
HAL Id: tel-01175852
https://theses.hal.science/tel-01175852v1

Submitted on 13 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security and self-healability enforcement of dynamic
components in a service-oriented system

Yufang Dan

To cite this version:
Yufang Dan. Security and self-healability enforcement of dynamic components in a service-oriented
system. Networking and Internet Architecture [cs.NI]. INSA de Lyon, 2014. English. �NNT :
2014ISAL0043�. �tel-01175852�

https://theses.hal.science/tel-01175852v1
https://hal.archives-ouvertes.fr

Number of ordre: 2014-ISAL-??? Year 2014

THESIS

SECURITY AND SELF-HEALABILITY ENFORCEMENT OF

DYNAMIC COMPONENTS IN A SERVICE-ORIENTED

SYSTEM

defend at
L’INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON

for the degree of

DOCTOR OF PHILOSOPHY

Ecole doctorale : INFORMATIQUE ET MATHÉMATIQUES

submitted at 28 February 2014

By
Yufang DAN

Defend at 14 May 2014 before the commission of exam
JURY

Directeurs Stéphane Frénot Professeur INSA de Lyon
Nicolas Stouls Docteur INSA de Lyon

Rapporteurs Lydie du Bousquet Professeur Université Joseph Fourier
Gael Thomas HDR Université Pierre et Marie Curie

Examinateurs Ioannis Parissis Professeur Université Pierre-Mendés-France
Frédéric Dadeau Docteur Université de Franche-Comté

This thesis is prepared at Centre d’Innovation en Télécommunications et Intégration de
Services (CITI),

INSA de Lyon - INRIA Rhône-Alpes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Acknowledgement

First and the foremost, i would like to express my sincere gratitude to my
advisors Prof. Stephane Frenot and Dr. Nicolas Stouls for their support and
trust. They are most responsible for helping me complete this thesis as well as
the challenging research that lies behind it. Their wide knowledge and their
logical way of thinking have been of great value for me. They were always
there to meet and talk about my ideas, to proofread and mark up my papers,
and to ask me good questions to help me think through my problems. With-
out their encouragement, constant guidance, all their tolerance and patience, i
could not have finished this thesis. I would like to give special thanks to Dr.
Nicolas Stouls who has spent very much precious time to discuss my work
and to help me analyse the existed problems and so on during the three years
and a half.

I take this opportunity to thank the jury members for spending their pre-
cious time to read and review this thesis, for taking a long trip to attend this
defence, and for giving me valuable comments. I am grateful for the financial
support of the CSC through UT-INSA project.

I would also like to thank my dear colleagues at CITI laboratory for kindly,
professional sharing the experience on their study and work, i had a very
happy time in CITI for three years and a half. I specially would like to thank
administrative staffs at CITI for their instant support whenever I asked for one.

Next, I must thank my dear neighbour, Danielle ROCHE, you are really like
my family and my best friend in French, you let me felt i live at here like in my
country, even though my french sentences sometimes were not clear, you are
always there support me for my everything.

The last but not the least, I would like to extend my special gratitude to my
big family: my mother, father, sister, brother-in-law and my husband. Their

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

unconditional support has always helped me to bounce back whenever i felt
low.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Abstract

Dynamic service-oriented architectures (D-SOA) focus on loosely coupled client-

server interactions where both of them can appear and disappear at runtime. Our goal

is to design monitoring systems for these architectures. Since classical monitoring sys-

tems are statically injected into the monitored services, they can not properly handle

the runtime services’ lifecycle. Moreover, when a service is substituted by a new one,

other services may still use the old reference. This reference is kept in memory as a

stale reference which induces some forbidden behaviors.

This thesis contributes to design a monitoring system with resilient dynamicity

that monitors services usage and is able to deal with stale references usage. This goal

is achieved in three steps.

Firstly, by considering the dynamicity of SOA systems in an open environment,

we design a corresponding dynamic monitoring approach. We identify two key prop-

erties of the loosely coupled monitoring system: dynamicity resilience, i.e., after the

unregistration of a service, its interface monitor and its current state are kept alive in

memory and transferred to a new loaded service; comprehensiveness, i.e., the imple-

mentations of the monitored interface can’t bypass the monitor observations.

Secondly, to avoid stale references usage, we propose a client-side safe service

usage (SSU) layer to automatically handle them. If a used service disappears, then the

SSU layer can either transparently substitute it or throw an exception to the client. This

SSU layer is based on a transactional approach which aims to preserve the coherence

of active services.

Thirdly, we propose to integrate both approaches into a new monitoring system

(NewMS). The NewMS inherits the principles of both systems: dynamicity resilience,

comprehensiveness and fault tolerance. It can dynamically monitor service usage and

transparently handle stale references of dynamic SOA systems.

All the three propositions are implemented on OSGi-based platform. We develop

a simple application that simulates an Airline Reservation system, which is monitored

by our monitoring systems. We also develop various automata to handle the dynamic-

ity of the Airline Reservation system in the NewMS. Our results demonstrate that the

time cost of our monitoring systems is close to one of classical monitoring systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Résumé

Les architectures dynamiques orientées services (D-SOA) se concentrent sur les

interactions client-serveur à couplage faible, où les deux peuvent apparaître et dis-

paraître à l’exécution. Notre objectif est de concevoir des systèmes de surveillance

pour ces architectures. Comme les systèmes de surveillance classiques sont statique-

ment injectés dans les services surveillés, ils ne peuvent pas gérer correctement le

cycle de vie des services d’exécution. En outre, quand un service est remplacé par un

autre service, d’autres services peuvent toujours utiliser l’ancienne référence. Cette

référence vers un service absent, lorsqu’elle est gardée en mémoire, peut induire des

comportements non désirés.

Cette thèse contribue à la conception d’un système de surveillance de l’utilisation

des services, qui soit résistant à la dynamique de la plateforme et qui soit en mesure

de faire face à l’utilisation des références obsolètes. Ce but est atteint en trois étapes.

Tout d’abord, en considérant le caractère dynamique des systèmes SOA dans un

environnement ouvert, nous concevons une approche de monitoring résistant au la

dynamique de la plateforme. Nous identifions deux propriétés clés du système de

surveillance à couplage faible: résilience à la dynamicité, c’est-à-dire qu’un moniteur

d’interface et son état sont maintenus en mémoire et transférés à un nouveau service

lors de la disparition d’un service utilisé, et exhaustivité, c’est-à-dire qu’un service

surveillé ne peut pas contourner les observations du moniteur.

Ensuite, pour éviter l’usage de références vers des services qui ne sont plus actifs,

nous proposons un service de sécurité côté client (SSU Layer), qui permet de traiter ce

problème de manière transparente. Si un service utilisé disparaît, la couche SSU peut

soit substituer le service de manière transparente, soit lever une exception pour avertir

explicitement le client. Cette couche SSU est basée sur une approche transactionnelle

qui vise à préserver la cohérence des services actifs.

Enfin, nous proposons d’intégrer les deux approches dans un nouveau système

de surveillance (NewMS). Les NewMS hérite des principes des deux systèmes précé-

dents: la résilience à la dynamicité, l’exhaustivité et la tolérance aux fautes. Il peut

dynamiquement surveiller l’utilisation de services et traiter les références obsolètes

de manière transparente.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Ces trois propositions sont implémentées dans la plateforme OSGi. Nous avons

développé une application simple qui simule un système de réservation de place, qui

est monitoré par notre systèmes. Nous avons également proposé différentes spécifi-

cations pour ce système. Nos résultats démontrent que le coût d’observation de notre

moniteur est proche du coût d’un monitor classique, ne prenant pas en compte les

problématiques liées à la dynamique.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Contents

Acknowledgement iii

Abstract v

Résumé vii

Acronyms 1

1 Introduction 3

1.1 Dynamic Service-Oriented Architecture Overview 4

1.2 Motivations . 5

1.3 Contributions . 6

1.4 Organization of thesis . 8

2 Background and state of the art 11

2.1 Background . 11

2.1.1 Web Services . 12

2.1.2 OSGi Framework . 13

2.1.3 AspectJ technology . 17

2.2 Monitoring systems . 18

2.2.1 Properties classifications . 18

2.2.2 Hard-coding . 20

2.2.2.1 Java Modeling language(JML) 21

2.2.2.2 Spec# Programming system 21

2.2.3 Soft-coding . 22

2.2.3.1 Enforcement Monitor . 23

2.2.3.2 JavaMOP . 23

2.2.3.3 Larva Tool . 24

2.2.3.4 Monitoring of web services 25

ix

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

2.2.4 Agnostic-coding . 27

2.2.4.1 Logging system . 27

2.2.4.2 LogOs system . 27

2.3 Self Healab Systems . 28

2.3.1 Fault tolerant technology . 29

2.3.2 Self Healable systems in D-SOA 30

2.3.3 Stale references in OSGi . 32

2.3.4 Dealing with Dynamicity in OSGi 35

2.4 Summary . 35

3 A Monitoring Framework for Supporting Services’ Dynamicity 37

3.1 Introduction . 38

3.2 Example . 39

3.3 Contributions . 42

3.3.1 Proposition of a generic architecture 42

3.3.2 Considering dynamic primitives 44

3.3.3 General property description . 44

3.3.3.1 Property Described from Service Side Point of View . . 45

3.3.3.2 Property Described from Service Interface Point of View 46

3.3.3.3 Property Described from Client Point of View 47

3.4 OSGiLarva — A monitoring tool for OSGi 48

3.4.1 Property description of OSGiLarva 49

3.4.1.1 Using dynamic primitives in OSGiLarva system 50

3.4.1.2 OSGiLarva automata: syntax and semantics 51

3.4.1.3 Properties description language of OSGiLarva 55

3.4.1.4 Verification example through OSGiLarva automaton . . 56

3.4.2 Implementation . 60

3.4.2.1 LogOs system . 60

3.4.2.2 Larva Tool . 61

3.4.2.3 Adapted both LogOs and Larva systems 65

3.4.3 Registration of a service providing specification 66

3.5 Evaluation . 66

3.5.1 Monitoring cost by using a proxy (OSGiLarva VS Larva) 67

3.5.2 OSGiLarva efficiency (OSGi VS OSGiLarva) 69

3.5.3 Overhead associated to getting the caller id 70

3.6 Summary . 71

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

4 A Safe Service Use Layer to Deal with Dynamic Service Disappearance 73
4.1 Introduction . 73

4.2 Example . 75

4.3 Contributions . 77

4.3.1 Fault tolerant technology as a fundation 77

4.3.2 Safe OSGi Service Reference - Single service 78

4.3.2.1 Proxy Indirection . 79

4.3.2.2 Proxy Requirements and Functionalities 79

4.3.3 Generalizing to the Invocation of Multiple services 80

4.3.3.1 Requirements and Assumptions 80

4.3.3.2 Invocation Atomicity – a Correctness Hypothesis in a

Multi-Processed System 81

4.3.3.3 Discussion . 82

4.4 Implementation — A safe service use layer for OSGi 82

4.4.1 Configurable Service Proxy References 82

4.4.1.1 Overview . 82

4.4.1.2 Usage . 84

4.4.2 Transactional Block and Service Execution 85

4.4.2.1 Overview . 85

4.4.2.2 Usage . 86

4.5 Summary . 88

5 A Dynamic Monitoring System with Fault Tolerance 91
5.1 Introduction . 91

5.2 NewMS generic expression . 92

5.2.1 New property events from SSU layer 93

5.2.2 OSGiLarva translation to NewMS 93

5.2.3 Example of automata translation 95

5.2.4 Expressiveness gains . 96

5.3 Implementation–OSGiLarva-SSU++ . 97

5.4 Summary . 99

6 Conclusions and Perspectives 101
6.1 Conclusions . 101

6.2 Perspectives . 103

References 105

List of publications 115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

List of Figures

2.1 Roles and interactions in XML-Web service for implementing a SOA . . 12

2.2 OSGi framework . 14

2.3 OSGi Bundle life cycle . 15

2.4 Invariant property described by an automaton 19

2.5 Larva system in a software system . 24

2.6 AOP crosscut analysis approach . 26

3.1 Dynamic SOA system supporting service substitution 39

3.2 Example of scenario with dynamically monitored system supported by

example in Fig. 3.1 . 40

3.3 Example of a property associated to example in Fig. 3.1 41

3.4 Proposed abstract architecture for monitoring system 42

3.5 Possible point of view for properties . 45

3.6 Property description: service implementation point of view 46

3.7 Property description: service interface point of view 47

3.8 Property description: client point of view 48

3.9 OSGiLarva implementation . 49

3.10 Monitoring of services usage . 56

3.11 An OSGiLarva property description file with the global keyword asso-

ciated to two interfaces properties and FOREACHCLIENT keyword 57

3.12 An OSGiLarva clients-side automaton of the airline reservation 58

3.13 EVENTS description in an OSGiLarva property 59

3.14 Processing of LogOs system works for system based on OSGi framework 61

3.15 EVENTS description in a Larva property file 62

3.16 VARIABLES description in a Larva property file 62

3.17 STATES description in a Larva property file 63

3.18 TRANSITIONS description in a Larva property file 63

3.19 Generic larva property file with two properties of two types 64

xiii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

3.20 Structure of an OSGi bundle providing properties 66

3.21 Comparing time cost of a static example with OSGiLarva and Larva . . 68

3.22 Comparing cost ratio of a static example with OSGiLarva and Larva . . 68

3.23 Comparing time cost of the case study example with and without OS-

GiLarva (simple method in service side) 69

3.24 Comparing cost ratio of the case study example with and without OS-

GiLarva (simple method in service side) 69

3.25 Comparing time cost of the case study example with OSGiLarva but

with or without client Id . 70

3.26 Comparing cost ratio of the case study example with OSGiLarva but

with or without Client Id . 71

4.1 Stale reference occurs in Dynamic SOA system 75

4.2 Example of scenario with Exception to handle stale reference 76

4.3 Example of scenario with service substitution 77

4.4 Transaction diagram for multiple services 81

5.1 Generic architecture of the dynamic synthesized monitoring system . . . 92

5.2 Generate NewMS automata from OSGiLarva automata(Algorithm 1) . . 94

5.3 Compose(l1, l2): composes two new lists of transitions (Algorithm 2) . . 95

5.4 A translation example from an OSGiLarva automaton to NewMS au-

tomaton indicating algorithm steps . 96

5.5 Translate an OSGiLarva automaton A to a NewMS automaton A’ 97

5.6 Implementation of the dynamic synthesized monitoring system 98

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Acronyms

AOP Aspect-Oriented Programming
API Application Programming Interface

DSL Domain-Specific Language
D-SOA Dynamic Service-Oriented Architecture

EJB Enterprise Jave Bean
FSM Finite State Machine

IPOJO Inject Plain Old Java Objects
IDS Intrusion Detect Systems

JavaMOP Java Monitoring-oriented Programming
JBI Java Business Integration

JML Java Modeling Language
JSON JavaScript Object Notation

JSON-WSP JavaScript Object Notation Web-Service Protocol
JVM Java Virtual Machine
LTL Linear temporal logic

NewMS OSGiLarva-SSU++ Monitoring System
OSGi Open Services Gateway initiative

OSGiLarva a Monitoring system with dynamicity resilience
PTLTL Past Time Linear Temporal Logic

PVS Property Verification System
REST Presentational State Transfer
SOA Service-Oriented Architecture
SSU Safe Service Usage

STM Software Transactional Memory
TM Transactional Memory

UDDI Universal Description, Discovery and Integration
WSDL Web Services Description Language

XML Extensible Markup Language

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

2

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

1
Introduction

Service-Oriented Architecture (SOA) is a software design approach which enables to

build complex architectures made of independent services linked together at runtime.

Each provided service is viewed as a single execution process, registered in a reposi-

tory and linked with clients at runtime to manage requests. Most of the time the client

is bound to the service, until it decides to release the service link.

In a stateless model, the client has no memory from previous calls. And the pre-

vious context is send over the link at each method call. In a stateful model, both the

link and context data are automatically maintained between the client and the service.

In the stateful case the client is bound to the service and if the service stops, the client

must also stop.

In a stateful communication, information is slotted between the client and the

server. During this period, neither the client nor the server can be changed. Although

it works fine for instant transaction that consider client and server as fixed or stable

point, we consider that when context is changed regularly in a mobile environment

for instance, both server and client may be changed during stateful communication.

In dynamic SOA(D-SOA), client and server work together to agree on communica-

tion and data exchange protocols. Most of the time, they "know" each other and work

3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

4 Dynamic Service-Oriented Architecture Overview

in a closed-environment. When considering a dynamic SOA system, client and ser-

vices working on a stateful basis in an open-environment should have more guaran-

tee between them. Therefore, this thesis proposes an analysis of the kind of guarantee

client should expect from services and services from clients in an open-environment

based on D-SOA.

In the following sub-sections, we first give an overview of D-SOA in Section 1.1.

Then, the technical challenges for guaranteeing clients behaviors as expected at run-

time in dynamic SOA-based systems are presented in Section 1.2. We give an overview

of the main contributions of this thesis in Section 1.3. Finally, in Section 1.4, the orga-

nization of this thesis is presented.

1.1 Dynamic Service-Oriented Architecture Overview

SOA is composed of a large number of autonomous and self-contained services. Each

functionality of an application is a service [72, 94]. A service in SOA-based architecture

comprises service interface, service implementation and service contract. Service in-

terface exposes the abstract functionality of services. Service implementation provides

underlying business logic and data for fulfilling the specified functionality in the ser-

vice interface. Service contract specifies service’ functionality, binding protocol type

and constraints for client service; it is also standard-based and platform independent

and stored in a service repository [62].

Dynamic SOA (D-SOA) architecture consists of dynamic and loosely coupled ser-

vices. The services’ life-cycles can be dynamically managed remotely at runtime be-

cause of the loosely relation between client and service. For instance, services may

appear and disappear dynamically in a regular basis without affecting the other ser-

vices’ execution. D-SOA framework has some rules for informing the corresponding

service about the changed service life-cycle state (start or stop) or helping client to find

a more suitable service implementation than the current used one.

Since services are un-associated and loosely coupled, services’ interaction enables

the invoking-side service to request server some functionalities through a repository

that exposes appropriate contracts. Subsequently, the invoking-side service is bound

to the service and is allowed to invoke methods through service interface as long as

its contract types match. Moreover, some services can be composed together for be-

coming a new service with different functionalities at runtime and arriving at a new

granularity level.

Due to these characteristics (loosely coupled, reusable, re-compose with different

granularity levels), SOA has attracted more and more attention of large-scale firms

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction 5

and wide areas. For example we can cite: RFID system based on SOA [73], Radioactive

waste management domain [29], Data Mining field [103], Bio-medical data manage-

ment [96], Cloud computing [26]. There are also different approaches to implement

SOA among of the two families: web services and other more local approaches such

as OSGi [1]. This last one is the object of our study and will be deeply introduced in

Section 2.1.

In this thesis we focus on OSGi framework. It is usually used in 24/7 systems,

where the system is not restarted when a service appears or disappears. This frame-

work is targeted to embedded systems such as cars, ADSL boxes, or network systems.

In such systems, web services cannot be used either due to the lack of connectivity,

network limited bandwidth, or for efficiency reasons.

1.2 Motivations

Service-oriented architecture (SOA) is focused on loosely coupled client-server through

public interfaces. The client usually requests service access through a repository. Sub-

sequently, the client is bound to the service and is allowed to invoke methods as long

as the interface types match. In dynamic SOA, each service invocation must be con-

sidered as a complete context switch since potentially new services may appear and

others disappear at runtime, even if these services are stateful. This dynamic activity

should have as few consequences as possible at the client side.

From a dynamic SOA point of view, dealing with loose coupling and dynamic

issues of services are a real challenge today. Firstly, binding a client to a service is a

matter of interface matching because of services loose coupling, but, neither the client

nor the service has any guarantee that the other part behaves as expected. Secondly,

every system implementing dynamic SOA faces the problem of deprecated references

caused by the services mobility. Since a deprecated service reference potentially leads

to a "null pointer reference" or to a wrong result, it can result in a system crash.

The objective of this thesis is not only to identify whether the behaviors from client

are authorized or not in a dynamic SOA system. It is also to enhance the fault-tolerant

characteristic of dynamic SOA system while service disappearance. The last but not

least, in this thesis, all services may be regarded as stateful services in this kind of

system. For achieving these goals, we check two cases:

First, it’s important to continuously ensure the clients authenticity and the valid-

ity of the activities carried out after interface matching for most systems. Each time a

client makes a request to a server, a formally specified constraint can be checked to en-

sure that the client is authorized to perform that call. So, a runtime monitoring system

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

6 Contributions

can be used to check such behaviors in D-SOA systems. There exists some traditional

runtime monitoring approaches for checking the specific behaviors of client accesses

to a service. These approaches involve static mapping and monitoring of services,

but there is a constraint from these monitors when a service disappears or a new one

dynamically appears, these monitors can’t continue monitoring the new replaced ser-

vice without restarting system. This thesis defines a runtime monitor with resilience

to dynamicity and comprehensiveness for dynamic SOA. In the light of such an objec-

tive, we explore the possibility of continuously monitoring new services request from

clients without system reboot.

Second, in consideration of the valid state of service references in a dynamic SOA

system, dealing with services dynamicity is important. A service reference is a spec-

ified pointer of client obtained to use its service in this system. So, we can propose

some client side tools to aid the running dynamic SOA system. When service disap-

pears, its system can still work or throw an exception. We can use these tools to add

some codes at client side for fetching a new service reference as soon as a new ser-

vice is available to replace the disappeared one. The client needn’t to restart after this

service substitution and it also avoids stale reference usage.

1.3 Contributions
In this thesis, the main contributions are listed as follows:

A dynamic monitor approach for monitoring a dynamic SOA system at runtime

in an open environment is proposed:

• This dynamic monitoring approach inserts monitors at the point of client-server

binding rather than "statically" at compile-time or loading-time. This approach

can make dynamic mappings from monitor to service or method during run-

time even if services appearance or disappearance, since the monitor has the

same life-cycle with the monitored service interface rather than service imple-

mentation;

• This kind of monitor can check behaviours of clients using services and the other

behaviors related to this service cannot bypass the monitor observations;

• Property description of this monitor is a composite of interface side property

(i.e., Class-Property) and client side property (i.e., Instance-Property). These

properties of this monitor can respective check the behaviours of each client us-

ing the service through its monitored interface with each client ID. The interface

side property is the entrance of the monitor;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction 7

• An implementation of this monitor is realized by OSGiLarva system which de-

scribes method call events as well as OSGiLarva framework events in the prop-

erty description;

• The monitor system also can monitor a complex system with multiple service

interfaces and check the atomicity use of services. These interfaces properties

can be described in the context of "global" respectively. They are distinguished

by their interfaces name.

• This monitor generates a record and outputs to users or managers at runtime

who can take some necessary measures to the monitored software system at the

time of a particular state reached.

A " safe service use" layer at client side is proposed for enhancing self-healing

capability of service usage in a dynamic SOA system.

• This layer is aware of stale references. It takes two steps at runtime for clients to

prevent the use of stale references without requiring clients re-start and without

modifying external services: if there is an new service for replacing the disap-

peared service, automatic make a service substitution for clients, else send a

stale reference exception to clients.

• This layer uses transaction approach to ensure service coherent using at run-

time. When a disappeared service is being used, the execution block rolls back

and reverts all parameters values related to executed methods in it.

Finally, another dynamic monitoring architecture is proposed, which integrates

the proposed OSGiLarva system and the SSU layer. It’s used to monitor the secure of

services usage and avoid the use of stale references of a dynamic SOA system in an

open environment.

This proposed monitoring architecture named NewMS compensates the lack of

OSGiLarva system by three ways:

• It is aware of stale references usage and handle it by SSU layer.

• It allows to express more precisely the properties. For instance, it is possible to

consider the processing procedure of stale references.

• We designed an algorithm to automatically translate any OSGiLarva property

into NewMS property.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

8 Organization of thesis

1.4 Organization of thesis

This thesis is structured in five main chapters:

In Chapter 2, we first introduce the background knowledge of this thesis like web

service architecture, OSGiLarva framework and some traditional monitor approaches

usually used AspectJ technology. Then we survey the existing monitoring systems and

classify those monitoring systems into different categories according to the bindings

styles to the monitored systems. Finally, we survey the used approaches which tried

to enhance the self-healable of services in dynamic SOA systems and control stale

references using at runtime.

In Chapter 3, a dynamic monitoring approach for monitoring services usage in

dynamic SOA systems for open environment is proposed. In this chapter, we express

the architecture model for a dynamic runtime verification tool and consider some dy-

namic primitives. In order to implement this dynamic monitoring approach, we select

two systems: LogOs systems and Larva system. We adapt and integrate both sys-

tems together as a dynamic monitoring system to support OSGi’s dynamicity, and

we call this tool OSGiLarva system. Moreover, for monitoring the behaviours of each

client with its ID using services through different service interfaces, we analyse the

situations and propose an upgrade property description with some new rules based

on Larva property description language. Finally, we make quantitative benchmark

tests to compare the OSGiLarva with a closed tool Larva and compare the monitored

system with/without OSGiLarva system, and then analyse their performance.

In Chapter 4, a safe service use layer at client-side is proposed to enhance fault-

tolerant characteristics of services according to the service disappearance in dynamic

SOA systems. Firstly, we select a fault-tolerant technology (proposed in Chapter 2)

to make software systems being more fault tolerant. Secondly, we give two parts to

analyse the theoretical contributions of the SSU layer: (i) give requirements and poli-

cies for single service with a safe OSGi service reference, for instance, automatically

enable service substitution and replay a part of the last comment or throw an stale ref-

erence exception to clients after a service unregistered, (ii) generalizing requirements

and policies to the invocation of multiple services, for instance, automatically enable

service substitution and re-execute its transaction block when a stale reference is used.

From these theoretical contributions, we implement a SSU layer tool in the context of

the OSGi environment.

In Chapter 5, we propose another new dynamic monitoring architecture (i.e., NewMS)

applied to monitor services usage without stale references in dynamic systems for

open environment. Since this NewMS is composed by the OSGiLarva system and the

SSU layer, it still inherits the main principles from both tools. We show the new cases

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Introduction 9

possible thanks to this integration and we express the more precise NewMS proper-

ties.

In Chapter 6, we summarize the main findings of this thesis, the conclusion that

can be drawn and some possible extensions of the work covered in this thesis are

discussed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

10 Organization of thesis

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

2
Background and state of the art

In this chapter, we first give a introduction of the thesis background about the ap-

proach of SOA. In the rest, we make a survey of state of the art of monitoring tools

which monitor software at runtime and finally we present the fault-tolerant capabili-

ties of services in D-SOA systems.

2.1 Background

Due to the loosely coupled, reusable and re-composition characteristics of services,

SOA are attracting more and more attention of large-scale firms. By the way, sev-

eral approaches implementing it appeared. Among of them, Web Service architecture

and OSGi framework are well-known and meeting different markets’ needs. Another

technology, Aspect-oriented programming, is used by some related works to aid the

runtime verification systems. In this section, we will give details about Web services

and OSGi framework, then give the reasons why our research focuses on OSGi frame-

work in this thesis. AspectJ technology will be introduced at the end of this section.

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

12 Background

2.1.1 Web Services

Web Services is one of implementations of SOA. It is a piece of code available on the

network with the properties to be self-described and self-contained. It supports in-

teroperability among different machines with concrete business functions over a net-

work.

As shown in Fig. 2.1, there are three roles in web service framework [71]: Service

provider, Service repository and Service consumer. Service Provider provides service

implementations to realize specified service interfaces. Different service providers can

develop different implementations for a same service interface to support the rapid

service upgrading. These service implementations are independent. A role of service

repository (e.g., services integration and deployment) is to manage all services from

service providers. Service consumer can send messages to find a service from Service

repository. If the consumer obtains a reply about the requested service, it can bind

with this requested service implementation from service provider and can use it. The

concrete service implementation is transparent for service consumer.

Service
repository(UDDI)

Service
Consumer

Service
provider

5. Provide Services based
on WSDL

4. Request Services
based on WSDL

1. Publish
Services

with WSDL

2. Query
Services 3. Reply with

WSDL

SOAP
messages

Figure 2.1: Roles and interactions in XML-Web service for implementing a
SOA

There existed many markup languages used in web services designing, for ex-

ample: JSON, JSON-WSP, REST and RESTful, XML-SOAP. JavaScript Object Nota-

tion(JSON) [97] which is a light-weight markup language for interchanging data on

the web. JSON-WSP (JavaScript Object Notation Web-Service Protocol) [2] is a web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 13

service protocol through JSON to describe, request and response services. Represen-

tational State Transfer (REST) [43] is a set of constraints and rules of architecture ap-

plied to the development of web services. It’s also a resource-oriented architecture.

A RESTful web API [81] is a web API implemented using HTTP and REST princi-

ples. XML-SOAP standard is exploited to describe, publish, find, match and configure

web services [54, 101]. In this thesis, we propose to focus on the most used approach:

XML-SOAP. We will then explain how to use it in Web services.

Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP)

and services Universal Description, Discovery and Integration (UDDI) are three cru-

cial platform elements in XML-SOAP Web Service architecture, which are also pre-

sented in Fig. 2.1. WSDL and SOAP are described based on XML format. WSDL [3]

is used to describe web service information: transport type (e.g., SOAP), web service

interface methods, parameters and web service URI. It is used to publish and request

service. SOAP [4] is a service transfer mechanism in Web service architecture. It’s used

to exchange structure information of web service with other systems through HTTP.

It avoids information conversion among different protocols. UDDI [40] is a registry

center of services Universal Description, Discovery and Integration. It is used for

registering new services with WSDL file through SOAP/HTTP protocols. It is like a

yellow page of WSDL files. Service consumers can find registered services with WSDL

files from UDDI through SOAP/HTTP protocol in heterogeneous and distributed en-

vironments.

Finally, Web services are taken as deals between enterprise internal and external,

B2B and B2C businesses and so on. For example, in [29], a framework based on SOA

concept and web service technology is proposed to manage a radioactive waste pack-

age record management system with three-tier. In [20], legacy systems’ interactive

functionality is exposed as web service by a wrapping approach to a system based

on SOA. This solution made these legacy and heterogeneous systems become inter-

connected and interoperable over network. In [103], authors proposed a data mining

service with data mining algorithms. This kind of service is taken as a web service

for non-expert data miners in SOA. In [49], web services are designed based health

care services in a SOA system. This kind of health care system can improve the qual-

ity of decision making and timely alert generation for doctors, caregivers and elderly

people.

Except for Web Services, OSGi framework also is an important implementation

approach of SOA. We will give its details in the following section 2.1.2.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

14 Background

2.1.2 OSGi Framework
OSGi services platform specification is created by the OSGi alliance in 1999. It defines

a management model of a Java application life-cycle hosted in a virtual machine [9].

It has some APIs to manage the software components life-cycle from anywhere over

network. The platform allows a remote loading and dynamic deployment of appli-

cations by its open specification in its environment while remaining independent of

the system on which it is installed. OSGi services can run on different devices from

very small to very big. Different service consumers, providers, developers, vendors

can work well together on this platform specification. This framework implements a

complete and dynamic component model based on a layered architecture.

This framework [8] consists of six main layers as shown in Fig. 2.2.

 Application/Bundles
Se

cu
rit

yServices
Service Registry

Life cycle

Modules
Java virtual machine

Operating system

Hardware

Figure 2.2: OSGi framework

1. Bundle layer: Bundle is the basic concept of the OSGi platform. It is the only unit

of modularization and consist of a set of Java classes (packages, services), con-

figuration files and other resources (e.g., images, sounds, etc.). This layer will

work with all of the other layers. In each bundle, there are at least two methods:

BundleActivator.start(BundleContext) and BundleActivator.stop(BundleContext).

If the framework need to start this bundle, the former method have to be called.

This method is used to register services or to assign any resources needed by this

bundle. The later method is called when the framework need to stop this bun-

dle. When this bundle is stopped, this bundle can’t call any framework objects

and it can not be called by any bundle until it started again.

2. Service layer: It offers a set of functionality for the publication, the discovery

and the binding to Java objects, as well as the notification on the changes that

occur on the services in the environment. A service is a normal Java object that

is registered under one or more java interfaces by the service registry layer of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 15

OSGi framework. The service is a solution is offered by the platform to avoid

the tight binding between components. The binding can be done by using a

service reference instead of a service object itself.

3. Service registry layer: This layer’s API is used to manage services about Ser-
vice registration, Service tracker and Service Reference generation. Bundle is used

to register object by Service registration. The client services search the service

registry with service reference to look for the matched objects. When a tool of ser-
vice tracker is used in this service registry, it can listen the tracked service’s Ser-
viceEvents (e.g., Unregistering, Registered, Modified and Modified_ Endmatch)

and obtaining and releasing service.

4. Life cycle layer: life cycle management for bundles provided by OSGi frame-

work as some APIs can remote manage bundles start, stop, update, install and

uninstall without requiring reboot. A bundle’s normal life cycle is shown in Fig

2.3. The Starting and Stopping are middle states in a OSGi bundle life cycle. For

example, when command "start" is executed, the bundle state is tranferred from

"Resolved" to "Active". When command "stop" is executed, the bundle state is

transferred from "Active" to "Resolved". It provides remote management for

bundles with dynamicity.

5. Modules layer: A modularization module is defined for Java in this layer. The

modularization module specifies encapsulation and declaration of dependency

relationships among bundles: How a bundle can import and export code? What

is the order among bundles export and import? [9].

6. Java virtual machine layer: It manages Java class-loading for multiple bundles.

In local OSGi framework, multiple bundles run in a single JVM for sharing bun-

dles and coordinating with other bundles.

From above introduction and consideration of each layers collection, we know

that OSGi framework with its service registry provide a lightweight model to publish,

find and bind services inside its JVM. This framework supports the characteristics of

Service-oriented architecture. The life cycle layer provides APIs to bundles for manag-

ing services in module layer. These characteristics enable this framework to become a

dynamic SOA approach. OSGi Service platform is being used widely: Home automa-

tion based on OSGi platform [63, 6, 100]; Vehicle industries adopted OSGi platform

for supporting different vehicle manufacturers services. Moreover, it supports remote

call vehicle service for unmanned vehicles [26, 78]; Desktop PCs, Servers (High-end

Servers, including mainframe), Nokia and Motorola drove an OSGi technology stan-

dard for the next generation of smart phones [23, 57, 92].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

16 Background

INSTALLED STARTING

UNINSTALLED

ACTIVE

STOPPING

RESOLVED

Resolve

Uninstall

Update

Uninstall

Start

Stop

Figure 2.3: OSGi Bundle life cycle

Web service architecture is a popular implementation approach of SOA over net-

work, while OSGi is a dynamic components model based for dynamic SOA. Here are

main differences between web services architecture and OSGi framework:

1. Service view: Web services architecture would not typically be able to have the

full view of the system, i.e., one can either observe the client or the server but

not both. OSGi framework can reason about the full picture by also taking into

consideration the OSGi framework events such as registration of services, ser-

vice requests by different clients, etc. This is possible because OSGi framework

provides remote and dynamic life-cycle management functionality.

2. Service messaging speed: There are different service transport mechanisms on

both approaches. The local OSGi services communicate with each other just like

general java invocations. All web services communicate with each other need

to use SOAP binding with HTTP/TCP/UDP protocols. OSGi service methods

are called at a thousands of times speed greater than the web service calls.

3. Service disappear at runtime: OSGi framework avoid the "null reference pointer"

associated to the disappearance of a service without using "Service tracker".

When a service has been loaded by a service consumer, this service consumer

can invoke its service methods after it is unregistered. But for Web services, this

invocation induces a null reference pointer at runtime.

4. Considering cost: All local OSGi bundles run in a single JVM for sharing and

coordinating with the other bundles. This minimizes the memory footprint and

improve performance. Because of this point, it provides almost zero cost among

inter applications communication that is introduced in [8].

For the sake of these differences between Web services and OSGi approaches.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 17

OSGi framework interested us to make a research. In this thesis, there are some things

needing to pay more attention because of loosely coupled and dynamic treats [61, 8]

in OSGi-based systems: dynamic monitoring services usage with validate service ref-

erences.

At the end of background part, we introduce AspectJ technology because of some

related monitoring tools using it (section 2.2).

2.1.3 AspectJ technology

There exists some close related works using AspectJ technology. Among of these,

enforcement monitor [58], Larva [32], JavaMOP [75] and a dynamic monitoring system

[102] are described in section 2.2. So, we briefly introduce AspectJ technology in the

background.

Aspect-Oriented Programming(AOP) [60] is a programming paradigm. It uses

cross-cutting approach to get common behaviors from the internal of packaged objects,

and then encapsulate the common behaviors into a reusable model which is named as-
pect. The common behaviors affect multiple classes and are different with the business

processes of objects, such as authority identification, Logging, transaction process and

so on. The aspect enables the repeat code decreased, lighten the coupling among of

modules and enhance operability and maintainability in a software system.

AOP implementations have some aspect expressions that can encapsulate cross-

cutting concerns for software systems. AspectJ [10, 55] which is the most universally

used AOP language is a seamless aspect-oriented extension to the Java programming

language. It has some expressions to encapsulate the cross-cutting concerns into an

aspect, such as joint point, pointcut, advice, inter-type decleration. The joint point is a class

method from an original system. It is a abstract concept in AOP, it doesn’t need to

be defined. The point cut is a structure to capture the specified set of joint points. It

just creates a link to the target system for observing. The advice specifies the execution

code of point cut. It can give concrete execution logic with some special handling:

before, after and around. The defined point cut will be executed before or after or around
the captured joint point (e.g., class methods). The inter-type declaration is applied to

declare the cross-cutting classes and their hierarchies. Therefore, the pointcut and ad-
vice dynamically handle the program flow at runtime, the inter-type declaration is done

at developing-time. The aspect encapsulates these aspect expressions to form a clear

modularization of crosscutting concerns. The aspect can be separated from target sys-

tem and reused, such as error checking, monitoring, logging and so on [45].

This section 2.1 expresses the background of this thesis. It introduces the imple-

mentation approaches of SOA and makes a comparation to each other. Finally, AspectJ

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

18 Monitoring systems

is used by main of our related works have been presented in Section 2.2. The follow-

ing two sections are state of the arts of this thesis: related monitoring systems(section

2.2) and self-healable of services in dynamic SOA systems (section 2.3).

2.2 Monitoring systems
In this section, we will give a state of the art about a variety of monitors for verifying

static or dynamic systems’ security of services usage.

Once service interface matched, it’s difficult to guarantee safe usage of components

in D-SOA systems. If we use a classical monitoring tool to check and verify some

sensitive behaviors at D-SOA system runtime, service disappearance or appearance

will induce undesirable things for the classical monitoring tool, such as, information

lost, monitor disappearance and so on. Hence, two characteristics that we are thinking

important in a monitoring tool for verifying D-SOA system: resilience to dynamicity and

monitoring comprehensiveness.

• resilience to dynamicity: it refers to the preservation of the behavior flow. In case

the monitored service is substituted, the monitor and its state should be trans-

ferred, meaning that the monitored property cannot be hard-linked to the code.

• monitoring comprehensiveness: it means that we cannot allow services to restrict

what is observable by the monitor. If we want to check a property, we need to

ensure that all the relevant events are monitored.

We propose to classify existing runtime verification approaches according to the

monitor configuration with respect to the monitored software systems. The moni-

tored property may be: manually written inside the code (in section 2.2.2), automat-

ically injected inside the code(in section 2.2.3), kept out of the code (in section 2.2.4)

and monitoring of web service (in section ??). For analyzing resilience to dynamicity
and monitoring comprehensiveness into each of these families, firstly we should give an

explanation about some property description styles.

2.2.1 Properties classifications

Property expressiveness is an important characteristic of runtime verification systems.

In this section, we will give a short properties classification: Invariant property, Behav-
ioral property, Liveness property, Timed property. We will explain these properties on the

following simple example:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 19

public class A{

public boolean aCallable ;

int x=1;

public void m(){

aCallable =true;

x++;

}

public void g(){

aCallable =false;

x--;

}

public static void main(String [] args){

aCallable =false;

m();

g();

}

}

1. Invariant property: it’s a property on state variables that have to be true every
time. Depending on the observation granularity, it can be used between instruc-

tions or during each call of method. For instance, let us consider x, which is a

variable of Class A. If we need to check that x is always larger than 0 during

this class running, we need to define an invariant property for this class. This

property can be expressed in this example by some data-oriented property de-

scription languages such as annotation by / ∗ @invariant x > 0; ∗/, or such as

an automaton (Fig. 2.4).

x>0

m()

g()

Figure 2.4: Invariant property described by an automaton

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

20 Monitoring systems

2. Behavioral property: It specifies some acceptable sequences of method invoca-

tions. For instance, after m() invocation there is always a g() during this example

running, i.e., m()⇒©g(). Such kind of sequence is taken as a behavioral prop-

erty description in monitoring system. Finite-state machine(FSM) is the most

usual way to describe a behavioral property. It also could be explained by anno-

tation, but annotations are usually dedicated to invariant properties. If they are

used to express a behavioral property, all related methods must be annotated.

For example, by inserting / ∗ @requires aCallable == false; ∗/ as a precondi-

tion of each method, except for method g(). If any method is missed, there is no

guarantee for the real executed results.

3. Liveness property: It is a more global case of behavioral property. It can not only

specify some fixed sequences of method invocations, but also can specify some

authorized sequences on infinite traces.

For example, if m() is called, then g() will be necessarily called in the future. This

property is expressed on an infinite traces. However, in the case of monitoring

system, it is usual to consider a bounded liveness trace like that there is a limit of

m() execution times before calling g(). Hence, this trace is a live property expres-

sion. If the states are fixed, we can use FSM to describe this sequence. Since the

execution times of m() is not fixed in this liveness sequence (m() can be called 1

time or 2 times or n times before calling g(), all these sequences are correct for

this liveness sequence), we can’t express all these situations in one FSM. If we

use linear temporal logic(LTL) to express this sequence, i.e., � (m() U g()).

4. Timed property: it’s a behavioral property with time. For instance, after less than

10 seconds of m() call there is a g() invocation. The usual way to describe timed

properties is a timed automaton. This automaton can express time constraints

inside its conditions.

These forms of property descriptions will be used in the following monitoring

systems discussions in order to describe acceptable behaviors.

2.2.2 Hard-coding
In this category, where properties are manually added at source code at developing

time, we can cite all annotation techniques, like JML (in section 2.2.2.1) and Spec#

(in section 2.2.2.2). In both cases, the monitor is not resilient to dynamic code loading.

Indeed, if a part of the monitored system is substituted, then its monitor is removed,

since it is in-line. However, this approach is interested in the term of comprehensiveness,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 21

since we can observe anything in the program. A limitation of this approach is the

dispersion of the monitor throughout the code, requiring significant intervention to

write the property or to check that its description is correct. We give some details

about JML and Spec# in the following sections:

2.2.2.1 Java Modeling language(JML)

JML [66, 67, 65, 19] is a specification language for a detailed design of Java modules.

This modeling language is inserted into the java comments of java file. This language

form is like the following annotations:

//@ <JML specification >

or

/*@ <JML specification > @*/

When Java comment starts with sign @, this Java comment is translated as JML

annotation. JML [19] is used to describe the behaviors of classes and methods from

which users and/or developers can get the expected functions.

//@ requires descript != null;

public String deleteAtAfterNl (String descript)

{ /* ... */ }

From above codes, we know that "requires" is a JML keyword. It’s meaning a

precondition can be defined before the method "deleteAtAfterNl(...)". Before invoke

this method, system need to verify whether the variable "descript" is empty or not. If

the "descript" value is non-null, this method can be executed. In the other case, a JML

exception is thrown by system at runtime.

Since JML annotations are located in Java comment, they can’t impact the compil-

ing codes. When users and/or developers want to compare the actual behavioral from

classes with the JML specifications, the open source JML compiler can be adopted. If

the compared results do not match, the JML exception is thrown during the running

of the java code. Some tools have been built around JML for unit testing [28], runtime

checking [27], light-weight contract checking [22] and system verification [44].

For Dynamic SOA-based systems, these JML annotations are added in it at developing-

time. When a service substituted by a new one, the monitor in the old one won’t ap-

pear in the new one under the situation of without reboot. This specification hasn’t

dynamicity resilience for monitoring like Dynamic SOA-based systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

22 Monitoring systems

2.2.2.2 Spec# Programming system

Spec# programming system [15, 16] is a new way to produce high-quality software

by focusing on more cost effective. It consists of C# and Spec# annotation, compiler

and static program verifier. The Spec# static program verifier is called Boogie. It can

generates logical verification properties from Spec# program. These logical verifica-

tion properties are added into the monitored source code level for static verifying. It

focuses on three fields:

• to check non-null types from source code;

• to add pre/post-condition and exception management in method contract to verify

its methods;

• to create expose block in class contract for constraining the data field of object

invariants and class invariants.

JML and Spec# can express invariant properties which are methods granularity.

However, some assertions can be added between each instruction for more deeply

and targeted describing property. By the way, it is possible to encode behavior prop-

erties into them. But it can induce to add precondition before all methods. Spec# and

JML are two close languages to verify original system. Since the Spec# directly adds

its contracts (e.g., non-null type annotation, class and method contract) into C# code

rather than into C# comments, it has larger design space with its specified contracts

than JML to check and test systems. A more complete analyze about these two lan-

guages is given in [16, Section 3: Related work].

2.2.3 Soft-coding

In this category, where properties are injected at compilation time, or load-time, we

can cite Enforcement monitor (in section 2.2.3.1), JavaMOP (in section 2.2.3.2) and

Larva (in section 2.2.3.3). These tools use standalone description of a property and

inject the monitors inside the code by AspectJ technology (in section 2.1.3), but this is

not the same kind of hard-coding (in section 2.2.2).

Advantages of Soft-Coding approach are then the same as in the previous case, but

specifying the monitor is easier, since the description of the property is centralized.

However, these approaches from Enforcement monitor [58], Larva [32], JavaMOP [75]

or a monitor dynamically inserted into OSGi service implementations by AspectJ tech-

nology at runtime [18] are comprehensiveness and only partially resilient to dynamicity;

at best, the tool may inject the property at first-time binding, but once injected, the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 23

property is hard-coded within the service for the whole execution of the class. We will

give some details about these soft-coding monitoring approaches in the following.

2.2.3.1 Enforcement Monitor

In [58], the monitor is a proxy between a client and a server with the goal of checking

time properties. In order to have sufficient time to check whether an observed timed

property is correct or not, the runtime enforcement monitor focused on adding a fixed

delay between the reception and the forward of input events. This property is sent by

users to the monitor under the form of events sequence with delays which need to be

delayed. If the primitives send to the active monitor and the delays are not the same

with the given timed property, the enforcer will modify the delays by itself. It aims

to make the output timed sequence conforms to the designed property. After that, the

output timed sequence is taken as the input events sequence is sent to target system.

This enforcement monitor is explicitly called by client. It uses Aspectj compiler

to weave these designed primitives into target system [86, 38]. However, it can not

guarantee that all called method are checked through this monitor. Some methods

can also be sub-called by other methods itself, not always by client. In such a way, the

sub-calls are not observed by the monitor. It does not generate any input event and

can not be considered in the enforcement monitor.

This monitor system can express behavioral properties and timed properties. The

granularity of its property description is external methods.

2.2.3.2 JavaMOP

Java monitoring-oriented programming (JavaMOP) [24, 25] analyse framework dedi-

cated to the monitoring of Java programmings, which accepts some independent spec-

ification formalisms. It aims at reducing the gap between formal specification and

implementation by integrating them into its original system. It can be used to design

a runtime monitor for developing reliability, security, dependability software. It can

be used to design events’ logics (e.g., FSM, PTLTL, LTL and so on.) in formal speci-

fication against software implementations. The designed specification is compiled by

JavaMOP as AspectJ code, and then is woven into the target implementation system

by any AspectJ compiler (such as ajc) [59].

The property description of JavaMOP can express behavioral properties and live-

ness properties by LTL and PTLTL. However, the LTL expressed live property will

be generated by aspectj technology. The generated monitoring properties consists of

several FSM formulas. There is no expresiveness gain in the monitoring property de-

scription, except easier to write it.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

24 Monitoring systems

2.2.3.3 Larva Tool

Larva [32] is a tool which injects the monitoring code in a Java program to check a de-

scribed property in a Larva script file. This tool which weaves calls interception using

aspect-oriented programming techniques is closed to JavaMOP. Both of them permit

to monitor some behavioral properties, but real-time properties could be expressed

only in Larva. By the way, it can not only describe concrete service methods, but also

control certain dynamic events occurring by timers.

Monitored
software

AspectJ:
Matching method names

VERIFICATION
SYSTEM

(Symbolic
Automaton
Execution)

FEEDBACK

EVENTS

R
ep

or
t

USER

Compiler

Larva:
Events & Property

Compile

Generating
Generating

Capturing

Users’actions

V
er

ifi
ed

 re
su

lts

Figure 2.5: Larva system in a software system

When a monitored software is launched with Larva system(Fig. 2.5), its property

script is compiled by Larva compiler. The Larva Compiler generates two main outputs

from its script:

1. Aspect-oriented code: This code which links the monitoring code with the mon-

itored software that aims to extract the monitored events. It will be statically

injected some calls to the monitored software by using the AspectJ compiler at

coding-time or at compiling-time or loading-time.

2. Java class code: This code is used to verify the extracted events conform to the

designed property. The verification system is outside the monitored software.

Once the designed event is checked, the verification system send the monitored

records to users. It is up to the users to make some necessary actions to the

target system when a monitored record is outputted.

Larva property description can express behavioral properties and timed proper-

ties. Its granularity is on methods(internal and external). Larva and JavaMOP have

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 25

really close characteristics in them. However, Larva performed better with regard to

resources consumed than JavaMOP [33].

2.2.3.4 Monitoring of web services

There are a number of works (e.g., [102, 84, 14, 13]) that support the monitoring of

web services. In [102], a dynamic monitoring framework with its monitoring scenario

model and instrumentation layer is proposed for runtime monitoring SOA Execution

Environment-based systems. In this approach, AOP instrumentation is used. Each

exposed service has an interceptor socket code injected in, and wraps it with a socket.

Each interceptor is taken as a service and is published with its interest and priority.

Once an interceptor is registered, this registration information will be informed to ev-

ery interceptor socket with its wrapped service for comparing interceptor’s attributes

with socket’s. If attributes matched, this interceptor is added in the queue of matching

sockets by its priority. Then the injected monitor can start to monitor the corresponded

service invocation. There also exists some disadvantages:

• Interceptor socket code need to be injected to each exposed service, a socket is

wrapped with this service, even injected into some completely needn’t to be

monitored services.

• This monitor currently just focuses on service invocation rather than specific

invocation parameters or the implemented business logic. For example, it can

monitor invocation rate and error rate.

The monitoring tool [102] can mainly expresses invariant property. And its property

is instruction granularity.

Java Business Integration(JBI) is a kind of Web services model. Since AOP [60] can

deal with crosscutting the aspects of a system’s behavior as separately as possible and

without forcing source code modification, an enrichment of JBI-compliant monitoring

is implemented through AspectJ technology [84]. As shown in Fig. 2.6, the defined

AspectJ pointcuts can be allowed to crosscut the JBI interfaces. Since keeping source

code and class files avoid modification, the authors leverage load-time weaving these

defined aspects by a dedicated java agent. This monitoring instrumentation based on

AOP enrich JBI specification. Hence, this monitor can be a considerable restriction

in the expression of security policies. AspectJ technology can be used to monitoring

program points by its advice(be restricted to these manners: before, after, around), not

the business processes logic. The enrichment of JBI-compliant monitoring can express

invariant property. Its property is instruction granularity.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

26 Monitoring systems

 1. Analysis of JBI
specification and
identification of
useful interfaces

 2. Defining the AspectJ
pointcuts, which allow
to crosscut the interface

 5. Approving
the crosscut

 4. Analyzing problem of
interfaces and pointcuts

 3. Testing the
pointcuts on OpenESB
and ServiceMix

Figure 2.6: AOP crosscut analysis approach

In [14, 13], the authors provided both dynamicity resilience and comprehensive-

ness characteristics (even if these are not explicitly identified as such) by listening to

events from a web service composition engine. Furthermore, in [13], this monitoring

architecture supports both instance monitors and class monitors. The instance monitors
check the behaviors of a single instance of BPEL business process; the class monitors
extract or collect information from the checked behaviors of all instance monitors, it

aims to get synthesized information at class point of view. However, to the best of

our knowledge, no similar monitoring techniques have been proposed for the OSGi

framework. Moreover, the context is not the same, since in a web service context,

we can easily distinguish between callers by their IP address and port number, but

it is impossible to know who is the caller, or which class or software is making the

call. The monitor tool can express behavior properties, liveness properties and timed

properties. Its property is business processes logic granularity.

Indeed, while it is technically possible to use AspectJ to support dynamic class

loading and unloading in OSGi, then the monitored bundle must declare the import of

the AspectJ library inside its Manifest file — an operation which is not really transpar-

ent to the service. Note that this restriction does not exists in Equinoxe implementation

of OSGi (Eclipse). Since some choices would have been done in the configuration of

the framework, requiring to restart the whole framework each time a new service is

installed. Furthermore, if monitors need to be started or stopped at runtime it cannot

be done directly through AspectJ without restarting the service—something which is

undesirable in 24/7 services.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 27

2.2.4 Agnostic-coding

In this third category, where the monitor is kept out of the code, we include any trace

analyzes approach, such as LogOs system (in section 2.2.4.2) for monitoring OSGi-

based systems, event log-based detection systems and logging systems (in section

2.2.4.1). The main advantage of these approaches is the loose linking between the

property and the monitored system. Hence, if a package is substituted, the monitor

can observe it inside the logs and the monitored properties are still the same for the

whole system. Moreover, the description of the property is located into a single loca-

tion, which facilitates property management.

However, such Agnostic-Coding systems can be bypassed, e.g., intrusion detec-

tion systems and logging systems can only observe what services accept to push. If a

package provides a service without writing sufficient logs, then the monitor does not

have sufficient information to check a event correlation [79]. LogOs system is better

than that both monitoring systems, but we will see that some restrictions remain. In

the following, we will explain each logging system.

2.2.4.1 Logging system

In [12], authors proposed an approach to UNIX security logging. This proposition

used light-weight logging to off-line detect intrusion systems. They derive some em-

pirical data from realistic intrusion experiments, and then use the derived data to com-

pare with the light-weight logging methods which are a few simple methods. It aims

to detect and trace attacks against original systems, for instance, it can be merged into

an intrusion detect systems (IDS) [88]. But there is a precondition, enough data should

be logged to make a better detection the intrusions or others. The event log-based de-

tection system [87] also depends on sufficient empirical event logs of system. And

its analysis depends on 3 years recorded event logs. Therefore, if logged information

is not sufficient, this will affect the detections of logging system and event log-based

detection system.

These logging systems can express behavior properties, liveness properties and

timed properties. It is on methods (internal and external) granularity.

2.2.4.2 LogOs system

LogOs system [47] is a special logging tool based on the OSGi framework, developed

at the CITI Lab during the LISE project [64]. It’s designed to work in a dynamic SOA

context. It can capture all behaviors of invoked service method during runtime, un-

der the condition that the service’s interface is marked by annotation, even its service

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

28 Self Healab Systems

implementation is dynamical unloaded at runtime. As soon as the LogOs bundle is

started, each service registration is observed. LogOs is a transparent logging toolkit for

the service activity inside the OSGi architecture. Thanks to the OSGi hooking mech-

anism, a LogOs proxy is generated for each registered service. Hence, every method

call from the annotated service interface, including parameters and returned values,

are automatically intercepted. For each event captured by a LogOs proxy, a corre-

sponding LogOs event-description is forged and propagated to LogOs. The event-

description is just the service method who is annotated in the corresponding service

interface. Then, the LogOs will record the trace and store it. LogOs system can inter-

cept those specified service methods/parameters based on OSGi framework and store

the logged events.

Since LogOs system’s annotations add in specified service interfaces and its proxy

adds between client and service implementation, LogOs system is separated from ser-

vice implementation. When service implementation dynamic changed at runtime, the

observation mechanism of LogOs system remain unaffected and no communication

with this specified service interface can bypass the added proxy. So, this LogOs sys-

tem has treats of both resilient to dynamicity and comprehensiveness. But in LogOs sys-

tem, there is no verification part to check whether these captured behaviors from the

running system are authorized or not.

LogOs system doesn’t specify concrete behavior properties or liveness properties,

it just give a constraint range to observe. It can observe all action between client using

the annotated services. Its granularity is on external methods.

Finally, in this section 2.2, we gave the background and the state of the art on

the monitoring systems part of this thesis. We know that a dynamic monitoring sys-

tem with resilience to dynamicity and monitoring comprehensiveness is very important for

supporting D-SOA systems. When services dynamic unload or substituted by other

services, the special monitoring tool can restart at the latest event from the old one to

continue monitoring the new one. The dynamicity of D-SOA system doesn’t affect the

dynamic monitoring system’s observation mechanism and properities monitoring.

In the following, we discuss the second part of our state of the art: Self healable

software systems.

2.3 Self Healab Systems

One of our contributions is to deal with dynamic issues of services in dynamic SOA-

based execution environment. Hence, in this section, we will talk about state of the art

of self healable software system. Some approaches and some related techniques(e.g.,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 29

Fault tolerant technology) are proposed by some authors. Every model implementing

this dynamic SOA-based system faces the problem of deprecated references caused

by the services mobility. The OSGi component framework is one of the several mod-

els implementing SOA and in which stale references have harmful effects. In order

to avoid the harmful effects according to stale references, the fault tolerant approach

may be an useful solution and enhance the self-healable of services. Next we briefly

introduce the occurrence of the stale references and dynamicity management of ser-

vices in OSGi framework, then give the related works which have tried to resolve this

issue.

2.3.1 Fault tolerant technology
A fault tolerant system [69, 51] consists in handling faults in order to system continue

working and getting correct results. Fault tolerant computing can be taken as a sys-

tem’s capability to handle seamlessly error identification and recovery system from

fault state to correct state [51]. It is commonly accepted that a general fault tolerance

system has to go through four stages [95]:

• error detection

• fault location

• reconfiguration

• recovery and continued service

The error detection and fault location is meaning to use monitoring mechanisms

for checking errors and locating faults. Currently there are many tools to deal with

these two stages, for example, Logging analysis [85, 83], runtime monitoring approaches

[36, 82]. The reconfiguration and recovery aims to redesign a correct execution plan for

avoiding the located fault. There are usually three families of treatment to reconfigure

and recover an error [37]:

• to mask the error;

• to roll-forward in the execution until a new stable state is reached;

• to roll-back to the previous stable state and restart the execution from it.

Usually, the mask an error mechanism consists in having redundant information.

There are some redundancy techniques proposed for healing the checked system [50,

77, 80]. In [77], a self-assembly system was presented as having the potential to bring

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

30 Self Healab Systems

about self-repair and regeneration: agents can replicate to substitute dead neighbors

and thus even recreate the entire structure that may be lost. The Recovery-oriented

computing research project [80] at UC Berkeley is also employing the fault tolerant

technology to achieve the isolation of faulty components and provide redundancy

techniques for fault safe online recovery.

For the roll-forward mechanism, the fault tolerance system will continue its exe-

cution until a stable state happened. Then the fault tolerant system handles its faults

and the running system continues the execution. Finally, the roll-back mechanism

is meaning that: before a fault occurring, the fault tolerance system stores all the re-

quired actions to be able to go back to a stable state after a fault occurring. This system

can be re-executed with correct configurations for self-healing.

2.3.2 Self Healable systems in D-SOA

An existing approach for self-healable system is to use a D-SOA framework and to

consider service substitution as a roll-back mechanism [37]. When considering the

problem of services substitution, a complementary objective consists in achieving the

substitution without any modification of the client code. Classical solutions are mainly

considering this problem and can be grouped in three main categories [39]: abstraction-

based approach, adapter-based approach and hybrid solutions combining the first

two. The idea behind abstraction-based approach is to define higher level abstractions

that stands for concrete services, and the client applications access to the alternative

concrete service instead of access directly to the provided service. On the contrary,

in the adapter-based approach, the client applications access directly to the concrete

service through an adapter. Finally, the hybrid approach can reduce the complexity of

the service number increased.

Whatever the approach used, the first part of the substitution is focused on finding

a new service that can be used in place of the unavailable one. In [76], the authors pro-

pose an algorithm and mismatch trees to find incompatibilities in interfaces level and

protocols level respectively. Checking the compatibility between all available services

can be time-consuming, and at the same time impact the ongoing business process.

Some approaches reducing this complexity have been proposed. The main idea is to

gather available services into groups of services offering the same functionalities [46]

[39] [89] each client application is bounded not only to one service, but to a group of

services. In SIROCO [46] framework using semantic annotations in SA-WSDL lan-

guage in order to categorize services into OWL ontology. In [39], the authors propose

to group available services for the substitution in groups called profiles. In [89], these

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 31

authors proposed a common interface(namely Open Service Connectivity OSC) to col-

lect web services and dynamic binding of web services. In this work, web services

substitution has two steps: collects functionally-similar web services into communi-

ties and makes client applications connect to web services communities using OSC

driver.

After finding the right service, substitution can now be realized that is the second

part. To realize a substitution is to reconfigure the system so that client services could

keep working by using the new service. In [17], authors propose an algorithm for

CORBA service reconfiguration, that involves a passive link to the unavailable service

and an active link to the new service, while keeping the application consistency and

with a few execution disruption. In the case of stateless services, it is straightforward.

But for stateful services, it is more complex. One should restore the state of the substi-

tuted service. In SIROCO [46] framework, there is a registry system, where a service

can register its current internal state and thus make a checkpoint. When a service fail,

the framework try to manage the new service in order to set its internal state in the

late one of the previous service. A synchronization mechanism has been presented in

[98]. The configuration manager provides a runtime kernel which provides a message

repository for messages that has been sent by components.

Almost all the aforementioned approaches are server-side and do not tackle state-

ful services. For stateful services substitution, one should implement a transaction

mechanism to restore the state of the substituted service. Transactional memory pro-

vides more powerful support for this lock-free style of programming. Massalin and Pu

[74] use this instruction for lock-free list manipulation in an operating system kernel.

In [56], transactional memory is introduced with a support of a multiprocessor archi-

tecture to make lock-free synchronization. Lock-free data structures can avoid com-

mon problems: Priority inversion, Convoying, Deadlock. This method performs bet-

ter than the locking-based data structures. Verification the correctness of transactional

is also an important step during the transaction memory. So, Cohen et al [30] provided

a mechanical proof of the soundness of the verification method and studied safety

properties in situation where transactional code has to interact with non-transaction

memory accesses. In [53], authors present the first approach to verify STMs under

relaxed memory models with atomicity of 32 bit loads and stores, and read-modify-

write operations. They use FOIL to automatically check the correctness of STMs under

this model. [70] proposed an algorithm tracks object visibility at runtime by multiple

threads are automatically guarded by transactions. Programmer allowed to use TM

and needn’t to explicitly manage whether objects are accessed transactionally or not.

In this section, we presented the classical approaches having tried to do service dy-

namic substitutions with stateful or state-less services at sever-side. It makes services

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

32 Self Healab Systems

become more autonomic in D-SOA systems. Since, service providers can make any

assumptions on provided services with the objective that service substitution can be

done without any consequence on the client side, service references may become stale

during clients using after service unloaded. This performance issue caused by the ser-

vice dynamicity of D-SOA systems. So, we explain the stale references of OSGi-based

systems and its resolutions in section 2.3.3 and section 2.3.4.

2.3.3 Stale references in OSGi

The OSGi platform allows a remote loading and dynamic deployment of applications.

A service is a running java implementation, whose interface is available in an open

repository and using a reference of service instead of a service object itself. But, this

reference also has a drawback: the referenced service can be stopped and its depen-

dencies deprecated at the moment of its use, leading to a stale reference. A stale refer-

ence is a reference to a service that is no longer available, either because of the bundle

offering that service has been stopped or the service associated has been unregistered

[9]. Client bundles may not be aware of the disappearance of the service or service ref-

erences are deprecated at runtime. We are focusing on the case of a mobile platform

with OSGi that can discover or lose connection to some service providers. In such a

case, a service requested by a client can be lost while in use.

Writing safe code for handling OSGi service references boils down to properly

listening to the OSGi service registry and tracking which services are in, and which

services are out. This also requires that each call to a service in a client code makes

extra steps. That is effectively going to invoke a method on a service whose reference

is not staled. This is not easy as it seems, as concurrency is involved. Indeed, a thread

may be invoking a service while another one is un-registering it. This easily defeats

guarded accesses to a service reference if no intrinsic locks or fine-grained re-entrant

read/write locks are being used.

To illustrate this, let us consider a class that is part of the core OSGI API: org.osgi.util.tracker.ServiceTracker.

Briefly, this class handles the service appearance and disappearance tracking logic

based on a set of service interfaces and filters. It can be used to fetch one or multiple

service references at a given instant. It is widely recommended to use it when deal-

ing with the OSGi service layer. Nevertheless, it does not handle concurrency and

multi-thread OSGi bundles may use stale references or throw exceptions when taking

advantage of it. The following piece of code, part of a demo OSGi bundle activator,

throws a java.lang.NullPointerException because guarded access to a service reference

is not correct in this concurrent setting. Moreover, when calling two times the ser-

vice, you can get two different services, which can generate errors in case of stateful

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 33

services.

public void start(BundleContext bc) throws Exception {

publisher = new Thread () {

public void run () {

while(true) {

ServiceRegistration registration =

bc. registerService (

HelloService .class. getName (),

new HelloServiceImpl (),

null);

registration . unregister ();

}

}

};

publisher .start ();

final ServiceTracker st = new ServiceTracker (

bc ,

HelloService .class. getName (),

null);

tracker .open ();

invoker = new Thread () {

public void run () {

while (true) {

if (st. getService () != null) {

((HelloService)st. getService ()).hello (" World !");

((HelloService)st. getService ()).hello (" Second !");

}

}

}

};

invoker .start ();

}

Indeed, the publisher thread continuously publishes and removes a service, while

the invoker thread continuously invokes it using the indirection of a service tracker. A

race condition causes the NullPointerException to be thrown.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

34 Self Healab Systems

The following piece of code is the same one, but the got service reference is stored

in memory. The guarded access to a service reference may become staled during both

calls in this concurrent setting. But it guarantees that the used service in both calls is

the same one.

public void start(BundleContext bc) throws Exception {

publisher = new Thread () {

public void run () {

while(true) {

ServiceRegistration registration =

bc. registerService (

HelloService .class. getName (),

new HelloServiceImpl (),

null);

registration . unregister ();

}

}

};

publisher .start ();

ServiceReference sr = bc. getServiceReference (HelloService

.class. getName ());

invoker = new Thread () {

public void run () {

while (true) {

HelloService hs=(HelloService)(bc. getService (sr));

if (hs != null) {

hs.hello (" World !");

hs.hello (" Second !");

}

}

}

};

invoker .start ();

}

From this code block, we know that the publisher thread continuously publishes

and removes a service too, while the invoker thread continuously invokes it. A race

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Background and state of the art 35

condition causes the current used service reference becoming stale reference. The hello()
method is invoked at the second time through the reference of the unregistered ser-

vice.

This observation stresses out the fact that OSGi service references need to be ma-

nipulated carefully: it is easy to run into race conditions when multiple threads exe-

cute running concurrently, and it is easy to perform a method invocation on a reference

that throw a NullPointerException by using service tracker or became stale.

2.3.4 Dealing with Dynamicity in OSGi
When a bundle becomes unavailable, all the references to objects it provided should

be released to allow garbage collector to do its work correctly. In [48], we have an

example of a case in which the substitution process fails because of a mishandling of

stale references. The stale references should then be tracked and destroyed. Many

approaches have been developed to detect and when possible delete these stale ref-

erences. OSGi specification released some advises to use ServiceFactory Interface or

Indirection mechanism in service object implementation in order to limit the conse-

quences of stale references. In [48], by using Aspect Oriented Programming tech-

niques, the authors propose a tracking stale references tool named Service Coroner

that helps to find stale references for developed or maintained OSGi applications, and

apply it in two cases study. Others approaches such as using Service Binder [21] or

IPOJO [42] suggest to separate functional and non-functional aspects, by describing

the services dependencies management information in meta data XML files and merge

the both at the run time. Each of these approaches tackles a particular case of the stale

references problem, but a general solution is not yet provided. An alternative solution

is the use of a proxy [7], instead of a service references. The proxy manages load-

/unload of services and the client services do not longer keep a reference to a likely

disappeared service and the problem of stale reference is then avoided.

2.4 Summary
From above all, we introduced the background of this work and we explained our rea-

sons to focus on OSGi framework. However, in order to monitor the communications

of services usage without stale references in D-SOA systems, we try to use classical

monitoring systems to monitoring it. We listed some related works of classical mon-

itoring systems in the first part of state of the art. They have their advantages and

disadvantages. But they are not enough to satisfy the dynamicity of services in D-

SOA systems. In addition, the fault tolerant technology may be an useful approach to

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

36 Summary

enable services’ self-healable in dynamic SOA-based system ease development. We in-

troduced some classical solutions to deal with the stateful/stateless services dynamic

substitution in D-SOA-based systems without any consequence on the client. It makes

services more autonomic and dynamicity. But the stale references and the null pointer

exception will occur at runtime in D-SOA systems because of service dynamicity, for

instance, in OSGi-based systems. Since client doesn’t know whether these things hap-

pened or not, they can lead to incorrect results or even system crash. There are some

approaches tried to handle the dynamicity in OSGi. But it’s not complete to solve

these issues.

Therefore, we will give our propositions to monitoring the communications of ser-

vices usage and enhance the fault tolerance of dynamic SOA-based systems in chapter

3 and chapter 4 respectively. Chapter 5 is a final contribution merging the first two

systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

3
A Monitoring Framework for

Supporting Services’ Dynamicity

Service-Oriented Architecture is an approach where software systems are designed

in terms of a composition of services. OSGi is a Service-Oriented Framework ded-

icated to 24/7 Java systems. In this Service-Oriented Programming approach, soft-

ware is composed of services that may dynamically appear or disappear. In such a

case, classical monitoring approaches with statically injected monitors into services

cannot be used. In this chapter, we propose a dynamic monitoring approach dedi-

cated to local SOA systems, focusing particularly on OSGi. Firstly, we define two key

properties of loosely coupled monitoring systems: dynamicity resilience and comprehen-
siveness. Next, we propose the OSGiLarva tool, which is a implementation targeted

at the OSGi framework. Finally, we present some quantitative results showing that

a dynamic monitor based on dynamic proxies and another based on aspect-oriented

programming have equivalent performances. These propositions were presented in

[35, 34].

37

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

38 Introduction

3.1 Introduction

As stated in Chapter 1, we know that services are loosely coupled and client invokes

service methods as long as this service interface matched in SOA-based system. Mon-

itoring a critical system based on D-SOA is a challenge. Many runtime monitoring

tools exist, but their properties are injected into the monitored system at coding time

(JML [19] and Spec# [15]) or at loading time (enforcement monitor [58], Larva [32]

and JavaMOP [75]). It means that when a monitored service based on D-SOA system

disappears or replaced during runtime after bindings, its monitored property is also

removed from system if the monitored system is not restarted. Moreover, these works

don’t consider the expression of properties in terms of framework events.

In this chapter, our proposal is to bring a dynamic approach to runtime monitoring

systems through inserting monitors at the point of client-server binding rather than

"statically" at compiler-time or loading-time. This means that both the service bind-

ings and the behavioural monitoring bindings are dynamic and loosely coupled, thus

supporting service substitution. This approach would preserve behavioural moni-

toring states across different service versions and check that both versions are be-

haviourally compatible.

Another major concern in a highly dynamic context, where the implementation of

an interface may be substituted, is to ensure that no implementation, or part thereof,

can bypass the monitoring framework. Note that if this could happen, the monitor

would not be able to detect any malicious code which might be executed. Moreover,

what can be concluded about a system’s observation if some events could have been

missed? Our aim is to enable the monitoring system to be fully active, even if the

service provider ignores it.

In this context, we conjecture that a dynamic runtime monitor must have two sig-

nificant traits: dynamicity resilience and comprehensiveness which are introduced in sec-

tion 2.2 and reminded in section 3.3.1. Note that we are not assuming that every

service behaves as expected, but only that if an authorized service is to be checked for

a particular property, then no event of the service behaviour can bypass the monitor

observations. For this reason, the architecture relies on a generic event-interception

mechanism and a dynamic, loosely coupled, wiring mechanism for automaton verifi-

cation.

The contribution of this chapter is a generic approach as well as a tool based on

OSGi. In this tool, the verification logic of the automaton is handled by an adapta-

tion of the existing monitoring tool Larva [32]. Finally, the introduction of dynamicity

to the monitor also increases the scope of properties we are able to address. Thus,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 39

we introduce some dynamic primitives in the property description language in or-

der to make it possible to describe behavioral properties, where the registration/un-

registration of a service are expressible events. Furthermore, we also adapt the life

cycle of properties, since, under different circumstances, the monitor state might need

to be preserved or reset when the underlying service is substituted.

Section 3.2 is a case study showing some requirements of this proposition. Sec-

tion 3.3 expresses the architectural model for a dynamic runtime verification tool and

takes into considering some dynamic primitives. Section 3.3 introduces our OSGi ref-

erence implementation and describes our modifications of the Larva specification lan-

guage in order to consider dynamicity. We also analyse the property discription with

different interface numbers suit for OSGiLarva. Section 3.5 illustrates the OSGiLarva

tool by some quantitative results. Finally, Section 3.6 shows our initial conclusions.

3.2 Example
In order to ease the understanding of our contribution, we give an example of a dy-

namically monitored system conforming to our proposition. Let us consider an em-

bedded client on a mobile device based on a dynamic SOA platform, which needs to

communicate with a distant system according to a particular protocol Fig. 3.1. Let two

services S1 and S2 provide an identical interface to access the distant system through

different media: S1 using a WiFi connection, and S2 using a 3G connection. With such

a configuration, we can consider that each time the WiFi connection goes down, the

system unregisters S1, effectively switching the client onto S2, and vice-versa.

...Client

Service1

Service 2

Sub-
System

access

Interface:
Auth();
Lock();

SomeUse();
UnLock();
UnAuth();

Request

Figure 3.1: Dynamic SOA system supporting service substitution

Moreover, we consider that the use of the distant system requires that the client

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

40 Example

is authenticated with the service and that some system actions have to execute atom-

ically. Such requirements correspond to any typical secured system supporting con-

current access by transactions.

In such an example, the possibility of service substitution is crucial. We then pro-

pose, in Fig. 3.2, an example of an execution scenario that has to be supported by the

system. In this scenario, the service S1 is substituted by S2 during the atomic part of

the run.

Auth()
Auth()

Lock()
Lock()

Auth()
Auth()

Unlock()
UnLock()

Client Interface S1 S2

Lock()
Lock()

UnLock()
Unlock()

Sub-Sys

SomeUse()

SomeUse() SomeUse()
SomeUse()

SomeUse() SomeUse()
SomeUse() SomeUse()

UnReg(Service1)

Service
Manager

getService(Interface)
getService(Interface)

getService(Interface)

UnAuth()

getService(Interface)

UnAuth()

getService(Interface)
getService(Interface)

getService(Interface)

getService(Interface)

Figure 3.2: Example of scenario with dynamically monitored system sup-
ported by example in Fig. 3.1

In another part, we can describe the correct use of the system in some property and

check it by monitoring at runtime. For instance, the two following properties express

the expected behavior, described earlier: (i) the client is locally authenticated on the

service before using it, and (ii) the concrete use of the sub-system requires that the

client opens the lock and closes it after use. In this example, one would like to ensure

that the execution described in Fig. 3.2 is correct with respect to these properties. Such

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 41

verification and the description of the property itself are the main contributions of this

Chapter.

Auth()

UnAuth()

UnReg()

s0

s1

s2Lock()

UnLock() SomeUse()

s2 s2

UnReg()

GetService()

Auth()

A. Client-side: instance property

s0 s1

Lock()

UnLock()

SomeUse()

clock\timer>=timerout\timer.reset()

B. Interface-side: class property

Figure 3.3: Example of a property associated to example in Fig. 3.1

These properties can be described by a couple of automatons (Fig. 3.3), but with

a different interpretation of each. The local authentication automaton (Fig. 3.3.A) is

maintained in case of service substitution and should be instantiated for each distinct

client using the system. In the following, we will call such properties as Instance-
Properties as they are instantiated on a per object basis; in this case a client. On the

contrary, the management of the atomic use of the sub-system (Fig. 3.3.B) needs to be

centralized and shared by all clients. Even if a service is removed and substituted,

we would want to keep the current state of the sub-system in memory. In the follow-

ing, we call such properties Class-Properties because its lifetime spans throughout the

system’s life cycle and is not bound to a particular entity.

In summary, our proposition is to provide a monitoring framework, which is able

to monitor such properties by listening to method calls and OSGi framework events

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

42 Contributions

in a dynamic, resilient, and comprehensive manner.

3.3 Contributions
In the first part of this section, we describe an abstract architecture of a monitoring

system model supporting specific features of dynamic SOA systems, and we discuss

its characteristics. In the second part, considering the dynamic primitives from the dy-

namic SOA system. At the end, we give a general property descripton in our monitor

model for monitored system from three point of view: server side, client side, service

interface side.

3.3.1 Proposition of a generic architecture
Our proposition consists in dynamically inserting a monitoring proxy in front of each

service, and executing monitors in some autonomous services (Fig. 3.4). When a ser-

vice usage event occurs, a notification is sent to each associated monitor, which checks

the event against its property.

An interesting advantage of using a dynamic proxy over AspectJ, is that we can

start or stop the monitoring of a property without restarting the service. Indeed, since

the proxy is bound upon a service request, this can be handled easily, while AspectJ

aspects are bound at least at class load-time, requiring to restart the service.

Since services are treated as black boxes from the running environment’s point

of view, such an architecture is designed to consider only properties of their external

interface. This corresponds to properties expressing the normal authorized use of a

service. However, since we are considering dynamic systems, we also want to con-

sider dedicated framework events, such as unregistration of a service or getting a new

service. In this approach, we will then focus on behavioral properties.

Since several clients can be running simultaneously within the framework, the

scope of properties should not be restricted to the use of a single client. We consider

the possibility of adding a monitor in front of several client. By considering both the

monitoring of Instance-Properties and Class-Properties, we enable the possibility of

simultaneously checking both local as well as global properties on the system.

In order to enable properties expressed in terms of method call events and frame-

work events (requests, registration, unregistration, etc.), we need to capture both kinds

of events — the ones between the client and the service, and some events from the ser-

vice registration system. To inject a monitor between a service and a client using it,

we adapt the framework in order to make this invisible both to the client and the ser-

vice. Two interesting characteristics of this approach are that it does not change the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 43

Get
Service

Framework
Event

Service
Registration

Service
UnregistrationRequest

Service

Invocation
Event

Monitor

Client Server

Service
Management

System

Proxy

Proxy

Figure 3.4: Proposed abstract architecture for monitoring system

binary signature of the service and that neither the service, nor the client, are aware

of a potentially running monitor. By adding another proxy in front of the service

management system of the framework, we are notified of requests for getting service

references.

Fig. 3.4 describes the abstract architecture. In the following, we delve deeper into

our two main principles.

Resilience to Dynamicity Since the monitoring system is externalized in an au-

tonomous service, monitors are separated from the code. When changes occur in the

framework, the observation mechanism and its properties remain unaffected.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

44 Contributions

Comprehensive Monitoring One of the main concepts of dynamic SOA is to have a

framework which allows dynamic loading and unloading of loosely coupled services.

Since the framework is in charge of providing an implementation to each service re-

quest, the framework can add a proxy between the client and the service to observe

their communications. This observation is comprehensive and no communication can

bypass this proxy.

3.3.2 Considering dynamic primitives
A monitor is started when a monitored service is registered in the framework. From

this moment, each event related to this service (e.g., service method invoking, service

loading etc.) is propagated to this monitor. Since we are in a dynamic framework,

dynamic events can occur, e.g. un-registration an registered service, or loading a reg-

istered service. We propose to introduce the four following primitives:

• REGISTER: this event occurs when a new service implementation is registered

on the framework. It means that a client can now get this service reference at

any time. If another implementation is already registered, it shares the same

interface property.

• GETSERVICE: this event occurs when a client is asking for a service. It can lead

to two situations: client gets a service or the client does not get any service. If a

client couldn’t get a service from the server, it means that there is no registered

service corresponding to the client request. We introduce the NOGETSERVICE

event to handle this case.

• UNGETSERVICE: this event occurs when a client releases a loaded service. Each

client can release its service object respectively and this service also exists in

memory for other clients load and use.

• UNREGISTER: this event occurs when a service is unregistered. The created

service object is then considered as destroyed. However, if clients still use this

service, these actions are considered as perhaps no longer safe or functional.

3.3.3 General property description
This part discusses the property description language and focuses on the scope of

the property description, mainly induced by the location of its associated monitor.

Indeed, since we are not in a system with one client and one service, we could have

many clients using many services at the same time. In such a case, the location of the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 45

monitor can change the point of view of the property and hence its expressiveness.

As general point of view for property description, it can be defined with at least three

possibilities (e.g., Fig. 3.5): (i) client point of view, (ii) service implementation point of

view and (iii) interface point of view.

Inter
face

Client1

Client2
Service2

Service1

Interface
side

property

Client
side

property
Service

side
property

Service
side

propertyClient
side

property

Figure 3.5: Possible point of view for properties

Next, we will give the details about the property description from the three points

of view of monitored system:

3.3.3.1 Property Described from Service Side Point of View

If the designer describes a property with this point of view, shown in Fig. 3.6, he/she

considers the use of a single service [99]. It is easy to consider some behavioral de-

pendence in some parallel uses by multiple clients. However, since we are consider-

ing automaton-based properties, it is not obvious how to distinguish between clients

within the property. Moreover, it is complex to consider the use of multiple implemen-

tations of an interface simultaneously, with potentially some communication between

them.

For the dynamical part, it is not intuitive to describe and use the fact that a new

implementation of the same service interface has been loaded on the platform. More-

over, it seems to be complex to share property memory between implementations of

the same interface. Hence, if a service is substituted, there is no means of keeping its

property in memory, with its internal state, and to map it on another implementation

designated to continue the started work.

Advantages:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

46 Contributions

Inter
face

Client1

Client2
Service2

Service1

Service
side

property

Service
side

property

Figure 3.6: Property description: service implementation point of view

• Simplicity to describe behaviors of each service implementation without the

need to make the link with other possible implementations.

• In case of stateful services, with a different memory address space for each im-

plementation, it is very easy to describe the system.

Disadvantages:

• Complexity to describe shared memory between services.

• Impossibility to describe a generic behavior for each client, since we cannot dis-

tinguish between clients.

3.3.3.2 Property Described from Service Interface Point of View

In this point of view, we consider what can be done through a service interface, is

showing in Fig. 3.7. It is easy to describe the global use of any implementation of this

interface by any client, but not to make distinction between clients or between used

implementations.

By its nature, such a property is not directly associated to a service and thus de-

scribes a property shared by all implementations. Note that it is easy to consider the

loading or unloading of a service implementation, even if it is a substitution, willing

to keep the current state of the property.

Since our property description language is automaton-based, the only manner to

consider parallel use of many clients is to make some composition between the prop-

erty and itself. However, such technique leads to a combinatorial explosion of the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 47

automaton size. Moreover, it limits the maximum number of clients and services,

since we need to have this information to make the composition.

Inter
face

Client1

Client2
Service2

Service1

Interface
side

property

Figure 3.7: Property description: service interface point of view

Advantages :

• Easy to make a description of the authorized uses, with a global point of view

• Easy to consider loading/unloading of implementations

• Possibility to share a single property state between service implementations

Disadvantages :

• Risk of the shared property description size explosion if we want to describe the

concurrent behaviour of several clients.

• Impossibility to describe a generic behavior for each client, since we cannot dis-

tinguish between clients

3.3.3.3 Property Described from Client Point of View

This third possibility considers that each client has its own instance of the property

(Fig. 3.8). Hence, it is easy to describe the correct use of a service from one client point

of view and to consider as many parallel uses as we want, without any combinatorial

explosion.

Moreover, it is easy to describe the use of multiple services by a single client and

the behavioral dependence in case of concurrent use of services. In case of substitution

of a service, this approach can be resilient, since the property is attached to the client.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

48 OSGiLarva — A monitoring tool for OSGi

Inter
face

Client1

Client2
Service2

Service1

Client
side

property

Client
side

property

Figure 3.8: Property description: client point of view

However, in case of the simultaneous use of a single service by several clients, if there

is some interactions between these usages, it is more complex to describe it.

Advantages :

• Easy to make a description of a particular client authorized usages

• Easy to consider loading/unloading of implementations

• Possibility to share a single property state between several service implementa-

tions

• No risk of size explosion of the shared property, since it cannot be described

Disadvantages :

• Complexity of describing global behavior including several clients

Hence, these three point of views are complementary. If each one of them is used

alone to describe property for dynamic SOA systems, it’s not enough. In section 3.4.1,

we describe our choice of property in the light of the three types in the monitoring

system for OSGi-based systems.

In the next section, we present our monitoring tool implementation based on OSGi

framework.

3.4 OSGiLarva — A monitoring tool for OSGi
We propose a concrete implementation of the described monitor system model in the

context of the OSGi framework: OSGiLarva (Fig. 3.9). In our tool, we use Java mech-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 49

Invocation
Event

OSGiLarva

Framework
Event

Service Registration
Get ServiceRequest

Service

Invocation
Event

Service
Unregistration

Implementation

 Larva Property checking

Client

OSGi Service
Management

System

LogOs Framework Proxy

LogOs
Dynamic

Proxy

Class PropertyInstance Property

Interface

Service

Figure 3.9: OSGiLarva implementation

anisms in order to generate a proxy between each client and service. This proxy is

dynamically generated from a framework proxy, hooked onto the OSGi framework,

and listens to all framework events such as the introduction of a new service or the

requesting of a service by a client.

This implementation integrates two existing tools introduced in Chapter 2.2: Larva

[32] and LogOs [47]. Larva tool belongs to soft-coding and LogOs system belongs to

agnostic-coding. We use LogOs as a hooking mechanism to observe services’ inter-

actions. Larva is a compiler which generates a verification system expressed in Java

language. We will use an adaptation of Larva to verify property events which are

transferred by LogOs.

We describe the monitor implementation with following parts: We first introduce

the property expressiveness with dynamic primitives of OSGiLarva system and then

explain the OSGiLarva property description language. Next, we present our OSGi-

Larva implementation with both LogOs and Larva systems. Finally, we describe how

the registration process of a service under OSGi will take into account an existing

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

50 OSGiLarva — A monitoring tool for OSGi

property monitor to insert it between the service consumer and the service itself.

3.4.1 Property description of OSGiLarva

The OSGiLarva description language is originally based on the Larva property de-

scription language. We adapted it in order to support more dynamicity. This adapta-

tion is done through three extensions. The first one is the introduction of framework-

event primitives (i.e., section 3.3.3) and a property as a composition of Class-Properties
and Instance-Properties in the property description language. The second one expresses

the syntax and semantics of OSGiLarva automata. The last one describes a complete

OSGiLarva property in OSGiLarva property description language.

3.4.1.1 Using dynamic primitives in OSGiLarva system

Larva uses as input a property description language based on automata, extended by

timers, variables and actions. In the property itself, the user defines the set of sym-

bols used in the automata. These symbols are events which, in the original version

of Larva, are defined in terms of method names. We thus propose to use the dy-

namic primitives, described in Chapter 3.3.2 in the events definition in order to enable

framework-event : Register, UnRegister, GetService, NoGetService. UngetService isn’t

included among them, since it requires that the client uses some interfaces of the OSGi

framework to capture UngetService operation. To use the UngetService and GetSer-

vice of the interface ServiceFactory is a part of our future work. Currently, we just

focus on the other events which corresponds to the event-descriptions generated by

the adapted LogOs version. So LogOs needs to register some listeners on the frame-

work.

Event GETSERVICE is obtained by using an OSGi FindHook instance, registered

in the OSGi framework. When registered, such object is called each time a service is

obtained. Originally, this mechanism was defined in order to make a filter on services

obtained as a result of getService call. Indeed, the getService method accepts as

an input a description of the expected service and returns an array of corresponding

service implementations among the available ones. The FindHook mechanism has

been introduced in order to allow service filtering (i.e., to hide some services). Note

that LogOs also uses this mechanism to ensure that, if a service is monitored, every

calls to this service are necessarily done through a proxy, and never directly.

REGISTER and UNREGISTER events are obtained by registering an OSGi EventHook

with the service management system. An object implementing the EventHook class

and registered in the framework is called each time the service management system

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 51

observes a modification, such as new incoming service, a service un-registration, or a

service property modification.

In each of these cases, an event descriptor is forged by LogOs and sent to the Larva

monitor. Larva treats such events like all other events. Hence, the event descriptor

is compared to the list of events the monitor is listening to, and, if the property is

expecting this kind of event, it triggers upon it.

In front of advantages and disadvantages of approaches to express properties

(described in Section 3.3.3), we propose to consider properties as a combination of

two kind of properties for OSGiLarva, associated to two point of views: client-side

and interface-side. These two points of view in our monitor are respectively called

Instance-Property and Class-Property. We propose to not consider the service point

of view, since in typical use of OSGi, if multiple services implement a single interface,

the framework favours the use of the same implementation by all clients. Moreover,

from our experience, we conjecture that properties are typically client side, since an in-

terface property cannot consider the concurrent use of services by many clients with-

out a state explosion. Finally, to have the possibility to add a centralized property,

interface properties can be useful to express some shared constraints such as lock-

ing/unlocking systems.

Since our contribution is based on the Larva description language [31], chosen

for its closeness to our requirements, we mainly orient our proposition according to

Larva and adapt it in order to support more dynamicity. In Larva, properties are

described by automatons, where a single script file can contain several automatons.

Moreover, Larva provides in its language the possibility of defining parametrized au-

tomatons which can be instantiated using event parameters, through the FOREACH

keyword. We exploit this characteristics in order to use properties composed by two

parts (Instance-Property and Class-Property):

• Instance-Property: If a property is defined as an Instance-Property, then each

time a new client accesses the interface, a new instance of the property is gener-

ated and added inside the monitor. When the client terminates, the associated

instance of the property can also be removed. Hence, while such properties

are still resilient to service implementations’ dynamicity, they are intentionally

not resilient to clients’ dynamicity. The framework events are useful to describe

each client’s fact state and behaviors.

• Class-Property: This case corresponds to a centralized property, meaning that

several clients using a particular interface will share the same Class-Property.

Such property is more resilient to dynamicity since a Class-Property can be kept

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

52 OSGiLarva — A monitoring tool for OSGi

in memory until the associated interface is unloaded. As such it is not associ-

ated to a particular user’s interaction or a particular service implementation,

and can thus be used, for instance, to express some centralized locking/un-

locking mechanisms. It’s necessary to describe method calls in Class-Property.

The framework events which will be described in Instance-Property for each ac-

cessed client are useless in Class-Property. However, if several implementations

are used concurrently, then they would probably need to be synchronized.

Next, we present our adapted Larva property description language structure in

the context of OSGiLarva for making more dynamicity.

3.4.1.2 OSGiLarva automata: syntax and semantics

In this section, we propose to formally define OSGiLarva properties in terms of correct
and bad execution traces. An execution trace is error ending if and only if, it makes the

property automaton reaching a bad state (defined in the property). An execution trace

is correct, if all reached states of the automaton are only non-bad states.

Instance properties and Class properties are similar in there definition. They differ

only by their life-cycle. We then firstly define what is a property with its syntax and

semantics before to zoom in their particularities.

We define the structure of a property by an automaton, and then we define what

means crossing a transition. Finally, we make the semantic association between a

property and the set of its correct, or bad execution traces.

Definition 1 (OSGiLarva property automaton) An OSGiLarva property automaton is a
8-tuple A = (S, s0, B, V, v0,ΣM ,ΣF , δ) defined by:

• S: a finite set of states’ names;

• s0: the name of the initial state of the system (s0 ∈ S);

• B: a non-empty finite set of bad state names (B ⊂ S);

• V : a set of variables names, defined in the property;

• v0: a set of variables initializations of A;

• ΣM : a finite set of events names, associated to call of methods;

• ΣF : a finite set of events names, associated to framework events. ΣF = {Register,
GetService, NoGetService, UnRegister};

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 53

• δ: a transition function defined by δ : S → Σ → [PropV × ActV × S], where the first
S characterizes the starting state, Σ = ΣM ∪ΣF , Σ is the set of all possible events (i.e.,
method calls or framework events), PropV is the set of propositional conditions based on
variables from V , ActV is the set of actions based on variables from V and the last S
characterizes the reached state.

A transition t from δ is defined from a starting state to an ending state and with

three annotating elements: an event e ∈ Σ (method call or framework event) that

triggers the transition, a condition, having to be true before to cross the transition,

and an action, which is executed just after the trigger event occurring and the condi-

tions of this transition are true. The action is some code that can manipulate property

variables or generate lines in the record of the monitored OSGi system (i.e., Log file).

Concretely, it is some Java code in the OSGiLarva property file. This code is restricted

to not generate any event during its execution (for instance, an event of loading a new

service).

Particular cases: if no transition can be triggered, then the automaton keep its

state without doing anything. It doesn’t correspond to a bad execution, but to an

abstraction. Finally, if multiple transitions can be crossed (occurring event is their

trigger event and their condition are true), then the transition that is firstly defined is

the one that is crossed. This choice induces the use of a list in the definition of the

transition function.

More formally, we can define the action of crossing a transition as following:

Definition 2 (Crossing a transition) Let A a property automaton, s ∈ S its current state
and v the current valuation of its variables V . Let tr = δ(s)(e) the list of transitions of A
starting from s and associated to a fired event e.

We define a function crossing(tr) and get a result that includes the reached state and the
new variables valuation of V after the transition tr crossed in A through this function:

1. If tr is empty, then s and v are unchanged:
crossing([]) = (s, v)

2. Else, if the condition of the first transition tr0 of the list is true under the valuation v,
the transition is triggered and the action of tr0 is executed on variables V . Else, if this
condition is not checked, then the function is recursively called on the rest transitions
tail of its list tr:

crossing(tr0 ◦ tail) =

 (verify(tr0, v)⇒ (reaching(tr0), exec(tr0, v)))∧
(¬verify(tr0, v)⇒ crossing(tail))

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

54 OSGiLarva — A monitoring tool for OSGi

where tr0◦tail represents the concatenation between the head and the tail of the transitions
list, verify(tr0, v) is a function which is true if and only if the condition of tr0 is true under
the valuation v, reaching(tr0) is the state reached by the transition tr0 and exec(tr0, v) is the
valuation obtained after the execution of the action of tr0 on the valuation v.

Using the first two definitions, we can define one step transition in a whole prop-

erty automaton by the following:

Definition 3 (Stepping once in an automaton) Let e an occurring event. LetA be a prop-
erty automaton. Let trAe the list of transitions of A starting from s and associated to the event
e (trAe = δ(s)(e)). After the consumption of the event e, the automaton A is in the state s′

and its variables are defined by the valuation v′ defined by: (s′, v′) = crossing(trAe)
We write e ` A(s,v) the stepping of e on A, returning A(s′,v′).

Finally, the call of a service method is atomic. Thus, the parallel execution of mul-

tiple clients using a single interface can be define as a single trace, interleaving events

coming from different clients. The verification of a whole system according to a full

property associated to an interface can then be defined as follows.

Definition 4 (Full property verification) Let tci the execution trace of a client ci as a con-
sumer of the monitored interface. Let e(ci,j) the jth event of tci . The global execution trace
tglobal is then a mixed execution trace which interleaves traces of all clients using the given
monitored interface.

tc0 = e(c0,0); e(c0,1); e(c0,2); . . . ; e(c0,n0)

. . .

tcm = e(cm,0); e(cm,1); e(cm,2); . . . ; e(cm,nm)

tglob = e(ci,0); . . . ; e(cj ,nj)
Let P a full OSGiLarva property, defined by a class-property (Aclass) and an instance-

property (Ainst). Then checking the use of the interface consists on checkingP = (Aclass, Ainst0 , . . . , Ainstn
),

with the global trace induced by the execution of current clients.
Let inbad(A) a function returning true if and only if automaton A is in a bad state. Then

we can functionally define the verification of a system execution according to a full property
as follows, where the returned list is the sequence of clients reaching bad states (A.k.a. the log
file). We write check(tglob, P) this verification process of tglob according to P and we define it
by:

• check([], PAclass,Ainst0 ,...,Ainsti
,...,Ainstj

) = []

• check(e(ci,j) ◦ tail, PAclass,Ainst0 ,...,Ainsti
,...,Ainstj

) =
let Aclass(sm

′,vm
′) = (e(ci,j) ` Aclass(sm,vm)) in

let Ainsti(sn
′,vn

′)) = (e(ci,j) ` Ainsti(sn,vn)) in

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 55

if(inbad(Aclass(sm
′,vm

′)))then[ci]else[]
; if(inbad(Ainsti(sn

′,vn
′))))then[ci]else[]

; check(tail, P(Aclass(sm′,vm′),Ainst0 ,...,Ainsti(sn′,vn′),...,Ainstj))

In this verification process check(e(ci,j) ◦ tail, P), e(ci,j) is the first event of the global

trace, tail is the rest of the global trace without the first event of the global trace. The

check(tail, P) is used to make a recurrence for verifying the first event of tail with the

property P(Aclass(sm′,vm′),Ainst0 ,...,Ainsti(sn′,vn′),...,Ainstnj
).

After an OSGiLarva automaton formally presented by a 8-tuple A, these specifica-

tions are used to the next section of OSGiLarva properties description language.

3.4.1.3 Properties description language of OSGiLarva

In Larva, one way to introduce a new context is to use a FOREACH clause. This clause is

a quantification on an object. Hence, for each instance of a given class, Larva generates

a new instance of the inner property. Moreover, in order to make distinction between

users, classical Larva needs information explicitly given by the caller, such as a Session

ID, passed as a parameter. Hence, Larva only has the same information as the service

implementation to check a property.

We propose to adapt the FOREACH structure for our needs, by introducing a new

clause: foreachclient. This construct is based on the address of the caller and generates

a new context for each caller. As an example, such a clause could make it possible to

check that there is no ID session spoofing, what is not possible in larva. A described

property in the FOREACHCLIENT context will be re-instantiated for each client using

the monitored service. It is the instance-part of the property.

A very important difference between the FOREACH and FOREACHCLIENT clauses

is that the first one is based on values computed inside the EVENTS clause from ob-

served parameters, while the second one is based on values computed and provided

by LogOs, according to its observations.

The FOREACHCLIENT keyword takes two parameters: Long pid and String itfName.

pid is a numerical identificator of the client associated to the current instance of the

property. Concretely, we use the process id as identification. itfName is the name of

the service interface associated to the current event. The values of both parameters are

directly transferred from LogOs observation. Since FOREACHCLIENT is an extension

of the FOREACH clause, then we keep all language characteristics of the latter.

Besides foreachclient clause we need to explain GLOBAL clause. The property

of each service interface is instantiated only once and is then shared by all clients.

These kind of properties are Classes-Properties. These properties will be expressed in

the GLOBAL clause.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

56 OSGiLarva — A monitoring tool for OSGi

It’s possible to express a property in terms of several service interfaces. To make

it, it is sufficient to write as many properties in the global clause as service interfaces

to check. The link between the monitored interfaces and the properties is syntactically

done by the name properties which must be the name of the interface. These proper-

ties share the variable definition and events definition in the context of global. It can

communicate with all "instance-parts” of the property.

In order to make distinction among same name of methods which are provided

by different interfaces, we design a format of valid event definition in each EV ENTS

clause to express an exactly method invocation. For instance, eventName = {interfaceName·
methodName(type, ...)}, where eventName is the defined event name, interfaceName·
methodName(type, ...) is a method invocation and type list are method’s parameters

types.

In the next section, we express the OSGiLarva property description and monitor

given execution traces for an example system.

3.4.1.4 Verification example through OSGiLarva automaton

In this section, we give an example of Airline Reservation system with its property

and we propose to monitor execution traces which are correct or not. This example

(Fig. 3.10) is composed by two service interfaces: reservation and payment. The

reservation interface provides two methods selectF ly(String) and confirm(boolean)
and is implemented by two services S1 and S2. The payment interface has a single

service implementation S3, providing two methods pay(String) and resetPay().

Clients must use both services methods with a special order, such as, before pay-

ing, clients must select a fly, or before confirming, clients must pay. If the current used

reservation service (i.e., S1) is unregistered before confirming a client’s airline reserva-

tion, the payment service need to be re-setted, and then client gets a new reservation

service (i.e., S2) from initial state to make an airline reservation.

We first give a part of a property file (shown in Fig. 3.11) which is composed by

an Instance-Property (i.e., clients’ property) and two Class-Property (i.e., one property

per service interface) according to this example.

We then give an OSGiLarva property automaton definition of the clients property,

which is the instance property of Fig 3.11. According to the Definition 1, a transition

is defined under the form: δ(s, e) = [(c, a, s′)], where s is a start state, e is an event, s′

is a reached state, c is a condition and a is an action. Since this property automaton

describes the instance-part property for each client, this property is described in a

FOREACHCLIENT clause. The variable itfName is the parameter of foreachclient. In

this context, a property automaton of this example could be defined as following:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 57

2. pay

3. confirm

1. selectFly

Client

S3

S1

reservation:
selectFly(String);
confirm(Boolean);

payment:
pay(String);

Sub-
systemS2

Figure 3.10: Monitoring of services usage

• S={linked, selected, error};

• s0=linked;

• B= {error};

• V =∅;

• v0=∅;

• ΣM = {selectF ly, pay, confirm, resetPay};

• ΣF ={GetService, UnRegister};

• δ = {
δ(linked, selectF ly) = [(true, nop, selected)],
δ(selected, selectF ly) = [(true, nop, selected)],
δ(selected, confirm) = [(true, nop, error)],
δ(selected, pay) = [(true, nop, paid)],
δ(paid, confirm) = [(true, nop, linked],
δ(Unreg3, resetPay) = [(true, nop, selected)],

δ(selected, UnRegister) = [(”reservation”.equals(itfName), nop, Unreg1),
(”payment”.equals(itfName), nop, Unreg2)],

δ(Unreg1, GetService) = [(”reservation”.equals(itfName), nop, linked)],
δ(Unreg2, GetService) = [(”payment”.equals(itfName), nop, selected)],
δ(paid, UnRegister) = [(”reservation”.equals(itfName), nop, Unreg3)],

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

58 OSGiLarva — A monitoring tool for OSGi

GLOBAL {
VARIABLES { ... } EVENTS {... }
PROPERTY reservation {

%% Class property for interface " reservation "
STATES {...} TRANSITIONS { }}

PROPERTY payment {
%% Class property for interface " payment "
STATES {...} TRANSITIONS { ... } }

%% Introduction of this new keyword
FOREACHCLIENT (Long pid , String itfName){

%% Instance property .
VARIABLES { ... }
EVENTS {%% framework and method invocations events :

%% method invocations event definition
selectFly ={ reservation . selectFly (String)}
...}

PROPERTY clients {
STATES { STARTING { linked {}; }

NORMAL { selected {} ... }
BAD {...} }

TRANSITIONS {
linked -> selected [selectFly //]
... }

} } }

Figure 3.11: An OSGiLarva property description file with the global keyword
associated to two interfaces properties and FOREACHCLIENT keyword

δ(selected,GetService) = [(”reservation”.equals(itfName), nop, linked)],

}

In this OSGiLarva automaton example, a "true" is meaning that this transition has

no condition, the "nop" means no any action in this transition. A graphical view of

this property automaton is shown in Fig. 3.12.

In order to show a complete use of the OSGiLarva system, we propose to observe

two execution traces t0 and t1. They are chosen such as one is correct and the second

one is error ending. Since the value of the context variable "itfName" is provided by

LogOs automatically, we add it as a subscript of input events when needed.

• t0=[reservation.selectF ly(String), payment.pay(String),
reservation.confirm(Boolean)]

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 59

UnRegister/
"payment".equals(itfName)

UnRegister/
"reservation".equals(itfName)

GetService/
"reservation".equals(itfName)

selectFly pay

confirm

UnRegister/
"reservation".equals(itfName)

GetService/
"reservation".equals(itfName)

linked
selected

paid

Unreg1

error

resetPay

Unreg3

GetService/
"payment".equals(itfName)

selectFly

confirm

Unreg2
pay

Figure 3.12: An OSGiLarva clients-side automaton of the airline reservation

• t1=[reservation.selectF ly(String), UnRegisteritfName=”payment”,

payment.pay(String)]

In order to use OSGiLarva to check these traces, we first have to translate these

traces as event traces according to the events clause of the property (i.e., Fig. 3.13),

giving the following events traces t′0 and t′1, playable on the automaton property, as

defined in Definition 4.

Let t′0 and t′1:

• t′0=[selectF ly, pay, confirm]

• t′1=[selectF ly, UnRegisteritfName=”payment”, pay]

by playing them on the property A, we then obtain the following logs:

• check(t′0, A)=[]

• check(t′1, A)=[IdOfClientMakingThisError]

Since no bad state occurs while playing t′0 on this OSGiLarva property automaton,

t0 is correct and the obtained log is empty. Conversely, the bad state error is visited

by t′1 with the transition δ(Unreg2, pay) = [(true, nop, error)]. So t1 is an error ending

execution and the identification of the client making the error ending trace is added in

the monitor’s log.

Finally, we give a third execution trace t2 which is also checked by OSGiLarva with

a translated events trace t′2. There is no bad state reached in t′2. So t2 is correct. But in

fact, a problem is hidden in this example: after reservation service unregistering (i.e.,

S1), a new service is also gotten (i.e., S2). OSGiLarva system can’t check whether the

following method selectF ly is invoked through a stale reference of the unregistered

service (i.e., S1) or not. A solution of this problem will be proposed in Chapter 5.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

60 OSGiLarva — A monitoring tool for OSGi

EVENTS {
selectFly = { reservation . selectFly (String)}
confirm = { reservation . confirm (Boolean)}
pay = { payment .pay(String)}
resetPay = { payment . resetPay ()}
UnRegister = { UnRegister }
GetService = { GetService }

}

Figure 3.13: EVENTS description in an OSGiLarva property

• t2=[reservation.selectF ly(String), payment.pay(String),

UnRegisteritfName=”reservation”, payment.resetPay(),
GetServiceitfName=”reservation”, reservation.selectF ly(String),

payment.pay(String), reservation.confirm(Boolean)]

t′2=[selectF ly, pay, UnRegisteritfName=”reservation”,

GetServiceitfName=”reservation”, selectF ly, pay, confirm]

3.4.2 Implementation
Since our monitor implementation is based on both LogOs and Larva systems, we first

present more useful details about both systems. We then present our adaptation of

LogOs to intercept service interactions and give some details about our modifications

of Larva.

3.4.2.1 LogOs system

In this section, we introduce more details about LogOs system [47]. This will be help-

ful to describe our modification on it in our OSGiLarva implementation (i.e., section

3.4.2).

LogOs Structure In LogOs system, there are four parts be composited: Annota-

tions, Interception, Logging, Storage. Each part has its responsibilities. Annotations

part aims to define Domain-specific language (DSL) through Four Java Annotations

that modify service interface method call logging standard behaviour. Interception

part is in charge of calls interception during system execution. Adding the defined

annotations in the service interface. When the specified service method or method pa-

rameters are marked in the interface side, all these will be intercepted during running.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 61

Logging part is for tracing the intercepted actions or parameters and recording these

information details. It includes: unique id, time, method name and so on. Storage

part is responsible for output the traced record for users. The record file is named like

logosng-recorded-on-1368691248161.cur. It means that this file records all intercepted

service method invocations from the framework time stamp 1368691248161 until sys-

tem stopped.

OSGi Platform

Requester Event Hook

R
eg

is
try

Logging Proxy
Generator

Service
Proxy

Log Storage
Service

Service

Hello()

getService()

log log log
log log log
 log log log

Figure 3.14: Processing of LogOs system works for system based on OSGi
framework

Implementation of LogOs architecture on OSGi LogOs system is working in

a system based on OSGi framework (in Fig. 3.14). LogOs system uses EventHook

package for building interception proxy. Once a service proxy built for one registered

service, the other services must invoke its service methods through this built service

proxy. This invocation is indirect. This service proxy can capture log events for stor-

ing.

LogOs system can observe all invoked service methods which are defined in its

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

62 OSGiLarva — A monitoring tool for OSGi

service interface with java annotations, even if a being used service is unregistered

and a new service appeared.

3.4.2.2 Larva Tool

In this section, we also introduce more details about Larva tool for ease understanding

our modification on it in our OSGiLarva implementation (Section 3.4.2).

Larva Syntax For this Larva tool, property description for the monitored system

is a key point. This property description language aims to describe a Finite-state-

machine(FSM) to verify the running software system. There are four parts need to

be declared in a property description file: EVENTS, VARIABLES, STATES, TRANS-

ACTIONS. We introduce the syntax of each declaration part at here. For ease under-

standing the principle of property description in Larva, we use that example which is

explained in section 3.2 to explain the four declaration parts.

1. EVENTS: Firstly, we need to explain the monitored events in the property de-

scription. All the defined events in a property file is in the light of thesse meth-

ods from this example, for example, Auth(), Lock(), SomeUse(), UnLock(), and

UnAuth(). They are defined like this: eventName()=*.methodName(). The "eventName"

is an identifier arbitrary chose by designers and used in transitions. The "*.methodName()"

is a real method of the monitored software system and defined for AspectJ tech-

nology, to insert a calls of interception in the monitored system. The equivalent

event declaration part in a property file is showing in the code snippet Fig. 3.15.

EVENTS {
%% Property designer needs to
%% express how to retrieve the
%% identifier :

Auth () = {*. Auth ()}
Lock () = {*. Lock ()}
SomeUse () = {*. SomeUse ()}
UnLock () = {*. UnLock ()}
UnAuth () = {*. UnAuth ()}

}

Figure 3.15: EVENTS description in a Larva property file

2. VARIABLES:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 63

The FSM is used in Larva property description includes variables. They are

updated by actions and are used in conditions in transitions. Variable is defined

like Fig. 3.16.

VARIABLES {
int Cnt = 0;

}

Figure 3.16: VARIABLES description in a Larva property file

3. STATES:

State is a necessary part in FSM. In Larva property description, the responsibility

scope of state is fixed. They are: Accepting, Bad, Normal and Starting. We

can define our states under these fixed states. Under Accepting, our states be

taken as the system desirable state to terminate. Conversely, states under Bad

set correspond to an error. Under Normal set of states, all states are middle state

during system running. Finally, only one state is starting. It defines the system

starting state. An example of the states syntax code is showing Fig. 3.17.

PROPERTY cients {
STATES {

BAD{bad}
NORMAL {ok}
STARTING {start}

}
}

Figure 3.17: STATES description in a Larva property file

4. TRANSITIONS:

For express transitions, we need to use the described EVENTS, VARIABLES, STATES.

The syntax of a transition is: startState→ reachedState[event\condition\action].
From one state to an other state in terms of event and condition, execute the

action before arriving reachedState. condition and action are optional elements,

the rest of elements are necessary for expressing a transition. We design some

transitions according this syntax in the following Fig. 3.18.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

64 OSGiLarva — A monitoring tool for OSGi

PROPERTY clients {
TRANSITIONS {

ok -> ok [Lock\Cnt =0\ Cnt ++;]
ok -> bad [Lock\Cnt =1]
ok -> ok [UnLock \Cnt =1\ Cnt =0;]
...

}
}

Figure 3.18: TRANSITIONS description in a Larva property file

Existing Larva Property Description Language A Larva property description

file can contain several automatons. The file is structured in terms of contexts. The

global context can contain several properties and each of them can introduce a new

context. A context is defined by variables and listened events. Each inner context can

access the global variables.

A FOREACH structure allows a property to be instantiated for each different value

of an element, considered as an identifier. Channels can be used by automatons to

communicate together. These channel-generated events are broadcasted to the cur-

rent context and below. So, if two inner contexts need to communicate, they can do it

through channels. Clock Larva property description language allows real-time prop-

erties, by the use of clocks. Clock can track an event is timeout or not after a fixed

timed. So it is a tool for keeping some real-time application security through timed.

A generic structure of a Larva property file is given in Fig. 3.19. It shows a file

containing two properties: a global one and an instantiated one.

Both tools (LogOs system and Larva system) are useful for its corresponded envi-

ronment. But for each other environment, there exist some disadvantages. The LogOs

system can capture specified actions with dynamicity from a running system. But it

can’t check whether the captured action is authorized or not. The Larva can check

specified properties. However, it does not have any dynamicity resilience characteris-

tic. In following two sections, we will give our adaptation of LogOs system and Larva

tool to resolve these problems.

3.4.2.3 Adapted both LogOs and Larva systems

LogOs is a transparent logging toolkit for the service activity inside the OSGi archi-

tecture. As soon as the LogOs bundle is started, each service registration is observed

by the system. Thanks to the OSGi hooking mechanism, a LogOs proxy can be gen-

erated between the service and its consumer. Hence, every method call, including

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 65

GLOBAL {
VARIABLES { ... }

EVENTS { ... }
PROPERTY P1 {

STATES {...}
TRANSITIONS { ... }

}
FOREACH (Object u){

VARIABLES { ... }
EVENTS {

%% Property designer
needs to

%% express how to
retrieve the

%% identifier :
someEvent () = {*. method }
...

}
PROPERTY P2 {

STATES {...}
TRANSITIONS { ... }

}
}

}

Figure 3.19: Generic larva property file with two properties of two types

parameters and returned values, are automatically intercepted.

For each event captured by a LogOs proxy, a corresponding LogOs event-description

is forged and propagated to LogOs. In our adaptation, LogOs proxy forwards them to

the associated monitors.

We have extended LogOs annotations to enable the user to declare whether an

interface is to be monitored or not. If an annotation is present, the monitoring class is

loaded when a service implementation is registered.

Moreover, LogOs integrates a mechanism to observe services registration, which

is originally used to generate service proxy at load-time. This information is sent to

the Larva monitor.

In section 3.4.2.2 and section 2.2.3.3, we introduced the syntax and structure of

Larva tool. The advantage of this tool is a monitoring of real-time property. The weak-

ness of this tool that needs to use apsectj technology to weave interception calls in the

monitored system at coding-time or compiling-time or loading-time. In dynamic SOA

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

66 OSGiLarva — A monitoring tool for OSGi

systems, it doesn’t work when service dynamic substituted during runtime. Because

the aspectsj technology is used in Larva system.

We adapted Larva to OSGiLarva by removing the part associated with the in-

jection of aspects. In order to replace this part by a call from LogOs, we need to

make this provided call by LogOs be checked in the generated Java code which de-

scribe multiple service interfaces’ properties and clients’ properties. For checking a

call among multiple service interfaces, we also specify a format of a provided call de-

scription in LogOs associated to the events definitions in property description, like:

interfaceName.methodName(type, ...). type list are method’s parameters types. In

order to consider dynamic events in described properties, we introduced some new

primitives (Section 3.4.1.1: Considering dynamic primitives) in the property descrip-

tion language which are generated by the latest version of LogOs correspond to events

definitions.

3.4.3 Registration of a service providing specification

We propose to enable the declaration of properties to monitor as a part of OSGi bun-

dles, as shown in Fig. 3.20. Indeed, an OSGi bundle is an archive providing four el-

ements: a collection of interfaces, a collection of services implementations, bootstrap code,

and POM.xml, which is called when loading or unloading the bundle. Thanks to the

OSGi architecture, service interfaces, service implementations, bundles and the man-

ifest file POM may have different life cycles depending on the deployment scheme,

since interfaces may be deployed with a bundle other than the one containing the

service implementation.

OSGi Bundle Interface

Properties Services
Implementation

Bootstrap Code

Manifest

Figure 3.20: Structure of an OSGi bundle providing properties

As such, we propose to keep the same philosophy when providing properties. We

consider that they can be either provided by the same bundle as implementation or

by another one. Since interfaces are typing specifications of services and OSGiLarva

Class-Properties are behavioural specification of services, it makes sense to map the

life cycle of class properties to that of interfaces. On the other hand, the Instance-

Properties life cycle describes the behaviour of all service interaction and thus it makes

sense to map its life cycle to the client-service connection life cycle.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 67

3.5 Evaluation
In this section, we present some benches of OSGiLarva. There are mainly two imple-

mentations used for executing OSGi services: Apache Felix and Eclipse Equinox. In

our benches, we use the current Apache Felix which is an open source implementation

of the OSGi Release 4 core framework specification, on the top of the Java 1.6.0-06 Vir-

tual Machine. The machine used for these tests runs on an Intel Pentium M at 1.4GHz

CPU with 640MB of RAM and running under Gentoo 4.2.3 with 2.6.22-gentoo-r8 ker-

nel version.

In the following, we are using two examples: one without dynamicity and another

with dynamicity. Indeed, since we will make efficiency comparisons against Larva,

which does not support dynamicity, we then need to have a static example. This

example is just a loop making some calls to a function provided by a service. On

the other hand, the dynamic example is very close to the one described in Section 3.2,

but with a loop on the client side. This loop specifies the concrete actions from the

client and contains a call to a service, followed by an unregistration of the service, a

get service to have a second service, a second call, and finally a new registration of the

unregistered service. In our benches, we modify the amount of loop iterations to study

the variation of the time cost in the long run and its variation due to JIT compilation.

We made three kinds of tests to study performances of OSGiLarva: a comparison

between the execution time of OSGiLarva and Larva, a comparison between the ex-

ecution time of OSGiLarva and OSGi, and a comparison between the execution time

of OSGiLarva and a Instance-Property-only in OSGiLarva. Indeed, we hypothesized

that the identification of the client (and hence the Instance-Property) is a bottleneck,

but benches show that it is not so costly.

Here is the definition of some keywords appearing in this section:

• Larva: the time cost from the example with the original Larva system.

• OSGiLarva: the time cost from the example with the OSGiLarva tool.

• WithoutOSGiLarva: the time cost from the example running under OSGi, but

without any monitoring system.

• OSGiLarvawithoutPID: the time cost from the example with a weaker version

of OSGiLarva where we removed the generation of a caller Id from the system.

Finally, for each test, we made two curve charts. The "Time cost comparison" curve

chart shows amount of loop iterations on the horizontal axis, and time cost in millisec-

onds on the vertical axis. The "Cost ratio" curve chart shows amount of loop iterations

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

68 Evaluation

on the horizontal axis, and change ratio of time cost in percentage points on the verti-

cal axis. The cost ratio is calculated by the time cost of the example with the monitor

divided by the time cost of the example without the monitor.

3.5.1 Monitoring cost by using a proxy (OSGiLarva VS Larva)

The goal of this test is to evaluate the performance of OSGiLarva (with a proxy) and to

compare with the one of the Larva tool (with AspectJ) on the same functions example.

Since Larva does not support OSGi dynamicity, we made the comparison on a exam-

ple without loading of services. In this kind of comparison, we just use the two tools

to monitor the normal events from the communication of client using services.

0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

Tim
e c

os
t(s

)

L o o p r u n s

 O S G i L a r v a
 L a r v a

Figure 3.21: Comparing time cost of a static example with OSGiLarva and
Larva

Fig. 3.21 is a comparison of the time cost in the execution of a static example

with Larva and OSGiLarva monitors. We can observe that both curves are very close.

Hence, OSGiLarva does not add too much cost by its proxy approach.

0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

- 2

- 1

0

1

2

3

4

Co
st

rat
io(

%)

L o o p r u n s

 O S G i L a r v a / L a r v a

Figure 3.22: Comparing cost ratio of a static example with OSGiLarva and
Larva

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 69

In order to be more precise, in Fig. 3.22 we plot the curves of the cost ratio between

Larva and OSGiLarva time cost results. The change ratio of time cost is lower than 1%.

This change ratio is from the proxy in OSGiLarva. Thanks to this proxy, OSGiLarva

can make the behavioural monitoring bindings dynamic and loosely coupled. The

pre-condition of this test is that the monitored service is never replaced by another

one. If the monitored service is replaced during runtime, Larva will not be able to

detect any of its events. But OSGiLarva can continue to monitor it.

Since these two technologies are not using the same Virtual Machine, the JIT is

also not the same. We think that this difference is the explanation for the behaviour

observed in the first run, which is stable and always faster on OSGiLarva. This differ-

ence is probably also the explanation for diminution of the overhead when the loop is

longer.

3.5.2 OSGiLarva efficiency (OSGi VS OSGiLarva)
This test runs the dynamic example described as a running example in this article, but

with a loop inside the client. We then run it with and without OSGiLarva in an OSGi

environment. It aims to evaluate the raw impact of OSGiLarva on service invocation

and service events from the framework. The property events includes normal events

and framework events.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Tim
e c

os
t(s

)

L o o p r u n s

 O S G i L a r v a
 W i t h o u t O S G i L a r v a

Figure 3.23: Comparing time cost of the case study example with and without
OSGiLarva (simple method in service side)

From Fig. 3.23, we know that the performance impact of OSGiLarva is stable at

around 23% on this example.

For every monitored service invocation and framework events, OSGiLarva per-

forms its indirection work: it verifies the actions from the original system and com-

putes the current client id, and finally it outputs the monitored traces to the developer

or the user at real-time. The cost ratio almost becomes a horizontal line shown in

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

70 Evaluation

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

1 6

1 8

2 0

2 2

2 4

2 6

Co
st

rat
io(

%)

L o o p r u n s

 O S G i L a r v a / W i t h o u t O S G i L a r v a

Figure 3.24: Comparing cost ratio of the case study example with and without
OSGiLarva (simple method in service side)

Fig. 3.24, except for the two first points at about loop 100 runs and 500 runs. We pre-

sume that it is the initialization of the JIT which is causing this anomaly.

It is important to note that this 23% overhead is a metric including the call of meth-

ods events and the framework events. The biggest part of this overhead is associated

to the cost of generating a new proxy and placing it in front of newly requested service.

3.5.3 Overhead associated to getting the caller id
In order to associate each communication to the right client in Instance-Properties, we

compute a caller Id. However, we get it through the SecurityManager which is a non-

internal way of finding the caller class and caller Id. As such, one would expect extra

time costs because of the SecurityManager, warranting further investigation.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Tim
e c

os
t(s

)

L o o p r u n s

 O S G i L a r v a
 O S G i L a r v a w i t h o u t P I D

Figure 3.25: Comparing time cost of the case study example with OSGiLarva
but with or without client Id

Thus, the following test is just for knowing the performance impact from compute

current caller Id during runtime. We then compare the cost of the Case Study with

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Monitoring Framework for Supporting Services’ Dynamicity 71

and without the Instance-Property and then, with or without getting the caller Id.

From Figs. 3.25 and 3.26, we observe that the time cost of the two kind of monitor-

ing are very closed. The impact cost is lower than 5%.

Indeed, in such a simple test example, the body of the called methods are very

small. Hence, the most of the time cost is from invocation itself. So, if the service

method is a more complex and real one, the time cost for getting caller id and caller

name will far less than 5%.

Moreover, even at 5% time cost, which actually boils down to 1.15% (5% of 23%) of

the system runtime, we conjecture that it is an acceptable price to pay for obtaining the

crucial information for identifying which client is currently using a particular service.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

2

4

6

8

1 0

1 2

1 4

Co
st

rat
io(

%)

L o o p r u n s

 O S G i L a r v a / O S G i L a r v a w i t h o u t P I D

Figure 3.26: Comparing cost ratio of the case study example with OSGiLarva
but with or without Client Id

3.6 Summary
In the highly dynamic environment of the SOA, where software can be replaced on

the fly at runtime, the challenges for ensuring correct behaviour increase as the soft-

ware has to be checked at runtime. In this context, we have identified two properties,

that we consider are required to make a dynamic monitor for dynamic SOA systems:

(i) resilience to dynamicity, i.e., the monitor is able to maintain state even if the service

implementation is substituted at runtime, and (ii) comprehensiveness, i.e., that no im-

plementation of the service interface can bypass the monitor’s observation.

We have instantiated the approach in the context of the OSGi framework through a

preliminary implementation, OSGiLarva, which integrates an adaptation of two exist-

ing tools: Larva and LogOs. This OSGiLarva monitoring system is freely download-

able at: https://github.com/Yufang-DAN/OSGiLarva-monitoring-system. Similar

to Larva, OSGiLarva accepts the Larva property description language as input, hence

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

https://github.com/Yufang-DAN/OSGiLarva-monitoring-system

72 Summary

inheriting all its features, including its expressiveness and its readability for non-

expert users. Furthermore, it enables the description of both class properties and in-

stance properties. This feature has been instrumental for OSGiLarva to monitor both

properties which span the whole duration of the interface life cycle, and the individual

client’s point of view of the service, possibly spanning over different implementations

of the service requests. We have also extended the Larva event description language,

in order to consider not only calls or return of method calls, but also OSGi frame-

work events such as the registration of a service or its request by a client; this has been

achieved by introducing reserved event names which are usable transparently as if us-

ing standard method calls. Moreover, we gave the rules about describing one property

file or multiple property files to possibly several interfaces. And then this OSGiLarva

system can monitor clients use one or more services from multiple interfaces.

As observed in section 3.5 about monitor the communications between clients use

services from one service interface, our approach is not so inefficient when compared

to injection-based monitoring tools like Larva. While our approach is based on an

OSGi hook observing all occurring events instead of aspect-oriented programming,

the extra cost is small: tending to less than 1% increase in overheads. Since, this ap-

proach is crucial for dynamicity resilience, the cost incurred seems to be a reasonable.

An interesting element of this approach is its non-intrusive aspect. Indeed, in con-

trast to the aspect-oriented approach, we keep the original byte-code unchanged. This

property can be useful if we want to switch off a monitor or be able to check the binary

signature of the code as an authentication credential [41].

The notion of comprehensiveness also has a number of benefits since anybody

with some privileged access to the platform (user, developer, or service) can define a

behavioural property and ask the system to check if services respect it. This can be

done for many reasons, such as: debugging deployment, privacy concerns, or to learn

about typical usage patterns of a service.

Finally, in order to make the OSGiLarva more autonomous and keep services’

atomicity, we enable the framework to associate one property file to possibly several

interfaces. All properties descriptions of these service interfaces are independent de-

scribed in global clause. If there exists an order of clients’ methods invocations among

these services interfaces, we can express this property in FOREACHCLIENT context to

check it.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

4
A Safe Service Use Layer to Deal

with Dynamic Service Disappearance

The service oriented approach is a paradigm allowing the introduction of dynamicity

in developments. If there are many advantages with this approach, there are also some

new problems associated to service disappearance. The particular case of service sub-

stitution is often studied and many propositions exist. However, proposed solutions

are mainly server-side and often in the context of web-services. In this chapter, we

propose a client side safe service use approach to allow service substitution without

any restart of the client and without any assumption on external services. Our propo-

sition published in [90], is based on a transactional approach, defined to automatically

and dynamically substitute services, by preserving the current run and collected data

proposed.

4.1 Introduction

The dynamic service oriented approach is a paradigm introducing loose-coupling into

software architectures. A developer can simply choose an API describing requested

73

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

74 Introduction

service and develop its software without knowing which implementation will even-

tually be installed on the final client system. Currently, most popular uses of this ap-

proach are done by web services, Enterprise Java Beans (EJBs), Android systems and

the OSGi framework. Main studies are about Web services, but with the server-side

point of view [46]. It means that the service provider can make many assumptions

on provided services with the objective that a service substitution can be done with-

out any consequence on the client, even if the service is state-full. State-full services

are the one that maintain internal state across successive invocations from the same

requester.

We propose to study the client point of view, and we base our proposition on the

OSGi framework [9]. We are focusing on the case of a mobile platform with OSGi that

can discover or lose connection to some service providers. In such a case, a service

requested by a client can be lost while in use. Hence, we cannot make any hard hy-

pothesis on services lifetime, but we can propose some good practices in client devel-

opment in order to be resistant to the substitution of services. The service substitution

is well known as a self-healing software technique [51, 37]. In this thesis we will pro-

pose a solution to make services more self-heal through client side without modifying

client’s code when service is unloaded.

If a service is unloaded, then the main problems are:

1. to detect the service unloading;

2. to choose a new service ;

3. to load the new service by preserving the internal state of the unloaded one.

We don’t want to focus on the service selection problem, since this problem has

been largely studied elsewhere in some literatures which have been explained in Sec-

tion 2.3.2. We will focus on the two other problems.

In this chapter, we propose a safe service usage (SSU) approach for the development

of the client, inspired from the transactional approach of concurrent systems. We will

consider the problem of detecting unloaded service and one of the new services load-

ing. In our proposition we will first consider the easy case of using a single service,

before introducing the substitution of a service while using a set of state-full services.

If a software is developed by using correctly this SSU approach, we guarantee that

it can, according to its preferences:

1. be actively notified of the unload by a specific exception,

2. continue its execution with a new service that has been automatically substi-

tuted, even if the service is a state-full one, with a very light overhead of code to

write.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 75

We also claim that the development cost is low in comparison with the development

cost of a similar software with the same capabilities but developed without this SSU

approach. Finally, we will show that our approach does not restrict the expressive-

ness of developed software, which means that every program using service can be

rewritten to use the proposed SSU approach.

This Chapter is organized as follows: Section 4.2 introduces the context of this

work (OSGi) needed to explain the problem by an example. Section 4.3 describes

the contribution of this Chapter, about service substitution. It also gives a discussion

about the expressiveness restriction and the good use of the provided SSU approach.

In order to fix the global understanding of the reader, Section 4.4 describes the tool

developed to show the feasibility of the approach. Finally, Section 4.5 concludes this

work of this Chapter.

4.2 Example

In Section 3.2, we presented an example model of a dynamic system which is moni-

tored with respect to our proposition. At here, we will use Airline Reservation system

(i.e., Fig. 3.10 in Section 3.4.1.4) to express the ideas proposed in this Chapter.

The correct use of this Airline Reservation system is like that: step 1 select its fly,

step 2 pay the reservation and final step is to confirm this airline reservation. This

example (Fig. 4.1) illustrate the fact that: if a single client will use multiple services at

same time, before invoking confirm(...), the service reference of S1 will become stale

if S1 is unregistered. For avoiding this issue, we propose that an exception be thrown

or that a new service replace it when stale reference occurs.

Client S1
Service

Manager

getService(S1)
getService(S1)

reservation.confirm(...)

UnReg(S1)

reservation.selectFly(...)

reservation.confirm(...)

reservation.selectFly(...)

S3

getService(S3)
getService(S3)

payment.pay(...)
payment.pay(...)

reservation payment

Figure 4.1: Stale reference occurs in Dynamic SOA system

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

76 Example

These propositions are detailed through two execution scenarios of this example

in Fig. 4.2 and Fig. 4.3.

In the scenario from Fig. 4.2, S1 unregistered between two calls of pay(...) and

confirm(...) and there does not exist any service to replace it. During confirm is

invoked, the proposed SSU layer will roll back the resetPay() and then throw an ex-

ception to inform the invoked client that the service reference of S1 is stale.

Client Service
ManagerTransaction

start

Uregistered(S1)

Execute()

Prepare()

end

createProxy(S1)

Proxy1 Proxy2

createProxy(S3)

S3S1

Transaction
Block

Proxy1.selectFly(...); Proxy1.selectFly(...);

Proxy2.pay(...); Proxy2.pay(...);

Proxy1.selectFly(...);
Proxy1.selectFly(...);

Proxy2.pay(...);Proxy2.pay(...);

reservation payment

Rollback():
Proxy2.resetPay()

Proxy1.confirm(...);

SRException

Figure 4.2: Example of scenario with Exception to handle stale reference

In order to illustrate the second approach, based on service substitution, we as-

sume that S1 and S2 implement reservation and S3 implements payment in the sce-

nario from Fig. 4.3. We then express that: at the beginning of the transaction of this

client airline reservation, we first need to create proxies for the two service interfaces.

These proxies are used to check whether service is unregistered or not and take corre-

sponding measures to prevent the use of stale reference.

During the transaction execution, if S1 is unregistered before invoking confirm(...)
and then a requestion of confirm(...) from client is sent to Proxy1, the Proxy1 can

check if the current used service (i.e., S1) is unregistered. This transaction block exe-

cutesRollback() to revert the used related services (i.e., execute the method resetPay()
of S3 through Proxy2 in this transaction method Rollback()), and then the Proxy1
makes a substitution (i.e., S2 substitutes the unregistered S1). After service substitu-

tion, this transaction block is re-executed from its transaction method Prepare() until

the end of the Finish(). Finally, this transaction block returns the results from the

transaction method Execute() to the client.

This example explains that an OSGi service working with our proposition can

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 77

Client Service
ManagerTransaction

start

Uregistered(S1)

Execute()

Prepare()

Execute()

end

createProxy(S1)

Proxy1 Proxy2

createProxy(S3)

Substitution(S2)

S3
S1

Finish()

Transaction
Block

Proxy1.selectFly(...); Proxy1.selectFly(...);

S2

Proxy2.pay(...); Proxy2.pay(...);

Proxy1.selectFly(...); Proxy1.selectFly(...);

Proxy2.pay(...);
Proxy2.pay(...);

Proxy2.pay(...);

Proxy1.selectFly(...);Proxy1.selectFly(...);

Proxy2.pay(...);

Proxy1.confirm(...); Proxy1.confirm(...);
Proxy1.confirm(...);Proxy1.confirm(...);

Proxy1.selectFly(...);
Proxy1.selectFly(...);

Proxy2.pay(...);Proxy2.pay(...);

reservation payment

Rollback():
Proxy2.resetPay()

Proxy1.confirm(...);

Prepare()

Substitution(S2)

Figure 4.3: Example of scenario with service substitution

avoid stale references. The transaction approach can make coherence of multiple ser-

vices cross usage in one processing.

4.3 Contributions

We propose to add a SSU layer into the OSGi framework, in order to make systems

being more fault tolerant. This SSU layer has been used by clients to make it unload

service aware. To describe what have to do this SSU layer, we firstly introduce usual

approaches of fault tolerant systems. Next, we describe our solutions for the simple

case where the client use a single service. Finally, we extend solutions to take account

the case where several state-full services are in use at same time.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

78 Contributions

4.3.1 Fault tolerant technology as a fundation
Our proposition aims at making OSGi-based system automatically handle services

dynamicity in order to avoid null pointer reference and stale references effects at run-

time. In this section, we will explain how to use fault tolerant technology in OSGi-

based system for handling occurred faults. Usually, fault tolerant systems whose exe-

cution can continue to deliver correct service even if a fault occurs. In such a system,

the first problem consists in identifying that a fault occurs [11]. In our proposition, we

define precisely what is a fault: the unload of a used service. And we will detect it by

a listener which is added at the time of service registry.

As introduced in background section 2.3.1, there is usually three families of treat-

ment to recover an error [37]:

1. to mask the error;

2. to roll-forward in the execution until a new stable state is reached;

3. to roll-back to the previous stable state and restart the execution from it.

Usually, the mask an error mechanism depend on redundant information pro-

vided by the system. Since we can not have it, we will focus on the two other treat-

ments. We propose a model associated to the last two treatment families. In order

to implement the roll-forward mechanism when a service disappears, we propose to

throw an exception that explicitly advice the client that the service is no more avail-

able. This mechanism is like the scenario described in Fig. 4.2. A try and catch mech-

anism could then allow to reach a new stable state in forward. Finally, to implement

the roll-back mechanism when a service disappears, we propose an automatic sub-

stitution of the service by another one which implements the same service interface.

This service substitution will be state-full service resistant as described in scenario of

Fig. 4.3. Indeed, the service substitution doesn’t need any restart of the client and any

assumption on external services through using a transaction mechanism.

In the following, we present these solutions in the context of a single service use

or a multiple services use.

4.3.2 Safe OSGi Service Reference - Single service
When a service is unloaded, its instance is kept in memory until the garbage collector

dispose it, then while there is at least one reference to it. However, both the Java lan-

guage and the Java virtual machine specifications do not support a notion of “volatile /
dynamic” references [52]. References to object instances cannot be changed “under the

hood” unless explicitly re-assigned as part of a program control flow. This means that

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 79

encoding a thread-safe and dynamic-aware behavior of service references need to be

captured as part of a proxy indirection.

4.3.2.1 Proxy Indirection

A very common pattern for transparently mediating interactions between client code

and a component in object-oriented languages is the introduction of a proxy object.
They are most often used to enrich existing classes with cross-cutting concerns code

such as logging, security or remote object exposition. A good example are the Enter-
prise Java Beans, where developers write simple Java classes, and EJB containers enrich

them with support for security, transactions [93] and other useful features. In our con-

text, we will try to add some enrichment at client-side for service substitution that is

transparently for client.

4.3.2.2 Proxy Requirements and Functionalities

The requirements for an OSGi service proxy depends on the usages. Hence, two kinds

of policies and then requirements can be defined: Roll-forward policy and Roll-back

policy. In a Roll-forward policy, method invocations must throw an unchecked excep-

tion if the underlying service reference is staled. The client itself just need to take

account the possibility of such exception.

In a Roll-back policy, when a method invocation reached a stale reference problem,

we will try to transparently replace the unloaded service by another service, and then

to make the invocation on the new service. However, if the unloaded service is state-

full, the substitution can be the source of many unexpected problems. We then need

to replay a part of the last commands. For instance, if the service need to be logged

in, when the service is substituted, the login method has to be invoked again before

any other use of the service. The part of the code that the SSU layer need to re-execute

is called a transaction. Transactional systems have been widely studied for several

classes of problems and applications [5]. The type of problem that we are tackling is

actually close to a transactional memory [56]. However, the service and the client are

developed by knowing that if a transaction fails, then it can be executed again. Our

proposition is an adaptation of these existing results in the context of OSGi, where

services are developed without knowing that such a substitution can occur. The client

is the only one knowing this.

Since the SSU layer need to know precisely which part of the code has to be exe-

cuted again in case of substitution, then the designer of the client must declare a part

of code as the transaction. However, this code can be executed many times, since

many substitutions can occur. Hence, this code has to be pure. It means that no side

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

80 Contributions

effect has to be done in the client by the transaction. In order to make it transparent

for the client designer, this transaction method will be directly called by the proxy, as

a callback method.

Finally, here are the requirements we identified as sufficient in the case of using a

single service:

• Awaited Behavior: When a method is invoked, if the underlying service refer-

ence is staled, then the awaited behaviors are the following, for each policy:

– Roll-forward policy: unchecked exception is thrown.

– Roll-back policy:

∗ If no substitutable service: unchecked exception is thrown.

∗ Else: substitution of the service, restarting the invocation from start of

the transaction method.

• Proxy Requirements: It depends on policy:

– Roll-forward policy: the client would consider the possibility of an excep-

tion for each service call.

– Roll-back policy: the client must provide a pure method making the trans-

action.

4.3.3 Generalizing to the Invocation of Multiple services
While a pure transaction method is sufficient at the granularity level of a method invo-

cation on a single OSGi service, generalizing the approach to the coherent execution of

multiple state-full services is more involving. Indeed, consider a block of instructions

where several services are being used, and having a strong requirement for that block

to be executed with a stable set of non-stale OSGi references. Given that, we cannot

make any assumption on concurrency and the possibility for service references to be-

come stale in the middle of a block execution. We need to provide a more powerful

transactional-like framework to execute such blocks which is transparently for client

and without constraints on services’ design.

4.3.3.1 Requirements and Assumptions

Coping with the traditional definition of a transaction, we assume that a transacted
block is a portion of code invoking a set of services, and that the whole block shall

be successfully executed as a coherent whole. However, by opposition with the case

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 81

of using a single service, we can generate side effects in used services. Hence, the

transaction is pure only by the client point of view. In order to think about the trans-

action block working with multiple services, we need to define a service roll-back

code for other services. Fig. 4.4 shows the transaction diagram for multiple services:

if the execution step has error, the transaction block will roll-back to the before state of

this execution for the other related services, and then make a service substitution for

restarting this transaction block.

prepare execute finish

roll-backsubstitute service

Figure 4.4: Transaction diagram for multiple services

Hence, in the context of multiple services, executing a transacted block requires:

• a declaration of the service interfaces it operates on,

• methods implementations to:

1. put the transactional block into a coherent initial state before its execution,

2. execute the actual block code,

3. finalize work upon successful execution,

4. compensate possible side-effects in other services, if a stale reference caused

a failure during the execution of the block,

• a retrial policy to control how the block execution is attempted again when a

stale reference caused a failure.

The context of an OSGi platform imposes very loose assumptions on the trans-

acted block implementations. Especially, services in use are not aware of being used

in a transactional context, unlike Java EE resources that implement transactional APIs.

Consequently, the correctness of performing a compensation operation or the ability to

retry a block execution greatly depends on such services suitability in such a context,

and their public specifications.

4.3.3.2 Invocation Atomicity – a Correctness Hypothesis in a Multi-Processed
System

The OSGi specification states that OSGi service event listeners is notified when a ser-

vice is unregistered [9]. A service reference becomes staled when all event listeners

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

82 Implementation — A safe service use layer for OSGi

have been notified from the OSGi framework notification loop. Finally, we can take

advantage of making a proxy to a service event listener in order to keep atomicity.

Indeed, we can make a lock on the proxy object when performing a method invoca-

tion or when receiving a service un-registration event. This ensures a safe method

execution as a reference cannot become staled in the middle of a method invocation.

4.3.3.3 Discussion

The generalization of the transacted execution of a set of services relies on strong as-

sumptions:

1. services offer SSU proxies to compensate effects in case an aborted execution,

2. transacted execution blocks properly call compensation SSU proxies,

3. intended compensation SSU proxies are honored in service implementations,

4. services taking part in a transacted execution do not have further side-effects, or

can compensate them if needed by the client.

In more traditional approaches, a transaction in SSU layer is designed for resources

to be managed by a transaction monitor. In the case of OSGi services, this would be

translated to service interfaces extending such an SSU layer, making it impossible to

use other types of services even if they offered compensation capabilities. We instead

opted for a more open approach even if incorrect transacted block implementations

can easily defeat the intended purpose.

4.4 Implementation — A safe service use layer for
OSGi

The contributions presented in the previous section apply not just to OSGi environ-

ments. Indeed, any service-oriented architecture is based on the assumption that a

client code has no control over the services, including their availability and upgrades.

We now detail how we implemented those contributions in OSGi in 2 steps. First we

propose a simple service for building safe proxies to OSGi services, then we offer a

service and an SSU layer for executing and defining transacted blocks. The interested

reader can download the whole SSU layer and some examples at:

http://dynamid.citi-lab.fr/software/

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

http://dynamid.citi-lab.fr/software/

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 83

4.4.1 Configurable Service Proxy References

4.4.1.1 Overview

Proxies can be created at runtime in Java by creating a class that implements the

java.lang.reflect.InvocationHandler interface and passing it to java.lang.reflect.Proxy to ob-

tain a proxy that is a subtype of one of more interface types. What we proposed here

is a very simple and minimalist SSU layer API for generating proxies to OSGi services.

It is exposed as an OSGi service of its own with the following interface:

public interface ServiceProxyBuilder <T>{

public T getService (Class <T> c,

ServiceReference sr ,

ProxyMode pm);

public T getService (Class <T> c, ProxyMode pm);

public T getFirstServiceMatching (Class <T> c,

String filter ,

ProxyMode pm)

throws InvalidSyntaxException ;

public ServiceBroker <T> getServices (Class <T> clazz ,

String filter)

throws InvalidSyntaxException ;

}

The interface mimics the OSGi service reference retrieval. ProxyMode parameters

allow to specify whether a service reference becomes disabled after its using service

has been unregistered, or if another available service can be used in place. This allows

to cater for both stateless and state-full types of services:

public enum ProxyMode {

DISABLED_AFTER_UNREGISTERED ,

RELOAD_AFTER_UNREGISTERED

}

A ServiceBroker is used when dealing with several services for the same interface.

public interface ServiceBroker <T> {

public Set <T> currentServices ()

throws InvalidSyntaxException ;

public void discard ();

}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

84 Implementation — A safe service use layer for OSGi

It is really close to the OSGi service trackers, except that it has the following se-

mantics:

• currentServices() returns a set of service proxies currently matching the service

interface and filter specification,

• returned service proxies have the DISABLED_AFTER_UNREGISTERED proxy

mode,

• discard() is equivalent to the close() method of an OSGi service tracker.

4.4.1.2 Usage

The following code, extracted from the tests suite that we defined along with our

implementation, shows an idiomatic usage of the service proxy builder OSGi service,

in order to be substitution resistant.

ServiceReference ref =

bundleContext . getServiceReference (ServiceProxyBuilder .

class. getName ());

serviceProxyBuilder =

(ServiceProxyBuilder) bundleContext . getService (ref);

EchoService service =

serviceProxyBuilder . getService (EchoService .class ,

RELOAD_AFTER_UNREGISTERED);

for (int i=1 ; i<= 10000 ; i++) {

assertThat (service .echo (" plop "), is(" plop "));

}

In order to make a short discussion about use and without use such SSU layer

, it could be interesting to give an example without the use of the SSU layer in the

following code block.

ServiceReference ref =

bundleContext . getServiceReference (EchoService .class.

getName ());

EchoService service =

(EchoService) bundleContext . getService (ref);

for (int i=1 ; i<= 10000 ; i++) {

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 85

assertThat (service .echo (" plop "), is(" plop "));

}

The differences between the above two code blocks are that: for the former one,

OSGi service can be dynamically executed substitution at runtime through this SSU

layer without restart client’s request when a being used service by client is unregis-

tered. But for the later one, if system executed service substitution, client needs to

restart and execute all its requests.

4.4.2 Transactional Block and Service Execution

4.4.2.1 Overview

We propose an interface which is an OSGi service to execute transacted blocks. This

interface is as follows:

public interface TransactedServiceExecutor {

public T executeInTransaction (

TransactedExecution <T> execution ,

RetryPolicy retryPolicy)

throws TransactedExecutionFailed ;

}

To implement this block, we need to have a transacted execution to realize a spec-

ified transaction and need to have a retry policy to handle the rollback action from the

executing transaction. Hence, the following two code blocks about TransactedExecu-

tion interface and RetryPolicy interface can realize them.

A transacted execution is specified through the following TransactedExecution in-

terface:

public interface TransactedExecution <T> {

public void prepare ();

public T execute ();

public void finish ();

public void rollback ();

}

It uses a parametric type T which is the expected return value type of a transacted

block successful execution.

Finally, the RetryPolicy interface is a simple interface which is notified of potential

stale reference errors, and can in turn decide whether a further attempt can be per-

formed. It can also be used to implement delays between retrials. An example would

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

86 Implementation — A safe service use layer for OSGi

be an exponential back-off delay over at most 10 executions. This interface is defined

as follows:

public interface RetryPolicy {

public void notifyOf (Throwable throwable);

public boolean shouldContinue ();

}

By the way, a possible "retry forever” policy can be implemented as follows:

public class RetryForeverPolicy implements RetryPolicy {

@Override

public void notifyOf (Throwable throwable) { }

@Override

public boolean shouldContinue () { return true ;}

}

4.4.2.2 Usage

Given some fictious service interfaces SomeService and OtherService, an implementa-

tion of transactional block could be as follows:

private class SomeTransaction

implements TransactedExecution <Void > {

@ServiceInjection public SomeService someService ;

@ServiceInjection (type = OtherService .class ,

proxyType = MULTIPLE)

public Set < OtherService > otherReferences ;

@Override public void prepare () { }

@Override public <Void > Void execute () {

for (OtherService s : otherReferences) {

s. doThis (someService . doThat ());

}

}

@Override public void finish () {

someService . release ();

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 87

}

@Override public void rollback () {

someService . undoThat ();

}

}

This above code block exhibits an execution of a transactional block for multiple ser-

vices. It consists of 4 steps: prepare(), execute(), rollback() and finish(). Each step has

its responsibility in this block that is described in Fig. 4.4. In execution(), it executes

about the same method called by the other services. If this transational finish, this

called service method is released. Or the transactional will cancel this execution for all

the called services.

A more complete example would take greater care in the prepare(), rollback() and

finish() steps. Annotations authorized in Java since Java 1.5. We can use java anno-

tation to define some fields or methods what we need during development. Fields

annotated with @ServiceInjection provided by this SSU layer API are injected with ser-

vice proxies. The definition for this annotation is as follows:

@Retention (RUNTIME)

@Target (FIELD)

@Documented

public @interface ServiceInjection {

Class <?> type () default ServiceInjection .class;

String filter () default "";

ProxyType proxyType () default SINGLE ;

ProxyMode proxyMode ()

default DISABLED_AFTER_UNREGISTERED ;

public static enum ProxyType {SINGLE , MULTIPLE }

}

It is used to configure how proxies shall be configured. Especially, they can have

service reloading capabilities enabled, and they can support a single reference or a set

of instances like it is the case for the otherReferences set in the previous example. An

OSGi service filter can also be specified.

Finally, the block can be passed to the transacted executor service, which is also an

OSGi service:

ServiceReference reference =

bundleContext . getServiceReference (

TransactedServiceExecutor .class. getName ());

TransactedServiceExecutor transactedServiceExecutor =

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

88 Summary

(TransactedServiceExecutor)

bundleContext . getService (reference);

transactedServiceExecutor . executeInTransaction (

new SomeTransaction (), new RetryForeverPolicy ()

);

We used an optimistic approach. Having service proxies being injected into trans-

acted blocks, we could have taken advantage of them to perform a giant lock spanning

for the transaction execution lifespan. Indeed, it is possible to block the thread noti-

fying that a service is going to disappear, thus keeping the reference valid until all

receivers have been notified. Such an approach would avoid the need for rollbacks

at the greater cost of limiting parallelism and breaking the OSGi framework require-

ments that service event notification handlers shall not block [9].

4.5 Summary
In this chapter, we proposed an approach and a tool that is freely downladable at

http://dynamid.citi-lab.fr/software/ to make a service aware to the stale refer-

ence problem. If a software is developed by using correctly this SSU approach, we

guarantee that it can, according to its preferences: (i) be actively noticed of the unload

by a specific exception, or (ii) continue its execution with a new service automatically

substituted, even if the service is a state-full one.

Main properties of this contribution are: (i) this solution is client side, (ii) it does

not make any assumption on used services and (iii) it can be used even if used services

are state-full services.

This contribution is based on the fact that the client designer knows how to use

desired services. Hence, we do not try to compute which behaviors are authorized

by a service. The client designer has just to make a normal use of the service and

to propose a sequence to rollback in a stable state before to make another try with

another service, in case of substitution.

However, if a rollback is done on the external service, a rollback would also be

done on the client itself in order to hold in a consistent global state. Since such a

development model is risky, we prefer to give the following guideline in the client

development: do not make any modification of the client state from its transactional part.

As explained and illustrated in the OSGi core specification [91, Section 5.4: Stale

References], to make a correct use of a service without stale reference can be a little bit

tricky.

We then claim that the development cost of a service using our SSU approach is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

http://dynamid.citi-lab.fr/software/

A Safe Service Use Layer to Deal with Dynamic Service Disappearance 89

low in comparison with the development cost of a similar software with the same

capabilities but developed without our SSU approach. However, according to the

simplicity of the proxy and the fact that OSGi programs do not have usually very

frequent call of services, then we can consider as insignificant the time cost of such a

proxy. The worst case is when many substitutions occur. But at this time, the time cost

is the trade off for keeping a continuity in the use of the client. Indeed, as explained

and illustrated in the OSGi core specification [?, Section 5.4: Stale References], to make

a correct use of a service without stale reference can be a little bit tricky.

Moreover, we do not introduce any restriction to the expressiveness of services. In

fact for the worst case, we can include the whole program in one transaction. Hence,

if a service is substituted, then the whole program is restarted and fully executed with

the new service. Hence, this SSU approach does not add any restriction in the software

development.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

90 Summary

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

5
A Dynamic Monitoring System with

Fault Tolerance

5.1 Introduction

In the previous chapters, we firstly introduced OSGiLarva, a monitoring system for

OSGi-based systems. Secondly, we introduced a safe service use (SSU) Layer, an API

that aids the development of client-side applications coping with stale references.

In this chapter, we propose a new monitoring systems (NewMS) (Fig. 5.1) that

merges OSGiLarva system and SSU Layer. It enables not only to support the sys-

tems’ dynamicity on OSGi, but also to deal with stale references from SSU layer. A

monitor sits between client and server and is inserted at client-server binding time.

NewMS focuses on the following principles: dynamicity resilience, comprehensiveness
and fault tolerance. Since the NewMS considers some new property events and prop-

erty descriptions associated to the processing of stale references, it gains in monitoring

precision while stale references occur.

To achieve this, there are some restrictions while directly using both systems to-

gether. The source of these restrictions is mainly coming from the use of two proxies

chained in front of a single service: one proxy, named a LogOs proxy, is created for

91

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

92 NewMS generic expression

NewMS

OSGi Platform

Client Server

Monitor

Proxies:
SSU proxy and LogOs proxy

New events
OSGiLarva

events

 Service
management

system

Figure 5.1: Generic architecture of the dynamic synthesized monitoring system

each registered service. Another proxy, named SSU proxy, is created at the client side

in front of the service which is indeed the LogOs proxy. Clients communicate with the

SSU proxy, the SSU proxy communicates with the LogOs proxy and the LogOs proxy

communicates directly with the service. Hence, SSU proxy doesn’t have any direct

communication with the service.

If this service is unregistered, the SSU proxy might make method calls on a stale

reference. Conversely, if a stale reference is detected by the SSU proxy that throws

an exception, this exception can not be observed by LogOs proxy, since the exception

occurred inside SSU layer system.

We describe our main propositions about the NewMS system in Section 5.2. Then,

we give implementation guidelines for NewMS architecture in section 5.3 with reso-

lutions of these restrictions, Finally, we express a summary of this Chapter.

5.2 NewMS generic expression
We first explain property events associated to stale reference integration in the NewMS

system. Then, we show algorithms to translate OSGiLarva property automata into

NewMS property automata.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Dynamic Monitoring System with Fault Tolerance 93

5.2.1 New property events from SSU layer
In the NewMS system, the SSU layer checks, at each service method call, whether the

service reference is a stale reference or not. If the reference is stale, then the call is

paused and the SSU layer automatically manages the stale reference with three possi-

ble cases: Substitution, No alternative service and Roll Back failed.

• Substitution: the client and other currently used services are restored in the same

status as before the service providing the stale reference was used. The SSU

layer performed a service substitution and a Substitution event is raised.

• No alternative service: the SSU layer didn’t find an alternative service but the

client roll back went well, a SRException event is sent and a stale reference ex-

ception is thrown to the client. In this case, the client must find a way to handle

the missing service by itself.

• Roll back failed: the client is stocked in a previous roll back call, that means it

is already in a stale reference management and a new one occurs concurrently.

We do not want to handle this case. We then notify client that we are in trou-

ble. A RBException event is sent to the monitor, prior to the raise of a roll back

exception.

These three events are an approach to place the monitoring automata in the most

accurate position when a stale reference occurs.

5.2.2 OSGiLarva translation to NewMS
The NewMS system gives an accurate life-cycle management in-line with OSGi opera-

tions. We design an algorithm (Algorithm 1 shown in Fig. 5.2) to automatically trans-

late an OSGiLarva’s property automaton into a NewMS’s property automaton. Since

the three additional property events of NewMS are more precise than the framework

events of OSGiLarva, we remove all transitions associated to the OSGi framework

events, then add three transition functions associated to the new defined property

events in NewMS’s property automata. In this algorithm, some generated transitions

are labelled by true and nop. They correspond to transitions always crossable without

condition and without action.

The function compose(l1, l2) (Algorithm 2 shown in Fig. 5.3) is used to merge

transitions starting from the same state and fired by the same event. Indeed, when a

transition is introduced from s1 to s2 to step over a removed transition associated to a

framework event, the new transition corresponds to an event that is already triggered

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

94 NewMS generic expression

 Data: Let A = (S, s0, B, V, v0, ΣM, ΣF, δ) an OSGiLarva automaton which will be updated
 to generate a NewMS automaton. Some elements will not be changed: s0, V, v0, ΣM.
 step 1. Keep only transitions associated to methods call events in δ of A:
while for each t1 and DS, and
(t1=(s, e1, l1) t1 δ e1 ΣF DS= {ds | (c, a) ((c, a, ds) l1)}), do

δ=δ-t1;
while for each s2, s2 DS, do

if s2 is not reachable from the initial state s0, then
while for each t2 starting from s2, (t2=(s2, e2, l2) t2 δ), do

 generate new transition like t2 but starting from s and add it in δ, by:
if a transition t3 with e2 already exists (t3=(s, e2, l3) t3 δ), then

else if no transition like t3, then

 end
 end
 end
 end
 end
 step 2. delete all framework events names from ΣF and add the three new property events
names in ΣF:
 step 3. add two new bad states in S and B of A:

 step 4. From all non bad state, if ''RBException'' event occurs, it reaches state RBExp.

 step 5. From all non bad state, if ''SRException'' event occurs, it reaches state SRExp.

 step 6. From all non bad state, if ''Substitution'' event occurs, it reaches the initial state s0.

{ }() ()(){ }3 2 3 2, , ; ;t s e compose l lδ δ= − ∪

(){ }2 2, , ;s e lδ δ= ∪

{ }, ;S S RBExp SRExp= ∪
{ }, ;B B RBExp SRExp= ∪

() { } (), , ;S B RBException true nop RBExpδ δ= ∪ − × × ⎡ ⎤⎣ ⎦

() { } (), , ;S B SRException true nop SRExpδ δ= ∪ − × × ⎡ ⎤⎣ ⎦

() { } ()0, , ;S B Substitution true nop sδ δ= ∪ − × × ⎡ ⎤⎣ ⎦

{ }, , ;F SRException RBException Substitution∑ =

Figure 5.2: Generate NewMS automata from OSGiLarva automata(Algorithm
1)

from the state s1. In such a case, we propose to use a permissive merging heuristic

based on a normal behavior first policy. It means that we give priority to behaviors

reaching non-bad states. In this policy, we would try to respect following require-

ments:

1. keep the internal behavior (order) of each list;

2. the normal states of l1 with its normal behaviors have priority over l2’s;

3. all l1 bad states are pushed after the normal states of l1;

The first step of this algorithm is inspired by the bubble sort algorithm to have nor-

mal states before bad ones of each list, but keeping their priority. The second step

composes both lists together by a non-bad states part and bad states part.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Dynamic Monitoring System with Fault Tolerance 95

These translated property automata can be implemented by OSGiLarva property

description language to monitor OSGi-based systems. In the next section, we give an

example to show the translation by the algorithms.

 Data: l1 and l2 are two lists of transition labels, where each label is a 3-tuple composed by a
 condition, an action and a destination state,
 step 1. push bad states at the end of each list, by keeping original behaviors with the
 following method on each list:

while there exists a location i in the list l such as state si is a bad state and
 s(i+1) is not a bad state, do
 swap labels and enforce condition of the pulled label.
 For instance, this list
 l={(c0, a0, s0), …, (ci, ai, si), (c(i+1), a(i+1), s(i+1)), …},
 is transformed into
 l={(c0, a0, s0), …, ((c(i+1)∧¬ ci) ,a(i+1), s(i+1)), (ci, ai, si), …},

end
 Step 2. merge both lists by keeping the following global structure:

compose(l1,l2)= {(sub-list of l2 without bad states);
 (sub-list of l1 without bad states);
 (sub-list of l2 with bad states);
 (sub-list of l1 with bad states)}

end

Figure 5.3: Compose(l1, l2): composes two new lists of transitions (Algorithm
2)

5.2.3 Example of automata translation
In order to show the translation from an OSGiLarva automaton to a NewMS automa-

ton, we present a translation example in this section. The Airline Reservation system

(from Section 3.4.1.4) with OSGiLarva specification is an example be used at here. The

Algorithm 1 is applied to translate the OSGiLarva automaton A into a NewMS prop-

erty automaton A′ (Fig.5.4). Fig. 5.5 corresponds to the graphical representation of

this translation.

During the check of an execution by our monitor, if a destination state of a transi-

tion is a bad state (i.e., states "error", "RBExp" and "SRExp" in Fig. 5.4 and Fig. 5.5), this

trace is error ending. The identification of the faulty behavior is written in the NewMS

log. If all destination states are non-bad states, this trace is correct with respect to the

property.

On Fig. 5.4 and Fig. 5.5, we could observe that there is no any explosion of the

size of the property, although we added some new events and new states. Indeed,

the number of the added transitions increases linearly with the number of non-bad

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

96 NewMS generic expression

 An NewMS automaton A'={

 S= (S-{Unreg1, Unreg2, Unreg3}) U {RBExp, SRExp},

 s0= s0,

 B= B U{RBExp, SRExp},

 V= V,

 v0= v0,

ΣM= ΣM,

ΣF= {SRException, RBException, Substitution},

δ= {
δ(linked, selectFly)=[(true, nop, selected)],
δ(selected, selectFly)=[(true, nop, selected)],
δ(selected, pay)=[(true, nop, paid)],
δ(paid, confirm)=[(true, nop, linked)],
δ(selected, confirm)=[(true, nop, error)],
δ(Unreg3, resetPay)=[(true, nop, selected)],

δ(linked, SRException)=[(true, nop, SRExp)],
δ(selected, SRException)=[(true, nop, SRExp)],
δ(paid, SRException)=[(true, nop, SRExp)],

δ(linked, RBException)=[(true, nop, RBExp)],
δ(selected, RBException)=[(true, nop, RBExp)],
δ(paid, RBException)=[(true, nop, RBExp)],

δ(linked, Substitution)=[(true, nop, linked)],
δ(selected, Substitution)=[(true, nop, linked)],
δ(paid, Substitution)=[(true, nop, linked)]

}
}

2

4

6

 An OSGiLarva automaton A={

 S = {linked, selected, paid, Unreg1, Unreg2, Unreg3, error},

 s0 = linked,

 B = {error},

 V = Φ,

 v0 = Φ,

ΣM = {selectFly, pay, confirm, resetPay},

ΣF = {GetService, UnRegister},

δ = {
δ(linked, selectFly)=[(true, nop, selected)],
δ(selected, selectFly)=[(true, nop, selected)],
δ(selected, pay)=[(true, nop, paid)],
δ(paid, confirm)=[(true, nop, linked)],
δ(selected, confirm)=[(true, nop, error)],
δ(Unreg3, resetPay)=[(true, nop, selected)],

δ(selected, UnRegister)=
 [(″reservation.equals(itfName)″, nop, Unreg1),
 (″payment.equals(itfName)″, nop, Unreg2)],
δ(Unreg1, GetService)=

 [(″reservation.equals(itfName)″, nop, linked)],
δ(Unreg2, GetService)=

 [(″payment.equals(itfName)″, nop, selected)],
δ(paid, UnRegister)=

 [(″reservation.equals(itfName)″, nop, Unreg3)],
δ(selected, GetService)=

 [(″reservation.equals(itfName)″, nop, linked)]
}
}

1

3

3

5

Figure 5.4: A translation example from an OSGiLarva automaton to NewMS
automaton indicating algorithm steps

states in the property, and the size of the produced automaton is reduced because of

the removal of framework transitions.

5.2.4 Expressiveness gains

The OSGiLarva can check a service unregistered, registered and loaded, but it is not

sure whether the current used service reference is stale or not and whether the using

services are coherent or not. Conversely, NewMS is guaranteeing all of them, since

the SSU layer automatically manages services for clients. Moreover, the new cases

(i.e., Substitution, No alternative service and Roll Back failed) which obtained by the SSU

layer make properties to be more precise and allow to detect more details in NewMS

than in OSGiLarva.

To illustrate the main benefit of NewMS, we propose to discuss about the execution

trace t2 which is the same as in Section 3.4.1.4. Its corresponding events trace with

NewMS is t′′2 = [selectF ly, pay, resetPay, Substitution, selectedF ly, pay, confirm].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Dynamic Monitoring System with Fault Tolerance 97

UnRegister/
"payment".equals(itfName)

UnRegister/
"reservation".equals(itfName)

GetService/
"reservation".equals(itfName)

selectFly pay

confirm

UnRegister/
"reservation".equals(itfName)

GetService/
"reservation".equals(itfName)

linked
selected

paid

Unreg1

error

resetPay

Unreg3

GetService/
"payment".equals(itfName)

selectFly

confirm

Unreg2
pay

a. An OSGiLarva automaton of the airline reservation property

selectFly pay

confirm

confirm
RBException

linked selected paid

error

Substitution

Substitution

Substitution

SRException

RBException

SRException

SRException
RBException

SRExp

RBExp

resetPay()

selectFly

pay

b. A translated NewMS automaton of the airline reservation property

Figure 5.5: Translate an OSGiLarva automaton A to a NewMS automaton A’

Although t2 is correct by OSGiLarva and NewMS system verifying, when OSGi-

Larva checks t′2 (in Section 3.4.1.4), a stale reference could be hidden in t2. For in-

stance, it could be the case that a client gets a service (S2), but he still uses an old

one (S1) through a stale reference. However, t2 can avoid stale references by the SSU

layer of the NewMS. Since NewMS manages itself whether the current service (S1) is

unregistered and whether a new service (S2) can substitute it (S1), then the SSU layer

guarantees that the second invocation of the method selectF ly is correctly executed.

5.3 Implementation–OSGiLarva-SSU++

The OSGiLarva-SSU++ system (Fig. 5.6) integrates the SSU layer and OSGiLarva sys-

tems and implements NewMS architecture. This implementation mainly focuses on

the property verification system and the combined work of LogOs system and SSU

layer working proxies.

In Section 5.2.2, we proposed an algorithm to generate NewMS property automata

from OSGiLarva property automata. This generated NewMS property automata can

be described in a property file by OSGiLarva property description language. Before

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

98 Implementation–OSGiLarva-SSU++

Trans-
action

 Client-side

Property Verification System (PVS)

Instance Property Class Property

Service
UnregistrationGet Service

Reference

Service
RegistrationService

Reference

 OSGi Platform

Client

Service
Management

System

LogOs
dynamic

proxy
Service

New Events

Invocation Events

SSU
proxy

LogOs Framework Proxy

Interface

Implementation

Monitor instance &&
Unregistered Service

New Events
Invocation Events

OSGiLarva-SSU++

SSU Layer

Figure 5.6: Implementation of the dynamic synthesized monitoring system

starting the monitored system, this NewMS property file must be compiled by our

adapted Larva compiler to generate property verification system (PVS).

When client uses monitored services, the PVS starts to check the defined events

which correspond to one or more method invocations from this client.

The client’s method invocations are grouped in a Transaction block. The construc-

tion of this block automatically drives communications between client and server

through SSU proxy and LogOs proxy. Since LogOs proxy is created at the time of service

registering and SSU proxy is created before using the registered service, SSU proxy is

created after LogOs proxy. SSU proxy is activated before LogOs proxy during clients

use services. For example, when a client invokes method of a monitored service, its

SSU proxy first intercepts this invocation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

A Dynamic Monitoring System with Fault Tolerance 99

Since SSU layer proxy gets an identification of the real service by referenced LogOs

proxy and in order to avoid clients using stale reference in the SSU layer proxy, each

time a service is unregistered, LogOs proxy notifies the existing SSU layers. So, when a

service method call occurs, the SSU layer proxy first checks whether the using service

is unregistered or not:

1. Unregistered: If the used service is unregistered, according to the policy, a substi-

tution is tried and the corresponding new event (i.e., Substitution or SRException
or RBException) is sent from its SSU proxy to the PVS.

2. Registered: If the using service is registered, SSU proxy handles this request

through LogOs proxy, LogOs proxy directly requests it to server and this re-

quest is sent from LogOs proxy to the PVS.

Finally, the monitoring records are real-time sent to users from PVS.

5.4 Summary
In this chapter, we described the NewMS system. It combines the OSGiLarva system

and the SSU layer. Main features are dynamicity resilience, comprehensiveness and fault
tolerance inherited from these two systems. The integration can observe three possible

cases when a unregistered service is being used, such as: substitution, No alternative
service and Roll back failed. The NewMS can manage the three cases and check their

correspond event through the described property automata.

We also design an algorithm to automatically translate OSGiLarva property au-

tomata into NewMS property automata.

Finally, comparing with OSGiLarva monitoring system, the NewMS system’s main

advantages are the accuracy of the interpretation to check whether a reference is stale

or not.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

100 Summary

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

6
Conclusions and Perspectives

In this chapter, we give our conclusions of this thesis and some perspectives.

6.1 Conclusions

In a dynamic SOA architecture for open environment, like OSGi, services are loosely

coupled and their life-cycle management is dynamic. In this context, services may dy-

namically disappear and appear to make a substitution of service at runtime. There

exists some monitors able to handle such services usage, but they have some con-

strains. It means these monitors disappear at service unregistered time. The new

appeared service can’t be checked by any monitor without restarting the monitored

system, and stale references may be used by other services. In this thesis, considering

the aforementioned problems, we proposed a dynamic monitoring system to check

whether these behaviors of clients are authorized or not and a SSU layer to automati-

cally handle the stale references at runtime.

In Chapter 2, we introduced the background of this thesis. Then, we reviewed the

main existing monitoring systems and some approaches about service substitution.

We mainly done a forcus on approaches handling stale references in dynamic SOA

systems for open environment. As shown in these proposed approaches, there are

101

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

102 Conclusions

some limitations to dynamically monitor services while handling stale references.

Chapter 3 expressed the relationships between client and services in order to de-

sign a dynamic monitoring system. We defined two key principles of the dynamic

monitoring system: dynamicity resilience and comprehensiveness. The former refers to

some information of monitor (i.e., the current state and the monitor) which should

be kept in memory while the monitored service is unregistered, if this service is sub-

stituted by another one, the stored information also needs to be transferred. It means

that this monitor doesn’t vanish with the disappeared service. The latter means that no

service implementation of this service interface can bypass its monitor’s observation.

Besides, we also proposed two levels of property description: client-side property

(Instance-Property) and interface-side property (Class-property). Instance-Property refers

to each client’s instance of the property is generated when this client uses monitored

services. The life-cycle of the instance property is the same as its corresponding client.

Instance-properties have the same property description except for client’s id. Such prop-

erties descriptions are expressed in the context of a foreachclient. One Class-Property
can express a centralized property for one interface to protect atomic usage of services.

It is the entrance of the monitoring system. Its life-cycle is the same as its service in-

terface rather than service implementation. So, it embodied the dynamicity resilience

of our monitoring system. Moreover, OSGiLarva supports a property file expressed

for multiple services interfaces. Finally, we established that OSGiLarva has equivalent

performances for monitoring dynamic SOA systems as Larva tool.

For resolving the stale references issues from dynamic SOA systems, we designed

a safe service usage (SSU) layer at client-side in Chapter 4. This layer aids clients

to check references before using them and automatically deal with stale references

without restarting clients and without any constraints on services. There are two sit-

uations to resolve stale references: either make a service substitution even if unregis-

tered services are stateful services or throw a stale reference exception to clients. In

order to keep coherent service usage after services substitution, we use a transactional

approach to express the use of stateful services. Client can use one or more stateful

services at same time. All the requests are expressed in a transaction block. When a

used service is unregistered, the transaction block executes a roll-back and reverts all

variables’ values which are used in this transaction block, and then SSU layer copes

with the stale reference for client. The results show that the time costs of original

software system with or without SSU layer are close.

The two previous proposed approaches can monitor dynamic SOA systems and

handle stale references at runtime. However, OSGiLarva isn’t aware of stale refer-

ences at runtime. Therefore, we merged both approaches into the NewMS tool at

Chapter 5. It dynamically checks whether the behaviors of clients using services are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

Conclusions and Perspectives 103

authorized or not, and it handles stale references without adding extra assumptions

on services. NewMS has more extensive range of observation than the OSGiLarva sys-

tem has. Indeed, it can describe more precisely property for the monitored services,

since there are three additional events associated to the dynamicity of the monitored

services. In order to describe NewMS property automata in a property file, we de-

signed an algorithm to automatically generate NewMS property automata from the

described OSGiLarva property automata. Finally, the implementation of this NewMS

architecture is a work in progress.

6.2 Perspectives
Although the work in this thesis proposed monitoring systems supporting the dynam-

icity of SOA systems, the avoiding stale references, there are still several interesting

directions which can be taken in future:

1. Non-hard-coding Although our latest approach of monitoring system given in

Chapter 5 avoids stale reference usage, there is a restriction according to OS-

GiLarva: in order to protect coherent services use with transactional approach,

the implementation of NewMS architecture has to change the code of clients in

the monitored software system. In the future, we aim at providing such trans-

actional approach in property description as special constructs which check the

service usage and without changing the client code.

2. Partial-stateful \ Partial-stateless In this thesis, we just consider our NewMS

system with stateful feature to monitor the stateful communications in dynamic

SOA systems. In order to reduce the cost overhead, we can add some special

annotations in service interfaces of the monitored system so that the monitoring

system identify it and give some corresponding operations to monitor, such as,

stateless, stateful. For example, if a being used service is unregistered, this moni-

toring system need to check and reset its related services the interfaces of whom

is annotated by stateful, and just keep the current state of the related services

whose interfaces is annotated by stateless. Given that such a partial-stateful and

partial-stateless monitoring system is used in a real-life scenarios, it would be

an interesting proposition.

3. Efficiency Since we proposed monitoring systems synchronized with the mon-

itored software system, it induced some time cost. In a next version of the tool,

we could make some propositions to reduce our tools time cost. For instance,

we could make our monitoring systems asynchronous, by exporting monitors

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

104 Perspectives

to separate threads, or we can limit monitoring to only occur within a fixed pe-

riod of time: if the property is respected during one week by a given consumer,

we can consider that it will still respect it afterwards.

4. Property to test cases Although we have formally specified our monitoring

property description to verify the given clients behaviors, we have not yet car-

ried out an in depth analysis with our monitoring system to monitor a large

number of different clients behaviors. It is very time-consuming to manually

write a large quantity of test cases for different clients behaviors. The Tobias

tool [68] can generate a large number of repetitive test cases through all com-

binations of given parameter values in a simple text file. We assume that we

can automatically generate all possibilities clients’ invocations according to the

events described in the property file. All the generated clients’ invocation orders

is a set of test suites of clients’ behaviors which may occur in its system. This

significantly reduce time-consuming in the test phase. Since the combination

elements are the specified monitored events, the way has comprehensiveness of

test suites generation.

5. Industrial application While we have proposed the theory and implementa-

tions of our monitor systems and applied on industry-inspired case studies,

this monitor-oriented dynamicity programming through OSGiLarva property

automata or NewMS property automata have not been tried out on industrial-

scale case studies. Indeed such applications to real-life scenarios would be vital

for transforming the current prototype SOA-based systems into a mature and

reliable one.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

References

[1] Open Service Gateway Initiative (OSGi), http://www.osgi.org/ [retrieved:

June, 2012].

[2] Javascript object notation web service protocol.

http://en.wikipedia.org/wiki/JSON-WSP.

[3] Web service description language: Wsdl 1.1, 2001.

[4] Simple object access protocol:SOAP 1.2. W3C, 2003.

[5] Transactional systems. In Reliable Distributed Systems, pages 509–528. Springer

New York, 2005.

[6] An autonomic approach to offer services in OSGi-based home gateways. Com-
puter Communications, 31(13):3049 – 3058, 2008. Special Issue:Self-organization

and self-management in communications as applied to autonomic networks.

[7] H. Ahn, H. Oh, and J. Hong. Towards Reliable OSGi Operating Framework and

Applications. Journal of Information Science and Engineering, 23(5):1379, 2007.

[8] OSGi Alliance. About the OSGi service platform. Technical report, June 7 2007.

[9] The OSGi Alliance. OSGi service platform core specification. Revision 4.1, April

2007.

[10] Sven Apel and D. Batory. How AspectJ is used: an analysis of eleven AspectJ

programs. Journal of Object Technology, 9:117–142, 2010.

[11] A. Aviziens. Fault-tolerant systems. IEEE Trans. Comput., 25(12):1304–1312, De-

cember 1976.

[12] Stefan Axelsson, Ulf Lindqvist, and Ulf Gustafson. An approach to UNIX se-

curity logging. In 21st National Information Systems Security Conference, pages

62–75, 1998.

105

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

106 REFERENCES

[13] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time

monitoring of instances and classes of web service compositions. In Proceedings
of the IEEE International Conference on Web Services, ICWS ’06, pages 63–71. IEEE

Computer Society, 2006.

[14] Luciano Baresi, Domenico Bianculli, Carlo Ghezzi, Sam Guinea, and Paola Spo-

letini. Validation of web service compositions. IET Software, 1(6):219–232, 2007.

[15] Mike Barnett, Robert DeLine, Manuel Fahndrich, Bart Jacobs, K.RustanM.

Leino, Wolfram Schulte, and Herman Venter. The spec# programming system:

Challenges and directions. In Bertrand Meyer and Jim Woodcock, editors, Ver-
ified Software: Theories, Tools, Experiments, volume 4171 of Lecture Notes in Com-
puter Science, pages 144–152. Springer Berlin Heidelberg, 2008.

[16] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# program-

ming system: an overview. In Proceedings of the 2004 international conference on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, CAS-

SIS’04, pages 49–69, Berlin, Heidelberg, 2005. Springer-Verlag.

[17] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A Reconfiguration Service for

CORBA. International Conference of Configurable Distributed Systems, 1998.

[18] JanOlaf Blech, Yliès Falcone, Harald Rueß, and Bernhard Schätz. Behavioral

specification based runtime monitors for OSGi services. In Tiziana Margaria and

Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change, volume 7609 of Lecture Notes in
Computer Science, pages 405–419. Springer Berlin Heidelberg, 2012.

[19] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,

Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools

and applications. Int. J. Softw. Tools Technol. Transf., 7(3):212–232, June 2005.

[20] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio Tramon-

tana. A wrapping approach for migrating legacy system interactive functional-

ities to service oriented architectures. Journal of Systems and Software, 81(4):463–

480, April 2008.

[21] Humberto Cervantes and Richard S. Hall. Automating Service Dependency

Management in a Service-Oriented Component Model. In CBSE, 2003.

[22] Patrice Chalin, JosephR. Kiniry, GaryT. Leavens, and Erik Poll. Beyond as-

sertions: Advanced specification and verification with JML and esc/java2. In

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

REFERENCES 107

FrankS. Boer, MarcelloM. Bonsangue, Susanne Graf, and Willem-Paul Roever,

editors, Formal Methods for Components and Objects, volume 4111 of Lecture Notes
in Computer Science, pages 342–363. Springer Berlin Heidelberg, 2006.

[23] Mala chandra. Seamless mobility and OSGi service platform. Technical report,

Client Application and Architecture Motorola, Inc., 2004.

[24] Feng Chen. Towards monitoring-oriented programming: A paradigm combin-

ing specification and implementation. In Electronic Notes in Theoretical Computer
Science, pages 106–125. Elsevier Science, 2003.

[25] Feng Chen and Grigore Rosu. Java-MOP: A Monitoring Oriented Programming

Environment for Java. In Nicolas Halbwachs and Lenore D. Zuck, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume 3440 of Lecture
Notes in Computer Science, pages 546–550. Springer Berlin Heidelberg, 2005.

[26] Hao-Chung Cheng, Wei-Tsong Lee, Xin-Wen Wei, and Tian-Wen Sun. A novel

service oriented architecture combined with cloud computing based on R-OSGi.

In James J. (Jong Hyuk) Park, Qun Jin, Martin Sang-soo Yeo, and Bin Hu, editors,

Human Centric Technology and Service in Smart Space, volume 182 of Lecture Notes
in Electrical Engineering, pages 291–296. Springer Netherlands, 2012.

[27] Yoonsik Cheon, Yoonsik Cheon, Gary T. Leavens, and Gary T. Leavens. A run-

time assertion checker for the java modeling language (JML). In Proceedings of
the International Conference on Software Engineering Research and Practice (SERP),
Las Vegas, pages 322–328. CSREA Press, 2002.

[28] Yoonsik Cheon, Gary T. Leavens, Yoonsik Cheon, and Gary T. Leavens. A simple

and practical approach to unit testing: The JML and JUnit way. In ECOOP 2002,
volume 2374 of LNCS, pages 231–255. Springer Berlin Heidelberg, 2002.

[29] Hsin Chou. Service oriented architecture for an overall radioactive waste pack-

age record management system. Progress in Nuclear Energy, 53:420–427, May

2011.

[30] Ariel Cohen, Amir Pnueli, and Lenore D. Zuck. Mechanical verification of trans-

actional memories with non-transactional memory accesses. In Proceedings of the
20th international conference on Computer Aided Verification, CAV’08, pages 121–

134, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-

based runtime monitoring of real-time and contextual properties. In FMICS,

pages 135–149, 2008.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

108 REFERENCES

[32] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Larva - safer mon-

itoring of real-time java programs. In SEFM, 2009.

[33] Christian Colombo, GordonJ. Pace, and Gerardo Schneider. Dynamic event-

based runtime monitoring of real-time and contextual properties. In Darren

Cofer and Alessandro Fantechi, editors, Formal Methods for Industrial Critical Sys-
tems, volume 5596 of Lecture Notes in Computer Science, pages 135–149. Springer

Berlin Heidelberg, 2009.

[34] Yufang Dan, Nicolas Stouls, Christian Colombo, and Stéphane Frénot. OSGi-

Larva: a monitoring framework supporting OSGi’s dynamicity.

[35] Yufang Dan, Nicolas Stouls, Stéphane Frénot, and Christian Colombo. A Mon-

itoring Approach for Dynamic Service-Oriented Architecture Systems. In SER-
VICE COMPUTATION 2012: The Fourth International Conferences on Advanced
Service Computing, pages 20–23, 2012.

[36] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner,

H.B. Sipma, S. Mehrotra, and Zohar Manna. Lola: runtime monitoring of syn-

chronous systems. In Temporal Representation and Reasoning, 2005. TIME 2005.
12th International Symposium on, pages 166–174, 2005.

[37] Rogerio de Lemos, Paulo Asterio de Castro Guerra, and Cecilia Mary Fischer

Rubira. A Fault-Tolerant Architectural Approach for Dependable Systems. IEEE
Software, 23:80–87, 2006.

[38] Andre de Matos Pedro. Dynamic contracts for verification and enforcement of real-
time systems properties. PhD thesis, Cister Research Unit - ISEP/IPP, September

17 2012.

[39] Dionysis Athanasopoulos, Apostolos Zarras, and Valérie Issarny. Service Sub-

stitution Revisited. In 24th IEEE/ACM International Conference on Automated Soft-
ware Engineering - ASE 2009, Auckland Nouvelle-Zélande, 11 2009. IEEE/ACM.

[40] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, PÅl Krog-

dahl, Dr Min Luo, and Tony Newling. Patterns: Service-Oriented Architecture and
Web Services. Number SG24-6303-00. IBM Redbooks, ibm edition, April 29 2004.

[41] Paul England. Practical Techniques for Operating System Attestation. In 1st
international conference on Trusted Computing and Trust in Information Technologies
(Trust’08), pages 1–13. Springer-Verlag, 2008.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

REFERENCES 109

[42] Clement Escoffier, Richard S. Hall, and Philippe Lalanda. iPOJO: an Extensible

Service-Oriented Component Framework. In Services Computing, IEEE Interna-
tional Conference on, pages 474–481. IEEE Computer Society, 2007.

[43] Roy Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[44] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for java. SIGPLAN Notices,

37(5):234–245, May 2002.

[45] The Eclipse Foundation. http://eclipse.org/aspectj/, 2013.

[46] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras. Dynamic service substitution

in service-oriented architectures. In Services - Part I, 2008. IEEE Congress on,

pages 101–104, July 2008.

[47] Stéphane Frénot and Julien Ponge. LogOS: an Automatic Logging Framework

for Service-Oriented Architectures. In 38th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA), Izmir, Turquie, September 2012.

[48] Kiev Gama and Didier Donsez. Service Coroner: A Diagnostic Tool for Locating

OSGi Stale References. In 34th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA, pages 108–115. IEEE, 2008.

[49] Kirupa Ganapathy, Bharathi Priya, Bhanu Priya, Dhivya, V. Prashanth, and

V. Vaidehi. SOA framework for geriatric remote health care using wireless sen-

sor network. Procedia Computer Science, 19(0):1012 – 1019, 2013. The 4th In-

ternational Conference on Ambient Systems, Networks and Technologies (ANT

2013), the 3rd International Conference on Sustainable Energy Information Tech-

nology (SEIT-2013).

[50] Selvin George, David Evans, and Steven Marchette. A biological programming

model for self-healing. In Proceedings of the 2003 ACM workshop on Survivable
and self-regenerative systems: in association with 10th ACM Conference on Computer
and Communications Security, SSRS ’03, pages 72–81, New York, NY, USA, 2003.

ACM.

[51] D Ghosh, R Sharman, H Raghavrao, and S Upadhyaya. Self-healing systems -

survey and synthesis. Decision Support Systems, 42(4):2164–2185, 2007.

[52] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Speci-
fication (The 3rd Edition). Addison-Wesley Professional, 2005.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

110 REFERENCES

[53] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software transac-

tional memory on relaxed memory models. In Proceedings of the 21st Interna-
tional Conference on Computer Aided Verification, CAV ’09, pages 321–336, Berlin,

Heidelberg, 2009. Springer-Verlag.

[54] Hugo Haas and Allen Brown. Web services glossary. W3C, February 11 2004.

[55] Helen Hawkins and Ron Bodkin. Aspectj. The Eclipse Foundation, 2013.

[56] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural sup-

port for lock-free data structures. SIGARCH Comput. Archit. News, 21:289–300,

May 1993.

[57] Vince Izzo. Motorola connected home experience with OSGi. Technical report,

Motorola Inc., 2006.

[58] Thierry Jeron, Herve Marchand, Antoine Rollet, Ylies Falcone, and

Omer Nguena Timo. Runtime Enforcement of Timed Properties. In 3rd interna-
tional conference on Runtime Verification (RV), Septembre 2012.

[59] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu.

Javamop: Efficient parametric runtime monitoring framework. In Proceeding of
the 34th International Conference on Software Engineering (ICSE’12), pages 1427–

1430. IEEE, 2012.

[60] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean marc Loingtier, and John Irwin. Aspect-oriented programming. In

ECOOP. SpringerVerlag, 1997.

[61] Young-Gab Kim, Chang-Joo Moon, Dae-Ha Park, and Doo-Kwon Baik. A mac-

based service bundle authentication mechanism in the OSGi service platform.

In YoonJoon Lee, Jianzhong Li, Kyu-Young Whang, and Doheon Lee, editors,

Database Systems for Advanced Applications, volume 2973 of Lecture Notes in Com-
puter Science, pages 137–145. Springer Berlin Heidelberg, 2004.

[62] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented Ar-
chitecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle River,

NJ, USA, 2004.

[63] Chin-Feng Lai, Yi-Wei Ma, Sung-Yen Chang, Han-Chieh Chao, and Yueh-Min

Huang. OSGi-based services architecture for cyber-physical home control sys-

tems. Computer Communications, 34(2):184 – 191, 2011. Special Issue: Open net-

work service technologies and applications.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

REFERENCES 111

[64] Daniel Le Métayer, Manuel Maarek, Eduardo Mazza, Marie-Laure Potet,

Stéphane Frénot, Valérie Viet Triem Tong, Nicolas Craipeau, Ronan Hardouin,

Christophe Alleaune, Valérie-Laure Benabou, Denis Beras, Christophe Bidan,

Gregor Goessler, Julien Le Clainche, Ludovic Mé, and Sylvain Steer. Liability

in Software Engineering Overview of the LISE Approach and Illustration on a

Case Study. In ICSE’10, page 135. ACM/IEEE, 2010.

[65] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a

behavioral interface specification language for java. SIGSOFT Softw. Eng. Notes,

31(3):1–38, May 2006.

[66] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs.

JML: notations and tools supporting detailed design in java. In IN OOPSLA
2000 COMPANION, pages 105–106. ACM, 2000.

[67] GaryT. Leavens, AlbertL. Baker, and Clyde Ruby. JML: A notation for detailed

design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral
Specifications of Businesses and Systems, volume 523 of The Springer International
Series in Engineering and Computer Science, pages 175–188. Springer US, 1999.

[68] Y. Ledra and L. du Bousquet. Tobias-z: An executable formal specification of a

test generator. In Automated Software Engineering, 2006. ASE ’06. 21st IEEE/ACM
International Conference on, pages 353–354, Sept 2006.

[69] Rogerio de Lemos, Paulo Asterio de Castro Guerra, and Cecilia Mary Fischer

Rubira. A fault-tolerant architectural approach for dependable systems. IEEE
Softw., 23(2):80–87, March 2006.

[70] Yossi Lev and Jan willem Maessen. Towards a safer interaction with transac-

tional memory by tracking object visibility. In In: SCOOL â05, Workshop on Syn-
chronization and Concurrency in Object-Oriented Languages, 2005.

[71] Chao lin Wu, Chun feng Liao, and Li chen Fu. Service-oriented smart home

architecture based on OSGi and mobile agent technology, June 2007.

[72] Zaigham Mahmood. Service oriented architecture: a new paradigm for en-

terprise application integration. In Proceedings of the 11th WSEAS International
Conference on Computers, ICCOMP’07, pages 491–496, Stevens Point, Wisconsin,

USA, 2007. World Scientific and Engineering Academy and Society (WSEAS).

[73] Chaudhry Maria, Ali Hammad Akbar, Ahmad Qanita, and Sarwar Imran.

SOARware1: Treading through the crossroads of RFID middleware and SOA

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

112 REFERENCES

paradigm. Journal of network and computer applications, 34, no 3 (235 p.):17(998–

1014), 2011.

[74] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel, 1991.

[75] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore

Roşu. An Overview of the MOP Runtime Verification Framework. International
Journal on Software Techniques for Technology Transfer, 2011. Springer.

[76] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Francisco

Curbera, and Fabio Casati. Semi-automated adaptation of service interactions.

In Proceedings of the 16th international conference on World Wide Web, pages 993–

1002, New York, NY, USA, 2007. ACM.

[77] Radhika Nagpal, Attila Kondacs, and et al. Programming methodology for

biologically-inspired self-assembling systems, 2002.

[78] Choon-Sung Nam, Sukhan Lee, and Dong-Ryeol Shin. An android remote call

vehicle service for OSGi-based unmanned vehicle using by a mobile device. In

Sukhan Lee, Hyungsuck Cho, Kwang-Joon Yoon, and Jangmyung Lee, editors,

Intelligent Autonomous Systems 12, volume 193 of Advances in Intelligent Systems
and Computing, pages 123–132. Springer Berlin Heidelberg, 2013.

[79] Hamid R. Motahari Nezhad, Régis Saint-Paul, Fabio Casati, and Boualem Be-

natallah. Event correlation for process discovery from web service interaction

logs. VLDB J., 20(3):417–444, 2011.

[80] Dave Patterson and Armando Fox, editors. Recovery-Oriented Computing, 2004.

[81] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services

vs. big web services: Making the right architectural decision. In 17th Interna-
tional World Wide Web Conference (WWW2008), pages 805–814, Beijing, China,

April 2008 2008.

[82] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: a hard

real-time runtime monitor. In Proceedings of the First international conference on
Runtime verification, RV’10, pages 345–359, Berlin, Heidelberg, 2010. Springer-

Verlag.

[83] Alexandre Polozoff. Proactive application monitoring. Technical report, IBM

Software Group, Software Services for WebSphere, Chicago, Illinois, April 2003.

[84] M. Psiuk. Aop-based monitoring instrumentation of jbi-compliant esb. In Ser-
vices - I, 2009 World Conference on, pages 570–577, 2009.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

REFERENCES 113

[85] Marcus J. Ranum. System logging and log analysis. Technical report, 2004.

[86] Clifford S. Russell, editor. Monitoring and enforcement, 1885.

[87] C. Simache, M. Kaaniche, and A. Saidane. Event log based dependability anal-

ysis of windows nt and 2k systems. In International Symposium on Dependable
Computing, pages 311–315, 2002.

[88] S.E. Smaha. Haystack: an intrusion detection system. In Aerospace Computer
Security Applications Conference, 1988., Fourth, pages 37–44, 1988.

[89] Yehia Taher, Djamal Benslimane, Marie-Christine Fauvet, and Zakaria Maamar.

Towards an approach for web services substitution. In Database Engineering and
Applications Symposium, 2006. IDEAS ’06. 10th International, pages 166–173, dec

2006.

[90] Herman Mekontso Tchinda, Julien Ponge, Yufang Dan, and Nicolas Stouls. An

API for Autonomous and Client-side Service Substitution. In SERVICE COM-
PUTATION 2012: The Fourth International Conferences on Advanced Service Com-
puting, pages 14–19, 2012.

[91] The OSGi Alliance. OSGi Services Platform, Core Specification, Version 4.2, June

2009. http://www.osgi.org [retrieved: June, 2012].

[92] Gael Thomas. La plateforme dynamique de service OSGi. Technical report,

University Joseph Fourier PolyTech, Grenoble LIG/ADELE, Janvier 2007.

[93] Apache TomEE. Security annotations. http://openejb.apache.org/transaction-

annotations.html, 2013.

[94] R. Varadan, K. Channabasavaiah, S. Simpson, K. Holley, and A. Allam. Increas-

ing business flexibility and SOA adoption through effective SOA governance.

IBM Systems Journal, 47(3):473–488, 2008.

[95] M. Vijay and R. Mittal. Algorithm-based fault tolerance: a review. Microproces-
sors and Microsystems, 21(3):151 – 161, 1997. Fault Tolerant Computing.

[96] Pierpaolo Vittorini, Monica Michetti, and Ferdinando di Orio. A SOA statisti-

cal engine for biomedical data. Comput. Methods Prog. Biomed., 92(1):144–153,

October 2008.

[97] Guanhua Wang. Improving data transmission in web applications via the trans-

lation between xml and json. In Communications and Mobile Computing (CMC),
2011 Third International Conference on, pages 182–185, April 2011.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

[98] Ian Warren and Ian Sommerville. A model for Dynamic Configuration which

Preserves Application Integrity. In 3rd ICCDS. IEEE Computer Society, 1996.

[99] Ye-Chi Wu and Hewijin Christine Jiau. A monitoring mechanism to sup-

port agility in service-based application evolution. SIGSOFT Softw. Eng. Notes,

37(5):1–10, September 2012.

[100] Chu-Sing Yang, Ming-Yi Liao, and Chao xing Chen. Design and implementation

of hems based on rfid and OSGi. In Anti-counterfeiting, Security, and Identification
in Communication, 2009. ASID 2009. 3rd International Conference on, pages 250–

253, 2009.

[101] Hua Yue and Xu Tao. Web services security problem in service-oriented architec-

ture. Physics Procedia, 24, Part C(0):1635 – 1641, 2012. International Conference

on Applied Physics and Industrial Engineering 2012.

[102] Daniel zmuda, Marek Psiuk, and Krzysztof Zielinski. Dynamic monitoring

framework for the SOA execution environment. Procedia Computer Science,

1(1):125 – 133, 2010. ICCS 2010.

[103] Marta Zorrilla and Diego Garcia-Saiz. A service oriented architecture to pro-

vide data mining services for non-expert data miners. Decision Support Systems,

55(1):399 – 411, 2013.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

List of publications

Journal
[34] Yufang Dan, Nicolas Stouls, Christian Colombo and Stéphane Frénot. OS-
GiLarva: a Monitoring Framework Supporting OSGi’s Dynamicity. International

journal on advances in security, IARIA, 2013, 6 (1 and 2), pages. 49–61

International Conferences
[35] Yufang Dan, Nicolas Stouls, Stéphane Frénot and Christian Colombo. A
Monitoring Approach for Dynamic Service-Oriented Architecture Systems. The Fourth

International Conferences on Advanced Service Computing, SERVICE COM-

PUTATION 2012, pages 20–23. ISBN 978-1-61208-215-8. [Best Paper Award]

[90] Herman Mekontso Tchinda, Julien Ponge, Yufang Dan et Nicolas Stouls.

An API for Autonomous and Client-side Service Substitution. The Fourth Inter-

national Conferences on Advanced Service Computing, SERVICE COMPUTA-

TION 2012, pages 14–19, ISBN 978-1-61208-215-8.

National Workshop
[104] Yufang Dan, Nicolas Stouls and Stéphane Frénot. OSGiMOP: Monitoring-
Oriented Programming in OSGi. Journées scientifiques 2011 du projet SEmba,

Valence, France.

[105] Yufang Dan, Nicolas Stouls, Christian Colombo and Stéphane Frénot. OS-
GiLarva tool: a Monitoring Tool Supporting OSGi’s Dynamicity. Journées scien-

tifiques 2013 du projet SEmba, Domaine des Hautannes, Saint Germain au Mont

d’Or, France.

115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

116 REFERENCES

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0043/these.pdf
© [Y. Dan], [2014], INSA de Lyon, tous droits réservés

	Notice XML
	Page de titre
	Acknowledgement
	Abstract
	Résumé
	Contents
	List of Figures
	Acronyms
	Introduction
	Dynamic Service-Oriented Architecture Overview
	Motivations
	Contributions
	Organization of thesis

	Background and state of the art
	Background
	Web Services
	OSGi Framework
	AspectJ technology

	Monitoring systems
	Properties classifications
	Hard-coding
	Java Modeling language(JML)
	Spec# Programming system

	Soft-coding
	Enforcement Monitor
	JavaMOP
	Larva Tool
	Monitoring of web services

	Agnostic-coding
	Logging system
	LogOs system

	Self Healab Systems
	Fault tolerant technology
	Self Healable systems in D-SOA
	Stale references in OSGi
	Dealing with Dynamicity in OSGi

	Summary

	A Monitoring Framework for Supporting Services' Dynamicity
	Introduction
	Example
	Contributions
	Proposition of a generic architecture
	Considering dynamic primitives
	General property description
	Property Described from Service Side Point of View
	Property Described from Service Interface Point of View
	Property Described from Client Point of View

	OSGiLarva — A monitoring tool for OSGi
	Property description of OSGiLarva
	Using dynamic primitives in OSGiLarva system
	OSGiLarva automata: syntax and semantics
	Properties description language of OSGiLarva
	Verification example through OSGiLarva automaton

	Implementation
	LogOs system
	Larva Tool
	Adapted both LogOs and Larva systems

	Registration of a service providing specification

	Evaluation
	Monitoring cost by using a proxy (OSGiLarva VS Larva)
	OSGiLarva efficiency (OSGi VS OSGiLarva)
	Overhead associated to getting the caller id

	Summary

	A Safe Service Use Layer to Deal with Dynamic Service Disappearance
	Introduction
	Example
	Contributions
	Fault tolerant technology as a fundation
	Safe OSGi Service Reference - Single service
	Proxy Indirection
	Proxy Requirements and Functionalities

	Generalizing to the Invocation of Multiple services
	Requirements and Assumptions
	Invocation Atomicity – a Correctness Hypothesis in a Multi-Processed System
	Discussion

	Implementation — A safe service use layer for OSGi
	Configurable Service Proxy References
	Overview
	Usage

	Transactional Block and Service Execution
	Overview
	Usage

	Summary

	A Dynamic Monitoring System with Fault Tolerance
	Introduction
	NewMS generic expression
	New property events from SSU layer
	OSGiLarva translation to NewMS
	Example of automata translation
	Expressiveness gains

	Implementation–OSGiLarva-SSU++
	Summary

	Conclusions and Perspectives
	Conclusions
	Perspectives

	References
	List of publications

