
�>���G �A�/�, �i�2�H�@�y�R�R�d�8�3�8�k

�?�i�i�T�b�,�f�f�i�?�2�b�2�b�X�?���H�X�b�+�B�2�M�+�2�f�i�2�H�@�y�R�R�d�8�3�8�k�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �R�j �C�m�H �k�y�R�8

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�2�+�m�`�B�i�v ���M�/ �b�2�H�7�@�?�2���H���#�B�H�B�i�v �2�M�7�Q�`�+�2�K�2�M�i �Q�7 �/�v�M���K�B�+
�+�Q�K�T�Q�M�2�M�i�b �B�M �� �b�2�`�p�B�+�2�@�Q�`�B�2�M�i�2�/ �b�v�b�i�2�K

�u�m�7���M�; �.���M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�u�m�7���M�; �.���M�X �a�2�+�m�`�B�i�v ���M�/ �b�2�H�7�@�?�2���H���#�B�H�B�i�v �2�M�7�Q�`�+�2�K�2�M�i �Q�7 �/�v�M���K�B�+ �+�Q�K�T�Q�M�2�M�i�b �B�M �� �b�2�`�p�B�+�2�@�Q�`�B�2�M�i�2�/
�b�v�b�i�2�K�X �L�2�i�r�Q�`�F�B�M�; ���M�/ �A�M�i�2�`�M�2�i ���`�+�?�B�i�2�+�i�m�`�2 �(�+�b�X�L�A�)�X �A�L�a�� �/�2 �G�v�Q�M�- �k�y�R�9�X �1�M�;�H�B�b�?�X ���L�L�h �,
�k�y�R�9�A�a���G�y�y�9�j���X ���i�2�H�@�y�R�R�d�8�3�8�k��

Number of ordre: 2014-ISAL-??? Year 2014

THESIS

SECURITY AND SELF-HEALABILITY ENFORCEMENT OF

DYNAMIC COMPONENTS IN A SERVICE-ORIENTED

SYSTEM

defend at

L'I NSTITUT N ATIONAL DES SCIENCES A PPLIQUÉES DE LYON

for the degree of

DOCTOR OF PHILOSOPHY

Ecole doctorale : INFORMATIQUE ET MATHÉMATIQUES

submitted at 28 February 2014

By

Yufang D AN

Defend at 14 May 2014 before the commission of exam

JURY

Directeurs Stéphane Frénot Professeur INSA de Lyon

Nicolas Stouls Docteur INSA de Lyon

Rapporteurs Lydie du Bousquet Professeur Université Joseph Fourier

Gael Thomas HDR Université Pierre et Marie Curie

Examinateurs Ioannis Parissis Professeur Université Pierre-Mendés-France

Frédéric Dadeau Docteur Université de Franche-Comté

This thesis is prepared at Centre d'Innovation en Télécommunications et Intégration de

Services (CITI),

INSA de Lyon - INRIA Rhône-Alpes

Acknowledgement

First and the foremost, i would like to express my sincere gratitude to my

advisors Prof. Stephane Frenot and Dr. Nicolas Stouls for their support and

trust. They are most responsible for helping me complete this thesis as well as

the challenging research that lies behind it. Their wide knowledge and their

logical way of thinking have been of great value for me. They were always

there to meet and talk about my ideas, to proofread and mark up my papers,

and to ask me good questions to help me think through my problems. With-

out their encouragement, constant guidance, all their tolerance and patience, i

could not have �nished this thesis. I would like to give special thanks to Dr.

Nicolas Stouls who has spent very much precious time to discuss my work

and to help me analyse the existed problems and so on during the three years

and a half.

I take this opportunity to thank the jury members for spending their pre-

cious time to read and review this thesis, for taking a long trip to attend this

defence, and for giving me valuable comments. I am grateful for the �nancial

support of the CSC through UT-INSA project.

I would also like to thank my dear colleagues at CITI laboratory for kindly,

professional sharing the experience on their study and work, i had a very

happy time in CITI for three years and a half. I specially would like to thank

administrative staffs at CITI for their instant support whenever I asked for one.

Next, I must thank my dear neighbour, Danielle ROCHE, you are really like

my family and my best friend in French, you let me felt i live at here like in my

country, even though my french sentences sometimes were not clear, you are

always there support me for my everything.

The last but not the least, I would like to extend my special gratitude to my

big family: my mother, father, sister, brother-in-law and my husband. Their

iii

unconditional support has always helped me to bounce back whenever i felt

low.

Abstract

Dynamic service-oriented architectures (D-SOA) focus on loosely coupled client-

server interactions where both of them can appear and disappear at runtime. Our goal

is to design monitoring systems for these architectures. Since classical monitoring sys-

tems are statically injected into the monitored services, they can not properly handle

the runtime services' lifecycle. Moreover, when a service is substituted by a new one,

other services may still use the old reference. This reference is kept in memory as a

stale reference which induces some forbidden behaviors.

This thesis contributes to design a monitoring system with resilient dynamicity

that monitors services usage and is able to deal with stale references usage. This goal

is achieved in three steps.

Firstly, by considering the dynamicity of SOA systems in an open environment,

we design a corresponding dynamic monitoring approach. We identify two key prop-

erties of the loosely coupled monitoring system: dynamicity resilience, i.e., after the

unregistration of a service, its interface monitor and its current state are kept alive in

memory and transferred to a new loaded service; comprehensiveness, i.e., the imple-

mentations of the monitored interface can't bypass the monitor observations.

Secondly, to avoid stale references usage, we propose a client-side safe service

usage (SSU) layer to automatically handle them. If a used service disappears, then the

SSU layer can either transparently substitute it or throw an exception to the client. This

SSU layer is based on a transactional approach which aims to preserve the coherence

of active services.

Thirdly, we propose to integrate both approaches into a new monitoring system

(NewMS). The NewMS inherits the principles of both systems: dynamicity resilience,

comprehensivenessand fault tolerance. It can dynamically monitor service usage and

transparently handle stale references of dynamic SOA systems.

All the three propositions are implemented on OSGi-based platform. We develop

a simple application that simulates an Airline Reservation system, which is monitored

by our monitoring systems. We also develop various automata to handle the dynamic-

ity of the Airline Reservation system in the NewMS. Our results demonstrate that the

time cost of our monitoring systems is close to one of classical monitoring systems.

Résumé

Les architectures dynamiques orientées services (D-SOA) se concentrent sur les

interactions client-serveur à couplage faible, où les deux peuvent apparaître et dis-

paraître à l'exécution. Notre objectif est de concevoir des systèmes de surveillance

pour ces architectures. Comme les systèmes de surveillance classiques sont statique-

ment injectés dans les services surveillés, ils ne peuvent pas gérer correctement le

cycle de vie des services d'exécution. En outre, quand un service est remplacé par un

autre service, d'autres services peuvent toujours utiliser l'ancienne référence. Cette

référence vers un service absent, lorsqu'elle est gardée en mémoire, peut induire des

comportements non désirés.

Cette thèse contribue à la conception d'un système de surveillance de l'utilisation

des services, qui soit résistant à la dynamique de la plateforme et qui soit en mesure

de faire face à l'utilisation des références obsolètes. Ce but est atteint en trois étapes.

Tout d'abord, en considérant le caractère dynamique des systèmes SOA dans un

environnement ouvert, nous concevons une approche de monitoring résistant au la

dynamique de la plateforme. Nous identi�ons deux propriétés clés du système de

surveillance à couplage faible: résilience à la dynamicité, c'est-à-dire qu'un moniteur

d'interface et son état sont maintenus en mémoire et transférés à un nouveau service

lors de la disparition d'un service utilisé, et exhaustivité, c'est-à-dire qu'un service

surveillé ne peut pas contourner les observations du moniteur.

Ensuite, pour éviter l'usage de références vers des services qui ne sont plus actifs,

nous proposons un service de sécurité côté client (SSU Layer), qui permet de traiter ce

problème de manière transparente. Si un service utilisé disparaît, la couche SSU peut

soit substituer le service de manière transparente, soit lever une exception pour avertir

explicitement le client. Cette couche SSU est basée sur une approche transactionnelle

qui vise à préserver la cohérence des services actifs.

En�n, nous proposons d'intégrer les deux approches dans un nouveau système

de surveillance (NewMS). Les NewMS hérite des principes des deux systèmes précé-

dents: la résilience à la dynamicité, l'exhaustivité et la tolérance aux fautes. Il peut

dynamiquement surveiller l'utilisation de services et traiter les références obsolètes

de manière transparente.

Ces trois propositions sont implémentées dans la plateforme OSGi. Nous avons

développé une application simple qui simule un système de réservation de place, qui

est monitoré par notre systèmes. Nous avons également proposé différentes spéci�-

cations pour ce système. Nos résultats démontrent que le coût d'observation de notre

moniteur est proche du coût d'un monitor classique, ne prenant pas en compte les

problématiques liées à la dynamique.

Contents

Acknowledgement iii

Abstract v

Résumé vii

Acronyms 1

1 Introduction 3

1.1 Dynamic Service-Oriented Architecture Overview 4

1.2 Motivations . 5

1.3 Contributions . 6

1.4 Organization of thesis . 8

2 Background and state of the art 11

2.1 Background . 11

2.1.1 Web Services . 12

2.1.2 OSGi Framework . 13

2.1.3 AspectJ technology . 17

2.2 Monitoring systems . 18

2.2.1 Properties classi�cations . 18

2.2.2 Hard-coding . 20

2.2.2.1 Java Modeling language(JML) 21

2.2.2.2 Spec# Programming system 21

2.2.3 Soft-coding . 22

2.2.3.1 Enforcement Monitor . 23

2.2.3.2 JavaMOP . 23

2.2.3.3 Larva Tool . 24

2.2.3.4 Monitoring of web services 25

ix

2.2.4 Agnostic-coding . 27

2.2.4.1 Logging system . 27

2.2.4.2 LogOs system . 27

2.3 Self Healab Systems. 28

2.3.1 Fault tolerant technology . 29

2.3.2 Self Healable systems in D-SOA 30

2.3.3 Stale references in OSGi. 32

2.3.4 Dealing with Dynamicity in OSGi 35

2.4 Summary . 35

3 A Monitoring Framework for Supporting Services' Dynamicity 37

3.1 Introduction . 38

3.2 Example . 39

3.3 Contributions . 42

3.3.1 Proposition of a generic architecture 42

3.3.2 Considering dynamic primitives 44

3.3.3 General property description . 44

3.3.3.1 Property Described from Service Side Point of View . . 45

3.3.3.2 Property Described from Service Interface Point of View 46

3.3.3.3 Property Described from Client Point of View 47

3.4 OSGiLarva — A monitoring tool for OSGi 48

3.4.1 Property description of OSGiLarva 49

3.4.1.1 Using dynamic primitives in OSGiLarva system 50

3.4.1.2 OSGiLarva automata: syntax and semantics. 51

3.4.1.3 Properties description language of OSGiLarva. 55

3.4.1.4 Veri�cation example through OSGiLarva automaton . . 56

3.4.2 Implementation . 60

3.4.2.1 LogOs system . 60

3.4.2.2 Larva Tool . 61

3.4.2.3 Adapted both LogOs and Larva systems 65

3.4.3 Registration of a service providing speci�cation 66

3.5 Evaluation . 66

3.5.1 Monitoring cost by using a proxy (OSGiLarva VS Larva) 67

3.5.2 OSGiLarva ef�ciency (OSGi VS OSGiLarva) 69

3.5.3 Overhead associated to getting the caller id 70

3.6 Summary . 71

4 A Safe Service Use Layer to Deal with Dynamic Service Disappearance 73

4.1 Introduction . 73

4.2 Example . 75

4.3 Contributions . 77

4.3.1 Fault tolerant technology as a fundation 77

4.3.2 Safe OSGi Service Reference - Single service. 78

4.3.2.1 Proxy Indirection . 79

4.3.2.2 Proxy Requirements and Functionalities 79

4.3.3 Generalizing to the Invocation of Multiple services 80

4.3.3.1 Requirements and Assumptions 80

4.3.3.2 Invocation Atomicity – a Correctness Hypothesis in a

Multi-Processed System 81

4.3.3.3 Discussion . 82

4.4 Implementation — A safe service use layer for OSGi 82

4.4.1 Con�gurable Service Proxy References 82

4.4.1.1 Overview . 82

4.4.1.2 Usage . 84

4.4.2 Transactional Block and Service Execution 85

4.4.2.1 Overview . 85

4.4.2.2 Usage . 86

4.5 Summary . 88

5 A Dynamic Monitoring System with Fault Tolerance 91

5.1 Introduction . 91

5.2 NewMS generic expression . 92

5.2.1 New property events from SSU layer 93

5.2.2 OSGiLarva translation to NewMS 93

5.2.3 Example of automata translation 95

5.2.4 Expressiveness gains. 96

5.3 Implementation–OSGiLarva-SSU++ . 97

5.4 Summary . 99

6 Conclusions and Perspectives 101

6.1 Conclusions . 101

6.2 Perspectives . 103

References 105

List of publications 115

List of Figures

2.1 Roles and interactions in XML-Web service for implementing a SOA . . 12

2.2 OSGi framework . 14

2.3 OSGi Bundle life cycle . 15

2.4 Invariant property described by an automaton 19

2.5 Larva system in a software system . 24

2.6 AOP crosscut analysis approach . 26

3.1 Dynamic SOA system supporting service substitution 39

3.2 Example of scenario with dynamically monitored system supported by

example in Fig. 3.1 . 40

3.3 Example of a property associated to example in Fig. 3.1 41

3.4 Proposed abstract architecture for monitoring system 42

3.5 Possible point of view for properties . 45

3.6 Property description: service implementation point of view 46

3.7 Property description: service interface point of view 47

3.8 Property description: client point of view 48

3.9 OSGiLarva implementation . 49

3.10 Monitoring of services usage . 56

3.11 An OSGiLarva property description �le with the global keyword asso-

ciated to two interfaces properties and FOREACHCLIENT keyword 57

3.12 An OSGiLarva clients-side automaton of the airline reservation 58

3.13 EVENTS description in an OSGiLarva property 59

3.14 Processing of LogOs system works for system based on OSGi framework 61

3.15 EVENTS description in a Larva property �le 62

3.16 VARIABLES description in a Larva property �le 62

3.17 STATES description in a Larva property �le 63

3.18 TRANSITIONS description in a Larva property �le 63

3.19 Generic larva property �le with two properties of two types 64

xiii

3.20 Structure of an OSGi bundle providing properties 66

3.21 Comparing time cost of a static example with OSGiLarva and Larva . . 68

3.22 Comparing cost ratio of a static example with OSGiLarva and Larva . . 68

3.23 Comparing time cost of the case study example with and without OS-

GiLarva (simple method in service side) 69

3.24 Comparing cost ratio of the case study example with and without OS-

GiLarva (simple method in service side) 69

3.25 Comparing time cost of the case study example with OSGiLarva but

with or without client Id . 70

3.26 Comparing cost ratio of the case study example with OSGiLarva but

with or without Client Id . 71

4.1 Stale reference occurs in Dynamic SOA system 75

4.2 Example of scenario with Exception to handle stale reference 76

4.3 Example of scenario with service substitution 77

4.4 Transaction diagram for multiple services 81

5.1 Generic architecture of the dynamic synthesized monitoring system . . . 92

5.2 Generate NewMS automata from OSGiLarva automata(Algorithm 1) . . 94

5.3 Compose(l1; l2): composes two new lists of transitions (Algorithm 2) . . 95

5.4 A translation example from an OSGiLarva automaton to NewMS au-

tomaton indicating algorithm steps . 96

5.5 Translate an OSGiLarva automaton A to a NewMS automaton A' 97

5.6 Implementation of the dynamic synthesized monitoring system 98

Acronyms

AOP Aspect-Oriented Programming
API Application Programming Interface
DSL Domain-Speci�c Language

D-SOA Dynamic Service-Oriented Architecture
EJB Enterprise Jave Bean

FSM Finite State Machine
IPOJO Inject Plain Old Java Objects

IDS Intrusion Detect Systems
JavaMOP Java Monitoring-oriented Programming

JBI Java Business Integration
JML Java Modeling Language

JSON JavaScript Object Notation
JSON-WSP JavaScript Object Notation Web-Service Protocol

JVM Java Virtual Machine
LTL Linear temporal logic

NewMS OSGiLarva-SSU++ Monitoring System
OSGi Open Services Gateway initiative

OSGiLarva a Monitoring system with dynamicity resilience
PTLTL Past Time Linear Temporal Logic

PVS Property Veri�cation System
REST Presentational State Transfer
SOA Service-Oriented Architecture
SSU Safe Service Usage

STM Software Transactional Memory
TM Transactional Memory

UDDI Universal Description, Discovery and Integration
WSDL Web Services Description Language

XML Extensible Markup Language

2

1
Introduction

Service-Oriented Architecture (SOA) is a software design approach which enables to

build complex architectures made of independent services linked together at runtime.

Each provided service is viewed as a single execution process, registered in a reposi-

tory and linked with clients at runtime to manage requests. Most of the time the client

is bound to the service, until it decides to release the service link.

In a stateless model, the client has no memory from previous calls. And the pre-

vious context is send over the link at each method call. In a stateful model, both the

link and context data are automatically maintained between the client and the service.

In the stateful case the client is bound to the service and if the service stops, the client

must also stop.

In a stateful communication, information is slotted between the client and the

server. During this period, neither the client nor the server can be changed. Although

it works �ne for instant transaction that consider client and server as �xed or stable

point, we consider that when context is changed regularly in a mobile environment

for instance, both server and client may be changed during stateful communication.

In dynamic SOA(D-SOA), client and server work together to agree on communica-

tion and data exchange protocols. Most of the time, they "know" each other and work

3

4 Dynamic Service-Oriented Architecture Overview

in a closed-environment. When considering a dynamic SOA system, client and ser-

vices working on a stateful basis in an open-environment should have more guaran-

tee between them. Therefore, this thesis proposes an analysis of the kind of guarantee

client should expect from services and services from clients in an open-environment

based on D-SOA.

In the following sub-sections, we �rst give an overview of D-SOA in Section 1.1.

Then, the technical challenges for guaranteeing clients behaviors as expected at run-

time in dynamic SOA-based systems are presented in Section1.2. We give an overview

of the main contributions of this thesis in Section 1.3. Finally, in Section 1.4, the orga-

nization of this thesis is presented.

1.1 Dynamic Service-Oriented Architecture Overview

SOA is composed of a large number of autonomous and self-contained services. Each

functionality of an application is a service [72, 94]. A service in SOA-based architecture

comprises service interface, service implementation and service contract. Service in-

terface exposes the abstract functionality of services. Service implementation provides

underlying business logic and data for ful�lling the speci�ed functionality in the ser-

vice interface. Service contract speci�es service' functionality, binding protocol type

and constraints for client service; it is also standard-based and platform independent

and stored in a service repository [62].

Dynamic SOA (D-SOA) architecture consists of dynamic and loosely coupled ser-

vices. The services' life-cycles can be dynamically managed remotely at runtime be-

cause of the loosely relation between client and service. For instance, services may

appear and disappear dynamically in a regular basis without affecting the other ser-

vices' execution. D-SOA framework has some rules for informing the corresponding

service about the changed service life-cycle state (start or stop) or helping client to �nd

a more suitable service implementation than the current used one.

Since services are un-associated and loosely coupled, services' interaction enables

the invoking-side service to request server some functionalities through a repository

that exposes appropriate contracts. Subsequently, the invoking-side service is bound

to the service and is allowed to invoke methods through service interface as long as

its contract types match. Moreover, some services can be composed together for be-

coming a new service with different functionalities at runtime and arriving at a new

granularity level.

Due to these characteristics (loosely coupled, reusable, re-compose with different

granularity levels), SOA has attracted more and more attention of large-scale �rms

Introduction 5

and wide areas. For example we can cite: RFID system based on SOA [73], Radioactive

waste management domain [29], Data Mining �eld [103], Bio-medical data manage-

ment [96], Cloud computing [26]. There are also different approaches to implement

SOA among of the two families: web services and other more local approaches such

as OSGi [1]. This last one is the object of our study and will be deeply introduced in

Section 2.1.

In this thesis we focus on OSGi framework. It is usually used in 24/7 systems,

where the system is not restarted when a service appears or disappears. This frame-

work is targeted to embedded systems such as cars, ADSL boxes, or network systems.

In such systems, web services cannot be used either due to the lack of connectivity,

network limited bandwidth, or for ef�ciency reasons.

1.2 Motivations

Service-oriented architecture (SOA) is focused on loosely coupled client-server through

public interfaces. The client usually requests service access through a repository. Sub-

sequently, the client is bound to the service and is allowed to invoke methods as long

as the interface types match. In dynamic SOA, each service invocation must be con-

sidered as a complete context switch since potentially new services may appear and

others disappear at runtime, even if these services are stateful. This dynamic activity

should have as few consequences as possible at the client side.

From a dynamic SOA point of view, dealing with loose coupling and dynamic

issues of services are a real challenge today. Firstly, binding a client to a service is a

matter of interface matching because of services loose coupling, but, neither the client

nor the service has any guarantee that the other part behaves as expected. Secondly,

every system implementing dynamic SOA faces the problem of deprecated references

caused by the services mobility. Since a deprecated service reference potentially leads

to a "null pointer reference" or to a wrong result, it can result in a system crash.

The objective of this thesis is not only to identify whether the behaviors from client

are authorized or not in a dynamic SOA system. It is also to enhance the fault-tolerant

characteristic of dynamic SOA system while service disappearance. The last but not

least, in this thesis, all services may be regarded as stateful services in this kind of

system. For achieving these goals, we check two cases:

First, it's important to continuously ensure the clients authenticity and the valid-

ity of the activities carried out after interface matching for most systems. Each time a

client makes a request to a server, a formally speci�ed constraint can be checked to en-

sure that the client is authorized to perform that call. So, a runtime monitoring system

6 Contributions

can be used to check such behaviors in D-SOA systems. There exists some traditional

runtime monitoring approaches for checking the speci�c behaviors of client accesses

to a service. These approaches involve static mapping and monitoring of services,

but there is a constraint from these monitors when a service disappears or a new one

dynamically appears, these monitors can't continue monitoring the new replaced ser-

vice without restarting system. This thesis de�nes a runtime monitor with resilience

to dynamicity and comprehensiveness for dynamic SOA. In the light of such an objec-

tive, we explore the possibility of continuously monitoring new services request from

clients without system reboot.

Second, in consideration of the valid state of service references in a dynamic SOA

system, dealing with services dynamicity is important. A service reference is a spec-

i�ed pointer of client obtained to use its service in this system. So, we can propose

some client side tools to aid the running dynamic SOA system. When service disap-

pears, its system can still work or throw an exception. We can use these tools to add

some codes at client side for fetching a new service reference as soon as a new ser-

vice is available to replace the disappeared one. The client needn't to restart after this

service substitution and it also avoids stale reference usage.

1.3 Contributions

In this thesis, the main contributions are listed as follows:

A dynamic monitor approach for monitoring a dynamic SOA system at runtime

in an open environment is proposed:

� This dynamic monitoring approach inserts monitors at the point of client-server

binding rather than "statically" at compile-time or loading-time. This approach

can make dynamic mappings from monitor to service or method during run-

time even if services appearance or disappearance, since the monitor has the

same life-cycle with the monitored service interface rather than service imple-

mentation;

� This kind of monitor can check behaviours of clients using services and the other

behaviors related to this service cannot bypass the monitor observations;

� Property description of this monitor is a composite of interface side property

(i.e., Class-Property) and client side property (i.e., Instance-Property). These

properties of this monitor can respective check the behaviours of each client us-

ing the service through its monitored interface with each client ID. The interface

side property is the entrance of the monitor;

Introduction 7

� An implementation of this monitor is realized by OSGiLarva system which de-

scribes method call events as well as OSGiLarva framework events in the prop-

erty description;

� The monitor system also can monitor a complex system with multiple service

interfaces and check the atomicity use of services. These interfaces properties

can be described in the context of "global" respectively. They are distinguished

by their interfaces name.

� This monitor generates a record and outputs to users or managers at runtime

who can take some necessary measures to the monitored software system at the

time of a particular state reached.

A " safe service use" layer at client side is proposed for enhancing self-healing

capability of service usage in a dynamic SOA system.

� This layer is aware of stale references. It takes two steps at runtime for clients to

prevent the use of stale references without requiring clients re-start and without

modifying external services: if there is an new service for replacing the disap-

peared service, automatic make a service substitution for clients, else send a

stale reference exception to clients.

� This layer uses transaction approach to ensure service coherent using at run-

time. When a disappeared service is being used, the execution block rolls back

and reverts all parameters values related to executed methods in it.

Finally, another dynamic monitoring architecture is proposed, which integrates

the proposed OSGiLarva system and the SSU layer. It's used to monitor the secure of

services usage and avoid the use of stale references of a dynamic SOA system in an

open environment.

This proposed monitoring architecture named NewMS compensates the lack of

OSGiLarva system by three ways:

� It is aware of stale references usage and handle it by SSU layer.

� It allows to express more precisely the properties. For instance, it is possible to

consider the processing procedure of stale references.

� We designed an algorithm to automatically translate any OSGiLarva property

into NewMS property.

8 Organization of thesis

1.4 Organization of thesis

This thesis is structured in �ve main chapters:

In Chapter 2, we �rst introduce the background knowledge of this thesis like web

service architecture, OSGiLarva framework and some traditional monitor approaches

usually used AspectJ technology. Then we survey the existing monitoring systems and

classify those monitoring systems into different categories according to the bindings

styles to the monitored systems. Finally, we survey the used approaches which tried

to enhance the self-healable of services in dynamic SOA systems and control stale

references using at runtime.

In Chapter 3, a dynamic monitoring approach for monitoring services usage in

dynamic SOA systems for open environment is proposed. In this chapter, we express

the architecture model for a dynamic runtime veri�cation tool and consider some dy-

namic primitives. In order to implement this dynamic monitoring approach, we select

two systems: LogOs systems and Larva system. We adapt and integrate both sys-

tems together as a dynamic monitoring system to support OSGi's dynamicity, and

we call this tool OSGiLarva system. Moreover, for monitoring the behaviours of each

client with its ID using services through different service interfaces, we analyse the

situations and propose an upgrade property description with some new rules based

on Larva property description language. Finally, we make quantitative benchmark

tests to compare the OSGiLarva with a closed tool Larva and compare the monitored

system with/without OSGiLarva system, and then analyse their performance.

In Chapter 4, a safe service use layer at client-side is proposed to enhance fault-

tolerant characteristics of services according to the service disappearance in dynamic

SOA systems. Firstly, we select a fault-tolerant technology (proposed in Chapter 2)

to make software systems being more fault tolerant. Secondly, we give two parts to

analyse the theoretical contributions of the SSU layer: (i) give requirements and poli-

cies for single service with a safe OSGi service reference, for instance, automatically

enable service substitution and replay a part of the last comment or throw an stale ref-

erence exception to clients after a service unregistered, (ii) generalizing requirements

and policies to the invocation of multiple services, for instance, automatically enable

service substitution and re-execute its transaction block when a stale reference is used.

From these theoretical contributions, we implement a SSU layer tool in the context of

the OSGi environment.

In Chapter 5, we propose another new dynamic monitoring architecture (i.e., NewMS)

applied to monitor services usage without stale references in dynamic systems for

open environment. Since this NewMS is composed by the OSGiLarva system and the

SSU layer, it still inherits the main principles from both tools. We show the new cases

Introduction 9

possible thanks to this integration and we express the more precise NewMS proper-

ties.

In Chapter 6, we summarize the main �ndings of this thesis, the conclusion that

can be drawn and some possible extensions of the work covered in this thesis are

discussed.

10 Organization of thesis

2
Background and state of the art

In this chapter, we �rst give a introduction of the thesis background about the ap-

proach of SOA. In the rest, we make a survey of state of the art of monitoring tools

which monitor software at runtime and �nally we present the fault-tolerant capabili-

ties of services in D-SOA systems.

2.1 Background

Due to the loosely coupled, reusable and re-composition characteristics of services,

SOA are attracting more and more attention of large-scale �rms. By the way, sev-

eral approaches implementing it appeared. Among of them, Web Service architecture

and OSGi framework are well-known and meeting different markets' needs. Another

technology, Aspect-oriented programming, is used by some related works to aid the

runtime veri�cation systems. In this section, we will give details about Web services

and OSGi framework, then give the reasons why our research focuses on OSGi frame-

work in this thesis. AspectJ technology will be introduced at the end of this section.

11

12 Background

2.1.1 Web Services

Web Services is one of implementations of SOA. It is a piece of code available on the

network with the properties to be self-described and self-contained. It supports in-

teroperability among different machines with concrete business functions over a net-

work.

As shown in Fig. 2.1, there are three roles in web service framework [71]: Service

provider, Service repository and Service consumer. Service Provider provides service

implementations to realize speci�ed service interfaces. Different service providers can

develop different implementations for a same service interface to support the rapid

service upgrading. These service implementations are independent. A role of service

repository (e.g., services integration and deployment) is to manage all services from

service providers. Service consumer can send messages to �nd a service from Service

repository. If the consumer obtains a reply about the requested service, it can bind

with this requested service implementation from service provider and can use it. The

concrete service implementation is transparent for service consumer.

Figure 2.1: Roles and interactions in XML-Web service for implementing a
SOA

There existed many markup languages used in web services designing, for ex-

ample: JSON, JSON-WSP, REST and RESTful, XML-SOAP. JavaScript Object Nota-

tion(JSON) [97] which is a light-weight markup language for interchanging data on

the web. JSON-WSP (JavaScript Object Notation Web-Service Protocol) [2] is a web

Background and state of the art 13

service protocol through JSON to describe, request and response services. Represen-

tational State Transfer (REST) [43] is a set of constraints and rules of architecture ap-

plied to the development of web services. It's also a resource-oriented architecture.

A RESTful web API [81] is a web API implemented using HTTP and REST princi-

ples. XML-SOAP standard is exploited to describe, publish, �nd, match and con�gure

web services [54,101]. In this thesis, we propose to focus on the most used approach:

XML-SOAP. We will then explain how to use it in Web services.

Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP)

and services Universal Description, Discovery and Integration (UDDI) are three cru-

cial platform elements in XML-SOAP Web Service architecture, which are also pre-

sented in Fig. 2.1. WSDL and SOAP are described based on XML format. WSDL [3]

is used to describe web service information: transport type (e.g., SOAP), web service

interface methods, parameters and web service URI. It is used to publish and request

service. SOAP [4] is a service transfer mechanism in Web service architecture. It's used

to exchange structure information of web service with other systems through HTTP.

It avoids information conversion among different protocols. UDDI [40] is a registry

center of services Universal Description, Discovery and Integration. It is used for

registering new services with WSDL �le through SOAP/HTTP protocols. It is like a

yellow page of WSDL �les. Service consumers can �nd registered services with WSDL

�les from UDDI through SOAP/HTTP protocol in heterogeneous and distributed en-

vironments.

Finally, Web services are taken as deals between enterprise internal and external,

B2B and B2C businesses and so on. For example, in [29], a framework based on SOA

concept and web service technology is proposed to manage a radioactive waste pack-

age record management system with three-tier. In [20], legacy systems' interactive

functionality is exposed as web service by a wrapping approach to a system based

on SOA. This solution made these legacy and heterogeneous systems become inter-

connected and interoperable over network. In [103], authors proposed a data mining

service with data mining algorithms. This kind of service is taken as a web service

for non-expert data miners in SOA. In [49], web services are designed based health

care services in a SOA system. This kind of health care system can improve the qual-

ity of decision making and timely alert generation for doctors, caregivers and elderly

people.

Except for Web Services, OSGi framework also is an important implementation

approach of SOA. We will give its details in the following section 2.1.2.

14 Background

2.1.2 OSGi Framework

OSGi services platform speci�cation is created by the OSGi alliance in 1999. It de�nes

a management model of a Java application life-cycle hosted in a virtual machine [9].

It has some APIs to manage the software components life-cycle from anywhere over

network. The platform allows a remote loading and dynamic deployment of appli-

cations by its open speci�cation in its environment while remaining independent of

the system on which it is installed. OSGi services can run on different devices from

very small to very big. Different service consumers, providers, developers, vendors

can work well together on this platform speci�cation. This framework implements a

complete and dynamic component model based on a layered architecture.

This framework [8] consists of six main layers as shown in Fig. 2.2.

Figure 2.2: OSGi framework

1. Bundle layer: Bundle is the basic concept of the OSGi platform. It is the only unit

of modularization and consist of a set of Java classes (packages, services), con-

�guration �les and other resources (e.g., images, sounds, etc.). This layer will

work with all of the other layers. In each bundle, there are at least two methods:

BundleActivator.start(BundleContext) and BundleActivator.stop(BundleContext).

If the framework need to start this bundle, the former method have to be called.

This method is used to register services or to assign any resources needed by this

bundle. The later method is called when the framework need to stop this bun-

dle. When this bundle is stopped, this bundle can't call any framework objects

and it can not be called by any bundle until it started again.

2. Service layer: It offers a set of functionality for the publication, the discovery

and the binding to Java objects, as well as the noti�cation on the changes that

occur on the services in the environment. A service is a normal Java object that

is registered under one or more java interfaces by the service registry layer of

Background and state of the art 15

OSGi framework. The service is a solution is offered by the platform to avoid

the tight binding between components. The binding can be done by using a

service reference instead of a service object itself.

3. Service registry layer: This layer's API is used to manage services about Ser-

vice registration,Service trackerand Service Referencegeneration. Bundle is used

to register object by Service registration. The client services search the service

registry with service referenceto look for the matched objects. When a tool of ser-

vice trackeris used in this service registry, it can listen the tracked service's Ser-

viceEvents(e.g., Unregistering, Registered, Modi�ed and Modi�ed_ Endmatch)

and obtaining and releasing service.

4. Life cycle layer: life cycle management for bundles provided by OSGi frame-

work as some APIs can remote manage bundles start, stop, update, install and

uninstall without requiring reboot. A bundle's normal life cycle is shown in Fig

2.3. The Starting and Stopping are middle states in a OSGi bundle life cycle. For

example, when command "start" is executed, the bundle state is tranferred from

"Resolved" to "Active". When command "stop" is executed, the bundle state is

transferred from "Active" to "Resolved". It provides remote management for

bundles with dynamicity.

5. Modules layer: A modularization module is de�ned for Java in this layer. The

modularization module speci�es encapsulation and declaration of dependency

relationships among bundles: How a bundle can import and export code? What

is the order among bundles export and import? [9].

6. Java virtual machine layer: It manages Java class-loading for multiple bundles.

In local OSGi framework, multiple bundles run in a single JVM for sharing bun-

dles and coordinating with other bundles.

From above introduction and consideration of each layers collection, we know

that OSGi framework with its service registry provide a lightweight model to publish,

�nd and bind services inside its JVM. This framework supports the characteristics of

Service-oriented architecture. The life cycle layer provides APIs to bundles for manag-

ing services in module layer. These characteristics enable this framework to become a

dynamic SOA approach. OSGi Service platform is being used widely: Home automa-

tion based on OSGi platform [63, 6, 100]; Vehicle industries adopted OSGi platform

for supporting different vehicle manufacturers services. Moreover, it supports remote

call vehicle service for unmanned vehicles [26, 78]; Desktop PCs, Servers (High-end

Servers, including mainframe), Nokia and Motorola drove an OSGi technology stan-

dard for the next generation of smart phones [23, 57,92].

16 Background

Figure 2.3: OSGi Bundle life cycle

Web service architecture is a popular implementation approach of SOA over net-

work, while OSGi is a dynamic components model based for dynamic SOA. Here are

main differences between web services architecture and OSGi framework:

1. Service view: Web services architecture would not typically be able to have the

full view of the system, i.e., one can either observe the client or the server but

not both. OSGi framework can reason about the full picture by also taking into

consideration the OSGi framework events such as registration of services, ser-

vice requests by different clients, etc. This is possible because OSGi framework

provides remote and dynamic life-cycle management functionality.

2. Service messaging speed: There are different service transport mechanisms on

both approaches. The local OSGi services communicate with each other just like

general java invocations. All web services communicate with each other need

to use SOAP binding with HTTP/TCP/UDP protocols. OSGi service methods

are called at a thousands of times speed greater than the web service calls.

3. Service disappear at runtime: OSGi framework avoid the "null reference pointer"

associated to the disappearance of a service without using "Service tracker".

When a service has been loaded by a service consumer, this service consumer

can invoke its service methods after it is unregistered. But for Web services, this

invocation induces a null reference pointer at runtime.

4. Considering cost: All local OSGi bundles run in a single JVM for sharing and

coordinating with the other bundles. This minimizes the memory footprint and

improve performance. Because of this point, it provides almost zero cost among

inter applications communication that is introduced in [8].

For the sake of these differences between Web services and OSGi approaches.

Background and state of the art 17

OSGi framework interested us to make a research. In this thesis, there are some things

needing to pay more attention because of loosely coupled and dynamic treats [61, 8]

in OSGi-based systems: dynamic monitoring services usage with validate service ref-

erences.

At the end of background part, we introduce AspectJ technology because of some

related monitoring tools using it (section 2.2).

2.1.3 AspectJ technology

There exists some close related works using AspectJ technology. Among of these,

enforcement monitor [58], Larva [32], JavaMOP [75] and a dynamic monitoring system

[102] are described in section 2.2. So, we brie�y introduce AspectJ technology in the

background.

Aspect-Oriented Programming(AOP) [60] is a programming paradigm. It uses

cross-cuttingapproach to get common behaviors from the internal of packaged objects,

and then encapsulate the common behaviors into a reusable model which is named as-

pect. The common behaviors affect multiple classes and are different with the business

processes of objects, such as authority identi�cation, Logging, transaction process and

so on. The aspect enables the repeat code decreased, lighten the coupling among of

modules and enhance operability and maintainability in a software system.

AOP implementations have some aspect expressions that can encapsulate cross-

cutting concerns for software systems. AspectJ [10,55] which is the most universally

used AOP language is a seamless aspect-oriented extension to the Java programming

language. It has some expressions to encapsulate the cross-cutting concerns into an

aspect, such asjoint point, pointcut,advice,inter-type decleration. Thejoint point is a class

method from an original system. It is a abstract concept in AOP, it doesn't need to

be de�ned. The point cut is a structure to capture the speci�ed set of joint points. It

just creates a link to the target system for observing. The advicespeci�es the execution

code of point cut. It can give concrete execution logic with some special handling:

before,afterand around. The de�ned point cut will be executed beforeor afteror around

the captured joint point (e.g., class methods). The inter-type declarationis applied to

declare the cross-cutting classes and their hierarchies. Therefore, thepointcut and ad-

vicedynamically handle the program �ow at runtime, the inter-type declarationis done

at developing-time. The aspect encapsulates these aspect expressions to form a clear

modularization of crosscutting concerns. The aspect can be separated from target sys-

tem and reused, such as error checking, monitoring, logging and so on [45].

This section 2.1 expresses the background of this thesis. It introduces the imple-

mentation approaches of SOA and makes a comparation to each other. Finally, AspectJ

18 Monitoring systems

is used by main of our related works have been presented in Section 2.2. The follow-

ing two sections are state of the arts of this thesis: related monitoring systems(section

2.2) and self-healable of services in dynamic SOA systems (section2.3).

2.2 Monitoring systems

In this section, we will give a state of the art about a variety of monitors for verifying

static or dynamic systems' security of services usage.

Once service interface matched, it's dif�cult to guarantee safe usage of components

in D-SOA systems. If we use a classical monitoring tool to check and verify some

sensitive behaviors at D-SOA system runtime, service disappearance or appearance

will induce undesirable things for the classical monitoring tool, such as, information

lost, monitor disappearance and so on. Hence, two characteristics that we are thinking

important in a monitoring tool for verifying D-SOA system: resilience to dynamicityand

monitoring comprehensiveness.

� resilience to dynamicity: it refers to the preservation of the behavior �ow. In case

the monitored service is substituted, the monitor and its state should be trans-

ferred, meaning that the monitored property cannot be hard-linked to the code.

� monitoring comprehensiveness: it means that we cannot allow services to restrict

what is observable by the monitor. If we want to check a property, we need to

ensure that all the relevant events are monitored.

We propose to classify existing runtime veri�cation approaches according to the

monitor con�guration with respect to the monitored software systems. The moni-

tored property may be: manually written inside the code (in section 2.2.2), automat-

ically injected inside the code(in section 2.2.3), kept out of the code (in section 2.2.4)

and monitoring of web service (in section ??). For analyzing resilience to dynamicity

and monitoring comprehensivenessinto each of these families, �rstly we should give an

explanation about some property description styles.

2.2.1 Properties classi�cations

Property expressiveness is an important characteristic of runtime veri�cation systems.

In this section, we will give a short properties classi�cation: Invariant property,Behav-

ioral property,Liveness property,Timed property. We will explain these properties on the

following simple example:

Background and state of the art 19

public class A{

public boolean aCal lable ;

int x=1;

public void m() {

aCal lable = true ;

x++;

}

publ ic void g() {

aCal lable = false ;

x - -;

}

publ ic stat ic void main (Str ing [] args){

aCal lable = false ;

m() ;

g () ;

}

}

1. Invariant property: it's a property on state variables that have to be true every

time. Depending on the observation granularity, it can be used between instruc-

tions or during each call of method. For instance, let us consider x, which is a

variable of Class A. If we need to check that x is always larger than 0 during

this class running, we need to de�ne an invariant property for this class. This

property can be expressed in this example by some data-oriented property de-

scription languages such as annotation by = � @invariant x > 0; �=, or such as

an automaton (Fig. 2.4).

Figure 2.4: Invariant property described by an automaton

20 Monitoring systems

2. Behavioral property: It speci�es some acceptable sequences of method invoca-

tions. For instance, after m() invocation there is always a g() during this example

running, i.e., m())
g (). Such kind of sequence is taken as a behavioral prop-

erty description in monitoring system. Finite-state machine(FSM) is the most

usual way to describe a behavioral property. It also could be explained by anno-

tation, but annotations are usually dedicated to invariant properties. If they are

used to express a behavioral property, all related methods must be annotated.

For example, by inserting = � @requires aCallable== false; �= as a precondi-

tion of each method, except for method g(). If any method is missed, there is no

guarantee for the real executed results.

3. Liveness property: It is a more global case of behavioral property. It can not only

specify some �xed sequences of method invocations, but also can specify some

authorized sequences on in�nite traces.

For example, if m() is called, then g() will be necessarily called in the future. This

property is expressed on an in�nite traces. However, in the case of monitoring

system, it is usual to consider a bounded liveness trace like that there is a limit of

m() execution times before calling g(). Hence, this trace is a live property expres-

sion. If the states are �xed, we can use FSM to describe this sequence. Since the

execution times of m() is not �xed in this liveness sequence (m() can be called 1

time or 2 times or n times before calling g(), all these sequences are correct for

this liveness sequence), we can't express all these situations in one FSM. If we

use linear temporal logic(LTL) to express this sequence, i.e.,� (m() U g()).

4. Timed property: it's a behavioral property with time. For instance, after less than

10 seconds of m() call there is a g() invocation. The usual way to describe timed

properties is a timed automaton. This automaton can express time constraints

inside its conditions.

These forms of property descriptions will be used in the following monitoring

systems discussions in order to describe acceptable behaviors.

2.2.2 Hard-coding

In this category, where properties are manually added at source code at developing

time, we can cite all annotation techniques, like JML (in section 2.2.2.1) and Spec#

(in section 2.2.2.2). In both cases, the monitor is notresilient to dynamiccode loading.

Indeed, if a part of the monitored system is substituted, then its monitor is removed,

since it is in-line. However, this approach is interested in the term of comprehensiveness,

Background and state of the art 21

since we can observe anything in the program. A limitation of this approach is the

dispersion of the monitor throughout the code, requiring signi�cant intervention to

write the property or to check that its description is correct. We give some details

about JML and Spec# in the following sections:

2.2.2.1 Java Modeling language(JML)

JML [66, 67, 65,19] is a speci�cation language for a detailed design of Java modules.

This modeling language is inserted into the java comments of java �le. This language

form is like the following annotations:

//@ <JML specif icat ion >

or

/*@ <JML specif icat ion > @*/

When Java comment starts with sign @, this Java comment is translated as JML

annotation. JML [19] is used to describe the behaviors of classes and methods from

which users and/or developers can get the expected functions.

//@ requires descript != null ;

publ ic Str ing deleteAtAfterNl (Str ing descript)

{ /* ... */ }

From above codes, we know that "requires" is a JML keyword. It's meaning a

precondition can be de�ned before the method "deleteAtAfterNl(...)". Before invoke

this method, system need to verify whether the variable "descript" is empty or not. If

the "descript" value is non-null, this method can be executed. In the other case, a JML

exception is thrown by system at runtime.

Since JML annotations are located in Java comment, they can't impact the compil-

ing codes. When users and/or developers want to compare the actual behavioral from

classes with the JML speci�cations, the open source JML compiler can be adopted. If

the compared results do not match, the JML exception is thrown during the running

of the java code. Some tools have been built around JML for unit testing [28], runtime

checking [27], light-weight contract checking [22] and system veri�cation [44].

For Dynamic SOA-based systems, these JML annotations are added in it at developing-

time. When a service substituted by a new one, the monitor in the old one won't ap-

pear in the new one under the situation of without reboot. This speci�cation hasn't

dynamicity resiliencefor monitoring like Dynamic SOA-based systems.

22 Monitoring systems

2.2.2.2 Spec# Programming system

Spec# programming system [15, 16] is a new way to produce high-quality software

by focusing on more cost effective. It consists of C# and Spec# annotation, compiler

and static program veri�er. The Spec# static program veri�er is called Boogie. It can

generates logical veri�cation properties from Spec# program. These logical veri�ca-

tion properties are added into the monitored source code level for static verifying. It

focuses on three �elds:

� to check non-null typesfrom source code;

� to add pre/post-conditionand exception managementin method contract to verify

its methods;

� to create exposeblock in class contract for constraining the data �eld of object

invariants and class invariants.

JML and Spec# can express invariant properties which are methods granularity.

However, some assertions can be added between each instruction for more deeply

and targeted describing property. By the way, it is possible to encode behavior prop-

erties into them. But it can induce to add precondition before all methods. Spec# and

JML are two close languages to verify original system. Since the Spec# directly adds

its contracts (e.g., non-null type annotation, class and method contract) into C# code

rather than into C# comments, it has larger design space with its speci�ed contracts

than JML to check and test systems. A more complete analyze about these two lan-

guages is given in [16, Section 3: Related work].

2.2.3 Soft-coding

In this category, where properties are injected at compilation time, or load-time, we

can cite Enforcement monitor (in section 2.2.3.1), JavaMOP (in section2.2.3.2) and

Larva (in section 2.2.3.3). These tools use standalone description of a property and

inject the monitors inside the code by AspectJ technology (in section 2.1.3), but this is

not the same kind of hard-coding (in section 2.2.2).

Advantages of Soft-Coding approach are then the same as in the previous case, but

specifying the monitor is easier, since the description of the property is centralized.

However, these approaches from Enforcement monitor [58], Larva [32], JavaMOP [75]

or a monitor dynamically inserted into OSGi service implementations by AspectJ tech-

nology at runtime [18] are comprehensivenessand only partially resilient to dynamicity;

at best, the tool may inject the property at �rst-time binding, but once injected, the

Background and state of the art 23

property is hard-coded within the service for the whole execution of the class. We will

give some details about these soft-coding monitoring approaches in the following.

2.2.3.1 Enforcement Monitor

In [58], the monitor is a proxy between a client and a server with the goal of checking

time properties. In order to have suf�cient time to check whether an observed timed

property is correct or not, the runtime enforcement monitor focused on adding a �xed

delay between the reception and the forward of input events. This property is sent by

users to the monitor under the form of events sequence with delays which need to be

delayed. If the primitives send to the active monitor and the delays are not the same

with the given timed property, the enforcer will modify the delays by itself. It aims

to make the output timed sequence conforms to the designed property. After that, the

output timed sequence is taken as the input events sequence is sent to target system.

This enforcement monitor is explicitly called by client. It uses Aspectj compiler

to weave these designed primitives into target system [86, 38]. However, it can not

guarantee that all called method are checked through this monitor. Some methods

can also be sub-called by other methods itself, not always by client. In such a way, the

sub-calls are not observed by the monitor. It does not generate any input event and

can not be considered in the enforcement monitor.

This monitor system can express behavioral properties and timed properties. The

granularity of its property description is external methods.

2.2.3.2 JavaMOP

Java monitoring-oriented programming (JavaMOP) [24, 25] analyse framework dedi-

cated to the monitoring of Java programmings, which accepts some independent spec-

i�cation formalisms. It aims at reducing the gap between formal speci�cation and

implementation by integrating them into its original system. It can be used to design

a runtime monitor for developing reliability, security, dependability software. It can

be used to design events' logics (e.g., FSM, PTLTL, LTL and so on.) in formal speci-

�cation against software implementations. The designed speci�cation is compiled by

JavaMOP as AspectJ code, and then is woven into the target implementation system

by any AspectJ compiler (such as ajc) [59].

The property description of JavaMOP can express behavioral properties and live-

ness properties by LTL and PTLTL. However, the LTL expressed live property will

be generated by aspectj technology. The generated monitoring properties consists of

several FSM formulas. There is no expresiveness gain in the monitoring property de-

scription, except easier to write it.

24 Monitoring systems

2.2.3.3 Larva Tool

Larva [32] is a tool which injects the monitoring code in a Java program to check a de-

scribed property in a Larva script �le. This tool which weaves calls interception using

aspect-oriented programming techniques is closed to JavaMOP. Both of them permit

to monitor some behavioral properties, but real-time properties could be expressed

only in Larva. By the way, it can not only describe concrete service methods, but also

control certain dynamic events occurring by timers.

Figure 2.5: Larva system in a software system

When a monitored software is launched with Larva system(Fig. 2.5), its property

script is compiled by Larva compiler. TheLarva Compilergenerates two main outputs

from its script:

1. Aspect-oriented code: This code which links the monitoring code with the mon-

itored software that aims to extract the monitored events. It will be statically

injected some calls to the monitored software by using the AspectJ compilerat

coding-time or at compiling-time or loading-time.

2. Java class code: This code is used to verify the extracted events conform to the

designed property. The veri�cation system is outside the monitored software.

Once the designed event is checked, the veri�cation system send the monitored

records to users. It is up to the users to make some necessary actions to the

target system when a monitored record is outputted.

Larva property description can express behavioral properties and timed proper-

ties. Its granularity is on methods(internal and external). Larva and JavaMOP have

Background and state of the art 25

really close characteristics in them. However, Larva performed better with regard to

resources consumed than JavaMOP [33].

2.2.3.4 Monitoring of web services

There are a number of works (e.g., [102, 84, 14, 13]) that support the monitoring of

web services. In [102], a dynamic monitoring framework with its monitoring scenario

model and instrumentation layer is proposed for runtime monitoring SOA Execution

Environment-based systems. In this approach, AOP instrumentation is used. Each

exposed service has an interceptor socket code injected in, and wraps it with a socket.

Each interceptor is taken as a service and is published with its interest and priority.

Once an interceptor is registered, this registration information will be informed to ev-

ery interceptor socket with its wrapped service for comparing interceptor's attributes

with socket's. If attributes matched, this interceptor is added in the queue of matching

sockets by its priority. Then the injected monitor can start to monitor the corresponded

service invocation. There also exists some disadvantages:

� Interceptor socket code need to be injected to each exposed service, a socket is

wrapped with this service, even injected into some completely needn't to be

monitored services.

� This monitor currently just focuses on service invocation rather than speci�c

invocation parameters or the implemented business logic. For example, it can

monitor invocation rate and error rate.

The monitoring tool [102] can mainly expresses invariant property. And its property

is instruction granularity.

Java Business Integration(JBI) is a kind of Web services model. Since AOP [60] can

deal with crosscutting the aspects of a system's behavior as separately as possible and

without forcing source code modi�cation, an enrichment of JBI-compliant monitoring

is implemented through AspectJ technology [84]. As shown in Fig. 2.6, the de�ned

AspectJ pointcuts can be allowed to crosscut the JBI interfaces. Since keeping source

code and class �les avoid modi�cation, the authors leverage load-time weaving these

de�ned aspects by a dedicated java agent. This monitoring instrumentation based on

AOP enrich JBI speci�cation. Hence, this monitor can be a considerable restriction

in the expression of security policies. AspectJ technology can be used to monitoring

program points by its advice(be restricted to these manners: before, after, around), not

the business processes logic. The enrichment of JBI-compliant monitoring can express

invariant property. Its property is instruction granularity.

26 Monitoring systems

Figure 2.6: AOP crosscut analysis approach

In [14, 13], the authors provided both dynamicity resilience and comprehensive-

ness characteristics (even if these are not explicitly identi�ed as such) by listening to

events from a web service composition engine. Furthermore, in [13], this monitoring

architecture supports both instance monitorsand class monitors. Theinstance monitors

check the behaviors of a single instance of BPEL business process; theclass monitors

extract or collect information from the checked behaviors of all instance monitors, it

aims to get synthesized information at class point of view. However, to the best of

our knowledge, no similar monitoring techniques have been proposed for the OSGi

framework. Moreover, the context is not the same, since in a web service context,

we can easily distinguish between callers by their IP address and port number, but

it is impossible to know who is the caller, or which class or software is making the

call. The monitor tool can express behavior properties, liveness properties and timed

properties. Its property is business processes logic granularity.

Indeed, while it is technically possible to use AspectJ to support dynamic class

loading and unloading in OSGi, then the monitored bundle must declare the import of

the AspectJ library inside its Manifest �le — an operation which is not really transpar-

ent to the service. Note that this restriction does not exists in Equinoxe implementation

of OSGi (Eclipse). Since some choices would have been done in the con�guration of

the framework, requiring to restart the whole framework each time a new service is

installed. Furthermore, if monitors need to be started or stopped at runtime it cannot

be done directly through AspectJ without restarting the service—something which is

undesirable in 24/7 services.

Background and state of the art 27

2.2.4 Agnostic-coding

In this third category, where the monitor is kept out of the code, we include any trace

analyzes approach, such as LogOs system (in section 2.2.4.2) for monitoring OSGi-

based systems, event log-based detection systems and logging systems (in section

2.2.4.1). The main advantage of these approaches is the loose linking between the

property and the monitored system. Hence, if a package is substituted, the monitor

can observe it inside the logs and the monitored properties are still the same for the

whole system. Moreover, the description of the property is located into a single loca-

tion, which facilitates property management.

However, such Agnostic-Coding systems can be bypassed, e.g., intrusion detec-

tion systems and logging systems can only observe what services accept to push. If a

package provides a service without writing suf�cient logs, then the monitor does not

have suf�cient information to check a event correlation [79]. LogOs system is better

than that both monitoring systems, but we will see that some restrictions remain. In

the following, we will explain each logging system.

2.2.4.1 Logging system

In [12], authors proposed an approach to UNIX security logging. This proposition

used light-weight logging to off-line detect intrusion systems. They derive some em-

pirical data from realistic intrusion experiments, and then use the derived data to com-

pare with the light-weight logging methods which are a few simple methods. It aims

to detect and trace attacks against original systems, for instance, it can be merged into

an intrusion detect systems (IDS) [88]. But there is a precondition, enough data should

be logged to make a better detection the intrusions or others. The event log-based de-

tection system [87] also depends on suf�cient empirical event logs of system. And

its analysis depends on 3 years recorded event logs. Therefore, if logged information

is not suf�cient, this will affect the detections of logging system and event log-based

detection system.

These logging systems can express behavior properties, liveness properties and

timed properties. It is on methods (internal and external) granularity.

2.2.4.2 LogOs system

LogOs system [47] is a special logging tool based on the OSGi framework, developed

at the CITI Lab during the LISE project [64]. It's designed to work in a dynamic SOA

context. It can capture all behaviors of invoked service method during runtime, un-

der the condition that the service's interface is marked by annotation, even its service

28 Self Healab Systems

implementation is dynamical unloaded at runtime. As soon as the LogOs bundle is

started, each service registration is observed. LogOs is a transparent logging toolkit for

the service activity inside the OSGi architecture. Thanks to the OSGi hooking mech-

anism, a LogOs proxy is generated for each registered service. Hence, every method

call from the annotated service interface, including parameters and returned values,

are automatically intercepted. For each event captured by a LogOs proxy, a corre-

sponding LogOs event-description is forged and propagated to LogOs. The event-

description is just the service method who is annotated in the corresponding service

interface. Then, the LogOs will record the trace and store it. LogOs system can inter-

cept those speci�ed service methods/parameters based on OSGi framework and store

the logged events.

Since LogOs system's annotations add in speci�ed service interfaces and its proxy

adds between client and service implementation, LogOs system is separated from ser-

vice implementation. When service implementation dynamic changed at runtime, the

observation mechanism of LogOs system remain unaffected and no communication

with this speci�ed service interface can bypass the added proxy. So, this LogOs sys-

tem has treats of both resilient to dynamicityand comprehensiveness. But in LogOs sys-

tem, there is no veri�cation part to check whether these captured behaviors from the

running system are authorized or not.

LogOs system doesn't specify concrete behavior properties or liveness properties,

it just give a constraint range to observe. It can observe all action between client using

the annotated services. Its granularity is on external methods.

Finally, in this section 2.2, we gave the background and the state of the art on

the monitoring systems part of this thesis. We know that a dynamic monitoring sys-

tem with resilience to dynamicityand monitoring comprehensivenessis very important for

supporting D-SOA systems. When services dynamic unload or substituted by other

services, the special monitoring tool can restart at the latest event from the old one to

continue monitoring the new one. The dynamicity of D-SOA system doesn't affect the

dynamic monitoring system's observation mechanism and properities monitoring.

In the following, we discuss the second part of our state of the art: Self healable

software systems.

2.3 Self Healab Systems

One of our contributions is to deal with dynamic issues of services in dynamic SOA-

based execution environment. Hence, in this section, we will talk about state of the art

of self healable software system. Some approaches and some related techniques(e.g.,

	Notice XML

