition, the 

MIC values of the conjugates were even more effective than ciprofloxacine against 

the E. aerogenes strains and also showed comparable MIC values with the standard 

drug towards S. aureus.  

 

Since the parents compounds already showed activity without the introduction of 

PMBN against S. aureus and also PMNB does not significantly improve the MIC 

values of R9 and RW9 conjugates, the complexation effect will be discussed using 

MIC values ratio with and without PMBN as shown in Figure 5.9 and 5.10. Among 

the conjugates, only Cu(R9-SM4CB)2, Cu(RW9-SB4CB)2 and Cu(RW9-SM4CB)2 

showed positive synergistic complexation effect against P. aeruginosa, E. coli 

AcrAB- and E. coli WT  respectively, without the presence of PMBN. In the 

presence of PMBN, the efficacy of complexation effect towards S. aureus was 

evident from the MIC ratio values of 2 and 1.33 for Cu(R9-SB4CB)2 and Cu(R9-

SM4CB)2, respectively.  It was also apparent that complexation exacerbates the 
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ligand effect of RW9 derivatives with the most ratios less than 1 as observed in both 

graphs. However, the complexation effect was more favourable towards R9 

derivatives as shown by Cu(R9-SB4CB)2 with ratio of 2 against  P. aeruginosa and 

S. aureus and Cu(R9-SM4CB)2 with  ratio of 1.33 against S. aureus in the presence 

of PMBN.  

 

 

Figure 5.9. Effect of complexation on Cu(SB4CB)2, Cu(SM4CB)2 Cu(R9-
SB4CB)2, Cu(RW9-SB4CB)2, Cu(R9-SM4CB)2, Cu(RW9-SM4CB)2 against the 
different strains without the presence of PMBN. 
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Figure 5.10. Effect of complexation on Cu(SB4CB)2, Cu(SM4CB)2 Cu(R9-
SB4CB)2, Cu(RW9-SB4CB)2, Cu(R9-SM4CB)2, Cu(RW9-SM4CB)2 against the 
different strains in the presence of PMBN. 
 

The EPR spectra for all of the Cu(II) bioconjugates were recorded and the redox 

potentials for Cu(R1-SB4CB)2, Cu(PEG-SB4CB)2 and Cu(PA%NSB)2 were also 

evaluated (Chapter 4, p. 142). A general observation demonstrated that the EPR 

properties of the bioconjugates were similar to their parent compounds adopting a 

square planar geometry in solution. From the electrochemistry investigation, the 

Cu(II) bioconjugates showed a non-reversible negative shift of the redox couple 

Cu(II)/Cu(I) potential in the range -0.083 to -0.098 V as compared to Cu(SB4CB)2 at 

-0.072 V. The loss of reversibility observed herein does not compromise the 

bioactivity of the compounds Cu(R1-SB4CB)2 and Cu(PEG-SB4CB)2, instead the 

bioconjugates derivatives showed enhanced antimicrobial efficacy. This could 

suggest a difference type of mechanism for the bioconjugates.  
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5.3.2 Cytotoxicity 

In view of the well known cytotoxic activity of sulfur–nitrogen Schiff base chelating 

agents and their metal complexes and also to judge their utility for further 

development as anticancer agents, selected compounds were tested for their 

cytotoxicity against two breast cancer cell lines MDA-MB-231 (human breast 

carcinoma cells not expressing nuclear estrogen receptors, ER-) and MCF-7 (human 

breast carcinoma cells expressing nuclear estrogen receptors, ER+). Measurement of 

the cytotoxicity was carried out using MTT assay (Mosmann, 1983) based on the 

metabolic reduction of tetrazolium salt to form water insoluble formazan crystals 

with tamoxifen as standard. DMSO was used as negative control in the assay and the 

final content of DMSO for each compound tested was 0.5% or less. The 

concentration required to reduce growth of cancer cells by 50% (IC50) are shown in 

Table 5.6 for both tetradentate series and bidentate NS series derived from 3-

acetylcoumarin.  

Table 5.6. Cytotoxic assay results.  

 IC50 (!M) 
 MCF7 MDA-MB231 

Tetradentate series 
SMHD 138.90  9.61 
SBHD 9.69 1.05 
CuSMHD 2.60 2.34 
CuSBHD 1.49 0.71 
Bidentate series 
SBCM inactive inactive 
Re2(SBCM)2 19.41 8.61 
Zn(SBCM)2 inactive inactive 
Cu(SBCM)2 5.97 8.31 
Tamoxifen  11.20 13.40 
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For the tetradentate series, it interesting to note that the structure-activity 

relationship observed in the antibacterial tests differed from their cytotoxicity. Both 

ligands displayed at least 9-fold better toxicity towards the MDA-MB231 cell line 

that does not express estrogen nuclear receptors, indicating that ligand toxicity is not 

only mediated by these receptors. The more lipophilic SBHD exhibits a stronger 

toxicity in comparison to SMHD (Pavan et al., 2010). Complexation of Schiff base 

ligands with metal ions has been found to produce synergistic effects on the 

antiproliferative activities of the parent ligands since the complexes showed a 

marked cytotoxicity with IC50 values < 5.0 µM towards both cell lines. Again the 

bioactivity of the complexes does not involve estrogen receptors because they are 

more active on MDA-MB231 cells. On both cell lines, the benzyl substituted 

complex CuSBHD showed slightly better IC50 values. The stronger activity of 

CuSBHD could possibly be attributed to a higher cellular uptake due to an increased 

lipophilicity. Likewise, the 3-acetylcoumarin derived bidentate series also 

highlighted that complexation played a significant role in improving the bioactivity 

of the compound. The ligand SBCM was found to be inactive towards both MCF-7 

and MDA-MB231 cell lines. However, complexation of the Schiff base ligand with 

Cu(II) and Re(I) with the exception of Zn(II) showed marked cytotoxicity with IC50 

values < 10 !M. Re2(SBCM)2 displayed better selectivity towards MDA-MB231 

whereas Cu(SBCM)2 was more potent against MCF7. All the Cu(II) complexes were 

most potent in both series and have lower IC50 values in comparison to standard 

tamoxifen making them potential anticancer agents for consideration. The difference 

in selectivity observed between the Cu(II) complexes of bidentate (MCF7) and 

tetradentate (MDA-MB231) series may result from their differences in ligand 

substituents, physico-chemical and redox potential.  The bioactive Re2(SBCM)2 with 
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the presence of tricarbonyl core may also offer novel exploratory derivatives for 

future investigations in the treatment of cancer as novel pharmaceutical as well as 

potential probe for sub-cell imaging. While the mechanism of action against breast 

cancer cell lines for dithiocarbazate compounds has yet to be definitively determined 

but an in vitro study by Cheah (2007) and Awidat (2005) on some dithiocarbazato 

compounds suggested that they induce apotopsis by DNA fragmentation and 

suppression of the expression of certain oncogenes. Previously mentioned 

mechanisms in the antimicrobial section i.e. inhibition of the enzyme ribonucleotide 

reductase, topoisomerase IIa or multi-drug resistance protein as well as production 

of ROS have also been linked to their anti-cancer activity. 

 

5.4 Conclusion 

It was demonstrated that the bidentate Schiff base (SB4CB) and its Cu(II) complex 

Cu(SB4CB)2 with aromatic acid functionality possess the most remarkable 

antibacterial effect against a wide spectrum of bacteria. The pioneering conjugation 

strategy investigated in this work demonstrated the utility of the combination of 

functionalized dithiocarbazate derivatives with vectors (CPPs) to generate 

bioconjugates with enhanced antimicrobial activity, membrane permeability and 

water solubility. The results highlighted various trends and factors that govern 

antimicrobial activities of the tested compounds. It was clearly evident that 

antimicrobial activities of the compounds are strongly dependent on their 

substitutents. Introduction of the carboxylic acid moiety and SBDTC increases the 

antimicrobial activity within the bidentate series. The complexation with copper has 

a synergetic effect on the antimicrobial activity of these compounds. The increased 

activity of the complexes could be associated with their increased lipophilicity, 
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better fitness and size of the molecules towards binding sites as well as various 

geometrical arrangements including square planar and distorted forms inducing a 

tuning in redox potential. The observed cyclic voltammetric behaviour of bidentate 

copper(II) complexes showed a Cu(II)/Cu(I) redox quasi-reversibility and a positive 

shift as compared to the tetradentate series which may also contribute to their 

toxicity. In addition, the biological activity depends on factors such as the bacteria 

strain and the vectors used for bioconjugation. A deep understanding of the structure 

and activity of metal complexes against microorganisms is invaluable toward future 

development of antibiotic agents.  The antimicrobial activity of the compounds can 

be summarized as follows:  

 

Tetradentate series (S-benzyl derivatives<S-methyl derivatives, Cu (II) 

complexes<Ligands) <Bidentate series (Aliphatic<Aromatic, S-methyl 

derivatives<S-benzyl derivatives, Ligands<Cu (II) complexes) <Peptide conjugate 

series (PA%N<PEG<R1<R4<RW9/R9)< their Cu (II) complexes (MIC * 1-0.5 µ M) 

 

All the selected Cu(II) complexes assayed against breast cancer cells lines (MCF-7 

and MDA-MB-231) exhibited good cytotoxicity with lower IC50 values (0.71-8.31 

µM)  in comparison to their respective ligands and standard drug tamoxifen. This 

highlights the relevance of metal complexation strategy to stabilize the ligands and 

improve their bioactivity.  
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 

In conclusion, a total of 43 compounds were synthesized and characterized in this 

work. These compounds comprised of 10 Schiff base ligands derived from either 

SMDTC or SBDTC, 8 ligand-peptides/PEG conjugates, 5 acetylated peptides/PEG 

and 19 metal complexes. Single crystal structures were solved for 11 compounds. 

Only SMHD and SBHD were NNSS tetradentate ligands while the others behaved 

as bidentate NS ligands coordinating to the central metal through the azomethine 

nitrogen atom and the thiolate sulphur atom in their respective complexes. The 

antimicrobial activity of the compounds showed improvement going from 

macroacyclic tetradentate series to open chain bidentate series and finally the 

bioconjugates series. This work also allows new insight into the relationship 

between the structural/electrochemical properties and biological activity of the 

compounds. The bidentate series demonstrated higher antimicrobial activity than 

their more planar tetradentate counterparts as in the solid state, the crystal structures 

of Cu(SMML)2 and Cu(SMLA)2  from the bidentate series displayed a more 

significant distortion from square planar than CuSMHD and CuSBHD of the 

macroacyclic tetradentate series. EPR data also support the slightly greater distortion 

of the bidentate series in comparison to the tetradentate series in solution with the 

exception of Cu(SB4CB)2 and Cu(SM4CB)2 that fall in the square planar range. 

Both series also differed in their electrochemical properties in which bidentate series 

showed Cu(II)/Cu(I) quasi reversibility at more positive potential whereas 

tetradentate series was not reversible. The Cu(II) R9 derivatives of SB4CB and 

SM4CB possess the most remarkable antibacterial effect against a wide spectrum of 
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bacteria. In addition, these R9-conjugates managed to address drawbacks that are 

often associated with most metal complexes involving the issues of poor water 

solubility and lack of uptake of the compounds due to low permeability of the outer 

membrane as well as the efficiency of bacteria efflux pump. The successful 

conjugation and facile complexation with copper for Schiff bases SB4CB and 

SM4CB offer exciting potential for them to be further optimized with different 

vectors in the future. The selected Cu(II) compound assayed against breast cancer 

cells also exhibited good cytotoxicity. The fact that the Cu (II) complexes are more 

efficient than the ligands is appealing. Taking into account, the serious side effects 

and upcoming resistance of clinical reference drugs, these new compounds are 

useful lead candidates for the development of novel therapeutic agents to treat 

bacterial infections and cancer.  

 

Hitherto, the mechanism of action of the compounds has yet to be verified. 

Therefore, efforts to determine the concentration and location of the compounds 

inside cells will be the next crucial step for intracellular understanding. This is 

important in order to increases the compounds chances of succeeding in in vivo 

assay, clinical trials and ultimately to be used as therapeutic drugs.  Attaching the 

lead compound to a probe or fluorescence moiety would allow cell imaging 

experiments to be carried out. Parallel studies involving the recognition of 

biomolecules as specific targets such DNA binding and cleavage, protein or enzyme 

inhibitors as well as depolarization 3,3$-Dipropylthiadicarbocyanine iodide 

(DiSC3(5)) or ortho-nitrophenyl-%-D-galactopyranoside (OPNG) membrane 

permeabilization assay (for bacteria) are also essential in order shed light on the 

mode of action of these compounds under biological conditions. It is also expected 
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that the application of computational analysis like docking will facilitate a deeper 

understanding of the molecular interaction. In addition, Density Functional Theory 

(DFT) and Quantitative Structure-Activity Relationship (QSAR) studies will enable 

elucidation of key structural and chemical parameters required to develop potent 

compounds. The data compilation will be beneficial in the long run as the 

information may allow utilization of virtual high throughput screening (HTS) 

approach to prescreen lead dithiocarbazate compounds in silico for diseases prior to 

synthesis or bioactivity assay validation. This approach would be an excellent 

strategy in both time- and cost-effective manner as compared to the carpet bombing 

strategy.  
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APPENDICES 

Molecular structures of all compounds synthesized and characterized in this work. 

(a) Macroacyclic Cu(II) system with  tetradentate NNSS ligands. 

 

(b) Open chain Cu(II) system with bidentate NS ligands with acid or ester 
functionality. 
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(c) Open chain metal system with bidentate NS ligands with natural ketone 
moiety. 

 
(d) Acetylated vectors. 
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(e) Functionalized compounds. 
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A. NMR spectra 

 

Figure A1.  1H NMR spectrum of SBHD 
 
 

 
Figure A2.  13C NMR spectrum of SBHD 
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Figure A3.  1H NMR spectrum of SMHD 
 
 

 
Figure A4.  13C NMR spectrum of SMHD 
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Figure A5.  1H NMR spectrum of SBPY 
 

 
Figure A6.  13C NMR spectrum of SBPY 
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Figure A7.  1H NMR spectrum of SMLA 

 
 

 
Figure A8.  13C NMR spectrum of SMLA 
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Figure A9.  1H NMR spectrum of SBML 

 
 

 
Figure A10.  13C NMR spectrum of SBML 
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Figure A11.  1H NMR spectrum of SBLA 

 
 

 
Figure A12.  13C NMR spectrum of SBLA 
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Figure A13.  1H NMR spectrum of SBEL 

 
 

 
Figure A14.  13C NMR spectrum of SBEL 
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Figure A15.  1H NMR spectrum of SM4CB 
 

 

 
Figure A16.  13C NMR spectrum of SM4CB 
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Figure A17.  1H NMR spectrum of SBCM 
 

 
Figure A18.  1H NMR spectrum of Zn(SBCM)2 
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Figure A19. 1H NMR spectrum of Re2(SBCM)2 
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Figure A20.  1H NMR spectrum of PEG-SB4CB 
 

 

 
Figure A21.  13C NMR spectrum of PEG-SB4CB 
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Figure A22.  1H NMR spectrum of PEGAC 
 

 

 
Figure A23.  13C NMR spectrum of PEGAC 
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Figure A24.  1H NMR spectrum of R1AC 

 
 

 
Figure A25.  13C NMR spectrum of R1AC 
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Figure A26.  1H NMR spectrum of R4-SB4CB 

 
 

 
Figure A27.  1H NMR spectrum of R4-AC 
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Figure A28.  1H NMR spectrum of R9-SB4CB 
 

 

 
Figure A29.  1H NMR spectrum of R9-SM4CB 
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Figure A30.  1H NMR spectrum of R9AC 

 
 

 
Figure A31.  1H NMR spectrum of RW9-SB4CB 
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Figure A32.  1H NMR spectrum of RW9-SM4CB 
 

 

 
 Figure A33.  1H NMR spectrum of RW9AC 
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Figure A34.  1H NMR spectrum of PA"N-SB4CB 
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B. Mass Spectra 

 
Figure B1.  ESI-MS spectrum of CuSBHD 
 
 

 
Figure B2.  ESI-MS spectrum of CuSMHD 
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Figure B3.  ESI-MS spectrum of SBPY 
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Error = 0.8 ppm 
Figure B4.  HR-MS spectrum of SMML 
 
 

 
Error = 0.5 ppm 
Figure B5.  HR-MS spectrum of SMLA 
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Error = 0.4 ppm 
Figure B6.  HR-MS spectrum of SM4CB 
 
 

 
Error = 0.5 ppm 
Figure B7.  HR-MS spectrum of SBML 
 

C:\Analyses\TestAuto\A13-0329 20/03/2013 11:32:50 May Lee Low SM4CB
12/03

254.0 254.5 255.0 255.5 256.0 256.5 257.0 257.5
m/z

0

10

20

30

40

50

60

70

80

90

100
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
Ab

un
da

nc
e

255.15668
255.02574

256.15980 257.02127255.35425 256.47421254.93225 257.74748254.20942253.75033 255.87546
255.02565

256.02821 257.02150

NL:
1.30E6
A13-0329#9-24  RT: 
0.22-0.62  AV: 16 T: FTMS + 
p ESI Full ms 
[110.00-1200.00] 

NL:
9.37E4
C 10 H10 N2 O2 S 2 H: 
C 10 H11 N2 O2 S 2
p (gss, s /p:8) Chrg 1
R: 60000 Res .Pwr . @FWHM

\\tsclient\F\...\A12-0848 6/1/2012 8:40:30 PM May lee Low SBML
24/05

328 330 332 334 336 338
m/z

0

10

20

30

40

50

60

70

80

90

100
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
A

bu
nd

an
ce

333.07019

334.07355
335.06599

336.06934
333.07034

334.07324
335.06595

338.02006332.45402 336.85273

NL:
7.64E5
C 14 H 18 O 2 N 2 Na S 2: 
C 14 H 18 O 2 N 2 Na 1 S 2
pa Chrg 1

NL:
3.62E7
A12-0848#9-24  RT: 
0.20-0.61  AV: 16 T: 
FTMS + p ESI Full ms 
[110.00-1200.00] 



249 
 

 
Error = 0.5 ppm 
Figure B8.  HR-MS spectrum of SBEL 
 
 

 

 
Error = 0.5 ppm 
Figure B9.  HR-MS spectrum of SBLA 
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Error = 0.2 ppm 
Figure B10.  HR-MS spectrum of SB4CB 
 
 

 
 
Figure B11.  ESI-MS spectrum of Cu(SMML)2 
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Figure B12.  ESI-MS spectrum of Cu(SMLA)2 
 

 
Figure B13.  ESI-MS spectrum of Cu(SM4CB)2 
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Figure B14.  ESI-MS spectrum of Cu(SBML)2 
 

 

 
Figure B15.  ESI-MS spectrum of Cu(SBLA)2 
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Figure B16.  ESI-MS spectrum of Cu(SB4CB)2 
 
 
 

 
Error = 1.0 ppm 
Figure B17.  HR-MS spectrum of SBCM 
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Figure B18.  ESI-MS spectrum of Cu(SBCM)2 
 
 
 
 

 
Figure B19.  ESI-MS spectrum of Zn(SBCM)2 
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Figure B20.  ESI-MS spectrum of Re2(SBCM)2 
 
 

 
Error = 0.3 ppm 
Figure B21.  HR-MS spectrum of PEG-SB4CB 
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Error = 0.4 ppm 
Figure B22.  HR-MS spectrum of PEGAC 
 

 
Error = 0.3 ppm 
Figure B23.  HR-MS spectrum of R1AC 
 

C:\Xcalibur\data\Analyses\A14-0229 3/12/2014 12:28:14 PM MAY LEE LOW PEGAC
25/02

223 224 225 226 227 228 229 230 231 232
m/z

0

10

20

30

40

50

60

70

80

90

100
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
Ab

un
da

nc
e

227.10031

228.10355
224.09224

227.10023

228.10358

229.10447

NL:
7.48E7
A14-0229#8-29  
RT: 0.17-0.75  AV: 
22 T: FTMS + p ESI 
Full ms 
[110.00-1200.00] 

NL:
9.00E5
C 8 H16 N2 O4 Na: 
C 8 H16 N2 O4 Na 1
pa Chrg 1

C:\Xcalibur\data\Analyses\A14-0230 3/12/2014 12:30:55 PM MAY LEE LOW R1AC
25/02

212 213 214 215 216 217 218 219 220 221
m/z

0

10

20

30

40

50

60

70

80

90

100
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
A

bu
nd

an
ce

216.14556

214.08975 217.14921

216.14550

217.14886

NL:
6.78E7
A14-0230#8-29  
RT: 0.17-0.75  AV: 
22 T: FTMS + p ESI 
Full ms 
[110.00-1200.00] 

NL:
8.95E5
C 8 H17 N5 O2 H: 
C 8 H18 N5 O2
pa Chrg 1



257 
 

 
Figure B24.  MALDI-TOF-MS full spectrum of R4-SB4CB 
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Figure B25.  MALDI-TOF-MS enlarged spectrum of R4-SB4CB 
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Figure B26.  MALDI-TOF-MS full spectrum of PA"N-SB4CB 
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Figure B27.  MALDI-TOF-MS enlarged spectrum of PA"N-SB4CB 
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Figure B28.  MALDI-TOF-MS full spectrum of R9-SB4CB 
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Figure B29.  MALDI-TOF-MS enlarged spectrum of R9-SB4CB 
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Figure B30.  MALDI-TOF-MS full spectrum of RW9-SB4CB 
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Figure B31.  MALDI-TOF-MS enlarged spectrum of RW9-SB4CB 
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Figure B32.  MALDI-TOF-MS full spectrum of R9-SM4CB 
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Figure B33.  MALDI-TOF-MS enlarged spectrum of R9-SM4CB 
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Figure B34.  MALDI-TOF-MS full spectrum of RW9-SM4CB 
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Figure B35.  MALDI-TOF-MS enlarged spectrum of RW9-SM4CB 
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Figure B36.  MALDI-TOF-MS full spectrum of R4AC 
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Figure B37.  MALDI-TOF-MS enlarged spectrum of R4AC 
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Figure B38.  MALDI-TOF-MS full spectrum of R9AC 
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Figure B39.  MALDI-TOF-MS enlarged spectrum of R9AC 
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Figure B40.  MALDI-TOF-MS full spectrum of RW9AC 
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Figure B41.  MALDI-TOF-MS enlarged spectrum of RW9AC 
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Figure B42.  LC-MS (EMS) spectrum of R1-SB4CB at 17.6 min 
 
 
 

 
Figure B43.  LC-MS (EPI) spectrum of R1-SB4CB at 17.6 min 
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Figure B44.  LC-MS (EMS) spectrum of R1-SB4CB at 15.3 min 
 

 
Figure B45.  LC-MS (EPI) spectrum of R1-SB4CB at 15.3 min 
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Figure B46.  TIC (EMS) chromatogram of R1-SB4CB 
 

 
Figure B47.  TIC (EPI) chromatogram of R1-SB4CB 
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Figure B48.  ESI-MS spectrum of Cu(R1-SB4CB)2 
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Figure B49.  LC-MS [EMS and ER (inset)] spectra of Cu(R1-SB4CB)2 at 17.6 
min 
 

 

Figure B50.  LC-MS (EPI) spectrum of Cu(R1-SB4CB)2 at 17.6 min 
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Figure B51.  LC-MS [EMS and ER (inset)] spectra of Cu(R1-SB4CB)2 at 15.3 
min 
 

 

Figure B52.  LC-MS (EPI) spectrum of Cu(R1-SB4CB)2 at 15.3 min 
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Figure B53.  TIC (EMS) chromatogram of Cu(R1-SB4CB)2 
 

 

Figure B54.  TIC (EPI) chromatogram of Cu(R1-SB4CB)2 
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Figure B55.  ESI-MS spectrum of Cu(PEG-SB4CB)2 
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Figure B56.  LC-MS [EMS and ER (inset)] spectra of Cu(PEG-SB4CB)2 at 16.1 
min 

 

Figure B57.  LC-MS (EPI) spectrum of Cu(PEG-SB4CB)2 at 16.1 min 
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Figure B58.  LC-MS [EMS and ER (inset)] spectra of Cu(PEG-SB4CB)2 at 15.2 
min 
 

 

Figure B59.  LC-MS (EPI) spectrum of Cu(PEG-SB4CB)2 at 15.2 min 
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Figure B60.  TIC chromatogram of Cu(PEG-SB4CB)2 
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Figure B61.  ESI-MS spectrum of Cu(PA"N-SB4CB)2 
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Figure B62.  TIC (EMS) chromatogram of Cu(PA"N-SB4CB)2 

 

Figure B63.  TIC (EPI) chromatogram of Cu(PA"N-SB4CB)2 
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Figure B64.  LC-MS [EMS and ER (inset)] spectra of Cu(PA"N-SB4CB)2 

 

 

Figure B65.  LC-MS (EPI) spectrum of Cu(PA"N-SB4CB)2 
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Figure B66.  LC-MS [EMS and ER (inset)] spectra of Cu(R4-SB4CB)2 at 14.0 
min 
 

 

Figure B67.  LC-MS (EPI) spectrum of Cu(R4-SB4CB)2 at 14.0 min 
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Figure B68.  LC-MS [EMS and ER (inset)] spectra of Cu(R4-SB4CB)2 at 17.3 
min 
 

 

Figure B69.  LC-MS (EPI) spectrum of Cu(R4-SB4CB)2 at 17.3 min 
 

 



291 
 

 

Figure B70.  TIC (EMS) chromatogram of Cu(R4-SB4CB)2 
 

 

Figure B71.  TIC (EPI) chromatogram of Cu(R4-SB4CB)2 
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C. UV-Vis spectra 

 

 
Figure C1.  UV-Vis spectrum of SMLA at 25 !M  
 
 

 
Figure C2.  UV-Vis spectrum of Cu(SMLA)2 at 25 !M and 1 mM 

 
 

 
Figure C3.  UV-Vis spectrum of SBML at 25 !M  
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Figure C4.  UV-Vis spectrum of Cu(SBML)2 at 25 !M and 1 mM 
 
 

 
Figure C5.  UV-Vis spectrum of SBLA at 25 !M  
 
 

 
Figure C6.  UV-Vis spectrum of Cu(SBLA)2 at 25 !M and 1 mM 
 



294 
 

 
Figure C7.  UV-Vis spectrum of SBEL at 25 !M  
 
 

 
Figure C8.  UV-Vis spectrum of SM4CB at 25 !M  
 
 

 
Figure C9.  UV-Vis spectrum of Cu(SM4CB)2 at 25 !M  
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Figure C10.  UV-Vis spectrum of SB4CB at 25 !M  
 
 

 
Figure C11.  UV-Vis spectrum of Cu(SB4CB)2 at 25 !M  
 

 

 
 
Figure C12.   UV-Vis titration of Cu-R4SB4CB  
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Figure C13.  Plot of absorbance against equivalent of Cu for UV-Vis titration of 
Cu-R4SB4CB 
 

 
Figure C14.  UV-Vis titration of Cu-PABNSB4CB 
 
 

 
Figure C15.  Plot of absorbance against equivalent of Cu for UV-Vis titration of 
Cu-PABNSB4CB 
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Figure C16.  UV-Vis titration of Cu-PEGSB4CB  
 
 

 
Figure C17.  Plot of absorbance against equivalent of Cu for UV-Vis titration of 
Cu-PEGSB4CB  
 

 
Figure C18.  UV-Vis titration of Cu-RW9SM4CB   
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Figure C19.  Plot of absorbance against equivalent of Cu for UV-Vis titration of 
Cu-RW9SM4CB  
 

 
Figure C20.  UV-Vis titration of Cu- RW9SB4CB  
 

 
Figure C21.  Plot of absorbance against equivalent of Cu for UV-Vis titration of 
Cu-RW9SB4CB  
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Figure C22.  UV-Vis titration of Cu-R9SB4CB  
 

 
Figure C23.  Plot of absorbance against equivalent of Cu for UV-Vis titration of 
Cu-R9SB4CB  

 
 
Figure C24.  UV-vis spectra of SBCM, Cu(SBCM)2, Zn(SBCM)2 and 
Re2(SBCM)2  recorded at 25 !M in DMSO using a cell length of 1 cm. The 
insert shows the d-d band of the complex Cu(SBCM)2 at concentration of 1 
mM. 
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D. FT-IR spectra 

 
Figure D1.  FT-IR spectrum of SMHD 
 

 
Figure D2.  FT-IR spectrum of CuSMHD 
 

 
Figure D3.  FT-IR spectrum of SBPY 
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Figure D4.  FT-IR spectrum of SMLA 

 
 
Figure D5.  FT-IR spectrum of Cu(SMLA)2 

 
Figure D6.  FT-IR spectrum of SBML 
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Figure D7.  FT-IR spectrum of Cu(SBML)2 
 

 
Figure D8.  FT-IR spectrum of SBLA 
. 

 
Figure D9.  FT-IR spectrum of Cu(SBLA)2 
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Figure D10.   FT-IR spectrum of SBEL 
 

 
Figure D11.   FT-IR spectrum of SM4CB 
 

 
Figure D12.   FT-IR spectrum of Cu(SMH4CB)2 
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Figure D13.   FT-IR spectrum of SB4CB 
 

 
Figure D14.   FT-IR spectrum of CuS(SB4CB)2 
 
 

 
Figure D15.   FT-IR spectrum of Re2(SBCM)2 and SBCM 
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Figure D16.   FT-IR spectrum of Cu(SBCM)2 
 

 
Figure D17.   FT-IR spectrum of Zn(SBCM)2 
 
 
 
 
 
 
 
 
 
 



 

E. Crystal structures parameters 

 
Table E1: Crystallographic data and structure refinement details for compounds SBPY, SMHD, CuSMHD and CuSBHD.

 
Compounds SBPY 

CCDC 930513 
Formula C14 H16 N2 S2 
Mr 276.41 
Crystal size, mm3 0.21 x 0.20 x 0.04 
Crystal system monoclinic 
Space group P 21/c 
a, Å 9.2991(4) 
b, Å 15.9635(8) 
c, Å 9.4848(5) 
&, ° 90 
%, ° 96.1550(10) 
-, ° 90 
Cell volume, Å3 1399.87(12) 
Z  4 
T, K 100 
F000 584 
µ, mm–1 0.364 
" range, ° 2.51 – 32.16 
Reflection collected 22 601 
Reflections unique 4 867 
Rint 0.0431 
GOF 1.175 
Refl. obs. (I>2#(I)) 4 092 
Parameters 165 

Crystallographic data and structure refinement details for compounds SBPY, SMHD, CuSMHD and CuSBHD.

SMHD CuSMHD CuSBHD 

   
C10H18N4S C10H16CuN4S4 C22H24CuN4S4 
322.54 384.07 536.27 
0.24 ! 0.06 ! 0.03 0.4!0.12!0.18 0.28 ! 0.22 ! 0.11 
triclinic  monoclinic monoclinic 
P   C2/c P21/c 
5.1646 (5) 24.6441 (8) 10.79369 (13) 
 7.2792 (8) 7.9100 (2) 18.8337 (2) 
10.7840 (12) 16.8972 (6) 11.84121 (15) 
100.65 (1) 90 90 
90.751 (9) 111.167(4) 103.4104(13) 
107.305 (10) 90 90 
379.39 (8) 3071.62 (19) 2341.51 (5) 
1 8 4 
150  150 150 
170 1576 1108 
5.662 1.956 1.308 
4.18-71.56 2.55-28.96 2.22-28.98 
4869 19393 59768 
1455 3704 5779 
0.042 0.029 0.033 
1.0039 0.9869 0.9773 
1209 3483 5129 
82 172 280 

306 

Crystallographic data and structure refinement details for compounds SBPY, SMHD, CuSMHD and CuSBHD. 
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R, wR (all data) 0.0733,0.1273 0.0552, 0.1208 0.0217, 0.0498 0.0338,0.0736 
Final R, wR  (I>2#(I)) 0.0603,0.1217    0.0457, 0.1126  0.0198, 0.0488   0.0287, 0.0698 
Largest diff. peak and 
hole (e-.Å-3) 

-0.344; 0.536 -0.35; 0.52 -0.34; 0.36 -0.56; 0.72 
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Table E2: Crystallographic data and structure refinement details for 
compounds for compounds SMML, SBML and SBEL. 
 
  

Compound SMML SBML SBEL 
CCDC CCDC 999789 CCDC 999788 CCDC 999786 

Empirical Formula C8 H14 N2 O2 S2 C14 H18 N2 O2 S2 C15 H20 N2 O2 S2 
Mr 234.33 310.42 324.45 

Crystal size, mm3 0.31 x 0.30 x 
0.28 

0.33 x 0.31 x 
0.19 

0.31 x 0.29 x 
0.22 

Crystal system monoclinic monoclinic monoclinic 
Space group P 21/c P 21/n P 21/n 

a, Å 8.1149(2) 12.7266(4) 12.7529(5) 
b, Å 13.0536(3) 7.2329(2) 7.4369(3) 
c, Å 11.0433(3) 16.7849(5) 17.3690(7) 
&, ° 90 90 90 
%, ° 105.4960(10) 97.5740(10) 97.5530(10) 
-, ° 90 90 90 

Cell volume, Å3 1127.28(5) 1531.57(8) 1633.02(11) 

Z ; Z’ 4 ; 1 4 ; 1 4 ; 1 
T, K 100(1) 100(1) 100(1) 
F000 496 656 688 

µ, mm–1 0.450 0.350 0.331 
" range, ° 2.47 – 36.41 1.89 – 33.74 1.87 – 36.30 

Reflection collected 36 241 16 603 21 234 
Reflections unique 5 508 4 539 6 657 

Rint 0.0213 0.0429 0.0315 
GOF 1.090 1.041 1.046 

Refl. obs. (I>2#(I)) 5 091 4 102 5 868 
Parameters 130 183 192 

wR2 (all data) 0.0811 0.0978 0.0905 
R value (I>2#(I)) 0.0674 0.0352 0.0319 

Largest diff. peak and 
hole (e-.Å-3) -0.386 ; 0.423 -0.406 ; 0.632 -0.380 ; 0.473 
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Table E3: Crystallographic data and structure refinement details for 
compounds for compounds SBLA, Cu( SMML)2 and Cu(SMLA)2. 
 
 

 
 
 
 

Compound SBLA Cu(SMML)2 Cu(SMLA)2 
CCDC CCDC 999787 CCDC 999785  CCDC 999784 

Empirical Formula C13 H16 N2 O2 S2 
C16 H26 Cu N4 O4 

S4 
C15 H26 Cu N4 O5 

S4 
Mr 296.40 530.19 534.18 

Crystal size, mm3 0.13 x 0.10 x 
0.02 0.16 x 0.11 x0.07 0.18 x 0.14 x0.08 

Crystal system triclinic monoclinic monoclinic 
Space group P -1 C 2/c P 21/n 

a, Å 6.708(3) 12.9400(3) 11.8086(6) 
b, Å 10.448(4) 12.4444(3) 9.1068(5) 
c, Å 11.565(5) 13.8556(3) 21.0888(11) 
&, ° 76.170(9) 90 90 
%, ° 87.778(9) 91.4150(10) 97.626(2 
-, ° 71.867(10) 90 90 

Cell volume, Å3 747.4(5) 2230.49(9) 2247.8(2) 

Z ; Z’ 2 ; 1 4 ; $ 4 ; 1 
T, K 100(1) 100(1) 100(1) 
F000 312 1100 1108 

µ, mm–1 0.355 1.384 1.377 
" range, ° 1.81 – 30.05 2.27 – 36.33 1.88 – 30.63 

Reflection collected 9 990 41 767 52 414 
Reflections unique 3 748 5 390 6 889 

Rint 0.0224 0.0401 0.0301 
GOF 1.013 1.028 1.154 

Refl. obs. (I>2#(I)) 2 250 4 325 6 006 
Parameters 174 135 270 

wR2 (all data) 0.1732 0.0711 0.0855 
R value (I>2#(I)) 0.0617 0.0283 0.0342 

Largest diff. peak and 
hole (e-.Å-3) -0.642 ; 0.441 -0.380 ; 0.616 -0.428 ; 0.584 
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Table E4: Crystallographic data and structure refinement details for 
compounds for compounds Re2( SBCM)2. 
 
 

Compound Re2(SBCM)2 
CCDC 1001600 

Empirical Formula C44 H30 N4 O10 Re2 S4 
Mr 1275.36 

Crystal size, mm3 0.19 x 0.14 x 0.03 
Crystal system monoclinic 
Space group P 21/c 

a, Å 14.7072(4) 
b, Å 12.6588(3 
c, Å 12.1386(3) 
&, ° 90 
%, ° 99.3740(10) 
-, ° 90 

Cell volume, Å3 2229.73(10) 

Z ; Z’ 2 ; 1/2 
T, K 100(1) 
F000 1232 

µ, mm–1 5.674 
" range, ° 2.13 – 30.65 

Reflection collected 54 115 
Reflections unique 6 872 

Rint 0.0446 
GOF 1.028 

Refl. obs. (I>2#(I)) 5 059 
Parameters 290 

wR2 (all data) 0.0519 
R value (I>2#(I)) 0.0225 

Largest diff. peak and hole 
(e-.Å-3) -0.901 ; 1.625 
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F. RP-HPLC chromatograms  

 

 
Figure F1.  RP-HPLC chromatogram of SMHD  
 
 

 
Figure F2.  RP-HPLC chromatogram of CuSMHD  
 
 

 
Figure F3.  RP-HPLC chromatogram of SBPY  
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Figure F4.  RP-HPLC chromatogram of SMDTC  
 
 

 
Figure F5.  RP-HPLC chromatogram of SBDTC  
 
 

 
Figure F6.  RP-HPLC chromatogram of SMLA 
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Figure F7.  RP-HPLC chromatogram of Cu(SMLA)2 
 
 

 
Figure F8.  RP-HPLC chromatogram of SBML 
 
 

 
Figure F9.  RP-HPLC chromatogram of Cu(SBML)2 
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Figure F10.  RP-HPLC chromatogram of SBLA 
 
 

 
Figure F11.  RP-HPLC chromatogram of Cu(SBLA)2 
 
 

 
Figure F12.  RP-HPLC chromatogram of SBEL 
 



315 
 

 
Figure F13.  RP-HPLC chromatogram of CuSM4CB 
 
 

 
Figure F14.  RP-HPLC chromatogram of SB4CB 
 
 

 
Figure F15.  RP-HPLC chromatogram of CuSB4CB 
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Figure F16.  RP-HPLC chromatogram of SBCM 
 
 

 Figure F17.  RP-HPLC chromatogram of Zn(SBCM)2 
 
 

 
Figure F18.  RP-HPLC chromatogram of Re2(SBCM)2 
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Figure F19.  RP-HPLC chromatogram of Cu(SBCM)2 
 
 

 
Figure F20.  RP-HPLC chromatogram of R1-SB4CB (crude)  
 
 

 
Figure F21.  RP-HPLC chromatogram of R1-SB4CB (purified)  
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Figure F22.   RP-HPLC chromatogram of R4-SB4CB (crude)  
 
 

 
Figure F23.  RP-HPLC chromatogram of R4-SB4CB (purified)  
 
 

 
Figure F24.   RP-HPLC chromatogram of R9-SB4CB (crude)  
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Figure F25.  RP-HPLC chromatogram of R9-SB4CB (purified)  
 
 

 
Figure F26.  RP-HPLC chromatogram of RW9-SB4CB (crude) 
  
 

 
Figure F27.   RP-HPLC chromatogram of RW9-SB4CB (purified)  
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Figure F28.   RP-HPLC chromatogram of RW9-SM4CB (crude)  
 
 

 
Figure F29.   RP-HPLC chromatogram of RW9-SM4CB (purified) 
 
 

 
Figure F30.   RP-HPLC chromatogram of R1-Ac (crude)  
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Figure F31.   RP-HPLC chromatogram of R1-Ac (purified)  
 
 

 
Figure F32.   RP-HPLC chromatogram of R4-Ac (crude)  
 
 

 
Figure F33.   RP-HPLC chromatogram of R4-Ac (purified)  
 



322 
 

 
Figure F34.   RP-HPLC chromatogram of R9-Ac (crude)  
 
 

 
Figure F35.   RP-HPLC chromatogram of R9-Ac (purified)  
 
 

 
Figure F36.   RP-HPLC chromatogram of RW9-Ac (crude)  
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Figure F37.   RP-HPLC chromatogram of RW9-Ac (purified)  
 

 

Figure F38. RP-HPLC chromatogram obtained from the SPPS Fmoc synthesis 
of the aliphatic ligand, SMLA-R9 conjugate. None of the major peaks 
correspond to the desired product as observed by MALDI-TOF-MS. The 
coupling and deprotection were difficult and the Schiff base was hydrolysed 
resulting in the product R9-ketone (m/z: 1521, RT = 6.5 min) and R9-Fmoc (m/z: 
1645, RT = 10.5 min).  
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G. CV 

 

Figure G1.  Cyclic voltammograms of ferrocene  
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Figure G2.   Cyclic voltammograms of the Cu(SMLA)2 
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Figure G3.   Cyclic voltammograms of the Cu(SM4CB)2 
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Figure G4.   Cyclic voltammograms of the Cu(SBML)2 
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Figure G5.   Cyclic voltammograms of the Cu(SBLA)2 
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Figure G6.   Cyclic voltammograms of the Cu(SB4CB)2 
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Figure G7.   Cyclic voltammograms of the Cu(SBCM)2 
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Figure G8.  Plot of the anodic (Ipa) and cathodic (Ipc) current with the square 
root of scan rate for Cu(SBCM)2 and (above) cyclic voltammograms of 

Cu(SBCM)2 at 0.1 V/s in the range of -1.5 V to 1.5 V. 
 

Table G1.  Electrochemical data for the Cu(SBCM)2  vs Ag/AgCl at various 

scan rate (V/s).  

 Cu(II)/Cu(I)  
Cu(SMML)2 Epa[V] Epc[V] 2Ep=Epa-

Epc[mV] 
2E1/2=0.5 

(Epa+Epc) [V] 
ia/ic ipc / +1/2 

0.02 0.082 -0.015 97 0.034 0.91 -43.6 
0.05 0.079 -0.019 98 0.060 0.87 -43.9 
0.10 0.089 -0.027 116 0.031 0.78 -46.5 
0.20 0.089 -0.033 122 0.056 0.83 -40.2 
0.50 0.102 -0.049 151 0.053 0.78 -36.6 
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H. ITC 

 
Figure H1.  ITC titration of Cu(R1-SB4CB)2 
 
 
 

 
 
Figure H2.   ITC titration of Cu(RW9-SB4CB)2 



333 
 

 
Figure H3.  ITC titration of Cu(R9-SM4CB)2 
 
 
 

 
 
Figure H4.  ITC titration of Cu(RW9-SM4CB)2 
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Figure H5.  ITC titration of Cu(SB4CB)2 
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I. EPR  

 
Figure I1.   The EPR spectrum of Cu(SMLA)2  at 1 mM   
 
 

 
Figure I2.   The EPR spectrum of Cu(SBML)2  at 1 mM   
 
 

   
Figure I3.  The EPR spectrum of Cu(SBLA)2  at 1 mM   
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Figure I4.  The EPR spectrum of Cu(SB4CB)2  at 1 mM   
 
 

 
Figure I5.  The EPR spectrum of Cu(R9-SM4CB)2  at 1 mM   
 
 

 
Figure I6.  The EPR spectrum of Cu(R1-SB4CB)2  at 1 mM   
 



337 
 

 
Figure I7.  The EPR spectrum of Cu(PEG-SB4CB)2  at 1 mM   
   
 

   
Figure I8.  The EPR spectrum of Cu(PA"N-SB4CB)2  at 1 mM   
 
 

 
Figure I9.  The EPR spectrum of Cu(R4-SB4CB)2  at 1 mM   
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Figure I10.  The EPR spectrum of Cu(R9-SM4CB)2  at 1 mM   
 
 

 
Figure I11.  The EPR spectrum of Cu(RW9-SB4CB)2  at 1 mM   
  
 

      
Figure I12.  The EPR spectrum of Cu(RW9-SM4CB)2  at 1 mM   
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Figure I13.  The EPR spectrum of Cu(SBCM)2  at 1 mM   
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J. Elemental analysis 

Table J1.   CHNS data  
 
 CuSMHD       Cu(SB4CB)2 

      
Cu(SM4CB)2      Cu(SMML)2 

      
Cu(SMLA)2      CuSBHD 

    
Cu(SBLA)2      Cu(SBML)2 
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Cu(SBCM)2 

    
 
SBHD 

 
SMHD 

 
 
Re2(SBCM)2 (mass = 2.183 mg) and Zn(SBCM)2  (mass = 1.997 mg) 
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