Oumy Seye

Alexander Spetko

Amel Amosse Edouard

Ben Othmane

Tien Thinh Nguyen

Duc Jodi Schneider

Phu Chau

Imen Tayari

Anh- Tuan Nghiem

Thi Duong

Anh I Quynh

Would

Nguyen

Keywords: Business Workow, CPN, Ontology, Semantic Constraint, SPARQL, Verication Invoicing, Notication, Payment, Shipment, Inventory, Approval, Checking, Conrmation, Creation, Items, Order, Submitting

also like to thank my Vietnamese friends in Nice and Sophia Antipolis. With them, I have a

Résumé : Cette thèse traite le problème de la modélisation des patrons de workow semantiquement riche et propose un processus pour développer des patrons de workow. L'objectif est de transformer un processus métier en un patron de workow métier basé sur les ux de contrôle qui garantit la vérication syntaxique et sémantique. Les dés majeurs sont : (i) de dénir un formalisme permettant de représenter les processus métiers; (ii) d'établir des mécanismes de contrôle automatiques pour assurer la conformité des patrons de workow métier basés sur un modèle formel et un ensemble de contraintes sémantiques; et (iii) d'organiser la base de patrons de workow métier pour le développement de patrons de workow.

Nous proposons un formalisme qui combine les ux de contrôle (basés sur les Réseaux de Petri Colorés (CPNs)) avec des contraintes sémantiques pour représenter les processus métiers. L'avantage de ce formalisme est qu'il permet de vérier non seulement la conformité syntaxique basée sur le modèle de CPNs mais aussi la conformité sémantique basée sur les technologies du Web sémantique.

Nous commençons par une phase de conception d'une ontologie OWL appelée l'ontologie CPN pour représenter les concepts de patrons de workow métier basés sur CPN. La phase de conception est suivie par une étude approfondie des propriétés de ces patrons pour les transformer en un ensemble d'axiomes pour l'ontologie.

Ainsi, dans ce formalisme, un processus métier est syntaxiquement transformé en une instance de l'ontologie. La vérication syntaxique d'un processus métier devient simplement une vérication par inférence, par concepts et par axiomes de l'ontologie sur l'instance correspondante. Nous introduisons aussi la dénition formelle de contraintes sémantiques, qui exprime les dépendances entre les activités d'un processus métier. Nous présentons un algorithme pour la vérication des contraintes sémantiques redondantes et conictuelles. Un ensemble de contraintes sémantiques vériées est transformé en une instance de l'ontologie de processus métier appelée BP-ontology. Un patron de workow métier est ensuite développé en créant des correspondances entre l'ontologie BP et l'ontologie CPN. Il permet les vérications sémantiques d'un processus métier spécique.

Nous représentons l'ensemble des axiomes de l'ontologie CPN lié à la conformité syntaxique ainsi que les questions de vérication sémantique liées à la conformité sémantique en utilisant des requêtes SPARQL. An de vérier les patrons de workow, nous utilisons le moteur sémantique Jena pour l'adaptation d'un graphe RDF représentant un patron de workow métier de ces requêtes SPARQL. Si un patron de workow métier est vérié, il sera stocké dans une base de connaissances.

De plus, dans l'objectif de fournir un soutien supplémentaire pour la dénition de règles métiers, nous introduisons des règles sous forme de Condition Action Événement (CEA), qui expriment l'exactitude des processus au niveau métier. Les ensembles de règles CEA sont stockés avec le patron de workow métier correspondant dans la même base de connaissances. La base est organisée pour faciliter la capacité de partage et de réutilisation des patrons de workow. Enn, un prototype est conçu pour démontrer la faisabilité et les avantages de l'approche. iv Mots clés : Contrainte Sémantique, Ontologie, Réseaux de Petri colorés, SPARQL, Vérication, Workow métier Abstract: This thesis tackles the problem of modelling semantically rich business workow templates and proposes a process for developing workow templates.

The objective of the thesis is to transform a business process into a control owbased business workow template that guarantees syntactic and semantic validity.

The main challenges are: (i) to dene a formalism for representing business processes; (ii) to establish automatic control mechanisms to ensure the correctness of a business workow template based on a formal model and a set of semantic constraints; and (iii) to organize the knowledge base of workow templates for a workow development process.

We propose a formalism which combines control ow (based on Coloured Petri Nets (CPNs)) with semantic constraints to represent business processes. The advantage of this formalism is that it allows not only syntactic checks based on the model of CPNs, but also semantic checks based on Semantic Web technologies.

We start by designing an OWL ontology called the CPN ontology to represent the concepts of CPN-based business workow templates. The design phase is followed by a thorough study of the properties of these templates in order to transform them into a set of axioms for the CPN ontology. In this formalism, a business process is syntactically transformed into an instance of the CPN ontology. Therefore, syntactic checking of a business process becomes simply a verication by inference, by concepts and by axioms of the CPN ontology on the corresponding instance.

We also introduce the formal denition of semantic constraints, which express dependencies between the activities of a business process. We present an algorithm to check redundant and conicting semantic constraints. A set of well-checked semantic constraints is transformed into an instance of a business process ontology called the BP ontology. A business workow template is then developed by creating correspondences between the BP ontology and the CPN ontology. This enables semantic checks related to a specic business process.

We represent the set of axioms of the CPN ontology related to syntactic checks as well as the semantic verication issues related to semantic checks as SPARQL queries. In order to verify workow templates, we use the Jena semantic engine to match an RDF graph representing a business workow template to graph patterns of these SPARQL queries. If there are no matches, i.e., no shortcomings, a workow template is then stored in a knowledge base.

In addition, to provide additional support for specifying business rules, we introduce Event Condition Action (ECA)-like rules that express business level correctness requirements. The sets of ECA-like rules are stored along with the corresponding business workow template in the same knowledge base. The knowledge base is organized to facilitate the shareability and reusability of workow templates. Finally, a prototype is developed to demonstrate the feasibility and benets of the approach. are rstly designed during the build-time phase on the basis of design requirements, are then automated by software systems during run-time. Therefore, grasping the requirements properly and then transforming them without losing any information into a semantically rich specication play an important role in supporting business process management.

So far, various researchers have focused on process specication techniques [START_REF] Ellis | [END_REF][START_REF] Van Der | [END_REF]] and conceptual models of workow [START_REF] Barros | [END_REF], Koschmider 2005]. However, the existing practice of modelling business processes is mostly manual and is therefore vulnerable to human error. A workow designed incorrectly may lead to failed workow processes, execution errors or may not meet the requirements of customers. Therefore, model quality, correctness and re-usability become very important issues. It is desirable to develop a thorough and rigorous method that automatically supports workow designers to ensure high quality and semantically rich business processes.

In fact, existing techniques applied to check the correctness of workows are particularly used in commercial business workow systems. Most of them assume that a workow is correct if it complies with the constraints on data and control ow during execution [START_REF] Lu | [END_REF]]. Whether the workow is in conformity with the design requirements is neither specied nor proved. Consequently, numerous approaches have been developed to ensure workow correctness at the syntactic level (e.g., Chapter 1. General Introduction avoiding deadlocks and innite cycles, etc.), however, it is usually not sucient. In fact, at the semantic level errors may still exist.

Let us take an example in a process for the order management activity, when an order is approved, an order conrmation has to be sent to the customer. However, if the order conrmation is sent before the approval of the order, a semantic error occurs.

Recently, there is a little few research that focus on checking the semantic conformance of workows. Nevertheless, there is an inherent problem regarding the combination of syntactic and semantic checks that needs to be taken into account.

In order to address the above-mentioned problem, we focus on machine-readable knowledge bases. The objective is to support workow designers in generating semantically rich business workow templates which allow syntactic and semantic verication. With regard to the former, a set of syntactic constraints is introduced to provide automated support for workow designers. With regard to the latter, we specify semantic constraints as domain specic restrictions on a business process which express dependencies between activities and need to be conformed while the process is executed. We concentrate on the following research questions relating to the verication of a business workow template:

1. How to model semantically business workow templates?

2. Can syntactic and semantic checks be supported?

3. How to organize the knowledge base of business workow templates for a workow development process?

To better motivate our research, let us consider the following scenario, which can serve as a typical example for better understanding the problem of modelling business processes and reusing them. The scenario will illustrate the problem descriptions that will be used as examples to demonstrate our proposed solution in the next chapters.

Scenario

In the scenario we will mention:

• A repository, called CBWTRepository, contains business workow templates.

The templates stored in CBWTRepository are generic and can be used to model specic process models according to the CBWTRepository customer's requirements;

• A customer company, named CompanyA, has imported workow templates from CBWTRepository to build its own business application.

In the following we describe a set of workow templates relating to the fro-mOrdertoDelivery (fOtD) process. We also present the requirements of CompanyA 1.2. Scenario 3 concerning its business policy. Customer companies can use the workow templates to model their own fOtD process in compliance with their requirements. In Section 1.2.1, the templates are mentioned and described in their generic form. In Section 1.2.2, we introduce a CompanyA variant of the fOtD process and illustrate an adaptation of the templates used to model the fOtD process for CompanyA.

There are a lot of workow templates used to model the fromOrdertoDelivery process, such as templates for dunning, templates for returning purchased goods, templates for claims and templates for notication. However, to make this scenario easier to understand, we just highlight the four main templates as follows:

(i) Order Processing) is used to model an order pro- cessing process. It is worth noting that a workow-step can be a sub-workow in itself. For example, the step check item availability contains some workow-steps, e.g., check internal item availability, check external item availability, which are not illustrated in the gure for the sake of simplicity.

Table 1.1: Order processing template document Order processing template Description This template covers the time from the creation of an order to the approval of the order. An order can contain one or more requested items and the information concerning clients. Therefore, a checking phase, which may consist of a validation of client's data and validation of the availability of requested items, can be initiated after receiving an order from a client. The result of this phase is then evaluated.

Based on the evaluation, a decision whether the order is approved or rejected is made.

4

Chapter 1. General Introduction

Invoicing

The Invoicing template (see Figure 1.3) is used to model an invoicing process.

Description

In general, there are two contexts that a shipment process can take place.

-A shipment process can be initiated after receiving a request against an order; or -Ordered items can be shipped directly to the client from the supplier when a shipment process is in `drop shipment'.

In both cases, the ordered items are expected to be delivered to the correct address indicated by the client. A shipment process terminates when the ordered items reach the delivery address. Besides, some activities can be involved in the shipment template, such as packing, service delivery or transportation.

Purpose

To represent a set of activities for modelling a shipment In the upcoming section, we present the business of a company, namely compa-nyA and describe how to apply the above templates to its fOtD process.

Adapting templates stored in CBWTRepository to model the fromOrdertoDelivery Process for CompanyA

CompanyA, based in France, plans to create a fromOrdertoDelivery process. Instead of developing the process from scratch, this company has imported workow templates from CBWTRepository to build its own business application.

Let us take a brief look at the company's policy concerning the fromOrder-toDelivery process: CompanyA manages an online shopping website selling beauty products. About payment, with regard to online cosmetic orders, all orders must be prepaid. The company accepts credit cards, including VISA, MasterCard, and American Express. For the promotional codes, only one code (if applicable) may be used for one purchase.

An order can be shipped via an indicated shipping service. Back orders are not accepted. Customers are allowed to change their shipping method before completing their online order. Shipping charges are based on the order value and shipping address as follows:

• Within France, goods which cost in excess of EUR 100 per order will be delivered free of charge, conversely, a at rate delivery charge of EUR 6.80 will be applied.

• Within the rest of the European Union (EU), goods which cost in excess of 1.3. Proposal and Main Contributions 7 EUR 150 per order will be delivered free of charge, conversely, a at rate delivery charge of EUR 7.50 will be made.

• Shipment to NON-EU countries will be free of charge for order values of EUR 200 or over. If the order value is less than EUR 200, a at rate delivery charge of EUR 10 will be made. Additional customs duties, taxes and charges may be incurred for delivering to the NON-EU countries.

Charges are for each shipment and will be added to the invoice.

An order can be cancelled by calling to the Customer Service Department but only if the shipment has not yet been conrmed.

Customers can return their purchased goods by sending them back to the indicated company's address. Returns must be accompanied by invoice and they can be accepted only within 30 days of purchase. All returned products must be unused, and in saleable condition.

Accepted returns will be re-credited to the corresponding customers. Requests for refunds must be made in writing and will be granted only if no account balance is due. • Modelling semantically rich business workow templates:

On the one hand, for the formalization of control-ow in workow templates, we focus on modelling business processes with CPNs. We rst design an OWL ontology, called the CPN ontology, to represent the concepts of control owbased business workow templates (i.e., templates of business processes modelled with CPNs). Next, we thoroughly study the properties of the workow templates in order to transform them into a set of axioms for the ontology. A business process is thus syntactically transformed into an instance of the CPN ontology. As a result, syntactic checks become simply a verication by inference, by concepts and by axioms of the CPN ontology on the corresponding instance.

On the other hand, a formal denition of semantic constraints is introduced to model semantic business processes. A set of semantic constraints is generally specied with the help of domain experts 2 . However, when dening a set of semantic constraints, it may be redundant or conicting. Therefore, we introduce an algorithm to validate sets of semantic constraints. A set of well-checked semantic constraints is then automatically transformed into an instance of a business process ontology, called the BP ontology.

By creating correspondences between the CPN ontology and the BP ontology, a workow template is developed. Semantic checks related to a specic business process, therefore, are enabled.

• Providing automated support for syntactic and semantic checks related to a workow template.

In this thesis, the set of axioms of the CPN ontology related to syntactic checks as well as the semantic verication issues related to semantic checks are represented as SPARQL queries. The Jena semantic engine is then used to match an RDF graph representing a business workow template to graph patterns of these SPARQL queries. If there are no matches, a workow template is veried and stored in a knowledge base.

• Expressing business level correctness requirements by using Event Condition Action (ECA)-like rules.

In order to provide additional support for specifying business rules, we introduce ECA-like rules to represent the business level correctness requirements that semantic constraints cannot capture.

2 A group of people who are responsible for relevant business processes working at operational departments, where the business processes are intended to be run.

Thesis Outline

This thesis is structured as follows (see Figure 1.6):

• Chapter 2 introduces the basic concepts of business workows and business rules. Another objective of this chapter is to represent the knowledge involved in knowledge bases relying on the Semantic Web models for the verication of a business workow template.

• Chapter 3 provides a formal denition of CPN-based process models. In addition, the CPN ontology, which is developed to represent the concepts of CPN-based business workow templates, is also introduced.

• Chapter 4 gives a formal denition of semantic constraints and an algorithm for inferring implicit semantic constraints and detecting shortcomings. A set of well-checked constraints is then used to model a semantic business workow template. In addition, to integrate domain knowledge, ECA-like rules are also introduced to represent business level correctness requirements.

Chapter 1. General Introduction

• Chapter 5 concentrates on the syntactic and semantic verication of a business workow template. The verication indicates that a template does or does not conform to a set of given constraints.

• Chapter 6 describes a repository that contains business workow templates and their ECA-like rules. It provides an organizational mechanism for CBWTs to guarantee an eective search of workow templates. Thereby users can select and modify the workow templates along with their ECA-like rules for each use case.

• Chapter 7 provides an overview of the CBWT prototype which is implemented to validate the concepts discussed in the previous chapters. In this chapter, we focus on: (i) briey comparing business workows with scientic workows; (ii) introducing the basic concepts of business workows and business rules; (iii) the representation of the knowledge involved for the verication of a business workow template.

Workows and Workow Languages

Business Workows versus Scientic Workows

Over the years, workows have drawn an enormous amount of attention from the research communities. Many workow products, which are mainly workow management systems (WfMSs), have become commercially available. Business, scientic calculations and experiments are two main areas that drive and utilize workows.

In this section, we present the similarities and dierences between business and scientic workows based on their objectives from dierent point of views In fact, in the business world, the formal concept of workows has existed for a long time. In [START_REF] Wfmc | Workow Management Coalition Terminology and Glossary (WFMC-TC-1011)[END_REF]], the Workow Management Coalition described a business workow as the automation of a business process 1 , in whole or part, during 1 WfMC [START_REF] Wfmc | Workow Management Coalition Terminology and Glossary (WFMC-TC-1011)[END_REF]] dened a business process as a set of one or more linked procedures or activities which collectively realise a business objective or policy goal, normally within the context of an organisational structure dening functional roles and relationships which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules . On the other hand, to help scientists to implement and execute complex analyses, scientic workows are dened dierently, these are networks of analytic steps that may involve, e.g., database access and querying steps, data analysis and mining steps, and many other steps including computationally intensive jobs on high performance cluster computers [START_REF] Ludäscher | Scientic Workow Management and the Kepler System: Research Articles[END_REF]].

For WfMSs that control aspects of a workow, scientic and business WfMSs oer dierent sets of features. From the end-user's point of view, as stated in [START_REF] Yildiz | [END_REF]], they both refer to:

(i) model and specify processes with design primitives;

(ii) re-engineer developed processes, like verication and optimization;

(iii) execute automatically processes by scheduling, controlling and monitoring the tasks.

The design of business WfMSs is generally independent from the concrete business area of employing enterprises. Consequently, this workow technology follows the generic approach. Therefore, IT experts play an important role in implementing business processes of the enterprise and establishing the software infrastructure (see Figure 2.1). It is important to note that business workows aim to automate and optimize an organization's processes in an administrative context to reduce costs (e.g., human resources) and increase revenue. They often represent the products of enterprises [START_REF] Sonntag | [END_REF]], for example a reservation in a travel agency stands for the product reservation. Up to now, there are more than a hundred business WfMSs, such as FileNet 2 , SAP 3 , JBPM 4 and Spi Workow 5 . Insurance, banking and health industries, for example, are domains using business workows.

In contrast to business counterparts, scientic WfMSs are often designed for a specic application domain. Scientic workow systems focus on supporting scientists in designing and implementing large-scale and complex e-science processes of scientic applications. With regard to conceptual modelling and workow design, a set of features and primitives is often provided to process designers. Both scientic and business 14 Chapter 2. Basic Concepts WfMS use primitives to represent dierent tasks, dependencies, decisions and models of computational structures. The primary dierence between them is that business workows focus on modelling control-ow oriented business processes while scientic workows, which aim to model large-scale data-intensive and compute-intensive scientic processes, tend to be dataow oriented.

As depicted in Figure 2.3, an edge A → B in a business workow naturally means that B is executed after A and they are only executed once, i.e., the edge represents control-ow. Furthermore, dataow, which is implicit or modelled separately, is often the secondary issue in business workows. Conversely, in a scientic workow, A → B typically represents dataow, i.e., actor B consumes the output of actor A. In dataow modelling, no precise execution order between tasks is mentioned. Therefore, in contrast to business workows where only tasks not on the same paths can be executed concurrently, scientic workows can execute simultaneously a number of tasks on the same dataow path as illustrated in Figure 2 Each typical scientic workow can be seen as a computational experiment.

They are exploratory in nature and often conducted in a what-if or a trial-and-error manner. Hence, the outcome of a scientic workow not only can validate/prove or invalidate a scientic hypothesis, but also can serve some similar experimental 2.1. Workows and Workow Languages 15 goals. In contrast, the outcome of a business workow is already known before it starts through business-driven goals. For example, when applying for a bank loan, the proposal can be approved or rejected.

With regard to workow instances, large numbers of cases and independent workow instances can be handled by business workows at any given time. However, truly independent instances are not as common in scientic workows. A scientic workow can invoke multiple related and interdependent instances, for example, in the context of parameter studies.

In compliance with our objective, business workows are chosen for our work. We concentrate on the representation of control ow-based business workow templates in a knowledge base.

Workow Charateristics

In this Subsection, we introduce some basic concepts of business workows and their perspectives based on [van der [START_REF] Van Der | [END_REF], van der Aalst 2002b, van der Aalst 2003a].

According to [van der [START_REF] Van Der | [END_REF]], workows are case-based, i.e., tasks are executed for specic cases. Some examples of cases are an order, a tax declaration, a wire transfer or a request for a medical examination. Each case has a unique identity and a limited lifetime. For example, in case of a wire transfer, it begins at the moment when the wire transfer is submitted and expires when the processing of the wire transfer has been completed. Similar cases have the same case type and in principle they can be handled in the same way. A workow process is designed to handle similar cases as eciently and eectively as possible. The workow process denition species which tasks need to be performed and in which order [van der Aalst 2002b]. Workow process denition can also be regarded as `procedure', `ow diagram' or `routing denition'.

Being a logical unit of work, a task is atomic and thus always executed in full.

Checking account information, informing a result, calculating a formula are some examples of tasks. Since the task is done in a specic order, identifying conditions which relate to causal dependencies between tasks is necessary. A condition holds or does not hold (true or false) [van der Aalst 2003a]. Each task has pre-conditions and post-conditions which should hold before and after the task is executed, respectively.

A task, which refers to a generic piece of work, is dened for a type of case not for one specic case, i.e., the same task can be performed for many cases. In addition, to avoid confusion between the task itself and its performance relating to a particular case, the terms work item and activity are used. The former refers to a task which needs to be executed for one specic case. The latter refers to the actual execution of a work item. A work item and an activity are both related to a specic case. Consequently, the process dimension and the resource dimension are generic, not tailored towards any specic case. Individual cases that are concerned with the third dimension are executed in accordance with the process denition by the proper resources. In this thesis, we concentrate on developing business workows which handle cases. Therefore, we focus on the process and case dimension. By using Coloured

Resource dimension

Process dimension

Petri Nets (CPNs) (see Section 3.1.1) as the workow language, the routing of cases, which is one of the main issues of the two dimensions, is syntactically represented.

We will only present the mechanisms. Therefore, the resource dimension, which relate to human resource aspects, as well as the mapping of resources to work items will not be discussed in detail.

Workow Languages

Workow languages can be categorized into several classes according to their underlying methodologies and meta models, such as graph-based, Petri-net based and workow programming languages [Weske 1998]. The constructs and relationships of workow models of certain workow languages are described through a meta model.

Graph-based languages allow the specication of workows, which consists of workow activities, their hierarchical relationships and constraints on their data ow and control ow, by using directed graphs. Therefore, to cover the workow aspects (i.e., the functional, behavioural, informational, operational and exibility aspect), these graphs need to be enhanced, for instance, using graph notation to specify the functional and behavioural aspects. Graph-based languages support the basic workow patterns as stated in [van der Aalst 2003b]. These languages also provide workow modelling constructs, such as iteration and nesting.

Business Rules 17

The second class of workow languages is based on Petri Nets (PNs) [Petri 1962]. A PN is a directed bipartite graph that comprises three main components:

• Places : Holding tokens that represent states. The number of tokens in a place can vary over time;

• Transitions : Representing activities or tasks. Transitions may consume and produce tokens;

• Directed arcs : Linking transitions and places. An arc can only connect a place with a transition or vice versa. have been developed to incorporate these extensions and support workow designers in modelling and analysing complex systems. Coloured Petri Nets are chosen as the workow language in our work. Therefore, we will briey introduce CPNs in Section 3.1.1.

The last class of workow languages are workow programming (or script) languages. However, since script languages are often used in projects where system development issues play a major role, in this research we will not pay much attention to them.

Business Rules

The concept of `business rule' has been widely used in the context of expert systems.

According to the Business Rules Group (BRG) 10 , a business rule is a statement that denes or constrains some aspect of business. It is intended to assert business structure or to control or inuence the behaviour of the business..

Generally speaking, in a business process, there exist multiple decision points at which a number of criteria (so-called business rules) are evaluated. The behaviour of the business process is then changed based on these business rules. Consequently, business rules play the core drivers role in the business processes of an enterprise.

Business rules represent particular business logic in a specic context. They consist of internal and external business rules. The internal business rules of a 10 The BRG is an independent organization which comprises experts in the eld of systems • the vocabulary and rules for documenting the semantics of business vocabularies, business facts, and business rules in a certain business domain. Consequently, SBVR rules capture what business rules are, rather than how they can be executed;

• an XML representation for the interchange of business vocabularies and business rules among organizations and between software tools.

In SBVR, each rule builds on at least one fact and facts build on concepts as expressed by terms. For example, It is necessary that each customer has at least one bank account is a business rule 11

Business rules can generally be seen as independent business knowledge units which relate to some forms of reasoning. They are categorized based on certain characteristics in order to easily handle the set of business rules. According to [sbv 2013],

business rules are divided into three types, i.e., static constraints, dynamic constraints and derivation rules. The authors in [Hay 2000] introduce a similar classication which includes structural assertions, action assertions and derivations. Three same types can be found in [Romanenko 2006] named as structural rules, dynamic 11 There are four font styles used in the SBVR-based Structured English:

• term: The `term' font is used for designations for object types, noun concepts (other than individual noun concepts).

• Name: The `name' font is used for designations of individual noun concepts names.

• verb: The `verb' font is used for designations for verbs, prepositions, or combination thereof.

• keyword: The `keyword' font is used for linguistic symbols used to construct statementsthe words that can be combined with terms, Names and verb to create business rules.

rules and derivation rules respectively. Eijndhoven et al. in [van Eijndhoven 2008] identify two main categories, rules (consisting of derivation rules and action rules)

and constraints (enforcing certain limitations to the structure, behaviour or information of an organisation or system). G. Wagner in [Wagner 2002] also denes constraint, derivation and reaction rules. Among dierent classications just mentioned above, we will follow the classication of SBVR. We use the denotations:

structural rules, action rules and derivation rules (see Appendix A).

In addition, business rules are often represented as Condition-Action rules (socalled production rules) or Event-Condition-Action (ECA) rules to enforce business rules directly by an automated system:

• A production rule, which is expressed in the format of IF condition THEN action, species that one or more concrete actions are executed in the case that its conditions are fullled. Usually, users or an application can invoke production rules but then a rule engine will process them automatically.

• An ECA rule species that after an event (E) takes place, a clause condition (C) is checked and if it is fullled then the action (A) is executed. The general syntax of ECA rules is ON event IF condition DO actions.

Besides, ECA rules can be automatically triggered when certain events take place. They can react to events in real time. Furthermore, depending on the rule language is used, a ECA rule can specify a single (atomic) event or a composite event. For example, a temporal composition of events is mentioned in [Boley 2007[START_REF] Bry | [END_REF], Taveter 2001].

Production rules and ECA rules are widely supported by existing engine rules.

They can be regarded as two variants of action rules [van Eijndhoven 2008]. Besides, it is necessary to underline that some structural rules and derivation rules can be also represented in the form of production rules as well as ECA rules. Let us take an example: The following structural rule:

It is obligatory that each rental car is owned by exactly one branch.

can be represented by the following production rule:

If a car is a rental car then it belongs to one branch.

Therefore, production rules and ECA rules are considered as the most convenient way for representing business rules.

Knowledge Representation in the Semantic Web Models

Our work aims to develop a knowledge base for workow process templates. Therefore, we base on the Semantic Web models in which the accessibility, interoperability, expressiveness, share and reuse of workow process templates are guaranteed.

This section provides a brief overview of the Semantic Web models and the formalisms that are currently used for knowledge representation: RDF, RDFS, OWL and SPARQL. 12 The coloured layers (in blue) have been standardized [Bénel 2010] 13 http://en.wikipedia.org/wiki/Semantic _ Web _ Stack

Knowledge Representation in the Semantic Web Models 21

The basic structure of RDF is a graph (called RDF graph), composed of triplets.

An RDF triple contains three components conventionally written in the order {subject, predicate, object}, where:

• the subject is an RDF URI reference or a blank node;

• the predicate is an RDF URI reference;

• the object is an RDF URI reference, a literal or a blank node.

RDF is regarded as the basis of the Semantic Web. The SPARQL query language has the four following forms that use the solutions from pattern matching to form result sets or RDF graphs:

• SELECT query is used to extract values, which are all, or a subset of the variables bound in a query pattern match, from a SPARQL endpoint. The variables, which contain the return values, are listed after a SELECT keyword.

In the WHERE clause, one or more graph patterns can be specied to describe the desired result;

• CONSTRUCT query is used to return an RDF graph constructed by substituting variables in a set of triple templates;

• ASK query is used to return a boolean indicating whether a query pattern matches or not;

• DESCRIBE query is used to return an RDF graph that describes the resources found.

Here are the reasons why we choose the SPARQL query language for the verication of a workow template in Chapter 5:

(i) It is an RDF query language;

(ii) It is a W3C Recommendation and is widely accepted in the Semantic Web and also Articial Intelligence community;

(iii) Its syntax is quite simple which allows for a query to include triple patterns, conjunctions, disjunctions and optional patterns;

(iv) It can be used with any modelling language.

Chapter 2. Basic Concepts

Conclusion

The key issue in ensuring the syntactic and semantic correctness of business workow templates during design time is to automate the process of checking whether a workow template is or is not consistent with a set of predened constraints. This problem is characterized by a large amount of semantic constraints, which express dependencies between activities of a business process, and a set of syntactic constraints using to model a business workow template. To eectively maintain this knowledge, it is desirable to rst formally represent it.

In this chapter, we have presented some basic concepts of business workows and business rules. We have also introduced the models of the Semantic Web, which we use to represent the knowledge involved in modelling semantically rich business workow templates (Chapter 3, Chapter 4 and Chapter 6) and the verication of workow templates (Chapter 5). According to [START_REF] Jørgensen | [END_REF]], Coloured Petri Nets (CPNs) have formal semantics and can describe any type of workow system, behavioral and syntax wise simultaneously. They have been successfully applied in modelling workows and workow systems. Therefore, CPNs are chosen as the workow language in our work.

In this chapter, we introduce an ontological approach to represent Control owbased Business Workow Templates (CBWTs) (i.e., templates of business processes modelled with CPNs) in a knowledge base. In detail, we rst introduce a formal denition of CPN-based business process models which is used to transform a business process into a control ow-based business workow template. Next, the CPN ontology is developed to represent Coloured Petri Nets with OWL DL. We then introduce manipulation operations on workow templates for developing CBWTs.

Chapter 3. Development of a Knowledge Base for Control ow-based Business Workow Templates

Modelling Business Processes with Coloured Petri Nets

In order to help readers easily understand the following denitions, we rst provide some syntax used to write the expressions:

• C M S denotes the multiset over set C. The notion of multiset is a generalization of the notion of set in which elements can appear more than once;

• T ype(v) denotes the type of variable v;

• V ar(E) denotes the set of variables in expression E;

• For each arc a, a.p and a.t denote place p and transition t connected by a;

• M (p) is the value of the token in place p.

Overview of Coloured Petri Nets

CPNs [START_REF] Kristensen | [END_REF]] are extended from Petri Nets with colour, time and expressions attached to arcs and transitions. A CPN is a directed bipartite graph, which consists of places (drawn as ellipses) and transitions (drawn as rectangles) connected by directed arcs (drawn as arrows). Each place holds a set of markers called tokens.

Each token can carry both a data value called its colour and a timestamp. A token has the same type as its place.

Since transitions may consume and produce tokens, it is necessary to use arc expressions to determine the input-output relations. An incoming arc indicates that tokens may be removed by the transition from the corresponding place while an outgoing arc indicates that tokens may be added by the transition. Consequently, tokens are used to simulate control ows in a business workow. They play a crucial role in providing an instrument to check the syntactic correctness of the workow.

We next present a denition of CPNs, which is close to the one introduced in [START_REF] Kristensen | [END_REF]]. This provides the foundation for the denitions introduced in the following section.

Denition 1 (Coloured Petri Nets). A Coloured Petri net is formally dened as a 9-tuple CP N = (, P, T, A, N, C, G, E, I), where:

• is a nite set of non-empty types, called colour sets.

• P is a nite set of places.

• T is a nite set of transitions.

• A is a nite set of directed arcs such that:

P ∩ T = P ∩ A = T ∩ A = ∅. • N : A → P × T ∪ T × P is a node function. It is dened from A into P × T ∪ T × P . <String, Int> <String, Int> <Int> 1`{a="Article 01", n=5} 1`{p=4} (a,n) (a,n*p) (p) Figure 3.1: Example of a CPN • C : P → is a colour function. It is dened from P into . • G : T → expression is a guard function. It is dened from T into expressions such that: ∀t ∈ T : [T ype(G(t)) = Bool ∧ T ype(V ar(G(t))) ⊆] • E : A → expression

Why is CPN chosen for our work?

There are many benets to using CPNs as a workow language, such as:

• CPNs have very well-dened semantics. They have been developed into a full-edged language for the design, specication, simulation, validation and implementation of large-scale software systems;

Chapter 3. Development of a Knowledge Base for Control ow-based Business Workow Templates

• CPNs have a graphical representation. Their notation is similar to existing workow languages;

• Since CPNs support dierent types of data (i.e., colours) and the use of global variables, it is easy to adapt CPNs to dene Object-Oriented languages;

• The expressiveness of state and also behavioural changes are allowed in CPNs simultaneously.

• CPNs provide hierarchical descriptions. They oer interactive simulations where the CPN diagram can present directly the results;

• CPNs are executable and allow for dierent types of analysis, such as state-space analysis and invariants [START_REF] Pesic | [END_REF]];

• CPNs have computer tools, named CPN Tools

[The AIS group, Eindhoven University of Technology 2013], which support their drawing, simulation and formal analysis.

Coloured Petri Net-based Process Models

To take advantage of using CPNs, we introduce here a formal denition of CPNbased process models used to transform a business process into a control ow-based business workow template.

Denition 2 (CPN-based process model). A CPN-based process model, PM, is formally dened as a 8-tuple PM = (, P, T, A, C, G, E, I), where:

• is a nite set of non-empty types.

• P = P in ∪ P out is a non-empty nite set of places. P in and P out denote the input and output states of the activity nodes in a process model, respectively.

Place s ∈ P in is the start point in a process model. It is the input place of transition t start ∈ T act and has no entering arc. In a process model, there is only one start point.

Place e ∈ P out is the end point in a process model. It is the output place of transition t end ∈ T act and has no leaving arc. In a process model, there is only one end point.

Place p ∈ P \{s, e} has one leaving arc and one entering arc.

The number of tokens in place p:

∀p ∈ P : [w(p) = 0]or[w(p) = 1].
• T = T act ∪ T ctrl is a non-empty nite set of transitions.

Modelling Business Processes with Coloured Petri Nets

29

T act is a non-empty nite set of activity nodes. Each activity node has one entering arc and one leaving arc.

T ctrl is a nite set of control nodes. A control node connects the output states of activity nodes with the input states of other activity nodes.

• A ⊆ (P × T) ∪ (T × P) is a set of directed arcs connecting input places to transitions or transitions to output places.

• C : P → is a colour function. It is dened from P into .

• G : T → expression is a guard function associating an operation with a transition.

• E : A → expression is an arc expression function. It is dened from A into expression such that: • Sequential : The activities can be executed sequentially if the execution of one activity is followed by the next activity. The control node Sequence is thus necessary for this case.

∀a ∈ A : T ype(E(a)) = C(a.p) ∧ T ype(V ar(E(a))) ⊆ • I : P → expression is
• Parallel : Several activities can be executed at the same time or in any order.

The two control nodes And -split and And -join are required to model this composition.

• Conditional : It means that there is a choice between two or more alternatives.

The two control nodes Xor -split and Xor -join are used to model the choice.

• Iterative : A composition in which several activities are executed iteratively until a given condition is satised.

A routing composition is dened by a mapping between the outputs and the inputs of activity nodes via control nodes. Consequently, each composition comprises at least two activity nodes, one control node, three places and six directed arcs in total. We can decompose every business process model into exactly one set of routing compositions. Subsequently, we present the denitions of the components involved in routing compositions.

Denition 3 (AF (Activity Function)). AF describes an operation in an activity node and is dened as a 8-tuple:

N F = (, P, T, A, C, G, E, I) where:

• is a nite set of non-empty types.

• P = P in ∪ P out is a nite set of places dening the input and output states of the AF.

P in and P out are the set of input and output places respectively where: P = P in ∪ P out ; P in ∩ P out = ∅; P in = {p in }; P out = {p out }.

• T is a nite set of transitions denoted the behaviour of the AF.

T = {t} where transition t is an activity node containing the operation to be executed.

• A ⊆ (P × {t}) ∪ ({t} × P) is a set of directed arcs connecting input places to transitions or transitions to output places.

• C : P → is a colour function associating a type to each place. It is dened from P into .

• G : {t} → expression is a guard function associating an operation to transition t. It is dened from G into expression where: • is a nite set of non-empty types.

T ype(G(t)) = T ype(V ar(G(t))) ∧ C(p out) ⊆ • E : A → expression is an arc expression function. It is dened from A into expression where: ∀a ∈ A : E(a) = M (a.p) if a.p ∈ P in G(a.t) otherwise • I : {p in } → expression is
• P is set of places dening the input and output states of the sequence operator. P = P in ∪ P out ; P in ∩ P out = ∅ where P in = {p in } and P out = {p out }.

• T is a nite set of transitions.

T = {t} where transition t is a control node containing the sequence operator.

• A = ({p in } × {t}) ∪ ({t} × {p out }) = {a in , a out } is a set of directed arcs
connecting input places to transitions or transitions to output places.

• C : P → is a colour function associating a type to each place where:

C(p in) = C(p out).
• G : {t} → expression is a guard function associating an operation to transition t where: T ype(G(t)) = C(p out)

• E : A → expression is an arc expression function. It is dened from A into expression where:

∀a ∈ A : E(a) = M (a.p) if a.p = p in G(a.t) otherwise • I : {p out } → expression is an initialization function associating initial values to p out .
Denition 5 (And-split operator). And-split operator indicates that multiple threads are generated. These threads can be executed in parallel or in any order. It is dened as a 8-tuple:

AndsplitO = (, P, T, A, C, G, E, I) where:

• is a nite set of non-empty types.

• P is a nite set of places dening the input and output states of the And-split operator.

P = P in ∪ P out ; P in ∩ P out = ∅ where P in = {p in } and P out = {p out1 , p out2 , . . . , p outM }.

Chapter 3. Development of a Knowledge Base for Control ow-based Business Workow Templates

• T is a nite set of transitions.

T = {t} where transition t is a control node containing the And-split operator.

• A = ({p in } × {t}) ∪ ({t} × P out) = {a in , a out1 , a out2 , . . . , a outM } is a set of directed arcs connecting input places to transitions or transitions to output places.

• C : P → is a colour function associating a type to each place where:

C(p in) = C(p out1) ∧ C(p out2) ∧ . . . ∧ C(p outM)
• G : {t} → expression is a guard function associating an operation to transition t where: T ype(G(t)) = C(p in).

• E : A → expression is an arc expression function where Expr is a set of expressions. It is dened from A into expression where:

∀a ∈ A : E(a) = M (a.p) if a.p = p in G(a.t) otherwise
• I : P out → expression is an initialization function associating initial values to output places.

Denition 6 (And-join operator). And-join operator indicates that there is a convergence with synchronization of multiple parallel threads. It is dened as a 8-tuple:

AndjoinO = (, P, T, A, C, G, E, I), where:

• is a nite set of non-empty types.

• P is a nite set of places dening the input and output states of the And-join operator.

P = P in ∪ P out ; P in ∩ P out = ∅ where P in = {p in1 , p in2 , . . . , p inN } and P out = {p out }.

• T is a nite set of transitions.

T = {t} where transition t is a control node containing the And-join operator.

• A = (P in × {t}) ∪ ({t} × {p out }) = {a in1 , a in2 , . . . , a inN , a out }
is a set of directed arcs connecting input places to transitions or transitions to output places.

• C : P → is a colour function associating a type to each place where:

C(p out) = C(p in1) ∧ C(p in2) ∧ . . . ∧ C(p inN)
• G : {t} → expression is a guard function associating an operation to transition t where: T ype(G(t)) = C(p out) ⊆

• E : A → expression is an arc expression function where Expr is a set of expressions. It is dened from A into Expr where:

∀a ∈ A : E(a) = G(a.t) if a.p = p out M (a.p) otherwise
• I : {p out } → expression is an initialization function associating initial values to the output place.

Denition 7 (Xor-split operator). Xor-split operator indicates that only one of multiple threads is to be executed. It is dened as a 8-tuple:

XorsplitO = (, P, T, A, C, G, E, I)

The Xor-split operator is dened similarly to the And-split operator except for the two functions G and E. We dene these functions for XorsplitO as follows:

• G : {t} → expression is a guard function where: Denition 8 (Xor-join operator). Xor-join operator indicates that whenever any one of multiple activities is executed, it causes the following activity to be executed.

T ype(G(t)) = Bool ∧ T ype(V ar(G(t))) ∧ C(p in) ⊆ • E : A → expression is
The operator is dened as a 8-tuple:

XorjoinO = (, P, T, A, C, G, E, I)

The Xor-join operator is dened similarly to the And-join operator except for the two functions G and E. We dene these functions for XorjoinO as follows:

• G : {t} → expression is a guard function where:

T ype(G(t)) = Bool ∧ T ype(V ar(G(t))) ∧ C(p out) ⊆ • E : A → expression is

A simple Order Process Example

Example 3.1.1. In Figure 3.3, we represent the Order processing template, which is introduced in Section 1.2.1.1. To connect two activity nodes, we use one control node. And -split and And -join are used to connect a group of tasks executed in parallel, for example V alidate_client_data and Check_item_availability. Xorsplit and Xor -join are used to connect a group of alternative tasks. And control nodes are used to connect tasks executed in sequence.

Although CPNs have been widely studied and successfully applied in modelling workows and workow systems, the lack of semantic representation of CPN components can make business processes modelled with CPNs (i.e., business workows) dicult to interoperate, share and reuse. Besides, an ontology with its components, which provides machine-readable denitions of concepts, can play a pivotal role in representing semantically rich workow denitions. Once workow denitions are stored as semantically enriched workow templates, IT experts can easily develop their appropriate software systems from the workow templates. In the upcoming section, we will present the denition of semantic metadata for business workow templates. The main purpose is to facilitate business workow templates to be shared and reused among process-implementing software components. • The concept P lace is dened for all places of P . We consider the case in which one place contains at most one token at one time. Therefore, this concept can be glossed as `The class P lace is dened as the intersection of: (i) any class having at least one property connectsT rans whose value is equal to the class T ransition and; (ii) any class having at most one property hasM arking whose value is restricted to the class T oken'.

An Ontology for

• The concept T ransition is dened for all transitions of T . This concept can be glossed as `The class T ransition is dened as the intersection of: (i) any class having at least one property connectsP lace whose value is equal to the class P lace and; (ii) any class having one property hasGuardF unction whose value is restricted to the class GuardF unction'.

• The concept InputArc is dened for all directed arcs from places to transitions in A. This concept can be glossed as `The class InputArc is dened as the intersection of: (i) any class having at least one property hasExpression whose value is restricted to the class Delete and; (ii) any class having at least one property hasP lace whose value is restricted to the class P lace'.

• The concept OutputArc is dened for all directed arcs from transitions to places in A. This concept can be glossed as `The class OutputArc is dened as the intersection of: (i) any class having at least one property hasExpression

An Ontology for Coloured Petri Nets-based Business Workow

Templates 37

whose value is restricted to the class Insert and; (ii) any class having at least one property hasT rans whose value is restricted to the class T ransition'.

• The concept Delete is dened for all expressions in input arcs. This concept can be glossed as `The class Delete is dened as any class having all of properties hasAttribute whose values are equal to the class Attribute'.

• The concept Insert is dened for all expressions in output arcs. This concept can be glossed as `The class Insert is dened as any class having at least one property hasAttribute whose value is restricted to the class Attribute'.

• The concept GuardF unction is dened for all transition expressions. This concept can be glossed as `The class GuardF unction is dened as the intersection of: (i) any class having at least one property hasAttribute whose value is restricted to the class T oken and; either any class having one property hasActivity whose value is restricted to the class ActN ode or any class having one property hasControl whose value is restricted to the class CrtN ode'.

• The concept T oken is dened for all tokens in places. This concept can be glossed as `The class T oken is dened as any class having at least one property hasAttribute whose value is restricted to the class Attribute'.

• The concept Attribute is dened for all attributes dened for the individuals. This concept can be glossed as `The class Attribute is dened as any class having at least one property value whose value is restricted to the class V alue'.

• The concept AtcN ode is dened for occurrence operation in activity nodes. This concept can be glossed as `The class AtcN ode is dened as any class having one property value whose value is restricted to the class V alue'.

• The concepts CtrN ode is dened for the occurrence condition in control nodes. This concept can be glossed as `The class CtrlN ode is dened as any class having at most one property value whose value is restricted to the class V alue'.

• The concept V alue is dened for all subsets of I 1 × ×I 2 × . . . × I n where I i is a set of individuals. This concept can be glossed as `The class V alue is dened as any class having at least one property valueRef whose value is equal to the class V alue'.

Realization

We rely on OWL DL and use Protégé 1 , an OWL editor, to develop the CPN ontology.

First of all, it is necessary to note that two OWL class identiers, named owl : T hing and owl : N othing, are particularly predened. The class extension of owl : T hing is the set of all OWL individuals. The class extension of owl : N othing is the empty set. As a result, each user-dened class is absolutely a subclass of owl : T hing.

Chapter 3. Development of a Knowledge Base for Control ow-based Business Workow Templates

Besides, the following types of properties in the Web Ontology Language (OWL) are used to build an ontology:

• Object properties used to link an individual to another individual;

• Data properties used to link an individual to an RDF literal or an XML Schema data type;

• Domains and ranges indicate that properties link individuals from one domain to individuals from another domain;

• Datatypes: There are three types of data range specications in OWL, including a RDF datatype, the RDFS class rdf s : Literal and an enumerated datatype;

• EquivalentClasses(CP N Ont intersectionOf (restriction(hasP lace allV aluesF rom(P lace) minQualif iedCardinality(1)) restriction(hasT rans allV aluesF rom(T ransition) minQualif iedCardinality(1)) restriction(hasArc allV aluesF rom(unionOf (InputArc OutputArc)) minQualif iedCardinality (1))));

In order to dene a class as a subclass of another one, an axiom written in the syntactic form SubClassOf (C 1 , C 2) is used. For example, the class P lace is a sub-class of the class CP N Ont, the class axiom is created as follows:

SubClassOf (P lace CP N Ont);

If two classes are disjoint, an individual cannot be an instance of more than one of the two classes. For example, the class P lace and the class T ransition are mutually disjoint. This disjointness can be expressed using the syntactic form We have introduced the CPN ontology represented in OWL DL. For the development of CBWTs (i.e., business processes modelled with CPNs), in the next section, we will introduce manipulation operations on their elements. We will also present the corresponding manipulation statements written in the SPARQL language used to store concrete CBWTs in RDF format.

Manipulation of Business Workow Templates

In order to develop a business workow template, the following basic types of operations on its elements are required: (iv) Editing the order of existing elements in a workow template.

More complex operations can then be developed based upon these basic operations. For example, two separate CBWTs, which represent two business workow templates, can be merged into a single CBWT by inserting all places, transitions and arcs from one template to the other. A new arc is also inserted in order to link these CBWTs.

We next dene the operations by the corresponding pseudo codes. We also introduce the SPARQL statements being suitable to the operations, which enable

CBWTs to be stored in RDF format.

(i) Inserting new elements into a workow template. M ODIF Y P ROCESS wf

IN SERT ELEM EN

W HERE cond 1 , cond 2 , . . . , cond n REP LACE condR 1 , condR 2 , . . . , condR m ; (n ≥ 1, m ≥ 1)
This statement is used to edit ordering relationships in a workow template.

No element inserted, deleted or updated in the template.

Related Work

To the best of our knowledge, the ontology-based approach for modelling workow templates is not a new idea. There has been some work to build workow ontologies, such as [START_REF] Greco | [END_REF], Koschmider 2005[START_REF] Gasevic | [END_REF][START_REF] Sebastian | [END_REF][START_REF] Zhang | [END_REF] to support (semi-)automatic system collaboration and provide machine-readable denitions of concepts and interpretable format. Section 3.4.1 describes approaches focusing on combining workows with ontologies while approaches focusing on combining Petri Nets with ontologies are described in Section 3.4.2.

On Combining Workows with Ontologies

By analysing workows for several active projects, the authors of [START_REF] Sebastian | [END_REF] describe a set of workow properties. On this basis, they introduce an ontology to represent dierent aspects of workows for collaborative ontology development. The ontology becomes a key component of the customizable workow support in Protégé.

However, this work refers to no existing process modelling languages. Therefore, to work with a workow execution engine, it is necessary to map the top level of the ontology to the process-modelling language required by the workow execution engine. In contrast to this work, we develop the CPN ontology to represent CPNs, a modelling language, with OWL DL.

O. Thomas and M. Fellmann in [Thomas 2009a] address a problem of semantic process modelling. They introduce an extension of process modelling languages to represent the semantics of process model element labels. As shown in Figure 3.11, the labels formulated in natural language can be represented by terms from a formal ontology. The benets of this formalization of model element-related semantics are that it eliminates the scope of interpretation related to the use of natural language and it supports semantic validation. Furthermore, this work provides a very useful inspiration for our work, but it does not discuss how to formulate semantic constraints and also does not mention the control-ow perspective in process models as does our approach. 4 [Murata 1989], and Upgraded Petri nets 5 [Strbac 2013]. With the development of the CPN ontology, our work aims to provide the shareability and reusability of CPN-based business workow templates not only for the Semantic Web, but also for business workow systems.

Ontology

[Koschmider 2005] also introduces an ontology to describe business processes modelled with Petri Nets (PNs). The ontology is aimed to facilitate the semantic interconnectivity of semantic business processes that enables semantic information exchange. Furthermore, the translation of traditional PNs into OWL is used to semantically align business process models (see [START_REF] Brockmans | [END_REF]) and automatically compute similarities between business process models (see [START_REF] Ehrig | [END_REF]) to support (semi-)automatic interconnectivity of business processes. [Koschmider 2005], however, there are some dierences. We focus on representing business workow templates developed based on the ontology in a knowledge base, which is dened in order to share and reuse them.

Discussion and Conclusion

This chapter focused on representing control ow-based business workow templates. We rst presented a formal denition of CPN-based business models. We then dened the CPN ontology to represent CPNs with OWL DL. Each element of CPNs has been translated into a corresponding OWL concept. In addition, some of the axioms created for Classes and P roperties in the CPN ontology have been presented. Individuals, the third OWL element, have been also considered. As a result, the combination of CPNs and ontologies provides not only semantically rich business process denitions but also machine-processable ones. Moreover, in order to model business processes, the basic types of manipulation operations on the elements of process models have been presented. Besides, the SPARQL statements, which correspond to the operations, have been indicated to develop or modify CBWTs encoded in RDF format. The results of this work were published in [START_REF] Nguyen | [END_REF][START_REF] Nguyen | [END_REF], Nguyen 2014c].

We know that the specication of a real-world business process is mostly manual and is thus prone to human error, resulting in a considerable number of failed projects. Therefore, to ensure the correctness of concrete CBWTs, we will implement SPARQL queries to detect shortcomings in concrete workow templates at design phase in Chapter 5. The verication of a business workow generally covers the following aspects:

1. To check the syntactic correctness of a workow based on the general properties.

2. To check that a workow complies with a set of properties given by a formula.

In the previous chapter, a formal denition of CPN-based process models has been introduced. It is intended to support the syntactic verication of a business workow template (Section 5.1). Therefore, in this chapter, we focus on a solution to modelling semantic business processes, which aims to support the semantic verication related to the above-mentioned second aspect (Section 5.2).

The main purpose of this chapter is to formally describe a semantic business workow template by identifying a set of semantic constraints. We rst give a formal denition of semantic constraints in form of a set of attributes. We then introduce an algorithm to check redundant and conicting constraints. A formalized repository is thus constructed on the top of the set of well-checked 1 semantic constraints, from which a semantic business workow template is developed. In addition, we introduce ECA-like rules to represent business level requirements. This allows for integrating requirements into a workow template.

1 A well-checked set of semantic constraints means that there are neither redundant constraints nor conicting constraints

Formal Denition of Semantic Constraints

As mentioned previously, the verication of business workows is an important step before executable workow templates are deployed. The soundness verication concerning the control-ow perspective of process models is a necessary but not sufcient condition for correctness checks regarding the individual workow activities and their semantics However, for more complicated applications, there is a strong demand for a powerful method to describe semantically rich activities and the relations between them. It is also useful to avoid issues which limit the use of workows as a medium for communication or by dierent agents in a heterogeneous and distributed environment.

For example, an activity in a workow is referred to as goods whereas in another workow, a further activity is referred to as merchandise and of course both of these activities represent the same object.

Indeed, the two questions stated above motivate us to design a semantic constraint specication language which allows modellers to construct semantic business process models. Semantic constraints are here used to represent various dependencies between activities of a business process, such as ordering relations and existence dependencies. Consequently, semantic constraints tackled in this thesis can be regarded as a subset of business rules.

Based on the analysis of the state-of-the-art concerning the division of semantic constraints, we classify semantic constraints into four basic types as follows:

1. Mutual exclusion constraints (mExclusion) express that the presence of an activity imposes the exclusion on another activity and therefore, the execution order between these activities is not specied;

2. Choice constraints (choice) express that only one of two activities must be executed and therefore, the execution order between these activities is not specied;

4.1. Formal Denition of Semantic Constraints 47 3. Dependency constraints (dependency) express the presence of one activity (called the source activity) imposes that the other activity (called the target activity) must be included, but not conversely. These activities are executed dependently (i.e., the source activity is executed before or after the target activity).

4. Coexistence constraints (coexistence) express that two activities must be both executed or both excluded. These activities are executed concurrently or dependently (i.e., one is executed before or after the other).

Denition 9 (Semantic Constraint). Let τ be a set of relevant activities 4 in the context of a specic business process. A 6-tuple SC = (constraintT ype, appliedActivity, relatedActivity, order, description, [Equivalence]) is called the semantic constraint denition, in which:

• constraintT ype ∈ {mExclusion, choice, dependency, coexistence};

• appliedActivity ∈ τ ;

• relatedActivity ∈ τ ;

• order ∈ {bef ore, af ter, concurrence, notSpecif ied} ;

• description is used to describe a constraint;

• Equivalence is a set of activities which are equivalent to activity appliedActivity, Equivalence ⊂ τ .

The rst parameter constraintT ype denotes the type of a semantic constraint, it is mExclusion or choice or dependency or coexistence. Each value of constraintT ype refers to the relationship between the executions of the source activity expressed by the second parameter appliedActivity and the target activity expressed by the third parameter relatedActivity. The parameter order species the execution order between the source and target activity. The default value notSpecif ied is assigned to the constraints of the type mExecution or choice. The rst four parameters are very important and obligatory when dening a semantic constraint. The parameter description is used to describe the constraint in a natural language 5 . And the last parameter Equivalence 6 is optional, which contains a set of activities (if any) equivalent to the source activity.

Example 4.1.1. Let us continue the example of the fOtD process described in Section 1.2. Consider the template Payment, which is presented in Section 1.2.1.3, a set of relevant semantic constraints is created as follows:

4 The issue relative to naming activities will be discussed in Appendix C. 5 In our case, English is used to describe semantic constraints. 6 In general, in a constraint, each value in the set Equivalence is equivalent to the value of the parameter appliedActivity. With the implicit requirement relating to the naming of activities of a workow template, if a name has been used for an activity in the parameter appliedActivity or the parameter relatedActivity will not appear as a value in the parameter Equivalence and vice versa to avoid confusion 48 Chapter 4. Semantic Business Process Modelling sc1=(dependency, Get _ payment _ data, Provide _ payment _ methods, after, ''after choosing one of provided payment methods, user must enter payment data'', {Get _ payment _ information}) sc2=(dependency, Process _ check _ or _ cash, Get _ payment _ data, after, ''paying by check or cash has to be checked and validated'') sc3=(dependency, Process _ check _ or _ cash, Provide _ payment _ methods, after, ''processing check or cash is only executed after choosing a payment method'') sc4=(dependency, Process _ credit _ card, Get _ payment _ data, after, ''paying par credit card must be checked and validated'') sc5=(dependency, Process _ check _ or _ cash, Get _ payment _ data, after, ''paying by check or cash must be checked and valided'') sc6=(choice, Process _ credit _ card, Process _ check _ or _ cash, notSpecified, ''customers can only pay by credit card or check or cash'') 4.2 Implicit, Redundant and Conicting Semantic Constraints

Algebraic Properties of Semantic Constraints

Through the denition of semantic constraints, information about how to use activities and about the relations between those activities is captured. However, when dening a set of semantic constraints, it may occur implicit, redundant or conicting semantic constraints. Two constraints can be combined together to constitute new constraints. This is demonstrated by the parameters constraintT ype and order in the denition of semantic constraints. As stated previously, the parameter constraintT ype expresses the semantic constraint's type and the parameter order indicates the execution order of a source activity and a target activity. In this section, we present the properties related to these properties in activity 1 constraint_type activity 2 to denote that activity 1 and activity 2 are involved in a (inferred) semantic constraint like (constraint_type, activity 1 , activity 2 , order, description, [Equivalent]).

In Table 4.1, we present the associative, transitive and commutative properties identied based on the parameter constraintT ype where a 1 , a 2 and a 3 are activities.

It is important to note that for each associative property in Table 4.1, the value of the parameter order in the dependency constraints must be the same. a 1 dependency a 3 , a 2 dependency a 3 , a 1 coexistence a 2 → (a 1 coexistence a 2) dependency a 3

a 1 dependency a 3 , a 2 dependency a 3 , a 1 mExclusion a 2 → (a 1 mExclusion a 2) dependency a 3

(3)

a 1 dependency a 3 , a 2 dependency a 3 , a 1 choice a 2 → (a 1 choice a 2) dependency a 3 (4)
a 1 dependency a 2 , a 1 dependency a 3 , a 2 coexistence a 3 → a 1 dependency (a 2 coexistence a 3)

(5)

a 1 dependency a 2 , a 1 coexistence a 3 , a 2 coexistence a 3 → (a 1 dependency a 2) coexistence a 3 (6)
a 1 dependency a 2 , a 1 mExclusion a 3 , a 2 mExclusion a 3 → (a 1 dependency a 2) mExclusion a 3

(7)
a 1 dependency a 2 , a 1 choice a 3 , a 2 choice a 3 → (a 1 dependency a 2) choice a 3

(8)
a 1 coexistence a 2 , a 1 coexistence a 3 , a 2 dependency a 3 → a 1 coexistence (a 2 dependency a 3)

a 1 mExclusion a 2 , a 1 mExclusion a 3 , a 2 dependency a 3 → a 1 mExclusion (a 2 dependency a 3)

a 1 choice a 2 , a 1 choice a 3 , a 2 dependency a 3 → a 1 choice (a 2 dependency a 3)

Transitivity (1)
a 1 coexistence a 2 , a 2 choice a 3 → a 1 choice a 3

a 1 coexistence a 2 , a 2 mExclusion a 3 → a 1 mExclusion a 3

Commutativity

(1)

a 1 coexistence a 2 ⇔ a 1 coexistence a 2 (2)
a 1 choice a 2 ⇔ a 1 choice a 2

(3)

a 1 mExclusion a 2 ⇔ a 1 mExclusion a 2
In order to easily prove the algebraic properties presented in Table 4.1, we express the execution of an activity as an integer programming formulation. Using function exe(a i) to indicate whether activity a i ∈ τ must be executed or not. Each value of function exe(a i) is considered as a propositional variable that ranges over domain D = {0, 1}:

(i) exe(a i) = 0 indicates that activity a i must not be executed.

(ii) exe(a i) = 1 indicates that activity a i must be executed.

(iii) exe(a i) ≤ exe(a j) indicates that if activity a i is executed, activity a j must be executed, but not conversely. It corresponds to a semantic constraint of the type denpendency.

(iv) exe(a i) = exe(a j) indicates that two activities a i and a j must both be executed or neither is executed. It corresponds to a semantic constraint of the type coexistence.

50

Chapter 4. Semantic Business Process Modelling (v) exe(a i) + exe(a j) ≤ 1 indicates that either the execution of two activities a i and a j are mutually exclusive or these activities are not executed at all. It corresponds to a semantic constraint of the type mExclusion.

(vi) exe(a i) + exe(a j) = 1 indicates that only one of two activities a i and a j is executed. It corresponds to a semantic constraint of the type choice.

Based on this expression, the proofs of the algebraic properties related to the parameter constraitT ype are given below.

Associative Property of the Parameter constraintT ype

(i) Proof of the associative property (1): Consider the following semantic constraints sc 1 , sc 2 and sc 3 where:

• sc 1 = (dependency, a 1 , a 3 , order 1 , description 1 , [activities_are_equivalent _to_Activity_a 1])

• sc 2 = (dependency, a 2 , a 3 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 2])

• sc 3 = (coexistence, a 1 , a 2 , order 3 , description 3 , [activities_are_equivalent _to_Activity_a 1])

In order to prove the associative property (1) of the parameter constraitT ype (i.e., (a 1 coexistence a 2) dependency a 3), we have to prove that exe(a 1) = exe(a 2) ≤ exe(a 3).

Proof. By using our expression of the execution of an activity and Denition 9, we get:

a 1 dependency a 3 ⇒ exe(a 1) ≤ exe(a 3).

(4.1) a 2 dependency a 3 ⇒ exe(a 2) ≤ exe(a 3).

(4.2)
a 1 coexistence a 2 ⇒ exe(a 1) = exe(a 2).

(4.3)

By combining (4.1), (4.2) and (4.3), we get: exe(a 1) = exe(a 2) ≤ exe(a 3)

(ii) Proof of the associative property (2): Consider the following semantic constraints sc 1 , sc 2 and sc 3 where:

• sc 1 = (dependency, a 1 , a 3 , order 1 , description 1 , [activities_are_equivalent _to_Activity_a 1])

• sc 2 = (dependency, a 2 , a 3 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 2])

• sc 3 = (mExclusion, a 1 , a 2 , order 3 , description 3 , [activities_are_equivalent _to_Activity_a 1])

Implicit, Redundant and Conicting Semantic Constraints 51

In order to prove the associative property (1) of the parameter constraitT ype (i.e., (a 1 mExclusion a 2) dependency a 3), we have to prove that exe(a 1) + exe(a 2) ≤ exe(a 3).

Proof. By using our expression of the execution of an activity and Denition 9, we get:

a 1 dependency a 3 ⇒ exe(a 1) ≤ exe(a 3) ⇒   exe(a 1) = 0, exe(a 3) = 0 exe(a 1) = 0, exe(a 3) = 1 exe(a 1) = 1, exe(a 3) = 1 (4.4) a 2 dependency a 3 ⇒ exe(a 2) ≤ exe(a 3) ⇒   exe(a 2) = 0, exe(a 3) = 0 exe(a 2) = 0, exe(a 3) = 1 exe(a 2) = 1, exe(a 3) = 1 (4.5) a 1 mExclusion a 2 ⇒ exe(a 1) + exe(a 2) ≤ 1 ⇒   exe(a 1) = 0, exe(a 2) = 0 exe(a 1) = 0, exe(a 2) = 1 exe(a 1) = 1, exe(a 2) = 0 (4.6)
By combining (4.4), (4.5) and (4.6), we get:

   
exe(a 1) = 0, exe(a 2) = 0, exe(a 3) = 0 exe(a 1) = 0, exe(a 2) = 0, exe(a 3) = 1 exe(a 1) = 0, exe(a 2) = 1, exe(a 3) = 1 exe(a 1) = 1, exe(a 2) = 0, exe(a 3) = 1

⇒ exe(a 1) + exe(a 2) ≤ exe(a 3) (4.7)

(iii) Proof of the associative property (4): Consider the following semantic constraints sc 1 , sc 2 and sc 3 where:

• sc 1 = (dependency, a 1 , a 2 , order 1 , description 1 , [activities_are_equivalent _to_Activity_a 1])

• sc 2 = (dependency, a 1 , a 3 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 1])

• sc 3 = (coexistence, a 2 , a 3 , order 3 , description 3 , [activities_are_equivalent _to_Activity_a 2])

In order to prove the associative property (4) of the parameter constraitT ype (i.e., a 1 dependency (a 2 coexistence a 3)), we have to prove that exe(a 1) ≤ exe(a 2) = exe(a 3).

52

Chapter 4. Semantic Business Process Modelling Proof. By using our expression of the execution of an activity and Denition 9, we get:

a 1 dependency a 2 ⇒ exe(a 1) ≤ exe(a 2) (4.8)
a 1 dependency a 3 ⇒ exe(a 1) ≤ exe(a 3) (4.9) a 2 coexistence a 3 ⇒ exe(a 2) = exe(a 3) (4.10)

By combining (4.8), (4.9) and (4.10), we get: exe(a 1) ≤ exe(a 2) = exe(a 3).

The rest of associative properties can be proven in the similar way.

Transitive Property of the Parameter constraintT ype

(i) Proof of the transitive property (1):

Consider the following semantic constraints sc 1 and sc 2 where:

• sc 1 = (coexistence, a 1 , a 2 , order 1 , description 1 , [activities_are_equivalent _to_Activity_a 1]) • sc 2 = (choice, a 2 , a 3 , order 2 , description 2 , [activities_are_equivalent _to_Activity_a 2])
In order to prove the transitive property (2) of the parameter constraitT ype (i.e., a 1 choice a 3), we have to prove that exe(a 1) + exe(a 3) = 1.

Proof. By using our expression of the execution of an activity and Denition 9, we get:

a 1 coexistence a 2 ⇒ exe(a 1) = exe(a 2) (4.11)
a 2 choice a 3 ⇒ exe(a 2) + exe(a 3) = 1 (4.12)

By combining (4.11) and (4.12), we get: exe(a 1) + exe(a 3) = 1.

(ii) Proof of the transitive property (2):

Consider the following semantic constraints sc 1 and sc 2 where:

• sc 1 = (coexistence, a 1 , a 2 , order 1 , description 1 , [activities_are_equivalent _to_Activity_a 1]) • sc 2 = (mExclusion, a 2 , a 3 , order 2 , description 2 , [activities_are_equivalent _to_Activity_a 2])
In order to prove the transitive property (2) of the parameter constraitT ype (i.e., a 1 mExclusion a 3), we have to prove that exe(a 1) + exe(a 3) ≤ 1.

Proof. By using our expression of the execution of an activity and Denition 9, we get: • sc 1 = (constraintT ype 1 , a 1 , a 2 , order 1 , description 1 , [activities_are_equivalent _to_Activity_a 1])

a 1 coexistence a 2 ⇒ exe(a 1) = exe(a 2) (4.
• sc 2 = (constraintT ype 1 , a 2 , a 1 , order 2 , description 2 , [activities_are_equivalent _to_Activity_a 2])

• constraintT ype 1 =   coexistence choice

mExclusion

In order to prove the commutative property (1-3) of the parameter constraitT ype,

we have to prove that:

  exe(a 1) = exe(a 2) ⇔ exe(a 2) = exe(a 1) exe(a 1) + exe(a 2) = 1 ⇔ exe(a 2) + exe(a 1) = 1 exe(a 1) + exe(a 2) ≤ 1 ⇔ exe(a 2) + exe(a 1) ≤ 1 (4.15)
Proof. They are obviously true.

In Table 4.2, we present the symmetric, transitive and commutative properties identied based on the parameter order where a 1 , a 2 and a 3 are activities. a 1 bef ore a 2 , a 2 bef ore a 3 → a 1 bef ore a 3

a 1 af ter a 2 , a 2 af ter a 3 → a 1 af ter a 3

(3)

a 1 concurrence a 2 , a 2 concurrence a 3 → a 1 concurrence a 3 (4)
a 1 concurrence a 2 , a 2 bef ore a 3 → a 1 bef ore a 3

(5)

a 1 concurrence a 2 , a 2 af ter a 3 → a 1 af ter a 3

Commutativity

(1)

a 1 concurrence a 2 ⇔ a 2 concurrence a 1 (2)
a 1 notSpecif ied a 2 ⇔ a 2 notSpecif ied a 1

In order to easily prove the algebraic properties presented in Table 4.2, we express the time when an activity is executed in a process by a real function. Using function time(a i), a i ∈ τ to indicate the time, which is calculated from the start point of a process, when an activity is executed. Function time(a i) returns a non-negative number.

(i) time(a i) > 0 indicates that activity a i is executed.

(ii) time(a i) = 0 indicates that activity a i is not executed.

54

Chapter 4. Semantic Business Process Modelling (iii) time(a i) ≤ time(a j) indicates that activity a i is executed before activity a j .

(iv) time(a i) ≥ time(a j) indicates that activity a i is executed after activity a j .

(v) time(a i) = time(a j) indicates that activity a i and activity a j are executed at the same time.

(vi) time(a i) + time(a j) ≥ 0 and time(a i) * time(a j) = 0 indicates that either only one of two activities a i and a j is executed or both of them are not executed.

Based on this expression, the proofs of the algebraic properties related to the parameter order are given below.

Symmetric Property of the Parameter order

Consider the following semantic constraints sc 1 and sc 2 where:

• sc 1 = (constraintT ype 1 , a 1 , a 2 , bef ore, description 1 , [activities_are_equivalent _to_Activity_a 1])

• sc 2 = (constraintT ype 2 , a 2 , a 1 , af ter, description 2 , [activities_are_equivalent _to_Activity_a 2])
In order to prove the symmetric property (1) of the parameter order, we have to prove that a 1 bef ore a 2 ⇔ a 2 af ter a 1 . Proof. By using our expression of the execution order of two activities and Denition 9, we get: a 1 bef ore a 2 ⇒ time(a 1) ≤ time(a 2) ⇔ time(a 2) ≥ time(a 1) ⇒ a 2 af ter a 1 Consider the following semantic constraints sc 1 and sc 2 where:

• sc 1 = (constraintT ype 1 , a 1 , a 2 , bef ore, description 1 , [activities_are_ equivalent_to_Activity_a 1])

• sc 2 = (constraintT ype 2 , a 2 , a 3 , bef ore, description 2 , [activities_are_ equivalent_to_Activity_a 2])

In order to prove the transitive property (1) of the parameter order (i.e., a 1 bef ore a 3), we have to prove that time(a 1) ≤ time(a 3).

Implicit, Redundant and Conicting Semantic Constraints 55

Proof. By using our expression of the execution order of two activities and Denition 9, we get:

a 1 bef ore a 2 ⇒ time(a 1) ≤ time(a 2) (4.17)

a 2 bef ore a 3 ⇒ time(a 2) ≤ time(a 3) (4.18)

By combining (4.17) and (4.18), we get: time(a 1) ≤ time(a 3).

(ii) Proof of the transitive property (3):

Consider the following semantic constraints sc 1 and sc 2 where:

• sc 1 = (constraintT ype 1 , a 1 , a 2 , concurrence, description 1 , [activities _are_equivalent_to_Activity_a 1]) • sc 2 = (constraintT ype 2 , a 2 , a 3 , concurrence, description 2 , [activities _are_equivalent_to_Activity_a 2])
In order to prove the transitive property (3) of the parameter order (i.e., a 1 concurrence a 3), we have to prove that time(a 1) = time(a 3).

Proof. By using our expression of the execution order of two activities and Denition 9, we get:

a 1 concurrence a 2 ⇒ time(a 1) = time(a 2) (4.19) a 2 concurrence a 3 ⇒ time(a 2) = time(a 3) (4.20)
By combining (4.19) and (4.20), we get: time(a 1) = time(a 3).

(iii) Proof of the transitive property (4):

Consider the following semantic constraints scC 1 and sc 2 where:

• sc 1 = (constraintT ype 1 , a 1 , a 2 , concurrence, description 1 , [activities _are_equivalent_to_Activity_a 1]) • sc 2 = (constraintT ype 2 , a 2 , a 3 , bef ore, description 2 , [activities_are _equivalent_to_Activity_a 2])
In order to prove the transitive property (4) of the parameter order (i.e., a 1 bef ore a 3), we have to prove that time(a 1) ≤ time(a 3).

Proof. By using our expression of the execution order of two activities and Denition 9, we get: Consider the following semantic constraints sc 1 and sc 2 where:

a 1 concurrence a 2 ⇒ time(a 1) = time(a 2) (4.
• sc 1 = (constraintT ype 1 , a 1 , a 2 , concurrence, description 1 , [activities_are _equivalent_to_Activity_a 1])

• sc 2 = (constraintT ype 2 , a 2 , a 1 , concurrence, description 2 , [activities_are _equivalent_to_Activity_a 2])
In order to prove the commutative property (1) of the parameter order, we have to prove that time(a 1) = time(a 2) ⇔ time(a 2) = time(a 1).

Proof. It is obviously true.

(ii) Proof of the commutative property (2):

Consider the following semantic constraints sc 1 and sc 2 where:

• sc 1 = (constraintT ype 1 , a 1 , a 2 , notSpecif ied, description 1 , [activities_are _equivalent_to_Activity_a 1]) • sc 2 = (constraintT ype 2 , a 2 , a 1 , notSpecif ied, description 2 , [activities_are _equivalent_to_Activity_a 2])
In order to prove the commutative property (2) of the parameter order, we have to prove that:

time(a 1) + time(a 2) > 0 time(a 1) * time(a 2) = 0 ⇔ time(a 2) + time(a 1) > 0 time(a 2) * time(a 1) = 0 .

Proof. It is obviously true.

In order to describe a semantic business process, a set of semantic constraints is dened with the help of domain experts. Consequently, implicit, redundant and conicting constraints may exist. Moreover, conicting constraints may lead to undesirable results. Hence, it is necessary to resolve conicting constraints before a set of semantic constraints can be used. In the upcoming section, we will present our algorithm to validate a set of semantic constraints.

Algorithm for Validating a Set of Semantic Constraints

We use the properties presented in Table 4.1 and Table 4.2 to infer implicit semantic constraints. The detection of them can help to eliminate redundant constraints and to detect conicting ones.

Given a set of semantic constraints, C, in the context of a specic business process, we have the following notations:

• Let C be the set of all semantic constraints stemming from the semantic constraints in C.

• Let C * be the set of all possible constraints: C * = C ∪ C .

By using these notations, we next introduce the two denitions of redundant and conicting semantic constraints.

Denition 10 (Redundant semantic constraints). Constraint sc i ∈ C :

sc i = (constraintT ype 1 , a 1 , a 2 , order 1 , description 1 , [activities_are_equivalent_to _Activity_a 1]
)) is called a redundant constraint if and only if: ∃sc j ∈ C * where:

• sc j = (constraintT ype 1 , a 1 , a sc1 _ 2=(dependency, Process _ check _ or _ cash, Provide _ payment _ methods, after,''after choosing one of provided payment methods, user must enter payment data; paying by check or cash has to be checked and validated'')

Since the rst four attributes of sc1 -2 and of sc3 are the same, the constraint sc3 is redundant according to Denition 10. Therefore, the constraint sc3 must be removed.

When a set of constraints is large, we need an algorithm to resolve issues related to redundancy and conicting semantic constraints. In the following we present our algorithm used to remove the redundancies and detect conicts.

As shown in Algorithm 1, the procedure to validate the set of constraints will stop as soon as it detects two conicting constraints or a constraint that conicts with the implicit constraint inferred from two other constraints and a message is generated to notify the users (line 5, line 11). Regarding redundancy checks, if two constraints are redundant, one of them is removed (line 14). The boolean function conf lict is used to check the conict between two constraints, i.e., it returns true if they are conicting, otherwise, it returns f alse. The function inf er is used to infer implicit constraints. The time complexity of the algorithm is O(n 3) where n is the number of semantic constraints. for i = 1 to n -1 do 3: end for Since there are no redundant and no conicting constraints, the set of constraints is well-checked. In the next section, we describe an approach to construct a business process ontology, on which a semantic business workow template is developed.

for j = i +

Organization of the Knowledge Base of Semantic Constraints

Development of a Business Process Ontology

To provide the representation of semantic constraints related to process elements, we propose an ontological approach to construct a formalized repository built on top of a set of well-checked semantic constrains. We focus on formalizing the concepts and relations corresponding to the knowledge required by process elements.

Let us consider the semantic constraint denition (cf. Denition 9): SC = (constraintT ype, appliedActivity, relatedActivity, order, description, [Equivalence]).

The main keystones of our approach to constructing a business process ontology, namely the BP ontology, relied on the set of well-checked semantic constraints as follows:

• SC is mapped to an instance of owl : Class. The rdf s : subClassOf property is used to state that this class is a subclass of the class SemanticConstraints;

• appliedActivity and relatedActivity are mapped to two instances of owl : Class. The rdf s : subClassOf property is used to state that these classes are a subclass of the class SC;

• mExclusion, choice, dependency, coexistence, bef ore, af ter, concurrence and notSpecif ied are dened as instances of the built-in OWL class owl : ObjectP roperty;

• description is dened as an instance of the built-in OWL class owl : Datatype P roperty;

• The built-in OWL property owl : sameAs, which is used to link an individual to an individual, states that the individuals have the same identity. This property is used to describe each value of the parameter Equivalence is equivalent to the value of the parameter appliedActivity in a semantic constraint.

Creation of Correspondences between Ontologies

In this section, we concentrate on creating correspondences to match semantics between the BP ontology (presented in Section 4.3.1) and the CPN ontology (presented in Section 3.2). In our case, the articulation of two ontologies are used not only to create semantically workow templates, but also to verify their correctness (see Chapter 5).

We determine our use of the term mapping as follows: We consider two ontolo- end for After applying Algorithm 2 to map the instances of the classes AppliedActivity and RelatedActivity into the CPN ontology, the relations between these instances 62 Chapter 4. Semantic Business Process Modelling need to be considered. Among them, the relations of the instances representing a set of dependency constraints are considered rst. In the following, we present Algorithm 3. This algorithm is used to create correspondences in the CPN ontology to represent the relations between the activities related to a set of dependency constraints SCD dep (i.e., SCD dep ∈ C), where: ∀sc i ∈ SCD dep : sc i = (dependency, a, b i , order i , description i , [activities_are_ equivalent_to_a]), order i ∈ {bef ore, af ter}; and ∀b k , b l :

sc kl ∈ C,sc kl = (constraintT ype kl , b k , b l , order kl , description kl , [activities_are_equivalent_to_a]), 1 ≤ i, k, l ≤ n, k = l.
The relations between the instances related to sets of choice, mutual exclusion and coexistence constraints must be considered after those related to sets of dependency constraints. Therefore, it is necessary to develop algorithms applied to these relations. We have introduced the formal denition of semantic constraints and illustrated how to model a workow template with CPNs based on specied semantic constraints. In the next section we are going to show how to integrate business level correctness requirements into semantic business workows.

Given

∃sc ij ∈ SCC multi : sc ij = (choice, a i , a j , notSpecif ied, description ij , [activities_are_equivalent_to_a i]) or ∃sc ji ∈ SCC multi : sc ji = (choice, a j , a i , notSpecif ied, description ji , [activities_are_equivalent_to_a j]), 1 ≤ i = j ≤ n.

Integration of Event-Condition-Action Rules

In order to ensure the semantic correctness of business processes, it is necessary to integrate (semantic) domain knowledge (for example, a condition in which an activity must be performed) into workow management systems. It is clear that the combination of workow templates and ontologies enables the semantic representation of workow templates. The denitions in the BP ontology (formalized in OWL) can be used not only to standardize the terminologies, but also to semantically verify workow templates. However, the terms and relations expressed in this ontology only focus on representing the dependencies between activities of a 4.4. business process. They cannot capture business level correctness requirements, for example, a constraint which species that a certain user task has to be performed in a certain activity of a business process, or through which activities have to be enabled after the execution of a certain activity of a business process. Therefore, an extension to the use of rules is needed especially for the representation of business level correctness requirements.

As stated in Section 2.2, ECA rules can be automatically triggered when certain events take place. Therefore, we decide to use Event-Condition-Action (ECA)-like rules to express business level correctness requirements. By taking into account expert knowledge, requirements are represented in a structured way as follows:

ON transition

IF condition DO [action] [RAISE other _ transition(s)]

A business level correctness requirement is expressed in the vocabulary given by the two ontologies, the CPN ontology and the BP ontology. T ransition oers all of the available transitions in a given workow template.

Regarding the IF condition statement, if the guard function of a chosen transition contains attributes that their values satisfy the given conditions, then:

• an action is performed in case the transition is an activity node. Otherwise,

• at least one transition is raised. [action] are thus expressed in terms of literals. Each literal of a condition or an action consists of a binary predicate and a set of terms. Each binary predicate, also called a property, has exactly two terms and a keyword which is oered in a combo box. The two terms relating to every property are also called domain and range. Figure 4.7 illustrates the domain, the property, and the range of a business level correctness requirement dened for shipping charges presented in Section 1.2.2. With regard to our Add ECA Rule editor, the domain of a literal is always a variable, whereas the range depends on the property. More specically, if the property is an object property, the range is a variable. If the property is a data property, the range is a string value.

Although a set of business level correctness requirements is concerned in a cer-4.5. Related Work 71 tain workow template, it should be maintained outside of the current technical representatives of the workow template. More precisely, it is necessary to separate them from the actual technical representatives of the workow template to ensure their persistence, even if this workow template is redesigned or removed or even deleted. Therefore, in our work, each set of correctness requirements dened for a specic workow template is stored in RDF format (see Figure 4.8).

Related Work

In many application domains, processes must comply with business rules and policies which are derived from domain specic requirements (e.g., standards, legal regulations). For example, in the construction industry, technical guides [Bouzidi 2012] can be considered as examples of domain requirements. As previously stated in Section 1.1, our work focuses on domain specic requirements imposing constraints on the relations of the execution of activities in a process instance. In retrospect, each process instance can be described by a sequence of events related to the activities, which are executed in the process. To date, many approaches addressing the issue of business process specication based on rules/constraints have been proposed in the literature. A scope (depicted in Figure 4.9) is determined by the specication of a starting and an end state/event for each pattern. Most of them are self-explanatory, for example, Before indicates that the execution up to a given state/event. According to [START_REF] Dwyer | [END_REF]], the property patterns are organized into two major groups, Occurrence and Order (see Figure 4.10) consisting of:

• Absence requires that the dened scope is free from a given state/event;

• Existence requires that a given state/event must occur within the scope;

• Bounded existence requires that a given state/event must occur at most a specic number of times within the scope;

• Universality requires that a given state/event is true throughout the scope;

• Precedence requires that the occurrence of a given state/event prior to the occurrence of another state/event in the scope.

• Response requires the occurrence of a given state/event must always be followed by the occurrence of another state/event (i.e., cause-eect relationships);

• Chain Precedence requires that a given sequence of states/events must always be preceded by a sequence of other states/events in the scope; order, fork, inclusion and exclusion constraints) that express dependencies between activities to restrict composition possibilities. A subprocess has to be validated against the set of constraints before it is executed. By enabling the denition of process models ranging from completely modelled to mainly constraint-based, this approach provides an appropriate balance between exibility and control. Another formal specication of semantic constraints is introduced in [Kumar 2010]. An integer programming formulation is used to express semantic constraints and also to detect and handle constraint violations. They focus on the occurrence of each activity in a process. An activity must be either executed (one or several times) or not executed. In the relationship with other activities, they can be executed in choice, in exclusion or in dependency or together. However, this method does not mention the execution order between two activities.

In [Ly 2008], two fundamental kinds of semantic constraints, i.e., mutual exclusion constraints and dependency constraints, are introduced. The former expresses that two activities are incompatible and should not be performed together. The later expresses that an activity is dependent on the other activity and they have to take place together in the process. Practically speaking, there exist other kinds of constraints, for example, constraints can express that two relevant activities must be both included or be both excluded, or only one of two relevant activities must be executed. Consequently, a precise classication of semantic constraints is required.

We focus on both occurrence and ordering constraints on sequences of events. We are able to represent the patterns in [START_REF] Dwyer | [END_REF]] by using dierent types of constraints and dierent execution orders between activities.

In the matter of correctness requirements related to business rules at design time, [Namiri 2007[START_REF] Namiri | Model-Driven Management of Internal Controls for Business Process Compliance[END_REF] represents compliance requirements as production rules according to the terms and concepts, which are dened in a formal ontology.

However, due to the emphasis they put on events of ECA rules, they are better suitable for modelling the variable parts of a process ow and for distributed applications [van Eijndhoven 2008[START_REF] Berstel | [END_REF]. Therefore, to develop semantically rich control ow-base workow templates, in our work, we use ECA-like rules to express business level correctness requirements.

Discussion and Conclusion

This chapter has presented a formal method for describing semantic constraints used for generating semantic workow templates. We rst proposed a formal denition of semantic constraints. We then introduced an algorithm for detecting redundant and conicting semantic constraints. A set of well-checked semantic constraints is transformed into an instance of a business process ontology, called the BP ontology.

To develop workow templates, we have also presented a set of algorithms to create correspondences between the BP ontology and the CPN ontology (cf. Chapter 3).

The results of this work were published in [Nguyen 2014b[START_REF] Pham | [END_REF]].

In the following chapter, we show that the SPARQL query language is able to Providing a high-level specication of business processes is the objective of process modelling. This makes process models independent of the target workow management system. Arguably, high quality workow denitions play an important role in the organization. A workow dened incorrectly may lead to unintended consequences, for instance, a waste of time and eort, loss of trust in users. That is why a workow denition should be analyzed and veried 1 before it is put into use.

In this chapter, we introduce a solution to verify workow templates at the design phase. We focus on checking the syntactic and semantic correctness of business workow templates as depicted in Figure 5.1.

1 According to the IEEE 1012-2012 denition [iee 2012], verication means to evaluate whether or not a product, service, or system conforms to a set of given requirements. Hence, it relates to the internal constitution of a model. In contrast, validation implies the appropriateness of a model with regard to the needs of the customer and other identied stakeholders. This means the criteria involve something outside the model.

Syntactic Verication Issues

To provide automated support for workow designers in establishing the correctness of ontology-based workow representations, the syntactic constraints are categorized into two groups. Axioms related to these constraints are also dened using a DL as SHOIN (D) to complete the CPN ontology.

First of all, let us dene some properties for CPN-based process models.

Denition 12 (Reachability). A CPN-based process model P M = (, P, T, A, F, C, G, E, I) and an initial state M 0 where start place s contains one token. We say that transition t makes state M 1 reachable from state M 0 if in state M 0 , t is enabled and ring it results in state M 1 , written M 0

t - → M 1 . A state M n is called reachable from state M 0 i there is a ring sequence 2 t 1 t 2 . . . t j such that M 0 t 1 -→ M 2 t 2 -→ . . . t j-1 --→ M j and written M 0 * - → M j .
Denition 13 (Connected). A CPN-based process model P M = (, P, T, A, F, C, G, E, I) is connected i for every pair of places (one input place and one output place) u and v, there exists a directed path either from u to v or from v to u.

Formally:

(i) ∀u ∈ P in , v ∈ P out , ∃p 1 , t 1 , . . . , p k , t k , p k+1 , p i ∈ P, t i ∈ T, u = p 1 , v = p k+1 : p i t i ∈ A, t i p i+1 ∈ A, ∀i ∈ 1, . . . , k or (ii) ∀u ∈ P in , v ∈ P out , ∃p 1 , t 1 , . . . , p k , t k , p k+1 , p i ∈ P, t i ∈ T, v = p 1 , u = p k+1 : p i t i ∈ A, t i p i+1 ∈ A, ∀i ∈ 1, . . .

, k

Where p i t i is the directed arc from place p i to transition t i , t i p i+1 is the directed arc from transition t i to place p i+1 .

Denition 14 (Well-formed). A CPN-based process model P M = (, P, T, A, F, C, G, E, I) is well-formed i:

(i) Every element x ∈ P ∪ T is on a path from start point s to end point e.

(ii) For every state M which is reachable from state Start M 0 and every transition t ∈ T , there exists a state M reachable from state M which activates transition t.

The following denition is dened as the soundness property, which is very close to the one proposed in [van der Aalst 1997].

Denition 15 (Sound). A CPN-based process model P M = (, P, T, A, F, C, G, E, I) is sound i:

(i) P M is connected.

(ii) P M is well-formed.

(iii) For every state M j reachable from state Start M 0 , there also exists another ring sequence starting from state M j to state End M e . Formally:

∀M j : (M 0 * - → M j) ⇒ (M j * - → M e)
(iv) State End M e is the only state which is reachable from state Start M 0 with one token in place e.

(v) There is no deadlock, no innite cycle and no missing synchronization in P M .

As mentioned earlier, we aim at representing CBWTs in a knowledge base.

Therefore, the soundness property (Denition 15) is used as the criterion to check the correctness of workow templates at the syntactic level.

Syntactic Constraints related to the Denition of Process Model

• Constraints related to places. Constraint 1. For every place p ∈ P , p connects and/or is connected with transitions via arcs.

We create the axiom corresponding to Constraint 1 as follows:

hasP lace -.CP N Ont ¬(∃connectsT rans.hasT rans -.CP N Ont ∃connectsP lace -.hasT rans -.CP N Ont) ⊥ Constraint 2. There is one and only one start point in a process model.

We create the axiom corresponding to Constraint 2 as follows:

CP N Ont ¬(= 1 hasP lace.(connectsT rans.hasGuardF unction.hasActivity.

ActN oce

¬(∃ connectsP lace -.hasT rans -.CP N Ont))) ⊥ Constraint 3. There is one and only one end point in a process model.

We create the axiom corresponding to Constraint 3 as follows:

CP N Ont ¬(= 1 hasP lace.(connectsP lace -.hasGuardF unction.hasActivity.

ActN ode ¬(∃ connectsT rans.hasT rans -.CP N Ont))) ⊥ Constraint 4. A place has no more than one leaving arc. If a place is connected to a transition, there exists only one directed arc from the place to the transition.

We create the axiom corresponding to Constraint 4 as follows:

P lace ¬(≤ 1 hasP lace -.InputArc) ⊥ Constraint 5. A place has no more than one entering arc. If a transition is connected to a place, there exists only one directed arc from the transition to the place.

We create the axioms corresponding to Constraint 5 as follows:

P lace ¬(≤ 1 connectsP lace -.(= 1hasT rans -.OutputArc)) ⊥ Constraint 6. There are no pairs of activity nodes connected via a place.

We create the axiom corresponding to Constraint 6 as follows:

P lace ∃connectsT rans.hasGuardF unction.hasActivity.ActN ode ∃connectsP lace -.hasGuardF unction.hasActivity.ActN ode ⊥ Constraint 7. There are no pairs of control nodes connected via a place.

We create the axiom corresponding to Constraint 7 as follows:

P lace ∃connectsT rans.hasGuardF unction.hasControl.CtrlN ode ∃connectsP lace -.hasGuardF unction.hasControl.CtrlN ode ⊥

• Constraints related to transitions. Constraint 8. A transition is on the path from the start point to the end point of a process model.

-If a transition has no input place, it will never be enabled.

-If a transition has no output place, it will not lead to the end.

Consequently, each transition in a workow must have at least one entering arc and at least one leaving arc.

We create the axiom corresponding to Constraint 8 as follows:

T ransition ≥ 1 connectsP lace.P lace ≥ 1 connectsT rans -.P lace Constraint 9. An activity node has only one entering arc and one leaving arc.

We create the axiom corresponding to the Constraint 9 as follows:

hasGuardF unction.hasActivity.ActN ode = 1 connectsP lace.P lace = 1 connectsT rans -.P lace Constraint 10. According to Denitions 4-8, a control node does not have both multi-leaving arcs and multi-entering arcs.

We create the axiom corresponding to the Constraint 10 as follows:

≥ 2 connectsP lace.P lace ≥ 2 connectsT rans -.P lace hasGuardF unction.hasControl.CtrlN ode ⊥

• Constraints related to directed arcs. Constraint 11. Directed arcs connect places to transitions or vice versa.

We create the axioms corresponding to the Constraint 11 as follows:

hasP lace -.InputArc ≡ connectsT rans.hasT rans -.CP N Ont hasT rans -.OutputArc ≡ connectsP lace.hasP lace -.CP N Ont

Syntactic Constraints Related to Uses of Control Nodes

A poorly designed workow due to improper uses of control nodes can result in deadlock, innite cycle or missing synchronization. However, these errors can be detected when designing a workow template and therefore, we can get rid of them.

To do that, we next introduce Constraint 12 and the symptoms related to deadlock, innite cycle or missing synchronization.

Constraint 12. There is no deadlock, no innite cycle and no missing synchronization.

• Deadlock: A deadlock is a situation in which a process instance falls into a stalemate such that no more activity can be enabled to execute [START_REF] Verbeek | [END_REF]].

Accoding to [Bi 2004], there are two types of deadlock (deterministic and nondeterministic deadlock) which relate to the combination of the building blocks, i.e., Xor -split and And -join, And -join and Xor -split, And -join and And -split.

It is necessary to note that the building blocks Or -split and Or -join are not used in our work. One of the reasons is that the execution of an OR (i.e., Or -split and Or -join) is non-deterministic. If a transition Or -split res, it produces one token for at least one of its output places. Therefore, by not using these building blocks, we can avoid the second type of deadlock. Figure 5.2 shows three simple deadlock simulations.

• Innite cycle: An innite cycle is derived from structural errors where some activities are repeatedly executed indenitely.

Starting with an entrance Xor-join and ending with an exit And-split, a cycle is innite. A simple innite simulation is depicted in Figure 5.3. Therefore, we next create the axioms related to the control nodes, including Andsplit, And -join, Xor -split and Xor -join used to detect deadlock, innite cycle or missing synchronization.

• And-split

This transition is connected to at least two output places. Every output place contains one token. We create the axiom corresponding to the transition Andsplit as follows:

AndSplit T ransition connectsP lace.hasM arking.T oken

P lace

We have introduced the axioms dened to support designers in verifying CPN-based workow templates at the syntactic level. In the next section, we will show how to use the SPARQL query language to detect syntactic errors of workow templates.

?t2 h:connectsPlace/h:connectsTrans ?t3 ?t3 h:connectsPlace/h:connectsTrans ?t1 FILTER (?t1!=?t2)

}

The SPAQRL queries used to solve the other cases of the fourth and the fth issue can be created similarly to query 14.

A Wrong Workow Example

Example 5.3.1. Let us continue CompanyA variant of the fOtD process presented in Section 1.2.2. Figure 5.5 illustrates an extraction of a wrongly designed CPNbased business workow. The example workow contains not only syntactic errors (e.g., a deadlock is caused by the combination of a Xor -split and an And -join), but also semantic errors (e.g., the execution order between Schedule_shipping and Receive_shipping_request).

We assume that the input place of the transition Xor -split contains a token that enables this transition. If the transition Xor -split res, it consumes the token from its input place and then produces one token for only one of the output places. Consequently, only one transition, i.e., F ree or Charge_6.80_Euros or Charge_7.50_Euros or Charge_10.00_Euros, can be activated. Because only one transition can re, not all input places of the transition And -join can get its token. Since the transition And -join will never be enabled to re, a deadlock occurs.

In addition, the tasks Receive_shipping_request and Schedule_shipping are dened by the semantic constraint sc_i where: sc _ i=(dependency, Receive _ shipping _ request, Schedule _ shipping,after, ''after receiving a shipping request, a shipment is scheduled'') However, as shown in Figure 5.5, the execution of Receive_shipping_request may happen after that of Schedule_shipping. Consequently, a semantic error is found.

Related Work

In this section, we provide an overview of existing approaches with respect to workow verication.

Approaches focusing on the Syntactic Level

Checking the correctness by verifying process models against structural requirements is a strategy mentioned in a number of related approaches. In the following, these approaches are classied based on the techniques used for conformity verication. Using the PN formalism brings signicant advantages, such as a formal theory base, the representation of workow states is based on tokens and its tools for analysing and verifying business workows (e.g., Woan [START_REF] Verbeek | [END_REF]).

However, with regard to the soundness verication, only the control ow perspective of workows is covered. It is essential to note that soundness is a necessary but insucient condition to verify workows. Therefore, the issues related to the semantic correctness of workows need to be taken into account.

• Model Checking Approaches

Model checking is well-researched and therefore many languages, techniques and tools are provided. It provides techniques for verifying a system specication (i.e., a model) against certain particular properties [[START_REF][END_REF]]. As depicted in the Figure 5.7, the formal model dened in a language suitable for the model checker's input language and the system property which needs to be checked, are given as inputs to the model checker. The model checker after that is invoked. In case the property could not apply, the model checker typically generates a counterexample.

In order to specify properties, there are many dierent languages available, such as, temporal logics (e.g., the Linear Time Logic (LTL) or the Computation Tree Logic (CTL)) or automatons. Both these logics are well-researched and can be seen as decidable notational variants of modal fragments of rstorder logic [START_REF] Hustadt | [END_REF]]. However, the weakness of temporal logics is that due to their complexity [START_REF] Dwyer | [END_REF]], it is not easy for practitioners who are non-experts to specify system properties.

A variety of approaches adopt model checking for business process model verication, such as [START_REF] Förster | [END_REF], Knuplesch 2010, Khaluf 2011, Feja 2011].

Förster et al. in [START_REF] Förster | [END_REF]] introduce an approach which allows the verication of certain constraints like domain specic or quality management • Graph Reduction Graph reduction [Kovalyov 1990, Esparza 1994[START_REF] Sadiq | [END_REF]] was developed to detect structural shortcomings like deadlock or missing synchronization while specifying large and complex business processes. After eliminating the structures which never cause anomalies, the workow model is reduced. [START_REF] Sadiq | [END_REF]] introduces the ve reduction rules iteratively applied to retain vertices in a model. These rules are terminal reduction, sequential reduction, adjacent reduction, closed reduction and overlapping reduction. By reducing the graph repeatedly, computational eciency is improved. If a model contains any deadlocks or missing synchronizations, it is impossible to completely reduce to an empty graph. The time complexity of their main graph reduction algorithm in the worst case is O(n 2). However, this graph reduction technique is not applicable to process models containing cycles. Furthermore, although special overlapping structures can be veried by applying these graph reduction rules, it is hard or even impossible to handle general overlapping structures.

Chapter 5. Verication of Workow Templates

With regard to PNs, the authors in [Esparza 1994] explore the reduction and synthesis techniques for analysis of well-formed PNs 3 . They introduce the complete kits of reduction rules, including abstraction and linear dependency rules, for the analysis of well-formed PNs. A free-choice 4 net is transformed into a simpler one by a reduction rule while maintaining well-formedness.

This means that the original net is well-formed if and only if the reduced net is well-formed. This reduction algorithm runs in polynomial time on the size of the system. It can be easily transformed into an algorithm to check liveness and boundedness of free-choice systems. More importantly, the algorithm can be reversed to create a synthesis algorithm, which is used for the stepwise construction of large systems. We use the reduction algorithm presented in [Esparza 1994] to transform a workow template into a simple one to detect deadlock, innite cycle and missing synchronization.

Approaches focusing on the Semantic Level

The verication of process models has been studied mostly from the control ow perspective. However, as mentioned previously, in order to ensure that a business model is built correctly, issues beyond pure control-ow verication also need to be taken into account.

• Correctness beyond Formal Semantics

Recently, some research has gone beyond the syntactic and formal semantics, especially in the context of compliance. Most approaches in this area focus on detecting compliance violations related to the model structure or execution semantics [START_REF] Goedertier | Designing Compliant Business Processes with Obligations and Permissions[END_REF], Lu 2008[START_REF] Awad | [END_REF]]. [Lu 2008] introduces a very interesting approach to support process designers in quantitatively measuring the compliance degree between a given process model and a set of control objectives. The calculation of the ideal and sub-optimal compliance degree starts with the extraction of the set of ideal and sub-optimal execution sequences for each control rule. The degree of support for these sequences in the process model is then calculated. This allows process designers to measure how well a given process model represents the ideal and sub-optimal situations in control rules as well as to be better informed on the cost of non-compliance. Some approaches also consider running processes, such as [Ly 2008, Kumar 2010, Ly 2012]. [Ly 2008, Ly 2012] Although these approaches concentrate on aspects of semantic correctness, in contrast to our work they do not mention about the use of a standard ontology language such as OWL.

• Ontology-based Correctness Checking

With regard to ontological approaches, aspects of semantic correctness are considered in some research, such as [Thomas 2009b[START_REF] Weber | Beyond soundness: on the verication of semantic business process models[END_REF][START_REF] Fellmann | [END_REF]].

The approach of [START_REF] Weber | Beyond soundness: on the verication of semantic business process models[END_REF]] focuses on annotated business processes to capture what the process activities actually do when executing them. The individual activities in process models are annotated with logical preconditions and eects, specied relative to an ontology. Therefore, both the annotation of preconditions and eects are required to verify the overall process behavior which stems from the interaction between control-ow and behavior of individual activities. Although this approach combines syntax for control ow and also semantic annotation but the ontology is not built on a formal representation of the semantics of individual activities.

In [Thomas 2009b[START_REF] Fellmann | [END_REF], individual model elements are annotated with concepts of a formal ontology. And the SPARQL query language is thus used to check the semantic correctness of ontology-based process representations. Constraints are characterized in four basic types (i.e., element ow, element occurrence, resource usage and resource occurrence). They are formalized as SPARQL queries which are executed against the ontology-based process representation. Furthermore, the work in [START_REF] Fellmann | [END_REF]] provides a very useful inspiration for our work, but it does not cover aspects related to the grammar of the modelling language used and checking the absence of deadlocks and livelocks.

Discussion and Conclusion

In this chapter, we focused on verifying business process templates at the syntactic and semantic level. At the syntactic level, we have described two groups of constraints that ensure the soundness of workow templates. We have concentrated on dening the axioms corresponding to the syntactic constraints and the axioms involving the use of control nodes. At the semantic level, we have introduced the ve semantic verication issues related to a workow template.

We have also introduced the SPARQL queries, which are related to the syntactic constraints and the semantic verication issues, to check the correctness of concrete CBWTs. By relying on Jena 5 , which is a free and open source Java framework to build Semantic Web and Linked Data applications, we have demonstrated not only the usage of the SPARQL query language for syntactic and semantic checks, but also the usage of terminological background knowledge provided by the CPN ontology and the BP ontology. The results of this work were published in [Nguyen 2014a, Nguyen 2014b[START_REF] Pham | [END_REF] Chapter 6

Reuse of Workow Templates Nowadays, business process models have been used in a wide area of enterprise applications. Along with their popularity, interest is growing in how to create them correctly in terms of semantics and syntax while boosting the eciency of reusing suitable parts of existing models are growing.

Let us consider the following scenario. A person plans to create an ordering process for his own purpose. He has either some experience in working on it or none at all. The question is how he can create his process model in the most eective way without developing it from scratch.

In fact, the dierent existing workow templates extracted from a set of process models can support modellers to create new workows or process models by providing the knowledge about potential and suitable workow activities. Therefore, in this chapter, we focus on the reuse of workow templates.

We are interested in the organization of the knowledge base which guides the search for suitable workow templates in order to reuse them. Users can adapt the resulting workow templates as well as their ECA-like rules for each specic use case. This is the knowledge on how to model a business process reusing control owbased business workow templates (CBWTs). Hence, the annotation and storage of workow templates play a very important role in the success of reusable CBWTs. This chapter describes the main ideas about the organization of the knowledge base of workow templates in order to guarantee an eective search for modelling a business process.

Organization of the Knowledge Base of Control Flow-based Workow Templates

In literature, the main goals of workow reuse are to improve workow template quality and to increase its development productivity [Kradolfer 2000]. In other words, the more workow templates are available, the more dicult they are to be suitable in a specic reuse case. It is also important to note that the reuse of workow templates is only benecial if the cost to nd and adapt an existing workow template is smaller than the cost needed to develop a new one from scratch.

After nding suitable workow templates, it is important for users to understand what the workow templates actually do. Thus, there is a strong need that the knowledge base of workow templates could provide enough information for modellers to be able to determine which template is suitable for the reuse case at hand.

It is important to note that the development of a workow template relies on a set of semantic constraints and the structure of CPNs (cf. Chapters 3 and 4).

The workow template is formalized by an RDF graph in which the dependencies between its activities are expressed. Besides, to provide adequate support for specifying business rules of a workow template that the set of semantic constraints cannot capture, a set of ECA-like rules stored in RDF format is proposed.

We propose a method to semantically annotate workow templates. Their retrieval through meta-workow templates will model expert knowledge and guide the use of existing workow templates. The idea of using content which characterizes workow templates is not original. Indeed, it seems reasonable to use explicit information to nd suitable templates to build a business workow. This is particularly important for workow modellers to be able to deal with the great number of workow templates.

Based on the analysis of the state-of-the-art concerning the organization and reuse of workow templates, we annotate workow templates by the following properties:

• templateN ame: Description of the main task being enacted by the template.

• description: Description of the template.

• keywords: List of words that characterizes the template. It also includes the words that name the template.

• listOf ActivityLabels: The labels are extracted from activity labels in the template.

• creationDate: The date when the template is created.

• modif icationDate: The date the template is last modied.

• relatedT emplates: List of related templates (if any). The related templates can be predecessors and successors of the template.

• listOf ECARuleF iles: List of the rule les dened for the workow template.

• bpOnt: Indicating the business process ontology used to develop the template.

Organization of the Knowledge Base of Control Flow-based Workow Templates 99

The properties templateN ame, description, keywords and relatedT emplates are determined by using expert knowledge.

In contrast, the values of the properties creationDate and modif icationData are automatically captured at the moment of storing the template. Depending on all the activity labels in the template, the value of the property listOf ActivityLabels 1 is automatically retrieved.

For example, to get all activity labels of the template http : //W F T emplate#P ayment_P rocessing, the following SPARQL query is rst executed to get all IDs of its transitions: In fact, the semantic annotations of workow templates have been inspired by this idea: the knowledge added into these annotations will be helpful for the (re-)use of workow templates along with their ECA-like rules. In this section, we introduce a process for developing workow templates, which is regarded as part of the process for developing an encompassing workow application.

Chapter 6. Reuse of Workow Templates

The process consists of the main following phases (see Figure 6.3):

1. Search for reusable workow templates: An analysis of the process(es)

is performed before implementing it. This results in a set of requirement descriptions as well as a business process model. The information is then used to start the process for developing workow templates which may involve the search for reusable workow templates.

2. Understand and select potential, suitable templates: In this phase, modellers have to carefully consider the found workow templates. They try to understand them to decide which ones are (partly or fully) reused for their application.

3. Modify selected templates: If the selected templates do not comply with all the requirements, they have to be modied accordingly. For example, some new activities can be added into a selected template. Each of these workow templates is considered as a sub-workow of the new workow template. It is then veried at the syntactic and semantic level. In case of errors, the errors have to be solved. The new workow template is stored in the CBWT repository if and only if: there exist no syntactic errors nor semantic errors; and at least one set of ECA-like rules is dened for the new workow template.

To nd suitable workow templates, users can dene their criteria by keyword, by description or by activity label. If the search process returns only one template, users can easily make their decision that the template is selected or not selected.

Otherwise, the value of the property RelatedT emplates can be used to provide more information for users to make their decision.

To sum up, the semantic annotations of workow templates integrating expert domain knowledge formalized by an RDF graph are used to organize and retrieve workow templates, their business process ontologies and their sets of ECA-like rules. The resulting templates and their rules can be used in a process for implementing software components or in a process for developing workow templates.

At the upper part of The current version of the CBWT prototype focuses on supporting expert users in the workow template development process. Therefore, in the following we describe six use cases intended for expert users (i.e., modellers), which are provided by the CBWT prototype:

• Search for workow (WF) templates: Users can search for potential, suitable workow templates through search criteria as keywords, description and even activity labels.

• Browse workow templates and ECA-like rules: Users can browse a workow template via an interface illustrated in Figure 7.2. On the left side of the form (see area (1)), a list of workow templates is shown. By clicking on a workow template, the information concerning the workow template is shown in the right part of the form (see area (2)). To browse the detail of a set of ECA-like rules of the workow template, users can click on its name (see area (3)) and all the rules in that selected set will be displayed in the other form (Figure 7.3). The lower part of the form displays the set of semantic constraints used for developing the template (see area (4)). There are also the set of buttons used to modify the template (see area (5)).

• Download workow templates along with their ECA-like rules: The serve-side contains two components as follows:

• Workow manager maintains workow templates and provides the manipu- • Workow Templates with ECA-like rules Repository contains the high quality workow templates, verifying the syntactic and semantic correctness, their business process ontologies and ECA-like rules.

Technical Implementation of the CBWT Prototype

This section describes the implementation of the CBWT prototype. The functionality shown in Figure 7.4 allows users to dene criteria to search for workow templates, which are appropriate to a business process model they want to develop. Criteria can be dened as keywords, description and activity labels.

• Input: The criteria provided by a user to start a search for relevant templates.

• Process: Matching the desired values with the values of the corresponding attributes in the annotation ontology.

• Output: A set of relevant templates contains a series of the potential, suitable activities along with their ECA rule les. In order to develop a high quality workow template, a set of elements (e.g., activities, control nodes, business rules) of the workow template as well as the relationship between them must be dened.

The functionality shown in Figure 7.5 allows users to input all the necessary information to specify a semantic constraint for a given model.

• Input: The information provided by a user to create a new semantic constraint. It is named automatically or manually.

• Process: A set of necessary information that is lled to create a new semantic constraint. The new constraint is then checked with the set of existing ones to avoid duplication. The new constraint is regarded as a duplicate of the other ones when their four parameters consisting of constraintType, appliedTask, relatedTask and order are the same.

• Output: A new semantic constraint is stored if it does not duplicate any existing ones in the set of dened constraints semantics. Otherwise, a notication will be sent out.

Creation of a new Workow Template

The functionality shown in Figure 7.6 allows users to complete the preparation of a new workow template. (ii) The CPN ontology.

• Process: A workow template can be developed by integrating the existing unmodied, modied and new workow templates. Therefore, the rst step of the process for developing workow templates is to locate reusable workow templates. The second step is to understand and select potential workow templates. The third step is to modify the chosen templates if needed. And the last step is to add a set of semantic constraints which is used to complete the new workow template.

• Output: The preparation of a new workow template in RDF format.

Checking Redundant and Conicting Semantic Constraints

The functionality shown in Figure 7.7 allows users to valid the set of semantic constraints.

• Input: A set of semantic constraints.

• Process: The set of semantic constraints have to be checked whether they • Output: The result of checking redundant and conicting semantic constraints.

Figure 7.7: Interface for checking redundant and conicting constraints

Workow Template Verication

The functionality shown in Figures 7.8 and 7.9 allows users to check the correctness of workow templates at the syntactic and semantic level.

• Input: A workow template.

• Process: Workow verication is executed by matching an RDF graph repre- • Output: An XML le which results nodes comprising required information and causes errors. • Input:

(i) Information provided by the workow modeller to dene a set of ECA-like rules;

(ii) An existing workow template.

• Process: An existing workow template contains a set of activities and control nodes. A requirement can be dened for each node according to the syntax mentioned in Section 4.4.

• Output: The set of business rules in RDF format.

Evaluation

In this section, we discuss the evaluation of the proposed approach by performing an experiment with 6 participants consisting of:

• 4 PhD students in Computer Science [START_REF]OWL Web Ontology Language Overview[END_REF] and Business Studies (2);

• 2 participants have graduated in Information Systems (1) and Business Management Studies (1).

The participants were divided into two groups to analyse the Procure to pay business process. We interviewed 4 economics experts in two companies in Sophia Antipolis, France.

The process was split into two main sub-processes due to its complexity and the dierent roles involved:

1. Requisition to Receipt Process (RRP): This sub process starts by the creation and management of purchase requisitions and corresponding purchase orders to the moment the warehouse sta receives the merchandise. Each group focused on one sub process. They determined activities and dependencies between these activities to model the sub process. We received 38 activities for the rst sub process and 26 activities for the second one. The activities were then divided into sets based on their function. There were four sets (i.e., Purchase requisition processing, Checking, Contact and Inventory) and two sets (i.e., Invoicing and Payment) of activities from the rst and the second sub process, respectively.

We decided to reuse the P ayment template presented in Section 1. In order to evaluate the eectiveness of our algorithm for checking redundant and conicting constraints, we measured the time required for nding the shortcomings as shown in Figure 7.10. This gure indicates that using our prototype is faster.

The sets of semantic constraints were then modied (if required) to be validated.

Based on these sets, the workows were developed. To measure the correctness of the mapping method between the BP ontology and the CPN ontology, we checked 10 https://products.office.com/en-us/home-and-student Consequently, the prototypes have been improved to avoid similar redundancies.

In order to evaluate the eectiveness of SPARQL queries for syntactic and semantic checks we counted the correct, incorrect and missing answers to determine the quality of results. We compared the results obtained by using the SPARQL query language and the ones obtained by manual search. Figure 7.11 shows the number of syntactic and semantic errors of these workows detected by the SPARQL language and by manual. These results indicate that using SPARQL queries to verify complex workows is better regarding the accuracy of the results.

Conclusion

As mentioned at the beginning of this chapter, the CBWT prototype is developed for the process of workow template development to validate the concepts that we have introduced in the previous chapters of this thesis. We have concentrated on developing the six use cases for expert users who are workow modellers.

By developing the prototype, we have received useful feedback to improve the concepts relating to model semantically rich workow templates. For example, in the rst version of our prototype, sub-workows were not supported, which was then considered as a major shortcoming. Therefore, we have expanded the old prototype to allow users to not only create a new workow template containing one or more This chapter concludes our doctoral research work by summarizing the main contributions. We also discuss the limitations of the proposed approach for developing workow templates and the current version of our CBWT prototype. Subsequently, we identify directions for possible future research.

Summary of Contributions

There are four major contributions of this thesis. Firstly, the CPN ontology has been developed to represent the concepts of CPN-based business workow templates. Secondly, a formal denition of semantic constraints and a structure of ECA-like rules have been introduced to model semantic business processes. In order to check redundant and conict constraints, an algorithm has been presented. In addition, to develop a workow template, a set of algorithms used to create correspondences between the BP ontology (a business process ontology) and the CPN ontology has also been described. Thirdly, the problem of workow verication has been investigated. A set of syntactic constraints as well as the issues of semantic verication have been determined. They are represented as SPARQL queries used for syntactic and semantic checks related to a specic business process. And lastly, concepts to better support the process for developing workow templates have been suggested.

In fact, process specication techniques and conceptual models of workow have been presented in various research papers. However, in most cases, they focused on checking the correctness of a workow either at the syntactic or at the semantic level only. As the result, this is not sucient for guaranteeing the correctness of a workow template at both levels. In contrast, our approach focused on the combination of control ow (based on CPNs) and semantic constraints that enables syntactic and semantic checks related to a workow template.

To summarize, in comparison with the current approaches, our approach has the following distinguishing features: • Describing semantically a business process by identifying a set of semantic constraints and ECA-like rules.

Semantic constraints are specied as domain specic restrictions on a business process. They express the dependencies between activities, such as existing dependencies and ordering relations. A set of semantic constraints is transformed into an instance of the BP ontology if there is no redundant and conicting constraints. A business workow template is then developed by creating a correspondence between the BP ontology and the CPN ontology.

The denitions in the BP ontology are used not only to standardize the terminologies, but also to check the semantic correctness of workow templates.

However, semantic constraints can not capture some business level correctness requirements, such as the constraint specifying that a certain user task has to be performed in a certain activity of a business process. Therefore, ECA-like rules are proposed to express those requirements. The combination of semantic constraints and ECA-like rules supports workow modellers in modelling semantic business processes.

• Correctness criteria for business workow templates : The correctness criteria are considered at the two levels, syntactic and semantic.

Since a business workow template is developed based on the CPN and the BP ontology, it allows syntactic and semantic checks. The performance of the former relies on the classication of syntactic constraints in modelling business processes. The latter is performed in order to answer the ve semantic verication issues of a workow template.

Furthermore, since workow templates are encoded in RDF format, the SPARQL query language is used to check their correctness. Correctness criteria are formalized as SPARQL queries, which can be asked against an RDF graph describing a workow template.

In order to modify workow templates and their ECA-like rules, a set of manipulation operations has been proposed that allows modifying and updating the workow templates and their ECA-like rules. The set includes operations to add, delete, update workow elements and ECA-like rules as well as to modify the order of the existing workow elements.

Limitations and Perspectives 121

Moreover, the issue of reusing workow templates is addressed. This contains several phases: searching, understanding, modifying and integrating workow templates. Each phase provides adequate support to facilitate the reuse of workow templates. The annotations of each workow template help users to nd and select the most suitable ones. The selected workow templates along with their ECA-like rules then can be adapted and modied by applying the proposed manipulation operations. The integration of the existing modied, unmodied and new sub-workow templates (if any) is supported by enabling the composition of sub-workows.

Finally, the CBWT prototype has been implemented to demonstrate the feasibility of the concepts introduced in this thesis.

Limitations and Perspectives

In this section, we discuss limitations of our approach as well as provide a brief description of the main perspectives of our research.

The main limitation of our research comes from the complexity of modelling domain knowledge. The research has been particularly oriented to model semantic business processes and business level requirements by expert-users. It is sometimes dicult to specify semantic constraints and to represent all business level requirements as ECA-like rules. For a set of complex semantic constraints, e.g., an activity which may relate to a lot of semantic constraints, the automated approach, which is used to create correspondences between the BP ontology and the CPN ontology to develop a workow template, may result in redundant control nodes. Therefore, the resulting workow template in some cases need to be manually optimized.

Another limitation is that at the moment only design time is supported and there is no support for multiple modellers who might be involved in workow modelling.

In the following, several other directions to extend the results presented in this thesis are identied:

• Support of multiple workow modellers (i.e., expert users): The CBWT prototype has been developed as a simple web application. Thus, it can be further extended to support multiple workow modellers who might be involved in modelling a business process. To address the problem of concurrency access, the following solutions are mentioned:

Locking the template le for writing. It means that once an expert user (modeller) starts to modify an existing workow template (le) nobody else can commit any change to this le.

Using workspaces (or named repositories). A workspace is a named repository on the server. The access right is controlled by the server. It is mandatory to apply some forms of version management and sharing strategy to the repository (i.e., workow templates can be merged, modied and copied, etc.).

 Figure 1.1: Order processing template

Figure 1 .

 1 Figure 1.5 shows an excerption of the fOtD process applied to company Compa-nyA. In this excerption we can see the re-use of two templates, i.e., Shipment and Payment. Some steps of these templates are modied or deleted. For example, a set of steps, which is used to calculate shipping price, replaces the step calculate the shipping price in the Shipment template.

Figure 2 .Figure 2 Figure 2 . 2 :

 2222 Figure 2.1: Business Process Management life cycle [Sonntag 2010]

 .3. Consequently, dataow and control-ow are normally married in scientic workows. The advantage of the marriage is that the resulting model is often simpler and allows stream-based, pipeline-parallel execution [Ludäscher 2009]. The disadvantage is that it is not easy to model certain workow patterns (for conditional execution, for example) via dataow. once but B is conducted after A B uses the output of A Designer Interpretation C, D and E are conducted after B according to transition conditions C, D and E use the output of B ABCDEF C A B D F E Only C, D and E are concurrently conducted. B is preceded by the execution of A and succeeded by C, D, E and after F A, B, C, D, E and F can be conducted concurrently Execution Environment

Figure 2 . 3 :

 23 Figure 2.3: Brief comparison of Business Workows and Scientic Workows

 Work items are executed by resources. Resources are human (e.g., workers, employees, etc.) and/or non-human (e.g., machines). Resources are grouped into classes in order to facilitate the allocation of work items to resources. Each resource class contains a set of resources with similar characteristics. A resource class based Chapter 2. Basic Concepts on the capabilities of its members is call a role.

Figure 2 .

 2 Figure 2.4 depicts three dimensions of a workow [van der Aalst 1998], including the process (or control ow), the resource and the case dimension.

Figure 2

 2 Figure 2.4: A three dimensional view of a workow [van der Aalst 1998]

 of Tim Berners-Lee who invented the World Wide Web, the Semantic Web is characterized by a set of technologies, tools and standards. They are organized into a Semantic Web Stack that is an expression of their interrelationships. Figure 2.5 12 describes dierent layers of the Semantic Web architecture where each layer uses the capabilities of the layer below. The lower layers provide the syntactic interoperability (URI, Unicode and XML). The upper layers correspond to a standard model for data interchange on the Web (RDF), ontology modelling languages (RDFS and OWL), a query language designed specically to query RDF databases (SPARQL) and rule languages (RIF and SWRL).However, according to [Bénel 2010], the feasibility of the last three layers (i.e., the Logic, Proof and Trust layers) still seems unclear.

Figure 2 .

 2 Figure 2.5: Semantic Web layered architecture 13

 Figure 3.1 depicts an example of a CPN. This CPN has three places and one transition. Two places have a type String × Int and one has a type Int. When the transition res, it consumes two tokens from its input places and produces one token to its output place.

 an initialization function. It is dened from P into closed expressions such that: ∀p ∈ P : [T ype(I(p)) = C(p)] A CPN-based process model is null if it has no places, activity nodes or arcs. Business process models generally contain standard building blocks, including Sequence, And -split, And -join, Xor -split and Xor -join as shown in Figure 3.2. It is worth noting that the two building blocks, Or -split and Or -join, are not used in the workow modelling standards [van der Aalst 1998] nor in our work (called control nodes). The reason is that an OR (i.e., Or -split and Or -join) can be simulated by a combination of the two other building blocks (i.e., AN D and XOR) although that makes workows become more bulky.

Figure 3 . 2 :

 32 Figure 3.2: Five building blocks for modelling routing compositions

 an initialization function associating initial values to the input place. Denition 4 (Sequence operator). Sequence operator maps the output place of an AF to the input place of another AF. It is dened as 8-tuple: SequenceO = (, P, T, A, C, G, E, I), where:

 an arc expression function where: ∀a ∈ A : if a.p = p in : E(a) = M (a.p) else: Either E(a) = G(a.t) or E(a) is empty.

 Figure 3.3: Order processing template modelled with CPNs

Figure 3

 3 Figure 3.4: CPN ontology expressed in a description logic

 These types are used to specify the restriction of individuals that belong to a class.In the following we describe some axioms created for the CPN ontology. The full description of the CPN ontology can be found in Appendix B.With regard to classes, we start by creating the class axiom for the class CP N Ont containing the properties hasP lace, hasT rans and hasArc. OWL provides the syntactic form EquivalentClasses(C 1 . . . C n) to express synonyms. Therefore, the class axiom is created as follows:

Figure 3

 3 Figure 3.5: Property connectsT rans and property connectsP lace

 (i) Inserting new elements (i.e., places, transitions or arcs, etc.) into a workow template; (ii) Deleting existing elements from a workow template; 40 Chapter 3. Development of a Knowledge Base for Control ow-based Business Workow Templates (iii) Updating existing elements for adapting to a workow template;

 Figure 3.9: An example of the DELETE INSERT WHERE statement

 Figure 3.10: An example of editing ordering relationships

Figure 3

 3 Figure3.11: Extended semiotic triangle model, ontology and process for the semantic process modelling[Thomas 2009a]

2 .

 2 Hence, to ensure that a business workow works as intended, their individual activities are needed to take into account -What are the meaning and relations between activities in a workow? What do they actually execute during their performance? In fact, no information about this can be found in traditional workows 3 except the naming of the activities. For simple applications in closed domains where the behavior of activities are understood in detail by involved persons and/or not overly complicated, naming of model activities may be sucient.

 Property of the Parameter order (i) Proof of the transitive property (1):

4. 3 .

 3 Organization of the Knowledge Base of Semantic Constraints 59 Algorithm 1 Validation of the semantic constraint set sCValidation (sc) Input: Initial semantic set vector sc Output: Well-checked semantic constraint set vector sc

Figure 4 . 1 :

 41 Figure 4.1: Extract of the ontology building on top of a set of semantic constraints

Figure 4 . 2 :

 42 Figure 4.2: Denition of the Individual P rovide_P ayment_M ethods in the Payment template

2 …

 2 Figure 4.4: Representation of the set of semantic constraints SCC multi in CPNs (Algorithm 4)

Figure 4 Figure 4 . 5 :

 445 Figure 4.3: Representation of the set of semantic constraints SCD dep in CPNs (Algorithm 3)

Figure 4 . 6 :

 46 Figure 4.6: An example of ontology mapping (excerpt)

 It can be developed by using the Add ECA Rule editor as shown in Figure 4.7.

Figure 4 . 7 :

 47 Figure 4.7: Add correctness requirement dialog

 M. B. Dwyer et al. [Dwyer 1999] collect and analyze over 500 examples of property specications from dierent domains. They indicate that most of these examples are conformed to eight property patterns within ve basic kinds of scopes.

 Verication Issues 76 5.1.1 Syntactic Constraints related to the Denition of Process Model 77 5.1.2 Syntactic Constraints Related to Uses of Control Nodes . . . 79 5.1.3 Compliance Checking of Workow Templates at the Syntactic Level . 82 5.2 Semantic Verication Issues 87 5.2.1 Semantic Verication Tasks 87 5.2.2 Compliance Checking of Workow templates at the Semantic Level . 88 5.3 A Wrong Workow Example 90 5.4 Related Work . 91 5.4.1 Approaches focusing on the Syntactic Level 91 5.4.2 Approaches focusing on the Semantic Level 94 5.5 Discussion and Conclusion . 95

Figure 5

 5 Figure 5.1: Verication of business workow templates

Figure 5 . 2 :

 52 Figure 5.2: Deadlock simulations

Figure 5 . 4 :

 54 Figure 5.4: Missing synchronization simulation

Figure 5 Figure 5

 55 Figure 5.5: A wrongly designed workow model for the fOtD process (excerpt)

Figure 5

 5 Figure 5.7: A typical model checking workow

Figure 6 . 1 :

 61 Figure 6.1: Example of the semantic annotation of a workow template

Figure 6 . 2 :

 62 Figure 6.2: Extract of the annotation ontology used to annotate workow templates

4.

 Create new sub-workow templates: Besides reusing part or all of the existing templates, modellers might have to create new sub-workow templates to meet all the requirements. However, the creation of a new sub-workow template is only necessary if no existing templates can be reused instead for the same purpose. 5. Complete workow templates: The last phase is to complete a new workow template. The existing unmodied, modied and new sub-workow templates are integrated into a new workow template for a specic use case.

 Figure 7.1(a), a use case model 1 shows the functionality of the CBWT prototype. There are two types of actors consisting of expert user (i.e., the workow modeller) and end-user, who interact with the prototype. The communication associations between actors and use cases are represented by arrows. The direction of each arrow is used to indicate the entity (either actor or use case) initiating the communication.

Figure 7

 7 Figure 7.1: The conceptual architecture overview of the CBWT prototype

Figure 7 . 2 :

 72 Figure 7.2: Interface used to browse and update workow templates

7. 2 .

 2 Figure 7.3: Interface used to browse and update ECA-like rules

Figure 7

 7 Figure 7.4: Interface of the denition of criteria for searching templates

Figure 7 . 5 :

 75 Figure 7.5: Interface of the creation of a semantic constraint

 contain redundant, conicting constraints or not before it is used to develop a new workow template. The check is done by applying Algorithm 1. The variable checkRedundance (shown in Figure 7.7 as the column REDUNDANCE) consists of two possible values: True if a semantic constraint is redundant and False, otherwise. The variable checkConict (shown in Figure 7.7 as the column CONFLICT) has integer values: value -1 means that the constraint does not conict with the other constraints; a positive value means that the constraint conicts directly with the other constraint; a negative value (except value -1) means that the constraint conicts with an inferred constraint.

 senting a workow template to graph patterns of SPARQL queries concerning the syntactic and semantic constraints (see Chapter 5). If there is at least one match, an XML le is returned to indicate why the errors occur (e.g., see Figure 5.6). The workow template has to be repaired until it is well-veried and thereafter the workow template is added to the workow templates repository.

Figure 7

 7 Figure 7.8: Verifying and reporting non-compliance results at the semantic level

2 .

 2 Supplier Invoice to Payment (SIP): This sub process continues the previous one by registering the supplier invoices and closes it by paying supplier invoices.

 2.1 to model the Payment set. By taking these results, each group created necessary sets of semantic constraints to model the sub processes. The sets were checked for redundant and conicting constraints (a) by manual search with the tool Microsoft Excel 2013 10 or (b) by using the proposed prototype.

Figure 7 .

 7 Figure 7.10: Time needed to check redundant and conicting constraints

Figure 7 .

 7 Figure 7.11: Detecting errors by manual searching and querying

•

 Representing semantically rich business workow templates : The CPN ontology has been developed to represent the concepts of CPN-based business workow templates. A business process is thus syntactically transformed into an instance of the CPN ontology, which enables syntactic checks based on CPNs. The purpose of the CPN ontology is to semantically enrich workow templates. Once workow denitions are stored as semantic enriched workow templates, IT experts can easily develop their appropriate software systems from the workow templates.

 <owl:onProperty rdf:resource="#connectsPlace"/> <owl:allValuesFrom>

 Introduction . 1 1.2 Scenario . 2 1.2.1 fromOrdertoDelivery Process Model 3 1.2.2 Adapting templates stored in CBWTRepository to model the fromOrdertoDelivery Process for CompanyA

	Chapter 1
	General Introduction
	Contents
	1.1

6 1.3 Proposal and Main Contributions 7 1.4 Thesis Outline . 9 1.1 Introduction Nowadays, software systems that automate business processes have become more and more available and advanced. According to [omg 2000], process models, which

Table 1

 1

		.2: Invoicing template document
		Invoicing template
	Description	This template is used to model the process that generates
		new invoices if ordered items have been shipped or if the
		payment is obligatory to be handled before the shipmen-
		t/delivery step.
		An invoice is prepared to send to the client (purchaser,
		buyer, customer) for each order.
	Purpose	To represent a set of activities for invoicing an order
	Related templates	Order Processing, Notication, Payment, Shipment
	Keywords	Invoice, Bill
	1.2.1.3 Payment	
		Table 1.3: Payment template document
		Payment template
	Description	This template is used to handle the payment process. In
		this process, a client (purchaser, buyer, customer) has
		to choose a payment method (through a payment service
		provider or a bank) to pay the agreed monetary value to a
		seller.
		The template also contains activities to process overdue
		payments and to remind the client about outstanding
		debts.
	Purpose	To represent a set of activities for modelling a payment
		process
	Related templates	Invoicing, Order Processing, Notication, Shipment
	Keywords	Cash, Credit card, Payment
	1.2.1.4 Shipment	

The Payment template (see Figure

1

.2) is used to execute a payment process in response to the received invoices.

The Shipment template (see Figure

1

.4) is used to model a shipment process.

•

 Establishing a knowledge base to guide the appropriate workow templates for the development of a business workow template.

 Workows and Workow Languages 11 2.1.1 Business Workows versus Scientic Workows 11 2.1.2 Workow Charateristics . 15 2.1.3 Workow Languages . 16 2.2 Business Rules . 17 2.3 Knowledge Representation in the Semantic Web Models . 19 2.3.1 Semantic Web Pyramid . 20 2.3.2 An Assertional Language: RDF 20 2.3.3 Ontology Representation Languages: RDFS and OWL 21 2.3.4 Representation of Queries: SPARQL 23 2.4 Conclusion . 24

	Chapter 2
	Basic Concepts
	Contents
	2.1

 An Ontology for Coloured Petri Nets-based Business Workow Templates 35ontology. The CPN ontology is described based on DL syntax (summarized in Table3.1) and the axioms (summarized in Table3.2) supported by OWL.The meaning of the main elements in the CPN ontology is described as follows:• The concept CP N Ont is dened for all possible PMs (cf. Denition 2). This concept can be glossed as `The class CP N Ont is dened as the intersection of: Chapter 3. Development of a Knowledge Base for Control ow-based Business Workow Templates CP N Ont ≡≥ 1hasT rans.T ransition ≥ 1hasP lace.P lace ≥ 1hasArc.(InputArc OutputArc) P lace ≡ connectsT rans.T ransition ≤ 1hasM arking.T oken T ransition ≡ connectsP lace.P lace = 1hasGuardF unction.GuardF unction InputArc ≡≥ 1hasExpresion.Delete ∃hasP lace.P lace OutputArc ≡≥ 1hasExpression.Insert ∃hasT rans.T ransition Delete ≡ ∀hasAttribute.Attribute Insert ≡ ∃hasAttribute.Attribute GuardF unction ≡≥ 1hasAttribute.Attribute = 1hasActivity.ActN ode = 1hasControl.CtrlN ode T oken ≡≥ 1hasAttribute.Attribute Attribute ≡≤ 1valueAtt.V alue CtrlN ode ≡≤ 1valueAtt.V alue ActN ode ≡= 1valueAtt.V alue V alue ≡ valueRef.V alue

	Table 3.1: OWL constructors
	Constructor	DL syntax
	intersectionOf	C 1 . . . C n
	unionOf	C 1 . . . C n
	complementOf	¬C
	oneOf	{x 1 . . . x n }
	allV aluesF rom	∀P.C
	someV aluesF rom ∃r.C
	hasV alue	∃r.{x}
	minCardinality	(nr)
	maxCardinality	(nr)
	inverseOf	r -
	Table 3.2: OWL axioms
	Axiom	DL syntax
	subClassOf	C 1 C 2
	equivalentClass	C 1 ≡ C 2
	subP ropertyOf	P 1 P 2
	equivalentP roperty	P 1 ≡ P 2
	disjointW ith	C 1 ¬C 2
	sameAs	{x 1 } ≡ {x 2 }
	dif f erentF rom	{x 1 } ¬{x 2 }
	T ransitiveP roperty	P transitive role
	F unctionalP roperty		(1P)
	InverseF unctionalP roperty	(1P -)
	SymmetricP roperty	P ≡ P -
	Coloured Petri Nets-based Business
	Workow Templates	
	3.2.1 Representation of Coloured Petri Net with OWL DL Ontol-ogy

Our CPN ontology developed to represent Coloured Petri Nets with OWL DL, is rst proposed in

[Nguyen 2014c

]. Each element of CPNs is translated concisely into a corresponding OWL concept. Figure

3

.4 depicts the core concepts of our CPN 3.2. (i) any class having at least one property hasP lace whose value is restricted to the class P lace and; (ii) any class having at least one property hasT ransition

 This statement means that existing elements e 1 , e 2 , . . . , e n are completely deleted from a workow template named wf . RDF le format. As an example, Figure3.8 illustrates an existing place being deleted from a workow template.

	DELETE WHERE{
	k:NameOfPlace ?pr1 ?o.
	?s ?pr2 k:NameOfPlace. }
	Figure 3.8: An example of the DELETE WHERE statement
	(iii) Updating existing elements for adapting to a workow template.
	Figure 3.7: An example of the INSERT DATA statement
	(ii) Deleting existing elements from a workow template.
	The DELETE DATA statement or the DELETE WHERE statement in the
	SPARQL query language can be used to delete existing elements from the
	2 Two prexes are assumed as:

T {e 1 , e 2 , . . . , e n } IN T O P ROCESS wf [W HERE cond 1 , cond 2 , . . . , cond m]; (n ≥ 1, m ≥ 1) This statement means that `elements e 1 , e 2 , . . . , e n , each of which has been created, are inserted into a workow template named wf . The conditions cond 1 , cond 2 , . . . , cond m in the W HERE clause (if any) specify how to insert these new elements into the workow template wf '. The INSERT DATA statement or the INSERT WHERE statement in the SPARQL query language can be used to insert new elements on workow templates into RDF les. As an example, Figure 3.7 illustrates a new place, which contains a token and is connected to a transition, being inserted into a workow template 2 . INSERT DATA{ k:NameOfPlace a h:Place; h:hasMarking k:NameOfToken. k:NameOfWF h:hasPlace k:NameOfPlace.} DELET E ELEM EN T {e 1 , e 2 , . . . , e n } F ROM P ROCESS wf ; (n ≥ 1) P REF IXh :< http : //www.semanticweb.org/CP N W F # > P REF IX k : < http : //W F T emplate# > U P DAT E ELEM EN T {e 1 , e 2 , . . . , e n } ON P ROCESS wf

[W HERE cond 1 , cond 2 , . . . , cond m]; (n ≥ 1, m ≥ 1)

This statement means that elements e 1 , e 2 , . . . , e n in a workow template named wf , each of which has been created, are updated. The conditions cond 1 , cond 2 , . . . , cond m in the W HERE clause (if any) specify how to update these elements in the template wf .

In this case, some statements in the SPARQL query language can be used, such as the INSERT DATA statement, the INSERT WHERE statement or the DELETE INSERT WHERE statement. As an example, in Figure

3

.9, an existing place in a workow template changes its token.

 Development of a Knowledge Base for Control ow-based Business Workow Templates Our CPN ontology, a representation of Coloured Petri Nets with OWL DL ontology, is very close to the one proposed by

3 http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/PNO.rdfs 4 http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/TimePNO.rdfs 5 http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/UpgradedPNO.rdfs 44 Chapter 3.

 Formal Denition of Semantic Constraints 46 4.2 Implicit, Redundant and Conicting Semantic Constraints 48 4.2.1 Algebraic Properties of Semantic Constraints 48 4.2.2 Algorithm for Validating a Set of Semantic Constraints . . . 56 4.3 Organization of the Knowledge Base of Semantic Constraints 59 4.3.1 Development of a Business Process Ontology 59 4.3.2 Creation of Correspondences between Ontologies 61

	Chapter 4
	Semantic Business Process
	Modelling
	Contents
	4.1

4.4 Integration of Event-Condition-Action Rules 66 4.5 Related Work . 71 4.6 Discussion and Conclusion . 73

 Table 4.1 and Table 4.2. The properties are used to infer implicit constraints (see Section 4.2.2) and create business workow templates (see Section 4.3.2). activity 1 order_value activity 2 to denote that activity 1 and activity 2 are involved in a (inferred) semantic constraint like (constraintT ype, activity 1 , activity 2 , order_value, description, [Equivalent]);

	We use the notation:
	and	the	notation:

Table 4 .

 4 1: Algebraic properties identied based on the parameter constraintT ype

	Name	Expression
	(1)	
	Association	

 Commutative Property of the Parameter constraintT ypeConsider the following semantic constraints sc 1 and sc 2 where:

	4.2. Implicit, Redundant and Conicting Semantic Constraints	53
	4.2.1.3	

13) a 2 mExclusion a 3 ⇒ exe(a 2) + exe(a 3) ≤ 1 (4.14) By combining (4.13) and (4.14), we get: exe(a 1) + exe(a 3) ≤ 1.

Table 4 . 2 :

 42 Algebraic properties identied based on the parameter order

	Name		Expression
	Symmetrization	(1)	a 1 bef ore a 2 ⇔ a 2 af ter a 1
		(1)	
	Transitivity		

 2 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 1]); or • sc j = (constraintT ype 1 , a 2 , a 1 , oder 1 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and constraintT ype 1 ∈ {choice, mExclusion} and order 1 = notSpecif ied; and constraintT ype 1 = coexistence and order 1 = concurrence; or • sc j = (constraintT ype 1 , a 2 , a 1 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and constraintT ype 1 / ∈ {choice, mExclusion} and order 1 = notSpecif ied; or • sc j = (constraintT ype 1 , a 2 , a 1 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and constraintT ype 1 ∈ {choice, mExclusion} and order 1 = notSpecif ied; = (constraintT ype 1 , a 1 , a 2 , order 2 , description 2 , [activities_are_equivalent _to_Activity_a 1]); or • sc j = (constraintT ype 2 , a 2 , a 1 , order 2 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and order 1 , order 2 are symmetric; or • sc j = (constraintT ype 1 , a 2 , a 1 , order 2 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and order 1 , order 2 are symmetric and constraintT ype 1 = dependency. Example 4.2.1. Let us consider the three constraints, sc1, sc2 and sc3, expressed in Example 4.1.1. According to the properties, Transitivity (4) in Table 4.1, Symmetrization (1) and Transitivity (1) in Table 4.2, a new constraint, namely sc1 -2, can be inferred from the constraints sc1 and sc2 as follows:

or

• sc j = (constraintT ype 1 , a 2 , a 1 , oder 1 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and constraintT ype 1 = coexistence and oder 1 = concurrence;

• sc j = (constraintT ype 1 , a 2 , a 1 , oder 2 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and constraintT ype 1 = coexistence and order 1 , order 2 are symmetric.

Denition 11 (Conicting semantic constraints). Constraint sc i ∈ C :

sc i = (constraintT ype 1 , a 1 , a 2 , order 1 , description 1 , [activities_are_equivalent_to _Activity_a 1]

)) is called a conicting constraint if and only if: ∃sc j ∈ C * where:

• sc j = (constraintT ype 1 , a 2 , a 1 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 2]) and constraintT ype 1 = coexistence and order 1 = concurrence; or • sc j = (constraintT ype 1 , a 2 , a 1 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 2]) or • sc j = (constraintT ype 2 , a 1 , a 2 , order 1 , description 2 , [activities_are_equivalent _to_Activity_a 1]); or • sc j

 gies, O 1 and O 2 . Mapping of an ontology with another one is dened as bringing ontologies into mutual agreement in order to make them consistent and coherent. It means that for a concept or a relation in the ontology O 1 , we nd the same intended meaning in the ontology O 2 . For an instance in the ontology O 1 , we map it into an instance with the same name in the ontology O 2 .In the following, we present some algorithms used to map the BP ontology, which is developed based on a set of well-checked semantic constraints, namely C, and the CPN ontology. We skip the descriptions of the other algorithms, which are developed in the same way with the ones presented below, to keep the presentation in this thesis short. pIn_t and pOut_t of the class P lace; a_in_t and a_out_t of the classes InputArc and OutputArc, respectively; delete_t and insert_t of the classes Delete and Insert, respectively

	Algorithm 2 is rstly applied to map the instances representing the activities
	related to a set of constraints.	
	Algorithm 2 Mapping the instances representing the activities between the ontolo-
	gies			
		mappingActivities(bpOnt)	
		Input: Given the BP ontology
		Output: A set of instances in the CPN ontology represents the set of activities
		Programmed Activities	
	1:	setOf Actity = ReadAppliedAct(bpOnt)∪ ReadRelatedAct(bpOnt)	#
		Read all the instances of the class
		AppliedActivity	and	the	class
		RelatedActivity in the BP ontology
		bpOnt		
	2:	for all t ∈ setOf Actity do	
	3:	createActivity(t)			# Create the instances:	t of the class
					T ransition (expressed as an activity
					node); in the CPN ontology
	4:			

 Table 4.1 and Table 4.2. Algorithm 5, for example, is developed based on the associative property (1) and the commutative property (1) in Table 4.1. Given a set SCD O containing three constraints sc 1 , sc 2 and sc 3 where: sc 1 = (dependency, a 1 , a 3 , order 1 , description 1 , [activities_are_equivalent_to_ a 1]) ; sc 2 = (dependency, a 2 , a 3 , order 1 , description 2 , [activities_are_ equivalent_to_a 2]), order 1 ∈ {bef ore, af ter}; and sc 3 = (coexistence, a 1 , a 2 , order 3 , description 3 , [activities_are_equivalent_to_a 1]), order 3 ∈ 4.3. Organization of the Knowledge Base of Semantic Constraints 63 Algorithm 3 Mapping between the ontologies for the dependencies between the activities related to the set SCD dep of the type dependency mapping_dep_appliedAct(bpOnt,SCD dep) Input: Given the BP ontology, bpOnt and the set of n instancesSC D dep representing a set of n dependency constraints SCD dep Output: A set of correspondences in the CPN ontology represents the dependencies between the activities related to the set SCD dep Mapping between the ontologies for the dependencies between the activities related to the set SCC multi of the type choice mapping_choice_multi(bpOnt,SCC multi) Input: Given the BP ontology, bpOnt and the set of n instances SCC multi representing a set of n choice constraints SCC multi Output: A set of correspondences in the CPN ontology represents the dependencies between the activities related to the set SCC multi

	64		Chapter 4. Semantic Business Process Modelling
	Programmed Activities setOf SCD = ReadInstanceSC(SC D dep) n=setOf SCD.size if n>=1 then a=setOf SCD[1].appliedAct if n=1 then if isConnected(a,setOf SCD[n].relatedAct)=false then Algorithm 4 Programmed Activities 1: 2: 3: 4: 5: 6: 7: ctr a =createInstanceControl(T ransition) 1: setOf SCC = ReadInstanceSC(SC C multi) # Create an instance, namely ctr a of the 2: n=setOf SCC.size
	3:		class T ransition (expressed as one con-
			trol node Sequence) in the CPN ontol-
	5: 6: 7: 8:	8: 9: 10: 11: 12: 13: 14: 15:	ogy if order(setOfSC[n]) = before" then for i=1 to n do if isConnected(setOf SCC[i].appliedAct,setOf SCC[i].relatedAct)=false connectSequence(a,setOf SCD[n].relatedAct,ctr a) then else connectXorSplit(setOf SCC[i].appliedAct,setOf SCC[i].relatedAct, connectSequence(a,setOf SCD[n].relatedAct,ctr a) xorSplit_scc_multi) end if connectXorJoint(setOf SCC[i].appliedAct,setOf SCC[i].relatedAct, isConnected(a,setOf SCD[n].relatedAct)=true xorJoin_scc_multi) # setOf SCC[i].appliedAct,setOf SCC[i]. end if relatedAct are connected to-else gether via xorSplit_scc_multi and
		16:	xorJoin_scc_multi
	9: 10: 11: 12: 13: 14: 15: 16:	18: 19: 20: 21: 22: 23: 24:	isConnected(setOf SCC[i].appliedAct,setOf SCC[i].relatedAct)=true for i = 1 to n do end if if isConnected(a,setOf SCD[i].relatedAct)=false then end for if order(a,setOf SCD[i].relatedAct) = before" and then if isUsedToConnect(xorSplit_scc_multi) =false then connectSequence(a,setOf SCD[i].relatedAct,andSplit a) delete(xorSplit_scc_multi) else end if connectSequence(setOf SCD[i].relatedAct,a,andJoin a) if isUsedToConnect(xorJ oin_scc_multi)=false then end if delete(xorJ oin_scc_multi)
		25:	isConnected(a,setOf SCD[i].relatedAct)=true
		26:	end if
		27:	end for
		28:	if isUsedToConnect(andSplit a) =false then
		29:	delete(andSplit a)
		30:	end if
		31:	if isUsedToConnect(andJ oint a) =false then
		32:	delete(andJ oin a)
		33:	end if
		34:	end if
		35:	end if

andSplit a =createInstanceControl(And -split) 17: andJoin a =createInstanceControl(And -join) createInstanceControl(xorSplit_scc_multi, Xor -split) 4: createInstanceControl(xorJ oin_scc_multi, Xor -join)

 Integration of Event-Condition-Action Rules 67 Algorithm 5 Mapping between the two ontologies for the dependencies between one semantic constraint of the type coexistencey and two constraints of the type dependency mapping_dependency_coexistence(bpOnt,SCD O) Input: Given the BP ontology and the set SCD O Output: A set of correspondences in the CPN ontology represents the relations between the activities related to the constraints sc 1 , sc 2 and sc 3

	68	Chapter 4. Semantic Business Process Modelling
		Programmed activities
	1:	setOf SCDO = ReadInstanceSC(SC D O)
	2:	SCO multi = ∅
	3:	m=setOf SCC.size
	4:	for i = 1 to m do
	5:	if setOf SCDO[i].constraintT ype = "coexistence then
	10:	end if
	11:	end if
	12:	end for
	13:	for i=1 to m do
	14:	if isExistAnd(SC O multi) then
	15:	if setOf SCDO[i].constraintT ype = "dependency then
	16:	if isConnected(setOf SCDO[i].appliedAct,setOf SCDO[i].relatedAct)=false
		then
	17:	if setOf SCDO[i].order = "bef ore then
	18:	connectSequence(setOf SCDO[i].appliedAct,setOf SCDO[i].relatedAct,
		getAndJoin(SC O multi))
	19:	else
	20:	connectSequence(setOf SCDO[i].appliedAct,setOf SCDO[i].relatedAct,
		getAndSplit(SC O multi))
	21:	end if
	22:	isConnected(setOf SCDO[i].appliedAct,setOf SCDO[i].relatedAct)=true
	23:	end if
	24:	end if
	25:	end if
	26:	end for

6:

SCO multi =SC O multi ∪ {setOf SCDO[i]} 7: if isConnected(setOf SCDO[i].appliedAct,setOf SCDO[i].relatedAct)=false then 8: mapping_coexistence_multi(bpOnt,SCO multi) 9: isConnected(setOf SCDO[i].appliedAct,setOf SCDO[i].relatedAct)=true

 It has two special places, a source place i and a sink place o; and If a transition t connects the place i with the place o, the resulting PN is strongly connected.The verication of WF-nets concentrates on the so-called soundness property.The property involves a certain number of issues, such as liveness, boundedness, safeness, livelock, deadlock and dead activity [van derAalst 1997, van der Aalst 2000]. Furthermore, a sound WF-net always terminates properly, i.e., at the moment the WF-net terminates, the place o contains one token and there are no tokens anywhere else.

	92	Chapter 5. Verication of Workow Templates
		Petri Nets (PNs) is a class of modelling tools originated by Petri [Petri 1962].
		PNs and their extensions have proven to be useful for the modelling and anal-
		ysis of business processes. The existing research on PN-based workows is
		referred to a concept called Workow nets (WF-nets), which is a subclass of
		PNs. A Petri net P N = (P, T, F) is a WF-net if and only if:
		• Petri Nets-based Approaches

 According to [van der Aalst 1997], a Petri Net is a free-choice Petri Net if and only if, for every two places p1 and p2 either p1 • ∩p2 • = ∅; or p1• = p2• where p• denotes the set of transitions sharing p as an input place used to detect semantic conicts caused by violation only of dependency and mutual exclusion constraints.

	introduce techniques to
	ensure semantic correctness for single and concurrent changes at process in-
	stance level. Their approach checks a notion of semantic correctness based
	on annotations for tasks. A process is semantically correct if it complies with
	the annotations. Semantic constraints, which are dened over processes, are
	3 Well-formed PNs are a restrictions of the high-level nets. The main advantage of well-formed
	PNs is the notion of symbolic reachability graph that is composed of symbolic states [Chiola 1995]
	4

 Organization of the Knowledge Base of Control Flow-based Workow Templates . 97 6.2 Process for Developing Workow Templates 101 6.3 Related Work . 103 6.4 Discussion and Conclusion . 104

	Contents
	6.1

•

 Jena 7 is a free and open source Java framework for building Semantic Web and Linked Data applications, originally developed by researchers in HP Labs 8 in UK in 2000. Jena provides extensive Java libraries for developing code that handles RDF, RDFS, RDFa, OWL and SPARQL in accordance with published W3C recommendations. It contains a rule-based inference engine, which can perform reasoning based on OWL and RDFS ontologies. It also contains a number of storage strategies to store RDF triples in memory or on disk. The prototype is developed with the version apache-jena-2.12.0 9 .

	In the following, we introduce some interfaces used for the development process of
	workow templates.
	7.2.2 Denition of User's Scope of Interest to Search for Relevant Workow Templates

http://pegasus.isi.edu/

http://www.taverna.org.uk/

http://www.trianacode.org/

https://kepler-project.org/

http://www.w3.org/

http://protege.stanford.edu/

Semantics refers to the study of meaning in language, which focuses on the relations between words, phrase, signs and symbols, what they represent and denote. Linguistic semantics is the study of meaning employed for comprehending human expression through language. In scientic disciplines, the scientic meaning often refers to the conception of linguistics. In this discipline, semantics refers to the branch that deals with the meaning and signicance of language resp. linguistic signs. In other words: the teaching of the meaning and the relations of signs for a certain object. If this is transferred to process modeling languages, the semantics of a process model can be understood as the relationship between the elements of a model (sign) and an existing or future operational business process (universe of discourse)[START_REF] Fellmann | [END_REF]].

In general, traditional workows focus on syntactical relationships between activities and their black box character.

Relying on the ring rule in [van derAalst 1997]

https://jena.apache.org/index.html

http://www.eclipse.org/

https://vaadin.com/home

https://vaadin.com/download

https://jena.apache.org/index.html

http://www.hpl.hp.com/

https://jena.apache.org/download/index.cgi

</owl:intersectionOf> </owl:Class> </rdfs:subClassOf> </owl:Class> ... </rdf:RDF> <!--Generated by the OWL API(version 3.4.2)http://owlapi.sourceforge.net-->

Acknowledgments

First of all, I would like to express my sincerest and deepest gratitude to Prof.

Nhan LE-THANH. Thank you so much for introducing me to the eld of research and taking me on as a PhD candidate. I will always be greatly indebted to you for your support and guidance.

I would like to express my gratefulness to Prof. Parisa GHODOUS and Prof.

Ladjel BELLATRECHE for agreeing to review this thesis. I want to say a sincere thank to them for their time and thoughtful comments. And also, I would like to express my gratefulness to the members of jury for agreeing to participate to the presentation.

I would also like to express my sincere regards to Prof. Peter SANDER who looked closely at the nal version of the thesis for English style and grammar, correcting both and oering suggestions for improvement. I would also like to extend my thanks to Dr. Alain GIBOIN. You gave me encouragement and very valuable advice for this thesis.

I warmly thank the members of WIMMICS team for their valuable advice on my research methodology and contributions, especially Dr. Fabien GANDON, Dr.

Olivier CORBY and Dr. Catherine FARON-ZUCKER.

I am indebted to all my friends who have supported me over the last few years:

May 4, 2014 Request payment; Provide payment methods; Get payment data; Process check or cash; Process credit card; Accept payment; Reject payment http://WFTemplate#Shipment http://WFTemplate#Notification http://WFTemplate#Invoicing http://WFTemplate#OrderProcessing http://ECARule#Payment_0001 http://WFTemplate#Payment http://BPOntology#Payment

Chapter 4. Semantic Business Process Modelling

.9: Scopes for property specication patterns

• Chain Response requires that a given sequence of states/events must always occur as response to the occurrence of a sequence of other states/events in the scope. Indeed, although their patterns express formal requirements related to the occurrence and order of states/events during system execution, they can be used as fundamental for compliance rule specication as we can see in the approaches briey introduced in the following.

Chain response

The authors in [START_REF] Sadiq | [END_REF]] describe an approach for specifying and validating process constraints for exible workows. According to them, the key issue in exible workows is the specication of subprocesses, from which a full workow specication may be derived at runtime. They use dierent types of constraints (i.e., serial, Chapter 5. Verication of Workow Templates

Compliance Checking of Workow Templates at the Syntactic Level

In order to verify a workow template, we initiatively query the workow template to verify whether it contains syntactic errors or not. Two query forms are used in our work, including ASK and SELECT. The following SPARQL verication queries are created based on the syntactic constraints.

• Query 1 is created relating to Constraint 1 to list all places not connected to any arcs. They are not on any path from the start point to the end point of a process model. Constraint 12 by only using the SPARQL query language. In order to detect deadlock, innite cycle and missing synchronization, the reduction algorithm in [Esparza 1994] must be applied. The algorithm is used to transform a 5.2. Semantic Verication Issues 87 workow template into a simple form. We then can use the SPARQL query language to query the simple forms of workow templates.

The following query, Query 12.1, is used for detecting if there exist any deadlocks caused by the combination of control nodes Xor -split and And -join.

The query will return pairs of control nodes which make deadlocks happen.

SELECT distinct

}

The queries used to list all pairs of control nodes causing deadlock (depicted in Figure 5.2) (b) and (c) are created similar to Query 12.2.

Semantic Verication Issues

Semantic Verication Tasks

We hereinafter pay attention to the research question relating to semantic verication: Is the behavior of the individual activities satised and does it conform to the Chapter 5. Verication of Workow Templates control ow? To answer this question, we address the following semantic verication issues:

(1) Are there activities whose occurrences are alternative choices or in mutual exclusion, but these activities may be executed in parallel or in sequence?

(2) Are there activities whose executions are interdependent, but these activities may be executed as alternative choices or in mutual exclusion or in parallel?

(3) Are there activities whose occurrences are coexistent, but these activities may be executed as alternative choices or in mutual exclusion?

(4) Are there any couples of activities whose order executions are dened as one before the other, but these activities may be executed in the opposite order?

(5) Are there any couples of activities whose order executions are dened as one after the other, but these activities may be executed in the opposite order?

Compliance Checking of Workow templates at the Semantic Level

In order to answer the above-mentioned semantic verication issues, we continue using the SPARQL query language. The following SELECT queries are created for semantic checks:

• Queries 13.1 and 13.2 are created relating to the rst semantic verication issue.

Query Queries, which are used to query any pairs of activity nodes whose occurrences are in mutual exclusion, but they may be executed in parallel or in sequence, are created similar to Queries 13.1 and 13.2, respectively. In addition, SPARQL queries are also created similar to queries 13.1 or 13.2 in order to resolve the second and the third semantic issues.

• Query 14 is created relating to the fourth semantic verication issue. Query 14 returns all pairs of activities whose occurrences are in dependency and whose order executions are dened as one before the other, but they may be executed in the opposite order.

Related Work

Up to now, the problem of reusing process models or workows is mentioned in some existing approaches. In general, workows can be reused manually or semiautomatically [Markovic 2008, Lu 2009, Koschmider 2015]. Moreover, modellers can partly or fully reuse a workow [START_REF] Mendling | [END_REF][START_REF] Eshuis | [END_REF][START_REF] Koschmider | [END_REF], Koschmider 2015].

The authors in [START_REF] Mendling | [END_REF]] specify a method for business process design by view integration which takes two process views as input. At rst, semantic relationships between elements of dierent process models are formalized. On this basis, the integrated process model applying the merge operator is calculated. [START_REF] Eshuis | [END_REF]] also presents a formal approach for constructing customized process views on structured process models to improve eective cross-organizational collaborations. Each customized process is constructed by hiding and/or omitting activities not requested by the process consumer. However, neither of them considers content-based reuse.

In order to overcome this issue, the authors in [Koschmider 2015]

Discussion and Conclusion

The concepts, which have been introduced in the previous chapters, provide useful support for the development and modication of workow templates, whereas the tasks of searching and understanding workow templates have not been mentioned.

Therefore, in this chapter, we have presented a process for developing workow templates, which specially emphasizes the dierent phases of workow template reuse comprising the tasks of searching, understanding and modifying workow templates.

Moreover, in order to better support the search for suitable workow templates, the annotation ontology has been developed to annotate workow templates. The ontology provides adequate information about the workow templates and their ECA-like rules for workow modellers to determine whether a workow template is able to be reused. In this chapter, we present an overview of the CBWT prototype that is implemented to validate the concepts presented in the previous chapters. It is necessary to underline that the prototype is not developed to become a full-edged workow template management system. It is just a proof of concept which supports modellers in developing a new workow template from a set of semantic constraints and/or by reusing some existing workow templates.

The rest of this chapter is divided into four sections: Section 7.1 introduces an overview of the functionality of the prototype. In Section 7.2, details of the implementation are presented. In Section 7.3, we discuss the evaluation of the prototype. Finally, a conclusion of the chapter is given in Section 7.4.

Introduction

In order to validate our approach for representing semantically Control ow-based Business Workow Templates (CBWTs) in a knowledge base, we implement the CBWT prototype allowing us to develop, verify and reuse workow templates. The conceptual architecture of the CBWT prototype is depicted in Figure 7.1. The functionality of the CBWT prototype corresponds to the main components of our process for developing workow templates. • Authorization constraints: There is usually no expectation that such missions as modifying a workow template, changing business level requirements, completing a workow template, etc., can be performed by all expert users. Instead, each expert user should only be permitted to undertake a clearly-dened set of missions. In this case, the denition of authorization constraints should be possible and is enforced by the WFMS. Therefore, the approach introduced in this thesis can be extended to support authorization constraints.

1 https://wimmics.inria.fr Appendix A

Classication of Business Rules

In our work, we classify business rules into three groups as follows:

• Structural rules detail a specic, static aspect of the business. They express restrictions on business concepts and facts. For example: At a time, a customer can rent at most one car.

It is obligatory that each rental car is owned by exactly one branch.

• Action rules that concern some dynamic aspect of the business. They establish when certain activities should take place. For example:

A car can be handed over to the customer if and only if the deposit has been conrmed.

If a customer is blacklisted, his/her rental reservation must not be accepted.

• Derivation rules are generated by an inference or a mathematical calculation from terms, facts, other derivations or even action rules. Consequently, they are based on one or more business rules. Therefore, it is unnecessary to store them explicitly. For example: Derivation/Inference: Each French is a person who is a citizen of country `FR'.

Derivation/Mathematical calculation: The `rental amount' in Rental is equal to the `rental rate' times its `number of days'.

Note that the most important dierence between action and structural rules is that the former is related to a concrete event (e.g., the rejection of a rental reservation related to a customer in a blacklist in the examples above), when the latter does not imply any relevant event (e.g., a customer can always reserve one car at a time, whoever she/he is).

Labelling Workow Activities

Chapter 4 introduces a formal denition of semantic constraints. We only concentrate on how to represent dependencies between activities in a business process while omitting the discussion of activity labels, which are captured through the denition of semantic constraints. However, activity labels play an essential role in searching for workow templates in accordance with their intended use. Therefore, for the purpose of organization of the knowledge base of workow templates discussed in Section 6.1, it is necessary to take a look at labelling workow activities.

In fact, some classes of activity labels have been found in practice. According to [START_REF] Mendling | [END_REF][START_REF][END_REF], they are mainly divided into verb-object labels, action-noun labels and a rest category. A verbobject label contains an action followed by a business object, such as Create invoice . An action-noun label may start with a business object followed by an action (e.g., Schedule approval) or a noun phrase containing a prepositional phrase (e.g., Creation of specication) or a verb in -ing form (e.g., Creating version). Regarding to a rest category, it consists of descriptive labels, e.g., Accounting creates invoice and no-action labels, e.g., Error , etc. Furthermore, action-noun labels can be automatically refactored to verb-object labels by using the refactoring approach of [START_REF][END_REF]]. Therefore, we recommend workow modellers to use the verbobject style.