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Abstract

This thesis investigates the analysis of brain electrical activity. An impor-
tant challenge is the presence of large variability in neuroelectrical record-
ings, both across different subjects and within a single subject, for example
across experimental trials. We propose a new method called adaptive wave-
form learning (AWL). It is general enough to include all types of relevant
variability empirically found in neuroelectric recordings, but it can be spe-
cialized for different concrete settings to prevent from overfitting irrelevant
structures in the data.

The first part of this work gives an introduction into the electrophysiol-
ogy of the brain, presents frequently used recording modalities, and describes
state-of-the-art methods for neuroelectrical signal processing.

The main contribution of the thesis consists in three chapters introduc-
ing and evaluating the AWL method. We first provide a general signal
decomposition model that explicitly includes different forms of variability
across signal components. This model is then specialized for two concrete
applications: processing a set of segmented experimental trials and learn-
ing repeating structures across a single recorded signal. Two algorithms are
developed to solve these models. Their efficient implementations, based on
alternate minimization and sparse coding techniques, allow the processing
of large datasets.

The proposed algorithms are evaluated on both synthetic data and real
data containing epileptiform spikes. Their performances are compared to
those of PCA, ICA, and template matching for spike detection.

Keywords: electroencephalography (EEG), event-related poten-
tials (ERP), epileptiform spikes, signal variability, dictionary learn-
ing, sparse coding
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Résumé

Cette thèse explore l’analyse de l’activité électrique du cerveau. Un défi im-
portant de ces signaux est leur grande variabilité à travers différents essais
et/ou différents sujets. Nous proposons une nouvelle méthode appelée adap-
tive waveform learning (AWL). Cette méthode est suffisamment générale
pour permettre la prise en compte de la variabilité empiriquement rencon-
trée dans les signaux neuroélectriques, mais peut être spécialisée afin de
prévenir l’overfitting du bruit.

La première partie de ce travail donne une introduction sur l’électrophy-
siologie du cerveau, présente les modalités d’enregistrement fréquemment
utilisées et décrit l’état de l’art du traitement de signal neuroélectrique.

La principale contribution de cette thèse consiste en 3 chapitres intro-
duisant et évaluant la méthode AWL. Nous proposons d’abord un modèle de
décomposition de signal général qui inclut explicitement différentes formes
de variabilité entre les composantes de signal. Ce modèle est ensuite spé-
cialisé pour deux applications concrètes: le traitement d’une série d’essais
expérimentaux segmentés et l’apprentissage de structures répétées dans un
seul signal. Deux algorithmes sont développés pour résoudre ces problèmes
de décomposition. Leur implémentation efficace basée sur des techniques de
minimisation alternée et de codage parcimonieux permet le traitement de
grands jeux de données.

Les algorithmes proposés sont évalués sur des données synthétiques et
réelles contenant des pointes épileptiformes. Leurs performances sont com-
parées à celles de l’ACP, l’ICA, et du template-matching pour la détection
des pointes.

Mots clés : électroencephalographie (EEG), potentiels évoqués
(ERP), pointes épileptiformes, variabilité du signal, apprentissage
de dictionnaires, codage parcimonieux
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Introduction en français

En 2013, deux projets de recherche d’une dureé de 10 ans avec plus d’un
milliard d’euros de budget chacun, le Human Brain Project et le BRAIN
Initivative, ont été lancés respectivement par l’UE et les Etats-Unis. Visant
à simuler le cerveau humain à l’aide de supercalculateurs, ces projets té-
moignent du grand intérêt scientifique à une meilleure compréhension des
mécanismes sous-jacents au cerveau.

Les avancées résultant du progrès dans la recherche en neurosciences
ont été nombreuses. Outre l’amélioration constante du traitement des trou-
bles mentaux étudiés depuis longtemps comme l’épilepsie, la démence, la
maladie de Parkinson ou la dépression, le développement technologique a
conduit à de nombreuses nouvelles applications des neurosciences. À titre
d’exemple, les interfaces cerveau-ordinateur (BCI) permettent d’utiliser les
ondes cérébrales d’un utilisateur pour communiquer avec un dispositif ex-
terne. Le BCI peut ainsi aider les personnes handicapées ou non dans
l’exécution de diverses tâches cognitives ou sensori-motrices.

À bien des égards, ces progrès sont dûs à la large gamme de modalités
d’imagerie cérébrale qui sont aujourd’hui disponibles, comprenant (parmi
plusieurs autres) l’électro- et la magnétoencéphalographie (EEG / MEG),
l’imagerie par résonance magnétique fonctionnelle (IRMf), la tomographie
par émission des positons (TEP), la tomographie d’émission monophotonique
(TEMP), et la spectroscopie proche infrarouge (NIRS). Avec la possibilité
d’acquérir à haute résolution des enregistrements multimodaux vient aussi le
défi de l’interprétation de ces données de manière adéquate. Cela nécessite
tout d’abord la conception de modèles physiologiques expliquant la généra-
tion de ces signaux. Des méthodes sophistiquées de traitement du signal
sont ensuite nécessaires pour, sur la base de ces modèles, représenter des
signaux avec des informations significatives et statistiquement pertinentes.

Le présent travail se concentre sur l’analyse des enregistrements neu-
roélectriques. L’une des techniques fondamentales de traitement de ces sig-
naux se base sur la moyenne d’un grand nombre de signaux enregistrés dans
des conditions similaires. Cette méthode, introduite par George D. Daw-

1



INTRODUCTION EN FRANÇAIS

son (Dawson, 1954), s’est montrée utile pour détecter les potentiels évoqués
(ERP) de petites amplitudes, qui seraient cachés sous le bruit et l’activité de
fond des neurones avec un seul enregistrement. Bien que cette technique soit
encore souvent utilisée pour analyser les ERPs, les hypothèses sous-jacentes
au calcul de la moyenne ont été contestées et montrées inexactes dans de
nombreux contextes (Coppola et al., 1978; Horvath, 1969; Truccolo et al.,
2002).

Un problème principal est l’observation que les réponses neurales ont
tendance à varier en amplitude, en latence et même en forme (Jung et al.,
2001; Kisley and Gerstein, 1999). Cette variabilité existe entre différents
sujets, mais aussi pour un même sujet entre différents essais expérimentaux.

Compenser la variabilité des signaux du cerveau peut permettre une
meilleure caractérisation de la réponse neurale stéréotype à un phénomène
sous-jacent. En outre, la description et la quantification de la variabil-
ité, inter ou intra-sujet, sont des sources précieuses d’information. Par
exemple, la diminution des amplitudes de la réponse à travers une session
d’enregistrement peut être un signe d’effets de fatigue ou d’accoutumance du
sujet. Une des premières extensions de l’approche de Dawson est la méthode
de Woody (Woody, 1967) qui prend en compte différentes latences pendant
le calcul de la moyenne. Ces dernières décennies, un large éventail de mod-
èles et de techniques a été proposé pour tenir compte des différents aspects
de variabilité. Les techniques de décomposition linéaire comme l’ACP et
l’ICA peuvent compenser des changements en amplitude alors que d’autres
techniques comme le dynamic time warping considérent des déformations
plus générales de la forme du signal.

Outre la comptabilisation adéquate de la variabilité, il y a plusieurs
autres caractéristiques qu’un outil idéal de traitement de signal neuroélec-
trique devrait posséder. Les enregistrements, qui sont souvent acquis dans
plusieurs dimensions (par exemple, de multiples essais expérimentaux, ca-
naux ou modalités), nécessitent l’extraction efficace d’informations perti-
nentes dans une représentation compacte qui permet une interprétation
facile. Il est indespensable d’incorporer dans le modèle toutes les informa-
tions préalables afin d’éviter l’extraction de structures de signaux non per-
tinentes. D’un autre côté, les formes exactes des réponses neurales sont sou-
vent inconnues, ce qui rend nécessaire l’apprentissage de ces formes d’onde
aussi aveuglément (c’est-à-dire, sans a priori) que possible. En raison de
ces différentes exigences complémentaires, la conception d’une méthode op-
timale est une tâche difficile.

L’objectif de cette thèse est de fournir un cadre de décomposition des
signaux modélisant explicitement la variabilité rencontrée dans les enregis-
trements neuroélectriques. Grâce à sa formulation générale, ce cadre peut
être adapté à une variété de différentes tâches de traitement du signal.
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Contributions

Le résultat principal de cette thèse est la conception d’une méthode, ap-
pelé adaptive waveform learning (AWL), pour traiter des signaux neuroélec-
triques. La nouveauté de cette approche est la modélisation explicite de la
variabilité des composantes des signaux par des transformations mathéma-
tiques.

La méthode AWL est tout d’abord présentée au Chapitre 4 de fao̧n
théorique. On considère un modèle très général de décomposition où la
variabilité est représentée par des transformations linéaires arbitraires. Ce
modèle sert de cadre général pour différentes applications neuroélectriques et
peut être vu comme une généralisation de différents modèles existants. Dans
ce cadre, nous ne fournissons pas d’implémentation concrète. Cependant,
nous présentons un algorithme générique qui peut être utilisé comme une re-
cette pour implémenter de telles applications concrètes. Comme AWL repose
sur un modèle parcimonieux, l’algorithme générique peut être efficacement
implémenté par minimisation alternée.

AWL est ensuite spécialisé dans les chapitres 5 et 6 pour deux appli-
cations fréquemment rencontrées dans l’analyse du signal neuroélectrique :
le traitement des signaux epoqués (c’est-à-dire segmentés, par exemple les
potentiels évoqués) et le traitement des signaux contigus (c’est-à-dire non
segmentés, par exemple des pointes épileptiformes). Les deux implémenta-
tions résultantes, E-AWL et C-AWL, sont évaluées sur des données simulées
et réelles et comparées à l’APC et l’ICA. Les expériences montrent l’utilité
de E-AWL et C-AWL comme des outils robustes de traitement du signal qui
sont capables d’apprendre des représentations intéressantes et originales à
partir des données.

Les deux spécialisations sont seulement des exemples d’implémentations
possibles de AWL. Différentes variantes, comme une extension pour le traite-
ment des enregistrements sur multiples canaux, peuvent aussi être dérivées
en faisant des ajustements appropriés au cadre général. Cette question sera
abordée dans le Chapitre 7.

En résumé, cette thèse propose les contributions suivantes :

• Chapitre 4: Introduction de la nouvelle mèthode AWL dans un cadre
général et conception d’un algorithm générique.

• Chapitre 5: Spécialisation de AWL pour traiter des enregistrements
epoqués (E-AWL) et implementation à l’aide d’une modification de
least angle regression (LARS). En particulier, E-AWL compense des
différences de latences ainsi que des différences de phases à travers
les époques et peut séparer les différentes composantes du signal en
exploitant cette variabilité.

• Chapitre 6: Spécialisation de AWL pour traiter des enregistrements
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contigus (C-AWL) et implementation efficace à l’aide de l’algorithme
matching pursuit (MP). C-AWL est utilisé pour dériver deux tech-
niques d’apprentisage de pointes épileptiformes : MC-Spike, qui fait
l’hypothèse de différentes classes de pointes avec des formes immuables,
et AD-Spike, qui représente les pointes au travers d’une seule forme
de pointe de durée adaptative. Ces techniques permettent la détection
des pointes ainsi que l’apprentisage de leurs formes et leurs variabilités
à travers des données.

• Découvertes intéressantes dans le couplage de l’activité de pointes et
des rythmes dans l’hémodynamique (Section 6.5). Ces découvertes
resultent des représentations apprises avec MC-Spike et AD-Spike.

• Disponibilité du code pour les différentes methodes et les expériences
en ligne : https://github.com/hitziger/AWL.

Sommaire

Le contenu de cette thèse est structuré en trois parties : une partie introduc-
tive (chapitres 2 et 3), la partie principale (chapitres 4 - 6) et la conclusion
(Chapitre 7). Le contenu de chacun des ces chapitres est résumé dans les
paragraphes suivants. Afin de donner une meilleure orientation au lecteur,
nous illustrons la structure du présent document dans l’organigramme Fig-
ure 1 qui montre les dépendances entre les chapitres.

Chapitre 2

Ce chapitre donne une introduction à l’analyse de l’activité électrique dans
le cerveau. Nous commençons par expliquer des concepts fondamentaux de
la génération des signaux électromagnetiques par des ensembles de neurones,
qui sont mesurables à différents niveaux du cerveau. Plusieurs modalitiés
pour enregistrer l’électromagnetisme, le métabolisme et l’hémodynamique
dans le cerveau sont presentées. Nous donnons ensuite un aperçu des dif-
férentes caractéristiques des enregistrements neuroélectriques et définissons
des défis et objectifs pour traiter ces signaux. Le chapitre conclut par la
présentation d’une étude multimodale, conduite sur des rats anesthésiés et
visant à l’exploration du couplage entre l’activité neuroélectrique et hémo-
dynamique. Ce jeu de données est analysé plus finement ultérieurement
(chapitres 5 et 6) avec la nouvelle méthode AWL.

Chapitre 3

Ce chapitre présente une revue des techniques de traitement du signal neu-
roélectrique, avec une attention particulière sur la variabilité à travers les
signaux. Le chapitre commence en présentant une méthode de moyennage
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dépend faiblement

Chapitre 2: Analyse de l'activité neuroélectrique
     

- Introduction aux enregistrements électrophysiologiques 
- Objectifs de l'analyse des signaux neuroélectriques

Chapitre 3: Traitement du signal neuroélectrique 
   

- Revue des méthodes de traitement du signal
- Focus sur la variabilité des signaux

Chapitre 4: Adaptive Wavform Learning (AWL)
  

- Modélisation de la variabilité par transformations
- Introduction du modèle AWL 
- Présentation de l'algorithme générique AWL

Chapitre 5: Epoched AWL
- Spécialisation aux signaux segmentés
- Implémentation par LARS
- Évaluation sur des données 
     synthétiques et réelles
- Comparaison avec ACP et ICA

Chapitre 6: Contiguous AWL
- Spécialisation aux signaux non segmentés
- Implémentation par matching pursuit
- Dérivation de MC-Spike et AD-Spike
- Évaluation sur des données réelles 
- Comparaison avec template matching

Légende: contenu introductif 

contenu principal 

dépend fortement

Figure 1: Structure du document et dépendances entre des chapitres. Le materiel
introductif (vert) fournit les bases physiologiques et méthodologiques pour le traitement
du signal neuroélectrique. La contribution principale de cette thèse, la méthode AWL,
est introduite dans le chapitre 4 et spécialisée pour des signaux époqués et non époqués

dans les chapitres 5 et 6, respectivement.
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pour les potentiels évoqués introduite dans Dawson (1954). Nous présen-
tons ensuite différentes extensions de cette méthode qui prennent en compte
différents types de variabilité temporelle, telles que la compensation de dif-
férences de latences dans la méthode de Woody (Woody, 1967). Une autre
approche utilise des modèles linéaires avec différentes composantes des sig-
naux et mène aux méthodes ACP et ICA. Un autre groupe d’outils pour
le traitement des signaux neuroélectriques consiste en représentations parci-
monieuses, souvent en domaine temps-fréquence. Enfin, quelques approches
intégratives sont présentées. Celles-ci permettent de prendre en compte dif-
férents types de variabilité dans les données multicanaux.

Chapitre 4

Ce chapitre est le premier des trois chapitres principaux qui présentent la
nouvelle méthode adaptive waveform learning (AWL). Le modèle sous-jacent
comprend explicitement des types généraux de variabilité des signaux. Cette
variabilité est décrite par une famille d’opérateurs linéaires {φp} agissant sur
les composantes des signaux. Concrètement, chaque signal xm est modélisé
comme combinaison linéaire de formes d’onde dk modifiées par les transfor-
mations linéaires φp et s’écrit

xm =
∑

k

∑

p

akpmφp(dk) + ǫm,

avec un bruit additif ǫm. L’apprentissage des quantités inconnues s’effectue
par la minimisation d’un terme d’attache aux données quadratique plus un
a priori de parcimonie, sous la forme

min
∑

m





∥

∥

∥

∥

∥

xm −
∑

k

∑

p

akpmφp(dk)

∥

∥

∥

∥

∥

2

+ λ
∑

k,p

|akpm|


 .

De plus, nous considérons diverses autres contraintes de parcimonie qui
doivent être adaptées au contexte considéré. Nous proposons un algorithme
générique qui procède par minimisation alternée sur les formes d’onde dk et
des coefficients de la regression akpm. Grâce aux hypothèses de parcimonie,
l’estimation des coefficients peut être effectué efficacement par des techniques
de codage parcimonieux. Après avoir introduit l’algorithme générique, nous
examinons en détail ses différentes étapes. Celles-ci comprennent aussi
l’initialisation des formes d’onde et l’estimation de l’ordre du modèle.

Le chapitre demeure dans un cadre général de sorte que AWL peut être
considéré comme un métamodèle pour plusieurs des méthodes présentées
dans le Chapitre 3. Cette généralité permet de dériver différents algorithmes
concrets pour des applications spécifiques, telles que celles présentées dans
les chapitres 5 et 6.

6



INTRODUCTION EN FRANÇAIS

Chapitre 5

Ce chapitre aborde le traitement des signaux époqués (c’est-à-dire des sig-
naux segmentés) qui contiennent des potentiels evoqués (ERPs) ou de l’ac-
tivité répétée. À cette fin, l’algorithme général AWL du chapitre précédent
est spécialisé pour calculer les composantes du signal aux latences variables à
travers les époques. L’algorithme résultant, appelé E-AWL, est implémenté
en adaptant le cadre itératif de AWL : à partir d’un ensemble de formes
d’onde {dk} initalisées par du bruit gaussien, ces formes et leurs ampli-
tudes akpm et latences δkpm sont mises à jour efficacement à chaque étape de
l’algorithme par la technique du block coordinate descent et LARS (décrit
en annexe), respectivement.

E-AWL est d’abord évalué sur des données synthétiques pour différentes
magnitudes de variabilité des amplitudes et des latences ainsi que pour dif-
férents niveaux de bruit. Les résultats sont comparés à ceux de l’analyse
en composantes principales (ACP) et de l’analyse en composantes indépen-
dantes (ICA). Comme attendu, E-AWL est capable de détecter et compenser
la variabilité de latence, bien mieux que les deux autres approches.

Nous illustrons ensuite la capacité de E-AWL à produire des représen-
tations pertinentes sur les données réelles présentées dans le Chapitre 2. À
cette fin, nous proposons une version hiérarchique de E-AWL qui apprend
un nombre croissant de formes d’onde. Comparé à ACP et ICA, E-AWL
montre des résultats supérieurs en ce qui concerne la séparation des pointes
épileptiformes et des formes d’onde oscillantes.

Chapitre 6

Ce chapitre décrit une approche alternative à celle de E-AWL en traitant des
signaux contigus, c’est-à-dire sans les époquer. L’algorithme correspondant,
appelé AWL contigu (C-AWL), peut lui aussi être dérivé de AWL en faisant
des spécialisations appropriées.

Le traitement sans époquage préalable est plus difficile, car les latences
des signaux d’intérêt sont inconnues et doivent être détectées à travers le
signal entier. Ceci est abordé au travers d’une implémentation efficace basée
sur matching pursuit (MP). Dans le cas présent, l’initialisation des formes
d’onde est extrêmement importante afin d’éviter la détection de composantes
non pertinentes.

L’implémentation concrète est illustrée sur l’exemple de deux modèles
de pointes épileptiformes : MC-Spike, basé sur différentes classes de formes
de pointes, et AD-Spike, qui consiste en un seul template de pointe de durée
variable. Ces deux algorithmes sont appliqués aux pointes épileptiformes
traitées dans le Chapitre 5, cette fois sans les époquer a priori. Un avantage
d’éviter l’époquage est la possibilité de traiter des pointes superposées, qui
étaient rejetées dans l’approche E-AWL. Ceci permet d’avoir une représenta-
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tion des données plus complète. Les résultats produits par les deux méthodes
sont assez comparables. Dans le cas de MC-Spike, il se pose le problème du
choix du nombre de formes d’onde, qui est abordé par une représentation
hiérarchique. Ce problème ne se pose pas pour AD-Spike.

AD-Spike et MC-Spike sont ensuite comparés au template matching en
ce qui concerne la précision de détection dans les données bruitées. Dans la
majorité des cas considérés les deux nouvelles methodes donnent de meilleurs
résultats que template matching, et AD-Spike est légèrement supérieur à
MC-Spike.

Enfin, la représentation apprise avec MC-Spike est utilisée pour révéler
des informations sur le couplage avec les données hémodynamiques, qui
avaient été enregistrées simultanément aux décharges électriques.

Chapitre 7

Ce chapitre fait un bilan des méthodes développées et des résultats obtenus.
Dans une section de futurs travaux, nous décrivons d’autres possibilités pour
des applications de la méthode AWL et des extensions, telles qu’une version
multicanaux.

Notations

Dans cette thèse, nous allons utiliser des caractères minuscules et gras pour
représenter des vecteurs (par exemple x,y,d) et des caractères majuscules
et gras pour représenter des matrices (par exemple A,D). Sauf mention
particulière, les vecteurs sont toujours considérés comme vecteurs colonnes.
Les caractères minuscules non gras représentent des scalaires, par exemple,
les éléments d’un vecteur x = (x1, . . . , xN ) ou d’une matrice A = (aij). Une
exception à ces conventions est faite dans le Chapitre 4 où les caractères
minuscules et gras x,y,d dénotent des signaux temporels définis sur les
nombres réels R.
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Chapter 1
Introduction

In 2013, two 10-year research projects with over one billion Euros budget
each, the Human Brain Project and the BRAIN Initivative, were launched
by the EU and the USA, respectively. Aimed at simulating the human brain
with the use of supercomputers, these projects are testimony of the great
scientific interest in a better understanding of the mechanisms underlying
the brain.

In fact, the benefits arising from advances in neuroscientific research have
shown to be tremendous. Besides constantly improving treatment options
for long-studied mental disorders such as epilepsy, dementia, Parkinson’s
desease, or depression, recent technological and software development has
led to many new neuroscientific applications. As an example, brain computer
interfaces (BCIs) allow to establish a direct communication pathway from
the user’s brain waves to an external device and can assist both abled and
disabled persons with various cognitive or sensory-motor tasks.

To a large degree, these advances are owed to the broad range of brain
recording and imaging modalities that are nowadays available, including
(among many others) electro- and magnetoencephalography (EEG/MEG),
functional magnetic resonance imaging (fMRI), positron emission tomogra-
phy (PET), single photon emission tomography (SPECT), and near-infrared
spectroscopy (NIRS). Along with the possibility of acquiring high-resolution
multi-modal recordings also comes the challenge of adequately interpreting
this data. First, this requires to design appropriate physiological models
explaining the generation of these signals. Then, sophisticated signal pro-
cessing techniques are needed, which, based on these models, can provide
signal representations with meaningful and statistically relevant information.

The present work focusses on the analysis of neuroelectrical recordings.
One of the fundamental processing techniques for these signals consists in
averaging over a large number of recorded signals acquired under similar
conditions. This method was introduced by George D. Dawson (Dawson,
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1954) and proved useful in detecting event-related potentials (ERPs) of small
amplitudes, which, in a single recording, would be burried in noise and
neural background activity. Although still widely used to enhance event-
related potentials up to present days, the assumptions underlying the process
of averaging have been challenged and shown inaccurate in many settings
(Coppola et al., 1978; Horvath, 1969; Truccolo et al., 2002).

A principal problem is the observation that the neural responses tend to
vary in amplitude, latency, and even shape (Jung et al., 2001; Kisley and
Gerstein, 1999). This variability is found across different subjects, but also
within a single subject across repeated experimental trials.

Compensating for variability in brain signals has shown to lead to an
improved characterization of the stereotypic neural response to some under-
lying phenomenon. Moreover, the description and quantification of variabil-
ity, inter- or intra-subject, is a precious source of information. For example,
decreasing response amplitudes across a recording session can be a sign of
fatigue or habituation effects in the subject. Among the first extensions to
Dawson’s approach is Woody’s method (Woody, 1967), which accounts for
different latencies during averaging. The past decades produced a wide spec-
trum of models and techniques that consider different aspects of waveform
variability, ranging from linear amplitude changes of different signal compo-
nents (e.g., PCA, ICA) to very general shape deformations (e.g., dynamic
time warping).

Besides adequately accounting for variability, there are many other re-
quirements that an ideal neuroelectrical signal processing tool should meet.
The often complex and multi-variate recordings (e.g., multiple experimental
trials, channels, or modalities) make it necessary to efficiently extract the
relevant information into a compact signal representation that can easily be
interpreted. While all prior information should be incorporated in order to
avoid fitting irrelevant signal structures, the exact shape of the brain re-
sponses are often unknown, making it necessary to learn the relevant wave-
shapes as blindly as possible. Due to these different and complementary
requirements, the design of an optimal method is a challenging task.

The aim of this thesis is to provide a signal decomposition framework
which explicitly models and compensates for variability encountered in neu-
roelectrical recordings. Due to its general formulation, this framework can
be adapted to a variety of different signal processing tasks, by making the
task-specific specializations in the algorithm.

1.1 Contributions

The main result of this thesis is the design of a method, called adaptive wave-
form learning (AWL), for processing neuroelectrical signals. The novelty of
the approach is the explicit modeling of waveform variability through math-
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ematical transformations. The AWL method is developed on two different
levels:

The first level, presented in Chapter 4, is an analytical framework, which
considers a very general signal decomposition model with variability repre-
sented through arbitary linear transformations. This model provides a com-
mon framework to different neuroelectrical processing applications and can
be seen as a generalization of different exisiting models. For this analytical
setting, we do not provide a concrete implementation. However, we present
a generic algorithm that can be used as a recipe in order to implement con-
crete settings. Thanks to the formulation of AWL as a sparse model, the
generic algorithm can be efficiently implemented through alternate mini-
mization based on sparse coding.

On the second level, presented in chapters 5 and 6, general AWL is
then specialized to two settings frequently encountered in neuroelectrical
signal analysis: processing epoched (i.e., segmented) neuroelectrical signals
(e.g., event-related potentials) opposed to processing contiguous (i.e., non-
segmented) signals (e.g., epileptiform spikes). Both resulting implementa-
tions, E-AWL and C-AWL, are evaluated on simulated and real data and
compared to PCA, ICA, and template matching. The experiments give proof
of the utility of E-AWL and C-AWL as robust signal processing tools that
can learn interesting data representations. The two specializations are only
examples for possible implementations of AWL. Different variants, such as
an extension to multiple recording channels, may be derived in future works
by making the appropriate adjustments to the general framework. This will
be discussed in the concluding remarks in Chapter 7. In summary, this thesis
makes the following contributions:

• Introduction of the novel method AWL in an analytical setting and
design of a generic algorithm. See Chapter 4.

• Specialization of AWL to process epoched datasets (E-AWL) and its
efficient implementation using a modification of least angle regression
(LARS). In particular, E-AWL compensates for latency shifts as well as
phase differences across data epochs and can separate different signal
components by exploiting this variability. See Chapter 5.

• Specialization of AWL to process contiguous datasets (C-AWL) and
its efficient implementation using matching pursuit. C-AWL is used
to derive two spike learning techniques: MC-Spike, which assumes dif-
ferent spike classes of constant shapes, and AD-Spike, which models
spikes through a single template of adaptive duration. These tech-
niques allow for both spike detection and the learning of interesting
representations of the spike shapes and their variability across the data.
See Chapter 6.
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depends loosely on

Chapter 2: Analyzing Brain Electrical Activity
  

- Introduction to electrophysiolical recordings
- Goals of neuroelectrical signal analysis

Chapter 3: Neuroelectrical Signal Processing
   

- Review of processing techniques
- Focus on signal variability

Chapter 4: Adaptive Wavform Learning (AWL)
  

- Modeling of variability through transformations
- Introduction of AWL signal model
- Presentation of generic AWL algorithm

Chapter 5: Epoched AWL
- Specialization to epoched signals
- Efficient implementation through LARS
- Evaluation on synthetic and real data
- Comparison to PCA and ICA

Chapter 6: Contiguous AWL
- Specialization to non-epoched signals
- Implementation through matching pursuit
- Derivation of methods for spike learning
- Evaluation on real and semi-realistic data
- Comparison to template matching

Legend: Introductory content 

Main content 

depends strongly on

Figure 1.1: Illustration of the structure of the document and the dependencies between
chapters. The introductory material (green) provides the physiological and methodolog-
ical basics to neuroelectrical signal processing. The main contribution of this thesis, the
method AWL, is introduced in Chapter 4 and specialized to an epoched (i.e., segmented)
and a non-epoched signal setting in Chapter 5 and Chapter 6, respectively.

• Interesting findings in the coupling of neuroelectrical spiking activ-
ity and rhythms in the hemodynamics (Section 6.5). These findings
resulted from the spike representations learned with MC-Spike and
AD-Spike.

• Availability of the code for the different methods and the conducted ex-
periments online for reproducibility: https://github.com/hitziger/
AWL.

1.2 Outline

The content of this thesis is structured into an introductory part (chapters
2 and 3), the main part (chapters 4 - 6), and the conclusion (Chapter 7).
The content of each of these chapters is briefly summarized in the following
paragraphs. In order to provide an orientation to the reader, we illustrate
the structure of this document in the dependency chart in Figure 1.1.
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1.2. OUTLINE

Chapter 2 gives an introduction to the analysis of brain electrical ac-
tivity. We start by explaining fundamental concepts of the generation of
electromagnetic signals by neuronal assemblies, which are measurable at
different levels of the brain. Several modalities for recording the brain’s
electromagnetism, metabolism, and hemodynamics are presented. We then
provide an overview over different characteristics of neuroelectrical record-
ings and define challenges and objectives for processing these signals. The
chapter concludes by presenting an exemplary multi-modal study, conducted
in anesthetized rats and aimed at exploring the relationships between neu-
roelectrical and hemodynamic changes. This dataset is later analyzed in
detail (chapters 5 and 6) with the novel method AWL.

Chapter 3 provides a review of neuroelectrical signal processing tech-
niques, with a main focus on signal variability. The chapter starts with a
common averaging technique for event-related potentials introduced in Daw-
son (1954). It then shows different extensions to this technique that account
for different types of temporal variability, such as latency compensation by
Woody’s method (Woody, 1967). A different approach uses linear models
with different signal components and leads to the techniques PCA and ICA.
Sparse representation techniques, often in time-frequency domain, form an-
other group of popular tools for neuroelectrical signal processing. Finally,
some recent integrative approaches are presented that allow to account for
different types of variability in multi-variate data models.

Chapter 4 is the first of the three core chapters of this thesis presenting
the novel method adaptive waveform learning (AWL). The underlying model
explicitly includes general forms of signal variability which are described
through mathematical operations on the signal components. A generic algo-
rithm is proposed to compute the shapes of the waveforms and the variable
parameters (i.e., amplitudes, latencies, and general morphological deforma-
tions) used in the model. This algorithm is based on sparsity assumptions
about waveform occurrences and integrates sparse coding techniques in an
alternate minimization framework. This means that waveform shapes and
variability parameters are iteratively updated in subsequent steps. The
chapter is kept in a very general setting, such that AWL can be seen as
a metamodel for many of the techniques presented in Chapter 3. This gen-
erality allows to derive different concrete algorithms for specific applications,
such as the ones presented in the following chapters 5 and 6.

Chapter 5 addresses the processing of a set of epoched (i.e., segmented)
signals, containing event-related potentials (ERPs) or spontaneously repeat-
ing activity (SRA). For this purpose, the generic AWL algorithm from the
preceding chapter is specialized to compute signal components occurring
at variable latencies across epochs. The resulting E-AWL method is im-
plemented by adapting the iterative AWL framework: starting with a set
of waveforms initialized with white Gaussian noise, these waveforms and
their amplitudes and latencies are efficiently updated in each algorithm step
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through block coordinate descent and least angle regression (LARS), respec-
tively. E-AWL is first evaluated on synthetic data for different amplitude
and latency variability as well as different noise levels. We then illustrate the
ability of E-AWL to produce meaningful representations of epoched epilep-
tiform discharges (spikes) from the real data presented in Chapter 2. The
results of both experiments are compared to those of principal component
analysis (PCA) and independent component analysis (ICA).

Chapter 6 describes an alternative approach to E-AWL by process-
ing contiguous signals, that is, without epoching. Again, the corresponding
algorithm, C-AWL, can be derived from general AWL by making the appro-
priate specializations. This problem is more difficult compared to E-AWL
in the sense that the time instants of the waveform occurrences are now
completely unknown and have to be detected at arbitrary latencies through-
out the entire signal. This is tackled through an efficient implementation
based on matching pursuit. In addition, the initialization of waveforms is ex-
tremely important in order to avoid detecting irrelevant signal components.
The concrete implementation is demonstrated for the example of two spike
models: MC-Spike, which assumes spike shapes from different classes, and
AD-Spike, consisting of single spike template with variable duration. These
algorithms are applied to the epileptiform spikes processed in Chapter 5,
however, now without prior epoching. This results in a more complete rep-
resentation of the dataset, as overlapping spikes which had been discarded
in the epoched setting, are now also taken into account. AD-Spike and
MC-Spike are then compared to template matching in terms of detection
accuracies in noisy data. Finally, the learned spike representations are used
to reveal interesting insights into coupling with hemodynamic data, which
had been recorded simultanously with the electrical discharges.

1.3 Notation

Throughout this thesis, we will use bold lower case letters to denote vec-
tors (e.g., x,y,d), and bold upper case letters to denote matrices (e.g.,
A,D). If not specified otherwise, vectors are always understood as column
vectors. Non-bold lower case letters denote scalars, e.g., entries in vectors
x = (x1, . . . , xN ) or matrices A = (aij). An exception to this convention is
made in Chapter 4 where the bold lower case letters x,y,d denote temporal
signals defined on the real numbers R.
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Chapter 2
Analyzing Brain Electrical Activity

This chapter provides an introduction to electrophysiologi-
cal brain activity and related recording modalities. We discuss
the characteristics of neuroelectrical signals and define goals
for their analysis. The chapter is concluded by an exemplary
study investigating the coupling of hemodynamic and electrical
brain activity.
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CHAPTER 2. ANALYZING BRAIN ELECTRICAL ACTIVITY

Figure 2.1: Elecotrochemical communication between two neurons. The left (presy-
naptic) neuron generates an electric action potential (AP) that travels along its
axon. Through the synpase, a chemical interneural connection, the signal contin-
ues as postsynaptic potential (PSP) in the dendrites of the right neuron. Source:
http://www.kurzweilai.net/images/neuron_structure.jpg.

2.1 Introduction

Understanding the mechanisms underlying the functioning of the human
brain remains a great challenge in modern neuroscience. Sophisticated non-
invasive modalities capable of recording electromagnetic, metabolic, and
hemodynamic changes related to neuronal activity have enabled large-scale
studies on living human subjects. Despite the technological advances, non-
invasiveness produces significant limitations regarding signal quality, tem-
poral and spatial resolution, as well as information on single cell activity.
Invasive techniques mostly used in animal experiments provide important
complementary information. There has been growing interest in simultae-
nous recordings with different modalities and studying how their underlying
phenomena are related.

In this chapter, we focus on the electrophysiology of the brain and com-
monly used recording modalities. We also briefly describe modalities ex-
ploring the brain’s hemodynamics and metabolism and give examples for
simultaneous multi-modal recordings. We then discuss current challenges
concerning the signal analysis and outline some general goals for successful
neuroelectic signal processing. These will serve as a guideline for the com-
parison of existing techniques and the design of new methods in the following
chapters. We conclude this chapter by discussing an exemplary multi-modal
study in an animal model of epilepsy.

2.2 Electrophysiology of the brain

The human brain is estimated to contain around 100 billion neurons (Azevedo
et al., 2009) which are permanently exchanging information along interneural
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2.2. ELECTROPHYSIOLOGY OF THE BRAIN

Figure 2.2: Large assemblies of cortical pyramidal neurons generate electromagnetic
fields of sufficient magnitudes to be measured on the scalp level. Left: Postsynaptic
potentials (PSPs) travel along the apical dendrites of pyramidal cells in the cortex,
directed perpendicular to the cortical surface. They generate primary (intracellular)
and secondary (extracellular) currents. Center: Thanks to the parallel arrangement
of the apical dendrites, the electromagnetic fields produced by a synchronously active
neural assembly sum up. The accumulated field can be modeled as a dipole with normal
orientation with respect to the cortical surface. Right: If the assembly is sufficiently
large, the resulting electromagnetic cortical source can be detected at thescalp level.
Source: Baillet et al. (2001).

connections. This exchange is driven by electrochemical processes, through
which neurons excite or inhibit other neurons to which they are connected
through synapses, as depicted in Figure 2.1. When a neuron receives a
large amount of excitatory signals in a short time interval, sufficient to sum
above a certain threshold, the neuron fires: voltage-gated ion channels open,
causing a transient depolarization in the neuron’s membrane. This so called
action potential (AP) travels along the neuron’s axon and eventually contin-
ues as a postsynaptic potential (PSP) in the dendrites of connected neurons.
The respective potential differences cause primary currents to flow inside the
cell. The electric circuit is closed by secondary currents through all parts
of the surrounding volume conductor, including the entire brain, skull, and
scalp. In addition, both primary and secondary currents cause a change in
the magnetic field.

In theory, the generated potentials have an impact on the electromag-
netism at all three levels: intracellular, extracellular inside the head, and on
the surface of the skull (i.e., even outside the head in case of the magnetic
field). However, the electromagnetic field generated by a single neuron is
small and decays with the square of the distance to the field’s origin. Hence,
it can only be empirically observed inside or in the immediate vicinity of
the cell. In order to be measurable at the scalp level, the potentials of a
synchronously firing neuron assembly need to add up.
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Figure 2.3: First human EEG recorded in 1924 and published in Berger (1929). The
actual recorded signal is shown on top, while the second is a sinusoidal reference signal
of 10 Hz, demonstrating the oscillatory measurement to represent alpha rhythms (cf.
Section 2.5).

The conditions for such an electromagnetic field superposition are prob-
ably the most favorable for large assemblies of pyramidal cells in layers III
and V of the cerebral cortex. These neurons have long apical dendrites per-
pendicular to the cortical surface. Hence, when a large number of PSPs
travel synchronously along the dendrites, the generated parallel electromag-
netic fields add up. This process is shown in Figure 2.2. On the contrary,
APs are believed to hardly contribute to the electromagnetic field at the
scalp level. Although their relative membrane potential differences are larger
(around 100 mV) than for PSPs (around 10 mV), they only last for several
milliseconds (tens of milliseconds for PSPs). This makes the synchronicity
constraint more stringent in order for APs to sum up.

More detailed information about the brain’s electrophysiology can be
found in Speckmann and Elger (2005).

2.3 Recording electromagnetic activity

2.3.1 Electroencephalography (EEG)

Ever since German physician Hans Berger obtained the first recordings of
brain electrical activity in a human in 1924 (see Figure 2.3), electroen-
cephalography (EEG) has been an extremely successful tool for studying
the functioning of the brain. While Berger originally only used a single pair
of electrodes to record potential differences between two locations on the
scalp, a modern EEG protocol can measure up to 512 scalp potentials with
sampling frequency of 10 000 Hz simultaneously. However, most setups only
use less than 40 electrodes (see Figure 2.4). The equipment required for
recording a modern EEG is simple and inexpensive, especially when com-
pared to other brain imaging devices, and essentially consists of a set of
electrodes, a signal amplifier, and a computer.

EEG almost instantaneously captures the electrical neural activity. This
makes it the method of choice to study epilepsy, which is characterized
by seizures involving abnormal electrical activity of neurons in the affected
brain regions. A recording of such a seizure is shown in Figure 2.5.
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2.3. RECORDING ELECTROMAGNETIC ACTIVITY

Figure 2.4: Left: EEG recording session with multi-electrode cap at Inria Sophia An-
tipolis. Right: Visualtization of potential differences on the scalp, source: Vallaghé
(2008).

The high temporal resolution around a millisecond provides a detailed
temporal view of the brain activity. This furthermore allows direct real-
time communication from the brain to an external device, known as brain-
computer interface (BCI). These interfaces can help to study cognitive or
sensory-motor functions and assist humans in the execution of these func-
tions. A currently widely studied example is the P300 spelling device (cf.
Section 2.5.1), enabling text production solely through the EEG. Other ap-
plications of EEG include the diagnosis of sleep disorders, encephalopathies,
brain death, and the assessment of degrees of consciousness in coma.

In the past decades, much effort has been made to determine more pre-
cisely the spatial locations of the active neural sources by exploiting the
different electrode positions. However, despite improvements, the spatial
resolution of EEG remains limited (around 20 mm), staying behind that
of more recent brain imaging techniques, notably functional magnetic reso-
nance imaging (fMRI). Another shortcoming of EEG is the generally high
noise level in the recordings caused by neural background activity. This of-
ten makes it necessary to acquire large amounts of data in order to extract
useful information.

Nevertheless, EEG has hardly lost in popularity. Currently, much effort
is made to maximize the usability of EEG devices through electrodes (or
electrode caps) that do not require any conductive gel. These improvements
could enable even more wide-spread use of EEG and the possibility of long-
term monitoring outside clinics or laboratories.

2.3.2 Intracranial recordings

EEG usually refers to non-invasive recordings on the scalp. While these
measurements outside of the head give a broad view of brain activity, their
spatial resolution is limited. Different research studies and clinical applica-
tions, however, require to record activity directly at precise locations in the
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Figure 2.5: EEG recordings of a patient during epileptic seizure. The time series show
potential differences between the two scalp electrodes marked on the left (e.g., Fp1-F3),
named according to standard placement conventions. Source: https://teddybrain.

wordpress.com.

brain by placing electrodes inside the skull.

In humans, the most common application of intracranial recordings is
the exact localization of the cortical regions that generate epileptic seizures,
often necessary prior to the treatment of epilepsy through surgery. For
this purpose, single or multiple electrodes are either implanted directly onto
the exposed surface of the cortex or even into deeper brain tissues. These
techniques are known as electrocorticography (ECoG) and stereoelectroen-
cephalography (sEEG), respectively.

In animals, intracranial recordings date back to as early as 1870 and are
frequently used for research purposes. Depending on the size and impedance
as well as the exact placement of the electrodes, neural activity can be mea-
sured at micro- and mesoscopic levels. When placed close (within about
50 µm) to a neuron, a microelectrode can measure directly its unitary activ-
ity (Harris et al., 2000). In contrast, larger electrodes that are located in a
greater distance from the active sources will capture the combined activity
of populations of neurons. The high frequency components above 300 Hz
contain multiple-unit spike activity (MUA), while the signal filtered below
300 Hz is refered to as local field potential (LFP) (Logothetis, 2003).

In order to investigate higher cognitive functions, animals with brain
structures closest to humans such as non-human primates are prefered. How-
ever, for the study of the basic neural mechanisms – for example for a better
understanding of the origins and progress of epileptic seizures – smaller an-
imals such as rats are frequently used.
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2.3. RECORDING ELECTROMAGNETIC ACTIVITY

Figure 2.6: Left: A coronal slice through a human brain illustrating the cerebral cor-
tex, that is, the brain’s outer layer. Its convoluted arrangement leads to ridges (gyri)
and fissures (sulci). Adapted from http://www.slideshare.net/kbteh/human-brain.
Right: The magnetic field resulting from an electric current dipole lies in a plane that
is perpendicular to the current flow. Source: Gramfort (2009).

2.3.3 Magnetoencephalography (MEG)

Magnetoelectroencephalography (MEG) is the counterpart to EEG, exploit-
ing the magnetic field generated by the active neurons. Introduced in 1968
by physicist David Cohen (Cohen, 1968), MEG was able to record signals
of quality similar to EEG only after the invention of the first SQUID (su-
perconducting quantum interference device) detectors (Zimmerman et al.,
1970). In order to adequately measure the extremely small brain’s magnetic
field in the order of 10-100 femtotesla (fT), modern MEG uses sophisticated
equipment and requires a magnetically shielded room.

An advantage of MEG compared to EEG is the higher spatial resolution,
due to typically larger numbers of detectors and the higher insensitivity of
the magnetic field to skull and scalp. However, the complicated recording
conditions and high equipment costs limit its use.

2.3.4 Complementary measurements of EEG and MEG

While electric potentials and the magnetic field measured outside of the
head both originate from the electrical neural activity, there are important
qualitative differences between EEG and MEG recordings. As explained in
Section 2.2, only large assemblies of simultaneously active pyramidal neurons
are believed to significantly contribute to the electromagnetic field at scalp
level. Since most electric current flows normally to the cortical surface, the
direction of this field depends on the position of the source in the cortex,
due to its convoluted arrangement in the brain (see Figure 2.6). In cortical
regions parallel to the skull (in particular the gyri), most current flows to the
nearest parts of the skull and can thus be detected by EEG. The magnetic
field lines, however, are located in a plane tangential to the skull, and the
electric source will be hardly visible to MEG. Sources in a cortical sulcus,
in turn, can be better observed through MEG than through EEG. Hence,
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CHAPTER 2. ANALYZING BRAIN ELECTRICAL ACTIVITY

EEG and MEG are actually complementary in the sense that they are each
optimal for differently located sources.

2.4 Recording metabolism and hemodynamics

The recording modalities presented in the previous section capture the neu-
ral activity very directly, since the electromagnetic field propagates almost
instantaneously. The greatest drawback is the limited spatial resolution of
the non-invasive EEG and MEG.

Alternatively, neural activity can be measured indirectly through the
brain’s metabolism and hemodynamics. Active brain regions require an in-
creased supply of nutrients such as oxygen and glucose, which in turn results
in a change of the cerebral blood flow (CBF). The metabolic and hemody-
namic changes, however, typically occur with a time lag of 1 second or more
after the neural events. Many different techniques are used to measure the
metabolism or CBF, leading to very complementary observations compared
to the electromagnetic recordings.

Functional magnetic resonance imaging (fMRI) uses the blood-oxygen-
level dependent (BOLD) contrast to obtain detailed spatial maps of neural
activation, with a resolution as fine as a few millimeters. Since the dis-
covery of the BOLD-contrast by Seiji Ogawa in the 1990s (Ogawa et al.,
1990), the non-invasive fMRI has become the most widely-used tool for
brain mapping research. The CBF and blood oxygenation can also be mea-
sured through near-infrared spectroscopy (NIRS) (Gibson et al., 2005) which
exploits the different optical absorption spectra of oxygenated and deoxy-
genated hemoglobin. In contrast to fMRI, NIRS is more portable and can be
used in infants. However, its use is limited to scan cortical tissue, whereas
fMRI measures activity throughout the entire brain. Laser Doppler flowme-
try (LDF), like NIRS, also involves the emission and detection of monochro-
matic light to and from neural tissue. The frequency of the red or near-
infrared light is shifted according to the Doppler principle when scattered
back from moving blood cells. This allows to monitor changes in the CBF.
As a drawback, LDF cannot be calibrated in absolute units, as noted in
Vongsavan and Matthews (1993). All three methods presented above are
completely non-invasive.

In contrast, nuclear imaging, including positron emission tomography
(PET) (Bailey et al., 2005) and single photon emission computed tomogra-
phy (SPECT), require the injection of a radioactive tracer into the blood-
stream. The tracer can be located as it produces measurable gamma rays
either directly (SPECT) or indirectly through emitted positrons (PET). De-
pending on the specific tracer, the recordings can measure either oxygen or
glucose levels in the blood, or directly the CBF.

The methods presented above are only a subset of brain recording and
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NIRS
SPECT

ECoG/
sEEG

Figure 2.7: Comparison of spatial and temporal resolution of different brain imaging
techniques. Adapted from Olivi (2011).

imaging techniques.

A comparison of the spatial and temporal resolution and the invasiveness
of the presented electrophysiological and metabolic/hemodynamic recording
modalities is shown in Figure 2.7. We note that the presented selection is not
exhaustive as their exist many other techniques for observing activity in the
brain. Because of the complementary information obtained through hemo-
dynamic and metabolic recordings compared to electromagnetic recordings,
it has been of interest to combine two or more of these modalities for si-
multaenous recordings. Such approaches can help to better understand the
relationship between neural activity and blood flow changes, known as neu-
rovascular coupling (Vanzetta et al., 2010).

2.5 Neuroelectrical signals

Neuroelectrical recordings can produce signals with very different character-
istics. The first measured EEGs by Hans Berger showed strong oscillatory
activity around 10 Hz. Oscillations of different frequencies have since been
observed and divided into distinct frequency bands, associated with differ-
ent types of mental activity: delta rhythm (< 4 Hz, e.g., deep sleep), theta
rhythm (4− 7 Hz, e.g., drowsiness), alpha rhythm (8− 13 Hz, e.g., relaxed,
eyes closed), beta rhythm (14 − 30 Hz, e.g., active thinking, certain sleep
stages), and gamma rhythm (> 30 Hz, e.g., active information processing);
see, for instance, Sörnmo and Laguna (2005, chapter 2). Other than rhyth-
mic activity, transient waveforms such as increases or decreases in the electric
potential are observed. Different types of rhythmic and transient activity
are also observed during different sleep stages (see Figure 2.9).

23



CHAPTER 2. ANALYZING BRAIN ELECTRICAL ACTIVITY

The measured electrical activity is often divided into two categories:
Event-related potentials (ERPs) are associated with the occurrence of a
specific (and usually observable) event, such as muscle movements or the
processing of a stimulus. All other activity can be subsumed as spontaneous
activity.

The analysis of neuroelectrical signals is often very challenging due to low
signal-to-noise ratios. This is especially the case for non-invasive recordings,
where signals are buried in noise or neural background activity. In order to
recover the signals of interest, typically, a large set of data samples has to be
acquired. We will here introduce the main issues related to the processing
of ERPs and spontaneous activity.

2.5.1 Event-related potentials (ERPs)

Event-related potentials (ERPs) are often studied in a setting where the
underlying event (i.e., often a stimulus) can be controlled. Recordings are
typically performed continuously while keeping track of the time instants
(latencies) of the presented stimuli. This allows to automatically segment the
contiguous dataset into short time windows around or after each stimulus,
a process refered to as epoching. Taking the average over these windows, or
epochs, results in an enhanced ERP waveform (Dawson, 1954).

However, averaging relies on the assumptions of a constant ERP re-
sponse across all epochs and additive white noise. Both assumptions are
highly questionnable, and alternatives to averaging, which take into account
variable response latencies and temporal scaling, are presented in the next
chapter. Moreover, the practice of epoching the recorded signal may itself
be challenged. In fact, as time intervals between presented stimuli are often
short, epoching can introduce errors due to overlapping responses.

A widely studied ERP is the P300, describing a positive potential oc-
curring approximately 250-500 ms after the target stimulus (Polich, 2007).
It is typically observed in the so called oddball task, in response to a rare
target stimulus occurring among frequent standard stimuli (Donchin et al.,
1978; Pritchard, 1981). A main challenge of its assessment lies in the strong
variability of its shape and latency (w.r.t. the stimulus) across subjects and
task conditions. Another frequently studied evoked potential is the negative
N100 which peaks about 80-120 ms after the stimulus onset. It is often fol-
lowed by the positive P200. Figure 2.8 schematically illustrates an oddball
task with a P300 response to the target stimulus and a N100-P200-N200
complex after non-targets.

The Bereitschaftspotential (German for readiness potential), or BP is
a slow negative potential observed in the motor cortex, preceding human
volutary movement (Deecke et al., 1976; Kornhuber and Deecke, 1965).
The Bereitschaftspotential is about one or two magnitudes smaller than
the alpha-rhythm measured in the EEG and only becomes apparent after
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Figure 2.8: Illustration of the P300 ERP from (Polich, 2003). As long as the incoming
stimuli remain unchanged, the measured responses are sensory evoked potentials with
N100, P200, and N200 components. When the subject perceives a rare target stimulus
as in the oddball task, the positive P300 potential can be observed in addition to the
sensory evoked potentials.

averaging. Although the BP occurs before the muscle movement, it is still
time-locked to this event and thus considered an ERP.

In constrast to these transient responses, the steady-state evoked poten-
tial is an ongoing response to a quickly repeating stimulus. The steady-state
visual-evoked potential (SSVEP), for instance, is induced by a flickering at
a constant frequency around 6 to 100 Hz and produces an increase in am-
plitude at the stimulated frequency.

When dealing with event-related oscillatory activity, it is important to
distinguish between evoked and induced activity. Evoked activity refers to
periodic activity that is phase-locked to the stimulus, while induced activity
is not. Stimulus-locked averaging is suited to enhance the evoked activity.
The varying phase of induced activity, however, leads to a decrease of am-
plitude in the average. In Tallon-Baudry and Bertrand (1999), the authors
suggest averaging over time-frequency power maps; this technique will be
discussed in the following chapter.

Introductions and detailed information about ERPs can be found, for
instance, in Kutas and Dale (1997), Picton et al. (2000), or Luck (2012,
2014).

2.5.2 Spontaneously repeating activity (SRA)

All recorded activity that is neither noise introduced through the record-
ing process nor directly attributed to a specific event is commonly refered
to as spontaneous activity. While in the context of processing ERPs the
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Relaxed wakefulness Alpha waves

Stage 2

Delta waves

REM or dreaming sleep

Stage 1

Sleep spindles

Theta waves

Stages 3 and 4

K-complex

Figure 2.9: Brain activity during different sleep stages. The detection of transient sleep
spindles and K-complexes, for example, can help in diagnosing stage 2 sleep.

spontaneous background activity is often considered as noise, it can contain
interesting transients and rhythmic activity that are the subject of study in
other applications. Polysomnography, a type of sleep study involving EEG
recordings, can make use of ongoing rhythmic brain activity or transients
such as sleep spindles or K-complexes (De Gennaro and Ferrara, 2003) to
detect different sleep stages or diagnose sleep disorders (see Figure 2.9). An-
other application is the detection of inter-ictal (i.e., between seizures) spikes
(see Figure 2.10) as a possible predictor of an epileptic seizure.

If recordings are reasonably short, the events of interest may be identified
by a human expert. Epoching, as described in the previous section, then may
be performed in order to further analyze the extracted waveforms. However,
recordings often last for several hours or even days, making monitoring by a
human expert infeasible, especially when real-time detection is required. In
this case, automatic detection and classification techniques are needed that
can process the entire contiguous recording.

For the purpose of this thesis, we shall introduce the term spontaneously
repeating activity (SRA) as follows: by SRA we mean all activity of inter-
est which repeats multiple times throughout the recorded signal, possibly
with changing waveform amplitudes and shapes. Examples of SRA are, for
instance, the inter-ictal spiking activity or the occurrences of sleep spindles
mentioned above. SRA may be linked to some underlying phenomenon, but
the time instants are unknown. In contrast, when refering to ERPs, we
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will assume that the time instants of the triggering events and hence the
approximate temporal locations of the waveforms are given.

2.6 Signal analysis: goals and challenges

As we have just seen, the range of brain imaging techniques and neurological
research fields is broad. Consequently, the measured brain signals have
very different characteristics and the purpose of their analysis varies across
applications. Nevertheless, in this section, we discuss general objectives
in the processing of neuroelectrical signals and outline the qualities of an
”ideal“ method. This will serve us as a reference for comparing existing
methods in Chapter 3. It will also be the starting point for designing a new
technique that addresses the challenges found across different applications
(see Chapter 4).

A main issue addressed in this thesis is the occurrence of waveform vari-
ability encountered in many neuroelectrical signals. This variability needs
to be adequately described so that it can be compensated for. Further-
more, it can serve as a valuable source of information. It is desired that the
obtained data representations be compact and allow for easy and physiolog-
ically relevant interpretations. Finally, a good processing technique should
be efficient, adaptive to input and application, and automatic. These aspects
are discussed in detail in the following subsections.

2.6.1 Assessing variability

Large variability in brain electrical signals is often observed when comparing
the responses of different subjects within the same experimental protocol.
However, it may also occur within a single subject and recording session.
This trial-to-trial variability has been acknowledged in many studies (Jung
et al., 2001; Kisley and Gerstein, 1999). It concerns variable amplitudes and
response latencies as well as more general shape deformations. Some of this
variability can be explained, for instance, as results habituation or fatigue
throughout a recording session or calibration errors in the recording device.
However, the largest portion remains non-deterministic.

We will refer to variability as any change of a specific waveform across
different occurrences. This may include a broad range of phenomena, such
as changing latencies (e.g., w.r.t. a stimulus), rate of occurrence, amplitude,
duration, frequency, phase, or even more general morphological deforma-
tions. For example, in the case of induced gamma activity (Tallon-Baudry
and Bertrand, 1999), the oscillatory response is subject to phase shifts (cf.
Section 2.5.1).

Regardless the origin of the variability, its description and quantification
can provide an important source of information. A proper compensation for
this variability furthermore leads to a better characterization of the ”true“
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or stereotypical response waveform (see Figure 3.1 in the next chapter for
an illustration of averaging without jitter compensation). It can also help to
separate different phenomena if their mutual variability is not entirely corre-
lated. We suggest to assess variability through the following three guidelines:

• For each type of observed waveform (waveform class), determine a
template waveform representing it.

• Detect all occurrences of each waveform class.

• Characterize variability in every waveform class and quantify the de-
viation of each occurrence from the template.

In this thesis, we will focus mainly on variability in two contexts: event-
related potentials (ERPs, cf. Section 2.5.1) and spontaneously repeating
activity (SRA, cf. Section 2.5.2). Both cases require the processing of a
waveform that is subject to change. However, in the case of SRA, the
waveform occurrences are in general unknown, hence the necessity of the
detection step. For ERPs, the time instants of the stimuli are given; however,
associated waveforms may occur at variable latencies.

The three steps above are actually interdependent: An adequate descrip-
tion of each template waveform should be a kind of variability-compensated
average of the members of its class. Characterization of the variability, in
turn, requires all instances of a class and is expressed relative to its repre-
senting template. This inderdependence is essentially very similar to that
encountered in vector quantization or clustering: the locations of the cen-
troid points depend on the members of the cluster, while the class label of
each vector depends on the nearest centroid point. The well-knownK-means
algorithm (MacQueen et al., 1967) solves this problem – very intuitively –
through alternating updates between centroid locations and vector label-
ing. Another prominent technique that uses alternating updates is Woody’s
method (Woody, 1967) in order to compensate for latency variability while
calculating the average. This method will be presented in the following
chapter.

2.6.2 Compact and interpretable representation

Naturally, a good data representation should be compact and interpretable.
For the particular representation suggested above, the number of waveform
classes should be kept as low as possible. In addition, the variability is
best described in terms that can easily be quantified or parametrized. The
representation should enable to reconstruct an approximation of the data
that contains maximal signal and minimal noise variance.

Ideally, each waveform class represents some physiological phenomenon.
In the case of multi-channel EEG (or MEG), waveforms could be associated
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with active neural sources. In fact, much effort has been made to clearly
separate the active sources functionally or spatiotemporally.

Compact and physiologically relevant data representations not only allow
for easy interpretation but can also be used for further processing. An
example is the relationship between multi-modal data: Often, these datasets
are of too different nature to be compared directly. Meaningful features can
instead be used to calculate dependencies or correlations.

A frequently used technique is sparse coding over large dictionaries of
elementary signals, such as wavelets (cf. Section 3.6). However, the indi-
vidual dictionary atoms often do not well represent the signals of interest.
When using symmetric Gabor atoms, for instance, a large number of them
will be necessary in order to approximate an asymmetric waveform.

2.6.3 Flexible algorithm

In order to be applicable to a wide range of signals and tasks, high flexibility
and adaptivity of the algorithm is useful. It should be able to learn signal
representations blindly, that is, with few prior assumptions. However, if
reliable information is available (e.g., on waveform shapes or instances, vari-
ability, etc.), it should be exploited by the algorithm. Maximal use of prior
information is crucial for low signal-to-noise ratios to avoid noise fitting.

Ideally, data should be processed as ”raw“ as possible. While certain pre-
processing steps such as frequency filtering are often indispensable, their use
comes with the risk of losing relevant information. For example, epoching of
events to simplify averaging may introduce distortions if waveforms overlap.
Therefore, it appears beneficial to process contiguous recordings as a whole.
Multi-variate data (e.g., multiple recording channels, experimental trials,
different modalities) should also be processed in one procedure, if possible.
This way, possible coupling between the different datasets can be maximally
exploited.

Finally, an optimal method should allow for efficient implementations,
enabling fast computation and real-time detection of waveforms.

2.7 Example dataset: multi-modal recordings

To conclude this chapter, we illustrate different concepts addressed in this
chapter on an exemplary study, which we will analyze in detail through
different approaches in the following chapters.

The context of the study was the ANR1 project Multimodel, which aimed
to reveal hidden parameters through multi-modal data fusion with biophys-
ical models (Blanchard et al., 2011; Hitziger et al., 2013; Saillet et al., 2015;

1L’Agence Nationale de la Recherche
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Figure 2.10: Local field potential (LFP, red) and cerebral blood flow (CBF, black) were
recorded simultaneously in a rat’s cortex. Top row: The approximately one hour long
recording clearly shows an increase in the CBF level during increased spiking activity
(red vertical lines) in the LFP. Middle row: During increased LFP activity, the change
in CBF does not seem to be directly related to the individual spikes. Bottom row:

When the distance between spikes is sufficiently large, a clear CBF response becomes
visible. Note the different time scales in the three windows.
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Voges et al., 2012). The particular dataset presented here consists of simul-
taneous recordings through several modalities in the cortex of anesthetized
rats. Prior to and during the recording, bicuculline was injected locally to
block inhibition, which caused neural electric discharges, simulating inter-
ictal (i.e., between epileptic seizures) spiking activity. The complete record-
ing protocol which included six rats and other recording modalities can be
found in Saillet et al. (2015), currently under review. The goal was to study
activity of individual cells and neural assemblies, as well as their link with
the hemodynamics.

Here, we will focus on the relationship between epileptiform spikes in
the local field potential (LFP, cf. Section 2.3.2), measured by an intracor-
tical electrode, and the cerebral blood flow (CBF), obtained through laser
Doppler flowmetry (cf. Section 2.4). These simultaneous recordings are il-
lustrated in Figure 2.10. The first row contains the entire time series of
approximately one hour. The LFP (red) and CBF (black) are superposed in
this plot to illustrate their relationship. The long vertical lines in the LFP
are epileptiform discharges (spikes). Clearly, during increased spiking activ-
ity, the baseline of the CBF rises. The first outburst of spikes is depicted in
the second row, showing only a short time window of the entire recording.
Here, a relationship between individual spikes and CBF response cannot be
directly seen, which is due to the short intervals between spikes (1-4 sec-
onds) and possibly a saturation of the CBF. In contrast, during low spiking
activity (last row), each LFP spike is followed by a clear CBF response.

When calculating the CBF response through conventional averaging,
only a small subset of well-isolated spikes can be taken into account, since
the typical response time is very long, that is, typically above 30 seconds
(Vanzetta et al., 2010). This would exclude the periods of high spiking
activity from the analysis, which could be of particular interest when in-
vestigating the coupling of neuroelectrical and hemodynamic phenomena.
Response estimation through deconvolution (Vanzetta et al., 2010) can the-
oretically cope with response overlaps. However, during very high spiking
rates, the CBF responses do not superpose linearly, leading to low reliability
of these estimates.

As we will see throughout the further analysis of this dataset, there
are several interesting dynamics and couplings between the datasets that
cannot be observed by visual inspection. In a order to assess these hidden
relationships, it can be beneficial to first describe the dynamics across the
LFP spikes. In particular, this means variability in spike shapes, duration,
energy, and occurrence rates. These parameters can then be correlated with
the dynamics in the CBF in order to exploit the neurovascular coupling.

The novel method AWL introduced in Chapter 4 allows to learn data
representations with variable waveforms. By making the appropriate spe-
cializations in chapters 5 and 6, we will show how AWL can produce com-
plementary spike representations by learning on epoched and contiguous
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recordings, respectively. The contiguous processing in Chapter 6 allows for
a more complete representation of the dataset as it takes into account the
entirety of epileptiform spikes (including superpositions). This allows to re-
veal interesting relationships between LFP spiking activity and dynamics in
the CBF (cf. Section 6.5).
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Chapter 3
Neuroelectrical Signal Processing

This chapter provides and overview of widely-used tech-
niques for processing neuroelectrical data. It also introduces
concepts used for the AWL algorithm presented in Chapter 4.
For this purpose, we focus especially on aspects of signal vari-
ability.
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CHAPTER 3. NEUROELECTRICAL SIGNAL PROCESSING

3.1 Introduction and overview

This chapter has two aims: (i) describe important and widely-used tech-
niques for processing neuroelectrical data and (ii) introduce concepts used
for the algorithm proposed in Chapter 4. For this purpose, we limit the
selection of presented methods to those relevant for this thesis and focus
especially on aspects of signal variability. For a more exhaustive overview of
neuroelectrical signal processing, see for instance Michel and Murray (2012).

As we have discussed in the previous chapter, the processing and inter-
pretation of electrophysiological recordings is a challenging task. A single
recorded signal in response to a presented stimulus, for instance, may not
allow any conclusions concerning the event-related potential (ERP), as these
recordings tend to be highly non-deterministic and noisy.

Acquiring a large number of experimental trials on several recording
channels improves the possibility of separating the signal of interest from
neural background activity or instrumental noise. However, a good estima-
tion of the event-related part of the recordings requires adequate modeling of
both the signal of interest and the noise. The most simple signal-plus-noise
(SPN) model leads to the practice of ensemble averaging (Dawson, 1954),
discussed in the next section. While this technique has remained common
practice until today, many variations of the SPN model have been proposed,
leading to more sophisticated techniques.

One of the main concerns with the SPN assumptions is the frequently
observed variability of the event-related response itself. While amplitude
changes do not largely affect the calculated average, variability in latency –
if not accounted for – can lead to serious distortions and smoothing through
averaging. Different time delay estimation techniques have been proposed
to compensate for the temporal variability, a prominent approach being
Woody’s method (Woody, 1967) described in Section 3.3.1. More general
temporal rescaling can be obtained by dynamic time warping (Section 3.3.2).

A different approach consists in modeling the event-related response as
a multi-component signal. These components may be of purely functional
purpose, such as for dimensionality reduction of the data. This is the ob-
jective of principal component analysis (PCA) (Section 3.4.1), which proves
capable of compressing the majority of the data variance in only a few com-
ponents. Components may also be identified directly with active neural
sources. Assuming statistical independence between sources allows their
separation through independent component analysis (ICA) (Section 3.4.2).
As both PCA and ICA are linear methods, they cannot compensate for
temporal variability across trials. For this reason, they are most frequently
applied to different recording channels, making use of their strict isochronic-
ity.

The methods mentioned above each address one particular aspect of
variability: Woody’s method, for instance, accounts for latency variability
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of a single waveform while PCA and ICA consider varying amplitudes of
different components. In Section 3.5 we describe an approach, differentially
variable component analysis (dVCA), that explicitly combines these two
aspects of variability in a single framework.

Sparse representations (Section 3.6) have proven useful for many sig-
nal and image processing tasks. Especially when shown in time-frequency
domain, these representations give a good view of the activity in the neu-
roelectrical recordings. Sparse coding techniques (Section 3.6.1) allow to
extract features, which have been previously defined in a dictionary, from
the signals. Alternatively, dictionaries can be learned simultaneously with
the code in a data-driven approach, which is discussed in Section 3.6.2. Some
extensions to dictionary learning take into account different invariances such
as translation invariance (Section 3.6.3). These techniques produce more
compact representations that are better interpretable and can cope with
temporal jitter.

3.2 Ensemble averaging

Given a number of experimental trials {xm}Mm=1, the basic signal-plus-noise
model (SPN) assumes an underlying deterministic signal d (e.g., the event-
related potential or ERP) that is unchanged across trials and background
noise ǫm for each trial, leading to

xm = d + ǫm, m = 1, . . . ,M. (3.1)

Averaging over m as suggested in Dawson (1954) leads to the estimation

d̂ =
1

M

M
∑

m=1

xm = d +
1

M

M
∑

m=1

ǫm.

Assuming ǫm to be independent across trials and the noise variance σm to
be the same for all trials, the noise amplitude in the average d̂ is reduced
by a factor of 1/

√
M with respect to a single trial. However, in many

experiments, this noise reduction cannot be observed empirically, showing
the SPN to be overly simplistic. In fact, the assumptions of a constant event-
related signal and the independence of background noise ǫm across trials are
highly questionable.

In Figure 3.1, we illustrate the effects of averaging over trials xm if
d is not constant. In the case of varying amplitudes only, averaging still
yields a very a good estimate of d (row 3). However, when the latencies
of d vary across trials, the amplitude in the average is reduced and the
waveforms are smoothed (row 4, see figure caption for details). The subject
of temporal variability across waveforms has always been a major concern
in neuroelectrical signal processing and will be treated in the next section.
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Figure 3.1: Three differently shaped, normalized waveforms are plotted without (top
row) and with white Gaussian noise (second row, SNR: -2 dB). Row three shows aver-
ages over 100 noisy instances of each waveform, with amplitudes drawn from a Gaussian
distribution (mean µ = 1, standard deviation σ = 0.5). The last row shows the average
over noisy waveforms with variable latencies (µ = 0, σ = 0.1 seconds). All signals have
been normalized for better comparison. Averaging without latency compensation leads
to serious distortions and smoothing in the waveforms. The signal-to-noise ratio (SNR)
of the third waveform even worsens after averaging.
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3.3 Models with temporal variability

From the beginnings of ERP processing, it has been acknowledged that
temporal variability across experimental trials may result in suboptimal av-
erages. Adequate modeling and compensation for time-related variations in
the signal shape has been of interest since the 1960s, and a great number
of approaches and techniques have been proposed. Most generally, time-
related variability can be described by rescaling functions τm : R→ R, such
that the SPN model (3.1) becomes

xm = d ◦ τm +m, m = 1, . . . ,M,

where ◦ denotes function composition. The simplest case considers con-
stant time shifts or temporal jitter τm(t) = t − δm, which will be discussed
in Section 3.3.1. More general scaling functions τm are used to represent
linear or dynamic temporal stretches, in the latter case typically assuming
monotonicity and sufficient smoothness of τm, see Section 3.3.2.

3.3.1 Woody’s method

Extending the SPN model from the previous section to contain trial-dependent
latencies δm of the signal of interest d leads to

xm = d(· −δm) + ǫm, m = 1, . . . ,M. (3.2)

The simultaneous estimation of d and the latencies δm can be tackled in an
iterative process, as proposed in Woody (1967). An initial signal estimation
d̂ is used as a template. Based on the cross-correlations

cm(δ) ≡ (d ⋆ xm)(δ) ≡ 〈d,xm(·+δ)〉

with 〈· , · 〉 denoting the Euclidean scalar product, the latencies δm can first
be estimated as

δ̂m = argmax
δ

(cm(δ)).

This leads to the latency-corrected average

d̂ =
M
∑

m=1

xm(·+δ̂m),

which can now be used as new template for an improved estimation of la-
tencies δ̂m, and so on. This process is illustrated in Figure 3.2.

No general convergence guarantees have been given for this procedure.
As noted in Woody (1967) and several experimental studies after, the signal-
to-noise ratio (SNR) has to be reasonably high in order to not align back-
ground activity. John et al. (1978) estimated a required root-mean-squared
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Figure 3.2: Illustration of Woody’s method. The template d̂ is cross-correlated against
the trials xm. The maximal values determine the respective latencies δm. After latency
correction (right side) the signals are then averaged to obtain a new estimation d̂.
Adapted from Woody (1967).

SNR of at least 0.5 in order for Woody’s method to work. Otherwise, it is
susceptible to align background noise instead of the signals. Several modifi-
cations for solving (3.2) have been proposed up to the present. Möcks et al.
(1988) and Pham et al. (1987) suggested an algorithm in frequency domain
with statistical testing on the presence of latency jitter as a main feature.
Cabasson and Meste (2008) introduced a maximum-likelihood based variant
to Woody’s method that updates the template d̂ after each latency estima-
tion of single trials, intended to improve and speed up convergence.

A different approach to the temporal alignment of ERPs is presented in
Gramfort et al. (2010). The authors propose to use manifold learning tech-
niques to first order trials with increasing response latencies. The optimal
alignment is then determined by using a graph cuts algorithm.

3.3.2 Dynamic time warping

More general temporal variability can be obtained by considering non-de-
creasing warping functions τm, yielding

xm = d ◦ τm + ǫm, m = 1, . . . ,M. (3.3)

In the speech processing community, a technique known as dynamic time
warping (DTW) has been proposed to calculate such discrete warping func-
tions τm using dynamic programming (Itakura, 1975; Sakoe and Chiba,
1971, 1978). The general objective is to minimize the Euclidean distance
‖xm − d ◦ τm‖2. Additionally, certain smoothness constraints on τm are
imposed, preventing it from deviating too strongly from a linear function.
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Figure 3.3: For two discrete signals with Td and Txm
sample points, respectively, dy-

namic time warping finds a path τm through the grid of sample pairs. The parallelogram
restricts the path from deviating too strongly from a straight line. Adapted from Itakura
(1975).

In the discrete case the problem can be formulated by finding a path that
matches time samples of the two signals xm and d, see illustration in Fig-
ure 3.3. The details of the implementation can be found for instance in
Rabiner and Juang (1993, chapter 4).

In more recent works, it has been proposed to minimize additionally
or instead the distance of the derivates of the warped signals (Keogh and
Pazzani, 2001; Wang et al., 1997), as these were found to be a better measure
of the actual shape of the time series than the absolute amplitudes.

Since the rate of human speech often varies non-uniformly, DTW has
proven very useful for speech comparison up to the present. DTW has been
found to be reasonably robust against white noise, though pre-smoothing
is frequently used to minimize noise-related alignment errors (Wang et al.,
1997). Recently, a multi-resolution approach to the problem has been pro-
posed in Salvador and Chan (2007), performing linearly in computation time
and storage – opposed to an originally quadratic complexity.

Despite the low signal-to-noise ratios (SNR) in single trial ERPs and
the risk of warping noise and signals together, there has been interest for
applying DTW to ERP processing. In Picton et al. (1988) for instance,
the authors used DTW on auditory evoked potentials to obtain a template
response across different subjects. This warped template has been found to
better resemble the individual responses than does the grand-mean average
(see Figure 3.4). It has also proven useful for combining individual evoked
potentials. However, this approach was only found valid for root mean
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Figure 3.4: Comparison of combining auditory evoked responses from 32 subjects by
dynamic time warping (W) and normal averaging (A), from Picton et al. (1988). The
peaks of the warped template are of higher amplitudes and can be better distinguished.

squared SNRs of at least 0.5 (cf. previous section). A technique similar to
DTW is based on cross-recurrences, that is, matches of similar data points
between two signals (Marwan et al., 2002). This technique was used in Ihrke
et al. (2009) to enhance the averaged ERP.

3.3.3 Variable response times

A particular case occurs when the duration of the ERP response is deter-
mined by an onset stimulus and a voluntary reaction response of the subject,
for example, by pressing a button. In this case, traditional ERP averaging
may be performed timelocked either to the stimulus or to the response.
Gibbons and Stahl (2007) suggested instead to map the ERPs of different
durations onto a common time interval prior to averaging.

The authors used fixed order monomials as rescaling functions τm, which
in contrast to DTW did not depended on the shape of the recorded wave-
forms but only on the response times. This procedure thus remains ap-
plicable even for single trial ERPs with high noise levels. Applied to real
data, the authors found the performance best for monomial orders 3 and 4,
indicating higher temporal variability of later signal components.

3.4 Linear multi-component models

The methods described in the previous section were designed to recover a
single waveform d. In many applications, however, it can be of interest to
extract different components {dk}Kk=1. The simplest approach is to model
the measured signals as linear combinations of these components, which
reads

xm =
K
∑

k=1

akmdk + ǫm, m = 1, . . . ,M, (3.4)

with akm ∈ R and ǫm again denoting background noise. However, this linear
setting does not account for temporal variability across experimental trials,
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and can produce smoothed waveforms as in Figure 3.1.
Instead of processing different trials, linear methods are often used on

different channels, recorded simultaneously with EEG or MEG. In this case,
a physiological interpretation can be given to (3.4): Modeling the neural
sources as electric current dipoles (cf. Section 2.2) and assuming their spatial
locations and orientations to be fixed in time, the relationship between the
current amplitudes in sources and sensors are linear and given by the so
called leadfields. Thus, for xm denoting the different recording channels and
dk the neural sources, the leadfields correspond to the coefficients akm in
(3.4).

If xm and dk are discrete signals with N ∈ N sampling points, (3.4) can
be formulated as a matrix factorization problem

X = DA + E, (3.5)

where the columns of X,E ∈ R
N×M and D ∈ R

N×K contain the vectors
xm, ǫm, and dk, respectively, and A = {akm} ∈ R

K×M is the coefficient
matrix. An obvious degeneracy in the model lies in the fact that component
amplitudes may be captured both in D and in A. For convenience, we
will assume all components dk to be normalized in the l2-sense during this
entire section, such that their amplitudes (or more precisely l2-norms) will
be captured exclusively in the coefficients akm. Even with this constraint,
there exist many ways to realize such a decomposition. Different assumtions
on the components dk lead to the techniques principal component analysis
(PCA) and independent component analysis (ICA), which will be introduced
in the following subsections.

In this section, we assume K ≤ M , that is, the number of components
to be extracted is less or equal to the number of provided channels or trials.
The case of largeK leads to sparse coding techniques and dictionary learning
which will be addressed in Section 3.6.

3.4.1 Principal component analysis (PCA)

If the number of components K is smaller than the number of channels
or trials M , it is a natural objective to maximize the data variance in the
components {dk}.Principal component analysis (PCA), which was first pro-
posed in Pearson (1901), solves this objective for every K ≤ M in a single
decomposition. Formally, a full PCA of X ∈ R

N×M yields the decomposi-
tion X = DA into the orthogonal matrix D ∈ R

N×M and the coefficient
matrix A ∈ R

M×M , such that for any K < M we have
(

D(K),A(K)
)

= argmin
D′∈RN×K ,A′∈RK×M

‖X−D′ A′‖F ,

with the submatrices D(K) = {d1, . . . ,dK} and A(K) = {akm}k≤K and with
‖· ‖F denoting the Frobenius norm. Hence, when performing a full PCA, any
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number K of first principal components gives a set of normalized, orthogonal
vectors maximizing the data variance. This allows to choose the number K
a posteriori without the need to recalculate the principal components.

PCA is mathematically equivalent to a singular value decomposition
(SVD),

X = USVt

with orthogonal matrices U ∈ R
N×M and V ∈ R

M×M . The matrix S ∈
R

M×M contains the singular values on the main diagonal in decreasing order
and is zero everywhere else. Now, U ≡ D contains the principal components
and SVt ≡ A is the coefficient matrix .

The hierarchical ordering of principal components can be very useful
for data compression and dimensionality reduction, as well as for separat-
ing signal (first components) from noise (last components). However, this
separation of components does not correspond well to any physiological in-
terpretation. On the contrary, variance maximization and orthogonality
encourage mixing of signal components and noise if these are of similar am-
plitudes and linearly correlated. While being a popular ERP processing
technique in the 80s and 90s, the limitations of PCA have frequently been
reported. In a study with different simulated signals, Wood and McCarthy
(1984) observed that the principal components contained large mixtures of
the true components. Lagerlund et al. (1997) used PCA for spatial filtering
and artifact removal from multi-channel EEG but acknowledged its inability
to completely separate artifacts the from signal, especially when amplitudes
were similar. In addition, distortions of activities overlapping the removed
artifacts were observed.

In order to enhance separation and reduce overlap between components,
additional transformations such as Varimax (Rösler and Manzey, 1981) have
often been used to post-process the principal components.

We will demonstrate PCA’s performance for waveform separation in
Chapter 5 (Figure 5.5 and 5.8), where it is compared to ICA and AWL.

3.4.2 Independent component analysis (ICA)

Another way to approach the decomposition (3.5) is to assume higher order
statistical independence between the components {dk}. This problem was
introduced as independent component analysis (ICA) in Comon (1994) in
the engineering field of signal processing and belongs to the class of blind
source separation (BSS) methods. ICA algorithms generally rely on the
assumption that the components have non-Gaussian distributions. The most
frequently used ICA implementations are the algorithms JADE (Cardoso,
1999; Cardoso and Souloumiac, 1993), infomax ICA (Bell and Sejnowski,
1995), and FastICA (Hyvarinen, 1999).

The most prominent example for blind source separation is the so called
cocktail-party problem, where M microphones simultaneously record differ-

42



3.4. LINEAR MULTI-COMPONENT MODELS

ent mixtures of speech signals from M speakers (Hyvärinen and Oja, 2000).
ICA proved capable of well separating these signals based on their statistical
independence and non-Gaussian distributions. It has furthermore been ap-
plied to a variety of problems from different domains. Some examples are:
extraction of independent features from images, e.g., for face recognition
(Bartlett, 2001, chapter 2); analysis of simultaneous econometric time-series,
e.g., for predicting stock prices (Back and Weigend, 1997); and separating
a user’s signal from interfering ones in mobile communications (Ristaniemi
and Joutsensalo, 1999).

In a pioneering application to EEG data in Makeig et al. (1996), the
authors found ICA well-suited for neural source identification, artifact de-
tection, and separation of overlapping activity. In Vigário et al. (1998), ICA
was successfully applied to MEG recordings. ICA has since become a very
widely used EEG and MEG processing tool, mostly for the identification
and removal of artifacts (Delorme et al., 2007; Gwin et al., 2010; Jung et al.,
2000). An example from Jung et al. (2000) shown in Figure 3.5 illustrates
the application of ICA to EEG time courses, isolating artifacts produced by
a slow eye movement and muscle activity.

However, there are several limitations to the use of ICA in neuroelectrical
signal processing. Most importantly, the validity of assuming independent
and non-Gaussian neural source activity has frequently been challenged.
In Hyvärinen et al. (2010), the authors argue that ICA’s reduced ability
to find “interesting” neural sources comes mainly from the fact that the
distributions of these sources are often not far from Gaussian. They sug-
gest to first represent the data in time-frequency domain. In this domain,
the most interesting signals have sparse representations and are therefore
super-Gaussian, which would facilitate their identification through ICA. In
addition, the strict isochronicity of neural sources in the linear model can
be relaxed through the use of complex coefficients, which can capture phase
shifts.

Another shortcoming of ICA is that the number of independent compo-
nents is equal to the number of input signals, that is, K = M . However,
there are often much fewer neural sources than recording channels. Some
algorithms provide the option to calculate any desired number K ≤ M of
components. The FastICA algorithm, for instance, proceeds by successively
extracting components and can be stopped at any step. However, no guar-
antee is given that these components are the relevant ones, as there is no
hierarchy across components such as in PCA. If only K < M components
shall be calculated, it can therefore be beneficial to first reduce the input
dimension, for example, by performing a PCA.

Exhaustive discussions on the use of ICA in EEG signal processing can
be found, for instance, in Onton et al. (2006) and Groppe et al. (2008).
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Figure 3.5: Illustration of artifact identification through ICA from Jung et al. (2000)
(image adapted). The five second time window of multi-channel EEG recording (A)
contains a prominent slow eye movement. After performing ICA (B), artifacts due
to horizontal and vertical eye movement (components 1 and 4) and temporal muscle
activity (components 12, 15, 19) could be identified.
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3.5 Combined approaches

The methods presented above each address one particular aspect of vari-
ability in neuroelectrical signal processing: (i) temporal variability often en-
countered across experimental trials or subjects (Section 3.3) or (ii) varying
amplitudes amplitudes across components, which are well suited for multi-
channel data due to their linearity (i.e., isochronicity). Each method is there-
fore optimized to capture either cross-trial/cross-subject or cross-channel
variability, but will be suboptimal in combined multi-channel, multi-trial
settings. Therefore, two or more steps are typically performed: for instance,
a multi-channel ERP is first obtained by averaging over experimental tri-
als which will then be decomposed into active sources/artifacts by means
of ICA. The obvious problem of such a processing pipelines, is the risk of
losing crucial information in a every step. Differentially variable component
analysis (dVCA) therefore combines both aspects of variability and allows
to process multiple trials and channels in a single framework.

3.5.1 Differentially variable component analysis (dVCA)

The model for differentially variable component analysis (dVCA) proposed
in Truccolo et al. (2003) is given by

xm =
K
∑

k=1

akm dk(· − δm) + ǫm, m = 1, . . . ,M

and thus combines the linear model (3.4) and Woody’s model (3.2). In
Truccolo et al. (2003) the, the signals xm represented LFP trials (cf. Sec-
tion 2.3.2) and dk the different components of the event-related response
with variable latencies.

The authors proposed an alternate minimization approach, where in each
iteration the estimates for latencies δm, waveforms dk, and finally ampli-
tudes akm are updated separately. In addition, they suggested learning the
representation in a hierarchical manner, starting with a single component
d1 and corresponding parameters a1m, δm. As long as the residual signal
still contains relevant structures, new components are added to the learning
procedure.

The same authors extended the dVCA model in Knuth et al. (2006) to
include multi-channel recordings. This extended model then reads

xcm =
K
∑

k=1

bckakm dk(· − δm) + ǫcm, m = 1, . . . ,M, c = 1, . . . , C,

with c indexing different channels. In this model, dk represent the active
sources in the brain. The coefficients bck describe the amplitude relation
between sources and sensors, that is, the leadfields (cf. Section 3.4). Note
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that the latencies δm vary only across trials but remain constant across
channels, due to their isochronicity.

A variant to dVCA has been proposed in Xu et al. (2009) which solves the
multi-component model in frequency instead of time domain. In addition,
it uses an autoregressive model for ǫmc, in order to better describe ongoing
background activity.

3.6 Sparse representations

As in the Section 3.4, we again consider linear representations of the signals

xm =
K
∑

k=1

akmdk + ǫm. (3.6)

However, we now assume the set D = {dk}Kk=1 to be large and often over-
complete, that is, K > N for N denoting the number of discrete time
samples in each signal. Such an overcomplete set D is called a dictionary
and the contained features dk are refered to as atoms. These representation
are especially useful – both for interpretation and compression – if they are
sparse, that is, most of the coefficients akm are zero.

Sparsity has proven a very useful property when representing images or
signals. This is especially the case for time-frequency representations, since
natural images and signals contain only information from limited frequency
spectra. In neuroelectrical image processing, sparsity can often be naturally
motivated. The current amplitudes generated by a neural source, for ex-
ample, have a sparse distribution over recording channels as they are only
measurable in sensors nearby. Sparsity may not only occur across channels:
it has been observed that certain response components are present only in
a subset of recorded experimental trials.

Traditionally, the sparse decomposition were performed over predefined
dictionaries that were known to yield sparse representations, such as win-
dowed sinusoidal functions or different types of wavelets (Mallat, 1999). A
more recent approach is to combine the optimal design of the dictionary and
the calculation of the sparse representation, which is known as dictionary
learning. Both concepts are presented in the following subsections.

3.6.1 Sparse coding and time-frequency representations

Sparsity can be measured simply by counting the number of non-zero entries
in the coefficient vector a = {a1, . . . , aK}, which is denoted by the l0-norm
‖a‖0. When a dictionary D = {dk} is provided, the sparse coding problem
for a single signal x can be formulated as the minimization

min
a

∥

∥

∥

∥

∥

x−
K
∑

k=1

ak dk

∥

∥

∥

∥

∥

2

2

, s.t. ‖a‖0 ≤ L, (3.7)
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Figure 3.6: The real part of a Gabor atom is shown for different frequency modulations
ξ while keeping the window size σ fixed. Source: Bénar et al. (2009).

where L ≪ K regulates the amount of sparsity. However, this problem
is non-convex and NP-hard. Greedy algorithms such as matching pursuit
(MP) (Mallat and Zhang, 1993) or orthogonal matching pursuit (OMP)
(Pati et al., 1993) iteratively select the atoms dk most correlated with the
signal x. Alternatively, the problem can be relaxed by using the convex l1-
norm, denoted ‖· ‖1, which is known to promote sparsity. The corresponding
soft-constrained problem

min
a

∥

∥

∥

∥

∥

x−
K
∑

k=1

ak dk

∥

∥

∥

∥

∥

2

2

+ λ‖a‖1, (3.8)

with regularization parameter λ > 0, is convex and known as the Lasso
(Tibshirani, 1996). As noted in Mairal (2010), the Lasso admits a closed
form solution, if the indices and signs of the non-zero coefficients are known.
Hence, one strategy is to search these active coefficients in successive steps,
which is efficiently achieved by least angle regression (LARS) (Efron et al.,
2004). Other popular algorithms to solve the Lasso include the proximal
methods ISTA (Chambolle et al., 1998) and its accelerated version FISTA
(Beck and Teboulle, 2009), as well as block coordinate descent using iterative
thresholding (Daubechies et al., 2004).

We provide more details on MP and LARS in Appendix A. Both algo-
rithms share the characteristic of successively selecting active atoms. This
property will become very useful for the algorithm AWL introduced in the
next chapter, as it allows to easily enforce additional sparsity and non-
negativity constraints in each step.

The choice of the dictionary D is crucial for the resulting representa-
tion. In image and signal processing, windowed Fourier bases and wavelets
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(Mallat, 1999) have always been popular choices. Besides their good math-
ematical properties such as orthogonality and shift and scaling invariance,
which allow for efficient calculation, they have shown to be suited for sparsly
representing natural signals and images. In addition, they facilitate the in-
terpretation of signals by representing them in the time-frequency domain.

A particularly popular choice is a dictionary of Gabor atoms, notably for
processing EEG signals. These can be described by dilation γ, translation δ,

and frequency modulation ξ of a Gaussian window function g(t) = 1√
2π

e
−t2

2 ,

dγ,δ,ξ =
1√
γ
g

(

1

γ
(t− δ)

)

eiξt. (3.9)

The real part of a Gabor atom is illustrated in Figure 3.6 for different fre-
quencies ξ. In a pioneering work of applying sparse coding techniques to
EEG signals, Durka and Blinowska (1995) used the MP algorithm with Ga-
bor atoms to localize sleep spindles.

Note that the sparse coding formulas (3.7) and (3.8) address a single
signal x. Hence, when addressing multivariate data, similarities or coupling
of the different trials or channels are not explicitly taken into account. More
recent works have therefore adapted sparse coding techniques to exploit
interdependencies between signals. A multi-channel version of MP proposed
in (Durka et al., 2005) selects atoms that have the largest average correlation
across all channels.

An advantage of using complex-valued time-frequency representation is
the possiblity to treat magnitude and phase of each frequency component
separately. This is especially useful for cases of induced (i.e., not phase-
locked) activity (cf. Section 2.5.1). In Tallon-Baudry and Bertrand (1999),
the authors suggest to average over time-frequency power maps of single
trials to reveal induced gamma activity, see Figure 3.7. The same idea
is also employed in multi-variate versions of MP, which select atoms whose
complex correlation coefficients have maximal average modulus (Tropp et al.,
2006) or energy (Gribonval, 2003) across channels. Finally, Bénar et al.
(2009) suggested a more general approach that allows for variations of all
atom parameters across experimental trials, including amplitude, latency,
frequency, and phase.

While sparse coding uses a model of linear combinations of signal com-
ponents like PCA and ICA, it strongly differs from these techniques quali-
tatively. This is due to the fact that a dictionary typically contains a large
number of atoms and is often shift- and scale-invariant. In this sense, these
dictionaries are well suited to capture temporal variability such as latency
jitter, change of duration, frequency or phase. However, in many cases the
shapes of the atoms do not well represent the characteristic ERPs. These
potentials are often asymmetric and not well-localized in time-frequency do-
main. Hence, in the case of a Gabor dictionary, for instance, a large number
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Figure 3.7: Illustration from Tallon-Baudry and Bertrand (1999), showing how to obtain
evoked (i.e., phase-locked) and induced (i.e., not phase-locked) gamma activity through
different averaging techniques. For evoked activity, single trials (A) are first averaged
time-locked to the stimulus. The frequency content of the resulting evoked potential
(B) can be clearly seen in the time-frequency power map (C). However, the induced
activity is not visible in this approach, as averaging over the different phases diminishes
the power of the frequency content. In contrast, averaging over time-frequency power
maps of the individual trials (D) disregards the differences in phase and leads to a clear
appearance of the induced gamma activity (E).
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of these symmetric, time-frequency localized atoms is needed to encode the
ERP shape.

As the shapes of the ERPs are usually not exactly known a priori, it is not
clear how to design the optimal dictionary. Instead of defining it beforehand,
it may therefore be beneficial to learn it together with the decomposition.
This approach will be discussed in the following subsection.

3.6.2 Dictionary learning

The problem of designing a dictionary D for given signals xm with the goal
of yielding the sparsest decomposition was first discussed in Olshausen and
Field (1997). The resulting dictionary learning problem can be stated as

D = argmin
D

min
{am}

M
∑

m=1

(

1
2‖xm −Dam‖22) + λ‖am‖1

)

, (3.10)

where the am = (a1m, . . . ,aKm) denote the coefficient vectors. As before,
we constrain the columns of D to be normalized. This joint minimization is
non-convex and can be seen as a generalization of the K-means clustering
algorithm for vector quantization (VQ) which is also non-convex. This al-
gorithm uses alternate minimization and inspired many dictionary learning
algorithms, such as MOD (Engan et al., 1999) and K-SVD (Aharon et al.,
2006). Their general procedure consists of alternating between updates of D
and A = {am} while leaving the other fixed; this is illustrated in Figure 3.8.

Dictionary learning has become a popular tool in image processing and
has shown to yield state-of-the-art results in image compression, denoising,
inpainting, and classification (Elad and Aharon, 2006; Mairal et al., 2008).
In order to cope with growing sizes of datasets, Mairal et al. (2009) suggested
an efficient online version of the algorithm. Moreover, dictionary learning
has succesfully been applied to different types of medical signals and images
(Mailhé et al., 2009; Tosic et al., 2010) and audio data (Jafari and Plumbley,
2009). A recent overview of dictionary learning techniques and applications
can be found in Tosic and Frossard (2011).

Despite the great success of dictionary learning techniques in many fields,
they have been used only in few neuroelectrical applications, such as signal
classification for brain-computer interfaces (BCI) in Hamner et al. (2011).
One reason might be the large and generally unstructured learned dictionar-
ies, which make interpretation of the resulting waveforms difficult. Exploit-
ing invariances can help to reduce the number of waveforms that “generate”
the dictionary.

3.6.3 Translation-invariant dictionary learning

Dictionary learning has not found much interest in neuroelectrical signal
processing – despite its success in many other field. This may result from the
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Figure 3.8: Typical algorithm scheme for dictionary learning using alternate minimiza-
tion. After initializing either the dictionary D or the coefficients A, alternating updates
are performed over the respective matrices. After numerical convergence (or a fixed
number of iterations), the algorithm returns the final D and A. The figures used for
the illustration correspond to the epileptiform spikes learned in Section 6.4.1.
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following two inconveniences: (i) learned dictionaries are typically large and
unstructured and (ii) they do not explicitly account for temporal variability.
In particular, (ii) means that occurences of a structure at different positions
across signals have to be encoded by different atoms.

Exploiting invariances with respect to translations or other transforma-
tions can help to reduce the number of waveforms to be learned and ob-
tain more structured or parametrized data representations. In addition,
translation-invariance allows to compensate for temporal jitter. Various
shift-invariant DL versions have therefore been proposed (Blumensath and
Davies, 2006; Jost et al., 2006; Mailhé et al., 2008; Plumbley et al., 2006)
and applied to images and audio data (Grosse et al.; Mørup et al., 2008).
Rotation invariance has also been used for dictionaries learned on images
(Wersing et al., 2003) and multi-variate signals (Barthélemy et al., 2012).

In Jost et al. (2005), the authors applied translation-invariant dictionary
learning to EEG signals, resulting in oscillatory waveforms representing Al-
pha (8-12 Hz) and Beta (13-30 Hz) rhythms. A multi-variate shift-invariant
version of dictionary learning is introduced in Barthélemy et al. (2013) to
learn multi-channel EEG waveforms on BCI data, showing both the recon-
struction qualities and ability to learn a meaningful representation of a P300
(cf. Section 2.5.1).

3.7 Conclusion and outlook

In this chapter, we presented different techniques that are commonly used to
process neuroelectrical signals. In particular, we saw different forms of signal
variability addressed by these methods, notably temporal variability (most
prominently latency shifts) and varying amplitudes of different components
in linear models. While some of the approaches explicitly combine different
types of variability in a single model (e.g., dVCA and translation-invariant
dictionary learning), most of them address only one particular aspect of
variability.

In the following chapter, we introduce a new model, adaptive waveform
learning (AWL), which generalizes the concepts of variability through the
use of mathematical operators on signal components. The AWL model then
contains many of the here presented models as special cases. Due to its
generality, AWL can be specialized for different concrete settings, which is
achieved by specifying implementational details in the generic AWL algo-
rithm. Two concrete cases, processing of epoched and non-epoched record-
ings will be presented in chapters 5 and 6.

52



Chapter 4
Adaptive Waveform Learning
(AWL)

In this chapter, we introduce a novel signal decomposition
model, adaptive waveform learning (AWL), which explicitly in-
cludes variability of signal components. We propose a generic
algorithm, based on sparse coding techniques, which will be
concretely implemented in the following chapters.
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4.1 Introduction

In this chapter, we introduce a general signal decomposition model, from
which we derive the generic adaptive waveform learning (AWL) algorithm.
In particular, this framework serves as a means of processing event-related
potentials (ERPs) as well as spontaneously repeating activity (SRA) (cf.
Section 2.5). It may be applied to both epoched data and long, non-
segmented recordings. The corresponding specifications and implementa-
tions are described in the following two chapters. A key ingredient to the
approach is the explicit modeling of variability of signal components across
time or different trials. This is described through linear operations on the
component waveforms, such as translations and dilations, to model variabil-
ity of waveform latencies and durations, respectively.

The generality of the framework allows to formulate most of the tech-
niques from the previous chapter as special cases of our model. We will
explicitly point out these relations, which will provide a better comparison
of the different methods.

This chapter focusses primarily on analytical aspects of AWL. For this
purpose, we assume a continuous setting, that is, all temporal signals x
considered in this chapter will be defined on R. We can furthermore assume
that

x ∈ L2 ≡
{

f : R→ R;

∫

R

f(t)2 dt <∞
}

,

as the actual recorded signals are of finite temporal duration and thus com-
pactly supported. Aspects concerning discretization will mainly be treated
in the following chapters, together with other implementational details.

4.2 Modeling variability

As we have seen in the previous chapters, variability in the signals of interest
has been a major concern in neuroelectrical processing tasks. Variability of
a signal component across time, experimental trials, or different subjects
may be seen as a certain morphological deformation of this component at
each of its instances. When modeling these deformations, it is indispensable
to be at the same time (i) as general as necessary to capture all empirically
relevant variability and (ii) specific enough to avoid noise fitting. The most
simple case of component variability is a scalar multiplication allowing for
amplitude changes. This is accounted for in linear models such as PCA,
ICA, and sparse representations (cf. sections 3.4 and 3.6).

For practical reasons, it is useful to consider deformations with good
mathematical properties. We will restrict ourselves to operators that de-
scribe linear transformations of signal components, as defined below in (4.1).
This set is large enough to contain all relevant deformations for our purposes.
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In fact, the signal deformations discussed in the previous chapter all involved
shifting and rescaling of the time axis (cf. Section 3.3), which are linear op-
erations on the signal components. In addition, operations should be of high
rank, that is, close to invertible, in order to provide for a well-posed decom-
position problem. Another important aspect is the possibility of efficient
implementations of the operations in the discrete case. Especially desirable
are orthogonal operations, leading to particularly simple solutions. Finally,
for interpreting or post-processing the calculated signal representations, it
can be very useful that transformations are easily parametrizable.

After considering general linear operations, we will focus on translations
and dilations. These operations can capture a great variety of variability,
such as differences in waveform latencies, phases, durations, and frequencies.
In addition, translations and dilations are orthogonal operations, that is,
they preserve the scalar product.

4.2.1 Linear operations on signal components

Consider a set Φ of linear operators on one-dimensional real-valued signals,
that is, for every φ ∈ Φ, α, β ∈ R, and functions x,y ∈ L2,

φ(αx + β y) = αφ(x) + β φ(y) (4.1)

holds. An important subset are linear operations that rescale the time axis
(cf. Section 3.3). These are described by

φτ (x) = x ◦ τ

for some function τ : R → R and ◦ denoting function composition. We
only consider temporal scaling functions τ that are strictly increasing and
surjective. This implies that we assume the changes of each signal compo-
nent to always occur in the same temporal order, but with possibly different
durations across experimental trials or subjects.

With these constraints the rescaling functions τ are invertible and so are
the corresponding warping operators (φτ )

−1 = φτ−1 . Given the Euclidean
scalar product 〈· , · 〉 and using change of variables, we have

〈φτ (x), φτ (y)〉 =

∫

R

φτ (x(t))φτ (y(t)) dt

=

∫

R

x(τ(t))y(τ(t)) dt =

∫

R

x(T )y(T ) dτ−1(T ).

Hence, in the case of a constant derivative γ := dτ−1(T )
dT

, we thus obtain

〈φτ (x), φτ (y)〉 = γ〈x,y〉.
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This shows that φτ preserves the scalar product up to multiplication with a
constant if τ is affine, that is,

τ =
1

γ
(· −δ)

for γ, δ ∈ R, γ > 0. This yields the affine orthogonal warps

φδ,γ(x) =
1√
γ
x

(

1

γ
(· −δ)

)

which are compositions of translations and dilations.

In the discrete case, any warping operator φτ may be represented by a
sparse matrix (entries in the lower left and upper right are zero). In general,
discretization and boundary effects lead to warping matrices which are not
strictly invertible.

4.2.1.1 Translations

A significant part of the variability encountered in neurological signals are
captured by translations

φδ(x) = x (· −δ) .

On the one hand, translations may account for different onset latencies of
transient events such as event-related potentials (Woody, 1967); on the other
hand they can describe phase differences between oscillatory phenomena
(Bastiaansen et al., 2012).

Besides their orthogonality, the translation operators exhibit another
important property which allows for efficient implementation in the discrete
case. A significant part of the computations required for obtaining the signal
representations introduced in the following sections will consist in calculating
correlations between transformed waveforms. In the case of translations, this
means calculating cross-correlations, which may be computed using the fast
Fourier transform (FFT) thanks to the property

F{x ⋆ y} = F{x}∗ · F{y},

analogous to the convolution theorem. Here F denotes the Fourier transform,
⋆ the cross-correlation (see Section 3.3.1) and (· )∗ complex conjugation.

The AWL data model which will be introduced in Section 4.3 only admits
a finite number of possible transformations of signal components. For this
purpose, we suggest the selection of a set of translations about equispaced
latencies {δ−P , . . . , δP ; P ∈ N}, with δp = p·dt for some fixed temporal
distance dt > 0. In the case of discrete signals, we will typically choose dt
equal to the sampling resolution of the signals.
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4.2.1.2 Dilations

Dilations

φγ(x) =
1√
γ

x

(

1

γ
·
)

may capture the different durations of transient responses. They can also ac-
count for frequency changes of oscillatory events. Empirically, these forms of
variability are probably less frequently encountered than latency and phase
shifts. In addition, they are less efficient to implement and require interpo-
lation in the discrete case.

Nevertheless, changes in waveform duration have been considered in the
literature (cf. sections 3.3.2 and 3.3.3). We will illustrate the utility of
dilations in the case of epileptiform spikes of varying width in Section 6.4.2.

When only a finite set of dilations is considered, we suggest logarithmi-
cally spaced stretches {γ−Q, . . . , γQ; Q ∈ N}, with γq = βq for some β > 1
which controls the resolution between stretches. Then, the maximal relative
dilation factor is

γQ

γ−Q
= β2Q.

4.3 AWL model

In this section, we introduce our signal decomposition model, from which
we derive the generic AWL algorithm. For this purpose, we will remain in a
very general setting of a set of signals with repeating structures. This allows
us to use the framework for a large number of neurological signal processing
tasks; the specializations to the concrete settings of epoched and contiguous
electrophysiological recordings will be made in chapters 5 and 6.

4.3.1 General model

Let {xm}Mm=1 denote a set of temporal signals, with repeating structures
across and possibly within each xm. We model these structures as waveforms
{dk}Kk=1, which may occur with different amplitudes, latencies, and changing
shapes throughout the signals. Both latency and shape changes will be
summarized in a set Φ = {φ−P , . . . , φP ; P ∈ N} of linear operations (cf.
Section 4.2), where we typically include pairs of an operator φp and its
(possibly generalized) inverse φ−p = φ−1

p , as well as the identity φ0 = id.
The finite set Φ can be seen as samples from a continuous distribution of
possible deformations. For a good representation of this distribution, P may
be chosen very large. The signals can now be modeled as linear combinations
of the changing waveforms,

xm =
K
∑

k=1

P
∑

p=−P

akpmφp(dk) + ǫm, m = 1, . . . ,M, (4.2)
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with ǫm the unmodeled part of each signal. Here, each non-zero coefficient
akpm ∈ R reflects an occurence of waveform dk in signal xm, with specific
temporal location and deformation given by φp. For large P , this model
will only be useful for interpretation if the coefficients akpm are sparse (i.e.,
mostly zero). Then, the non-zero akpm fulfill the function of selecting the
appropriate latencies and deformations Φ of each waveform dk. Note that
in order to prevent degeneracies of the model (cf. Section 3.4), we assume
the dk and φp to be normalized,

‖dk‖2 = 1 and ‖φp‖2 ≡ max
‖dk‖2=1

‖φp(dk)‖2 = 1. (4.3)

Now, the energies of the waveforms (more precisely their l2-norms) are cap-
tured by the coefficients akpm.

4.3.2 Sparse coefficients

As already mentioned, the usefulness of model (4.2) depends on the sparsity
of the coefficients akpm. There are different possibilities to impose sparsity.
For the applications addressed in this thesis, we propose the following three
types of constraints which encourage sparsity across coefficients. Depending
on the application, any combination of these constraints may be enforced.

General sparsity:

If no further information about the structure of the sparsity is available,
it can be imposed by assuming a general sparse distribution of coefficients
akpm. This leads to a non-convex l0-regularization of the corresponding
minimization problem, cf. (3.7). Assuming instead a Laplacian distribu-
tion of the akpm, leads to the convex Lasso problem with l1-prior, cf. (3.8).
While different algorithms have been proposed to solve the Lasso exactly,
their computational complexities exceed those of greedy algorithms, such
as matching pursuit. For simplicity, we will only consider the Lasso for-
mulation in this and the following chapters. Nevertheless, for the different
implementations, we will use both l0- and l1-solvers.

Exclusivity:

In some cases, the occurrence of one waveform dk in a signal xm may exclude
certain occurrences of the same or other waveforms. For example, in some
situations, we want every waveform dk to occur at most once per signal xm

(see Chapter 5). This is typically the case when processing event-related po-
tentials (cf. Section 2.5.1), with dk representing the response components.
Another exclusivity constraint can be obtained by imposing a minimal dis-
tance ∆ > 0 between waveform occurrences (see Chapter 6).
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Since waveform occurrences are described through the non-zero coeffi-
cients, all exclusivity constraints can be formalized by defining a constraint
set C that contains exclusive pairs of index combinations (kp, k′p′). Now
the exclusivity constraint reads

∀m ∈ {1, . . . ,M} : (kp, k′p′) ∈ C ⇒ (akpm = 0 or ak′p′m = 0). (4.4)

Non-negativity:

In many settings (see chapters 5 and 6), we expect the waveforms dk to
always occur with the same sign. This can be enforced using the non-
negativity constraint

∀ k, p,m : akpm ≥ 0. (4.5)

Note, that this constraint also encourages sparsity, since negative coefficients
will be set to zero.

4.3.3 Minimization problem

Since the set of possible waveform deformations Φ is given a priori, the
unknowns in model (4.2) are the sparse coefficients akpm and the waveforms
dk. They can be obtained by minimizing the residual signal. Considering
the sparsity constraints above, we then have

min
akpm,dk

M
∑

m=1







∥

∥

∥

∥

∥

∥

xm −
K
∑

k=1

P
∑

p=−P

akpmφp(dk)

∥

∥

∥

∥

∥

∥

2

2

+ λ
K
∑

k=1

P
∑

p=−P

|akpm|






, (4.6)

s.t. (4.4) and (4.5) are satisfied,

with regularization parameter λ > 0.
Note that for Φ = {id} and without the constraints (4.4) and (4.5),

the minimization reduces to the dictionary learning problem presented in
Section 3.6.2. For the implementation of the minimization problem above,
we therefore make use of the well-established dictionary learning algorithms
based on alternate minimization (i.e., iteratively updating coefficients and
waveforms separately). However, several adaptions are made to account
for the presence of the transformations φp and the additional constraints.
The resulting AWL method is summarized in Algorithm 1, which will be
discussed in Section 4.4.

4.3.4 Explicit representation

The AWL representation of the signals xm is given by the set {akpm,Φ,dk}.
However, this formulation is sometimes not very practical, since the wave-
form occurrences are indirectly described through the non-zero coefficients
akpm. We therefore propose an alternative representation {aklm, φklm,dk}.
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Here, the aklm denote only the coefficients of the actual waveform occur-
rences and φklm the corresponding latencies and deformations.

In the following implementation of the AWL algorithm, we will use the
sparse representation {akpm,Φ,dk} during the update of the coefficients, as
it allows to easily integrate sparse coding techniques. However, during the
rest of the algorithm, we use the explicit representation {aklm, φklm,dk},
since it provides for more clarity in the formulas. A change between the two
representations is denoted by

({aklm}, {φklm}) = switch representation({akpm},Φ).

4.4 Algorithm AWL

The general AWL method is described in Algorithm 1. Its iterative pro-
cedure consists of subsequent updates of coefficients and waveforms, de-
scribed in the functions coefficient updates, waveform updates, and
waveform centering, respectively. The iterations are terminated once a
certain stopping criterion is satisfied, for example, after a fixed number of
iterations or in the case of numerical convergence. Note that an initial set
of waveforms has to be provided to start the iterative updates. This initial-
ization and the three procedures are discussed in the following subsections.

Algorithm 1 Generic AWL

Input: {xm}Mm=1, {φp}Pp=−P , {dk}Kk=1, λ ∈ R
+
0 , constraint set C.

1: loop
2: Set up dictionary D = {dp

k} with dp
k = φp(dk).

3: {akpm} ← coefficient updates({xm},D, λ, C)
4: ({aklm}, {φklm})← switch representation({akpm},Φ)
5: if stopping criterion reached then
6: break
7: end if
8: {dk} ← waveform updates({xm}, {aklm}, {φklm}, {dk})
9: {dk} ← waveform centering({aklm}, {φklm}, {dk})

10: end loop
Output: {aklm}, {φklm}, {dk}.

4.4.1 Initialization

The iterative updates in Algorithm 1 require a prior initialization of either
waveforms or coefficients. We choose to initialize the waveforms, as in some
cases estimates of their shapes are known a priori. Alternatively, estimations
may be obtained from the data using a different method, for example, by
performing a principal component analysis on {xm}.
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As the constrained problem (4.6) is non-convex, the result will depend
strongly on the initialization used. Hence, predefined waveforms may bias
the result of the algorithm and may prevent it from learning significantly
better representations. For these reasons, in our experiments, we generally
prefered the use of random initializations with white Gaussian noise. An
exception is the application to spike detection (cf. Section 6.4), for which
we used an initial spike template.

4.4.2 Coefficient updates

The procedure coefficient updates in Algorithm 1 performs the mini-
mization of (4.6) with constraints (4.4) and (4.5) for the coefficients akpm

while leaving the waveforms dk fixed. As both the φp and the dk are fixed in

this step, we can define the (very large) dictionary D = {dp
k}

p=−P,...,P
k=1,...,K of all

transformed waveforms dp
k ≡ φp(dk). This eliminates the deformations φp

and allows us to reformulate the minimization problem over the coefficients
as a set of linear sparse coding problems.

1: procedure coefficient updates({xm},D, λ, C)
2: for m = 1 to M do
3: Solve through sparse coding:

4: {akpm} ← argmin
{a′

kpm
}

∥

∥

∥

∥

∥

xm −
K
∑

k=1

P
∑

p=−P

a′kpmdp
k

∥

∥

∥

∥

∥

2

2

+ λ
K
∑

k=1

P
∑

p=−P

∣

∣

∣a′kpm

∣

∣

∣ ,

5: s.t. (4.4): (kp, k′p′) ∈ C ⇒ (a′kpm = 0 or a′k′p′m = 0)

6: and (4.5): ∀ k, p : a′kpm ≥ 0.
7: end for
8: end procedure, return {akpm}

Without the additional constraint, line 4 is exactly the Lasso problem,
cf. (3.8), which can be solved by sparse coding techniques. In order to
ensure the constraints (4.4) and (4.5), we suggest the use of an algorithm
that selects the active (i.e., non-zero) coefficients for the most correlated
atoms one by one. The simplest example is the greedy algorithm matching
pursuit (MP) (Mallat and Zhang, 1993). But also least angle regression
(LARS) (Efron et al., 2004) proceeds by iteratively building up the active
set and has the advantage of exactly solving the Lasso problem. Details on
both algorithms and efficient implementations are given in Appendix A.

Now the constraints can be ensured in each step of either MP or LARS:
For non-negativity (4.5), we only select coefficients of atoms which are pos-
itively correlated with the data. After each activation of a coefficient akpm,
we then mark all the coefficients which cannot be simultaneously active with
akpm due to exclusivity (4.4). We can then simply exclude the marked co-
efficients from later activation. In the LARS algorithm, active coefficients
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can also become deactivated in a later step. Hence, we need to verify which
of the marked coefficients becomes admissible again for activation.

4.4.3 Waveform updates

Minimizing (4.6) for {dk} while leaving the {akpm} fixed is a convex prob-
lem as the l1-regularization and the additional constraints concern only the
coefficients. We can solve this problem efficiently by performing block coor-
dinate descent, that is, by iteratively minimizing for each dk. The update
procedure is then described in waveform updates.

1: procedure waveform updates({xm}, {aklm}, {φklm}, {dk})
2: for k = 1 to K do

3: dk ← argmin
dk

M
∑

m=1

∥

∥

∥

∥

∥

xm −
K
∑

k′=1

Lk′m
∑

l=1
ak′lmφk′lm(dk′)

∥

∥

∥

∥

∥

2

2

4: end for
5: end procedure, return {dk}

Note that we use the explicit representation described in Section 4.3.4,
where Lk′m denotes the number of occurrences (i.e., the non-zero coefficients)
of waveform dk′ in signal xm.

By defining the linear transformations

ψk′m =

Lk′m
∑

l=1

ak′lmφk′lm,

we can rewrite line 3 as

dk = argmin
dk

M
∑

m=1

∥

∥

∥

∥

∥

xm −
K
∑

k′=1

ψk′m(dk′)

∥

∥

∥

∥

∥

2

2

.

Differentiating and satisfying the necessary condition for the minimum yields
a closed form solution. It can be written as

dk =

(

M
∑

m=1

ψt
kmψkm

)+ M
∑

m=1

ψt
km(rkm), (4.7)

where
rkm = xm −

∑

k′ 6=k

ψk′m(dk′) (4.8)

is the residual that results when subtracting all but waveform dk’s con-
tribution from the signal xm. The term (· )+ denotes the Moore-Penrose
pseudoinverse. Invertibility and conditioning of the operator

∑

ψt
kmψkm are

discussed later in Section 6.3.2 for translations and dilations.
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Note that in block coordinate descent, several loops over the blocks usu-
ally need to be performed before convergence. However, in the cases we
studied (see following chapters) one loop through the index set {1, . . . ,K}
was sufficient for a good performance of Algorithm 1. This is due to the fact
that the updates are initialized with waveforms calculated in the previous
iteration of the algorithm, which are already good estimates for the new
ones.

4.4.4 Waveform centering

We note that each dk only represents a template waveform which is subject
to deformation and amplitude scaling at each of its occurrences. In order to
avoid ambiguities in the concrete definition of this template, we suggest that
each dk have unit norm according to (4.3) and be centered with respect to
all deformations under which it occurs. The former constraint can simply
be imposed by setting

dk ←
dk

‖dk‖2
, (4.9)

while the latter requires us to first define the mean deformation φ̄k of wave-
form dk with respect to all deformations {φklm}lm previously calculated in
update coefficients. A concrete definition of φ̄k can easily be given for
the operations translation and dilation, as these are parametrizable over R.
This will be the subject of the following paragraph. A generalization to other
operations is possible but will not be discussed here, as it is not relevant for
this thesis.

Let φ ◦ φ′ denote the composition of φ, φ′ : L2 → L2. Then, for n ∈ N

we can recursively define φn = φn−1 ◦ φ. Now considering compositions of
translations and dilations

φδ,γ(x) ≡ 1√
γ
x

(

1

γ
· −δ

)

,

we can extend this definition to real exponents α ∈ R by setting

φα
δ,γ ≡ φα δ,γα .

This allows us to define for any k ∈ {1, . . . ,K} the weighted mean

φ̄k =





∏

l,m

φ
|aklm|
klm





1
∑

l,m
|aklm|

,

over all deformations φklm calculated by update waveforms (the product
∏

is taken w.r.t. “◦”). If each of these deformations is a composition of
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a translation δklm and a dilation γklm, then so is φ̄k with translation and
dilation given by

δ̄k =

∑

l,m |aklm| δklm
∑

l,m |aklm|
,

γ̄k =





∏

l,m

γ
|aklm|
klm





1
∑

l,m
|aklm|

,

respectively. Now waveform dk can be centered by setting

dk ← φ̄k(dk). (4.10)

We summarize the centering and normalization of the waveforms in the
procedure waveform centering.

1: procedure waveform centering({aklm}, {φklm}, {dk})
2: for k = 1 to K do
3: Calculate centering transformation φ̄k, set
4: dk ← φ̄k(dk),

5: dk ← dk

‖dk‖2
.

6: end for
7: end procedure, return {dk}

Note that normalization (4.9) and centering (4.10) obviously alter the
data representation {aklm, φklm,dk}. This has to be compensated by ad-
justing the coefficients and deformations to

φklm ← φklm ◦ φ̄−1
k , ∀ k, l,m, (4.11)

aklm ← ‖dk‖2· aklm, ∀ k, l,m, (4.12)

where ‖dk‖2 refers to the norm of dk before normalization (4.9). In this new
representation the mean deformation φ̄k for each dk now equals the identity,
which reduces the amount of large deformations across the φklm. This point
will become important when considering discrete signals on a finite domain
in chapters 5 and 6, where large deformations cause unwanted boundary
effects.

Note that the adjustments (4.11) and (4.12) need not actually be per-
formed explicitly as coefficients and deformations will be recalculated in
update coefficients in the following iteration of Algorithm 1. This is
also the reason why the stopping criterion in Algorithm 1 is placed after the
coefficient updates.

4.5 Relation to previous methods

The proposed general model (4.2) includes many of the models presented in
Chapter 3 as special cases. The generic Algorithm 1 also combines many
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elements of previous methods, notably sparse coding and the alternating
updates found in Woody’s algorithm as well as in dictionary learning.

Thanks to the iterative structure of the algorithm, other features of the
previously presented techniques may easily be incorporated into AWL at any
point in the algorithm. For instance, orthogonality or independence across
waveforms may be enforced after each waveform update, using PCA or ICA,
respectively.

When considering only translations as transformations on the compo-
nent waveforms dk, model (4.2) is very similar to dVCA (cf. Section 3.5.1).
However, model (4.2) is more general as it includes the possibility of multiple
occurrences of a waveform dk across one signal. This will be useful to derive
a non-epoched version of the algorithm in Chapter 6, which processes long
signals with repeating waveforms. In addition, there is an important dif-
ference between the implementations of dVCA and AWL: while the former
updates amplitudes and latencies in separate steps, AWL uses sparse coding
techniques on all shifted waveforms to calculate amplitudes and latencies
simultaneously.

4.6 Hyperparameters and hierarchical AWL

The number K of waveforms to be learned is often not known a priori. We
therefore suggest a hierarchical learning approach which is summarized in
Algorithm 2. This algorithm starts by learning a single waveform repre-
sentation with AWL (Algorithm 1), which is stored in R1. Next, a second
waveform is initialized and a new representation is learned, starting with
these two waveforms. This process is repeated until a maximal number
Kmax of waveforms is reached. The output of the algorithm is a set of wave-
form representations RK of increasing sizes K. These representations can
then be compared a posteriori. Alternatively, the algorithm may be stopped
at some number K if the residual signal does not contain any more relevant
structures.

Algorithm 2 Hierarchical AWL

Input: {xm}Mm=1, {φp}Pp=−P , Kmax ∈ N, λ ∈ R
+
0 , constraint set C.

1: for K = 1 to Kmax do
2: Initialize dK and add to set {dk}K−1

k=1 .
3: ({aklm}, {φklm}, {dk})← awl({xm}, {dk}Kk=1, {φp}, λ, C).
4: Save representation: RK ← ({aklm}, {φklm}, {dk}).
5: end for

Output: R1, . . . , RKmax
.

We found that the optimal number of waveforms to be learned is strongly
dependent on the application and intended interpretation, as well as on
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the chosen set of deformations Φ which influences the descriptive power of
each waveform. Therefore, it is difficult and may even be misleading to
give a general stopping criterion. Representations for different K may even
provide different and even complementary information. For our synthetic
and real data experiments, choosing K much larger than 5, however, did
not provide any additional insight. Hence, comparing the representations
for each K = 1, . . . , 5 remains a feasible task.

Nevertheless, to evaluate the quality of the representation, it may be
instructive to calculate the residual variance of the data representation for
each K, especially when an estimate of the noise variance is available for
comparison. An overview of more sophisticated model selection procedures
based on information criteria can be found in Stoica and Selen (2004).

The other hyperparameters of the algorithm are related to the sparsity
of the representation, that is, the regularization paramter λ > 0 and the
exclusive constraint set C. We will illustrate appropriate choices in the
following chapters, in the context of more concrete applications.
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Chapter 5
Epoched AWL

In this chapter, we specialize AWL to epoched (i.e., seg-
mented) datasets. We provide an efficient implementation E-
AWL based on LARS. The algorithm is evaluated on synthetic
and real data, and the results are compared to those produced
by PCA and ICA.
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5.1 Introduction

The focus of this chapter is on the processing of epoched datasets (cf. Sec-
tion 2.5.1) with AWL. For this purpose, we will specialize the general AWL
model introduced in (4.2) and give details for the implementation. The re-
sulting epoched AWL algorithm (E-AWL) is evaluated on simulations and
real data, and its performance is compared to that of PCA and ICA.

Throughout this chapter, the class of transformations on waveforms is
limited to translations. The case of dilations (or their combination with
translations) works similarly and will be treated in a non-epoched setting in
the next chapter.

More general transformations may also be used, but the formulas which
assume orthogonal transformations need to be reformulated, according to
the general setting from Chapter 4.

5.2 Model specifications

We now consider the case of a set of epoched trials {xm} from electro-
physiological recordings, that is, short temporal signals containing event-
related potentials (ERP, cf. Section 2.5.1) or spontaneously repeating ac-
tivity (SRA, cf. Section 2.5.2). Assuming the ERP or SRA components
to occur with a fixed shape but at different latencies {δ−P , . . . , δP } across
epochs, the general model (4.2) now writes

xm =
K
∑

k=1

P
∑

p=−P

akpm dk(· − δp) + ǫm, m = 1, . . . ,M. (5.1)

Note that in order to take into account all latencies in a given range with
high resolution, P may be very large. As described in the previous chapter,
the sparse coefficients akpm therefore fulfill the role of selecting the relevant
latencies. In this model, we assume each ERP or SRA component dk to
occur at most once per epoch xm. This leads to maximal sparsity within
each xm, given by

∀ k,m : ‖(ak(−P )m, . . . , akPm)‖0 ≤ 1,

where ‖· ‖0 denotes the l0-norm (cf. Section 3.6.1). This constraint is a
special case of the exclusivity constraint (4.4) introduced in the previous
chapter. In addition, we usually assume waveforms to occur with the same
sign across epochs xm, leading to the non-negativity constraint on coeffi-
cients (4.5).

If the events of interest are known to occur rarely across epochs xm,
general sparsity (cf. Section 4.3.2) can be imposed additionally. However,
this introduces a bias towards rare events, which discourages the detection
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of systematically occurring events of lower amplitudes. We therefore do not
impose general sparsity in the present setting.

The waveforms dk and coefficients akpm in (5.1) are now obtained by
solving

min
akpm,dk

M
∑

m=1

∥

∥

∥

∥

∥

∥

xm −
K
∑

k=1

P
∑

p=−P

akpm dk (· − δp)

∥

∥

∥

∥

∥

∥

2

2

(5.2)

s.t. ∀ k,m : ‖(ak(−P )m, . . . , akPm)‖0 ≤ 1, (5.3)

∀ k, p,m : akpm ≥ 0. (5.4)

This problem can be tackled by making the appropriate specializations to
the generic AWL algorithm (Algorithm 1), presented in the previous chapter.
The resulting method is E-AWL, which is summarized in Algorithm 3. As
before, the algorithm alternates between waveform and coefficient updates,
which will be explained in detail in the following section.

5.2.1 Explicit representation

As mentioned in Chapter 4, the sparse representation {akpm, δp,dk} facili-
tates the implementation of sparse coding techniques for the coefficient up-
dates. However, during the rest of the algorithm, we will change to the more
explicit representation, denoted by

({akm}, {δkm})←switch representation({akpm}, {δp}).

Now, akm and δkm directly describe the coefficients and latencies of the
actual waveform occurrences. Note that we could drop the index p due to
the exclusivity constraint (5.3).

Algorithm 3 E-AWL

Input: {x1, . . . ,xM}, {d1, . . . ,dK}, {δ−P , . . . , δP }.
1: loop
2: Set up D = {dp

k} with dp
k = dk (· − δp).

3: {akpm} ←coefficient updates({xm}, {dp
k})

4: ({akm}, {δkm})← switch representation({akpm}, {δp})
5: if stopping criterion reached then
6: break
7: end if
8: {dk} ←waveform updates({xm}, {akm}, {δkm}, {dk})
9: {dk} ←waveform centering({akm}, {δkm}, {dk})

10: end loop
Output: {akm}, {δkm}, {dk}.
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5.3 Algorithm E-AWL

In order to learn the waveform representation as blindly as possible, we gen-
erally initialize the waveforms dk in Algorithm 3 with white Gaussian noise
(cf. Section 4.4.1). Then, coefficients and waveforms are iteratively updated
in the procedures coefficient updates, waveform updates, and wave-

form centering, respectively, until a stopping criterion is reached (e.g.,
numerical convergence or maximal number of iterations).

5.3.1 Coefficient updates

For the coefficient updates, we have to minimize (5.2-5.4) with respect to
the akpm while leaving the waveforms dk fixed. For this purpose, we first
define the dictionary D = {dp

k} of all translated waveforms dp
k = dk (· − δp).

Now, the updates are described in the procedure coefficient updates.

1: procedure coefficient updates({xm},D)
2: for m = 1 to M do

3: Solve using LARS:

4: {akpm} ← argmin
{a′

kpm
}

∥

∥

∥

∥

∥

xm −
K
∑

k=1

P
∑

p=−P

a′kpm dp
k

∥

∥

∥

∥

∥

2

2

,

5: s.t. ∀k : ‖(a′k(−P )m, . . . , a
′
kPm)‖0 ≤ 1,

6: ∀ k, p : a′kpm ≥ 0.
7: end for
8: end procedure, return {akpm}

Note that while line 4 by itself is an ordinary least squares problem, its
solution is difficult due to the constraints in lines 5 and 6. Although we
do not have any l1-regularization term in this problem as in Section 4.4.2,
the LARS algorithm proves very useful in this situation. This is due to two
reasons: First, when we follow the path of the LARS until the regularization
parameter λ is zero (cf. Appendix A), LARS provides an exact solution to
the unregularized least squares problem. Second, due to its stepwise activa-
tion and deactivation of coefficients, it allows to easily ensure the constraints
in lines 5 and 6 in every step (cf. Section 4.4.2).

Note that in the actual implementation, we do not need to calculate
the large dictionary D = {dp

k}. In fact, the LARS algorithm only requires
the correlations Dtx as well as the covariance matrix DtD. Both can be
calculated efficiently through the fast Fourier transform (FFT) by using the
shift-invariance of D (cf. Appendix A).
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5.3.2 Waveform updates

The waveforms are updated sequentially as described in Section 4.4.3. Using
the explicit representation (cf. Section 5.2.1), the minimization problem for
k = 1, . . . ,K reads

min
dk

M
∑

m=1

∥

∥

∥

∥

∥

xm −
K
∑

k′=1

ak′mdk′ (· − δk′m)

∥

∥

∥

∥

∥

2

2

.

Due to the orthogonality of the translation operator, the update formula
(4.7,4.8) now simplifies to

dk =

(

1
∑M

m=1 a
2
km

)

M
∑

m=1

akmrkm (·+δkm) , (5.5)

where again
rkm = xm −

∑

k′ 6=k

ak′mdk(· −δk′m)

denotes the residual that results by subtracting all but waveform dk’s con-
tribution from the signal xm. Hence, dk is obtained as a weighted aver-
age over the realigned residuals rkm (note the inverse or adjoint translation

rkm 7→ rkm(·+δkm)). The scaling factor

(

1
∑

m
a2

km

)

may be omitted at this

point, due to normalization in the following step. The updates are summa-
rized in the procedure waveform updates.

1: procedure waveform updates({xm}, {akm}, {δkm}, {dk})
2: for k = 1 to K do

3: dk ←
M
∑

m=1
akmrkm (·+δkm) , where

4: rkm = xm −
∑

k′ 6=k

ak′mdk′(· −δk′m).

5: end for
6: end procedure, return {dk}

5.3.3 Waveform centering

Waveform centering can become extremely important in the case of short
epochs xm and relatively large latency jitter. Consider a randomly initial-
ized waveform dk to coincidently contain some structure in its left half which
correlates well with a signal component located in the right half of the ma-
jority of epochs {xm}. Then, waveform dk has to be shifted mostly to the
right, resulting in calculated latencies {δkm}m with positive average. On the
one hand, this creates unnecessary boundary errors (cf. following subsec-
tion). On the other hand, if in some epochs {xm} the component of interest
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Figure 5.1: Implementation of waveform shifts on a discrete domain. Left: For the
waveforms dk, the domain of xm is extended to the left and right about the length
of the maximal shift δP . Right: Now, the shift operations dk 7→ dk(· − δp) are
implemented by selecting a window in dk at latency δp, which has the length of each
epoch xm. The opposite shifts rkm 7→ rkm(·+δkm) used in the waveform updates (cf.
Section 5.3.2) are then implemented by embedding rkm into the domain of dk and
zero-padding everywhere else.

is located even further right than on average, it might not even be detected
at all, due to bounded latencies {δ−P , . . . , δP } in the algorithm.

We thus proceed as described in Section 4.4.4 by calculating the mean
latency

δ̄k =

∑

m |akm| δkm
∑

m |akm|
,

and realigning waveforms

dk ← dk(· −δ̄k).

In order to meet the normalization constraint, the waveforms are then pro-
jected onto the unit sphere. These updates are summarized in procedure
waveform centering in Algorithm 3.

1: procedure waveform centering({akm}, {δkm}, {dk})
2: for k = 1 to K do

3: δ̄k =

∑

m
|akm| δkm

∑

m
|akm| ,

4: dk ← dk(· −δ̄k),
5: dk ← dk

‖dk‖2
.

6: end for
7: end procedure, return {dk}

5.3.4 Discrete shifts and boundary issues

In order to define the discrete set of admitted translations, we choose equis-
paced latencies {δ−P , . . . , δP } with δp = p·dt, as described in Section 4.2.1.1.
The resolution between translations given by dt > 0 is taken equal to the
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Figure 5.2: Three waveforms defined in order to generate trials according to model (5.1).
Note the different shapes including ongoing and oscillatory as well as transient signals.

sampling resolution of the epochs {xm}, allowing efficient implementation
via fast Fourier transform (cf. Appendix A). The choice of P ∈ N now de-
pends on the desired maximal latency δP = P ·dt, which can be based on
the expected amount of waveform latency jitter across the epochs. In the
presence of periodic activity which is not phase-locked to the epochs, it is
useful to include shifts ranging over at least one full period of this activity.

Applying translations to signals on a finite domain naturally raises the
question of how to proceed with parts“shifted out”of the domain. In the case
of short transient events with small support in the center of the epochs, we
may use circular shifts which can be implemented efficiently. However, when
learning ongoing (e.g., oscillatory) activity as in Section 5.5, this approach
will lead to undesired boundary artifacts.

In order to minimize information loss caused by signals shifted out of
the domain, we choose the following solution. We define the waveforms dk

on a slightly larger domain than the epochs xm, extended by the length of
the maximal shift δP at each side. In this case, the shift operation dk(· −δp)
results in the selection of a window at latency δp in dk. This is illustrated
in Figure 6.1. In turn, the opposite shifts rkm 7→ rkm(·+δkm) used for
the waveform updates (5.5) are performed by zero-padding, such that no
information is lost in this step.

5.4 Evaluation on simulated data

We first used simulated data in order to evaluate the capability of epoched
AWL to identify multiple waveforms across a set of signals in the presence of
waveform variability and noise. The levels of amplitude and latency variabil-
ity as well as the signal-to-noise ratios (SNRs) were varied across different
experiments, which is described in detail in the following subsections. The
results are compared to those obtained by PCA and ICA (see sections 3.4.1
and 3.4.2).

We started by defining K = 3 waveforms of 2500 discrete samples, rep-
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Figure 5.3: Four randomly chosen trials, generated according to model (5.1) from
waveforms shown in Figure 5.2. First row: noiseless trials. Second row: trials plus
structured noise. Third row: trials plus structured and white Gaussian noise.

resenting temporal signals on a 5 second window with 500 Hz sampling rate.
They are shown in Figure 5.2. Note that both transient and oscillatory
waveforms are included. These waveforms were then used to create 200 tri-
als according to model (5.1) with constraints (5.3) and (5.4). Amplitudes
and latencies were drawn from different distributions, and two types of noise
were used, Gaussian and structured noise. The exact distributions are spec-
ified in the following subsections for the individual experiments. Figure 5.3
illustrates some generated trials with and without noise.

The generated signals were then processed with PCA, ICA, and AWL
in order to recover waveforms, amplitudes, and in the case of AWL also
latencies. In order to provide for a comparison with the original waveforms,
we considered the number K = 3 to be known a priori.

For the calculation through PCA, the waveforms were defined as the first
three principal components, and the waveform amplitudes were given by the
coefficient matrix of the PCA decomposition (cf. Section 3.4.1).

For the calculation with ICA (cf. Section 3.4.2), we used the Matlab
software package FastICA1, which implements the method described in Hy-
varinen (1999). As discussed in Section 3.4.2, the number of independent
components calculated by ICA normally equals the number of input com-
ponents, while in the present experiment we only needed to obtain K = 3
waveforms from M = 200 trials. For this reason, we used an option provided
in the FastICA algorithm, which allows to extract only a given number of
output components. However, this approach, denoted later as ICA200, led

1http://research.ics.aalto.fi/ica/fastica/
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to very poor results. This comes from the fact that there is no hierarchy
between independent components (cf. Section 3.4.2) such as between prin-
cipal components (cf. Section 3.4.1). Hence, the components extracted by
ICA200 were somewhat arbitrary and corresponded to noise rather than to
the actual waveforms. An alternative procedure consists in first reducing
the input dimension. This can be achieved, for instance, by performing a
PCA and using only the first principal components as input for the ICA.
Hence, besides the ICA performed on the full data (ICA200), we also used
ICA with previous dimensionality reductions to 10 input channels (ICA10)
and a maximal reduction to 3 input channels (ICA3).

For AWL, we used Algorithm 3 with translations {δ−P , . . . , δP } ranging
from −0.1 to 0.1 seconds with a resolution equal to the sampling resolution
of the epochs xm (cf. Section 5.3.4). After reconstruction, two performance
measures were calculated for every method.

First, we evaluated each method’s ability to capture the variance of the
original noiseless data x̄m = xm− ǫm. For PCA and ICA, the corresponding
estimates were given by

x̂m =
3
∑

k=1

âkmd̂k,

with âkm and d̂k the calculated coefficients and waveforms, respectively.
Note that this error is the same for PCA and ICA3, since ICA3 was per-
formed on the three components calculated by PCA. For AWL, we had

x̂m =
3
∑

k=1

âkmd̂k(· −δ̂km),

with estimated latencies δ̂km. The relative residual error was then obtained
as

εx =

∑M
m=1 ‖x̄m − x̂m‖2
∑M

m=1 ‖x̄m‖2
for all three methods.

As a second measure, we investigated the similarity of the original and
the calulated waveforms. Due to indeterminacies in the order and relative
latencies of the waveforms, this required prior matching of calculated wave-
forms to the most similar original ones, followed by their realignment. The
normalized waveform error is given by1

εd = 1√
2K

K
∑

k=1

‖(dk − d̂k)‖2.

1The factor 1√
2

is used to normalize εd for the “worst case”. That is, assuming dk

and d̂k to be random vectors, normalized and with zero mean, then, if dk and d̂k are
independent, the expected value of ‖(dk − d̂k)‖2 is

√
2.
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In the following subsections, we use these error measures to evaluate each
method’s performance for the cases of varying amplitudes and latencies of
waveforms, as well as for varying signal-to-noise ratios (SNR) with respect
to white Gaussian and structured noise. Finally, we show an example of the
recovered waveforms by the three methods in the case of moderate variability
and noise.

5.4.1 Influence of varying amplitudes

In order to investigate the effect of varying amplitudes, we first simulated
trials with constant latencies of waveforms and a high SNR of 10 dB, with
white Gaussian noise. Amplitudes were drawn from a Gaussian distribution
with mean 1. The standard deviation (SD) σa was increased from 0 to
1 throughout simulations. Negative amplitudes were discarded. After the
reconstruction with PCA, ICA, and AWL, the respective errors εx and εd
were calculated; they are shown in the first row of Figure 5.4.

The plot on the left shows the reconstruction error εx for increasing
amplitude variability σa. The methods PCA, ICA3, and AWL all succeed
in well-capturing the variance in the data for all levels of σa. ICA10 yielded
good reconstructions for most values of σa. It usually succeeded in selecting
the “right” independent components from the reduced 10 input channels.
However, ICA200 which was performed on all 200 simulated trials, captured
mostly the noise and led to completely useless results.

Concerning the correct separation of the waveforms, only ICA3 succeeds
well for increasing amplitude variability σa (right plot) by exploiting the
higher order statistical independence across waveforms. As the average am-
plitudes across the trials were equal for all three waveforms, PCA did not
succeed in separating the waveforms. In fact, PCA orders principal compo-
nents with respect to their variance, which leads to a mixing of components
with similar variance (cf. Section 3.4.1). AWL improves with increasing
σa but stays behind ICA. Again, the results for ICA200 and ICA10 were
suboptimal.

5.4.2 Influence of varying latencies

Throughout the following simulations, latencies were drawn from a zero-
mean Gaussian distribution with increasing standard deviation σδ in a range
from 0 to 1 seconds (logarithmic sampling); the SNR was kept constant at
10 dB, again using white Gaussian noise. We maintained some amplitude
variability (σa = 0.3) in order to allow PCA and ICA to separate the wave-
forms.

The results in row two of Figure 5.4 show that PCA and ICA3 slowly
worsen in capturing the data variance with increasing σδ (left plot), while
for AWL, ǫx remains relatively constant for σδ ≤ 0.1 seconds. For larger σδ,
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Figure 5.4: Error curves for methods PCA, ICA200, ICA10, ICA3, and epoched AWL
(legend upper left) for increasing amplitude variability (first row), latency variability
(second row), and increasing SNRs, for white Gaussian (third row) and structured
noise (last row). The left column shows the residual errors εx of the reconstructed
signals compared to the original (noiseless) signals. The errors εd of the reconstructed
waveforms w.r.t. the original ones are displayed in the right column. AWL always
outperforms PCA and ICA3 in the presence of latency variability (> 0.003 s) and an
SNR above −5 dB. Only in the case of constant latencies (first row) does ICA3 succeed
in better separating waveforms than AWL. Note that ICA10 and ICA200 yield only
suboptimal results (cf. Section 5.4.1).
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the error also rises, since we translations {δ−P , . . . , δP } used in the AWL
algorithm only ranged from −0.1 to 0.1 seconds.

Concerning waveform separation (right plot), ICA3’s initially good per-
formance suddenly decreases with latency variability σδ above 0.003 seconds.
Around the same value for σδ, AWL’s performance significantly increases.
Again, ICA only yielded useful results for maximal dimensionality reduction
(ICA3).

To sum up, the error curves show that while PCA and ICA do not
account for the changing latencies and thus perform poorly in their presence,
AWL not only compensates for them but even makes use of this variability
for better waveform separation.

5.4.3 Robustness to noise

Finally, the performance with respect to two types of noise was studied:
white Gaussian noise and more structured noise represented by real Gabor
wavelets (cf. Section 3.6.1) with varying latencies, frequencies, durations,
and amplitudes. The standard deviations of the waveforms’ amplitudes and
latencies were fixed to σa = 0.3 and σδ = 0.01, respectively. The errors ǫx
and ǫa for increasing SNR with respect to Gaussian and structured noise are
shown in the third and fourth row of Figure 5.4, respectively.

The methods AWL, PCA, and ICA3 start to account for at least 50
per cent of the variance for an SNR between −10 and −5 dB (left column).
While PCA and ICA3 do not improve significantly for higher SNRs anymore,
AWL’s performance steadily increases.

Concerning waveform separation (right column), the error εd of PCA and
ICA3 remains above 0.7 for all SNRs. AWL starts to succeed in separating
waveforms between −5 and 0 dB.

All methods showed to cope better with white Gaussian noise; in the
case of structured noise, the SNR needed to be significantly higher to yield
a similar performance. As before, ICA only yielded useful results when used
with maximal dimensionality reduction (ICA3).

5.4.4 Qualitative comparison

For a qualitative comparison, we generated a set of trials with medium
amplitude variability (σa = 0.3), small latency variability (σδ = 0.01), and
white Gaussian and structured noise, with resulting SNR of −2.67 dB. Four
randomly chosen trials are displayed in Figure 5.3, the different rows show
original and noisy signals (see caption).

The waveforms recovered with PCA, ICA, and AWL are shown in Fig-
ure 5.5. While PCA (first row) recovers mixtures of the three original wave-
forms (cf. Figure 5.2), ICA3 (fourth row) succeeds in well separating the
third original waveform from the other two. However, in order to encode the

78



5.5. EVALUATION ON LFP RECORDING

−0.4

−0.2

0

0.2

P
C

A

−0.4

−0.2

0

0.2

IC
A

2
0

0

−0.4

−0.2

0

0.2

IC
A

1
0

−0.4

−0.2

0

0.2

IC
A

3

0 1 2 3 4 5
−0.4

−0.2

0

0.2

time [s]

A
W

L

0 1 2 3 4 5

time [s]
0 1 2 3 4 5

time [s]

Figure 5.5: Waveforms recovered from noisy trials (Figure 5.3, last row) with PCA,
ICA200, ICA10, ICA3, and AWL in the respective rows. PCA and ICA3 produce su-
perpositions of the original waveforms (Figure 5.2). Without applying dimesionality
reduction, ICA leads to useless results (ICA200). The results improve if the data vari-
ance is first compressed to ten channels (ICA10) but are best for maximal dimensionality
reduction (ICA3). Only AWL separates all waveforms correctly.

different latencies across the data, it needs two differently shifted versions of
this waveform (one and three). Without applying maximal dimensionality
reduction before ICA, the results are suboptimal (ICA200, ICA10). Only
AWL (last row) succeeds in separating all three waveforms correctly.

5.5 Evaluation on LFP recording

In this section, we demonstrate the utility of epoched AWL for processing
the local field potential (LFP) dataset introduced in Section 2.7. The aim of
this analysis was to obtain a compact representation of the large dataset (ap-
proximately one hour of recording), gain insight into shape and distribution
of the epileptiform discharges (or spikes), and to detect other relevant signal
structures. In order to apply Algorithm 3, the contiguous LFP recording
first had to be segmented into epochs with well-isolated spikes, as explained
in the following subsection. Note that in this section we do not process the
simultaneously recorded cerebral blood flow (CBF), cf. Section 2.7. Since
the CBF response is significantly slower than the LFP spikes, it cannot be
well separated into epochs. Instead, the LFP-CBF relationship is assessed
in a non-epoched framework in Chapter 6.

After preprocessing and epoching, waveform representations were learned
hierarchically using Algorithm 3 for an increasing number of waveforms
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Figure 5.6: The first seven plots show sample epochs from the 169 epoched data
segments. The average over all 169 epochs is plotted in the last figure. It becomes
apparent that spikes are changing throughout the recording, decreasing in duration and
amplitude towards the end. Note that for better visualization only 3 seconds of the 8
second long epochs are shown.

K = 1, . . . , 5. The results for K = 5 were then compared to those obtained
with PCA and ICA.

5.5.1 Preprocessing and epoching

Since in this study we were mainly interested in the global shapes of the
epileptiform discharges, the data was downsampled from 1250 Hz to 125 Hz.
Prior to downsampling, lowpass filtering with cutoff frequency of 60 Hz was
performed to avoid aliasing effects. Then 169 well-isolated spikes (at least
5 seconds peak-to-peak distance between neigboring spikes) were selected
manually and segmented into 8 second time windows centered around the
spikes. Epochs 1, 26, 51, 76, 101, 126, and 151 as well as the average over
all 169 epochs are shown in Figure 5.6.

5.5.2 Hierarchical representations with epoched AWL

We used Algorithm 3 to learn representations with K = 1, . . . , 5 different
waveforms. This was performed in a hierarchical manner, starting with a
single waveform (cf. Section 4.6). Then a second waveform was initialized
with white Gaussian noise, and Algorithm 3 was repeated on the increased
set of waveforms. This incremental procedure was repeated until K = 5.
Although the negative peaks of the spikes were already well-aligned thanks
to exact manual epoching, we chose to allow translations {δ−P , . . . , δP } over
the entire time window of the epochs, that is, from −4 to 4 seconds. This
allowed for the detection of latent structures that were not exactly time- or
phase-locked to the spikes.
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The five increasing representations are shown in the respective rows of
Figure 5.7. The waveforms and their latency distributions are displayed in
the first five columns, the gray values in the last column illustrate the wave-
forms’ coefficients across epochs. The coefficients represent the waveforms’
energies (or more precisely l2-norms).

For K = 1, the resulting waveform is simply a weighted average across
epochs and resembles the average shown in Figure 5.6. The exact alignment
of spikes across epochs is reflected by the clearly spiked latency distribution
(red curve below waveform). The waveform’s energy (upper right) appears
to diminish towards the last epochs, with a transient increase around epoch
70.

Adding a second waveform (second row) to the learning process results
in a two-component representation of the spikes. Interestingly, the second
component appears to be systematically active only after the first 70 epochs.
This reveals a morphological change in the spike form in the second half of
epochs which could not be identified in the one component representation.

For K = 3, a new, oscillatory waveform appears. Its latency distribution
extends quite uniformly over about 1 second, approximately corresponding
to one full period. Hence, the phase of this oscillatory phenomenon seems to
be uncorrelated with the spikes. Furthermore, the coefficient values indicate
a constant intensity of this oscillation across epochs. Indeed, a further ex-
pert’s analysis identified these oscillations as spike-unrelated artifacts, prob-
ably produced by the recording hardware.

By learning additional waveforms (K = 4, 5), the spike becomes further
refined in different components. Interestingly, the energy of each spike com-
ponent appears to be relatively constant for contiguous sets of epochs. This
produces a segmentation into sets of epochs with similar spike morphology.
However, while for K = 4 three segments can be properly distinguished
(changes approximately at epochs 70 and 140), for K = 5 this segmentation
is less clear. Further increasing K led to representations that were even
harder to interpret (not shown here).

Note that each time a new waveform is added to the existing ones, the
entire set of waveforms is relearned. However, until K = 3 the previously
learned waveforms do not appear to change much when relearned. This clear
waveform hierarchy may result from the non-convexity of the algorithm and
its tendency to find a local minimum close to the initialization. However,
the spike components clearly change for K = 4, suggesting the algorithm’s
capability to refine representations when necessary.

5.5.3 Comparison of PCA, ICA, and AWL

The result for K = 5 waveforms learned with AWL was compared with those
produced by PCA and ICA. Here, we only show the results for ICA with
maximal reduction of the data to five input components. As in the synthetic
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Figure 5.8: Representations with five waveforms are learned with PCA, ICA, and E-
AWL, see respective rows. The last column shows the absolute coefficients of each
waveform (row) used across the epochs (columns). Light colors correspond to large
absolute values. All methods produce spike components and oscillations, however, only
E-AWL clearly separates them and encodes the oscillations in a single waveform.

experiment before, ICA did not yield useful results without this reduction.
Figure 5.8 shows the learned waveforms and coefficients for PCA, ICA,

and AWL in the respective rows. All three methods produce spike com-
ponents as well as oscillatory waveforms. However, only AWL succeeds in
clearly separating the oscillatory waveform from the spikes by exploiting its
changing phase relative to the spikes. Since PCA and ICA cannot adapt the
phase across epochs, they encode the oscillations as linear combinations of
two periodic functions in phase quadrature (last two waveforms). However,
this only allows us to explain the main frequency of the true oscillations,
which is why these waveforms look very sinusoidal compared to the oscilla-
tions learned with AWL. In fact, when more components are extracted, PCA
and ICA also produce harmonics of this main frequency (a sinusoidal func-
tion with double frequency first appears for eight extracted components).

In conclusion, AWL’s capability of capturing and compensating for la-
tency variability showed clear benefits when compared to PCA and ICA.
Yet, in this dataset, the spikes were exactly aligned and only the oscilla-
tory artefact varied in phase. The advantages of latency compensation will
become even more apparent when signals of interest are not as well aligned.
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Chapter 6
Contiguous AWL

In this chapter, we specialize AWL to process non-epoched
signals. We provide an efficient implementation C-AWL based
on matching pursuit. We then present two approaches to spike
processing, MC-Spike and AD-Spike, based on C-AWL. Both
are evaluated on real data and compared to template matching
in terms of detection accuracy. Finally, the spike representa-
tions are used to explore the relationship to the hemodynamics.
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6.1 Introduction

The method presented in the last chapter was designed to process a set of
neuroelectric experimental trials. However, these trials are often the product
of segmenting a contiguous recording into short epochs. When analyzing
event-related potentials (ERPs), epoching is a standard procedure and can
be automatically performed by locking the epochs to the stimuli. However,
some experimental setups require inter-stimulus intervals to be relatively
short, causing ERPs to overlap. In this case, epochs necessarily contain
combinations of different responses, distorting the true ERP shape.

Moreover, in the case of spontaneously repeating activity (SRA), the
occurences of the waveforms of interest are not known a priori. Epoching
then has to be performed either manually, which is time-consuming and only
feasible for small datasets, or by using some automatic detection device with
the risk of missing relevant events.

In this chapter, we present an alternative to the standard epoching ap-
proach by processing the contiguous dataset as a whole. This can be done
by making the appropriate specifications in the generic Algorithm 1. The re-
sult, contiguous AWL (C-AWL), is a method that combines detection, shape
learning, and parametrization of repeating structures across the dataset.

After discussing the implementation of C-AWL, we will make some ad-
ditional specializations, allowing to use it as a spike processing tool. Two
versions, a multi-class spike approach (MC-Spike) and a model with a sin-
gle, adaptive spike (AD-Spike) are applied to the LFP data from Section 2.7.
The learned representations are then used to reveal relationships between
the LFP spikes and the simultaneously recorded cerebral blood flow.

6.2 Model specifications

Throughout this chapter, we consider a single long signal x that contains
repetitions of waveforms dk subject to deformations at different temporal
locations. We will only consider linear changes of waveform duration (i.e.,
dilations), but the framework can be used for more general deformations (cf.
Chapter 4). The different temporal locations δp are given by translations of
the dk. This setting is a specific case of the general model (4.2), which now
reads

x =
K
∑

k=1

P
∑

p=1

Q
∑

q=−Q

akpq
1√
γq

dk

(

1
γq

(· −δp)
)

+ ǫ. (6.1)

Note that we assume x to be long and waveforms dk of significantly shorter
duration. The translations dk 7→ dk(· −δp) are thus implemented by em-
bedding dk into a time window in the domain of x starting at δp, while
the remaining signal is zero-padded; this is illustrated in Figure 6.1. The
set {δ1, . . . , δP } thus includes P = N + n − 1 different latencies, where n
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Figure 6.1: Illustration of the shift operation dk 7→ dk(· −δp): The waveform dk with
n time samples is placed into the domain of x, between time points δp and δp−n+1.
The remaining signal is set to zero. The adjoint operation x 7→ x(·+δp) · ✶supp(dk),
with ✶supp(dk) the indicator function for the support of dk, is then defined as selecting
the window starting at δp in the signal x.

and N denote the number of samples of dk and x, respectively. The set
{γ−Q, . . . , γQ} contains the logarithmically spaced dilation factors γq = βq,
where β > 1 controls the resolution between dilations and

γQ

γ−Q
= β2Q is the

maximal relative “stretch” (cf. Section 4.2.1.2).
If x has many sample points, the set of coefficients {akpq} will also be

very large, such that sparsity is required for interpretable results. We there-
fore impose general sparsity, as discussed in Section 4.3.2. In addition, we
implement the exclusivity constraint (4.4) by enforcing a minimal distance
∆ > 0 between two waveform occurrences. This leads to the minimization
problem

min
{akpq, dk}







∥

∥

∥

∥

∥

∥

x−
K
∑

k=1

P
∑

p=1

Q
∑

q=−Q

akpq
1√
γq

dk

(

1
γq

(· −δp)
)

∥

∥

∥

∥

∥

∥

2

2

+ λ

K
∑

k=1

P
∑

p=1

Q
∑

q=−Q

|akpq|






,

(6.2)

s.t. akpq 6= 0⇒ (ak′p′q′ = 0 for all k′, q′, p′ 6= p : |δp − δp′ | < ∆). (6.3)

Additionally, non-negativity (4.5) can be imposed if waveforms are supposed
to respect the sign across the occurrences.

Note that while constraint (6.3) prohibits very close waveform occur-
rences, overlaps are still possible if ∆ is smaller than the time window of
the dk. Besides the difficulty in interpreting many close waveform occur-
rences, there is another practical reason to the minimal distance constraint:
The waveforms of interest will often be smooth with most frequency content
below sampling rate. Hence, if a waveform dk strongly correlates with the
data at some latency δp, it will also show a strong correlation close to δp.
This could lead to false multiple detections of dk in a short time interval.

The constraint (6.3) imposes the minimal distance also for different wave-
forms dk, dk′ , which can be relaxed in cases where the waveforms have suffi-
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ciently different shapes. However, in the following applications, we will learn
very similar waveforms, hence the more restrictive formulation.

6.3 Algorithm C-AWL

We can solve the minimization problem (6.2, 6.3) by making the appro-
priate specifications to the generic Algorithm 1, which is summarized in
Algorithm 4. Implementations of the procedures coefficient updates,
waveform updates, and waveform centering will be given in the fol-
lowing subsections.

Algorithm 4 C-AWL

Input: x, {dk}Kk=1, Q ∈ N, β > 1, λ ∈ R
+
0 , ∆ > 0.

1: Calculate dilations {γ−Q, . . . , γQ} as γq = βq.
2: loop
3: Set up D = {dpq

k } with dpq
k = 1√

γq
dk

(

1
γq

(· −δp)
)

.

4: {akpq} ← coefficient updates(x,D, λ,∆)
5: ({akl}, {δkl}, {γkl})← switch representation({akpq}, {δp}, {γq})
6: if stopping criterion reached then
7: break
8: end if
9: {dk} ← waveform updates(x, {akl}, {δkl}, {γkl}, {dk})

10: {dk} ← waveform centering({akl}, {δkl}, {γkl}, {dk})
11: end loop
Output: {akl, δkl, γkl,dk}.

As explained in Section 4.3.4, we will use the sparse representation
{akpq, δp, γq} for the coefficient update, but change to the explicit repre-
sentation

({akl}, {δkl}, {γkl})←switch representation({akpq}, {δp}, {γq})

during the rest of the algorithm. This representation directly describes each
occurrence of a waveform dk by its coefficient akl, time instant δkl, and
duration γkl.

6.3.1 Coefficient updates

As in the previous chapters, we create a dictionary D = {dpq
k } with the di-

lated and translated waveforms dpq
k = 1√

γq
dk

(

1
γq

(· −δp)
)

before minimizing

(6.2, 6.3) with respect to the coefficients {akpq}. The procedure coeffi-

cient updates is now given below.
Note that the dictionary D contains K · P · (2Q+ 1) atoms and is thus

typically very large. Calculation with LARS as in the previous chapter
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1: procedure coefficient updates(x,D, λ,∆)
2: Solve with matching pursuit:

3: {akpq} ← argmin
{a′

kpq
}

∥

∥

∥

∥

∥

x−
K
∑

k=1

P
∑

p=1

Q
∑

q=−Q

a′kpqd
pq
k

∥

∥

∥

∥

∥

2

2

+ λ
K
∑

k=1

P
∑

p=1

Q
∑

q=−Q

∣

∣

∣a′kpq

∣

∣

∣ ,

4: s.t. a′kpq 6= 0⇒ (a′k′p′q′ = 0 for all k′, q′, p′ 6= p : |δp − δp′ | < ∆).

5: end procedure, return {akpq}

will therefore be infeasible. Instead we suggest to use matching pursuit
(MP), which allows for a highly optimized implementation in the case of
shift-invariant atoms (cf. Appendix A). However, the bottleneck in the
calculations are the different dilations, which cannot be handled as efficiently
as the translations. If a very high resolution across dilations is desired, it can
be beneficial to use a multi-resolution approach: start each MP step with
a medium resolution and refine the dilation factor after every waveform
detection.

The minimal distance constraint in line 4 can be enforced after each MP
step: we determine the temporal positions δp′ close to the current waveform
detection at δp and exclude all corresponding coefficients {ak′p′q′} from later
activation. If desired, non-negativity (4.5) is easily enforced by selecting
only atoms with a positive correlation coefficient.

As shown in Appendix A, the regularization parameter λ in the Lasso
problem can be seen as a correlation threshold. Hence, the MP algorithm
is stopped when the maximal correlation of all non-selected atoms with the
residual signal is below λ.

The selection of λ is crucial for the outcome of the method. A possibility
is to choose λ as a fraction of the largest correlation of all translated and
dilated waveforms with the data, that is, λ = αDtx with 0 < α < 1.
Since D changes in every iteration of Algorithm 4, λ also does. In this
case, we instead provide the fixed parameter α, which can be determined by
assumptions on the amount of amplitude variation of the signal components
of interest across the recording.

6.3.2 Waveform updates

The waveforms are updated by solving the minimization problem (6.2) it-
eratively for each waveform dk while leaving the coefficients fixed. This
described in the procedure waveform updates.

The minimization problem in line 3 can be solved as follows: In analogy
to Section 4.4.3, we first define linear transformations ψk with

ψk(dk) =
Lk
∑

l=1

akl
1√
γkl

dk

(

1
γkl

(· −δkl)
)

, (6.4)
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1: procedure waveform updates(x, {akl}, {δkl}, {γkl}, {dk})
2: for k = 1 to K do

3: dk ← argmin
dk

∥

∥

∥

∥

∥

∥

x−
K
∑

k′=1

Lk′
∑

l=1
ak′l

1√
γk′l

dk′
(

1
γk′l

(· −δk′l)
)

∥

∥

∥

∥

∥

∥

2

2

4: end for
5: end procedure, return {dk}

such that line 3 becomes

dk ← argmin

∥

∥

∥

∥

∥

x−
K
∑

k′=1

ψk′(dk′)

∥

∥

∥

∥

∥

2

2

.

This results in the waveform update

dk =
(

ψt
kψk

)+
ψt

k(rk) (6.5)

where

rk = x−
∑

k′ 6=k

ψk′(dk′)

describes the residual that results when subtracting all waveform occurrences
from the signal, except those of dk.

Note that the waveform update (6.5) describes a kind of deconvolution:
The operator ψk defined in (6.4) represents a convolution of the sparse co-
efficient vector

(0, . . . , ak1, . . . , akl, . . . , ak(l+1) . . . , akLk
, . . . , 0)

with the dilatable argument dk. The dots between akl and ak(l+1) denote
zero-entries, corresponding to the distances δk(l+1) − δkl between two oc-
currences of dk. The conditioning of ψk depends on the amount of overlap
between occurrences, which can be controlled, for instance, through a large
minimal distance parameter ∆. However, this would also limit the possibility
of detecting close waveform occurrences. Alternatively, the update can be
performed only on non-overlapping occurrences of dk, provided that enough
of those are available. In this case, the update (6.5) reduces to a weighted
average of rescaled signal segments that contain the waveform occurrences.
If updating on strongly overlapping occurrences cannot be avoided, regular-
ization should be considered.

6.3.3 Waveform centering

The procedure waveform centering performs centering operations with
respect to latencies and dilations, as well as normalization. In the previous
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chapters, we realigned each waveform such that the mean latency across
epochs was close to 0. This notion does not make sense in the case of a
single long signal. Instead, we suggest to ensure that the signal component
of interest is approximately centered in the time window of dk. The con-
crete way of implementing this is application dependent. In our following
evaluation on data with epileptiform spikes, for instance, we chose to align
spikes with respect to their maximal peak.

Afterwards, centering with respect to dilations is performed as described
in Section 4.4.4. The weighted geometric mean γ̄k over the calculated dila-
tions {γkl}l is obtained for each waveform dk as

γ̄k =





Lk
∏

l

γ
|akl|
kl





1
∑

l
|akl|

.

This is followed by the centering step

dk ← 1√
γ̄k

dk

(

1
γ̄k

(· )
)

.

If a waveform dk varies much in duration across the recorded signal, it is
important that the distribution of the {γkl}l is geometrically centered at 1.
Otherwise, some large stretches or compressions of waveforms might not be
included in the set {γ−Q, . . . , γQ}. As before, the normalization constraint
on waveforms is ensured by setting

dk ←
dk

‖dk‖2
.

The above steps are summarized in the procedure waveform centering.

1: procedure waveform centering({akl}, {δkl}, {γkl}, {dk})
2: for k = 1 to K do
3: Align dk, for instance at maximal peak.

4: γ̄k =

(

Lk
∏

l

γ
|akl|
kl

)
1

∑

l
|akl|

,

5: dk ← 1√
γ̄k

dk

(

1
γ̄k

(· )
)

,

6: dk ← dk

‖dk‖2
.

7: end for
8: end procedure, return {dk}

6.4 C-AWL for spike learning

The C-AWL algorithm introduced in the previous section is a tool that
allows to learn repeating structures from a long contiguous dataset. In
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particular, it can be used for processing datasets containing epileptiform
spikes, such as the one presented in Section 2.7 and treated in Section 5.5 in
an epoched setting. Here, we illustrate the advantages of directly processing
the non-epoched data with C-AWL, including automatic detection of spike
occurrences and the possibility of handling overlaps.

In order to use C-AWL for spike processing we will make a few special-
izations that address specific aspects about the spikes. For this purpose,
we will assume the waveforms dk to exclusively capture the different spike
shapes. Note that this was different when we applied E-AWL to the epoched
data in Section 5.5, which produced spike shapes as well as other oscillatory
waveforms. In fact, these waveforms were learned blindly, that is, without
any prior assumptions about their shapes. However, the temporal informa-
tion that was provided through the prior epoching step is not available in
the contiguous setting. Hence, it is necessary to use some prior knowledge
about the spike shapes in order to avoid fitting irrelevant signal structures.

We propose two different spike models: The first one, MC-Spike, is a
a multi-class model with constant shapes of the spike templates. That is,
within each class, only amplitude variations are allowed across the different
spike occurrences. The second one, AD-Spike, consists of a single adaptive
spike template with variable duration. These approaches are presented in
the following subsections and their respective advantages are illustrated on
the contiguous spike dataset from Section 2.7. Finally, their detection per-
formance is evaluated for different noise levels, and the results are compared
to common template matching.

6.4.1 Multi-class spike learning (MC-Spike)

We now assume the signal x to contain spikes from K different classes, given
by {dk}Kk=1. The shape of each dk is fixed, but it may occur with different
amplitudes and latencies throughout x. As before, we impose a minimal
distance ∆ between spike occurrences in order to well separate them. The
corresponding model thus reads

x =
K
∑

k=1

P
∑

p=1

akpdk (· −δp) + ǫ, (6.6)

with akp 6= 0⇒ (ak′p′ = 0 ∀ k′, p′ 6= p : |δp − δp′ | < ∆), (6.7)

and ∀ k, p : akp ≥ 0, (6.8)

where the residual ǫ contains the spike-unrelated part of the signal. The
minimal distance constraint (6.7) ensures that each spike occurrence is rep-
resented by a single waveform dk. If an estimate of each spike class is
available, then the contiguous AWL algorithm may be applied directly to
this initialization. However, as this is rarely the case, we will assume that
only one basic spike template d1 is given and the number K of spike classes
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Figure 6.2: Two different time windows of a typical spike shape. Left: This window
shows the negative wave of the spike, which lasts close to 0.2 seconds. Right: The
entire spike, consisting of the fast negative wave followed by a slow positive wave, is
approximately 1.5 seconds long.

is unknown. In this case, we propose the hierarchical learning approach (cf.
Section 4.6) given in Algorithm 5. Note that we use the relative detection
threshold α rather than the absolute threshold λ (cf. Section 6.3.1).

Algorithm 5 MC-Spike

Input: x ∈ R
N , d1 ∈ R

n, Kmax ∈ N, 0 < α < 1, ∆ > 0.

1: for K = 1 to Kmax do
2: if K > 1 then
3: dK ← initialize spike(x, {akl}, {δkl}, {dk} )
4: end if
5: ({akl}, {δkl}, {dk})K

k=1 ← c awl(x, {dk}Kk=1, α,∆)
6: Save representation: RK ← ({akl}, {δkl}, {dk}).
7: end for

Output: R1, . . . , RKmax
.

The algorithm starts by learning a single spike form representation with
C-AWL (Algorithm 4), initialized with the provided template d1. Then,
an additional spike template d2 is initialized, and a new representation is
learned starting from {d1,d2}. This process is repeated until the maximal
representation size Kmax is reached. Note that C-AWL is used without
waveform dilations. For better clarity, we again note that the learned rep-
resentations are explicit, with akl denoting only the non-zero coefficients,
opposed to the sparse representation in model (6.6).

The result of Algorithm 5 is a set of spike representations R1, . . . , RKmax

of increasing cardinality. For reasonably small Kmax, we suggest to qualita-
tively compare the different representations. Alternatively, model selection
methods such as the Bayesian or Akaike information criterion (BIC, AIC,
respectively) may be used to determine the most likely number K. An
overview of model selection criteria can be found in Stoica and Selen (2004).
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Figure 6.3: Illustration of spike subtraction in MC-Spike. Left: A spike template dk

(red) is matched to the prominent spike during sparse coding with MP. Note that the
negative peak of the closely following spike hardly reaches below the baseline due to
the superposition with the slow positive wave of the first spike. Right: Subtraction of
the matched spike template results in a baseline correction. The peak of the second
spike now reaches a larger absolute minimum, which facilitates its detection.

6.4.1.1 Handling overlapping spikes

As mentioned before, an advantage of processing the signal without prior
epoching is the possibility of appropriately handling overlaps. Note that
(6.7) imposes a minimal distance only between the onsets of the spikes.
Hence, overlaps are still possible if ∆ is smaller than the total duration of
the waveforms dk. On the other hand, a too small ∆ can cause the encoding
of a single spike through several dk.

In order to assess the appropriate choice of ∆, we investigate a typical
spike shape found in the dataset, shown in Figure 6.2: the first negative
wave (left plot) is about 0.2 seconds long while the entire spike, including
the slow positive wave, lasts about 1.5 seconds (right plot). In order to
provide for a clear spike separation, we choose to avoid overlaps between
the fast negative waves of the spikes. Hence, we set ∆ = 0.2 seconds. This
still allows large overlaps of the spikes whose total duration is longer.

The detection of spikes is performed through matching pursuit in the
procedure coefficient updates (cf. Section 6.3.1). This means that after
each spike detection, the contribution of this spike is subtracted from the
residual signal (cf. Appendix A), which can improve the detection of a
closely following spike. This is illustrated in Figure 6.3.

6.4.1.2 Initializing new spikes

When a new spike dK is added to the representation, its initialization is
extremely important. If initialized with spike unrelated structures, dK may
not be able to “compete” with the previously learned spike classes. That is,
the d1, . . . ,dK−1 will correlate much stronger with the spikes in the data,
and will therefore be selected first in the coefficient updates. In this case,
dK may not become active at all or only pick up noise. We implement the
routine initialize spike by choosing the previously detected spike occur-
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rence which is the least well explained by the {dk}K−1
k=1 . More concretely, we

first calculate the residual

r = x−
K−1
∑

k=1

Lk
∑

l=1

akldk(· −δkl). (6.9)

Now, we can describe the goodness of fit (GOF) of the detection at δkl by

ρ(δkl) = 1−
‖r(·+δkl) · ✶supp(dk)‖2

‖r(·+δkl) · ✶supp(dk) + akldk‖2
. (6.10)

Here, ✶supp(dk) denotes the indicator function for the support of dk. The
operation r→ r(·+δkl) ·✶supp(dk) thus corresponds to selecting a window in
r at time δkl (cf. Figure 6.1). After determining the latency at which this
fit value is minimal,

δk′l′ = argmin
{δkl}

(ρ(δkl)),

we initialize the new spike at this position by setting

dK = r(·+δk′l′) · ✶supp(dk) + ak′l′dk′ .

Note, that we do not initialize dk directly in the signal x but subtract
the contributions of all spike detections except for the one at δk′l′ , possibly
eliminating overlapping effects.

However, this initialization still bears the risk that the residual contains
noise or artifacts, and dK would be susceptible to fit other artifacts during
the following coding step. Hence, we only initialize the part of length ∆ that
corresponds to the sharp negative wave of the spike (cf. Figure 6.2). This
is followed by normalization. If the newly initialized spike template detects
too few spikes (< 3 in our implementation), we reinitialize it again with a
random spike occurrence.

6.4.1.3 Performance measures

In order to compare the representations RK , we define three performance
measures. First, we define the average goodness of fit (GOF) ρ̄ as the mean
over all ρ(δkl) defined in (6.10). Second, the relative root mean square (RMS)
error is defined as

εr =
‖r‖2
‖x‖2

with residual r (6.9). Finally, all spike occurrences were located in the
data by visual inspection, resulting in a total number of 520 spikes. Their
latencies were used to evaluate the detection performance of the methods.
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Figure 6.4: Spike representations learned with MC-Spike on LFP data (cf. Section 2.7).
Each representation (row) is a result of adding a new spike class to the previous rep-
resentation and relearning on all classes (cf. Algorithm 5). Left column: The learned
spike templates dk are shown on a window around the negative waves. They are scaled
with the average amplitude of the spikes that they represent in the data. The main dif-
ference across the templates appears to consist in their duration. Right column: The
temporal locations δkl of the spike detections are plotted against their correlation coef-
ficients akl. Interestingly, in most representations, the different spike classes appear to
be clearly separable in this plot. Bottom row: Three different measures (columns) are
shown for each representation: average spike fit ρ̄, relative RMS error εr, and number
of detected spikes (total: 520).
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6.4.1.4 Experiments

We applied Algorithm 5 to the approximately one hour recording of local
field potential (LFP) with epileptiform discharges presented in Section 2.7.
This recording had a remarkably good signal-to-noise ratio (SNR), such that
even small discharges were clearly visible. However, the small amplitude
spikes often occurred during the slow positive waves of preceding spikes (cf.
Figure 6.3), making them hard to detect when only looking at absolute
amplitudes. In order to be able to learn high frequency components of the
spikes, we processed the signal in its original resolution of 1250 Hz.

We initialized the first template spike d1 on a 2 second time window in
the data that contained a clearly visible spike occurrence. We set Kmax = 8
and used a minimal spike-to-spike distance ∆ = 0.2 seconds. Due to the high
SNR, we set a low relative detection threshold, α = 0.1 (cf. Section 6.3.1), in
order to detect also the smaller amplitude spikes. The number of iterations
in C-AWL was set to 10 for each representation RK . The computation of
all 8 representations took approximately 7 minutes on a laptop.

The results are shown in Figure 6.4. Each of the first eight rows in the
figure corresponds to one representation RK . The learned spike templates
are shown in the left column. Note that while each spike class is scale-
invariant and its template dk normalized, we here scaled the templates with
the mean amplitude of the spikes they represented in the data. The main
difference between the template shapes appears to be the different duration
of the negative wave (note that we only show a 0.35 second time window for
better illustration of this difference). The right column shows the coefficients
akl plotted against the latencies δkl, corresponding to the positions and l2-
norms of the detected spikes. It becomes clearly visible that the maximal
spike energy decreases over time. Interestingly, the spike classes represented
by the different colors are well-separated in this plot. In row three, for
example, during the first third of the recording, the high energy spikes are
represented by the blue template with long negative wave. The green spike
class dominates the second third, while the short red template represents
the last third as well as other low energy spikes across the recording. This
clustering becomes finer with increasing number of templates.

The last row of Figure 6.4 shows the different performance measures from
Section 6.4.1.3 for each representation: average GOF ρ̄ of the detected spikes,
relative RMS error εr, and the number of detected spikes, respectively. All
detected spikes were true positives, due to the good signal-to-noise ratio and
sufficiently large detection threshold α. The three measures show the most
significant performance increase across the first representations R1, R2, R3.
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Figure 6.5: Spike representation learned with MC-Spike and K = 5 spike classes. Top

row: The 5 spike templates are shown on two different time windows. Note that
some of the spike shapes have a characteristic kink about 10-20 ms before the maximal
negative peak (left). Besides that, the main differences consist in the duration and
amplitude of the peak. On the longer time window (right), it is noticeable that there
are also differences in the slow positive wave following the negative peak. Middle row:

The two figures show coefficients and the negative logarithm of the local spiking rates
(LSR) in time, respectively. In the first part of the recordings, these profiles look very
similar, especially for the low energy spikes from classes 4 (light blue) and 5 (purple),
suggesting that the -log(LSR) can account for some of the local changes across spike
energies. Lower left: This relationship becomes even more apparent when directly
plotting the -log(LSR) against coefficients. In fact, it seems that the potential energy
of each spike is bounded clearly by a linear function of the -log(LSR) (dashed line).
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Investigating spiking rates

The energies of the spikes (Figure 6.4, right column) showed to decrease
across the dataset. This can be explained by the diminishing effect of the
inhibition blocker bicuculline, which was injected into the rat’s cortex prior
to the recording (cf. Section 2.7). However, large variations across spike
energies were also present in small time intervals.

In the original dataset, we were able to observe that a spike that closely
followed another spike generally had significantly less energy than the pre-
vious one. We therefore investigated the relationship between the intervals
between spikes and their energies, in order to explain the energy variations.

For this purpose, we first defined the local spiking rate (LSR) of a spike
at latency δl as

LSR(δl) =
1

δl − δl−1
[Hz]. (6.11)

Here, the δl denote the temporally ordered latencies of the spike occurrences,
disregarding the different spike classes. For the following attempt to explain
the energy variations, it proved useful to investigate the relationship with
the negative logarithm of the LSR.

We now focus on the representation for K = 5 in more detail, which is
shown in Figure 6.5. The top row shows the five templates on two different
time windows. Notice that some of the spike templates clearly show a kink
around 10− 20 ms before the main negative peak, which is a characteristic
property of the epileptiform spikes (Saillet et al., 2015).

The clear appearance of this fast peak is due to the processing in high
signal resolution (1250 Hz) and gives proof of the exact alignment properties
of MC-Spike. The global forms of the learned spike templates (right) show
differences in the amplitude and durations also of the slow positive wave.

In the middle row of Figure 6.5, we now compare the learned spike co-
efficients (left), describing the spike energies (or more precisely l2-norms),
with the negative log LSR (right). In the first part of the recording, the two
profiles look very similar, especially for the low energy spikes of classes 4
(light blue) and 5 (purple). Hence, the -log(LSR) seems to explain some of
the local changes in spike energies.

The relationship can be observed more directly when plotting coefficients
directly against the -log(LSR) (lower left). The dashed line illustrates that
the potential energy of a spike appears to depend linearly on the -log(LSR).
This can be interpreted as a need of the system (i.e., the neurons involved
in the generation of the spike) for a certain time after each generated spike
in order to recover its potential energy.
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6.4.2 Adaptive duration spike learning (AD-Spike)

The results from the multi-class spike model showed that a major difference
between the spike templates was their different duration. In this section, we
therefore consider a model with a single spike template of adaptive duration
(AD-Spike),

x =
P
∑

p=1

Q
∑

q=−Q

apq
1√
γ
d
(

1√
γ
· −δp

)

+ ǫ, (6.12)

with apq 6= 0⇒ (ap′q′ = 0 ∀ q′, p′ 6= p : |δp − δp′ | < ∆), (6.13)

and ∀ p, q : apq ≥ 0. (6.14)

We can directly apply C-AWL (Algorithm 4) withK = 1 to this problem.
For convenience, this is described in Algorithm 6. As for MC-Spike, we use
the relative correlation threshold α instead of the absolute threshold λ (cf.
Section 6.3.1).

Algorithm 6 AD-Spike

Input: x ∈ R
N , d ∈ R

n, Q ∈ N, β > 1, 0 < α < 1, ∆ > 0.

1: ({al}, {δl}, {γl},d)← c awl(x,d, Q, β, α,∆)
Output: {al}, {δl}, {γl},d.

Experiments

We applied Algorithm 6 to the LFP-dataset from Section 2.7 with full sam-
pling resolution (1250 Hz) in order to learn the AD-Spike representation.
We used a total number of 2Q+1 = 61 dilation factors, and a maximal rela-
tive stretch of β2Q = 8 in order to capture the full range of spike durations.
To increase the resolution between dilations, we used a multi-resolution ap-
proach (cf. Section 6.3.1) with additional resolution factor of 11. As for
MC-Spike, we set α = 0.1, ∆ = 0.2 seconds and initialized d on a 2 second
window around a prominent spike in the data. Since the majority of spikes in
the data were well isolated, we performed the updates only on these spikes,
in order to avoid artifacts of overlapping spikes (cf. Section 6.3.2). We per-
formed 4 iterations with C-AWL after which we observed convergence. The
computation took approximately 2 minutes on a laptop.

The resulting representation is shown in Figure 6.6. The top row shows
two different time windows of the learned template d. Due to centering with
respect to dilations in Algorithm 4, its width represents the average width
of the detected spikes. Note that despite the temporal rescaling during the
spike updates, the fast peak before the maximal negative peak is still visible.
The bottom row shows the coefficients and dilations, respectively, plotted
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Figure 6.6: Dilatable spike representation learned with AD-Spike. Top row: The
learned spike template is shown on two different time windows. Notice that the char-
acteristic fast peak is clearly visible (kink around -0.15 seconds, left figure). Bottom

row: The profiles of the spikes’ coefficients (left) and dilation factors (right) across
time are compared. The strong similarity shows that the different spike energies are
explained primarily by their different durations.
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Figure 6.7: The qualities of the MC-Spike representations are compared to the AD-
Spike representation by the measures goodness of fit ρ̄, relative RMS error εr, and
number of detected spikes. In these terms, the descriptive quality of AD-Spike seems
to be similar to MC-Spike with K = 3 spike classes.

in time. These profiles are very similar, suggesting that the different spike
energies mostly result from their different durations.

Figure 6.7 shows a comparison between the MC-Spike (cf. 6.4.1.4) and
AD-Spike in terms of the measures average GOF ρ̄, relative RMS error εr,
and number of detected spikes (cf. Section 6.4.1.3). In these measures,
AD-Spike is comparable to MC-Spike with K = 3. For K > 3, MC-Spike
achieves a slightly higher fit ρ̄ of spikes which is also reflected in the lower
RMS error. This shows that not all of the spike variability can be explained
by linear stretches.

An obvious advantage of AD-Spike over MC-Spike is the very compact
representation in which all variability is parametrized in form of amplitude,
latencies, and spike duration. In addition, no model order has to be selected.

6.4.3 Comparing detection performance

The LFP dataset that we processed in the previous subsections with MC-
Spike and AD-Spike had an exceptionally high signal-to-noise ratio (SNR)
with few artifacts. Hence, it was possible to detect even overlapping spikes
of small amplitudes with high precision. Here, we evaluate the detection
accuracy of MC-Spike and AD-Spike for different SNRs and compare the
results to template matching based on cross-correlation. For this purpose,
we added different levels of white Gaussian noise to the LFP dataset from
Section 2.7, providing for a semi-realistic study. The“true”spike occurrences
were determined manually in the original dataset, resulting in 520 marked
spikes (cf. Section 6.4.1.3).

Template matching approaches have been used in different studies for
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epileptiform spike detection (Dingle et al., 1993; Larsson et al., 2009). Typ-
ically, a given template is cross-correlated against the data. Given a certain
correlation threshold, the correlation coefficients above this threshold in-
dicate the detected spikes. The detection accuracy of such an approach
depends strongly on the used template. As these are not always available,
spikes previously extracted from the data are frequently used as templates.

For our evaluation of detection performance, we compared two settings:
availability of a “good” template vs. the use of a noisy template. The good
template was obtained as the average over the non-overlapping epoched spike
occurrences from Section 5.5. The second template was directly taken from
each noisy dataset. For this purpose, we first used the original data to define
a time window containing a prominent, non-overlapping spike. Then, during
the processing of each dataset, this window was extracted directly from the
noisy dataset to define the template.

In order to avoid a bias due to threshold selection for the different meth-
ods, we assumed the number of spikes to be known a priori. While this is not
a very realistic assumption, we found that it provided for a more objective
comparison between the methods. Hence, all methods stopped detection
after 520 temporal locations were determined. This overruled the threshold
parameter α in MC-Spike and AD-Spike. In order to avoid multiple close
detections of the same spike, we imposed a minimal spike-to-spike distance
of ∆ = 0.2 seconds for different spike detections for all methods.

For MC-Spike we used the hierarchical Algorithm 5 with Kmax = 5,
producing 5 different representations. Here, we only show the results for
K = 1 and K = 5 for better visibility.

The results are shown in Figure 6.8. The top row shows the detection
accuracies for initialization with a the good template for low (left) and high
SNRs (right). Note that the plot on the right only contains a narrow window
of detection accuraries (> 97%) as all methods showed almost perfect detec-
tion for a sufficiently high SNR. Below an SNR of -25 dB, template matching
yielded best results, while above -25 dB, AD-Spike achieved highest accuracy
(left plot). For a high SNR (right plot), AD-Spike and MC-Spike withK = 5
performed slightly better than template matching. Note that for MC-Spike,
the single class model shows higher detection rate for lower SNRs while for
high SNRs the model with K = 5 performs better.

When initializing the template directly from the noisy data (second row),
template matching performed significantly worse than MC-Spike and AD-
Spike, especially for low SNRs between -30 dB and -10 dB. AD-Spike shows
best performance for all noise levels. Note the extremely steep performance
increase for both MC-Spike and AD-Spike around -30 dB. Once the SNR
is sufficiently high to detect enough spikes, these methods can benefit from
their ability to relearn the bad template which produces the drastic improve-
ment. In fact, above -25 dB, AD-Spike and MC-Spike completely compen-
sate for the bad initialization, which becomes clear when comparing the two
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Figure 6.8: The performances of MC-Spike, AD-Spike, and template matching are
compared in terms of detection accuracy. For this purpose, Gaussian noise of different
amplitudes was generated and added to the original LFP dataset (cf. Section 2.7). Top

row: Detection accuracies for increasing SNRs obtained when using a “good” spike
template. Template matching performs better than AD-Spike and MC-Spike for SNRs
below -25 dB (left). Above -25 dB the accuracy of AD-Spike is slightly better. All
MC-Spike representations show worse results than template matching and AD-Spike,
except for an SNR above -10 dB (right). Bottom row: When initializing the template
directly in the noisy data, AD-Spike shows best performance for all SNRs. Template
matching yields significantly lower accuracies for low SNRs.
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rows.

In conclusion, AD-Spike shows a very good detection performance. MC-
Spike shows a slightly inferior performance and differs depending on the
number of classes. Template matching only performs better than the other
methods in cases of high noise levels and a good template.

6.5 Exploring neuro-vascular coupling

The spike representations of the LFP recording learned in the previous sec-
tion provide important parameters to assess the coupling with the hemo-
dynamic activity. In Figure 6.5, we showed a correlation between the local
spiking rates (LSR) of the spikes and their energies. We will now use the
LSR to explore the relationship of the spiking activity with dynamics in the
cerebral blood flow (CBF), which had been recorded simultaneously with
the LFP-spikes (cf. Section 2.7).

The top row of Figure 6.9 shows the absolute values of the spectrogram
of the CBF in a frequency range of 0 to 1.2 Hz, calculated by windowed
Fourier transforms. Due to the large intensenties around the zero frequency
component, we show all values above 200 in the same color for better visi-
bility. Note that while most frequency content is below 0.2 Hz, there is an
ongoing rhythmic activity around 1 Hz. As supposed by the experimentalists
of the study, this activity resulted from the rat’s respiration.

The LSRs (6.11) for the spike representation learned with MC-Spike for
K = 5 are now plotted on top of the CBF spectrogram in the middle row
of Figure 6.9. For better visibility, we used a gray scale for the spectrogram
and plotted all LSR values in red, regardless of their corresponding classes
in the MC-Spike representation. While most spiking rates are around or
below 0.2 Hz, some spikes are significantly faster. Especially around 700,
1300, and 1950 seconds, we can observe a concentration of spikes with LSR
above 0.2 Hz. Interestingly, the LSRs of some of the spikes match exactly
the frequency of the CBF activity around 1 Hz (green ellipses). In fact,
around 700 seconds, we can even see clusters of LSRs around 0.5, 0.33, and
0.25 Hz, corresponding to the subharmonics of this activity (first ellipse).

An additional analysis showed that these spikes were in phase with the
CBF rhythm. This is illustrated in the last row of Figure 6.9, where the
original LFP data is compared to the CBF which was previously bandpass
filtered (0.8 and 1.1 Hz). The peaks of the spikes always occur around the
minima of the oscillations. The peak-to-peak distances between the spikes
correspond to multiples of the cycle length of the CBF activity (between 1-4
cycles).

Within the ANR project Multimodel during which the dataset was ac-
quired (cf. Section 2.7), this finding found great interest. Before, only the
causal relationship from LFP spikes to the hemodynamic response had been
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Figure 6.9: The figure illustrates the coupling between spiking rates and rhythmic
activity in the CBF. Top row: The absolute values of the spectrogram of the CBF
is shown for frequencies below 1.2 Hz. The highest intensities occur below 0.2 Hz.
However, around 1 Hz, we can see an ongoing rhythmic activity across the entire time
axis. Middle row: The local spiking rates (LSR) of the detected spikes are plotted on
top of the spectrogram, which is shown in a gray scale for better visibility. Interestingly,
during the three time periods of increased spiking activity around 750, 1300, and 1950
seconds, the fastest spikes appear to synchronize with the rhythmic activity in the CBF
(green ellipses). In fact, around 700 seconds, we can even see clusters corresponding
to the subharmonics of this activity, around 0.5, 0.33, and 0.25 seconds (first ellipse).
Bottom row: This can also be observed in time domain when comparing the original
LFP with the bandpass filtered CBF (0.8-1.1 Hz) in the time window 670-720 seconds.
In fact, we observe that the spike peaks are clearly in phase with the CBF activity and
occur with intervals between 1 and 4 cycles of this rhythm.

106



6.5. EXPLORING NEURO-VASCULAR COUPLING

considered. However, the present finding suggests that there might also be
a reversed causal relationship: The rhythmic activity in the CBF around
1 Hz remains relatively constant throughout the recording while the spikes
alter their spiking rate to synchronize with this rhythm. Alternatively, this
relationship could be induced by a third, latent variable.

In four of the five other datasets recorded in the same experimental
setup in different rats, we could clearly see the rhythmic activity in the CBF
described above. Its frequency varied across rats between 0.5 and 1.5 Hz.
Unfortunately, the direct coupling between spiking rates and this activity
could not be observed in the other rats. However, there generally appeared
to be relationship between the spike density in a certain time interval and
the energy of these oscillations.

As suggested by the experimentalists, in a future recording, it could be
beneficial to directly measure the rat’s respiration, in order to confirm the
nature of the observed CBF activity. In addition, more empirical evidence
is required to confirm the statistical relevance of the findings above.
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Chapter 7
Conclusion

In the present thesis, we addressed the challenges and benefits of adequately
modeling variability in neuroelectrical signals. For this purpose, we devel-
oped a mathematical model that explicitly includes general types of signal
variability, described through linear operators. The resulting method, adap-
tive waveform learning (AWL), provides a generic algorithm that can be
specialized for different concrete settings. Thanks to the different notions
of sparsity used in the AWL model, these specializations can be efficiently
implemented through sparse coding techniques.

In particular, we studied two distinct settings for which we provided
different AWL implementations: an epoched approach (E-AWL) for a set of
short signal segments and a contiguous approach (C-AWL) which does not
require prior epoching.

Evaluated on synthetic data, E-AWL proved a better performance than
principal component analysis (PCA) and independent component analysis
(ICA) in terms of waveform separation in the presence of latency jitter.
Applied to real LFP recordings acquired in an anesthetized rat, E-AWL was
able to clearly separate epileptiform spikes from an oscillatory artifact by
exploiting its varying phase with respect to the spikes.

C-AWL was specialized for two spike learning algorithms: MC-Spike
and AD-Spike. The representation learned on the LFP recording with MC-
Spike provided a structural overview over the dataset by clustering spikes in
a time-energy plot. They furthermore illustrated the different spike shapes
throughout the data, which varied mainly in duration. AD-Spike led to
a more compact representation by only using a single spike template with
variable duration. In terms of spike detection, both methods showed robust
results for signal-to-noise ratios above -20 dB and outperformed template
matching when using a non-optimal template.

The insights obtained from analyzing the spike representations obtained
with MC-Spike and AD-Spike then gave rise to study the relationships of
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spiking rates and hemodynamic activity. This led to the interesting finding
of spiking activity synchronized to the rhythmic activity in the cerebral blood
flow (CBF) around 1 Hz in one of the studied rats. While this relationship
could not be exactly reproduced in the other recorded rats, there appeared
to be other couplings between this CBF rhythm and the spiking activity.

7.1 Strengths and weaknesses of AWL

The AWL model presented in Chapter 4 accounts for a broad range of signal
variability through general linear operations on signal components. On the
one hand, this allows the application of AWL to a variety of tasks. On the
other hand, the generality bears the risk of lacking robustness, especially
in the case of high noise levels. Hence, it is necessary to specialize AWL
to the exact processing tasks it is applied to and include all available prior
information into the learning process.

The incorporation of prior information is facilitated by the encapsulated
structure of the generic AWL algorithm. For example, prior knowledge about
waveform shapes can be directly integrated in the initialization step or the
waveform updates. It is also possible to integrate elements of other methods
in each step of the algorithm. For instance, performing a PCA or ICA
after the waveform updates may provide for a better waveform separation
in certain cases. Finally, the AWL framework can easily be extended to a
multi-channel setting (see next section).

A major difficulty of AWL lies in its non-convexity. This is a common
problem of dictionary learning methods and leads to a strong dependence
of the results on the initializations used. Hence, it is necessary to care-
fully consider the initialization step. In this work, for instance, we found it
beneficial to initialize learning on epoched datasets with Gaussian noise (cf.
Chapter 5) in order to avoid biasing the results. However, when process-
ing epileptiform spikes on long contiguous recordings (cf. Chapter 6), we
initialized with a template to increase the detection accuracy.

When learning several waveform components with AWL, the number of
components K normally has to be specified a priori. Although we provided
a hierarchical approach which learns the waveform representations incre-
mentally, this still requires to determine the number Kmax of the maximal
representation size. It would thus be desirable to have an automatic stop-
ping criterion which determines the optimal representation sizes. However,
due to the generality of the AWL framework, we found it difficult to for-
mulate a global stopping criterion. Instead, we suggest that the optimal
representation size should be chosen dependent on the application and the
intended interpretation.
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7.2 Future work

The generality of the AWL method allows its use for a variety of neuroelec-
trical signal processing tasks. While we could only focus on a few concrete
settings in the scope of this thesis, we provide an overview over potential
future work.

Application to different tasks

In the present work, we focussed on the thorough study of a single multi-
modal dataset, which contained epileptiform spikes in the recorded LFP.
This allowed us to see the different and complementary qualities of E-AWL
and C-AWL. However, the analyzed data is only one example for a possible
application of E-AWL and C-AWL. In future work, these algorithms could
be applied to variety of neuroelectrical signal processing tasks, for example:
learning of ERP components across epoched trials; detection and shape
learning of transients such as sleep spindles or K-complexes; artifact rejection
by exploiting different phases between artifacts and signals of interest (cf.
Section 5.5).

More general deformations

The deformations in the concrete implementations of E-AWL and C-AWL
were limited to latency shifts and linear dilations. In certain cases, a more
general description of variability may be desired. For example, the linear
dilations used in the AD-Spike model (cf. Section 6.4.2) were not able to
completely explain the variability across different spike shapes. A possible
generalization of dilations are non-linear warps which could be efficiently
implemented by using dynamic time warping. In this case, instead of pre-
defining the deformations, these warps could rather be learned together with
the coefficients and the waveform shapes.

Multi-channel extension

AWL can also be extended to include several recording channels. As vari-
ability across channels typically differs from trial-to-trial variability, channels
and trials should be modeled differently. For example, as described by the
multi-channel dVCA model in Section 3.5.1, waveform latencies may vary
across trials but are usually fixed across channels.

Concretely, in the current version of the E-AWL algorithm (Algorithm 3),
the coefficient updates are performed separately across trials. In case of
multiple channels, this update should be performed simultaneously on all
channels of a specific trial to account for the isochronicity of the waveform
occurrences across channels. This can be implemented similar to existing
multi-channel versions of the matching pursuit algorithm (Bénar et al., 2009;
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Figure 7.1: Waveforms reconstructed with single-channel and multi-channel learning
approach from Papageorgakis (2014). The three initial waveforms are shown in (A). The
multi-channel approach (B) recovered these waveforms almost perfectly. In contrast,
when learning on each channel individually, the recovered waveforms still contained
artifacts (shown in red) from other waveforms: (C) best channel, (D) worst channel.

Durka and Blinowska, 1995; Gribonval, 2003; Tropp et al., 2006) described
in Section 3.6.1.

Preliminary results of multi-channel learning with E-AWL are shown in
Figure 7.1. The waveforms learned with the multi-channel extension (B)
almost perfectly recovered the original waveforms (A). Applying E-AWL to
each of the six channels separately led to suboptimal results with artifacts,
(C) and (D) show the best and the worst channel, respectively. The imple-
mentation, which included a modification of the LARS algorithm in E-AWL,
and the simulations were conducted by Christos Papageorgakis during the
final internship of his Master thesis (Papageorgakis, 2014) in our research
team.

Spiking rates vs. CBF rhythms

The spike representations learned with AD-Spike and MC-Spike led to inter-
esting findings concerning the coupling between spiking rates and rhythmic
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activity in the cerebral blood flow (CBF) (cf. Section 6.5). Due to the cur-
rent interest in neurovascular coupling (Blanchard et al., 2011; Saillet et al.,
2015; Vanzetta et al., 2010; Voges et al., 2012), these findings could be of
importance. However, more studies will be needed to confirm the statistical
relevance of the findings. In addition, it has to be clarified if the origin of
the observed CBF activity around 1 Hz is indeed caused by the respiration,
as suggested by the experimentalists.
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Conclusion en français

Dans cette thèse, nous avons abordé les défis et les gains que peut apporter
la modélisation de la variabilité des signaux neuroélectriques. À cette fin,
nous avons développé un modèle mathématique qui prend en compte dif-
férents types de variabilité des signaux, décrits par des opérateurs linéaires.
La méthode résultante, adaptive waveform learning (AWL), fournit un algo-
rithme générique qui peut être spécialisé pour des cas concrets. Grâce aux
différentes notions de parcimonie utilisées dans le modèle AWL, ces spécial-
isations peuvent être implémentées de manière efficace par des techniques
de codage parcimonieux.

En particulier, nous avons étudié deux cadres différents pour lesquels
nous avons fourni différentes implémentations de AWL : une approche épo-
quée (E-AWL) pour un ensemble de segments du signal, et une approche
contiguë (C-AWL) qui ne nécessite pas de segmentation préablable.

Evalué sur des données synthétiques, E-AWL a montré une meilleure
performance que l’analyse en composantes principales (ACP) et l’analyse
en composantes indépendantes (ICA) en ce qui concerne la séparation des
composantes du signal en présence de jitter sur les latences. Appliqué aux
enregistrements réels du LFP acquis sur des rats anesthésiés, E-AWL était
capable de séparer proprement les pointes épileptiformes des artefacts oscil-
latoires en exploitant la variabilité de la phase par rapport aux pointes.

C-AWL a été spécialisé en deux algorithmes d’apprentissage de pointes :
MC-Spike et AD-Spike. Les représentations apprises sur les données LFP
avec MC-Spike donnent un aperçu structurel du jeu de données en groupant
les pointes dans un graphique temps-energie. Par ailleurs, ces représenta-
tions illustrent les différentes formes de pointes à travers les données, qui
varient principalement en durée. AD-Spike utilise une représentation plus
compacte, en n’utilisant qu’un seul template de pointe avec une durée vari-
able. Sur la détection des pointes, les deux méthodes ont montré des résul-
tats robustes pour un rapport signal sur bruit au dessus de -20 dB et sont
meilleures que l’algorithme template matching dans le cas où le template est
sous-optimal.

115



CONCLUSION EN FRANÇAIS

L’analyse des représentations apprises avec MC-Spike et AD-Spike a
ensuite motivé l’investigation de la relation entre l’activité de pointes et
l’hémodynamique. Les résultats ont montré une synchronisation des pointes
avec l’activité rythmique dans le flot sanguin cérébral (CBF) à environ 1 Hz
dans un des rats étudiés. Alors que cette même relation n’est pas observ-
able sur les autres rats, d’autres formes de couplages sont présentes entre le
rythme dans le CBF et l’activité des pointes.

Points forts et faibles de AWL

Le modèle AWL présenté dans le Chapitre 4 prend en compte un large éven-
tail de variabilités des signaux à travers des opérations linéaires générales
sur les composantes du signal. D’un côté, ceci permet l’application de AWL
à une grande varieté de tâches. D’un autre côté, la généralité présente le
risque de manquer de robustesse, particulièrement en cas de fort bruit. Par
conséquent, il est nécessaire de précisement spécialiser AWL à la tâche de
traitement à laquelle il est appliqué. De plus, il est important d’inclure toute
l’information préalable dans le processus d’apprentissage.

L’incorporation de l’information préalable est facilitée par la structure
encapsulée de l’algorithme AWL générique. Par exemple, des connaissances
sur les formes d’onde peuvent être intégrées dans l’étape d’initialisation ou
celle de mise à jour des formes d’onde. Par ailleurs, il est possible d’intégrer
des élements d’autres méthodes dans chaque étape de l’algorithme. Par
exemple, en effectuant une ACP ou ICA après la mise à jour des formes
d’onde, il est possible de mieux séparer les formes d’onde dans certains cas.
Finalement, le cadre de AWL peut facilement être étendu au cas multicanaux
(voir section suivante).

Une difficulté majeure de AWL consiste dans la non-convexité. Ceci
est un problème commun aux méthodes d’apprentissage de dictionnaire et
implique une forte dépendance des résultats à l’initialisation utilisée. Par
conséquent, il est nécessaire de considérer l’étape d’initialisation soigneuse-
ment. Dans le présent travail, nous avons trouvé qu’il était avantageux
d’initialiser l’apprentissage sur des données époquées avec du bruit gaussien
(voir Chapitre 5) afin d’éviter de biaiser les résultats. Par contre, pour
traiter les pointes épileptiformes dans un long enregistrement contigu (voir
Chapitre 6), nous avons intialisé l’algorithme avec un template de pointe
pour augmenter la précision de détection.

Pour apprendre plusieurs composantes du signal avec AWL, le nombre de
composantes K doit normalement être précisé a priori. Bien que nous avons
fourni une approche hiérarchique qui apprend les formes d’onde de maniére
incrémentale, il est quand-même nécessaire de spécifier le nombre Kmax de
la taille maximale des représentations. Il serait donc désirable d’avoir un
critère d’arrêt automatique qui détermine la taille optimale de représen-
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tation. En raison de la généralité du cadre de AWL, nous avons trouvé
difficile de formuler un tel critère d’arrêt global. Nous proposons plutôt de
choisir la taille optimale de représentation en fonction de l’application et
l’interprétation prévue.

Travail futur

La généralité de AWL permet son usage pour une grande varieté de tâches de
traitement du signal neuroélectrique. Au lieu de seulement se focaliser sur les
quelques applications concrètes étudiées dans cette thèse, nous fournissons
un aperçu des possibilités de futurs travaux.

Application aux tâches différentes

Dans le présent travail, nous nous sommes concentrés sur l’étude exhaus-
tive d’un seul jeu de données multimodales qui contient des pointes épilep-
tiformes. Cette approche nous a permis de voir les qualités complémen-
taires de E-AWL et C-AWL. Par contre, les données analysées sont seule-
ment un exemple d’application possible de E-AWL et C-AWL. Dans futurs
travaux, ces algorithmes pourraient être appliqués à une varieté de tâches
de traitement du signal neuroélectrique, par exemple : l’apprentissage des
composantes ERP à travers des essais expérimentaux; la détection et ap-
prentissage des évenements transitoires tels que des fuseaux de sommeil ou
des complexes K; la séparation des artefacts en exploitant leurs différentes
phases par rapport au signal (voir Section 5.5).

Déformations plus générales

Les déformations dans les implémentations concrètes de E-AWL et C-AWL
sont limitées aux translations et dilatations linéaires. Dans certains cas, une
description plus générale de la variabilité peut être désirée. Par exemple, les
dilatations linéaires utilisées dans le modèle AD-Spike (voir Section 6.4.2)
ne sont pas capables de complètement expliquer la variabilité à travers les
différentes formes des pointes. Des warps non-linéaires représentent une
généralisation qui pourrait être implementée efficacement par dynamic time
warping. Dans ce cas, les warps pourraient être appris en même temps
que les coefficients et les formes d’onde, au lieu d’utiliser des déformations
prédéfinies.

Extension multicanaux

AWL peut aussi être étendu pour inclure plusieurs canaux d’enregistrement.
Comme la variabilité à travers des canaux est typiquement différente de la
variabilité à travers les essais expérimentaux, les canaux et les essais doivent
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être modélisés différemment. Par exemple, comme décrit par le modèle
dVCA multicanaux à la Section 3.5.1, les latences des composantes du signal
peuvent varier à travers les essais mais restent fixées à travers les canaux.

Concrètement, dans la version actuelle de l’algorithme E-AWL (Algo-
rithme 3), la mise à jour des coefficients est effectuée séparément à travers
les essais. En cas de plusieurs canaux, cette mise à jour doit être effectuée
simultanément sur tous les canaux d’un essai spécifique pour prendre en
compte la simultanéité des formes d’onde à travers les canaux. Ceci peut
être implementé de manière similaire aux versions multicanaux existantes de
matching pursuit (Bénar et al., 2009; Durka and Blinowska, 1995; Gribonval,
2003; Tropp et al., 2006) décrites dans la Section 3.6.1.

Des résultats préliminaires de l’apprentissage multicanaux avec E-AWL
sont montrés dans la Figure 7.2. Les formes d’onde apprises avec l’extension
multicanaux (B) récupèrent les formes originales (A) presque parfaitement.
L’application de E-AWL à chacun des six canaux individuels conduit à des
résultats sous-optimaux avec des artefacts : (C) et (D) montrent les recon-
structions respectivement sur le meilleur et le pire des canaux. L’implémen-
tation, qui comprend une modification de l’algorithme LARS dans E-AWL,
et les simulations ont été faites par Christos Papageorgakis pendant son
stage final de master (Papageorgakis, 2014) dans notre équipe de recherche.

Activité des pointes et rythmes CBF

Les représentations des pointes apprises avec AD-Spike et MC-Spike ont
mené à la découverte d’un couplage entre l’activité des pointes et l’activité
rythmique dans le flot sanguin cérébral (CBF) (voir Section 6.5). En raison
de l’intérêt actuel pour le couplage neurovasculaire (Blanchard et al., 2011;
Saillet et al., 2015; Vanzetta et al., 2010; Voges et al., 2012), ces découvertes
pourraient être importantes. Par contre, des études supplémentaires seront
nécessaires pour confirmer la pertinence statistique de ces résultats. De
plus, il est important de clarifier si l’activité autour de 1 Hz observée dans
le CBF est effectivement causée par la respiration, comme suggéré par les
expérimentateurs.
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Figure 7.2: Formes d’onde reconstruites avec des approches d’apprentissage de dic-
tionnaire sur des canaux individuels et l’apprentissage multicanaux de Papageorgakis
(2014). Trois formes d’onde initiales are montrées dans (A). L’approche multicanaux
(B) récupère les formes d’onde presque parfaitement. Par contre, l’apprentissage sur des
canaux individuels produit des formes d’onde qui contiennent des artefacts (en rouge)
des autres composantes : (C) meilleur canal, (D) pire canal.
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Appendix A

Implementation of MP and LARS

In this appendix, we describe the sparse coding algorithms matching pur-
suit (MP) and least angle regression (LARS) in more detail. We also provide
comments on their concrete implementations for E-AWL (Algorithm 3) and
C-AWL (Algorithm 4). The code for the implementations used for the exper-
iments in this thesis is available online at https://github.com/hitziger/
AWL.

MP and LARS are designed to provide a sparse representation a ∈ R
K

of some signal x ∈ R
N over a dictionary D ∈ R

N×K (cf. Section 3.6.1).
Matching pursuit follows a straight forward approach to the problem by
greedily searching for active atoms. The simplicity of the algorithm allows
for a very efficient implementation. However, an optimal solution can only
be ensured for orthogonal dictionaries. LARS on the other hand takes into
account the correlations between non-orthogonal atoms and provides an ex-
act solution to the Lasso problem (3.8). However, LARS comes with higher
computational costs than MP and can become infeasible in the case of large
dictionaries.

Both algorithms share the property of selecting active (non-zero) coeffi-
cients in subsequent steps. This property is very useful for the algorithms
presented in this thesis, as it allows to easily ensure the additional constraints
exclusivity (4.4) and non-negativity of coefficients (cf. Section 4.4.2). Fur-
thermore, both algorithms do not explicitly require the dictionary D or the
signal x as inputs, but only the correlations Dtx and covariances DtD.
These can be efficiently calculated through fast Fourier transform since the
dictionaries used in the methods E-AWL and C-AWL are shift-invariant.
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APPENDIX A. IMPLEMENTATION OF MP AND LARS

Matching pursuit

For convenience, we restate the sparse coding problem (3.7) from Section
3.6.1 in matrix-vector notation,

min
a
‖x−Da‖22 , s.t. ‖a‖0 ≤ L,

where the dictionary D contains the atoms {dk}Kk=1 as column vectors.
Matching pursuit now greedily searches for atoms dk that have maximal
correlation with the signal x. Starting with initial correlations y(0) = Dtx,
the first active (i.e., non-zero) coefficient is given by the maximal absolute
value of y(0), say ak0

= yk0
. Now, the contribution of the active atom is

subtracted from the signal, giving the residual r(1) = x− ak0
dk0

. The atom
that has maximal correlation with r(1) will be selected next, and so on, until
the desired number of active coefficients is found. Before giving the concrete
implementation, we note that it is not necessary to explicitly calculate the
residuals r(i) since only the correlations y(i) = Dtr(i) are needed to select
the next atoms. They can be written as

y(i) = Dtr(i) = Dtr(i−1) − aki
Dtdki

= y(i−1) − aki
gki

,

where gk denotes the k-th column of the covariance matrix G ≡ DtD.
The calculation details are now summarized in Algorithm 7. Note that the
correlations y(0) = Dtx and G ≡ DtD need to be calculated only once in
the beginning, such that the iterative selection can be performed very fast.
If the dictionary D is known beforehand, the covariance matrix G can be
precomputed, which is especially useful if several signals xm are encoded
over the same D.

Algorithm 7 MP

Input: D ∈ R
N×K , x ∈ R

N , L ∈ N

1: Initialize
2: a = (0, . . . , 0)t ∈ R

K ;
3: y(0) = Dtx;
4: G = DtD;

5: for i = 1 to L do
6: k = argmax

(

|y(i−1)|
)

;
7: ak ← yk;
8: y(i) ← y(i−1) − akgk;
9: end for

Output: a ∈ R
K

In this thesis, we implemented matching pursuit for the coefficient up-
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dates in C-AWL (Algorithm 4). In this case, D consisted of translated and
dilated waveforms {dpq

k }, resulting in approximately KQN atoms, with K
the number of waveforms, Q the number of dilations, and N the sample
size of x. A naive calculation of G = DtD would require O(K2Q2N3)
multiplications, which is infeasible for long signal sizes N . However, by ex-
ploiting the redundancies in G and efficiently calculating cross-correlations
through the fast Fourier transform (FFT), the complexity could be reduced
to O(K2Q2n log(n)), with n ≪ N denoting the sample size of the wave-
forms dk. The calculation of y(0) = Dtx could also be accelerated through
FFT, however, this only holds for cases where const · log(N) < n. Note that
choosing a high resolution across dilation factors, significantly increases the
computational complexity. In fact, dilations where implemented through
linear interpolation and could not be handled as efficiently as translations.
After calculation of G and y(0), the most time-consuming part of the pursuit
algorithm consisted in determining the maximum in line 6. This could be
speeded up in our implementation by initially arranging y(0) in descending
order.

The additional constraints in the coefficient updates of Algorithm 4 were
implemented as follows: For non-negativity of coefficients, we only selected
atoms that were positively correlated with the residual signal, which results
in replacing |y(i−1)| with y(i−1) in line 6 of Algorithm 7. After every MP
iteration, we determined all coefficients whose activation would violate the
exclusivity constraint (6.3). The corresponding entries in y were then set to
−∞.

More details on efficient MP implementations for shift-invariant dictio-
naries can be found in Krstulovic and Gribonval (2006). The authors also
provide the open source toolbox MPTK with Matlab interface1.

Lasso and LARS

In this section, we provide some basic insights into the Lasso problem and
illustrate the concepts of the LARS algorithm. This analysis roughly follows
the lines of the compact description in Mairal (2010); the complete LARS
algorithm can be found in Efron et al. (2004).

Writing the Lasso problem (3.8) from Section 3.6.1 in matrix-vector no-
tation yields

min
a∈RK

[

f(a) = ‖x−Da‖22 + λ‖a‖1
]

, (A.1)

for some λ ≥ 0. Now the atoms dk are the columns of the matrix D,
a = (a1, . . . , aK)t is the coefficient vector, and ‖a‖1 =

∑

k |ak| denotes the
l1-norm. First, we investigate the properties of a solution vector a. Since
the absolute value function is not differentiable at 0, we consider the partial

1http://mptk.irisa.fr/
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subdifferentials

∂

∂ak

f = {c ∈ R | f(a′)− f(ak) ≥ c(a′ − ak) for all a′ ∈ R}.

A necessary and sufficient optimality condition is that 0 is contained in the
partial subdifferential for each k, which leads to

a∗ = argmin f(a) ⇔
{

if a∗k 6= 0 : dt
k(x−Da∗) = λ sgn(a∗k)

if a∗k = 0 : |dt
k(x−Da∗)| ≤ λ,

(A.2)

where sgn(·) denotes the signum function. This characterization of the so-
lution provides two interesting insights into the problem:

1. The parameter λ serves as a correlation threshold: if atom dk corre-
lates less than λ with the residual data (x−Da∗), its coefficient is set
to zero.

2. If we know the indices and the signs of the active (i.e., non-zero)
coefficients, say I+ and sgn(a∗

I+), respectively, the solution can be
calculated explicitly as1

a∗
I+ =

(

Dt
I+DI+

)−1 (

Dt
I+x− λ sgn (a∗

I+)
)

. (A.3)

Now, the crucial idea of LARS is to exploit the regularization path

λ 7→ a∗(λ),

that is, the behavior of the solution a∗(λ) for changing λ. By (A.2) and
(A.3) it becomes clear that this path is linear, except for values of λ, for
which the solution a∗(λ) contains a critical entry a∗k, that is,

a∗k = 0 and |dt
k(x−Da∗)| < λ. (A.4)

It can be shown (Efron et al., 2004) that the number of values of λ for which
a∗(λ) contains such a critical entry is finite. In the following, we will assume
the one-at-a-time condition, meaning that for any λ > 0, the solution a∗(λ)
has at most one critical entry. Without this condition, the problem is still
solvable but becomes more subtle, details are given in Efron et al. (2004).

Hence, that regularization path is piecewise linear. We can now follow
this path, starting at λ = maxk

(

|dt
k(x−Da∗)|

)

, for which the solution is
trivial. Now, while decreasing λ, the solution a∗(λ) is always given through

1For simplicity, we assume invertibility of D
t
I+DI+ . As noted in Mairal (2010), this

assumption can be relaxed when including a small l2-prior in (A.1) which leads to the
elastic net problem Zou and Hastie (2005).
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(A.3), provided that we keep track of the active index set I+ and the signs
sgn(a∗

I+). These can change whenever a coefficient a∗k becomes critical: If
a∗k was zero before, it is now activated, with sgn(a∗k) = sgn(dt

k(x −Da∗)),
and we add k to I+. However, if a∗k was already active, it is now deactivated,
and we remove k from I+. The algorithm stops when λ reaches the desired
regularization parameter.

The complete LARS implementation is rather long and we refer the
reader to Efron et al. (2004). However, we note a few aspects which are
important for our implementation of the coefficient updates in E-AWL (Al-
gorithm 3): If we follow the regularization path until λ = 0, LARS provides
the exact solution to the unregularized least squares problem (5.2). More-
over, the additional constraints (5.3) and (5.4) can easily be enforced by
making slight modifications to the activations and deactivations during the
regularization path: After every activation of a coefficient a∗k, we mark all
inactive coefficients that cannot be simultaneously active with a∗k due to
the exclusivity constraint (5.3). These coefficients are excluded from later
activation. Likewise, in case of the deactivation of an active coefficient a∗k,
we verify which of the marked coefficients becomes admissible again for ac-
tivation. Furthermore, for non-negativity (5.4), we only activate a critical
coefficient a∗k if sgn(dt

k(x−Da∗)) = 1, otherwise it remains zero.
As in MP, the actual signal x and dictionary D are not required for

the calculations. LARS only uses the correlations y = Dtx and covariances
G = DtD, which can be efficiently calculated in the shift-invariant case.

Our implementation of the coefficient updates in (Algorithm 3) uses the
very efficient LARS implementation of the toolbox SPAMS1, to which we
made the changes described above in order to ensure the constraints (5.3)
and (5.4).

1http://spams-devel.gforge.inria.fr/
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L. Deecke, B. Grözinger, and H. Kornhuber. Voluntary finger movement in
man: cerebral potentials and theory. Biological cybernetics, 23(2):99–119,
1976. 24

A. Delorme, T. Sejnowski, and S. Makeig. Enhanced detection of artifacts in
eeg data using higher-order statistics and independent component analy-
sis. Neuroimage, 34(4):1443–1449, 2007. 43

A. A. Dingle, R. D. Jones, G. J. Carroll, and W. Fright. A multistage system
to detect epileptiform activity in the eeg. Biomedical Engineering, IEEE
Transactions on, 40(12):1260–1268, 1993. 103

E. Donchin, W. Ritter, W. C. McCallum, et al. Cognitive psychophysiology:
The endogenous components of the erp. Event-related brain potentials in
man, pages 349–411, 1978. 24

P. Durka and K. Blinowska. Analysis of eeg transients by means of matching
pursuit. Annals of biomedical engineering, 23(5):608–611, 1995. 48, 112,
118

P. Durka, A. Matysiak, E. Montes, P. Sosa, and K. Blinowska. Multichan-
nel matching pursuit and eeg inverse solutions. Journal of neuroscience
methods, 148(1):49–59, 2005. 48

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004. 47, 61, 123, 124, 125

M. Elad and M. Aharon. Image denoising via sparse and redundant repre-
sentations over learned dictionaries. Image Processing, IEEE Transactions
on, 15(12):3736–3745, 2006. 50

131



BIBLIOGRAPHY

K. Engan, S. Aase, and J. Hakon Husoy. Method of optimal directions for
frame design. In Acoustics, Speech, and Signal Processing, 1999. Pro-
ceedings., 1999 IEEE International Conference on, volume 5, pages 2443–
2446. IEEE, 1999. 50

H. Gibbons and J. Stahl. Response-time corrected averaging of event-related
potentials. Clinical Neurophysiology, 118(1):197–208, 2007. 40

A. Gibson, J. Hebden, and S. R. Arridge. Recent advances in diffuse optical
imaging. Physics in medicine and biology, 50(4):R1, 2005. 22

A. Gramfort. Mapping, timing and tracking cortical activations with MEG
and EEG: Methods and application to human vision. PhD thesis, PhD
thesis, 2009. 21

A. Gramfort, R. Keriven, and M. Clerc. Graph-based variability estima-
tion in single-trial event-related neural responses. Biomedical Engineering,
IEEE Transactions on, 57(5):1051–1061, 2010. 38

R. Gribonval. Piecewise linear source separation. In Optical Science and
Technology, SPIE’s 48th Annual Meeting, pages 297–310. International
Society for Optics and Photonics, 2003. 48, 112, 118

D. M. Groppe, S. Makeig, and M. Kutas. Independent component analysis
of event-related potentials. Cognitive science online, 6(1):1–44, 2008. 43

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-Invariant Sparse Coding
for Audio Classification. In Uncertainty in Artificial Intelligence, pages
149–158. 52

J. T. Gwin, K. Gramann, S. Makeig, and D. P. Ferris. Removal of move-
ment artifact from high-density eeg recorded during walking and running.
Journal of neurophysiology, 103(6):3526–3534, 2010. 43

B. Hamner, R. Chavarriaga, and J. d. R. Millán. Learning dictionaries
of spatial and temporal eeg primitives for brain-computer interfaces. In
Workshop on Structured Sparsity: Learning and Inference, ICML 2011,
number EPFL-CONF-166740, 2011. 50

K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzsáki. Accuracy
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