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Part I.

Introduction 1

Preface

Metrology, the science of measurement, observed a revolution thanks to the discovery in 1980 by Klaus von Klitzing of a novel quantum effect appearing in two-dimensional materials placed at low temperature and under a strong perpendicular magnetic field: the quantum Hall effect. Since a measurement is always a comparison of the result given by an experiment with a quantity set as a reference, a quantum effect presents several advantages over an artifact-based reference. First, the representation of the unit attached to the effect is not bounded to the object itself but to the quantum effect appearing in it. As a consequence, the quantum standards are more easily reproducible and disseminable. Second, the representation of the unit is theoretically bounded only to fundamental constants of the universe which, even if they are not perfectly constant in space and time, are the most stable quantities of the universe. As we will see, the revision of the International System of units (SI) will give a more important role to the Plank constant h and the electron charge e which are theoretically involved in the quantum Hall effect physics through the so-called von Klitzing constant R K ≡ h/e 2 .

Benefiting from the high reproducibility of this quantum effect, resistance calibrations in national metrology institutes, are, at the present time, performed in terms of the quantized Hall resistance appearing in devices made of galium-arsenide heterostructures. Nevertheless, implementing such calibration with a 10 -9 accuracy, is complex, expensive and requires a home-made metrological instrumentation with such devices. This indisputably impedes the dissemination of the quantum Hall resistance standards (QHRS) over the world towards end-users. In this metrological context, graphene, a one atom thick carbon-based two dimensional material is very promising. First, due to the peculiar behavior of the charge carriers in this material and their high Fermi velocity, the quantum Hall effect appearing in graphene is theoretically less demanding on the operating conditions allowing a well quantized QHRS. Second, the reproduction of such quantized Hall resistance in an additional two dimensional material reinforces the universality of this effect giving another argument for the redefinition of the SI based on the fundamental constant. This thesis is divided in three major parts: The first one gives an overview of the evolution of the electrical metrology over time, the second is dedicated to the theoretical background needed to understand the electronic transport in two-dimensional materials and the last one reports on the experimental results obtained during this PhD thesis. Let us briefly expose the contains of these three parts.

The first part, after a brief introduction to the international system of units, describes the evolution of the realization of the electrical units over time. We starts by presenting the evolution of the representation of the unit volt. This unit is the first of the electrical unit that took benefit from the revolution brought by quantum mechanical effects. Indeed, the discovery of the Josephson effect improved by several order of magnitudes the reproducibility on the volt representation and eased strongly the dissemination of the unit. Then, the same picture is dressed for the unit Ω.

The quantum Hall effect had the exact same role than the Josephson effect few years before. The reproducibility on the representation of the ohm was improved by several orders of magnitude only several years after the discovery of this effect by Klaus von Klitzing. Two fundamental metrological experiments are strongly bounded to the quantum Hall effect: the first that we describe is the Thompson-Lampard experiment which permits to measure, in the international system of units, the quantized Hall resistance value given by the quantum Hall effect. The second one is the watt balance experiment which consists in balancing the mechanical power produced by the prototype of the kg by an electrical power calibrated in terms of the Josephson voltage and the quantum Hall resistance standards. This allows to measure the value of the Plank constant h, and, conversely, define the kg in terms of h in the future SI. The last section is devoted to the unit ampere. Even if this unit is the only based electrical unit of the SI at the present time, its representation is routinely done by applying the ohm's law I = V /R. A realization of a current standard taking benefit from the Coulomb blockade effect is presented in this section.

In the second part of this manuscript we first present the peculiar band structure of graphene calculated using the tight-binding method, and then the impact on the transport properties of the peculiar physics taking place in this material. A theoretical description of the quantum Hall effect is done for the graphene case and the main differences of the characteristics of this effect in GaAs/AlGaAs and graphene are stressed. The final part of the theoretical description focus on the dissipative effects occurring in the quantum Hall effect regime which are highly important in metrology since they are responsible for the deviation of the Hall resistance from its quantized value. The second chapter of this second part summarizes the precautions required to realize a well quantized quantum Hall resistance standard. The third chapter reports on the different actual solutions to produce graphene. Each production method is described as well as each metrological work attached to each production method. The final chapter presents the instrumentation used at LNE to carry out magneto-transport experiments at low temperature as well as the dedicated instrumentation that we used to compare resistances with a 10 -9 accuracy.

The last part of this manuscript presents the experimental results collected during the last three years. For each work we explain the additional theoretical material needed to understand the underlying physics, then present the related experimental data acquired, and finally discuss the results and propose explanations of the observed experimental features. The two first chapters are dedicated to the study of graphene grown by sublimation of silicon atoms from a silicon carbide (SiC) bulk monocrystal. The first set of Hall bars we had the chance to study were highly disordered monolayer graphene samples. We took the opportunity to measure in these samples a magnetic field assisted transition from an insulating state at B = 0 towards the quantum Hall effect regime. This transition type which has been poorly studied so far can bring interesting information about the localization and delocalization process occurring in graphene and more generally in any twodimensional material. The second chapter is dedicated to the study of low density and high mobility Hall bars also made out of graphene grown by the sublimation method. The reduction of the carrier concentration via a gentle post-hydrogenation of the Si dangling bonds allowed us to probe more peculiar characteristics of the quantum Hall effect in graphene on SiC. The impact of the Hall bar orientation with regards to the SiC steps direction on the longitudinal and transverse resistance has been studied. It enables to draw a more systematic orientation of the Hall bars on a SiC substrate to have better chances to find a well quantized quantum Hall effect, mandatory for an application in resistance metrology. The chapter 3 relates on a complete study of the quantum Hall effect in polycrystalline graphene grown by chemical vapor deposition (CVD) on metal and redeposited on a SiO 2 /Si substrate. In the quantum Hall effect regime, a dissipative state appears since low currents which leads to a deviation of the Hall resistance from the quantized value. Also a peculiar smooth evolution of the longitudinal conductivity has been observed with the temperature, the magnetic field and the current. This behavior can not be explained by the usual dissipation mechanisms and our study points towards the presence of poorly localized states in between the Landau levels. The study of the structural defects present in our graphene samples reveals the presence of line defects crossing the whole Hall bar. A numerical simulation of a line defect crossing the Hall bar channel shows that extended states can appear along the line defect in the quantum Hall regime potentially explaining the anomalous dissipation laws observed in our experiment and pointing towards the study of monocrystal CVD graphene for further metrological investigations. The two last chapters are dedicated to the study of samples made by a mixed method called CVD on SiC. This novel fabrication process is very promising since it produces high quality graphene samples with a low and homogeneous carrier density. It allowed us to compare accurately the value of the Hall resistance measured in our samples and in a GaAs/AlGaAs QHRS. In the first graphene sample the Hall resistance is found quantized within a relative uncertainty of 10 -9 in as-convenient conditions in terms of temperature as GaAs/AlGaAs based QHRS but over a magnetic field range more than ten times larger. The study of the dissipation process occurring all along this very large quantized Hall plateau gives fruitful information about the root of a such quantized Hall resistance and the peculiar physics of graphene grown on SiC in the QHE regime. The last chapter refers to a complete metrological study of a second graphene sample grown by CVD on SiC which presents a quantized state of the Hall resistance at the metrological level at very low magnetic fields, high temperatures and high measurement currents. This makes a clear step towards a cheaper, more convenient and easily disseminable graphene based-QHRS. Our work shows the perfect agreement between the Hall resistance in graphene and in GaAs/AlGaAs QHRS with a record relative uncertainty of 8.2×10 -11 . This reinforces the confidence in the universality property of the QHE and its relation to h and e, which is a basis of the forthcoming SI funded on fundamental constants of physics, including the redefinition of the kilogram in terms of h. The 23rd of September 1999 after 286 days in space, the robotic space probe Mars Climate Orbiter approached Mars at a lower altitude than expected and was disintegrated due to atmospheric stresses. After investigation, it turned out that the thruster software used United States customary unit system while the navigation software used the international system of unit. This highlights how important it is to share the same precise and reproducible references all around the world.

In 1960 after more than 10 years of reflection, metrologist community has created the so called international system of units (SI). It is based on seven units described in the table Tab. 1.1. This system has evolved since then and aims at being based on fundamental constants of physics. In metrology two different types of standard coexist. The definition standard which allows the realization of an unit from it's definition in the SI and the realization standard which allows a convenient representation of the unit. It is the standard used routinely in national metrology institutes (NMIs) to maintain and disseminate the unit.

Today, the biggest challenge for the evolution of the SI is the redefinition of the kg that is the only unit on which the definition still relies on an artifact. One way to get rid of the prototype of the kg is to compare a mechanical power to an electrical one calibrated by quantum effects, namely the quantum Hall and Josephson effects [Mills et al., 2005]. As we will see, this experiment called the watt balance, which gives a direct measurement of the Planck constant h thanks to the two involved phenomenological constants K J ≡ 2e/h, called the Josephson constant and R K ≡ h/e 2 , the von Klitzing constant. The realization of the watt balance experiment with a target uncertainty of 10 -8 would lead to the fixation of h in the SI, as it is already the case for the celerity of light in vacuum c. Another important point towards the redefinition of the SI unit, would be the change of the definition of the ampere. Until now the direct realization of the ampere was limited to relative uncertainties of about 10 -7 , using several experiments as the ampere or the farad balance CHAPTER 1. QUANTUM ELECTRICAL METROLOGY [Neher, 1952], because of the old and now inappropriate definition of this unit (see table Tab. 1.1).

The target uncertainty required from the industrial actors must be about 10 -8 at least for nowadays applications. That's why it is now realized as the ratio V /R were V and R are calibrated using the Josephson and the quantum Hall effect respectively. The proposed definition for the ampere in the future SI would be to fix the electron charge value that would be equal to 1.602 17XXX ×10 -19 sA with 1sA = 1C. If this definition is chosen, the quantum Hall effect and the Josephson effect could be used together to realize the ampere in the new system of units by applying the Ohm's law

V = R × I.
We can notice that the quantum Hall effect is a keystone in the two major challenges for the new SI: first for the fixation of the Planck constant and the electron charge. The fixation of these two fundamental constants will naturally lead to the fixation of the von Klitzing constant R K ≡ h/e 2 (and simultaneously the Josephson constant K J = 2e/h). It is therefore highly important to have a good knowledge on the quantum Hall effect physics and probe the reproducibility and universality of this effect in different materials with the lowest uncertainties. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. (14th CGPM, 1971)

candela cd
The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 × 10 12 Hz and that has a radiant intensity in that direction of 1/683 watt per steradian. (16 th CGPM, 1979) Table 1.1.: The international system of units

| Electrical metrology

As we said before, the only unit dedicated to electricity in the international system of unit is the ampere. If we look closely at its definition we can immediately see that the exact realization of the ampere can not be done by an exact application of the definition:

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed one meter apart in vacuum, would CHAPTER 1. QUANTUM ELECTRICAL METROLOGY produce between these conductors a force equal to 2 × 10 -7 newton per meter of length. (9th CGPM, 1948).

Some approximations were realized using finite length wires with finite cross section but the accuracies were limited to about 10 -6 and the implementation of these experiments are complex. Nevertheless, since the ampere is bounded to the volt and the ohm through the Ohm's law V = R × I, metrologists have considered some more reproducible and convenient electrical representation standard that can moreover be easily compared and disseminated around the world. Let us first look at the unit volt.

| Volt metrology

Agreement among NMI's Extracted from [Hamilton, 2000] One volt is defined as the difference in electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points.

The volt is therefore a derived unit of the ampere and the mechanical units. Up to 70's it was realized by comparing electrical and mechanical forces, for example by measuring the electrostatic force between the two faces of a charged capacitor [START_REF] Funck | Determination of the volt with the improved PTB voltage balance[END_REF]. The maintaining of the volt was done using cadmium sulfate Weston cells, visible on Fig. 1.3a). Due to the electrolytic liquid present in these batteries there were not easily transportable and the relative reproducibility of the representation of the volt was at minimum a few 10 -6 as we can see on Fig. 1.2.

Predicted in 1962 by Brian David Josephson [Josephson, 1962] and measured a year later by Shapiro, the Josephson effect appears when two superconductors are separated by an insulating material. Without applying any voltage between the two superconducting material, thanks to the phase shift ∆φ between the cooper-pairs wavefunctions on each side of the junction, a supercurrent appears and is equal to

I s = I 0 sin(∆φ)

ELECTRICAL METROLOGY

where I 0 is the critical current that can withstand the junction. This effect is the so-called continuous Josephson effect. If now, one applies a constant voltage between the two superconductors the phase shift must obey to the equation

dφ dt = 2eV h = V φ 0
where φ 0 = h/(2e) is the so-called flux quantum1 and an alternating supercurrent is created at a frequency ν = 2eV /h. Conversely, if one irradiates the junction with a electromagnetic signal of frequency f j the supercurrent will be synchronized at the same frequency and experimentally voltage steps appears in the I(V ) curve at voltages

V j = n j f j h 2e
where n j is an integer. These steps are called Shapiro steps and are visible on Fig. 1.3. Metrologists have defined the phenomenological Josephson constant K J theoretically equal to 2e/h and experimentally they found the value of K J = 483597.9 1 ± 4 × 10 -7 GHz/V

The Josephson voltage can thus be rewritten

V j = n j K -1 J f j
During the 60's universality tests of the Josephson effect were performed with relative uncertainty up to 10 -8 [Clarke, 1968] using different superconducting material and geometries. During 80's some studies shown that it was possible to compare Josephson voltages from different samples with a relative uncertainty of 10 -16 [START_REF] Tsai | High-Precision Test of the Universality of the Josephson Voltage-Frequency Relation[END_REF]. This prompted the NMIs to measure the value of K J in the international system of units using the so called volt balance experiment. They managed to measure the value of K J in the international system of units with a relative uncertainty of about 10 -7 [START_REF] Funck | Determination of the volt with the improved PTB voltage balance[END_REF]. Nevertheless the voltage delivered by one Josephson junction is rather small, typically 144.9 µV at 70 GHz. Since the voltage is extensive, one can place many

Josephson junctions is serial. This has been achieved by metrologists during 70's and nowadays we manage to reach a relative uncertainty of about 10 -10 using networks of more than 8000 junctions in serial that deliver a voltage of one volt [START_REF] Krasnopolin | Highly precise comparison of Nb/Al/AlOx/Al/AlOx/Al/Nb Josephson junction arrays using a SQUID as a null detector[END_REF]. A picture of such network can be seen on Fig. 1.3 d).

Since the reproducibility of the Josephson effect is far higher than the relative uncertainty of K J in the SI, in 1988 the CIPM has created a conventionally exact constant2 which is not spoiled by any uncertainty K J-90 = 483597.9 GHz.V -1 . In terms of this constant, the uncertainty on the volt is thus only due to the excitation frequency that can be determined with a relative uncertainty below 10 -12 . This allows the use of the Josephson effect to disseminate and maintain the volt in national metrology institutes but, in exchange, creates an additional system defined outside the international system of units. Voltage metrology is a perfect example of the real breakthrough that a quantum effect brought to metrology. From 1930 to 1970 the relative uncertainty on the representation of the volt between the national metrology institute decreased from 10 -4 to 10 -6 with the improvement of the Weston cells. Few years after the discovery of the Josephson effect, the uncertainty decreased to about 10 -8 with a monojunction device and was in the middle of 80's below 10 -9 with the introduction of Josephson arrays [Hamilton, 2000]. More details about volt metrology and Josephson effect can be found in [Jeanneret andBenz, 2009] [Mohr et al., 2012]. Another quantum effect had the same role few years later for resistance metrology, the quantum Hall effect.

1.2.2 | Ohm's representation and the quantum Hall effect The ohm that takes its name from Georg Ohm (Fig. 1.4) has the following definition:

The ohm (Ω) is the electrical resistance between two points of a conductor when a difference of potential of one volt applied between these two points generate a current of one ampere, the conductor not being subject to any electromotive force.

The realization of the unit ohm until the 1990's was done in terms of the farad realized by the Thompson-Lampard calculable capacitor (that will be described bellow) using a quadrature bridge [START_REF] Trapon | Determination of the von Klitzing constant in terms of the BNM calculable capacitor fifteen years of investigations[END_REF].

The unit ohm was maintained using wired resistors placed at a constant (regulated) temperature. The relative discrepancy of the representation between the different NMIs was above 10 -6 in 1985 highlighting the poor reproducibility of the unit at that time. See Fig. 1.6.

In 1980 Klaus von Klitzing (Fig. 1.5) published an article called "New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance" [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF].

We can immediately notice that in this very first paper about the quantum Hall effect the idea of an application in resistance metrology was already present. This discovery was the second revolution in electrical metrology3 . Ten years after the discovery of the quantum Hall effect, the relative discrepancy between the ohm representation of NMIs dropped to a few 10 -9 and, in 1990 the Comité international des poids et mesures (CIPM) recommended it as well as the Josephson effect for the representation of the ohm and the volt respectively.

We will explain in detail the physics of the quantum Hall effect in this manuscript but for now let's see it as a very reproducible physical quantum phenomenon (above 10 -9 ) that creates resistance plateaus at R K /i where i is an integer. The constant R K theoretically equal to h/e 2 is called the von Klitzing constant and experimentally the value of R K in the SI is:

R K = 25812.807 1 ± 1 × 10 -7 Ω
As it is the case for the Josephson effect, to take benefits of the 10 -9 reproducibility of the QHE between NMIs, the resistance calibrations are done in terms of a conventionally exact constant R K-90 = 25812.807 Ω and are thus not directly linked to the ampere. This allows to get rid of the uncertainty on the determination of R K in the international system of units but create a second constant defined outside the SI. This situation is not satisfying and the fixation of h and e in the new SI would lead to the disappearance of this independent system. CHAPTER 1. QUANTUM ELECTRICAL METROLOGY where γ are the cross-capacitance of the opposite electrodes per unit of length. If the geometry of the electrodes is perfectly circular one can calculate

γ 1-3 = γ 2-4 = γ = 0 ln(2) π
The next step is to link the capacitance and the resistance. From a direct impedance matching we can deduce the relation RCω = 1. Nevertheless one needs a way to match the DC impedance given by the Hall resistance with the AC impedance 1/(Cω). Metrologists have developed quadrature impedance bridges to compare precisely these impedances. A complete documentation about the quadrature bridges can be found in [START_REF] Trapon | Determination of the von Klitzing constant in terms of the BNM calculable capacitor fifteen years of investigations[END_REF]. From several measurements of R K in different NMIs the value of R K measured in the international system of unit using the Thompson-Lampard experiment was determined to be

R K = 25812.807 (1 ± 1.8 × 10 -8 ) Ω 1 2 3 4 γ 1-3 γ 2-4 γ 1-3 = γ 2-4 = 0 ln(2)
π Case of perfectly cylindrical electrodes 1 2 3 4 In order to be sure that the quantized Hall resistance value R K is really equal to h/e 2 , one has to measure h/e 2 independently. In fact, measuring the ratio h/e 2 is exactly similar in measuring the fine structure constant in the international system of units as we will see in the following.

The fine structure constant is the coupling constant between electrons and photons and can be seen as the ratio of two energies: the energy to bring two electrons situated at infinite distance to a distance L e 2 4π 0 L CHAPTER 1. QUANTUM ELECTRICAL METROLOGY and the energy of a photon with a wavelength equal to

L hν = hc 2πλ = hc 2πL
The ratio is therefore equal to

e 2 4π 0 L × 2πL hc = e 2 4π 0 c = α ≈ 1 137
Since µ 0 and c are fixed in the international system of units and µ 0 0 c 2 = 1, measuring the ratio of the Plank constant by the squared electron charge is equivalent in measuring the fine structure constant5 α. Indeed we have

α = µ 0 c 2 × e 2 h
One can thus compare the value of α given by the measurement of R K from the Thompson-Lampard experiment and the measurement of α given by other measurement techniques.

The determination of the fine structure constant has been done by [START_REF] Gabrielse | New determination of the fine structure constant from the electron g value and QED[END_REF] from QED calculation combined with the measure of the Landé g factor done by measurements of the abnormal electron momentum. Another method giving access to the fine structure constant value is the measurement of the ratio of the Plank constant and the atomic mass of Rubidium [START_REF] Bouchendira | New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics[END_REF] or Cesium atoms using atomic interferometry methods [START_REF] Wicht | A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry[END_REF].

The last method used is the measurement of the frequency transitions in the muonium groundstate hyperfine splitting which links the ratio of the electron and atomic muomium mass to the fine structure constant [Liu et al., 1999].

On Extracted from [START_REF] Mohr | CODATA recommended values of the fundamental physical constants: 2010[END_REF] 1.2. ELECTRICAL METROLOGY It is interesting to compare the value of α given by the measurement of R K with the one given by the measurements of the fine structure constant. The values of α given by the different methods are in good agreement together and it is therefore interesting to compare the value of R K with the value of α given by the weighted average of the different α measurement described above. One can write

R K = h e 2 (1 + K ) = µ 0 c 2α (1 + K )
On Fig. 1.9 Right) are represented the values of K deduced from several NMIs measurements. As we can notice on Fig. 1.9 Right), the main value K deviates from zero by more than one standard deviation. This shows that more determinations of R K are needed to probe more precisely the agreement between R K and h/e 2 . Efforts have thus been developed at LNE to construct a more precise Thompson-Lampard experiment to reduce the uncertainty on the measure of R K before the evolution of the SI.

1.2.5 | Redefinition of the international system of units and the watt balance experiment

One unit definition is particularly striking. The definition of the kilogram is indeed bounded to a unique object6 stored in the Bureau international des poids et mesures (BIPM). This is not satisfying since the unit evolves if the prototype changes with time. Metrologists plan to redefine the kg by fixing the Planck constant h. This new definition relies on a realization based on the watt balance experiment. The idea of this experiment is to calibrate the mechanical power created by the prototype of kg in motion in a well defined gravitation field in terms of an electrical power only related to the fundamental constants of physics using the quantum Hall and Josephson effect.

This experiment is divided in two subsequent steps.

| The static phase

The first step, sketched in Fig. 1.10, consists in balancing the mechanical force p = mg created by the kg prototype by the electrical (Laplace) force created by a circulating current in a coil placed in a homogeneous radial magnetic field B , this force being equal to F = B × L × I, where L is the length of the magnetic circuit and I the injected current. At the equilibrium we have

mg = BLI = BL V J R H (1.1)
where m is the mass of the international prototype, g can be precisely measured using gravimeters (up to 4.3 × 10 -9 g at LNE [START_REF] Gillot | Stability comparison of two absolute gravimeters: optical versus atomic interferometers[END_REF]) and the current I can be calibrated using the Josephson and the quantum Hall effect through the relation I = V J /R H = (n 2 f 2 /K J )/(R K /i ). The main drawback of 1.1 is the presence of the term BL that would require a very good precision on the magnetic circuit length and the magnetic field which is not easily achievable. This problem can be solved by adding a second phase to the experiment, called the dynamical phase. 

| The dynamical phase

The dynamical phase consists in moving the entire balance. The motion of the coil in the radial magnetic field will induce an electromotive force directly related to the flux going through the coil:

= - dφ dt = BL dz dt = BLv (1.2)
The electromotive force which is expressed in volt can thus be expressed in terms of the Josephson voltage

= n 1 f 1 K J
Using the equations 1.1 and 1.2 we can thus write

m = V J gv R H = n 1 f 1 n 2 f 2 i gv K 2 J R K = h A 4gv
with A, g and v are measured during the experiment using respectively, frequency measurements, gravimeters and interferometry measurements. The mass can therefore be related to the Planck constant.

Realizing this experiment in a first step, will allow a direct measurement of the Planck constant and in a second step, if h is fixed in the future SI, will reversely define the kg from h and get rid of the prototype. A quantum effect known as Coulomb blockade allows the control of the tunneling of the electrons through a tunnel junction [Lambe andJaklevic, 1969][Fulton andDolan, 1987]. When the electron crosses the tunnel junction it deposits its quasiparticule screening cloud on the left side of the tunnel junction and will recreate one when it arrives on the other side of the junction. The two charged faces of the tunnel junction therefore define a capacitor (of capacitance C). If the serial impedance of the circuit is high compared7 to h/e 2 , the electron will need a charging energy equal to E c = e 2 /(2C) to be able to go through the tunnel junction which is the energy needed to charge the capacitor as it is depicted on Fig. 1.12. At T = 0, if the energy difference eV across the junction is above E c the electron will be able to tunnel through the junction and if the energy is below E c the electron is blocked on one side of the junction.

m = V J gv R H Josephson effect QHE interferometry Atomic gravimeter V J = n2f2 KJ = n1f1 KJ m = V J gv R K = n 1 f 1 •n 2 f 2 •i gv ×K 2 J R K = h A 4gv R K = h/e 2 K J = 2e/h Josephson effect R H = RK i n 1 , n 2 , i = integers
Figure 1.12.: Sketch of the tunneling of a quasiparticule through a tunnel junction. The electron deposits its positive screening cloud on the left side of the tunnel junction and recreates it on the other side of the junction. We thus have two charged region separated by an insulating material, also called a capacitor.

The charging energy of a capacitor is given by

E c = e 2 /2C
Once it is possible to control the passage of the electrons, it is important to control them one by one. An idea is to create N insulating junctions separating N-1 metallic islands that can be tuned (using gate voltages) to act as sluices for electrons [START_REF] Pothier | Single-Electron Pump Based on Charging Effects[END_REF]. On Fig. 1.13 a)

is represented an electron pump composed of three junctions defining two metallic islands with a number of electrons that can be tuned using the back gate voltages V 1 g and V 2 g . The result of an electrostatic model for this system at V ds = 0 considering the capacitance of each island defines a honeycomb structure in the (V 1 g , V 2 g ) phase space (represented on Fig. 1.13 b) ). In each cell the number of electrons in each island is fixed and well defined. The numbers in parenthesis on Using this principle one can apply a voltage V ds across the electron pump and "turn around" (using the backgate voltages) a triple point at a frequency f , the two gate voltages being phase shifted by π/2. Experimentally, quantized current steps appear in the I(V ds ) characteristic (as we can see CHAPTER 1. QUANTUM ELECTRICAL METROLOGY on Fig. 1.13c) )at different values depending on the frequency f , these steps being equal to

I = ±e × f
Thus the current generated for a frequency f = 100 MHz is 16 pA. Such low current is really difficult to measure with a high accuracy and requests specific metrological instrumentation. The best reported measurement relative uncertainty values are about 10 -6 and therefore far from the accuracy of the quantum Hall and Josephson effect. More details about these systems can be found in [START_REF] Feltin | Determination of the elementary charge and the quantum metrological triangle experiment[END_REF]].

An alternative method for the generation of a quantized current would be to create it by imposing the voltage delivered by a Josephson array on a the quantized value of the Hall resistance. If in the future SI the electron charged is fixed it would be furthermore a direct realization of the Ampere.

Such experiment seems realistic and has been proposed in [START_REF] Poirier | A programmable quantum current standard from the Josephson and the quantum Hall effects[END_REF]. 

V 1 g V 2 g V DS a) c) (-1, 1) (0, 1) (1, 0) (1, -1) (0, -1) (-1, 0) V 2 g V 1 g (0, 0) b)

| Conclusion

As we have seen the international system of units needs to be changed. The kg is at the present time defined by an artifact which is not anymore a satisfying situation. All the electrical units are 1.3. CONCLUSION derived from the ampere and the realization of these units are not directly linked to the ampere but realized outside the SI, on a system based on conventionally exact value K J-90 and R K-90 . The creation of the future SI will allows to get rid of the artifact of the kg by fixing the Planck constant h and give a more important place to the quantum Hall effect and the Josephson effect by fixing the electron charge e which together fix the constant K J and R K , leading to the disappearance of the system 90.

As we have observed, the quantum standards allowed more convenient and reproducible representation of the units. Since their discovery metrologists intent to improve and engineer these standards to ease the realization of the units. Affordable, highly reproducible and convenient standards would ease the dissemination of the units around the world which is highly important for the metrology but also for the industrial actors. A good understanding of the physics of the quantum Hall effect in the different materials in which it appears is thus mandatory for the improvement of the quantum Hall resistance standards.

In the next section we will first present the theoretical background needed to understand the electronic transport physics in the two-dimensional electron gases in which the quantum Hall effect appears that will lead us to understand why graphene can continue this perpetual improvement of the electrical standards.

Part II.

Theoretical and experimental background

Chapter 2

2 | Charge carrier transport : Theoretical description

In the previous chapter we described the quantum Hall effect only as a quantum phenomenon allowing the realization of a precise, and reproducible quantum standard of resistance. In the first part of this chapter we will describe the theoretical tools needed to understand the quantum transport in two dimensional materials with and without magnetic field. The description will be mainly focused on monolayer graphene and the similarities and differences with semiconducting heterostructures will be highlighted. We will show why metrologists intent to switch from well controlled semiconducting heterostructures to monolayer graphene based standards. Graphene is a 2-dimensional crystal constituted of carbon atoms organized in an hexagonal lattice.

| Crystallographic structure of graphene

As represented on Fig. 2.1 the Bravais lattice is triangular with two atoms (denoted A and B) per unit cell formed by the unit vectors: 

a 1 = a √ 3e x and a 2 = a √ 3 2 e x + √
Ĥ = -t i∈A 3 j=1 a † R i b R i +e j + b † R i +e j a R i (2.1) where • a ( †) R i annihilates (creates) a particle at the position R i on the sublattice A • b ( †)
R i +e j annihilates (creates) a particle at the position R i + e j on the sublattice B • t ∼ 2.7 eV is the hopping integral related to the wavefunction overlap between the neighboring sites.

Introducing the discrete Fourier transform of the ladder operators:

a R i = q exp (-i q • R i ) a q and b R i +e j = q exp -i q • (R i + e j ) b q
We can rewrite the Hamiltonian 2.1 as follow:

Ĥ = q a † q , b † q H q a q b q
where

H q = 0 h(q) h * (q) 0 with h(q) ≡ -t j exp(i q • e j )
We can notice that the Hamiltonian is off-diagonal. It stems, once again, from the fact that the closest site of a A site is a B site and vice versa.

Using the Pauli matrices the Hamiltonian can be written: 1

H q = -t j cos(q • e j )τ x + sin(q • e j )τ y (2.2)
1 The Pauli matrices are defined as follow:

τ x = 0 1 1 0 ; τ y = 0 -i i 0 ; τ z = 1 0 0 -1

NEAREST NEIGHBOR HOPPING

The diagonalization of H q gives a direct access to the eigenvalues:

q = s   j cos(q • e j )   2 +   j sin(q • e j )   2
With s = ±, where the + corresponds to the electron branch and the -to the hole one. This energy dispersion vanishes linearly at the two nonequivalent points K and K' as we can see on Fig. 2.2 and thus does not present a gap as for example in the case of GaAs/AlGaAs structures.

More interestingly, the Fermi energy of undoped graphene lies exactly between the two bands, crossing the energy dispersion only in the singular points K and K'. Therefore, graphene is neither a semiconductor nor a metal but is often called semi-metal or zero-gap semiconductor. The energy dispersion around these two points K and K' plays a central role in the transport properties as we will see in the following. Adapted from [START_REF] Huang | Lattice dynamics of hydrogen-substituted graphene systems[END_REF] 2.2.2 | Continuous limit -Low energy spectrum

If we focus our study on the low energy case around K and K we can notice on Fig. 2.2 that the density of states decreases linearly to 0 like in a semi-metal 2 . The restriction to this low energy case is valid in a range of energies much lower than the hopping integral t ∼ 2.7 eV. We define q = K(K ) + κ with κ 1/a. We can therefore write the element h(q) of Hamiltonian H q as:

h(q) = -t j exp i q • e j -t j exp i K ( ) • e j 1 + i κ • e j = -i t j exp i K ( ) • e j (κ • e j ) = 3 2 ta(±κ x + i κ y ) + O(a 2 )
This gives an effective Hamiltonian:

H eff α=± (κ) = 3 2 ta 0 ακ x + i κ y ακ x -i κ y 0 = 3 2 ta(ακ x τ x -κ y τ y ) = α v F τ • κ (2.3)
2 A semi metal is defined as having a zero density of states for E = 0 but a nonzero one for E > 0

29

CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION

Here we can see more clearly that we have indeed two Hamiltonian (α = ±) , one for each valley K and K'. A diagonalization gives the energy dispersion:

α=± s=± (κ) = s 3 2 ta|κ| = s v F |κ| (2.4) where • v F = 3ta 2 = 1.1 × 10 6 m.s -1 is the Fermi velocity 3
• α = ± is the valley index and refers to the valley K and K'

• s = ± denotes the electron and hole band (upper or lower cone).

Let us remark a few important peculiarities of the equation 2.4. First, since the Fermi velocity is constant, the energy dispersion relation is linear and one can continuously switch from negative to positive charge carriers by changing the Fermi energy. Secondly, electrons and holes behave as relativistic massless half-spin particles as in the case of neutrinos in high energy physics. These two peculiarities are particularly interesting for electronic applications. It will hopefully lead to faster electronic devices thanks to the large Fermi velocity compared to semiconducting heterostructures (∼ a few 10 5 ms -1 ) and open the way for possible valleytronics applications with the manipulation of the valley degree of freedom.

After a quick derivation of the density of states, we will in the following develop another peculiarity of these fermions bounded to the α and s indexes, the chirality. 3 It is important to stress out that in the case on graphene, the Fermi velocity is a constant and does not vary, as for the Schrodinger fermions case, with the Fermi energy. 

K' K

( ) = 4 × πk 2 (2π) 2 = k 2 π = 2 π 2 v 2 F
Where the factor 4 arises from the valley and spin degeneracy. Therefore, we obtain a useful relationship between the Fermi energy and the carrier density n s = n( F ):

F = v F |k F | = v F √ πn s
We can deduce the density of states per unit of energy ρ(

) = ∂n/∂ ρ( ) = 2 π 2 v 2 F | | (2.5)
One can notice that, we can directly change the Fermi energy by changing the carrier density, which can be done experimentally using a gate (since n s ∝ V g ). If now we consider the Einstein formula (that will be derived below) which links the conductivity to the density of states and the diffusion coefficient in two dimensions D = v F l e /2 (with l e the elastic mean free path that will be described in the next section) σ = e 2 Dρ( ), we can see that the conductivity should increase as the square root of the back gate voltage if we consider l e fixed. This is not what has been usually observed so far. On the other hand a linear dependence of the conductivity with V g , supposing a square root dependence of l e with n s was rather measured. In fact, as we will see later in this chapter, the dependence of the conductivity with the carrier density is in general more complicated and depends on the type and range of the disorder present in the graphene layer.

| Pseudo-spin and chirality

The Hamiltonian (2.3) has the same expression as a Weil Hamiltonian that describes the dynamics of relativistic half-spin massless particles like neutrinos. In the case of neutrinos (antineutrinos) the spin is aligned (in the opposite direction) with the propagation direction of the particle. The opposite spin propagation direction is governed by a number called chirality which is equal to one in the case of neutrinos and -1 for its anti-particule.

We will see that the pseudo-spin (that we will define right after) in graphene, will similarly possess such property depending this time on the valley and the band.

It is possible to write the eigenvectors of the Hamiltonian (2.3) as:

|κ = 1 √ 2 exp (i κ • r) -i s exp (-i θ/2) exp (i θ/2) (2.6)
With θ being the angle between κ = (κ x , κ y ) and the y-axis and s = ±1 refers to the upper and lower cone at the K point (electrons and holes band).
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K' K k x k y E Pseudo-spin η = + η = + η = - η Chirality η = -
|s p = exp(-i κ • r) |κ (2.7)
we can notice that it can be obtained from the initial state:

|s 0 p = 1 √ 2 -i s 1
by applying R(θ): |s p = R(θ) |s 0 p , where R(θ) is the half-spin rotation operator around the z axis:

R(θ) = exp -i θ 2 τ z = exp (-i θ/2) 0 0 exp (i θ/2) (2.8)
The ket |s p is called the pseudo-spin and arise from the two nonequivalent sublattices of graphene.

One can notice that the equation 2.7 implies at the pseudo spin to be defined by the propagation direction. If we consider the case s = +1 (electron cone) the pseudo-spin will point in the same direction as κ and we call these charge carriers the right-handed electrons. If now, we take s = -1 the pseudo-spin will point in the opposite direction and these fermions are called left-handed. If one applies the same operation to the K valley, the result will be opposite for each band, as depicted on Fig. 2.4. This property arises form the chirality of the charge carriers which can be defined for massless Dirac fermions in graphene as the projection of the pseudo-spin onto the propagation direction. The chirality is an hermitian operator4 with two opposite eigenvalues η = ±1 which are related to the band and valley index as follow: s = ηα. It is worth noting that the chirality is not a third degeneracy since for a given carrier type (electron or hole) the chirality is bounded to the valley index.

FROM CLASSICAL TO QUANTUM TRANSPORT

This pseudo-spin chirality has a strong impact on the carrier dynamics. If one considers a scattering process between the two valleys (called inter-valley scattering process) for a given charge carrier type, since in the two valleys the chirality is opposite the momentum is necessarily also reversed during such process. More interestingly, let us now consider a scattering process between κ and κ in a same valley called intra-valley scattering process. One can characterize it by a scattering potential V (r) which gives a scattering matrix element [START_REF] Young | Physics of Graphene[END_REF]][Ando et al., 1998]:

| κ | V (r) |κ | 2 = |V (κ -κ )| 2 cos 2 θ κ,κ /2
with θ κ,κ the angle between κ and κ and the cosine comes from the overlap between the initial and final states.

If we consider a backscattering process κ → -κ , the angle between the two vectors is thus π and the resulting matrix element is null. So any pure backscattering process is forbidden in graphene.

If now we apply the rotation operator for a rotation of κ by 2π, using the equation 2.8 we find

R(2π) = exp(-i π) 0 0 exp(i π)
That shows that when κ turns by 2π the phase of the wavefunction rotate by π. This angle equal to π is called the Berry phase. It will play an important role in the electronic transport properties of graphene as we will see in the following.

| From classical to quantum transport

In this section we will discuss the general electronic properties of two dimensional electron gases such as monolayer graphene or gallium-arsenide heterostructures. We will mainly use the term electrons to denote the charge carriers but all these theories are valid for holes by replacing e by -e.

| Important length-scales, energies and transport regimes

The motion of electrons in a conducting material depends on many parameters as for example the dimension and type of the material, the impurity density and range, the temperature, the presence or not of an electric or magnetic field. These parameters are characterized by typical time, length, and energy scales that we will present below.

• The Fermi wavelength [λ F ] is the wavelength of the charge carriers at the Fermi energy.

These electrons are the one which contribute to the conductance. The Fermi wavelength is related to the electronic density of the system as follow λ F = 2π/k F = 2 π/n s . It can vary from fractions of nanometers in metals to tens of nanometers in semiconductors or graphene structures. The precise control of the doping in semiconductors allows one to obtain lower carrier densities and thus higher Fermi wavelengths. It is the reason why it is easier to create two dimensional electron gas from semiconducting heterostructures since the confinement of the charge carriers is more permissive thanks to the large λ F values.
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• The elastic mean free path [l e ] is the length between two elastic scattering processes.

Each elastic collision preserves the phase coherence but enhances multiple interferences of the wavefunction with itself. The order of magnitude of this length-scale plays an important role in characterizing the transport regime. If the length of the considered sample is smaller than the elastic mean free path (L < l e ) the system is in the so-called ballistic regime, see Fig. 2.5.The electrons will collide on the edges of the conductor during their crossing from source to drain contact. If (L > l e ) the sample enters in the so-called diffusive regime. The electron will collide on many impurities during their crossing. The elastic mean free path, at low temperature, can be of the order of 20 µm in the case of low resistive metals like pure (99.999%) gold and can reach 30 to 40 µm in the case of ultraclean semiconducting heterostructures. In the case of isotropic scattering it can be measured using the diffusion coefficient included in the Einstein's expression of the conductivity. D = v 2 F l e /d where d is the dimension of the considered sample5 . We can define the elastic mean free time associated to l e equal to τ e = l e /v F .

Diffusive regime

Ballistic regime • The inelastic mean free path [l i n ] is the typical length between two inelastic scattering processes, i.e with an exchange of energy between the charge carrier and the scatterer.

Inelastic scattering processes can arise from scattering of electrons on resonant impurities or phonons, and from scattering between electrons. These scattering processes are responsible for the electron thermalization and break the phase coherence.

• The transport time [τ tr ] represents the effective time for the reversal of the electron momentum. The ratio τ tr /τ e reflects the scattering anisotropy of the system. If this ratio is equal to one the scattering process is isotropic and therefore does not favor any space direction. In GaAs/AlGaAs structures such ratio can reach 15 indicating a strong anisotropy, in this case, a forward scattering. The transport time is the effective time present in the calculation of the conductivity in the Drude model (that we will presented below).

• • The diffusion time [τ D ] also called the ergodic or Thouless time reflects the time above the particle starts to "feel" the edge of the sample. In the ballistic regime the Thouless time is equal to τ D = L/v F , where L is the sample length. In the diffusive regime it is defined as

τ D = L 2 /D.
• The magnetic length [l B ] represents the spatial extension of the wave function in the bulk of the sample in the quantum Hall effect regime and is equal to In the following we will present two theories describing the charged particle motion in the diffusive regime.

l B = /eB. λ F l in l e l φ ≤ l in

| The Drude's model

In 1900, from a model based on kinetic theory of gas, Drude proposed an equation that can report the classical transport physics of electrons in a conductor. In this model the electrons are completely free to move in the media in response to an applied electric field E. They can collide on static impurities or/and with other electrons drifting in the system. We assume that without any electric field, the distribution of electron velocity is randomly distributed, i.e v = 0.

In the presence of an electric field the electron will acquire a drift velocity v = v drift = (-e∆t/m)×

E.

Where ∆t is the time between two collisions. In the case of elastic collisions this time is the elastic mean free time τ e described above.

The mean velocity of the electron can be rewritten

v = - eτ e m E (2.9)
where e is the electron charge and m 9.109 × 10 -31 kg, its mass.

The proportionality term between the drift velocity and the applied electric field is defined as the mobility: µ = |v|/|E|. It characterizes how "easily" an electron moves under an applied electric field. This physical quantity is particularly important to characterize the transport properties of any material. The best mobility values reached are about 36 000 000 cm 2 V -1 s -1 in GaAs/AlGaAs heterostructures [Pfeiffer andWest, 2003, Umansky et al., 2009] and in the case of graphene the highest mobility are obtained for encapsulated graphene in boron nitride which gives values about [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF].

[500 000 -1 000 000 cm 2 V -1 s -1 [Amet et al., 2014][
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j = ne 2 τ m E = σE
where n is the electron density per unit of volume and σ = (ne 2 τ )/m is called the Drude conductivity. This equation is known as the local Ohm's law.

| The Einstein's diffusion theory

If now we consider the case of a material connected by two leads with different chemical potential (defined as the energy to extract or add a particle to the system), a drift current is created due to the electron density gradient ∇n. The current density is given by the Fick's law:

J = eD∇n
Where D = v F l tr /d (d is the dimension of the material) is the diffusion coefficient and ∇n can be seen as the electron gas compressibility. Since electrons are fermions they obey to the Fermi-Dirac statistics, so the only available states will be confined in a stripe kT centered on the Fermi energy.

Thus only these states will be able to carry net current. At the thermal equilibrium the chemical potential is uniform and defined as : µ = F -eV where F is the energy at the Fermi level and V is the electrical potential. Since the chemical potential is uniform, it rises ∇µ = 0 which gives

eE + ∂ F ∂n ∇n = 0 ↔ E = e ∂n ∂ F -1 ∇n (2.10)
Where ∂n/∂ F = ρ( F ) is defined as the density of states per unit of energy at the Fermi energy.

Moreover at the equilibrium the total current (the sum of the drift and diffusion currents) is null,

σE + eD∇n = 0
Thus using the equation 2.10 one finds the so called Einstein relation:

σ = e 2 • ρ( F ) • D
Here we can notice explicitly that the conductivity depends on the density of states, thus transport experiments are good candidates to probe the density of states.

Using the expression of the density of states (2.5) we can express the Einstein's relation as:

σ = e 2 • 2 π 2 v 2 F F • v F l tr 2 = 2e 2 h k F l tr (2.11)
It is important here to stress out that the transport measurements does not probe the local quantity σ which is the proportionality coefficient between the electric field and the current density, thus an intrinsic property of the considered material but the conductance that is the proportional coefficient between the current and the voltage drop, thus a sample dependent quantity. The scattering mechanisms of charge carriers on the charged impurities were studied by Adam andNovikov [Adam andHwang, 2007, Novikov, 2007]. The authors show that the conductivity away from the charge neutrality point can be fitted by the equation

σ ≈ A e 2 h n s n i for n s > 5 × 10 11 cm -2
(2.12)

with n s the carrier density that can be tuned using a gate voltage according to n s = (C g /e) × (V g -V D ) (with V D is the position of the minimum of conductivity), n i the impurity density and A is a numerical value depending on the electrical environment.

Another type of scattering can impact on the conductivity of graphene. If one considers the case of resonant scatterers the conductivity can be written as

σ ≈ 2 π e 2 h n s n i ln 2 (R √ πn s )
These two relations allow experimentalists to have important information about the quality of the substrate, and the density and type of defects present in the sample that can play an important role also on quantum transport under magnetic field.

A theoretical minimum at σ = 4e 2 /(πh) has been predicted for graphene when the Fermi energy lies at the charge neutrality point [START_REF] Tworzydo | Sub-poissonian shot noise in graphene[END_REF]. Nevertheless, Fuhrer and coworkers showed that the minimal value of σ does not probe the electron transport of charge carriers at the CNP but in the residual density fluctuating landscape due to charge inhomogeneities [START_REF] Chen | Charged-impurity scattering in graphene[END_REF].

On 

0 -1 -2 -3 -4 1 2 3 4 C g V g e (10 12 cm -2 ) a) b)
Conductivity (e 2 /h) Figure 2.8.: a) Effect of potassium adatom doping on the conductivity. When the doping concentration increase the conductivity curves are enlarged and the minim is shifted towards the highest gate voltages. from [START_REF] Chen | Charged-impurity scattering in graphene[END_REF]). b) Fit by a linear combination of charged impurity and resonant scatterer model of the conductivity on one sample of graphene on SiO 2 measured at LNE. We find a density of resonant defects of 3.5 × 10 11 cm -2 and a charged impurity density of [0.5 -2] × 10 12 cm -2

So far, we explained the physics of non-coherent electrons. When the system enters the coherent regime of diffusive electrons, quantum corrections to the Drude conductivity must be taken into consideration. These interference effects lead to universal conductance fluctuations (UCF) and weak localization (WL) corrections to the conductance. While UCF self averaged enlarging the sample size, the WL corrections to the conductance do not depend on the sample size of the system and moreover bring important information about the charge carrier scattering processes.

| The weak localization corrections

Weak localization corrections to the conductance come from interferences between two paths along a time reversed closed loop of typical size L φ , called the phase coherence length (see Fig. 2.9). In usual semiconductors, in absence of spin-orbit coupling, the probability of one electron to come back to its initial position is enhanced, and, as a consequence the conductance is diminished.

Without magnetic field the weak localization to the conductance6 can be written

∆G wl = 2e 2 πh ln l φ l e in 2 dimensions (2.13)
Experimentally the most convenient way to evidence this effect is to apply a magnetic field. The magnetic field breaks down the time reversal symmetry and adds a random phase7 due to the coupling of the electron charge to the potential vector, self-averaging the interferences. In the case of metals or semiconducting materials without spin-orbit coupling the evolution of the quantum corrections to the conductance with the magnetic field can be written

∆G W L = W L e 2 2π 2 ψ 1 2 + τ B 2τ φ -ψ 1 2 + τ B 2τ E + ln τ φ τ e
where τ B = l 2 B /(2D) is the relaxation magnetic time and ψ is the di-gamma function defined as:

ψ(x) = ˆ∞ 0 e -t t - e -xt (1 -t) dt
As we described the weak localization arise from the interference of a scattering path with its complementary time reversal path. In GaAs/AlGaAs, in absence of spin-orbit coupling, both have the same phase and amplitude, leading to constructive interference process and thus an increase of the resistivity. In graphene, due to the additional Berry phase term, the scattering path and its complementary time reversal one have a phase shift of π leading to destructive interference and an opposite sign on the contribution to the conductivity. In this case it results an anti-weak localization correction [START_REF] Kechedzhi | Weak localization in monolayer and bilayer graphene[END_REF]. Nevertheless, If one considers higher energy terms in the graphene Hamiltonian, called "trigonal warping", additional terms break the p/ -p valley symmetry and leads to the suppression of the intravalley contribution to the localization. Another difference of graphene with usual 2DEG is the presence of two valleys K and K which create an additional possible scattering process. Thus, as depicted on Fig. 2.9right), in addition to the intra-valley scattering, the inter-valley scattering creates constructive interference contribution due to the opposite chirality of the two valleys. This leads to the observation of the WL corrections to the conductivity. Experimentally both weak and anti-weaklock were observed in graphene [START_REF] Wu | Weak antilocalization in epitaxial graphene: Evidence for chiral electrons[END_REF].

Similarly to usual 2DEG, the quantum weak localization corrections to the Drude resistivity in a monolayer graphene evolves with the magnetic field and can be fitted using [START_REF] Kechedzhi | Weak localization in monolayer and bilayer graphene[END_REF]:

∆ρ(B) = - e 2 ρ 2 πh F B B φ -F B B φ -2B iv -2F B B φ + B iv + B * (2.14) with F (z) = ln(z) + ψ 1 2 + 1 z and B φ,iv , * = 4eL φ,iv , *
where ψ is the di-gamma function. Thus, using this formula we can extract the characteristic coherence length L φ but also the typical scattering length corresponding to the intervalley scattering length l iv and the intravalley scattering length l * , giving fruitful information about the typical defects present in the sample. On Fig. 2.9 we can see the evolution of the weak localization phenomenon for several carrier densities. The values extracted for the highest density of n s = 3.9 × 10 12 cm -2 are CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION l φ = 1.2 µm, l iv = 0.42 µm and l * = 0.065 µm which are typical values of graphene on SiO 2 . More experimental results about the WL correction to the conductivity will be detailed in the chapter devoted to the experiments.

In the next section we will present a more general theory explaining the conductance of a coherent conductor in the diffusive or ballistic regime. All dissipative effects are thus concentrated inside the leads. As depicted on Fig. 2.10 if one applies a potential difference between the two sides of the conductor, the chemical potentials are thus shifted by an energy eV = µ 1µ 2 . Diffusion effects inside the conductor can be modeled by a barrier with transmission T and reflexion R = 1 -T . In the energy window eV there is eV

• ρ 1D ( F )
(with ρ 1D = 1/(π v F ) the electronic density of state in one dimension) electrons leaving the lead number 1. Since the electrons have a probability T to cross the barrier, the current is equal to

I =eV • ρ 1D ( F )ev ( F ) × T = e 2 π T × V
That give the 2-terminal Landauer formula for a unidimensional conductor (for spin-degenerated fermions):

G = 2 e 2 h T
e 2 /h ≈ (25812.807 Ω) -1 is called the quantum of conductance and depends only on the charge of the electron e = 1, 6 × 10 -19 C and the Plank constant h = 6.62 × 10 -34 kg m 2 s -1 . A simple picture (illustrated on Fig. 2.11) to understand more precisely the value of the quantum of conductance is to consider wave packets emitted by the source and flowing in a 1D-channel. Thanks 40 2.3. FROM CLASSICAL TO QUANTUM TRANSPORT to Pauli's principle the charge carried by a wave packet is e (for spinless particle) and the minimal time between two wave packets is given by the uncertainty principle ∆t min = h/∆E = h/eV (where eV is the energy window of the electron emitted). Then, the current is calculated considering the charge transmitted per unit of time: I = Q/∆t min = e∆E/h = e 2 V /h. Thus the conductance is equal to G = I/V = e 2 /h. The quantum of conductance is therefore only related to the intrinsic fermionic nature of the charge carriers and the dimensionality of the system.

T 1 R µ 1 µ 2 ⇐⇒ Unidimentional conductor
e e e e eV In a 2D conductor of width W the quantization of the transverse component of the momentum creates a number of transverse propagation modes (also called channels) equal to n = W/λ F . The Landauer formula can be generalized to a n-channel conductor as follow:

E t I = Q ∆t mi n = 1×e h/∆E = e 2 V h ⇒ G = e 2 h ∆t mi n
G = g e 2 h N n=1
T n

where g is the total number of degeneracies, and T n is the transmission of the channel n. Experimentally, it is perfectly illustrated by the conductance of a quantum point contact (QPC) on a 2 dimensional electron gas (Fig. 2.12) [Van Wees et al., 1988]. When one applies a voltage between the gate and the two dimensional electron gas, a local electrostatic constriction is created that

continuously close or open one by one every quantum channel. So far, we described the case of a system composed by a conductor connected at the edges by two terminals. The theory can be generalized in the case of four contacts. Two of them (α and β) are used to inject and drain the current in the conductor while the two others (γ and δ) probe the potential along the conductor as depicted on Fig. 2.13.

G (e 2 /h) V G (V) V G V G Quantum point contact
µ α µ β µ γ µ δ 1 -T T Figure 2
.13.: Four-terminal device. The current is injected through the contacts α and β while the voltage drop is measured between the contacts γ and δ.

The four-terminal conductance and resistance in the Landauer-Büttiker formalism can be written:

G α,β,γ,δ = I α→β V γ -V δ = eI µ γ -µ δ = g× e 2 N h µ α -µ β µ γ -µ δ = g× e 2 N h T 1 -T or conversely R αβ,γ,δ= = h ge 2 N 1 -T T
Where g is the total number of degeneracy and N the number of channels. One can notice that if we take T = 1 , the four probe resistance will be R 4p = 0 while in the two terminal case the resistance will be R 2p = h/(ge 2 ). The four-terminal measurement will be the main way to measure resistance in our experiment since it allows to measure the resistance of the conductor only, getting free of the leads intrinsic resistance.

| The Hall effect

The Hall effect has been discovered by Edwin Hall in 1879. Based on his discovery, the Hall sensor is now the most used sensor in the world and is used for applications such as proximity switching, positioning, speed detection, and current sensing applications.

| Charged particle in a magnetic field

In this section we describe the motion of an electron in a two dimensional conductor under a perpendicular magnetic induction B pointing in the z direction.

If we consider the motion of an electron in a two dimensional material under a perpendicular If now we add an electric field across the conductor the Drude formula is thus modified since the Lorentz force must be added to the electric force and the drift velocity can be written:

v d = -e (E + v d × B) τ m (2.15)
In this case the electron will keep a cyclotron motion around the guiding center but the latter one will acquire a drift velocity due to the electric field as it is sketched on Fig. 2.14left)

y x B ω c B E v y x X, Y r Figure 2
.14.: Left) cyclotron motion of a charged particle in a magnetic field. Right) cyclotron motion of a charged particle in the presence of a magnetic field and an electric field.

To describe the electron motion in two dimension one first has to consider the resistivity and conductivity tensors:

ρ = ρ xx ρ xy ρ y x ρ y y and σ = σ xx σ xy σ y x σ y y
The projection of the equation (2.15) on x and y gives

v x = - eτ m (E x + v y B) (2.16) v y = - eτ m (E y -v x B)
(2.17)

Using j = n s v we obtain a relationship between j x , j y and E x ,E y :

E x = 1 σ 0 j x + ω c τ σ 0 j y (2.18) E y = -ω c τ σ 0 j x + 1 σ 0 j y (2.19)
with σ 0 = n s e 2 τ /m the Drude conductivity at B = 0 and ω c = eB/m the cyclotron frequency.

CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION By a direct mapping of E = ρj and the equations (2.18) and (2. [START_REF] Lambe | Charge-quantization studies using a tunnel capacitor[END_REF] we can deduce the resistivity tensor:

ρ = ρ xx ρ xy ρ y x ρ y y = 1/σ 0 ω c τ /σ 0 -ω c τ /σ 0 1/σ 0
The inversion of the tensor gives the important relations between conductivity and resistivity: Considering equation (2.17) it implies E x = v y B. This electric field corresponds to a voltage 

σ xx = ρ xx ρ 2 xx + ρ 2 xy ⇐⇒ ρ xx = σ xx σ 2 xx + σ 2 xy σ xy = ρ xy ρ 2 xx + ρ 2 xy ⇐⇒ ρ xy = σ xy σ 2 xx + σ 2 xy 2.4.2 | The Hall bar I x y z W L V xy V xx B R R xx = V xx I V xy I = R xy B 1 n s e
V xy = V H = W E x (

| Integer quantum Hall effects

In 1980, Klaus. von Klitzing discovered that the Hall resistance of a two dimensional electron gas at low temperature and under a perpendicular magnetic field was quantized at specific fractions of the Plank constant divided by the square of the electron charge [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF] (as represented on Fig. 2.16), and immediately understood the impact that such effect can have on resistance metrology. Since this discovery, the physics behind these intriguing phenomena has been studied in details by many groups in different two dimensional materials. Klitzing [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF]. Right: First observation of the quantum Hall effect in a monolayer graphene. [START_REF] Novoselov | Electric field effect in atomically thin carbon films[END_REF] 

| Landau level quantization

This part is mainly inspired from [START_REF] Fuchs | Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models[END_REF] As we said before, a charged particle in a 2-dimensional material describes circles. Classical mechanics allows any radius for this cyclotron motion. The quantum mechanical description is not so permissive. Indeed the Bohr-Sommerfeld semi-classical quantization condition implies that any periodic movement imposes to the stationary phase to be equal to 0 modulo 2π. In the case of an electron in a two dimensional conductor under magnetic fields the total stationary phase is the sum of four terms represented on Fig. 2.17:

φ = 2πr × k - eB πr 2 + Γ(k) -π = 2πn (2.20)
• 2πr × k is the de Broglie phase term that any semi-classical plane wave acquires along a motion of length r .

• eB πr 2 is the Aharonov-Bohm phase accumulated due to the presence of a magnetic field.

• Γ(k) is the Berry phase accumulated during the periodic motion.

• -π is related to the Maslov index that describes the phase shift due to caustics effects on a closed orbit. This caustic effect represents the singularity of the semi classical wave function.

Each time that such singularity happens the wavefunction acquires an additional phase shift of π/2. In the case of (monolayer) graphene we have two singularities (Maslov index equal to two) thus a phase shift of π. More information about the caustic effects can be found in [START_REF] Landau | The Classical Theory of Fields[END_REF] (sections 54 and 59).

+ + + = 0[2π]
Figure 2.17.: Illustration of the different phase terms of 2.20. The first term describes the de Broglie phase that the wave-function will acquire during its motion. The second term represent the Aharonov-Bohm phase due to the presence of the magnetic field. The third term is the so-called Berry phase which is attached to the topology of the phase space. The last term represent the phase shift that a plane wave acquires when it presents a singularity. On the picture caustic effects appear as bright regions caused by the diffraction of the light by the water present in the glass.

Let us focus on the two first terms. Since in the semi-classical picture of a cyclotron orbit we have the relation k = eBr the two first terms of 2.20 can be reduced to

2πr × k - eB πr 2 = πk 2 eB = S(k)l 2 B
where S(k) = πk 2 is the area of the disk of radius k in the reciprocal space and l B = /eB is the magnetic length. Thus the equation 2.20 can be written

S(k)l 2 B = 2π n + 1 2 - Γ(k) 2π (2.21)
Since we know that the Berry phase in graphene is equal to Γ(k) = π it gives the quantization conditions for k k = 2neB

and using the energy dispersion in graphene E = ±v F k we can deduce the Landau energy levels for monolayer graphene:

E n = ±v F √ 2ne B (2.22)
In the case of Schrödinger fermions using E = 2 k 2 /(2m) and canceling the Berry phase term in equation (2.21) one can deduce from the same equation, the Landau energy spectrum:

E n = ω c n + 1 2
with ω c = eB/m the cyclotron frequency.

The evolution of the Landau level energy in both cases is visible on Fig. 2.18. We can notice important differences between the two Landau energies relations.

• The Schrödinger electrons have a linear energy spacing between LL with B while Dirac's one evolve as √ B.

INTEGER QUANTUM HALL EFFECTS

• Each Landau level in graphene can take twice as many charge carriers than in conventional semiconductors thanks to the additional valley degeneracy.

• The energy spacing between two adjacent Landau levels (at a fixed magnetic field B) does not depend on the LL index in the case of Schrödinger electron while it does in the case of Dirac's one.

• In graphene, the Landau energies can be positive or negative whereas in the Schrödinger case they are strictly positive.

• In the case of Dirac fermions an energy level exists at E 0 = 0. In this section we present a more detailed description of the quantum Hall effect physics in graphene.

Energy E Energy

E Magnetic field B Magnetic field B 0 0 ∆E ∆E ∆E ∆E 0-1 ∆E 1-2 ∆E 2-3 n = 0 n = 1 n = 2 n = 3 n = 0 n = ±1 n = ±2 n = ±3
To take into account the magnetic field contribution one can apply the Peierls substitution which consist in replacing the canonical momentum p by the gauge-invariant kinetic momentum Π [Jackson, 1999][Goerbig, 2010]:

8 q -→ Π = p + eA
where A is the potential vector linked to the magnetic field by B = ∇A

The two components of the generalized momentum Π are linked by the commutation relationship:

[Π x , Π y ] = i l 2 B
It is convenient to write the Hamiltonian under magnetic field using the ladder operators:

a = l B √ 2 (Π x -i Π y ) and a † = l B √ 2 (Π x + i Π y ) H α = α 0 Π x -i Π y Π x + i Π y 0 = α v F √ 2 l B 0 a a † 0 (2.23)
CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION with the ladder operators a and a † that play the role of complex gauge-invariant momentum and verify [a, a † ] = 1 and a † a = n . The scalar α = ±1 represent the pseudospin valley degeneracy.

The term √ 2v F /l B ≡ ω can be seen as the relativistic version of the cyclotron frequency.

Let's now find the solutions of the the equation Hψ n = n ψ n . Since the Hamiltonian is a 2 by 2 matrix, the eigenstate is a spinor:

ψ n = u n v n
This leads to the set of equations:

ω av n = n u n and ω a † u n = n v n (2.24)
which yields

a † av n = n ω 2 v n (2.25)
Using a † a = n we can notice that v n can be identified at the eigenstate v n ∼ |n and we can extract the eigenvalues

2 n = n( ω ) 2 ⇐⇒ s,n = s v F l B √ 2n (with s = ±)
The branch index s refers to the upper or lower cone (electrons or holes). We can notice that it is exactly the same equation (2.22) we found by applying the Bohr-Sommerfeld semi-classical quantization rule.

The equation (2.25) gives the second component of the spinor ψ n , we can thus use the relation (2.24) that implies:

u n ∝ av n ∼ a |n = |n -1
the total spinor ψ s,n can be written for n = 0 as:

ψ s,n = 1 √ 2 |n -1 s |n
and for n = 0

ψ 0 = 1 √ 2 |0 |n = 0
We can notice that for the n = 0 case only one component is non-null. This component represents the sublattice B in the K valley (α = +) and the sublattice A in the K' valley (α = -). In this particular Landau level there is a direct correspondence between the valley and the sublattice, therefore breaking the sublattice symmetry will induce a valley degeneracy lifting.

| Semiclassical image and Landau level degeneracy

In the semi-classical image we can describe the motion of the electron as follow:

x = X -r sin(ω c t + φ) and y = Y + r cos(ω c t + φ)
where X and Y are the coordinate of the guiding center and the second term of each equation describes the cyclotron motion around this guiding center. One can demonstrate that in the symmetric gauge we have the relations:

X = - Π y eB and Y = Π x eB
It means that the position of the center of motion (X, Y ) and the momentum Π are only linked by a multiplicative factor. Thus it is convenient in the case of the quantum Hall effect to have "a vision" of the reciprocal space since it is just a rescaled version of the real one.

Since X and Y does not commute ([X, Y ] = i l 2 B ), an Heisenberg uncertainty links the two values as follow: ∆X∆Y = 2πl 2 B . This area play the role of the minimal action in the phase space and allows us to count the number of states in the sample of surface A

N B = A 2πl 2 B = n B × A
where n B is the flux density and can be written as

n B = 1 2πl 2 B = B h/e = B φ 0
which is the nothing else than the magnetic field in φ 0 units. Thus, each Landau level possesses a degeneracy n B = eB/h. We will see in the following that to observe quantum Hall plateaus an additional ingredient that lifts this degeneracy is required.

Since X and Y does not commute, one needs to involve two additional ladder operators: b and b † defined as follow:

b = 1 √ 2l B (X + i Y ) and b † = 1 √ 2l B (X -i Y )
as for ladder operators a and a † we have the commutation relation b, b † = 1. One can thus introduce an additional number operator corresponding to the degeneracy of each landau level:

b † b |m = m |m
The total eigenstate for massless Dirac particles in the presence of magnetic field are given by

ψ s,n,m = ψ s,n ⊗ |m = 1 √ 2 |n -1, m s |n, m
For the case n=0, one finds:

ψ s=+ 0,m = ψ 0 ⊗ |m = 1 √ 2 0 |n = 0, m and ψ s=- 0,m = ψ 0 ⊗ |m = 1 √ 2 |n = 0, m 0 .
The eigenstates in the symmetric jauge can be written in the real space :

r|0, m = φ m (r) = i m √ 2 m 2πl 2 B m! r √ 2l B m exp - r 2 4l 2 B
It is interesting to notice that the spatial extension of the wavefunction is governed by the magnetic length l B . It will play an important role in the following. It is important to stress out that even if the quantum Hall effect in semiconducting heterostructures and in graphene have differences they share the same set of eigenfunctions.

We introduce here the filling factor ν which is the ratio between the electron density per unit area n s = N el /A and the flux quantum density:

ν = N el N B = n s n B = hn s eB
This important quantity plays the role of the effective Fermi energy of the system in the quantum Hall effect regime. It is important to stress out that there are two ways to change the filling factor either varying the electron density or the magnetic field. These two ways are not equivalent. For example changing ν by varying B will change the magnetic length and the energy gap between the LL while it is not the case by changing the electronic density which only changes ν.

| Edge channels

In the discussion presented above, we considered a edgeless sample made of an infinite 2D material.

In this section we take into account the fact that the sample will have, at some point, boundaries.

One must therefore consider an additional potential V (y ) along the y direction in order to keep electrons inside the sample, the confining potential depicted in green on Fig. 2.19.

x y The energy is thus 50 2.5. INTEGER QUANTUM HALL EFFECTS

V (y ) B B x y E F ν = 2
E n = ±v F √ 2ne B ± V (y ) (2.26)
As it is depicted on Fig. 2.19 when the Fermi energy is not aligned with a Landau level quantization energy, it will cross these Landau levels on the two edges of the sample. In this simplified picture the net current is therefore carried by unidimensional channels situated on each edge of the sample.

Moreover, since in the semi-classical picture k y = eBy one can calculate the group velocity of the charge carriers using 2.26:

v g = 1 ∂E n ∂k y = 1 ∂V ∂y × ∂y ∂k y = 1 eB

∂V ∂y

Thus we can see that the group velocity has an opposite sign on each edge of the samples. The electrons follows a skipping orbit motion with opposite velocity on each edge of the sample, whereas, in the bulk of the sample the electrons will keep a cyclotron motion. If we change the magnetic from B to -B then the group velocity on each edge channel will be reversed, that's why we often denotes these states as the unidimensional chiral quantum Hall edge states.

These unidimensional states are perfect candidates to create interference experiments of fermions as it was done before with light for bosons (Mach-Zender, Fabry-Perrot interferometer etc...) and are already studied by a few groups.

| Impact of disorder

The translation symmetry of the crystal can be lifted by any perturbation, which can be caused by the presence of impurities or electron-electron interactions for example. The potential brought by the impurities, indeed, lifts the high degeneracy of each Landau level and creates a density of states around the LL center. The main consequence on the density of state is the broadening of the Landau levels due to this degeneracy lifting as depicted on Fig. 2.20. This, interestingly, allows the Fermi energy to be continuously changed when one varies the carrier density n s . It is worth noting that without the degeneracy lifting brought by the disorder, the Fermi energy would have to abruptly "jump" from one Landau level to the next one. Therefore no plateau would be observable since the charge carriers at the Fermi energy would populate only extended states (that we will define right after) present in the LL .

As depicted on Fig. 2.20, inside a broadened Landau level, it is possible to distinguish two different kind of states. The localized states present between the Landau levels and the delocalized states at the vicinity of the Landau levels centers. The typical broadening of the Landau level by the impurities is of the order /τ [Yoshioka, 2002]. An electron must be able to complete few cyclotron orbits before losing its momentum, i.e ω -1 c τ . By multiplying each side of the equation by we obtain that ω c /τ which shows that the broadening /τ must stay weak in comparison to the inter-Landau level spacing. The criteria ω c τ 1 can be rewritten using the expression of the Drude mobility (µ = eτ /m), µB 1 for GaAs/AlGaAs and µB √ ν 1 for graphene 9 is an important criteria for metrologists to achieve a well quantized quantum Hall resistance standard. From a microscopic point of view, the potential landscape brought by the impurities can be seen as peaks and deeps around an average potential denoted valley 10 . Let us consider the hypothesis of a disorder potential that varies slowly at the scale of the wavefunction of typical extension l B which is valid in the high magnetic field limit, i.e

|l B ∇V (r)| ω c
The electrons drift along equipotential lines caused by these fluctuations as depicted on Fig. 2.21.

Some electrons are localized on closed equipotential lines situated on the peaks (or deeps) and do not contribute the net current. These states are called the localized states and the typical size of the localization of these charge carriers is called the localization length ξ. As we will see, this characteristic length will play, experimentally, a central role for the quantization of the Hall resistance and therefore for an application in resistance metrology. These localized states are associated with incompressible regions where the Fermi level strongly changes when varying the electron number.

Alternatively, the electrons which follows the equipotential lines present in the valleys can freely travel in the sample and are called the extended states 11 . They are characterized by a diverging localization length. In the chapter devoted to the experiments we will describe more carefully how this localization length evolves with the filling factor. Often, these regions are denoted as compressible, since, in this case, the Fermi energy hardly changes with increasing electron number.

For now let us just describe what happens qualitatively on the longitudinal and transverse resistance when the Fermi energy is moved inside and between the Landau levels. • If we consider the case depicted in Fig. 2.22 Left) the Fermi energy lies in mid-range between Landau levels. It thus crosses the Landau levels in two points distributed on each edge of the sample. The net current is only carried by the edge states and the system is dissipativeless. In the bulk of the sample, since, the localization length is finite, the probability for the electron to contribute to transport tends exponentially to zero i.e, R xx goes to zero while R H takes a quantized value.

R H R xx ν R R H R xx R R H R xx R ν ν
• In a second step when the Fermi energy is moved towards a LL, the additional electrons will occupy localized states present in the tail of the Landau level. In the real space the additional electrons will be localized in the bulk of the sample on the equipotential lines of the fluctuating potential landscape peaks. It results that the longitudinal and transverse resistance are stacked at the same value as depicted on Fig. 2.22 center) and thus a plateau appears on R H . It is therefore thanks to the presence of impurities that a plateau is visible.

• Finally when the Fermi energy lies around the center of a Landau level, where the extended states are located, the electrons can freely travel from one edge to the other and thus induce dissipation. R xx rises and R H is not quantized anymore. We are at the transition between two quantum Hall plateaus.

| Degeneracy lifting

We have seen that the magnetic field breaks the time-reversal symmetry and the disorder breaks the translational symmetry. The intrinsic symmetry of the charge carriers, namely the spin and valley , can also be lifted in graphene.

For the case of graphene these degeneracy lifting were first observed in the group of Columbia in 2006 [START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF]. As one can notice on Fig. 2.23 Right) the consequence of such degeneracy lifting is the appearance of plateaus on σ xy at each integer value in e 2 /h units (if all the degeneracies have been lifted). The spin degeneracy lifting can be induced by the magnetic field through the so-called Zeeman splitting. It adds an additional term to the usual energy spectrum of graphene:

E n = ±v F √ 2nehB ± g 2 µ B B
where g is the Landé g-factor, equal to ∼ 2 in graphene and µ B = e /2m is the Bohr magneton.

The remaining degeneracy is the valley degree of freedom. The valley lifting can arise from different contribution. As we saw in sec. 2.5.2, in the lowest Landau level this valley symmetry lifting arises from the breaking of the sublattice symmetry of the graphene layer. We will explain in more details the physics of these degeneracy lifting in the chapter devoted to the experimental results. 2.5.7 | Order of magnitude and differences between quantum Hall effect in graphene and GaAs/AlGaAs

The major physics ingredients of the quantum Hall effects in graphene and in heterostructure based semiconductors are the same. Nevertheless a few but important differences exist between these two materials, especially concerning the order of magnitude of the energy gap between the adjacent Landau levels. One can immediately notice on Tab. 2.1, that the energy spacing is much larger in CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION graphene on the ν = 2 and ν = 6 plateau at 2 T than in GaAs/AlGaAs on the ν = 2 plateau at 10 T (typical magnetic induction used in national metrology institutes for a resistance calibration).

The Fig. 2.24 allows to compare the evolution of the energy gaps with B between monolayer graphene (ν = 2, 6), bilayer graphene and GaAs/AlGaAs. We can clearly see that the bi-layer graphene even though it is more energetically protect than GaAs/AlGaAs is less promising than monolayer graphene in terms of energy gap amplitude between the two first LL. The energy gap is clearly a key argument for an application in resistance metrology. As we said, the typical magnetic field used in resistance metrology for GaAs/AlGaAs quantum Hall resistance standards is about 10 T. If we look for the magnetic field giving the same energy gap in graphene between the n = 0

and n = 1 LL (ν = 2) it can be found around 0.2 T. The quantum Hall effect in graphene is therefore more "protected" than in conventional heterostructures and it is the reason why the QHE in monolayer graphene has been observed at room temperature [START_REF] Novoselov | Room-temperature quantum Hall effect in graphene[END_REF]. bilayer graphene and GaAs/AlGaAs. The same energy spacing can be found at 0.2 T in graphene and 10 T in GaAs/AlGaAs heterostructure (usual magnetic induction for resistance standard).

2T 10 T AlGaAs/GaAs E 0→1 = eB/m ∼ 3.44 meV ∼ 17.2 meV Graphene E 0→1 = v F √ 2e B (ν = ±2) ∼ 51 meV ∼ 114.6 meV Graphene E 1→2 = v F √ 2e B( √ 2 -1) (ν = ±6) ∼ 21 meV ∼ 47.5 meV Table 2.

DISSIPATION EFFECTS IN THE QUANTUM HALL REGIME

The description of the quantum Hall effect we just draw does not take into consideration a role of the temperature or the current. In real devices, that operate at finite temperature and measurement current, dissipation mechanisms occur and tend to alter the Hall resistance quantization. We will in the next section describe these dissipation mechanisms and show why graphene looks so promising for the realization of a quantum Hall resistance standard operating at lower magnetic field and higher temperature.

| Dissipation effects in the quantum Hall regime

In a simplified picture, when the Fermi energy lies between the Landau levels the net current is only carried by the counter-propagating edge channels. Dissipation effects in the QHE regime therefore appear when the electrons cross the entire width of the sample and create backscattering between the chiral edge channels. The question is thus how an electron can go from one edge to the other? Since the wavefunction overlap decreases exponentially with the distance, we must find other mechanisms than direct tunneling to explain the dissipation levels observed in real samples.

The two main mechanisms involved for the dissipation are the thermal activation between Landau levels and the variable range hopping mechanism. The study of these two mechanisms is crucial in metrology since the backscattering rate is directly related to the Hall resistance quantization. A finite dissipation in the system will induce a deviation from the quantized value, immediately prohibiting an application for resistance metrology. It is worth noting that in the quantum Hall regime, at filling factors corresponding to the Hall plateaux, σ xx is exponentially small with temperature and σ xy is constant which leads to

ρ xx = σ xx σ 2 xx + σ 2 xy ≈ σ xx σ xy ∝ σ xx
Thus for the dissipation mechanism that we will present below looking at evolution of the conductivity or the resistivity on a plateau is equivalent (except in the case of the plateau σ xy = 0 as we will see in the following of this manuscript).

2.6.1 | Thermal activation: Arrhenius law

E F DOS E kT
Thermal activation

σ xx ∝ σ 0 exp -E n+1 -E F kT + σ 1 exp -E F -E n kT kT e --phonon E n E n+1
kT kT The thermal activation mechanism was proposed by Svante Arrhenius in 1889. The principle of this mechanism is rather simple in the case of the QHE [START_REF] Polyakov | Activated Conductivity in the Quantum Hall Effect[END_REF]]. An available choice for an electron to backscatter is to take energy from the environment to reach the delocalized states of the upper Landau level. Then the electron can relax freely across the sample via electronphonon scattering (as depicted on figure (Fig. 2.25)) and thus create dissipation. Conversely an electron from the lower LL can reach the Fermi energy leaving a hole in this LL which can reach the opposite edge channel and create dissipation.

The evolution of the longitudinal conductivity with the temperature in this model follows: 

σ xx ∝ σ 0 exp - E n+1 -E F kT + σ 1 exp - E F -E n kT with E n+1 ,
σ xx ∝ exp (-∆E/(2kT ))
where ∆E is the energy gap between the two Landau levels.

The thermal activation mechanism has been observed in the QHE regime in semiconducting heterostructures and graphene but appears at higher temperature in graphene because of the large energy gap between the Landau levels in this material. The variable range hopping mechanism arises from a completely different phenomena. It is the mechanism responsible of electronic transport in Anderson insulators. This process is also involved in the dissipation physics between the edge channels in the quantum Hall effect regime.

As we said before the electrons in the bulk are localized on a typical size ξ around equipotentials lines brought by the impurities potential. Abrahams and Miller [Miller and Abrahams, 1960] showed that the resistance between two localized sites can be written

R ij = R 0 ij exp 2r ij ξ exp ij kT (2.27)
where r ij is the distance between two remote sites i and j and ij = | ij | the energy difference of an electron from a site i to a site j. The first exponential term of the equation represents the resistance of the tunneling process due to the overlapping of the two wavefunctions (from site i and j) and the second one comes from the thermal activation process occurring between a site i and a site j.

However in 1969 Mott has shown that if we consider the low temperature limit, it will be energetically more favorable for an electron to hope towards a remote localized site with a small energy 2.6. DISSIPATION EFFECTS IN THE QUANTUM HALL REGIME difference rather than a closer one with a higher energy gap. If we consider an electron on the site i with the related energy i it always exists a range r ij and an energy ij that minimize the argument of the exponential term in 2.27:

2r ij ξ + ij kT (2.28)
In two dimensions, the number of accessible states is proportional to the area of the disk of radius r ij and the integrated density of states on the energy band ± ij . If we consider a constant density of state ρ(E) we obtain:

r 2 ij ij ρ(E) = C te ⇔ ij ∝ 1 ρ(E)r 2 ij (2.29)
which relate ij to r ij . We can therefore minimize the equation (2.28):

2 ξ - C te ρ(E)kT r 3 ij = 0 ⇔ r ij ∝ ξ ρ(E)kT 1 3
(2.30) Finally if we insert the relation of r ij (called the Mott hopping length) from equation (2.30) and ij from equation (2.29) in the equation (2.27) one finds:

R ij ∝ exp 3 T 0 T
A more rigorous derivation gives the exact expression of T 0 :

T 0 = 3 kρ(E)ξ 2
This theory developed to renders the conduction physics happening in Anderson insulators turns to be also valid to explain the electron conduction between the edge channels in the QHE regime as pictured on Fig. 2.26. In this theory the longitudinal conductivity σ xx which reflects the backscattering rate between the QH-edge channels, therefore the dissipation, evolves with the temperature as follow: 

σ xx ∝ 1 T × exp -T 0 T 1/3 E F DOS E ξ loc Variable Hopping Range σ xx ∝ 1 T × exp -T 0 T 1 2or3 B With e -/e -interaction Without e -/e -interaction

Disorder induced state

| Efros-Shklovskii variable range hopping

Later on, Efros and Shklovskii have integrated in Mott's calculation the Coulombian interaction in the variable range hopping theory. In fact the authors shown that the density of states vanishes at the Fermi energy due to the many body electron interaction. As sketched on Fig. 2.27, when an electron moves to a remote site, due to the Coulomb potential of this electron, a "polaron" cloud is created that impacts the electrons on the neighboring sites [START_REF] Shklovskii | Electronic Properties of Doped Semiconductors[END_REF].

ij r ij E F E F Figure 2
.27.: Left: Mott variable range hopping mechanism, the electrons will move to an available site at a distance r ij and energy ij minimizing 2.27. Right: Efros-Shklovskii variable range hopping. When an electron moves to a remote site it creates a "polaron" cloud that impacts the other electrons. Adapted from [START_REF] Shklovskii | Electronic Properties of Doped Semiconductors[END_REF].

Their calculations modify the evolution of σ xx with temperature as follow:

σ xx (T ) ∝ exp   T ES 0 T   (2.31)
This allow us to extract the localization length using:

2.6. DISSIPATION EFFECTS IN THE QUANTUM HALL REGIME ξ = Ce 2 4π 0 r kT ES 0 (2.32)
where C = 6.2 is a constant found numerically [Polyakov andShklovskii, 1993, Shklovskii and[START_REF] Shklovskii | [END_REF].

This theory has the advantage (for experimentalists) to exclude the density of states, which is not always easy to extract precisely, in the calculation of ξ . Experimentally it is often difficult to distinguish between Mott and E-S mechanisms unless when the experiments explores several orders of magnitude of variation of σ xx with the temperature.

| Variable range hopping prefactor

The value of the variable range hopping prefactor is still debated. The experiments tend to show that the prefactor is proportional to the inverse of the temperature. Ono's found a prefactor in agreement with the experimental works:

σ 0 = e 2 γ kT
where γ is an electron-phonon coupling constant. Polyakov and Shklovskii found that the prefector can be written as follow

σ 0 = e 2 h f T 1 T
where f is a dimensionless function. The function can not be calculated using the framework on phonon-assisted hopping mechanism but Pepper and Schlimak derived it using the electron-electron scattering only and found a universal prefactor equal to e 2 /h. Nevertheless they argued that under a magnetic induction the phonon assisted mechanism will dominate and the 1/T dependency will be restored.

Experimentally the observations tends to give credit to the prefactor 1/T [Furlan, 1998].

| Bias current evolution of the variable range hopping

The variable range hopping mechanism can also be expressed in term of the bias current. The local Fermi distribution is tilted by the Hall electric field E H and can thus favors the hopping mechanism [START_REF] Polyakov | Variable range hopping as the mechanism of the conductivity peak broadening in the quantum Hall regime[END_REF]. In this formalism E H is seen as an effective temperature eE H ξ/(2k) that gives, if we inject it in the equation 2.31

σ xx (E H ) ∝ exp   2kT ES I eE H ξ  
This gives a relationship between the current I = W E H /R H (where W is the typical length on which the electric field creates the potential drop) and and effective temperature:

T eff (I) = eR H ξ 2kW × I (2.33)
CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION

In a perfectly homogeneous sample W is equal to the Hall bar width but we will see in the following that the extracted W from the experiments can be more than an order of magnitude smaller than the sample width. It is worth noting that in this theory we have a linear relationship between the effective temperature and the bias current. From [START_REF] Cage | Dissipation and Dynamic Nonlinear Behavior in the Quantum Hall Regime[END_REF] As we discussed, in the VRH theory, the current acts as an effective temperature but especially in metrology where we use high measurement currents one needs to take into consideration, in addition, the strong electrical field effect on the Landau levels shape. Indeed V H ∝ I, so the voltage drop between the transverse contacts increases linearly with the current as soon as we are on a plateau (R H = constant). This can lead to high voltage drops between the Hall probes. Typically V H 0.5 V for I = 40 µA on the ν = 2 plateau (typical current used for GaAs/AlGaAs resistance standard).

In 1984 Heinonnen et al. developed a model called the quasi-elastic inter-Landau-level scattering (QUILLS) [START_REF] Heinonen | Electron-phonon interactions and the breakdown of the dissipationless quantum Hall effect[END_REF]. Due to an homogeneous electric field the Landau levels are tilted as represented on Fig. 2.29. The wave function overlap of states in the nearest Landau levels is not negligible anymore and allows new types of tunneling effects assisted by phonon or impurity scattering process which leads to the breakdown of the quantum Hall effect for a critical electric field 2.6. DISSIPATION EFFECTS IN THE QUANTUM HALL REGIME [START_REF] Chaubet | Heating of two-dimensional electrons by a high electric field in a quantizing magnetic field: Consequences in Landau emission and in the quantum Hall effect[END_REF]. Another theory called the bootstrap electron heating has been developed

by [START_REF] Komiyama | Heat instability of quantum Hall conductors[END_REF]. In this theory the electric fields brings energy at a rate12 G = σ xx E. The electronic system can evacuate this energy with a characteristic electron-phonon energy loss rate L until a threshold electric field value at which a small number of excited electrons in the higher LL are strongly accelerated by the electric fields. At this critical point due to an electronic avalanche effect, the system undergoes a transition towards a highly dissipative state. The electronphonon energy loss rate in graphene has been studied by Baker et al. The authors found that the loss rate in graphene follows a T 4 evolution, in agreement with the predicted electron-(acoustic)phonon coupling in graphene [Kubakaddi, 2009]. More interestingly for metrology, the authors found that the energy loss rate is advantageously about an order of magnitude higher in graphene than in semiconducting heterostructures [Baker et al., 2013a, Alexander-Webber et al., 2013]. This can explain that the typical breakdown densities measured in GaAs/AlGaAs are about 1 A/m at ( 10T) while it can reach values as high as 43 A/m (at 23 T) in graphene. The ability of graphene to sustain large currents and keep a non-dissipative quantum Hall state is very promising for metrology in order to improve the signal over noise ratio during resistance comparisons. inter-Landau-level scattering (QUILLS), adapted from [START_REF] Chaubet | Heating of two-dimensional electrons by a high electric field in a quantizing magnetic field: Consequences in Landau emission and in the quantum Hall effect[END_REF] Having a knowledge about the dissipative effects appearing at finite temperature and currents in the quantum Hall effect regime, metrologists designed specific samples in order to limit the backscattering process. In the next section we will present the experimental precautions to take, in order to realize a metrological grade quantum Hall resistance standard.

Low current

High current
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The quantum Hall effect physics has two key ingredients that tends to opposite each other. We said that the Landau quantization appears around µB = 1. It is thus natural to try to maximize this quantity to have a well defined quantum Hall effect. Since the magnetic field is limited by the coil, the available degree of freedom is the mobility µ. But let us recall that the quantization is maintained by the impurities present in the bulk of the sample. Thus if one tries to make the cleanest sample as possible it will be only poorly protected by the disorder and the magnetic field width of the quantum Hall plateau will be reduced. On the other hand, if one wants to increase the impurity density it will decrease the mobility and the quantum Hall effect will be poorly developed.

In this context metrologists have explored this phase space to find the better compromise between disorder and mobility.

| Hall bar geometry, contacts and impact on the Hall quantization

So far we only described purely theoretically the quantum Hall effect physics. We will in this section present the experimental realization and improvement of the Hall bar samples to have the better chances to obtain a well quantized Hall resistance. Let us first sum-up the different features that come naturally after the theoretical description. First, even if the Hall resistance does not depend on the sample width, we saw that the value of the Hall voltage can play a role on the Landau levels slope. If we enlarge the sample size the Hall electric field across the sample E y = V H /W will diminish and thus the shape of the Landau levels will be less affected. Also the two edge channels will be more distant one from each other and thus will limit the VRH backscattering mechanism.

So, since the very beginning metrologists studied the impact of the Hall bar width on the quantization. Two groups have studied the evolution of the breakdown current with the sample width. In the first group they show that the evolution is indeed linear with the sample width [Jeckelmann et al., 2001] while in the second one [Meziani et al., 2004] they found a sub-linear evolution as we can see on In the Landauer-Butticker formalism the leads act as reservoir that irreversibly break the phase of the electron and thermalize them [Büttiker, 1988]. It was shown that indeed, experimentally, the contacts play an important role in resistance metrology. The first important thing about contact is their position in the sample. One has to put the contacts apart from the main Hall channel.

As depicted on Fig. 3.2 a), the electrons will have some length in the arm to thermalize at the vicinity of the contact and do not deteriorate the Hall resistance quantization. The second one is to space the current contacts from the first voltage contact by at least the sample width to avoid carrier density variation and electron heating occurring at the vicinity of the metal contact [Jeckelmann and Jeanneret, 2001]. Also as we can see at the vicinity of the left current contact on have shown [Büttiker, 1989] that current injected through disordered contacts populates states of the same edge in a non equilibrium fashion, leading to Hall resistance deviation to the quantized value. Fortunately, Büttiker shown that inelastic scattering , that in this theory plays the same role as a perfect reservoir, restores the quantization by equilibrating the chemical potentials of edge states. A long distance between the contacts therefore allows a good edge states equilibration process and limit the Hall resistance deviation to the quantized value.

Experimentally metrologists [START_REF] Jeckelmann | High-precision measurements of the quantized Hall resistance:Experimental conditions for universality[END_REF] had concluded that the contacts must have values bellow 10 Ω in order to limit heating effects and keep a 10 -9 quantization of the Hall resistance at 1.3 K. . The choice of the recipe and materials for the contacts has been solved in GaAs/AlGaAs heterostructures by using annealed AuGeNi metal alloy. In the quantum Hall effect regime, measurements of R xx and R xy require well aligned longitudinal and transverse Hall probes. If it's not the case, the measured resistance values will be a combination of R xx and R xy . Nowadays using nanomasker one can reach ∼ 10 nm resolution, thus, the alignment of the leads is not the limiting parameter. A linear coupling between the deviation to the quantized value ∆R H and the longitudinal resistance R xx has been measured by Cage [START_REF] Cage | Dissipation and Dynamic Nonlinear Behavior in the Quantum Hall Regime[END_REF] (as visible on Fig. 3.2 c)). Van der Wel [START_REF] Wei | Localization and scaling in the quantum Hall regime[END_REF] 

∆R H = R H -R K /2 = (V AB -V H )/I = -(W c /W ) R xx = α geo R xx
where W is the sample width and W c the width of the voltage contact arm. In metrology we usually keep the ratio W c /W at maximum equal to 1/8. Importantly, this geometric contribution will keep the same sign when returning the magnetic field: α geo (+B) = α geo (-B). Another coupling coefficient emerging from the inhomogeneities present in the Hall bar α inhomo can appear and reflects the inhomogeneity of the current flow in the sample. As depicted on Fig. 3.2 a) the current circulation is not anymore perfectly parallel to the Hall bar channel and will therefore contribute the Hall voltage measurement . One can distinguish this contribution once again by returning the magnetic field since the coupling due to the inhomogeneity will, in contrast with α geo , change its sign when switching from B to -B: α inhomo (+ B) = -α inhomo (-B).

| The technical guidelines for GaAs/AlGaAs QHRS

Metrologists have defined some technical guidelines that lead to a metrological graded sample in the case of GaAs/AlGaAs [START_REF] Delahaye | Revised technical guidelines for reliable dc measurements of the quantized Hall resistance[END_REF]. They must fulfill the following conditions:

• The mobility values must range between:

40 m 2 V -1 s -1 < µ < 80 m 2 V -1 s -1
• The contacts must have values bellow 10 Ω, have a ohmic behavior and support large currents (typically 40 -60 µA)

• The density values must range between 3 × 10 15 m -2 < n s < 5.5 × 10 15 m -2 because at high carrier density the second electron band of the heterostructure starts to be populated and a parallel conduction appears that immediately breaks the Hall quantization.

At low densities the ν = 2 plateau appears at magnetic field where the LL energy spacing is not large enough and the samples starts to become dissipative.

• The Hall bar must be as large as possible to offer the largest breakdown current.

• The distance between the voltage probes must be as large as possible in order to have a good thermalization and equilibration of the edge channels.

• The ratio of the width of the voltage arm to the channel width must be less than 1/8.

• The current leads must be as far as possible from the first voltage probes Then a special care must be devoted to the characterization of the Hall bar under magnetic field:

• We must find the minimum of dissipation on the ν = 2 plateau. In practice, we swipe, the magnetic field measuring the longitudinal resistance and catch the lowest value on the 3.3. REALIZATION OF A GRAPHENE QUANTUM HALL RESISTANCE STANDARD plateau. Then, we measure precisely the value of the longitudinal resistance along the two edges of the sample. A typical criteria to reach the expected accuracy of 10 -9 is to a have a R xx below 1 100 µΩ.

• Verify that the resistance of the contacts is low under magnetic field, typically bellow 10 Ω. 2 .

• Verify that the Hall resistance value does not depend on the magnetic field direction.

• Verify that the Hall resistance values measured using different Hall bar pairs are the same. 

R xx (kΩ) LPN-S606 µ = 157 T -1 n s = 4.2 × 10 11 cm -2 1.3 K/10 µA LPN-S922 µ = 26 T -1 n s = 4.1 × 10 11 cm -2 1.3 K/10 µA

| Realization of a graphene quantum Hall resistance standard

To summarize, a quantum Hall resistance standard made of GaAs/AlGaAs needs a large Hall bar width, specific geometry and good contacts quality. Therefore, realizing a QHRS made out of a graphene layer will most likely require a similar geometry. Defining a specific geometry of a graphene layer is now routinely done by plasma etching of the graphene sheet and is therefore not a limiting parameter. Dimitrios Kazasis, post doc at the Laboratoire de Photonique et Nanostructures, managed to pattern routinely low resistive contacts < 10 Ω on large graphene samples (W ∼ 100 µm). He first puts an ultrathin layer of titanium for adhesion then deposes a bilayer made of paladium and gold respectively of 60 and 20 nm thick. In a subsequent step, after etching

1 This criteria correspond to a coupling coefficient of α ∼ 0.12 between ∆R H = R H -R K /2 and Rxx 2
The measurement method to measure the contacts will be explained in the chapter dedicated to the experiments 69 CHAPTER 3. DISSIPATION-LESS DEVICES the graphene underneath, he creates the bonding pads using another bilayer of titanium and gold with this time 20 and 200 nm respective thickness. Recently it has been shown that the electron preferentially enter in the contacts by the side of the graphene layer [START_REF] Wang | One-dimensional electrical contact to a two-dimensional material[END_REF] and not by the two dimensional contact of graphene and metal. Thus it can be interesting in the future to maximize the perimeter of the graphene under the metal for example by using battlement or Kosh snowflake geometries (which, mathematically, has an infinite perimeter for a given area). Since graphene has a larger energy gap than GaAs/AlGaAs, one could also expect devices with higher breakdown current for a given sample width or presenting a 10 -9 agreement of R H with R K /2 for smaller devices. To realize a graphene QHRS operating at low B values, one also needs to be able to reach a low and homogeneous carrier density in the sample. We will see that depending on the substrate on which the graphene layer seats such control of the 2DEG carrier density is not easy, stable or reproducible. As we saw a criteria for a well developed quantum Hall effect is µB √ ν 1 which implies high mobility graphene for an application at low magnetic field. As we will see, nowadays, one can produce graphene Hall bars with the same mobility but unfortunately still much smaller than the quantum Hall resistance standard made out of GaAs/AlGaAs. As we shall go on to examine in the next chapter, the critical point is to produce samples presenting all the characteristics presented above in term of size, carrier density, contacts quality and mobility simultaneously. [START_REF] Wang | One-dimensional electrical contact to a two-dimensional material[END_REF]. The idea in non encapsulated graphene would be to enlarge the perimeter of the contact surface between the metal and the graphene flake for example using fractal or battlement geometry.

| Conclusion

We have seen that graphene and semiconducting heterostructures share a common effect with different behavior of the charge carriers. The GaAs/AlGaAs resistance standard has been for more than ten years used routinely in NMIs to calibrate resistors for the industry. Graphene because of the enlarged energy spacing between the two first Landau levels may provide a more easy-to-use standard. The three main parameters for a quantum Hall resistance standard are the magnetic field, the temperature and the current. With semiconducting based standard the lowest magnetic fields are about 7 T, the highest temperature about 2 K and the highest current about 60 µA. The target threshold for the (B, I, T ) phase space of a future graphene-based standard is guided by technical major changes. The magnetic field would have to be reduce to ∼ 2 T to allow the use of permanent magnets. The measurement current should overpass at least few hundreds µA to allow the use of commercial bridges instead of cryogenic current comparator-based bridges (that 3.4. CONCLUSION will be described later in this manuscript). A temperature higher than 4 K would ease to use affordable cryofree systems without any helium consumption. In the next section we will make a round of the different ways to produce graphene and describe the metrological works attached to each fabrication method. art in Ω-metrology

Graphene is the last allotrope of carbon discovered after the fullerene in 1985 and the carbon nanotube few years later. In this section we will describe the most common ways to obtain a graphene layer and the corresponding metrological work devoted to each production method.

| Mechanical exfoliation method

The first method used to produce graphene was the mechanical exfoliation of graphite. Since graphite is constituted by lowly bounded layers of graphene, the aim of the game is to isolate one of them and localize it. A group from Columbia university placed a nanotip of graphite on an atomic force microscope and tried to cleave a single carbon layer by touching the surface of a

SiO 2 /Si substrate with the graphite tip [START_REF] Zhang | Fabrication and electron transport of nanometer thickness of graphite crystallites[END_REF]. They managed to obtain samples composed by few layers and even observed SdH oscillations typical of a two dimensional material, but never reached the ultimate thickness of one layer. Meanwhile, another group from Manchester university developed an alternative technique. They used a scotch tape to exfoliate graphene, they then deposited it on a substrate and, by chance, in some areas, only one or few layers were cleaved at the surface of the substrate [START_REF] Novoselov | Electric field effect in atomically thin carbon films[END_REF]. Thanks to this exfoliation method they managed to localize by optical techniques a graphene layer and contact it. They processed to magneto-transport experiments on the graphene layers evidencing Dirac fermions fingerprints, giving at the same time, an absolute proof of the layer thickness. It is still, ten years after the first experiment, the technique that offers the highest mobility graphene. This method has the advantage to create almost defect free intrinsic graphene but is not scalable since it produces generally micrometer scale flakes that one has to localize.

| Available substrates

The silicon oxyde (SiO 2 /Si) The hexagonal boron nitride (hBN) Only few years after the discovery of graphene people have started to look for insulating substrates that will affect as less as possible the intrinsic properties of the graphene layer. A possible choice is the hexagonal boron-nitride (hBN) [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF].

It shares the same hexagonal structure as graphene, with furthermore a lattice constant close to graphene 0.36 nm, but with two distinct atom types, one of bore and the other of nitrogen. Once few layers have been exfoliated, they can be stacked on a SiO 2 substrate. When the graphene layer is deposited on the h-BN structure it is less sensitive to the SiO 2 roughness and the charged impurities are now spaced from the graphene layer. It results an enhanced mobility that can now "easily" reach 500 000 cm 2 V -1 s -1 [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF]. The last advances in the manipulation of this substrate allow to encapsulate graphene between two hBN layers. It presents the main advantage to totally protect the graphene from any adatoms.

Up to recently, the only drawback was that the largest surface of hBN were still originating from the exfoliation method of bulk crystal that allows only the production of micrometer scale devices.

Many efforts in the community tend at the present time to large scale production of hBN and recently some solutions seems to emerge [START_REF] Park | Large-Area Monolayer Hexagonal Boron Nitride on Pt Foil[END_REF].

Other two dimensional materials Other two dimensional materials have emerged in the past few years that can be used for their intrinsic properties or as a substrate for graphene. They mostly come from the 2D-chalcogenide family like MoS 2 or WSe 2 . They can lead to interesting new physics like spin-orbit induction in the graphene layer or the study of the interacting many-body physics of electrons of two (or more) graphene layers separated by an atomically thin insulating layer [Geim andGrigorieva, 2013, Fang et al., 2014]. Also, a high numbering stacking of these two dimensional materials can potentially lead to the conception of new heterostructures with interesting band structures and/or a gap opening pointing towards the use for new generation transistors. The first attempt to use graphene as a quantum Hall resistance standard has been done by a group from Nijmegen in Netherland [START_REF] Giesbers | Quantum resistance metrology in graphene[END_REF]. They used the mechanical exfoliation method to produce graphene deposited on an SiO 2 /Si substrate. Because of the small graphene flakes produced by the exfoliation method the sample dimensions were really small ∼ 1 × 10 µm 2 compare to the typical size of a GaAs/AlGaAs resistance standard (400 × 2000 µm 2 ). The sample presented a typical (low temperature) mobility of ∼ 8000 cm 2 V -1 s -1 and unfortunately the contacts were highly resistive: ∼ 1 kΩ. Using a specific metrological instrumentation (that we will be detailed in the next chapter) the authors compared the Hall resistance given by a reference GaAs/AlGaAs device, assumed to realize R K /2, with the one given by the graphene sample on the ν = 2 plateau using a current of 1.5 µA The authors found a relative deviation of the Hall resistance in the graphene sample to the quantized value equal to:

∆R Gr H R H = R Gr H -R GaAs H R GaAs H = (-5 ± 15) × 10 -6
The main limitation was in their case attributed to the low breakdown current (I c ∼ 2.5 µA) which forced them to use low measurement currents that induce a poor signal over noise ratio during the resistance comparison. Another limitation can come from the high contact resistance values which brings an additional noise source. I c has to be compared to the typical breakdown currents of a GaAs/AlGaAs quantum resistance standard (QHRS): ∼ 400 µA at 10 T and 1.6 K. Nevertheless let us stress out that the breakdown current density in this sample is of the same order than the best semiconductor-based QHRS: ∼ 2.5 A/m which shows that the use of graphene is potentially promising to produce QHRS that can sustain large currents.

The mechanical exfoliation method has also been used by the group from the laboratoire national de métrologie et d'essais (LNE) [START_REF] Guignard | Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements[END_REF] to produce graphene redeposited on an SiO 2 /Si substrate. Out of the graphene flakes the authors processed a 15 × 2 µm 2 monolayer and a 26 × 4.6 µm 2 bilayer device. Pictures of the samples are visible on Fig. 4.2. The monolayer sample has a rather low mobility at low temperature ∼ 2000 cm 2 V -1 s -1 and the bilayer sample presents a higher mobility of ∼ 3500 cm 2 V -1 s -1 . As we can see on Fig ), for which perfect quantization is expected, that at the temperature of 1.3 K and magnetic field of 11.7 T in monolayer and 350 mK/18.5 T in the bilayer sample, the Hall resistance was quantized in both samples within 5 parts in 10 7 (using currents typically bellow ∼ 1 µA). The agreement was limited, as in Giesbers' case, by the low breakdown current found for these samples, typically ∼ 2µA. The authors shown that the breakdown current was limited by electrostatic fluctuations in graphene induced by charged impurities located in the SiO 2 /Si substrate near the surface as well as the small size of the samples. The operating conditions of these exfoliated graphene samples are therefore less favorable than the GaAs/AlGaAs QHRS. Here appears two possible solutions to improve the operating conditions. The first one is to enlarge the size of the graphene layer since the breakdown current should scale with the sample width, and the second is to find a more appropriate substrate presenting less charged impurities. can also lead to leakage through the GaAs which is not a highly insulting material, that would alter the Hall resistance. Also it is possible that charged impurities could be located at the surface of GaAs and also reduce the breakdown current found in this device. 

| SiC-based graphene

| The silicon-carbide: SiC

During the same period as the Manchester and the Columbia group developed the exfoliation technique, a team leaded by Walt de Heer in Georgia Tech found that graphene can also be produced by a controlled sublimation of silicon atoms from a silicon carbide (SiC) substrate [START_REF] Berger | Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics[END_REF].

The silicon carbide at the natural state is very rare 2 on earth, nevertheless it is now synthesized rather easily and used for the fabrication of abrasive or cutting tools in the industry due to its high stability. In our regards, it is a convenient material for different aspects. First it is an insulator with a large bandgap that depends on the crystallographic stacking of the atoms along the (0001) axis3 defining several polytipes (for example, in 3C-SiC the gap is equal to 2.4 eV and in 2H-SIC to 3.35 eV). It is a very stable element, lowly reactive, with a very high thermal conductivity and a rather good electronic mobility. It starts to be used in high power and high temperature electronics.

The Si atoms and the carbon one are bonded with mostly covalent bonds (88% covalent, 12% ionic) thus one has to heat up to high temperature to break these bonds. It exists a large number of polytipes for the SiC (three different polytipes are represented on Fig. 4.6 b)). One of them is more interesting for us since it also shares the same crystallographic structure as graphene, the hexagonal SiC. As depicted on Fig. 4.6 a), the distance between a Si atoms and a C atoms is equal to 0.166 nm which is close to the lattice constant of graphene (0.142 nm). If this material is cleaved perpendicularly to the (0001) axis it ends up with two different atom terminated surfaces.

One possesses a rich carbon face and is denoted SiC(000 1) while the other one has a rich Si atoms face and is denoted SiC(0001). The growth of graphene is completely different depending on the face used. In the following we will briefly describe the growth occurring at the surface of SiC( 0001) since, on this face, the control of the number of graphene layers is easier during the growth process and allows to create a one atom thick layer of graphene. On the other hand, the growth on the carbon-terminate face is more suitable for the growth of multilayer graphene, thus less interesting for an application in resistance metrology where we want to take benefit of the large gap present between the Landau levels. 

| Epitaxial growth by sublimation of Si atoms of SiC(0001)

When one heats up a bulk SiC single crystal (above 1000°C) in ultra high vacuum (10 -9 mbar), the silicon atoms from the SiC substrate are sublimed. When the Si atoms of the three top atomic layers 4 have disappeared, the remaining carbon at the surface can diffuse and form a continuous film of graphene. In reality the process is much more complicated than this simple picture. For a temperature around 1150°C, a first carbon rich layer, called the buffer (or dead) layer appears. In this layer one carbon atom over three is covalently bounded to the substrate which makes this layer electrically inactive for charge transport. This layer has a 6

√ 3 × 6 √ 3 R30°(denoted 6R3-SiC)
structure compared to the bulk SiC structure and in fact this 6R3-SiC and the SiC are commensurable which is responsible of the so-called moiré pattern 5 visible on Fig. 4.7d) e). Rising the temperature creates an additional layer on top of this inactive layer. This is strictly speaking the monolayer graphene that is usually used for transport experiment. The main problem that people have faced is the high n-doping (∼ 10 13 cm -2 ) arising from dangling bonds present at the interface between the SiC and the buffer layer [START_REF] Riedl | Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation[END_REF], depicted on Fig. 4.7b). Different techniques has therefore emerged to reduce the impact of these dangling bonds as for example the saturation of these dangling bonds with hydrogen atoms [START_REF] Pallecchi | High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen[END_REF] The case depicted above is an ideal case representing a perfect silicon carbide crystal surface but in reality the SiC possesses a stepped structure (as we can see on Fig. 4.8 c)d)) with a typical height of ∼ 1 nm and a width varying from 100 nm to several microns depending on the cleaving angle and of the substrate quality. It has been shown that these steps will be preferential sites for the creation of multilayer patches [Sutter, 2009] as it is visible on Fig. 4.8 a) where the multilayer patches are aligned along the SiC steps [START_REF] Yager | The effect of bilayer domains on electronic transport properties of epitaxial graphene on SiC[END_REF]. Nevertheless, the monolayer graphene film is continuous and goes from one step to the other in a carpet like fashion as we can see on measurements and standard error of the mean). It was, for the first time, a clear proof that the quantum Hall effect in graphene can be found as quantized as in GaAs/AlGaAs devices and is promising for an application in resistance metrology.

In a subsequent step, they recovered the graphene sample by a bilayer of PMMA-ZEP520a resist illuminated using UV light [Janssen et al., 2011a, Janssen et al., 2012]. After a first illumination, the sample was cooled-down to cryogenic temperatures. The authors have extracted from the magneto-resitance presented on Fig. 4.9 b) , an electron density of n s = 6.7 × 10 11 cm -2 and a mobility equal to µ = 6700 cm 2 V -1 s -1 . The ν = 6 plateau is found more "quantized" than before the illumination, which is consistent with an increase of the mobility and a better homogeneity of the carrier density. After a second illumination the carrier density dropped to n s = 4.6 × 10 11 cm -2

and the low temperature mobility increased to µ = 7500 cm 2 V -1 s -1 as visible on Fig. 4.9 c).

In this study, the authors compared the Hall resistance of this graphene sample, for the two carrier density values (after coverage with the PMMA-ZEP520a resist), with a GaAs/AlGaAs resistance standard. As presented on Fig. 4.9 e), in this sample, the Hall resistance keeps a 10 -9 -order quantization from 11.5 T to 14 T (maximum available field) which is already much larger than the magnetic field quantization range of a typical semiconducting resistance standard which is below 1

T. Also in this study, The Hall resistance was found quantized with a relative uncertainty slightly bellow 10 -9 at temperature as high as 15 K (at 14 T) which is promising for a use of graphene at higher temperature than the operating conditions of semiconductor-based standards (∼1.4 K).

On Fig. 4.9 c) left axis is represented the evolution of the breakdown current (for two longitudinal pairs) with the magnetic field. For the highest magnetic field of 14 T a breakdown current of 400 µA is found in this sample which is the same as in GaAs/AlGaAs QHRS but for a sample width about twelve times smaller showing once again the high potential of graphene so sustain large measurement currents and keep a very low dissipation state.

On actors. Nevertheless if one compares the operating conditions of this standard with a GaAs/AlGaAs QHRS, only the breakdown current density is higher while the magnetic field is equal or higher and the temperature equal or lower. To understand the evolution of the dissipation with the current the NPL group conducted a complete study on an additional 5×22.5 µm 2 graphene sample grown using the same method [START_REF] Alexander-Webber | Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene[END_REF]. They studied magneto-transport properties of this sample at low temperature up to 30 T and found a maximal critical current density at 23 T of j c = 43 Am -1 which is an order of magnitude higher than in semiconducting quantum resistance standards (∼ 1 Am -1 ). Interestingly, the authors noticed that, If one considers that at this magnetic field of 23 T, the LL filling factor ν lies exactly in the center between the two Landau levels n=1 and n=0 (corresponding to ν = 2) one calculates a corresponding doping of n s = νeB/h = 1.1 × 10 12 cm -2 far from the initial doping extracted from the classical Hall effect slope n s = 6.5 × 10 11 cm -2 . In fact the authors have shown that a magnetic field assisted charge transfer occurs in graphene on SiC [START_REF] Kopylov | Charge transfer between epitaxial graphene and silicon carbide[END_REF]. It results a pinning of the filling factor ν which leaves the n=0 Landau level completely filled under a very large magnetic field range. We will explain in more detail at the end of this manuscript the characteristics and actual knowledge about this charge transfer mechanism. For the middle panel the carrier density was 4.6 × 10 11 cm -2 and for the top and bottom panels the density was 6.7 × 10 11 cm -2 . ppm=part per million (10 -6 ) and ppb=part per billion (10 -9 ) f) ∆(GaAs/AlGaAs-graphene) for several measurement current I at the magnetic field of 14 T (except the black point taken at 11 T) and temperature of 0.3 K. All the curves presented here are extracted from [START_REF] Tzalenchuk | Towards a quantum resistance standard based on epitaxial graphene[END_REF], Janssen et al., 2012].

MIKES results

Another important result comes from the Finnish NMI [START_REF] Satrapinski | Precision quantum Hall resistance measurement on epitaxial graphene device in low magnetic field[END_REF].

The SiC wafers were provided by a spinoff of the the Linköping group: "GraphenSiC AB". The authors processed a very large 800 × 200 µm 2 Hall bar covered with PMMA-ZEP520a resist.

The typical electronic density before UV illumination extracted from the magneto-resistance curve presented onFig. 4.10 left) was about 4.5 × 10 11 cm -2 with a non homogeneous mobility ranging from 6850 cm 2 V -1 s -1 to 8560 cm 2 V -1 s -1 potentially created by carrier density variations along the Hall bar. In this sample, a relative deviation of the Hall resistance on the ν = 2 plateau (visible on Fig. 4.10) to the quantized value was found to be equal to zero within a relative uncertainty of 3.5 × 10 -8 at 8 T, 1.5 K and a measurement current of 41 µA.

The authors processed to a UV illumination of the graphene Hall bar to reduce the carrier density thanks to the ZEP520a resist. The average carrier concentration that can be extracted from the magneto-resistance presented onFig. 4.10 left), dropped to 6 × 10 10 cm -2 accompanied by an increase of the mobility ranging from 16050 cm 2 V -1 s -1 to 30520 cm 2 V -1 s -1 along the Hall bar. 

| Chemical vapor deposition on SiC

The chemical vapor deposition technique on SiC is not a widespread technique but as we will see in this manuscript it is a very promising technique to produce large scale graphene that fulfill many requirements of resistance metrology. The main difference with the technique depicted above is the presence of additionals carbon-rich and hydrogen gases during the growth process and the typical lower temperatures used during the process. In our case the carbon-rich gas was the propane.

We will discuss the peculiarities of this graphene growth process in the chapters devoted to the experiments.

| CVD on metal

Even if it shares the same name with the technique depicted above, the chemical vapor deposition on metal relies on a completely different process. The typical furnace used for this growth method can be seen on Fig. 4.11. Here we still have a starting material and a carbon-rich gas, the methane (CH 4 ), but this time the starting material is a sacrificial sheet of metal, as for instance Ru, P t, Ni

or Cu. As the solubility of carbon in the metal rises with the temperature, when the piece of metal is heated, the carbon atoms present in the precursor gas will diffuse in the metal. Reciprocally, when the temperature is lowered the concentration of carbon atoms has to diminish inside the metal sheet.

The atoms will therefore rise up at the surface of the metal using the defects sites of the metallic material as depicted on Fig. 4.12. At an intermediate temperature the carbon atoms can then diffuse at the surface of the metal and form a continuous film of graphene. Nevertheless since the defects sites are spaced from each other, each graphene "island" (more commonly called grain), will have to coalesce to form a continuous film over the total surface of the metal sheet. Therefore, at the frontier of two grains a grain boundary will birth to accommodate the crystal structure.

Nowadays, with optimized pressure and temperature parameters as well as a well prepared metal substrate people manage to reach centimeter scale grains [START_REF] Lee | Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogenterminated germanium[END_REF]. Another recurrent problem with this method is the production of multilayer patches above the location of the copper film defect sites. This problem was overcome by using a pulsed method [START_REF] Han | Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils[END_REF] that allows carbon atoms to diffuse on the copper plate and limit the accumulation of graphene layers above the defect site. A research group even managed to let the entire grains moving on the copper film (at the Cu solid/liquid temperature transition) to form a continuous graphene film and avoid partially the grain boundaries [START_REF] Geng | Uniform hexagonal graphene flakes and films grown on liquid copper surface[END_REF] as we can see on Fig. 4.13. The result of this operation is a graphene layer attached to a metal sheet which is not very interesting for our purpose. One needs to separate the graphene layer from the metal. Two techniques are commonly used. The first one consists in using chemicals like Na 2 S 2 O 8 to etch the copper. This method has the drawback to creates defects in the graphene layer if it stays too long in the solution, and also let some atoms of the etching liquid to stay at the surface of the graphene layer after the etching process. An alternative technique, illustrated on Fig. 4.14, is based on the electrolysis process [START_REF] Gao | Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[END_REF]. The graphene layer is first covered by polymethyl methacrylate (PMMA) and dipped in a NaOH solution. The metal underneath the graphene layer is connected to the cathode and a constant current is applied between a metallic anode and the cathode. Immediately H 2 bubbles are created at the surface of the cathode (the copper layer underneath the graphene) that slowly detach the graphene layer from the metal. The process ends up with the metal sheet on one side and the graphene layer covered with the PMMA polymer on the other. After rinsing and drying, the graphene can be redeposited on any suitable substrate that we described in the section dedicated to the exfoliated graphene. A major difference exists nevertheless for the redeposition step. While exfoliated graphene is extracted from bulk graphite and cleaved at the surface of the substrate, CVD graphene is grown at high temperature and then redeposited. It has been shown that the polishing of the copper substrate and the opposite thermal expansion coefficient between graphene and metal creates some wrinkles in the graphene layer [Liu et al., 2011]. After coverage with PMMA and transfer on a substrate, these wrinkles are enhanced due to the thermal contraction of PMMA during the polymerization. A graphene sample can therefore have two types of line defects: wrinkles and grain boundaries.

The first attempt to use CVD graphene for a metrological purpose was done by a collaboration between a research group from the NIST and Purdue University [START_REF] Shen | Quantum Hall effect on centimeter scale chemical vapor deposited graphene films Quantum Hall effect on centimeter scale chemical vapor deposited graphene films[END_REF]. A well developed QHE with a plateau sequence typical of monolayer graphene has been measured in a macroscopic 7 mm × 7 mm van der pauw sample grown by CVD on copper and redeposited on a SiO 2 /Si substrate. Unfortunately even for the lowest temperature of 1.7 K and 14 T the longitudinal resistance displayed a significant value (∼ 500 Ω) leading to a poorly 10 -2 accurate quantized Hall resistance in this sample. We will present later in this manuscript a study about the unusual high backscattering rate observed in large scale CVD graphene grown on metal.

| Conclusion

In this section we have seen the different techniques used so far to produce graphene and the related metrological results attached to each process. It appeared that despite the intrinsic robustness of the quantum Hall effect in monolayer graphene it is not trivial to achieve a quantum Hall resistance standard from this material. As we have seen the size of the Hall bar is important as well as the type of substrate and the doping homogeneity. The graphene grown by sublimation of carbon atoms on the silicon face of a silicon carbide wafer proved that graphene can overpass the semiconducting based standards in terms of injected currents but the QHRS made out of graphene are still operating at higher magnetic field and lower or same temperatures than the GaAs/AlGaAs QHRS. From this date several attempts have been made to reproduce and overpass the result obtain by the NPL. In the next chapter we will present the experimental setup used at LNE to perform magneto-transport measurements at low temperature and high magnetic field as well as the specific instrumentation used to compare resistances with a 10 -9 accuracy.
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Chapter 5

| Experimental setup and measurement techniques

Metrology is the science of measurement. This implies a good knowledge of the experimental setup and to give a particular attention to the measurement techniques. In this chapter we will describe the experimental room and setup used to study and characterized the graphene Hall bar as well as the specific experimentation used to compare quantum Hall resistance standards. to desorb the helium that will then condensate on the 1 K pot and drip back down (since 3 He is not superfluid at this temperature).

| Experimental room

The typical timescale of a "one-shot" run was about 12 hours in our case, depending on the currents used in our experiments and also the speed and numbers of magnetic ramps of the superconducting magnet that we will describe below. One can notice on the picture the heating resistor in black with red isolation material, and the PT 100 thermistance, the two elements beeing mechanichaly maintained on the back of the sample holder by an insulating material screwed in the sample holder bulk material.

| Calibration of temperature sensors

Transport experiments at low temperature require well calibrated temperature sensors. The most widespread way to measure a temperature in cryomagnetic systems is to use the resistance of a temperature-calibrated insulating material. The most common resistors used are the Cernox and RuO 2 sensors. Both of them have drawbacks and advantages. The Cernox resistor is convenient since it is measurable and reproducible from room to cryogenic temperatures. The main drawback is that its resistance changes significantly when applying a magnetic induction, and therefore the converted temperature is corrupted. The RuO 2 sensor is less affected by the magnetic field but does not give reproducible values of resistance at high temperature. It therefore can not be used to follow the evolution of the resistance of a sample when cooling it down from room to cryogenic temperatures. On an other hand, this sensor has been used preferentially for the temperature measurements under high magnetic fields between 0.3 and 40 K since, once again, its resistance depends poorly with the magnetic field.

During the first month of my PhD thesis I've calibrated several resistors. For the calibration we used a RuO 2 temperature-calibrated resistor from Lakeshore placed on a copper support nearby (to avoid temperature gradient) the resistor to calibrate. Then, we used a commercial temperature measurement system called TRMC2 to measure the temperature of both devices when cooling down the system slowly (few K/min). Since we had only one acquisition card on the TRMC2 we could not measure the two resistances simultaneously. It typically took 7 seconds to the TRMC2 to switch from one measurement channel to the other. We thus had to interpolate between the measured points to find the resistance at the given temperature. Thus from the original relation T vs R of the calibrated sensor we can deduce the one of the resistor in calibration. We have repeated the same operation several times in order to be sure of the reproducibility and also to have a better signal over noise ratio. A high degree polynomials function (typically 12) were used in order to fit data the best as possible and the resulting function is inserted in the TRMC2 software. By the end at low temperature the discrepancy between the two resistors was typically below 10 mK at the temperature of 0. The lockin detector has limited precision (typically 5 digits). To measure the WL corrections to the conductivity, we used an inductive divider to subtract a constant voltage to the amplified signal 99 CHAPTER 5. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES at the output of the EPC1B amplifier. We then used the lock in detector on a very sensitive gauge to extract precisely these quantum corrections to the conductivity.

| Metrological instrumentation

5.6.1 | The Cryogenic Current Comparator (CCC)

γ γ B. dl = µ 0 (I 1 + I 2 -I S )
Ampere theorem

I 1 I 2 I S B = 0
Meissner effect where µ 0 = 4π × 10 -7 VsA -1 m -1 is the vacuum permeability. Thanks to the Meissner effect, the magnetic field inside the superconductor is null and it rises

I S = I 1 + I 2 B = 0 I CCC Toroidal superconducting shield N 1turns N 2turns SQUID I 1 I 2 I CCC = N 1 I 1 -N 2 I 2 I CCC = 0 ↔ I 2 /I 1 = N 1 /N 2 10 -11
I s = I 1 + I 2
Similarly, in the case of the CCC with windings of N 1 and N 2 turns the application of the Ampere theorem implies at the screening supercurrent circulating at the surface of the superconducting shielding to be equal to

I CCC = (N 1 I 1 + N 2 I 2 ) (5.1)
where I 1 (respectively I 2 ) is the current circulating in the winding having N 1 (respectively N 2 ) turns. The idea here is to detect the induced supercurrent I CCC , and feedback on the current source generating I 1 and/or I 2 in order to keep I CCC the closest as possible to zero. If one only encapsulates the windings in a superconducting shielding, the supercurrent will flow on the inner face of this shielding and will not be detectable. The trick to measure I CCC is to impose a special geometry for the CCC shielding, the so called "snake beating his tail" geometry, in order to force the current to flow on the outer side of the shield. The shielding is split in two parts and then an insulating material is placed between the two extremities. The supercurrent created in the inner face of the shielding will be forced to circulate on the outer face to close the electrical circuit. The detection of this supercurrent (more precisely the induced magnetic flux) is done by a pick-up coil connected to a (Quantum design) DC-SQUID with a flux-noise resolution of 3 µφ 0 / √ Hz above 0.3 Hz. Once I CCC is null, owing to the feedback circuit, the equation 5.1

becomes

N 1 I 1 = N 2 I 2 ⇐⇒ I 1 /I 2 = N 2 /N 1 .
In other word the current ratio is equal to the inverse number of turns of the windings. The ratio N 2 /N 1 can be measured with a precision as high as -11 in relative value. The sensibility of the CCC is defined by the smallest current that generates a flux quantum φ 0 = h/e in the SQUID:

10
S CCC = ∂I CCC ∂φ SQ
where φ SQ is the magnetic flux seen by the SQUID. 

Cryogenic Current Comparator

R s R p = N s N p 1 + N a N s (5.2)
The ratio of the resistances is thus defined only by the number of turns of the windings : N s , N p ,N a and by that is known from the calibration of the current divider. As we said the ratio of the number of turns of the CCC windings can be determined with a precision as high as 10 -11 in relative value.

The fraction allows us to cancel the signal measured by the null detector. In practice, during a calibration process we deliberately choose two symmetric (to zero) compensations + and -that leads to two voltages V + and V -measured by the null detector. The compensation at the equilibrium can be calculated as follow:

= + -( + --) |V -| |V -| + |V + |
The compensation + and -must be not two far from the equilibrium value in order to be sure that the null detector is operating in its linear regime and in an operating range conserving the highest common mode rejection gain (up to 180 dB).

The typical steps of a resistance calibration are the following:

1. We inject the currents I p+ and I s+ in the two resistors and wait 8 seconds. The waiting time depends on the filter chosen of the null detector (We typically wait from 3 to 6 time more than the measurement time constant given in the manual) 2. We measure the first voltage V + ( + , I + ) during an acquisition time of about 20 seconds. 11). We then repeat the same process for the compensation -by measuring V ( -, I ± ) as represented on 

V ± ( + , I ± ) (denoted V 1,2 ± ( + , I ± ) on Fig. 5.
V 1 + ( + , I + ) waiting time = 0 V 1 -( + , I -) V 2 + ( + , I + ) V 2 -( + , I -) V 1 + ( -, I + ) V 1 -( -, I -) V 2 + ( -, I + ) V 2 -( -, I -) = 0 A B C D Figure 5.

| Precautions, noise and uncertainties

A particular care has to be taken in regards of current leakage that can appear during the measure.

It is essential to have the same current flowing inside the windings and inside the resistor, therefore we took a particular attention to the electrical isolation of the cables. In the bridge developed at LNE we have connected all the cable shielding to the ground. Therefore the leakage appearing

between cables placed at different potential is canceled and the remaining leakage is the one between the wires and the ground. Thanks to the use of PTFE highly insulating material, the electrical isolation to the ground is above 100 TΩ in our case. One can notice on Fig. 5.9 that the ground is placed on the side of the resistance with the lowest value, thus any leakage to the ground will occur in parallel of this low resistance value and limit the impact on the current comparison. It is actually one of the reason1 we use a (100 Ω) transfer resistor to compare the Hall resistance value between two samples. Typically for a 100 Ω calibration the error due to leakage creates errors of a few 10 -11 in relative value. More usual precaution have to be taken:

Usual precautions

• The wires are shielded to prevent any capacitive effect with the environment, the shielding beeing connected to the ground.

• Wires at nearby potentials are twisted together to reduce pick-up of electromagnetic radiations.

• The low potential of the null detector is connected to his case to reduce the common-mode noise.

• The current sources must stay at the same temperature to limit the thermal drift of the electronic components. We use electronics with low temperature coefficient variations and the cable soldering is made with a low Seebeck coefficient material.

• Any temperature gradient (for example when you touch the wires and plug them) creates electromotive forces that spoil the measurement. To avoid this phenomena before any measurement we wait (typically one minute) after having plugged the cables lugs.

• The insulation of each copper wire and connectors is also made of PTFE.

• We do not walk or even talk in the room during experiment. It creates vibrations that bring some noise due to triboelectric effect. Usually we do not stay in the room during the experiment.

Typical uncertainty values for a 100 Ω resistor calibration We can notice that the major noise source comes form the null detector. An idea could be to replace the EMN11 nanovoltmeter by a CCC which has typically a noise level ten times smaller.

Typical time to reach a measurement uncertainty of 10 -9 on the calibration of a 100 Ω resistor in terms of R K using a current of 40 µA is about 7 minutes with the resistance bridge presented above. 

| Python programming

| Conclusion

In this section we have described the essential devices that allow us to reach low temperature and can create high magnetic fields. We then described the precaution taken to measure resistances and get rid of parasites. Finally we described the measurement setup that allowed us to realize resistance comparisons at the metrological level. We will describe in the following chapter the experiments performed on graphene using this instrumentation in view of the achievement of a graphene based resistance standard working at low magnetic field and high temperature.

Part III.

Experimental results
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Chapter 6 κ 6 | Insulating to quantum Hall effect transition

The first alternative to the exfoliation technique opening the way to large scale production of graphene is the sublimation of the Si atoms from a silicon-carbide wafer, explained in sec. 4.2.2.

Since the best results for resistance metrology were obtained with such graphene type, we have started a collaboration with a french group from the laboratoire de photonique et nanostructures, headed by Abdelkarim Ouerghi, specialized in epitaxial growth of graphene on SiC.

The first sample I had the opportunity to study during my PhD was a very low mobility sample that even if it was, de facto, not a good resistance standard candidate, allowed us to probe an interesting transition between a localized state at B = 0 towards the quantum Hall regime. In fact, this transition has some similarities with the transition between adjacent quantum Hall plateaus. In the chapter 2 we showed that two kinds of states coexist in the quantum Hall effect (QHE) regime.

The delocalized states around the center of the Landau level (LL) and the localized ones situated in the tail of the LL as it is depicted on Fig. 6.3c). Consequently, if the LL filling factor is changed, one expects a transition from these localized states to the delocalized states. In the quantum Hall effect the transition between two adjacent quantum Hall plateau is assumed to be a quantum phase transition. The electrons will transit from a localized behavior (on the quantum Hall plateau) to a delocalized behavior (at the vicinity of the LL center) and finally will be localized once again on the next quantum Hall plateau. The transition between a (Anderson) localized regime exiting at zero magnetic field to the localized states present in the QHE regime passing through the delocalized states present at the center of the Landau levels, appears to be also a quantum phase transition that can be, with some extent, described by the localization-delocalization theory. In this section we will first give a proper definition of an insulating material at zero magnetic field and then define more precisely the different localization regime appearing in the experimentally observed transition.

6.1 | Localization-delocalization scaling theory

| Scaling theory at zero magnetic field

The description is mainly inspired by [Chalker, 1999, Slevin andOhtsuki, 2011] and [Lee, 1985].

The idea of the scaling theory is to identify a quantity that will play the role of a coupling constant and see how this coupling constant evolves when we change the system size. The change in lengthscale can be done by merging 2 d subsystems (in dimension d) of individual size L d forming a bigger CHAPTER 6. INSULATING TO QUANTUM HALL EFFECT TRANSITION system of total size (2L) d . Each state from the large system can be treated as a superposition of the states belongings to the small subsystems. Thus, two important quantities are involved.

First the quantum broadening of the states which defines an energy window around the level, and second, the energy spacing between these levels, denoted ∆.

Thouless argued that /∆ appears to be the coupling constant for the system [Thouless, 1974].

As sketched on Fig. 6.1, if ∆ the states of the entire system will be distributed among all the smaller systems and the states will be extended (or delocalized), while, oppositely, if ∆ all the states of the total system will be concentrated on a unique subsystem and the states are therefore localized.

∆ ∆ ∆ a)

b) c)

Figure 6.1.: a) Definition of the two energies involved in the coupling constant of the problem. refers to the energy window corresponding to the quantum broadening of the state and ∆ correspond to the energy spacing between the levels. b) ∆ All the states of the total system are concentrated on one subsystem c) ∆ the states of the entire system will be distributed among all the smaller systems of size L d .

Thouless showed that the energy window was related to the uncertainty principle through the time that a particle takes to travel a distance L in a diffusive material, characterized by a diffusion constant D [Edwards andThouless, 1972][Thouless, 1977]. This energy, called Thouless energy is equal to = D/L 2 . The energy spacing between the subsystem states is found considering the density of states ρ of the subsystems: ∆ = L d ρ. Using the Einstein relation σ = e 2 ρD the ratio can thus be expressed as:

∆ ∼ ( D/L 2 ) (ρL d ) ∼ h e 2 σL d-2 ≡ g(L)
We can notice that the coupling constant is only the conductance expressed in term of the quantum of conductance e 2 /h. It is now important to look at the dependency of the coupling constant with the system size L. It is characterized by the function

β(L) = d ln(g) d ln(L)
This function has been calculated at B = 0, in the absence of spin-orbit coupling and for the case of elastic scatterer in [Abrahams, 1979]. The function β versus ln(g) is reported on Fig. 6.2 for d = 1, 2, 3. In the three dimensional case, if we focus on the evolution of β for the low g values, when increasing the system size L, the conductance diminishes corresponding to an insulating behavior (k F l e 1), where the electrons are localized (as depicted on figure Fig. 6.2 c)). For higher g values, when the system size is increased the conductance will oppositely diminish, the system will have a metallic behavior (k F l e 1) and the electrons will be delocalized over the total system (as depicted on figure Extracted from [Lee, 1985] The scenario is completely different in two dimensions. If now we consider the curve for the two dimensional case on Fig. 6.2, no critical point exists and the system goes from weakly localized to strongly localized when the system size is tuned1 . The threshold value between the weakly localized regime to the strongly localized one occurs when the weak localization corrections to the conductivity are of the same order than the conductivity itself a LL center, the localization length ξ of each localized state rises then diverges at the center of the LL, as depicted on Fig. 6.3. The main problem is to understand how all these "electronic islands" will merge. The most simple picture is the percolation picture. The islands will at some point percolate and connect the two opposite edges of the sample. Since then, many theoreticians have studied this transition and it is now clearly identified as a quantum phase transition2 . We will in the following show an experimental example of such transition. this sample is about 70 nm which is a typical value for graphene samples with short range disorder [START_REF] Moser | Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization[END_REF]. The density extracted from the magneto resistance of this sample was about n s = 2.7 × 10 12 cm -2 and the mobility is around µ ∼ 580 cm 2 V -1 s -1 (also difficult to extract due to the WL and e-e contribution to the resistivity at low B)

At round 7 T, and at the low temperatures, ρ xx drops towards zero while ρ xy non linearly rises.

These two features are consistent with the onset of a quantization of the density of states in Landau levels. Nevertheless no temperature-independant fixed crossing point, typical of quantum phase transition, was observed in this sample.

After this measurement the sample was removed from the fridge and exposed to air. To investigate this process, the second sample was more carefully studied since it presents a higher resistivity at B = 0 (above h/e 2 ) suggesting a more localized state. This more localized state is probably due to the molecular oxygen atom intercalation occurring during the annealing process. We determined from the Hall slope at 22 K an electronic density of n s = 1.2 × 10 12 cm 2 .

LOCALIZATION-DELOCALIZATION SCALING THEORY

At this temperature weak localization and electron-electron contributions to the resistivity are strongly reduced. We consider a classical Drude resistivity of ρ D = 8 kΩ subtracting a ρ ee ≈ 2 kΩ contribution from the electron-electron interaction [Novikov, 2007]. The extracted Drude mobility in this sample is equal to µ = (ρ D n s e) -1 ≈ 860 cm 2 V -1 s -1

The resistivity strongly decreases with the temperature increase, highlighting the fact that the interference based localization mechanisms are strong in this sample. It is reinforced by the extracted localization length using 6.1

ξ = l tr exp h e 2 ρ B=0 xx 50 nm with l tr = v F τ tr = h 2e 2 ρ D √ n s π ≈ 15 nm
Interestingly the values of ξ and l tr are of the same order of magnitude in this sample. One can think that their ratio could be a key parameter in the observation of the transition considered. A usual criteria in 2D systems to determine the starting point of the Laudau quantization is

ω c τ tr ≈ 1 with ω c = eBv F √ n s π
In some extent, we would expect that the critical magnetic field for the insulator-QHE quantum phase transition could be determined by this relation. Nevertheless, experimentally, one finds respectively for sample S1 and S2 critical magnetic fields of B S1 c1 ∼ 3.3 T and B S2 c1 ∼ 5.2 T that gives ω c τ tr ≈ 0.2 and 0.34 for S1 and S2 respectively. These values are obviously far from the unity.

It can be possibly due to the robustness of the quantum Hall effect in graphene thanks to its large energy gap between the two first Landau levels. On the other hand these ω c τ values being much below than one it tends to exclude that this crossing points originate from the electron-electron corrections to the conductivity which are predicted to vanish at ω c τ = 1 [START_REF] Poirier | Electron-electron interaction in doped GaAs at high magnetic field[END_REF] [ [START_REF] Kotov | Electron-electron interactions in graphene: Current status and perspectives[END_REF]. As we said in the beginning of this chapter, the transition between an insulating state at zero magnetic field towards the quantum Hall effect regime can be described by the localization-delocalization theory referring to the transition between two adjacent quantum Hall plateaus. We will briefly describe this theory before analyzing more deeply the data acquired.

The localization-delocalization theory describing the transition between Landau levels in the quantum Hall effect regime predicts that the localization length evolves as

ξ ∝ |ν -ν c | -γ (6.2)
where ν c is a threshold energy [Chalker, 1999] and in our case is the energy situated at the center of the Landau level. The exponent γ has interested many theoreticians since it must depends only on the dimension and the internal degrees of freedom of the system, regardless of the peculiarities of the system [START_REF] Slevin | Critical exponent for the quantum Hall plateau[END_REF]. The theoretical value was found by many different numerical techniques3 and (almost) all of them converge towards γ = 2.3. By following the evolution of the localization length with the LL filing factor people indeed measured experimentally that ξ was following 6.2 with an exponent γ equal to ∼2.3 in GaAs/AlGaAs [Furlan, 1998] and graphene [START_REF] Bennaceur | Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene[END_REF].

Microscopically, as we approach the critical value E c the localization length of the charge carriers On the other hand the phase coherence length is assumed to have a power law evolution with the temperature

l ϕ ∼ T -1/z (6.3)
where the exponent z is called the dynamical exponent and has been reported to be equal to one in a two-dimensional interacting electron system governed by short range scattering [START_REF] Evers | Anderson transitions[END_REF].

The phase coherence length has thus a powerlaw dependence with T and is assumed to diverge lowering the temperature.

Using the expression of ξ (6.2) and the temperature dependence of l ϕ (6.3), the evolution of the On the inset of Fig. 6.7 is plotted ln(dσ xy /dB)| B c2 versus ln(T ) giving a direct access to κ from the slope of the linear fitting curve. The value obtain from the fit is κ 0.26 ± 0.03 that is indeed in rather good agreement with previously measured values for Insulator-QHE transitions for spin degenerate Landau levels in case of short range disorder [START_REF] Wang | Magneticfield-induced metal-insulator transition in two dimensions[END_REF]][Huang et al., 2001] [ [START_REF] Koch | Size dependent analysis of the metal insulator transition in the integral quantum Hall effect[END_REF] as well as transition between quantum Hall plateaux in InGaAs/InP [START_REF] Hwang | Scaling in spin-degenerate Landau levels in the integer quantum Hall effect[END_REF] and in graphene [START_REF] Amado | Plateau insulator transition in graphene[END_REF]][Amado et al., 2012]. The same κ values found for plateau to plateau transitions and insulating to plateau transitions in different materials indicates that they possibly belong to the same universality class.

| Growth and structural characterization

The main disadvantage of the graphitization of the silicon terminated face of a SiC wafer by sublimation of silicon atoms is the resulting high doping of the produced graphene layer [START_REF] Ristein | Origin of Doping in Quasi-Free-Standing Graphene on Silicon Carbide[END_REF].

This high electronic density is due to a charge transfer from the insulating buffer layer and from the Si dangling bonds concerning one third of Si atoms as depicted on Fig. 7.

left). A usual way

to reduce this doping is to uncouple the buffer layer from the substrate by breaking the Si-C bonds using hydrogen atoms and turns the resulting carbon film to an electrically active graphene layer (also called quasi free standing layer).

The alternative technique used by our collaborators from LPN was a post growth, gentle annealing Two substrates were graphitized from two consecutive runs. The first one will be denoted A and the second called B was split into two parts. While the first part was kept pristine, the other part denoted as BH2 was annealed at 820°C during ten minutes under a 100% H 2 atmosphere. As visible on Fig. 7.2a), on the layer BH2 the last two components of the ARPES spectrum are unchanged by the gentle hydrogenation process while the component from the SiC bulk has an energy shift of about 0.2 eV possibly pointing out the effect of the hydrogenation on the dangling bonds of the bulk SiC. The fact that the component from the monolayer graphene and from the buffer layer were not affected show that the hydrogenation process didn't decouple the buffer layer from the substrate.

To have a better understanding of the structural properties of the graphene layers studied, Raman spectra were acquired for the layer B and BH2. The characteristic signatures of graphene are visible on Fig. 7.2b). The G peak at 1582 cm -1 and the 2D peak at 2696 cm -1 show that the graphene structure is mainly composed by a single layer of graphene. In both spectra we can also notice that the D peak is weak in comparison to the G and 2D ones, reflecting a low disorder rate in the sample. This Raman study comfirms that indeed the gentle hydrogenation did not decouple the buffer layer from the substrate and kept only the top layer electrically active.

| Magneto transport measurements

In this section, we report on the transport properties under magnetic field of the three sets of samples considered above. We will first present the study done by the group of LPN on the transport properties under magnetic field which was focused on the study of the anisotropic transport features with regards to the SiC steps. Finally, we will present the work done at LNE on the metrological potential of the best Hall bar found on the chip as well as a set of annealing done at the end of our study. 

S-A S-B S-BH2

n cm -2 1.1 × 10 12 1.9 × 10 12 1.1 × 10 12 µ cm 2 V -1 s -1 2546 2236 5450 We can notice that the electronic density in the sample A is almost two times smaller than in the sample B, but both samples exhibit almost the same Drude electron mobility despite the nonequivalent steps orientation. However, it is difficult to clearly compare the mobility between the two samples since the it can notably depend on the carrier density. Nevertheless, the comparison between S-B and S-B-H2 gives fruitful information about the effect of the gentle hydrogenation.

The electronic density is reduced by the post-growth H 2 treatment (by almost a factor 2), if we assume that the initial carrier concentration is the same in both samples before the hydrogenation process. The mobility is also strongly affected by the hydrogenation process since the mobility differs by more than a factor two between the two samples. A comparison between sample A and BH2 is also interesting since these two samples share the same electronic density. The mobility is more than two times higher in BH2 which possibly reflects that the hydrogenation process, by decoupling the graphene layer, reduces the impact of scatterers present in the buffer layer. Nevertheless it is worth nothing that the step alignment can also potentially play a role on the mobility as we will see in the following. On Fig. 7.4 the Shubnikov-de Haas oscillations of the longitudinal resistance are visible at magnetic inductions of 4 T and 1 T for samples A-B and BH2 respectivelly. Since this phenomenon is assumed to start for µB ∼ 1 one can have another estimation of the mobilities for each samples giving ∼ 2500 cm 2 V -1 s -1 for samples A and B, and ∼ 6000 cm 2 V -1 s -1 for sample BH2. These mobilities are in good agreement with Drude mobilities extracted from the low field measurements.

On Fig. 7.4 we can see that for both samples, at higher magnetic field, the relativistic quantum Hall effect characteristic of charged Dirac fermions developing. This is another clear evidence of the fact that the hydrogenation process has not decoupled the buffer layer from the substrate but only reduced the electronic density since the sequence of the quantum Hall plateau stays characteristic of a graphene monolayer.

7.0.2.2

| High mobility Hall bars

In a second step, our collaborators from LPN focused their study on the hydrogenated layer and processed 3 Hall bars from the BH2 substrate with different alignment of 0°, 45°and 90°. This study shows that the mobility tends to decrease with the misalignment as we can clearly see on the data summarized in the table Tab. 7.2. The three samples have approximately the same electronic density which makes the mobility comparison possible and show that the electronic density is rather homogeneous between the different regions of the wafer. As one could expect the highest mobility is found for the Hall bar aligned along the SiC steps while it decreases for samples with a larger misalignment.

90°45°0°n cm -2 1.1 × 10 12 1 × 10 12 1.3 × 10 12
µ cm 2 V -1 s -1 4320 5360 6300 can appear due to local structural differences appearing at this particular site [START_REF] Clark | Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene[END_REF].

It is also worth noting that the shape and amplitude of the SdH fluctuations change a lot with the alignment which can reflects a better charge carriers homogeneity for the Hall bars aligned along the steps.

From a metrologist point of view, the most interesting alignment appears at zero angle with the SiC steps since ρ xx tends to drops, apparently, to zero.

The following results have been acquired at the LNE in an helium 3 cryomagnetic system equiped a 20 T magnet.

- 
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| Annealing

We performed a bench of annealing on another sample of the same chip (BH2) under vacuum (10 -5 mbar) using the room temperature setup described in sec. 5.3. At room temperature, the carrier density measurements were carried out using a room temperature magnet wounded around the vacuum chamber producing magnetic fields of ±300 G. At low temperature, the measurements were performed using a 3 He fridge and the 20 T superconducting magnet. The results are summarized in the table Tab. 7.3. 1 The breakdown current density is defined as the breakdown current divided by the Hall bar width.

n s [cm -2 ] 300 K / 0.3 K µ [cm 2 V -1 s -1 ] 300 K / 0.3
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One can notice that even after a short annealing at a temperature of 400 K, the density is increased by a factor 2.5 and the electron mobility decreased to ∼ 3000 cm -2 V -1 s -1 for low temperature measurements. With the additional annealing steps the electronic density continue to increase more and more. One can formulate the hypothesis that this carrier density evolution is due to the desorption of the hydrogen atoms introduced during the post growth process. This increase of the electron density is accompanied by a reduction of the mobility that then saturates at the value of 3000 cm -2 V -1 s -1 at low temperature. The final value reached by the carrier density is typical of pristine graphene grown on SiC which can be explain by a desorption of the hydrogen atoms which leaves unsaturated dangling bonds.

After all we performed additional measurements on the sample BH2 in order to try to saturate the dangling bonds with other atom types. We looked at the impact on the carrier density of H 2 O and ammonia (NH 3 ) atoms. We used NH 3 because of its high electronegativity and therefore its capability to possibly saturate dangling bonds. We can see that from a starting carrier density of 2.4 × 10 13 cm -2 it drops down to 3.8 × 10 12

after immersion in liquid ammonia during 40 minutes. This reduce strongly the electron doping but seems to be stacked at a rather high value. The charge carrier density reduction is therefore more likely due to a compensation process of the NH 3 atoms on the upper face of the graphene layer than a saturation of the dangling bonds present beneath the graphene since we can not recover the initial low doping due to the saturation of the dangling bonds by the hydrogen atoms.

| Conclusion

In this section the impact of a post-hydrogenation on graphene grown by sublimation of Si atoms from a silicon carbide wafer has been studied. Results from our collaborators shown that this gentle hydrogenation probably saturates the dangling bounds and thus reduces the electron doping from the buffer layer. They also studied the impact of the Hall bar orientation respectively to the SiC steps orientation showing that the more promising alignment for an application in resistance metrology is, as we could intuit, along the SiC steps. The measurements done at LNE have shown that the lowest dissipation rates on the ν = 2 plateau, are, indeed, obtained for Hall bars aligned along the SiC steps. On a specific large device of 30 × 280 µm 2 size, we found breakdown current as high as 100 µA which is highly encouraging for an application in metrology. Unfortunately, this very low dissipation rate at high current has been found only along one edge of the sample that prevented us from performing any metrological measurements. Finally we have shown that after annealing the electron doping increases strongly, probably due to the hydrogen atoms desorption.

The immersion in a polar solution of ammonia reduces the electron doping but lets it more than two times larger than in the pristine case just after hydrogenation.

This work shows that the post-hydrogenation technique is promising for an application in resistance metrology that requires low carrier concentrations.Moreover it shows that for further metrological investigations the Hall bars should be aligned along the SiC steps to obtain the lowest dissipation state in the sample. Also covering the samples with PMMA resists could be a good idea not only to avoid the hydrogen atoms desorption but also to protect the graphene layer. on SiO 2 /Si

The other common way to reach large scale graphene required for an application in resistance metrology is the chemical vapor deposition method. We have started a collaboration with the an H 2 /Ar atmosphere under vacuum right after the growth process and was annealed during two hours at the temperature of 130 °C (under vacuum) before going down to cryogenic temperatures.

In the following, we will mainly focus on sample S1 since this sample presents more interesting physics and has been more extensively studied. Nevertheless, we will point out the common and distinct behaviors of both samples.

We first performed experiments at low, or without , magnetic induction. Since the SiO 2 oxide is insulating we can use the SiO 2 /Si as a backgate and therefore change the carrier density in the graphene layer as follows:

n s = 0 r ed V g = αV g
with: r 3.9; 0 8.85 × 10 -12 m -3 kg -1 s 4 A 2 and d = 285 nm that gives α = 7.57 × 10 10 cm -2 V -1 . The zero magnetic field conductivity measured as function of the gate voltage

V g can be seen on Fig. 8.2 at the temperature of 0.3 K. We observe a clear asymmetry between holes and electrons for both samples. The reason of such asymmetry can be due to different mechanisms. It has been observed in several samples that the charge impurities present near the surface of the SiO 2 oxide can lead to such asymmetry [START_REF] Guignard | Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements[END_REF]. Also, Huard et al. showed that the electron-hole asymmetry can be induced, in the case of invasive contacts, by the depletion occurring at the vicinity of the metallic pads [START_REF] Huard | Evidence of the role of contacts on the observed electron-hole asymmetry in graphene[END_REF]. Nevertheless, in our case the contacts are placed outside the Hall bar channel and we should not be affected by this effect. The asymmetry observed, could be also related to the grain boundaries, ubiquitous in large scale CVD graphene. Indeed, Stephan Roche et al. [Van Tuan et al., 2013] shown that grain boundaries can theoretically lead to strong carrier density variations between inside and outside the grain boundary. It can therefore create charged lines crossing the sample. Zozoolenko et al.

[ [START_REF] Ihnatsenka | Electron interaction, charging, and screening at grain boundaries in graphene[END_REF], Radchenko et al., 2013, Radchenko et al., 2014] then showed that charged line defects create a clear electron-hole asymmetry in the conductivity because of the non-isotropic scattering process happening on these charged lines.

The position of the Dirac point of sample S1 is situated at V 0 g = +3.5 V. The proximity of V 0 g to zero gate voltage shows that few unscreened impurities are present in the sample. For the sample S2 the conductivity minimum is found at V 0 g = -24 V probably indicating a higher charged impurity density. The shapes of the two conductivity curves also differ. The conductivity of the sample S1 is sharper near the charge neutrality point (CNP) and starts to deviate from the linear behavior at very low density, indicating that the electron-holes puddles play a role at very low density in this sample. The sample S2, consistently with its peak position, presents a rounded shape over a large range of carrier densities around the charge neutrality point (> 1 × 10 12 cm -2 ).

The extracted mobility from the Drude formula µ = (R n s e) -1 versus the carrier density is reported on Fig. 8.2. For S1 the mobilities for holes and electrons are respectively about 3000 cm 2 V -1 s -1 and 2000 cm 2 V -1 s -1 , far from the charge neutrality point. It is interesting to stress out that the situation is opposite for the sample S2. The mobility is about 2000 cm 2 V -1 s -1 for holes and 3000 cm 2 V -1 s -1 for electrons. It shows that this asymmetry is not only governed by the type of defects present in the sample (assuming the same defects in both samples) but also depends on the position of V 0 g potentially giving credit to the role of the charged impurities in this observed asymmetry. We then performed conductivity measurement at low magnetic field to identify the weak localization (WL) corrections to the Drude conductivity. As we described in chapter 2 the study of these corrections can give fruitful information about the scattering mechanisms occurring in the sample as well as the typical length over which the charge carriers stay phase coherent. Measuring the weak localization correction to the conductivity with precision is often problematic since one has to measure a tiny variation over a large signal. To perform the measurement, we fed the sample with a 10 nA/13 Hz AC current and measured the voltage drop using lockin techniques. To improve the precision of the measurement of this tiny variation we have subtracted a constant voltage, generated by an inductive divider, to the amplified signal. It allows us to use the lock-in detector in a very sensitive range and benefits from the very good resolution on the measured resistance. In all the measurements presented, the current source supplying the magnetic coil was the bipolar-linear Kepco power supply presented in sec. 5.2.2 allowing a continuous change from B to -B.

On Fig. 8.3 is represented the evolution of ∆σ with B for several temperatures (0.3 K, 1.6 K, 4 K, 10 K, 20 K)

at null gate voltage corresponding to a carrier density equal to n s = -2.65 × 10 11 cm -2 . We have repeated the same series of measurement for carrier densities ranging from -3.81 × 10 12 cm -2 to +2.27 × 10 11 cm -2 . Using the equation 2.14 given in sec. 2.3.5 we have fitted the curves ∆σ(B)

for each temperature which allows us to extract precisely the phase coherence length L φ , the intervalley scattering length L iv and the intra-valley scattering length L * . We first focused our study on the evolution of L φ with T .

The evolution of the phase coherence length with the temperature for these carrier density values is summarized in the table Tab. 8.1. On Fig. 8.4 is plotted L φ v s T -1/2 for the six carrier densities considered. The points tend to align along a strait line for the highest temperatures and a saturation of L φ can be observed for the lowest temperature of 0.3 K 1 . In a theory developed by Altshuler [START_REF] Altshuler | Effects of electron-electron collisions with small energy transfers on quantum localisation[END_REF] the evolution of the phase coherence time (in two dimensions) with the temperature is governed by the electron-electron scattering and follows

τ φ (2D) = 1 kT 2π 2 R e 2 ln (2π /(R e 2 )) (8.1)
with R is the resistance per square unit. The phase coherence length in the diffusive regime is equal to L φ = Dτ φ and can be calculated using D = v F l tr /2 with l tr = h/(2e 2 R √ πn s ). Using 8.1. LOW MAGNETIC FIELD MEASUREMENTS It is also interesting to look at the evolution of the phase coherence length with the carrier density.

0.3 K 1.6 K 4 K 10 K 20 K n s [cm -2 ] L φ [µm] L φ [µm] L φ [µm] L φ [µm] L φ [µm] -3.81 ×
On Fig. 8.5 is represented for the fixed temperature of 0.3 K the evolution of the weak localization quantum corrections to the conductivity for several charge carrier densities (by changing the gate voltage). We have extracted the parameters L φ , L iv , L * using the expression 2.14 (with σ = 1/ρ)

given in chapter 2. The extracted values are summarized in Fig. 8.5. First, let us focus on the evolution of the phase coherent length L φ with the carrier density. L φ starts from 0.55 µm close to the Dirac point and rises more and more when the carrier density is increased, reaching 1.2 µm for a hole density of 3.81 × 10 12 cm -2 . These L φ values are typical values for graphene redeposited on SiO 2 [START_REF] Baker | Weak localization scattering lengths in epitaxial, and CVD graphene[END_REF].

We have repeated the same experiment for all the temperatures presented above: 0.3 K, 1.6 K, 4 K, 10 K and 20 K. L φ v s √ n s is represented on Fig. 8.6 for all the previously mentioned temperatures.

CHAPTER 8. TRANSPORT PROPERTIES OF CVD GRAPHENE ON SIO 2 /SI

The points, in this representation are aligned for all the considered temperatures, showing that the phase coherence length evolves as the square root of the hole carrier density. It is possible, once again, to see if this behavior can be explained by the theory developed by Altshuler. As for the temperature dependence we have reported the calculated values of the phase coherence length using the formula 8.1 and the resistance per square R extracted from our experiments (which evolves with the density). The agreement is really good between the theory and the extracted values of L φ for temperatures T 4 K. The agreement becomes poorer at T = 1.6 K and is bad at the temperature of 0.3 K. Nevertheless we noticed that if we change the fitting temperature from 0.3 K to 1.4 K in 8.1 the agreement is rather good which is consistent with the saturation of L φ observed with the temperature.

As we explained in the chapter 2, the study of the weak localization correction to the conductivity in graphene allows to have interesting information about the scattering process involved in the diffusive transport of the charge carriers. In the :

T = 0.3 K V g [V] n s [cm -2 ] L φ [µm] L iv [µm] L * [
∆R H R H = R graphene H -R GaAs H R GaAs H
of about 10 -2 far from the 10 -9 accuracy expected for a quantum Hall resistance standard. We will, in this section, try to understand the backscattering mechanisms behind the highly dissipative behavior occurring in this sample. Another element is striking on Fig. 8.7top left). Very resistive peaks (compared to h/e 2 ) appear around the filling factor ν = 0 on the longitudinal resistance R xx as well as on R xy at low temperature. In fact to have a better understanding of these features it is interesting to look at the longitudinal and transverse conductivities defined as: More details about the physics of these plateaus at Landau level filling factor ν = 0, +1 will be given at the end of this section. In the next section we will present the data collected on the second sample (S2) in the quantum Hall regime.

σ xx = ρ xx ρ 2 xx + ρ 2
T =0.3 K T =0.46 K T =0.75 K T =0.98 K T =1.6 K T =4 K T =10 K T =20 K T =30 K T =40 K -6 -4 -2 0 

| Sample S2

The T -1/3 T -1/3 We can indeed notice on Fig. 8.12 that at the lowest dissipative point (ν = -1.7), experimental data are aligned along a strait line accrediting both variable range hopping and activation mechanism as possible dissipation mechanisms. This highlights that the dissipation mechanism at work can not be clearly identified.

σ xx (e 2 /h) -6 -4 -2 0 2 ν -8 -6 -4 -2 0 2 4 σ xy (e 2 /h) T =0.3 K T =1.6 K T =5 K T =10 K T =20 K T =30 K
Nevertheless, if one fits the experimental data points presented on Fig. 8.12 Right), one can extract the parameter T 0 present in the exponential term of σ xx = (σ 0 /T ) × exp (T 0 /T ) -1/2 (which is directly the slope of the line in the representation presented on Fig. 8.12) . As we explained in the chapter 2 localization length is connected to the parameter T 0 by the relation:

ξ = 6.
2 × e 2 4π 0 r kT 0 ≈ 1 µm with r = 3.9 for graphene on SiO 2 (8.2)

This localization length ξ can be compared to the magnetic length which is the typical extension of the wave function in the quantum Hall regime. We can immediately notice that ξ is much higher than the magnetic length l B = ( /eB) equal to 5.9 nm at 19 T. We will see by the end of this chapter that a well quantized sample is characterized by a localization length of the same order of the magnetic length.

Let us now assume that the activation mechanism could be responsible of the dissipation observed This peculiar behavior of σ xx as a function of the temperature was observed in the two samples studied and were never reported in any other graphene sample (or other 2DEG) to our knowledge.

ν = -2.3 ν = -4 ν = -6 ν = +2 T (K) σ xx (e 2 /h) T 0.7 T 0.6 T 1.1 T 0.3 T 0.4 T 0.2 T 0.04
This highlights that this unusual dissipation behavior should be an intrinsic property of polycrystalline CVD graphene grown on copper.

| Magnetic field dependence

We performed additional measurement on the sample S1 to have a deeper understanding of this unusual dissipation mechanism. This time, the temperature was kept constant at 0.3 K, and we measured the evolution of σ xx for several magnetic field values ranging between 4 and 20 T as we can see on Fig. 8.17. and then slightly reduces to I ∝ T 1.7 * . As we explained in the chapter 2, in the framework of variable range hopping, one should expect a linear relationship between T and I, expected to be given by 2.33:

T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K T = 0.3 K -6 -4 -2 0 
σ xx (e 2 /h) B =4 T B =5 T B =6 T B =7 T B =8 T B =9 T B =10 T B =11 T B =12 T B =13 T B =14 T B =16 T B =18 T B =19 T B =20 T -6 -4 -2 0 2 4 6 ν -8 -6 -4 -2 0 
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T = eR H ξ 2k B W × I
As we can immediately notice, this linear relationship is not verified in our case. Nevertheless a relationship I ∝ T 2 , close to our measured relationships, has been measured in graphene, at low magnetic field or Shubnikov-de Haas oscillation regime by Baker [Baker et al., 2013a[START_REF] Baker | Weak localization scattering lengths in epitaxial, and CVD graphene[END_REF].

The authors explain such dependence using a theory developed by Kubakaddi based on the study of the electron-phonon energy loss rate in graphene. In this theory, the relationship between the 8.3. STRUCTURAL CHARACTERIZATION current and the temperature is given by [Kubakaddi, 2009, Baker et al., 2013a]:

I = √ n s Aγ R B=0 xx T 2
with n s is the carrier density, A is the area of the sample, and γ = 5.36 × 10 -26 WK -4 m is an electron-phonon coupling constant. Considering n s = 1 × 10 16 m -2 which is the den- The quadratic evolution of the current with the effective temperature gives a hand to the delocalized behavior of the charge carriers since the measurements done by Baker are done in a region where they are assumed to have a metallic behavior. The presence of delocalized states between the Landau levels in the quantum Hall effect is unusual. The next step is to look at the intrinsic structural properties of the measured samples to find the possible cause of this unexpected behavior.

| Structural characterization

To understand the possible root of such extended states leading to unusual dissipation laws observed, we performed structural characterizations of the CVD graphene Hall bar redeposited on SiO 2 /Si using several characterization techniques.

We firstly performed on this sample optical and scanning electron microscope images. Optical microscopy allows to discriminate, by looking at the optical contrast, if one or several graphene layers are present at the SiO 2 /Si surface. On Fig. 8.20 a), several defects are observable on the picture:

• Black dots representing multilayer graphene patches present all over the sample area are visible on Fig. 8.20 a). The distance between them varies from half a micron to ten microns.

As we described in sec. 4.3, these defects grow on the nucleation center of the grain during the CVD process. They give thus an indication of the grain density and distribution. From the picture we can estimate that the size of each grain is between 0.5 and 5 µm.

• Dark lines assumed to be wrinkles are also ubiquitous in the sample. They constitute a complete network connecting all the borders of the sample. The wrinkles are known to be created during the growth from the opposite thermal expansion coefficient between graphene and metal and also during the redeposition step due to the contraction of PMMA.

• Optical resist or PMMA residues can be seen at several locations on the sample and appear as dark dots surrounded by a white region on the picture. The structure of these residues are even more visible on the scanning electron microscope picture: Fig. 8.20b)

We performed AFM measurements to have a better understanding about the topography of the sample. The results are presented on Fig. 8.20d). We can clearly see a large density of wrinkles that can be as high as ∼ 10 nm. The z-axis resolution of the AFM is very good but it is not the case for the in plane resolution. It is therefore impossible to extract the typical spatial extension of the wrinkles precisely but an approximate value from the AFM measurement shows that wrinkles can be as large as 100 nm, which is in agreement with the width that we can extract from the optical and SEM pictures.

Raman spectroscopy was performed on a specific region of the sample. We focused our study on More details about these simulations can be found in [START_REF] Lafont | Anomalous dissipation mechanism and Hall quantization limit in polycrystalline graphene grown by chemical vapor deposition[END_REF], Cummings et al., 2014].

This simulation demonstrates that delocalized states can exist along a line defect crossing the Hall bar channel, short-circuiting the quantum Hall edge states. This can be related to the observed smooth dependency of σ xx that we observed in our samples as well as the delocalized states fingerprints that we noticed in the previous experiments. Nevertheless the presence of disorder inside the line defect leading to localization, could also result, in a certain limit, to variable range hopping occurring inside the grain boundary. This would be in agreement with the observed evolution of σ xx (T ) at ν = -1.7 which manifests a VRH behavior characterized by a large localization length.

It is interesting to stress out that in this theory the measured conductance correspond to the conductance of the graphene layer at the vicinity of the line defects.

Here, we only considered the impact of the grain boundary. Nevertheless two other defects have been identified from the structural characterizations. In the following we will intent to understand the impact that wrinkles and bilayer patches in the quantum Hall regime.

| Possible other dissipation mechanism scenarios

A large variety of defects were observed in the previous section. All of them can, potentially have an impact on the transport properties. We will in this section propose different other scenarios emerging from the impact of other defects present in the sample that could explain the exotic dissipation laws noticed in our sample. Due to the absolute thickness of graphene, this material easily folds and occupies a third space dimension. In CVD graphene on metal these deformations take the form of ubiquitous ripples of the graphene film. They can arise from different sources. Because the thermal expansion of graphene and metal, have opposite signs, during the cool down, graphene tends to fold on the surface of the metal [Liu et al., 2011]. Also, during the transfer of graphene on the substrate, the polymer on the graphene tends to relax when the copper is etched and this creates additional wrinkles [START_REF] Ni | Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport[END_REF]. Finally, during the redeposition step on the substrate additional wrinkling can appear due to the non perfect vertical force applied on the graphene sheet. The impact of the ripples have been studied in [Zhu et al., 2012, Rasmussen andGunst, 2013]. The authors show that in the case of both standing collapsed and folded wrinkles, the resistivity is mainly determined by the tunneling effect occurring near the base of the wrinkle. Since we have in our sample a network of wrinkles connecting all the edge of the sample, we could think that the measured longitudinal conductivity in the QHE regime could be determined by the tunneling occurring inside the wrinkles. Tunneling effect depends weakly on the temperature which is qualitatively in agreement with the smooth dependance of σ xx (T ) observed in the QHE regime.

In
If we consider the case of a wrinkle or ripple under magnetic field, one can suppose that it can also result a strong impact on the carrier transport. Indeed, the perpendicular component of the magnetic field regarding the graphene layer will strongly decrease inside the ripple or wrinkle side.

It will induce a strong filling factor variation situated all along the wrinkle. Since these wrinkles cross the entire surface of the sample such sharp LL filling factor variation can possibly induce delocalized states along the wrinkles, short-circuiting the quantum Hall edge channels. Let us note that the LL filling factor variation can also be caused by a mechanical strain of the graphene lattice, here possibly occuring on the wrinkle site [START_REF] Guinea | Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering[END_REF]. Once again such LL filling factor variations are situated along the line defects crossing the sample width, therefore, the quantum Hall edge channels can not shun these types of defects and can potentially lead to novel types of 
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Figure 8.26.: Left: Sketch of the co-propagating edge states at the vicinity of a pn junction. Right: sketch of the resulting counter-propagating states in the case of a pp or nn junction. adapted from [Abanin and Levitov, 2007] As we said at the beginning of this chapter, grain boundaries can theoretically induce density fluctuation of 1 × 10 13 cm -2 over a few lattice constant range [Van Tuan et al., 2013]. Experimentally it has been shown that this perturbations have a typical extension of ∼ 10 -20 nm [START_REF] Fei | Electronic and plasmonic phenomena at graphene grain boundaries[END_REF].

Under magnetic field these charge carrier density variation induce LL filling factor variation along the defect. Also, wrinkles can be responsible for high filling factor variations due to the non perpendicularity of the graphene film in regards of the magnetic field or due to strain-induced potential vector along the wrinkle site. Therefore one can imagine the existence of p-n junctions along the line defects.

The effect of a of a p-n junction in the quantum Hall effect regime has been extensively studied by [START_REF] Woszczyna | Graphene p-n junction arrays as quantum-Hall resistance standards[END_REF]][Williams et al., 2007][Özyilmaz et al., 2007][Chen et al., 2011]. The observed plateau sequence follows a theory developed by Abanin and Levitov [Abanin and Levitov, 2007] considering the mixing of the edge channels at the interface of the pn junction. When the edge channels travel in the same direction, as depicted on Fig. The first situation (a) is more favorable in our case since it can explains some additional features observed in our experiment. In this regime the two terminals conductance (considering ν 1,2 = ±2, ±6, ±10, ...) takes quantized value at :

g = |ν 1 ν 2 | |ν 1 | + |ν 2 | = 1, 3 2 , 3, 5 3 , • • • (8.3)
This plateau sequence has been experimentally observed in [START_REF] Williams | Quantum Hall Effect in a Graphene p-n Junction[END_REF]. Therefore, one can imagine that at ν = 0.6 the conductivity far from the line defect would be characteristic of the ν = 2 plateau while the filling factor at the vicinity of the line defect would be equal to ν = -23 , creating a ν = 2/ν = -2 junction inducing the appearance of the plateau at σ xy = 1. This could explain, first, that, since the density variation induced by the grain boundaries has a given sign, the plateau appears only on the electron side, and secondly it could also explain that the center of the plateau σ xy e 2 /h appears at LL filling factor around 0.65 and not at one as expected for a quantum Hall plateau.

In
If this peculiar mechanism is at work in our sample, and that some line defects edge states exist, this could potentially lead to unconventional backscattering mechanisms maybe related to the powerlaws dependency of σ xx (T ) observed in our samples. It is worth noting that even if they do not share the same origin, the numerical simulations developed by Cresti and coworkers (presented in sec. 8.4) and the model developed by Abanin et al. show, in both cases, that a current circulation is induced along, respectively, the grain boundary or the pn junction.

The scenarios cited above can qualitatively explain the unusual behavior observed in our experiment but do not give access to any temperature, magnetic field or current dependance. We tried to find some existing theory that could be related to the powerlaws evolution of σ xx as a function of T . Extracted from [START_REF] Bockrath | Luttinger-liquid behaviour in carbon nanotubes[END_REF] 8.5. POSSIBLE OTHER DISSIPATION MECHANISM SCENARIOS

The presence of quasi-uni-dimensional defects, the possible strong electron-electron interaction (if we consider that the plateaus observed at ν = 0, +1 are due to the many-body interaction between the charge carriers) and moreover the power laws dependence of σ xx with T can potentially be the essential ingredient of the Luttinger liquid physics. It has been shown theoretically and experimentally [Tomonaga, 1950, Luttinger, 1963] [Bockrath et al., 1999] that the conductance of a Luttinger liquid follows G ∼ T α with temperature. The differential conductance follows similarly a powerlaw dependance with the bias voltage dI/dV = V α with the same α coefficient as we can see on Fig. 8.27. Unfortunately, in our experiments we did not measure directly the differential conductance versus the bias voltage and the numerical derivation from the measured G xx (I) curves are not good enough to be able to identify if it follows also a powerlaw dependence and if the extracted exponents are the same as in the case of the evolution of σ xx (T ). More specific studies have to be performed to understand if the peculiar evolution of σ xx in the quantum Hall regime can be explained by a Luttinger liquid theory.

A theory based on a semi-classical approach of the charge carrier dynamics in the QHE regime, has been developed by a theoretical team in Grenoble [START_REF] Flöser | Diagrammatic Approach for the High-Temperature Regime of Quantum Hall Transitions[END_REF]. T Extracted from [START_REF] Flöser | Transport via classical percolation at quantum Hall plateau transitions[END_REF] The agreement between this theory and the measured evolution of the longitudinal conductivity at the transition would tend to show that we have classical fingerprints on the charger carrier transport at the plateau transition. Since we have shown that the mobility edges are very close to each other and shifted towards the plateau center, it could be possible to find some reminiscence of this semi-classical physics on σ xx (T ) on the quantum Hall plateaus.
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It has been shown that grain boundary and wrinkles (at zero magnetic field) can lead to a strong elevation of the charge carrier temperature inside the defect [START_REF] Grosse | Direct observation of resistive heating at graphene wrinkles and grain boundaries[END_REF]. If one considers that the experimental evolution of σ peak xx (T ) follows the model developed by Flosër, Champel and Florens, it would implies that the charge carrier transport in our sample could be renders by a high temperature semi-classical transport dynamics, potentially leading to the peculiar evolution of σ xx (T ) on the quantum Hall plateaus. Nevertheless several arguments tends to discredit a direct application of this model in our case. Firstly, this model is calculated considering a smooth long range potential which is not the case in our sample since the fit of weak localization corrections to the conductivity and the study of the Raman spectra tends to show that short range scattering is an important scattering process in our sample. Secondly, if a resistive heating of the charge carriers occurs because of the presence of the line defect, one should expect that the evolution of σ xx would be dominated by the current and does not evolve with the temperature, which is obviously not the case in our experiment. Indeed, from the relation I(T * ) found in section sec. 8.2.5 for sample S1, one could extract an equivalent temperature of ∼20 mK for a current of I =1 nA (current used in our experiment), which proves that the current do not lead to an increase of the charge carrier temperature above the fridge temperature. We will show in the following that the exponent κ extracted using the dependance of σ peak xx width and the evolution of the slope of σ xy with the temperature at the plateau transition is not in agreement with the value expected for a classical percolation, κ = 10/13. This shows that the powerlaw dependance of σ xx (T ) observed in our experiments can not be explained by a direct application of the theory developed by Flosër, Champel and Florens.

| Quantum Hall effect transitions

| QHE plateau-plateau transitions

As we already mentioned, the transition between quantum Hall plateaus can be treated in the framework of the localization-delocalization theory. This transition is assumed to be a quantum phase transition characterized by an exponent κ = 1/(γz) where γ is a called the critical exponent and depends only on the dimension and the internal degrees of freedom (here the spin and the valley) of the system [START_REF] Slevin | Critical exponent for the quantum Hall plateau[END_REF], and z, called the dynamical exponent, is the exponent of the power law temperature dependence of the phase coherence length, L φ ∝ T -1/z .

In the quantum Hall effect regime, z is assumed to be equal to one [START_REF] Evers | Anderson transitions[END_REF].

The experimental available parameter κ can be extracted using two distinct methods. The first one consists in extracting κ from the evolution of the σ xy slope with the temperature, at the plateau-plateau transition since in this theory we have [Chalker, 1999]:

dσ xy dν ∝ T -κ
The second method consists in extracting the coefficient κ by measuring the width evolution /h) 
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| Discussion

If we exclude for all the plateau-plateau transition the peculiar value of κ (κ = 0.13 ± 0.02 for the ν = +6 ↔ +2 transition) and the transitions involving the ν = 0 plateau, we can notice that the critical exponents are almost the same and equal to ∼ 0.20. It is interesting to compare this value to the other values of κ found in the literature in the case of the plateau-plateau and plateau-insulator transitions. A summary table of the extracted values of κ in graphene is represented in Tab. 8.2. The values found for the plateau-plateau transition in our experiments, are, indeed in good agreement with previously measured values for non-spin-split transition between Landau levels in InGaAs/InP [START_REF] Hwang | Scaling in spin-degenerate Landau levels in the integer quantum Hall effect[END_REF] and GaAs/AlGaAs [START_REF] Koch | Size dependent analysis of the metal insulator transition in the integral quantum Hall effect[END_REF] as well as for QHE-insulator transition in GaAs/AlGaAs [START_REF] Huang | Insulator-quantum Hall conductor transitions at low magnetic field[END_REF]][Wang et al., 1994].

If
one compares with the results obtained only in graphene, this value of ∼ 0.2 is in good agreement with previously extracted κ values for plateau-plateau transitions in the case of exfoliated graphene redeposited on SiO 2 /Si [START_REF] Amado | Magneto-transport of graphene and quantum phase transitions in the quantum Hall regime[END_REF], Bennaceur et al., 2012]. Nevertheless this value is almost twice lower than observations in epitaxial graphene [START_REF] Shen | Quantum Hall plateau plateau transition in top gated epitaxial graphene grown on SiC[END_REF]][Giesbers et al., 2009] which shows that the transition between plateaus seems to be affected by the nature of the substrate. Most likely this difference arise from the different type of disorder induced by the substrate on the graphene layer that can experimentally change the extracted κ value (and questioned its universality) [Koch et al., 1991a][Dolgopolov et al., 1991]. Nevertheless further studies are needed to understand in more details the difference of κ observed, potentially by studying these transitions in graphene on SiC at different carrier concentration in the same sample and the transition between non-spin-and/or-valley split plateaus in the same device and having a better knowledge of the defect type and range present in the studied samples. More information about these transitions can also be brought by measuring, separately, the exponent γ by following the LL filing factor evolution of the localization length which follows ξ ∝ |νν c | -γ , and the exponent κ using the 8.6. QUANTUM HALL EFFECT TRANSITIONS two methods described above. It has been done so far only in exfoliated graphene on SiO 2 /Si in [START_REF] Bennaceur | Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene[END_REF] and they found exponents κ = 0.23 and γ = 2.3 pointing towards a possible value of the dynamical exponent equal to ∼ 1.9, which is far from the value equal to one usually considered in such transition but is close to the usual temperature evolution of L φ at B = 0.

In the case of the transition between the QHE and the insulating regime, a careful study has been done by M. Amado [START_REF] Amado | Plateau insulator transition in graphene[END_REF]][Amado et al., 2012] on exfoliated graphene redeposited on SiO 2 /Si. They show that the transition from the quantum Hall effect towards the insulating regime can be strongly affected by the long range Coulombian interaction enhanced at carrier densities close to the CNP. Consistently, it has been reported that the electron-electron interaction could change the universality class of the transition [Pruisken andBaranov, 1995, Baranov et al., 2002].

In their case, the authors argues that the strong many body interaction induces a classical percolation mechanism at the transition, characterized by a critical exponent κ = 0.697 ± 0.005. When the carrier density is not too close from the CNP they found for (spin-and-valley)-degenerated charge carriers, in the two different studies, critical exponents equal to κ ∼ 0.58. This is in very good agreement with the value extracted in our case for the transition from the insulating state of the ν = 0 towards the ν = 1, equal to κ 0|+1 = 0.57 ± 0.04. This would, nonetheless, mean that no difference exists between (spin-or-valley)-split or non-(spin-or-valley)-split charge carriers transitions, or, reversely that the plateau appearing at σ xy e 2 /h does not arise from a degeneracy lifting since the exponent γ should depends only on the internal symmetries of the charge carriers [START_REF] Slevin | Critical exponent for the quantum Hall plateau[END_REF]. Indeed, experimentally it has been observed that the extracted values of κ change by a factor two if the transition happens between spin-split plateaus [START_REF] Wei | Localization and scaling in the quantum Hall regime[END_REF] or non-spin-split transitions [START_REF] Wang | Magneticfield-induced metal-insulator transition in two dimensions[END_REF]. Nevertheless, if we only compare the data obtained, in our sample on both side of the insulating state of the ν = 0, it may be noted that the value κ 0|+1 is almost two times larger than κ -2|0 which, in contradiction with the comparison of our data with the one from Amado, tends to show that the ν = 1 plateau can arise from a degeneracy lifting. Nevertheless in our case, one has to be careful since the values on κ extracted on both side of the transition are not extracted using the same quantity (σ xy in one case and R xy in the other) making the comparison difficult. We will therefore in the next section try to unveil if the plateaus appearing at σ xy = 0 and σ xy = 1 are due to degeneracies lifting of the charge carriers or not.

8.7 | The ν = 0 and ν = 1 states: a preliminary analysis

This part shows a preliminary analysis about the "unusual" plateaus appearing in the sample S1 at σ xy = 0 and σ xy = +1×e 2 /h. This sample was not made, in any case, initially to study the physics of degeneracy lifting in graphene and the experimental setup was also not especially designed to probe the physics of these peculiar and very complex states. Nevertheless we tried to investigate and understand the interesting physics happening in this sample.

The theoretical elements of the following section are strongly inspired by [Goerbig, 2010], [Kharitonov, 2012] and [Fuchs, 2013].

We already proposed a scenario for the observed plateau at σ xy +1 × e 2 /h based on the mixing of the edge channels at the interface of a pn junction, nevertheless this theory does not predict the appearance of a plateau at filling factor ν = 0. The ν = 0, ±1 plateau sequence in graphene has been observed for the first time by the group of Philip Kim [START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF]. This observation has excited many experimentalists and theoreticians to understand the physics behind these states.

A well known mechanism to lift the spin degeneracy is the Zeeman splitting ∆ z = gµ B B where g is the Landé g-factor (∼ 2 in graphene [START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF]) and µ B ≡ (e )/(2m e ) is the Bohr magneton. However, if it can explain the presence of an additional plateau due to the lift of the spin degeneracy, it can not, alone, explain the observed plateaus at ν = 0 and ν = ±1. Another mechanism must, therefore, break the valley degeneracy. As we explained in sec. 2.5.2, in the n=0

Landau level (and only in this one) each sublattice is bounded to a specific valley, in other term, breaking the sublattice A-B symmetry is completely equivalent in breaking the valley symmetry.

Many efforts from the theoretician community have been undertaken to understand the possible cause of these degeneracy lifting.

|

The plateau ν = 0

The plateau at σ xy = 0 × e 2 /h takes a special position among the quantum Hall plateaus appearing in our sample. Firstly, it does not arise like others from the vanishing of the longitudinal resistance R xx but in contrast comes from the high value that R xx takes at low density. A simplified picture, developed by Abanin, to understand qualitatively the ν = 0 state is to consider the behavior of the fourfold (spin and valley) degenerated states when it approaches the edges of the sample [Abanin et al., 2007]. Two energy scales are involved in the problem: The valley splitting ∆E v alley and the spin splitting ∆E spin . In this picture, as depicted on Fig. 8.34 left), if at the edge, the valley splitting is larger than the spin splitting the states from the same valley will be curved in the same energy direction. Therefore, when the Fermi energy lies between these levels it does not cross any level and the system is in the insulating regime, denoted as quantum Hall insulator (QHI)

(it corresponds to the case depicted in Fig. 8.33 a) ). The signature of this state on the transport properties is a divergence of the longitudinal resistance and a vanishing of the transverse resistance since no edge states exist anymore. Now, as depicted on Fig. 8.34 right), if the spin splitting is larger than the valley one, the states with opposite spin directions will cross the Fermi energy and create counter propagating spin filtered edge states. In this case the spin Hall conductance should make a quantized plateau in units of e 2 /(4πh) while the longitudinal resistance is about h/e 2 . This situation corresponds to the case depicted in Fig. 8.33 b). These states are known has a quantum Hall metal (QHM) and has been recently experimentally evidenced in high mobility graphene redeposited on hBN [START_REF] Young | Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state[END_REF]. Right: Case of a spin splitting higher than the valley one, leading to a quantum Hall metal. Adapted from [Abanin et al., 2007] and [Goerbig, 2011].

B B a) b) n = 0 n = 0 K K K K ν = 0 ν = -1 ν = +1 ν = 0 ν = -1 ν = +1
Later, the theoreticians developed a theory that generalized the total (spin and pseudo-spin) orientation in considering a more general internal SU(4) symmetry. 6 Using this mathematical framework the spin and pseudo-spin states have been described in the so-called quantum Hall ferromagnetism theory 7 . As real spins in a standard ferromagnetic material tend to be aligned to minimize the interaction energy, the generalized SU(4) (spin-pseudospin) ferromagnets directions will be aligned 8.7. THE ν = 0 AND ν = 1 STATES: A PRELIMINARY ANALYSIS in order to minimize the strong Coulomb interaction e 2 / l B which has the same amplitude than the cyclotron energy: v F /l B . In this space, some directions correspond to spin ferromagnetism, pseudo-spin ferromagnetism, or even to spin anti-ferromagnetism. Nevertheless, If one considers a perfectly isotropic Coulomb interactions the phase space does not present any preferential direction. In contrast, introducing additional smaller energyscales8 in the problem creates anisotropies (that can be seen as easy axis anisotropies in usual ferromagnets) that can favor some directions in this phase-space.

These theoretical works lead to a variety of different ground states such as charge density wave [START_REF] Fuchs | Spontaneous parity breaking of graphene in the quantum Hall regime[END_REF], fully polarized valley pseudospin [START_REF] Hou | Deconfined fractional electric charges in graphene at high magnetic fields[END_REF], Nomura et al., 2009] or a competition between a charge density wave and ferromagnetic [START_REF] Alicea | Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes[END_REF] or antiferromagnetic order in [START_REF] Jung | Theory of the magneticfield-induced insulator in neutral graphene sheets[END_REF].

It is not yet clear, which of these possible groundstates is realized in the experimental works done so far. Also there is no prediction on their evolution when varying the magnetic field , the carrier density or the temperature. Therefore experimentalists have started to investigate this state by looking at the relevant energyscales involved in the problem as well as the impact of the magnetic field orientation.

Young et al. have investigated the magnetic field direction dependence of the resistance and the energy scales attached to the degeneracy lifting of the n=0 and n=1 LL in high mobility samples encapsulated in h-BN [START_REF] Young | Spin and valley quantum Hall ferromagnetism in graphene[END_REF]. In their experiments the sample holder can be rotated in order to tune the perpendicular component of the magnetic field B which allows the discrimination which degree of freedom could be lifted, since the spin polarization through the Zeeman splitting depends on the absolute value of B but not on its direction. Using this technique, they managed to probe if the plateaus observed at ν = 0, -4 -8, -12 were dependent on the magnetic field direction. Because of the strong variation of the resistance with the magnetic field direction shows that the leading parameter for the gap opening, is probably the many body electron-electron interaction and at the edge of the sample, the ratio of the energies ∆E valley and ∆E spin potentially drives the system towards a spin-degenerated QH insulator, but a complete understanding of the mechanisms lifting these symmetries and the associated ground states are far to be understood. #165(1) 
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Table 8.3.: Theoretical relevant energies and estimates for the activation gaps in the n = 0 and 1 graphene Landau levels. Extracted from [Goerbig, 2010] Such degeneracy lifting have usually been observed in high mobility graphene samples µ ≥ 50000 cm 2 V -1 s -1 [Abanin et al., 2007][Zhang et al., 2006][Du et al., 2009] [Young et al., 2012][Young et al., 2013].

Nevertheless, In our case, the sample presents a rather low charge carrier mobility but nevertheless present some of the plateaus observed in these high mobility Hall bars.

A theoretical criteria on the required mobility for the appearance of the SU(4) ferromagnetism ground state has been developed by Nomura and Mac Donald [Nomura and MacDonald, 2006].

Based on the Stoner criteria, it gives a condition on the product µB to see the appearance of the degeneracy lifting experimentally. The boundary of this broken symmetry regime is observable on Fig. 8.36 for the Landau levels n=0 and n=1. From this plot we can deduce that for a magnetic induction of 20 T (maximum induction available in our setup) it would require a sample mobility of about 35000 cm 2 V -1 s -1 to enter in the broken symmetry regime and therefore observe a degeneracy lifting. The mobility of our sample at large carrier density is much smaller than this value (∼ 3000 cm 2 V -1 s -1 ), nevertheless close the CNP the mobility increases and we can estimate approximately on Fig. 8.2 a mobility of ∼ 10000 cm -2 V -1 s -1 at the carrier density at which σ xx starts to deviate from the linear behavior. We will in the following compare the observed plateau ν = 0 and ν = +1 observed in our samples to other experimental works in "low mobility" graphene to see if in our case the observed plateau can arise from a degeneracy lifting or be induced by another mechanism.
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Broken symmetry regime Interestingly the plateau appearing at σ xy = 0 has been extensively studied by Checkelsky [START_REF] Checkelsky | Zero-Energy State in Graphene in a High Magnetic Field[END_REF][START_REF] Checkelsky | Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field[END_REF] on different exfoliated samples redeposited on Si0 2 /Si which presents mobilities similar or slightly higher than our sample but still far smaller than (typically an order of magnitude smaller) the mobility requested by the Stoner criteria for the magnetic field used in these experiments. We will in the following present our data and compare them with the typical data found by Checkelsky.

If now, we look at the measured data presented on 9 Experimentally, we took particular precautions to measure these highly insulating states. First we noticed that the value of the resistance peak was strongly affected by the current value. We reduced the value of the current until the measured resistance did not depend on it. The same choice has been done in regards of the AC frequency. We reduced the excitation frequency of the lock-in so that we obtained the same value given by DC mode measurements. The optimal current value and frequency was found for 1 nA| ∼ 1 Hz. Thus the evolution of the longitudinal resistance can not be described by a Kosterlitz-Thouless transition. We probably would need higher magnetic field to be able to probe this ferromagnetic state since in transition of such type, Checkelsky reached resistance value as high as 20 MΩ at magnetic field above 25 T [START_REF] Checkelsky | Zero-Energy State in Graphene in a High Magnetic Field[END_REF], Checkelsky et al., 2009]. Again, one can make the assumption that the line defects present in our sample would corrupt the R xx bulk contribution of ferromagnetic states. A comparison between the different works concerning the transition from the quantum Hall effect towards the insulating regime of the ν = 0 plateau has been done by [START_REF] Zhang | Metal to Insulator Transition on the N=0 Landau Level in Graphene[END_REF].
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The authors have reported the carrier density and magnetic fields values at witch the temperature independent crossing point of the transition appears in the (n s , B) phase space for six different experimental works [START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF], Abanin et al., 2007, Checkelsky et al., 2008, Giesbers et al., 2009, Zhang et al., 2009, Zhang et al., 2010]. This phase space is represented on It has been argued by Punnoose et al. [Punnoose and Finkel'stein, 2005] that in the case of a metal-insulator transition, thanks to an interplay between electron-electron interactions and disorder, the temperature independent crossing point should appear at a resistance value equal to R K /2 [START_REF] Zhang | Metal to Insulator Transition on the N=0 Landau Level in Graphene[END_REF]. Experimentally the transition occurs at ∼ R K /2 for all the work summarized by Zhang et al. as well as for Amado et al. in [START_REF] Amado | Plateau insulator transition in graphene[END_REF], Amado et al., 2012]. Interestingly, it is also the case in our sample as we can see on [START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF], Abanin et al., 2007, Checkelsky et al., 2008, Giesbers et al., 2009, Zhang et al., 2009, Zhang et al., 2010] as well as our data represented as orange dots.

| The plateau ν = ±1

The plateau appearing at σ xy e 2 /h in the presented curves (Fig. 8.43) is probably the most intriguing feature observed in this sample. Firstly it is, to our knowledge, the first time that this plateau is observed in such low mobility graphene sample. The second interesting point is that this plateau appears only on the electron side for both magnetic field directions. Also, it is worth noting that this plateau appears on the electron side that present a lower mobility than the hole charge carriers. We already tried to propose that the appearance of such a plateau could be due to the presence of pn junctions in the sample but we can also see if it can arise from a degeneracy lifting.

From the SU(4) quantum Hall ferromagnetism theory the plateau at σ xy = e 2 /h, as the σ xy = 0 one, can be induced by the electron-electron interaction and present also a very rich and complex physics which is still poorly understood at the present time. In this regime the charge carriers are expected to be skyrmions which are topological spin textured charge carrier with typical extension of several l B [Goerbig, 2011]. Nevertheless, experimentally these states have never been observed so far in graphene. The plateaus ν = ±1 has previously been observed under a 20 T perpendicular magnetic field and at the temperature of 4.2 K in samples presenting mobilities of at least ∼ 20000 cm 2 V -1 s -1 [START_REF] Jiang | Quantum Hall States near the Charge-Neutral Dirac Point in Graphene[END_REF] or for mobilities about 13000 cm 2 V -1 s -1 at B = 30 T / 1.7 K in a corbino device [START_REF] Zhao | Magnetoresistance measurements of graphene at the charge neutrality point[END_REF], as visible on Fig. 8.41. On this figure one can notice that σ xx present a splitting at LL filling factor ν = +1 but not at ν = -1 as in our case but for a much higher magnetic field and in sample presenting also much higher mobility. Nevertheless it is possible that, in our case, the mobility calculated from the averaged value over the Hall bar length does not reflect the mobility of each single grain. Indeed, it has been reported that the mobility of a single crystal graphene sample grown by CVD on copper can reach the same mobilities than the one of exfoliated samples [START_REF] Petrone | Chemical vapor depositionderived graphene with electrical performance of exfoliated graphene[END_REF]. Besides our collaborators from Néel institute already measured mobility values of about ∼ 10000 cm 2 V -1 s -1 in a single crystallide of graphene grown by CVD and redeposited on SiO 2 /Si. This could explain that such plateau appears in our "low mobility sample". Here, once again, no activation mechanism was observed on σ xx but the trace of the plateau at ν =∼ 1 disappears around 10 K which is also much lower than the expected value for a Coulomb activation gap presented in Tab. 8.3 but is in rather good agreement with the Zeeman splitting energy gap. In his experiments, Checkelskii [START_REF] Checkelsky | Zero-Energy State in Graphene in a High Magnetic Field[END_REF], Checkelsky et al., 2009] noticed that the appearance of the plateau at ν = 0 depends strongly on the gate voltage position of the charge neutrality point. The ν = 0 plateau was present only in samples where the CNP was close to the null gate voltage. We thus proceeded to a series of annealing to shift the CNP position and look at the impact on the degeneracy lifting.
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The original peak (before the first set of measurement) at 300 K can be seen on Fig. 8.44 (black curve). The amplitude in V g of this span was limited because at that time we were afraid to "break" the backgate oxide which can be fragile at room temperature depending on the substrate quality. Unfortunately the heating-resistor, at this time, was glued under the sample holder and not mechanically retained as depicted in the chapter 5. Probably due to the thermal cycling, the resistor was detached from the sample holder. We therefore had to expose the sample to air in order to re-glue the resistor. Then we have started the pumping and annealing processes in the following temporal order (each corresponding curve can be seen on Fig. 8.44):

1. The sample is placed in the pumping chamber of the helium 3 fridge. The charge neutrality point (CNP) is shifted to V 0 = -17 V. Let us note that it has moved from positive (+3.5 V)

to negative backgate voltages.

2. We pumped the chamber at room temperature down to 10 -3 mbar during ten minutes. The CNP moves slightly towards zero. This can be explained by the evaporation of water molecules present at the surface of the graphene since the evaporation temperature of water is below 300 K at this pressure.

3. We performed a 14 hours annealing of the sample under vacuum ( 10 -5 mbar) at about 400 K. The CNP moved bellow -64 V (maximum voltage available in our setup).

4. After exposure to air (two minutes) the CNP was found around -55 V. The peak seems to be particularly stiff (comparable to the original one) and has a rather high amplitude.

5.

Half an hour after the exposure to air, the CNP moved to -50 V and the peak is also slightly enlarged while the height is slightly reduced.

6. An hour after the exposure to air the observations are the same as depicted above. The CNP is found at -46 V.

7. An hour and a half after the exposure to air the CNP is around -32 V. At this point we have decided to cool down the sample.

8. The Dirac peak height rises slightly at low temperature (0.3 K) as well as the width is slightly reduced but the position of the CNP in gate voltage is not changed. On Fig. 8.45 is represented the longitudinal conductivity σ xx and the corresponding mobility µ for the sample S1 before (V 0 = +3.5 V) and after annealing (V 0 = -32 V) at the temperature of 0.3 K. The conductivity after annealing is rounded when approaching the minimum of conductivity in comparison to the case before annealing, reflecting a stronger contribution of the charged impurities. If we fit the conductivity peaks with the equation 2.12 before and after annealing we can observe an opposite evolution of the charged impurity density (n * ) for holes and electrons. In the case of holes n * goes from n * = 1.6 × 10 12 cm -2 before annealing to n * = 2.1 × 10 12 cm -2 after, while in the case of electrons it oppositely evolves from n * = 2.8 × 10 12 cm -2 to n * = 1.7 × 10 12 cm -2 . This shows, once again, that the asymmetry of the conductivity between electron and holes is not directly governed by the intrinsic defects of graphene (grain boundary, ripples, vacancies, bilayer patches) but most likely by the surrounding impurities present in the substrate or on top of the graphene layer by the presence of adatoms. Nevertheless it is also possible that the line defects present in the graphene layer can be privileged sites for the adatoms thus giving an indirect role to these defects in the asymmetry observed.

As a consequence of the conductivity asymmetry, we can see that the highest mobility can now be observed on the electron side and is higher than before the annealing, while it is exactly the opposite concerning the hole side, where the mobility was higher before the annealing. It is interesting to look at the impact on the degeneracy lifting since on the electron side where the plateau at σ xy e 2 /h appeared, the mobility after annealing is higher but on the other hand the conductivity deviates from the linear dependence with n s at higher density than before the annealing, reflecting a potential important role of the electron-hole puddles below this threshold. state together in our sample consolidates the idea that the plateaus at σ xy = 0 appearing in our graphene, originate from a degeneracy lifting of the charge carriers and not from another mechanism inducing a strong localization around n s = 0. The remaining question is: Why the ν = +1 plateau appears in our sample and was never noticed on such low mobility graphene?

As we explained in this chapter this graphene sample present grain boundaries and wrinkles. The grain boundary will locally break the A-B sublattice symmetry and is thus a natural culprit for valley degeneracy lifting. Another explanation would be, as we already said, that the mobility inside each grain would be much higher than the measured averaged mobility potentially corrupted by the grain boundaries or wrinkles. Further studies on the role of the grain boundary on possible valley lifting in the QHE regime need to be done to have a better understanding of the problem. It could be achieved for example by studying the local density of state at the vicinity of a grain boundary using an STM at low temperature and under magnetic field or/and by transport experiments involving a rotating coil to be able to distinguish the role of the Zeeman and valley splitting.

| Conclusion

In this section we studied monolayer graphene samples made by CVD on copper and redeposited on a SiO 2 /Si substrate presenting mobilities of about ∼ 2000 -3000 cm 2 V -1 s -1 . We have shown the longitudinal conductivity between the Landau levels of the quantum Hall effect reaches high values at low temperature and current, disqualifying these samples for an application in metrology. The temperature dependance of σ xx follows a non conventional smooth evolution with the temperature and the magnetic field that can be characterized by powerlaws dependencies. The samples present line defects such as grain boundaries and wrinkles that connect all the edges of the sample. Numerical simulations show that such line defect can induce a strong backscattering of the charge carriers in the quantum Hall effect regime and can quantitatively explain the strong backscattering observed experimentally. We looked at the transition between the quantum Hall plateau ν = ±6 and ν = ±2 and compared the extracted values with the value obtained in the insulator-quantum Hall effect transition studied at the beginning of this chapter. We found a good agreement between the critical exponents of the two types of transitions giving a hand to the fact that they could belong to the same universality class. Finally we performed a preliminary analysis of the plateaus observed at σ xy = 0 and σ xy +1 × e 2 /h. The first one has already been observed in graphene with a similar mobility and in the same temperature and magnetic field conditions but the second one is more intriguing since it has never been observed in graphene with such mobility. The roots of this degeneracy lifting seems to be driven by the long range electron-electron interaction but further analysis are required to understand more clearly the physics behind.

For a possible application of CVD graphene in resistance metrology, this study shows that some efforts have to be done to create large Hall bar made out of a single crystal to avoid grain boundaries. One can be optimistic since many groups managed to reach centimeter scale monocrystals [START_REF] Lee | Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogenterminated germanium[END_REF]][Chen et al., 2013][Gao et al., 2012]. The problem of wrinkling starts to find also some solutions, for example it has been shown that the wrinkles density could be limited by improv-

We saw that the two most widespread techniques to reach large scale graphene are the sublimation of Si atoms from SiC and the chemical vapor deposition methods. Adrien Michon developed a mixed method based on chemical vapor deposition on 0.16°off-axis 6H-SiC (0001) [Michon et al., 2010, Michon et al., 2012]. The idea is to bring carbon atoms via an external source (propane gas) while heating the SiC substrate at high temperature in an argon/hydrogen atmosphere used as carrier gas. A major problem that typically arise from the graphene grown on SiC is the strong bonding of the graphene layer to the substrate. The dangling bonds present at the interface lead to a large electron doping concentration in the graphene layer. As we saw in chapter 7, a possible technique to reduce the electron doping is a post growth hydrogen intercalation which saturate the dangling bonds. Therefore, the presence of hydrogen during the growth of CVD graphene on SiC can potentially promote this process.

The CVD on SiC technique has also some advantages over the sublimation technique. The typical growth temperature range in this case is [1450°C -1550°C] which is lower than the temperatures generally used for graphene growth by sublimation of silicon atoms at the surface of SiC (∼ 2000°C).

Also, the graphene quality could be less dependent on the substrate quality. Adrien Michon used more affordable Tanke blue substrates during the growth process than the Cree substrates used by many groups. Secondly Adrien Michon starts to extend this growth process to other type of materials as sapphire and GaAn which can lead to other types of application of graphene grown by this novel method.

A typical graphene growth is realized by the injection of 0.04 % of propane during 5 minutes.

Depending on the growth temperature and the H/Ar dosage, three different graphene morphologies can be obtained [START_REF] Jabakhanji | Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of <i>in situ</i> hydrogenation and annealing[END_REF]: In this section we studied a graphene grown in the last condition. To have additional information about the resulting graphene our collaborators processed to structural characterization. An AFM image of a 5 µm × 5 µm region of the layer can be seen on Fig. 9.2. The SiC steps are clearly visible on the picture. They have a typical height of 0.75 nm and a 200 nm width. The white areas are assumed to be additional layer patches that do not exceed 300 nm extension. Our collaborators performed ARPES measurements at the synchrotron SOLEIL after an outgassing of the layer at 500°C. The signal at the K point of the Brillouin zone from 36 eV photons can be seen on Fig. 9.2 d) The red and blue lines respectively show the fits for monolayer and bilayer graphene. From this spectra they deduce that the graphene is composed by more than 90% of monolayer and of 10% bilayer. From this experiment it is also possible to extract a high n-doping of about 10 13 cm -2 . This is probably due to the 6R √ 3 × 6R √ 3 -R30°carbon reach layer present under the graphene layer as enlighted by the LEED measurements presented in Fig. 9.2 e). More details about these structural characterization can be found in [START_REF] Jabakhanji | Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of <i>in situ</i> hydrogenation and annealing[END_REF]. After an annealing at 500 °C under vacuum (a few 10 -4 torr) during one minute (with a ramp of 500 seconds) the graphene layer was covered with PMMA resist to protect it. A series of 100×420 µm 2

1450°C
Hall bars were designed (by Dimitrios Kazasis at LPN) out of the graphene layer using electron beam lithography and PMMA resist, the graphene area has been defined using oxygen reactive ion etching (RIE). The design of the graphene Hall bar followed the metrological precautions described in chapter 2 as we can see on Fig. 9.4. The contacts were deposited by electron beam deposition system as follow. After an ultrathin titanium layer for adhesion, a 60 nm thick Pd layer and 20 nm layer of Au were deposited. The bonding pads were done in a subsequent step. First the graphene underneath the pads location was etched by RIE prior to the metal deposition to have a better adhesion of the bonding pads on the substrate. Finally a (20/200) nm layer of Ti/Au has been deposited to form the pads were the bonding wires will be attached. Finally the sample was covered by a layer of 300 nm of P(MMA-MAA) and 300 nm ZEP520a resist which is known, under UV illumination, to reduce the electron doping [START_REF]Disordered Fermi liquid in epitaxial graphene from quantum transport measurements[END_REF]]. Nonetheless we did not proceed to any UV illumination in our case.

One of these 100 × 420 µm 2 Hall bars was cooled-down to low temperature (0.3 K) and we continuously changed the magnetic field from -16 T to 16 T while measuring the longitudinal R xx and transverse R xy resistances as reported on Fig. 9.3. On this plot, we can see on R xx a signature of the weak localization corrections to the resistivity at low magnetic fields,. Around 3 T, R xx makes a deep while an inflection is visible around ∼ 6 kΩ on R xy reflecting the presence of a poorly quantized ν = 6 plateau. At 3.8 T, the transverse resistance starts to form a plateau at R K /2 while the longitudinal resistance drops to zero. The most remarkable feature that we immediately notice is the large wideness of this ν = 2 plateau that is still visible at 19 T which was the maximum magnetic field accessible in our experiment. One can immediately compare on Fig. 9.3 the size of this plateau with the ν = 2 plateau of the most widespread GaAs/AlGaAs quantum Hall resistance standard, the LEP 514. The comparison is striking. The ν = 2 plateau of the graphene sample is almost four times wider than the one of the LEP 514.

The electron density extracted from the classical Hall slope is n 0 = 3.2 × 10 11 cm -2 and the Drude mobility is about 3600 cm 2 V -1 s -1 . If one compares the carrier density in the sample and that of the ARPES measurements (∼ 10 13 cm -2 ) performed before the Hall bar fabrication, a clear difference appears. It is probably related to the ZEP520a resist which can strongly reduce electron doping, but, since this polymer layer has not been illuminated under UV light, such strong effect on the carrier density is not expected. Indeed, it has already been observed that this resists can reduce the electron doping without illumination but the typical electronic density reduction was about 30 % only [Lara-Avila et al., 2011a]. One can suppose that this difference could be explained by the 500 °C annealing of the graphene layer, immediately followed by a PMMA resist covering.

Nevertheless the ARPES spectra has also been acquired after an outgassing of the layer at 500°C, therefore the reason of the low carrier density found in our sample is still not fully understood.

Nonetheless, we will see later in this manuscript that this procedure to obtain low carrier densities samples seems to be reproducible.

Let us focus on the magneto resistance presented on Fig. 9.3. If one calculates the magnetic field corresponding to the Landau level filling factor ν = 2 which lies in the center between the Landau levels n = 1 and n = 0 (which thus reflects the center of the plateau) one finds B = 6.6 T. The plateau thus extends far from this expected plateau center towards the high magnetic fields. The physics of this plateau will be discussed later in this manuscript and let us first have a look at the potential of this sample for an application in resistance metrology.

The next step towards a potential high precision Hall resistance comparison is an estimation of the contact resistance. We thus processed to 3-terminals measurements. 

| Contact measurements

A convenient way to measure the contact resistance precisely is the three terminal measurement technique depicted on Fig. 9.4. We inject the current by the contact we want to measure and then measure the voltage drop between the same contact and another contact situated on the same equipotential. The resulting measured resistance will be equal to The resistance of the lead R lead can be measured separately and the longitudinal resistance R xx measured using a usual 4 terminal measurement is very low on the quantized plateau. We thus have an access to the resistance of the contact. The measurement current used was 20 µA for the current contacts and 1 µA for the voltage ones. We will explain in the next section this choice.

V I = R contact + R lead + R xx I V R c R l R xx a b c R ac,ab = R c + R l + R xx 3-Terminals measurement < 1Ω < 1Ω < 1Ω < 1Ω < 1Ω < 1Ω < 1Ω > 100Ω I 1 I 2 V 1 V 2 V 3 V 4 V 5
We measured very low contact resistance (below 1 Ω) for all the contacts except for one large current contact as reported on Fig. 9.4. In the following we thus used the contact I 1 to inject the current. We measured the two longitudinal resistances R I1I2,V 1V 2 and R I1I2,V 3V 5 and the two transverse resistances R I1I2,V 1V 4 and R I1I2,V 2V 3 while sweeping the magnetic field from -1 to 19

T. On A screening current will be induced in the superconducting shielding. This current is measured by a pick-up connected to the input of a DC SQUID electronics. We then connect the output of the SQUID to a high precision voltmeter.

R xx (kΩ) V 1 V 2 V 3 V 5 -2 0 2 4 6 8 10 12 R H (kΩ) V 1 V 4 V 2 V 3

| Looking for the optimal current value

In resistance metrology we always intent to inject the highest current as possible in the Hall bar and at the same time be sure that the sample is still in a very low dissipation state. We thus proceed to a quick evaluation of the longitudinal resistance versus the current injected for each magnetic field values between 10 and 19 T. The results of the four probe measurement of the longitudinal resistance V 3 V 5 (normalized to a square) can be seen on Fig. 9.7 at the temperature of 1.4 K. We can see that the longitudinal resistance stays low for rather high current values (20 -30 µA) for all the magnetic field values. We have selected the value of 20 µA that is the best compromise to keep a non dissipative state for all the magnetic fields and a rather high measurement current. The resolution of this measurement (∼ 100 µΩ at 10 µA) is nevertheless not good enough to be sure that the sample is dissipation-less at the metrological grade. Let us recall that a usual criteria is to have a dissipation under 100 µΩ ensuring a 10 -9 accuracy target on the Hall resistance value.

However, if one compares the value measured in this case with the typical value of 150 Ω using a 1 µA current that we found in the previous sample made by CVD on copper, one could expect a much lower deviation of R H from the quantized value in the present sample.

I (µ A ) For the following measurement we used a low frequency (< 4 Hz) EMN11 which is a precision nanovoltmeter with a typical equivalent voltage noise of 7 nV/ √ Hz at the terminal of a R K /2

resistor. The full scale 1V output of this instrument was connected to an Agilent 3458. The measured voltage is then divided by the injected current to extract the resistance. We measured, at the temperature of 1.4 K for both 20µA DC current directions (I + , I -) the voltage drop between the contacts V 1 V 2 and V 3 V 5 after subtraction, for each pair, of the voltage offset measured for a null current applied. To reject non-ohmic contribution to the resistance, the R xx signal is defined for each configuration as R I1I2,V 1V 2 = (V V 1V 2 (I + ) -V V 1V 2 (I -))/(2I) and R I1I2,V 3V 5 = (V V 3V 5 (I + ) -V V 3V 5 (I -))/(2I) (renormalized to a square). Following this procedure we measured R xx for both configuration at 8.5 T and then at for each magnetic field value from 9 to 19 T at the fixed temperature of 1.4 K. One can notice onFig. 9.8 that measured along the two edges of the sample, R xx is found below 100 µΩ, for all the magnetic field values, which reflects the very low backscattering rate between the quantum Hall edge states in this sample.

The averaged value between the two configurations R 

I1I2,V 1V 2 and R I1I2,V 3V 5 (R xx = (R I1I2,V 1V 2 + R I1I2,V 3V 

| Hall measurements

The calibration of a resistor in terms of R K /2 was detailed in the chapter 4. We performed an indirect comparison of the Hall resistance value in the graphene sample measured on the ν = 2 plateau with that of a reference GaAs/AlGaAs LEP 514 resistance standard (also on the ν = 2 plateau) using a measurement current of I = 20 µA.

We first calibrate a stable 100 Ω resistor in terms of the Hall resistance value measured on the Using the expression of γ gr aphene and γ GaAs , the equation 9.1 can be rewritten as follow

∆R H R H = (γ gr aphene -γ GaAs ) γ GaAs
Thus, from the measured value, γ gr aphene and γ GaAs , we can extract the deviation of the Hall resistance in graphene from the quantized value realized by the GaAs/AlGaAs resistance standard (assumed to realize R K /2).

In our case, in order to have a better resolution and limit the impact of a potential instability of the 100 Ω resistor, we have calibrated of the 100 Ω resistor in terms of the value realized by the LEP514 before and after the calibration in terms of the resistance value on the ν = 2 plateau in the graphene sample. 

B (T)

- plateau is an advantage for metrology since it is less demanding on the magnetic field precision to use during the calibration process. Also, for the first time a graphene quantum Hall resistance standard can operate in the same magnetic field and temperature conditions as a LEP 514 quantum resistance standard.

5 -4 -3 -2 -1 0 1 2 3 4 ∆R H /R H (10 - 
We also looked at the Hall deviation for the temperature of 2.2 and 4.4 K and found respectively ∆R H /R H = (-1.5±0.4)×10 -9 and ∆R H /R H = (-7±0.5)×10 -9 . Thus the perfect quantization in this sample is already lost at 4 K as expected from the larger R xx values. We will look more closely in the following section at the evolution of the dissipation and the related deviation of the resistance to the quantized value ∆R H with the temperature. It will allow us to know more precisely the relation between the dissipation rate measured through R xx and the related deviation on R H .

| Coupling coefficient

A non-zero longitudinal resistance should imply a relative deviation of the Hall resistance to its quantized value ∆R H /R H . The remaining question is how both of these quantities are coupled?

We thus measured the evolution with the temperature of the longitudinal R I1I2,V 3V 5 resistance and the transverse resistanceR I1I2,V 1V 4 . For the measurement of the longitudinal resistance we used the CCC based technique described before except that the current injected in the Hall bar was 1 µA at a frequency of 2 Hz servo-controlled by the oscillator of a Signal Recovery 7265 and the output of the SQUID electronics was connected to the input of the same lockin.

For the Hall resistance deviation measurements we compared the Hall resistance with a calibrated 100 Ω resistor by using the resistance comparison bridge except that we replaced the EMN11 nanovoltmeter by a Celians EPC1 low-noise amplifier that can operate at higher frequency. The measurement current used was also 1 µA at the frequency of 2 Hz driven by a SR 7265 lockin.

The signal amplified by the EPC1 amplifier is then connected to the input of the same lockin and finally the deviation to the quantized value ∆R H /R H is then extracted.

The typical temperature evolution from 2 to 40 K of R xx /R H and ∆R H /R H at magnetic fields of 10 and 19 T is shown on Fig. 9.11. As we could expect when we rise the temperature R xx /R H starts to increase and naturally ∆R H /R H starts to deviate from the quantized value. The remaining larger coupling fraction can reflect a current circulation that is not purely parallel to the Hall bar channel. This is potentially due to the SiC steps and more likely the multilayer patches growing on these steps that are observed on Fig. 9.2. Another explanation could be that the current is injected from the side of the Hall bar using a voltage contact.
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Using the relation ∆R H = -0.67 × R xx one can calculate that a 10 -9 deviation from the quantized value is typically expected for a R xx value of 15 µΩ and conversely the measured values of (10.5 ± 2.4) µΩ and (1.2±1.7) µΩ at 10 and 19 T should respectively lead to deviations from the quantized value below 1 × 10 -10 and 6 × 10 -10 . The measurement uncertainties of our experiments was nevertheless not low enough to observe such small discrepancies. Hall effect regime) and on the other hand, varying ν with the magnetic field, continuously, changes the energy spacing between the Landau levels as well as l B . We will see that in our case it is even more complicated because an additional phenomenon leads to carrier concentration variation when the magnetic field varies. Since we do not have access to a tuning of the carrier density we used the magnetic field to tune the filling factor and probe the dissipation process along this wide Hall plateau.
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On Fig. 9.13 is plotted for several magnetic fields between 7 and 19 T, T × σ xx versus T -1/2 with the y axis in log scale. As we can see the dissipation mechanism is here clearly identified since the data points are aligned along a strait line. The longitudinal conductivity follows a Efros-Schklovskii variable range hopping law From the slope of these curves we extract the T 0 coefficients present in the equation 9. 

T × σ xx = σ 0 exp -(T 0 /T ) 1 /2 ( 

| Current dependence

We previously concluded that it is important to know the evolution of the dissipation level with the current in order to carry out precise measurements at the highest possible current maintaining a very low dissipation state in the whole Hall bar. As we saw in chapter 2, in the variable range hopping theory, the current can be seen as an effective temperature. It results that at T =0 the conductivity should follow σ xx ∝ exp(I 0 /I) 1/2 where I 0 = 2kT 0 W/(eR H ξ). A correspondence between T eff and I therefore exists:

T eff = eR H ξ 2kW × I (9.4)
where T eff is the effective temperature induced by the current I and W is the typical distance over which drops the Hall electric field (on a perfectly homogeneous sample this distance is equal to the Hall bar width).

From the evolution of the longitudinal conductivity with both the current (Fig. for example 0.25 mΩ. This current can be seen as a breakdown current and its evolution with the magnetic field is observable on Fig. 9.16 (limit between black and colored region). One can notice that the I(B) curves follow the same evolution for resistance values higher or lower than the value of 0.25 mΩ. If one calculates the breakdown current density (which is the ratio of the breakdown current divided by the sample width) in this sample, considering W = 100 µm one finds values ranging from 0.4 Am -1 to 0.6 Am -1 . These values are comparable to those found in GaAs/AlGaAs heterostructures [Jeckelmann et al., 2001] but more than one order of magnitude below the best values reported on epitaxial graphene on SiC in [START_REF] Alexander-Webber | Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene[END_REF],

equal to 30 Am -1 at 18 T and 43 Am -1 at 23 T. But now if one consider the width of W = 7.5 µm found above, one can calculate breakdown current densities of 5.5 Am -1 at 10 T, 6.7 Am -1 at 14

T, and 8 Am -1 at 19 T which are in good agreement of values expected in graphene.

This iso-dissipation evolution level of I c can also be explained in the framework of the variable range hopping. Indeed, as we said in the VRH theory the current can be seen as an effective temperature. Thus the longitudinal conductivity is assumed to follow σ xx ∝ exp (-I 0 /I) with

I 0 = (2kW T 0 )/(eR H ξ).
We can consider that the current effect is significant when the term I 0 /I is close to one, in other terms when I = I c ∼ I 0 . Inserting this condition in equation 9.3 and using eq. 9.4 one can deduce that I c ∝ ξ -2 . If now we look at the evolution of ξ -2 versus the magnetic field on Fig. 9.16 (blue dots) we can see that it indeed follows the evolution of I c (B)

which shows that the variable range hopping explains the temperature dependence but also the current dependance of σ xx in this sample. 
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| Plateau width

The quantum Hall effect in graphene has the particularity to have a Landau level at zero energy and a very large energy gap between the two first Landau levels. This has led to the observation of very large ν = 2 Hall resistance plateaus in exfoliated graphene on SiO 2 /Si [START_REF] Poumirol | Impact of disorder on the ν=2 quantum Hall plateau in graphene[END_REF] and more especially in epitaxial graphene [START_REF] Alexander-Webber | Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene[END_REF]. As it is immediately observable on Fig. 9.5, our sample presents also a very large ν = 2 plateau starting around B = 5

T and still visible at 19 T far from the expected plateau center at B = (n 0 h)/(2e) = 6.6 T (where n 0 = 3.2 × 10 11 cm -2 is the density extracted from low magnetic field Hall measurements). As a comparison, on Fig. 9.17 are plotted the longitudinal and transverse resistance versus magnetic field of a graphene Hall bar on SiO 2 /Si measured by Amado et al. in [START_REF] Amado | Plateau insulator transition in graphene[END_REF]. The carrier density of the sample used for their experiment was a bit higher than in our case and equal to n s = 4.1×10 11 cm -2 . The calculated mobility of this sample was about µ 13000 cm 2 V -1 s -1 .

The typical signature of quantum Hall effect are visible and the Hall resistance forms a plateau R xy = R K /2 at B value slightly lower than 4 T that extends up to 12 T before going towards an insulating state. Moreover if one compare the position of the filling factor ν = 2 in this sample and ours, one can notice that in the experiment done by Amado et al. it is located at the center of the plateau while in our case it is placed much closer to the beginning of the plateau.

This shows that a mechanism typical of graphene grown on SiC seems to extend the width of the ν = 2 plateau towards high magnetic fields. ). As we observed before on Fig. 9.14, the localization length continuously decreases from 7 to 19 T. This is unexpected except if a variation of the electron density driven by the magnetic field is considered. Indeed it has been reported that the zero layer graphene present beneath the conducting graphene layer can transfer charges in the ν = 2 quantum Hall plateau and thus change the doping of the layer [START_REF]Disordered Fermi liquid in epitaxial graphene from quantum transport measurements[END_REF]]. We will compare our experimental set of data at the end of this chapter with the proposed model. In the case of a short range disorder potential the lower bound for this coefficient is ξ 0 = l B [Polyakov andShklovskii, 1993, Fogler et al., 1998]. Thus, it is interesting to look more closely at the evolution of the localization length extracted from the VRH analysis normalized by the magnetic length that should follow ξ l B ≥ ν -γ (9.5)

The ratio of the localization length divided by the magnetic length is represented on Fig. 9.20. As we can notice it first decreases from 7(ν 0 (7 T) = 1.9) to 10 T (ν 0 (10 T) = 1.3)(region A), then makes a plateau between 10 and 15 T (ν 0 (15 T) = 0.9)(region B) and finally slowly increases between At the present time one theory developed by Kopylov andFalk'o [Kopylov andTzalenchuk, 2010, Janssen et al., 2011b] describes the evolution of the carrier density with the magnetic field assisted by a charge transfer process. This theory predicts, in the QHE regime, that the magnetic field activates a charge transfer from the 6 √ 3 × 6 √ 3 zero layer graphene (ZLG) to the active graphene layer and to the polymer gate. In the QHE regime between the Landau level due to the vanishing of the density of state the electron Fermi liquid is characterized by a low compressibility. Because of the very low distance between this buffer layer and the graphene layer characterized by a classical capacitance per unit area c c = 1/(4πd) at filling factors ν = 4N + 2 the quantum capacitance c q = e 2 γ e is much larger than the classical one and induces a charge transfer from the ZLG to the graphene layer, changing the carrier density.

In this theory the density modulation, can be described by the following balance equation

γ A - e 2 d 0 (n s -n g -F ) = n s + n g
Where:

• γ is the density of states of donors in the ZLG 

n s (B, N) = n ∞ - γ v F √ 2N/l B 1 + e 2 γ/c c with n ∞ = Aγ 1 + e 2 γ/c c -n g
The lower B 1,l and higher B 1,h magnetic field boundaries for the region I respectively correspond to the magnetic fields at which the N = 1 Landau level in the electron gas of density n 1 s is respectively totally emptied which occurs at the critical magnetic field

B 1,h = h 2e   n ∞ + π 2 γv F (1 + e 2 γ/c c ) 2 - π 2 γv F (1 + e 2 γ/c c )   2
and is completely field at the critical magnetic field:

B 1,l = h 6e   n ∞ + π 6 γv F (1 + e 2 γ/c c ) 2 - π 6 γv F (1 + e 2 γ/c c )   2
In the second region (II) the Fermi energy lies in the gap between the Landau level N=1 and N=0 and the charge transfer from the SiC buffer layer keeps the filling factor constant at ν = 2 by linearly changing the carrier density with the magnetic field: n s = 2eB/h. This charge transfer stops when all the charges have been transferred from the buffer layer which happens at

B III = hn ∞ 2e
After this point the carrier density n ∞ corresponding to a completely filled N=0 Landau level, stays constant and the Landau level filling factor starts to decrease towards 0 when increasing the magnetic field.

The best parameters obtained implies a pinning of the filling factor ν = 2 between 5 and 15 T as it is visible on Fig. 

| Conclusion

In the chapter 9 we have demonstrated that a resistance standard made from graphene grown by CVD on SiC, having a low electronic density, can operate in conditions as convenient (same temperature and a much more extended magnetic range) as the most widespread GaAs/AlGaAs resistance standard in metrological institutes.

The Hall resistance shows a perfect quantization over a 9 T range from 10 to 19 T with no significant deviation within a combined standard uncertainty of 1 × 10 -9 . This makes a 9 T flat quantum From its study, the localization length was precisely extracted and we observed that ξ stay locked to the magnetic length (within 10%) over 9 T which explains the robustness of the quantum Hall effect observed in this sample. The observation of the behavior of the localization compared to the magnetic length and the appearance of a ν = 2 quantum Hall plateau extending far from its center towards the high magnetic fields goes in the direction of a magnetic field induced charge transfer from the buffer layer as already observed.

A graphene based resistance standard working in the same condition as a LEP 514 makes a clear step towards a more convenient graphene based resistance standard operating at lower magnetic induction and higher temperature. The physics of this very large plateau opens interesting questions about the link between the Hall resistance accuracy and the localization length in graphene on SiC.

For future experiments, it would be interesting to study a gated sample presenting such a large plateau. In this case we could be able to independently change the filling factor and the magnetic field to probe independently the evolution of the localization length with the carrier density and have a deeper understanding of the mechanism changing of the carrier density with the magnetic field. Also capacitance measurements as done in graphene on hBN in [START_REF] Young | Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state[END_REF] could this nanovoltmeter is the major noise source of the resistance bridge sec. 5.6.3). This therefore justifies the averaging of other measurements to reduce the measurement uncertainty. These results obtained with a combined standard uncertainty ranging from 3.2 × 10 -10 to 5.4 × 10 -10 were averaged to give a weighted mean values (-1.14 ± 1.02) × 10 -10 . It directly shows that this graphene resistance standard presents a state of the art accuracy of the Hall resistance quantization at a magnetic field much lower than the semiconductor-based ones.

One can notice that the maximum current used in this experiment is 60 µA. This limitation comes from the GaAs/AlGaAs device which is not quantized anymore (in regards of the measurement The coupling due to density inhomogeneities comes from a circulation of the current not parallel to the Hall bar channel inducing a projection of the longitudinal resistance on the transverse resistance.

The inhomogeneity coupling α inhomo will thus change its sign when the magnetic field direction is reversed and can thus naturally be written

α inhomo (+ B) = -α inhomo (-B) = sin(β)
where β is the misalignment angle of the current flow with regards to the Hall bar channel.

In the present case, the value for the geometrical contribution is α geo = -0.2 pointing towards a value of α inhomo equal to +0.6 for the magnetic field direction + B. Indeed, when returning the magnetic field to -B, the total coupling coefficient between ∆R H and R xx is found equal to -0.8, reflecting, indeed, an inversion of sign α inhomo and validating this simple model. The calculated • At ±6 T, 1.3 K, 50 µA: 2 measurements using (B,F) (one measurements for each magnetic field direction)

• At ±6 T, 1.3 K, 60 µA: 2 measurements using (B,F) (one measurements for each magnetic field direction)

• At ±8 T, 1.3 K, 50 µA: 2 measurements using (B,F) (one measurements for each magnetic field direction)

The histogram of the 28 selected values selected above is represented on Fig. 10.6D). It is also pretty well described by a Gaussian calculated from the mean value of the data, equal to 0.1×10 -11 and an experimental standard deviation of 5.6 × 10 -10 . It highlights once again that white noise is the main limiting source of precision in this experiment and that the accuracy is preserved when adding measurements done at four different magnetic fields shows that the quantization in this graphene device does not depend on B in this magnetic field range. The weighted mean of the relative Hall resistance deviation ∆R H /R H is found equal to (-0.9 ± 8.2) × 10 -11 . The final uncertainty is limited by the random uncorrelated noise of the EMN11 null detector used in the bridge. This contribution could be reduced by changing this null detector by a CCC or by implementing this device in the so called quantum Wheatstone bridge experiment as already done for GaAs/AlGaAs QHRS in [START_REF] Schopfer | Testing universality of the quantum Hall effect by means of the Wheatstone bridge[END_REF]. This new result, establishes the invariance of the Hall resistance with materials as different as graphene and GaAs/AlGaAs within a state of the art uncertainty, gives an additional support to the exactness of the QHE relation R H = h/(ie 2 ).

CHAPTER 10. LOW B, HIGH T , HIGH I GRAPHENE RESISTANCE STANDARD Finally, combining several Hall resistance measurements at magnetic fields B = ±(4; 6; 8) T, at the temperature of 1.3 K, we have shown an agreement of the quantized Hall resistance in graphene and in GaAs/AlGaAs with a state of the art relative uncertainty of 8.2×10 -11 . This reinforces the confidence in the universality of the QHE and its relation to the Planck constant h and the electron charge e, which is a basis of the forthcoming international system of units which aims to be based on fundamental constants of physics, including the redefinition of the kilogram in terms of h. Figure Fig. 10.6 E) summarize the most striking QHE comparisons carried out between GaAs/AlGaAs and Si-Mosfet [START_REF] Jeckelmann | High-precision measurements of the quantized Hall resistance:Experimental conditions for universality[END_REF], on one hand, and between GaAs/AlGaAs and graphene, on the other hand [START_REF] Janssen | Precision comparison of the quantum Hall effect in graphene and gallium arsenide[END_REF]. It shows, over time, an improvement of the accuracy, together with a facilitation of the experimental conditions, allowed by the advent of graphene. This proves the continuous progress of the quantum Hall resistance standards, that bodes well for the new SI.

Conclusion and perspectives

Starting from a highly disordered graphene sample on silicon carbide we have studied the transition between a localized state at B = 0 towards the quantum Hall effect regime. The appearance of the quantum Hall effect in such low mobility values samples shows the robustness of this effect in graphene. In a second step, the effect of the Hall bar orientation with regards to the SiC steps in the quantum Hall regime has been studied. It was shown that a Hall bar aligned along the SiC steps presents the lowest dissipation state. Moreover, we have shown that a gentle post-hydrogenation process is a possible way to reduce the initial doping of the graphene layer in order to shift the ν = 2 plateau towards the low magnetic fields targeted for an application of graphene in resistance metrology.

A complete study of Hall bars made of CVD-on-metal-grown polycrystalline graphene redeposited on SiO 2 /Si has been performed. Despite a well developed quantum Hall effect presenting typical features of high mobility graphene, a significant longitudinal resistance is measured from low temperatures and measurement currents leading to poorly quantized quantum Hall plateaus. More interestingly, the dissipation mechanism on the QHE plateaus does not follow the typical evolution as a function of the temperature, magnetic field and current expected in this regime. The study of the backscattering process occurring in these samples allowed us to show that poorly localized states were present in between the Landau levels, where one expects strongly localized charge carriers. To have a deeper understanding of the root of these delocalized states, we performed structural characterizations showing the presence of extended line defects connecting both edges of the Hall bar, potentially short-circuiting the quantum Hall edge channels. A numerical simulation performed by our collaborators shows that the presence of a line defect crossing a Hall bar could lead in the quantum Hall regime to an enhanced backscattering due to the apparition of delocalized states along the defect. This delocalized states could potentially explain the high backscattering observed in our samples as well as the peculiar evolution of the dissipation with B, T and I.

We then measured a large Hall bar made of graphene grown by chemical vapor deposition on silicon carbide. At low temperature this sample exhibits a very large R K /2 Hall resistance plateau starting from 5 T and extending up to 19 T. The comparison of the quantized Hall resistance measured on this plateau with that of a reference GaAs/AlGaAs quantum resistance standard shows a perfect agreement on a large magnetic fields range, from 10 to 19 T, within a relative measurement uncertainty of 10 -9 . For the first time a graphene resistance standard was operating in the same magnetic field and temperature conditions as galium arsenide based ones and moreover on a magnetic field range more than ten times larger. Moreover, the relative discrepancy between the quantized Hall resistances between graphene and GaAs/AlGaAs is found equal to (-2 ± 4) × 10 -10 which constitutes a new proof of the universality of the quantum Hall effect. The wide R K /2 cryofree setup allowing voltage calibration using the Josephson effect, resistance calibration using the graphene-QHRS and current calibration produced by the combination of both quantum effects, as we proposed in [START_REF] Poirier | A programmable quantum current standard from the Josephson and the quantum Hall effects[END_REF] 

  Figure1.1.: The international system of units.

Figure 1

 1 Figure 1.2.: The approximate level of agreement in dc voltage measurements among standards laboratories through the years 1930 to 2000.Extracted from[Hamilton, 2000] 

Figure 1

 1 Figure 1.3.: a) Cadmium sulfate Weston cell b) Sketch of the Josephson effect with φ 1 and φ 2 are the phase of the superconducting materials. c) Brian David Josephson (1940-) d) Josephson junction array as a standard volt. Image from NIST website e) I(V ) curve of a programmable Josephson array composed by 8192 junctions in continuous mode f j = 0 f) I(V ) curve of a programmable Josephson array composed by 8192 junctions at f J = 90 GHz.
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 1 Figure 1.4.: Georg Ohm (1789-1854)

Figure 1

 1 Figure 1.5.: Klaus von Klitzing at the Max Planck institute. Picture from the Max Plank website.

Figure 1 Figure 1

 11 Figure 1.6.: a) Comparison of the unit ohm between several NMI and the NML (Australia). b) Bilateral comparison of resistance between the BIPM and several NMIs

Figure 1

 1 Figure 1.8.: Illustration of the Thompson-Lampard theorem

  Fig. 1.9 Left) are represented the values given by the abnormal electron momentum measurement (denoted a e ), the values given by the h/m ratio (denoted h/m), the values from muonium ground-state hyperfine splitting measurement ∆ν Mu and the different values from R K obtained in different NMIs or scientific research centers .

Figure 1

 1 Figure 1.9.: Left) Values of the fine-structure constant α with u r < 10 -7 in order of decreasing uncertainty from top to bottom. Right) Comparison of five individual values of K obtained from five values of R K .Extracted from[START_REF] Mohr | CODATA recommended values of the fundamental physical constants: 2010[END_REF] 

  Figure 1.10.: Illustration of the static and dynamical phase of the Watt balance experiment.

Figure 1 .

 1 Figure 1.11.: Summary of the equations involved in the Watt balance experiment. By the end the mass is only realized from the Planck constant, the acceleration g the speed v and a constant A

Fig. 1 .

 1 Fig. 1.13 b) represent the additional electrons brought (or removed) to each island compared to the situation where the two back gate voltages are null. Crossing one of the lines delimiting two regions allows one electron to tunnel from the lead to an island or from an island to the other. More interestingly one can notice that if the backgate voltages are tuned in order to turn around (green curved arrow on Fig. 1.13b)) a point being at the intersection of three regions, the system can allows the passage of one (and only one) electron from the left lead to the right one.

Figure 1 .

 1 Figure 1.13.: a) Sketch of an electron pump composed by three junctions and two metallic islands. b) Stability diagram of the electron pump. "Turning around" a triple point allows the passage of one electron from the left to the right lead. c) I(V ) characteristics of a metallic three junctions electron pump for several frequencies.

Figure 2

 2 Figure 2.1.: a) Honeycomb lattice with sublattice A and B in blue and green. b) Reciprocal lattice with the first Brillouin zone c) STM imaging of graphene

  Figure 2.2.: Charge carrier band structure of graphene calculated with the tight binding Hamiltonian. Left:For the complete Brillouin zone Right: for a given k direction and the associated density of states.Adapted from[START_REF] Huang | Lattice dynamics of hydrogen-substituted graphene systems[END_REF] 

Figure 2

 2 Figure 2.3.: Sketch of the low energy dispersion relation around the two points K and K'.
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 2 Figure 2.4.: Evolution of the pseudo-spin in each valley and band depending on the chirality η

Figure 2

 2 Figure 2.5.: Sketch of scattering processes in the (left) diffusive and (right) ballistic regime.

  The phase coherence length [l φ ] is the length over which the phase of the wavefunction keeps a deterministic value. It is a very important lengthscale in transport experiments since it determines the typical extension of interferences effects. In the ballistic regime the phase coherence length is linked to the coherence time by l φ = v F τ φ while in the diffusive regime l φ = Dτ φ . The phase coherence length can reach several µm in clean heterostructures. A useful experiment to extract this quantity are the study of the weak localization correction to the conductivity.

Figure 2

 2 Figure 2.6.: Sketch of the characteristic lengthscales involved in electronic transport.

Figure 2

 2 Figure 2.7.: Electron-hole puddles caused by density fluctuations resulting from charged impurities situated near the SiO 2 surface.From [Martin et al., 2008] 

  fig (Fig. 2.8a)) is represented the evolution of σ versus the gate voltage for different doping concentration of potassium atoms. It is clear that the ad-atoms tend to shift the position of the minimum of σ, and, simultaneously σ(V g ) is found more and more linear, in agreement with the increase of the charged impurity density. The calculated mobility given by the Ohm's law µ = σ/(en s ) is thus also reduced when more charged impurities are present at the surface of the CHAPTER 2. CHARGE CARRIER TRANSPORT : THEORETICAL DESCRIPTION graphene layer, in agreement with the increase of the number of scattering sites.

  Figure 2.9.: Weak localization correction to the conductance. Left) The typical extension of these interferences effects is the phase coherence length l φ Center: Weak localization effects for several densities. Right: Sketch of the Intra and Inter valley scattering mechanisms.

  introduced by Landauer, then developed by Büttiker describes the transport in a conductor where the coherence length L φ is equal or larger than the sample size L. The main idea in this description is to link the conductance to the probability of electrons to cross the sample. Let us consider the simple case of unidimensional conductor connected by two leads. As L φ ≥ L the electrons are coherent in the conductor and loose the coherence in the leads, that act as reservoirs.

Figure 2 .

 2 Figure 2.10.: Landauer-Büttiker formalism: The conductance is expressed in term of the charge carriers probability to be transmitted or reflected by a potential barrier characterizing the conductor.

Figure 2 .

 2 Figure 2.11.: Illustration of the conductance of one quantum channel

  magnetic field one can write m r = -e ṙ ∧ B Solving this equation gives 2.4. THE HALL EFFECT x = Xr sin(ω c t + φ) and y = Y + r cos(ω c t + φ) The electron describes a closed motion describing circles of radius r called cyclotron orbit at a frequency ω c = eB m called the cyclotron frequency as depicted on Fig. 2.14left).
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 2 Figure 2.15.: Left: Sketch of a Hall bar with relevant length and measured values. Right: Related evolution of the longitudinal and transverse resistances with the magnetic field. From the slope of the Hall resistance we can extract two important quantities, the density and the type of the charge carrier.

Figure 2 .

 2 Figure 2.16.: Left: First observation of the quantum Hall effect in Si-MOSFET by Klauss VonKlitzing[START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF]. Right: First observation of the quantum Hall effect in a monolayer graphene.[START_REF] Novoselov | Electric field effect in atomically thin carbon films[END_REF] 

Figure 2 .

 2 Figure 2.18.: Left: Evolution of the energy spectrum with the magnetic field for Schrodinger fermions: Right: Case of Dirac fermions

Figure 2 .

 2 Figure 2.19.: Left: Motion of the electrons in the bulk and on the edge of the sample. The electrons move in counter-propagating channels situated on the edge of the sample and follows a skipping orbit motion along the sample. In the bulk of the sample the electrons will follow a cyclotron motion. Right: The Fermi energy crosses the Landau levels near the edge of the sample and creates chiral and unidimensional edge channels.

9Figure 2

 2 Figure 2.20.: Effect of magnetic field and disorder on the Landau levels shape

Figure 2 .

 2 Figure 2.21.: Sketch of the localized and delocalized electrons on the potential variations in the bulk of the Hall bar

Figure 2 .

 2 Figure 2.22.: Left: The Fermi energy lies between the Landau levels, the Hall resistance is fixed at at a quantized value in terms of R K . Center: the Fermi energy starts to enter in the upper Landau level, all the additionnal states are localized on impurities present in the bulk of the sample, they do not contribute to the net current, thus the Hall resistance makes a plateau while the longitudinal resistance stay at zero. Right: The Fermi energy lies in the center of a Landau level, the delocalized states connects both edges of the sample that become dissipative. Adapted from lectures notes by Prof M.O Goerbig and Prof. M. Sigrist.

Figure 2 .

 2 Figure 2.23.: Observation of degeneracy lifting in graphene.Left: The transverse resistance makes additional plateau sat the quantized value ν = ±1 and ν = ±4 Right: Transverse conductance versus the backgate voltage. The plateau ν = 0 is clearly visible around V g = 0 V [[START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF] 

Figure 2

 2 Figure2.24.: Energy spacing between the two first and two seconds Landau levels in monolayer graphene, bilayer graphene and GaAs/AlGaAs. The same energy spacing can be found at 0.2 T in graphene and 10 T in GaAs/AlGaAs heterostructure (usual magnetic induction for resistance standard).

Figure 2 .

 2 Figure 2.25.: Sketch of thermal activation mechanism.

Figure 2 .

 2 Figure 2.26.: Illustration of the variable range hopping mechanism.
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 63 Breakdown of the quantum Hall effectExperimentally, it has been observed that at a critical current, called breakdown current, the longitudinal resistivity starts to increase abruptly and as a consequence the Hall resistance deviates from the quantized value as we can see on Fig.2.28. This abrupt change of behavior can not be explained by the VRH mechanism and a purely Hall electrical field effect must be considered.

Figure 2 .

 2 Figure 2.28.: Evolution of the longitudinal voltage and relative difference of the Hall resistance to the quantized value versus the injected current.From[START_REF] Cage | Dissipation and Dynamic Nonlinear Behavior in the Quantum Hall Regime[END_REF] 

Figure 2

 2 Figure 2.29.: Left: The Landau levels are only bended at the edge of the sample due to the confinement potential. Center: Landau levels are tilted due to the strong electric field between the two edges of the sample. Right: Sketch of the additional mechanisms brought by the electric field in the quasi-elasticinter-Landau-level scattering (QUILLS), adapted from[START_REF] Chaubet | Heating of two-dimensional electrons by a high electric field in a quantizing magnetic field: Consequences in Landau emission and in the quantum Hall effect[END_REF] 

Fig. 3

 3 Fig. 3.1. In both cases the breakdown current I c rises with the sample size as expected but in one case a saturation of I c with the sample size is observed while in the other case not. The difference between these two results can be due to inhomogeneities present in the samples changing the electric field distribution. The typical width of a GaAs/AlGaAs resistance standard used in NMIs today is 400 µm which is very large compared to the sample size usually used for the study of mesoscopic effects in the QHE regime (∼ 1 µm)

Fig. 3 .

 3 Fig. 3.2 a), because of the chirality properties of the edge channels, the current will preferentially exit on one side of the contact and go to the opposite edge of the sample. A long distance between the current contact and the first Hall contact allows the current circulation to be parallel to the Hall bar channel and therefore do not contribute to the transverse voltage measurement. Büttiker

Figure 3

 3 Figure 3.2.: a) sketch of a non-metrological Hall bar b) image of a typical GaAs/AlGaAs Hall bar used in metrology c) Typical metrological Hall bar. The contacts are deported away from the main electronic channel, the contact between the 2DEG and the metal is large to ensure a low resistance of the contact, The current and voltage probes are well spaced one from each other.Left: Relative deviation -∆ρ xy /ρ xy versus -∆ρ min xx /ρ xy extracted from [Cage et al., 1983]. Right: Sketch of a Hall bar with equipotential lines due to the current injected by the voltmeter

  Fig. 3.2 d). A linear relationship between these two quantities is observed and the authors explain this coupling as follow. As depicted on Fig.3.2 a), because of the chiral nature of the edge states, the voltage drop between the upper and lower contacts is in fact the voltage drop between the

  The longitudinal and transverse resistances of two different metrological Hall bars (400×2000 µm 2 ) are represented on Fig.3.3. We can notice that in the sample with the lowest mobility the plateaus are wider. This is a clear insight that the disorder enlarges the plateau and fosters the Hall quantization.

Figure 3

 3 Figure 3.3.: Longitudinal and transverse resistance in two different metrological Hall bar. We can notice that the mobility plays an important role on the plateau width. The plateau used in metrology is the plateau ν = 2

Figure 3

 3 Figure 3.4.: Illustration of the 1D/2D contact extracted from[START_REF] Wang | One-dimensional electrical contact to a two-dimensional material[END_REF]. The idea in non encapsulated graphene would be to enlarge the perimeter of the contact surface between the metal and the graphene flake for example using fractal or battlement geometry.

Figure 4

 4 Figure 4.1.: Sketch of possible future stacking of 2D materials. Extracted from[START_REF] Geim | Van der Waals heterostructures[END_REF] 

  . 4.3 and Fig. 4.4 under high magnetic field and low temperature, the monolayer and bilayer graphene samples develops, respectively, typical quantum Hall resistance plateau at ν = ±2 and ν = ±4 when varying the carrier density. A comparison of the Hall resistance value on these plateaus has been made with a reference GaAs/AlGaAs standard assumed to give R K /2 on the ν = 2 plateau. As visible on Fig. 4.3 and Fig. 4.4, the authors found by an extrapolation of ∆R H /R H at the dissipationless limit (R xx = 0

Figure 4

 4 Figure 4.2.: Left: Optical micrography Picture of the 26 × 4.6 µm 2 bilayer Hall bar. Right: Picture of the monolayer 15 × 2 µm 2 Hall bar.

Figure 4

 4 Figure 4.3.: a) Longitudinal and transverse magneto-resistance in the exfoliated monolayer graphene. b) ∆R H /R H versus R xx in the monolayer sample. extracted from [Guignard et al., 2012].

Figure 4

 4 Figure 4.4.: Left) Longitudinal and transverse magneto-resistance at several magnetic induction in a the bilayer sample. Right) ∆R H /R H versus R xx for several measurement currents.Extracted from[START_REF] Guignard | Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements[END_REF] 

Figure 4

 4 Figure 4.5.: Left) Large area unprocessed exfoliated graphene flakes on GaAs substrate (a) and a complete graphene device (b) made from the monolayer marked by the dotted line. Right) (Color online) (a) Quantum Hall effect in graphene on GaAs showing Hall (upper panel) and longitudinal (lower panel) resistances in dependence on the magnetic field. Data for two different carrier concentrations were taken in different cool-down cycles. The concentrations were determined from low field Hall measurements. Inset (b) shows a magnified longitudinal resistance plot for a magnetic field range from 13.8 T to 18 T. (c) Longitudinal voltage drop in dependence on the supply current at the magnetic field 18 T. The sloped line represents a threshold resistance of 10 mΩ.Extracted from[START_REF] Woszczyna | Precision quantization of Hall resistance in transferred graphene[END_REF] 

Figure 4

 4 Figure 4.6.: a) Sketch of the crystalline structure of the Si-terminated face of hexagonal SiC. b) Sketch of the different crystallographic stacking corresponding to the 3C, 4H and 6H hexagonal SiC.

  Figure 4.7.: a)Sketch of the SiC bulk, the buffer layer, and the "active" graphene layer. b) Same type of sketch with the illustration of the dangling bonds at the surface of the SIC substrate. c) Vacuum chamber and resistive heater used for the growth of SiC based graphene. Extracted from Georgia tech university website. d) STM image of a moiré patern due to the 6 √ 3 × 6 √ 3 R30°buffer layer between two atomic steps of SiC. Extracted from F.Varchon PhD thesis. e) Structural model of the 6 √ 3 × 6 √ 3 R30°r econstruction showing the Si-terminated (1 × 1)-SiC substrate and the graphene-like lattice of the initial carbon layer. Extracted from[START_REF] Riedl | Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation[END_REF] 

Fig. 4

 4 Fig. 4.8 d) where the monolayer Hall bar extends over several SiC steps visible by contrast effect.In addition to the possible presence of multilayer stripes, the step edges can potentially have other impacts on the electronic transport. First, the curvature of the graphene film has to change at the step edge to go to the next one, secondly the distance to the substrate change locally at this point. It can result a variation of the doping induced by the substrate at the step edge impacting the electronic transport. Since all the steps are aligned we expect anisotropic footprints on the electronic transport experiments. This anisotropy will be studied in the chapter dedicated to the experiments.

  Fig. 4.9 f) is represented the result of comparisons of the Hall resistance in the graphene sample on the ν = 2 plateau (for the lowest carrier density) with a GaAs/AlGaAs resistance standard for several measurement currents between 25 and 100 µA at the magnetic field of 14 T (except for the black point, measured at B = 11 T). From the the weighted mean of this data-set the authors have calculated a relative deviation of the Hall resistance in the graphene to the quantized value equal to (-4.7 ± 8.7) × 10 -11 which stands as a state of the art measurement in resistance metrology and reinforces the universality of the quantum Hall effect.The authors have proven that the quantization requested for an application in resistance metrology could be achieved in graphene from an epitaxial source and that graphene was very promising to inject large currents in the quantum Hall effect regime while keeping a low dissipative state. It was a real breakthrough since it was a direct proof of the possibility to use graphene in the quantum Hall effect regime as a quantum Hall resistance standard (QHRS) to calibrate resistors for the industrial CHAPTER 4. GRAPHENE FABRICATION AND STATE OF THE ART IN Ω-METROLOGY

Figure 4

 4 Figure 4.9.: a) Transverse ρ xy and longitudinal ρ xx resistivity measurement of the sample before the covering with the PMMA-ZEP520 resist. The carrier density in this sample is equal to 8.5 × 10 11 cm -2 b) Transverse ρ xy and longitudinal ρ xx resistivity measurement of the sample after the covering and first UV insulation of the PMMA-ZEP520 resist, the carrier density is reduced to 6.7 × 10 11 cm -2 . The horizontal lines indicate the exact quantum Hall resistivity values for filling factors ν = ±2 and ±6.c) Right axis: ρ xx and ρ xy versus B for a carrier density equal to 4.6 × 10 11 cm -2 after a second illumination of the sample. Left axis: Breakdown current evolution with B for two R xx contacts pairs at T = 1.5 K d) measurement of R H (GaAs/AlGaAs-graphene) = [R H (GaAs/AlGaAs,B = 10.5 T) -R H (graphene,B)]/(R K /2) and ρ xx as a function of B on the graphene device. T = 0.3 K for the graphene device and 1.5 K for the GaAs/AlGaAs device. The measurement current was 60 µA. Top and bottom: high-resolution measurements of ∆(GaAs/AlGaAs-graphene) and ρ xx demonstrating 10 -9 -level quantization.For the middle panel the carrier density was 4.6 × 10 11 cm -2 and for the top and bottom panels the density was 6.7 × 10 11 cm -2 . ppm=part per million(10 -6 ) and ppb=part per billion (10 -9 ) f) ∆(GaAs/AlGaAs-graphene) for several measurement current I at the magnetic field of 14 T (except the black point taken at 11 T) and temperature of 0.3 K. All the curves presented here are extracted from[START_REF] Tzalenchuk | Towards a quantum resistance standard based on epitaxial graphene[END_REF], Janssen et al., 2012].

  Additional precise measurements have been performed after the illumination under UV and are represented as open triangles on Fig. 4.10 right). Using the same measurement current of 41 µA, at B = 8 T, the authors observed a deviation of the Hall resistance in the graphene sample to the quantized value equal to 1.5 × 10 -7 which is covered by the combined measurement uncertainty of the measurement also equal to 1.5×10 -7 . This shows that despite the increase of the mobility due to the reduced carrier density, the agreement between the Hall resistance in graphene and GaAs diminished for the same (B, T, I) conditions.It shows that even with large scale high mobility graphene it is not straightforward to reach the 10 -9 goal on the Hall resistance accuracy. The homogeneity of the carrier density has therefore to be considered with a special care for an application in resistance metrology which is challenging in the case of several 100 µm-wide Hall bars. Nevertheless we will see in this manuscript that nowadays it is possible to process large scale Hall bars with a low and homogeneous carrier density, compatible with an application in resistance metrology.

Figure 4 .

 4 Figure 4.10.: Left: Hall resistance, R xy , and (b) longitudinal square resistance, R xx , versus magnetic field at T = 1.5 K and I SD = 10 µA before (dashed line) and after (solid line) illumination of the sample with UV light. Right: Deviation dR H measured in magnetic field range 2.5 T -8 T after (open triangles) and before (solid diamonds) illumination with UV light. Horizontal axis is the absolute value of magnetic field. In inset the results of the deviation measurement of non-illuminated sample at the same Hall contacts at B = -8 T, T = 1.5 K and I = 41 µA are presented.

Figure 4 .

 4 Figure 4.11.: a) View of the CVD reactor for graphene fabrication. b) view of the controlling setup for graphene fabrication c) Typical copper substrate used for graphene fabrication. d) and e) Transfer of CVD graphene on a 2 inches SiO 2 /Si substrate. Extracted from Vitto Zen Han PhD thesis.

Figure 4 .

 4 Figure 4.12.: Top: sketch of the CVD on metal process.The carbon atoms will first be dissolved in the metal and then escape by the substrate defect sites. Depending of the dynamics of the cooling the carbon atoms can form a monolayer or additional layers can be formed on the top of the metal's defect site.Bottom: When the growth process continues each grain will then have to percolate to form a continuous graphene film with grain boundaries. Extracted from Vitto Han PhD thesis and[Mattevi et al., 2011] 

Figure 4 .

 4 Figure 4.13.: Extracted from[START_REF] Geng | Uniform hexagonal graphene flakes and films grown on liquid copper surface[END_REF] 

Figure 4 .

 4 Figure 4.14.: Illustration of the bubbling transfer process. Extract from[START_REF] Gao | Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[END_REF] 

Figure 5

 5 Figure 5.1.: Experimental room during construction. The copper foil is visible on the walls.

Figure 5

 5 Figure 5.2.: a) Drawing of a 3 He fridge, b) Comparison of specific heat variation of liquid 4 He at vapourpressure ; 3 He and copper (adapted from[Pobell, 2007]) c) Picture of the buried Helium 3 fridge used at LNE.

Figure 5

 5 Figure 5.3.: Left) Helium three insert and the 18-20 T magnet Right) Switched-mode 120 A power supply (top) and bipolar linear power supply (bottom)

Figure 5

 5 Figure 5.5.: Sketch of a typical resistance measurement

Figure 5

 5 Figure 5.7.: Sketch of a CCC

  For the CCC used in our experiments S CCC = 8 µA.turn /φ 0 thus typically for a 2000 turns winding the sensibility is S 2000t CCC = 4 nA/φ 0 and a noise resolution of 40 fA/ √ Hz with a quantum design DC SQUID. As it is visible on Fig. 5.8 additional shielding are placed around the CCC and the SQUID in order to screen the electromagnetic perturbations from the surroundings. It is also important because the CCC is placed at only few meters from the 20 T magnetic coil which still produces several tens of Gauss at a few meters from the cryostat.

Figure 5 Figure 5

 55 Figure 5.8.: Left) picture of the cryogenic current comparator (CCC) Right) CCC support with the three shielding present around it to screen any electromagnetic perturbations from the surroundings

  This voltage measurement sequence is represented by the letter A on Fig. 5.11. 3. We inject the currents I p-and I s-in the two resistors and wait again 8 seconds 4. We measure V -( + , I -) during ∼ 20 seconds: Letter B on Fig. 5.11 5. Without changing any parameter we measure once again V ( + , I -) during ∼ 20 seconds: Letter C on Fig. 5.11 6. We inject the currents I p+ and I s+ in the two resistors and wait 8 seconds 7. We measure V + ( + , I + ) and then we come back to step 2: Letter D on Fig. 5.11 So each group is composed of 2 measures of

Fig. 5 . 11 .

 511 Fig. 5.11. One can notice that for a same current polarity the voltage signs are inverted since the compensations + and -are symmetric to = 0.

  Figure 5.11.: Principle of a resistance calibration measurement. For two symmetric compensations ( + on left and -on right) the voltage is measured by the null detector with a positive (area A and D) and negative (area B and C) current applied.

  Here we detail the typical A-type uncertainty values for the calibration of a 100 Ω resistor. We use a current of 42 µA, N p = 2065, N s = 16 and N a = 16 at 1

  During my PhD I have developed programs in order to automatize the experiments and have a graphical interface to set all the parameters and see the measured data on screen. The two main solutions usually considered are the Labview software suite and the direct coding of the software. Both alternatives have advantages and drawbacks, in our group we have rather chosen the alternative of a Python-based program because it is free, coder-friendly, "modulable", and have access to many scientific libraries. The central part was done using python 2.7, the graphical interface was done using PyQt and the data managing and plotting libraries come from the Pylab project. A very convenient and up to date installer for a scientific use of Python is developed by Pierre Raybaut (from CEA) and called python(x,y). Another interesting software based on python is developed by Brian d'Urso and called Pythics. It looks very promising since it provides an easy creation of graphical interface and a very good management of the computer resources allowing the serial use of software.5.8. CONCLUSION

Figure 6

 6 Figure 6.2.: a) Evolution of the function β with the conductance. b) sketch of an extended state with mean free path l. c) Sketch of a localized state on the typical length ξ.Extracted from[Lee, 1985] 

  Using the estimation of the weak localization in two dimension 2.13 and the equation 2.11 we can express the equation above as: tr which gives the following expression of the localization length ξ = l tr exp (πk F l tr ) (6.1) 6.1.2 | Localization and delocalization at B = 0 In this picture any two-dimensional electron gas can not escape from an insulating behavior, switching from weak to strong Anderson localization. This picture is no longer valid when a magnetic field B is introduced in the problem, since B breaks the time reversal symmetry and thus cancels the localization contribution to the conductivity such as weak localization. Let us recall few fundamental ingredients from chapter 2 about localization in the quantum Hall effect regime. If the Fermi energy lies between two Landau levels, the electrons present in the bulk of the sample are localized on equipotential lines with a typical extension ξ. As one moves the Fermi energy towards

  Figure 6.3.: Evolution of the localization length at the surrounding of a Landau level. When the Fermi energy goes towards a LL center the localization length rises up to a threshold value called the mobility edge. At this points the electronic islands have merged to connect the edges of the sample.

Figure 6

 6 Figure 6.4.: a) ARPES spectra showing a linear dispersion. From the shift of the Dirac energy E D = 0.3 eV, measured with respect to the Fermi energy, we estimate a carrier concentration of n s = E 2 d /(π 2 v 2 F ) = 1.6 × 10 12 cm -2 . b) Raman spectra of the graphene sample (black solid line) and of a SiC substrate (red dashed line). Contributions at the G and 2D band are observed, together with an important signal at the defect band D. c) Sketch of the sample and principle of a Hall measurements, the size of the central region is 50 × 50 µm 2

Figure 6

 6 Figure 6.5.: Longitudinal and Hall magnetoresistance, diffusive sample S1. (a) Longitudinal magnetoresistivity measured during the first cooldown, for temperatures between 1.6 and 100 K. At low temperature the weak localization peaks develops. In this localized regime, resistance increases when decreasing the temperature. At higher fields the sign of the magnetoresistance depends on temperature: at low T the resistivity drops towards zero, indicating quantum Hall effect, while at high temperature the magnetoresistivity has the opposite sign. (b) Hall resistivity, the kink around zero is due to the magneticfield-symmetric term arising from a geometrical ρ xx contribution. At higher fields ρ xy becomes nonlinear anticipating the Hall plateau at ν = 2. The nonlinearity increases strongly as the temperature decreases.In the inset a large B-sweep corresponding to the lowest temperature is shown.

Figure 6

 6 Figure 6.6.: Magnetoresistance, highly disordered samples. Longitudinal (a,c) and Hall (b,d) magnetoresistivity at different temperatures for sample S1-second cooldown and sample S2. The behavior is the same for both samples, with R xx crossing at a well-defined, temperature-independent magnetic field B S1 c1 ∼ 3.3 T and B S2 c1 ∼ 5.2 T respectively. In the inset of (a) we show a zoom closer to the crossing point, data covers temperatures between 1.6 and 36 K. The sign of the temperature dependence of R xx changes at B c1 , as symbolized by the vertical gray arrows.

Figure 6

 6 Figure 6.7.: Extraction of the critical exponent kappa. Longitudinal (top) Hall and (bottom) Hall magnetoconductivity, for different temperature, sample S2. The Hall term also shows a well defined crossing point at B S2 c2 ∼ 4.5 T. The slopes of σ xy (B) scales with temperature at B c2 according to ∝ T -κ . The critical exponent κ equal to 0.26 ± 0.03 is extracted from the fit of these slopes as shown in the inset.

Figure 6

 6 Figure 6.8.: a) Evolution of the localization length at the surrounding of a Landau level. When the phase the coherence length is smaller than the localization length the states have a finite localization length and exhibit an insulating behavior. When this threshold is surpassed the states are characterized by a divergent localization length and the electrons present a delocalized behavior. The filling factor (or more generally the Fermi energy value) at the transition ξ = l ϕ is called the mobility edge and is depicted in orange on the sketch. b) Sketch of the delocalized and localized states in a Landau level, respectively situated around the LL center and in the LL tail. c) Evolution of the longitudinal and transverse conductivity with the temperature. Low temperature sharper the transition inducing larger quantum Hall plateaus.

  energetic interval |ν -ν c | between the mobility edges defined by ξ = l ϕ evolves with the temperature as |νν c | ∝ T -κ with κ = 1 γz Therefore when the temperature is lowered, the mobility edges are found more and more closer to the LL center, inducing a sharper transition. Since the width of σ xx reflects the energetic evolution of the mobility edges, by measuring the width evolution of σ xx with T , one has an experimental access to the exponent κ. Similarly, as depicted on Fig. 6.8 c) if the width of σ xx evolves as T -κ the slope of the transverse component σ xy at the transition should also evolve as dσ xy dν ∝ T -κ with κ = 1 γz giving a second "method" to extract the critical exponent κ. Let us come back to the experimental data.

under H 2

 2 Figure 7.1.: Schematic representation of hydrogenation process: after hydrogen exposure the Si dangling bonds between SiC and interface are saturated by hydrogen.

Figure 7

 7 Figure 7.2.: Structural Properties of Epitaxial single-layer graphene after hydrogenation. a) C 1s XPS spectra for epitaxial graphene after hydrogenation at 820°C at hν = 340 eV. XPS measurements were performed at ϕ = 45°emergency angle with respect to the sample normal. This spectrum shows the presence of the interface layer after hydrogenation. b) Typical Raman spectra of the graphene sample on SiC after hydrogenation. Contributions at the G and 2D band are observed, together with a very low signal at the defect band D.

  impact of the Hall bar orientation.

Figure 7

 7 Figure 7.3.: Optical picture of the Hall bar with no misalignment respectively to the SiC steps orientation (used during these experiments). The ∼ 2 µm wide SiC steps are clearly visible under polarized light with an optical microscope.

Figure 7

 7 Figure 7.4.: Longitudinal and transverse magneto resistivity for samples S-A, S-B and S-BH2 at the temperature of 1.6 K

Figure 7

 7 Figure 7.5.: Longitudinal and transverse mangneto-resistivities with 3 different misalignments (0°, 45°,90°) from the BH2 sample series.

Figure 7 Figure 7

 77 Figure 7.6.: Schubnikov-de Hass oscillations are observable on R xx at magnetic inductions as low as 1 T corresponding to LL filling factors as high as ν = 42

Figure 7 Figure 7

 77 Figure 7.8.: Left) Optical picture of the large Hall bar. Right) Sketch of the Hall bar. The orange pads correspond to the contacts used to inject the current in the Hall bar. The blue and green pads refer to the contacts used to measure the (blue and green) curves presented on Fig. 7.9.

  research group of Vincent Bouchiat from Néel Institute in Grenoble. It produces polycrystalline CVD graphene grown on copper using the method explained in chapter 4. The copper underneath the graphene layer (covered by a PMMA layer) was etched using (NH 4 ) 2 S 2 O 8 and then redeposited on a 285 nm thick SiO 2 /Si substrate. We measured two large (200 × 400 µm 2 ) Hall bars made out of the same graphene layer visible on Fig. 8.1. These Hall bars were fabricated by optical lithography and oxygen plasma etching. The contacts were made of (50 nm/60 nm) of Ti/Au.

Fig. 8 .

 8 Fig. 8.1 also shows the presence of optical resists residues and/or PMMA inside and outside the graphene area that is clearly visible by optical microscopy.

Figure 8

 8 Figure 8.2.: Conductivity and mobility of the charge carriers according to the Drude formula µ = (R n s e) -1versus carrier density for the two studied samples S1 and S2. measurement done at 0.3 K and 100 nA

  Figure 8.3.: Temperature evolution of the weak localization correction to the conductivity with the corresponding fits for different temperatures between 0.3 and 20 K at a carrier density n s = -2.65 × 10 11 cm -2

Figure 8

 8 Figure 8.4.: L φ v s T -0.5 for six different carrier densities. Excluding the point at the lowest temperature let appear that the data points are aligned along a strait line, indicating an evolution of L φ proportional to T -1/2 . The orange curves correspond to the fit following the Altshulter theory explain in the main text.

Figure 8

 8 Figure 8.6.: Evolution of the phase coherence length with the square root of the density for several temperatures between 0.3 and 20 K. The orange curves correspond to the fit following the Altshulter theory explain in the main text.

xy

  With ρ xy = R xy , and, in our case, since the sample width and the distance between the Hall probes is equal to one: ρ xx = R xx .

Figure 8 Figure 8

 88 Figure 8.7.: Top left: Longitudinal resistance versus Landau level filling factor ν at B = 19 T for several temperatures from 0.3 K to 40 K. Top right: Transverse resistance versus ν at B = 19 T for several temperatures from 0.3 K to 40 K. Bottom left: Zoom on the longitudinal resistance (top left) versus ν. Bottom right: Zoom on the transverse resistance versus ν. The measurement current used was 1 nA,1 Hz

  same type of study has been performed on the sample S2. The evolution of R xx and σ xx versus the LL filling factor ν, at B = 19 T is represented on Fig.8.9 for several temperatures between 0.3 and 40 K. As in the first sample, typical quantized plateaus of monolayer graphene appear on R xy and σ xy at ν = ±2. The dissipation was also found to be very large in this sample. For the lowest temperature of 0.3 K, on the ν = ±2 plateau the longitudinal resistance was about 100 Ω for current as low as 100 nA. We can also notice that the R xx peaks corresponding to the Landau levels n = -1 shift strongly in ν with the temperature as well as the σ xx peak corresponding to the n=0 LL. It could be due to a change of the carrier density with the temperature occurring in the sample. One could think that it can originate from a variation of the number of donors originating from adatoms on the graphene layer or in the grain boundaries.The highly dissipative behavior observed in both samples on the ν = 2 plateau, most likely inherits from the peculiar structural properties of the graphene layer since it has been observed in both samples. To have a better understanding of the dissipation mechanism at place, we first focused our attention on the temperature dependence of σ xx reflecting the backscattering rate of the charge carriers in the quantum Hall regime.

Figure 8

 8 Figure 8.9.: Evolution of the Top left) R xx Top right) R xy . Bottom left) σ xx Bottom right) σ xy versus ν at B =19 T for several temperatures between 0.3 and 30 K

Figure 8

 8 Figure 8.10.: Evolution of σ xx with the temperature at B = 19 T for different dissipation mechanisms representations, for filling factors between ν = -3.2 and ν = -1.8: Upper right: T σ xx v s T -1/3 with y-axis in log scale corresponding to the Mott variable range hopping representation, Lower left: T σ xx v s T -1/2 with y-axis in log scale corresponding to the Efros-Schklovskii variable range hopping representation. Lower right: σ xx v s T -1 with y-axis in log scale corresponding to the activation mechanism representation.

Figure 8 Figure 8

 88 Figure 8.11.: Evolution of σ xx with the temperature at B = 19 T for different dissipation mechanisms representations, for filling factors between ν = 2.2 and ν = 4.5: Upper right: T σ xx v s T -1/3 with y-axis in log scale corresponding to the Mott variable range hopping representation, Lower left: T σ xx v s T -1/2 with y-axis in log scale corresponding to the Efros-Schklovskii variable range hopping representation. Lower right: σ xx v s T -1 with y-axis in log scale corresponding to the activation mechanism representation.

Figure 8

 8 Figure 8.13.: Left: Sketch of the typical evolution of the localization length ξ with ν. The energetic distance between the two closest mobility edges between two adjacent Landau levels is called the mobility gap. It reflects the experimental value ∆E extracted from the thermal activation mechanism. Right: Same sketch with a reduction of the mobility gap as it is considered in our sample.

Figure 8 .

 8 Figure 8.15.: Evolution of the longitudinal conductivity of sample S1 versus the temperature in log-log representation for filling factor ν = -4, -6, -2.3, +2

Figure 8

 8 Figure 8.16.: Left) Evolution of σ xx of sample S2 versus ν for several temperatures. Evolution of σ xx of sample S2 versus the temperature in log-log representation for the LL filling factor ν = -3, -2, -1.

Figure 8

 8 Figure 8.17.: Top left: σ xx versus ν at T = 0.3 K for several magnetic fields from 4 to 20 T. Top right: σ xy versus ν at T = 0.3 K for several magnetic fields from 4 to 20 T. Bottom left: R xx versus ν at T = 0.3 K for several magnetic fields from 4 to 20 T. Bottom right: R xy versus ν at T = 0.3 K for several magnetic fields from 4 to 20 T. The measurement current used was 1 nA,1 Hz

Figure 8 .

 8 Figure 8.18.: Power law evolution of the conductivity versus the magnetic field. The exponents are included in [-1.5, -3.5]

Figure 8

 8 Figure 8.19.: Top: Evolution of the longitudinal conductivity σ xx versus the temperature in log-log scale for sample S1 (left) and S2 (righ). Bottom: Correspondence between current and temperature giving the same longitudinal conductivity values.

  sity corresponding to the filling factor ν 2 at 19 T and R B=0 xx = 1.8 kΩ, one can calculate for S1 I = 1.09 × 10 -6 T 2 which is in good agreement with our experimental relationship I = 0.87 × 10 -6 T 1.7 * (with I and T expressed in A and K) for sample S1. For the sample S2, considering R B=0 xx = 1.9 kΩ at n s = 9 × 10 15 m -2 one finds I = 0.97 × 10 -6 T 2 and the measured relation is I = 0.6 × 10 -6 T 2.1 * for the low temperature regime. This shows the good agreement once again between the value calculated from the theory and the measured experimental relationship. The agreement is a bit poorer but keeps the same order of magnitude in the high temperature regime of S2, where experimental data gives a relationship I = 4.4 × 10 -6 T 1.7 * .

Figure 8

 8 Figure 8.20.: a) Optical image of a representative area of the Hall bar. b) SEM image of the Hall bar on the same region. c) D peak signal of Raman map on the same area. d) AFM measurement on the same area as Raman spectra e) Raman signal taken inside and outside a wrinkle. f) Sketch of the Hall bar with the percolated grain domains. g) STM image of a grain boundary.Taken from[START_REF] Huang | Grains and grain boundaries in single-layer graphene atomic patchwork quilts[END_REF] 

Figure 8 .

 8 Figure 8.23.: (a) Chiral channels along the edges of the two uncoupled parts of a ribbon. (b) Channels for the complete ribbon with a line defect

  Figure 8.24.: Different types of wrinkles present at the surface of CVD-grown graphene redeposited on a substrate.

8. 5 .

 5 POSSIBLE OTHER DISSIPATION MECHANISM SCENARIOS unusual backscattering process and the metallic behavior of the charge carriers in the quantum Hall regime. 8.5.3 | Charged line defects / p-n junctions

  8.26a) (bi-polar regime) the conductance follows g = |ν 1 ν 2 |/(|ν 1 | + |ν 2 |). If one considers the case b) (unipolar regime), the edge channels are flowing in opposite directions and the conductivity measured is the minimum value between |ν 1 | and |ν 2 | in e 2 /h unit.

  Fig. 8.8 (or even better later in this manuscript on Fig. 8.43) that the plateau at σ xy e 2 /h appears at ν 0.6. Now, if one look a the corresponding conductivity for a symmetric filling factor of ν = -0.6 it precisely correspond to the beginning of the σ xy = 2e 2 /h quantum Hall plateau.

8. 5 . 4 |

 54 Figure 8.27.: Power law dependence of the conductance of a single wall carbon nanotube. Exponents for different samples can be seen on the top of the figure. The dashed lines represent the conductance after corrections due to the Coulomb blockade.Extracted from[START_REF] Bockrath | Luttinger-liquid behaviour in carbon nanotubes[END_REF] 

  Fig. 8.28 right), we can notice that it first follows T 0.22 , which is in agreement with the evolution of σ peak xx in the region II, before going down, in agreement with the evolution of σ peak xx in the third

Figure 8

 8 Figure 8.28.: Evolution of the conductivity in the Landau levels with the temperature in the semi-classical model developed by Flöser, Champel and Florens.Extracted from[START_REF] Flöser | Transport via classical percolation at quantum Hall plateau transitions[END_REF] 

Figure 8

 8 Figure 8.29.: Left) longitudinal B-symmetrized conductivity versus the filling factor for several temperatures between 0.3 and 40 K. Right) transverse B-anti-symmetrized conductivity versus the filling factor for several temperature between 0.3 and 40 K.

Figure 8 Figure 8 Figure 8

 888 Figure 8.30.: Longitudinal (top) and transverse (bottom) conductivity for the plateau transitions left) ν = -10|ν = -6 , center) ν = -6|ν = -2 and right) ν = +6|ν = +2

Figure 8 .Figure 8

 88 Figure 8.33.: a) n = 0 Landau level splitting corresponding to a valley splitting then a spin splitting when increasing the magnetic field B. b) Same situation but involving first a spin splitting then a valley splitting when increasing B.

(

  visible on Fig. 8.35 b)) they have concluded that the ν = 0 state, in their case, was a valley polarized quantum Hall insulator state whereas the states arising from the degeneracy lifting of the n = 1 LL (ν = -4, -8, -12) were spin polarized. Thanks to the evolution of R xx with the temperature (in three different samples) they have extracted the energy gap 0 ∆ bounded to the ν = 0 plateau as represented on Fig. 8.35 a). They found that 0 ∆ is much higher (∼250 K at ∼20 T) than the Zeeman energy and the only energyscale compatible with 0 ∆ was the Coulomb energy as we can see from Tab. 8.3. Nevertheless 0 ∆ evolves linearly with B which is not directly compatible with the magnetic field evolution of the Coulomb energy which has a √ B scaling. It

Figure 8 .

 8 Figure 8.35.: a) B ⊥ dependence of the ν = 0 gap, 0 ∆, for several devices. 0 ∆ increases approximately linearly with applied B ⊥ , a feature not associated with any currently proposed theory for the ν = 0. b)Tilted field dependence of the resistance of the ν = 0 state. The resistance increases exponentially with field, consistent with a gapped state with 0 ∆ ∝ B ⊥ . The resistance at fixed B ⊥ decreases for higher tilt angles, indicating a spin-unpolarized state. c) ν = -1 energy gaps increase with B T . Extracted from[START_REF] Young | Spin and valley quantum Hall ferromagnetism in graphene[END_REF] 

Figure 8

 8 Figure 8.36.: Phase Diagram for SU(4) quantum Hall ferromagnetism in the n = 0 and n = 1 Landau levels of graphene. Ferromagnetic order near integer filling factors requires the minimum values for this product indicated on the right-hand vertical axis.Extracted from[START_REF] Nomura | Quantum Hall Ferromagnetism in Graphene[END_REF]].

  Fig. 8.37 we can clearly see that σ xy makes a plateau at value close to σ xy = 0 × e 2 /h meanwhile σ xx drops towards zero. As we said, the particularity with other quantum Hall plateau comes when we take a look at the longitudinal resistance R xx . At low temperature R xx reaches values higher than 100 kΩ, far above h/e 2 while the transverse resistance also overpass the quantum of resistance 9 . It is clear that the behavior of both R xx and R xy on Fig. 8.37 tends towards the quantum Hall insulator (QHI) case described earlier in this section. It is important to stress out that only the QHI regime characterized by a divergence of R xx on the ν = 0 plateau has been observed for graphene redeposited on SiO 2 /Si in all the previous works cited above.

Figure 8 .

 8 Figure 8.37.: Evolution of Top left: longitudinal conductivity Top right: transverse conductivity Bottom left: longitudinal resistance Bottom right: transverse resistance on the ν = 0 plateau for several temperatures at B = 19 T

  Fig. 8.40 d). In our case at 20 T, a temperature independent crossing point appears around ν = -0.36 on R xx as it is visible on Fig. 8.40 a) b) which corresponds to a carrier density of n s = -1.74 × 10 11 cm -2 . "Unfortunately" the transition from the ν = 0 insulating state towards the QHE on the electron side is "corrupted " by the presence of the ν = 1 plateau which shifts the position of the transition. We have reported our experimental values in the (n s , B) phase space of Zhang et al. for the magnetic field of 20 T: (-1.74 × 10 11 cm -2 , 20 T) and for 19 T (-1.63 × 10 11 cm -2 , 19 T). One can notice on Fig. 8.40 d) that the transitions appear at lower carrier density than the previous measured (or extrapolated) data by other groups, but keeps the same order of magnitude. One can notice that the (n s , B) values we found, are, nevertheless in good agreement with the data found by the other groups for the transition occurring at positive carrier densities 11 .

Figure 8

 8 Figure 8.40.: a)R xx v s ν for several temperatures between 0.3 and 10 K at 20 T. b) Zoom on the temperature independent crossing point of the curve a). c) Sketch of the splitting of the Landau levels in graphene. Extracted from [Zhang et al., 2010]. d) The experimental phase diagram of the Quantum Hall Metal-Insulator transition in graphene obtained from the Zhang data. It also accommodates various data published in Refs[START_REF] Zhang | Landau-level splitting in graphene in high magnetic fields[END_REF], Abanin et al., 2007, Checkelsky et al., 2008, Giesbers et al., 2009, Zhang et al., 2009, Zhang et al., 2010] as well as our data represented as orange dots.

Figure 8 .Figure 8

 88 Figure 8.41.: σ xx as a function of LL filling factor at four perpendicular magnetic fields at T = 1.7 K. The shaded bands highlight the developing filling factors as the four-fold degeneracy of the ZLL is broken, each manifested as a vanishing bulk conductance.Extracted from[START_REF] Zhao | Magnetoresistance measurements of graphene at the charge neutrality point[END_REF] 

Figure 8 .

 8 Figure 8.43.: Evolution of Top left: longitudinal conductivity Top right: transverse conductivity Bottom left: longitudinal resistance Bottom right: transverse resistance on the ν = 1 plateau for several temperatures between 0.3 and 40 K at B = 19 T

8. 7 .Figure 8

 78 Figure 8.44.: Evolution of the B = 0 resistivity versus the gate voltage V g for after each annealing process.

Figure 8

 8 Figure 8.45.: Comparison of the B = 0 conductivity and mobility versus the carrier density before and after the annealing process measured at T = 0.3 K

Figure 9

 9 Figure 9.1.: a)Sketch of the SiC bulk, the buffer layer, and the "active" graphene layer. b) Same type of sketch with the illustration of the dangling bonds at the surface of the SIC substrate responsible for the typical high electron doping of the graphene layer.

Figure 9

 9 Figure 9.2.: (a) AFM topography image of the SiC terraces. (b) AFM phase image shows thicker regions. Scale bar 500 nm. (c) ARPES spectra taken at the K point of the graphene Brillouin zone for the sample after outgassing at 500°C. Spectra were acquired along the direction perpendicular to the Γ -K direction in reciprocal space. The photon energy was 36 eV. The light was p polarized. The blue and solid lines are fits for monolayer and bilayer graphene respectively. (d) ARPES intensity taken at E b = -1 eV, along k ⊥ , evidences the small bilayer contribution at k ⊥ = ±0.17 Å-1 (red arrows). (e) LEED image measured at 70 eV after initial outgassing at 500°C enlightening the presence of the 6R √ 3×6R √ 3-R30°reconstruction layer

  Figure 9.3.: Longitudinal and transverse resistances versus magnetic induction at the temperature of 0.3 K and measured with a 100 nA low frequency current for the graphene sample and measured at 1.3 K, 100 nA for the LEP 514 GaAs/AlGaAs resistance standard. The Landau level filling factor ν = 2 is found respectively at B = 6.6 T and B = 10.6 T in the graphene and the LEP 514 samples.

Figure 9

 9 Figure 9.4.: Left: Sketch of the 3-terminal measurement principle. Right: Measured contact's value using the 3-terminal measurement method.

  Fig. 9.5 are represented R I1I2,V 1V 2 , R I1I2,V 3V 5 (renormalized to a square) and R I1I2,V 1V 4 and R I1I2,V 2V 3 versus the magnetic field at the temperature of 1.4 K. One can notice, on each side of B = 0, an asymmetry on R I1I2,V 3V 5 . It is probably induced by the injection of the current by the voltage contact which tilt the current flow compared to the Hall bar channel and therefore corrupt the R xx measurement. Nevertheless the resistance R I1I2,V 1V 2 seems to stay symmetric with B which is consistent since it measures the resistance on the same side as the current is injected.Nonetheless the extracted density and mobility values are not changed considering the values given by the two R xx and R H values. This proves that the sample presents a good spatial homogeneity of the electronic density.

Figure 9

 9 Figure 9.5.: Magneto-resistivity of the two longitudinal resistances (R I1I2,V 1V 2 and R I1I2,V 3V 5 ) renormalized to a square, and the two transverse resistances (R I1I2,V 1V 4 and R I1I2,V 2V 3 )

Figure 9

 9 Figure 9.7.: Evolution of the longitudinal resistance between V 3 and V 5 with the injected current for several magnetic fields between 10.5 T and 19 T at the temperature of 1.4 K

Figure 9

 9 Figure 9.8.: Measured longitudinal resistances per square with related uncertainties for the configuration V 1 V 2 and V 3 V 5 . The current used is 20 µA and the temperature is 1.4 K

ν = 2

 2 plateau of a LEP 514 GaAs standard R GaAs H supposed to realize R K /2 at B = 10.8 T. Then, we calibrate the 100 Ω resistor in terms of the Hall resistance measured in graphene on the ν = 2 plateau. Finally, we compare the values. The deviation to the quantized value of the Hall resistance in the graphene sample is therefore defined as follow in chapter 4 sec. 5.6.2, the measured quantity by the resistance bridge is in fact the ratio of the two resistors to compare. Namely here we have R gr aphene H or R GaAs H and R 100 . Using equation 5.2 with N p = 2065, N s = 16 and N a = 16 the ratio of the two resistances is thus given respectively for graphene and GaAs/AlGaAs by γ gr aphene =

  Figure 9.10.: ∆R H /R H versus the magnetic induction for the two Hall pairs and the mean value.

Figure 9 .

 9 Figure 9.11.: Evolution of R xx /R H and ∆R H /R H with the temperature at magnetic fields 10 and 19 T

Figure 9 .

 9 Figure 9.12.: Relationship between Hall and longitudinal resistances. Left) ∆R H as a function of R xx right) |∆R H /R H | as a function of R xx /R H for several magnetic fields B in log-log scale.

Figure 9

 9 Figure 9.14.: Evolution of the localization length ξ and the related parameter T 0 with the magnetic field.

  Fig.9.15 is ∼ 7.5 µm and is almost constant for all the magnetic fields studied. Let us remark that it is far smaller than the sample width (100 µm). This could be explained by inhomogeneities such as density fluctuations caused by doped impurities present in the substrate. Nevertheless in our sample the electronic density difference between the different Hall probe pairs is found below 10% which shows that our sample is pretty homogeneous at a macroscopic scale. It could also be due to the presence of bilayer patches present along the edge of the SiC steps that could lead to constrictions of the current flow. This would create local electric field drops, limiting the value of W below the Hall bar width.

Figure 9 Figure 9

 99 Figure 9.15.: Left: Evolution of the longitudinal resistance measured using terminals V 3 and V 5 with the current for several magnetic fields at T = 1.4 K. Right: T eff versus I for σ xx (T eff ) = σ xx (I)

Figure 9

 9 Figure 9.17.: a) R xx and R xy versus magnetic field for a monolayer graphene Hall bar redeposited on SiO 2 /Si. Extracted from [Amado et al., 2010]. b) R xx and R xy versus magnetic field for a monolayer graphene Hall bar

First

  let us look more carefully at the dependence of the localization length and see if it follows the behavior predicted in the case of the localization-delocalization theory. In this theory ξ followsξ ∝ ξ 0 |νν c | -γwhere ν c is the filling factor at the center of the Landau level (in the case of the n = 0 Landau level we have ν c = 0), ξ 0 depends on the disorder potential range and γ = 2.3 depends only on the dimension of the material and the internal degree of freedom[START_REF] Slevin | Critical exponent for the quantum Hall plateau[END_REF]. This relation was experimentally observed in exfoliated graphene redeposited on SiO 2 up to LL filling factors ν = 1.5[START_REF] Bennaceur | Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene[END_REF]. ν c | -2.3

Figure 9 .

 9 Figure 9.19.: Illustration of the localization-delocalization theory. The localization length should first find a minimum at LL filling factors value between the LL and rise when ν starts to enter in the next Landau level.

Figure 9

 9 Figure 9.20.: Evolution of ξ/l B with the magnetic field (ξ is extracted from the ES-variable range hopping fits)

•Figure 9

 9 Figure9.21.: Evolution of the electronic density (orange curve) with the magnetic field in the theory developed by Kopylov.[START_REF] Kopylov | Charge transfer between epitaxial graphene and silicon carbide[END_REF] 

  9.21. The observed experimental results are pointing towards a pinning only from B 1,l = 10 T to B III = 15 T. Thus this theoretical model can not completely explain this charge transfer and points towards more theoretical and experimental studies.

  Hall plateau, the largest ever measured. Moreover, the relative discrepancy between the quantized Hall resistances measured on the ν = 2 plateau in the graphene sample and in the reference GaAs/AlGaAs one is equal to -2 ± 4 × 10 -10 which constitutes a new proof of the universality of the quantum Hall effect. Using a homemade low noise technique we studied the dissipation mechanisms occurring between the quantum Hall edge channels all along the ν = 2 plateau. The Efros-Shklovski variable range hopping was clearly identified as the main backscattering mechanism.

  uncertainty targeted) above this threshold current. Nevertheless it is interesting to look at the dependence of R xx in the graphene sample with the injected current. On Fig.10.3C) is plotted the mean value of the resistance measured over the circumference of the sample at the temperature of 1.3 K, for two different magnetic fields, 5 and 6 T. R xx stays at very low values, 50 µΩ, up to measurement currents as high as 160 µA at 5 T and 280 µA for 6 T which is far above the current that can sustain a non dissipative LEP 514 QHRS at 10.8 T. The ability to inject large currents in the sample and keeps a non-dissipative quantum Hall state, is a keystone towards a more convenient quantum resistance standard since it could allow the use of commercially available resistance bridges operating at room temperature.

Figure 10 .

 10 Figure 10.3.: Accurate measurements of the Hall and longitudinal resistance of the graphene-based QHRS in the plateau ν = 2. A) Relative deviation of R H-G from R H-GaAs , measured using the central terminals (B,F), and B) mean value of the longitudinal resistance over the circumference of the device, versus magnetic field. C) Mean value of the longitudinal resistance over the circumference versus applied current at B=5 and 6 T, and T =1.3 K

H

  angle β is found equal to 40°. The natural culprit for such inhomogeneity are the SiC steps or some bilayer patches present on it that could induce local density variations and tilt the current circulation.It is particularly important to probe the impact of this inhomogeneity on the Hall resistance. The deviation of the Hall resistance from the quantized value has been measured for both magnetic induction using the central Hall pair (B-F). Two interesting values can be calculated highlighting the impact of the geometrical and inhomogeneity contribution to the Hall resistance measurement.∆R H /R H,odd = ∆R H /R H,even = R graphene H (B+) + R graphene H (B-) 2R GaAs H -1 = α geo × r xx R GaAsH where r xx reflects the mean dissipative transport in the graphene Hall bar. The odd (∆R H /R H,odd ) and even (∆R H /R H,even ) quantities related to the Hall resistance deviation from the quantize value for the temperature of 1.3 K between 3.5 and 10.8 T are represented on Fig. 10.4A). The fact that ∆R H /R H,odd and ∆R H /R H,even are null within an uncertainty of 0.4 × 10 -9 from 4 to 8 T at the temperature of 1.3 K demonstrates that r xx is very low in the sample and does not affect the Hall measurement at this uncertainty level from a geometrical or an inhomogeneity coupling contribution. It is consistent with the low R xx value measured all around the Hall bar and prove the good spatial homogeneity of the sample.

Figure 10

 10 Figure 10.4.: Robustness of the Hall resistance quantization upon magnetic field direction inversion / Spatial homogeneity of the Hall resistance quantization. (A) ∆R H /R H,odd (empty symbols) and even (filled symbols), as defined on the figure, versus magnetic field, for the measurements performed using the central transversal terminal-pair (B, F). ∆R H /R H,even is the mean value of the ∆R H /R H measured in the two directions. (B) Experimental standard deviation of the measurements of R graphene H carried out with the three transversal pairs versus magnetic field, and for both directions. The error bars correspond to the combined standard uncertainty of the experimental standard deviation in the whole Hall bar.
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  Figure A.1.: Evolution of the longitudinal conductivity at B = 19 T with the temperature for different mechanisms representations for filling factors between ν = 2.2 and ν = 4.5: Upper right: T σ xx v s T -1/3 with y-axis in log scale corresponding to the Mott variable range hopping representation, Lower left: T σ xx v s T -1/2 with y-axis in log scale corresponding to the Efros-Schklovskii variable range hopping representation. Lower right: σ xx v s T -1 with y-axis in log scale corresponding to the activation mechanism representation.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Density of statesLet us consider the energy dependence of the density of states per unit of surface that is proportional to the momentum space volume n

		2.2. NEAREST NEIGHBOR HOPPING
		2.2.3 |
	v F	c/300
	30	

It plays the role of an effective celerity of light with:

  where W is the sample width) and is called the Hall voltage. The current is simply defined by I y = I = j y W = n s ev y W . The ratio of V xy and I y is called the Hall resistance

	2.5. INTEGER QUANTUM HALL EFFECTS
	and defined as:	R H =	B n s e
	It is worth noting that the voltage V H and the current I depend on the sample width W but the
	ratio R H = V H /I does not. Moreover one can notice that this classical theory only requires a two
	dimensional material and is thus valid for graphene and semi-conducting heterostructures. We will
	see, in the frame of quantum mechanics, that the physics under magnetic field in these two systems
	is nevertheless different.		
	44		

  E n and E F are respectively the energy the upper and lower Landau level and the Fermi energy, k the Boltzmann constant and T the temperature. If dominating, It is used experimentally to extract the gap between the Landau levels extended states (also called the mobility gap). When the Fermi energy lies in the center between two Landau levels i.e, E F = (E n+1 +E n )/2 this equation can be written as

  that reduces the doping induced by the buffer layer. Other techniques consist in compensating the high electron doping by deposing a resist having an opposite doping. It has been done by depositing P(MMA-MAA)and ZEP 520a resists on top of the graphene layer that strongly reduce electron carrier density in the graphene layer[Lara-Avila et al., 2011a]. Moreover this resist present the advantage to increase its p-doping (and therefore reduce the electron concentration in the graphene layer) by insulating

	6 More	details	can	be	found	in	the	master	thesis	of	Peï-Lan	Hsu:

it with ultraviolet radiations. Other techniques have emerged to create a tunable gate on top or above the graphene layer. Bottom gating have been done by the implementation of Nitrogen atoms in the SiC substrate, bellow the graphene layer

[START_REF] Jouault | Bottom-gated epitaxial graphene suitable for halfinteger quantum metrology[END_REF]][Waldmann et al., 2011]

. Top gates have been made by the deposition of high-k dielectrics (for example HfO 2 or HfO 2 /TiO 2 ) recovered by a metallic material

6 [Li et al., 2010]

. Nevertheless it is still very challenging to create operating top or bottom gates for very large samples, as required for an application in metrology.

5 A moiré pattern is a secondary superimposed pattern , when two patterns are overlaid while translated or rotated by a small amount from one another. http://dspace.mit.edu/bitstream/handle/1721.1/46130/392629383.pdf

Table 5

 5 

.1.: Noise levels for a 100 Ω calibration

Table 7

 7 

.1.: Corresponding electronic densities and mobilities for the samples S-A, S-B and S-BH2

Table 7

 7 

.2.: Related densities and mobilities for different orientations of the Hall bars

Table 7

 7 

.3.: Evolution of the electronic density and mobility after each annealing step.

  After each immersion we always cleaned the samples with isopropanol. The evolution of the electronic density for each immersion step is summarized in

	the table Tab. 7.4				
		Prisitine (after annealing) 1h -H 2 O 30 min -NH 3 (gaz) 40min -NH 3 (liquid)
	Density [cm -2 ]	2.4×10 13	4.1×10 12	5.1 × 10 12	3.8 × 10 12

Table 7.4.: Evolution of the electronic density after immersion in water and ammonia

  Table 8.1.: Evolution of the phase coherence length L φ with the temperature for several carrier densities.

	10 12	1.2	1.1	0.8	0.5	0.38
	-1.95 × 10 12 -1.02 × 10 12 -2.65 × 10 11	1 0.9 0.68	0.9 0.75 0.53	0.64 0.55 0.38	0.43 0.34 0.25	0.32 0.17
	∼ 0 2.27 × 10 11	0.55 0.6	0.41 0.48	0.28 0.32	0.18 0.21	

  table of Fig. 8.5 are reported for the temperature of 0.3 K, the extracted values of the inter L iv and intra-valley scattering length L

		0.8				
		0.6				
	∆σ	0.4				
		0.2				
		0.0	0.04	0.02	0.00 B(T)	0.02	0.04

* extracted from the fits. The inter-valley scattering length starts at 0.29 µm close to the CNP and quickly saturates at 0.42 µm above a carrier density of 1 × 10 12 cm -2 . One can notice that L * and L iv are smaller than L φ and that the inter-valley scattering length L iv is rather large in comparison with the intravalley scattering length L * . It reflects that short range scattering is dominant in the sample. The natural culprit for such short range scattering process is the grain boundary which is an atomically sharp defect.
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  Evolution of the longitudinal conductivity at B = 19 T for different mechanisms with the temperature representations on the ν = 0 plateau Upper right: T σ xx v s T -1/3 with y-axis in log scale corresponding to the Mott variable range hopping representation, Lower left: T σ xx v s T -1/2 with y-axis in log scale corresponding to the Efros-Schklovskii variable range hopping representation. Lower right: σ xx v s T -1 with y-axis in log scale corresponding to the activation mechanism representation.
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	Figure 8.39.:											
	10 More	details	about		the	Kosterlitz-Thouless	transition	can	be	found	at:
		http://www.mit.edu/~levitov/8.334/notes/XYnotes1.pdf				

  The resulting deviation from the quantized value of the Hall resistance is Acquisition of 30 measurements values by the null detector for each current direction These three parameters have been selected in order to optimize the measurement uncertainty (get rid of 1/f noise) while keeping a reasonable time. Typically fifty minutes in total.On Fig.9.10 is represented, for the temperature of 1.4 K and a measurement current of 20 µA, the relative deviations of the graphene Hall resistance to the quantized value ∆R H /R H for the two available Hall pairs R I1I2,V 1V 4 and R I1I2,V 2V 3 , as well as the mean value ∆R H /R H of the two Hall pairs. The two different Hall pair probes show a similar behavior on ∆R H /R H with a 10 -9 relative measurement uncertainty from 10 to 19 T. This shows that first, the density is homogeneous in this sample and second, that the injection of the current by a voltage probe do not influence the quantization at this level. This sample demonstrates a perfect 9 T wide quantized plateau with a 10 -9 relative measurement uncertainty. If we focus at the mean value it appears that the Hall resistance is quantized with no significant deviation from 10 to 19 T. All discrepancies are within two standard deviations 2σ, corresponding to a coverage factor k = 2 and an expected confidence level of 95 %. These values coincide with the low dissipation level measured by the R xx measurements. For the magnetic fields under 10 T we can see that the Hall resistance starts to deviate from the quantized value in agreement with the rise of R xx at 9 T observable on Fig.9.9.Let us make a few remarks about the quantization of this plateau.

	9.4. HALL RESISTANCE DEVIATION	
	• 8 seconds as waiting time after each current reversal, before data acquisition.
	9.4 | Hall resistance deviation
	∆R H /R H (10 -9 )	6 -5 -4 -3 -2 -1 0 1 2 3 4	8	10 12 14 16 18 20 B (T) ∆R H /R V 1 V 4 H (10 -9 )	6 -6 -4 -2 0 2 4	8	10 12 14 16 18 20 B (T) V 2 V 3
		6				8	10	12	14	16	18	20
	thus given by						
			∆R H R H	=	(γ gr aphene -γ GaAs av g ) γ GaAs av g	with γ GaAs av g =	γ GaAs before + γ GaAs
	200							

after 2

The typical values used for the resistance calibration following the procedure explained in chapter 4 sec. 5.6.2 were:

• 25 groups of measurements, each including two current reversals.

•

  Figure 9.13.: T σ xx vs T -1/2 in log scale concerning the y axis. All the curves clearly show that the dissipation is well described by a Efros-Schklovskii variable range hopping.

	9.6. DISSIPATION MECHANISM ON THE ν = 2 PLATEAU		
								7 T
		10 -1						8 T 9 T
								10 T
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		10 -5					
		0.20	0.25	0.30	0.35	0.40	0.45	0.50
				T -1/2 (K -1/2 )		
								9.2)
	over five orders of magnitude (that allowed us to distinguished between the Mott and ES-VRH
	without any confusion). The activation mechanism would probably appears at higher temperature
	but was not observed even for the highest temperatures of 40 K.		
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	A.1 | Temperature dependance of σ xx			
	A.2 | Sample S2							
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  ∆R H /R H = (-0.9 ± 8.2 × 10 -11 )
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Let's note that the definition of the flux quantum differs by a factor 1/2 depending on the considered effect. For example we will see that in the case of the quantum Hall effect the flux quantum is define as φ0 = h/e

This the constant used in every national metrology institute (NMI) to maintain the volt

And so far the last one.

It is worth noting that in the case of the quantum Hall effect we suppose that the plateau gives an integer fraction of R K ≡ h/e 2 but we do not measure its value.

The fine structure constant and the number 137 has obsessed Wolfgang Pauli during many years. A review about this obsession and a written correspondence with the psychiatrist Carl Gustav Jung about the meaning of the fine structure constant can be found in[START_REF] Várlaki | Number archetypes and "background" control theory concerning the fine structure constant[END_REF].

copies of this prototype exist all around the world

The fact that the serial impedance must be high compared to h/e 2 comes directly from the Heisenberg uncertainty relationship. Indeed we have ∆E × ∆t h/2. If now we take ∆E = e 2 /2C and ∆t = RC it directly implies to have R h/e 2

Let us stress out that the chirality operator commutes with the Hamiltonian (2.3) which results in a good quantum number.

In experiments le has to be replaced by the transport length that we will define below

It is similarly possible to consider the correction to the conductivity since in an homogeneous sample ∆G W L = (W/L)∆σ W L

since each backcattering loop has a different size

which is valid as soon as the magnetic length is much larger than the lattice constant that is always the case in electronic transport experiments since l B reach a = 0.14 nm at B ∼ 35000 T

This does not refer to the valley degree of freedom of graphene

These states does not refer to the unidimensional extended states which always exist close to the boundary of the device if the Fermi energy in the bulk of the 2DEG is in the gap between Landau levels

G does not refers to the conductance.

Let us note also that the size of these sample is far above the average sample size that one usually obtains from the exfoliation method

The natural SiC is called Moissanite in honnor of Dr. Ferdinand Henri Moissan who discovered this material in 1905 in Arizona

In the Bravais-Miller notation (hkil) the third index i is redundant with the two previous ones, and defines as h + k + i = 0.

This is because the atom density of carbon in a graphene layer correspond to three SiC layers.

The other important one come from the fact that this bridge has been designed to calibrate resistors for the industry.

The impossibility to have a

2D system with a metallic behavior is an everlasting debate. One can find a nice discussion about it in[Neutkens, 2013] 

A review about the different theoretical approach concerning the transition between quantum Hall plateaus can be found in[START_REF] Kramer | Random network models and quantum phase transitions in two dimensions[END_REF] 

A summary of many of these techniques and related γ values can be found page 13 of[START_REF] Kramer | Random network models and quantum phase transitions in two dimensions[END_REF] . Usually in the literature γ is denoted as ν but it can create misunderstanding since these letter also denotes the LL filling factor.

The saturation at low temperature of the phase coherence have already been questioned and is regularly observed[START_REF] Mohanty | Intrinsic Decoherence in Mesoscopic Systems[END_REF]. A reason often cited is the presence of magnetic impurities limiting the phase coherence length.

Please note that there is no fitting parameters (except for curve (e) ) to adjust our data points but only the calculated values from 8.1.

It would say that the average carrier density difference induced by the line defects would be equal to ns = ((0.6 + 0.6) × eB)/h = 5.5 × 10 11 cm -2

In our case we used the full width at half maximum (FWHM)

It is important to mention that the peculiar power law dependence observed before were still visible when following the longitudinal conductivity minimum on the plateau.

It is worth noting that it can not be described by two copies (one for the spin and the valley) of the SU(2) group since SU(2) × SU(2) = SU(4). In fact one has to add an additional Bloch sphere traducing the entanglement between the spin and the pseudospin. A more detailed explanation can be found in[Goerbig, 2010] and[Kharitonov, 2012] 

This SU(4) ferromagnetism can thus be a ferromagnetism of spin, pseudo-spin or a combination of both (A complete description of the ν = 0 phase space in this framework can be found in[Kharitonov, 2012]).

As for example, Coulomb interaction at the lattice scale as studied in[START_REF] Alicea | Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes[END_REF], Yang et al., 2006, Goerbig et al., 2006, Nomura et al., 2009, Jung and MacDonald, 2009] or electronphonon interaction leading to a (Kékulé) distortion of the sublattice studied in[START_REF] Hou | Deconfined fractional electric charges in graphene at high magnetic fields[END_REF], Nomura et al., 2009][Fuchs and Lederer, 2006] 

Indeed the phase diagram presented on Fig. 8.40 d) is not perfectly symmetric with regards of ns = 0
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Chapter 8 CHAPTER 8. TRANSPORT PROPERTIES OF CVD GRAPHENE ON SIO 2 /SI From this set of structural characterization, one deduces that sharp line defects (such as grain boundaries and wrinkles) crossing the whole Hall bar can clearly identified. The question of the impact on the transport properties of such line defects under magnetic field is still poorly understood.

We have thus started a collaboration with theoreticians from Grenoble and Barcelona to understand more clearly the impact of such defect. The two terminals conductance (at T = 0) of the nanoribbon under a magnetic field of 80 T is depicted on Fig. 8.22 a) for two different disorder strength, W = 0.4 and 2 eV as well as for the pristine case. The choice of the magnetic field was done in order to keep the same ratio of the magnetic length over the smallest grain size in the system (∼ 0.5 µm): l 19T B /L grain y ∼ l 80T B /L ribbon y . In the pristine case (without any defect) conductance plateaus are observable at quantized values (2,6,[START_REF] Josephson | Possible new effects in superconductive tunnelling[END_REF]14) × e 2 /h as expected for a monolayer graphene. The red and blue lines

show the conductance in presence on the octagon-pentagon defect in the sample for two disorder potential strengths W = 0.4 eV and W = 2 eV respectively. A clear electron-hole asymmetry appears, coming from the A-B lattice breaking due to the presence of the 5-8 line defect. We can see that the conductance deviates from the quantized value found for the pristine case. The conductance in the case of a weak disorder inside the defect (W = 0.4 eV) shows that, due to the presence of the line defect, the conductance can be altered by almost one spin degenerated quantum channel (2e 2 /h) on the ν = 2 plateau and up to almost 4e 2 /h on the ν = -6 plateau.

backscattering mechanisms happening along the wrinkles. Further studies of ripples and wrinkles under magnetic field need to be done to have a clear understanding of their impact in the quantum Hall effect regime. For example using STM techniques at low temperature and high magnetic fields to probe locally the impact of such line defect.

8.5.2 | Impact of the Bi-layer patches Extracted from [START_REF] Chua | Quantum Hall effect and quantum point contact in bilayer-patched epitaxial graphene[END_REF].

The impact of bilayer patches in SiC graphene under magnetic field has been studied by [START_REF] Chua | Quantum Hall effect and quantum point contact in bilayer-patched epitaxial graphene[END_REF]. xx measured is due a shunt of the edge states by the bilayer stripe crossing the sample which is consistent with a metallic behavior of the bilayer stripe (for this carrier density). At lower densities (< 5 × 10 10 cm -2 ), using scanning gate microscope techniques, the authors show, in second sample, that isolated bilayer islands change the current path in the non-dissipative monolayer region. This is understood as a proof of their insulating behavior, in agreement with the theory developed in the paper.

The

In our experiments the visible multilayer patches have a typical size of [0.5 -1.5] µm and are spaced by at least one micron. The current should therefore preferentially stay in the non dissipative regions and avoid such localized defects. Thanks to the small size and the spacing between the bilayer patches they can not act as short-circuits in the presented samples, and therefore not explain the Once again it does not follow the usual dissipation mechanism and notably the activation mechanism. It unfortunately results that we have no access to any activation energy gap value. It is unfortunately also the case if one follows the temperature evolution of the longitudinal resistance R xx instead of σ xx . It is not usual since in this highly insulating regime previous works tends to show that the VRH was the dominating charge transport mechanism [START_REF] Du | Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene[END_REF]][Zhang et al., 2010].

I shows that probably the line defects play a role, also in this highly resistive regime without the presence of the quantum Hall counter-propagating edge states.

A less precise but nevertheless convenient way to extract an energy gap is to note the value at which the splitting disappears. We can see that at 40 K a trace of the ν = 0 is still visible. Nevertheless from the temperature evolution we can imagine that this inflexion will disappear before 60-70 K.

This value is about three times smaller than the activation gap that we could expect from the Coulomb interaction (see Tab. 8.3), but, as in the experiments of Young et al. described above, higher than the Zeeman energy.

CHAPTER 8. TRANSPORT PROPERTIES OF CVD GRAPHENE ON SIO 2 /SI ing the graphene-substrate adhesion [START_REF] Lanza | Tuning graphene morphology by substrate towards wrinkle-free devices: Experiment and simulation[END_REF]. Furthermore it shows that the criteria only based on the mobility times the magnetic field µB 1, commonly used for GaAs/AlGaAs resistance standard is not sufficient in graphene since peculiar defects can have dramatic impact on the quantization.

Chapter 9

where the localization length is too high to have a perfect quantization of the Hall resistance. The region B is much more interesting. The ratio stays at a value slightly below the magnetic length (equal to the magnetic length considering a slightly different dielectric constant of the material r = 6.1), hallmark of a well developed quantum Hall effect. This saturation can be possibly interpreted by (at least) two distinct scenarios. The first one points towards a charge transfer once again. Indeed if the ratio ξ/l B is constant, the equation 9.5 argues for a LL filling factor ν also constant on the same magnetic field range: The LL filling factor would be equal to 2 from 10 to 15 T. This requires that the charge transfer evolves linearly with the magnetic field n s ∝ 2eB/h. This explanation would be the only one if the value reached by ξ/l B was higher than one. In our case, we could also understand this saturation of ξ/l B by just invoking the fact that l B should be a fundamental limit to ξ. The localization length can not reach values below this threshold and thus the ξ/l B would be constant and equal to one.

Another way to address the evolution of ξ relies on a prediction by Fogler et al. The authors proposed that at LL filling factors near integer values and in the case of white noise short range disorder the localization length must tend to the classical cyclotron radius [START_REF] Fogler | Localization length at the resistivity minima of the quantum Hall effect[END_REF]]. This assumption has been verified experimentally in GaAs/AlGaAs heterostructures by [Furlan, 1998] where the localization length extracted by a VRH analysis tends towards r c = k F /(eB) when ν approaches the center between two Landau levels. In the case of graphene since k F = √ πn s one can write r c = l B ν/2 (it worth noting that one finds l B for ν = 2). Within this theoretical frame a constant ξ/l B as in the case of our experiment between 10 and 15 T argues again towards to a constant filling factor ν = 2 over all this magnetic field range.

Finally, in the region C the ratio ξ/l B slowly rises up possibly reflecting that the LL filling factor ν drops towards 0 and starts to enter in the n = 0 Landau level.

To conclude, the unusual long plateau extending far from the theoretical center, towards the high magnetic fields, the tiny minimum revealed at high temperature on the longitudinal resistance and the peculiar behavior of the localization length compared to the magnetic length points in the direction of a magnetic field induced charge transfer from the buffer layer.

give fruitful information about the evolution of the quantum capacitance with the magnetic field potentially providing some information about the charge transfer mechanism at work.

Chapter 10 Hall bar made of monolayer graphene grown using the hybrid technique employed for the previous discussed sample: the chemical vapor deposition on SiC(0001). A picture of the sample can be seen on Fig. 10.1. Nevertheless the settings were slightly different for this graphene growth:

• The Hydrogen/Argon ratio was different: 44 % of H/66 % of Ar (23%/77% for first sample) but the pressure was the same (800 mbar).

• A 0.028 % of propane gas was introduced during 10 minutes (against 0.04 % during 5 minutes for the first sample)

• The growth temperature was the same for both samples: 1550°C

All the lithography processes, contacts and bonding pads are strictly the same as those exposed in the previous chapter. R xx was also measured at the temperature of 5.1 K for the magnetic field of 5 T and an injected current of 50 µA. We can see on Fig. 10.3 B) that the value is higher than the R xx value at 1.3 K but the sample stay nevertheless in a very low dissipative state. It demonstrates that this sample keeps very low R xx values for a high injected current of 50 µA at a very low magnetic field of 5 T and at the temperature of 5.1 K which is above the liquid helium 4 temperature, easily achievable with affordable cryofree systems.

Using the same protocol as explained in sec. 9.3 the Hall resistance of a reference LEP 514

GaAs/AlGaAs resistance standard on the ν = 2 plateau (supposed to give R K /2) has been compared with the Hall resistance given by the central Hall pair (B,F) of our graphene device.

The relative deviations between the Hall resistance of the two devices ∆R

versus the magnetic field are presented on Fig. 10.3A). The graphene Hall resistance is accurately quantized with no significant deviation within the relative combined standard uncertainty of the measurements equal to 1 × 10 -9 from 3.5 to 10.8 T. Remarkably the Hall resistance is quantized at the magnetic induction of 3.5 T, a temperature of 1.3 K with an injected current of 10 µA. This promotes this devices as the quantum Hall resistance standard (QHRS) operating at the lowest magnetic field ever measured, far below one of the best GaAs/AlGaAs QHRS operating around 6 T and close to the magnetic field produced by permanent magnets (∼ 2 T).

In order to test the Hall resistance accuracy within the lowest uncertainty an additional series of measurements have been processed

• At 5 T, 1.3 K, 50 µA : 8 measurements were carried out using the Hall pair (B-F) (4 measurements for each magnetic field direction)

• At 5 T, 1.3 K, 50 µA : 4 measurements were carried out using the Hall pair (A-G) (2 measurements for each magnetic field direction)

• At 5 T, 1.3 K, 50 µA : 4 measurements were carried out using the Hall pair (C-E) (2 measurements for each magnetic field direction) The lower part reports on the odd (∆R H /R H,odd ) and even (∆R H /R H,even ) components defined above. From the data given in the upper part, none of the three different Hall pairs shows a significant deviation of the Hall resistance of the graphene sample from the GaAs one within a relative uncertainty of 1 × 10 -9 at most. Remarkably, the three Hall pairs exhibit a similar behavior as a function of the magnetic field and are correlated with the overall variations of ∆R H /R odd and ∆R H /R even , thus with the dissipation occurring in the sample. The optimal agreement between the different Hall pairs is found for the magnetic field of 5 T. Above this value the agreement between the Hall pairs slightly degrades. The central Hall pairs enables more accurate Hall resistance measurements over the whole magnetic field range. It can be due to the lower resistance of the contacts pads compared to the other probes or the larger distance to the current contacts where the dissipation takes place.

The histogram of this set of 16 measurements of ∆R

| Quantization accuracy tests with the lowest measurement uncertainty

To achieve the lowest uncertainty, several Hall resistance measurements were selected based on drastic criteria: First, the invariance of the Hall quantization in regards of the magnetic field direction must satisfy ∆R H,odd = ∆R H,even < 0.5 × 10 -9 and secondly, the relative dispersion of the R graphene H values obtained with the three terminal Hall pairs must be below 1 × 10 -9 . The sets of data fulfilling these conditions are the following:

• At ±4 T, 1.3 K, 20 µA: 8 measurements using (B,F), 2 measurements using (A,G), 2 measurements using (C,E) (half measurements for each magnetic field direction)

• At ±5 T, 1.3 K, 50 µA: 8 measurements using (B,F), 4 measurements using (A,G), 4 measurements using (C,E) (half measurements for each magnetic field direction) 
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| Conclusion

This sample made out of graphene grown by CVD on SiC presents numerous outstanding features for resistance metrology. Using a GaAs/AlGaAs quantum Hall resistance standard, the Hall resistance of the graphene sample has been demonstrated to be accurate to within 10 -9 in relative value at the magnetic field of 3.5 T. This demonstrate for the first time that graphene QHRS can overpass in term of convenience the well-studied semiconductor-based resistance standard. Thanks to the high quality of the graphene layer, the good quality of the contacts and a large scale homogeneity over the sample, an accuracy on the Hall resistance of 1.02 × 10 -10 is found in this device for a magnetic field of 5 T, a temperature of 1.3 K and current of 50 µA. Moreover, for the same magnetic field and current, the Hall resistance stay accurate to within 10 -9 at the temperature of 5.1 K making this resistance standard possibly compatible with easy-handling, helium free fridges.

This will ease the dissemination of the electrical units towards end users and reduce the number of calibrations steps from the quantum effect to the final calibrated product. For a better visualization of the performance of this graphene QHRS, a graphical representation of the best (B, T, I)

compromise achieved, preserving a 1 × 10 -9 -accurate Hall quantization can be found on Fig. 10.6

A,B,C).

Hall resistance plateau is explained by a localization length locked close to the magnetic length value over a wide magnetic range. The peculiar behavior the localization length is potentially induced by the pinning of the Landau level filling factor ν = 2 due to a magnetic field assisted charge transfer from the underlying buffer layer.

The comparison between the sample produced by CVD on metal and the one produced by CVD on SiC gives also fruitful information for an application of graphene in metrology. These two samples present similarities in terms of charge carrier mobilities and sample size but exhibit two distinct behaviors of the quantization of the Hall resistance. This highlight an ambivalent role of the defects that can, depending on their type and range of their potential, either, delocalize the states present in the bulk of the sample in the quantum Hall regime or strengthen the localization and foster the quantization of the Hall resistance.

At the very end of my PhD we measured a second Hall bar made from graphene grown by CVD on SiC that proved that graphene can destitute the GaAs/AlGaAs heterostructures to realize a quantum resistance standard operating in more convenient magnetic field, temperature and current conditions. This graphene sample has been demonstrated to be accurate to within 10 -9 in relative value at magnetic fields as low as 3.5 T, temperatures as high as 5.1 K, and measurement currents up to 280 µA. This paves the way towards convenient and affordable quantum Hall resistance standards based on graphene that should permit an easier dissemination of the unit ohm. Finally, one needs to study more deeply the peculiarity of the graphene growth by CVD on SiC to understand the essential structural elements that allowed us to measure a so-well quantized Hall resistance, in such convenient conditions. It seems that the type of defects present in these highly quantized graphene quantum Hall resistor implies at the localization length to be of the order of the magnetic length, or even bellow.

The next goals for electrical metrology in the upcoming years will be to develop 10 -9 -accurate graphene-QHRS that can operate, ideally with, permanent magnets, cryofree systems and commercial resistance comparison bridges. This revolution would lead to an affordable and user-friendly set-up that could be easily disseminated towards the end users. One can even imagine a unique Bibliography [Li et al., 2009] Li, W., Vicente, C., Xia, J., Pan, W., Tsui, D., Pfeiffer, L., andWest, K. (2009).